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Abstract

Recent in vitro evidence shows that glycosaminoglycans (GAGs) and proteoglycans (PGs) in bone matrix may
functionally be involved in the tissue-level toughness of bone. In this study, we showed the effect of biglycan
(Bgn), a small leucine-rich proteoglycan enriched in extracellular matrix of bone and the associated GAG subtype,
chondroitin sulfate (CS), on the toughness of bone in vivo, using wild-type (WT) and Bgn deficient mice. The
amount of total GAGs and CS in the mineralized compartment of Bgn KO mouse bone matrix decreased signifi-
cantly, associated with the reduction of the toughness of bone, in comparison with those of WT mice. However,
such differences between WT and Bgn KO mice diminished once the bound water was removed from bone
matrix. In addition, CS was identified as the major subtype in bone matrix. We then supplemented CS to both WT
and Bgn KO mice to test whether supplemental GAGs could improve the tissue-level toughness of bone. After
intradermal administration of CS, the toughness of WT bone was greatly improved, with the GAGs and bound
water amount in the bone matrix increased, while such improvement was not observed in Bgn KO mice or with
supplementation of dermatan sulfate (DS). Moreover, CS supplemented WT mice exhibited higher bone mineral
density and reduced osteoclastogenesis. Interestingly, Bgn KO bone did not show such differences irrespective
of the intradermal administration of CS. In summary, the results of this study suggest that Bgn and CS in bone
matrix play a pivotal role in imparting the toughness to bone most likely via retaining bound water in bone matrix.
Moreover, supplementation of CS improves the toughness of bone in mouse models.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Introduction

Osteoporosis and bone fragility fractures are a
major concern of health care for our rapidly growing
aging population. Although the current common con-
sensus is that the fracture risk is mainly dependent
on bone mineral density (BMD) [1], more recent evi-
dence shows that BMD alone lacks sensitivity to
evaluate the mechanical performance of bone accu-
rately [2�4]. This is likely, in part, because bone is a
hierarchical composite of mineralized type I collagen
fibrils embedded in a matrix of non-collagenous pro-
teins (NCPs) and hydroxyapatite mineral phase [5].

In the past, extensive efforts have been made to
study the contribution of the mineral and collagen
phases to the mechanical competence of bone
[6�10]. It was not until recently that the direct effect
of NCPs on bone mechanical properties has started
to attract more attention [11�13]. Proteoglycans
(PGs) are a set of the structural NCPs in bone extra-
cellular matrix, which have strong affinity to both col-
lagen and mineral crystals [14,15]. Typically, PGs
contain glycosaminoglycans (GAGs) chains, which
are long unbranched polysaccharides comprising a
series of repeating disaccharide unit, attached to
core proteins [16]. GAGs are highly negatively
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charged, thus possessing a great osmotic potential
to attract water into the matrix, while matrix water
has been reported to function as a critical mediator
to facilitate the plastic deformation of bone at both
bulk and ultrastructural levels [17�22]. However,
the role of PGs and GAGs in regulating mechanical
behavior of bone remains poorly investigated [23].
Our previous in vitro studies using human cadav-

eric bone samples showed that PGs and GAGs
might play an important role in sustaining bone
toughness via retaining bound water in the matrix
[24,25]. The studies also showed that loss of chon-
droitin sulfate (CS), a major subtype of GAGs in
bone matrix, was associated with age-related deteri-
oration of bone toughness. It has been reported that
biglycan (Bgn) is a major subtype of CS-containing
PGs and is highly expressed in bone tissues
[26�28]. Bgn has two Ser-Gly attachment sites in
the N-terminal region and belongs to the class I type
small leucine-rich PGs (SLRPs), which are charac-
terized by relatively small protein cores (36-42 kDa)
harboring tandem leucine rich repeats [29�31].
The current understanding of effects of Bgn on

bone is mainly focused on its biological aspects.
Studying mice with targeted Bgn disruption has
revealed the involvement of Bgn in the regulation of
postnatal skeletal growth. Bgn deficiency may lead
to decreases in bone mass, bone mineral density,
long bone length, and bone biomechanical strength
compared to age-matched controls [32]. Histological
analysis indicates that Bgn KO mice may have less
trabecular volume and thinner cortices. Bgn deletion
may cause structural abnormalities of bone collagen
fibrils and impair the metabolic activity of bone mar-
row stromal cells (BMSCs) [33,34]. However, it is still
unclear whether Bgn depletion in vivo would lead to
loss of bound water in bone matrix and subsequently
result in deterioration of bone toughness.
The aim of this study was to investigate the spe-

cific role of Bgn in retaining bound water in bone
matrix and maintaining bone toughness using a
Bgn-deficient mouse model. Biochemical, biophysi-
cal, and biomechanical experiments were performed
to determine the amount of total GAGs, CS and
bound water in bone matrix, and their effects on the
tissue-level toughness of bone. In addition, this
study investigated the effect of matrix Bgn on the
efficacy of supplemental CS in improving bone
toughness in vivo using the mouse model.

Results

Biglycan deficiency induces reduction of total
glycosaminoglycans in bone matrix

PGs isolated from bone matrix of 6-month-old WT
and Bgn KO mice were subjected to Western

blotting analysis using an anti-Bgn antibody. The
Bgn protein band under both glycosylated (Fig. 1A)
and deglycosylated (Fig. 1B) conditions can be
detected in the mineralized bone lysates of WT
mice, with a Bgn protein band shift observed after
the treatment by deglycosylation enzyme mix to
remove both N-linked and O-linked glycans. Com-
pared to WT samples, the expression of Bgn was
abolished in both non-treated and deglycosylated
groups of Bgn knockout (KO) mice, with comparable
amount of total protein loaded on the gel as shown
by Ponceau S staining (Fig. 1A and B, left panels).
Consistently, immunohistochemistry staining of Bgn
protein in paraffin sections prepared from WT and
Bgn KO mice showed that the expression of Bgn
was abundant in cell bodies of osteocytes in WT
mice (Fig. 1C, left panel, black arrows), while only
background signal could be detected in the sections
from Bgn KO mice (Fig. 1C, middle panel). Rabbit
IgG was used as an isotype control (Fig. 1C, right
panel), showing no reactivity.

We next examined whether there would be a
reduction of the GAGs amount induced by Bgn defi-
ciency, as Bgn is one of the major PGs in bone
matrix that contain the GAGs [27,28,35]. The level of
total GAGs was determined by DMMB assay in both
mineralized and non-mineralized compartments of
bone. Consistent with our previous observations in
human bone study [24], GAGs were mainly present
in the mineralized portion of mouse bone matrix.
Compared with WT mice, Bgn KO mice showed a
significant decrease in total GAGs amount in the
mineralized matrix, while the difference was not evi-
dent in the non-mineralized compartment (Fig. 1D).
To further validate the GAGs changes under Bgn
deficiency condition, bone sections prepared from
the mid-diaphysis of WT and Bgn KO mice were
stained with Alcian blue. The stained GAGs were
visible around the osteocytes and throughout
the lacunar-canalicular network in bone matrix
(Fig. 1E, left panel). Quantification of the Alcian
blue staining by integrating the intensity over of
the area of interest indicated a significant reduc-
tion of GAGs content in Bgn KO mice (Fig. 1E,
right panel). These results suggest that amount of
total GAGs in bone matrix decreases with the loss
of Bgn in bone matrix.

Biglycan deficiency decreases amount of bound
water and bone toughness

The coupling effect of proteoglycans and bound
water in maintaining bone toughness has been
shown in human bone during the aging process
[24,25]. To examine the effects of Bgn deficiency
on the amount of bound water, cortical bone
lysates of WT and Bgn KO mice were analyzed by
low-energy NMR measurements. Results showed
that the index of bound water was 0.55§0.02 in
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WT mice bone, and 0.48§0.02 in Bgn KO mice,
exhibiting a significant reduction in bound water in
bone matrix (Fig. 2A). We next investigated the tis-
sue-level toughness determined by nanoscratch
test using bone samples from the mid-diaphyseal
femurs of WT and Bgn KO groups. Under the wet
condition, in which the samples were soaked in
PBS solution during the test, the tissue-level
toughness of bone decreased significantly for Bgn
KO mice compared to WT mice (Fig. 2B). However,
under the dry condition, in which the bound water
in bone matrix was removed by heating, the

change in the tissue-level toughness induced by
Bgn deficiency was totally abolished. In addition,
dehydration had a profound effect on the tough-
ness of WT bone when comparing between the
wet and dry conditions. Noticeably, Bgn KO mice
also showed reduction of tissue-level toughness
after dehydration, indicating the potential involve-
ment of other factors in retaining water in the bone.
Taken together, we concluded that Bgn is one of
the PGs in bone mineral matrix that plays a key
role in retaining water and sustaining the tough-
ness of bone.

Fig. 1. Bgn KO mice showed decreased amount of total GAGs in bone. (A) Proteoglycans from WT and Bgn KO mice
mineralized bone matrix were analyzed by western blots probed with anti-Bgn antibody (right panel). Ponceau S staining
showed comparable sample loading from WT and Bgn KO mice (left panel). The asterisk (*) denotes non-specific bands.
(B) Proteoglycans from WT and Bgn KO mice mineralized bone matrix were treated with deglycosylation enzyme mix to
reveal the Bgn core protein, and were analyzed by western blots probed with anti-Bgn antibody (right panel). Ponceau S
staining showed comparable sample loading from WT and Bgn KO mice (left panel). The asterisk (*) denotes non-specific
bands. (C) Paraffin sections of femoral cortical bone from WT (left panel) and Bgn KO mice (middle panel) were immuno-
labeled with anti-Bgn antibody. The positive signals (brown) were labeled by black arrows. Rabbit IgG was used as iso-
type control (right panel). Scale bar, 20 mm. (D) The total GAGs amount from mineralized (left panel) and non-mineralized
(right panel) compartments of WT and Bgn KO mice bone matrix was quantified by DMMB assay. (E) WT and Bgn KO
mice paraffin-embedded bone tissue sections were stained with Alcian blue (left panel). Scale bar, 50 mm. The integrated
density of the staining was analyzed by NIH Image J software (right panel). n = 5-6. * p < 0.05.
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Chondroitn sulfate is the major
glycosaminoglycan subtype in bone mineral
matrix and is decreased under biglycan
deficiency condition

GAGs extracted from WT mice bone mineralized
matrix were analyzed by agarose gel electrophore-
sis. In addition, the in situ visualization of GAGs was
realized via toluidine blue staining. Pure heparin sul-
fate (HS), dermatan sulfate (DS) and CS were
served as standard controls. WT mice bone showed
a single band of GAGs aligned with the CS popula-
tion (Fig. 3A). Chondroitinase ABC specifically
degrades CS and DS by catalyzing the eliminative

degradation of polysaccharides containing (1-4)-
b-D-hexosaminyl and (1-3)-b-D-glucuronosyl or
(1-3)-a-L-iduronosyl linkages to disaccharides con-
taining 4-deoxy-b-D-gluc-4-enuronosyl groups. After
chondroitinase ABC digestion, bands of CS, DS and
GAGs isolated from mouse bone disappeared, fur-
ther suggesting that the majority of GAGs in mineral-
ized matrix is in the form of CS.

In order to determine the change of CS band inten-
sity under Bgn deficiency condition, GAGs from both
non-mineralized (non-M) and mineralized compart-
ments of WT and Bgn KO mice bone were analyzed
by agarose gel electrophoresis. GAGs from equal
weight of bone samples were loaded on the gel.
There were no detectable GAG forms in the non-min-
eralized portion in both the WT and Bgn KO mice
bone matrix (Fig. 3B, left panel). Densitometry meas-
urements revealed that CS band intensity was signifi-
cantly lower in the Bgn KO mice than in the WT mice
(Fig. 3B, right panel), suggesting that Bgn deficiency
may lead to decrease of CS in bone matrix.

Chondroitin sulfate supplement improves GAGs
and bound water amount, tissue-level
toughness, and bone mineral density in WT
mice, but not in Bgn KOmice

We have previously reported that GAGs amount
decreases with aging and is associated with deterio-
ration of bone toughness in human cadaveric bone
samples [24]. Considering that CS is the major form
of GAGs in bone and Bgn depletion may lead to a
decreased toughness of the tissue, we investigated
if supplementing CS in vivo would improve the
toughness of middle-aged mice bone. Based on the
life phase equivalencies between mouse and

Fig. 2. Bgn KO mice showed decreased amount of
bound water and bone toughness. (A) The amount of
bound water in WT and Bgn KO mice bone matrix was
measured by low-field NMR. (B) The femoral cortical sam-
ples from WT and Bgn KO mice were subjected to a nano-
scratch test for tissue-level toughness at mid-diaphysis.
Bone toughness was determined under wet (normal) con-
dition and dry bone condition with dehydration to remove
the bound water in bone matrix. n = 6-7. * p < 0.05;
** p < 0.01; *** p < 0.001.

Fig. 3. Chondroitin sulfate is identified as a major GAG subtype in the mineral matrix of mouse bone and is reduced in
Bgn KO mice. (A) Agarose gel electrophoresis showed various subtypes of GAGs, heparin sulfate (HS), dermatan sulfate
(DS), and chondroitin sulfate (CS). GAGs extracted from WT mouse bone matrix were examined and confirmed by chon-
droitinase ABC digestion. (B) GAGs from non-mineralized (Non-M) and mineralized (Mineral) compartments of WT and
Bgn KO mice bone matrix were analyzed by agarose gel electrophoresis. CS was detected in mineralized bone matrix
(left panel). The CS band intensity was quantified by NIH Image J software (right panel). n = 6-7. * p < 0.05.
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human, we selected middle-aged mice around 10 to
11-month-old for CS supplementation study. We
administrated CS intradermally at the base of the
mouse tail, since a previous study has reported
intradermal injection of CS and its incorporation into
mouse tissues [36]. CS (European pharmacopoeia
reference standard) was injected once a week for 4
weeks. The amount of GAGs in mineralized and
non-mineralized cortical bone matrix of both WT and
Bgn KO mice was determined.
The results showed that supplementation of CS

significantly increased the GAGs amount in the min-
eralized portion of WT bone matrix; while the GAGs
amount in non-mineralized matrix of WT bone was
not affected when compared with saline controls
(Fig. 4A). Interestingly, administration of CS
appeared to have no effect on the amount of GAGs
in both non-mineralized and mineralized bone matrix
for Bgn KO mice (Fig. 4E). We next examined the
level of bound water from both WT and Bgn KO
mice bones treated with saline or CS. As shown in
Fig. 4B, compared to saline control group, supple-
mentation of CS significantly increased the amount

of bound water in WT mice. In contrast, the Bgn KO
mice did not exhibit any difference of bound water
amount after CS injection (Fig. 4F).

We then measured the tissue-level toughness of
bone for WT and Bgn KO mice with CS or saline
injections by the nanoscratch test. The results
showed a significant improvement of bone tough-
ness in WT mice supplemented with CS compared
to controls with saline injection (Fig. 4C). However,
no difference existed in the tissue-level toughness
between CS and saline injected Bgn KO mice
(Fig. 4G). These results further suggested the impor-
tance of GAGs in retaining bound water and confer-
ring tissue-level toughness into the bone. The
whole-body total bone mineral density (BMD) was
determined before and after saline or CS injection. A
significant elevation of BMD was observed in the
WT mice injected with CS compared with those
injected with saline alone (Fig. 4D), while the Bgn
KO group did not exhibit any significant BMD
increase after CS supplementation (Fig. 4H).

Further, we tested whether other types of GAGs
would have a similar effect on bone in WT mice.

Fig. 4. Chondroitin sulfate supplementation improved GAGs amount, bone mineral density (BMD) and tissue-level
toughness in WT mice, but not in Bgn KO mice. (A) Total GAGs amount from mineralized (left panel) and non-mineralized
(right panel) compartments of saline or CS injected WT mice bone matrix was quantified by DMMB assay. (B) After saline
or CS injection, the amount of bound water in WT mice bone matrix was measured by low-field NMR, and normalized by
comparing to saline controls. (C) Tissue-level toughness of femur mid-diaphysis from saline or CS injected WT mice was
determined by nanoscratch test. (D) Total BMD was measured by DXA analysis at pre-injection and after injection with
saline or CS. Total BMD change was obtained by calculating the ratio of total BMD before and after injection, and then
normalized by comparing to saline controls. (E-H) The total GAGs amount, bound water, tissue-level toughness, and nor-
malized BMD change were analyzed in Bgn KO mice after injection of saline or CS. n =5-9. * p < 0.05.
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Since dermatan sulfate (DS) is another major type of
GAGs and has been shown to attach to Bgn core
protein, we administrated DS (United States phar-
macopeia reference standard) in middle-aged WT
mice adopting the same strategy for supplementing
CS. The results showed that the total amount of
GAGs did not change in both mineralized and non-
mineralized bone matrix after DS injection (Fig. 5A).
In addition, the whole body BMD and tissue-level
toughness did not show any significant difference
between DS injected WT mice and saline controls
(Fig. 5B and C). Together, these results suggest that
administration of CS may increases the amount of
GAGs and bound water in bone matrix, BMD, and
tissue-level toughness of bone in WT mice, but this
increase was not shown in Bgn KO and DS supple-
mented WT mice.

Chondroitin sulfate supplement inhibits
osteoclast activation in WT mice, but not in Bgn
KOmice

To further investigate the bone phenotypes of CS
or saline injected WT and Bgn KO mice, we per-
formed tartrate-resistant acid phosphatase (TRAP)
staining for osteoclastogenesis analysis. The osteo-
clasts were visualized and quantified in endocortical
femoral bones. The results showed that supplemen-
tation of CS significantly attenuated osteoclast acti-
vation in WT mice (Fig. 6), showing reduced
osteoclast surface (Oc.S) normalized to bone sur-
face (Oc.S/B.S) compared to saline group, while no
difference was observed in Bgn KO mice.

In addition, bone dynamic histomorphometry
parameters were analyzed using a calcein and

Fig. 5. Supplementation of dermatan sulfate did not change the GAGs amount, bone mineral density (BMD) in WT
mice. (A) Total GAGs amount from mineralized (left panel) and non-mineralized (right panel) compartments of saline or
DS injected WT matrix was quantified by DMMB assay. (B) Total BMD was measured by DXA analysis at pre-injection
and after injection with saline or DS. Total BMD change was obtained by calculating the ratio of total BMD before and after
injection, and then normalized by comparing to saline controls. (C) Tissue-level toughness of femur mid-diaphysis from
saline or dermatan sulfate injected WT mice was determined by nanoscratch test. n =5-6.

Fig. 6. Chondroitin sulfate injection decreased osteoclast surface in endocortical bone of WT mice. (A) Representative
images of TRAP stained paraffin sections from WT and Bgn KO mice femoral bones after saline or CS injection. Yellow
arrow heads indicate TRAP positive osteoclasts. Scale bar, 50 mm. (B) Quantification of Oc.S/B.S in saline or CS injected
WT and Bgn KO mice bones. n =5-7. * p < 0.05. B.S, bone surface; OC.S, osteoclast surface; TRAP, tartrate-resistant
acid phosphatase.
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alizarin double labeling assay. As shown in Fig. 7,
the endocortical bone mineral apposition rate (MAR)
and bone formation rate (BFR/BS) of saline injected
Bgn KO mice were decreased compared to WT
saline group, which is consistent with a previous
report showing inhibited bone formation in Bgn KO
mice [32]. However, compare to saline group, mini-
mal effects of CS on bone formation were exhibited
in WT and Bgn KO mice. These results suggested
the anti-catabolic function of CS supplementation in
WT mouse bone.

Discussion

Hydration status significantly affects bone
strength and toughness. Synchrotron X-ray scatter-
ing and other studies show that the nanomechanics
of bone is significantly dependent on the bound
water in bone matrix and that the bound water resid-
ing in small ultrastructural spaces (< 4.0A

�
) dictates

the mechanical behavior of bone by altering the
interaction among hydroxyapatite (HA) crystals and
their surrounding matrix [20,37]. Recent evidence
indicates that PG/GAGs in the organic interface of
extrafibrillar matrix may impart toughness to bone by
attracting and retaining water in the matrix [24,25].
However, the key PG/GAGs involved in this process
remained unidentified. In this study, using the Bgn-
deficiency mouse model, we found that Bgn and CS,

which are major components of PGs and GAGs in
the extrafibrillar matrix of bone, respectively, played
a pivotal role in the regulation of tissue-level hydra-
tion status and toughness of bone. This finding sup-
ports the hypothesis that PG/GAGs help attracting
water into the organic interface between mineral
crystallites, thus facilitating the ductile deformation
of bone (Fig. 8).

The unreliable prediction of bone fracture by using
BMD alone has raised the necessity of elucidating
the ultrastructural and molecular origins of bone fra-
gility in order to better predict and prevent bone fra-
gility fractures. Previous studies have shown that
water plays a critical role in sustaining the toughness
of bone [37�39]. In addition to Type I collagen that
constitutes 90% of organic phase and serves as a
major site in bone that retains bound water, NCPs
also possess a great capacity to attract water.
Among NCPs, GAGs of PGs are highly electrically
charged carbohydrate chains and interact with each
other in a head to tail manner, forming interfibrillar
supramolecular assemblies that could absorb water
into the extracellular matrix of bone [40]. The contri-
bution of PGs and GAGs to mechanical behavior of
connective tissues, particularly soft tissues, such as
tendon, articular cartilage and intervertebral disks,
has been well documented [41�46]. However, the
contribution of PGs to the mechanical behavior of
mineralized tissues remains largely elusive. At the
microscale, PGs may regulate the hydrostatic and
osmotic potential, as well as poroelastic behavior of
dentine and bone [23,47]. Our previous studies indi-
cated the coupling effect of water and PGs on the
toughness of bone by removing N-linked oligosac-
charides enzymatically from the bone matrix in vitro
[25]. In addition, Ho et al reported in an in vitro study
that the removal of GAGs decreased the hardness
and elastic modulus of cementum-dentin junction
[48]. Moreover, the age-related loss of GAGs was
reported to associate with the deterioration of bone
toughness and the decreased amount of Bgn using
an ex vivo model [24]. The results of this in vivo
study again verify the previous findings, showing
that PGs is coupled with bound water to toughen
bone matrix by imparting ductility to the tissue.

As a member of the SLRPs family, Bgn is distrib-
uted abundantly throughout the cortical and trabecu-
lar bone matrix [49]. SLRPs play crucial roles in
bone formation by regulating cell proliferation, matrix
deposition and remodeling [50�54]. A Bgn deficient
mouse model was first described by Xu et al, (1998)
exhibiting age-dependent osteopenia compared to
WT counterparts [32]. Disruption of Bgn also leads
to structural abnormalities in bone collagen fibrils
and metabolic defects in BMSCs [33,34,55]. Subse-
quent investigations identified that Bgn binds TGF-b
and controls its bioactivity [56,57], modulates
BMP4-induced osteoblast differentiation [58], and
affects the Wnt signaling pathway [59]. The four-

Fig. 7. Supplementation of chondroitin sulfate did not
change bone dynamic histomorphometry parameters in
endocortical bone of WT and Bgn KO mice. (A) Represen-
tative images of plastic sections prepared from CS or
saline injected WT and Bgn KO mice. Scale bar = 50 mm.
Mice were injected twice with calcein and alizarin red S
dyes for dynamic histomorphometry. (B-D) Endocortical
MAR, MS/BS, and BFR/BS were measured in unstained
sections from the femoral mid-diaphysis. * p < 0.05. n = 5-
8. MAR, mineral apposition rate; BFR, bone formation
rate; BS, bone surface; MS, mineralizing surface.
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point bending test of Bgn KO mice bone showed
reduced failure load and yield energy after 6 months
of tissue development [32]. In this study, the nano-
scratch test exhibited decreased tissue-level tough-
ness of bone for 6-month-old Bgn deficiency mice,
which is in good agreement with the impaired
strength and ductility observed in the previous study,
indicating the correlation of tissue-level and bulk
mechanical properties. These results provided direct
evidence for the mechanical contribution of PGs/
GAGs in bone tissue.
Comprising about 20% of the volume, water is a

key determinant of the mechanical behavior of bone,
showing that loss of bound water correlates strongly
with bone toughness deterioration [38,39,60]. Simi-
larly, this study also showed a significant reduction
of tissue-level toughness of bone in WT mice after
removal of bound water, whereas such changes
induced by removal of bound water were signifi-
cantly reduced in Bgn KO mice. Under the dehy-
drated condition, the tissue-level toughness of bone
is consistent between Bgn KO mice and WT con-
trols. The results suggest that the coupling effect of
water and PGs in sustaining the toughness of bone
is disrupted once Bgn is removed from the matrix.
However, it is noteworthy that the effect of bound

water on the tissue-level toughness of bone still
exists in Bgn KO mice, raising the possibility of the
involvement of other PGs or non-PG factors in this
process.

Bgn and decorin (Dcn) are considered as major
PGs in the mineralized bone matrix. They share
57% identity at the amino acid level and are co-
expressed in bone [29,30]. The studies of Dcn/Bgn
double KO mice show that the skin tissue is much
thinner and fragile than either single Bgn KO or sin-
gle Dcn KO animals, and the osteopenia of the dou-
ble KO mice is also more severe than the single
Bgn KO mice [33,61]. Furthermore, Dcn protein
level is higher in Bgn deficient tissues [62]. In osteo-
blasts with Bgn KO, Dcn accumulated to higher lev-
els and localized unevenly in the extracellular matrix
compared to the WT cell cultures [58]. These previ-
ous reports suggest a potential compensation and
synergistic function between Bgn and Dcn [63].
Moreover, a recent report indicates that Bgn and
another SLRPs, fibromodulin, are novel coupling
components regulating osteoclastogenesis [64].
Since only Bgn KO mice were used in this study, it
is possible that Dcn would replace some functions of
Bgn to compensate the loss of structural integrity of
bone matrix induced by Bgn depletion. Therefore, it

Fig. 8. Schematic summary of the role of Bgn and CS in water retention in extracellular bone matrix and bone tough-
ness. Structurally, bone is comprised of mineralized collagen fibrils embedded in bone extrafibrillar matrix. These mineral
crystals are bounded through organic interface of non-collagenous proteins and bound water. Bgn belongs to small leu-
cine-rich proteoglycans with two sulfate chains and has a great potential to absorb water into the matrix. With deficiency
of Bgn in knockout mouse model, there was a decreased amount of CS, total GAGs and bound water in bone matrix,
along with the compromised bone toughness due to impaired water retention capability.
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is anticipated that depletion of both Bgn and Dcn
would result in much larger changes in bone
mechanical properties.
Both Bgn and Dcn contain CS or DS side chains,

and the attachment of CS versus DS is tissue-spe-
cific [53]. Classically, CS is predominantly attached
to Bgn and Dcn within mineralized tissues, such as
dentine and bone, whereas DS is mainly associated
with soft connective tissues [50]. The agarose elec-
trophoresis results of this study indicated that only
CS appeared in mouse bone matrix, without notice-
able presence of HS and DS. This observation
implies that CS is the major GAGs in mouse bone
matrix, although the minor presence of other GAGs
still cannot be excluded.
The supplementation of CS to WT mice appeared

to increase the total amount of GAGs and bound
water in bone matrix, the whole body BMD, and the
tissue-level toughness of bone. However, CS
administration did not improve the mechanical prop-
erties of bone of Bgn KO mice. On the other hand,
the DS supplementation seemed to have little effects
on bone in the WT mice, which again underscores
the predominant function of CS in bone matrix. In
addition, bone histomophormetry studies indicated
the decreased catabolic response in CS injected
WT mice revealed by inhibited osteoclastogenesis,
resulting in the net bone increase.
Previous study by Chen et al reports that Bgn

deficiency blunts BMP-4 induced osteoblast differ-
entiation in vitro [58]. The absence of Bgn decreases
BMP-4 sensitivity caused by less BMP-4 binding,
and is completely rescued by viral transfection of
Bgn. A later study further highlights the importance
of GAG chains of Bgn in modulating osteoblast dif-
ferentiation, showing the expression of a mutant
Bgn lacking GAGs binding sites cannot rescue the
differentiation deficiency [65]. In contrast to the inhi-
bition of osteoblastogenesis, Bgn KO mice did not
show any difference in bone resorption compared to
WT mice, which has been reported in previous study
[32] and was also observed in our results. However,
it is interesting to note that Bgn KO exacerbates
LPS induced osteolysis and bone resorption in vivo
[66]. In vitro co-culture of osteoblasts and osteo-
clasts shows that Bgn deficiency increases osteo-
clast differentiation through its effect on osteoblasts.
In our study, Bgn KO mice did not respond to CS

injection induced GAGs elevation in bone matrix,
which was probably attributable to less binding of
CS under the condition of Bgn deficiency. Consider-
ing the role of highly negatively charged GAGs in
retaining bound water, lack of increase in GAGs
amount led to blunted bound water and thus
reduced bone toughness. However, the direct evi-
dence of CS binding ability under Bgn KO condition
remains to be further investigated. In addition, since
bone mass is maintained by a balance between
bone formation and bone resorption, the lack of

response to CS induced anti-catabolic effects may
be due to the defective osteoblasts in Bgn KO mice.
The results of this study demonstrate the pivotal role
of Bgn and CS in bone toughness and homeostasis.

The anti-catabolic function of CS has been demon-
strated in both chondrocytes and osteoblasts [67�69].
CS upregulated OPG production, while reduced
RANKL expression, leading to a significantly higher
OPG/RANKL ratio, which could exert a positive out-
come for bone. Additionally, CS has direct function on
osteoclasts, showing inhibition of osteoclast differentia-
tion, and osteoclast-specific expression of TRAP and
cathepsin K [70,71]. A recent in vivo study using CS
treatment for diabetic osteoporosis reveals the
increased bone-mineral density, repaired bone mor-
phology and decreased femoral osteoclasts [72], which
is in good agreement with our findings.

In fact, Bgn could serve as a potential therapeutic
target, and administration of CS, possibly locally,
may be a viable treatment strategy for osteoporosis
and fracture healing. For instance, previous evi-
dence shows that modulation of Bgn gene expres-
sion may counteract bone loss under an estrogen
depletion condition [73]. Interestingly, oral adminis-
tration of GAGs as nutritional supplements is contro-
versial. CS has been widely consumed orally as a
nutraceutical with applications in the therapy of oste-
oarthritis, which is mostly administered at doses
ranging from 800 to 1200mg/day [74]. However, CS
can be rapidly absorbed by the gastrointestinal sys-
tem, with the overall bioavailability of CS ranges
from 10% to 20% following oral administration
[75,76]. Additionally, most of the absorbed CS
reaches the blood compartment as depolarized low-
molecular weight derivatives [77]. Our study used
intradermal injection for CS administration, which
could avoid the extensive first pass metabolism in
the gastrointestinal tract prior to systemic availabil-
ity, thus resulting in a much higher plasma concen-
tration as shown in the previous studies using
intravenously injection of CS [78].

In conclusion, our findings indicated that Bgn defi-
ciency would lead to loss of CS, GAGs, and bound
water in bone matrix, thus leading to the deteriora-
tion of the tissue-level toughness of bone. In addi-
tion, CS supplementation showed a potential in
improving the toughness of bone, thus opening an
additional avenue for developing new therapeutics
in improving bone quality.

Materials and methods

Animals

The Bgn KO mice were originally generated by
homologous recombination in embryonic stem cells
as described elsewhere [32] and were generously
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provided by Marian F. Young (National Institutes of
Health, Bethesda, MD, USA). All experiments were
performed using age-matched WT (Bgnþ/0, Bgn is
on X chromosome) and Bgn deficient (Bgn�/0) male
mice, since Bgn deficiency, shows a minor effect on
bone metabolism in female mice [73]. The genotype
of the WT and Bgn KO mice was determined by a
PCR-based assay [33]. The generated DNA frag-
ments of 212 bp and 310 bp represent the WT and
targeted Bgn allele, respectively.
For chondroitin sulfate (CS) supplementation

experiments, 10 to 11-month-old WT and Bgn KO
male mice were injected intradermally at the base of
the tail with 4 mg/kg CS (Y0000280, Sigma-Aldrich,
St. Louis, MO, USA) dissolved in saline and filtered.
Control mice were injected with the same volume
saline. Injections were given once a week for four
weeks. All mice used were of C57BL/6 background.
The mice were housed in a temperature-controlled
room with a light/dark cycle of 12 hours at the
UTHSCSA Institutional Lab Animal Research (LAR)
facility, under specific pathogen-free conditions.
Food and water were provided ad libitum. All animal
protocols were performed in accordance with the
National Institutes of Health guidelines for care and
use of laboratory animals. The animal protocols
were approved by the UTHSCSA Institutional Ani-
mal Care and Use Committee.

Extraction and quantification of
glycosaminoglycans from bone tissues

The long bones (e.g. femur, tibia, humerus, and
radius) were isolated free of soft tissues and bone
marrow was removed by flushing with cold PBS by
drilling a hole on both ends of the bones. GAGs
were isolated from the non-mineralized (e.g.,
osteoids, membranes, and bone surfaces) and min-
eralized compartments in bone matrix, respectively
[79�81]. Briefly, cortical bone tissues were crushed
to fine powders with the pestle in a mortar filled with
liquid nitrogen. The bone powders were first treated
in lysis buffer I (4 M guanidine HCl, 0.05 M Tris, and
0.1 M 6-aminocaproic acid, pH 7.4) containing pro-
teinase inhibitors at 4°C on the orbital shaker for
72 hours to remove GAGs from the non-mineralized
compartment of bone. The carefully rinsed bone
powders were treated in lysis buffer II (4 M guanidine
HCl, 0.5 M EDTA tetrasodium salt, 0.05 M Tris, and
0.1 M 6-aminocaproic acid, pH 7.4) containing pro-
teinase inhibitors at 4°C on the orbital shaker for
72 hours to remove GAGs from the mineralized
compartment of bone. The supernatant from each
treatment was collected and the amount of GAGs
was quantified by dimethylmethylene blue (DMMB)
assay as follows: 50 mL samples and 200 mL
DMMB mix (46 mM DMMB (Sigma-Aldrich, St.
Louis, MO, USA), 40 mM NaCl, and 40 mM glycine,
pH adjusted to 3.0 with acetic acid). The above

solution was pipetted into 96-well plates and shake
for 5 seconds. The absorbance was recorded at
wavelength 525 nm. The amount of GAGs was
determined by comparing with the standard curves
generated using purified GAGs (Sigma-Aldrich, St.
Louis, MO, USA).

Chondroitinase ABC digestion of
glycosaminoglycans

Chondroitinase ABC from Proteus vulgaris
(C3667, Sigma-Aldrich, St. Louis, MO, USA) were
reconstituted in 0.01% bovine serum albumin aque-
ous solution. The extracted GAG samples were
incubated in 1 U/mL chondroitin ABC lyase or MilliQ
water in freshly prepared digestion buffer (50 mM
Tris, pH 8.0, 60 mM sodium acetate and 0.02%
bovine serum albumin) overnight at 37°C. Digestion
control samples: heparin sulfates (HS), dermatan
sulfates (DS) and chondroitin sulfates (CS)
extracted from shark cartilage (1 mg/mL) were incu-
bated in chondroitin ABC lyase or MilliQ water over-
night at 37°C and digested samples were analyzed
by agarose gel electrophoresis.

Agarose gel electrophoresis

GAGs isolated from non-mineralized and mineral-
ized bone samples as well as GAGs standards, HS,
DS and CS were separated by 0.9% agarose gel
electrophoresis in 1,3-propanediamine acetate
buffer (50 mM, pH 9.0) for 90 min at 80V. Following
the electrophoresis, the GAGs were fixed using
0.2% (w/v) cetyl-trimethyl-ammonium bromide
(CTAB) solution for 1 hour at room temperature, and
then the gels were dried. Gels were stained with
0.1% (w/v) toluidine blue prepared in solution of
50% (v/v) ethanol, 49% (v/v) water and 1% (v/v)
water, and destained in the same solution without
toluidine blue.

Western blotting

Protein concentrations of proteoglycans extracted
from mineralized matrix of mice cortical bone samples
were determined by Micro BCA Protein Kit (Thermo
Scientific, Rockford, IL, USA). Equal amount of pro-
teins determined by microBCA assay was treated
with or without Protein Deglycosylation Enzyme mix
(P6044, New England Biolabs, MA, USA) for 1 hour
at 37°C following the manufacturer’s instructions. Pro-
tein Deglycosylation Enzyme Mix contains PNGase
F, O-glycosidase, neuraminidase, b1-4-galactosi-
dase, and b-Nacetylglucosaminidase, which can
completely remove glycosylation. Each protein sam-
ple was boiled in SDS loading buffer, subjected to
10% SDS-polyacrylamide gel electrophoresis, and
electroblotted onto a nitrocellulose membrane. Mem-
branes were incubated with a 1:500 dilution of
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polyclonal anti-Bgn (LF-159) antibody (#ENH020-FP,
Kerafast, Boston, USA). Primary antibodies were
detected with HRP-conjugated anti-goat secondary
antibody and were developed using an ECL kit (Amer-
sham Biosciences, Piscataway, NJ, USA).

Immunohistochemistry staining

The avidin-biotin-peroxidase complex (ABC)
Immunostaining Assay Kit (PK-6101, Vector Labora-
tories, Burlingame, CA) was used as previously
described [82]. Paraffin sections of bone tissue were
deparaffinized and rehydrated to unmask antigens
using sodium citrate buffer (pH 6.0) at 65°C for
2 hours for Bgn staining. Bone tissue sections were
enzymatically digested with chondroitinase ABC at
37°C for 1 hour before treated with goat normal
serum for 20 minutes at room temperature to block
non-specific background staining. The sections were
stained with anti-Bgn (LF-159) antibody (#ENH020-
FP, Kerafast, Boston, USA) at 1:100 dilution over-
night at 4°C, followed by incubation with biotin-
labeled secondary antibody and ABC Reagent for 30
minutes. Samples were washed in PBS buffer and
developed in DAB (SK4100) chromogen solution
(Vector Laboratories). Tissues were then counter-
stained with VECTOR Hematoxylin (H-3401) for 2
minutes at room temperature and mounted. Sections
were photographed using the Keyence microscope
(BZ-X710, Keyence, Osaka, Japan).

Alcian blue staining

For preparation of paraffin tissue sections, the fem-
oral and tibial bones from 6-month-old male mice
were fixed in 4% paraformaldehyde for 2 days prior to
decalcification with 10% EDTA (pH 7.4) for 4 weeks.
The samples were embedded in paraffin and 5 mm
thick sections were cut onto glass slides and stained
with Alcian blue. Alcian blue staining is a semiquanti-
tative method to measure GAG contents [83,84].
Bone sections were incubated in 3% acetic acid for 3
minutes and then incubated in 1% Alcian blue 8GX
(Sigma-Aldrich, St. Louis, MO, USA), pH 2.5, for
40 min at room temperature followed by destaining in
water and counterstained with Nuclear Fast Red
(N3020 Sigma-Aldrich, St. Louis, MO, USA).

Low-energy NMR measurement of bound water
in bone matrix

The bound water was measured using a low-field
NMR technique. Based on the T2 relaxation informa-
tion, the relative amount of freely mobile water, bound
water, and lattice water was assessed. Briefly, a low-
field NMR spectrometer (Bruker 20 MHz) was config-
ured at a proton frequency of 20 MHz to assess the
amount of bound water using bone powders from the
animal models. 1H spin�spin (T2) relaxation profiles

were obtained using the NMR CPMG, {90°
[�t� 180°� t (echo)]n � TR} spin echo method,
which has a 9.5 ms wide RF-90° pulse, t of 1000ms,
and TR (sequence repetition rate) of 15s. One thou-
sand echoes were recorded (one scan with n=1000)
to obtain the T2 profile, with 64 scans used for the
measurements. The FID signal was sampled and
recorded at 2 ms intervals using a 9.5ms wide 90° RF-
pulse for bound water measurements. For each FID
profile, 1500 data points were acquired in one scan
(an approximate 3ms delay window). An inversion
relaxation technique was used to invert both CPMG
and FID data to a T2 relaxation distribution spectrum.
The relative amount of bound water was then esti-
mated as the ratio of the total intensity of bound water
signal with respect to the total intensity of the solid
form water signal (representative of bone mass) of
each sample.

Measurement of the tissue level toughness of
bone using a nanoscratch test

One femur from each mouse was freshly embed-
ded in the plastic resin (PMMA) and the cross-sec-
tion of the mid-diaphysis was cut, polished, and
mounted on a custom designed specimen holder.
The average surface roughness was kept less than
80 nm. For the nanoscratch test under wet condition,
a lateral hole was drilled in the embedded specimen
and PBS solution in the chamber would fill in the
intra-medullar cavity of the femurs, thus making the
bone specimens wet throughout the testing process.
For nanoscratch test under dry condition, bone
specimens were dehydrated in a vacuum oven at
70°C for 4 hours prior to the test to remove mobile
and bound water in the tissue [9]. The nanoscratch
tests were performed on a Nano Indenter XP system
(Keysight Technologies, Santa Rosa, CA, USA) with
a cube corner diamond tip as described previously
[85,86]. A constant penetration load was set at 5 mN
and the scratch length was set at 20 mm. Test loca-
tions were randomly chosen in the middle cortex of
each specimen under a microscope attached to the
system. During the scratching, the cross-profile of
the scratch groove was measured to estimate the
width of the scratch groove. The tissue level tough-
ness of bone was estimated using the following
equation,

us ¼ FtL
V

¼ Ft
A

where, us is the nanoscratch toughness, Ft is the lat-
eral scratch force, L is the scratch length, V is the
volume of the scratch groove, and A is the average
cross-sectional area of the scratch groove. The
average of six measurements was used as the tis-
sue level toughness of each bone specimen.
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Bone mineral density (BMD) measurement

Mice were anesthetized by intraperitoneal injec-
tion of 100 mg/kg of ketamine (Butler Schein, Dublin,
OH, USA) and 16 mg/kg of xylazine (Butler Schein).
We used a dual-energy X-ray absorptiometry
(DEXA) scanner, Lunar PIXImus Densitometer (GE
Medical Systems, Piscataway, NJ, USA) to measure
the BMD at pre-injection and after saline or chon-
droitin sulfate injection. The BMD values of the total
bones were acquired.

Bone TRAP staining for osteoclasts

Tissue sections were stained with tartrate-resis-
tant acid phosphatase (TRAP) using Leukocyte Acid
Phosphatase Staining Kit (Sigma) according to the
manufacturer’s protocols. The NIH Image J software
was used to quantify osteoclast surface (Oc.S) and
bone surface (BS) along the endocortical surface in
the femur midshaft. The Oc.S/B.S value was then
calculated.

Calcein and alizarin labeling, and dynamic bone
histomorphometry

Two weeks after first CS or saline injection, the
mice were subjected to an intraperitoneal injection
of calcein (Sigma) at 20 mg/kg body weight, followed
by an alizarin red S (Sigma) injection at 30 mg/kg
body weight 12 days later. Three days after the sec-
ond injection, the mice were euthanized, and femurs
and tibias were dissected and embedded undecalci-
fied in methylmethacrylate for plastic tissue section-
ing. The embedded samples were cut to 8 mm
thickness tissue sections by a skiving machine
(Leica RM2265). Sections were photographed using
a Keyence microscope (BZ-X710, Keyence, Osaka,
Japan). The following bone parameters were quanti-
fied in the endocortical regions with Image J soft-
ware: total perimeter (BS), single label perimeter
(sLS), double label perimeter (dLS), and distance
between labels (Ir.L.Th). The following values were
then calculated: mineralizing surface (MS/BS= [sLS/
2þdLS]/BS), mineral apposition rate (MAR = Ir.L.Th
/10), and bone formation rate (BFR/BS =MAR_
(sLS/2þdLS)/BS).

Statistical analysis

Statistical analysis was performed using Graph-
Pad Prism5 statistics software (GraphPad). T-test
and Two-way ANOVA with post hoc Tukey test was
used for statistical analysis. Asterisks indicate the
degree of significant differences compared with the
controls, *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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