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Abstract 
 

 Cancer is a highly heterogeneous disease that can be caused by the acquisition of 

somatic DNA mutations, including single nucleotide variants, gene copy-number variations 

(CNVs) and large chromosomal rearrangements. The Cancer Genome Atlas (TCGA) has 

led to an in-depth characterization of the genomic alterations of more than 10,000 tumours 

from 33 cancer types. These mutations generate the genetic diversity that promotes the 

acquisition of multiple cancer hallmarks, including chronic proliferation, resistance to cell 

death and tissue invasion and metastasis. Due to technical limitations, the study of protein 

abundances and signalling activities has been for many years limited primarily to the study 

of a few key signalling proteins at a time via the use of reverse-phase protein arrays (RPPA). 

The Clinical Proteomic Tumour Analysis Consortium (CPTAC) has revolutionized the study 

of cancer proteomes, including proteins and respective post-translational modifications, 

through the application of Mass Spectrometry-based proteomics. 

 An understanding of the molecular mechanisms that underpin the development of 

cancer is critical in order to study cancer biology and to develop therapies. However, the 

study of the cellular consequences of cancer genetic alterations was for many years limited 

to few key cancer driver genes. TCGA and CPTAC have revolutionized the study of the 

molecular basis of cancer. It is now possible to perform systematic Pan-Cancer 

characterizations of the impact of genomic variation on multiple layers of biological 

information. Moreover, these projects allow cancer researchers to study other sources of 

molecular heterogeneity in cancer, including the impact of patient phenotypes such as 

gender. The main goal of this thesis is to leverage multi-omics cancer datasets from TCGA 

and CPTAC in order to build an integrated picture of the impact of genomic alterations and 

gender on gene expression, protein abundance and protein activities across multiple cancer 

types. 

Cancer has an important and considerable gender differential susceptibility 

confirmed by several epidemiological studies. Beyond environmental predisposing factors, 

gender intrinsic molecular characteristics may also play an important role. In this thesis, we 

performed a deep gender-differential gene expression and co-expression network analysis 

in malignant and non-malignant tissues of stomach and thyroid, two tissue types with 

unbalanced cancer incidences between genders. We found that sex-biased gene 

expression is more pronounced in normal tissues than tumour tissues and that most of the 

shared variation arises from the sexual chromosomes. Expression of several cancer-

associated genes differs between genders, with tumour suppressor genes preferentially 

downregulated in the tumour tissue of the most susceptible gender. Gene co-expression 
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network analysis revealed an extensive topological preservation between genders, with 

gender-specific networks appearing correlated with cancer histological subtypes. 

Gene copy-number changes are widespread across many forms of human cancer 

and often act as driver events. However, the effects of CNVs on the proteome of tumours 

are poorly understood. To study the propagation of CNVs to the mRNA and protein levels 

of cancer cells, we performed a multi-omics analysis that combines genomics, 

transcriptomics, (phospho)proteomics, and structural data. Analysing 8,124 proteins, we 

observed that up to 42% of them show evidence of protein-level gene dosage attenuation. 

Over 500 protein-protein interactions show indirect control of degradation of one subunit via 

physical associations, 32 of which may be further controlled by phosphorylation. Using 

structural models for 3,082 protein interfaces, we found that a higher fraction of interface 

residues is associated with a higher degree of attenuation. Finally, we studied the impact of 

these findings on non-malignant cell samples. We found evidence of interaction-mediated 

control of protein abundances in normal tissues. Moreover, the degree of protein attenuation 

correlates with the probability that natural genetic variation with an impact on gene 

expression may result in a phenotypic consequence. 

Somatic DNA mutations in cancer cells are strongly linked to alterations in kinase 

and transcription factor (TF) activities. While the mutational profiles of diverse tumours have 

been extensively characterized, until recently, the measurements of protein activities have 

been technically limited to a few proteins at a time. To perform a systematic investigation of 

the impact of genomic alterations on the activities of kinases and TFs, we mined multi-omics 

datasets made available by the TCGA and CPTAC consortia and cancer cell line studies. 

In this study, we estimated changes in the activities of 218 kinases and 292 TFs from gene 

expression and phosphoproteomics data of 1,110 tumours and 77 cell lines. Predicted 

kinase activities were supported by their agreement with functionally annotated 

phosphosites and RPPA phosphorylation data. Co-regulation of kinase and TF activities 

reflects previously known regulatory relationships and allows dissecting genetic drivers of 

signalling changes in cancer. Finally, we identified the activities most often regulated in 

cancer and showed how these can be linked to differential patient survival.  Altogether, the 

protein activity profiles across over 1000 cancer samples serve as a resource to study the 

dysregulation of signalling across different tumour types. 
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Resumo 
 

O cancro é uma doença altamente heterogénea que pode ser causada pela 

aquisição de mutações somáticas no DNA, incluindo variantes de nucleótido único, 

variações no número de cópias dos genes (CNVs) e extensos rearranjos cromossómicos. 

O Atlas do Genoma do Cancro (TCGA) levou a uma caracterização profunda das 

alterações genómicas de mais de 10,000 tumores de 33 tipos diferentes de cancro. Estas 

mutações geram a diversidade genética necessária para a obtenção de múltiplas 

características carcinogénicas, como por exemplo proliferação constitutiva, resistência à 

morte celular programada e invasão de tecidos adjacentes e metastização. Devido a 

limitações técnicas, os estudos das abundâncias proteicas e atividades de sinalização 

foram por muitos anos limitados a algumas proteínas consideradas chave nos processos 

de sinalização celular. Esta limitação deveu-se principalmente ao uso de microarrays de 

proteínas em fase reversa (RPPA). O Consórcio Clínico de Análise Proteica de Tumores 

(CPTAC) revolucionou o estudo dos proteomas de cancro, incluindo proteínas e respetivas 

modificações pós-tradução, através do uso de técnicas de proteómica baseadas em 

espectrometria de massa.  

A caracterização dos mecanismos moleculares que estão na base do 

desenvolvimento do cancro é crucial para estudar a biologia do cancro e desenvolver 

terapias mais sofisticadas. Contudo, o estudo das consequências celulares das alterações 

genéticas foi por muitos anos limitado a alguns genes que são considerados chave para o 

desenvolvimento e progressão do cancro. Os consórcios TCGA e CPTAC revolucionaram 

o estudo da base molecular do cancro. Hoje é possível efetuar caracterizações 

sistemáticas do impacto da variação genómica em múltiplos tipos de moléculas e ao longo 

de vários tipos de cancro. Além disso, estes consórcios permitem que investigadores na 

área do cancro investiguem outras fontes de heterogeneidade molecular, incluindo o sexo 

dos pacientes. O principal objetivo desta tese é usar conjuntos de dados multi-omics para 

obter uma visão integrada do impacto de alterações genéticas e do sexo dos pacientes na 

expressão dos genes, na abundância proteica e na atividade de proteínas ao longo de 

vários tipos de cancro.  

O cancro é uma doença que tem uma suscetibilidade diferencial elevada entre 

sexos que foi confirmada por vários estudos epidemiológicos. Para além de fatores 

ambientais de predisposição, as características moleculares intrínsecas a cada sexo 

também podem contribuir para esta incidência distinta. Nesta tese, nós fizemos uma 

análise detalhada das diferenças de expressão dos genes e redes de co-expressão entre 

géneros em tecidos malignos e não malignos de estômago e tiroide. Estômago e tiroide 
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foram escolhidos devido à carcinogénese diferencial elevada entre géneros. Neste estudo, 

nós verificámos que os tecidos normais apresentam mais diferenças de expressão génica 

do que os tecidos tumorais e que a maioria da variação partilhada é proveniente dos 

cromossomas sexuais. Para além disso, nós descobrimos que a expressão de vários genes 

associados ao cancro difere entre géneros, e que genes supressores tumorais estão 

preferencialmente sub-regulados no tecido tumoral do género mais suscetível ao cancro. 

A análise de redes de co-expressão revelou uma extensa preservação topológica entre 

géneros. Não obstante, foram encontradas redes específicas de cada género 

correlacionadas com os subtipos histológicos de cancro.  

As alterações no número de cópias dos genes são frequentes em vários tipos de 

cancro e estão associadas diretamente com a tumorigénese. Todavia, o efeito dos CNVs 

no proteoma dos tumores ainda está pouco descrito. De modo a estudar a propagação dos 

CNVs nos níveis de proteína e mRNA dos tumores, nós fizemos uma análise multi-omics 

que combina genómica, transcritómica, (fosfo)proteómica e dados estruturais de proteínas. 

A partir da análise de 8,124 proteínas, nós descobrimos que cerca de 42% das proteínas 

têm evidências de atenuação dos efeitos do número de cópias dos genes. Para além disso, 

nós encontramos mais de 500 interações proteína-proteína que mostram que uma 

subunidade proteica tem a capacidade de controlar indiretamente a degradação de outra 

subunidade através de interações físicas. Destas mais de 500 interações, 32 podem ainda 

ser controladas por diferenças de fosforilação. A partir de 3,082 modelos estruturais de 

interfaces proteicas, nós constatámos que as proteínas que têm uma maior atenuação do 

número de cópias dos genes apresentam uma fração maior de resíduos em interfaces. Por 

último, nós estudámos o impacto destas descobertas ao nível de amostras celulares não 

malignas. Estas análises permitiram encontrar evidências em tecidos normais de controlo 

de abundância proteica mediado por interações físicas. Além disso, o grau de atenuação 

está correlacionado com a probabilidade de que variação genética natural com impacto na 

expressão dos genes possa ter consequências fenotípicas.  

As mutações somáticas no DNA das células cancerígenas estão fortemente 

associadas com alterações nas atividades das quinases e fatores de transcrição (TFs). 

Enquanto que os perfis mutacionais de diversos tumores têm sido amplamente 

caracterizados, a quantificação de atividades proteicas tem sido limitada a um número 

reduzido de proteínas devido a razões técnicas. De modo a investigar sistematicamente o 

impacto de alterações genómicas nas atividades de quinases e fatores de transcrição, nós 

compilámos conjuntos de dados multi-omics partilhados pelo TCGA e CPTAC e estudos 

em linhas celulares de cancro. Neste estudo, nós estimámos as atividades de 218 quinases 

e 292 fatores de transcrição a partir de dados de expressão dos genes e fosforilação de 

proteínas de 1,110 tumores primários e 77 linhas celulares. As atividades de quinases 
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previstas foram suportadas pela concordância com locais de fosforilação anotados 

funcionalmente e dados de fosforilação de RPPA. Para além disso, a co-regulação entre 

quinases e TFs foi refletida em relações regulatórias previamente conhecidas e permitiu 

explorar alterações genéticas que causam variações de sinalização em cancro. Por último, 

nós identificámos as atividades proteicas que estão mais frequentemente reguladas em 

cancro e como estas estão associadas com a sobrevivência dos pacientes. Em suma, os 

perfis de atividade proteica ao longo de mais de 1,000 amostras de cancro constituem um 

recurso para estudar a desregulação da sinalização celular em tumores. 
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1.1. Multi-omics approach to molecular biology 
 

At the time of writing of this thesis, the suffix omics is largely used in biology to 

describe the comprehensive and high throughput quantification of functionally-related 

biochemical molecules. These molecules have functions that define the structure, 

homeostasis and dynamics of the organisms (Hasin, Seldin, and Lusis 2017). Beyond the 

high-throughput quantification of chemical species or the technologies involved in these 

processes, omics also refers to independent fields of research (Medicine 2012). The closely 

related suffix ome is in turn used to refer to the object of study of such fields, e.g., genomics 

refers to the study of the genome - the genetic makeup of an organism. In fact, since Dr. 

Thomas H. Roderick, a geneticist at The Jackson Laboratory, used the term genomics for 

the first time in 1986, there has been an explosion of omics fields (Yadav 2007). The most 

well-known omics fields are: genomics, epigenomics, transcriptomics, proteomics, 

phosphoproteomics and metabolomics, which correspond to the study of the genes and 

genomes, epigenetic modifications, RNA, proteins, phosphorylation of proteins and 

metabolites, respectively (Medicine 2012). These research fields allowed for great 

advances in the computational modelling of complex biological systems, an interdisciplinary 

field of research usually known as systems biology (Figure 1.1). As such, novel 

bioinformatics tools have been emerging in the past years in order to circumvent the 

challenges of multi-omics data integration and interpretation (Argelaguet et al. 2018, 2020; 

Dugourd et al. 2021). 

Omics technologies allowed researchers to explore the molecular basis of many 

diseases at unprecedented resolution (Hasin, Seldin, and Lusis 2017). Cancer research is 

one of the areas that largely benefited from such advances. High-throughput technologies 

fostered the development of major cancer genomic and proteomic projects that 

exponentially improved our understanding of how cancer cells behave. Moreover, these 

projects led to the generation of an exciting amount of multidimensional datasets that 

simultaneously profile multiple molecular layers of biological information (e.g., DNA, RNA 

and proteins). Importantly, this data allows other cancer researchers to computationally 

address a posteriori a myriad of cancer-related questions. This thesis aims to leverage the 

power of multi-omics datasets to study the impact of genomic alterations and patient 

phenotypes on the gene expression, protein abundance and protein activities of cancer 

cells.  

The introductory chapter of this thesis is organized as follows: in the next subchapter 

(1.2) I discuss the cancer genomic and proteomic consortia that revolutionized the study of 

cancer. In subchapter (1.3), I describe sources of heterogeneity in gene expression, protein 



 

 16 

abundance and protein activities in cancer. After that, I address in detail the omics fields 

that are more relevant to this thesis: genomics (1.4), transcriptomics (1.5), proteomics (1.6) 

and phosphoproteomics (1.7). In these subchapters, I make a comprehensive overview of 

the main technological details of data acquisition, as well as methods of data pre-processing 

and data mining. The specific aims of this thesis are finally enumerated in subchapter 1.8. 

 

 
Figure 1.1. Multi-omics datasets and interactions between molecular layers. Each 
layer represents a category of biological molecules assayed using omics technologies: 
genome, epigenome, transcriptome, proteome, phosphoproteome and metabolome. The 
data is collected from the entire pool of molecules (genes, transcripts, proteins, etc.), 
represented here as circles. Three genes were highlighted for representation purposes: 
blue, red and brown. The solid black arrows represent potential interactions or correlations 
between molecules. These interactions occur between molecules from the same layer (e.g., 
RNA-RNA and protein-protein correlations) or from different layers (e.g., DNA-RNA/protein, 
DNA methylation-RNA, RNA-protein, protein-phosphosite, protein-metabolite correlations). 
Systems biology aims to model and disentangle the complex network of intra- and inter-
layer interactions. Figure adapted from (Hasin, Seldin, and Lusis 2017). 

 

 

1.2. Large-Scale cancer genomic and proteomic projects 
 

Cancer has been addressed as a disease of the genome (Vazquez, de la Torre, and 

Valencia 2012; B. Zhang et al. 2019). There is a large pool of potentially pathogenic somatic 
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and germline DNA mutations that can alter once well-controlled cellular pathways and make 

the cells divide abnormally. In the long term, the uncontrolled cellular growth can originate 

a neoplasm, also known as a tumour. A malignant tumour has the capacity of spreading 

and evading other tissues, a condition that is usually called cancer. Genome sequencing 

studies emphasized the importance of identifying and cataloguing tumour-associated 

mutations. The advances made in the next-generation sequencing (NGS) technologies over 

the last two decades underpinned the establishment and development of cancer genomic 

projects, such as the International Cancer Genome Consortium (ICGC) and The Cancer 

Genome Atlas (TCGA). Throughout the last decade, TCGA has profiled and analyzed the 

genome, epigenome, transcriptome and, to some extent, the proteome of over 10,000 

tumours from 33 cancer types (Hoadley et al. 2018; Ding et al. 2018). This remarkable effort 

led to enormous advancements in our understanding of the oncogenic processes governing 

cancer development and progression. TCGA helped to: (i) improve the stratification of 

cancer patients based on their molecular profiles. These cancer molecular subtypes 

complement the classical histopathological classifications and encouraged the 

development of anti-cancer therapies targeting distinct populations of patients, which can 

ultimately improve survival (Bass et al. 2014; Koboldt, Fulton, et al. 2012; Bell et al. 2011; 

Muzny et al. 2012); (ii) elucidate the cross-talk between the germline and the somatic cancer 

genome. It was found that the germline genome has far-ranging influences on the somatic 

landscape and often promotes somatic mutations (Ding et al. 2018); (iii) redefine the 

catalogue of cancer driver genes and characterize the cis/trans effects of driver mutations 

on gene expression (M. H. Bailey et al. 2018); (iv) compare the prevalence of tumorigenic 

processes, such as the dysregulation of cellular proliferation, death and adhesion, across 

cancer types (Ding et al. 2018); (v) change the paradigms of cancer research, allowing to 

study the tumours within the context of their microenvironments rather than in isolation. This 

has proved to be especially important in the study of tumour-infiltrating immune cells and in 

the development of new treatments and immunotherapies (Thorsson et al. 2018). 

Despite the profound breakthroughs of TCGA in illuminating the genomic landscape 

of human malignancies, the cancer proteome remained poorly understood. The cancer 

proteome corresponds to the qualitative and quantitative map of all expressed proteins, 

protein complexes and post-translational modifications (PTMs) in a tumour (Nesvizhskii 

2014). The first large-scale efforts to characterize the protein and PTM profiles of tumours 

were done by TCGA using reverse-phase protein arrays (RPPA) (Akbani, Ng, et al. 2014). 

However, this technique requires a priori knowledge about the proteins of interest and has 

a relatively low throughput due to the dependency on the quality and number of antibodies 

available (Weinstein et al. 2013; Alfaro et al. 2014). Besides the obvious biological 

difficulties in mapping the complex and highly-dynamical cancer proteome, the progress of 
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cancer proteomics has also been hampered by the greater technical challenges of 

measuring proteins rather than DNA or RNA (Paulovich and Whiteaker 2016). 

Nevertheless, changes in protein regulation should be more closely linked to alterations in 

cellular processes and phenotypes. Therefore, the integration of the tumour-derived 

genome, transcriptome and proteome, i.e., proteogenomics, is crucial for a better 

understanding of cancer biology (Alfaro et al. 2014). With this idea in mind, cancer 

researchers established the Clinical Proteomic Tumour Analysis Consortium (CPTAC). 

CPTAC has revolutionized the study of the molecular basis of cancer through the application 

of Mass Spectrometry (MS)-based proteomics and phosphoproteomics. MS is an unbiased 

and rapidly evolving high-throughput technique that allows the accurate identification and 

quantification of tens of thousands of proteins nowadays. Additionally, it allows to map the 

correct localization of PTMs, such as phosphorylation, acetylation and glycosylation 

(Edwards et al. 2015). CPTAC has provided a comprehensive proteogenomic 

characterization of genomically annotated TCGA tumours (B. Zhang et al. 2014; Mertins et 

al. 2016; H. Zhang et al. 2016) and, more recently, of independent cancer cohorts (Gillette 

et al. 2020; Dou et al. 2020; Clark et al. 2019). These studies demonstrated the added value 

of proteomics and phosphoproteomics data for the classical genomics-driven cancer 

research. CPTAC enabled to: (i) identify additional cancer molecular subtypes not 

detectable by transcriptomic and genomic profiles; (ii) find that changes at genomic and 

transcriptomic level are often buffered at the proteomic level, which can help to prioritize 

candidate cancer driver genes; (iii) elucidate the functional consequences of somatic 

mutations by proteomic validation; (iv) uncover the landscape of dysregulated signalling 

pathways by phosphoproteomics data integration; (v) associate the proteomic and 

phosphoproteomic-derived signatures with patients outcomes, including the overall survival 

of cancer patients; (vi) discover novel prognostic cancer biomarkers and drug targets (Chen 

et al. 2019; B. Zhang et al. 2019). 

 

 

1.3. Cellular consequences of cancer mutations and patient 
phenotypes 
 

The repertoire of cancer genomic alterations can have profound impacts on the 

physical and chemical components of the cancer cell. According to the central dogma of 

molecular biology, the genetic information flows from DNA to RNA, and from RNA to 

proteins. RNA molecules are therefore the first cellular players to be affected by cancer 

mutations, resulting in changes in gene expression and in alternative splicing (Calabrese et 
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al. 2020). However, cancer mutations can have far-reaching cellular consequences and 

also affect protein homeostasis and signalling transduction pathways through the 

deregulation of kinase activities (Akbani, Ng, et al. 2014; Blume-Jensen and Hunter 2001). 

Previous studies in breast cancer found that expression of ERBB2 RNA and its 

protein product HER2 are well correlated with ERBB2 DNA amplifications (Slamon et al. 

1989; Owens, Horten, and Da Silva 2004). In addition, other studies elucidated how HER2 

overexpression translates into signals that potentiate dysregulated cell growth and 

oncogenesis in breast cancer (Harari and Yarden 2000). It was found that HER2 

overexpression is associated with high autophosphorylation activity of this receptor tyrosine 

kinase (Lonardo et al. 1990). Moreover, mutant HER2 strongly interacts with the MAPK 

(Ben-Levy et al. 1994) and the PI3K pathways (Peles et al. 1992), supporting the conclusion 

that HER2 stimulates cell proliferation and survival through these pathways. To corroborate 

this hypothesis, signalling through the MAPK pathway is significantly prolonged and 

enhanced in breast cancer cells overexpressing HER2 (Karunagaran et al. 1996).  

The advent of high-throughput omics technologies provided an opportunity to scale 

these pioneer studies up to the level of the whole genome and across multiple cancer types: 

it is now possible to perform Pan-Cancer systematic characterizations of the impact of 

genomic variation on gene expression, protein abundance and protein activities. Moreover, 

these technologies allow cancer researchers to study other sources of molecular 

heterogeneity in cancer, including the impact of epigenetic states and patient characteristics 

such as age and gender. The main goal of this thesis is to exploit multi-omics cancer 

datasets to build an integrated picture of the impact of genomic alterations, and patient-

specific characteristics, on the RNAs and proteins of cancer cells.  

The following subchapters provide a mechanistic description of how cancer 

mutations and patient-specific endogenous factors contribute to variation in gene 

expression, protein abundance and protein activities. In the next subchapter (1.3.1) I give 

emphasizes to the role of genetic alterations and sex in shaping the cancer transcriptome. 

After that, I describe the molecular basis of sex differences in cancer incidence and survival. 

In subchapter 1.3.2 I discuss how genetic changes in the form of copy-number alterations 

are not always reflected at the protein level, and what are the mechanisms that underlie this 

buffering effect. Finally, in subchapter 1.3.3 I introduce the effects of mutations on protein 

activities and cell signalling pathways.  

 

 

1.3.1. Determinants of gene expression variability in cancer 
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Gene expression variation in cancer is largely driven by somatic genomic 

alterations, including gene copy-number variations (CNVs) and single nucleotide variants 

(SNVs), epigenetic changes and microRNA-mediated post-transcriptional regulation 

(Sharma, Jiang, and De 2018). In a recent study from the Pan-Cancer Analysis of Whole 

Genomes (PCAWG) consortium, it was found that CNVs are the major drivers of gene 

expression variation (17%), followed by somatic SNVs in proximal gene regions (2%) 

(Calabrese et al. 2020). Regarding the impact of SNVs in gene expression, multiple studies 

reported hundreds to thousands of variants in cancer genomes that are correlated with gene 

expression levels (Ongen et al. 2014; Gong et al. 2018; Geeleher et al. 2018; Calabrese et 

al. 2020). These variants are termed expression quantitative trait loci (eQTLs) and are 

classified as either cis (local) or trans (distal) depending on the location of the associated 

gene relative to the variant. Some eQTLs have been further associated with patient overall 

survival (Gong et al. 2018). It has been hypothesized that the diversity of molecular 

aberrations (e.g., gene expression) across cancer types is the result of endogenous factors, 

such as tissue-specific developmental and differentiation programs and epigenetic states, 

in conjunction with exogenous factors, including mutagenic exposures and inflammation. In 

accordance with this hypothesis, it was found that the cell-of-origin of more than 10,000 

tumours was largely recapitulated by mRNA-based unsupervised clustering (Hoadley et al. 

2018).  

Gender is an example of an endogenous factor and phenotype that can influence 

gene expression in normal tissues (Aguet et al. 2020; Lopes-Ramos et al. 2020) and in 

cancer (Yuan et al. 2016; J. Ma, Malladi, and Beck 2016). For this reason, I investigated the 

sex-biased gene expression patterns in malignant and non-malignat tissues of stomach and 

thyroid, two tissue types with unbalanced cancer incidences between genders (Siegel, 

Miller, and Jemal 2018; Rahbari, Zhang, and Kebebew 2010). This study is shown in 

chapter 2. The rationale behind sex disparities in cancer is introduced in the following 

subchapter.  

 

 

1.3.1.1. The role of sex differences in cancer incidence 
 

It has been hypothesized that sex-specific gene regulation underlies important 

phenotypic gender differences and may contribute to gender-differential susceptibility to 

disease (Ober, Loisel, and Gilad 2008; Rawlik, Canela-Xandri, and Tenesa 2016; Labonté 

et al. 2017). Cancer has a considerable differential incidence between genders (Tevfik 

Dorak and Karpuzoglu 2012; Clocchiatti et al. 2016; Ali et al. 2016), with men showing 
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higher cancer incidence than women in 32 of 35 anatomical sites (Edgren et al. 2012). In 

13 of these sites, the differences could not be explained by known risk factors, including 

smoking, alcohol consumption and potential occupational carcinogens such as toxic metals 

and ionizing radiation. Men are at higher risk and worst prognosis in several types of 

cancers in non-reproductive tissues, including skin, esophagus, stomach, liver, and urinary 

bladder cancers (Siegel, Miller, and Jemal 2018). One remarkable exception is the thyroid 

tissue, where women have three times higher risk of developing cancer (Rahbari, Zhang, 

and Kebebew 2010). For malignancies such as acute lymphoblastic leukemia (ALL) or non-

Hodgkin lymphoma, the gender-biased incidence occurs already in childhood, being more 

common in boys (Tevfik Dorak and Karpuzoglu 2012). Although environmental and lifestyle 

factors largely contribute to gender disparities in cancer, it seems clear that gender intrinsic 

molecular factors may also play an important role. The molecular basis of cancer sexual 

disparity may be the consequence of a complex interplay between sex chromosomes and 

the hormonal system (Clocchiatti et al. 2016) (Figure 1.2).  
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Figure 1.2. Possible mechanisms contributing to gender differential susceptibility to 
cancer. (A) Females and males differ on their sex chromosomes: females have two X 
chromosomes (XX) and males have one X chromosome and one Y chromosome (XY). 
During female embryogenesis, one X chromosome is inactivated (Xi) by a specialized RNA-
based silencing mechanism to prevent gene-dosage imbalances between genders. 
Therefore, only one copy is transcriptionally active (Xa) in females, balancing the expression 
with males. According to this model, both sexes are equally susceptible to inactivating 
mutations in X-linked tumour suppressor genes (TSGs): males and females would only 
require a single deleterious mutation to lose a X-linked TSG, which might in turn contribute 
to carcinogenesis. However, some genes, including TSGs, escape from X-inactivation 
(EXIT), protecting females from complete TSG loss after a single loss-of-function mutation. 
In this model, complete TSG inactivation would require biallelic mutations, or mutation with 
loss of the other X chromosome. (B) Androgens and estrogens flow inside the cell through 
the cytoplasmic membrane and bind to the corresponding steroid receptors: estrogen 
receptors (ERs) and androgen receptors (ARs), respectively. Hormone binding to the 
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receptor triggers alterations in structural conformation and nuclear localization. The 
receptors then bind to specific steroid-response elements in the DNA to activate or repress 
the transcription of genes. In some cancer models it was found that androgens and 
estrogens might have antagonistic effects regarding cancer development and progression. 
In liver cancer (more common in males), androgen and estrogen signalling have opposite 
effects on hepatocyte proliferation and DNA replication, where AR stimulates and ER 
restrains cell division (Z. Li et al. 2012). These hormones have contrasting effects in the 
thyroid tissue (Stanley et al. 2012; M. L. Lee et al. 2005), which may drive the higher 
incidence of thyroid cancer in females. Figure adapted from (Dunford et al. 2017; Clocchiatti 
et al. 2016; Levin and Hammes 2016). 

 

 

1.3.1.1.1. Sex chromosomes 
 

Females have two X chromosomes, one inherited from each parent, whereas males 

carry one X chromosome inherited from the mother and one Y chromosome from the father 

(Libert, Dejager, and Pinheiro 2010). To ensure a correct dosage of X-linked genes between 

both sexes, one copy of the X chromosome is usually randomly inactivated by the long non-

coding RNA XIST in the early stages of female embryogenesis. However, some genes may 

escape the XIST-dependent inactivation, triggering an imbalanced expression between 

males and females (Carrel and Willard 2005; Tukiainen et al. 2017). This asymmetric 

expression can make females more resistant to inactivating mutations in X-linked tumour 

suppressor genes (TSGs), as males would require only a single deleterious mutation and 

females would require two (Dunford et al. 2017) (Figure 1.2A).  

UTX is a TSG (encoding a histone H3K27 demethylase) that is known to escape 

silencing in females (Van Haaften et al. 2009; Greenfield et al. 1998; Bellott et al. 2014). 

Males have a UTX paralogous on the Y chromosome called UTY, however its catalytic 

activity is relatively low and may not compensate for inactivating mutations in the UTX gene 

(Walport et al. 2014). This seems to be important in the aetiology of ALL, which has been 

reported to have somatic loss-of-function mutations in UTX (Van Der Meulen et al. 2015; 

Mar et al. 2012). As described above, ALL is prevalent in childhood and more common in 

males than females. Additionally, it was reported inactivating UTX mutations in renal and 

esophageal cancers, which are more common in males (Van Haaften et al. 2009; Dalgliesh 

et al. 2010; Lucca et al. 2015; S. H. Xie and Lagergren 2016). Moreover, Dunford et al. 

recently reported that four TSGs that escape from X-inactivation, including UTX, harboured 

loss-of-function mutations more frequently in male cancers (Dunford et al. 2017). The 

authors concluded that biallelic expression of X-linked TSGs in females partially explains 

the reduced cancer incidence in this sex across multiple tissue types.  



 

 24 

The X chromosome also contains a high number of genes directly or indirectly 

involved in immunological activity, and females have better immune responses to 

pathogens than males (Libert, Dejager, and Pinheiro 2010; Klein and Flanagan 2016). The 

increased immune activity in females is likely to be accompanied by enhanced cancer 

immunosurveillance (Clocchiatti et al. 2016), at the expense of an increased susceptibility 

to autoimmunity (Klein and Flanagan 2016; Mousavi, Mahmoudi, and Ghotloo 2020). 

 

 

1.3.1.1.2. Sex hormones 
 

Sex steroid hormones enter the cells through the plasma membrane and bind to 

cellular receptors, such as the estrogen receptor-ɑ (ERɑ), ERβ and androgen receptor (AR). 

Next, the steroid-bound receptors translocate to the cell nucleus and regulate the 

transcription of the target genes, affecting cellular metabolic states, the immune system, 

cancer stem cell self-renewal and tumour microenvironments (Levin and Hammes 2016; 

Clocchiatti et al. 2016) (Figure 1.2B). Several cancer types are more incident and 

aggressive in males and postmenopausal females compared with premenopausal females, 

including cancers of the liver, colon, kidney, oesophagus, skin, and head and neck 

(Clocchiatti et al. 2016). Higher estrogen signalling, leading to ERβ activation, has been 

implicated as one of the factors behind female protection in cancer. To corroborate this 

hypothesis, ERβ levels are often diminished in multiple types of cancers, and sustained 

ERβ expression is a favourable prognostic marker in renal cancer (C. P. Yu et al. 2013). In 

colon cancer, a polymorphism in the promoter of ESR2 (gene encoding ERβ), which likely 

alters its expression, was associated with increased survival of postmenopausal women 

(Passarelli et al. 2013). 

Hepatocellular carcinoma (HCC) is more common in males in both rodents and 

humans (Kalra et al. 2008; Sung et al. 2021). In mouse models of the disease, it was found 

that male mice treated with estrogen developed fewer tumours than control males, and 

ovariectomized females developed more tumours than normal females during chemically-

induced carcinogenesis (Naugler et al. 2007; Shimizu et al. 1998; Tsutsui et al. 1992; 

Yamamoto et al. 1991). In addition, reduced incidence of HCC was observed in male mice 

not expressing AR (C. L. Ma et al. 2008; M. H. Wu et al. 2010). These results demonstrated 

that estrogens and androgens contribute to hepatocarcinogenesis in an antagonistic 

manner (Figure 1.2B). A more detailed analysis suggested this opposite role may happen 

through a FOXA1/2-dependent regulation of gene expression: AR stimulates whereas ERα 
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restrains cellular proliferation and metabolism of nucleotides and amino acids (Z. Li et al. 

2012).  

As previously noted, the incidence of thyroid cancer is significantly higher in females 

than in males. Although the reasons for this disparity are still largely unclear, it was reported 

that AR expression in thyroid follicular cells reduced cell proliferation (Stanley et al. 2012), 

while estrogen treatment induced proliferation and suppressed apoptosis (M. L. Lee et al. 

2005). These studies suggested that these hormones have an opposite carcinogenic role 

in the context of the thyroid tissue. 

 

 

1.3.2. Protein-level buffering of gene copy-number changes in 
tumours and normal cells 
 

 Cancer can be driven by somatic genetic alterations, including SNVs, CNVs, 

insertions and deletions (indels) and chromosomal rearrangements (Pleasance et al. 2010; 

Beroukhim et al. 2010; Campbell et al. 2020). A subset of these somatic alterations, known 

as driver mutations, confer a fitness advantage to the cancer clone and are causally 

implicated in oncogenesis. However, large changes in gene copy-number are known to be 

detrimental to the cell (Tang and Amon 2013). A plausible explanation for the detrimental 

phenotypes is by gene dosage alteration, where gains and losses of gene copies change 

the expression level of genes and proteins. The availability of measurements for gene copy-

number, mRNA expression and protein abundance across a large number of tumour 

samples should allow us to better study the impact of gene dosage alterations at the protein 

level. By correlating gene copy-number changes with mRNA and protein expression 

measures, we can study the extent by which CNV changes are differentially propagated to 

the mRNA and protein levels.  

Gene dosage alteration can have a negative impact on the overall cellular fitness 

because (i) protein overexpression can cause an energetic stress and overload protein 

quality-control systems, such as chaperone-mediated protein folding and the ubiquitin-

proteasomal protein degradation pathway (Olzscha et al. 2011); (ii) imbalances on the 

stoichiometry of protein complexes can contribute to proteotoxicity because of the unbound 

protein subunits (Kaizu, Moriya, and Kitano 2010; Vavouri et al. 2009). Such negative 

effects on basic cellular mechanisms of protein maintenance and clearance can lead to 

protein aggregates, which are inherently toxic and the cause of many diseases (Bucciantini 

et al. 2002; Soto and Pritzkow 2018). Furthermore, this biology fits with the observation that 
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germline CNVs are rare and deleterious, and, therefore, under negative selection in the 

human population (Itsara et al. 2008). 

 Studies in aneuploid yeast strains and human cells have shown that mRNA and 

protein expression largely scale with most autosomal gene duplications, with the notable 

exception of protein complex members, which tend to be attenuated at the protein level. In 

other words, subunits of protein complexes show less protein abundance than expected 

(Pavelka et al. 2010; Dephoure et al. 2014; Ishikawa et al. 2017; Stingele et al. 2012). It 

was further shown that post-transcriptional mechanisms of gene dosage compensation can 

attenuate the protein excess through ubiquitin-dependent degradation (Dephoure et al. 

2014; Ishikawa et al. 2017). In cancer the story is similar, as it has been observed that a 

large fraction of somatic CNVs is attenuated at the protein level (Geiger, Cox, and Mann 

2010; Gonçalves et al. 2017). In addition, some protein complex members can act as 

scaffolding or rate-limiting for the assembly of the complex, indirectly controlling the 

degradation level of attenuated complex subunits that depend on their binding state, i.e., 

bound/unbound to the complex (Gonçalves et al. 2017). These results are lined up with 

pulse-chase degradation experiments showing that several protein complex subunits are 

degraded at a higher rate when unbound from the corresponding complexes (McShane et 

al. 2016). Post-transcriptional regulation of protein expression, likely via protein interactions 

and degradation, also explains the cancer-associated events of collateral loss, or reduced 

protein expression, in protein complexes following mutation in one subunit (Ryan et al. 2017; 

Roumeliotis et al. 2017), and why correlation analysis can be used to find cancer-specific 

protein interaction networks (Lapek et al. 2017).  

 Degradation of unbound protein complex subunits may happen to avoid free 

hydrophobic interface sites that can be prone to aggregate (Young, Jernigan, and Covell 

1994) and supports a long-established view that protein complex formation can set the total 

amount of protein levels (Abovich et al. 1985). Despite the events of gene dosage 

compensation by post-transcriptional regulation have been well documented in cancer, we 

still do not understand (i) what protein properties are associated with the propensity for a 

protein to be attenuated and (ii) if the characteristics of the attenuation process are also 

seen in noncancerous cells.  

In chapter 3, a multi-omics study of protein-level attenuation of gene dosage was 

carried out to address these questions and explore further the events of post-transcriptional 

regulation in cancer. 
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1.3.3. Variability of kinase and transcription factor activities in 
cancer 
 

 Mutations in key cancer genes are just the first steps of a cascade of events that 

culminate in neoplastic disease and eventually cancer. In reality, these mutations generate 

the genetic diversity that promotes the acquisition of multiple cancer hallmarks, including 

sustaining chronic proliferation; resisting cell death; inducing angiogenesis; escaping from 

immune surveillance; and activating tissue invasion and metastasis (Hanahan and 

Weinberg 2011). One of the most fundamental traits of cancer cells is the ability to sustain 

proliferative signalling. A cancer cell can acquire this capability in a number of alternative 

ways: (i) producing growth factor ligands itself or stimulating the normal cells in the tumour 

stroma to produce them; (ii) increasing the amount of receptor proteins in the cytoplasmic 

membrane; (iii) by constitutive activation of signalling transduction pathways due to 

mutations on their components (Hanahan and Weinberg 2011). In fact, perturbation of 

kinase signalling by genetic alterations often results in deregulated kinase activity and 

malignant transformation (Blume-Jensen and Hunter 2001). As an example, about 40% of 

melanomas contain the V600E activating mutation in the BRAF kinase, resulting in 

constitutive signalling through the Raf to mitogen-activated protein kinase (MAPK) pathway 

and increased cellular proliferation (Davies and Samuels 2010).  

 Aberrant kinase signalling in cancer has been studied for the past two decades 

(Blume-Jensen and Hunter 2001; Dhillon et al. 2007; J. Yang et al. 2019). Early MS-based 

studies in lung cancer cell lines and human embryonic kidney cells have identified tyrosine 

phosphorylation signalling pathways that are activated by mutated and/or overexpressed 

oncogenes such as EGFR, KRAS and SRC (Guo et al. 2008; Guha et al. 2008; Rikova et 

al. 2007; Amanchy et al. 2008). More recently, Creixell et al. performed a comprehensive 

study of how mutations can affect signalling pathways in ovary cancer cell lines. They 

established three processes whereby mutations can perturb signalling networks, including 

the dysregulation of signalling network dynamics by constitutive activation or inactivation of 

kinases; changes in the network structure by rewiring upstream or downstream interactions; 

and the modulation of molecular logic gates by creation or destruction of phosphorylation 

sites (Creixell et al. 2015). Another study found that cancer mutations close to tyrosine 

phosphorylation sites can induce molecular switches that alter signalling networks (Lundby 

et al. 2019).  

Multiple studies from CPTAC (for details about this consortium please refer to 

subchapter 1.2) have identified differentially phosphorylated phosphosites associated with 

mutations in oncogenes and TSGs. In breast cancer, 62 phosphosites were up-regulated in 

PIK3CA-mutated tumours, with 58% of them exhibiting increased PI3K pathway activity 
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(Mertins et al. 2016). In HBV-related liver tumours, the phosphorylation of ALDOA on S36 

was significantly higher in CTNNB1-mutated tumours, which may drive the glycolytic 

metabolism and strongest proliferation of these tumours (Gao et al. 2019). Twelve lung 

tumours contained KEAP1 mutations that increased the phosphorylation of NFE2L2 on 

S215 and S433 (Gillette et al. 2020). NFE2L2 oncogenic signatures are associated with 

antioxidant responses, which protect cancer cells (Taguchi and Yamamoto 2017). In 

endometrial cancer, truncating mutations in TP53 were associated with increased 

phosphorylation of PLK1 on T210 and high protein levels of 14 mitotic markers. Accordingly, 

increased phosphorylation of PLK1 T210 has been shown to trigger recovery from the G2 

DNA damage checkpoint (Macůrek et al. 2008; Paschal, Maciejowski, and Jallepalli 2012) 

and mitotic entry (Vigneron et al. 2018). The brain and colon cancer studies have 

characterized the activation profile of selected kinases, including the cell cycle-related 

kinases CDK1 and CDK2 (Petralia et al. 2020; Vasaikar et al. 2019).  

Transcription factors (TFs) are proteins that play a central role in the control of gene 

expression by influencing RNA polymerase activity in a gene-specific manner. To regulate 

the expression of their target genes, TFs can either directly bind to the DNA or interact with 

specific cofactor proteins (Bhagwat and Vakoc 2015) . Dysregulation of TF activities is 

common across many forms of human cancer (T. I. Lee and Young 2013). In tumours, 

genes encoding TFs are often affected by gain- or loss-of-function mutations that drive 

tumorigenesis and confer a selective advantage to the cancer cells. As prominent 

examples, the tumour suppressor gene TP53 and the proto-oncogene MYC are among the 

most commonly altered genes in cancer (E. Y. H. P. Lee and Muller 2010; Bretones, 

Delgado, and León 2015). Furthermore, oncogenic kinase signalling can alter the activity of 

downstream TFs and implement gene expression changes that drive malignant 

transformation (Darnell 2002). The diversity of oncogenic mechanisms driving TF 

dysregulation highlights the importance of aberrant gene expression in cancer and justifies 

the consideration of TFs as potential targets of anti-cancer drugs (Bhagwat and Vakoc 2015; 

Bushweller 2019). Previous studies have used different strategies to quantify the impact of 

oncogenic mutations on the activities of TFs and evaluate their potential as markers of drug 

response (Alvarez et al. 2016; Osmanbeyoglu et al. 2017; Garcia-Alonso et al. 2018). 

Despite all of these efforts, a systematic Pan-Cancer analysis of the impact of mutations on 

kinase and TF activities is lacking. Such study is described throughout chapter 4. 
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1.4. Genomics 
 

The following subchapters cover the omics fields that are more important to the 

cancer questions addressed in this thesis. This subchapter is focused on cancer genomics, 

whereas the subchapters 1.5, 1.6 and 1.7 discuss the main technological and 

methodological details of transcriptomics, proteomics and phosphoproteomics, 

respectively. 

A genome is the complete set of DNA molecules in an organism. It provides all of 

the information required by the organism to function under homeostatic conditions or to 

respond to environmental insults. In humans and all eukaryotes, the DNA is tightly coiled 

around proteins called histones and organized into chromosomes, which are stored in the 

cell nucleus. At a lower level, the DNA is further subdivided into smaller sections called 

genes, which code for RNA and protein molecules. Genomics is the study of the function, 

structure and evolution of genomes (Sherman and Salzberg 2020).  

The Human Genome Project (HGP) started in 1990 and was a 13-year long effort 

to obtain the first human genome sequence, costing more than $2 billion US dollars over 

this period (Sherman and Salzberg 2020). The HGP was accomplished with Sanger 

sequencing, a chain-termination method described in 1977 by Edward Sanger and 

colleagues (Sanger, Nicklen, and Coulson 1977). The conclusion of the HGP encouraged 

the development of cheaper and faster sequencing methods, resulting in the establishment 

of the second-generation sequencing or NGS technologies (Shendure et al. 2017). NGS 

platforms perform massive parallel DNA sequencing, during which millions of fragments of 

DNA from a single sample are sequenced in parallel, allowing an entire human genome to 

be sequenced in about a day. Nowadays, a common NGS approach is the short-read 

sequencing by Illumina. In this approach, DNA molecules are sequenced by synthesizing a 

complementary strand of DNA using fluorophore-labelled nucleotides (Goodwin, 

McPherson, and McCombie 2016). NGS technologies became an indispensable tool for 

cancer genomics, as described in the following subchapters. 

 

 

1.4.1. Overview of cancer genomics 
 

Cancer is an heterogeneous disease caused by the acquisition of genetic alterations 

in a healthy cell’s genome. A myriad of genetic changes in key genes allow a healthy cell 

to aberrantly co-optimize multiple cellular pathways and ignore normal constraints and cell 
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cycle checkpoints. Such optimizations usually induce malignant transformation, 

autonomous expansion of the mutant cell and spread of the cancer clone (Campbell et al. 

2020). NGS technologies have enabled the systematic characterization of the genetic 

variation at the whole-genome or exome scale (Pleasance et al. 2010), and supported the 

establishment of previously mentioned cancer genomics consortia (i.e., ICGC and TCGA). 

From the clinical point of view, NGS is being increasingly used in oncology to guide the 

diagnosis, prognosis and care of cancer patients (Berger and Mardis 2018). A typical cancer 

genome analysis pipeline includes the following steps: DNA sequencing of tumour-normal 

pairs, alignment of the sequencing reads to a reference genome, variant calling and, lastly, 

variant annotation (Vazquez, de la Torre, and Valencia 2012; Koboldt 2020) (Figure 1.3).  

 

 
Figure 1.3. Typical cancer genomics workflow. (A) Collection of tumour and non-
malignant samples (controls) from the same patient. Non-malignant samples are usually 
collected from the tissue-of-origin and/or patient's blood. (B) DNA sequencing of the tumour 
and normal samples. (C) Alignment of the tumour- (red) and normal-derived (green) 
sequencing reads to the reference human genome. (D) Variant identification is 
accomplished by comparing the sequencing reads to the reference genome sequence. The 
non-malignant control is important in this step to identify tumour-specific somatic mutations. 
(E) The variant calls are interpreted using the genome annotation to identify mutations that 
may alter the function of the resulting proteins. The impact of mutations on protein function 
can range from irrelevant to highly deleterious. WT protein: wild type protein. 

 

 

1.4.1.1. Tumour sequencing 
 

NGS of tumour specimens starts usually with the sequencing of DNA from a tumour 

sample and a matched control sample from the same patient (Figure 1.3A, Figure 1.3B). 

Although about 10% of cancer patients harbour germline variants that predispose to cancer 

(K. lin Huang et al. 2018), the main purpose of tumour sequencing is often the identification 

of somatic mutations with clinical relevance. The inclusion of patient-derived non-malignant 

DNA is crucial to distinguish somatic mutations from inherited germline variants. Non-

malignant DNA samples can be obtained from the patient's blood, skin cells and fibroblasts. 

When non-malignant DNA is not available, mutations identified in the tumours must be 
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prioritized according to databases of recurrent somatic and germline variants (Hiltemann et 

al. 2015). 

 

 

1.4.1.2. Read alignments 
 

After the samples have been sequenced, the sequencing reads are aligned to a 

reference genome sequence (Figure 1.3C). Alignment algorithms seek to identify the 

original location of the sequenced fragments resulting from the tumour and control libraries. 

A common procedure is the use of the Burrows-Wheeler Alignment tool (BWA) paired with 

the Sequence Alignment/Map (SAM) format (BAM for the binary version) to store the read 

alignments against the reference sequences (H. Li and Durbin 2009; H. Li et al. 2009). The 

quality of the alignments can be improved with multiple data pre-processing steps: data 

cleaning operations such as the removal of PCR artifacts and duplicated reads are crucial 

to increase the accuracy of the downstream variant calling algorithms. These tasks can be 

performed using Picard and Sambamba (Tarasov et al. 2015). Additionally, according to the 

recommended best practices (e.g., GATK (McKenna et al. 2010; Van der Auwera et al. 

2013)), base quality score recalibration (BQSR) is often required. 

 

 

1.4.1.3. Variant calling 
 

After reads are aligned to the reference genome, variant calling algorithms can be 

applied to identify different types of mutations (Figure 1.3D). These include: SNVs, small 

indels, CNVs, large-scale chromosomal rearrangements (amplifications, deletions, 

inversions, translocations, etc.) and aneuploidies. Several somatic mutation callers have 

been developed for this purpose, such as MuTect2 (Cibulskis et al. 2013), MuSE (Y. Fan et 

al. 2016), VarScan2 (Koboldt, Zhang, et al. 2012) and SomaticSniper (Larson et al. 2012). 

These tools use a subtraction approach of the tumour and non-malignant data. However, 

there are several factors that can make the detection of tumorigenic somatic mutations very 

challenging. Tumour purity (proportion of cancer cells in a tumour sample) should be taken 

into account and estimated computationally (Smits et al. 2014). For instance, the 

ESTIMATE algorithm employs two gene expression signatures of infiltrating stromal and 

immune cells to infer their proportion in the tumour sample (Yoshihara et al. 2013). In 

combination with a single-sample gene set-enrichment analysis, these signatures allow to 
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calculate scores that reflect both the presence of each cell type in the sample and the overall 

tumour purity.  

Variant calls are usually reported in a VCF file that organizes them according to their 

chromosome and position. They are often accompanied by scores measuring the 

sequencing quality across genomic regions. 

 

 

1.4.1.4. Variant annotation 
 

 The list of somatic mutations is biologically meaningless until it is interpreted at the 

light of the human genome annotation. This step consists in examining the variant calls to 

identify mutations that may alter the function of the encoded proteins: mutations in the DNA 

are translated into mutations in the corresponding transcripts and proteins (Vazquez, de la 

Torre, and Valencia 2012). SNVs can have several impacts on the amino acid sequence of 

the resulting protein, and consequently on the cancer cell phenotype. They can: (i) leave 

the amino acid sequence unperturbed (synonymous mutations); (ii) cause an amino acid 

substitution (nonsynonymous mutations); (iii) introduce a premature stop codon in the 

amino acid sequence (nonsense or truncating mutations); (iv) remove stop codons and 

cause read-through mutations. Indels can preserve the reading frame if they comprise a 

multiple of three nucleotides or cause a frameshift mutation otherwise. Large DNA 

rearrangements that connect coding exons from different genes are interpreted using the 

existing annotation for those exons to generate the amino acid sequence of the fusion 

protein (Mardis 2018).  

The impact of the amino acid alterations on protein function can range from neutral 

to highly deleterious (Figure 1.3E). Neutral mutations do not significantly affect the structure 

and stability of the proteins, or do not affect regions involved in biochemical reactions and 

protein-protein interactions. On the other hand, deleterious amino acid changes can result 

in the formation of a truncated protein lacking important functional regions (Vazquez, de la 

Torre, and Valencia 2012). These alterations can be predicted using specialized software 

tools such as the Ensembl VEP (McLaren et al. 2016), ANNOVAR (K. Wang, Li, and 

Hakonarson 2010) and Oncotator (Ramos et al. 2015). 

The mutation types discussed so far are called coding mutations because they affect 

protein-coding genomic sequences (i.e., exonic regions, see subchapter 1.5 for details). 

However, more than 98% of the human genome does not encode proteins (Garraway and 

Lander 2013), suggesting that the vast majority of cancer mutations are within noncoding 

regions (introns, promoters, enhancers, etc.). According to cancer statistics from the 
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Catalogue Of Somatic Mutations In Cancer (COSMIC), the actual knowledge about cancer 

mutations is largely biased for coding regions (Tate et al. 2019). This is mostly due to the 

fact that cancer genome sequencing studies have largely focused on the exome rather than 

on the whole genome for reasons of cost (Khurana et al. 2016). Noncoding mutations are 

by definition more challenging to study and interpret. As they do not affect coding regions 

directly, they may alter the gene expression of target genes and respective protein 

abundances by affecting regulatory mechanisms. A strategy that has been used to interpret 

their functional roles is to overlap the noncoding mutations with DNA regulation data from 

the Encyclopedia of DNA Elements (ENCODE) (Dunham et al. 2012). Another alternative 

is to perform eQTL studies to link mutated loci in noncoding regions to the expression of 

putative target genes (W. Zhang et al. 2018).  

 

 

1.4.2. Mutagenic processes and signatures in cancer 
 

DNA damage occurs constantly: it is estimated that the average human cell receives 

tens of thousands of DNA lesions per day, most of which are efficiently repaired by DNA 

repair pathways (Saul and Ames 1986; Sancar et al. 2004; Lindahl and Barnes 2000). Apart 

from being the fuel of evolution and natural selection, DNA damage is involved in many 

processes less beneficial to an organism. When DNA lesions are not repaired or are 

repaired incorrectly, they lead to mutations or wider-scale genome aberrations that threaten 

the cells and the organism viability (Jackson and Bartek 2009). In fact, DNA damage is 

implicated in ageing (Hoeijmakers 2009) and cancer (Stratton, Campbell, and Futreal 2009).  

There are exogenous and endogenous sources of DNA damage that can promote 

cancer (Tubbs and Nussenzweig 2017). The most common exogenous genotoxins implied 

in human cancer are ultraviolet (UV) light (Armstrong and Kricker 2001), ionising radiation 

(Gilbert 2009), biological agents (viruses and bacteria) (Zur Hausen 1991) and various 

chemicals, such as alkylating agents (D. Fu, Calvo, and Samson 2012) and polycyclic 

aromatic hydrocarbons (Mastrangelo, Fadda, and Marzia 1996). Endogenous sources of 

DNA damage that may contribute to mutations in cancer genomes include: inactivation of 

DNA repair pathways by loss of DNA repair genes (Nowell 1976; Kinzler and Vogelstein 

1997); stochastic errors in DNA replication caused by misincorporation of nucleotides by 

DNA polymerases (Tomasetti and Vogelstein 2015; Alexandrov and Stratton 2014); and 

oncogene-induced DNA replication stress followed by error-prone repair and genomic 

instability (Halazonetis, Gorgoulis, and Bartek 2008; Negrini, Gorgoulis, and Halazonetis 
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2010). According to this hypothesis, activated oncogenes induce the stalling and collapse 

of DNA replication forks, which in turn leads to formation of DNA double-strand breaks.  

High-throughput DNA sequencing flooded cancer genetics with an enormous 

amount of data that quickly revealed a remarkable diversity of somatic mutations, as well 

as cancer-specific mutational signatures of DNA damage and errors in DNA repair. For 

instance, in melanoma it was found a high proportion of cytosine to thymine mutations (C>T) 

at adjacent pyrimidine nucleotides, a mutational spectrum that has been previously 

associated with UV light exposure (Pleasance et al. 2010). Tobacco smoking was also 

associated with a higher rate of specific signatures in smokers versus nonsmokers in 

different cancer types (Alexandrov et al. 2016). More recently, the PCAWG consortium 

provided a systematic characterization of mutational signatures associated with exogenous 

and endogenous exposures, across more than 20,000 cancer genomes from the TCGA and 

ICGC consortia (Alexandrov et al. 2020).  

 

 

1.4.3. Cancer genes and driver mutations 
 

Most tumors harbor a constellation of somatic genomic alterations that include 

SNVs, indels, CNVs and large DNA rearrangements (Garraway and Lander 2013). These 

mutations are especially harmful when they hit two distinct classes of cancer-causing 

genes: proto-oncogenes and TSGs (Garraway and Lander 2013; E. Y. H. P. Lee and Muller 

2010) . Proto-oncogenes typically encode proteins that stimulate cell division and inhibit cell 

death. Thus, mutations in proto-oncogenes are usually classified as gain-of-function (or 

activating mutations) and promote cell growth, division, and survival. The mutated version 

of a proto-oncogene is called an oncogene. Classical oncogenes are EGFR, KDR, HRAS 

and KRAS. On the other hand, TSGs often restrain inappropriate cell growth and division, 

and are involved in DNA repair processes that prevent the accumulation of mutations in 

cancer-related genes. Therefore, mutations in TSGs are normally classified as loss-of-

function (or inactivating mutations) and inactivate DNA repair and cell cycle control 

processes. Examples of TSGs include TP53, RB1, APC, BRCA1/2 and PTEN. Another 

important aspect in cancer genomics is the distinction between driver and passenger 

mutations. Driver mutations confer a fitness advantage to the cancer clone and are therefore 

directly implicated in tumorigenesis (Martínez-Jiménez et al. 2020). These mutations are 

under positive selection and are recurrent (i.e., highly frequent) across the cancer cohorts. 

The majority of them tend to affect TSGs such as TP53 (Rivlin et al. 2011) or oncogenes 

like KRAS (M. T. Wang et al. 2015). Passenger mutations do not affect the fitness of the 
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cancer cells but are carried by the same cells which have acquired the driver mutations. 

Passenger mutations tend to accumulate over the course of tumour growth, complicating 

the identification of true driver mutations (Gonzalez-Perez, Deu-Pons, and Lopez-Bigas 

2012). 

 

 

1.5. Transcriptomics 
 

Transcriptomics is the study of the transcriptomes, which correspond to the 

collection of all coding and non-coding RNA molecules, or transcripts, expressed from the 

genome of a given cell, tissue or organism (Z. Wang, Gerstein, and Snyder 2009). In 

contrast with the genome, which is usually stable, the transcriptome is by nature cell 

dependent (Kolodziejczyk et al. 2015; Bach et al. 2017; Messmer et al. 2019; Melé et al. 

2015). This is the result of a wide range of mechanisms of pre and post-transcriptional 

control of gene expression. Pre-transcriptional regulation includes DNA methylation, 

chromatin modifications and differential regulation of transcription initiation. Post-

transcriptional control of gene expression occurs through modulation of RNA processing, 

degradation and translation rates (Greenberg and Bourc’his 2019; Klemm, Shipony, and 

Greenleaf 2019; Andersson and Sandelin 2020; Baralle and Giudice 2017; Schoenberg and 

Maquat 2012). While the coding RNAs carry information for protein synthesis, the non-

coding RNAs are involved in the control of gene expression via epigenetic modifications 

and post-transcriptional regulation (Holoch and Moazed 2015; Jonas and Izaurralde 2015). 

For clarity, this thesis is focused on the coding transcriptome, since it is the most relevant 

for the studies here described.  

To generate the coding transcriptome, the protein-coding genes are first transcribed 

into precursor messenger RNAs or pre-mRNAs (Figure 1.4). The pre-mRNAs contain 

protein-coding nucleotide sequences interrupted by non-coding segments, called exons 

and introns, respectively. In order to become functional, the pre-mRNAs undergo a series 

of modifications, known as mRNA processing, in the cell nucleus. These modifications 

increase the stability of the mRNAs and promote their translation. An important modification 

that is worth mentioning is RNA splicing. During splicing, the introns are removed and the 

coding exons are spliced together in the final mature mRNA. Remarkably, a single protein-

coding gene can produce multiple transcripts, or isoforms, by alternative RNA splicing. In 

this process, the exons can be joined through multiple combinations, allowing a single gene 

to express different isoforms that may encode related proteins with different functions. After 
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processing, the mRNA is transported to the cytoplasm and translated into proteins by the 

ribosomes (Hartwell et al. 2011).  

 

 
Figure 1.4. Overview of eukaryotic transcription. In the cell nucleus, a pre-mRNA is 
synthesized from DNA by a process called transcription. RNA polymerase II catalyses this 
reaction, building a complementary chain of nucleotides in the 5’ to 3’ direction. Eukaryotic 
pre-mRNAs are composed of coding exons (coloured rectangles) and non-coding introns 
(solid black lines). After transcription, the pre-mRNAs are modified in a process called 
processing. The 5’ and 3’ ends of the pre-mRNA molecule are connected to a 7-
methylguanylate group (cap) and a poly-A (adenine nucleotides) tail, respectively. These 
modifications increase the stability of the molecule, prevent its degradation and promote 
mRNA translation. pre-mRNA processing also encompasses RNA splicing: the introns are 
removed and the exons are connected in the final mRNA. During alternative splicing, the 
exons can be joined in different combinations, yielding different mRNA molecules called 
isoforms. The information carried by the mRNA is then translated into proteins, which make 
up the structure of cells and are responsible for most of its functions. Translation occurs in 
ribosomes in the cytoplasm with the intervention of two other types of RNA molecules: 
transfer RNA (tRNA) and ribosomal RNA (rRNA). tRNA transports the amino acids to the 
growing polypeptide chain and rRNA is a component of ribosomes. Alternative splicing 
enables a single gene to express different protein isoforms. 
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Several large scale transcriptomic studies aim to quantify the variability of gene 

expression in healthy and disease tissues across a large number of individuals (Melé et al. 

2015; Ferreira et al. 2014). The progresses made in the NGS technologies established the 

RNA-seq (RNA sequencing) as the standard method for transcriptome-wide analysis (Z. 

Wang, Gerstein, and Snyder 2009). This method is addressed in the next subchapter.  

 

 

1.5.1. RNA-seq: sequencing the transcriptome 
 

In RNA-seq, transcripts are identified and quantified using deep-sequencing 

technologies. This work is focused on the RNA-seq method most commonly used by the 

scientific community, termed bulk RNA-seq, which consists in the characterization of the 

transcriptome of groups of cells or tissue sections.  

Short-read sequencing by Illumina has been the dominant technology for bulk RNA-

seq. The typical Illumina short-read sequencing workflow includes RNA extraction and 

fragmentation (Figure 1.5A-Figure 1.5C), cDNA synthesis (Figure 1.5D), adaptor ligation 

(Figure 1.5E), PCR amplification (Figure 1.5F), cDNA sequencing (Figure 1.5G) and data 

analysis (Figure 1.5H-Figure 1.5J). During sequencing, the cDNA library is clustered in a 

flow cell and the individual cDNA molecules are sequenced by synthesizing a 

complementary strand of DNA with fluorescently labelled nucleotides. In each sequencing 

round, the growing strand of DNA is scanned by the sequencer to detect which of the four 

nucleotides has been added. This technology generates reads with 50-500 base pairs (bp) 

that represent fragments of the cDNA molecules. Importantly, in short-read RNA 

sequencing the reads can be obtained from one end or both ends of the cDNA molecules, 

establishing the so-called single-end or paired-end reads, respectively. The paired-end 

reads are separated by a known distance, allowing the alignment algorithms to connect 

exons across long ranges and to resolve more efficiently the multiple splicing isoforms of a 

single gene. The cDNA libraries are usually sequenced to an average read depth of 20-30 

million reads per sample (R. Stark, Grzelak, and Hadfield 2019).  

The data analyses usually involve 4 different steps, including (i) alignment and 

assembly of the sequencing reads (Figure 1.5H); (ii) quantification of gene and/or transcript 

abundance (Figure 1.5H); (iii) normalization and filtering of the expression matrix (Figure 
1.5I); (iv) gene functional analyses and data mining (Figure 1.5J). The following 

subchapters address each of these steps.  
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Figure 1.5. Cancer transcriptomics analysis pipeline. (A) A standard RNA-seq 
experiment starts with RNA extraction from the tumour tissue. Depending on the biological 
question, it may be advisable to extract RNA from non-malignant tissue to have a normal 
control. (B) Messenger RNAs (mRNAs) are usually selected by isolating the polyadenylated 
(poly A+) RNAs. (C) mRNAs are then fragmented using RNA hydrolysis or nebulization. (D) 
The RNA fragments are reverse transcribed into cDNA molecules. (E) Sequencing adaptors 
(purple and red) are connected to the cDNA molecules. (F) The cDNA library is amplified 
by polymerase chain reaction (PCR). (G) The amplified cDNA library is finally sequenced 
using NGS technologies to produce millions of short reads. (H) After sequencing, reads are 
pre-processed by removing low-quality reads and artefacts, such as adaptor sequences, 
contaminant DNA and PCR duplicates. Next, the pre-processed reads are aligned to the 
reference genome. The expression level of each gene/transcript is then estimated by 
counting the number of reads that align to each gene/transcript. (I) The read counts are 
normalized by calculating expression units such as counts per million (CPMs), fragments 
per kilobase of exon per million reads mapped (FPKMs) and transcripts per million (TPMs). 
After normalization, lowly expressed genes are often removed to improve the results of 
downstream analysis. (J) Bioinformatic analyses are carried out in the normalized matrix to 
translate the gene expression data into biological findings. Figure adapted from (Martin and 
Wang 2011).  

 

 

1.5.1.1. Alignment and assembly of the sequencing reads 
 

Once the sequencing has been completed, the reads, usually contained in FASTQ 

files, are aligned to a reference annotated genome and converted into genomic coordinates 

(Figure 1.5H). The alignment can be done using different tools, such as TopHat (D. Kim et 
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al. 2013), STAR (Dobin et al. 2013) and HISAT (D. Kim, Langmead, and Salzberg 2015). 

As the reads might encompass the splice junctions between adjacent exons in the cDNA 

molecules synthesized from the mRNA (where an intron has been removed), these tools 

perform spliced alignments by allowing gaps in the reads when aligned to the reference 

genome (with introns and exons). When a high-quality reference genome is not available 

(as for non-model species) or the focus is on the transcripts rather than on the genes (e.g., 

finding novel aberrant transcripts in tumours), a de novo transcriptome can be assembled 

directly from the reads using, for example, the StringTie (Pertea et al. 2015) and 

SOAPdenovo-Trans (Y. Xie et al. 2014) assemblers.  

 

 

1.5.1.2. Quantification of gene abundance 
 

After the reads have been mapped to the reference genome, the next steps consist 

in assigning the reads to genes or transcripts and determining abundance measures. There 

are different tools that were designed to accomplish these tasks, including HTSeq (Anders, 

Pyl, and Huber 2015), featureCounts (Liao, Smyth, and Shi 2014), RSEM (B. Li and Dewey 

2011), CuffLinks (Trapnell et al. 2012) and MMSeq (Turro et al. 2011). The quantification of 

genes is performed by counting the reads that are aligned to their genomic position (Figure 
1.5H). On the other hand, the quantification of the multiple spliced isoforms is more complex 

because the reads that do not align to splice junctions can not be unambiguously assigned 

to specific transcripts (multi-mapped reads). This problem is usually solved by estimating 

the contribution of the multi-mapped reads across the different isoforms, using, for example, 

the expectation-maximization algorithm implemented in RSEM.  

 

 

1.5.1.3. Normalization and filtering procedures 
 

The number of reads mapped to a given gene in a given sample is proportional not 

only to the expression level of the gene, but also to its length (sum of all exon lengths) and 

to the total number of reads sequenced in that sample (library size). In other words, one 

would expect more reads from longer genes and from samples that have been sequenced 

to a higher depth. Therefore, the next step in RNA-seq data analysis is usually the 

normalization of the gene expression matrix in order to account for such differences (Figure 
1.5I). The expression units more commonly used to report the gene expression data are the 
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counts per million (CPM), fragments per kilobase of exon per million reads mapped (FPKM) 

and transcripts per million (TPM) (Law et al. 2014; Mortazavi et al. 2008; Trapnell et al. 

2010; B. Li and Dewey 2011). All these units are calculated from the number of reads 

mapped to a particular gene i (Xi) and from the library size (N). FPKM and TPM also take 

into account the gene length in base pairs (Li). The CPM of gene i is calculated from the 

following formula: 

 

Equation 1.1: 𝐶𝑃𝑀𝑖 = !"
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CPM corresponds to the gene read counts (Xi) divided by the library size (N) and multiplied 

by one million. This is a simple unit that is used by the differential gene expression method 

limma (Law et al. 2014). The FPKM of gene i can be calculated as follows: 

 

Equation 1.2: 𝐹𝑃𝐾𝑀𝑖 = %&'"
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FPKM corresponds to the CPM divided by the gene length in kilobases (Li/103). The 

interpretation is the following: if that RNA sample was sequenced again, it would be 

expected to see, for gene i, FPKMi fragments per million reads sequenced and per thousand 

bases in the gene. The TPM for gene i can be calculated using the following equation: 

 

Equation 1.3: 𝑇𝑃𝑀𝑖 = !"
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× ,
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TPM corresponds to the read counts per base (Xi/Li) divided by their sum across all genes 

(∑jXj/Lj) and multiplied by one million. Alternatively, TPM can be computed as the FPKM 

over the sum of all FPKMs (∑jFPKMj) multiplied by one million. TPM corresponds to the 

proportion, or abundance, of gene i in relation to the other genes j in the same sample. As 

the sum of all TPMs in each sample equals one million, this measure allows to compare the 

proportion of mapped reads to a given gene across samples. In contrast, the sum of all 

FPKMs may be different across samples, making it more difficult to compare samples 

directly. For this and other reasons, the scientific community has been advocating the use 

of TPMs over FPKMs in RNA-seq related studies (G. P. Wagner, Kin, and Lynch 2012).  

None of these units (CPM, FPKM and TPM) take into account different RNA pool 

compositions between samples. As an example, consider the following hypothetical 
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scenario: two samples A and B are sequenced to the same read depth (number of reads). 

Every gene that is expressed in B is also expressed in A at the same expression level 

(number of transcripts). However, sample A also expresses a set of genes equal in number 

and expression that are not expressed in B. Thus, the RNA production of sample A is twice 

the size of sample B. As both samples are sequenced to the same depth, a gene expressed 

in both samples has half the reads in sample A, since the reads are spread over twice as 

many genes. If the different RNA populations are not adjusted for, this bias can force the 

differential expression analysis methods to be skewed towards one experimental condition. 

The trimmed-mean of M values (TMM) was developed to normalize the library sizes for 

such biological confounding factors (Robinson and Oshlack 2010). This method estimates 

appropriate scaling factors to convert the original library sizes into effective library sizes. 

Importantly, TMM is a batch normalization method, which means it was developed to use 

in a group of samples. While the CPM, FPKM and TPM are calculated in each sample and 

are not affected by the other samples, the TMM scaling factors need to be recalculated if 

the sample set changes.  

After normalization, the expression matrix is usually filtered to remove those genes 

with low expression, a process that has been shown to remove noise and improve the 

detection of differentially expressed genes (Bourgon, Gentleman, and Huber 2010).  

 

 

1.5.1.4. Gene functional analyses and data mining 
 

Once the expression matrix has been properly normalized and filtered, the gene 

expression data is finally evaluated in a biological context through bioinformatic analyses 

(Figure 1.5J). In transcriptomics, the most common approaches for studying gene function 

are through (i) differential gene expression modelling; (ii) gene correlation networks; (iii) 

gene set enrichment analysis; and (iv) transcription factors activities inference. 

 

 

1.5.1.4.1. Differential gene expression 
 

 Differential gene expression (DGE) methods determine quantitative changes in the 

expression levels of genes between two or more experimental groups (e.g., tumour vs 

normal samples). These genes are often referred to as differentially expressed (DE). The 
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methods to perform DGE analyses can be classified as non-parametric and parametric 

(Costa-Silva, Domingues, and Lopes 2017; Soneson and Delorenzi 2013).  

Non-parametric tests make minimal assumptions about the probability distributions 

of the gene expression data and do not fit any strict models to the data. The Mann–Whitney 

U test, also known as Wilcoxon rank-sum test, is a simple non-parametric statistical test 

that can be used to identify DE genes between two sample groups (J. Ma, Malladi, and 

Beck 2016). Non-parametric approaches such as SAMseq (J. Li and Tibshirani 2013) and 

NOISeq (Tarazona et al. 2011) are statistically more complex. NOISeq computes, for each 

gene, a statistic that expresses the difference between two distributions: one calculated 

from the absolute expression differences between the two contrasted conditions, and 

another one obtained by comparing pairs of samples belonging to the same condition (noise 

distribution). SAMseq calculates a statistic based on the Wilcoxon rank-sum test, which is 

averaged over several resamplings of the data. It then uses a permutation strategy to 

estimate false discovery rates (Soneson and Delorenzi 2013).  
Parametric tests for DGE analyses assume that the gene expression data follow 

specific distributions. These tests also rely on fixed parameters about the distributions in 

order to calculate the respective statistics. The Student's t-test for independent groups, also 

known as two-sample t-test, is a parametric alternative to the Wilcoxon rank-sum test. The 

two sample t-test can be applied to data that follows a normal distribution. As the gene 

expression data is not normally distributed per se, it can be transformed into a normal 

distribution using, for example, a base 2 logarithm (log2). Methods based on linear 

regression models have more statistical power (probability of correctly rejecting a false null 

hypothesis) to detect true differential expression (Law et al. 2014). Linear regression is an 

approach to study associations between variables. It builds models for predicting a given 

response (or dependent) variable Y based on a single or multiple explanatory (or 

independent) variables X. In DGE analyses, the main idea is to model the expression of 

each gene as a linear combination of different explanatory variables. The explanatory 

variables, which can be qualitative or quantitative, are tested for association with the 

expression of the genes. Consequently, these methods also allow the researchers to 

consider the effects of possible confounding variables, or confounders, on gene expression, 

like the covariates age and gender or even technical artifacts. As an example, the 

expression of a given gene i can be modelled by a set of n explanatory variables using the 

following expression: 

 

Equation 1.4: Ei = β0 + β1V1 + β2V2 + … + βnVn + ε 
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Where Ei is the expression of gene i, V1, V2, …, Vn represent the multiple explanatory 

variables and β0, β1, β2, …, βn are the respective parameters, or coefficients, to be estimated 

from the data. The ε is an error term and represents unmeasured variables or unmeasurable 

variation that is useful to predict Ei. The β0 coefficient is called the intercept and represents 

the value of Ei when the explanatory variables are equal to 0. The coefficient βj represents 

the average effect on Ei of a one unit increase in Vj, while holding the other independent 

variables fixed. Methods that implement linear regression models in order to identify DE 

genes include DESeq2 (Love, Huber, and Anders 2014), edgeR (Robinson, McCarthy, and 

Smyth 2009) and limma/voom (Law et al. 2014, 2016). However, some important mentions 

have to be made in relation to the linear models employed by these methods. DESeq2 and 

edgeR are based on generalized linear models (GLM). A GLM is a more flexible version of 

the standard linear regression model which, among other things, allows the distribution of 

the response variable to be different from the normal distribution. The GLMs used in edgeR 

and DESeq2 assume that the read counts are distributed according to the negative binomial 

distribution. Limma, on the other hand, is based on the standard linear models that were 

originally developed to analyze gene expression data from microarrays. To extend the 

standard linear models to RNA-Seq data, limma first transforms the read counts to 

approximate a normal distribution using the voom method. The voom transformation 

consists essentially in computing the log2 CPM of the read counts and estimating the mean-

variance relationship (Law et al. 2014).  

Once all genes have been tested for differential expression, the P-values are then 

corrected, or adjusted, for multiple testing. This correction is crucial because as the number 

of statistical tests increases (tens of thousands in DGE analyses), the chances of incorrectly 

rejecting the null hypothesis and obtaining false positives (type I errors) also increases. 

There are multiple techniques to decrease the chances of obtaining false positives. A 

popular approach is called Benjamini-Hochberg (BH) procedure, and it was developed to 

control the false discovery rate (FDR). The FDR is the proportion of false discoveries (or 

false positives) among all the significant tests. To elaborate, a BH-adjusted P-value of 5% 

implies that 5% of the significant tests will be false positives after the correction (Akalin et 

al. 2021).  

 

 

1.5.1.4.2. Gene co-expression networks 
 

Gene co-expression networks represent gene relationships by linking genes with 

similar co-expression patterns along a given set of samples or conditions. Co-expressed 
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genes might be tightly co-regulated, functionally related, or members of the same pathway 

or biological process (Melé et al. 2015; Saha et al. 2017).  

Weighted gene correlation network analysis (WGCNA) is a method to build and 

study gene co-expression networks (Langfelder and Horvath 2008). The main goals of 

WGCNA are (i) build a gene co-expression network; (ii) divide the network into gene 

modules; (iii) relate modules to external information, including phenotypic traits; (iv) identify 

driver genes in the biologically interesting modules.  

In weighted gene co-expression networks, genes (nodes) are connected based on 

their pairwise correlations (edges). These networks are therefore undirected and weighted. 

WGCNA can use multiple correlation methods, including the Pearson (default) and 

Spearman correlation coefficients. Independently of the chosen method, the correlation 

coefficient expresses quantitatively the magnitude and direction of the relationship between 

two given genes. The adjacency matrix of the network is calculated as Aij = |corr(i,j)|β, where 

|corr(i,j)| corresponds to the absolute correlation between the genes i and j. The absolute 

correlations are further raised to the lowest β value that approximates the network of a 

scale-free topology. Scale-free networks are networks whose degree distribution follows a 

power law, and consequently have few nodes with many connections (hubs) and many 

nodes with few connections. In practice, raising the absolute correlation values to a power 

accentuates high correlations at the expense of low correlations. This approximation is 

important because biological networks tend to be scale-free (Barabási and Bonabeau 2003; 

Broido and Clauset 2019).  

Gene modules, or clusters of densely interconnected genes, are identified by 

converting the adjacency matrix into a topological overlap matrix (TOM). TOM contains the 

pairwise relative interconnectedness of all genes in the network. After converting the TOM 

into a dissimilarity measure (1 - TOM), gene modules are identified by cutting off the 

branches of a hierarchical clustering dendrogram using the dynamic tree cut algorithm 

(Langfelder, Zhang, and Horvath 2008). This method eliminates the need of using constant 

height cutoff values and is more effective in complex dendrograms. The gene expression 

profiles of a module can be represented by its module eigengene (first principal component). 

Very similar modules are then merged into a single module if their eigengenes are highly 

correlated (> 0.85 by default).  

The biological significance of a module can be identified by correlating or fitting a 

simple linear regression model between the module eigengene and a given phenotype. 

Modules with high biological significance can represent pathways or biological processes 

associated with the respective phenotype. Highly connected genes inside these modules, 

or hub genes, are natural candidates for further validation, since their expression profiles 

can represent that of the entire module. Hub genes can be identified using module 
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membership measures, including the eigengene-based connectivity (KME). The KME 

corresponds to the correlation between the gene expression profile and the module 

eigengene. As expected, hub genes tend to have high absolute KME.  

 

 

1.5.1.4.3. Over representation and gene set enrichment analysis 
 

 A gene set is a collection of genes that are functionally related, such as being 

involved in the same biological process or pathway. Over representation analysis (ORA) is 

a widely used approach to determine whether known gene sets are over-represented, or 

enriched, in a gene list of interest, for instance a list of DE genes derived from a DGE 

method or a gene module from WGCNA (Dugourd and Saez-Rodriguez 2019). ORA can 

be performed using a hypergeometric test or a Fisher’s exact test (G. Yu et al. 2015; 

Reimand et al. 2019).  

 ORA can detect enrichment in genes that show a large expression difference 

between two given conditions, e.g., DE genes. However, it is unable to report situations 

where the expression difference is small but evidenced in a coordinated way in a group of 

related genes. Methods based on gene set enrichment analysis (GSEA) address this 

limitation by evaluating if there are gene sets where the overall expression difference is 

more extreme than expected. In GSEA-like approaches, all genes are used and ranked 

based on their phenotypic differences (i.e., fold-changes, P-values, etc.). Then, given a 

priori defined gene set (e.g., pathway), GSEA calculates an enrichment score, which 

represents whether the members of the gene set are randomly distributed throughout the 

ranked gene list or primarily found at the top or bottom (Subramanian et al. 2005; Reimand 

et al. 2019).  

 As mentioned above, both ORA and GSEA rely on pre-defined gene sets to 

calculate enrichment scores. This prior knowledge is available in many different resources. 

Gene ontology (GO) knowledgebase is widely used and comprehends a collection of 

annotated terms describing molecular functions, cellular compartments and biological 

processes associated with specific genes. Other types of annotations, including hallmark 

genes from well-studied biological processes, chromosomal positions and cancer-related 

genes are available in databases such as MSigDB (Liberzon et al. 2011). Signalling 

networks and pathways can be obtained from KEGG (Kanehisa and Goto 2000) and 

Reactome (Fabregat et al. 2016) databases.  
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1.5.1.4.4. Footprint-based activities of transcription factors 
 

The abundance of thousands of transcripts or genes can be used as the molecular 

signature of a biological sample. The same concept can be applied to transcription factors 

(TFs). The abundance of the regulatory targets of a TF can be considered footprints of the 

activity of the TF (Dugourd and Saez-Rodriguez 2019).  

VIPER is a rank-based statistical method that can be used to estimate the activity 

of TFs (Alvarez et al. 2016). The fundamental idea is to compute an enrichment score using 

the molecular readouts from the TF targets and use it as a proxy for the activity of the 

respective TF. The TF targets can be obtained from multiple resources, such as Omnipath 

(Türei, Korcsmáros, and Saez-Rodriguez 2016) and DoRothEA (Garcia-Alonso et al. 2019).  

 

 

1.6. Proteomics 
 

 In order to maintain cellular homeostasis or even follow specific cell fates, cells must 

respond to environmental stimuli, such as changes in temperature, oxygen levels, and 

differentiation signals. In general, cells respond to environmental cues by activating a 

cascade of signalling transduction pathways that can dramatically alter the expression of 

genes, and, eventually, the abundance of proteins. Even though the genetic information for 

a specific cellular process is encoded by the genes, proteins are the main effectors of the 

chemical reactions happening inside the cells. Proteins are a group of biomolecules, 

composed of one or multiple polypeptide chains, that perform a vast range of cellular 

processes, such as biochemical reactions, signalling, molecular transport and structural 

support. The proteome is the overall protein content of a biological system under a specific 

condition or cellular state (Aslam et al. 2017). Protein levels are not only dependent on the 

corresponding gene expression levels but also on translation and protein degradation rates. 

Thus, mRNA expression alone is not sufficient to predict the respective protein abundance 

in different scenarios (Yansheng Liu, Beyer, and Aebersold 2016). For these and other 

reasons, the proteome has been considered one of the most important molecular layers 

that needs to be profiled in order to properly understand biological systems (Aslam et al. 

2017; Altelaar, Munoz, and Heck 2013). Proteomics aims to address this problem by 

characterizing proteomes, including not only the quantification of protein abundances but 

also the study of protein structures, interactions and modifications (Aslam et al. 2017).  
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Protein microarrays, such as RPPA, were established for high-throughput protein 

expression analysis (Sutandy et al. 2013). However, the expression profiling of whole 

proteomes using these techniques remains challenging due to the dependency on the 

availability and quality of protein antibodies (Akbani, Becker, et al. 2014). The recent 

advances on Mass Spectrometry (MS)-based proteomics have been accelerating the study 

of the proteomes of many different cell types and diseases (E. C. B. Johnson et al. 2020; L. 

Wu et al. 2013; Gholami et al. 2013; Jiang et al. 2020; Vasaikar et al. 2019; Nusinow et al. 

2020). The general setup of a MS-based proteomics workflow is dissected throughout the 

next sessions. 

 

 

1.6.1. Mass Spectrometry-based proteomics 
 

The most widespread MS-based workflow is termed bottom-up or shotgun 

proteomics, in which the proteins are fragmented and analysed by MS (Mardamshina and 

Geiger 2017; Aebersold and Mann 2016). A less common alternative is called top-down or 

native proteomics. In this approach, proteins are analysed as intact entities by MS, enabling 

identification of precise protein isoforms (J. C. Tran et al. 2011; Smith and Kelleher 2013). 

The general workflow of bottom-up MS-based proteomics is illustrated in Figure 1.6. This 

workflow is also called liquid chromatography with tandem mass spectrometry (LC-MS/MS). 

Typically, the experiments start with protein extraction from the cells, tissues or body fluids 

(Figure 1.6A). After that, the proteins are digested into peptides using proteases such as 

trypsin (Figure 1.6B). The next steps aim to reduce the complexity of the peptide mixture 

either by sample pre-fractionation or enrichment (Figure 1.6C). Sample pre-fractionation 

can be done by ion-exchange chromatography and consists in separating the peptide (or 

protein) mixture by physicochemical properties, such as charge and hydrophobicity. 

Alternatively, subpopulations of peptides carrying specific PTMs, e.g., phosphorylations, 

can be enriched using affinity-based resins or antibody-based immunoprecipitation (Figure 
1.6C). This is the case of phosphoproteomics, which will be discussed in detail in a 

subsequent subchapter (1.7). The pre-fractionated peptide mixture is then separated by 

high-performance liquid chromatography (HPLC) to further fractionate the peptides and 

reduce complexity (Figure 1.6D). The peptides eluting from the chromatography column 

are subsequently ionized (for example by electrospray) and introduced into the mass 

spectrometer (Figure 1.6D), which records the mass-to-charge (m/z) ratios of the precursor 

peptide ions and generates the MS1 spectra (Figure 1.6E). Based on the ion intensities 

from the precursor peptides, single peptides are selected and fragmented (commonly by 
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collision-induced dissociation), which generates the MS/MS (or MS2) fragment spectrum of 

each selected peptide (Figure 1.6E). The MS1 and MS2 m/z ratios from the precursor 

peptide and its fragments, respectively, are then matched against known protein databases 

(e.g., UniProt) to identify the peptides and the proteins they belong to (Figure 1.6F). The 

ion intensities from the mass spectra are used for protein and peptide quantification (Figure 
1.6E). The process of data quantification in proteomics is discussed in more detail in the 

next subchapter. Peptide assignments are statistically validated to control for false positive 

identifications and assembled into proteins (Figure 1.6G). Finally, the list of proteins and 

their quantitative changes are the basis for bioinformatic analysis (Figure 1.6H) (Ahrens et 

al. 2010; Choudhary and Mann 2010; Altelaar, Munoz, and Heck 2013).  

 

 
Figure 1.6. Bottom-up MS-based proteomics (LC-MS/MS) for cancer research. (A) A 
typical shotgun proteomics workflow starts with tumour sample lysis and protein extraction. 
(B) The protein mixture is enzymatically cleaved into peptides, using proteases such as 
trypsin. (C) Peptides are optionally pre-fractionated to reduce sample complexity or 
enriched for specific PTMs, for instance phosphorylations. (D) The pre-fractionated or PTM-
enriched sample is then separated on a liquid chromatography (LC) column. Peptides 
eluting from the LC system are ionized by electrospray at the tip of the column and 
introduced into the mass spectrometer. (E) After ionization, peptide ions are measured in 
the survey-scan of the mass spectrometer, which records the MS1 spectra of the precursor 
peptides. Based on their intensities, individual peptides are selected and subjected to 
fragmentation, which generates a characteristic fragment ion MS2 spectrum for each 
precursor peptide. The ion intensities from the MS1 and MS2 spectra are used for relative 
or absolute protein quantification. The inset in the MS1 panel represents two experimental 
conditions (represented by green and yellow) in which a given protein changes its 
abundance. (F) The combination of mass spectra from the precursor peptide and its 
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fragments are matched to large protein sequence databases to identify the peptides. (G) 
Identified peptides are assembled into proteins. This is not a trivial process because some 
peptides are shared between different proteins. Several models employ different strategies 
to identify the smallest set of proteins that explain the identified peptides. (H) The list of 
proteins and respective abundances are finally interpreted and visualized in the context of 
the biological question under study. Figure adapted from (Choudhary and Mann 2010; 
Altelaar, Munoz, and Heck 2013; Ahrens et al. 2010).  

 

 

1.6.1.1. Protein quantification 
 

The ion intensities from the MS1 and MS2 spectra can be used for absolute or relative 

quantification of peptides and proteins. Absolute quantification allows to determine the 

number of copies of a given protein in a sample, usually by comparing the protein signal to 

those of reference proteins with known quantities (spiked in standards or isotopically labeled 

proteins). Alternatively, absolute protein values can be estimated in silico from the peptide 

signals mapping to the protein. On the other hand, relative quantification methods provide 

the abundance change (or ratio) of a protein between two or more conditions (Jürgen Cox 

and Mann 2011).  

Quantification methods can be subdivided as label-based and label-free (Figure 
1.7). These strategies differ largely on the experimental workflows, and, consequently, on 

quantification accuracy and precision due to the possibility of occurrence of errors in 

different steps of the protocols (Bantscheff et al. 2012).  
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Figure 1.7. Common quantification strategies in MS-based proteomics workflows. 
The top panel represents the label-free and label-based quantitative MS protocols. Both 
strategies depict two different experimental conditions shown in pink and orange, although 
it is possible to analyse more than two samples. For instance, in cancer research the two 
conditions may be a tumour sample and a matched normal control. The selection of the 
most appropriate protocol depends on numerous factors, including the number and nature 
of the samples, the available mass spectrometer, and the experience to handle the samples 
and analyse the data. The label-free quantification does not require any extra modification 
to the proteomes being compared and the biological samples are analysed separately. In 
contrast, with label-based quantification, the proteins or peptides in each biological 
condition are marked differently and then mixed to be analysed in the same LC-MS/MS run. 
The metabolic labelling procedure involves the introduction of heavy isotopes into proteins 
by growing the cells with nutrients enriched with heavy atoms, e.g., the SILAC protocol uses 
isotopically labelled arginines and lysines. Methodologies based on isobaric tagging, like 
TMT and iTRAQ, label the peptides from the different samples after protein digestion. The 
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differences in m/z ratios between the differentially labelled proteins allow their relative 
quantification with the mass spectrometer. The bottom panel overlaps the quantification 
strategies with the proteomics workflow represented in Figure 1.6 (see figure for more 
details). Yellow and green rectangles represent two experimental samples. The 
experimental point where the samples are combined is represented by horizontal lines. 
Dashed lines indicate experimental steps susceptible to variation and where quantification 
errors might occur. Figure adapted from (Bantscheff et al. 2012).  

 

 

1.6.1.1.1. Label-free methods 
 

In label-free quantification, proteins are quantified without using chemical labels and 

the sample lysates are not mixed (Figure 1.7). This means that these methods are 

especially useful when many experimental conditions need to be compared. Label-free 

strategies can be used for absolute and relative quantification of protein abundance 

(Bantscheff et al. 2012). Spectral counting is the simplest label-free quantification method, 

where the number of peptide-spectrum matches (PSMs) for a specific protein is used as a 

proxy of protein abundance. A more accurate approach consists in integrating the MS1 

signal intensities of the detected peptides (Jürgen Cox and Mann 2011; Bantscheff et al. 

2012). Since all samples are separately analysed by LC-MS/MS, stable and comparable 

experimental setups, as well as more sample replicates, are required throughout the entire 

workflow (Bantscheff et al. 2012; Altelaar, Munoz, and Heck 2013; Choudhary and Mann 

2010). Nevertheless, specialized algorithms can be used to normalize the peptide signals 

between different LC-MS/MS runs (J et al. 2014). In fact, several successful proteomic 

studies using label-free quantification have been recently reported (Lawrence et al. 2015; 

B. Zhang et al. 2014; E. C. B. Johnson et al. 2020).  

 

 

1.6.1.1.2. Label-based methods 
 

The differential labelling of two or more samples creates labelled peptides that can 

be distinguished in the MS spectra due to their distinct masses (Altelaar, Munoz, and Heck 

2013; Ahrens et al. 2010). Like in label-free methods, label-based strategies can be used 

for absolute and relative protein and peptide quantification. The quantification of a sample 

of interest happens by comparing the peptide intensity against a reference labelled peptide 

in the same sample (absolute quantification) or against a labelled peptide from a different 
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sample (relative quantification) (Bantscheff et al. 2012). There are two main approaches in 

label-based quantification: metabolic labelling and chemical labelling (Figure 1.7).  

 In metabolic labelling, cells are cultured in a defined isotope media, incorporating 

the amino acid isotopes during regular protein biosynthesis (Ong and Mann 2005). Stable 

isotope labelling by amino acids in cell culture (SILAC) is a popular quantification technique 

(Ong et al. 2002). In SILAC, cells are cultured in a medium with isotopically labelled 

arginines and lysines (usually with 13C and 15N). After cell lysis and protein digestion by 

trypsin, it is ensured that most of the peptides contain at least one labelled amino acid 

(Bantscheff et al. 2012). In a typical SILAC experiment, two populations of cells are cultured 

in a labelled (or heavy) and normal (or light) amino acid media (Figure 1.7). The heavy and 

light amino acids have a known mass difference, allowing the proteomes to be distinguished 

(at the MS1 intensity levels) and relatively quantified during MS data analysis (Choudhary 

and Mann 2010). A maximum of three samples are usually compared due to limitations on 

the number of useful heavy isotopes (Bantscheff et al. 2012). This technique has the 

advantage that the samples can immediately be combined after cell lysis and then be 

manipulated together (Figure 1.7). Therefore, SILAC-based quantification methods have a 

high quantitative accuracy due to very low variability in the experimental procedures (Jürgen 

Cox and Mann 2011).  

 The most popular chemical labelling techniques are the tandem mass tags (TMT) 

(Thompson et al. 2003) and the isobaric tag for relative and absolute quantification (iTRAQ) 

(Ross et al. 2004; Wiese et al. 2007), both of which enable to chemically label the digested 

peptides (Figure 1.7). In comparison to SILAC, these approaches are more versatile and 

straightforward to quantify culture-independent conditions, such as tissue samples (Altelaar, 

Munoz, and Heck 2013). Furthermore, quantification by isobaric tags can be multiplexed, 

allowing to analyse up to 16 (16-plex) different conditions in parallel in a single MS run 

(Thompson et al. 2019). In general, these approaches attach isobaric labelling reagents to 

the peptide N-terminus. Absolute and relative quantification is based on the intensities of 

the reporter ions in the MS2 fragmentation spectra (Bantscheff et al. 2012; Choudhary and 

Mann 2010).  

 

 

1.6.1.2. Computational analysis of MS data 
 

Analysis of MS-based proteomics data encompasses different steps (Choudhary 

and Mann 2010; Sinitcyn, Rudolph, and Cox 2018). Initially, the raw data is pre-processed 

in order to quantify and identify the peptides and proteins. Once this step is concluded, one 
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obtains a matrix with proteins as rows and samples as columns, and protein abundances, 

such as ratios, in the matrix cells. This matrix is usually the starting point of bioinformatic 

analyses that have the ultimate goal of translating the data into biological findings. These 

steps are described below. 

 

 

1.6.1.2.1. MS raw data pre-processing 
 

Absolute or relative protein quantification either with the aid of labels or label-free 

(see subchapter 1.6.1.1) can be accomplished using different tools including the MaxQuant 

computational platform (Jürgen Cox and Mann 2008; Jurgen Cox et al. 2009; Tyanova, 

Temu, and Cox 2016). Peptide identification from the fragmentation spectra can be 

performed by database search algorithms or de novo sequencing. De novo sequencing 

methods infer the peptides sequences directly from the fragmentation spectra, relying on 

the previous knowledge that known mass differences between peaks correspond to certain 

amino acids. This method can be performed using tools such as PEAKS (B. Ma et al. 2003), 

SPIDER (Han, Ma, and Zhang 2005) and DeepNovo (N. H. Tran et al. 2017). The most 

popular peptide identification method consists in searching the m/z ratios from the precursor 

peptides and their fragments against a known database of theoretical fragments. Database 

search algorithms include Sequest (Eng, McCormack, and Yates 1994), Andromeda 

(Jürgen Cox et al. 2011) and Protein Prospector (Clauser, Baker, and Burlingame 1999). 

The database is generated from all protein sequences known to be produced by the genome 

of the biological system under study. The sequences are first digested in silico into peptides, 

simulating the cleavage rules of the protease used in the experiment (usually trypsin). For 

each in silico peptide, a list of expected fragment masses is then calculated based on the 

fragmentation technique previously used. The search algorithms calculate match scores 

between the measured fragmentation spectra and the theoretical database, and the 

highest-scoring PSMs are taken as candidates for peptide identification. The identifications 

are then statistically validated often through a target-decoy approach (Elias and Gygi 2007), 

in which the fragmentation spectra are also searched against random databases for FDR 

control. One way to generate decoy or random databases is to reverse the target 

sequences, establishing peptides that do not occur in nature. Finally, the identified peptides 

are assembled into a list of proteins. However, this process is challenging because some 

peptides can match multiple proteins (Ahrens et al. 2010). Parsimonious models (Jürgen 

Cox and Mann 2008; X. Yang et al. 2004; Z. Q. Ma et al. 2009; Slotta, McFarland, and 

Markey 2010) apply fast heuristics in order to find the smallest set of proteins that explain 
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the identified peptides. Independently of the chosen method, protein inference accuracy 

can be improved by applying thresholds on the peptide identification quality, e.g., PSMs 

with 1% FDR (Sinitcyn, Rudolph, and Cox 2018).  

 

 

1.6.1.2.2. Bioinformatic analysis of MS data 
 

 Once the MS raw data has been pre-processed, the downstream analyses usually 

involve normalization of the intensities or ratios, filtering of proteins, and imputation of 

missing values. Clustering analysis, such as hierarchical clustering and k-means, is often 

used to find groups of proteins with similar abundance patterns along samples or conditions 

(Ryan et al. 2017; B. Zhang et al. 2014). Principal component analysis (PCA) can be used 

to explore the relatedness between samples and the existence of confounding effects in the 

data (Gonçalves et al. 2017). Differentially expressed proteins between two conditions of 

interest (e.g., tumour vs normal tissues) are often found using a t-test or ANOVA (Pozniak 

et al. 2016; Roumeliotis et al. 2017). However, the DGE method limma, addressed in 

subchapter 1.5.1.4.1, has also been used in proteomics research (McDermott et al. 2020; 

Kammers et al. 2015; Schwämmle, León, and Jensen 2013; D’Angelo et al. 2017). Protein 

co-expression networks can also be constructed and explored using WGCNA (subchapter 

1.5.1.4.2) (H. Zhang et al. 2016; Roumeliotis et al. 2017; Seyfried et al. 2017). When an 

interesting group of proteins is found, for instance by differential expression or co-

expression networks, enrichment analysis can be performed using the methods already 

addressed in subchapter 1.5.1.4.3. 

 

 

1.7. Phosphoproteomics 
 

There are approximately 20,000 protein-coding genes in the human genome 

(Dunham et al. 2012). However, the corresponding number of human proteins and 

proteoforms is estimated to be at least one order of magnitude larger than the coding 

genome would predict (Jensen 2006; Smith and Kelleher 2013). The human proteome is 

considerably more diverse and complex mainly due to the action of two mechanisms: at the 

transcriptional level by the alternative RNA splicing (subchapter 1.5) and after protein 

translation by covalent PTMs (Walsh, Garneau-Tsodikova, and Gatto 2005). There are 

more than 200 PTMs characterized to this date, including phosphorylation, acetylation, 
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ubiquitination and glycosylation (Jensen 2006; Witze et al. 2007). PTMs are so important 

for the biology of the cell that about 5% of the genes in higher eukaryotes encode enzymes 

responsible for carrying out the spectrum of PTMs known so far (Walsh, Garneau-

Tsodikova, and Gatto 2005).  

Protein phosphorylation is the most well-studied PTM (Altelaar, Munoz, and Heck 

2013). It is catalysed by protein kinases and involves the reversible transfer of a phosphate 

group from an ATP molecule to specific residues (phosphorylation site or phosphosite) in 

the protein substrates, which, in eukaryotes, are usually serine, threonine and tyrosine 

residues (Ubersax and Ferrell 2007). Serines (Ser or S) are the most frequently modified 

residues (86.4%), followed by threonines (Thr or T) (11.8%) and tyrosines (Tyr or Y) (1.8%) 

(Olsen et al. 2006). The opposite reaction (phosphate group removal or dephosphorylation) 

is catalysed by protein phosphatases (Yusen Liu, Shepherd, and Nelin 2007). 

Phosphorylation can modulate the function and activity of proteins by altering their 3D 

conformation, disordered/ordered states and protein-protein binding affinities (Nishi, 

Shaytan, and Panchenko 2014).  

Each kinase is often capable of phosphorylating multiple protein substrates, and, in 

turn, a given protein can be phosphorylated at multiple positions by the action of different 

kinases (Nishi, Shaytan, and Panchenko 2014; Miller and Turk 2018). This dynamic 

interaction between kinases, phosphatases and protein substrates creates an extremely 

complex protein phosphorylation network that is widespread across signalling transduction 

pathways (Linding et al. 2008; Newman, Zhang, and Zhu 2014; Mok, Zhu, and Snyder 

2011). Phosphorylation is therefore involved in the regulation of most biological processes, 

including metabolism, cell growth and division, differentiation, organelle trafficking and 

membrane transport (Ubersax and Ferrell 2007). Not surprisingly, aberrant phosphorylation 

mediated by uncontrolled kinase/phosphatase signalling has been implicated in many 

diseases, including cancer (Guha et al. 2008; Deschênes-Simard et al. 2014) and diabetes 

(Mackenzie and Elliott 2014; Ortsäter et al. 2014). The biological relevance of protein 

phosphorylation is further demonstrated by the relatively large number of kinase genes 

(over 500), making up about 2% of the human genome (S. A. Johnson and Hunter 2005; 

Ubersax and Ferrell 2007).  

The phosphoproteome corresponds to the full collection of phosphorylation and 

dephosphorylation events that dynamically modifies the proteome of a given cell. 

Phosphoproteomics has the difficult task of cataloging and quantifying such events 

(Reinders and Sickmann 2005; Hoffert and Knepper 2008). Within the last few years, the 

development of MS-based phosphoproteomics has been making possible the study of 

human phosphoproteomes from different cell types and diseases (Ochoa et al. 2020; L. B. 

Wang et al. 2021), and even phosphoproteomic changes after viral infections (Bouhaddou 
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et al. 2020). Although the experimental workflows of MS-based phosphoproteomics and 

proteomics largely overlap, some important considerations have to be made. The following 

subchapters address them.  

 

 

1.7.1. MS-based phosphoproteomics 
 

 Like in bottom-up proteomics, most MS-based phosphoproteomics approaches use 

a LC-MS/MS to analyse proteolytic phosphopeptide fragments derived from highly complex 

protein mixtures (Hoffert and Knepper 2008) (Figure 1.6). However, a great difficulty in 

phosphoproteomics is the low abundance of the modified peptides in comparison to the 

non-modified peptides (Jürgen Cox and Mann 2011; Choudhary and Mann 2010). This 

problem can be overcome using diverse strategies that aim to enrich the peptide mixture 

with phosphorylated peptides (Figure 1.6C), such as immobilized metal ion affinity 

chromatography (IMAC) (Posewitz and Tempst 1999; Villén and Gygi 2008), titanium 

dioxide (TiO2) chromatography (Pinkse et al. 2004) and phosphotyrosine 

immunoprecipitation (Rush et al. 2005). These techniques allow to reduce the complexity 

of the mixture and detect low abundant peptides, which otherwise may not be detected. 

After this step, the phosphopeptide mixture is fractionated by an HPLC column, ionized and 

sprayed into the mass spectrometer, which records the MS1 and MS2 spectra of the 

precursor peptide ions and their fragments, respectively. It is expected that the 

phosphorylated residues cause a defined m/z change in the peptides, which is directly 

measured by the mass spectrometer at the MS1 level. The phosphorylated residues can 

then be localized with single amino acid resolution at the MS2 level (Choudhary and Mann 

2010).  

 In order to identify the phosphopeptides, the MS1 and MS2 spectra are searched 

against a protein sequence database. The search for phosphopeptides in sequence 

databases is nevertheless more challenging than that of non-modified peptides. The size of 

the search database increases by considering the possibility of phosphorylation at every 

serine, threonine and tyrosine residues, which can decrease the statistical confidence of 

the search results (Choudhary and Mann 2010; Jürgen Cox and Mann 2011). Two search 

approaches were designed to overcome this limitation: open search (Chick et al. 2015) and 

dependent peptide search (Savitski, Nielsen, and Zubarev 2006). The determination of the 

exact localization of the phosphorylation site within the protein sequence represents another 

challenge, particularly when multiple potential phosphosites are close to each other in the 

sequence. This situation often results in unresolved phosphopeptides with multiple possible 
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phosphorylation sites. Several software tools provide probabilistic analyses to determine 

the localization of the phosphosites, including Ascore (Beausoleil et al. 2006), 

PhosphoScore (Ruttenberg et al. 2008), and SLoMo (C. M. Bailey et al. 2009).  

The label-based and label-free quantification methods used in proteomics allow to 

determine the absolute abundance of a given phosphosite in a biological sample or its 

relative change between two or more conditions (see subchapter 1.6.1.1). Phosphosite 

quantification is nevertheless less accurate than protein quantification because of the lower 

number of features (phosphopeptides) usually available for quantification, which increases 

the number of missing values and the variance of the data across the cohorts (Sinitcyn, 

Rudolph, and Cox 2018).  

An important concept that must be taken into account in phosphoproteomics is the 

stoichiometry of a given phosphosite, which is defined as the fraction of total protein that is 

phosphorylated at that site. The stoichiometry of a phosphorylation site, in a given condition, 

may help in understanding its functional relevance in that condition. For instance, 

phosphosites associated with protein function are expected to have stoichiometries 

correlated with the activity of the corresponding proteins. Phosphosites that regulate a 

larger fraction of total protein will therefore be involved in regulating to a larger extent the 

protein activity, protein localization and protein-protein interactions (Prus et al. 2019). 

Phosphosite abundance can be confounded by the respective protein levels, i.e., changes 

in the abundance of a phosphosite can be driven by variation in the total protein abundance 

and not by variation in the site stoichiometry (Altelaar, Munoz, and Heck 2013). To 

counteract this problem parallel protein quantification is often required, which can then be 

used to regress-out the protein abundance from the phosphorylation data. Regressing-out 

the protein abundance involves calculating the residuals of a linear model fitted between 

the phosphosite and the protein quantifications, as dependent and independent variables, 

respectively (Roumeliotis et al. 2017).  

Phosphorylation quantification data can be analysed with bioinformatic methods 

similar to those used for protein quantification (see subchapter 1.6.1.2.2). As noted 

previously, the phosphorylation-level data has two disadvantages compared to protein-level 

data, which are the high variance and number of missing values. The high variance can be 

taken into account beforehand by using a higher number of replicates in order to increase 

the statistical power (Sinitcyn, Rudolph, and Cox 2018). The problem of data sparsity can 

be circumvented by avoiding analysing individual phosphosites and focusing instead on 

predicting the activities of kinases, as pointed out by (Ochoa et al. 2016). Methods for kinase 

activity prediction are discussed in the following subchapter.  
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1.7.2. Kinase activity prediction 
 

 Each kinase binds to specific phosphorylation sites on their protein substrates, 

where they catalyse the phosphorylation reactions. During kinase-substrate binding, 

kinases must recognize a few hundred compatible phosphorylation sites within a 

background of hundreds of thousands to millions of phosphorylatable residues. The 

specificity of kinases for certain substrates in detriment of others is driven by several 

mechanisms, including the depth of the kinase catalytic cleft, which determines the 

specificity for serine, threonine or tyrosine residues; the affinity for certain consensus 

sequences around the phosphosite; docking with additional motifs on the substrate; and 

interaction with protein adaptors or scaffolds (Ubersax and Ferrell 2007).  

 Several databases have been created to store experimentally validated 

phosphorylation sites and kinase-substrate interactions derived from in vitro and in vivo 

studies. These databases include PhosphoSitePlus (Hornbeck et al. 2015) and Signor 

(Perfetto et al. 2016). As of March 2021, PhosphoSitePlus stores 12,841 manually-

annotated kinase-substrate human interactions involving 401 kinases. The Signor database 

contains 9,747 interactions for 460 kinases. Apart from reporting the phosphorylation 

reactions, Signor also indicates whether they activate or inhibit the substrates. Other 

resources, such as ProtMapper (Bachman, Gyori, and Sorger 2019) and OmniPath (Türei, 

Korcsmáros, and Saez-Rodriguez 2016), were developed to aggregate interactions from 

multiple sources. ProtMapper compiles interactions not only from the aforementioned 

databases but also from HPRD (Mishra et al. 2006), BEL Large Corpus (https://bel.bio/), 

NCI-PID (Schaefer et al. 2009) and Reactome (Croft et al. 2014), and from the text-mining 

tools REACH (Valenzuela-Escárcega et al. 2018), RLIMS-P (Torii et al. 2015) and Sparser. 

Omnipath combines together data from more than 100 resources. The data consists in 

protein-protein interactions and targets of kinases, phosphatases, TFs and drugs.  

The activity of a kinase is reflected in the phosphorylation status of the substrates 

that it targets. The integrated analysis of MS-based phosphosite quantifications with prior 

knowledge about kinase-substrate interactions has been used to computationally estimate 

the activity of kinases. Different methods have been developed to estimate the activity of 

kinases based on the change of phosphorylation levels of their substrate sites. In a 

benchmark study performed by (Hernandez-Armenta et al. 2017), it was found that the 

kinase set enrichment analysis (KSEA) and the one sample Z-test have the best overall 

performance. These methods were successfully applied to estimate the kinase activity 

profiles of cancer cells (Casado et al. 2013; Drake et al. 2012) and to broadly survey the 

kinase signalling states of human cells (Ochoa et al. 2016).  
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The KSEA algorithm is similar to that used for GSEA (see subchapter 1.5.1.4.3). 

KSEA considers a ranked list of phosphosite quantifications in order to assess whether a 

predefined set of kinase substrates is statistically enriched in phosphosites that are at the 

two extremes of the list (Ochoa et al. 2016; Drake et al. 2012). KSEA runs as follows: (i) an 

enrichment score (ES) is calculated by walking down the ranked phosphosite list and 

updating a weighted Kolmogorov-Smirnov-like statistic. The statistic is increased when it 

encounters a substrate of the kinase and vice-versa; (ii) the null distribution of the ES is 

computed by randomizing the phosphosite labels (e.g., 10,000 times) and re-calculating the 

ES; (iii) an empirical P-value for the observed ES is calculated from the null distribution.  

The Z-test compares the mean quantification (e.g., fold-changes) of the substrates 

of a given kinase to the mean and variance of all phosphosites quantified in a given sample 

(Hernandez-Armenta et al. 2017; Casado et al. 2013; S. Y. Kim and Volsky 2005). The Z-

test is calculated as follows: 

 

Equation 1.5: 𝑧 = 1	2	3
4	/	√#

 

 

where 𝑧 corresponds to a z-score, 𝑥 the mean quantification of the kinase substrates, μ and 

σ the mean and standard deviation of all phosphosites quantified in the sample, 

respectively, and √N the square root of the number of kinase substrates. A P-value is then 

calculated from the z-score using the standard normal distribution.  

These tests generate P-values that reflect the statistical significance of kinase 

regulation. To obtain a kinase activity score that indicates whether the kinase is increasing 

or decreasing activity, the P-values are -log10 transformed and signed based on the mean 

fold-change of the kinase substrates in order to account for kinase activation or deactivation.  

 

 

1.8. Aims of the thesis 
 

As previously discussed in subchapter 1.2, the TCGA and CPTAC consortia have 

provided crucial results that shed light on how DNA alterations contribute to the onset and 

progression of cancer. Both projects have harnessed the power of omics to build state-of-

the-art cancer maps describing in detail the numerous ways that genetic alterations lead to 

dysregulated cellular pathways, thereby altering the controlled growth and division of 

healthy cells and rendering them cancerous. Equally important, these projects have made 

available to the research community an enormous amount of multi-omics datasets that 



 

 60 

broadly cover multiple layers of biological information, including the genome, transcriptome 

and phospho(proteome) of cancer cells. This thesis aims to take advantage of the multi-

omics data generated in the scope of TCGA and CPTAC in order to study the heterogeneity 

of gene expression, protein abundance and protein activities across multiple cancer types. 

It is expected that this new knowledge will be translated into improved clinical care and 

monitoring of cancer patients. The aims of this thesis are: 

 

● Characterize the gender differential transcriptome in stomach and thyroid cancer, 

two cancer types with a clear unbalanced gender incidence. The results of this work 

are described in chapter 2 and include published material from the following article: 

Abel Sousa, Marta Ferreira, Carla Oliveira and Pedro G. Ferreira. Gender 

Differential Transcriptome in Gastric and Thyroid Cancers. Frontiers in Genetics, 

Volume 11, Article 808, 30 July 2020. 

 

● Describe the protein-level attenuation of copy-number alterations, combining 

genomics, transcriptomics and (phospho)proteomics cancer data. These results are 

described in chapter 3 and were published in the following article: Abel Sousa, 

Emanuel Gonçalves, Bogdan Mirauta, David Ochoa, Oliver Stegle and Pedro 

Beltrão. Multi-omics Characterization of Interaction-mediated Control of Human 

Protein Abundance levels. Molecular & Cellular Proteomics, Volume 18, Issue 8, 

Pages 114-125, 9 August 2019. 

 

● Analyse the impact of genetic alterations on the activities of kinases and TFs. These 

results are reported in chapter 4 and are available in the following article: Abel 

Sousa, Aurelien Dugourd, Danish Memon, Borgthor Petursson, Evangelia Petsalaki, 

Julio Saez-Rodriguez and Pedro Beltrão. Pan-Cancer Landscape of Protein 

Activities Identifies Drivers of Signalling Dysregulation and Patient Survival. BioRxiv, 

9 June 2021. 

 

Finally, chapter 5 is dedicated to discuss and conclude the research performed in this thesis, 

including potential future directions to continue studying the aforementioned biological 

subjects using multi-omics cancer datasets. 
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2. Gender Differential Transcriptome in 
Gastric and Thyroid Cancers 
 
This chapter includes published material from the following article:  
Abel Sousa, Marta Ferreira, Carla Oliveira and Pedro G. Ferreira. Gender Differential 
Transcriptome in Gastric and Thyroid Cancers. Frontiers in Genetics, Volume 11, Article 
808, 30 July 2020. 
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2.1. Abstract 
 

Cancer has an important and considerable gender differential susceptibility 

confirmed by several epidemiological studies. Gastric (GC) and thyroid cancer (TC) are 

examples of malignancies with higher incidence in males and females, respectively. Beyond 

environmental predisposing factors it is expected that gender-specific gene deregulation 

contributes to this differential incidence. We performed a detailed characterization of the 

transcriptomic differences between genders in normal and tumour tissues from stomach 

and thyroid, using Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas 

(TCGA) data. We found hundreds of sex-biased genes (SBGs). Most of the SBGs shared 

by normal and tumour belong to sexual chromosomes, while the normal and tumour-specific 

tend to be found in the autosomes. Expression of several cancer-associated genes is also 

found to differ between sexes in both types of tissue. Thousands of differentially expressed 

genes (DEGs) between paired tumour-normal tissues were identified in GC and TC. For 

both cancers, in the most susceptible gender the DEGs were mostly under-expressed in 

the tumour tissue, with an enrichment for tumour suppressor genes (TSGs). Moreover, we 

found gene networks preferentially associated to males in GC and to females in TC and 

correlated with cancer histological subtypes. Our results shed light on the molecular 

differences and commonalities between genders and provide novel insights in the 

differential risk underlying these cancers. 

 

 

2.2. Introduction 
 

Sexual dimorphism is a taxonomically widespread phenomenon, whereby certain 

traits differ consistently between males and females within a given species. In humans and 

other animals, these differences go beyond morphological and behavioural traits and 

include molecular phenotypes such as gene expression (Trabzuni et al. 2013; Melé et al. 

2015; Gershoni and Pietrokovski 2017; Naqvi et al. 2019). It has been hypothesized that 

sex-specific gene regulation underlies important phenotypic gender differences and may 

contribute to gender-differential susceptibility to disease (Ober, Loisel, and Gilad 2008; 

Rawlik, Canela-Xandri, and Tenesa 2016; Labonté et al. 2017). Cancer has a considerable 

differential incidence between genders (Tevfik Dorak and Karpuzoglu 2012; Clocchiatti et 

al. 2016; Ali et al. 2016), with men showing higher cancer incidence than women in 32 of 

35 anatomical sites (Edgren et al. 2012). In 13 of these sites, the differences could not be 
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explained by known risk factors, including smoking, alcohol consumption and potential 

occupational carcinogens such as toxic metals and ionizing radiation. Men are at higher risk 

and worst prognosis in several types of cancers in non-reproductive tissues, including skin, 

esophagus, stomach, liver and urinary bladder cancers (Siegel, Miller, and Jemal 2018). 

One remarkable exception is the thyroid tissue, where women have three times higher risk 

of developing cancer (Rahbari, Zhang, and Kebebew 2010). For malignancies such as 

acute lymphoblastic leukemia or non-Hodgkin lymphoma, the gender-bias incidence occurs 

already in childhood, being more common in boys (Tevfik Dorak and Karpuzoglu 2012). 

Although environmental and lifestyle factors largely contribute to gender disparities in 

cancer, it seems clear that gender intrinsic molecular factors may also play an important 

role.  

Cancer sexual disparity may be the consequence of a complex interplay between 

sex chromosomes and the hormonal system (Clocchiatti et al. 2016). In females, several X 

chromosome genes may escape the XIST-dependent inactivation, triggering an imbalanced 

expression between genders (Carrel and Willard 2005). This asymmetry can make females 

more resistant to inactivating mutations in tumour-suppressor genes (TSGs) (Dunford et al. 

2017). For instance, UTX is known to escape silencing in females (Bellott et al. 2014) and 

to have inactivating mutations in renal and esophageal cancers, more prevalent in males 

(Van Haaften et al. 2009). Sex steroid hormones can interact with the cellular receptors 

estrogen receptor-ɑ (ERɑ), ERβ and androgen receptor (AR), and induce gene expression 

changes, affecting cellular metabolic states, tumour microenvironments and the immune 

system (Clocchiatti et al. 2016). For example, in liver cancer, more frequent in males, AR 

stimulates and ERα restrains cellular proliferation (Z. Li et al. 2012). Moreover, an estrogen-

mediated inhibition of inflammatory IL-6 production may reduce liver cancer risk in females 

(Naugler et al. 2007). In thyroid cancer (TC), the association between sex hormones and 

cancer risk is uncertain (Rahbari, Zhang, and Kebebew 2010). While animal models and in 

vitro studies suggest that sex hormone levels can affect TC tumorigenesis and progression, 

the same has not been observed at the clinical level (Yao et al. 2011). Sex hormones are 

also known to regulate the thyroid gland in a gender-specific manner (Banu, Govindarajulu, 

and Aruldhas 2002). It is therefore possible that the thyroid glands in females are biologically 

more prone to cancer development than in males (Yao et al. 2011).  

Pan-cancer systematic studies on gender differences have identified sex-biased 

genes and pathways across several cancer types from The Cancer Genome Atlas project 

(TCGA) (J. Ma, Malladi, and Beck 2016; Yuan et al. 2016). These studies found that sex-

specific gene signatures have differential responses to chemical and genetic agents, and 

that, in certain cancer types, more than 50% of clinically relevant genes are differentially 
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expressed between sexes. Importantly, while TC showed extensive sex-biased gene 

expression, the gender differences of gastric cancer (GC) remained uncharacterized.  

In this work, we set out to provide a fine-detailed characterization of the gender 

differential transcriptome in GC and TC (Bass et al. 2014; Agrawal et al. 2014), chosen due 

to their clear unbalanced gender incidence. While GC is two times more common in males, 

TC is three times more common in females (Siegel, Miller, and Jemal 2018). Our results 

demonstrate that sex-biased gene expression is more pronounced in normal tissues than 

tumour tissues, and that most of the shared variation arises from the sexual chromosomes. 

Expression of several cancer-associated genes differs between genders, with TSGs 

preferentially down-regulated in the tumour tissue of the most susceptible gender. Gene co-

expression network analysis revealed an extensive topological preservation between 

genders, with gender-specific networks appearing correlated with cancer histological 

subtypes.  

 

 

2.3. Results 
 

2.3.1. Gender differences are not revealed by genome-wide 
transcriptomic profiles 
 

We analysed RNA-seq data, generated by the TCGA project, of 375 GC samples 

(female, n=134 and male, n=241) and 502 TC samples (female, n=367 and male, n=135). 

As normal tissue counterparts, we used data from the Genotype-Tissue Expression project 

(GTEx) V6 (GTEx Consortium, 2013), that encloses 225 normal stomach samples (female, 

n=82 and male, n=111) and 381 normal thyroid samples (female, n=112 and male, n=211), 

as well as the TCGA tumor-matched normal samples (stomach, n=32 and thyroid, n=58). 

Altogether, we collected 1,483 tumour and normal samples from stomach and thyroid 

tissues (Supplementary figure 2.1A; methods). Minimal expression filtering yielded 

11,842 genes in stomach and 11,734 in thyroid (Methods).  

Principal component analysis (PCA) analysis revealed that both tissues segregated 

by dataset of origin rather than tumour or normal status (Supplementary figure 2.1B). As 

a consequence of this strong batch effect, all analyses have been performed separately for 

the TCGA and the GTEx datasets. No global distinct transcriptomic patterns were observed 
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between genders (Supplementary figure 2.1B). Confounding effects were successfully 

regressed-out (Supplementary figure 2.1C, Supplementary figure 2.2). 

A detailed characterization of the transcriptomic differences between genders was 

performed following the design in Figure 2.1.  

 

 
Figure 2.1. Study design. (A) Differential expression analysis between males and females 
in normal (GTEx) and tumour (TCGA) samples, adjusted for confounding effects. SBGs: 
sex-biased genes. (B) Differential expression analysis between tumour and matched-
normal (TCGA) samples in males and females, adjusted for confounding effects. DEGs: 
differentially expressed genes. (C) Differential co-expression network analysis between 
males and females in normal (GTEx) and tumour (TCGA) samples. WGCNA: Weighted 
Correlation Network Analysis. (D) Functional enrichment analysis of SBGs, DEGs and gene 
co-expression modules was performed using hypergeometric-based tests and Gene Set 
Enrichment analysis (GSEA).  

 

 



 

 67 

2.3.2. Tumour and normal tissues show specific sex-biased genes 
 

To understand the gender and tissue-specific (tumour and normal) expression 

patterns in stomach and thyroid, we performed gender-differential expression analysis using 

the normal samples from both tissues available from GTEx, followed by the same analysis 

in the tumour samples from TCGA (Figure 2.1A, Figure 2.1D). In stomach we found 75 

sex-biased genes (SBGs) in the normal and 55 SBGs in the tumour, of which 32 were 

common (Figure 2.2A, Figure 2.2C; Table S2.1). For thyroid we found 691 and 128 SBGs 

in the normal and tumour, respectively, with 46 genes in common (Figure 2.2B, Figure 
2.2E; Table S2.2). Common SBGs originated mostly from the X and Y chromosomes 

(Figure 2.2D, Figure 2.2F) and were similar in stomach and thyroid (27 genes; 84% and 

59% of the common SBGs in stomach and thyroid). These genes were involved in 

translational initiation, protein dealkylation and demethylation, with preferential location in 

the genomic regions chrXp22/p11/q13 and chrYq11 (Supplementary figure 2.3; false 

discovery rate [FDR] < 5%). Contrarily, normal and tumour-specific gender differences 

derived mostly from autosomes (Figure 2.2D, Figure 2.2F).  

The 43 normal-specific SBGs in stomach (Figure 2.2C) were enriched for sterols 

metabolic processes and in the peroxisome proliferator-activated receptor (PPAR) 

signalling pathway (Figure 2.2G; FDR < 5%). The majority of genes involved in these 

processes were over-expressed in the normal stomach of females, the less affected gender 

in GC (Supplementary figure 2.4A). In thyroid the 645 normal-specific SBGs (Figure 2.2E) 

were enriched in innate and adaptive immune response processes and lipids metabolism 

(Figure 2.2H, Supplementary figure 2.5A; FDR < 5%), including over-expression in 

females, the most affected gender in TC (Supplementary figure 2.4B, Supplementary 
figure 2.5B).  

The 23 tumour-specific SBGs in GC and 82 in TC (Figure 2.2C, Figure 2.2E) were 

involved in lipids metabolic processes (Supplementary figure 2.6; FDR < 20%).  

The X-chromosomal SBGs from GC and TC showed an enrichment for genes that 

escape X-inactivation (Table S2.3; P-value < 5%). Of note, USP9X (log2FC/FDR = -

0.31/1.7e-06), a previously reported cancer driver, TXLNG (-0.54/3.3e-17), OFD1, MED14 

and CDK16, are known to evade X-inactivation and were over-expressed in females' GC. 

This suggests that tumorigenesis in females’ stomach may take advantage from over-

expression of genes that escape X-inactivation.  

Gender-differential promoter methylation analysis showed that 54% (GC) and 20% 

(TC) of the previously found SBGs were differentially methylated (Supplementary figure 
2.7A, Supplementary figure 2.7B; Methods; P-value = 2e-15, 2.7e-6). Among these, 96% 

belong to the X-chromosome and 89% are known to escape X-inactivation.  
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Figure 2.2. Features of sex-biased genes (SBGs) in tumour and normal stomach and 
thyroid tissues. (A) (B) Differentially expressed genes between males and females, in 
normal (GTEx) and tumour (TCGA) tissues from stomach and thyroid. The Y-chromosome 
genes and XIST were removed for visualization purposes. Vertical lines: left - genes over-
expressed in females (under-expressed in males); right - genes under-expressed in females 
(over-expressed in males). (C) (E) Shared and tissue-specific SBGs. (D) (F) Distribution of 
SBGs in autosomes and sexual chromosomes. (G) (H) Gene Ontology (GO) biological 
processes (GO BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways 
enriched in the normal-specific SBGs (top 5; FDR < 5%).  

 

 

2.3.3. Tumour suppressor genes show tumour-specific under-
expression in the susceptible gender 
 

To identify tumour-normal differentially expressed genes (DEGs) in each gender, 

tumour and matched-normal TCGA samples were compared (Figure 2.1B, Figure 2.1D; 
Tables S2.4, S2.5). In GC we found 1552 DEGs shared between genders, corresponding 

to 84% of the female and 68% of the male DEGs (Figure 2.3A, Figure 2.3C). Similarly, in 

TC 89% of the female and 68% of the male DEGs were common to both genders (1023 

DEGs) (Figure 2.3B, Figure 2.3E). The shared DEGs likely reflect genes that, 

independently of the gender, are pivotal for tumorigenesis. In fact, a significant proportion 
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of these are oncogenes (5% for GC and 6% for TC; P-value = 0.02, 9e-3). In GC it includes 

the cancer drivers WHSC1, CBFB, RUNX1, EZH2 (male, female log2FC/FDR = 1.6/2.1e-

10, 1.9/6e-7), MET and CARD11. In TC we recapitulated MET (2.6/2.2e-10, 2.5/3.1e-25) 

and RUNX1, plus CCND1, CDKN1A, ERBB3, FOXQ1, FGFR3 and the known oncogene in 

TC ZCCHC12 (O. Wang et al. 2017).  

Gender-specific DEGs were frequently under-expressed in tumours of the most 

susceptible sex (males in GC and females in TC), but not in the less susceptible one (Figure 
2.3D, Figure 2.3F [left plots]). Of 742 male-specific DEGs in GC and 125 female-specific 

DEGs in TC, 64% and 70% were under-expressed in tumours, respectively. Following this 

trend, we found a significant enrichment for TSGs on males in GC (9%) and females in TC 

(17%) (Figure 2.3D, Figure 2.3F [left plots]), with the majority being under-expressed in 

tumours (Figure 2.3D, Figure 2.3F [right plots]).  

Overall, our results showed that for these two cancers the majority of tumour-normal 

DEGs were shared by genders and have oncogenic properties. Most of the gender-specific 

DEGs were under-expressed in tumours from the most susceptible gender with a significant 

fraction being TSGs. 

Promoter methylation analysis between tumour and matched-normal tissues of TC 

(data not available for GC) showed that in females and males, 53% and 26% of the DEGs 

were differentially methylated (Supplementary figure 2.7C, Supplementary figure 2.7D; 
Methods; P-value = 1e-3, 1.7e-24). 

 

 

2.3.4. Tumour-normal DEGs were enriched for functional gene 
categories 
 

Functional enrichment analysis showed that in GC, gender-common DEGs were 

involved in muscle structure development and contraction, female-specific in cellular 

responses to cytokine stimulus and male-specific in epithelial cell differentiation and 

metabolic processes (Supplementary figure 2.8A; FDR < 5%). In TC, gender-common 

DEGs were involved in positive regulation of cellular proliferation and pathways in cancer, 

female-specific in regulation of cell adhesion and T-cell receptor signalling pathways, and 

male-specific in response to cytokines and innate immune response processes 

(Supplementary figure 2.8B; FDR < 5%).  

In TC female-specific DEGs over-expressed in normal tissues and male-specific 

DEGs over-expressed in tumour tissues were involved in similar processes and pathways 

(Figure 2.3H; FDR < 5%). Male-specific DEGs over-expressed in normal tissues were 



 

 70 

enriched for ion transmembrane transport activity (Figure 2.3H; FDR < 5%). In GC there 

were no clear patterns, with gender-specific DEGs showing distinct and diverse functions 

(Figure 2.3G).  

 

 
Figure 2.3. Features of differentially expressed genes (DEGs) between tumour and 
normal tissues in GC and TC. (A) (B) DEGs between tumour and matched-normal 
samples, in females and males. Vertical line (x = 0): left - genes under-expressed in tumours 
(over-expressed in normal); right - genes over-expressed in tumours (under-expressed in 
normal). (C) (E) Shared and gender-specific DEGs. (D) (F) Gender-specific DEGs over- and 
under-expressed in tumours. Left: all DEGs and respective enrichment for TSGs (Fisher-
test P-value). Right: DEGs with TSG activity. (G) (H) GO biological processes (GO BP) 
significantly enriched and shared between gender-specific DEGs (male/female) over-
expressed in tumour and normal tissues (up) (FDR < 5%). 

 

 

2.3.5. Gender-specific gene networks in cancer are associated 
with histological subtypes 
 

Co-expression network analysis identifies groups of genes, called network modules, 

coherently expressed across samples. Such modules may highlight biologically-related 

genes. We reasoned that beyond single gene sex-biased expression, there are differences 

between genders regarding the coordinated expression of groups of genes, for tumour and 
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normal tissues (Figure 2.1C, Figure 2.1D). After removing possible confounding effects 

(Supplementary figure 2.1C, Supplementary figure 2.2), a full gene co-expression 

network was built and modules identified for each gender (Supplementary figure 2.9, 
Supplementary figure 2.10; Methods). For stomach we found 23 modules in normal tissue 

(Female: 14; Male: 9) and 56 in tumours (F: 22; M: 34) (Supplementary figure 2.11A). In 

thyroid we found 75 modules in normal tissue (F: 37; M: 38) and 39 in tumours (F: 18; M: 

21) (Supplementary figure 2.11A). The number of genes inside modules ranged from 21 

to 5976, with a median size of 119 genes per module (Supplementary figure 2.11B). Next, 

modules were compared between genders in terms of their overlap and deemed as 

preserved (lowly, moderately or highly) or gender-specific (Supplementary figure 2.12; 
Methods). Most modules were preserved in tumour and normal tissues (Figure 2.4A, 

Figure 2.4F). Three female-specific modules were found in normal thyroid, related to 

vasculature development and angiogenesis; thyroid hormone and sterol metabolism 

(Supplementary figure 2.13).  

Consistent with the higher sex-biased cancer incidence, we found 3 male-specific 

modules in GC and 2 female lowly-preserved modules (in males) in TC (Figure 2.4A, 

Figure 2.4F). Correlation of the modules representative expression profile with the cancer 

clinical traits (Methods), revealed one GC module (M2S, P-value = 4e-3) and one TC 

module (M2T, 4e-18) associated with the cancer histological subtypes (Figure 2.4B, Figure 
2.4G). The former (M2S) involved genes related to peptide metabolism and translation 

elongation (Figure 2.4C; FDR < 5%). The latter (M2T) was related to cellular respiration 

processes, with the most highly connected (hub) genes forming part of the oxidative 

phosphorylation pathway (Figure 2.4H; FDR < 5%). A higher intra-module correlation was 

found for the gender where the module is specific (Figure 2.4D, Figure 2.4I; P-value < 

2.2e-16), reflecting considerably different network topologies (Figure 2.4E, Figure 2.4J). 

These results demonstrate that the coordinated expression of these genes differ between 

genders.  

Hub genes from gender-specific modules were associated with specific cancer 

histological subtypes. In GC, 11 out of 12 hub genes showed over-expression in the 

papillary, tubular and non-specified intestinal subtypes of males (Supplementary figure 
2.14A, Supplementary figure 2.14C; Table S2.6). Among these, Hsp90ab1 and XPO5 

have been previously associated with poor prognosis and tumour-suppressor properties in 

GC (H. Wang et al. 2019; Melo et al. 2010). In TC, all 27 hub genes were predominantly 

over-expressed in the follicular subtype of females (Supplementary figure 2.14B, 
Supplementary figure 2.14D; Table S2.7).  
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Figure 2.4. Gender-differential co-expression network analysis. (A) (F) Number of 
modules in stomach and thyroid tissues. (B) (G) Association between the GC male-specific 
modules and the TC female lowly-preserved (in males) modules with cancer clinical traits. 
The numbers inside the heatmaps are regression-derived R2. The one-way ANOVA-derived 
P-value is shown (-log10). Associations with survival were also tested using cox hazard 
regressions (log-rank P-values > 5%). (C) (H) GO biological processes (GO BP) and KEGG 
pathways enriched in the GC M2S module and the TC M2T module (top 5; FDR < 5%). 
Enrichment score (ES) for the oxidative phosphorylation pathway in M2T is highlighted, with 
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genes sorted by intra-modular connectivity degree. (D) (I) Distribution of the pairwise gene-
correlations (absolute Pearson’s r) for all gene pairs in M2S and M2T. Vertical lines indicate 
medians. (E) (J) Arc diagrams representing gene-pair correlations for M2S (29 genes from 
45) and M2T (61 genes from 86). Arcs represent gene-pair correlations > 0.7. Genes are 
sorted by number of connections. The gene-pairs with correlations > 0.7 were selected in 
the gender where the module shows specificity (males in M2S and females in M2T). The 
number of correlations > 0.7 decreases in the opposite gender.  

 

 

2.4. Discussion 
 

In this work, we set out to characterize the gender differential transcriptome in 

tumour and normal tissues. We selected GC and TC due to their considerable gender-

biased incidence. It is well known that male and females are exposed often to very different 

environmental conditions (Scarselli et al. 2018; Zahm and Blair 2003). Thus, an important 

limitation of this study is the lack of control for environmental effects. Despite this, we believe 

this analysis is still of merit since it may capture intrinsic natural variation between genders 

and their relation to disease susceptibility. 

Our results show that SBGs in tumour and normal tissues were mostly derived from 

sex chromosomes, as previously found in (Yuan et al. 2016). These genes are mostly 

common to stomach and thyroid. Such conservation remains to be tested for other tissues. 

On the other hand, SBGs specific to normal or tumour tissues arose from non-sexual 

chromosomes, with little overlap between tissues. These results highlight the contribution 

of autosomes for tumour- and normal-specific sex-biased expression phenotypes, which 

may ultimately drive sex-biased cancer incidence. 

We found metabolic processes of sterols and lipids enriched in the normal- and 

tumour-specific SBGs of thyroid and stomach, and in a female-specific module of thyroid 

normal tissues. Sterols are critical in signalling, regulation of lipids metabolism, 

development and cellular homeostasis (Wollam and Antebi 2011). Alterations in the 

metabolism of sterols and lipids is a known hallmark of cancer (Gabitova, Gorin, and 

Astsaturov 2014). Other studies have found sex-biased genes in pathways related to the 

metabolism of fatty acids, in cancer (Yuan et al. 2016) and in normal tissues (Naqvi et al. 

2019), with a long-standing observation that genders show differences in the metabolism of 

lipids (Mittendorfer 2005; Mittelstrass et al. 2011; Drolz et al. 2014). Importantly, such 

differences are not simply explained by the presence and action of sex hormones 

(Mittendorfer 2005). Our results suggest that beyond differences in sexual hormonal 
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regulation, the metabolic physiology of the sexes might be implicated in the gender disparity 

of GC and TC. 

The PPAR signalling pathway was found enriched in the normal-specific SBGs of 

stomach and particularly over-expressed in females. This pathway is known to control the 

expression of genes involved in lipids metabolism and inflammation (Varga, Czimmerer, 

and Nagy 2011), with increasing evidence that PPARα/γ inhibits tumour progression and 

acts as tumour suppressor (Gou et al. 2017). Whether this finding is related to the lower GC 

incidence in females remains to be seen. 

The normal-specific SBGs of thyroid were enriched in immune-response pathways 

and mostly over-expressed in females, in accordance with (Naqvi et al. 2019). Thyroid 

hormones can trigger different responses in diverse immune cells and affect several 

inflammation-related processes (Jara et al. 2017). The immune system is a highly sexually 

dimorphic trait, with females showing immunological advantage when facing different 

immune challenges (Libert, Dejager, and Pinheiro 2010). On the other hand, females are 

more prone to autoimmune diseases such as Hashimoto's thyroiditis (HT) (Ngo, Steyn, and 

McCombe 2014). In the last decades the association between HT and TC has been 

growing, with some studies reporting the co-existence of both diseases (Felicetti, Catalano, 

and Fortunati 2017; L. Zhang et al. 2012; Jeong et al. 2012). 

Altered expression of oncogenes and TSGs in normal tissue may be linked to 

protective or predisposing tumorigenic events (Muir and Nunney 2015). In the stomach, 

females over-expressed the TSGs FGFR3 and ERCC2 (Lafitte et al. 2013; J. F. Zheng et 

al. 2015). In the thyroid, 16 of the SBGs were previously reported as cancer drivers, with 11 

being over-expressed in females’ normal thyroid, including the oncogenes CARD11, EZH2 

and IL7R (Watt et al. 2015; K. H. Kim and Roberts 2016; M. J. Kim et al. 2018). Whether 

these findings are related to the differential cancer incidence between genders needs 

further investigation.  

Tumour-specific SBGs were much less frequent, suggesting that once 

tumorigenesis starts the transcriptomic differences become more diluted between genders. 

Of notice, in GC we found the cancer-associated genes LPCAT1 and RAD51C over-

expressed in females (Bi et al. 2019; Somyajit, Subramanya, and Nagaraju 2010; Meindl et 

al. 2010). In TC, among over-expressed in males we found PPARG, previously reported in 

thyroid carcinomas (Raman and Koenig 2014), ERCC5, MYH11, LEMD2, ZNF133 and 

IDH1, the latter found to be mutated in thyroid carcinomas (H. Yang et al. 2012). TFRC, 

whose expression has been associated with poor prognosis and tumour progression (Shen 

et al. 2018), was found over-expressed in females. These genes are potential contributors 

to the gender-specific tumorigenesis of GC and TC. 
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Differential promoter methylation appears as a mechanism that might underlie some 

of the observed expression differences, given its incidence among the SBGs in both cancers 

and the tumour-normal differences observed for both genders in TC. Of the differentially 

methylated SBGs, most belong to the X-chromosome and are known to escape X-

inactivation. Changes in promoter methylation in genes escaping X-inactivation have been 

previously found (Sharp et al. 2011). However, 46% and 80% of the SBGs in GC and TC 

were not differentially methylated in our study, belonging mostly to the autosomes. 

Moreover, half of the SBGs were not profiled by methylation probes. Other processes that 

contribute to sex-specific gene regulation include epigenetic regulation of enhancers (Reizel 

et al. 2015), estrogen-regulated miRNA expression (Klinge 2012) and tRNA regulatory 

fragments (Telonis et al. 2019). Whether these processes are involved in the sex-biased 

patterns not explained by differential promoter methylation remains an open question. 

Network analysis of co-expressed genes may help in identifying gender-specific 

cellular rewirings in normal and tumour tissues. Our results show that most of the network 

modules are preserved between genders, in agreement with previous work (Melé et al. 

2015), in both types of tissues. The reasons for the different degrees and modalities of gene 

module preservation, in tumour and normal tissues, remains to be studied in the future. 

Nevertheless, we found gene modules preferentially associated for males in GC and for 

females in TC, further associated with cancer histological subtypes. 

The normal tissue surrounding the tumour can be influenced by pro-inflammatory 

signals released by tumours, representing an intermediate state between tumour-free 

healthy tissue and established neoplasms (Aran et al. 2017). Nonetheless, our analysis of 

the tumour-normal differential transcriptome found that a significant fraction of the DEGs 

were oncogenes, as previously found (Pranavathiyani et al. 2019). We also found that the 

most affected sex in each cancer shows an under-expression of TSGs in tumours, which is 

an important cancer hallmark (Hanahan and Weinberg 2011). The same result was not 

observed for the opposite sex, supporting the hypothesis that TSGs inactivation or 

deregulation may occur in the tumour tissues of the most susceptible gender. This result 

reinforces that genders may follow different carcinogenic programs, and therefore 

appropriated and differentiated therapeutic strategies may be considered (J. Ma, Malladi, 

and Beck 2016; Yuan et al. 2016; Buoncervello et al. 2017). In TC the female-specific 

tumour-normal DEGs over-expressed in normal tissues were involved in the same immune-

related pathways as the male-specific DEGs over-expressed in tumours. This result may 

highlight some still unknown predisposing elements that make females more susceptible to 

TC. 
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In summary, we were able to identify the gender-specific expression landscape in 

normal and tumour tissues of thyroid and stomach. We expect that these results provide 

novel insights in the understanding of the gender-differential risk underlying these cancers. 

 

 

2.5. Methods 
 
Data collection 
 

We obtained TCGA mRNA-seq and clinical data for gastric cancer (GC) and thyroid 

cancer (TC) tumour matched-normal samples. The data was downloaded from the Genomic 

Data Commons (GDC) data portal (portal.gdc.cancer.gov/) in reads per kilobase of exon 

model per million mapped reads (RPKM) and read counts formats, at the gene-level. 

Additional clinical information was obtained from (Bass et al. 2014; Agrawal et al. 2014; J. 

Liu et al. 2018). The TCGA methylation data was acquired from the FireBrowse portal 

(firebrowse.org/), as beta values per methylation probe (450k arrays). We also compiled 

GTEx v6 mRNA-seq and phenotypic data, for stomach and thyroid normal samples, from 

the GTEx portal (gtexportal.org/home/) in RPKM and read counts formats. The gene 

annotation was downloaded from the GDC portal for the TCGA mRNA-seq data 

(GENCODE v22) and from the GENCODE website (gencodegenes.org/) for the GTEx 

mRNA-seq data (GENCODE v19). 

A list of human TSGs (Zhao, Sun, and Zhao 2013) and oncogenes (Yining Liu, Sun, 

and Zhao 2017) were downloaded from bioinfo.uth.edu/TSGene/ and ongene.bioinfo-

minzhao.org/index.html, respectively. The Cancer Gene Census catalogue (Sondka et al. 

2018) was downloaded from cancer.sanger.ac.uk/census. A list of cancer driver genes was 

downloaded from (M. H. Bailey et al. 2018). The X-chromosomal genes known to escape 

inactivation were obtained from (Tukiainen et al. 2017). 

 

 

Data pre-processing 
 

We assembled the TCGA mRNA-seq (read counts and RPKMs) and clinical data in 

tabular formats using in-house scripts. The datasets comprised 60483 genes across 407 

samples (375 primary tumours and 32 matched-normal) for GC and 560 samples (502 

primary tumours and 58 matched-normal) for TC. For downstream analysis we selected 
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only the protein-coding and long intervening/intergenic non-coding RNA (lincRNA) genes, 

comprising 27470 genes, as described in GENCODE v22 annotation. In order to remove 

lowly-expressed genes, we filtered out those without 5 counts-per-million (CPM) in at least 

20% of the tumour or normal samples. After gene filtering, the mRNA-seq datasets 

comprised 12690 genes for TC and 13674 genes for GC. 

The GTEx mRNA-seq datasets (read counts and RPKMs) comprised 56318 genes, 

across 193 samples for stomach and 323 samples for thyroid tissues. After selecting the 

protein-coding and lincRNA genes (27459 genes), as described in GENCODE v19 

annotation, we removed those genes without 5 CPM in at least 20% of samples. The final 

mRNA-seq datasets comprised 12501 genes for thyroid and 12371 genes for stomach 

tissues. The CPM values were calculated using the cpm function from the edgeR package 

(Robinson, McCarthy, and Smyth 2009). 

After merging the TCGA and GTEx samples in each tissue, the final mRNA-seq 

datasets comprised 11734 genes for thyroid and 11842 genes for stomach. A PCA analysis 

was then performed using prcomp function in R. 

We regressed-out potential confounding covariates from the GTEx gene expression 

data (log2 RPKM) using the following multiple linear model: 

 

Equation 2.1: gi = 𝛃0 + 𝛃1smrin + 𝛃2age + 𝛃3ethncty + 𝛃4mhcancernm + 𝛃5smcenter + 

𝛃6smtstptref + 𝛃7smnabtcht + 𝛃8smtsisch + ɛ 

 

where gi represents the gene expression for gene i, 𝛃0 the intercept, 𝛃i i ∈ (1, ..., 8), the 

regression coefficients for the covariates, and ɛ the noise term. See table S2.8 for additional 

information about the covariates. The gene expression corrected for these covariates 

corresponded to the residuals of this model, calculated as: 

 

Equation 2.2: 𝑔"7 = 𝑔" − 𝑔3" 

 

where g87 represents the gene expression corrected for these covariates, g8 the observed 

gene expression and g3 8 the predicted gene expression from the model. The linear models 

were calculated using the lm R function. 

 

 

Differential gene expression 
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We performed the differential expression analyses using the edgeR package. edgeR 

models the variance of the read counts per gene using a negative binomial distribution and 

applies a generalized linear model (GLM) to account for additional covariates when testing 

for differential expression. 

We performed differential gene expression between genders in TCGA tumour and 

GTEx normal samples from stomach and thyroid. We also performed differential gene 

expression between TCGA tumours and matched-normal samples in each gender. In each 

comparison we created a design matrix taking into account several covariates. In R notation: 

 

Male vs female in TCGA tumour samples: 

design = model.matrix(~ race + ethnicity + age + tumor stage + histology + tss + portion + 

plate + gender, data = covars.matrix) 

 

Male vs female in GTEx normal samples: 

design = model.matrix(~ smrin + age + ethncty + mhcancernm + smcenter + smtstptref + 

smnabtcht + smtsisch + gender, data = covars.matrix) 

 

Tumour vs matched-normal TCGA samples in each sex: 

design = model.matrix(~ race + ethnicity + age + tss + portion + plate + tissue type, data = 

covars.matrix) 

 

where design corresponds to the design matrix, model.matrix the R function used to define 

the design matrices, each term (e.g. age) the respective covariate, and covars.matrix the 

data frame containing the covariates. See Table S2.8 for additional information about the 

covariates. In each comparison we normalized the read counts using the trimmed-mean of 

M-values method (Robinson and Oshlack 2010), with the calcNormFactors function. After 

estimating the common and tagwise dispersions with estimateDisp, we fitted a GLM model 

for each gene using glmFit. A likelihood ratio test (LRT) was then applied on the coefficients 

of tissue type (tumour or normal) or gender (male or female) to test for differences between 

these samples, using the glmLRT function. The P-values were adjusted for false discovery 

rate using the Benjamini-Hochberg procedure. 

We selected the differentially expressed genes between genders (sex-biased genes 

[SBGs]) using a FDR lower than 5%, additionally requiring for the differentially expressed 

genes (DEGs) between tumour and matched-normal samples an absolute log2 fold-change 

higher than 1. Tumour and normal-specific SBGs were calculated by intersecting both gene 

sets. The same process was performed to calculate male- and female-specific DEGs 

between tumour and matched-normal samples. 



 

 79 

We also performed a differential expression analysis between genders using the 

TCGA normal samples, adjusted for race, ethnicity, age and portion (Table S2.8). In this 

analysis we found 11 and 26 SBGs in stomach and thyroid, respectively, and only two 

normal-specific SBGs in both tissues. The relative low number of SBGs, alongside the 

higher number of samples in the GTEx cohort, led us to consider the GTEx dataset for the 

further analyses in this paper. We rationale that the high number of samples in GTEx would 

help to robustly quantify the gender differential transcriptome. 

We also used limma (with voom) differential expression method (Law et al. 2014), 

which assumes a normal distribution for the gene expression data, instead of a negative 

binomial distribution as edgeR. We found an overlap greater than 85% with edgeR (in all 

comparisons), indicating a robust set of called differentially expressed genes. 

 

 

Differential gene promoter methylation 
 

We selected TCGA methylation probes annotated to gene promoter regions using 

the R package IlluminaHumanMethylation450kanno.ilmn12.hg19. Then, for each gene in 

each sample, we calculated the average beta value across the promoter probes. 

The differential gene promoter methylation analysis was performed using a 

Wilcoxon rank-sum test (wilcox.test R function). We assessed differences on gene promoter 

methylation between genders in TC and GC, and between tumour and matched-normal 

samples in TC, independently for each gender. The GC matched-normal samples were not 

profiled by the selected methylation array, hampering the tumour-normal differential 

methylation analysis in GC. The P-values were adjusted for false discovery rate using the 

Benjamini-Hochberg procedure. Genes with FDR < 5% were defined as differentially 

methylated. 

In GC and TC, 56% of the genes with expression data were covered by methylation 

probes. For the SBGs, 51% in GC and 48% in TC contained information about the 

differential methylation status (Supplementary figure 2.7A, Supplementary figure 2.7B). 

For the tumour-normal DEGs in TC, 30% in females and 34% in males were profiled by 

differential methylation (Supplementary figure 2.7C, Supplementary figure 2.7D). 

 

 

Construction of gene co-expression networks 
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We built gene co-expression networks for each gender in TCGA tumour and GTEx 

normal samples from stomach and thyroid, using the methods in the Weighted Correlation 

Network Analysis (WGCNA) package (Langfelder and Horvath 2008). First, we log2 

transformed and transposed the RPKM matrices. For the GTEx samples we used the gene 

expression data after regressing-out the confounding covariates. Then, we removed 

potential outlier samples using a hierarchical clustering dendrogram (hclust R function, 

using average as agglomeration method). The distances between samples were calculated 

using the euclidean distance measure, using the dist function. In GC we removed 8 samples 

in females (cut height = 117) and 4 samples in males (123). In TC we removed 3 samples 

in females (120) and 4 samples in males (100), while in thyroid normal tissue we removed 

3 samples in females (70) and 1 sample in males (80). 

 

Network construction: 

 

In order to build gene co-expression networks, we calculated an adjacency matrix 

using the following expression: 

 

Equation 2.3: 𝑎". = |𝑐𝑜𝑟𝑟(𝑔" , 𝑔.)|9 

 

where aij corresponds to the connection strength between gene i (gi) and gene j (gj), |corr| 

the absolute Pearson’s correlation coefficient, and β the soft-thresholding power that 

approximates the network of a scale-free topology. Raising the absolute correlation values 

to a power accentuates high correlations at the expense of low correlations. 

 

Module detection: 

 

After network construction the next step was to find gene modules or clusters of 

densely interconnected genes. For that, we converted the adjacency matrix into a 

topological overlap matrix (TOM). The TOM contains the pairwise relative 

interconnectedness of all nodes in the network. After converting the TOM into a dissimilarity 

measure (1 - TOM), we identified gene modules by cutting off the branches of a hierarchical 

clustering dendrogram (hclust R function using average as agglomeration method). The 

branches were cut using the Dynamic Hybrid algorithm (Langfelder, Zhang, and Horvath 

2008). This method eliminates the need of using constant height cutoff values and is more 

effective in complex dendrograms. The gene expression profiles of a module can be 

summarized by its module eigengene (first principal component). We merged highly similar 
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modules if the eigengene Pearson’s correlation was higher than 0.75. Genes without 

module assignment were not considered for further analyses. 

 

WGCNA functions: 

 

We performed the network construction and module detection steps automatically 

and sequentially, using the blockwiseModules function. We used the parameters as shown 

by the authors in the WGCNA tutorials (tutorial I, section 2.a.) 

(https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutoria

ls/). The only exceptions were the parameters maxBlockSize, power and minModuleSize. 

In order to perform the network construction in a single gene block we increased the 

maximum block size (maxBlockSize) from 5000 (the default) to 20000. This prevents the 

network module assignments from being split into multiple blocks. We estimated the optimal 

powers that approximate the networks of a scale-free topology, using the pickSoftThreshold 

function. Following WGCNA recommendations, we selected the highest power that exceeds 

the scale-free topology fit R2 cutoff, set to 0.85 by default. In thyroid the powers were set to 

9 for all networks, except for the males network in tumours, whose power was set to 10. For 

stomach the powers were set to 4 for all networks. Instead of 30 genes as minimum module 

size (minModuleSize), we opted to keep the default value of 20 genes. Using this approach, 

we built 8 networks in total. 

 

 

Gender differential co-expression network analysis 
 

We compared male to female networks using a strategy based on (Melé et al. 2015). 

We started by computing the percentage of gene content overlap between each pair of 

modules, where each module belongs to a different network. As an example, given the 

modules M and F in the males and females network, respectively, we calculated the overlap 

between M and F as follows: 

 

Equation 2.4: 𝑜𝑣𝑒𝑟𝑙𝑎𝑝'/ =	
|'∩/|

<"=(',/)
× 100 

 

where overlapMF corresponds to the percentage of overlap between M and F, |M ∩ F| is the 

number of genes in common between M and F, and min(M, F) is the length of the smaller 

module. We also calculated a Fisher’s exact test P-value for each overlap, using the 
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overlapTable function from the WGCNA package. Based on the P-value and on overlapMF, 

we considered the overlap of a given pair of modules as: 

 

● absent, if P-value > 5% or (P-value < 5% and overlapMF < 20%); 

● low, if P-value!"!#$!%&'!()*$!+!,-./0%1MF < 50%); 

● moderate, if P-value!"!#$!%&'!(#*$!+!,-./0%1MF < 70%); 

● high, if P-value < 5% and (overlapMF!2!3*$45 

 

For both genders the modules were classified as lowly, moderately or highly-

preserved, if the overlap with the opposite gender has been defined as low, moderate or 

high, respectively. We honoured the highest overlap when multiple overlaps occurred. As 

an example, in the stomach normal networks from GTEx, the largest module from males 

(5976 genes) has a high and a moderate overlap with two modules from females (with 3903 

and 936 genes, respectively) (Supplementary figure 2.12B). Therefore, we considered the 

male module as highly-preserved in females. Modules without overlap with the modules of 

the opposite gender were classified as gender-specific. 

 

 

Association of gender-specific modules with cancer clinical traits 
 

The biological significance of a module can be defined as the absolute correlation 

between the module eigengene E and a sample phenotype P (Langfelder and Horvath 

2008). Modules with high biological significance (correlation) can represent pathways 

associated with the phenotype P. We evaluated the biological significance of the gender-

specific modules in tumours by fitting a linear regression model as follows: 

 

Equation 2.5: E = 𝛃0 + 𝛃1P + ɛ 

 

where E represents the module eigengene, 𝛃0 the intercept, ɛ the noise term and P the 

cancer clinical traits overall survival (in days), tumour stage (American Joint Committee on 

Cancer [AJCC] staging system) and cancer histological subtype. In TC, we considered the 

cancer histological subtypes classical (number of samples: 257), follicular (75) and tall cell 

(26). In GC, the cancer subtypes signet ring (9), diffuse (36), intestinal mucinous (14), 

intestinal NOS (not otherwise specified) (45), intestinal papillary (3) and intestinal tubular 
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(39). The association between the modules and the clinical traits was then evaluated using 

the regression-derived R2 and the one-way ANOVA P-values. The linear models were 

calculated using the lm R function. We also evaluated the association between survival and 

the modules eigengene using univariate cox proportional hazard regression models. These 

models were computed using the coxph function from the survival R package. 

In a given module related with phenotypic traits, the hub genes (highly connected) 

are the most relevant genes to look for, since their expression profiles can represent that of 

the entire module (Langfelder and Horvath 2008). In the gender-specific modules 

associated with the cancer histological subtypes, we investigated the cancer subtypes 

where these genes are predominantly expressed. For that we selected the hub genes of 

each module (with absolute intramodular connectivity [|KME|] > 0.8) and tested them for 

differential expression between cancer histological subtypes, using a Kruskal-Wallis rank 

sum test (kruskal.test R function). 

 

 

Functional enrichment analysis 
 

We performed functional enrichment using hypergeometric tests and gene set 

enrichment analysis (GSEA), implemented in the functions enrichr and GSEA from the 

clusterProfiler R package (G. Yu et al. 2012). We used gene sets downloaded from the 

MSigDB database (software.broadinstitute.org/gsea/msigdb), including C1 positional sets, 

C2 KEGG pathways and C5 GO biological processes (BP). We applied GSEA on gene 

modules derived from gene co-expression networks, sorted by KME. The comparison of 

enrichment profiles between gender-specific DEGs over-expressed in tumour or normal 

tissues was performed using the hypergeometric test implemented in the function 

compareCluster. The P-values were adjusted for false discovery rate using the Benjamini-

Hochberg procedure. 

The enrichment for TSGs, oncogenes, X-chromosomal genes escaping inactivation 

and differentially methylated genes was performed using a Fisher’s exact test (fisher.test R 

function; alternative = “greater”). 

The backgrounds corresponded to all genes that were analysed in our study, either 

by differential expression or by gene co-expression networks. 

All gene lists reported in this study were annotated with functional gene summaries, 

using the function queryMany from the mygene R package. 
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Code availability 
 

The computational analyses were performed in R 3.6.3 and all the code is available 

under a GNU General Public License V3 in a GitHub project, at the following url: 

github.com/abelfsousa/gender_differences. The differential expression analyses were 

performed with edgeR 3.26.8 and the gene co-expression network analyses with WGCNA 

1.68. The functional enrichment analysis (hypergeometric tests and GSEA) were performed 

using clusterProfiler 3.12.0. Plotting was done using ggplot2 3.2.1, ComplexHeatmap 2.0.0, 

arcdiagram 0.1.12 and eulerr 6.1.0. Data analysis and structuring using dplyr 0.8.3, tidyr 

1.0.0 and the remaining packages included in tidyverse 1.2.1. 

 

 

2.6. Supplementary materials 
 

2.6.1. Figures 
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Supplementary figure 2.1. Number of samples and PCA analysis. (A) Number of 
samples by gender and data type (GTEx, TCGA tumour and TCGA normal) for stomach 
and thyroid. (B) Scatter plot representing the PCA analysis (each dot is a sample). The dot 
shape represents the data type and the color represents the gender. PC1 explains most of 
the variance and separates GTEx from TCGA samples. (C) Confounding effects regressed-
out from the GTEx RNA-seq data (Methods). The top plots show the PC1 vs PC2 (left) and 
PC1 vs PC3 (right) before regressing-out the covariates. The middle plots show the same 
data after regressing-out the covariates. The TCGA RNA-seq data (bottom plots) was not 
regressed-out, as the PCA did not reveal a clear sample separation. 
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Supplementary figure 2.2. Pearson correlation of the first 10 principal components 
(PCs) from PCA with covariates before and after normalization. Stomach and thyroid 
before (A) (B) and after removing the covariate effect (C) (D). The PCA was performed 
using the GTEx gene expression data (log2 FPKM). Categorical covariates were converted 
into binary variables. Each level is represented in the heatmap (columns). The gender 
covariate was not regressed-out. See Table S2.8 for information about the covariates and 
Methods for details about the model used. 

 

 
Supplementary figure 2.3. Functional enrichment analysis on the SBGs shared by the 
normal and tumour tissues. GO biological processes (GO BP) and genomic positions 
(Positional) enriched in stomach (A) and in thyroid (B) (top 5; FDR < 5%). 
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Supplementary figure 2.4. Distribution of gene fold-changes (log2) for the enriched 
terms in the normal-specific SBGs (related to the main Figure 2.2G and Figure 2.2H). 
(A) is for stomach and (B) is for thyroid. To the left of the vertical lines are the genes over-
expressed in females and to the right the genes under-expressed in females (over-
expressed in males). 

 

 
Supplementary figure 2.5. GO biological processes (GO BP) related to lipids 
metabolism enriched in the thyroid normal-specific SBGs. (A) GO BP terms enriched 
(FDR < 5%). (B) Distribution of gene fold-changes (log2) for the enriched terms. To the left 
of the vertical lines are the genes over-expressed in females and to the right the genes 
under-expressed in females (over-expressed in males). 

 

 
Supplementary figure 2.6. Functional enrichment analysis on the tumour-specific 
SBGs. GO biological processes (GO BP) and KEGG pathways enriched in stomach (A) 
and in thyroid (B) (top 5; FDR < 20%). 
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Supplementary figure 2.7. Differential promoter methylation analysis. Only the 
differentially expressed genes (gender-biased [SBGs] and tumour-normal [DEGs]) 
with information on differential methylation status are represented. (A) (B) Differential 
methylation status of the SBGs in GC and TC, respectively. Genes with FDR < 5% were 
defined as differentially methylated. (C) (D) Differential methylation status of the tumour-
normal DEGs in TC for females and males, respectively. Genes with FDR < 5% were 
defined as differentially methylated. No methylation data (beta values per probe) was 
available for the tumour-matched normal samples of GC to perform the same analysis. The 
barplots in the middle and upper right corners show the number and percentage of 
differentially methylated genes, respectively. All differentially expressed gene sets showed 
an enrichment for differentially methylated genes in comparison to the background (genes 
not differentially expressed and with information on differential methylation status). P-value 
= 2.0e-15, 2.7e-6, 1.0e-3 and 1.7e-24, for (A), (B), (C) and (D), respectively. 
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Supplementary figure 2.8. Functional enrichment analysis on the tumour-normal 
DEGs. GO biological processes (GO BP) and KEGG pathways enriched in stomach (A) 
and in thyroid (B). The terms are represented by DEG group: common, female-specific and 
male-specific (top 5; FDR < 5%). 

 

 
Supplementary figure 2.9. Correlation matrix of the WGCNA networks for the 
stomach tissue. Absolute Pearson correlation between gene expression profiles (log2 
FPKM). The gene module assignments are shown by the colour bars at the top and left of 
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each plot. Network representation for the tumour tissue of males (A) and females (B) and 
for the normal tissue of males (C) and females (D). 

 

 
Supplementary figure 2.10. Correlation matrix of the WGCNA networks for the thyroid 
tissue. Absolute Pearson correlation between gene expression profiles (log2 FPKM). The 
gene module assignments are shown by the colour bars at the top and left of each plot. 
Network representation for the tumour tissue of males (A) and females (B) and for the 
normal tissue of males (C) and females (D). 
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Supplementary figure 2.11. Features of gender co-expression networks in normal and 
tumour tissues of stomach and thyroid. (A) Number of gene modules in each network. 
(B) Number of genes across gene modules. 
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Supplementary figure 2.12. Comparison of modules between genders in the stomach 
and thyroid tissues. (A) and (B) are for the tumour and normal tissues of stomach; (C) 
and (D) are for the tumour and normal tissues of thyroid. Male modules are in the rows and 
female modules are in the columns. The numbers in the rows and columns are the number 
of genes inside each module. The Overlap legend represents the degree of gene content 
overlap between genders (Methods). The Preservation legend indicates the preservation 
of the modules in the opposite gender, based on the degree of overlap. Gender-specific 
modules are marked with asterisks. 
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Supplementary figure 2.13. Functional enrichment analysis of the female-specific 
modules in thyroid normal tissues. GO biological processes (GO BP) and KEGG 
pathways. The terms are represented for the female-specific modules FS1, FS2 and FS3 
(top 5; FDR < 5%). 

 

 
Supplementary figure 2.14. Differential expression between cancer histological 
subtypes of hub genes from gender-specific modules. (A) (B) Hub genes differentially 
expressed between cancer histological subtypes, in males for GC and in females for TC, 
respectively (top 5; P-value < 0.05). The number of samples is underneath each box. The 
Kruskal-Wallis rank sum test P-value is shown. (C) (D) Comparison of the Kruskal-Wallis P-
value distribution between genders. The Wilcoxon rank-sum test P-value is shown. The 
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median of the distribution is higher for males in GC and for females in TC, the genders 
where the modules tend to be specific. 

 
 

2.6.2. Tables 
 
Supplementary table 2.1. Differentially expressed genes between males and females in 
tumour (TCGA) and normal (GTEx) stomach tissues. 
 
Supplementary table 2.2. Differentially expressed genes between males and females in 
tumour (TCGA) and normal (GTEx) thyroid tissues. 
 
Supplementary table 2.3. Number of X-chromosome genes escaping inactivation by SBG 
type in stomach and thyroid. 
 
Supplementary table 2.4. Differentially expressed genes between stomach tumour and 
matched-normal tissues (TCGA) in each gender. 
 
Supplementary table 2.5. Differentially expressed genes between thyroid tumour and 
matched-normal tissues (TCGA) in each gender. 
 
Supplementary table 2.6. Differential expression between histological subtypes (in males) 
of hub genes from the male-specific module in GC. 
 
Supplementary table 2.7. Differential expression between histological subtypes (in 
females) of hub genes from the female-specific module in TC. 
 
Supplementary table 2.8. Description of covariates used in differential expression 
analyses. 
 
All supplementary tables can be consulted using the following DOI: 
doi.org/10.3389/fgene.2020.00808 
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3. Multi-Omics Characterization of 
Interaction-Mediated Control of Human 
Protein Abundance Levels 
 
This chapter includes published material from the following article:  
Abel Sousa, Emanuel Gonçalves, Bogdan Mirauta, David Ochoa, Oliver Stegle and Pedro 
Beltrão. Multi-omics Characterization of Interaction-mediated Control of Human Protein 
Abundance levels. Molecular & Cellular Proteomics, Volume 18, Issue 8, Pages 114-125, 9 
August 2019. 
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3.1. Abstract 
 

Proteogenomic studies of cancer samples have shown that copy-number variation 

can be attenuated at the protein level, for a large fraction of the proteome, likely due to the 

degradation of unassembled protein complex subunits. Such interaction-mediated control 

of protein abundance remains poorly characterized. To study this, we compiled genomic, 

(phospho)proteomic and structural data for hundreds of cancer samples and found that up 

to 42% of 8,124 analyzed proteins show signs of post-transcriptional control. We find 

evidence of interaction-dependent control of protein abundance, correlated with interface 

size, for 516 protein pairs, with some interactions further controlled by phosphorylation. 

Finally, these findings in cancer were reflected in variation in protein levels in normal tissues. 

Importantly, expression differences due to natural genetic variation were increasingly 

buffered from phenotypic differences for highly attenuated proteins. Altogether, this study 

further highlights the importance of post-transcriptional control of protein abundance in 

cancer and healthy cells. 

 

 

3.2. Introduction 
 

Cancer cells can harbour a large number of somatic DNA alterations ranging from 

point mutations to gene copy changes that can occur from deletion or amplification of small 

regions or whole chromosomes. While these events are the source of the genetic variation 

that can confer a selective advantage and lead to cancer, large changes in gene numbers 

can be detrimental and cause imbalances in the corresponding protein levels. Several 

studies have shown that the majority of changes in gene copy-number will propagate to 

changes in the corresponding protein levels (Dephoure et al. 2014; Stingele et al. 2012; 

Pavelka et al. 2010). However, models of aneuploidy of different species and analysis of 

gene copy-number variation (CNV) in cancer have shown that CNVs of protein coding 

genes belonging to protein complexes tend to be attenuated at protein level (Dephoure et 

al. 2014; Gonçalves et al. 2017; Ishikawa et al. 2017). In addition, we have shown that some 

complex members can act as rate-limiting subunits and indirectly control the degradation 

level of attenuated complex members (Gonçalves et al. 2017). These results are in-line with 

pulse chase degradation measurements showing that several complex subunits have a two-

state degradation profile, that is compatible with a model in which they are expressed above 

the required levels and have a higher degradation rate when unbound from the complex 
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(McShane et al. 2016). The attenuation of changes at the protein level also justifies why 

protein complex subunits show higher correlation of protein abundances than the 

corresponding mRNA levels (Ryan et al. 2017; J. Wang et al. 2017), and why correlation 

analysis can be used to identify cancer-specific interaction networks (Lapek et al. 2017; 

Roumeliotis et al. 2017).  

These results support a long-standing view that protein complex formation can set 

the total amount of protein levels (Abovich et al. 1985). The degradation of unbound 

subunits may be due to a requirement of avoiding free hydrophobic interface surfaces that 

can be prone to aggregate (Young, Jernigan, and Covell 1994). In eukaryotic species, this 

appears to be achieved by degrading excess production, while in bacterial and archaeal 

species genes coding for protein complex subunits tend to occur within operon structures 

such that they will be expressed at similar levels (Mushegian and Koonin 1996). This link 

between appropriate expression and complex formation is further emphasized by the 

preferential ordering of subunits in operons starting from the subunits that tend to assemble 

first (Wells, Bergendahl, and Marsh 2016).  

While this phenomenon of gene dosage attenuation in protein complexes has been 

well documented, we still do not understand (i) what protein properties are associated with 

the propensity for a protein to be attenuated, (ii) nor if the characteristics of the attenuation 

process are seen in non-cancerous cells. Here we have extended on a previous analysis 

(Gonçalves et al. 2017), performing a multi-omics study of protein level attenuation of gene 

dosage that combines genomics, (phospho)proteomics and structural data. Analysing 8,124 

genes/proteins we observed that up to 42% of proteins showed evidence of post-

transcriptional regulation. Over 500 protein-protein interactions showed indirect control of 

degradation of one subunit via physical associations, 32 of which may be further controlled 

by phosphorylation. Using structural models for 3,082 interfaces, we found that a higher 

fraction of interface residues is associated with a higher degree of attenuation. Finally, we 

studied the impact of these findings on non-cancerous systems. We found that the protein 

interaction-mediated control of protein abundance has an impact on the variation of protein 

levels across tissues, and that the degree of attenuation correlates with the probability that 

natural variation with an impact on gene expression may result in a phenotypic 

consequence.  

 

 

3.3. Results 
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3.3.1. Protein level attenuation of gene dosage associates with 
distinct essentiality and structural features 
 

In order to study protein post-transcriptional control, we collected matched gene 

copy-number, mRNA and protein expression cancer datasets made available by The 

Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumour Analysis consortium 

(CPTAC), for breast (BRCA) (Mertins et al. 2016; Koboldt, Fulton, et al. 2012), ovarian 

(HGSC) (H. Zhang et al. 2016; Bell et al. 2011) and colorectal (COREAD) cancers (B. Zhang 

et al. 2014; Muzny et al. 2012). In addition, we compiled existing protein/gene expression 

and copy-number data for cancer cell lines from Lapek et al. (BRCA) (Lapek et al. 2017), 

Roumeliotis et al. (COREAD) (Roumeliotis et al. 2017) and Lawrence et al. (BRCA) 

(Lawrence et al. 2015). In total, 368 cancer samples (294 tumours and 74 cell lines) were 

compiled in our study with matched gene expression, copy-number and protein abundance 

(Figure 3.1A). Principal component analysis (PCA) revealed the presence of confounding 

effects in the RNA and protein expression data (Supplementary figure 3.1A, 
Supplementary figure 3.2A). These effects are related to cancer type, experimental batch, 

type of proteomics experiment, and also patient gender and age. Therefore, these potential 

confounding effects were regressed-out from the RNA and protein expression data 

(Methods). After correction, the association between the principal components and the 

potential confounding effects was removed (Supplementary figure 3.1B, Supplementary 
figure 3.2B). In the combined dataset, the average mRNA-protein correlation is 0.44, which 

is in agreement with previous studies.  

We then investigated the impact of CNV in cancer proteomes, using the strategy 

reported in Gonçalves et al. (Gonçalves et al. 2017). Due to the sparseness of the protein 

data, we selected genes with protein measurements in at least 25% of the 368 samples, 

comprising 8,124 genes with CNV, mRNA and protein expression. We included the CNV, 

mRNA and protein measurements for the 8,124 genes in the Table S3.1. For each gene, 

we then calculated the Pearson correlation coefficient between the CNV and the mRNA and 

the CNV and the protein, across samples. In order to assess the disagreement between the 

transcriptome and proteome regarding the copy-number changes, we calculated an 

attenuation potential, corresponding to the difference between Pearson coefficients 

(Methods). A higher attenuation potential suggests genes that have CNVs buffered at the 

protein level. As previously, we then clustered the genes by attenuation potential using an 

unsupervised Gaussian mixture model (GMM). Using this strategy, we identified 3,435 

(42%) genes as attenuated at the protein level (2,578 low-attenuated and 857 high-

attenuated) and 4,689 as non-attenuated (Figure 3.1B, Figure 3.1C; Table S3.2). These 

results indicate that up to 42% of genes show signs of gene dosage buffering at the protein 
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level, probably due to a post-transcriptional control of protein degradation, and robustly 

recapitulates previous findings on a smaller set of 6,418 genes (Gonçalves et al. 2017). To 

discard the possibility that the lack of correlation between CNV and protein could be due to 

noisiness in measuring protein levels, we asked if the correlation of protein or mRNA 

measurements, across samples, could predict known protein-protein associations from 

CORUM, among protein pairs at different levels of attenuation (Supplementary figure 3.3). 

As can be seen by the receiver operating characteristic (ROC) curves, protein interaction 

pairs are better predicted by protein than mRNA correlations in all classes, with the 

difference increasing with the attenuation level. If the attenuation was mostly explained by 

noise in the protein level measurements, then the opposite trend would be expected, where 

correlation of protein measurements would be noisier for highly attenuated proteins and a 

worse predictor of protein-protein interactions. These results indicate that attenuated genes 

are not defined as such because they have noisier protein measurements. 

  In line with previous findings, the list of attenuated genes is strongly enriched in 

well characterized protein complex members, and notably in members of large complexes 

(Supplementary figure 3.4). More, the attenuation potential is correlated with the number 

of subunits in a protein complex, indicating that members of large complexes have higher 

attenuation than those of small complexes (Supplementary figure 3.4E). Attenuated genes 

are also expected to show increased ubiquitination after proteasome inhibition, which was 

confirmed here using previously published data with 3 different proteasome inhibitors - MG-

132, epoxomicin and bortezomib (Gonçalves et al. 2017; S. A. Wagner et al. 2011; Udeshi 

et al. 2013) (Supplementary figure 3.5A). Having defined a comprehensive list of 

genes/proteins with different degrees of attenuation, we then set out to characterize their 

physical and genetic properties. 

We first asked if the level of attenuation relates to distinct essentiality features, 

based on gene essentiality defined by CRISPR-Cas9 screens (29083409). Highly-

attenuated proteins showed higher gene essentiality than low- and non-attenuated proteins 

(Supplementary figure 3.5B) (Wilcoxon rank-sum test P-value < 2.2e-16, highly- vs non-

attenuated proteins). This result is likely to be driven by the enrichment of protein complex 

members of essential complexes, such as the ribosome and spliceosome. We then studied 

the physical characteristics of these proteins such as length and structural properties. We 

found that the highly-attenuated proteins tend to have a smaller size (Figure 3.1D) 

(Wilcoxon rank-sum test P-value < 2.2e-16; highly- vs non-attenuated proteins), suggesting 

a size-dependent buffering mechanism. For the structural analysis, we considered a total 

of 2,392 proteins having structurally defined interface models (Mosca, Céol, and Aloy 2013). 

We illustrate this analysis with the COP9 signalosome complex (Figure 3.1E), where we 

noticed a trend in which the subunits with a larger surface buried in interfaces had the 
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strongest attenuation (Figure 3.1F). While the trend on a single complex is not significant 

(Figure 3.1F), this trend was supported across all proteins, with the average fraction of 

residues at interfaces increasing from the non-attenuated to the highly-attenuated proteins, 

in a statistically significant manner (Figure 3.1G). 

 

 
Figure 3.1. Features of proteins showing gene dosage buffering at the protein level. 
(A) Number of samples with CNV, mRNA and protein measurements, by cancer type and 
batch. (B) Scatter plot representing the correlation between the CNV and mRNA (x-axis) 
and the CNV and protein (y-axis), for each gene. The colours represent the attenuation 
levels. From light blue to dark blue: non-attenuated, lowly-attenuated and highly-attenuated. 
(C) Number of proteins by attenuation level. (D) Protein length (log10 of number of residues) 
by attenuation level. (E) Representation of COP9 signalosome complex. (F) Scatter plot 
representing the correlation between the attenuation potential (x-axis) and the fraction of 
residues at interfaces in the complex (y-axis), for the 8 protein subunits from the COP9 
signalosome complex represented in (E). (G) Percentage of residues at protein interfaces 
by attenuation level. 
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3.3.2. Protein interaction-dependent control of degradation 
depends on interface size 
 

The features of highly attenuated proteins suggest that protein interactions are an 

important determinant of a protein’s susceptibility of having gene dosage attenuation. It has 

been suggested that some members of protein complexes can act as scaffolding or rate-

limiting subunits. We have previously analysed a set of 58,627 protein interactions among 

complexes curated in the CORUM database and identified a set of 48 interactions in which 

a protein can indirectly control the abundance of an interacting partner (Gonçalves et al. 

2017). Here we set out to expand this analysis to all currently reported human physical 

interactions in the BioGRID database (Methods). In total, we collected 572,856 physical 

interactions and identified proteins whose CNV changes correlate with the protein 

abundance of interacting proteins once their mRNA levels are taken into account 

(Methods). For an interaction pair of proteins X and Y, we used a linear regression model, 

where we predict the protein levels of protein Y using the CNV of X, discounting the mRNA 

of Y and the impact of other covariates (Methods). Correlating molecular changes with DNA 

variation, such as CNVs, ensures the correlations found are most likely causal and in the 

direction of DNA changes to the molecular changes. Copy-number alterations in cancer 

most often occur in large segments leading to co-amplification or co-deletion of multiple co-

localized genes. For proteins with two or more interacting partners that are genomically co-

localized, we selected only the top-ranking association to avoid spurious “passenger” 

associations (Methods). 

Out of 572,856 physical interactions, we had data to test associations for 411,591 

with this model, finding 516 protein-protein associations as significant using CNV and 

mRNA (false discovery rate [FDR] < 5%) (Figure 3.2A; Table S3.3). In this set of 

associations, we classified the proteins as controlling (353) - those capable of controlling 

the protein levels of their interacting partners; controlled (423) - whose abundance levels 

depend on their interactions; and both (60), as the proteins with the two characteristics 

(Figure 3.2B). Out of 423 controlling proteins, 62 had at least two interactions. The top 

controlling protein was TCP1, which was predicted to control the protein abundance of 7 

complex partners, including CCT3, CCT5, CCT7 and CCT8 (Figure 3.2D). As expected, 

the controlled proteins had higher attenuation potential, a consequence of the post-

transcriptional regulation of their protein levels (Figure 3.2C) (Wilcoxon rank-sum test P-

value < 4.8e-6; controlled vs controlling proteins). The controlled proteins also show a 

smaller size (Wilcoxon rank-sum test P-value < 9.8e-6; controlled vs controlling proteins), 

which corroborates the hypothesis that protein size is important for the buffering mechanism 
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(Figure 3.2E). These results increased the evidence of interactions and regulators that may 

act as drivers of protein complex assembly. 

 We hypothesized that protein interaction-dependent control of degradation could 

depend on the protein interfaces size. To test this, we identified 60 significant associations 

with available structural models (Methods) and correlated the protein interface size with the 

effect-size (beta value) and significance (FDR) of the respective protein association pairs 

(Figure 3.2F). We found that both statistics are positively and significantly correlated with 

interface size (CNV beta - Pearson’s r = 0.36, P-value = 4.5e-3; -log10 FDR - Pearson’s r 

= 0.46, P-value = 2.0e-4). We selected two examples to illustrate the observed differences 

(Figure 3.2G). Post-transcriptional regulation of TRMT61A by TRMT6, that form the tRNA 

(adenine-N1-)-methyltransferase enzyme, is the second strongest association found in our 

analysis, and the interface formed between these two proteins covers a total of 72 residues. 

In contrast, a weaker association between CSNK2A1 and CSNK2B may be explainable by 

a much smaller interface of 13 residues. 

These results show that interface sizes are an important determinant of the protein 

interaction mediated control of protein degradation. This may be due to an effect of binding 

affinity or differences in the recognition of exposed interfaces of different sizes by the 

degradation machinery. 
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Figure 3.2. Physical protein associations. (A) Volcano plot of CNV beta (x-axis) and FDR 
(y-axis) for 411,591 protein pairs. Non-significant associations (FDR > 5%) are represented 
in light-blue, and significant associations (FDR < 5%) in dark blue. Associations also found 
to be significant (FDR < 5%) in the mRNA model and filtered by genomic co-localization are 
highlighted with a darker border (516). (B) Number of proteins by control status. (C) 
Distribution of attenuation potential by control status. (D) Examples of protein associations 
between TCP1 (controlling protein) and CCT3, CCT5, CCT7 and CCT8 (controlled 
proteins). The boxplots show the relation between the CNV changes of TCP1 and the 
protein residuals (log2FC) of the interacting partners. The scatter plots show the same 
relation with the protein abundance of TCP1. (E) Protein length (log10 of number of 
residues) by control status. (F) Scatter plots displaying the correlation between the protein 
association statistics (beta and FDR) with the protein interface size (number of residues at 
the protein interface, measured in the controlled protein). Each dot is a protein association. 
Two representative associations between CSNK2A1 - CSNK2B (small interface) and 
TRMT6 - TRMT61A (big interface) are denoted in red. (G) Representation of protein 
interactions between CSNK2A1 and CSNK2B and TRMT6 and TRMT61A. The controlled 
proteins are coloured in yellow (CSNK2B and TRMT61A) and the controlling proteins are 
coloured in grey (CSNK2A1 and TRMT6). The interface area is represented in red. 
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3.3.3. Identification of phosphorylation sites that may modulate 
protein complex assembly 
 

The role of phosphorylation in modulating protein binding affinities has been well 

described (Betts et al. 2017; Nishi, Hashimoto, and Panchenko 2011; Beltrao et al. 2012). 

We reasoned we could use the multi-omics datasets to find protein interactions affected by 

phosphorylation, which in turn could impact complex assembly and protein degradation. 

Out of 368 samples with CNV, mRNA and protein measurements, 170 also had 

quantifications at the phosphosite level (Figure 3.3A). For this analysis, we used proteins 

and phosphosites measured in at least 50% of the 170 samples, corresponding to 8,546 

proteins and 5,733 phosphosites. 

Using the compendium of physical interactions (572,856 protein interactions), we 

tested whether the changes of a phosphosite Xp from protein X is associated with the 

protein levels of the interacting protein Y. As before, we used a linear regression model 

where the protein abundance of protein Y is predicted using the phosphosite levels of 

protein X (Xp), while taking into account the protein and CNV levels of protein X, the RNA 

of protein Y, and other covariates (Methods). Out of 315,772 phosphosite-protein pairs 

tested with this model, 11,672 associations were significant (FDR < 5%). To ensure the 

associations are directional, we overlapped these associations with the 516 protein-protein 

associations found with the CNV and mRNA models, identifying 32 overlapping 

associations (Figure 3.3B; Table S3.4). Our interpretation of these associations is that 

these phosphosites can regulate the protein interaction and thereby modulate the 

degradation of the complex subunits. 

The 32 associations involve 28 phosphosites, and of these, 2 phosphosites are 

already known to regulate interactions (POLD3 S458 and MYH9 S1943) and an additional 

case (EIF3A S492) is not yet known to regulate protein interactions but is at the interface 

with other complex members (Figure 3.3C). EIF3A is predicted here to be a “rate-limiting” 

subunit of the eukaryotic initiation factor 3 complex and has been previously experimentally 

implicated in the control of protein levels of several of the other subunits (S. Wagner et al. 

2014). One phosphosite of EIF3A (S492) showed a strong association with the protein 

levels of two other complex subunits (EIF3D and EIF3E). In line with this, we find that the 

copy-number of EIF3A correlates with the residual protein levels of EIF3D (i.e., after 

regressing out EIF3D mRNA levels) and that the phosphosite levels of EIF3A S492 

correlates better with EIF3D protein residual than the EIF3A total protein levels (Figure 
3.3D). We further confirmed that the residual phosphosite levels of EIF3A S492 phosphosite 

(once accounting for the protein abundance of EIF3A) is significantly correlated with the 

protein levels of EIF3D in both datasets analysed (Supplementary figure 3.6). However, 
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we found dataset specific differences in the correlation of the protein levels of EIF3A and 

EIF3D (Supplementary figure 3.6). Overall, these results suggest that EIF3A S492 may 

have an impact on protein complex assembly. 

 

 
Figure 3.3. Identification of phosphorylation sites with a potential role in regulating 
protein interactions. (A) Number of samples with CNV, mRNA and phospho(protein) 
measurements, by cancer type/batch. (B) Volcano plot of phospho beta (x-axis) and FDR 
(y-axis). Each dot is a phosphosite-protein association, between a putative regulatory 
phosphosite Xp and a regulated protein Y. All associations (438) are significant in the CNV 
and mRNA models, between the putative regulatory protein X and the regulated protein Y. 
32 associations (FDR < 5%) are also significant in the phospho model (dark blue). (C) 
Representation of EIF3 complex in two orientations. The arrow points to the phosphosite 
S492 (serine 492) at EIF3A subunit. (D) Significant association between EIF3A/EIF3A S492 
and EIF3D. The boxplots show the agreement between the CNV changes of EIF3A and the 
protein residuals (log2FC) of EIF3D. The scatter plots show the same relation with the 
protein and phosphosite (S492) abundances of EIF3A. 

 

 

3.3.4. Protein attenuation mechanisms found in cancer are 
observed in normal tissues 
 

The study of the impact of CNVs in cancer proteomes indicates that up to ~40% of 

genes have copy-number changes that are buffered at the protein level. Such post-
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transcriptional regulatory processes should not be specific to cancer, however, the extent 

that these effects are observed in normal cellular states is still largely unknown. To address 

this question, we analysed gene and protein expression datasets for normal tissues, made 

available by the Genotype-Tissue Expression (GTEx) and Human Protein Map (HPM) 

projects. In total, we collected expression measures for 5,239 proteins and genes, across 

14 tissue types (Methods). 

We tested if the post-transcriptional control dependent on protein interactions 

observed in cancer is present in normal tissues. For this, we asked if the protein abundance 

of controlling-controlled protein pairs will tend to correlate more strongly than other protein 

interaction pairs. Similarly, we expected that the correlation between the mRNA and protein 

levels of controlled subunits would tend to be weaker than for non-post-transcriptionally 

controlled proteins. We tested this using protein-protein interaction pairs measured in the 

tissue data with significant controlling-controlled relationships from cancer data (301 pairs), 

and all other 161,945 protein-protein interaction pairs (Methods). Reassuringly, we 

observed that the correlation of protein abundance across tissues increased for protein 

pairs with stronger association strength, for similar levels of mRNA-mRNA correlation 

values (Wilcoxon rank-sum test P-value = 8.96e-4 between non-significant and significant 

pairs; P-value = 8.25e-06 between non-significant and highly-significant pairs) (Figure 
3.4A). Also, as predicted the protein to mRNA correlations across tissues of the controlled 

subunits decreases with the association strength (Wilcoxon rank-sum test P-value = 0.022 

between non-significant and significant pairs) (Figure 3.4A). We provide two examples for 

the protein interacting pairs ARCN1 and COPA and TRAPPC8 and TRAPPC11, where the 

mRNA levels of the controlling subunits (ARCN1 and TRAPPC8) appear to dictate the 

protein abundance of both proteins (Figure 3.4B). These results suggest that the protein 

associations identified in the cancer datasets can also be observed in normal tissues, at 

least in aggregate. Importantly, they demonstrate that cancer data can be a useful resource 

to study protein homeostasis in normal conditions. 

 

 



 

 108 

Figure 3.4. Evidence of interaction mediated control of protein abundances in normal 
tissues. (A) Pearson correlation coefficient between the protein of the controlling and 
controlled genes (blue); mRNA of the controlling and controlled genes (grey) and mRNA 
and protein abundance of the controlled gene (yellow); for the non-significant associations 
(FDR > 5%), significant associations (1% < FDR < 5%) and highly-significant associations 
(FDR < 1%). (B) Heatmap showing the agreement between the mRNA and protein 
expression profiles (rows) across tissues (columns) for two highly-significant associations: 
ARCN1 (controlling) ~ COPA (controlled) and TRAPPC8 (controlling) ~ TRAPPC11 
(controlled). 

 

 

3.3.5. Buffering of gene expression variation due to natural 
genetic variation 
 

If mechanisms controlling the protein levels are consistent across cell types, then 

the attenuation models studied here could help to elucidate how natural variation may 

sometimes result in changes in mRNA but not protein and consequently phenotypic traits. 

Single nucleotide polymorphisms (SNPs) associated with gene expression via quantitative 

trait loci (QTL) analysis - known as expression QTLs (eQTLs) - should also tend to be 

attenuated at protein level potentially for the same genes as those found in cancer. To study 

this, we analysed if protein level CNV buffering could explain the probability of eQTLs to 

have phenotypic impact, i.e., in high linkage disequilibrium (LD) (r2 > 0.8) with Genome Wide 

Association Studies (GWAS) variants (Figure 3.5A; Methods; on genes with significant 

CNV-mRNA Pearson’s r > 0.3). To this end, we relied on cis-eQTLs reported in GTEx and 

compared the fraction of GWAS tagging eQTLs for different classes of protein attenuation 

(Figure 3.5B; Methods). We found that eQTLs corresponding to genes classified as highly 

attenuated have a lower fraction of GWAS tagging eQTLs, and that the difference between 

the degree of attenuation increases for eQTLs mapped in multiple tissues (Figure 3.5B).  

Highly attenuated genes tend to be enriched in protein complexes and are likely 

essential to the cell, and therefore could have specific biases as to how eQTLs are linked 

to GWAS associated traits. To account for this potential bias, we replicated the analysis on 

members of protein complexes. Interestingly, this shows that the attenuation score has a 

higher impact on GWAS tagging probability for members of protein complexes, and more 

specifically for members of large protein complexes (>5 subunits) (Supplementary figure 
3.7). 

These results suggest that the CNV attenuation measured in cancer cells for protein 

abundance has direct application in the ranking of the potential impact of mRNA variation 
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on phenotypic differences, and support the idea that some of these attenuation mechanisms 

may take place in multiple tissues. 

 

 
Figure 3.5. Protein attenuation reduces cis-eQTLs impact on phenotypic traits. (A) 
Illustration of the potential impact of protein attenuation on the eQTL associations with 
phenotypic changes. (B) Fraction of eQTLs associated with disease traits for the three 
classes of CNV attenuation: no (light blue), low (blue) and high (dark-blue) attenuation. The 
fractions are reported for increasing number of eQTL tissues, i.e., minimal number of tissues 
in which an eQTL was called (x-axis). Bottom panel shows the number of genes and eQTLs 
used in the top figure for cumulative stratification of eQTL tissues. 

 

 

3.4. Discussion 
 

The joint analysis of multi-omics datasets of cancer samples suggests that a very 

significant fraction of the proteome (up to 42%) is under post-transcriptional control. The set 

of genes with protein level buffering of CNVs is enriched in gene products belonging to large 

protein complexes. In addition, we found that the fraction of interface residues of a protein 

is a strong determinant of attenuation. Together with experiments on pulse chase 

degradation (McShane et al. 2016), aneuploidy (Dephoure et al. 2014; Stingele et al. 2012; 

Pavelka et al. 2010) and the impact of natural genetic variation on protein levels (Chick et 

al. 2016; Battle et al. 2015), these results implicate protein complex formation as an 

important factor in post-transcriptional control, most likely via a high degradation rate of 

unassembled subunits. We note that this mechanism of CNV buffering at the protein level 

may be possible with CNV amplifications and deletions. While in the former it would be 

manifested by an apparent increase in the degradation rate of free complex subunits, in the 

latter it would result from a decrease in the apparent degradation rate of free subunits. 
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However, it is likely that multiple mechanisms contribute to the post-transcriptional control 

measured in the cancer samples including, for example, the control of protein translation 

rates by microRNAs or RNA-binding proteins. The extent of post-transcriptional control that 

is explained by the different processes remains to be studied. 

We observed that the fraction of residues at the interface correlates with the 

probability that a protein shows gene dosage attenuation. Similarly, the size of the interface 

correlates with the strength of association between pairs of physical interactions in which 

one subunit appears to control the abundance level of the interaction partner. The size of 

the interface typically correlates with increasing binding affinity between proteins as well as 

larger amounts of hydrophobic residues that are exposed in the absence of interactions. 

We speculate that either of these consequences could play a role in the attenuation. In 

particular, larger fractions of hydrophobic regions could increase the propensity to form 

aggregates and, in some cases, hydrophobic regions are known to be recognized for 

degradation (Xu, Anderson, and Ye 2016). This could represent a general mechanism for 

recognition of unassembled complex subunits. The structural analysis performed here is 

limited by the current lack of coverage for structures of protein complexes. In the future, 

additional structures may allow us to study in more detail the interface features that are 

important for the attenuation mechanism. 

We have used data from cancer samples to identify the attenuated proteins and 

physical interactions with rate-limiting subunits. We find that most of the controlling-

controlled protein-protein associations we predict have a positive relationship. Given the 

working model that these are explained by protein complex formation, the negative 

associations could be explained by cases of mutually exclusive complex membership. The 

fact that few predicted associations are negative is consistent with the idea that most 

complex members are not mutually exclusive. 

It is still unclear if the same proteins and interactions will have the same post-

transcriptional control in other systems and/or species. When studying expression variation 

in normal tissues and the association of eQTLs with phenotypes we observed that, in 

aggregate, the same proteins and interactions show signals consistent with post-

transcriptional buffering of mRNA expression variation. Of note, we find that eQTLs are less 

likely to be linked to phenotypes in highly attenuated proteins. This is in line with studies of 

mRNA and protein QTLs in human induced pluripotent stem cell lines (iPSCs), showing that 

genetic variation driving mRNA changes is more likely to be associated with phenotype 

differences when they are observed at the protein level (Mirauta et al. 2020). These findings 

highlight the importance of studying the degree of conservation of these post-transcriptional 

processes in different tissues and systems in the context of human genetics and disease. 
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3.5. Methods 
 

Multi-omics data collection 
 

Proteomics and phosphoproteomics quantifications at the protein/phosphosite level 

from TCGA cancer patients were obtained from the CPTAC data portal 

(proteomics.cancer.gov/data-portal), for breast cancer (BRCA) (Mertins et al. 2016), 

colorectal cancer (COREAD) (B. Zhang et al. 2014) and ovarian cancer (HGSC) (H. Zhang 

et al. 2016). The same data from cancer cell lines were downloaded for COREAD cell lines 

(Roumeliotis et al. 2017) and for BRCA cell lines (Lapek et al. 2017; Lawrence et al. 2015). 

Gene-level RNA-seq raw counts were acquired from GEO (GSE62944) (Rahman et al. 

2015) for TCGA samples and from the CCLE data portal 

(portals.broadinstitute.org/ccle/data) (Stransky et al. 2015; Barretina et al. 2012) for cancer 

cell lines. Gene copy-number profiles in this study were represented using discretized 

GISTIC 2.0 scores as described here (Mermel et al. 2011; Beroukhim et al. 2007). Briefly, 

these discrete variables can be -2 (strong copy-number loss, likely a homozygous deletion); 

-1 (shallow deletion, likely a heterozygous deletion); 0 (diploid); 1 (low-level gain of copy-

number, generally broad amplifications) and 2 (high-level increase in copy-number, often 

focal amplification). CNV GISTIC 2.0 levels were compiled from the firebrowse 

(firebrowse.org/) data portal (accession date 15/01/2018) for TCGA samples and from the 

CCLE data portal for cancer cell lines (accession date 14/02/2017). 

 

 

Data pre-processing and normalisation 
 

The label-free protein quantifications (precursor areas) for COREAD CPTAC 

samples (B. Zhang et al. 2014) were first normalized by sample, where summed peak areas 

for the same protein were divided by the total summed area for the observed sample 

proteome. Relative protein abundances were then calculated by dividing each protein area 

over the median area across samples, and then log2 transformed. Protein and phosphosite 

intensities for COREAD cell lines (Roumeliotis et al. 2017) were divided by 100 and 

transformed to log2. For BRCA cell lines (Lapek et al. 2017) protein log2 fold-changes were 

calculated by subtracting the median intensities across the samples. Similarly, the label-

free protein intensities (peak areas) for BRCA cell lines from (Lawrence et al. 2015) were 
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converted into relative abundances by calculating the log2 ratio of protein intensities over 

the median intensities across samples. Sample replicates of protein and phosphoprotein 

were combined by averaging the values for each protein and phosphosite, respectively. 

Phosphopeptides intensities mapping to the same phosphosite were combined by 

calculating the median phosphosite intensity per sample. In the cancer cell lines, genes with 

multiple isoforms were filtered by selecting the protein isoform with highest median 

expression across samples. Proteomics and phosphoproteomics distributions across 

cancer samples and cell lines were quantile normalized to ensure comparable distributions, 

using the normalizeQuantiles function from Limma R package (Ritchie et al. 2015). In total, 

13,569 proteins across 436 samples (340 cancer samples and 96 cell lines) and 79,824 

phosphosites across 195 samples (145 cancer samples and 50 cell lines) were assembled 

in this study. Given the sparseness of the phospho(protein) data, for the subsequent 

analyses we only selected proteins measured in at least 25% of the 368 samples with 

protein, mRNA and CNV measurements, and the phosphosites measured in at least 50% 

of the 170 samples with also phosphorylation data, comprising 8,124 proteins and 5,733 

phosphosites. The phospho(protein) and mRNA data were then standardized using the z-

score transformation. 

At the RNA-seq level, lowly expressed genes were removed by filtering out genes 

with mean counts-per-million (CPM) lower than 1 across samples. After raw counts 

normalization by the trimmed-mean of M-values method (Robinson and Oshlack 2010) 

using the edgeR R package (Robinson, McCarthy, and Smyth 2009), the log2-CPM values 

were extracted from the voom (Law et al. 2014) function in Limma. After merging the CPTAC 

samples with the CCLE cell lines, the final RNA-seq dataset comprised 13,228 genes with 

measurements across 370 samples (296 cancer samples and 74 cell lines).  

At the CNV level, after compiling the GISTIC 2.0 thresholded data, 19,023 genes 

were found to have CNV measurements across 412 samples (337 cancer samples and 75 

cell lines). 

Potential confounding factors revealed by PCA analysis (Supplementary figure 
3.1A, Supplementary figure 3.2A) were regressed-out using a multiple linear regression 

model. This model was implemented with the protein or mRNA abundance of a given gene 

as dependent variable and the potential confounding factors, i.e., cancer type, experimental 

batch, proteomics technology, age and gender as independent variables. The residuals 

from the linear model were the protein and mRNA variation not driven by the confounding 

effects, as the second PCA demonstrated (Supplementary figure 3.1B, Supplementary 
figure 3.2B). 
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Analysis of protein attenuation 
 

The strategy in (Gonçalves et al. 2017) was used to evaluate the impact of CNVs at 

the genome level on cancer proteomes. For each gene, the Pearson correlation coefficients 

between the CNV and mRNA and the CNV and protein were calculated, and an attenuation 

measure devised as follows: 

 

Equation 3.1: Attenuation potentiali = corr(CNVi, mRNAi) - corr(CNVi, Proteini), i 6!Protein 

 

where corr represents the Pearson correlation coefficient and Protein represents 8,124 

genes for which CNV, mRNA and protein quantifications across 368 samples where 

available. After calculating the attenuation potentials, a GMM model with 4 mixture 

components was used to cluster the genes in four different groups. Group 1 had 19 genes 

with a negative attenuation potential, due to the higher correlation between the CNV and 

Protein than with the CNV and mRNA. These genes, which were not attenuated at the 

protein level, were included with the remaining non-attenuated genes in group 2, comprising 

4,689 genes. Groups 3 and 4 contained the lowly-attenuated and highly-attenuated genes, 

with 2,578 and 857 genes, respectively. The GMM was implemented using the Mclust 

function from the mclust R package (Scrucca et al. 2016).  

The enrichment of CORUM complexes was calculated with a hypergeometric model, 

using the enrichr function from the clusterProfiler R package (G. Yu et al. 2012). Only 

CORUM complexes with a Jaccard index lower than 0.9 and with more than 5 proteins were 

used. The comparison of ubiquitination site fold-changes across protein attenuation levels 

was done using protein ubiquitination data obtained with three proteasome inhibitors: MG-

132, epoxomicin and bortezomib (Higgins et al. 2015; Udeshi et al. 2013; W. Kim et al. 

2011; S. A. Wagner et al. 2011).  

 

 

Compendium of physical protein interactions 
 

In order to build a compendium of physical protein interactions, we downloaded a 

data set of protein-protein interactions from BioGRID version 3.4.157 (C. Stark et al. 2006) 

(accession date 30/01/2018). We only selected protein interactions occurring in humans 

and captured with physical experimental systems. Interactions captured with Affinity 

Capture-RNA and Protein-RNA were excluded in order to guarantee that our dataset 
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contained only interactions observed at the protein level. After excluding protein 

homodimers, 524,148 protein interactions (262,074 unique) were compiled with BioGRID. 

A list of protein interactions was also built using a set of protein complexes from the CORUM 

database (Giurgiu et al. 2019) (accession date 29/05/2018). The rationale was that protein 

partners from the same protein complex interact physically at least once. Using a set of 

1,787 protein complexes and excluding protein homodimers, we assembled 74,712 (37,356 

unique) physical protein interactions. A small number of 890 endoplasmic reticulum-related 

interactions were additionally curated from the literature. In total, 572,856 (286,428 unique) 

protein physical interactions were compiled.  

 

 

Linear modelling to identify protein and phospho-protein 
associations 
 

Protein associations: 

 

For a given protein physical interaction pair X and Y, it was tested whether protein 

X can control the protein levels of Y through protein-protein interactions, potentially 

constraining the degradation rate of Y. For each interacting pair two nested linear models 

were fitted. The first model (null) was used to predict the protein levels of Y (Py) using its 

mRNA (Ty) and a set of other covariates, i.e., cancer type, experimental batch, proteomics 

technology, patient age and gender (Equation 3.2). In a second linear model (alternative), 

the CNV levels of X (Gx) were added as a predictor variable (Equation 3.3). A likelihood 

ratio test (LRT) (Equation 3.4) was then applied in order to test whether the second model 

increases the goodness of fit of the first model in predicting Py. 

 

Equation 3.2: Null model: Py = 𝛃0 + 𝛃1Ty + [𝛃2, 𝛃3, 𝛃4, 𝛃5, 𝛃6] + ɛ 

 

𝛃0 represents the intercept, 𝛃1 the regression coefficient (effect size) for the mRNA of Y, 𝛃2, 

𝛃3, 𝛃4, 𝛃5 and 𝛃6 the regression coefficients for the covariates cancer type, experimental 

batch, proteomics technology, age and gender, respectively. ɛ is the noise term. 
 

Equation 3.3: Alternative model: Py = 𝛃0 + 𝛃1Ty + [𝛃2, 𝛃3, 𝛃4, 𝛃5, 𝛃6] + 𝛃7Gx + ɛ 
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𝛃7 is the regression coefficient for the CNV (Gx) of protein X. An LRT was used to assess 

the significance of the association: 

 

Equation 3.4: LRT = 2 × [logeLik(Alternative) - logeLik(Null)] 

 

logeLik corresponds to the log likelihood of the alternative and null models. P-values were 

then calculated using the LRT statistic over a chi-squared distribution and adjusted for FDR 

using the Benjamin-Hochberg method. This model was applied for a given protein 

association pair X and Y if: X ∈ CNV ∧ Y ∈ Protein ∧ Y ∈ mRNA, where CNV, Protein, and 

mRNA are the sets of genes detected with the respective assays.  

A total of 411,591 protein pairs followed these criteria and were tested across 368 

tumor samples. The same analysis was performed with the mRNA, instead of the CNV, of 

protein X for 392,128 protein pairs. To avoid spurious protein associations that might occur 

due to the genomic co-localization of the controlling proteins, the top-ranked association 

was selected using the Borda ranking method. This was done systematically for all cases 

where multiple controlling proteins in the same chromosome were associated with the same 

controlled protein. More than one controlling protein in the same chromosome for the same 

controlled protein was allowed if their CNV profile Pearson correlation was lower than 0.5.  

The linear models were implemented using the lm R function. The LRT tests with 

associated statistics were calculated using the lrtest function from the lmtest R package. 

The Borda ranking method was implemented using the Borda function from the TopKLists 

R package (Schimek et al. 2015).  

 

Phospho-protein associations: 

 

For a given protein pair X and Y, it was tested whether a phosphosite Xp from protein 

X can be associated with changes in the protein abundance of protein Y. A similar model to 

the before linear regression models and LRT tests was used. For each phosphosite-protein 

interaction, a first null model was fitted to predict the protein levels of Y (Py) using its mRNA 

(Ty), the CNV and protein levels of protein X (Gx and Px), and the covariates experimental 

batch, patient age and gender (Equation 3.5). In a second alternative linear model, the 

phosphosite Xp (Phox) of protein X was added as a predictor variable (Equation 3.6). The 

models were then compared using an LRT as in Equation 3.4. 

 

Equation 3.5: Null model: Py = 𝛃0 + 𝛃1Ty + 𝛃2Gx + 𝛃3Px + [𝛃4, 𝛃5, 𝛃6] + ɛ 
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where 𝛃0 represents the intercept, 𝛃1 the coefficient of the mRNA of Y, 𝛃2 and 𝛃3 the 

regression coefficients for the CNV and Protein of X, respectively, and 𝛃4, 𝛃5 and 𝛃6 the 

regression coefficients for the covariates experimental batch, age and gender, respectively. 

ɛ is the noise term. 

 

Equation 3.6: Alternative model: Py = 𝛃0 + 𝛃1Ty + 𝛃2Gx + 𝛃3Px + [𝛃4, 𝛃5, 𝛃6] + 𝛃7Phox + ɛ 

 

where 𝛃7 is the regression coefficient for the phosphosite Xp of protein X. This model was 

applied for a given phosphosite-protein association pair Xp and Y if: Xp ∈ Phospho ∧ X ∈ 

Protein ∧ X ∈ CNV ∧ Y ∈ Protein ∧ Y ∈ mRNA, where Phospho, Protein, CNV and mRNA 

are the sets of genes detected with the respective assays. A total of 315,772 phosphosite-

protein pairs followed these criteria and were tested with this model across 170 tumor 

samples. 

 

 

Structural analysis 
 

Protein interface sizes were calculated using an in-house pipeline (int3dInterfaces, 

github.com/evocellnet/int3dInterfaces) that extracts protein interfaces from Interactome3D 

structures (Mosca, Céol, and Aloy 2013). For each protein interaction structure in 

Interactome3D, this pipeline uses NACCESS (bioinf.manchester.ac.uk/naccess) to 

calculate the solvent accessibility of the bound and unbound monomers. Every residue 

changing its relative solvent accessibility is considered to form part of the interface. From 

the 11,530 human protein interaction structures analysed with this pipeline, structures of 

protein homodimers or structures with less than 100 amino acids were removed. Also, 

structures with chain lengths bigger than the respective UniProt protein lengths and with the 

same chain length for each partner were removed. After applying these filters, 3,082 

structures with 6,147 protein interactions were used in the subsequent analyses. 

For the 1,470 proteins which contained both information about CNV attenuation and 

interface size, the percentage of residues in protein interfaces was calculated as the ratio 

of the number of unique residues in interfaces over the protein size. For 60 significant 

protein association pairs represented in the structural data, the relation between the protein 

interface size with the regression CNV coefficient and FDR was assessed using the 

Pearson correlation coefficient. For each pair, the protein interface size was calculated in 

the controlling and controlled proteins. The protein sizes (number of residues) were 

obtained from UniProt for 20,349 proteins (accession date 19/06/2018). 
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The percentage of area inside the complex for the protein subunits from the COP9 

signalosome was calculated using FreeSASA (Mitternacht 2016). For each protein subunit, 

this percentage corresponded to the difference between the solvent accessible surface area 

(SASA) outside and inside complex over the SASA outside complex. The SASA was 

calculated in units of squared Ångström (Å2). 

 

 

Analysis of gene essentiality using CRISPR-Cas9 screenings 
 

Gene essentiality data obtained with CRISPR-Cas9 screenings (Meyers et al. 2017) 

was downloaded from Project Achilles data portal (depmap.org/portal/achilles/) (accession 

date 31/10/2017). These data contain gene-dependency levels adjusted for copy-number 

specific effects for 17,670 genes across 341 cancer cell lines. Genes with an essentially 

score lower than -1×SD (the standard deviation for the entire data set corresponds to 0.3) 

in more than 5% of the cell lines were considered essential and used in the remaining 

analysis (5,532 genes). The median gene essentiality was calculated for 3,548 genes with 

attenuation and essentiality data across the 341 cancer cell lines. 

 

 

Pairwise correlation of protein association pairs using normal 
tissue data 
 

Gene and protein expression data for normal human tissues were obtained from the 

GTEx (gtexportal.org/) (Aguet et al. 2017) and HPM (humanproteomemap.org/) (M. S. Kim 

et al. 2014) data portals. The gene expression was obtained in the format of RNA-seq 

median RPKM for 56,238 genes across 53 tissues. The protein expression was downloaded 

as averaged label-free spectral counts for 17,294 genes across 30 tissues. For the protein 

expression data, it was selected 9,156 genes in common with the HPM data available in 

Expression Atlas (Petryszak et al. 2014). The 14 tissues common to the GTEx and the HPM 

used in the remaining analysis were: frontal cortex, spinal cord, liver, ovary, testis, lung, 

adrenal gland, pancreas, kidney, urinary bladder, prostate gland, heart, esophagus and 

colon. The gene expression in the last three tissues was averaged in GTEx, between heart 

atrial appendage and left ventricle; between esophagus gastroesophageal junction, mucosa 

and muscularis; and between colon sigmoid and transverse. The protein and gene 

expression data was then filtered to only include genes and proteins expressed in at least 

10 of 14 tissues, resulting in 5,239 genes consistently expressed at the gene and protein 
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level. The RNA and protein measurements were then standardized to z-scores and quantile 

normalized. 

 Having assembled the gene and protein expression datasets for normal tissues, 

pairwise Pearson correlation coefficients were calculated between the protein of the 

controlling and controlled genes, mRNA of the controlling and controlled genes, and mRNA 

and protein of the controlled gene. The Pearson correlations were calculated for 91 highly-

significant associations (FDR < 0.01), 210 significant associations (0.01 ≤ FDR < 0.05) and 

161,945 non-significant associations at the CNV and mRNA level (FDR ≥ 0.05). In order to 

assure that the increase in protein-protein correlations were not simply due to an increase 

in mRNA-mRNA correlations, we selected the protein pairs with mRNA Pearson's 

correlation coefficient between 0 and 0.4, corresponding to 57,145 pairs (30 highly-

significant, 69 significant and 57,046 non-significant). 

 

 

Analysis of the impact of CNV attenuation on the eQTL association 
to disease traits 
 

Following the approach in HipSci proteomics (Mirauta et al. 2020), we considered a 

stringent set of  21,601 associations from the NHGRI-EBI GWAS catalog (download on 10 

April 2018; converted to hg19) for analysis. We considered eQTLs reported from GTEx in 

35 tissues (excluding brain), computed the number of tissues having the same slope sign, 

i.e., direction of effect size, and discarded those with consistent slope in less than 3 tissues. 

We defined proxy variants of each cis-eQTL as variants in high LD (r2 > 0.8; based 

on the UK10K European reference panel) within the same cis window. Next, we grouped 

the eQTLs in high LD blocks (r2 > 0.8), excluded from this analysis 247 genes having each 

more than 100 eQTL blocks, and obtained a final set of 66,197 eQTL blocks corresponding 

to 2,953 genes and 441,194 eQTL-gene associations. We then defined these blocks as 

GWAS-tagging if for at least one eQTL in the block at least one LD proxy variant was 

annotated in the NHGRI-EBI GWAS catalog. Finally, we reported the fraction of GWAS-

tagging eQTLs stratified by the attenuation level of the corresponding cis genes. To assess 

the robustness of this analysis and to study the effects on GWAS tagging probability of 

eQTL recurrence across tissues, we calculated the number of tissues in which an eQTL 

was called with the same slope and reported the results by stratifying the eQTLs by 

increasing number of tissues. 

We relied on core human protein complexes from CORUM to identify the gene 

complex membership status and segregated those that are annotated in at least one large 
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complex (>5 subunits). Out of the genes with eQTL evidence and with annotation scores, 

961 were annotated in CORUM and 576 were members of large complexes. 

 

 

Code availability 
 

All the code is available under a GNU General Public License V3 in a GitHub project, 

at the following url: github.com/abelfsousa/cnv_buffering. 

 

 

3.6. Supplementary materials 
 

3.6.1. Figures 
 

 
Supplementary figure 3.1. Confounding effects regressed-out from transcriptomics 
data. (A) Pearson correlation coefficient of the first 10 principal components (PCs) with the 
potential confounding effects before normalization. (B) Pearson correlation coefficient of the 
first 10 principal components (PCs) with the potential confounding effects after 
normalization. 
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Supplementary figure 3.2. Confounding effects regressed-out from proteomics data. 
(A) Pearson correlation coefficient of the first 10 principal components (PCs) with the 
potential confounding effects before normalization. (B) Pearson correlation coefficient of the 
first 10 principal components (PCs) with the potential confounding effects after 
normalization. 

 

 
Supplementary figure 3.3. ROC curve analysis for the prediction of true protein-
protein interacting pairs. Correlation of protein abundance and gene expression was used 
as a predictor of CORUM protein pairs, among the highly-attenuated (A) lowly-attenuated 
(B) and non-attenuated (C) protein pairs. The x-axis represents the false-positive rate (FPR) 
and the y-axis the true-positive rate (TPR). The AUC of each curve is indicated. 
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Supplementary figure 3.4. Relationship between CNV attenuation in proteins and 
protein complex membership. (A) List of top protein complexes ordered by enrichment in 
attenuated genes. X-axis shows P-values derived with an hypergeometric test (Benjamini-
Hochberg multiple testing correction). We discarded from the list of CORUM complexes 
those with a Jaccard index higher than 0.9 with any other complex and those with 5 proteins 
or less (B) Number of genes for each attenuation class by complex membership status 
(CORUM). (C) Number of genes stratified by the maximum number of subunits of any 
protein complex incorporating the genes. (D) Enrichment of attenuated proteins in members 
of protein complexes stratified by complex size, i.e., number of subunits. Shown are the P-
values derived with a Fisher’s exact test (alternative = “greater”). (E) Relationship between 
the number of subunits in a protein complex and the protein complex member CNV 
attenuation. For each member of a complex we juxtapose the attenuation score (x-axis) and 
the maximum number of subunits of any complex this protein is part of (y-axis). 

 

 
Supplementary figure 3.5. Attenuated proteins show faster increase in protein 
ubiquitination after proteasome inhibition and higher gene essentiality. (A) 
Ubiquitination sites fold-changes (y-axis) across protein attenuation levels (x-axis) after 
proteasome inhibition with three inhibitors: Bortezomib, Epoxomicin and MG-132. (B) 
Median gene essentiality measured in CRISPR-Cas9 screenings (y-axis), across 341 
cancer cell lines, by attenuation level (x-axis). 
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Supplementary figure 3.6. Correlation of EIF3A protein and EIF3A S492 phosphosite 
with EIF3D protein. The scatterplots show the Pearson’s correlation coefficient between 
EIF3A protein log2 fold-changes (A) and EIF3A S492 phosphosite log2 fold-changes (B) 
with EIF3D protein residuals (after regressing-out the mRNA and possible confounding 
factors from protein expression). The EIF3A protein abundance and confounding factors 
were also regressed-out from EIF3A S492 phosphorylation levels. The correlations are 
shown with all samples and by dataset (TCGA breast cancer samples (BRCA) and 
colorectal cancer cell lines from Roumeliotis et al.). 

 

 
Supplementary figure 3.7. Impact of the CNV attenuation at protein level on the eQTL 
association with disease traits, stratified by the protein complex membership status. 
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Identical analysis as in Figure 5 (B) is performed for genes with no (A) and with existing 
annotation in CORUM protein complexes (B) and (C). (C) for genes members of protein 
complexes with at least 5 subunits. Bottom panels: the number of genes and eQTLs 
considered for the analysis shown in the top panels. 

 

 

3.6.2. Tables 
 

Supplementary table 3.1. CNV, mRNA and protein measurements across cancer samples 
for 8,124 genes. The CNV data is represented as discretized GISTIC 2.0 scores (Methods). 
The mRNA and protein measurements are represented as z-scores, with potential 
confounding factors regressed-out using a multiple linear regression model (Methods). The 
cancer type (breast, colorectal and ovarian), experimental batch (TCGA BRCA, TCGA 
COREAD, TCGA HGSC, Lawrence et al., Roumeliotis et al. and Lapek et al.) and 
proteomics type (TMT and label-free) of each sample are also included as columns. 
 
Supplementary table 3.2. 8,124 genes stratified by attenuation level. The table includes 
the Pearson correlation coefficients between the CNV and mRNA and the CNV and protein, 
respective P-values and attenuation potentials. 
 
Supplementary table 3.3. 516 protein-protein associations significant in the CNV and 
mRNA models (FDR < 5%). For each association, the table includes the controlling and 
controlled proteins and the effect size (beta) and FDR from both models. 
 
Supplementary table 3.4. 32 significant phospho-protein associations (FDR < 5%). The 
table includes the controlling protein/phosphosite, the controlled protein, and the effect size 
(beta) and FDR from the phospho model. All associations are also significant in the CNV 
and RNA models, between the putative regulatory and regulated proteins. 
 
All supplementary tables can be consulted using the following DOI: 
doi.org/10.1074/mcp.RA118.001280 
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4. Pan-Cancer Landscape of Protein 
Activities Identifies Drivers of Signalling 
Dysregulation and Patient Survival 
 
This chapter includes published material from the following article:  
Abel Sousa, Aurelien Dugourd, Danish Memon, Borgthor Petursson, Evangelia Petsalaki, 
Julio Saez-Rodriguez and Pedro Beltrão. Pan-Cancer Landscape of Protein Activities 
Identifies Drivers of Signalling Dysregulation and Patient Survival. BioRxiv, 9 June 2021. 
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4.1. Abstract 
 

Genetic alterations in cancer cells trigger oncogenic transformation, a process 

largely mediated by the dysregulation of kinase and transcription factor (TF) activities. While 

the mutational profiles of thousands of tumours have been extensively characterized, the 

measurements of protein activities have been technically limited until recently. We compiled 

public data of matched genomics and (phospho)proteomics measurements for 1,110 

tumours and 77 cell lines that we used to estimate activity changes in 218 kinases and 292 

TFs. Kinase activities are, on average, not strongly determined by protein abundance but 

rather by their phosphorylation state while the reverse is more common for TFs. Co-

regulation of kinase and TF activities reflects previously known regulatory relationships and 

allows us to dissect genetic drivers of signalling changes in cancer. Loss-of-function 

mutation is not often associated with dysregulation of downstream targets, suggesting 

frequent compensatory mechanisms. Finally, we identified the activities most differentially 

regulated in cancer subtypes and showed how these can be linked to differences in patient 

survival. Our results provide broad insights into dysregulation of protein activities in cancer 

and their contribution to disease severity. 

 

 

4.2. Introduction 
 

Cancer is a highly heterogeneous disease that is generally caused by the acquisition 

of somatic genomic alterations, including single nucleotide variants (SNVs), gene copy-

number variations (CNVs) and large chromosomal rearrangements (Pleasance et al. 2010; 

Beroukhim et al. 2010; Campbell et al. 2020). The Cancer Genome Atlas (TCGA) has led 

to an in-depth characterization of the genomic alterations of more than 10,000 tumours from 

33 cancer types (Hoadley et al. 2018; Ding et al. 2018). However, mutations in key driver 

genes are just the first steps of a cascade of events that culminate in tumour formation and 

cancer. These mutations generate the genetic diversity that promotes the acquisition of 

multiple cancer hallmarks, including chronic proliferation, resistance to cell death and tissue 

invasion and metastasis (Hanahan and Weinberg 2011). An understanding of the molecular 

mechanisms that underpin the development of cancer is critical in order to study cancer 

biology and to develop therapies.  

While somatic alterations and gene expression changes across tumours have been 

extensively studied, key driver genomic changes in cancer are thought to result in changes 
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in cell signalling including the dysregulation of protein kinases and transcription factors 

(Yaffe 2019; Blume-Jensen and Hunter 2001). As an example, about 40% of melanomas 

contain the V600E activating mutation in the BRAF kinase, resulting in constitutive signalling 

through the Raf to mitogen-activated protein kinase (MAPK) pathway and increased cellular 

proliferation (Davies and Samuels 2010). Likewise, aberrant transcription factors (TFs) 

activities are a key feature of cancer cells (Garcia-Alonso et al. 2018). TFs are commonly 

dysregulated due to genomic alterations in their sequences or in upstream signalling 

regulatory proteins (Oliner et al. 1992; Ohh et al. 2000). Because of their role as signalling 

effectors, aberrant kinase signalling may dysregulate the activities of TFs and alter the 

expression of their target genes. Consequently, kinases and TFs often accumulate cancer 

driver mutations, such as TP53 (Rivlin et al. 2011) and KRAS (M. T. Wang et al. 2015), and 

are the targets of anti-cancer drugs (Bhagwat and Vakoc 2015; Bhullar et al. 2018).  

Due to technical limitations, the study of protein signalling activities has been for 

many years limited primarily to the study of a few key signalling proteins at a time using 

antibodies, which was recently expanded to a few hundred via the use of reverse-phase 

protein arrays (RPPA) (J. Li et al. 2013). The Clinical Proteomic Tumour Analysis 

Consortium (CPTAC) has revolutionized the study of cancer proteomes, including proteins 

and respective post-translational modifications (PTMs), through the application of Mass 

Spectrometry (MS)-based proteomics (B. Zhang et al. 2019). MS-based proteomic profiling 

of human cancers has the potential to uncover molecular insights that might be otherwise 

missed by genomics- and transcriptomics-driven cancer research. CPTAC enabled to (i) 

identify additional cancer molecular subtypes (Mun et al. 2019; Gao et al. 2019), (ii) find that 

changes at the genomic and transcriptomic level are often buffered at the proteomic level 

(Mertins et al. 2016; B. Zhang et al. 2014; Gonçalves et al. 2017; Sousa et al. 2019) and 

(iii) uncover dysregulated signalling pathways by phosphoproteomics data integration (Clark 

et al. 2019).  

In efforts to find novel therapeutic opportunities from kinase and TF oncogenic 

signalling, it is crucial to understand how the activities of these key signalling proteins are 

changing across tumours. Previous studies found that TF mutations were correlated with 

transcriptional dysregulation in cancer cell lines and primary tumours, and that TF activities 

can act as predictors of sensitivity to anti-cancer drugs (Garcia-Alonso et al. 2018). Similar 

results were found regarding the impact of oncogenic mutations on kinase signalling. 

However, these studies were focused on few kinases and cancer types (Guo et al. 2008; 

Guha et al. 2008; Creixell et al. 2015; Lundby et al. 2019). Despite all of these efforts, a 

systematic Pan-Cancer analysis of the regulation of kinase and TF activities across tumours 

is still lacking.  
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In this study, we mined multi-omics datasets from patient tumours and cancer cell 

lines to study the regulation of kinases and TFs across tumour types. We estimated the 

activities of TFs and kinases from the gene expression levels and phosphorylation changes 

of their targets, deriving activity profiles of 292 TFs and 218 kinases across 1,110 primary 

tumors from TCGA and CPTAC and 77 cancer cell lines. We used these kinase and TF 

activities to study the principles of regulation of these signalling proteins by mutations, 

changes in abundance or phosphorylation. We show how their patterns of activity co-

regulation reflect underlying signalling relationships and we identify the signalling molecules 

that show high degree of regulation in each tumour type. Finally, we show how these 

TF/kinase activities can be predictive of differential survival across patients. The protein 

activities profiles across over 1000 patient samples serve as a resource to study the 

dysregulation of signalling across different tumour types.  

 

 

4.3. Results 
 

4.3.1. Standardized multi-omics pan-cancer dataset 
 

To study the regulation of protein activities of cancer cells, we compiled and 

standardized multi-omics datasets made available by the CPTAC consortium (Figure 4.1A; 
Methods). These datasets comprised of cancer patient samples with matched somatic 

mutations, gene copy number variation (CNV), mRNA expression, protein abundance, 

phosphorylation and clinical data from 9 tissues: breast (Mertins et al. 2016; Koboldt, Fulton, 

et al. 2012), brain (Petralia et al. 2020), colorectal (B. Zhang et al. 2014; Muzny et al. 2012; 

Vasaikar et al. 2019), ovarian (H. Zhang et al. 2016; Bell et al. 2011), liver (Gao et al. 2019), 

kidney (Clark et al. 2019), uterus (Dou et al. 2020), lung (Gillette et al. 2020) and stomach 

(Mun et al. 2019). In addition, we collected data for breast (Lapek et al. 2017; Lawrence et 

al. 2015) and colorectal (Roumeliotis et al. 2017) cancer cell lines, for which multi-omics 

data were available (Figure 4.1A; Methods). In summary, we assembled a multi-omics 

atlas that provides the opportunity to build an integrated picture of the cancer genome, 

transcriptome and (phospho)proteome, with 1008 samples (932 tumours and 76 cell lines) 

matching all data types available per dataset.  

We first calculated correlations between each protein and phosphosites that 

mapped to the same protein, across up to 1008 samples. Across all pairs there is a 



 

 130 

correlation of 0.49 (P-value < 2.2x10e-16), with an average protein-phosphosite correlation 

of 0.39 (Supplementary figure 4.1A, Supplementary figure 4.1B), in agreement with 

previous studies (Arshad et al. 2019). This result shows that phosphorylation levels are, to 

some extent, confounded by the corresponding protein abundance (R. Wu et al. 2011). To 

be able to focus on phosphorylation changes that are not driven primarily by protein 

abundance differences, we regressed-out matched protein abundance from the 

phosphorylation data in our compiled dataset (Supplementary figure 4.1A, 
Supplementary figure 4.1B; Methods).  

 

 

4.3.2. Landscape of protein activities in cancer 
 

The genomics characterization of tumour samples has so far been primarily focused 

on stratifying samples by their mutational profiles or changes in abundance of specific 

biomolecules such as transcripts, protein or phosphorylation states (Koboldt, Fulton, et al. 

2012; Muzny et al. 2012; H. Zhang et al. 2016; Vasaikar et al. 2019; Clark et al. 2019). We 

and others have shown that changes in phosphorylation and gene expression levels can be 

used to infer the activation states of protein kinases and TFs (Ochoa et al. 2016; Garcia-

Alonso et al. 2018). Based on these methods we set out to define the landscape of 

kinase/TF activity patterns across these tumour samples.  

The kinase activities were estimated from the protein abundance-corrected 

phosphorylation data using a z-test (Hernandez-Armenta et al. 2017) (Figure 4.1B; 
Methods). Briefly, the activity of a given kinase in a sample is estimated by comparing the 

changes in phosphorylation of its substrates with changes of all other phosphosites. 

Similarly, the activation state of TFs was inferred from the changes in gene expression of 

their known transcriptional targets using the DoRothEA regulons (Garcia-Alonso et al. 2019) 

coupled with the VIPER algorithm (Alvarez et al. 2016) (Figure 4.1B; Methods). In total, 

we estimated the activities of 292 TFs across 1,187 cancer samples (1,110 primary tumours 

and 77 cell lines) (Table S4.1). For the estimation of kinase activities, we evaluated different 

lists of kinase substrates from repositories, computational text mining (Bachman, Gyori, and 

Sorger 2019), kinase inhibitor experiments (Hijazi et al. 2020) or phosphorylation of cell 

extracts (Sugiyama, Imamura, and Ishihama 2019) (Supplementary figure 4.2A, 
Supplementary figure 4.2B). We tested each list in a compilation of phosphoproteomic 

experiments where kinase regulation is known (Ochoa et al. 2016; Hernandez-Armenta et 

al. 2017) (Methods), keeping those from repositories and text-mining as the most accurate 

(Supplementary figure 4.3A, Supplementary figure 4.3B). After applying this approach, 
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we inferred the activities of 218 kinases across 980 samples (930 tumours and 50 cell lines) 

(Table S4.1; Methods).  

For some kinases, there are phosphosites within the kinase itself that are known to 

activate or inhibit it. As a validation, we correlated the estimated activity scores with the 

quantifications of activating phosphosites, finding the expected higher correlation when 

compared with phosphosites without annotation (Figure 4.1C). A similar trend was 

observed when excluding the kinase auto-regulatory phosphosites before re-estimating the 

activities (Supplementary figure 4.3C). Finally, we benchmarked the kinase activity scores 

using reverse phase protein array (RPPA) data from the TCGA program. We first evaluated 

the agreement between the MS-based and the RPPA-based phosphosite quantifications. 

We found that phosphosite pairs corresponding to the same phosphosite show higher 

correlations than random pairs (Figure 4.1D). Then, we found that the RPPA phosphosites 

correlate significantly better with the activity of kinase bearing the phosphosites than with 

other kinase activities (Figure 4.1E).  

The activity profiles of kinase and TFs across a large number of samples allows us 

to ask how these activities are themselves regulated. We first selected 99 kinases and 120 

TFs that are strongly regulated in at least 5% of all samples (Supplementary figure 4.3D). 

We then correlated these activities with changes in gene copy number (CNV), mRNA and 

protein levels or changes in phosphorylation levels of the respective protein (Table S4.2). 

We observed that 55% of kinase activities correlated with their phosphorylation state and 

only 27% correlated with changes in protein abundance (Figure 4.1F). Contrary to this, TF 

activities are most often correlated with changes in abundance of the TF, as measured by 

RNA (91%) or protein (59%), with fewer cases of significant correlations with 

phosphorylation levels (29%) (Figure 4.1F). TF phosphosites predicted to be important for 

function (Ochoa et al. 2020) are more likely to show significant correlations with the TF 

activity (Supplementary figure 4.3E).  

Overall, these results showed that our kinase activity estimates are likely to capture 

kinase regulatory events across different tumour types, and therefore the usefulness of our 

multi-omics atlas to study kinase signalling in cancer.  
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Figure 4.1. Multi-omics atlas and inference of protein activities. (A) Number of samples 
by cancer dataset and data type. (B) Schematic representation of kinase and TF activity 
inference. GES, gene expression signature. (C) Comparison of the Pearson’s correlation 
distributions between the kinase activities and the quantifications of phosphosites (log2 fold-
changes) that mapped to the same kinase, with (n = 126) and without (n = 793) annotation 
(activating) in PhosphoSitePlus. A P-value from a Wilcoxon rank sum test is shown. (D) 
Pearson’s correlation between the CPTAC MS-based and the TCGA RPPA-based 
phosphosite quantifications, for the same phosphosite pair (n = 12) and others (n = 132). A 
P-value from a Wilcoxon rank sum test is shown. (E) Comparison of the Pearson’s 
correlation between the RPPA phosphosites and the kinase activities, for kinase-
phosphosite pairs mapping to the same kinase (auto-phosphosite) and other pairs. The 
activities were calculated using the kinase substrates (n = 336 and n = 21) and the kinase 
regulatory phosphosites (n = 94 and n = 13) (Methods). The P-values from Wilcoxon rank 
sum tests are shown. (F) Percentage of kinases and TFs significantly and not significantly 
correlated with the corresponding CNV, RNA, protein and phosphorylation levels. The 
proteins without correlations due to lack of data or reduced number of samples (n < 10) 
were labeled as unknown (blue). 

 

 

4.3.3. Impact of genetic variation on protein abundance and 
activities 
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The large number of cancer samples in this study constitutes a resource to measure 

the effects of genetic alterations, i.e., somatic mutations and CNVs, on protein abundances 

and activities. We first set out to assess the effects of CNVs on the mRNA and protein 

abundances. Similarly to our previous reports, the CNVs showed a stronger correlation with 

the mRNA than with the protein levels (Supplementary figure 4.4A, Supplementary 
figure 4.4B), highlighting mechanisms of post-transcriptional control and gene dosage 

buffering at the protein level (Sousa et al. 2019; Gonçalves et al. 2017). We then extended 

the analysis to globally assess the effects of mutations (Methods), and we found that 

proteins carrying loss-of-function (LoF) alterations, including frameshift, nonsense, splice 

site and stop codon loss, caused on average a significant decrease in protein abundance. 

This was not observed with in-frame and missense mutations (Supplementary figure 
4.4C). To validate the decrease of protein abundance for LoF mutations, we confirmed that 

this was also recapitulated in a proteomic dataset with 125 cancer cell lines (CCLs) from 

the NCI60 and CRC65 panels (Frejno et al. 2020) (Supplementary figure 4.4D; Methods). 

These observations confirm that the genetic alterations are often recapitulated at the protein 

level as captured by the MS data.  

We next looked at the impact of genetic alterations on TF and kinase activity 

estimates. On average, we did not observe reduced activity for proteins carrying different 

types of mutations in the tumour samples (Supplementary figure 4.5A), with only a very 

modest average decrease in activities for frameshift mutations found in the cell line data 

(Supplementary figure 4.5B). This observation did not depend on the degree of predicted 

deleterious impact of the mutations (Supplementary figure 4.5C, Supplementary figure 
4.5D) nor on the purity of the tumour samples (Supplementary figure 4.5E). To further 

characterize this unexpected result, we focused on highly mutated cancer genes. As an 

example, we investigated the impact of the BRAF V600E mutation on the activities of 

proteins from the MAPK/ERK signaling transduction pathway (Methods). Surprisingly, 

across all samples BRAF V600E mutations were not significantly associated with changes 

in activity of key pathway components, including BRAF itself, MAPK1, MAPK3, MAP2K1 

and MAP2K2 (Supplementary figure 4.5F). Instead, we found that CDK1 and CDK7 were 

more active in samples carrying the mutation (FDR < 5%) (Supplementary figure 4.5G). 

This suggests that samples carrying a BRAF V600E mutation will often have kinase activity 

levels that have adapted to the mutational state, likely having increased proliferation, as 

indicated by the CDK1 levels but not a higher level of activation of the pathway.  

We then extended the analysis by systematically associating the activity of kinases 

and TFs with the recurrent mutational status of any given gene mutated in at least 5 tumour 

samples (Methods). As seen for the BRAF example, we didn’t observe any case where 

recurrent mutation of the kinase itself was associated with a significant change in its activity 
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as measured by the phosphorylation of its substrates. This indicates that there is significant 

adaptation of the signalling state of the cell after mutations. On the other hand, we found 

193 significant associations (FDR < 5%) between mutations in other genes and changes in 

kinase activity levels (Figure 4.2A; Table S4.3). For example, samples with mutations on 

STK11 (serine/threonine kinase 11) don’t show a pronounced change in activity of STK11 

substrates but have decreased activity for PRKACA kinase, a known activator of STK11 

(FDR = 9.6e-5; combined string network weight = 0.94) (Figure 4.2C). Other examples 

include increased activity for CDK1 and MAPK13 in samples with mutations in TP53, and 

for AKT3 when PTEN is mutated (FDR < 5%) (Figure 4.2C). Unlike for kinases, we found 

several cases where the mutation of a TF was associated with a change in its own activity 

as is the case for mutations in TP53, GATA6, SREBF2 and EBF1 (FDR < 5%) (Figure 4.2B 
- inner plot, Supplementary figure 4.6; Table S4.3). In addition, we found 11,128 
significant associations between a mutated gene and a changed TF activity (FDR < 5%) 

(1,087 for FDR < 1%) (Figure 4.2B - outer plot; Table S4.3), including increased activity 

for E2F4 and TFDP1 coupled with TP53 mutation (Figure 4.2D).  

The associations between mutated genes and altered protein activities contain 

several examples of previously known functional relationships. To evaluate this more 

broadly, we confirmed that our predicted associations were enriched in protein-protein 

functional associations annotated in the STRING database, both for the kinases and the 

TFs (P-value < 5%) (Figure 4.2E, Figure 4.2F - top plots). We also performed an 

enrichment analysis using the string network along multiple cutoffs of adjusted P-values 

(Methods). The -log10 transformed P-values from the enrichment test increased as the 

association cutoffs were incremented (Figure 4.2E, Figure 4.2F - bottom plots), validating 

the generality of the significant associations. Overall, the genetic associations found are 

enriched in previously known functional associations, containing potential novel regulatory 

relationships for future experimental exploration.  
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Figure 4.2. Genetic associations. (A) Volcano plot displaying the associations between 
the mutational status of genes and the activity of kinases. The x-axis contains the mutation 
coefficient (effect size) and the y-axis the adjusted P-values. The associations are 
represented in the form of a mutated gene - kinase. The color gradient represents the string 
network edge weight interval of the pair (grey if the pair is not in the string network). (B) 
Same as (A) for the TFs. The inner plot shows the effects of TF mutations on their own 
activities. (C) (D) Examples of the genetic associations highlighted in the volcano plots. The 
x-axis represents the associations and the y-axis the protein activities. The colors stratify 
the samples by their mutational status in the respective genes. The outliers (defined as the 
data points beyond Q1-1.5*IQR and Q3+1.5*IQR, where Q1 and Q3 are the first and third 
quartiles and IQR is the interquartile range) were removed from the distributions for 
representation purposes. The number of protein activity quantifications (including outliers) 
are shown beneath each boxplot. The P-values from Wilcoxon rank sum tests comparing 
both distributions are shown. All data points (including outliers) were used to calculate the 
P-values. (E) Top panel. Density plots comparing the edge weight distributions in the string 
network of the significant and non-significant association pairs obtained with the kinases. 
(E) Bottom panel. Enrichment of the associations in the string network (edge weight > 850) 
along multiple cutoffs of statistical significance. The x-axis shows the adjusted P-value 
cutoffs (-log10) and the y-axis the Fisher-test P-values (-log10). (F) Same as (E) for the 
TFs. 

 

 

4.3.4. An atlas of kinase and TF regulation in cancer 
 

The estimation of kinase and TF activities across a large set of tumour samples from 

different tissues provides a first look at the space of tumour signalling states as measured 

by hundreds of regulators. We projected the activity profiles in a lower-dimensional space 
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using the uniform manifold approximation and projection for dimension reduction algorithm 

(UMAP) (Methods). For both the kinases and TF activities we observed that cancer 

samples were not clustered by experimental study (Figure 4.3A, Supplementary figure 
4.7A). The same was also observed using a principal component analysis (PCA) 

(Supplementary figure 4.7B, Supplementary figure 4.7C). These results suggest that our 

normalization procedures helped to mitigate the technical biases between studies, being 

likely superimposed by biological variation.  

After including only one kinase from sets of redundant kinases based on shared 

substrates such as AKT1/AKT2 (Methods), we selected the 30 kinases with the largest 

amount of variation along the samples (SD > median SD). As expected, these kinases are 

highly correlated with the UMAP projections (Figure 4.3B). This set of kinases contains 

known cancer drivers and kinases with inhibitors already used in the clinic as cancer 

treatment, such as BRAF, AKT, MAP2K1, SRC among others. Examining the tumour 

samples in this two-dimensional representation indicates that highly regulated kinases in 

the same pathway tend to be activated or inhibited across the same samples (Figure 4.3C). 

For example, we found that tightly co-regulated kinases from the MAPK signalling pathway, 

including PRKCB (PKC), BRAF (RafB), MAP2K1 (MEK1) and MAPK1 (ERK), share the 

same activation pattern along the cancer samples (Figure 4.3C). CDK1 is known to 

phosphorylate the casein kinase 2 (CSNK2A1) (Bosc et al. 1995). These kinases together 

showed opposite correlations with the UMAP projections and, consequently, a distinct 

regulatory state across the samples (Figure 4.3B, Figure 4.3C). To study this more 

formally, we obtained pairwise kinase regulatory relationships deposited in the OmniPath 

database (Türei, Korcsmáros, and Saez-Rodriguez 2016) and correlated their activities 

(Methods). We found that kinases that regulate each other were more likely to have 

correlated patterns of activity across samples (Figure 4.3D). This was still observed when 

taking into account cases where the pair of kinases shared some substrates 

(Supplementary figure 4.7D; Methods). Similarly, we would expect that kinases and TFs 

within the same pathway will tend to have similar patterns of activation across the samples. 

To investigate this, we modelled the TF activities as a function of the kinase activities using 

linear regressions (Methods), identifying 5,712 significant associations at an FDR < 5% 

(3,130 for FDR < 1%) (Figure 4.3E; Table S4.4). These associations were enriched in 

known kinase-TF functional interactions (Supplementary figure 4.7E, Supplementary 
figure 4.7F), including for example the relation between CDK1 activity and the activities of 

E2F4 and TFDP1 (Spring et al. 2017; Jiao et al. 2017) (Supplementary figure 4.7G). 

Altogether, these results corroborate that the variation in activities across the samples is 

shaped to some extent by the underlying regulatory relationships.  
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Our analysis can indicate the kinases that are most often dysregulated in cancer. 

For comparison, we also estimated kinase activity changes from phosphoproteomic 

measurements in a large panel of other conditions (Ochoa et al. 2016). We observed a 

correlation between the degree of regulation of kinases in cancer and non-cancer conditions 

(r = 0.78, P-value < 2.2e-16), with AKT1 and the cell-cycle kinases CDK1/2 and AURKB 

being highly regulated in both sets of conditions (Figure 4.3F). Kinases deviating from the 

regression line can be classified as preferentially regulated in the tumours or in the other 

conditions (Methods). There were a larger number of kinases specifically dysregulated in 

cancer (e.g., including PRKACA, CSNK2A1 and MAPK1) compared with other non-cancer 

conditions (Figure 4.3F). The kinases MAPKAPK2, RPS6KB1 and RPS6KA3 were less 

likely to be dysregulated in the tumours when compared to degree of regulation in other 

perturbations (Figure 4.3F). We performed the same analysis by tissue type 

(Supplementary figure 4.8A). The number of specifically dysregulated kinases was 

consistently higher in the tumours than the non-cancer conditions in all tissues 

(Supplementary figure 4.8A, Supplementary figure 4.8B). The inter-tissue variation 

regarding the number of dysregulated kinases in tumours correlated with the number of 

samples but not with the number of kinases quantified in the tissues (Supplementary figure 
4.8C). Some kinases (e.g., PRKACA, CSNK2A1 and MAPK1) were found specifically 

dysregulated across multiple tumour types, but more than half were dysregulated in just one 

tissue (68%) such as MYLK kinase in stomach cancer and PIM3 in kidney cancer 

(Supplementary figure 4.8D).  
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Figure 4.3. Regulation of protein activities in tumours and human perturbations. (A) 
UMAP projection of the kinase activity matrix (kinases as variables). The samples are 
coloured by experimental study. (B) Pearson correlation coefficient between the UMAP 
projections and the activity of non-redundant highly variable kinases. (C) Kinase activity 
gradient along the samples for a selection of the kinases shown in (B). (D) Spearman’s rank 
correlation coefficients between the activities of kinases known to co-regulate each other. 
The pairwise kinase co-regulatory relationships were obtained from the OmniPath database 
and stratified by their presence in the OmniPath’s sources (as single source or in at least 
two different sources). We only kept activating and consensual interactions along the 
sources. The background corresponds to kinase pairs without known co-regulation events. 
The distributions were compared to the background using Wilcoxon rank sum tests. (E) 
Associations between the activity of kinases and TFs. The x-axis contains the kinase 
coefficients (effect sizes) and the y-axis the adjusted P-values. Each association is 
represented in the form of kinase - TF. The colour gradient represents the edge weight of 
the pair in the string network (grey if not present). (F) Linear regression between the 
percentage of samples where the kinase is regulated in the perturbed conditions and in the 
tumour samples. The trend line and the Pearson’s r, with the respective P-value, are shown. 
In red and green are the kinases preferably regulated in the tumours and in the conditions, 
respectively. In blue are the kinases regulated in both. 
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4.3.5. Differential protein activity is associated with changes in 
patients survival 
 

Survival analyses from multi-omics datasets have been largely based on gene or 

protein expression differences between groups of patients (Ally et al. 2017; Bell et al. 2011; 

Petralia et al. 2020; Gao et al. 2019). However, kinase and TF activities should better 

capture the signalling state of the cancer samples and could be also linked to overall patient 

survival (OS). To explore this, we first performed a log-rank test to compare the Kaplan-

Meier (KM) survival curves between patients with TF and kinase activities classified as 

inactive, neutral and active (Methods). We found several TFs and kinases significantly 

associated with OS in different tumour types (Figure 4.4A, Figure 4.4B; Table S4.5). For 

instance, the degree of MYC activity was correlated with OS in brain and liver cancers 

(Figure 4.4C, Figure 4.4D). In both cases, patients with high MYC activity showed less OS 

than patients with neutral and inactivated MYC (Figure 4.4C, Figure 4.4D). According to 

the literature, MYC overexpression is a poor prognosis factor in liver and paediatric brain 

tumours (Lin et al. 2010; K. Zheng, Cubero, and Nevzorova 2017; Hutter et al. 2017). To 

take into account the effects of possible confounding covariates, we performed a 

multivariate Cox regression analysis using the protein activity scores as a predictor, while 

controlling for conventional clinical covariates and the genotype of recurrently mutated 

genes (Methods). Reassuringly, our findings with the log-rank tests were largely 

recapitulated with the Cox models (brain: hazard ratio (HR) = 1.50 (95% CI 1.27-1.76), 

adjusted P-value = 2.6e-5; liver HR = 1.17 (95% CI 1.06-1.31), adjusted P-value = 1e-2). 

Interestingly, we also found that high activity of FOXA1 and FOXM1 is a good and poor 

prognostic factor in liver cancer, respectively (FOXA1: HR = 0.69 (95% CI 0.55-0.85), 

adjusted P-value = 4.7e-3; FOXM1: HR = 1.39 (95% CI 1.17-1.66), adjusted P-value = 1.9e-

3) (Supplementary figure 4.9A, Supplementary figure 4.9B). These two proteins are 

known for their opposite role in hepatocarcinogenesis. On the one hand, elevated 

expression of FOXM1 promotes tumour cell proliferation and, on the other hand, FOXA1 

inhibits tumour progression by suppression of PIK3R1 expression (He et al. 2017; M. Yu et 

al. 2016).  

Regarding the kinases, we found that elevated activity of MAP3K8 and PRKCA was 

associated with less probability of survival in renal cancer (MAP3K8: HR = 10.5 (95% CI 

5.81-19), adjusted P-value = 1.1e-13; PRKCA: HR = 6.15 (95% CI 4.27-8.84), adjusted P-

value = 2.3e-21) (Figure 4.4E, Figure 4.4F). In agreement with these results, the 

overexpression of both protein kinase C and mitogen-activated protein kinase 8 has been 

associated with a higher invasiveness of kidney tumours (Engers et al. 2000; J. Li and Gobe 

2006; F. Liu et al. 2016; Su et al. 2015). Lastly, overactive AURKB was correlated with a 
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lower survival rate in breast cancer (HR = 27.2 (95% CI 11.2-66.2), adjusted P-value = 5.1e-

12) (Supplementary figure 4.9C), as previously found at the gene expression level (D. 

Huang et al. 2019).  

Altogether, these results indicate that the inference of kinase and TF activities can 

be a relevant prognostic tool in cancer studies.  

 

 
Figure 4.4. Survival analysis using kinase and TF activities. (A) Heatmap of log-rank 
test adjusted P-values (-log10) comparing Kaplan-Meier survival curves between cancer 
samples with TF activities classified as inactive, neutral and active (top 5 associations per 
tissue; FDR < 5%). (B) Same as (A) for the kinases (associations with FDR < 20%). KM 
survival plots comparing the survival probabilities (y-axes) as a function of time in days (x-
axes) for MYC in (C) brain (inactive = 71, neutral = 39, active = 67) and (D) liver (58, 59, 
40) cancer and (E) MAP3K8 (neutral = 95, active = 7) and (F) PRKCA (inactive = 3, neutral 
= 92, active = 7) in renal cancer. The log-rank P-values are shown in the plots. 
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4.4. Discussion 
 

Kinases and TFs are important mediators of cell signalling regulation and sensitivity 

to anti-cancer drugs. Here, we have compiled multi-omics datasets made available by the 

TCGA and CPTAC consortia and cell line studies and we were able to estimate the activities 

of 218 kinases and 292 TFs across 1,110 primary tumours and 77 cancer cell lines. Based 

on these we found that kinase activities appear to be primarily regulated by phosphorylation 

level with fewer cases of significant correlation with the predicted kinase protein abundance 

levels. Contrary to this, the predicted TF activity is primarily correlated with the 

mRNA/protein level of the TF itself with a smaller proportion of TFs with significant 

correlations with the phosphorylation state. This difference in regulation is not simply due 

to lack of detection of phosphosites, as TFs have a median value of 6 phosphosites detected 

compared to 9 for kinases. A larger fraction of the TF activities is correlated with their mRNA 

levels than the protein abundance. This result is non-intuitive since the protein abundance 

should be a better proxy for activity. It is possible that this is due to the fact that TF activities 

are derived directly from the same mRNA datasets while there will be some degree of 

technical variation due to sample preparation and analysis when compared with the protein 

dataset.  

Intuitively, the activity of a given protein (i.e., kinases and TFs) might be positively 

or negatively affected by mutations in the same protein or in other proteins it interacts with 

throughout the signalling networks. Our genetic analysis identified associations between 

mutated genes and the activities of kinases and TFs which were significantly enriched for 

known protein-protein interactions. Moreover, we found that the activities of the transcription 

factors TP53 and SREBF2 were correlated with their mutational status, as previously 

described (Garcia-Alonso et al. 2018). Nevertheless, we did not observe a general 

correlation between deleterious mutations within a kinase/TF and its activity including 

expected associations such as the BRAF V600E mutation and the activities of BRAF itself 

or other members of the MAPK pathway. These results were not due to issues linked with 

purity or immune infiltration as the same was observed in cell lines. Nevertheless, there 

may be issues in linking mutations with signalling differences due to single-cell-level 

variances that can not be systematically profiled in bulk (Lun and Bodenmiller 2020). In the 

future, single-cell multi-omics profiling may allow us to consider intra-tumour genetic 

heterogeneities. We speculate that these observations are more likely explained by 
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feedback loop mechanisms that are prevalent in signalling pathways (Lito, Rosen, and Solit 

2013). These results emphasize the difficulty in interpreting the impact of mutations on 

signalling networks and the importance of studying directly the dysregulation of signalling 

in cancer (Yaffe 2019).  

Known kinase regulatory pairs have strong patterns of co-regulation across the 

compiled dataset. These results suggest that the kinase activity estimates are meaningful, 

and that the variation in kinase activities along cancer samples is likely driven by biological 

factors. We showed in a previous work that these co-regulation signals can be used to 

predict kinase regulatory networks (Invergo et al. 2020). Similarly, we found many 

significant associations between the activities of kinases and TFs, which were significantly 

enriched in known functional interactions. This indicates that this compendium of protein 

activities may be useful in the future development of methods to reconstruct the signalling 

networks. Nevertheless, even the strongest correlations were modest in aggregate: well-

studied kinase-kinase regulatory pairs showed a median correlation of their predicted 

activities of 0.25 (Figure 4.3D). Our prior knowledge about kinase co-regulation is currently 

limited at multiple levels, including yet to be found kinase regulatory relationships and the 

extent that these regulatory relationships depend on the tissue of origin or other factors. We 

speculate that these and other confounding factors could explain the weak kinase-kinase 

correlations.  

By comparing the kinases most often differentially regulated across tumours and 

after more acute perturbations, we have shown that most often regulated kinases are the 

same in both contexts. These include kinases such as CDK1, AKT1 and AURKB. The most 

plausible explanation for this would be that kinases that are often regulated in acute 

perturbations are directly linked to the regulation of growth and cell-cycle and other critical 

processes needed to be regulated in cancer cells. Alternatively, we have shown that these 

highly regulated kinases occur in very central positions in the signalling network (Ochoa et 

al. 2016) and that it is possible that some degree of regulation of these kinases is almost 

unavoidable. Interestingly, this comparison allowed us to identify kinases which show higher 

differential regulation in tumours than acute perturbation such as PRKACA, MAPK1 and 

MAPK3.  

Finally, we show how the estimated protein activity can be linked to differences in 

patient survival. Given that the activities of kinases and TFs can often be estimated via 

antibodies targeting regulatory phosphosites, it may be possible to develop biomarkers 

based on these findings. In addition, kinases are very trackable drug targets with multiple 

kinase drugs already used to treat cancer patients.  While further studies in cell based and 

animal models will be required to evaluate the significance of the findings presented here, 
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this work provides kinase activities linked to specific tumour types and mutational contexts 

that could be pursued for potential treatment.  

 

 

4.5. Methods 
 

Data collection 
 

Proteomics and phosphoproteomics 

 

The mass spectrometry (MS)-based protein and phosphosite quantifications 

(absolute [phospho]peptide intensities and ratios relative to controls) for the cancer samples 

of brain (Petralia et al. 2020), breast (Mertins et al. 2016), colorectal (B. Zhang et al. 2014), 

kidney (Clark et al. 2019), liver (Gao et al. 2019), lung (Gillette et al. 2020), ovarian (H. 

Zhang et al. 2016), stomach (Mun et al. 2019) and uterus (Dou et al. 2020) were 

downloaded from the CPTAC data portal (proteomics.cancer.gov/data-portal). For the colon 

cancer samples (Vasaikar et al. 2019), we downloaded the data from the linkedomics 

database (linkedomics.org/login.php). The same data for the cancer cell lines of breast and 

colorectal tumours was downloaded from the respective publications (Lapek et al. 2017; 

Lawrence et al. 2015; Roumeliotis et al. 2017). The proteins and phosphosites were 

identified using gene symbols, in a process described by the common data analysis pipeline 

(CDAP) from CPTAC. Additionally, we downloaded normalized RPPA protein and 

phosphorylation quantification data (183 features across 7,694 samples from 31 TCGA 

tumours) from the TCPA (J. Li et al. 2013) database. 

 

Transcriptomics 

 

The RNA-seq data was obtained in the format of read counts and Fragments Per 

Kilobase of transcript per Million mapped reads (FPKM). The data for the tumour tissues of 

breast (Mertins et al. 2016), colorectal (B. Zhang et al. 2014), kidney (Clark et al. 2019), 

lung (Gillette et al. 2020), ovarian (H. Zhang et al. 2016) and uterus (Dou et al. 2020) was 

downloaded from the GDC portal (portal.gdc.cancer.gov/). The data for the brain cancer 

was compiled from the paediatric cBioPortal (pedcbioportal.kidsfirstdrc.org/); for the liver 

(Gao et al. 2019) from NODE (www.biosino.org/node/) (accession ID: OEP000321); for the 

stomach (Mun et al. 2019) from GEO (ncbi.nlm.nih.gov/geo/) (accession ID: GSE122401); 
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and for the colon cancer (Vasaikar et al. 2019) from the authors. The cancer cell lines 

(Lapek et al. 2017; Lawrence et al. 2015; Roumeliotis et al. 2017) data was downloaded 

from the CCLE data portal (portals.broadinstitute.org/ccle/data). 

 

Genomics - somatic mutations 

 

The whole genome sequencing (WGS)-derived somatic mutations for the brain 

cancer samples (Petralia et al. 2020) were downloaded from the paediatric cBioPortal 

(pedcbioportal.kidsfirstdrc.org/) in Mutation Annotation Format (MAF) files. For the breast 

(Mertins et al. 2016), colorectal (B. Zhang et al. 2014) and ovarian (H. Zhang et al. 2016) 

cancers, the whole exome sequencing (WES)-derived MAF files were downloaded from the 

cBioPortal (cbioportal.org). The MAF file for the colon cancer samples (Vasaikar et al. 2019) 

was downloaded from the linkedomics database (linkedomics.org/login.php). Regarding the 

kidney (Clark et al. 2019), lung (Gillette et al. 2020) and uterus (Dou et al. 2020) cancers, 

we downloaded the MuTect2-called and VEP-annotated VCF files from the GDC data portal 

(portal.gdc.cancer.gov/). For the liver (Gao et al. 2019) and stomach cancers (Mun et al. 

2019), we obtained the somatic mutations from the publication and authors, respectively. 

The mutation data for the colorectal and breast cancer cell lines (Lapek et al. 2017; 

Lawrence et al. 2015; Roumeliotis et al. 2017) was obtained from the DepMap portal 

(depmap.org/portal/). 

 

Genomics - somatic copy number alterations 

 

The somatic copy-number variation (CNV) data was downloaded as discretized 

GISTIC2 scores (Beroukhim et al. 2007; Mermel et al. 2011) and segment-level log2 ratios 

between the tumour and normal samples. The GISTIC2 scores can be -2 (strong copy-

number loss, likely a homozygous deletion), -1 (shallow deletion, likely a heterozygous 

deletion), 0 (diploid), 1 (low-level gain of copy number, generally broad amplifications) and 

2 (high-level increase in copy number, often focal amplifications). The GISTIC2 scores for 

the tumour samples of breast (Mertins et al. 2016), colorectal (B. Zhang et al. 2014) and 

ovarian (H. Zhang et al. 2016), and for the cancer cell lines (Lapek et al. 2017; Lawrence et 

al. 2015; Roumeliotis et al. 2017) were downloaded from the cBioPortal (cbioportal.org). 

The same data for the brain cancer samples (Petralia et al. 2020) was downloaded from the 

paediatric cBioPortal (pedcbioportal.kidsfirstdrc.org/); for the colon samples (Vasaikar et al. 

2019) from linkedomics (linkedomics.org/login.php); and for the liver samples (Gao et al. 

2019) from NODE (biosino.org/node/index) (accession ID: OEP000321). The segment-level 
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log2 ratios for the kidney (Clark et al. 2019) and uterus (Dou et al. 2020) cancer samples 

were provided by the authors of the respective publications. 

 

Clinical data 

 

 The metadata and clinical information from the patients of breast (Mertins et al. 

2016), colorectal (B. Zhang et al. 2014) and ovarian (H. Zhang et al. 2016) cancers was 

obtained from the CPTAC (proteomics.cancer.gov/data-portal) and the cBioPortal 

(cbioportal.org) databases. The survival data for these patients was collected from (J. Liu 

et al. 2018), whereas the cancer subtypes were obtained from the respective publications 

and also using the PanCancerAtlas_subtypes function from the TCGAbiolinks R package 

(Colaprico et al. 2016). For the brain (Petralia et al. 2020), kidney (Clark et al. 2019), liver 

(Gao et al. 2019), lung (Gillette et al. 2020), stomach (Mun et al. 2019) and uterus (Dou et 

al. 2020) cancers, we downloaded the clinical information from the CPTAC portal and from 

the respective publications. For the colon cancer samples, we downloaded the data from 

the linkedomics database (inkedomics.org/login.php). The clinical data from the cancer cell 

lines donors (Lapek et al. 2017; Lawrence et al. 2015; Roumeliotis et al. 2017) was obtained 

from the CCLE data portal (portals.broadinstitute.org/ccle/data). Altogether, we collected 

the following information about the cancer patients: age, gender, ethnicity, race, height, 

weight, cancer histological type and subtype, tumour stage, overall survival and survival 

time in days. 

 

 

Data pre-processing and normalization 
 

Proteomics 

 

The label-free protein quantifications (precursor areas) for the colorectal tumours 

(B. Zhang et al. 2014) and the tandem mass tag (TMT) protein intensities for the breast and 

colorectal cancer cell lines (Lapek et al. 2017; Lawrence et al. 2015; Roumeliotis et al. 2017) 

were pre-processed and transformed to log2 fold-changes as previously described (Sousa 

et al. 2019). For the brain (Petralia et al. 2020), lung (Gillette et al. 2020) and stomach (Mun 

et al. 2019) cancers, the sample replicates were combined by averaging the log2 fold-

change values of each protein. After that, we removed 6 outlier samples from colorectal 

cancer with an absolute median log2 fold-change distribution higher than 1 (2-fold). 

Altogether, we assembled a matrix with 14,742 proteins and 1,266 samples (1,170 cancer 
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samples and 96 cell lines) belonging to 9 different tissues. This matrix contained 9,941,918 

protein measures (8,721,454 missing values) and 5,052 proteins quantified in at least 80% 

of the samples. 

 

Phosphoproteomics 

 

The phosphorylation measures were acquired at the phosphosite level. Each 

phosphosite is identified by a given protein, position and residue. The phosphosites from 

the different datasets were harmonized against a common reference by only keeping the 

phosphorylation sites that mapped correctly to the Ensembl human proteins (GRCh37 - 

release 98). As the phosphorylation sites were annotated at the gene symbol level (see 

data collection above), we mapped the phosphosites to the protein sequences using the 

canonical transcripts from UniProt 

(github.com/mskcc/vcf2maf/blob/main/data/isoform_overrides_uniprot). Duplicated 

phosphosites, arising from multiple phosphopeptide intensities mapping to the same 

phosphosite, were reduced to a single phosphosite if the log2 fold-change values were the 

same across all samples from the respective experimental study. All duplicated 

phosphosites were discarded otherwise. For the colorectal cancer cell lines (Roumeliotis et 

al. 2017), the relative TMT intensities (obtained by dividing the TMT intensities per the mean 

TMT intensity for each protein) were divided by 100 and transformed to log2. For the brain 

(Petralia et al. 2020), breast (Mertins et al. 2016), lung (Gillette et al. 2020) and stomach 

(Mun et al. 2019) cancers, the sample replicates were combined by averaging the log2 fold-

change values of each phosphosite. We removed 52 outlier samples with an absolute 

median log2 fold-change distribution higher than 1 (2-fold). Then, the log2 fold-change 

distributions across samples were quantile normalized in order to ensure comparable 

distributions, using the normalizeQuantiles function from the limma R package (Ritchie et 

al. 2015). To detect phosphorylation changes that are independent of the protein 

abundance, we regressed-out the protein levels from the respective phosphosites using a 

multiple linear regression model. The phosphosite log2 fold-changes were set as the 

dependent variables while the protein log2 fold-changes, age and gender were set as the 

independent variables. The residuals from the linear model were the phosphorylation 

changes not driven by the protein abundance or other confounding effects (age and 

gender). The final phosphoproteomic matrix contained 86,044 phosphosites across 980 

samples (930 cancer samples and 50 cell lines) from 9 different tissues. Due to the 

sparseness of the phosphorylation data (7,280,101 measures and 77,043,019 missing 

values), only 256 phosphosites were quantified in at least 80% of the samples (2,438 in 
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50%). For the downstream analyses we only considered the phosphosites (69,599) that 

were quantified from phosphopeptides phosphorylated at single positions. 

 

Transcriptomics 

 

The RNA-seq data (FPKMs and read counts) downloaded from the GDC and GEO 

websites (see data collection above) were converted to tabular formats using in-house R 

scripts. For the liver (Gao et al. 2019) and stomach (Mun et al. 2019) cancer samples, we 

calculated FPKM expression values from the RSEM (B. Li and Dewey 2011) expected 

counts using the rpkm function from the edgeR R package (Robinson, McCarthy, and Smyth 

2009). We obtained the gene lengths by calculating the size (in base pairs) of the merged 

exons of each gene, using the gtftools python script (H.-D. Li 2018) 

(genemine.org/gtftools.php) and the GENCODE v19 human gene annotation 

(gencodegenes.org). After selecting the protein-coding genes, as described in the 

GENCODE v19 annotation, we removed the genes without expression (FPKM > 0) in at 

least 50% of the samples of the respective dataset. The FPKMs of each gene were 

subsequently log2 transformed (adding a pseudocount of 1 to avoid taking the log of 0) and 

converted to log2 fold-changes by subtracting the log2 median FPKM across samples. The 

log2 fold-changes were calculated for each dataset separately. The final gene expression 

matrix contained 17,056 genes across 1,187 samples and 9 tissues (1,110 cancer samples 

and 77 cell lines). 14,966 genes were expressed in at least 80% of the samples. 

 

Genomics - somatic mutations 

 

 We processed the VEP-annotated VCF files from the kidney (Clark et al. 2019), lung 

(Gillette et al. 2020) and uterus (Dou et al. 2020) cancer samples using the bcftools split-

vep plugin (samtools.github.io/bcftools/howtos/plugin.split-vep.html) with the following 

parameters: -f '%CHROM\t%POS\t%REF\t%ALT\t%QUAL\t%FILTER\t%CSQ\n' -d -A tab. 

Only the mutations passing all quality filters (FILTER == “PASS”) were selected for 

downstream analyses. The mutations from these samples were then collected in a single 

text file using in-house bash scripts. In all datasets, we selected the mutations that were 

annotated using the canonical UniProt transcripts 

(github.com/mskcc/vcf2maf/blob/main/data/isoform_overrides_uniprot) and classified as 

frameshift and in frame insertions/deletions (Indels), missense, nonsense, stop codon loss 

(readthrough mutations) and splice site. All mutations (except splice site) were standardized 

against the Ensembl human proteins (GRCh37 - release 98) by filtering out those mutations 

whose reference (wild type) residues did not match the protein sequences in the mutation 
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positions. The reference/mutated residues and protein position of the mutations were 

extracted from the HGVSp codes. In total, we collected 284,882 mutations in 17,305 protein-

coding genes, across 1,168 samples (1,079 tumours and 89 cell lines) from 9 different 

tissues. 

 

Genomics - somatic copy number alterations 

 

GISTIC2 (version 2.0.23) was used to process the segment-level log2 ratios for the 

kidney (Clark et al. 2019) and uterus (Dou et al. 2020) cancer samples and define the 

gain/loss events of each gene (see data collection above), using the default parameter 

settings (-genegistic and -savegene parameters were both set to 1). After obtaining the 

discretized GISTIC2 CNV scores for each dataset, only protein-coding genes were selected 

as described in the GENCODE v19 human gene annotation. The final CNV matrix contained 

16,520 genes across 1,025 samples and 7 tissues (947 tumours and 78 cell lines). 

 

Normalization of gene and protein expression data 

 

The confounding factor related to the experimental batch (e.g., CPTAC-breast, 

CPTAC-brain, etc.) was removed using a linear regression model. This model was 

implemented with the mRNA expression or protein abundance of a given gene as a 

dependent variable and the experimental batch as independent variable. The residuals from 

the linear model were the protein or mRNA variation not driven by the technical differences 

between cancer datasets. 

 

 

NCI60 and CRC65 cell lines - data collection and pre-processing 
 

The proteomics and phosphoproteomics data for the NCI60 and CRC65 cancer cell 

lines (trypsin-digested version) were downloaded from (Frejno et al. 2020). The 

phosphorylation residues were obtained by mapping the position of the modifications to the 

UniProtKB/Swiss-Prot canonical and alternative (isoforms) protein sequences (release 

2020_02) (uniprot.org/downloads). Only the phosphosites mapping to serine, threonine and 

tyrosine residues were selected. The log10 transformed phosphorylation and protein 

absolute abundances (iBAQ) were set to the original values using powers of 10 

(10^abundance). Phospho(peptide) abundances mapping to the same phosphosite or 

protein were averaged per sample. The absolute abundances were converted to relative 
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values (fold-changes) by calculating the log2 ratio of the abundances over the median 

abundance across cell lines. This process was performed for both cancer cell line sets. To 

detect net phosphorylation changes we regressed-out the protein levels from the respective 

phosphosites using the residuals of a linear regression model (y ~ x) where the 

phosphosites were set as dependent variables (y) and the proteins as independent 

variables (x). In total, we assembled 11,940 proteins and 45,557 phosphosites across 125 

cell lines (60 from NCI60 and 65 from CRC65). 

The gene expression data was downloaded in the format of FPKMs 

(discover.nci.nih.gov/cellminer/) and Transcripts Per Million (TPMs) (depmap.org/portal/), 

for the NCI60 and CRC65 cell lines, respectively. Both gene expression measures were 

log2 transformed and converted to fold-changes by subtracting the log2 median FPKM/TPM 

across cell lines. In total, we calculated the log2 fold-changes of 18,291 genes across 95 

cell lines (60 and 35 from the NCI60 and CRC65 sets, respectively). 

The whole genome mutation data was downloaded from the CellMiner 

(discover.nci.nih.gov/cellminer/) and the DepMap databases (depmap.org/portal/) for the 

NCI60 and CRC65 cancer cell lines, respectively. Across the NCI60 cell lines, we selected 

those mutations where more than 50% of the respective reads contained the alternative 

allele. In both datasets, we selected the mutations annotated as silent, missense, nonsense, 

stop codon loss, frameshift and in frame Indels. The protein position of the mutations and 

respective reference/mutated residues were obtained from the HGVSp codes. Altogether, 

we collected 585,904 mutations in 17,259 genes along 96 cell lines (60 from NCI60 and 36 

from CRC65). 

 

 

Inference of kinase and TF activities 
 

Kinase and TF activities were estimated using known kinase and TF regulatory 

targets. The kinase-substrate relationships were obtained from (i) ProtMapper (Bachman, 

Gyori, and Sorger 2019), a literature-based resource of kinase substrates annotated at the 

phosphosite level. The resource contains phosphorylation sites aggregated from five 

databases (BEL Large Corpus, NCI-PID, PhosphoSitePlus, Reactome and SIGNOR) and 

three text-mining tools (REACH, RLIMS-P and Sparser) and (ii) a collection of phosphosites 

derived from in vivo (Hijazi et al. 2020) and in vitro (Sugiyama, Imamura, and Ishihama 

2019) experiments. Only the phosphorylation sites correctly mapped to the Ensembl human 

proteins (GRCh37 - release 98) were considered for the subsequent analyses. In total, we 

collected the phosphorylation targets of 573 kinases. 
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The transcriptional targets of the TFs were compiled from the DoRothEA R package 

(v1.2.0), using only interactions annotated with confidence A, B and C. 

The kinase activities were inferred using a one sample z-test, which was shown to 

perform well (Hernandez-Armenta et al. 2017). The activity of a given kinase in a given 

sample was estimated as follows: 

 

Equation 4.1: 𝑧 = 1	2	3
4	/	√#

 

 

where 𝑧 corresponds to the z-score, 𝑥 the average log2 fold-change of the kinase 

substrates, μ the average log2 fold-change of all phosphosites measured in the sample 

(background), √N the square root of the number of kinase substrates (N) and σ the standard 

deviation of the background. Then, the z-score was used to calculate a two-tailed P-value 

using the pnorm R function [2×pnorm(-abs(𝑧))], which was further log10 transformed and 

signed based on the position of the z-score in the standard normal distribution. If the z-score 

was in the right part of the distribution, i.e., positive, the kinase substrates showed an 

increase in phosphorylation in comparison to the sample background. Thus, the activity of 

that kinase was also expected to be increased (positive) in that sample, and vice-versa. 

This process was repeated for all kinases across all samples. For the downstream analyses 

we selected the kinase-substrate interactions from the databases and text-mining resources 

and the kinase activities quantified with 3 or more substrates, resulting in 218 kinases with 

activity estimates in an average of 437 cancer samples (of a total of 980 samples). 

 We also estimated kinases activities based on the phosphorylation changes of 

phosphosites mapping to the kinases. We selected the phosphosites with known regulatory 

status in PhosphositePlus or with unknown status but with a functional score higher than 

0.4 (1,534 of 4,247 kinase-mapping phosphosites). The functional score was calculated 

using the FunscoR R package (evocellnet.github.io/funscoR/). The scores range from 0-1 

and reflect the functional consequence of the phosphosites (Ochoa et al. 2020). The kinase 

activity inference method was the one sample z-test as described above. 

TF activities were estimated using the VIPER algorithm (Alvarez et al. 2016), using 

log2FC as gene level statistics (see Data pre-processing and normalization - 

transcriptomic). VIPER was run with a minimum limit of regulon size of 5, and using all 

provided gene level statistics as a background (eset.filter = FALSE). VIPER returned a 

normalized enrichment score for 292 TFs across 1,187 cancer samples. 

 

 

Benchmark of the kinase targets 
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We validated the kinase activities calculated from the different sources of kinase 

targets (database, text-mining, in vivo and in vitro) using a MS-based phosphoproteomic 

dataset reporting the relative phosphorylation changes of 52,814 phosphosites in 103 

human perturbation-dependent conditions (Ochoa et al. 2016; Hernandez-Armenta et al. 

2017). This data includes a gold standard dataset composed of 184 kinase-condition pairs 

where kinase regulation is expected to occur.  

The z-test-based absolute kinase activity scores estimated from the different kinase 

substrate sources were used as classifiers of kinase regulation. Given the imbalance 

between the positive (gold standard) and negative (kinase-condition pairs with unknown 

regulation) classes, we generated 100 random sets of negative cases with the size of the 

positive set. The predictive skill of each classifier was evaluated by the mean area under 

the receiver operating characteristic curves (AUROCs). As a control, we replicated the 100 

random sets of negative and positive pairs (53 pairs each) along the different lists of kinase-

substrates. The ROC curves and corresponding AUCs were calculated using the prediction 

and performance functions from the ROCR R package. 

 

 

Genetic associations with the kinase and TF activities 
 

The effects of mutations on the kinase and TF activities were assessed by 

associating the activity of a given protein with the mutational status of the same protein or 

other proteins it might interact throughout the cellular regulatory networks. First, we built a 

binary mutation matrix M where the index Mij corresponds to 1 if the sample i has a mutation 

in gene j and 0 otherwise. To do that, we selected the mutations classified as frameshift 

and in frame Indels, missense, nonsense and stop codon loss. Given the proteins X and Y, 

the association between the activity of Y (Yact) and the mutational status of X (Xmut) was 

assessed across samples by fitting a linear model that took into account possible 

confounding effects: 

 

Equation 4.2: Yact = 𝛃0 + 𝛃1Study + 𝛃2Xmut + ɛ 

 

where Yact represents the activity of protein Y, 𝛃0 the intercept, 𝛃1 the regression coefficient 

for the covariate experimental study, 𝛃2 the regression coefficient for the mutational status 

of X and ɛ the noise term. This model was applied to assess the effect of Xmut on the activity 

of the same protein (Xact ~ Xmut) and on the activity of other proteins (Yact ~ Xmut). The P-
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values from the coefficients of Xmut (𝛃2) were calculated using the t-statistic over a Student's 

t-distribution and adjusted for false discovery rate (FDR) using the Benjamini-Hochberg 

method. The linear models and respective statistics were calculated using the lm and 

p.adjust R functions. 

The associations were performed with the genes mutated in more than 20 samples 

and with the protein activities estimated in at least 10 samples. An association between a 

pair Yact ~ Xmut or Xact ~ Xmut was performed if Xmut was mutated in at least 5 of all the samples 

in the pair. Regarding the Yact ~ Xmut associations, we tested 520,938 pairs between 208 

kinases and 3,590 genes and 1,048,216 pairs between 292 TFs and 3,590 genes. In relation 

to the Xact ~ Xmut associations, we tested 40 pairs and 64 pairs with the kinases and TFs, 

respectively. 

 

 

Projection of the protein activities in low-dimensional spaces 
 

 We reduced the dimensionality of the kinase and TF activity matrices using the PCA 

and UMAP methods. Given the sparseness of the kinase activity matrix, we imputed the 

missing values using the missForest function from the missForest R package. Prior to that, 

we selected the kinases (columns) with activity measures in at least 60% of the samples 

and the samples (rows) with measures in at least 80% of the kinases. The imputed kinase 

activity matrix contained 90 kinases across 727 samples. The PCA analysis was performed 

using the prcomp R function (scale. = T, center = T) and the UMAP analysis using the umap 

function from the umap R package (with default parameters). 

 When correlating the kinase activities with the UMAP projections (Pearson 

correlation coefficient), we excluded redundant kinases based on the degree of shared 

substrates. We first performed a hierarchical clustering analysis (hclust R function, 

agglomeration method = "complete") using the Jaccard Index (JI) of shared substrates 

between kinases as distance measure (1-JI). Then, the kinase dendrogram was cut at a 

specific level (height = 0.85) to identify clusters of non-redundant kinases. We only kept one 

kinase per cluster (with the largest amount of substrates), reducing the number of kinases 

from 304 to 208. 

 

 

Correlation of kinase pairs 
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 We obtained kinase-kinase regulation pairs from the OmniPath database 

(omnipathdb.org/interactions). We selected the interactions reported as directed, activating 

(stimulating relationships) and consensual along the resources (databases). Then, we 

correlated the activity of the kinase-kinase pairs along the samples using the Spearman’s 

rank correlation coefficient. The kinase pairs were stratified by the number of databases in 

which the interaction was found as a way of ascertaining the relevance of the interactions.  

Strong correlations might be due to the amount of shared substrates between kinase 

pairs and not because of co-regulation events. To control for this technical limitation, we 

repeated the correlation analysis using a set of non-redundant kinases. This set was 

obtained by performing a hierarchical clustering analysis (hclust R function, agglomeration 

method = "complete") using the degree of shared substrates between kinases as distance 

measure (1 - Jaccard Index of shared substrates). The dendrogram tree was cut at a height 

cutoff of 0.8. Just one kinase was kept per cluster (with the highest number of substrates). 

Using this approach, we reduced the number of kinases from 304 to 231. 
 

 

Associations between the activities of kinases and transcription 
factors 
 

For a given protein pair K and T, where K is a kinase and T is a transcription factor, 

we tested whether the changes in the activity of kinase K are linearly associated with 

changes in the activity of the transcription factor T. To do that, we fitted a linear model to 

predict the activity of transcription factor T (Tact) using the activity of kinase K (Kact), while 

adjusting for possible confounding effects: 

 

Equation 4.3: Tact = 𝛃0 + 𝛃1Study + 𝛃2Kact + ɛ 

 

where Tact represents the activity of the transcription factor T, 𝛃0 the intercept, 𝛃1 the 

regression coefficient for the covariate experimental study, 𝛃2 the regression coefficient for 

the activity of kinase K and ɛ the noise term. The P-values from the coefficients of Kact (𝛃2) 

were calculated using the t-statistic over a Student's t-distribution and adjusted for false 

discovery rate (FDR) using the Benjamini-Hochberg method. The linear models and 

respective statistics were calculated using the lm and p.adjust R functions. Using this model 

we tested 26,280 kinase-TF associations between 90 kinases and 292 TFs. 

 

 



 

 154 

Enrichment of the protein association pairs in the STRING network 
 

 The genetic and the kinase-TF associations were tested for enrichment in the 

STRING protein-protein interactions network using Fisher's exact tests (fisher.test R 

function, alternative = “greater”). The human network (version 11.0) was downloaded from 

the STRING database (string-db.org) as a list of protein-protein interactions with the 

corresponding combined scores. The scores range from 150 to 999 and represent the 

confidence of the respective interactions. We filtered the network using a minimum score of 

850 to select the most confident protein-protein interactions. Fisher's exact tests were 

performed by overlapping the protein association pairs with the STRING network across 

increasing -log10 adjusted P-values. The backgrounds corresponded to all the protein 

association pairs linearly modelled. 

 

 

Kinase activity changes between tumours and perturbations 
 

To study the differences of kinase signalling between tumours and perturbation-

dependent conditions, we estimated the activity of kinases across an extended panel of 

perturbations with phosphoproteomic measurements (Ochoa et al. 2016). This dataset is 

composed of 76,379 phosphosites across 439 perturbations. Next, we calculated the 

percentage of tumour samples and perturbations each kinase was regulated in, using an 

absolute kinase activity cutoff of 1.75 as previously used (Ochoa et al. 2016). We kept the 

kinases regulated in at least 1 tumour or perturbation. In order to find the kinases 

preferentially regulated in the tumours and in the perturbations - tumour or perturbation-

specific kinases - we fitted a linear model between the percentage of kinase regulation in 

the tumours and in the perturbations, as independent and dependent variables, 

respectively. The most deviating kinases from the regression line were considered to be 

differentially regulated. These kinases were found by converting the residuals of the linear 

model to z-scores: while the kinases with a residual z-score > 2 were classified as tumour-

specific, the kinases with a residual z-score < -2 were classified as perturbation-specific. 

This process was performed across all cancer samples and by tissue type. The linear 

models and respective residuals were calculated using the lm and residuals R functions. 

The residuals were standardized to z-scores using the scale R function. 

 

 

Survival analysis 
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In order to construct Kaplan-Meier (KM) survival curves, cancer samples were 

stratified based on their TF and kinase activity scores (AS). For each kinase and TF, we 

classified the samples as: inactive if AS < -1.75; active if AS > 1.75; neutral if -1.75 < AS < 

1.75. The 1.75 activity cutoff was chosen based on a previous publication (Ochoa et al. 

2016). We estimated the KM survival curves by protein and tissue. We tested if the 

differences on the activities of a given TF on a given tissue were associated with the 

probability of survival across time if: more than 10 deaths occurred and more than 10 

samples were classified as active and inactive. Given the lower number of 

activation/inactivation events for the kinases, we tested the kinase-tissue pairs with more 

than 5 samples classified as active or inactive and with more than 5 deaths. These filters 

resulted in 1,025 tests for the TFs (274 TFs and 5 tissues) and 195 tests for the kinases (81 

kinases and 7 tissues). The survival distributions of the cancer sample groups were 

compared using log-rank tests with the survdiff function from the survival R package. The 

P-values were adjusted for FDR using the Benjamini-Hochberg (BH) procedure (p.adjust R 

function). The KM curves were plotted using the ggsurvplot function from the survminer R 

package. 

To account for confounding covariates, we performed a multivariate statistical 

analysis using Cox proportional-hazards regression models. The hazard function was fitted 

using the protein activity scores as a continuous predictor, adjusted for age, gender and the 

genotype (1 if mutated and 0 otherwise) of 28 recurrently mutated genes in our atlas (at 

least 100 mutations). Such models were applied to the protein-tissue pairs described above. 

We extracted the hazard ratios of the protein activity coefficients and corresponding 95% 

confidence intervals and P-values from the Cox models. The BH-corrected P-values were 

calculated using the p.adjust R function. The Cox regression models were fitted using the 

coxph function from the survival R package. 

 

 

4.6. Supplementary materials 
 

4.6.1. Figures 
 



 

 156 

 
Supplementary figure 4.1. Pearson’s correlation between phosphorylation levels and 
corresponding protein abundances. (A) Distribution of the correlations between protein 
abundances and phosphorylation changes for protein-phosphosite pairs (number of pairs 
beneath the boxplots) across all cancer samples. Given the sparseness of the 
(phospho)proteomics data, we selected the protein-phosphosite pairs with 
protein/phosphorylation measures in at least 1% (n > 10) of the total cancer samples. Left: 
non-regressed-out phosphorylation data. Right: protein regressed-out phosphorylation data 
(Methods). (B) Representation of the same data as (A) by cancer dataset. Correlations 
were calculated for those protein-phosphosite pairs with protein/phosphorylation measures 
in at least 10% (n > 5) of the samples of each dataset. A small amount of correlation 
between phosphosites and proteins remain as the regression was done across all of the 
dataset.  

 

 
Supplementary figure 4.2. Lists of kinase-substrate associations compiled in this 
study. (A) Number of kinase-substrate associations by source type. (B) Number of kinases 
and substrates by source type.  
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Supplementary figure 4.3. Validation of kinase-substrate sources and kinase activity 
estimates in the cancer samples. (A) Receiver operating characteristic (ROC) curves 
demonstrating the predictive performance of the Z-test-based kinase activities across 
different sources of kinase-substrate interactions. As positives, we used a set of 184 kinase-
condition pairs where regulation is expected to occur, while as negatives we generated 100 
random sets of the same size as the positive set. Curves display the average of 100 ROC 
curves and vertical bars the standard deviation of the true positive rate at multiple points of 
false positive rate. The average area under the ROC curve (AUC) is shown for each kinase-
substrate list. The averaged ROC curves and corresponding AUCs demonstrate the 
discriminative power of each kinase-substrate list. (B) In contrast to the analysis shown in 
(A), here we replicated the 100 sets of negative (53) and positive (53) regulatory pairs along 
the different lists of kinase substrates. (C) Related to the main Figure 4.1C. Kinase activities 
were re-estimated in cancer samples after removing the kinase auto-regulatory 
phosphosites from the kinase targets. The boxplots show the distribution of the Pearson’s 
correlation between kinase activities and phosphosite quantifications that mapped to the 
same kinase, with (n = 118) and without (n = 743) annotation (activating) in 
PhosphoSitePlus. (D) Fraction of kinases and TFs classified as highly variable across the 
tumour samples. Kinases and TFs with absolute activity measures higher than 1.75 and 
3.89 (96.7th percentiles), respectively, in at least 5% of the samples were classified as highly 
variable.  (E) Percentage of phosphosites in TFs significantly and not significantly correlated 
with the corresponding TF activities, stratified by their functional score. Analysis based on 
1,183 phosphosites mapping to 178 TFs (n > 10). 
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Supplementary figure 4.4. Effects of genomic alterations on protein abundances. (A) 
Comparison of the distribution of the correlations (Pearson's r) between the CNV levels 
(GISTIC2) and the mRNA and protein abundances (log2 fold-changes). Correlations were 
calculated for those genes with CNV, mRNA and protein quantifications in at least 10 
samples (11,624 genes). The experimental batch was regressed-out from the mRNA and 
protein quantification data before computing the correlations (Methods). (B) Same as (A) 
by tissue and experimental study. P-values < 2.2e-16 in all cases (Wilcoxon rank sum test). 
The number of genes is indicated in the plot. (C) Protein abundance distribution between 
mutation types from the CPTAC tumours. One sample may have multiple mutations in the 
same protein. Therefore, we selected the sample-protein pairs that were exclusive of each 
mutation type to prevent the cases where different mutations in the same protein and 
sample have the same protein abundance. The outliers (defined as the data points beyond 
Q1-1.5*IQR and Q3+1.5*IQR, where Q1 and Q3 are the first and third quartiles and IQR is 
the interquartile range) were removed from the distributions for representation purposes. 
The number of protein quantifications (including outliers) is shown at the left of each boxplot. 
The P-values from a two-sample T-test comparing each distribution with the background 
(no mutation) are shown at the right. All data points (including outliers) were used to 
calculate the P-values. (D) Same as (C) for the cancer cell lines from the NCI60 and CRC65 
panels. 
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Supplementary figure 4.5. Effects of genomic alterations on protein activities. (A) 
Distribution of kinase and TF activities between mutation types from the CPTAC tumours. 
Only the sample-protein pairs that were specific of each mutation type were selected to 
prevent the cases where different mutations in the same protein and sample have the same 
protein activity. The outliers (defined as the data points beyond Q1-1.5*IQR and 
Q3+1.5*IQR, where Q1 and Q3 are the first and third quartiles and IQR is the interquartile 
range) were removed from the distributions for representation purposes. The number of 
protein activity quantifications (including outliers) is shown at the left of each boxplot. The 
P-values from a two-sample T-test comparing each distribution with the background (no 
mutation) are shown at the right. All data points (including outliers) were used to calculate 
the P-values. (B) Same as (A) for the cancer cell lines from the NCI60 and CRC65 panels. 
(C) Scatterplots between the -log10 SIFT score (x-axis) of missense mutations and the 
activity of kinases and TFs (y-axis) from the CPTAC tumours. The linear regression line and 
the Pearson correlation coefficient, with the respective P-value, are shown. Cases where 
the same sample had multiple missense mutations in the same gene were removed to 
prevent the assignment of the same protein activity to different SIFT scores. (D) Same as 
(C) for the cancer cell lines from the NCI60 and CRC65 panels. (E) Same as (C) for the 
CPTAC tumours with higher purity (greater than 0.8). The purity score provides information 
about the degree of immune infiltration and was calculated from the gene expression data 
using the ESTIMATE algorithm. (F) Volcano plot showing the associations between the 
BRAFV600E mutation and the activity of kinases. The x-axis contains the mutation coefficient 
(effect size) and the y-axis the adjusted P-values. Highlighted are kinases from the 
MAPK/ERK signaling pathway and CDK1/7 (significantly associated with the BRAFV600E 
mutation). (G) Differential activity of the CDK1 and CDK7 kinases between samples with 
and without BRAFV600E mutation. The x-axis separates the cancer samples by mutation 
status (1 if mutated and 0 otherwise) and the y-axis contains the kinase activities. The 
outliers were removed from the distributions for representation purposes. The number of 
quantifications (including outliers) are shown beneath each boxplot. A P-value from a 
Wilcoxon rank sum test comparing both distributions is shown. All data points (including 
outliers) were used to calculate the P-values. 
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Supplementary figure 4.6. Examples of associations between the mutational status 
of TFs and their activities. Related to the main Figure 4.2B. The x-axis represents the 
TFs and the y-axis the activities. The colours stratify the samples by their mutational status 
in the respective TFs. The number of quantifications is shown beneath each boxplot. The 
P-values from Wilcoxon rank sum tests comparing both distributions are shown. 

 

 
Supplementary figure 4.7. Projection of protein activities in low-dimensional spaces 
and kinase-TF associations. (A) UMAP projection of the TF activity matrix (TFs as 
variables). The samples are coloured by experimental study. (B) PCA of the kinase 
activities. The barplots indicate the percentage of total variance explained by the first 20 
principal components (PCs) (out of 90 PCs). The scatter plots illustrate the samples 
projected along the PC1 and PC2. The samples are coloured by experimental study. (C) 
Same as (B) for the TFs. The barplot contains 20 of 292 PCs. (D) Related to the main 
Figure 4.3D. Correlations between the activities of non-redundant kinases with co-
regulatory relationships. The co-regulatory interactions were obtained from OmniPath 
(activating and consensual interactions along the sources) and catalogued as present in a 
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single source or in at least two different sources. The background corresponds to kinase 
pairs for which co-regulation is not known. The distributions were compared to the 
background using Wilcoxon rank sum tests. (E) Top panel. String network edge weight 
distributions between the significant and non-significant kinase-TF associations (224 and 
7527 pairs). The significant associations were selected with an FDR < 5% and an absolute 
effect size > 0.5. (E) Bottom panel. Enrichment of the kinase-TF associations in the string 
network (edge weights > 850). The y-axis shows the Fisher-test P-values (-log10) and the 
x-axis the adjusted P-value cutoffs (-log10) that were used to select the associations. (F) 
Scatter plots of the kinase-TF associations highlighted in the main Figure 4.3E. 

 

 
Supplementary figure 4.8. Kinase activity regulation in tumours and perturbed human 
conditions. (A) Related to the main Figure 4.3F. Linear regression models between the 
percentage of kinase regulation in the perturbed conditions (x-axis) and in the tumour 
samples (y-axis) by tissue type. (B) Number of kinases classified as regulated in the 
tumours (red) and in the conditions (green) in each tissue. (C) Correlation between the 
number of regulated kinases in tumours (x-axis) and the number of quantified kinases and 
samples (y-axis) across tissues. The Pearson’s r and respective P-value are shown. (D) 
Number of tissues where the kinases were identified as regulated in the tumours (red) or in 
the conditions (green). The kinases are mutually exclusive between them (no kinase found 
as regulated in the tumours and in the conditions). 
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Supplementary figure 4.9. The activities of FOXA1/FOXM1 and AURKB are associated 
with the overall survival of liver and breast cancer patients. Related to the main Figure 
4.4A, Figure 4.4B. KM survival plots for (A) FOXA1 (inactive = 29, neutral = 106, active = 
22) and (B) FOXM1 (46, 79, 32) in liver cancer and (C) AURKB (5, 58, 6) in breast cancer. 
The tables beneath each plot contain the number of individuals at risk across time. The log-
rank P-values are shown in the plots. 
 

 

4.6.2. Tables 
 
Supplementary table 4.1. Kinase and TF activities estimated from the molecular data. 
 
Supplementary table 4.2. Significant correlations between the protein activities and the 
corresponding CNV, RNA, protein and phosphorylation levels. 
 
Supplementary table 4.3. Genetic associations with protein activities. 
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Supplementary table 4.4. Associations between kinase and TF activities. 
 
Supplementary table 4.5. Protein activities significantly associated with the overall survival 
of the cancer patients. 
 
All supplementary tables can be consulted using the following DOI: 
doi.org/10.1101/2021.06.09.447741 
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5. Conclusions and Future Perspectives 
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Genomic instability is a known hallmark of cancer and is the result of somatic 

mutations, including gene copy-number alterations and dynamic changes in chromosome 

number and structure (Hanahan and Weinberg 2011). These changes lead to variation in 

the same cancer clone and intratumoral genetic heterogeneity (Iacobuzio-Donahue, 

Litchfield, and Swanton 2020). Moreover, the recent developments on cancer genomics 

have led to the conclusion that molecular heterogeneity prevails between different tumour 

subtypes within a tumour type. Consequently, each cancer patient may have a different 

response to classical treatments, i.e., chemotherapy and radiotherapy. Precision oncology 

is based on the premise that matching the oncogenic cancer targets with therapeutic agents 

that were engineered based on the status of the targets will improve cancer treatment 

(Rodriguez et al. 2021; Colomer et al. 2020). Major cancer genomics projects such as TCGA 

and ICGC (see subchapter 1.2 for details) have paved the road for precision oncology. 

These projects have defined cancer molecular subtypes that may enable treatment of 

patients with significantly more precision. However, a gap remains in our ability to associate 

genomic variations with cancer phenotypes. In fact, clinical strategies are known to be 

limited by mutational profiling alone (Le Tourneau et al. 2015; Saad et al. 2017). Moreover, 

transcriptome characterization is not enough to assess the functional consequence of most 

cancer mutations. It has been shown that RNA expression levels are often poor predictors 

of the corresponding protein levels (Gonçalves et al. 2017), which are the main targets of 

most anti-cancer drugs. Therefore, the study of cancer proteomes, including proteins and 

PTMs, will be essential to narrow the gap between the cancer genotype and phenotype. It 

is expected that multi-omics cancer studies and cancer proteogenomics in particular will 

offer new therapeutic avenues for precision oncology in the future (Rodriguez et al. 2021). 

In chapter 3 I demonstrated that up to 42% of CNV changes are attenuated at the protein 

level (see subchapter 3.3.1 for more details). Together with related findings from CPTAC 

studies (Mertins et al. 2016; B. Zhang et al. 2014; Vasaikar et al. 2019; Gao et al. 2019), 

these results may help to prioritize genomic aberrations that potentially act as both 

oncogenic drivers and drug targets.  

Transcriptomic and phospho(proteomic) profiling at single-cell resolution will help to 

dissect the genetic and signalling heterogeneity that underlie the phenotypic diversity of 

cells within a tumour. So far, bulk transcriptomic and phospho(proteomic) studies of 

signalling pathways do not account for cell-to-cell variability. At the single-cell level, the 

activities of signalling proteins (i.e., kinases and TFs) and whole pathways can be highly 

variable depending on the genomic background and tumour microenvironment. In chapter 

4 I discuss the lack of correlation between loss-of-function cancer mutations and kinase and 

TF activities (see subchapter 4.3.3 for more details). These results may be due to many 

sources of genetic (i.e., mutations) and non-genetic (i.e., epigenetic factors, stochasticity of 
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biomolecules and environmental stimuli) heterogeneity in individual cancer cells. It is 

expected that novel methods such as single-cell RNA-seq and single-cell proteomics by MS 

will allow to profile signalling networks cell-by-cell. These techniques may help to uncover 

the signalling consequences of intratumoral genetic and non-genetic heterogeneity, to 

quantify the variation of cell-to-cell signalling networks, and to evaluate downstream 

phenotypic effects induced by modulation of signalling pathways (Lun and Bodenmiller 

2020; J. Fan, Slowikowski, and Zhang 2020; Budnik et al. 2018). In precision oncology, 

single-cell multi-omics tumour profiling may anticipate cancer drug resistance by resolving 

adaptive signalling responses and guide the clinicians through novel combinations of drug 

therapies (Wei et al. 2016).  

Worldwide, men develop more cancers in non-reproductive tissues than women 

(Siegel, Miller, and Jemal 2018). In fact, the predominance of cancer in men has been 

observed across all races and ages (A. D. Wagner et al. 2019). Moreover, men also tend 

to have a worse prognosis than women. The predisposition of men to cancer is probably 

the consequence of a complex interaction between sex-specific biology and lifestyle. Sex-

specific biology includes genetic differences on the sex chromosomes and the effects of 

sex hormones on cells (see subchapter 1.3.1.1 for more details). Lifestyle factors include 

dietary habits and risky behaviours such as smoking and alcohol consumption (Allen et al. 

2016; McCartney et al. 2011). However, even after adjusting for lifestyle factors, the male 

bias in cancer incidence persists (Edgren et al. 2012), suggesting the existence of gender 

intrinsic molecular factors of predisposition/protection to cancer. In chapter 2 I conducted a 

deep gender-differential gene expression and co-expression network analysis to unravel 

the sex-biased cancer transcriptome in stomach and thyroid, two tissue types with 

unbalanced cancer incidences. Strikingly, I found fewer SBGs in tumours than in normal 

tissues, suggesting that gene expression differences between genders are diluted after 

tumorigenesis in these tissues (see subchapter 2.3.2 for more details). Similarly, Yuan and 

colleagues found very few SBGs in a set of tissues classified as the weak sex-effect group 

(Yuan et al. 2016). So far, most studies on gender molecular differences have focused on 

gene expression (J. Ma, Malladi, and Beck 2016; Lopes-Ramos et al. 2020; Aguet et al. 

2020; Yuan et al. 2016). Given the limitation of gene expression to explain complex 

phenotypes and diseases such as cancer (Yansheng Liu, Beyer, and Aebersold 2016), 

phospho(proteomic) profiling should be considered in the future to study the molecular basis 

of sex disparities in cancer. In addition, beyond the characterization of gene/protein 

expression differences between genders, future studies should also follow other lines of 

research. For instance, the inference of protein activities from transcriptomics and 

phosphoproteomics data could provide mechanistic descriptions of sex-biased signalling in 

cancer (Dugourd et al. 2021). Lastly, future clinical trials should consider more often the 
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biology of sex differences to evaluate gender disparities in drug safety and efficacy 

(Mauvais-Jarvis et al. 2020; Buoncervello et al. 2017).  

Multi-omics cancer datasets will be useful not only to study cancer onset and 

treatment, but also to investigate important cellular mechanisms of protein homeostasis and 

maintenance. For instance, in chapter 3 I described that some protein complex members 

act as rate-limiting for the assembly of the complex, whereby one subunit controls the 

abundance level of the interacting partners (see subchapter 3.3.2 for more details). 

Moreover, the degree of protein attenuation was correlated with the fraction of residues at 

interfaces. The usefulness of cancer proteogenomics datasets to study cell biology has 

been exemplified by other works. Ryan et al. found in breast cancer that mutation of one 

protein complex subunit was often associated with a collateral reduction in protein 

expression of other complex members (Ryan et al. 2017). The collateral loss was mainly 

evident at the proteomic level, suggesting post-transcriptional control. The contribution of 

multiple mechanisms to protein-level gene dosage buffering remains to be studied, 

including the control of protein translation rates by microRNAs and RNA-binding proteins 

and protein degradation.  

Looking forward, additional opportunities in precision oncology may also involve the 

integration of multi-omics data with histopathological images through machine learning 

techniques. Yu Fu et al. recently applied a convolutional neural network to tissue images 

from TCGA, extracting thousands of histopathological features across more than 10,000 

individuals from 28 tumour types (Y. Fu et al. 2020). The authors found that the extracted 

features enabled tissue classification and were associated with genetic aberrations, 

transcriptomic signatures and prognostic information. In the future, artificial intelligence may 

be routinely used in the clinic to aid tumour detection and prognosis (Esteva et al. 2017; 

Ciompi et al. 2017; Kooi et al. 2017; Dhungel, Carneiro, and Bradley 2017).  

Precision oncology has already transformed the way cancer patients are managed 

and treated. The number of druggable tumour-specific molecular biomarkers has increased 

substantially in the past decade, which significantly improved patient survival in several 

cancer types (Malone et al. 2020). However, the path to the routine use of genomic 

biomarkers in cancer clinics is still long (Boutros 2015). Proteomics and phosphoproteomics 

will be essential to identify and prioritize genomic alterations that can be targeted by novel 

drugs (Rodriguez et al. 2021). Other challenges include the education and engagement of 

clinicians and patients about the benefits of precision medicine, as well as the promotion of 

data sharing between research institutes and hospitals to maximize knowledge gain. 

Nevertheless, multi-omics approaches in cancer research have the potential to identify 

novel biomarkers that can be used to diagnose cancer earlier and faster, to improve patient 

survival and response to treatment, and to monitor disease relapse.  
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