
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Continuous assessment of code quality
through software analytics in a start-up

environment

Duarte Oliveira

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Filipe Correia

Second Supervisor: Eduardo Guerra

July 25, 2021

Continuous assessment of code quality through software
analytics in a start-up environment

Duarte Oliveira

Mestrado Integrado em Engenharia Informática e Computação

July 25, 2021

Abstract

Software practitioners need to continuously assess code quality to increase the quality of their
projects and avoid software problems that could cost a large amount of money and resources later
in development. This helps to minimize resources and costs for the company, which is very signif-
icant for start-up companies. Start-ups face big risks and uncertainty and need to adapt quickly to
market changes to maintain their business. More often than not, they need to ignore the quality of
the code to produce new content or make significant business changes. This phenomenon is also
known as technical debt.

The use of analytics in software data has become increasingly popular. However, analytics
tools setup can be complicated and time-consuming to practitioners. The large amount of raw
data generated by analytics tools can be another obstacle since it requires practitioners’ skills
to gain insight from data with practical value. A large amount of raw data can limit the ability to
understand the main problems regarding code quality and the metrics established. This also makes
it challenging to assess technical debt when making significant changes and producing value for
the company.

Approaches to software analytics have taken multiple forms. Software Quality models can give
us the definition of quality, but it doesn’t provide a way for the teams to adopt software analytics
practices. There is a need to operationalize software quality models to give the teams a clear
and structured method to assess code quality. Assessment approaches focus on finding specific
metrics that should be used to evaluate code quality or outline activities in a structured way for a
team to follow to assess the system’s quality. However, it doesn’t provide a straightforward way to
act upon these findings. Continuous improvement approaches like the Software Analytics Canvas
offer us a framework for finding the issues, finding the correct metrics for these issues, assessing
them, and continuously improving the system’s quality.

This work aims to validate the approach called the Software Analytics Canvas in a start-up
environment. We report an industrial case study on the two software teams of a start-up where we
assess the usefulness and ease-of-use of the approach, the improvement of the awareness on the
state of quality of their system, and whether the approach could effectively improve the quality of
their system. The teams used the approach for five sprints, which is equivalent to ten weeks of
development. We carried out several surveys and collected several metrics to support answering
our research questions. It helped us confirm that the approach was fairly easy to understand, and
although harder to use than they expected, it was still beneficial. The participants also confirmed
that they felt more aware of the system’s quality as it helped find several issues they did not know
existed. And although we can’t know the overall improvement of the quality of their system, the
metrics that they collected had positive improvements and will continue to improve in the future.

Keywords: software teams, software practitioners, start-ups, software analytics, raw software
data, code quality, software analytics canvas

i

ii

Resumo

Os profissionais de software precisam de avaliar continuamente a qualidade do código para aumen-
tar a qualidade de seus projetos e evitar problemas de software que podem custar muito dinheiro e
recursos posteriormente no desenvolvimento. Isto ajuda a minimizar recursos e custos para a em-
presa, que é muito significativo para start-ups. As start-ups enfrentam grandes riscos e incertezas e
precisam de se adaptar rapidamente às mudanças do mercado para manter os seus negócios. Maior
parte das vezes, eles precisam ignorar a qualidade do código para produzir novo conteúdo ou fazer
mudanças significativas no negócio. Este fenômeno também é conhecido como dívida técnica.

O uso de analytics em software está-se a tornar cada vez mais popular. No entanto, a con-
figuração das ferramentas de analytics pode ser complicada e demorada para os profissionais. A
grande quantidade de dados brutos gerados por ferramentas de analytics pode ser outro obstáculo,
pois requer habilidades dos profissionais para obter informação útil a partir dos dados. Uma grande
quantidade de dados brutos pode limitar a capacidade de entender os principais problemas rela-
cionados com a qualidade do código e as métricas estabelecidas. Isto também se torna um desafio
quando se tem de avaliar a dívida técnica ao fazer mudanças significativas e gerar valor para a
empresa.

As abordagens de software analytics assumiram várias formas. Os modelos de qualidade de
software podem nos dar a definição de qualidade, mas não fornecem uma maneira para as equipas
adotarem práticas de software analytics. É necessário operacionalizar modelos de qualidade de
software para fornecer às equipas um método claro e estruturado de avaliação da qualidade do
código. As abordagens de avaliação concentram-se em encontrar métricas específicas que devem
ser usadas para avaliar a qualidade do código ou delinear atividades de uma forma estruturada
para uma equipa avaliar a qualidade do sistema. No entanto, não fornece uma maneira direta de
agir com base nessas descobertas. Abordagens de melhoria contínua, como o Software Analytics
Canvas, oferecem-nos uma estrutura para encontrar os problemas, encontrar as métricas corretas
para esses problemas, avaliá-los e melhorar continuamente a qualidade do sistema.

Este trabalho tem como objetivo validar a abordagem chamada Software Analytics Canvas
num ambiente de start-up. Nós relatamos um estudo de caso industrial com as duas equipas de
software de uma start-up, onde avaliamos a utilidade e facilidade de uso da abordagem, a melhoria
da noção sobre o estado da qualidade do sistema e se a abordagem poderia melhorar efetivamente
a qualidade do mesmo. As equipas usaram a abordagem durante cinco sprints, o que equivale a
dez semanas de desenvolvimento. Realizamos vários questionários e recolhemos várias métricas
para ajudar a responder às nossas perguntas de investigação. Isto ajudou-nos a confirmar que a
abordagem era bastante fácil de entender e, embora mais difícil de usar do que eles achavam, ainda
assim foi benéfica. Os participantes também confirmaram que se sentiam mais conscientes da
qualidade do sistema, pois ajudou a encontrar vários problemas que eles não sabiam que existiam.
E embora não possamos saber se a qualidade geral do sistema melhorou, as métricas que foram

iii

iv

recohidas tiveram melhorias positivas e continuarão a melhorar no futuro.

Keywords: equipas de software, profissionais de software, start-ups, software analytics, dados
brutos, qualidade de código, software analytics canvas

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 1
1.3 Objectives and Contributions . 2
1.4 Document Structure . 2

2 Background 3
2.1 Software quality . 3
2.2 Software Analytics . 4
2.3 Start-ups and Technical Debt . 4
2.4 Chapter Conclusions . 4

3 Related Work 7
3.1 Software Quality Models . 7

3.1.1 The Quamoco Quality Modeling Approach 8
3.1.2 Q-Rapids Quality Model . 9
3.1.3 Discussion . 10

3.2 Software Analytics Assessment Approaches . 10
3.2.1 Goal, Question, Metric . 11
3.2.2 SCQAM: Scalable Structured Code Quality Assessment Method 11
3.2.3 Discussion . 12

3.3 Continuous Improvement Approaches . 13
3.3.1 PDCA: Plan, Do, Check and Action . 13
3.3.2 Software Analytics Canvas . 13
3.3.3 Discussion . 16

4 Problem statement and Proposed Solution 19
4.1 Scope . 19
4.2 Research Questions . 20
4.3 Methodology . 20

5 Industrial Case Study 23
5.1 Goals . 23
5.2 Study Design . 24
5.3 Results Analysis . 26

5.3.1 Company Background in Software Analytics 26
5.3.2 Usage of The Software Analytics Canvas 27
5.3.3 Usefulness and Ease-of-use Perception 30

v

vi CONTENTS

5.3.4 Code Quality Awareness . 34
5.3.5 Code Quality Improvement . 36

5.4 Challenges and Possible Improvements . 38
5.5 Threats to Validity . 39

6 A New Observed Pattern: Embedded Improvements 41
6.1 Problem . 41
6.2 Solution . 42
6.3 Consequences . 42
6.4 Example . 43

7 Conclusions 45
7.1 Summary . 45
7.2 Research Answers . 46
7.3 Future Work . 47

A Surveys 49
A.1 Kick-off Survey . 49
A.2 Sprint Survey . 54
A.3 Final Assessment Survey - Tech . 60
A.4 Final Assessment Survey - Managers . 68

References 73

List of Figures

3.1 Quamoco meta-model diagram . 9
3.2 Software Analytics Canvas Version 1.0 . 14
3.3 Software Analytics Canvas Version 2.0 . 16

5.1 Study Design Diagram . 25
5.2 Software Analytics Canvas Version 2.1 Issue Section 28
5.3 Software Analytics Canvas Version 2.1 Tasks Section 28
5.4 Software Analytics Canvas lane usage per sprint 29
5.5 Software Analytics Canvas Lane Understanding per Sprint 32
5.6 Software Analytics Canvas Lane Ease-of-use per Sprint 33
5.7 Software Analytics Canvas Userfulness Perception per Sprint 34

vii

viii LIST OF FIGURES

List of Tables

5.1 Responses to the background survey . 26
5.2 Software Analytics tasks to Regular Tasks comparison by sprint 29
5.3 Software Analytics Retrospectives to Regular Retrospectives comparison by sprint 30
5.4 Average of responses to the sprint survey regarding understanding and ease-of-use

of the Software Analytics Canvas . 31
5.5 Average of responses to the sprint survey regarding the usefulness of the approach 33
5.6 Responses to the final survey to the managers regarding usefulness, understanding

and ease-of-use . 35
5.7 Responses to the kick-off survey regarding the code quality awareness 35
5.8 Average of responses to the sprint surveys regarding the code quality awareness . 35
5.9 Responses to the final survey regarding the code quality awareness before the Canvas 36
5.10 Responses to the final survey regarding the impact on code quality awareness . . 36

ix

Chapter 1

Introduction

1.1 Context

Software companies have multiple on going projects. Assessing the quality of these products helps

the team keep the quality at a good level. Having a good quality software system makes it easier

for the team to maintain a software system and develop new new features.

To assess code quality, software teams can use software analytics, which takes into account

source code, static and dynamic characteristics of a software system, and also development pro-

cesses. The goal of software analytics is to provide insightful and actionable information to help

software teams make decisions and accomplish software tasks like refactoring while knowing the

impact of the changes [25].

This is especially useful for companies like start-ups. These companies face very high business

uncertainties and need to adapt quickly [19]. With very rapid changes, comes the necessity of

quick reactions and decisions, and assessing the technical debt that a change will generate becomes

extremely valuable for these companies.

1.2 Motivation

Companies generally have multiple critical projects with very high impact on their business and

they want to avoid discovering software quality problems when the costs of fixing them are already

very high. Assessing code quality and keeping it at a stable level helps the organization save

resources and helps decreasing the cost of building and maintaining software. Specially in start-

ups, this becomes extremely useful since they need to evolve fast to respond to market changes.

Furthermore, in code quality decision-making processes, intuition is often used by developers

based on their knowledge and past experiences instead of using facts based on the project itself.

Software analytics helps eliminating the intuition factor by providing real insightful and actionable

data that can help in identifying measures to be taken. With these insights, the team can focus on

improving the code quality and immediately know the impact of these changes.

1

2 Introduction

However, when assessing code quality, software teams use automated tools such as SonarQube

to help gather data about a code-base, including numerous software metrics and the detection of

bugs and code smells. Teams employ a great effort in setting up these tools, but are at a loss when

dealing with the large amounts of data that they produce.

There is also a lack of consolidated approaches on how to introduce software analytics con-

cepts and practices into an agile development context [5]. Continuous improvement approaches

help the team plan and take action on improving the code quality of their projects. The Software

Analytics Approach that will be further analyzed in Section 3.3.2 is an example of a sistematic

approach that works well with Agile teams. Approaches like the Software Analytics Canvas need

to be explored and verified.

1.3 Objectives and Contributions

The goal of this work is to study the adoption of data-driven code quality assessment practices

in software development, and conduct an industrial case study using a systematic approach like

the Software Analytics Canvas [5]. This dissertation is expected to help the participating soft-

ware teams in the field to adopt data-driven practices for improving code quality, but evaluate the

Software Analytics Canvas technique in a start-up environment.

The outputs of this thesis are as follows.

• State of the art review and analysis of related work.

• An industrial case study by applying the Software Analytics Canvas approach in a start-up

environment.

• Define a new pattern for implementing software analytics in small teams.

• Generate possible alterations to the Software Analytics Canvas approach.

1.4 Document Structure

In the next chapter, we will cover some background concepts regarding software quality, soft-

ware analytics, start-ups and technical debt. In Chapter 3, we will cover in greater detail some

software quality model, some software quality assessment approaches and and some continuous

improvement approaches. In Chapter 4, we describe the scope of the problem, the research ques-

tions, the methodology established and the work planned for the next phase. In Chapter 5, we will

describe the industrial case study conducted on a start-up by analyzing the goals, design of the

study, analyzing the results, describing a new pattern found with this study and some challenges

and possible improvement to the studied approach. Chapter 7 provides a quick overview of the

work done, provides clear answers to the research answers defined and explores aspects for future

work.

Chapter 2

Background

This chapter covers the topics needed to understand this dissertation fully. In Section 2.1 we

explain the concept of software quality. In Section 2.2, we examine concepts related to software

analytics, which are the main focus of this document. And finally, in Section 2.3, we explore the

concept of a startup and the notion of technical debt.

2.1 Software quality

Software quality can be classified in two different ways. The first one is how well the produced

software reflects the functional requirements defined and how well it compares to other competitor

products. The second definition is related to non-functional requirements and is the one we refer

to in this document. It takes into account several abstract quality characteristics called factors. It’s

more about the code-base itself, and there are two types of factors: internal and external. Users

care more about the external factors. However, developers need to be careful about internal factors

as well [23].

External factors are related to the usefulness perceived from an external point of view. External

factors are more important for the users since they can be perceived by using the product. These

factors include functionality, reliability, usability, efficiency, flexibility, simplicity, and others [23].

Internal factors need to be assessed as well. These factors are crucial for developers since they

impact the development process. It helps avoid high costs of production and discovering bugs

early in development. These factors include maintainability, portability, reusability, testability,

and others [23].

Although maintaining the quality of a software product can be costly, for example, investing

in developers’ training with methodologies, review meetings, and other activities, not investing in

it can be even more expensive. Quality improvements can result in cost savings that outweigh the

efforts of training and evaluating the code [22].

3

4 Background

2.2 Software Analytics

Software development activities can produce large amounts of data from the source code, test

reports, bug reports, etc. As stated by Zhang et al. [25] Software analytics leverages these in-

formation sources to obtain insightful and actionable information for developers, managers, and

product owners to make decisions and accomplish development tasks. The ultimate goal is to

improve the productivity of development activities, user experience, and software quality. Al-

though in this document we only focus on the improvement of code quality, analytics can measure

products, features, or quality attributes [9].

The users related to these activities are, first and for most, developers who participate in plan-

ning, setting up tools, gathering metrics, and acting on the code quality. Some companies also

have full tester teams that also take advantage of testing metrics to improve the code base’s testa-

bility further. But software managers are also practitioners since they have an essential role in the

decision-making process [25].

The main types of technologies used for software analytics are large-scale computing used

for large-scale datasets, information visualization tools for data analysis and viewing results, and

machine learning for insight analysis [25].

Several approaches exist to help teams adopt software analytics practices in their development

process. The Software Analytics Canvas [5] is the one we are going to be using in the case study

of this work and will be further explained in Section 3.3.2.

2.3 Start-ups and Technical Debt

Start-ups are companies or projects created to develop and validate a scalable business model.

These companies are trying to find a not easy solution, and success is not guaranteed [18]. Unlike

entrepreneurship, start-ups are businesses that have the desire to grow beyond just a project and

want to become a large scale business with multiple founders [21]. Start-ups usually face high

levels of uncertainty, often have frequent changes of direction, and face high rates of failure [20].

Like financial debt, technical debt [7] is the extra effort to maintain and develop a product due

to sub-optimal or flawed solutions. It occurs mainly when a software team takes quick shortcuts

by delivering faulty or unverified solutions to achieve faster time-to-market. The debt should be

re-payed quickly by fixing the flawed implementations. Debt can be produced due to various

reasons and might not always be due to intentional reasons. Other causes can be ignorance of

good practices, developers with a lack of skills, oversight, or even pragmatism [14].

2.4 Chapter Conclusions

Software quality is the central focus for efficient and effective maintenance and development of a

product. When quality is ignored, a product’s technical debt keeps rising, and the debt gets harder

to pay. For start-ups that need quick time-to-market, they must start using techniques to assess

2.4 Chapter Conclusions 5

their products’ quality to reduce the potential future technical debt. Even if a decision is made

to take shortcuts to produce value quickly, the quality should always be monitored to understand

such shortcuts’ impacts.

This is where software analytics matters. Software quality attributes can be measured with

analytics extracted from the code base and development processes. In the next chapter, we will

understand how quality is defined and how to measure it efficiently.

6 Background

Chapter 3

Related Work

This chapter covers the state of the art regarding software analytics models and approaches, with

particular attention to the work already done on the Software Analytics Canvas and relevant tech-

nologies used in this area. Section 3.1 introduces several software quality models. In Section 3.2,

we describe some software quality assessment approaches. Section 3.3 discusses some continuous

improvement approaches where we will further talk about the work already done on the Software

Analytics Canvas. And, finally, in Section 3.4, we will discuss some relevant technologies used in

the area.

3.1 Software Quality Models

Software Quality Models are a standardized way of measuring a software product. These models

provide a framework for defining quality attributes, building and measuring software products.

With several software systems built every day, a rise in the need for ensuring the quality of these

products was noticed. These models have been around for a long time now, and the development

can be backdated to the 1970s.

One of the first models was McCall’s (1977) [16]. The model was developed to assess rela-

tionships between external factors and product quality criteria. It defines product quality under

three perspectives: user’s perspective, developer’s perspective, and metrics, which are defined and

used to provide a scale and measurement method. Under these three perspectives, the factors are

organized in a hierarchy. The factors were reduced to 11 to understand the model better. The

factors that define the product’s quality are Correctness, Reliability, Efficiency, Integrity, Usabil-

ity, Maintainability, Testability, Flexibility, Portability, Reusability, and Interoperability. The only

thing this model doesn’t contribute to is directly on the functionality of the product.

Boehm’s model (1978) [3] was introduced after and proposes a hierarchy of quality character-

istics. The three primary characteristics are utility, maintainability, and portability. They are then

decomposed in several other levels until primitive characteristics are reached. This model’s main

elements are quality characteristics, sub-quality characteristics, primitive quality characteristics,

and quality metrics.

7

8 Related Work

After several models were defined, ISO/IEC JTC1 decided to develop a consensus on software

quality and created the ISO 9126 quality model [12] to encourage standardization worldwide.

It is a tree hierarchy model with three main types of quality: internal quality, external quality,

and quality in use. The model specifies the following characteristics: Functionality, Reliability,

Usability, Efficiency, Maintainability, and Portability. The characteristics are then divided into 21

other sub characteristics, which are manifested in metrics that can be measured.

In the next two sections, we will analyze in greater detail a quality meta-model and another

quality model applied to a tool for decision support.

3.1.1 The Quamoco Quality Modeling Approach

Quamoco [24] is a modeling approach designed to bridge the gap between models that provide

abstract quality attributes and models that provide concrete quality assessments. Quality models

can be categorized according to two types. The first type of quality model describes and structures

general concepts that constitute high-quality software but lacks the ability to be used for actual

quality assessment or improvement. The second type of quality model is too tailored for specific

domains or single aspects or software quality, which misses the connection to higher quality goals

and makes it difficult for developers and stakeholders to understand the importance of quality

problems.

For the Quamoco modeling approach, a meta-model was defined to better understand the re-

lation between a model’s concepts. At the center of this meta-model resides the factor which

expresses a property of an entity. This factor can either be a quality aspect, representing an ab-

stract quality goal, or a product factor, which is a measurable attribute of the product. Both can

be refined and produce their acyclic graph. Also, a product factor impacts a quality aspect. This

represents the way factors relate to each other. A factor is always associated with an entity, and it

describes a property of the entity. The name of this property is the factor’s name. A factor also has

an evaluation associated with it, which can be a specific measure in the case of a product factor.

Still, the assessment can again come from the evaluation of the sub-factors. A measure is not

restricted to only one product factor and can be measured from multiple instruments. Instruments

allow collecting measures from, for example, static analysis tools.

3.1 Software Quality Models 9

Figure 3.1: Quamoco meta-model diagram, by Wagner et al. [24]

A base model was defined from this meta-model to define software quality in a way that is

easy to implement in a tool-supported quality assessment method and is accessible to multiple

products. The model comprises a wide selection of factors, more precisely, 286 factors of 112

entities. From these factors, 202 define impacts on quality aspects, which makes 492 impacts, and

192 generated specific measures, which makes a total of 526 measures and 542 instruments of

measure.

3.1.2 Q-Rapids Quality Model

The Q-Rapids quality model [15] was created based on the information acquired in workshops

with four companies. This model was generated for assessing every quality aspect in the form of

one single tool. The model analyses heterogeneous data sources during development and at run-

time and generates quality alerts when a specific element is at risk. The model considers several

aspects such as quality aspects, product and process factors, assessed metrics, and raw data. These

product and process factors are related to maintainability, reliability, functional suitability, and

productivity.

Several products and process factors constitute the Q-Rapids quality model. There are five

product factors and one process factor.

• Code quality (product factor): refers to the maintainability of the resources and includes

complexity, comment density, and code duplication

• Blocking code (product factor): refers to metrics regarding the fulfillment or violation of

quality rules and technical debt issues

• Testing status (product factor): refers to the test coverage collected from the static code

analysis

• Software stability (product factor): refers to the crashes at run-time

• Software usage (product factor): refers to the number of times a feature is used

10 Related Work

• Issue’s velocity (process factor): refers to the comparison between the estimated time and

the invested time into an issue

The assessment of the Q-Rapids quality model follows the Quamoco bottom-up approach re-

ferred to in the last section. It starts by first gathering raw data from heterogeneous data sources.

The basic metrics are identified, which leads to the interpretation of these metrics with a utility

function using preferences and judgments of experts or learned data (i.e., machine learning). The

output of these utility functions are valued between 0 and 1, 0 being the worst. The assessed met-

rics are then aggregated into product and process factors, which are then aggregated into quality

aspects that can be easily interpreted.

The implementation of the model comes in the form of a tool. The Q-Rapids tool supports data

gathering from static code analysis, tests executed in development, code repositories, and issue

tracking tools, consisting of the data producer layer. The data ingestion layer consists of several

Apache Kafka connectors to gather data from the producers. The third layer is the distributed data

sink layer used for data storage, indexing, and analysis. And last but not least, the data analysis

and processing layer perform the quality model assessment. It queries the data sink layer and

applies the utility functions to interpret the raw data.

3.1.3 Discussion

The source code is the central artifact of a software project. Software quality models help us

define what we need to measure and interpret it to understand the quality of a specific product.

Like McCall’s model, some models were made for a particular environment, others to standardize

quality like the ISO 9126, but others tried to generalize by creating meta-model (e.g., Quamoco),

which is a framework for building quality models.

Most quality models do an excellent job describing properties that relate to software quality but

don’t quite provide a way to implement it in a project, measure these properties, and aggregate the

findings into an overall quality rating. Some projects like the Quamoco project have been trying

to bridge the gap between these abstract quality concepts and the specific metrics. And projects

like the Q-Rapids and the Quamoco project created tools to operationalize the model itself.

Although models are useful for defining quality, there is still the need for assessment ap-

proaches for organizations to implement in their projects. In the next section, we address some

software quality assessment approaches that exist today.

3.2 Software Analytics Assessment Approaches

In this section, we detail some software analytics assessment methods. These methods provide

actionable data that software teams can interpret in order to improve the quality of software. It’s

a way to operationalize software quality models. Manual assessments are too effort extensive and

time consuming. Software or assessment teams need a more systematic and automated way to

evaluate source code and provide insights to further improve code quality.

3.2 Software Analytics Assessment Approaches 11

3.2.1 Goal, Question, Metric

The Goal Question Metric [4] is an approach that states that for an organization to measure the

quality of a software product, it must first specify the goals, trace those goals to the data (source

code static analysis, dynamic analysis, etc.) and then provide a framework to interpret the data in

correlation to the defined goals. This approach was initially defined to evaluate a set of projects in

the NASA Goddard Space Flight Center environment but has expanded to a bigger context. It is a

setting step in the Quality improvement paradigm [2].

This approach has three important levels that we must consider. The first one is the conceptual
level or the goals. A goal is defined in relation to a quality model, a specific environment, multiple

points of view, and objects measured. These objects of measurement can be products (i.e., artifacts,

deliverables, documents), processes (i.e., software-related activities), and resources (i.e., items

used by processes) of an organization.

The second level is the operation level or the questions. This level is characterized by a set

of questions that categorizes an object of measurement in relation to the quality issue chosen and

attempts to determine the object’s quality from the selected viewpoint.

The third level is the quantitative level or the metrics. The metrics are a set of data used to

respond to the question and, therefore, quantify the specified goal. When interpreting the data,

there are two possible outcomes. Either the data is objective and depends only on the object being

evaluated, or it is subjective and depends on the object and on the viewpoint and environment in

which the object exists.

The approach itself starts by defining the goals divided into several questions, which will be

answered with metrics collected from the data available. The goals are based on three primary

sources of information. The first is the organization’s policy and strategy, from which we will be

able to take the issue and purpose of the goal. The second is the description of the process and

products from which we obtain the objects of measurement. The third source is the organization’s

model, which can provide us with the viewpoints of the organization. From the specification of

the goals, we can start to derive the questions that will characterize the goals in a quantifiable way.

Once we have defined the questions, we can begin collecting the appropriate metrics to answer

those questions. To choose these metrics, several factors must be considered, like the amount and

quality of the data to make sure that the data being used is reliable. Other factors are the maturity

of the objects and measurement and the learning process that the approach requires.

3.2.2 SCQAM: Scalable Structured Code Quality Assessment Method

SCQAM (Structured Code Quality Assessment Method) [11] is a tool-assisted and expert-based

quality assessment method developed by Siemens. The goal was to have a scalable approach to

identify issues that have a negative impact on the code quality of projects across their organiza-

tion. This method is derived from the EMISQ [17], a quality model-driven method. The EMISQ

method, which was being used before, was too effort-intensive and time-consuming. Scaling the

previous process for the hundreds of projects they had posed many challenges.

12 Related Work

SCQAM method comprises three phases: the input phase, the processing phase, and the output

phase. In the input phase, the assessors take access to code artifacts like code repository, coding

guidelines, used libraries, built binaries, and build environment to start the processing phase.

In the processing phase, there are three parts. The first one is the preparation where the soft-

ware team provides the project information to the assessors following a template. The components

are then selected based on criticality, importance to the business, and stability of the component.

This step is sometimes ignored if the project is small enough. Based on the selected components,

criteria for assessment are established. And the last step is to produce an evaluation plan. The

second part is the measurement. In this part, the assessors configure tools, run tools and collect

results and reports. The last part is the assessment where tool reports are analyzed, and some man-

ual code inspections can occur. The findings are then consolidated, aggregated, and documented.

In the output phase, the findings are communicated to the software team. They are given the

documented results, a presentation about the most critical findings, reports, and code analysis tool

outputs. In this phase, assessors and team members validate findings, create actionable items and

collect feedback.

This method simplifies activities from the previous process by using review tools, automation

of activities, report generation, and only the critical issues are considered for assessment.

3.2.3 Discussion

Software analytics assessment methods provide us with a way to assess software projects’ code

quality in a structured process. Some approaches like the Goal, Question, Metric focus more on

finding the goals that the team wants to achieve, much like the Software Analytics Canvas, that we

will explain in Section 3.3.2. By providing the goals first, the team can understand why the issue

exists and the metrics being monitored have a purpose.

The SCQAM method is more focused on scaling the process of software quality assessment.

It also comes from the company’s necessity that created it since they were using techniques that

took too much time and effort to implement. By the end of the assessment, many other problems

could occur, and the technical debt generated could be a problem.

The SCQAM process is also more focused on process management and tool usage, while the

Goal, Question, Metric is a lot more focused on establishing goals and which metrics should be

used. Since the objective of SCQAM is scaling, this part is more automatic, and only the most

critical issues are considered because of the number of projects being monitored.

These methods are useful for establishing metrics and how to perform the assessment. Still,

continuous improvement methods should be considered. Assessment methods don’t provide what

to do with the information obtained and how to improve the code based on the actionable data

acquired.

3.3 Continuous Improvement Approaches 13

3.3 Continuous Improvement Approaches

Data-driven continuous improvement can help agile teams to save resources and decrease the cost

of building and maintaining software. Software analytics can support agile teams to make more

appropriate changes based on actual data, rather than only on their personal experiences or intu-

itions. Especially for start-ups where they can’t have a full team focused on quality improvement,

it is essential that approaches like these are used. In this section, we discuss some software analyt-

ics continuous improvement approaches but also one approach not directly related to code quality

improvement but that could also be beneficial to analyze.

3.3.1 PDCA: Plan, Do, Check and Action

PDCA [13] is an acronym for Plan, Do, Check, and Action. It’s a software quality continuous

improvement approach. The approach is a cycle of four phases that forms a self-feedback system

to improve the software project’s quality. Every time a cycle is completed, the quality improves.

The four stages of the PDCA approach are, as the name implies, Plan, Do, Check, Act.

In the Plan phase, the team defines the principles and aims and formulates the activities. The

Plan phase requires the team members to answer six questions: what, why, who, when, where,

and how. It also requires them to find problems, reasons behind these problems, define quality

principles, aims and intentions. When the issues are confirmed, two types of measures are planned.

The first one is emergency or temporary measures that exist to eliminate the problem. The second

is permanent measures that exist to prevent problems from reoccurring.

In the Do stage, the team puts the plan into practice. It is when the team implements the

practical measures and controls the process to reach the planned goal. Due to the planning phase

being so thorough, the plan should be strictly followed. Some adjustments can be made if the

original measures can’t be implemented, but the adjusted measures should correspond to the goals

defined.

The Check phase is the process of continuously collecting data, getting information from the

implemented measures, and analyzing the results. This stage is crucial for self-improvement. It’s

where the team can find problems and improvement opportunities.

Finally, the Action stage is where the improvements are made based on the results and in-

formation acquired from the last phases. The issues are addressed to prevent the reoccurrence of

problems. The PDCA cycle favors careful planning to take action.

3.3.2 Software Analytics Canvas

Software Analytics Canvas [5] is an approach to introduce software analytics concepts and prac-

tices in an agile development context. It’s a goal-focused approach, much like the Goal, Question,

Metric approach described in the previous section. The canvas is a hub of information flow related

to software analytics projects where the team can plan their software analytics related activities.

It’s a situation awareness channel for all team members. The objective is to ensure that the teams

14 Related Work

participate in all planning activities from the definition of the goals to the metrics defined and that

the team understands the metrics being collected and that these metrics are articulated with the

measurement goals. It’s also useful to avoid monitoring unnecessary measurements since every-

thing is goal-focused.

Figure 3.2: Software Analytics Canvas Version 1.0 [5]

The Canvas was built on several patterns mined using a systematic mapping study performed to

investigate current software analytics trends for decision-making in software development [6, 5].

There’s a total of eight patterns.

The first pattern is "What You Want to Know". It’s related to the start of the approach, where

the team members should define specific goals and issues to focus on. Decisions are usually made

based on the developer’s intuition, so the objective is to choose the problems that the team does

not have information on to make these decisions unbiased. The team should ask questions about

the improvement they want to make, and this way, they will understand the reasons behind any

data collection they make.

The second pattern is "Choose the Means". This pattern aims to define the data sources from

where the data will be collected and the appropriate means to collect it. Data can be collected with

tools, techniques, and other approaches to extract data useful in future decisions related to the

issue in mind. Decisions made quickly in development might not reflect the reality of the software

system. Finding the correct means to collect data is one step further in making better decisions.

3.3 Continuous Improvement Approaches 15

The next pattern is "Software Analytics Planning". Tasks related to improving code quality

might take a lot of time and effort, so they should be done continuously. Decisions made based

on real data can avoid technical debt and optimize other future tasks. This pattern is related to

planning software analytics tasks and the project by adding them to the backlog and prioritizing it

with other regular tasks.

The fourth pattern is "Analytics in Small Steps". Like we said in the previous pattern, soft-

ware analytics tasks can take a lot of time and effort, and the team should understand how to

implement them without negatively impact the team. Software teams, especially in start-ups,

don’t have much time to execute software analytics tasks. The software teams must then distribute

tasks related to software analytics through the project iteration, adding information for the team

in small portions and prioritize the tasks that give the most critical information and answers to the

most vital issues. This way, the team can introduce software analytics related activities without

interfering with the regular tasks and priorities.

The fifth pattern is "Reachable Improvement Goals". If a software team takes on the chal-

lenge of trying to fix every issue in the code, they might never move forward. Without a clear goal,

it can be a waste of time for the software team. The team should define reachable goals from the

software analytics findings and break down activities to fit with other tasks to reach that goal. By

following this step, the team establishes a culture of continuous improvement.

The sixth pattern is "Learning From Experiments". The software team might not succeed

every time. The team must keep trying to find alternative solutions to a problem, for example,

running several data collection experiments for comparing with the current solution or even trying

other solutions to improve a goal to compare with the current version.

The seventh pattern is "Define Quality Standards". This pattern is about defining thresholds

that the team should strive for that they consider valid for a quality issue. It should be done for

every quality aspect that the software team decides to monitor.

The last pattern is "Suspend Measurement". This refers to suspending the measurement

of issues that might take too much effort or cost, issues that might be blocked by other project

constraints, and issues that have stabilized and don’t have much of a possibility of recurring.

This helps to keep the measurements to only the necessary and useless measurements should be

discarded.

The canvas is composed of seven blocks. The first is the key issues, and it’s the first step. It’s

where the team raises issues that need to be analyzed and improved. The second is data sources,

and it’s where the team identifies what kind of data they need and where to get it to find more

about the issue. The data gathering comes after, and it’s where the teams decide which metrics

and tools will be used. The insights block is where the team can analyze the results obtained and

possibles solutions for the issue. The quality thresholds phase is where the team defines when the

issue is considered resolved and if the issue should be monitored. The analytics implementation
block is where the team can plan their analytics tasks and prioritize them with other development

tasks. The incremental goals block is where the team defines reachable goals to start executing

their solutions.

16 Related Work

From this artifact, two studies were conducted to evaluate the canvas [5]. The first study was

to understand the perceived usefulness and ease-of-use of the Software Analytics Canvas and was

conducted with six subjects from a course of Agile Projects. The subjects were separated into

three pairs. During the study, the teams were asked to plan and manage a software analytics

project based on a real case using the Software Analytics Canvas. In the end, the participants

were asked to answer a questionnaire. Most participants agreed that the canvas was useful, but

some disagreed on the ease of use and found that it was not easy to learn. Some found it hard to

understand what to do at certain times.

The second study was a participatory redesign with the same participants in the first study to

identify how to improve the Software Analytics Canvas. The participants were asked to give sug-

gestions on improvements and were asked to sketch a redesign proposal. In the end, a discussion

took place, and the participants sketched a new version of the canvas. The quality threshold block

was subdivided into two parts with a minimum acceptable value and goal to achieve. The bottom

of the canvas now has an analytics tasks block with four components: to do, in progress, done,

and impediments. Version 2.0 was then created based on this study’s results, as we can see in

Figure 3.3.

Figure 3.3: Software Analytics Canvas Version 2.0 [5]

3.3.3 Discussion

These approaches give the team the ability to focus on not only assessing the quality of their

systems but also improving it. Approaches like the Software Analytics Canvas emphasize the

3.3 Continuous Improvement Approaches 17

importance of improving in small steps without harming the team’s performance. It is even more

critical for smaller companies, like start-ups, that can’t take some time off development to focus

on improving code quality.

Approaches like the Software Analytics Canvas and PDCA give a framework for teams to

continuously improve their code by planning, implementing, and analyzing their findings to find

solutions for the problems or even prevent future problems.

There’s even more of a lack of approaches to change agile teams’ habits towards data-driven

decision making [5]. This is where the Software Analytics Canvas approach differentiates from

the rest. It is an approach focused in an agile development context for implementing software

analytics in software projects. The canvas serves as a backlog of information and tasks where the

teams decide every sprint which task should be prioritized and executed. The PDCA promotes

continuous improvement of code but still has phases that need to be strictly followed.

18 Related Work

Chapter 4

Problem statement and Proposed
Solution

In this chapter, we describe this dissertation’s scope with greater detail within the context of as-

sessing code quality using continuous improvement methods and software analytics in a start-up

environment. Then we introduce the research questions that we want to answer with this disserta-

tion and the methodology established to answer them. Finally, we present the work plan defined.

4.1 Scope

Low-quality code often makes it difficult for the software teams to maintain and develop new

product features. Low code quality is often associated with the lack of assessment of the code

quality and the lack of understanding of the metrics implemented. Thus, by poorly assessing

the code quality or not assessing, the software teams can’t assess technical debt when making

significant changes and producing value.

Software Quality models give us multiple definitions of what quality should be in software.

Some models give us abstract quality aspects and others more specific metrics that should be

monitored.

Although these models help us understand what software quality is, this isn’t enough for a

software team to assess code quality. Software teams need approaches to operationalize these

quality models and methods that can provide us a way to evaluate code quality in a structured

process. Some of the existing approaches focus more on finding the specific metrics that should

be used. Others outline the activities that a team should perform to assess the quality of a software

product.

However, assessment approaches don’t explain how to act with the data and information gath-

ered. Continuous improvement approaches have a structured process to assess the code quality

and find metrics and have steps to act with this information. In smaller companies like start-ups,

the development team needs to continuously improve their projects’ code quality to manage tech-

nical debt intelligently and maintain efficiency and agility in development. Technical debt can be

19

20 Problem statement and Proposed Solution

created but only if done consciously and re-payed in the near future. They have to develop the

product while still keeping the product’s quality at the right level. There is, therefore, a need for

continuous improvement methods that integrate with other software activities.

4.2 Research Questions

Software teams need a software analytics approach to understand the problems existent in their

projects, measure these problems with metrics, and track improvement over time. We aim to tackle

this problem using the Software Analytics Canvas approach to plan software analytics related

activities of software teams in a start-up environment. We want to perform an industrial case study

since there is still a lack of studies to validate the approach. Given that, this dissertation addresses

the following research questions:

• RQ1 "What are the users’ perceptions about the usefulness and ease-of-use of the Software

Analytics Canvas?" We aim to evaluate if the approach is easy to use and if the team sees

the artifact as useful to improve the code quality.

• RQ2 "Are the users more aware of the quality issues of their project and do they understand

the reason behind the metrics being monitored?" We aim to evaluate if the approach can

help the users the implemented metrics by understanding the problem first. By users, we

mean not only developers but also product owners and managers.

• RQ3 "How does the Software Analytics Canvas affect the software system’s quality over

time?" We aim to evaluate how the approach will help the software teams improve their code

quality over time. We want to see the evolution of the canvas content and the information

obtained throughout the study.

4.3 Methodology

In this dissertation, we aim to understand the benefits of using a software analytics approach

for continuously improving software quality, like the Software Analytics Canvas, in a start-up

environment. For that reason, we start by studying the related work in the area to understand what

has been achieved in the software quality improvement field. In this review, we compare multiple

software quality models, software quality assessment approaches, and continuous improvement

approaches, which help us understand better the problem we’re trying to solve. The problem

is defined from this analysis, and research questions that we want to answer with this work are

established.

To answer the research questions, we will conduct an industrial case study composed of three

phases with two software teams. The research method used in this case study will be Coopera-

tive Method Development [8] which can be described as a domain-specific adaptation of Action

Research [1], this domain being software development. With this method, researchers take a

4.3 Methodology 21

clear stance in participating with the software engineers in the practices they are observing. This

method has three main phases derived from Action Research. The first phase is understanding the

practices that currently exist and what the existing problems are. The second phase is deliberating

measures that will improve the current situation. The third and last phase consists of implementing

the measures and observing the improvements in which the researchers participate as participant

observers.

In the first phase, we will analyze the participating teams. We aim to understand the current

software analytics practices to really understand the problems they currently have.

The second phase will be put into practice by getting the teams familiarized with the approach.

This will be achieved through a demonstration, in which we will present the canvas to the partic-

ipant teams by explaining all the approach’s lanes and giving concrete usage examples. After the

demonstration, a survey will be handed to the participants to assess their initial understanding and

perceived utility of the approach.

In the third phase, the participant software teams use the Software Analytics Canvas to plan

their software analytics activities and make decisions based on the obtained insights in an iterative,

systematic, and continuous manner. This phase will last a total of ten weeks.

The participant teams have four members each, and they work independently from each other

as the company’s product is divided into several independent micros-services, which facilitates

this arrangement. One of the teams focuses on front-end and back-end development, and the other

only on back-end development.

Both teams adopt the Scrum methodology. They have a planning meeting before the start of

every sprint, daily meetings where they discuss current problems and progress in the sprint board,

and sprint review and retrospective at the end of the sprint.

The Software Analytics Canvas would be assessed in the sprint planning to determine the

tasks to be done during the sprint. Daily meetings would be used to communicate the results and

progress of the software analytics tasks. And the review meeting should be used to discuss the

software analytics sprint findings to make decisions based on the data found. The sprint planning

session uses these findings and conclusions to set the tasks for the next sprint.

Possible small changes to the canvas can be made during the review meetings if some lane

isn’t clear. However, the teams will be using the canvas as is, in the beginning, to form opinions

and fully understand the approach as it was defined.

During the period of the case study, the participants answer a survey after every sprint. These

surveys help us understand the perceived usefulness and ease-of-use of the canvas, if the approach

allows the team to be more aware of the quality issues and understand the metrics implemented,

and if the canvas helped improve the code’s quality. Other measurements will also be taken along

this phase. We will analyze the time spent on the canvas in every meeting to understand the

percentage of the meeting dedicated to the approach. During the sprint itself, the percentage of

points spent on software analytics tasks will also help understand how much work is done in the

sprint dedicated to software analytics compared to development tasks. Finally, the evolution of the

canvas will also be recorded by taking screenshots at the beginning and end of every sprint. This

22 Problem statement and Proposed Solution

will help understand the evolution of the canvas and the evolution of the information gathered on

the source code.

After the development phase, the study participants participate in a session to improve the

approach. The participants voice their opinions on the canvas and express which refinements

should be made to the canvas.

Chapter 5

Industrial Case Study

In this chapter, we describe the case study in detail starting with the goals of the study. We then

explain the design of the study and we provide answers to the research questions with a in-depth

result analysis. We also talk about the start-up environment and how it impacted the study and

present a new pattern detected with this study. We end the chapter by referencing some possible

threats to the validity of the study and a discussion of the chapter.

5.1 Goals

The goal of this case study is to validate the Software Analytics Canvas approach by answering

the 3 research questions defined in section 4.2. The 3 research questions compose 3 main topics

that we want to validate.

The first one is the utility and ease-of-use of the approach. Since the Canvas is an approach

and a tool, it is important that the users who are using it feel that they are using something useful

that produces a big enough value so that it is worth it to keep using it in the future. We want to

answer this by understanding a few metrics. We want to understand how the participants perceived

the utility and ease-of-use of every lane of the Canvas. In the last survey we also question the

users about the learning experience in order to better understand if the learning curve is steep or

acceptable.

The second one is the awareness and understanding of the issues and metrics in the system

over time. The Software Analytics approach aims to make the software quality issues accessible

and understandable to all the levels of a company and raise awareness to the current state of the

system. We assess this with topics over time in the surveys to see how they evolve with the time

using the approach.

The third one is the evolution of code quality of the system over time. We want to assess

if the teams that used the Canvas could turn the issues and results actionable in order to improve

the quality of the system. This was done mainly by monitoring the chosen metrics related to the

issues defined in the Canvas.

23

24 Industrial Case Study

5.2 Study Design

This section of the document is dedicated to introducing the general design of the case study. We

will be describing the environment and the participants, the structure, but also, how the data is

collected and analyzed.

The participants of this case study are all from the same company. There is two main groups

of participants: the developers and the managers. From the developers group, two teams par-

ticipated in this experiment. One of the teams has four developers mainly focused on back-end

development. The other team had 5 developers, three of them focused on back-end development

and two of them focused on front-end development. These two teams worked with the Scrum

methodology on a daily basis. This group of participants were the ones mainly using the Software

Analytics Canvas on a daily basis. The managers group is composed of product managers and the

Chief Technology Officer (CTO) of the company. This group was not interacting directly with the

Canvas but was indirectly impacted by participating in planning and retrospective sessions where

the process is discussed.

The protocol of the study can be classified in three main phases: the introduction to the pro-

cess, the usage of the process and the study closure.

The introduction phase was the first two weeks of the study. At first, the development teams

were presented with a survey to assess their software analytics experience. The teams and product

managers were then introduced to the process with a small presentation in order to get to know

how the Canvas is used. And in the end, right before the first sprint started, a first session with the

Canvas occurred with both teams separately where they populated the Canvas with issues they had

in mind from the time they spent working on the company system.

The sprints phase started with the start of the next sprint and lasted a total of 5 sprints of

development. Both teams used their own version of the Canvas, where they registered issues,

metrics, result analysis, goals and decisions specific to their own team. All the tasks that came

from the Canvas iterations were added to their own sprint boards. At the end of each sprint, the

team members were presented with a survey in order to gather some metrics over time related to

ease of use, utility and improvement of the system’s quality.

The study closure phase of the study was composed of one last session with each team where

they discussed their experience with the process, what they liked and what they would change

about it. After these sessions, a survey was handed to all the team members to assess the difference

between the Canvas and their old software analytics related activities, the learning experience and

the positive and negative consequences of using the Canvas. Another survey was handed to the

product management teams and the CTO to assess their willingness to be more involved with the

process and if they consider that the Canvas produces actionable information for them.

There are 3 main data sources for this study. The first one is the surveys answered in the

beginning, at the end of each sprint and at the end of the experiment. The second data source is

Jira Software where we can gather sprint metrics. The third one is Miro where we simulated the

Software Analytics Canvas and gathered metrics from it. The fourth and last source is Software

5.2 Study Design 25

Sprint

Initial background in
Software Analytics

survey
Data collection

Software Analytics
Canvas

demonstration

1. Planning2. Task execution3. Retrospective

4. Sprint survey 5. Data collection

Total of 5 sprints

Data collection Data analysisFinal assessment
survey

Introduction phase

Sprints phase

Study closure phase

Preliminary
retrospective

Figure 5.1: Study Design Diagram

Analytics Tools and scripts, where we gathered information related to code quality metrics and

their improvement.

Regarding data collection, a great majority of the data collected was from the Google Forms

surveys. These surveys were handed to the participants various times, including the start of the

experiment, at the end of every sprint and at the end of the experiment. For the surveys, we

used Likert items with the values between 1 and 5 where each number represents the following

interpretations: 1) Strongly disagree, 2) Disagree, 3) Neutral, 4) Agree and 5) Strongly agree.

At the end of every sprint we also had a phase of data collection where we gathered several

metrics besides the surveys. In this data gathering we collected from Jira metrics related to the

tasks completed and not completed during the sprint and the percentage of software analytics

tasks in that sprint. We also gathered timings of the retrospective meetings to see the time added

in meetings in every sprint. And finally, we also gathered information from Miro related to the

usage of the Canvas like the amount of cards added to every lane in that retrospective meeting.

At the end of the experiment, we gathered extra information related to the improvement of

metrics. This was mainly done by checking the documentation of every improvement. The data

gathered for this documents were mainly from software analytics tools in Gitlab, SonarQube and

manual scripts.

The data analysis was mainly performed with spreadsheets. All the data collected, includ-

ing the survey data, sprint metrics, Canvas metrics and code quality metrics were aggregated in

multiple spreadsheets. From the data aggregated in these spreadsheets we could calculate means,

standard deviations, percentages and generate plots to go with the analysis.

26 Industrial Case Study

5.3 Results Analysis

In this section we analyze the data gathered from the four months of research in a start-up. We

assess the company’s background in software analytics, the process of using the Canvas in two

different teams, the perceived usefulness, the improvement of quality awareness and the evolution

of the system’s overall quality.

5.3.1 Company Background in Software Analytics

The company’s background in software anaytics is analyzed through a survey in the introduction

phase of the experiment. The survey was composed of questions regarding their awareness of the

current state of the system’s quality, the state of software analytics in the company and how they

use software analytics. This survey was done before any presentation of the Software Analytics

Canvas to avoid any biased responses.

From this survey, as represented in Table 5.1, we find that the perception of the participants

was that they were fairly aware of the system quality. However, they had not established many

software analytics practices, did not consider that they were using appropriate software tools,

didn’t really make much use of code quality metrics and did not discuss about software quality

outside code reviews. The only code quality metric they really used was code coverage to reduce

the number of bugs and speed of development.

Table 5.1: Responses to the background survey

Questions x σ

Q1 3.7 0.8
Q2 2.3 1.0
Q3 2.4 0.8
Q4 2.9 0.9
Q5 3.0 1.4
Q6 1.9 1.1
Q7 3.0 0.8
Q8 3.6 0.5
Q9 3.2 0.8
Q10 3.2 0.8

Q1: I am aware of the current state of quality of our software system’s code base.
Q2: My team has established Software Analytics practices.
Q3: My team is using appropriate Software Analytics tools.
Q4: My team currently makes use of code quality metrics.

Q5: The implemented metrics are used in order to solve an existing problem or reach an objective.
Q6: My team frequently includes Software Analytics tasks in the sprint planning.

Q7: My team dedicates some time of our sprint to refactoring activities.
Q8: I refactor code during a sprint task in order to deliver better code.

Q9: My team creates refactor tasks in order to improve the code quality incrementally.

Q10: My team assesses the impact of these refactors.

5.3 Results Analysis 27

They also didn’t really plan for any code quality refactoring tasks in the sprint planning as

the sprint backlog was always decided by the product team and not the development teams. The

product teams always decides which user stories and tasks are to be done in each sprint. Most of

their code quality improvements were made during normal sprint tasks. We can assume that this

awareness of the system quality was mostly subjective to the experience of the participant in the

company’s system. And, as we will observe in Section 5.3.4, in the final survey, the participants

admitted that they were not as aware as they thought regarding the state of quality of their system.

5.3.2 Usage of The Software Analytics Canvas

The participant software teams used the Software Analytics Canvas during five sprints of devel-

opment. During these five sprints, the teams iterated through the Canvas to register new issues,

register findings and define goals and solutions.

Both teams used a different variation of the Canvas from the one explained in Section 3.3.2.

This was due to the fact that the company was working remotely and they already had a software

for task management which was Jira Software where they managed the sprint tasks. Jira is also

made for project management and gives the teams several useful metrics to improve their software

development processes. The core of the Canvas remained the same but was separated in two

different boards, therefore, calling it Version 2.1 instead of 3.0. The first board, presented in

Figure 5.2 was composed of the top part of the Canvas, which includes the following lanes: Key

Issues, Measurements, Methods and Tools, Highlights, Insights, Goals and Decisions. This board

was created on Miro, a visual collaboration platform.

The second board, presented in Figure 5.3, was composed of the bottom part of the Canvas,

where the tasks are registered. This part of the Canvas was implemented as a normal Kanban board

dedicated to general technology tasks and was created on Jira Software that the teams already

used for project management. On this board, the teams registered all the tasks generated from the

Canvas and then connected these issues to their own boards so that they could manage the progress

during the sprint.

Regarding the lane usage, as we can see in Figure 5.4, the preliminary retrospective had a

big contribution in the key issues, measurements, and methods and tools section. This is due to

the kick-off meeting where each team discussed the main issues they currently felt were critical.

Another event that caused this initial boost was the meeting before the usage of the approach

where we had a presentation to explain the Canvas and we encouraged them to think about possible

issues.

After the large contribution in issues from the kick-off sprint, the rest of the sprints were

mainly focused in highlights, insights, goals and decisions and the first three lanes (Key Issues,

Measurement, and Methods and Tools) were less used due to the amount of work they had to do to

investigate the issues already defined. The only sprint that was an exception was the fourth sprint,

where the team was late on the sprint objective and the tasks that had to be left behind were the

software analytics ones. Although no tasks were completed, a key issue was found and added to

the board in that sprint.

28 Industrial Case Study

Figure 5.2: Software Analytics Canvas Version 2.1 Issue Section

Figure 5.3: Software Analytics Canvas Version 2.1 Tasks Section

5.3 Results Analysis 29

Metrics

0

10

20

30

Prelim.
Retro.

Sprint 1 Sprint 2 Sprint 3 Sprint 4 Sprint 5

Key Issues Defined

Measurements
Defined

Methods and Tools
Defined

Highlights Defined

Insights Defined

Goals Defined

Decisions Defined

Tasks Defined

Figure 5.4: Software Analytics Canvas lane usage per sprint

And, as we can observe in Table 5.2, in average, the software analytics tasks would be around

12.9% of the total planned tasks, which compared to before the Canvas, it’s a great improvement as

no software analytics tasks were being added to the sprint. As they were almost always completed,

software analytics tasks would compose of around 18.1% of completed tasks in a sprint. As the

approach was meant to be used, some of the tasks generated from the Canvas would be chosen to

do in each sprint, occupying a small percentage of the team’s efforts. This way, the team could

maintain its velocity while improving the system’s quality over time. The tasks were chosen based

on the priority of the issue and the results found on previous sprints.

Table 5.2: Software Analytics tasks to Regular Tasks comparison by sprint

Metrics Sprint 1 Sprint 2 Sprint 3 Sprint 4 Sprint 5 Total

User Stories Planned 26 22 18 22 20 108
SA Tasks Planned 3 5 3 3 2 16
User Stories Completed 16 11 9 10 13 59
SA Tasks Completed 3 5 3 1 1 13

Total User Stories 29 27 21 25 22 124
SA User Story % 10.3% 18.5% 14.3% 12.0% 9.1% 12.9%
Total User Stories Completed 19 16 12 11 14 72
SA User Story Completed % 15.8% 31.3% 25.0% 9.1% 7.1% 18.1%

Regarding the meetings, from what we can observe in Table 5.3, the teams had one recurring

meeting at the end of every sprint where they looked at the Canvas and the results of that sprint.

The software analytics retrospective time was in average, half the time of the total retrospective

time, and since the sprints were of two weeks, it took almost no time of their work for the value it

brought.

Almost all the Key Issues were defined in the beginning of the experiment, hence the big input

30 Industrial Case Study

Table 5.3: Software Analytics Retrospectives to Regular Retrospectives comparison by sprint

Metrics Prelim. Retro. Sprint 1 Sprint 2 Sprint 3 Sprint 4 Sprint 5 Total

Normal Retrospective (min) 90 125 84 128 122 128 677
SAC Retrospective (min) 210 165 112 96 138 45 766
Total Time (min) 300 290 196 224 260 173 1443
SA Time % 70.0% 56.9% 57.1% 42.9% 53.1% 26.0% 53.1%

from the preliminary retrospective that we can observe in Figure 5.4. The rest of the experiment

was mostly focused on evaluating the metrics defined for these issues. By what we can see from

the comparison between the software analytics tasks and normal user stories is that only a small

portion of the team’s time was used for software analytics. In the final survey handed to the

managers, they also thought that they didn’t feel any slow down from the team output compared

to before the Canvas.

5.3.3 Usefulness and Ease-of-use Perception

To evaluate the usefulness and ease-of-use of the approach, we created a survey that team mem-

bers answered at the end of every sprint. We sent the same questionnaire after every sprint with

questions presented in a Likert scale where the answers are a number between one and five. The

lowest value corresponds to "strongly disagree," and the highest value corresponds to "strongly

agree."

As shown in Table 5.4, this survey contained questions to assess the understanding and ease-

of-use of the canvas. Besides the general question about ease-of-use, we asked for every lane of the

Canvas if it was easy to use and assessed the confidence in their understanding of the lane. As we

can see from this table, the averages of understanding are superior to the averages of ease-of-use.

We can interpret that the Canvas is easier to understand than it is easy to use. This is consistent

with the observation done during the sessions in which the Software Analytics Canas was used.

The teams understood the concepts well, but still, we could notice difficulty when adding items to

the Canvas.

Nonetheless, the values for the understanding are relatively high, which means that the ap-

proach is quite easy to understand. Although the values of ease-of-use are lower than the under-

standing values, they are still in the range of three to four, which is between neutral and easy to

understand. Nonetheless, it is still a positive and high result.

The understanding had a slight variation over time. As we can see in Figure 5.5, it had the

largest positive variation from the first sprint to the second sprint. We can interpret here that,

as it is expected, the first use of a new approach can be quite overwhelming and can be hard to

understand in the first use, which explains the growth in the second sprint. The curve then declines

in the third sprint, which can be justified because one of the teams didn’t have relevant results in

that sprint which can explain the sentiment decline. The fourth sprint stayed the same, which can

also be explained by the fact that both teams did not have time to implement the tasks related to

5.3 Results Analysis 31

Table 5.4: Average of responses to the sprint survey regarding understanding and ease-of-use of
the Software Analytics Canvas

Questions Sprint 1 Sprint 2 Sprint 3 Sprint 4 Sprint 5 Mean

Q1 4.0 4.0 4.2 4.0 4.3 4.1

Q2 4.1 4.6 4.3 4.4 4.6 4.4
Q3 3.9 3.9 4.3 3.8 4.0 4.0

Q4 4.1 4.6 4.3 4.2 4.3 4.3
Q5 3.7 3.6 4.2 3.8 3.9 3.8

Q6 4.3 4.4 4.3 4.4 4.4 4.4
Q7 3.6 3.9 4.0 3.4 4.0 3.8

Q8 3.9 4.3 4.2 4.2 4.3 4.2
Q9 3.6 3.3 4.0 3.8 3.9 3.7

Q10 3.7 4.1 4.2 4.2 4.4 4.1
Q11 3.6 3.6 4.0 3.8 3.9 3.8

Q12 4.3 4.4 4.3 4.2 4.3 4.3
Q13 4.0 3.9 4.2 4.2 3.7 4.0

Q14 4.1 4.4 4.3 4.2 4.4 4.3
Q15 3.9 3.9 3.8 4.2 4.0 4.0

Q1: I found it easy to use the Software Analytics Canvas in this sprint.
Q2: At this point, I’m confident in my understanding of the concept of Key Issues.

Q3: In this sprint, I found it easy to define Key Issues on the Canvas.
Q4: At this point, I’m confident in my understanding of the concept of Measurements.

Q5: In this sprint, I found it easy to define Measurements on the Canvas.
Q6: At this point, I’m confident in my understanding of the concept of Methods and Tools.

Q7: In this sprint, I found it easy to define Methods and Tools on the Canvas.
Q8: At this point, I’m confident in my understanding of the concept of Highlights.

Q9: In this sprint, I found it easy to define Highlights on the Canvas.
Q10: At this point, I’m confident in my understanding of the concept of Insights.

Q11: In this sprint, I found it easy to define Insights on the Canvas.
Q12: At this point, I’m confident in my understanding of the concept of Goals.

Q13: In this sprint, I found it easy to define Goals on the Canvas.
Q14: At this point, I’m confident in my understanding of the concept of Decisions.

Q15: In this sprint, I found it easy to define Decisions on the Canvas.

32 Industrial Case Study

Software Analytics that they decided to make in that sprint. The fifth sprint had a better result

which could be the cause of the increase in that sprint.

Questions

3.50

3.75

4.00

4.25

4.50

4.75

Sprint 1 Sprint 2 Sprint 3 Sprint 4 Sprint 5

At this point, I'm confident in my
understanding of the concept of Key
Issues.

At this point, I'm confident in my
understanding of the concept of
Measurements.

At this point, I'm confident in my
understanding of the concept of Methods

At this point, I'm confident in my
understanding of the concept of

At this point, I'm confident in my
understanding of the concept of Insights.

At this point, I'm confident in my
understanding of the concept of Goals.

At this point, I'm confident in my
understanding of the concept of

Figure 5.5: Software Analytics Canvas Lane Understanding per Sprint

As for the ease-of-use, we can see in Figure 5.6 that these variations are connected to the

results of the tasks of each sprint. Some results are easy to register, and others not as much.

The decline from the first sprint to the second can be justified because the findings did not

bring much value. One team had good results but was related to the other team, so nothing of

importance was registered in the Canvas. The third sprint had a significant increase, which can

also be directly associated with the results. In this sprint, important results made it easy to register

results in the Canvas and a tool setup that proved quite valuable to the teams. There was also a

meeting between the teams to explain the finding from the previous sprint. We can see a decline

in the fourth sprint, which is also related to the fact that none of the teams had time to complete

all their software analytics tasks.

We also added some questions to the sprint survey to obtain some answers on the topic of

usefulness. These questions are presented in Table 5.5. The usefulness results of the surveys were

fairly high from the start, and we can interpret that this is because the teams were not previously

using any software analytics practices, as shown in Section 5.3.1. From the values of Question

2 in Table 5.5, we can see that the team never considered the Software Analytics Canvas as a

process that took a lot of time of the sprint. As we can observe in Table 5.2 from Section 5.3.2,

the software analytics tasks never surpassed the 20% mark of the total tasks planned for a specific

sprint.

Similar to the other metrics, the usefulness metrics also showed slight variations. In general,

both questions one and three had high values, as we can see in Table 5.5, which means that the

teams regarded that the process brought value to them and the time spent was well spent. Except

for Sprint 4 where these metrics dipped, as we can see in Figure 5.7. As mentioned before, the

5.3 Results Analysis 33

Questions

3.25

3.50

3.75

4.00

4.25

Sprint 1 Sprint 2 Sprint 3 Sprint 4 Sprint 5

In this sprint, I found it easy to define Key
Issues on the Canvas.

In this sprint, I found it easy to define
Measurements on the Canvas.

In this sprint, I found it easy to define
Methods and Tools on the Canvas.

In this sprint, I found it easy to define
Highlights on the Canvas.

In this sprint, I found it easy to define
Insights on the Canvas.

In this sprint, I found it easy to define
Goals on the Canvas.

In this sprint, I found it easy to define
Decisions on the Canvas.

Figure 5.6: Software Analytics Canvas Lane Ease-of-use per Sprint

Table 5.5: Average of responses to the sprint survey regarding the usefulness of the approach

Questions Sprint 1 Sprint 2 Sprint 3 Sprint 4 Sprint 5 Mean

Q1 4.3 4.1 4.0 3.8 4.3 4.1
Q2 2.4 2.3 2.5 2.4 2.0 2.3
Q3 4.6 4.6 4.5 4.4 4.6 4.5

Q1: The Software Analytics Canvas was useful in this sprint.
Q2: The Software Analytics process took a considerable time off this sprint.

Q3: The time spent on Software Analytics in this sprint is time well spent and beneficial.

34 Industrial Case Study

Questions

3.75

4.00

4.25

4.50

4.75

Sprint 1 Sprint 2 Sprint 3 Sprint 4 Sprint 5

The Software Analytics
Canvas was useful in
this sprint.

The time spent on
Software Analytics in
this sprint is time well
spent and beneficial.

Questions

1.75

2.00

2.25

2.50

2.75

Sprint 1 Sprint 2 Sprint 3 Sprint 4 Sprint 5

The Software Analytics
process took a
considerable time off
this sprint.

Figure 5.7: Software Analytics Canvas Userfulness Perception per Sprint

tasks of Sprint 4 were not completed, so it made the meetings and time spent less useful to generate

new cards on the Canvas.

We also assessed the product managers and CTO regarding the approach. As we can see in

Table 5.6, they felt like the Canvas was easy to understand and that it was useful. We presented

them with some of the results and asked if what the teams found was relevant to their work which

got a positive response. They also agreed that a process like this is important and dedicating a

percentage of the team’s effort is essential. A majority of the managers also wanted to be more

present in software analytics sessions. This would help them be more aware of the issues and

improve their decision making when it comes to deciding what should be done in the next sprint.

5.3.4 Code Quality Awareness

At the beginning of this experiment, a kick-off survey was handed to the participants as describe

in Section 5.3.1. In this survey, three questions are of importance to this topic. As we can observe

in Table 5.7, the participants felt reasonably aware of the system’s quality. Yet, as we can see by

the answers to questions two and three, the teams did not adopt many software analytics practices

and were not using code quality metrics. Therefore, we can conclude that their awareness was

based on their intuition of working in the system for a while. While this indeed grants you some

degree of understanding of the state of quality, many problems can go unnoticed.

At the end of each sprint, with the sprint survey, the participants were also asked if they felt

more aware of the state of quality by the end of the sprint. As we can see through the values of

each sprint on Table 5.8, on each sprint, the participants felt more aware of the state of quality by

simply measuring new metrics every sprint as the general mean of every sprint was 4.02, it is a

positive result.

After the experiment ended, the participants were surveyed one last time. In this survey, there

were some questions of relevance to the participants’ awareness regarding the state of quality of

the system. As we can see in Table 5.9, the participants affirmed that they felt that their system had

technical debt and that at the time the study began they were not paying it the required attention.

Some said in an open question that this lack of awareness was mainly related to fast growth,

5.3 Results Analysis 35

Table 5.6: Responses to the final survey to the managers regarding usefulness, understanding and
ease-of-use

Questions x σ

Q1 4.3 0.5
Q2 4.3 0.5
Q3 3.8 1.0
Q4 4.8 0.5
Q5 4.8 0.5
Q6 4.3 1.0
Q7 4.3 0.5
Q8 4.8 0.5
Q9 4.5 0.6
Q10 3.8 1.0

Q1: I feel that the concept of the Canvas is easy to understand.
Q2: I feel that the concept of the Canvas is useful.

Q3: 70% of the the Core and 90% of the 3PL service endpoints were not being used at all. This is relevant for my
work.

Q4: Long waiting times can cause a bad experience for the user. Several endpoints take more than 1 second to
complete and even some take more than one minute to complete. This is relevant for my work.

Q5: Code not covered by tests can be cause of bugs in the system. Some projects had between 50% and 70% of code
covered by tests. This is relevant for my work.

Q6: These types of findings are important to decision-making when prioritizing tasks for the next sprint.
Q7: I feel like the software analytics process is important and that we should keep using it.

Q8: I feel like dedicating a small percentage of the team tasks to software analytics is beneficial.
Q9: I feel like in my role in the company, understanding the quality of the system is relevant to the decisions I take.

Q10: I feel like participating in the software analytics sessions would be beneficial.

Table 5.7: Responses to the kick-off survey regarding the code quality awareness

Questions x σ

Q1 3.7 0.8
Q2 2.3 1.0
Q3 2.9 0.9

Q1: I am aware of the current state of quality of our software system’s code base.
Q2: My team has established Software Analytics practices.

Q3: My team currently makes use of code quality metrics.

Table 5.8: Average of responses to the sprint surveys regarding the code quality awareness

Questions Sprint 1 Sprint 2 Sprint 3 Sprint 4 Sprint 5 Mean

Q1 4.1 4.4 3.8 4.0 3.7 4.0

Q1: Following this sprint, I feel that I am more aware of the issues that the company projects have.

36 Industrial Case Study

focusing on new features, pressure to deliver quicker, and few team members. These are some

of the main characteristics of software teams in Startups. There is an urgent need to provide new

features fast, and sometimes, ode quality is compromised in favor of time to market.

Table 5.9: Responses to the final survey regarding the code quality awareness before the Canvas

Questions x σ

Q1 4.4 0.5
Q2 2.3 0.8

Q1: We had technical debt in our system.
Q2: We were paying the required attention to the system code quality.

In this final survey, we also evaluated the impact of the Canvas on the team’s awareness. As

we can see by the results in Table 5.10, the participants felt more aware than before by using the

Canvas on every sprint. It made the participants use more appropriate tools and making more

use of code quality metrics. They also agreed that putting the issue first instead of the metrics

made them more aware of why they used a specific metric. They also felt that the Canvas helped

the teams encounter severe issues and some that could have been left unnoticed if they didn’t use

Software Analytics. We can see that the awareness has been a positive consequence on the process.

Table 5.10: Responses to the final survey regarding the impact on code quality awareness

Questions x σ

Q1 4.1 0.7
Q2 4.0 0.6
Q3 4.4 0.8
Q4 4.6 0.5
Q5 3.9 0.9
Q6 4.4 0.5

Q1: I am more aware of the current state of quality of our software system’s codebase.
Q2: We are using more appropriate Software Analytics tools.

Q3: We are making more use of code quality metrics.
Q4: The Software Analytics Canvas process helped the team understand the metrics chosen by first identifying the

issues.
Q5: The Canvas helped the team encounter serious issues.

Q6: Without the Canvas, some of the issues could have been left unnoticed.

5.3.5 Code Quality Improvement

The overall system quality is a complex metric to evaluate, and we can’t tell how it has evolved

since the start of the Canvas usage. But, we can determine the improvement of the issues that

were defined in this process. From the issues defined on the boards, we can name a few that had a

remarkable evolution.

5.3 Results Analysis 37

The first significant metric defined was code coverage which was defined for both teams. For

one team, the issue that started this process was the quantity of bugs they had in the system. For

the other, it was associated with the perceived risk that new developments could break existing

features. Both teams sought to improve the way they measured the code coverage. The more

recent services had very high code coverage, but they noticed that older and legacy projects had

low code coverage despite that new code implemented in these projects was always tested. The

teams tried to find which parts of the system were lowering this metric and found out that most

of the code that didn’t have tests was not being used. This generated a new issue which was the

amount of dead code they had in these older projects.

As they noticed that they had a lot of dead code, it became one of the main issues. They tried

to identify which parts of the system were dead code, but as these services have the main goal

to provide APIs, it was challenging to find a value for this metric. Since all the code was "being

used" in endpoints, the typical dead code tools didn’t work here. Endpoint profiling tools were not

an option since it reduces the performance of the API by a lot, and they already had performance

issues. The solution was then to find all the endpoints defined in the application, which is easy to

obtain with some tools, and compare these endpoints to endpoints present in the Nginx logs stored

in the production machines. After this test, we found that around 70% of the service’s endpoints

were not being used for the application chosen from one team. For the service selected by the

second team, around 90% of the endpoints were not being used at all. In this case, both teams took

a different approach to solve this issue. The first team decided to clean the whole application in

one sprint. Most of the endpoints and associated code were deleted, which reduced the complexity

of the application and increased the code coverage mentioned above by 20%. The second team

took a more passive approach. They divided the application into several sectors and planned the

clean-up for several sprints. Two sectors have already been cleaned up, and they will improve

in the following sprints. The second team adopted this approach since the application they are

responsible for is a lot more complex and more critical than the other team’s. Since the task is

large and daunting, a division in small steps was a better option. The team applied the SMALL

STEPS FOR ANALYTICS pattern [6].

Another critical issue they had in their system was the system’s performance. The main prob-

lem was that the response times from their APIs were considerably high. The percentile 50 and

percentile 95 were analyzed, and some endpoints were surpassing the one-minute mark, and a

large portion of endpoints was surpassing the one-second mark in the percentile fifty. The teams

organized the response times from highest to lowest and decided that the ones with more than one

minute should be taken care of first. As they were still cleaning up the applications, this wasn’t the

main focus until one of the clients reported spending too much time waiting for a specific action

to finish the application. The endpoint responsible for that action was the highest percentile fifty,

with a value of 2.13 minutes. The task to fix this issue moved directly to the next sprint planning

and was fixed very quickly. The issue was related to an event that was being fired but was not

being used at all. From the tests done in the staging environment, the process became 660 times

faster than before. The issue took very little time to fix and solved a big issue for the clients.

38 Industrial Case Study

Every time the process was used, it called the endpoint several times. So an operation with 100

calls to the API endpoint that for the client used to take twenty-two minutes only takes around two

seconds with the update. And this is a small example. Some clients reported waiting a whole day

for the process to finish.

5.4 Challenges and Possible Improvements

During the usage of the Software Analytics Canvas, the teams faced several problems that made

the Canvas harder to use than they expected. For some problems, the teams managed to find

quick solutions that helped but not every problem had a solution. In the last weeks, we had a

final meeting where the teams discussed some of these problems. We also sent a survey at the

end where we let the participants share their opinions anonymously and the teams suggested some

possible alterations to the Canvas.

• Highlights and Insights — Participants said that separating the two lanes did not bring

additional value and made it hard to define the cards for each lane. Although the concepts

were easy to understand, in practice, it was hard to differentiate the two lanes. In the end of

the research, one of the teams proceeded to join the two columns to one called "Highlights".

• Tracking cards — This was discovered in the first iterations of the Canvas. As the Canvas

is composed of vertical lanes, there is no apparent flow that connects an issue together,

as opposed to a table where an issue and the correspondent cards are maintained in the

same line. In the beginning, one of the teams found a way to connect the cards together,

which solved the problem. The way they solved the issue is by giving colors to the cards

corresponding to a specific issue. It was good solution although they still said this was a

issue. Keeping the cards corresponding to an issue in the same line as if it was a table also

helped but these solutions were improvised by the teams and are highly dependent on the

technology used to represent the Canvas. In this case, we were using Miro boards which

provides white-board like solution with cards.

• Progress — There is no clear way to see how the issue is progressing. The issues are created

in the board and stay there while the issue is still being measured. This can create confusion

when there are several issues on the board, which makes it even harder to know the progress

of each issue. In the last meeting, some of participants made a suggestion to help in this

sense. They proposed that the Canvas was implemented in the same way as an Kanban

board, where an issue starts in the beginning of the board and goes through several steps until

they reach a "Done" lane. They proposed this board as an addition instead of substitution.

The Canvas board is useful to keep information and decisions but an additional board brings

value in the way that the team knows the state of every issue. The main disadvantage

of this solution is that one extra board would be too many boards for the team members

to keep track of everything. We could join the boards in only one but the description of

5.5 Threats to Validity 39

measurements, tools, highlights and insights stay hidden in the description of the card of the

issue as compared to the current version of the Canvas. To have the information as visible

as it currently is, the cards would be too large and would not be as intuitive to use.

5.5 Threats to Validity

Although we could answer the research questions defined at the beginning of the experiment,

there are still some threats to the results. These threats could cause deviations from the results and

compromise the validity of the experiment.

• The first threat is response bias. Response bias is a term for responses to interviews, sur-

veys, or questionnaires that bias the response from the correct and honest response [10]. In

this experiment, we were using the Cooperation Method Development research method [8].

As this method states, researchers participate with the engineers in the practices they are

observing. This means that we, as researchers, we’re closely working with the participants.

As there is proximity to the participants, there might be some response bias to please the re-

searcher. In our case, it is important to mention that some responses could have been lower

than they were, making the slight variations in the results essential to interpret. Because of

this, in a Likert scale question in a survey, a slight variation from a 4 to a 3 can already mean

a lot more than we think.

• The second threat is that the study was done in only one company and this company being

a start-up might make it raises the question if the study can be generalized to other projects.

In the world of technology, start-ups are very different than big corporations. There is a lot

less organization, the teams are small and multi-disciplinary, and they require fast delivery

of new functionalities. This means that code quality is not their primary focus, and an

approach like this can bring a lot more value than to other types of companies. The study

needs to be performed in more types of companies to understand the approach’s utility in

different environments.

40 Industrial Case Study

Chapter 6

A New Observed Pattern: Embedded
Improvements

Improvement tasks that emerge from the use of software analytics are often large and difficult to

estimate. This type of task can often appear daunting to start and can be left untouched in the

backlog. In legacy systems, this type of issue might not even be worth fixing since the codebase

is old or the quality has not been the main focus, and most developers might not have worked on

that specific part of the system.

6.1 Problem

Software analytics practices often generate technical improvement tasks that imply a con-
siderable effort, and therefore get frequently left behind during planning and may never end
up being implemented.

There usually is a lack of understanding from the end-users and product owners, which are

responsible for the product direction, regarding code-quality issues. They may not be able to

identify internal quality concerns and understand the importance of dedicating significant effort to

addressing them. Taking on considerably large technical improvements may lead the team to not

deliver any value to the project or the company for entire iterations.

There is also a significant effort in some tasks derived from software analytics findings, and

one can say that simply dividing the issue into smaller tasks will resolve this problem. The team

will be able to implement them over time by implementing SMALL STEPS FOR ANALYTICS. Al-

though this might be true, it might not be enough if future developments contribute to the problem

itself and, sometimes, the problem might be too complex to be divided into smaller tasks. The

task is indeed being resolved, but this doesn’t necessarily imply any plans to prevent the issue

from happening.

41

42 A New Observed Pattern: Embedded Improvements

6.2 Solution

Change the development practices to embed improvements gradually and continuously in
other tasks.

Changing the development practices is essential for this pattern to work, and there are two

complementary ways a team can implement this pattern.

This first way is when a team changes their DoD (Definition of Done) to prevent an issue from

happening again. The DoD is a checklist that needs to be completely done before considering

a task as completed. The team will have the responsibility to make sure that the issue is not

happening before closing a task. This way, the issue does not need to be brought up during the

planning. It will simply be an underlying requirement when doing a specific task. The team must

still be aware of older developments which still need to be resolved.

Another way one can implement this pattern is by considering the issues during technology

refinements. If the issue exists, it should be addressed when defining a new development or User

Story tasks. The solution to a problem the team is trying to solve should already be prepared to

avoid making the same mistakes repeatedly. This can be done by defining refactoring tasks be-

fore implementing the new development to simplify development while tackling the issue, which

facilitates future developments.

6.3 Consequences

There are several consequences when implementing this pattern. On the positive side, one of

them is the guarantee that the problem won’t reproduce. When the team considers the issue on

new developments or includes a specific task on the DoD, it is a prevention technique to stop a

particular issue from happening again.

Another positive consequence is that there is no need to create tasks to fix or improve an

issue. As stated before, tasks related to significant issues can be daunting to start. Considering

the improvement as part of typical developments, it won’t feel like a substantial endeavor, and

progress, although small, will always be made towards the end goal.

On the negative side of the consequences, time management is one of the main problems.

The team might take more time to finish a task since there more things to consider. It might

change the team’s velocity, and the product owners and clients might notice a change. Typical

tasks that usually had only logic requirements might have some technical specifications to prevent

the issues from happening again. But there is always the fact that refactoring code makes future

developments a lot easier. Although we might take more time to finish a specific task, future

developments will be quicker. But, the team must always discuss if refactoring makes sense at one

particular stage. Sometimes it is indeed a priority to abdicate quality for speed.

Another consequence from this solution is the cluttering of the DoD. It might start to be

cluttered with small steps to prevent multiple issues that come from the Canvas. Although, in a

6.4 Example 43

way, this is positive for the system quality, for the developer might be hard to consider everything

before closing a task or User Story.

An additional consequence is that although this prevents the issue from happening again, the

issue persists on older code and needs to be taken care of to eliminate the system’s issue. If

a team wants to eliminate the process, they have to create tasks to fix the issue on older code

incrementally. This still is a problem if the issue is large and complex.

6.4 Example

The start-up where the case study took place was challenged with big technical debt problems

since they had a large portion of legacy code. Fixing some of the code quality issues that the

teams identified were considerably large endeavors.

During our experience in this start-up, some issues required this type of solution. Since the

system had a large quantity of legacy code, the teams had many issues they already know existed

but still hadn’t formally organized these issues. The Canvas helped them in this aspect, and some

of the issues they defined were large and hard to resolve. One of the main issues was related to

dead code or code that wasn’t being used anymore. With a simple script that analyzed the server

logs, they managed to find out that 70% of their core application endpoints were not being called

anymore. Removing a large portion of code like this is bound to have a lot of issues, so tackling

it in smaller segments was one of the solutions they had, which relates to the SMALL STEPS FOR

ANALYTICS pattern referred above. But they also wanted to prevent the issue from growing, so

the way they thought to do this was that they should analyze the possibility of generating dead

code in new refinements. If this was the case, the portion of code in question should be removed

to prevent leaving dead code in the repository.

One more common example is related to code coverage. Some older projects had small code

coverage but implementing tests to the sections that didn’t have tests yet was very hard since the

code was done several years ago, and sometimes it wasn’t even done by the same developers

working there now. So, since creating more tests was not an option, they created a goal on the

canvas that stated that all new code should have 100% coverage. It will naturally increase the code

coverage over time since the untested code percentage will reduce with every new code added.

44 A New Observed Pattern: Embedded Improvements

Chapter 7

Conclusions

This last chapter provides a conclusion for this document. First, we provide a quick summary of

the results and compare the work analyzed in the State of the Art. Then we provide clear and direct

answers to the research questions, and finally, we explore possible work to be done in the future.

7.1 Summary

The conclusions from the state of the art review reveal that software quality models are useful

for defining software quality but don’t provide an approach for assessing the specified quality at-

tributes in a software project. Software analytics approaches fill this gap by providing a structured

approach for operationalizing software quality models. However, they don’t explain how software

teams should proceed with all this information at hand. Software analytics approaches provide

valuable, actionable data. As we described in Section 3.3, continuous improvement approaches

provide us exact steps to act with the information acquired by software analytics processes. The

Software Analytics Canvas is one of these approaches but doesn’t have enough studies around the

approach.

This dissertation’s main contribution is an industrial case study with two software teams in

the context of a start-up company. The start-up teams used the Software Analytics Canvas for ten

weeks. Results were analyzed regarding the ease-of-use, usefulness of the approach, awareness

of the state of quality of their system, and improvements on the quality of the systems. Two last

sessions with the teams took place at the end to understand what changes to the approach should

be made. From the results, we were able to understand that the Canvas was a useful approach,

easy to understand but harder to use than they had thought. Nevertheless, they confirmed that the

approach was valuable to increase their awareness on the state of quality of their system. The

approach also helped the teams improve the metrics related to the issues they defined.

After conducting a case study with two teams using the approach we have a better comparison

to other techniques investigated in the State of the Art. The Software Analytics Canvas doesn’t

define what quality is like software quality models do. It’s a more flexible approach that focuses on

solving the problems that the software teams have regarding code quality. But, although not done

45

46 Conclusions

in this case study, they can be used in parallel. Assessment approaches help the teams establish

code quality metrics in a structured way but it still follows a models that defines what quality is.

The Canvas is a continuous improvement approach, so it focuses on improving the code quality

incrementally but doesn’t define what quality is. The software teams register the issues that they

have regarding to code quality, find measurements and tools that will help them evaluate the state

of the issue and then make decisions based on the results obtained.

7.2 Research Answers

In this section, we intend to provide an answer to the three research questions that we defined in

Section 4.2.

RQ1: What are the users’ perceptions about the usefulness and ease-of-use of the Soft-
ware Analytics Canvas?

The user’s perception was that the Canvas was easier to understand than to use, but the overall

sentiment was that the Canvas was useful.

The participants understood the process well and thought it was straightforward. But, even

though understanding it was easier than using it, they still felt the Canvas was easy to use.

The usefulness of the approach has two interpretations: the participant perspective and the

obtained results. The overall sentiment of the users was that the process was helpful. They said

that the approach brought value to them and helped them organize their code quality activities.

The managers also thought the approach was relevant for their work, easy to understand, and even

though they were less in contact with the Canvas, they said they were more inclined to participate

more. The approach also got good results which means that the approach brought value to the

teams. We hope that with more time of using the approach the teams will see even more benefits.

RQ2: Are the users more aware of the quality issues of their project, and do they under-
stand the reason behind the metrics being monitored?

Throughout the study the study, the users felt more aware of the quality of the system.

We can also answer this question with the same interpretations as the last question: the par-

ticipant perspective and the obtained results. As for the participant perspective, although team

members said that they had a good enough awareness about the system’s quality before the Can-

vas, it was only intuition. Almost no metrics were being used at the time, and with the new

approach, they felt more aware as a new metric would appear, and in the end, they confessed

that they were not paying the required attention to code quality and that with the Canvas, their

awareness increased.

From the results perspective, some issues came from the investigation of other issues. This

means that, with the Canvas, there was the discovery of new issues they weren’t aware of before

the start of the study. And although they had an idea of what the state of quality was, measuring

and documenting these problems helped to be sure of the state of the problem.

RQ3: How does the Software Analytics Canvas affect the software system’s quality over
time?

7.3 Future Work 47

Clear progress of the quality of a few issues was observed during the case study.

For the issues chosen, there has been clear progress. The code coverage has been increased on

several projects, and dead code is being cleaned up every sprint so that the project becomes less

complex and response times of their services APIs are being reduced.

In this experiment, most of the time was dedicated to defining the issues, finding correspond-

ing measurements, and methods and tools to measure the issues. Only in the last sprint of the

research has the team started to fix many of the issues as they need to go through thorough plan-

ning before being accepted for development. The approach did improve some issues defined, but

more research time would have been valuable to give a more precise answer to this question.

7.3 Future Work

There are several aspects that could prove useful to further validate and discuss this work.

• Conduct this study in other companies — As we described in Section 5.5, one of the

main threats to our results is the fact that the study was only conducted in one company and

this company being a startup. Although we got good results, we plan on gathering more

evidence of the impact of the approach. Therefore, the study needs to be applied in more

start-ups type but also in other types of companies more large like big corporations with

even more teams and a more defined structure.

• Increase the length of the case study — As we described in this document, we would

notice significantly more improvements on the state of quality of the company if the study

was conducted for a longer period of time. We did get good improvements in some issues

defined in the Canvas but we did not get to see an great impact on the overall quality of the

system. This is due to the fact that the teams can’t fully concentrate their time to software

analytics activities so the progress is slower. There is also some planning activities and

formalities slowing the implementation. A longer period of time would be more beneficial

to prove the usefulness and the capacity of the approach to improve the system’s quality

overtime.

• Conduct the study with other types of teams — The company where our study took place

is a start-up, so there is a small number of engineering teams and they all do everything

in terms of technology. Some bigger companies have specialized teams for certain areas

like Quality Assurance or DevOps where they would use software analytics more regularly.

This would allow them to spend more time with the Canvas and iterate quicker. It would be

interesting to see if the approach works for this type of teams as well. Another team that is

worth investigating more is the product managers or higher ranks in the companies. It would

be interesting to see the impact that it has on these teams and how it affects their decision

making.

48 Conclusions

Appendix A

Surveys

A.1 Kick-off Survey

49

6/29/2021 Software Analytics Survey

https://docs.google.com/forms/d/1PPYyu31v-sTpUf-npjnUHdoVUNCR6NmTEhqzDSSmUGI/edit 1/4

General
General questions about your role and profession.

1.

Mark only one oval.

High School

Graduate degree

Master degree

Doctorate degree

2.

3.

4.

5.

6.

Mark only one oval.

None

Novice

Intermediate

Expert

Software Analytics
Questions related to Software Analytics and code quality practices.

For the items below with a agree/disagree scale, please state how much you agree with the statement.

7.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

So�ware Analytics Survey
Hi!

My name is Duarte Oliveira and I'm studying Software Engineering at FEUP. I'm currently doing my thesis about continuous assessment of code quality
through Software Analytics practices in a start-up environment.

Before I present you with my proposal for the next few months, I would like you to answer this questionnaire about the current state of Software Analytics in
your team.

*Required

What's your education level? *

What's your role in your current company? *

For how many years have you practiced your profession? *

For how many years have you been in your current company? *

What's your team in your current company? *

What's your experience with Agile practices? *

I am aware of the current state of quality of our software system's code base. *

6/29/2021 Software Analytics Survey

https://docs.google.com/forms/d/1PPYyu31v-sTpUf-npjnUHdoVUNCR6NmTEhqzDSSmUGI/edit 2/4

8.

Brief Software Analytics definition
From this point forward, we will mention Software analytics as the analytics specific to the domain of software systems. It takes into account source code, static and dynamic
characteristics, and although my thesis focuses on code quality, Software Analytics is also related to processes of development and evolution. Software Analytics aims to provide insightful
and actionable information in order to improve the efficiency and effectiveness of the software development process.

9.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

10.

11.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

12.

13.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

14.

Can you briefly describe what is Software Analytics to you? *

My team has established Software Analytics practices. *

What Software Analytics activities do you practice in your team?

My team is using appropriate Software Analytics tools. *

Which Software Analytics tools is your team using?

My team currently makes use of code quality metrics. *

If you agreed with the previous statement, which ones? How do you use them? (solve problems, as a reference, etc.) Are you aware of the
objective you're trying to achieve with these metrics?

6/29/2021 Software Analytics Survey

https://docs.google.com/forms/d/1PPYyu31v-sTpUf-npjnUHdoVUNCR6NmTEhqzDSSmUGI/edit 3/4

15.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

16.

Mark only one oval.

Yes

No

17.

Mark only one oval.

Other:

Sprint Retrospective

Sprint Review

Sprint Planning

Daily meeting

When implementing a specific feature

Never

18.

19.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

20.

21.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

The implemented metrics are used in order to solve an existing problem or reach an objective.

Did your team establish any quality standards/thresholds for these metrics? For example, in a percentage metric like test code coverage,
we could define that the code should have at least 70% code coverage

When does your team assess software quality during a sprint? *

If you do assess software quality with your team, what topics do you usually discuss with your team?

My team frequently includes Software Analytics tasks in the sprint planning. *

What type of tasks do you include?

My team dedicates some time of our sprint to refactoring activities. *

6/29/2021 Software Analytics Survey

https://docs.google.com/forms/d/1PPYyu31v-sTpUf-npjnUHdoVUNCR6NmTEhqzDSSmUGI/edit 4/4

22.

23.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

24.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

25.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

This content is neither created nor endorsed by Google.

Are they small refactorings only during your tasks or big refactorings with dedicated tasks?

I refactor code during a sprint task in order to deliver better code.

My team creates refactor tasks in order to improve the code quality incrementally.

My team assesses the impact of these refactors.

 Forms

54 Surveys

A.2 Sprint Survey

6/29/2021 Survey - Sprint 5

https://docs.google.com/forms/d/1xkyIrwidBeCpQCuIodobkV__EJfZJ2AFitENM3_ryos/edit 1/5

General
General questions about your role and profession.

1.

Mark only one oval.

High School

Graduate degree

Master degree

Doctorate degree

2.

Mark only one oval.

Team Lead

Front-end Developer

Back-end Developer

3.

4.

5.

Mark only one oval.

TIMON

PUMBA

6.

Mark only one oval.

None

Novice

Intermediate

Expert

Software Analytics Canvas
Questions about your perception on the Canvas in the previous sprint.

For the items below with a agree/disagree scale, please state how much you agree with the statement.

Survey - Sprint 5
Following up the fifth sprint, I prepared a questionnaire to understand the how the Software Analytics Canvas is being perceived. We want to understand the
impact the Canvas had on the quality of the system but also, what is the perceived usefulness and ease of use. All the questions refer to the fifth sprint of
development.

*Required

What's your education level? *

What's your role in your current company? *

For how many years have you practiced your profession? *

For how many years have you been in your current company? *

What's your team in your current company? *

What's your experience with Agile practices? *

6/29/2021 Survey - Sprint 5

https://docs.google.com/forms/d/1xkyIrwidBeCpQCuIodobkV__EJfZJ2AFitENM3_ryos/edit 2/5

7.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

8.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

9.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

10.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

11.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

12.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

13.

14.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

I found it easy to use the Software Analytics Canvas in this sprint. *

The Software Analytics Canvas was useful in this sprint. *

Following this sprint, I feel that I am more aware of the issues that the company projects have. *

The Canvas helped me understand the reasons behind the metrics implemented in this sprint. *

The Canvas helps to make sure that the metrics implemented in this sprint are the most relevant to the project. *

The Canvas helped improve the code quality of the System in this sprint. *

Briefly explain the reason behind your answer to the last question. *

The Software Analytics process took a considerable time off this sprint. *

6/29/2021 Survey - Sprint 5

https://docs.google.com/forms/d/1xkyIrwidBeCpQCuIodobkV__EJfZJ2AFitENM3_ryos/edit 3/5

15.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

16.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

17.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

18.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

19.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

20.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

21.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

22.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

The time spent on Software Analytics in this sprint is time well spent and beneficial. *

At this point, I'm confident in my understanding of the concept of Key Issues. *

In this sprint, I found it easy to define Key Issues on the Canvas. *

At this point, I'm confident in my understanding of the concept of Measurements. *

In this sprint, I found it easy to define Measurements on the Canvas. *

At this point, I'm confident in my understanding of the concept of Methods and Tools. *

In this sprint, I found it easy to define Methods and Tools on the Canvas. *

At this point, I'm confident in my understanding of the concept of Highlights. *

6/29/2021 Survey - Sprint 5

https://docs.google.com/forms/d/1xkyIrwidBeCpQCuIodobkV__EJfZJ2AFitENM3_ryos/edit 4/5

23.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

24.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

25.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

26.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

27.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

28.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

29.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

In this sprint, I found it easy to define Highlights on the Canvas. *

At this point, I'm confident in my understanding of the concept of Insights. *

In this sprint, I found it easy to define Insights on the Canvas. *

At this point, I'm confident in my understanding of the concept of Goals. *

In this sprint, I found it easy to define Goals on the Canvas. *

At this point, I'm confident in my understanding of the concept of Decisions. *

In this sprint, I found it easy to define Decisions on the Canvas. *

6/29/2021 Survey - Sprint 5

https://docs.google.com/forms/d/1xkyIrwidBeCpQCuIodobkV__EJfZJ2AFitENM3_ryos/edit 5/5

30.

This content is neither created nor endorsed by Google.

What is your opinion on the Canvas? Do you have any comments about the Canvas or the topics of this survey?

 Forms

60 Surveys

A.3 Final Assessment Survey - Tech

6/29/2021 Final Assessment - Tech

https://docs.google.com/forms/d/1iF3sXYdPwi1vHItQI99fBJXmyEwitd42HByAbq86GN4/edit 1/7

General
General questions about your role and profession.

1.

Mark only one oval.

High School

Graduate degree

Master degree

Doctorate degree

2.

3.

4.

5.

6.

Mark only one oval.

None

Novice

Intermediate

Expert

Before Software Analytics Canvas

7.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

Final Assessment - Tech
Hi! 👋

This survey is related to your experience regarding the Software Analytics Canvas in the past few months. We want to compare it to the last methods you were
using, but we also want to know about the learning experience, the consequences, and the impact the process had on you and the system.

The following questions are related to the current state compared to the time before using the process.

Please state how much you agree with the statement for the items with a agree/disagree scale.
*Required

What's your education level? *

What's your role in your current company? *

For how many years have you practiced your profession? *

For how many years have you been in your current company? *

What's your team in your current company? *

What's your experience with Agile practices? *

We had technical debt in our system. *

6/29/2021 Final Assessment - Tech

https://docs.google.com/forms/d/1iF3sXYdPwi1vHItQI99fBJXmyEwitd42HByAbq86GN4/edit 2/7

8.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

9.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

10.

11.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

Adopting the Software Analytics Canvas

12.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

13.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

14.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

We were paying the required attention to the system code quality. *

By being a start-up, we have pressure on the team to produce value faster and consequently ignore the quality. *

What other reasons could have lead to not paying attention to code quality? *

The Canvas is an upgrade from my previous software analytics practices. *

I feel that the concept of the Canvas was easy to understand. *

I feel that the Canvas was easy to use. *

I feel that the Canvas was harder to use than I expected. *

6/29/2021 Final Assessment - Tech

https://docs.google.com/forms/d/1iF3sXYdPwi1vHItQI99fBJXmyEwitd42HByAbq86GN4/edit 3/7

15.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

16.

17.

Mark only one oval per row.

18.

Mark only one oval per row.

Consequences

19.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

I feel that understanding the Canvas was easier than actually using it. *

What made the Canvas easy or hard to understand? *

Order the following Canvas lanes from the hardest to the easiest to understand, 1 being the easiest and 7 being the hardest. *

1 2 3 4 5 6 7

Key Issues

Measurements

Methods and Tools

Highlights

Insights

Goals

Decisions

Key Issues

Measurements

Methods and Tools

Highlights

Insights

Goals

Decisions

Order the following Canvas lanes from the less useful to the most useful, 1 being the less useful and 7 being most useful. *

1 2 3 4 5 6 7

Key Issues

Measurements

Methods and Tools

Highlights

Insights

Goals

Decisions

Key Issues

Measurements

Methods and Tools

Highlights

Insights

Goals

Decisions

We dedicate more time of our sprint to refactoring activities. *

6/29/2021 Final Assessment - Tech

https://docs.google.com/forms/d/1iF3sXYdPwi1vHItQI99fBJXmyEwitd42HByAbq86GN4/edit 4/7

20.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

21.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

22.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

23.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

24.

25.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

26.

We include more Software Analytics tasks in the sprint planning. *

I feel that I do more refactoring activities during a sprint task to deliver better code. *

We create refactor tasks to improve the code quality incrementally. *

We assess the impact of these refactors. *

How would you describe the impact of the canvas on your refactoring activities? *

I am more aware of the current state of quality of our software system's codebase. *

How would you describe the impact of the Canvas on your awareness regarding the state of quality of the system? *

6/29/2021 Final Assessment - Tech

https://docs.google.com/forms/d/1iF3sXYdPwi1vHItQI99fBJXmyEwitd42HByAbq86GN4/edit 5/7

27.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

28.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

29.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

30.

31.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

32.

33.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

We are using more appropriate Software Analytics tools. *

We are making more use of code quality metrics. *

The implemented metrics are more used to solve an existing problem. *

How did the Canvas impact the selection process of tools and metrics? *

The Software Analytics Canvas process helped the team understand the metrics chosen by first identifying the issues. *

What made you better understand the metrics used? *

The Canvas helped the team encounter serious issues. *

6/29/2021 Final Assessment - Tech

https://docs.google.com/forms/d/1iF3sXYdPwi1vHItQI99fBJXmyEwitd42HByAbq86GN4/edit 6/7

34.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

35.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

36.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

37.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

38.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

39.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

40.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

Without the Canvas, some of the issues could have been left unnoticed. *

I already knew about the issues defined. *

The Canvas helped the team organize technical debt issues in order to take better action on them. *

I feel like the Canvas accelerated the process of finding issues and improving the quality. *

With this process, we can improve the system quality without harming the value delivered on every sprint. *

The Canvas had a positive impact on the company system. *

I feel like the Canvas improved the code quality culture of the company. *

6/29/2021 Final Assessment - Tech

https://docs.google.com/forms/d/1iF3sXYdPwi1vHItQI99fBJXmyEwitd42HByAbq86GN4/edit 7/7

41.

Final Thoughts

42.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

43.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

44.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

45.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

46.

This content is neither created nor endorsed by Google.

What do you consider the best consequences of using this process? *

I want to keep using a Software Analytics process to assess the code quality of the system and improve. *

I want that process to be based on the Software Analytics Canvas. *

I feel that the process has the potential to help the company improve the overall technical quality of the system. *

I think that the Canvas can be improved. *

What should the Canvas improve on? Recommend some changes to the process. *

 Forms

68 Surveys

A.4 Final Assessment Survey - Managers

7/3/2021 Final Assessment - Management

https://docs.google.com/forms/d/1iM5RmVtI6H9S3MrdrS-keOMclSYilEhXZ-Y5_dx94mI/edit 1/4

General
General questions about your role and profession.

1.

Mark only one oval.

High School

Graduate degree

Master degree

Doctorate degree

2.

3.

4.

5.

6.

Mark only one oval.

None

Novice

Intermediate

Expert

The
approach

Software Analytics Canvas is a goal-focused approach to introduce software analytics concepts and practices in an agile development context. The canvas is a hub
of information related to software analytics projects where the team can plan their software analytics related activities. It helps teams decide how to address
quality issues of the code and architecture and provides transparency over that decision process to all stakeholders. The objective is to ensure that the team
members participate in all planning activities, from the definition of the issues to the metrics implemented and results gathered. The team understands the metrics
being collected and that these metrics will help address real issues. It's also helpful to avoid monitoring unnecessary measurements since everything is issue-
focused.

The Software Analytics Canvas makes use of a board like the ones presented below. HUUB teams have used these for the last four months, and they show a series
of issues, the metrics that have been used to generate insights about them, goals established for these metrics, and some decisions made. All the tasks generated
from this Canvas were added to Jira.

For the items with a agree/disagree scale, please state how much you agree with the statement.

Final Assessment - Management
Hi! 👋

This survey is destinated to product managers and other management roles in the company. The objective is to understand your point of view in the
usefulness of the approach Software Analytics Canvas, but also if you find the approach easy to understand.

*Required

What's your education level? *

What's your role in your current company? *

For how many years have you practiced your profession? *

For how many years have you been in your current company? *

What's your team in your current company? *

What's your experience with Agile practices? *

7/3/2021 Final Assessment - Management

https://docs.google.com/forms/d/1iM5RmVtI6H9S3MrdrS-keOMclSYilEhXZ-Y5_dx94mI/edit 2/4

Team Timon Software Analytics Canvas (See image in larger size: https://www.dropbox.com/s/mya7x1ns7birg4q/sac_team1_v5.0.png?dl=0)

Team Pumba Software Analytics Canvas (See image in larger size: https://www.dropbox.com/s/d1md7vi987u86c5/sac_team2_v5.0.png?dl=0)

7.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

8.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

9.

I feel that the concept of the Canvas is easy to understand. *

I feel that the concept of the Canvas is useful. *

What do you find easier and harder to understand? *

7/3/2021 Final Assessment - Management

https://docs.google.com/forms/d/1iM5RmVtI6H9S3MrdrS-keOMclSYilEhXZ-Y5_dx94mI/edit 3/4

10.

Mark only one oval per row.

11.

Mark only one oval per row.

Problems discovered with Software Analytics

12.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

13.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

14.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

Order the following Canvas lanes from the easiest to the hardest to understand, 1 being the easiest and 7 being the hardest. *

1 2 3 4 5 6 7

Key Issues

Measurements

Methods and Tools

Highlights

Insights

Goals

Decisions

Key Issues

Measurements

Methods and Tools

Highlights

Insights

Goals

Decisions

Considering your work in particular, order the following Canvas lanes from the less to the most useful, 1 being the less useful and 7 being
most useful. *

1 2 3 4 5 6 7

Key Issues

Measurements

Methods and Tools

Highlights

Insights

Goals

Decisions

Key Issues

Measurements

Methods and Tools

Highlights

Insights

Goals

Decisions

70% of the the Core and 90% of the 3PL service endpoints were not being used at all. This is relevant for my work. *

Long waiting times can cause a bad experience for the user. Several endpoints take more than 1 second to complete and even some take
more than one minute to complete. This is relevant for my work. *

Code not covered by tests can be cause of bugs in the system. Some projects had between 50% and 70% of code covered by tests. This is
relevant for my work. *

7/3/2021 Final Assessment - Management

https://docs.google.com/forms/d/1iM5RmVtI6H9S3MrdrS-keOMclSYilEhXZ-Y5_dx94mI/edit 4/4

15.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

Final thoughts

16.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

17.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

18.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

19.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

20.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

This content is neither created nor endorsed by Google.

These types of findings are important to decision-making when prioritizing tasks for the next sprint. *

During the last 3 months, 15% of the team planned tasks were related to software analytics. I felt that the team performance slowed down.
*

I feel like the software analytics process is important and that we should keep using it. *

I feel like dedicating a small percentage of the team tasks to software analytics is beneficial. *

I feel like in my role in the company, understanding the quality of the system is relevant to the decisions I take. *

I feel like participating in the software analytics sessions would be beneficial. *

 Forms

References

[1] David E Avison, Francis Lau, Michael D Myers, and Peter Axel Nielsen. Action research.
Communications of the ACM, 42(1):94–97, 1999.

[2] Victor R Basili. Software development: A paradigm for the future. In [1989] Proceedings of
the Thirteenth Annual International Computer Software & Applications Conference, pages
471–485. IEEE, 1989.

[3] Barry W Boehm, John R Brown, Hans Kaspar, M Lipow, and G McLeod. Merritt.: Charac-
teristics of software quality, 1978.

[4] Victor R Basili1 Gianluigi Caldiera and H Dieter Rombach. The goal question metric ap-
proach. Encyclopedia of software engineering, pages 528–532, 1994.

[5] Joelma Choma, Eduardo Guerra, Tiago Silva da Silva, Luciana AM Zaina, and Fil-
ipe Figueiredo Correia. Towards an artifact to support agile teams in software analytics
activities. In SEKE, pages 88–122, 2019.

[6] Joelma Choma, Eduardo Martins Guerra, and Tiago Silva Da Silva. Patterns for implement-
ing software analytics in development teams. In Proceedings of the 24th Conference on
Pattern Languages of Programs, pages 1–12, 2017.

[7] Ward Cunningham. The wycash portfolio management system. SIGPLAN OOPS Mess.,
4(2):29–30, December 1992.

[8] Yvonne Dittrich, Kari Rönkkö, Jeanette Eriksson, Christina Hansson, and Olle Lindeberg.
Cooperative method development. Empirical Software Engineering, 13(3):231–260, 2008.

[9] Farnaz Fotrousi and Samuel A Fricker. Software analytics for planning product evolution.
In International Conference of Software Business, pages 16–31. Springer, 2016.

[10] Adrian Furnham. Response bias, social desirability and dissimulation. Personality and indi-
vidual differences, 7(3):385–400, 1986.

[11] Shrinath Gupta, Himanshu Kumar Singh, Radhika D Venkatasubramanyam, and Umesh Up-
pili. Scqam: a scalable structured code quality assessment method for industrial software.
In Proceedings of the 22nd International Conference on Program Comprehension, pages
244–252, 2014.

[12] ISO Iso. Iec 9126-1: Software engineering-product quality-part 1: Quality model. Geneva,
Switzerland: International Organization for Standardization, 21, 2001.

[13] JingFeng Ning, Zhiyu Chen, and Gang Liu. Pdca process application in the continuous
improvement of software quality. In 2010 International Conference on Computer, Mecha-
tronics, Control and Electronic Engineering, volume 1, pages 61–65, 2010.

73

74 REFERENCES

[14] Eriks Klotins, Michael Unterkalmsteiner, Panagiota Chatzipetrou, Tony Gorschek, Rafael
Prikladnicki, Nirnaya Tripathi, and Leandro Pompermaier. Exploration of technical debt
in start-ups. In 2018 IEEE/ACM 40th International Conference on Software Engineering:
Software Engineering in Practice Track (ICSE-SEIP), pages 75–84. IEEE, 2018.

[15] Silverio Martínez-Fernández, Andreas Jedlitschka, Liliana Guzmán, and Anna Maria
Vollmer. A quality model for actionable analytics in rapid software development. In 2018
44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA),
pages 370–377. IEEE, 2018.

[16] Jim A McCall. Factors in software quality. US Rome Air development center reports, 1977.

[17] Reinhold Plösch, Harald Gruber, A Hentschel, Ch Körner, Gustav Pomberger, Stefan Schif-
fer, Matthias Saft, and S Storck. The emisq method and its tool support-expert-based evalu-
ation of internal software quality. Innovations in Systems and Software Engineering, 4(1):3–
15, 2008.

[18] Natalie Robehmed. What is a startup?, Dec 2013.

[19] Antje Schmitt, Kathrin Rosing, Stephen X Zhang, and Michael Leatherbee. A dynamic
model of entrepreneurial uncertainty and business opportunity identification: Exploration as
a mediator and entrepreneurial self-efficacy as a moderator. Entrepreneurship Theory and
Practice, 42(6):835–859, 2018.

[20] Antje Schmitt, Kathrin Rosing, Stephen X Zhang, and Michael Leatherbee. A dynamic
model of entrepreneurial uncertainty and business opportunity identification: Exploration as
a mediator and entrepreneurial self-efficacy as a moderator. Entrepreneurship Theory and
Practice, 42(6):835–859, 2018.

[21] Japjot Sethi. The differences between entrepreneurs and startup founders, Aug 2014.

[22] Sandra A Slaughter, Donald E Harter, and Mayuram S Krishnan. Evaluating the cost of
software quality. Communications of the ACM, 41(8):67–73, 1998.

[23] Dimitris Stavrinoudis and Michalis Nik Xenos. Comparing internal and external software
quality measurements. In JCKBSE, pages 115–124, 2008.

[24] S. Wagner, K. Lochmann, L. Heinemann, M. Kläs, A. Trendowicz, R. Plösch, A. Seidi,
A. Goeb, and J. Streit. The quamoco product quality modelling and assessment approach.
In 2012 34th International Conference on Software Engineering (ICSE), pages 1133–1142,
2012.

[25] Dongmei Zhang, Shi Han, Yingnong Dang, Jian-Guang Lou, Haidong Zhang, and Tao Xie.
Software analytics in practice. IEEE software, 30(5):30–37, 2013.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives and Contributions
	1.4 Document Structure

	2 Background
	2.1 Software quality
	2.2 Software Analytics
	2.3 Start-ups and Technical Debt
	2.4 Chapter Conclusions

	3 Related Work
	3.1 Software Quality Models
	3.1.1 The Quamoco Quality Modeling Approach
	3.1.2 Q-Rapids Quality Model
	3.1.3 Discussion

	3.2 Software Analytics Assessment Approaches
	3.2.1 Goal, Question, Metric
	3.2.2 SCQAM: Scalable Structured Code Quality Assessment Method
	3.2.3 Discussion

	3.3 Continuous Improvement Approaches
	3.3.1 PDCA: Plan, Do, Check and Action
	3.3.2 Software Analytics Canvas
	3.3.3 Discussion

	4 Problem statement and Proposed Solution
	4.1 Scope
	4.2 Research Questions
	4.3 Methodology

	5 Industrial Case Study
	5.1 Goals
	5.2 Study Design
	5.3 Results Analysis
	5.3.1 Company Background in Software Analytics
	5.3.2 Usage of The Software Analytics Canvas
	5.3.3 Usefulness and Ease-of-use Perception
	5.3.4 Code Quality Awareness
	5.3.5 Code Quality Improvement

	5.4 Challenges and Possible Improvements
	5.5 Threats to Validity

	6 A New Observed Pattern: Embedded Improvements
	6.1 Problem
	6.2 Solution
	6.3 Consequences
	6.4 Example

	7 Conclusions
	7.1 Summary
	7.2 Research Answers
	7.3 Future Work

	A Surveys
	A.1 Kick-off Survey
	A.2 Sprint Survey
	A.3 Final Assessment Survey - Tech
	A.4 Final Assessment Survey - Managers

	References

