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Abstract

Wind energy has become one of the leading sources of renewable energy. It is regarded as
a climate-friendly and cost-effective way to address the growing energy needs of the world
population.

Unfortunately, faults and unscheduled shutdowns of wind turbines are costly. As the
size and number of wind turbines continue to grow, monitoring for faults has become
increasingly important for companies to remain competitive. Moreover, early prediction
of status patterns may allow for predictive maintenance actions and possible avoidance
of some faults. This can be achieved through identification of status patterns of wind
turbine, as the health of a system or component may deteriorate gradually, rather than
fail instantly.

Power curve model (or simply, power curve) of a wind turbine represents the expected
relationship between output power and wind speed. The objective of a power curve is
to accurately predict power output, given wind speed and other conditions of operation.
Power curve model is an important characteristic of the turbine since it is used in energy
assessment, warranty formulations, and performance monitoring of the turbines. Power
curve models are also important for turbine health monitoring. Given an accurate power
curve model, performance deviation can be detected by comparing the predicted output
to the actual output, adjusted for the current conditions (typically collected in real time
by a Supervisory control and data acquisition, or SCADA, system).

However, with the growth of the wind industry, turbines are being installed in diverse
and complex terrains causing significant departure of the actual curves from the respective
models. This motivates deeper research into more accurate power curve models.

The contribution of this thesis is twofold.
First, we compare the anomaly detection power of three State-of-the-Art power curve

models: i) Data filtering by binned mean ± 2.57σ criterion, ii) Data filtering using KNN
classifier method, Data filtering using INEGI internal methodologies. The power curves
were reconstructed using historical wind turbine data. We analyzed the advantages and
disadvantages of the three approaches. Based on this analysis, we then introduce an
improved power curve model called Data filtering using KNN&Bin method. Our model
outperforms all three previous models on the historical data used for this research. Given
its practical application, our model will be suggested to INEGI.

Second, we address the problem of real-time status reporting of a wind turbine, based
on status classification used at INEGI. Our approach uses data mining and several ma-
chine learning algorithms to identify and predict status patterns of turbines. For this
purpose were evaluated four different machine learning algorithms for classification: i)
Decision Tree, ii) Nearest Neighbors, iii) Multi-layer Perceptron and iv) Gaussian Naive
Bayes. The prediction models were trained on operational and status data collected from
SCADA systems of 13 wind turbines with 3 different models, and the recorded data of
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the closest weather stations. We compared these algorithms with regard to their accuracy
and efficiency. We showed that the Decision Tree based approach achieved the best per-
formance in our setting. As a result, this approach was selected for further deployment in
production at INEGI.

Keywords: Wind turbine, Fault detection, Data mining, Machine learning, Power curve,
SCADA.
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Chapter 1

Introduction

“Of all the forces of nature,
I should think the wind contains the greatest amount of power.”

Abraham Lincoln

Energy is available in two different alternatives: non-renewable (coal, fuel, natural
gas) and renewable (solar, wind, hydro, wave) sources. Especially, after the industrial
revolution, in the 19th century, first coal and then fuel oil are used as primary energy
sources for the needs of modern communities.

It is widely understood that fossil fuels have limited potential and, at current rates of
exploitation, they are expected to deplete within the next centuries. This is one of the
reasons why clean, sustainable and environmentally friendly alternative energy resources
are currently being sought. The accumulation of carbon dioxide in the lower layers of the
atmosphere gives way to climate change, floods, intensive rainfalls and droughts. In order
to reduce these dangerous effects, it is the responsibility of each country to improve the
quality of the energy resources, and if possible, to replace fossil fuels (coal and oil) with
renewable alternatives wind, solar and other energy sources.

Faced with energy crises in 1973, Europe began to search for their own clean and
renewable energy (RE) sources (wind, solar, biomass, etc.) which are effective but they
must inevitably compete against the conventional and cheaper energy. In this competition,
energy sources with huge and renewable raw materials have the advantage in the long run.
Atmospheric environment is polluted due to thermoelectric power plants, and petroleum
materials since the industrial revolution. The pollution crises are the catalysts for the
search and development of RE sources.

The environmental impact of fossil fuels, in the form of air pollution, acid rain and
greenhouse effects in addition to their limited availability gave added importance to the use
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2 Introduction

of conventional and renewable alternative energy sources, such as solar, wind and solar-
hydrogen energies etc. Recently, renewable and clean energy generation technological
developments facilities became available on the energy market. Among the renewable
alternatives, wind energy has an important potential role, and wind-power farms are
becoming widely used all over the world.

1.1 Wind energy

Wind energy is a converted form of solar energy which is produced by the nuclear fusion
of hydrogen (H) into helium (He) in its core. The H→ He fusion process creates heat and
electromagnetic radiation streams out from the sun into space in all directions. Though
only a small portion of solar radiation is intercepted by the earth, it provides almost all
of earth’s energy needs.

Wind energy can be utilized for a variety of functions ranging from windmills to pump-
ing water and sailing boats. With increasing significance of environmental problems, clean
energy generation becomes essential in every aspect of energy consumption. Wind energy
is very clean but not persistent for long periods of time. In potential wind energy genera-
tion studies, fossil fuels could be supplemented by wind energy. There are many scientific
studies in wind energy domain, which have treated the problem with various approaches
[11], [82]. General trends towards wind and other RE resources increased after the energy
crises of the 20th century [71].

Wind energy represents a mainstream energy source of new power generation and
an important player in the world’s energy market. During the last decade, wind energy
is developed and extended to industrial use in some European countries including Ger-
many, Denmark and Spain. Their success in wind energy generation has encouraged other
countries to consider wind energy also in their electricity generation systems. Its clean,
economic, practical and renewable interaction with the environment soon draw attention
from political, business circles and individuals. The concept of RE is utilized since 5000
BC, and wind energy is one of the oldest of these energy sources. Today, humanity is
attempting to rediscover its lost or forgotten energy sources [65]. Opinion surveys from
Europe indicate that most people support wind energy uses. Over 2000 year, water and
windmills powered the world’s first industries with new technology and materials.

Modern wind turbines are used to generate the clean electricity needed for lighting,
heating, refrigeration and other uses. Wind energy is a rather young industry, but one
which already makes good economic sense. It is a proven success and its use is increasing
and the downward trend in its costs is expected to continue. Already over 20,000 turbines
are producing worldwide electricity. Most are operating in “wind farms” as groups of wind
turbines generating electricity on a significant scale. Single wind turbines are also being
used for generating electricity, charging batteries, driving pumps and producing heat. In
the search for RE power, the most important decisions are concerned with exploitation of
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local, clean and sustainable energy resources. The determination of wind energy potential
depends very much on the meteorological measurements of the wind direction, velocity,
temperature and pressure. Unfortunately, in many parts of the world, it is difficult to
obtain such data.

The physics behaviour of wind shows great temporal and spatial variability. In meteo-
rology, wind is air in motion, whose driving force is the uneven heating and cooling of the
earth’s surface. The horizontal movement of air parallel to the earth’s surface is a measure
of the wind in both direction and magnitude, which change most frequently. As a result,
wind prediction is one of task needed due to random change both in wind direction and
speed. This changeability adds another measure importance to wind power.

Wind power has unique characteristics for energy technology. The most significant
impact on the environment is the visibility of wind turbines. Those who support the
movement towards clean, sustainable energy production should take into consideration
aesthetically pleasing symbols of a better future, especially when compared with the effects
of acid rain, global climate change, radioactivity, land and water contamination in addition
to other environmental problems associated with conventional energy sources.

History of wind energy conversion along with its present status and future prospects
are discussed briefly in the following sections.

1.2 History and evolution

Despite wind being a virtually unlimited resource, at no time have humans employed
more than a tiny fraction of its kinetic energy. Throughout cultures the world have
paid homage to the power of wind in their legends and mythologies. Creation stories
of nearly all cultures involve the power of the wind. Like the mystery of who invented
the wheel, we do not know when humans first employed the force of wind to help in the
work. Historians speculate that, in terms of utility, sailing seems to be one of the most
likely early uses of winds, around 40 000 years ago, when humans migrated from Asia to
greater Australia. Although we know little of these voyages, the far later water journeys
of Polynesians in their double-hulled sailing craft are much better studied. For these early
sailors, wind provided the kinetic energy for the exploration and settlement of the Pacific
Ocean islands [51].

Another example of the first historic use of wind power involved its use in transporta-
tion by the Egyptians, who plied the Nile River as early as 3100BC using craft equipped
with sails of linen and papyrus. In one of the major Greek poems, The Odyssey (attributed
to Homer), Odysseus sailed the Ionian and Aegean seas, eventually making a crucial error
when he angered the God of the Winds. This story reminds one of the capricious nature
of the wind, that cannot be put completely under human control. For this reason, wind
has been successfully employed only sparingly, with inventors and engineers preferring
power sources that they can manipulate as needed. Yet, the importance of wind energy
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to human history is well understood. From the time of Columbus until the middle of the
19th century, nations depended on sailing vessels. Advances in navigation and sail design
combined to make the great age of the sailing craft feasible [27].

Whereas historically wind power was mostly employed at the sea, today it finds most
of its application on the land. The importance of sailing has faded as other means of
transportation has been largely adopted, the terrestrial applications of wind have multi-
plied. We do not know exactly where and when people first turn to the wind to help in
their works. However, artifact proof and written evidence suggests that, as early as in the
10th century A.D., windmills appeared in the Sistan region of Persia (now Iran). These
were primitive windmills by modern standards, using vertical sails of reed bundles, and
their owners built them to grind grain and lift water from streams to irrigate gardens. For
centuries, these rudimentary machines were carried to other parts of the Wold, including
India and China, where farmers employed them to pump water, grind grain and crush
sugarcane.

By the 13th century, grain grinding mills were popular in most of Europe. The French
adopted this technology by 1105 A.D. and the English by 1191 A.D. In contrast with the
vertical axis Persian design, European mills had horizontal axis. These post mills were
built with beautiful structures. The tower was circular or polygonal in cross-section and
constructed in wood or brick. The rotor was manually oriented to the wind by adjusting
the tail. The mill was protected against high winds by turning the rotor out of the
wind or removing the canvas covering the rotor. The Dutch, with renowned designer Jan
Adriaenszoon, were the pioneers in making these mills. They made many improvements
in the design and invented several types of mills. Examples are the tjasker and smock
mills. The rotors were made with crude airfoil profile to improve the efficiency. Apart
from grain grinding, wind mills were employed to drain marshy lands in Holland. These
wind mills reached America by mid-1700, through the Dutch settlers.

This is followed by the water pumping wind mill, which is still considered as one of
the most successful application of wind power. An example of this is multi-bladed wind
turbine that appeared in the wind energy history by the mid-1800. Relatively smaller
rotors, ranging from one to several meters in diameter, were used for this application. The
primary motive was to pump water from a few meters below the surface for agricultural
uses. These water pumpers, with its metallic blades and better engineering design, offered
good field performance. Over six million of such units were installed in the United States
between 1850 and 1930.

The era of wind electric generators began close to 1900’s. The first modern wind
turbine, specifically designed for electricity generation, was constructed in Denmark in
1890. It supplied electricity to the rural areas. During the same period, a large wind
electric generator having 17 m picket fence rotor was built in Cleveland, Ohio. For the
first time, a speed-up gear box was introduced in the design. This system operated for
20 years generating its rated power of 12 kW. More systematic methods were adopted
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for the engineering design of turbines during this period. With low-solidity rotors and
aerodynamically designed blades, these systems could give high field performance. By
1910, several hundreds of such machines were supplying electrical power to the villages
in Denmark. By 1925, wind electric generators became commercially available in the
American market. Similarly, two and three bladed propeller turbines ranging from 0.2 to
3 kW of capacity were available for charging batteries.

Intensive research on the behaviour of wind turbines occurred during 1950’s. The
concept of high tip speed ratio-low solidity turbines got introduced during this period. For
example, light-weight constant-speed rotors were developed in Germany in 1968. They had
fiber glass blades attached to simple hollow towers supported by guy ropes. The largest
was of 15 m in diameter with a rated output of 100 kW [53].

The oil crisis in 1973, forced the scientists, engineers and policy makers to to explore
ways to ease fossil fuel dependence. In addition to the fact the fossil fuel reserve will
eventually be exhausted, it was realized that political tampering can restrict the avail-
ability and escalate the cost of fossil fuels in the meantime. Also, nuclear power was not
considered a viable alternative due to safety reasons. These factors caused the revival of
interest in wind energy.

1.3 Current status

Modern wind turbines tower above one of their ancestors-an old windmill used for pumping
water. Humans have been harnessing the wind’s energy for hundreds of years. From old
Holland to farms in the United States, windmills have been used for pumping water or
grinding grain. Today, the windmill’s modern equivalent - a wind turbine - can use the
wind’s energy to generate electricity. Wind turbines, like windmills, are mounted on a
tower to capture the most energy. At 30 meters or more above ground, they can take
advantage of the faster and less turbulent wind. Turbines catch the wind’s energy with
their propeller-like blades. Usually, two or three blades are mounted on a shaft to form a
rotor.

A blade acts much like an airplane wing. When the wind blows, a pocket of low-
pressure air forms on the downwind side of the blade. The low-pressure air pocket then
pulls the blade toward it, causing the rotor to turn. This is called lift. The force of the
lift is significantly stronger than the wind’s force against the front side of the blade, which
is called drag. The combination of lift and drag causes the rotor to spin like a propeller,
and the turning shaft spins a generator to make electricity.

Wind turbines can be used as stand-alone applications, or they can be connected
to a utility power grid, or even combined with a photo-voltaic (solar cell) system. For
utility-scale sources of wind energy, a large number of wind turbines are usually built
close together to form a wind plant. Several electricity providers today use wind plants to
supply power to their customers.



6 Introduction

Stand-alone wind turbines are typically used for water pumping or communications.
Moreover, homeowners, farmers, and ranchers in windy areas also use wind turbines as a
way to reduce their electric bills. Small wind systems also have potential as distributed
energy resources. Distributed energy resources refer to a variety of small, modular power-
generating technologies that can be combined to improve the operation of the electricity
delivery system.

1.3.1 Wind turbine design

The design and size of a turbine play a crucial role in electricity generation. Maximum wind
capture and cost reductions are two primary motives of wind turbine research. Continuous
research and advancement of turbine technology have taken place over the last several
decades. As a result, nameplate capacity rating has risen enormously. Today, commercially
available wind turbines have ratings ranging from several kilowatts to megawatts. The
diameter of the turbine is an important parameter. The recent trend is toward large
turbines, as longer blades sweep wind from a larger area and produce greater output
energy.

Wind turbines come in two types: horizontal axis and vertical axis (Figure 1.1). Hor-
izontal axis turbines are the more familiar windmill type where the blades rotate in a
vertical plane about a horizontal axis and the turbine is dynamically rotated on its tower
to face the wind. Vertical axis turbines do not need orientation into the wind, although
the earlier versions, sometimes known as eggbeater turbines required a power source to
start rotating because of their high torque. More recent innovations have helical blade
designs that have low torque and can operate without external power. Vertical axis tur-
bines are particularly suited to small wind power applications because they have a small
environmental impact and no noise, but have not yet scaled up to the 5MW + turbine
size of horizontal axis designs.

A wind turbine typically consists of blades, a rotor, a tower, a gearbox and a generator.
Figure 1.2 shows all the components of a wind turbine [39], which are explained below.

Rotor. A rotor consists of large blades resembling an airplane wing. Three blades for a
turbine are universally accepted, but two blade turbines are also functional. Rotor
blades are very large in size. Recently, Siemens has launched 246 ft long B75 rotor
blades. These will be installed into a prototype 6 MW offshore wind power system
at Osterild test station in Denmark. Another component called the “pitch drive”
is used to reduce the effect of lift forces in high wind speed conditions. This is
necessary to guarantee that the alternator maintains a speed within a stable power
system operation range of 1000–3600 RPM (revolutions per minute).

Nacelle. The nacelle is located at the top of the turbine tower. It is attached to the
rotor, and contains the main technical parts, such as the rotor shaft, gearbox, and
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Figure 1.1: Illustration of two types wind turbine [22]
(left - horizontal axis wind turbine; right - vertical axis wind turbine).

generator. The nacelle is connected to the tower with bearings and is able to rotate
with respect to the wind direction in order to harness maximum wind energy.

Gearbox. The turbine rotor typically has a speed of less than 100 RPM, but most gen-
erators need 1000–3600 RPM to generate electricity. Thus, the gear box converts
low rotor speed into higher speeds in order to make the generator operational.

Generator. The generator converts the mechanical energy of the rotor into electrical
energy.

Tower and foundation. Speed, quality (less turbulence and turmoil), and quantity of
wind increase with the increment of height. A tower is used to place the rotor at
high altitudes in order to capture more wind energy.

Additionally, a controller, anemometer, heat exchanger, and wind vane are other im-
portant components in a wind turbine. The controller is a computer operated system that
controls the turbine’s operation, the heat exchanger cools the generator, the anemometer
measures wind speed, and the wind vane detects wind direction.

1.3.2 Wind turbine classification

Wind turbines can be classified according to the turbine generator configuration, airflow
path relatively to the turbine rotor, turbine capacity, the generator-driving pattern, the
power supply mode, and the location of turbine installation. Below we discuss these
classifications in detail.
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Figure 1.2: Illustration of the main components of wind turbine [39].

1.3.2.1 Wind turbine capacity

Based on their rated capacities, wind turbines can be divided into a number of broad
categories: micro, small, medium, large, and ultra-large wind turbines.

Micro turbines. Though a restricted definition of micro wind turbines is not available,
it is accepted that a turbine with the rated power less than several kilowatts can
be categorized as micro wind turbine. Micro wind turbines are especially suitable
in locations where the electrical grid is unavailable. They can be used on a per-
structure basis, such as street lighting, water pumping, and residents at remote areas,
particularly in developing countries. Because micro wind turbines need relatively
low cut-in speeds at start-up and operate in moderate wind speeds, they can be
extensively installed in most areas around the world for fully utilizing wind resources
and greatly enhancing wind power generation availability.

Small turbines. Small wind turbines usually refer to the turbines with the output power
less than 100 kW. Small wind turbines have been extensively used at residential
houses, farms, and other individual remote applications such as water pumping sta-
tions, telecom sites, etc., in rural regions. Distributed small wind turbines can in-
crease electricity supply in the regions while delaying or avoiding the need to increase
the capacity of transmission lines.

Medium turbines. The most common wind turbines have medium sizes with power
rating from 100 kW to 1 MW. This type of wind turbines can be used either on-grid
or off-grid systems for village power, hybrid systems, distributed power, wind power
plants, etc.
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Large turbines. Megawatt wind turbines up to 10 MW may be classified as large wind
turbines. In recent years, multi-megawatt wind turbines have become the main-
stream of the international wind power market. Most wind farms presently use
megawatt wind turbines, especially in offshore wind farms. Ultra-large wind tur-
bines are referred to wind turbines with the capacity more than 10 MW. This type
of wind turbine is still in the earlier stages of research and development.

1.3.2.2 Direct drive and geared drive wind turbines

According to the drive-train condition in a wind generator system, wind turbines can
be classified as either direct drive or geared drive groups. To increase the generator rotor
rotating speed to gain a higher power output, a regular geared drive wind turbine typically
uses a multi-stage gearbox to take the rotational speed from the low-speed shaft of the
blade rotor and transform it into a fast rotation on the high-speed shaft of the generator
rotor. The advantages of geared generator systems include lower cost and smaller size and
weight. However, utilization of a gearbox can significantly lower wind turbine reliability
and increase turbine noise level and mechanical losses.

By eliminating the multi-stage gearbox from a generator system, the generator shaft
is directly connected to the blade rotor. Therefore, the direct-drive concept is superior in
terms of energy efficiency, reliability, and design simplicity.

1.3.2.3 On-grid and off-grid wind turbines

Wind turbines can be used for either on-grid or off-grid applications. Most medium-size
and almost all large-size wind turbines are used in grid tied applications. One of the
obvious advantages for on-grid wind turbine systems is that there is no energy storage
problem.

As the contrast, most of small wind turbines are off-grid for residential homes, farms,
telecommunications, and other applications. However, as an intermittent power source,
wind power produced from off-grid wind turbines may change dramatically over a short
period of time with little warning. Consequently, off-grid wind turbines are usually used
in connection with batteries, diesel generators, and photovoltaic systems for improving
the stability of wind power supply.

1.3.2.4 Onshore and offshore wind turbines

Onshore wind turbines, a category of turbine that is installed on land, has 50–100 m tower
heights with a rotor diameter of 50–100 m. The general trend in wind turbine designs is to
increase tower height and rotor blade length. A combination of high pole and long blades
allows wind turbines to be installed in areas with low wind energy potential. Modern
turbines work on a rotor and hub assembly speed of 12–20 RPM, much lower than those
installed during the 1980s, which operated at a common speed of 60 RPM. As a result,
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Figure 1.3: Different foundation types for offshore wind turbines [39].

modern turbines are capable of effectively generating power at much lower wind speeds.
Additionally, these turbines have a significantly higher electricity generation capacity in
comparison to older models. In the present day, storm controlled techniques enable wind
turbines to operate even during very high wind speed conditions. Onshore wind turbines
are typically grouped together into wind power plants, commonly known as wind projects
or wind farms. These wind power plants are usually 5–300 MW in size, although smaller
and larger plants are also in operation [39].

Wind turbines installed beyond the coast are known as offshore power systems. De-
velopment of offshore wind energy has accelerated in the past few years due to significant
wind resources available over the oceans. Offshore wind flows with higher speed and more
uniformity than on land. Offshore sites have the ability to establish larger power plants
with larger wind turbines. Offshore wind turbines usually have more nameplate capacity
ratings than onshore ones. Moreover, the world’s largest cities are generally situated in
coastal areas; therefore, longer distance power transmission can be avoided.

Offshore turbine technology bears striking similarity to that onshore with only minor
modifications. The only significant difference is in the design of the foundations, which
requires floating and/or other special foundations to account for underwater tower submer-
gence. Major offshore wind turbine foundation types, including floating type structures,
are depicted in Figure 1.3. Nowadays, many manufactures are developing floating turbines
for deeper waters.

1.3.3 Wind turbine lifetime

Modern wind turbines are designed for the lifetime of 20–30 years. A critical challenge
facing turbine manufacturers and wind power plants is how to achieve the lifetime goals
while at the same time minimize the costs of maintenance and repair. However, improving
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the operational reliability and extending the lifetime of wind turbines are very difficult
tasks for a number of reasons:

• Wind turbines have to be exposed to various hostile conditions such as extreme
temperatures, wind speed fluctuations, humidity, dust, solar radiation, lightning,
salinity and frequent onslaughts of rain, hail, snow, ice, and sandstorms.

• A modern wind turbine consists of a large number of components and systems; each
of them has its own lifetime. The failure must first occur in the component or system
with the shortest lifetime.

• A wind turbine is subjected to a large variety of dynamic loads due to wind fluctu-
ations in speed and direction and numerous starts and stops of the system. Some
primary parts or components have to withstand heavy fatigue loads [38].

• Advanced high-strength, fatigue-resistant materials are vital to some key components
in modern large wind turbines due to the continuous increase in blade length, hub
height, and turbine weight.

• A s a complex engineering system, a wind turbine must be designed at the sys-
tem level rather than part/component level as a common practice in some turbine
manufacturers.

1.4 Challenges to wind energy

Although wind energy is a clean and potential source of power, it has some economical,
technical, social and environmental challenges. These effects may be negligible but they
persist for a long time and hence directly affect the neighbouring localities; therefore, care
must be taken.

1.4.1 Economic challenges

• High capital investment: Wind energy is a capital-intensive technology since most
of the expenditures are made at time of investment. The initial expenditures can
be as high as 80% of the total cost of the project. Wind turbine alone constitutes
the largest cost component followed by grid connection and others. The breakup of
the cost of a typical wind farm is shown in Figure 1.4. Few key parameters that
govern wind power costs are capital costs (cost of turbines, foundations and grid
connection), variable cost (operation and maintenance, land rent, insurance, taxes),
relatively lesser plant capacity factor and economic lifespan of the investment.

For successful implementation of wind energy, developer will need most of the funds
(around 80%) during the construction phase itself. Hence, it is important to have
good repayment conditions. In countries like India, a 70:30 debt equity ratio is
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Figure 1.4: Typical breakup of overall cost of a large scale wind energy system [74].

available to many renewable energy projects. However, lesser interest rates are
necessary to promote the wind energy. Due to the intermittent nature of wind (less
plant capacity factor), wind power projects have higher payback periods. Hence, due
to improper funding conditions during the initial phases, it may not be fruitful to
harness this energy even though it may be a cheapest option. The net present value
(NPV) and internal rate of return (IRR) are important parameters which are used for
project investment feasibility. Petkovic [61] developed a model for economical and
optimal layout of wind farm considering the interactions between turbines, various
costs and wind regimes;

• High production cost: The production cost is determined on the basis of power
produced, fixed costs (interest, land rent, insurance) and variable costs (mainte-
nance/repair, miscellaneous). It is not always possible to implement wind energy at
large scale because of the intermittent nature of wind and high investments. To re-
duce the production cost, power production is an important parameter which further
depends on wind speed which is easily influenced by obstacles (buildings), terrain
(plain, mountains) etc. Other important parameters include turbine design & se-
lection and grid availability. The production cost is an overall parameter to assess
the success or failure of the project. It can be minimized by proper planning and
taking necessary actions. To improve the consistency in wind power production,
power system regulators are used to make detailed schedule plans and to set reserve
capacity for proper utilization of energy. In order to reduce the reserve capacity
requirement, accurate forecasting methods are necessary (as stated earlier). Power
output (wind farms) also varies due to the constant variations in the outputs of each
wind turbine (although all are fed from same wind energy) which leads to a lesser
plant capacity factor [35]. The lower plant capacity factor indicates lesser outputs
thereby increasing the overall production costs. In order to decrease the production
costs, it is important to increase the wind power penetration which will ultimately
lead to more energy generation. This may be done by proper designing & selection,
use of power regulators, flexible AC transmission systems (grid) etc. However, these
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will incur high costs which will further increase the production costs to some extent.
Hence, it is possible to optimize the wind power plant only to a certain extent.

• Risk: Investors must consider whether investment in wind is profitable or not. Al-
though the arguments for wind energy benefits are plentiful, arguments against are
simple: at the present time, electricity produced by conventional energy sources (coal
and gas) is more reliable and even in some places available at lower prices. However,
prices of wind power are decreasing steadily. If it compared over a long period of
time with all subsidies and incentives taken in to consideration, wind power would
give better return on investment.

1.4.2 Technical challenges

Wind farms are usually located in rural areas due to the availability of land, higher wind
speed and possibility of other works such as farming etc. There are two main problems
faced in wind energy generation with respect to grid. Firstly, in many of the rural areas
there are limitations of grid infrastructure and secondly, even if there is stable grid present,
integration of wind energy into the grid leads to potential technical issues such as voltage
fluctuations etc. due to the variations in wind energy.

Due to the limitation of grid infrastructure, most of the energy generated (if not trans-
mitted effectively) is wasted. The availability of wind is variable due to the weather
pattern, large water bodies, clouds (preferential heating), day & night cycles, storms/tur-
bulence etc. The electricity output from wind farms/mills depends on these parameters,
however, the demand does not depend on these variations. In-fact, many times it is just
the opposite i.e. when the power supply is at its peak (night), the demand is very less.
These losses can be minimized by using batteries/power regulators, etc., but it will be a
costly supplement. In many developing countries, high borrowing cost is already creating
an obstacle for wind energy sector growth. Even though project financing is available for
majority of wind power projects with 70: 30 debt equity ratio but high interest rate un-
der difficult macroeconomics conditions create problems in implementing this technology.
Hence, an effective grid infrastructure is essential for wind energy.

Even if the grid is present, integration of energy generated in wind farms poses several
technical issues due to the intermittent nature of wind thereby affecting the power quality.
Main parameters that affect the power quality includes voltage fluctuations, power system
transients and harmonics, reactive power, low power factor, electromagnetic interference,
synchronization etc. [73]. Variations in voltage and grid frequency create difficulties in
wind farm operations and reduce the chances for successful integration of wind energy
into grid. Some of the major power quality problems encountered in wind farms due to
the variations in wind energy generation are:

1. Uncontrollable reactive power and low power factor;
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2. Power fluctuations and voltage distortion;

3. Voltage fluctuations & significant line losses.

To confront future wind power grid integration, we have to work on design and op-
eration issues of the power systems with the introduction of demand side management,
energy storage techniques [57], grid infrastructure issues (reinforcement and upgrade of
networks), introduction of more flexible mechanisms and other issues [29]. The traditional
approach of management necessitates addition of a complementary power plant to ensure
supply at all times. This is done to compensate the indeterminacy of wind energy by using
a more controllable source such as hydro, diesel, thermal power plants etc. The problem
of grid integration can also be solved by connecting it to the energy storage systems to
have an additional reserve of energy which will act as a buffer between the producer and
consumer. The problem of grid integration can also be solved by using power electronics
concepts. During strong wind periods there is an excess of electrical power (destabilizing
of frequency), hence, it is important to limit the power produced by the wind turbines by
either using electronic components or by changing the pitch angle of the blades to reduce
the performance of the rotor. However, this area is under research and is being studied by
many scientists/researchers worldwide. Furthermore, the reactive power produced by a
wind turbine can varied through the command of inverters associated to the generator. It
is possible to absorb or to supply reactive power and control the voltage level of the grid
[6]. This option has been integrated in many wind turbines using doubly fed induction
machines.

1.4.3 Social-environmental challenges

Human intervention of any nature has its own environmental consequences. Wind energy
is not an exception. Although wind is one of the cleanest sources of energy and does not
pollute the environment with harmful gases during its energy conversion process, wind
energy systems pose some social and environmental problems. Visual impacts on land-
scape, noise pollution, radar and telecommunication interference (if within line-of-sight),
and hazards to wildlife are the main socio-environmental constraints to wind turbines [66].

• Noise pollution: Like any other rotating mechanical systems, wind turbines also
create some noise during their operation. The noise was a severe problem with the
turbine designs in the 80’s. During that time, environmental impacts of wind energy
was not a matter of concern as it is today. Some of the turbines constructed during
this period were quite noisy and could annoy people even at far away distance. In the
later years, the noise emission from wind turbines has attracted more attention from
the environmental groups, regulatory authorities and the wind turbine industry. A
number of design modification followed in the preceding years and as a result, the
modern wind turbine is a much quieter piece of machinery.
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Any unwanted sound can be considered as noise. The noises generated by a wind
turbine may be tonal, broad band, low frequency or impulsive. Tonal noises have
discrete frequencies whereas the broad band noises have continuous frequency above
a level of 100 Hz. The turbine may also produce noises with low frequency rang-
ing from 20-100 Hz along with those due to momentary acoustic impulses. The
magnitude of noise can be expressed either in terms of sound power level or sound
pressure level. The sound power level indicates the acoustic power with which the
noise is emitted from the source whereas the sound pressure tells us the intensity of
noise experienced by the listener located at a given point. Two types of noises are
generated from a wind turbine-mechanical noise and aerodynamic noise [53].

The mechanical noise is contributed by the relative motion of components of WTs
(gear box, generator, yaw motors, cooling fans, hydraulic pumps and other acces-
sories). Changes in the design of these components can significantly affect the fre-
quency and tone of the noise. Mechanical noises are mostly of tonal type.

Flow of air around the blade causes the aerodynamic noise. When the blades of the
wind turbine interacts with the air stream, a number of complex flow phenomena
occurs around the blade, each contributing to the noise generated from the system.
The aerodynamic noise is mostly of broad band type with some amount of low
frequency or even tonal components. A more rigorous analysis of the aerodynamic
noise, critically analyzing various contributing factors can be found in [63].

Noise pollution from wind turbines is not a serious issue as it is being considered.
In most of the cases, the noise from wind turbines does not exceed the limits put
forth by the permitting agencies. For example, a wind turbine with moderate sound
power emission may be as quiet as a kitchen refrigerator at a residential area 300 m
away from the source. Apart from annoyance in few cases, no health problems are
reported due to the wind turbine noise. A study conducted in Europe, incorporating
sixteen sites from Denmark, Germany and Netherlands showed that only 6.4 per cent
of the residents felt that the noise from wind turbines as annoying [63]. With proper
planning and improvements in the design, the noise emission from wind turbines will
further be reduced in the coming years.

• Visual impacts: Another environmental concern of wind farm development is its
impact on scenic beauty of the landscapes. Wind turbines are tall structures installed
in open areas which make them visually prominent in the landscape. The turbines
may dominate our sight up to 2 km or even more. They are often felt to be an
important element in the landscape even up to a distance of 5 km. As “beauty
lies in the viewer’s eyes”, some may like the sight of a wind turbines, generating
energy in an environment friendly way near to their area. However, we must not
forget that there may be some people who might consider the turbine as "a box on
a long stick" erected to ruin the scenic beauty of the landscape. Hence, the turbines
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should be naturally integrated to the landscape to make them visually attractive
and acceptable.

The value that one assign to the landscape and its surroundings is an important fac-
tor in moulding his opinion on the wind farm. The aesthetics value of a landscape
is judged in terms of its visual, historical, ecological, socio-cultural, religious and
mythological importance. Hence it is advisable to assess the sensitivity of the land-
scape towards these factors, before going for a wind farm project. There are several
methods to establish the aesthetic sensitivity of a landscape [23]. The use of these
techniques in conjunction with the public opinion surveys can give us an indication
on the appropriateness of a site for wind farm installation. Many local permitting
authorities have already quantified the sensitivity of their landscapes using these
methods, which are available for the developers for assessing the suitability of their
project.

Carefully designed and cleverly constructed wind farms can be a positive addition
to the landscapes. Wind farms with layouts, naturally blending with the prevailing
scenery and turbines designed with aesthetic sense can add to the scenic beauty of
the landscape.

Computer models are available to assess the visual impact of wind farms on the
landscape and the flora and fauna, before the farms are actually constructed. The
WindFarm software has a special photo-montage module using which the pictures
of the proposed landscape and the turbines to be installed can be superimposed to
simulate the visual impact of the wind farm. The software can also animate the
turbines to conceptualize the view while the turbines are actually generating [53].

The degree of visual disturbance caused by wind turbines varies from person to
person based on individual perception. Put simply: some people find wind turbines
attractive and non-intrusive while some feel the opposite way. However, there is some
evidence that flickers and moving shadows due to rotating turbine may cause adverse
effects on human health, which may include stress, annoyance, and photosensitive
epilepsy seizures (a kind of neurological disorder in which seizures are triggered by
visual stimuli such as moving patterns, flashing lights, and shadows) [76]. Shadow
casting is not a very serious problem in wind farm management as this will affect only
a small area, very close to the turbine. Interference with TV and radio signals was a
problem with earlier turbines with metallic blades. However, with the introduction of
composite blade materials such as fibre glass and plastics, this problem is minimized
in modern turbines. However, adverse visual impacts of wind turbines can be avoided
by selecting turbine sites far from residential areas.

• Wildlife Hazards: Bird and bat fatalities are a primary ecological consideration
of wind energy systems. However, the number of bird deaths attributed to wind
turbines is extremely low when compared with other more common hazards such
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Figure 1.5: Wind turbine accidents, human fatalities, and injuries in the United Kingdom
[24] (2017: To 30 September 2017 only).

as predators and buildings collisions. As estimated by J. Ryan Zimmerling et al.
approximately 20,000 to 28,300 birds are killed each year due the striking of wind
turbines in Canada; these mortalities are much less than the mortalities due to other
causes [91]. For example, as per the Environmental Canada report on avian mortal-
ity, approximately 270 million birds died each year from human-related activities in
Canada, 200 million were killed by cats, and 25 million by building collision. Besides
fatalities, wind turbines may cause change in routes of migratory birds. However,
the mortality rate of birds per turbine has decreased over the past few years due to
special designs of rotor blades and careful monitoring. These problems can also be
reduced to some extent by careful site selection [39].

• Accidents and human casualties: Human hazards also exist due to wind turbines.
Figure 1.5 illustrates the number of accidents, human fatality, and injuries that
occurred each year in the UK from the year 1997–2017.

The trend is as expected - as more turbines are built, more accidents occur. Numbers
of recorded accidents reflect this, with an average of 22 accidents per year from 1997-
2001 inclusive; 70 accidents per year from 2002-2006 inclusive; 135 accidents per year
from 2007-11 inclusive, and 164 accidents per year from 2012-16 inclusive [24].

The environmental impact associated with wind turbines can be evaluated by using a
holistic process known as Life Cycle Assessment (LCA). LCA is a method that assesses
the environmental impacts of a product over its entire life cycle [52]. Due to the inherit
cleanliness of wind energy, the majority of adverse environmental emissions are incurred in
the material production and manufacturing process required for creation and installation
of the turbines and not during the lifespan in which the turbine is in use. Other social
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impacts of a wind system include land acquisition, benefit sharing, and compensation for
the acquisition and use of land.

1.5 Summary

Wind energy harvesting is of prime interest today as it is the most promising renewable
energy source due to its clean, environment-friendly attributes. Wind energy is not only
climate-friendly and free from GHG emission, but also has cost-effective and less negative
social and environmental impacts compared to other sources of energy as technology is
getting more efficient and cost effective. It has the potential to reduce the energy-crisis
worldwide and create employment opportunities. Wind energy is now a mature technology
and there is enough evidence in favour of large-scale wind energy farms.

However, along with the positive environmental impacts, the downsides of wind energy
harvesting include: social environmental impacts, such as audio and visual pollution;
economic impact, such as it has high up-front costs; environmental impacts, such as death
of birds, emissions during installation and future dismantling of wind farms; and technical
impacts that affect the power quality of the network.

As a result, our research is motivated by the need to minimize potential negative im-
pacts of integrating large-scale wind energy into the grid for a sustainable power system
for the future. Findings of ours study are expected to be used as guidelines by the pol-
icymakers, manufacturers, industrialists and utilities for deployment of large-scale wind
energy into the energy mix.

A large variety of wind turbine types and designs is available at present. Typically, effi-
cient designs with high performance are influenced by several requirements related mainly
to the application to serve and the location where the turbine is to be installed. As well,
other constraints may play a role in the efficiency of the designs, e.g. size constraints,
noise limitations, visual disturbances and low start-up wind speeds. Among these require-
ments and constrains, the performance of one particular wind turbine can better optimized
compared to the others.



Chapter 2

Motivation and Objectives of
Research

2.1 Motivation and Objectives

Wind energy has become one of the leading sources of renewable energy, but faults and
unscheduled shutdowns of wind turbines are costly. As the size and number of wind
turbines continue to rise, monitoring for faults has become increasingly important for
companies to remain competitive.

Wind turbines consist of several components and sub assemblies which are likely to
fail during its course of operations. Even with the advanced Supervisory control and data
acquisition, or SCADA, systems, certain faults are difficult to characterize, or often the
alarm is triggered when the fault is already occurred. Thus, fault detection is critical in
identifying faults in the system in a timely manner.

Signal processing units, or SPU s, evaluate the process parameters and classify them
into normal operations and fault situation. In this approach fault indicators are derived
from process measurements via limit and trend checking of the process signals. Signal
processing approaches are suitable for analyzing rotating components, i.e., turbine gener-
ators and gearboxes. Common approaches that are utilized for signal analysis in frequency
domain include: Fast Fourier Transformation, spectrum analysis, envelope spectrum etc.

In system identification, the measured signal is compared against the set values. Any
significant deviation from the set values indicate fault. For complex processes, where
analytical models cannot be aptly applied, artificial intelligence based approaches found its
scope. AI based approaches, such as machine learning approaches, can learn the complex
behavior, and characterize as a fault any significant deviation in the behavior. Benefits of
the AI based fault detection systems include: i) Avoidance of premature breakdown, ii)
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Reduction of maintenance costs, iii) Remote diagnosis [13]. This insight motivates the
research into utilization of machine learning based approaches in fault detection.

In the literature, turbine components, namely turbine blades, generators, and gearbox
are widely researched. Description about them is provided in 4.1.

Typically, a SCADA system routinely collects wind turbine operations data which can
be used for performance monitoring purposes. Even with the advanced SCADA systems,
wind turbine faults are often recognized too late to perform a planned maintenance on
the system. Data mining approaches are well known to extract the hidden patterns in
the data. With the data-mining algorithms, faults associated with wind turbines can be
identified and predicted well ahead of their occurrence. In addition, the performance of
wind turbines can be continuously monitored using the operational data, such as power
output, rotor speed, blade pitch angle, etc.

Over the past few years, data mining has been successfully applied in manufacturing,
marketing, and medical informatics. In the energy sector, data mining based algorithms
were used to forecast electricity market price [90], optimization of combustions and heat-
ing, ventilation, and air conditioning (HVAC ) systems [40, 41, 42]. In the wind energy
area, data mining based approaches are used for optimization of wind power output. At
present, there is need for better solutions for wind turbine performance monitoring.

The goal of this work is to propose a performance monitoring system of wind turbines
by providing accurate and robust data-mining based fault prediction models. To predict
wind turbine faults, data mining and machine learning algorithms are employed to identify
the relation between wind turbine performance parameters. Depending on the nature
of turbine fault and available data, both classification and regressions models can be
constructed. As the performance of data-mining algorithms solely depends on dataset
at hand, advanced data preprocessing techniques are employed to develop robust fault
prediction models.

2.2 Approach

A data mining approach with the machine learning algorithms is applied to identify and
predict status patterns of wind turbines and recognize rejected data from performance
curves. The identification of status patterns is an important piece of fault monitoring, as
the system or component’s health may gradually deteriorate, rather than failing instantly.
Early prediction of status patterns may allow for predictive maintenance actions and
possible avoidance of some faults. A prediction model will be trained using operational
and status data collected at wind turbines.



Chapter 3

Fundamentals of Wind Energy

Energy available in wind is basically the kinetic energy of large masses of air moving over
the earth’s surface. Blades of the wind turbine receive this kinetic energy, which is then
transformed to mechanical or electrical forms, depending on our end use. The efficiency of
converting wind to other useful energy forms greatly depends on the efficiency with which
the rotor interacts with the wind stream. In this chapter, let us discuss the fundamental
principles involved in this wind energy conversion process.

3.1 Wind energy characteristics

Wind energy is a special form of kinetic energy in air as it flows. Wind energy can be
either converted into electrical energy by power converting machines or directly used for
pumping water, sailing ships, or grinding gain.

3.1.1 Wind power

Kinetic energy exists whenever an object of a given mass is in motion with a translational
or rotational speed. When air is in motion, the kinetic energy in moving air can be
determined as

Ek = 1
2mū2 (3.1)

where m is the air mass and ū is the mean wind speed over a suitable time period. The
wind power can be obtained by differentiating the kinetic energy in wind with respect to
time, i.e.:

Pw = dEk
dt = 1

2mū2 (3.2)
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Figure 3.1: Swept area of wind turbine blades.

However, only a small portion of wind power can be converted into electrical power.
When wind passes through a wind turbine and drives blades to rotate, the corresponding
wind mass flow-rate is

m = ρAū (3.3)

where ρ is the air density and A is the swept area of blades, as shown in Figure 3.1 .
Substituting equation 3.3 into 3.2, the available power in wind Pw can be expressed as

Pw = 1
2ρAū

3 (3.4)

An examination of equation 3.4 reveals that in order to obtain a higher wind power, it
requires a higher wind speed, a longer length of blades for gaining a larger swept area, and
a higher air density. Because the wind power output is proportional to the cubic power
of the mean wind speed, a small variation in wind speed can result in a large change in
wind power [81].

3.1.1.1 Blade swept area

As shown in Figure 3.1, the blade swept area can be calculated from the formula:

A = πl(l + 2r) (3.5)
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Table 3.1: Classes of wind power density [81].

10 m height 50 m height
Wind power class Wind power density (W/m2 ) Mean wind speed (m/s) Wind power density (W/m2 ) Mean wind speed (m/s)

1 <100 <4.4 <200 <5.6
2 100-150 4.4-5.1 200-300 5.6-6.4
3 150-200 5.1-5.6 300-400 6.4-7.0
4 200-250 5.6-6.0 400-500 7.0-7.5
5 250-300 6.0-6.4 500-600 7.5-8.0
6 300-350 6.4-7.0 600-800 8.0-8.8
7 >400 >7.0 >800 >8.8

where l is the length of wind blades and r is the radius of the hub. Thus, by doubling
the length of wind blades, the swept area can be increased by the factor up to 4. When
l >> 2r , A≈ πl2 .

3.1.1.2 Air density

Another important parameter that directly affects the wind power generation is the density
of air, which can be calculated from the equation of state:

ρ = p

RT (3.6)

where p is the local air pressure, R is the gas constant (287 J/kg-K for air), and T is
the local air temperature in Kelvin.

3.1.1.3 Wind power density

Wind power density is a comprehensive index in evaluating the wind resource at a partic-
ular site. It is the available wind power in airflow through a perpendicular cross-sectional
unit area in a unit time period. The classes of wind power density at two standard wind
measurement heights are listed in Table 3.1.

Some of wind resource assessments utilize 50 m towers with sensors installed at inter-
mediate levels (10 m, 20m, etc.). For large-scale wind plants, class rating of 4 or higher is
preferred.

3.1.2 Wind characteristics

Wind varies with the geographical locations, time of day, season, and height above the
earth’s surface, weather, and local landforms. The understanding of the wind characteris-
tics will help optimize wind turbine design, develop wind measuring techniques, and select
wind farm sites.

3.1.2.1 Wind speed

Wind speed is one of the most critical characteristics in wind power generation. In fact,
wind speed varies in both time and space, determined by many factors such as geographic
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Figure 3.2: Weibull distributions for various mean wind speeds.

and weather conditions. Because wind speed is a random parameter, measured wind speed
data are usually dealt with using statistical methods.

3.1.2.2 Weibull distribution

The variation in wind speed at a particular site can be best described using the Weibull
distribution function [85], which illustrates the probability of different mean wind speeds
occurring at the site during a period of time. The probability density function of a Weibull
random variable ū is:

f(ū,κ,λ) =


κ
λ( ūλ)κ−1 exp (−( ūλ)κ), ū≥ 0

0 ū < 0

where λ is the scale factor which is closely related to the mean wind speed and κ

is the shape factor which is a measurement of the width of the distribution. These two
parameters can be determined from the statistical analysis of measured wind speed data.
As an example, the Weibull distributions for various mean wind speeds are displayed in
Figure 3.2.

3.1.2.3 Wind turbulence

Wind turbulence is the fluctuation in wind speed in short time scales, especially for the
horizontal velocity component. The wind speed u(t) at any instant time t can be considered
as having two components: the mean wind speed ū and the instantaneous speed fluctuation
u′(t), i.e.:

u(t) = ū+u′(t) (3.7)
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Wind turbulence has a strong impact on the power output fluctuation of wind turbine.
Heavy turbulence may generate large dynamic fatigue loads acting on the turbine and
thus reduce the expected turbine lifetime or result in turbine failure.

In selection of wind farm sites, the knowledge of wind turbulence intensity is crucial
for the stability of wind power production. The wind turbulence intensity l is defined as
the ratio of the standard deviation σu to the mean wind velocity ū :

l = σu
u

(3.8)

where both σu and ū are measured at the same point and averaged over the same
period of time.

3.1.2.4 Wind direction

Wind direction is one of the wind characteristics. Statistical data of wind directions over
a long period of time is very important in the site selection of wind farm and the layout
of wind turbines in the wind farm.

The wind rose diagram is a useful tool of analyzing wind data that are related to
wind directions at a particular location over a specific time period (year, season, month,
week, etc.). This circular diagram displays the relative frequency of wind directions in 8
or 16 principal directions. As an example shown in Figure 3.3 , there are 16 radial lines
in the wind rose diagram, with 22.5° apart from each other. The length of each line is
proportional to the frequency of wind direction. The frequency of calm or near calm air
is given as a number in the central circle. Some wind rose diagrams may also contain the
information of wind speeds.

3.1.2.5 Wind shear

Wind shear is a meteorological phenomenon in which wind increases with the height above
the ground. The effect of height on the wind speed is mainly due to roughness on the
earth’s surface and can be estimated using the Hellmann power equation that relates wind
speeds at two different heights [19]:

u(Z) = u(Z0)( Z
Z0

)a (3.9)

where Z is the height above the earth’s surface, Z0 is the reference height for which
wind speed u(Z0) is known, and a is the wind shear coefficient. In practice, a depends on
a number of factors, including the roughness of the surrounding landscape, height, time
of day, season, and locations. The wind shear coefficient is generally lower in daytime and
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Figure 3.3: Wind rose diagram for wind directions.

higher at night. Empirical results indicate that wind shear often follows the “1/7 power
law” (i.e. a = 1/7).

The power output of wind turbine strongly depends on the wind speed at the hub
height, modern wind turbines are built at the height greater than 80 m, for capturing
more wind energy and lowering cost per unit power output.

3.2 Wind power parameters

3.2.1 Power coefficient

The conversion of wind energy to electrical energy involves primarily two stages: in the
first stage, kinetic energy in wind is converted into mechanical energy to drive the shaft
of a wind generator. The critical converting devices in this stage are wind blades. For
maximizing the capture of wind energy, wind blades need to be carefully designed.

The power coefficient Cp deals with the converting efficiency in the first stage, defined
as the ratio of the actually captured mechanical power by blades to the available power
in wind:

Cp = Pme,out
pw

= Pme,out
1
2pAū

3 (3.10)

Because there are various aerodynamic losses in wind turbine systems, for instance,
blade-tip, blade-root, profile, and wake rotation losses, etc., the real power coefficient Cp
is much lower than its theoretical limit, usually ranging 30-45%.
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3.2.2 Total power conversion coefficient and effective power output

In the second stage, mechanical energy captured by wind blades is further converted into
electrical energy via wind generators. In this stage, the converting efficiency is determined
by several parameters:

• Gearbox efficiency ηgear : The power losses in a gearbox can be classified as load-
dependent and no-load power losses. The load-dependent losses consist of gear tooth
friction and bearing losses and no-load losses consist of oil churning, windage, and
shaft seal losses. The planetary gearboxes, which are widely used in wind turbines,
have higher power transmission efficiencies over traditional gearboxes.

• Generator efficiency ηgen: It is related to all electrical and mechanical losses in a
wind generator, such as copper, iron, load, windage, friction, and other miscellaneous
losses.

• Electric efficiency ηele: It encompasses all combined electric power losses in the
converter, switches, controls, and cables.

Therefore, the total power conversion efficiency from wind to electricity ηt is the pro-
duction of these parameters, i.e.:

ηt = Cpηgearηgenηele (3.11)

The effective power output from a wind turbine to feed into a grid becomes

Peff = CpηgearηgenηelePw = ηtPw = 1
2(ηtpAū3) (3.12)

3.2.3 Power curve

As can be seen from equation 3.12, the effective electrical power output from a wind
turbine Peff is directly proportional to the available wind power Pw and the total effective
wind turbine efficiency ηt.

The power curve of a wind turbine displays the power output (either the real electrical
power output or the percentage of the rated power) of the turbine as a function of the
mean wind speed. Power curves are usually determined from the field measurements. As
shown in Figure 3.4 , the wind turbine starts to produce usable power at a low wind speed,
defined as the cut-in speed. The power output increases continuously with the increase
of the wind speed until reaching a saturated point, to which the power output reaches its
maximum value, defined as the rated power output. Correspondingly, the speed at this
point is defined as the rated speed. At the rated speed, more increase in the wind speed
will not increase the power output due to the activation of the power control. When the
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Figure 3.4: Typical wind turbine power curve.

wind speed becomes too large to potentially damage the wind turbine, the wind turbine
needs to shut down immediately to avoid damaging the wind turbine. This wind speed
is defined as the cut-out speed. Thus, the cut-in and cut-out speeds have defined the
operating limits of the wind turbine [81].

3.2.4 Wind turbine capacity factor

Due to the intermittent nature of wind, wind turbines do not make power all the time.
Thus, a capacity factor of a wind turbine is used to provide a measure of the wind turbine’s
actual power output in a given period (e.g. a year) divided by its power output if the
turbine has operated the entire time. A reasonable capacity factor would be 0.25–0.30
and a very good capacity factor would be around 0.40 [88]. In fact, wind turbine capacity
factor is very sensitive to the average wind speed.

3.3 Wind turbine controls

Wind turbine control systems continue to play important roles for ensuring wind turbine
reliable and safe operation and to optimize wind energy capture. The main control systems
in a modern wind turbine include pitch control, stall control (passive and active), yaw
control, and others.

Under high wind speed conditions, the power output from a wind turbine may exceed
its rated value. Thus, power control is required to control the power output within allow-
able fluctuations for avoiding turbine damage and stabilizing the power output. There are
two primary control strategies in the power control: pitch control and stall control. The
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wind turbine power control system is used to control the power output within allowable
fluctuations.

3.3.1 Pitch control

The pitch control system is a vital part of the modern wind turbine. This is because the
pitch control system not only continually regulates the wind turbine’s blade pitch angle
to enhance the efficiency of wind energy conversion and power generation stability, but
also serves as the security system in case of high wind speeds or emergency situations. It
requires that even in the event of grid power failure, the rotor blades can be still driven
into their feathered positions by using either the power of backup batteries or capacitors
or mechanical energy storage devices [25].

Early techniques of active blade pitch control applied hydraulic actuators to control all
blades together. However, these collective pitch control techniques could not completely
satisfy all requirements of blade pitch angle regulation, especially for MW wind turbines
with the increase in blade length and hub height. This is because wind is highly turbulent
fl ow and the wind speed is proportional to the height from the ground. Therefore, each
blade experiences different loads at different rotation positions. As a result, more superior
individual blade pitch control techniques have been developed and implemented, allowing
control of asymmetric aerodynamic loads on the blades, as well as structural loads in the
non-rotating frame such as tower side-side bending. In such a control system, each blade
is equipped with its own pitch actuator, sensors and controller.

In today’s wind power industry, there are primarily two types of blade pitch control
systems: hydraulic controlled and electric controlled systems. As shown in Figure 3.5, the
hydraulic pitch control system uses a hydraulic actuator to drive the blade rotating with
respect to its axial centerline. The most significant advantages of hydraulic pitch control
system include its large driving power, lack of a gearbox, and robust backup power. Due
to these advantages, hydraulic pitch control systems historically dominate wind turbine
control in Europe and North America for many years.

The electric pitch control systems have been developed alternatively with the hydraulic
systems. This type of control system has a higher efficiency than that of hydraulic con-
trolled systems (which is usually less than 55%) and avoids the risk of environmental
pollution due to hydraulic fluid being split or leaked.

In an electric pitch control system as shown in Figure 3.6 , the motor connects to
a gearbox to lower the motor speed to a desired control speed. A drive pinion gear
engages with an internal ring gear, which is rigidly attached to the roof of the rotor blade.
Alternatively, some wind turbine manufacturers use the belt-drive structure adjusting the
pitch angle. The use of electric motors can raise the responsiveness rate and sensitivity of
blade pitch control. To enhance operation reliability, the use of redundant pitch control
systems was proposed to be equipped in large wind turbines [86].
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Figure 3.5: Hydraulic pitch control system.

3.3.2 Stall control

Besides pitch control, stall control is another approach for controlling and protecting wind
turbines. The concept of stall control is that the power is regulated through stalling the
blades after rated speed is achieved. Stall control can be further divided into passive and
active control approaches. Passive stall control is basically used in wind turbines in which
the blades are bolted to the hub at a fixed installing angle. In a passive stall-regulated
wind turbine, the power regulation relies on the aerodynamic features of blades. In low
and moderate wind speeds, the turbine operates near maximum efficiency. At high wind
speeds, the turbine is automatically controlled by means of stalled blades to limit the
rotational speed and power output, protecting the turbine from excessive wind speeds.

Compared with pitch control, a passive stall control system has a simple structure and
avoids using a complex control system, leading to high reliability of the control system.
In addition, the power fluctuations are lower for stall-regulated turbines. However, this
control method has some disadvantages, such as lower efficiency, the requirement of ex-
ternal equipment at the turbine start, larger dynamic loads acting on the blades, nacelle,
and tower, dependence on reliable brakes for the operation safety. Therefore, this control
technique has been primarily used for small and medium wind turbines. Since the capac-
ity of wind turbines has entered the multi-megawatt power range in recent years, pitch
control has become dominant in the wind power market.

The active stall control technique has been developed for large wind turbines. An
active stall wind turbine has stalling blades together with a blade pitch system. Since
the blades at high wind speeds are turned towards stall, in the opposite direction as with
pitch-control systems, this control method is also referred to as negative pitch control.
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Figure 3.6: Electric pitch control system.

Compared with passive stall control, active control provides more accurate control on
the power output and maintains the rated power at high wind speeds. However, with
the addition of the pitch-control mechanism, the active stall control mode increases the
turbine cost and decreases operation reliability. With megawatt wind turbines becoming
the mainstream in the wind power industry from the late 1990s, pitch control is more
favorable than stall control. It has been reported that the number of pitch-regulated
turbines is four times higher than that of stall-regulated turbines and the trend is going
to continue in coming decades [80].

3.3.3 Yaw control

In order to maximize the wind power output and minimize the asymmetric loads acting
on the rotor blades and the tower, a horizontal-axis wind turbine must be oriented with
rotor against the wind by using an active yaw control system. Like wind pitch systems,
yaw systems can be driven either electrically or hydraulically. Generally, hydraulic yaw
systems were used in the earlier time of the wind turbine development [30]. In modern
wind turbines, yaw control is done by electric motors. The yaw control system usually
consists of an electrical motor with a speed reducing gearbox, a bull gear which is fixed
to the tower, a wind vane to gain the information about wind direction, a yaw deck, and
a brake to lock the turbine securely in yaw when the required position is reached. For a
large wind turbine with high driving loads, the yaw control system may use two or more
yaw motors to work together for driving a heavy nacelle.

In practice, the yaw error signals obtained from the wind vane are used to calculate
the average yaw angle in a short interval. When this average yaw angle exceeds the preset
threshold, the yaw motor is activated to align the turbine with the wind direction. Thus,
with heavily filtered wind direction measurements, the actions of yaw control are rather
limited and slow.
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3.3.4 Other control approaches

In the early time of wind turbine design, ailerons were once used to control the power out-
put. This method involves placing move able flaps on the trailing edge of rotor blades [36].
The ailerons change the lift and drag characteristics of the blades and eventually change
the rotor torque, which enable to regulate rotor speed and rotor power output. However,
this method was less successful and was soon abandoned.

Another possibility is to yaw the rotor partly out of the wind to decrease power. This
technique of yaw control is in practice used only for tiny wind turbines (> 1kW ).

3.4 Summary

Wind turbines work by converting the kinetic energy in the wind first into rotational
kinetic energy in the turbine and then electrical energy that can be supplied, via the
national grid, for any purpose around the World. The energy available for conversion
mainly depends on the wind speed and the swept area of the turbine. When planning a
wind farm it is important to know the expected power and energy output of each wind
turbine to be able to calculate its economic viability.

With the knowledge that it is of critical economic importance to know the power and
therefore energy produced by different types of wind turbine in different conditions in this
chapter was presented fundamentals mathematical models for this approach.



Chapter 4

State of the Art

Wind power is an effective form of clean, renewable energy which operate both onshore
and offshore. It does not consume fuel or emit carbon emissions during its operation and
is predicted to be the most cost competitive electricity source on economic by future. The
primary function of a wind turbine is to harvest wind energy. It is done through converting
kinetic energy of blades rotating into electrical energy.

Wind farms are unreliable sources of energy generation which require frequent mainte-
nance. They need to continuously adapt to different wind loads as wind conditions change
over time and are highly unpredictable. The conditions in which wind turbines operate of-
ten cause system failures. In [69] analyzed wind turbine failures for a wind farm in India.
Was found that failure duration of yaw motor was highest, followed by failure duration of
gear-oil pump, and then hydraulic unit of blade tip air brakes system.

Technology has improved significantly to minimize failure rates of components, how-
ever, failures of common parts are continually occurring. These failures are critical as
it cause downtime and prevents the primary function of power generation. There have
been 1868 accidents reported since 1900, of which 118 were critical, 174 structural failures
and 345 blade failures [24]. Failures are highly undesirable in any system, whether it be
mechanical or physical. Historical data shows a high failure rate in the gearboxes which
require replacing every 5 to 7 years. Structural damage occurs frequently as a consequence
of high wind loads, fire damage and wildlife impact which have high financial risks due
to environmental impacts. Due to the complexity of the components, the repair cost of is
very high [1]. It is the general belief that better quality of components would lead to more
reliable systems, however, not much research is found in literature on predicting these
failures at the design stage.

Wind turbine operation is dependent on wind speeds to generate power. Elmore and
Gallagher [21] found that use of non site-specific wind velocity data, such as that available
from a regional database could be a cost-effective means for predicting wind turbine perfor-
mance. The concluded that Monte Carlo models could predict wind turbine performance
using remote wind velocity data. Lawrence Livermore National Laboratory published the

33
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results of statistical analysis of field observations to help turbine manufacturers to refine
their power curves and incorporate findings about what atmospheric processes are im-
portant in wind power forecasting [46]. However, many wind turbines’ performance still
declined significantly and became uneconomical to operate after 10 years of operation.
The wind turbine would then be decommissioned and replaced with a newer replacement.

4.1 Wind turbine reliability and performance

4.1.1 Reliability

Wind turbine reliability depends on the reliability of some key components. For example,
gearbox failures are seen as the most common and most critical failure. A gearbox failure
ceases the primary function of electricity generation and faces downtime for repairs or
replacement. Structural damage to the blades and tower are another common mode of
failure. The blades may have experienced high wind loads or bird strikes, resulting in
broken blades. In [15] analyzed the failure of a wind turbine tower caused by Typhoon
"Jangmi". It was concluded that the bolts were inadequate and quality control was the
cause of the damage. In other work of [45] was conducted failure analysis on wind turbine
blade bolts. Laboratory testing of stress, strain, alternating loads, tensile loads, hardness
and toughness were undertaken and concluded failure of bolts occurred from fatigue due
to high alternating loads. Electrical system within the generator can cause an ignition,
burning fuel vapors within the nacelle. Once a fire has started within the nacelle, it is
highly unlikely to be extinguished due to the location and height of the fire. Since the
1980s, up to 30% of reported wind turbine accidents related to fire, with 90% of those
leading to significant downtime or total loss of system [77].

4.1.2 Performance

Researchers and scientists had developed various models for the evaluation of performance
of wind turbine system. A brief review of these models has been presented here. Abder-
razzag had investigated the performance and energy production of a grid connected wind
farm during 6 years operation and illustrated the variation in energy and wind speed on
an annual and monthly basis for the whole examined period [2]. In [68] presented a prob-
abilistic method used for the evaluation of the performance and reliability of wind-diesel
energy systems. Castro and Allan built a probabilistic model of a wind frame taking
into account the stochastic nature of the wind, the failure and repair processes of wind
turbines, and the spatial wind-speed correlation and wake effects [70]. In [18] proposed
a Monte Carlo-based method for predicting the economic performance and reliability of
autonomous energy systems consisting of diesel generators and wind energy converters
(WECs). Abouzahr and Ramkumar studied the performance of an autonomous WECS
composed of one wind turbine feeding the load via a battery storage [3].
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Billinton and Guungbai conducted studies on generating capacity adequacy associated
with wind energy, using a sequential Monte-Carlo simulation procedure. The result shows
that the contribution of WECs to the reliability performance of a generating system is
highly dependent on the site wind condition [10]. A sequential Monte-Carlo simulation
technique based on an hourly random simulation had been proposed for adequacy evalua-
tion of a generating system including WECS. In [8] studied prediction and enhancement
of performance of wind farm in India and found that there is scope for improvement in
the annual plant load factor by 1–3% by improving the grid and machine availability.

A detailed parametric analysis such as available wind potential quality, examination of
wind power curve, investigation of reliability for determining minimum cost is carried out
concerning the optimum sizing of stand-alone wind power system by Kaldellis resulted in
an appropriate decision making procedure, a significant reduction of the system dimensions
may be realized leading to a remarkably diminished first installation cost [34]. In [37]
studied nonlinear identification of wind turbine with a neural network, and found that
variable speed wind turbine can produce 8–15% more energy output as compared to their
constant speed counter parts. Wilson studied the various losses such as aerodynamic,
mechanical, electrical, transmission and generator losses that reduce the power output. In
that transmission and generator losses are of the order of 12% at rated power. The rotor
performance is depending on the action of lift and drag forces on the blades [87].

During installation of WEGs in autonomous systems, technical constraints must be
considered, since increasing wind penetration may disturb the operation of the system,
leading to oscillation of voltage and frequency. Also in cases of high wind speeds the
outage of WECs may damage conventional units. In order to improve the effectiveness and
efficiency of research into wind energy conversion systems Noval wind turbine simulators
had been developed to create a controlled test environment for drive train of wind turbine.
In [12]. presented an innovative electronic system for testing the performance of wind
turbines. The main goal of the system is to increase the accuracy in the measurements
of torque and speed for each steady-state point of the turbine characteristic power curve.
The steps to be adopted by the government agencies in order to ensure the desired growth
of the wind industry in the country had been suggested by Skiha et al. and listed the
suggestion to meet the technical challenges faced by the wind industry and to improve the
performance of wind farms and also suggested a right choice of wind electric generator
with an optimum rated wind speed will improve the wind farm performance [75].

4.2 Wind turbine modeling

Wind turbine can be modeled in different ways. Chen et al. [9] studied the functional ex-
pressions of wind turbine blade chord and twist angle span-wise distribution and developed
a new common functional equation of the blade shape. A 2.3 MW wind turbine blade
shape optimization model was established. In [20] presented a new design philosophy
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based on functional redundancies and reconfiguration that can help to increase availabil-
ity of wind turbines. In the event of a fault, the new design capabilities could be used to
substitute the function of a faulty component and the system’s availability for operation
could be analyzed. The technique Bond Graph uses power nodes to describe energy and
power transfers in a dynamic system explicitly indicated by causal strokes. Bakka and
Karimi [5] addressed the problem of bond graph methodology as a graphical approach
for the modeling of wind turbine generating systems and validated a specific wind turbine
generating system. Tapia and Medina proposed a bond graph doubly-fed wind turbine
generator control. The bond graph methodology and the concept of causality were used
to derive and verify the control law system of the wind turbine. Bond graph modeling
methodology has the advantage of representing the energy transfers by either a flow or
effort between components. Each component is represented by a bond group; source, sink,
transformer, gyrator or a junction. Further to a junction (1-junction and 0-junction),
passive elements such as resistance, inductance or capacitance may be assigned. These
elements represent operating characteristics of the component [79].

4.3 Wind turbine maintenance

Maintenance of wind turbines are conducted twice a year at 6 month intervals. A typi-
cal maintenance would involve thorough inspection of the entire system, replacement of
fluids, lubrication and servicing of mechanical parts. Repairs and replacements would be
conducted if deemed necessary by the technician. These time based inspections and main-
tenance activities are often expensive and require undesired downtime. Prognostic Health
Management (PHM), a form of conditional monitoring, was proposed by Abichou et al
as the best strategy to reduce cost of operation and maintenance. Lekou et al conducted
conditional health monitoring on gearboxes and bearing using vibration acoustic emis-
sions. They utilized accelerometers and strain gauge bridges to determine the operating
frequency to use as a baseline measure for conditional monitoring. Failing components
were tested to measure frequencies and compared to baseline measure to determine early
failure detection [47, 48, 54].

4.4 Supervisory control and data acquisition system (SCADA)

Prognostic health management (PHM) is conducted through a SCADA system. Ongo-
ing data is collected and analyzed for abnormalities during operation. The SCADA also
monitors the health of the system through various sensors which assist with optimizing
maintenance scheduling and improve reliability. The sensor readings, matched with his-
torical failure readings, are used to predict failures before they occur. In [28] developed
the Nonlinear State Estimation Technique (NSET) to model turbine tower vibration to
good effect, providing an understanding of the tower vibration dynamic characteristics
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and the main factors influencing these. SCADA data from a single wind turbine was used
to validate the model. Guo et al [28] developed tower vibration model comprises two dif-
ferent parts: a sub-model used for the conditions that below rated wind speed and another
for that above rated wind speed. With SCADA of one wind turbine, the NSET model
showed good preparation for the condition monitoring for wind turbine’s key components.
Wang et al [84] reviewed different methods of data driven approaching for SCADA data
interpretation has been reviewed and an artificial intelligence (AI) based framework for
fault diagnosis and prognosis of WTs using SCADA data was proposed.

4.4.1 Wind turbine condition monitoring analysis based on SCADA
data

With the continuing growth of global wind power capacity and rapid expansion of wind
farms, condition monitoring and anomaly identification for WTs are of increasing impor-
tance in reduction of operation and maintenance costs. Condition monitoring is a process
of monitoring the operating parameters of a physical system. From the changes in the pa-
rameters, possible failures in the system can be diagnosed. SCADA installed in most wind
turbines can provide a large number of monitoring parameters that are considered valuable
resources for condition monitoring and anomaly identification of WTs. The SCADA data
used for condition monitoring is without additional installation of sensors and hardware
devices. Therefore, WTs condition monitoring based on SCADA data has been widely
used. the research on condition monitoring of WTs was mainly focused on how to identify
early faults and putting forward some methods to judge the abnormal occurrence. The
establishment of prediction model and the establishment of input and output are mostly
based on experience or even given directly from the text and the specific reasons can not
be verified. Besides, the established models are more limited which are only established
for particular kinds of abnormal, like the gearbox is overheating and so on [64].

4.4.2 Wind turbine reliability analysis based on SCADA data

The turbines and associated equipment in the wind farm are connected to a SCADA
system, which has installed a number of transducers for operating and controlling turbines
and measuring the power generated by them. The alarm settings of SCADA system can
help operator to understand the status of the turbines approximately, but SCADA data
are usually thought less useful to wind turbine condition monitoring because of their low
sampling rate (i.e. one sample every 10 minutes). However, in comparison with commercial
CMSs, SCADA system is already there and SCADA data are ready to use. So, they are the
cheapest resource for developing a cost effective CMS for wind turbines. Moreover, SCADA
data are a complete record of the operating history of the turbines, through which the
reliability of these machines can be fully understood. This is very helpful for the operation
and maintenance (O&M) of existing turbines and the reliability design of next generation
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of turbines. Together with turbine service report, SCADA data record a complete O&M
history of the turbines. In particular, they record the information of failures occurring
in the machines (e.g., the time when the failure happens, the log number of the failure,
the time when the turbine is restarted, etc). Turbine supplier regards the information as
the things sensitive and confidential, because the actual quality and operation situation
of the turbines could be disclosed from them. The consequence of information leak is the
significant impact to market sale. However, if these data are properly used it can bring
significant benefit to both turbine suppliers and owners [89].

4.5 Wind turbine power curve classification of modelling
methods.

Wind energy has emerged as a promising alternative source for overcoming the energy
crisis in the world. Wind power based energy is one of the most rapidly growing areas
among the renewable energy sources and will continue to do so because of the growing
concern about sustainability and emission reduction requirements. The uncertain nature
of wind and high penetration of wind energy in power systems are a big challenge to the
reliability and stability of these systems. To make wind energy a reliable source, accurate
models for predicting the power output and performance monitoring of wind turbines are
needed. The theoretical power captured (P) by a wind turbine is given by [44]

P = 1
2ρAwCp(λ,β)v3 (4.1)

The power production of a wind turbine (WT) thus depends upon many parameters
such as wind speed, wind direction, air density (a function of temperature, pressure, and
humidity) and turbine parameters. Much complexity is involved in considering the effects
of all the influencing parameters properly. It is therefore difficult to evaluate the output
power using the theoretical equation given in above. Power curve of a wind turbine, which
gives the output power of turbine at a specific wind speed, provides a convenient way
to model the performance of wind turbines. A typical power curve for a pitch regulated
wind turbine is shown in Figure 4.1. In the first region when the wind speed is less
than a threshold minimum, known as the cut-in speed, the power output is zero. In the
second region between the cut-in and the rated speed, there is a rapid growth of power
produced. In the third region, a constant output (rated) is produced until the cut-off speed
is attained. Beyond this speed (region 4) the turbine is taken out of operation to protect its
components from high winds; hence it produces zero power in this region. The power curve
of a WT indicates its performance. Accurate models of power curves are important tools
for forecasting of power and on-line monitoring of the turbines. A number of methods have
been proposed in various works to model the wind turbine power curve. These methods



4.5 Wind turbine power curve classification of modelling methods. 39

which use data from manufacturers’ specifications and actual data from the wind farms
have been utilized by many researchers in various wind power applications [53, 43].

4.5.1 Need of power curve modelling

The power curve reflects the power response of a WT to various wind speeds.Accurate
models of the curves are useful in a number of wind power applications. The objectives of
modelling the wind turbine power curve have been discussed here.

• Wind Power Assessment and Forecasting. The WT power curve can be used for wind
power assessment.Wind resource assessment of a region in terms of wind speed, wind
power density, and wind energy potential is done to identify areas suitable for wind
power development [53]. In this process, estimation of energy is done by using the
available wind data and wind turbine power curve. Predicting the output power
of the turbine at a candidate site is also required in sizing and cost optimization
studies during the design stage of a wind energy based system. The accuracy in
power prediction is important as an overestimation can result in poor reliability and
an underestimation can lead to oversizing of the wind energy conversion system.Wind
turbine operators who trade energy directly to the electricity market also need to
forecast the power output of their turbines accurately, so that they will be able to
deliver the traded amount of power [72].

Power curves are supplied by the manufacturers in a tabular or graphical form.
However, a generic equation which represents this curve accurately is required in
various problems of wind power systems. Derivation of an appropriate function
to describe the actual shape of the curve is a very important task. However, the
manufacturer’s curves are created under standard conditions therefore they may
not represent the realistic conditions of the site under consideration. The turbine
performance at the wind farms is also not ideal due to wear and tear and aging

Figure 4.1: Typical power curve of a pitch regulated wind turbine.
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of turbines. Another method to model the power curves is to derive them using
the actual data of wind speed and power measured from the turbines [43]. The
data of wind turbines collected by the SCADA can be utilized for this purpose.This
method can incorporate the actual conditions at the wind farms, thus providing
better accuracy in power prediction.

• Capacity Factor Estimation. The capacity factor of a WT is defined as the ratio
of the average power output to the rated output power of the generator and is an
indicator of its efficiency [33]. It is used to estimate the average energy production
of a WT required for the sizing and cost optimization studies, optimum turbine-site
matching, and ranking of potential sites [33, 62]. The wind turbine power curve
models are used to estimate the capacity factor of a WT. A comparative analysis of
four power curve modelling methods in estimation of capacity factor of wind turbine
generator is presented in [14].

• Selection of Turbines. The power curve can be used to make generic comparison
between models and can aid in the choice of turbine from the available options.The
selection of the turbine characteristics which match with the wind regime of the site
helps in optimizing the efficiency of wind energy system [83].

• On-line Monitoring of Power Curves. Power curves can be used for monitoring
the performance of turbines. For this, a benchmark curve which represents the
performance of a normally operating turbine is required.This reference curve can be
extracted from measured power output and wind speed data of wind turbines.The
actual curve of the turbine to be monitored can be compared with this benchmark
curve. The deviations of the actual values from the expected output can indicate
underperformance or faults [44].The wind power output of a turbine can be affected
by underperformance or various faults/anomalies of the turbine such as blade faults
and yaw and pitch system faults [43, 60]. Different types of faults affect the turbine
system differently and will cause the power curve to depart from the expected value
in a different way. Tools which can characterize and quantify these departures can
aid in early identification of faults. Statistical analysis of the outlier data can give
indications of the specific reason of anomaly.Wind turbine condition monitoring by
use of power curve copula modelling is suggested in [78, 26] and is a topic of further
research. Early recognition of the emerging faults and timely repair and maintenance
of the equipment can help in improving the performance of wind turbines.

4.5.2 IEC 61400-12-1 standard

IEC 61400-12-1 is the commonly adopted international standard for power performance
measurement [31]. The procedure for measuring the power performance characteristics of
single wind turbines is specified in this standard. It is the most accepted standard for
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power curve measurement of single wind turbines.The standard describes the measure-
ment methodology for the measured power curve which is determined by simultaneous
measurement of wind speed and power output at the test site. A previous site calibration
is required for certain terrain conditions. The annual energy production is calculated by
applying the measured power curve to reference wind speed frequency distributions sup-
plemented by sources of uncertainty and their effects. The standard prescribes derivation
of power curve using the hub height wind speed measured with a cup anemometer in the
suitable measurement sector, but if the wind speed has a large variation over the rotor
swept area then there can be a significant difference between the hub height wind speed
and wind speed averaged over the whole rotor swept area. The measurement methods and
accuracy of measuring instruments can cause variance in measurements and can lead to
large prediction errors. The impact of other measurement options such as consideration
of rotor equivalent wind speed in which speed is measured at heights over the full rotor
plane with the use of remote sensing technology (LIDAR and SONAR) and nacelle based
anemometry is a topic of further research [55].

The IEC standard uses ten-minute averaged data grouped into wind speed intervals
of 0.5 m/s (method of bins). This 10-minute averaging of data introduces systematic
averaging errors and short wind fluctuations are killed off. Wind at a specific site can be
affected by a number of factors such as topology of the site and obstacles and weather
phenomena. Although the IEC power curve considers the wind condition of the current site
it may not always be appropriate to apply to the wind conditions of other sites. Research
efforts are therefore required to develop site specific power curves. These curves can
incorporate the wind conditions of the particular site, thus giving better results [59, 31].

Appropriate selection of modelling method is an important requirement for during
planning and operation stage of wind based system and helps in improving the performance
of the system. The methods which consider only wind speed as input may not take into
account the variance caused by various influencing parameters. Methods which consider
the influence of these parameters on the power curve can result in more accurate models.
Wind at a specific site can be affected by a number of factors such as topology of the
site and obstacles and weather phenomena. It is shown in [59] that the use of developed
site power curves, which used the knowledge of site and turbine parameters for modelling,
resulted in more accurate energy assessment than the turbine power curve.

4.5.3 Power curve models classification

The power curve modelling methods can be classified into discrete, deterministic/proba-
bilistic, parametric/nonparametric, and stochastic methods or they can be classified on
the basis of data used for modelling.

• Discrete Models. In this method as described in IEC 61400-12 all the wind speeds are
discretized into 0.5m/s bins [31]. The power output for each bin is then modelled.
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This is a simple method as it does not require mathematical functions for describing
the curve. Also it takes into account the nonlinear wind speed-power output relation.
However a large number of data are required in this method to develop a reliable
model.

• Deterministic and Probabilistic Models. A deterministic power curve model assumes
a fixed relation between the output power and wind speed. But when a fleet of wind
turbines are deployed on a wind farm, turbines of the same type may produce differ-
ent amount of power even if the wind speed is the same. A probabilistic power curve
model incorporates these power variations to characterize the relationship between
wind speed and actual output powers. Most of the models available in the literature
are of deterministic nature and are constructed by using the manufacturers’ power
curve data. A probabilistic model proposed in [32] characterizes the dynamics of
output power by a normal distribution with varying mean and constant standard
deviation. The method given in the paper accommodates the uncertainty of output
power. The probabilistic nature of wind power output can also be modelled by de-
riving curves using actual data of power output and wind speed of turbines deployed
in a wind farm. This method requires a large number of historical data but results
in accurate models [43, 50].

• Parametric and Nonparametric Models. A parametric model defines the relationship
between input and output by a set of mathematical equations with a finite number of
parameters. In a nonparametric model, no assumption is made about the functional
form of the phenomenon under observation. Parametric models of WT power curve
can be built by utilizing a set of mathematical expressions having a fixed number of
parameters, which are usually collected together to form a single parameter vector
θ = (θ1,θ2,θ3, ...,θn). Nonparametric models are used when it is difficult to define
the underlying theory upon which the parametric model can be constructed [50].

• Models Based on Presumed Shape, Curve Fitting, and Actual Data. The models
of power curves can be classified according to the data being used for modelling.
Models of power curve based on presumed shape of curve utilize only the cut-in, cut-
off, and rated speeds and the rated power of the selected turbine for calculating the
parameters of expressions used in the model [16, 17, 58]. These ratings are available
from the specifications of the turbines. When the manufacturer’s power curve data is
available, models can be developed by fitting one or more appropriate expressions to
the actual curve. The parameters of the expression being fitted to the actual curve
are generally calculated by using the least squares method [43].The models derived
from actual data of wind farm need the actual wind speed and power output data
from an operational wind farm. If the effect of the influencing parameters is also
included in the model, then the data of the included parameters is also required.
This data can be obtained from the wind farm’s SCADA system.
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• Stochastic Models. The stochastic method consists of characterizing the power per-
formance of wind turbine by evaluating dynamic response against the fluctuating
wind speed inputs [56]. The dynamic power output is separated into a deterministic
stochastic part in this model. In [4] the Markov chain theory is used to describe the
power output of WT. The resulting model is independent of turbulence intensity;
however, the effect of other influencing parameters is not taken into account in this
method.

4.6 Summary

A wind turbine is a complex collection of components comprising rotors, pitch system,
drivetrain, gearbox, generator, electrical system, mechanical brakes, yaw system, sensors,
control system and hydraulics. To understand how these intervals and what activities are
required in each visit, it is important to develop mathematical models to analyse the effect
of different visit intervals and maintenance strategies. This literature review examined the
key modeling research relevant to wind turbine lifecycle operation analysis.

Analysis of turbine SCADA data can help people to identify the problems existing in
wind farm services. For instance, the downtimes caused by turbine sub assemblies can be
derived from SCADA data. Then, through comparing the calculated downtime and the
actual time used for component repair and maintenance, people may easily know the major
reason accounting for decreased availability of the turbine. If actual maintenance time
occupies only a small percent of the downtime, maintenance is fine. The problem could
happen in spare part order/delivery, limited access to turbine for weather or sea condition
reasons, or the availability of the vessels for transportation and installation. However, if
actual maintenance time occupies a big percent of the downtime, it is necessary to check
whether turbine supplier or contracted partner has provided an instant, efficient and high
quality maintenance service. This analysis is particularly useful for managing those wind
farms located offshore or in other remote areas.

Accurate models of power curves are important tools for forecasting of power and online
monitoring of the turbines. A number of methods have been proposed in various works
to model the wind turbine power curve. The literature reviewed reveals that appropriate
selection of power curve models can help in improved performance of wind energy based
systems. This section presented current research of different wind turbine power curve
modelling methods. We also identified the need for standard measuring and classification
of models.
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Chapter 5

Methodology and Results

Data mining is a creative process which requires a number of different skills and knowl-
edge. Currently there is no standard framework in which to carry out data mining projects.
This means that the success or failure of a data mining project is highly dependent on the
particular person or team carrying it out and successful practice can not necessarily be
repeated across the enterprise. Data mining needs a standard approach which will help
translate business problems into data mining tasks, suggest appropriate data transforma-
tions and data mining techniques, and provide means for evaluating the effectiveness of
the results and documenting the experience.

The Cross Industry Standard Process for Data Mining (or CRISP-DM ) project ad-
dressed parts of these problems by defining a process model which provides a framework
for carrying out data mining projects, independently of both the industry sector and the
technology used. The CRISP-DM process model aims to make large data mining projects
more reliable, manageable, repeatable, faster, and less costly.

We follow this methodology in the execution of the practical part of this work.

5.1 Overview CRISP-DM

The CRISP-DM reference model for data mining provides an overview of the life cycle of
a data mining project. It contains the phases of a project, their respective tasks, and their
outputs.

The life cycle of a data mining project is broken down in six phases which are shown
in Figure 5.1. The sequence of the phases is not strict. The arrows indicate only the
most important and frequent dependencies between phases, but in a particular project, it
depends on the outcome of each phase which phase, or which particular task of a phase,
has to be performed next.

45



46 Methodology and Results

Figure 5.1: Phases of the current CRISP-DM process model for data mining.

The outer circle in Figure 5.1 symbolizes the cyclic nature of data mining itself. Data
mining is not finished once a solution is deployed. The lessons learned during the process
and from the deployed solution can trigger new, often more focused business questions.
Subsequent data mining processes will benefit from the experiences of previous ones [7].
The process is iterative because the results of some phases sometimes require the project
cycle to go back to an earlier phase. For example, a result of the modeling stage may be
that more data preparation is required new data may be needed or the existing data may
have to be prepared in a different way.

Each phase of the process is described briefly below:

• Business Understandings. This initial phase focuses on understanding the project
objectives and requirements from a business perspective, and then converting this
knowledge into a data mining problem definition, and a preliminary project plan
designed to achieve the objectives.

• Data Understandings. The data understanding phase starts with an initial data
collection and proceeds with activities in order to get familiar with the data, to
identify data quality problems, to discover first insights into the data, or to detect
interesting subsets to form hypotheses for hidden information.

There is a close link between Business Understanding and Data Understanding. The
formulation of the data mining problem and the project plan require at least some
understanding of the available data.
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• Data Preparation.The data preparation phase covers all activities to construct the
final dataset (data that will be fed into the modeling tool(s)) from the initial raw
data. Data preparation tasks are likely to be performed multiple times, and not
in any prescribed order. Tasks include table, record, and attribute selection, data
cleaning, construction of new attributes, and transformation of data for modeling
tools.

• Modelling. In this phase, various modeling techniques are selected and applied,
and their parameters are calibrated to optimal values. Typically, there are several
techniques for the same data mining problem type. Some techniques require specific
data formats.

There is a close link between Data Preparation and Modeling. Often, one realizes
data problems while modeling or one gets ideas for constructing new data.

• Evaluation. At this stage in the project you have built one or more models that
appear to have high quality, from a data analysis perspective. Before proceeding
to final deployment of the model, it is important to more thoroughly evaluate the
model, and review the steps executed to construct the model, to be certain it properly
achieves the business objectives. A key objective is to determine if there is some
important business issue that has not been sufficiently considered. At the end of
this phase, a decision on the use of the data mining results should be reached.

• Deployment. Creation of the model is generally not the end of the project. Usually,
the knowledge gained will need to be organized and presented in a way that the
customer can use it. Depending on the requirements, the deployment phase can be
as simple as generating a report or as complex as implementing a repeatable data
mining process. In many cases it will be the user, not the data analyst, who will
carry out the deployment steps. In any case, it is important to understand up front
what actions will need to be carried out in order to actually make use of the created
models.

5.2 Selection of Tools

Many algorithm engines, tools, and platforms have been developed to implement functions
and related data mining techniques. Predictive analytics today summarized the top 50
free DM software, including Orange, RapidMiner, Weka, KNIME, SpagoBI, Anaconda,
Octave, and so forth. Some commercial software including Sisense, Oracle Data Mining,
Microsoft SharePoint, IBM Cognos, Dundas BI, SAP Business Objects, Matlab, Statistic,
SAS EM, SPSS Clementine (IBM SPSS Modeler after 2009), Tanagra, Qlik Sense, and so
forth have also been widely used by researchers and practitioners [49].

In this work the main selected tool for practical environment is Anaconda. With more
than 13 million downloads to date, Anaconda is blossoming into a real phenomenon in a
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crowded data science field. Anaconda is a completely free enterprise-ready Python dis-
tribution for large-scale data processing, predictive analytics, and scientific computing.
It includes over 195 of the most popular Python packages for science, math, engineer-
ing, and data analysis. It also offers the ability to easily create custom environments by
mixing and matching different versions of Python and other packages into isolated envi-
ronments that individual users are free to create. Anaconda includes the ‘conda‘ package
and environment manager to make managing these environments straightforward.

Anaconda comes pre-loaded with all the most popular libraries and tools for machine
learning and data mining approaches. As well as Jupyter, some of the biggest Python
libraries wrapped up in Anaconda include NumPy, Pandas, Matplotlib, Scikit-Learn etc.
The following is a short summary of the most important tools used in deployment of this
research work.

Jupyter Notebook. It is a powerful tool for interactively developing and presenting data
science projects. A notebook integrates code and its output into a single document
that combines visualisations, narrative text, mathematical equations, and other rich
media. The workflow promotes iterative and rapid development, making notebooks
an increasingly popular choice at the heart of contemporary data science, analysis,
and increasingly science at large. As part of the open source Project Jupyter, this
tool is also free to use.

NumPy. In the Python ecosystem, multi-dimensional arrays are provided by the NumPy
library, which contains a high-performance array object and related linear algebra
routines. The array interface provided by NumPy supports vector programming
and is very general, underpinning many of the numerical tools widely used in the
Python world. For instance, the companion SciPy package implements many useful
functions for optimization, statistics, interpolation, image processing, and spatial
mathematics. Many of these functions work with NumPy arrays having arbitrary
size, dimensions, and data types.

Pandas. Another library which builds on the NumPy array interface is Pandas, which
extends the array with labeling and an engine for transformation and analysis of
structured datasets. The data structures provided by Pandas - particularly the
DataFrame - greatly simplify timeseries analysis, split-apply-combine workflows, and
other common research processing tasks. The Xarray package extends Pandas by
providing additional data structures to handle n-dimensional labeled arrays. Most
importantly, the array and labeling semantics in NumPy, Pandas, and Xarray are
similar in the majority of cases. Because each package sequentially builds on the
others, they can all be used within the same analysis context and data can easily be
shuttled to whatever format works best for a given task.
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Matplotlib. The core visualization library in the Python world is Matplotlib. Although
it originated as an emulation of the graphics capabilities of MATLAB, Matplotlib
has grown into the de-facto base layer for 2D graphics in Python. Matplotlib pro-
vides fine-grained control of graphics, and works natively with both base Python
objects and NumPy array derived types (including Pandas Series and DataFrames
and Xarray DataArrays). In fact, both Pandas and Xarray provide layers to help
automate plotting numerical data through Matplotlib.

Scikit-Learn. A toolkit implement a wide variety of algorithms for supervised and un-
supervised machine learning tasks, including regressions, classification, clustering,
manifold learning, principal components, density estimation, and much more. It
also provides many useful tools to help build pipelines for managing modeling tasks
such as data processing/normalization, feature engineering, cross-validation, fitting,
and prediction.

5.3 Methodology

This research project is divided into two parts: first, we employ a data mining method
for recognition of data rejected sob normal operation of WT’ performance curves; second,
we apply machine learning algorithms for identification and prediction of status patterns
of wind turbines. As mentioned above, it follows the CRISP-DM methodology. We start
with the first part of this project.

5.3.1 Business understanding

Since 2000 wind technology has seen a continuous growth in Portugal, motivated by a
political strategy, at European and national levels, in endogenous and renewable resources
with the aim of diversifying sources, improving the security on supply, decreasing of ener-
getic dependency and reducing the environmental impact of electro production system.

Currently, wind energy plays an invaluable role in the Portuguese electric sector: in
2017, the wind generated electricity was equivalent to almost a quarter of the total demand,
in the same order of magnitude of the contribution observed in 2016.

It is worth highlighting that the wind generating capacity suffered residual growth from
2016 to 2017, just 0.6 MW. This slight variation resulted from the decommissioning of 23
wind turbines operating since 1998 and their replacement for currently available technol-
ogy, more efficient and capable of generating electricity at a lower cost, materialized in
only four wind turbines. Along with new generating capacity currently under construction
or to license on the meantime, re-powering will certainly play an important role in the
sector for the next coming years.

INEGI – Institute of Science and Innovation in Mechanical and Industrial Engineering
is an interface institute between the Faculty of Engineering of the University of Porto
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(FEUP) and the Industry, with the calling to have activity on the fields of Innovation and
Technology Transfer.

APREN, the Portuguese Renewable Energy Association, is a non-profit association,
founded in 1988 with the mission of coordinating, representing and defend the common
interests of its Associates. It develops its work in close cooperation with public authorities
and similar entities, both at national and international level, being an important key player
in the deployment of energy policies for Portugal, enabling the promotion of endogenous
renewable resources for electricity generation.

With the legal statute of non-profit private association public utility, part of the Por-
tuguese Scientific and Technological System, and with the status of Public Usefulness, it
aims to play an active role in the development of the Portuguese industrial sector and
transformation on the competitive model of the national industry.

As we see, with the increasing number of wind farms, the renewable sources of energy
have taken a key role in the Portuguese electricity mix.

Given the interest of the market players and general public to improve their knowledge
about the renewable energy plants for electricity generation, including their geographic
distribution and associated technologies, both APREN as INEGI seek the dissemination
of the relevant information to the stakeholders and public in general.

With the willingness to coordinate efforts, both institutions came together to create
and maintain a database providing relevant information about all the power plants that
use renewable energy sources in Portugal.

This work is concerned with the development of methodology to support the optimiza-
tion of the production of a wind turbine for planning and analyzing of the wind farms
performance by INEGI.

5.3.2 Data understanding

An operational wind farm typically generates vast quantities of data which are well known
SCADA data. The SCADA data contain information about every aspect of a wind farm,
from power output and wind speed to any errors registered within the system. By keeping
track of both wind speed and power output parameters, the overall health of the turbine
can be supervised. SCADA data may be effectively used to "tune" a wind farm, providing
early warning of possible failures and optimizing power output across many turbines in all
conditions.

The data used in this research was generated at two wind farms with about 13 turbines
and two corresponding weather stations. In the case of turbines, the data was collected
by a SCADA system installed. Each SCADA system collects data on more than 120
parameters. The data is sampled at a high frequency, then averaged and stored at 10-
min intervals (referred to as 10-min data). The data included one file for each turbine
containing over 100 parameters of intervals of an average of 10 min from different sensors
and monitoring channels. Examples of parameters include: wind speed, wind direction,
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Table 5.1: Technical specifications for wind turbines E70, E82 and E92.

Wind Turbines’ Models

Technical specifications E 70 E 82 E 92

Rated power: 2000 kW 2000 kW 2300 kW
Rotor diameter: 71 m 82 m 92 m
Hub height in meter: 64 m 78 m 85 m
Cut-in wind speed : 2.5 m/s
Cut-out wind speed : 28-34 m/s (with ENERCON storm control)
Remote monitoring: ENERCON SCADA
Manufacturer: Enercon

outside temperature, and turbine control parameters; all the data samples were time
stamped.

The data set was complemented with the data from nearby weather stations. A weather
station is a facility, either on land or sea, with instruments and equipment for measuring
atmospheric conditions to provide information for weather forecasts and to study the
weather and climate. The measurements taken include temperature, atmospheric pressure,
humidity, wind speed, wind direction, and precipitation amounts.

Some of the data collected was recorded in the relational database management system
by INEGI. In this work, two separate sets of data were created. The description of both
of data sets are described below.

5.3.2.1 Data description

The fist data set was collected during the period of one year and two months, from
2016/08/01 to 2017/09/30. This data set includes data from three wind turbines of three
different models that are installed on that wind farm located in Northern Portugal. The
data set is complemented with the data from the nearest weather station. The data from
weather station is also averaged and stored at 10-min intervals.

The brief description of technical specifications of wind turbines selected is listed in
Table 5.1. The weather station has the following specifications: anemometers and wind-
vanes’ height - 85 m | 63.6 m; barometer’s height - 81 m; temperature/relative humidity
probe’s height - 81 m.

The second data set was collected during the period of six years and nine months, from
2011/01/01 to 2017/09/30. It includes data from a wind farm in its entirety and enclosing
the data from weather stations. This wind farm is also located in Northern Portugal and
has installed power of 20MW. The farm has 10 wind turbines in total; the model of the
turbines is E 70. The technical specifications are listed in Table 5.1. The weather station
selected has the following specifications: anemometers and wind-vanes’ height - 65 m | 30
m; barometer’s height - 63 m; temperature/relative humidity probe’s height - 63 m.

It is important to emphasize that all wind turbines selected have storm control acti-
vated. ENERCON wind energy converters run with a special storm control feature. This
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Table 5.2: The classification of states of wind turbine by INEGI.

Status
Code
of

state
Description

Normal Operation 1 The wind turbine is under normal operation.
Error SCADA 2 The error of SCADA is detected.
Unavailable 3 The wind turbine is unavailable.
No SCADA data 4 There are no SCADA records.
Betz Criterion 5 The records do not meet the Betz criterion.
Maintenance 6 The wind turbine is under maintenance state .
Ice Detection 7 The wind turbine is under Ice Detection state.
Grid Failure 8 There is a network failure in the Grid.
Park Limitation 9 There is a limitation of the power of the park.
Rejected Data 10 The wind turbine is under abnormal operation.

slows the wind turbine down so that it can continue to operate even at high wind speeds.
This technique avoids numerous shutdowns, which lead to considerable losses in power
output. When storm control is activated, the rated speed is linearly reduced starting at a
predetermined wind speed for each turbine type. Beginning at some turbine-specific wind
speed, the reduction in the turbine’s rated speed also reduces active power. The turbine
only shuts down at a wind speed of more than 34 m/s (10-minute average). In comparison,
when storm control is deactivated, the wind turbine stops if the wind speed reaches 25
m/s in the three minute average, or 30 m/s in the 15 second average.

Both data sets are constructed by the following parameters averaged over 10 min inter-
vals: speed from nacelle anemometer (vel_med), power produced (pot_med), rotor speed
rotation (rot_med), power coefficient (cp_med), density (massa_vol), nacelle orientation
(orientacao_nac), temperature (tep_med), humidity (hum_med), turbulence (int_turb),
atmospheric pressure (bar), date (data) and control status state of wind turbine (idclassi-
ficacao).

The classification of states was provided by INEGI and its description is shown in
Table 5.2.

5.3.2.2 Data exploration

For better understanding and detecting interesting subsets in the hidden information, we
start by exploring our initial data.

The distribution of all power produced per month is shown in Figure 5.2a for the first
data set and in Figure 5.2b for the second data set.

We note a significant variability in the the power produced from month to month.
The 12 parameters recorded at 10-min intervals resulted in 61344 instances for the first

data set and in 3546379 instances for second data set.
For further work the first data set was divided into 3 separated sub-sets that corre-

sponded to three different wind turbines and were designated as WT_70E, WT_82E and
WT_92E. The second data set was designated as WTS_FARM.
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(a) Power produced from wind turbines
E 70, E 82 and E 92 at [2016/08/01-
2017/09/30].

(b) Power produced from wind farm at
last five years [2013-2017].

Figure 5.2: Power produced by month of year.

5.3.3 Data preparation

The collected data from a wind farm is voluminous, and it is expected to contain errors
caused by sensors and malfunctions of the data collection system. Such errors manifest
themselves in missing values, out-of-range values, and so on.

5.3.3.1 Data cleaning

The statistics of all parameters’ values and there missing data of the four data sets are
summarized in Table 5.3. We found some out-of-range values in WTS_FARM data set
on parameters such as: power coefficient (cp_med). The data with suspected values was
deleted.

After cleaning out-of-range values, the WTS_FARM data set contains 3539485 data
points with 12 parameters. The other tree data sets contain the similar volume.

5.3.3.2 Imputation of missing values

For various reasons, many real world datasets often miss values. Such values are usu-
allt encoded as blanks, NaNs or other placeholders. Datasets containing such values are
incompatible with scikit-learn estimators which assume that all values in an array are nu-
merical, and that all have and hold meaning. A basic strategy to use incomplete datasets
is to discard entire rows and/or columns containing missing values. However, this comes
at the cost of losing data which may be valuable, albeit incomplete. A better common
strategy, applied in this work, is to impute the missing values, for instance, by inferring
them from the known part of the data. For this purpose, we used the Imputer class from
sklearn.preprocessing library.

The Imputer class provides basic strategies for imputing missing values, either using
the mean, the median or the most frequent value of the row or column in which the missing
values are located. This class also allows for different missing value encodings.
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Table 5.3: Statistics description of data sets with the missing data.

WT 70E WT 82E WT 92E WTS FARM

missing mean min max missing mean min max missing mean min max missing mean min max

vel_med 64 6.013 0.000 32.900 64 5.857 0.000 39.800 64 6.090 0.000 32.000 0.000 6.881 0.000 34.600
pot_med 64 528.453 0.000 2060.000 64 483.352 0.000 2060.000 64 522.566 0.000 2060.000 0.000 555.046 0.000 2074.000
rot_med 64 10.851 0.000 18.060 64 10.696 0.000 18.090 64 10.904 0.000 18.080 0.000 12.486 0.000 22.420
cp_med 265 0.425 0.000 1.341 272 0.437 0.000 1.071 322 0.431 0.000 1.631 30071 0.432 0.000 880.493
massa_vol 64 1.073 1.008 1.134 64 1.072 1.008 1.134 64 1.072 1.008 1.134 0.000 1.075 1.008 1.163
orientacao_nac 64 197.385 0.000 360.000 64 192.071 0.000 360.000 64 193.897 0.000 427.000 0.000 171.400 0.000 -106.000
bar 6548 87678 85000 89200 6548 87678 85000 89200 6548 87678 85000 89200 371660 87752 84000 89800
tep_med 6548 12.287 -3.200 29.800 6548 12.287 -3.200 29.800 6548 12.287 -3.200 29.800 370280 11.459 -5.400 31.300
hmd_med 6548 69.793 5.000 100.000 6548 69.793 5.000 100.000 6548 69.793 5.000 100.000 370270 72.382 1.000 100.000
int_turb 6336 0.189 0.000 1.750 6336 0.189 0.000 1.750 6336 0.189 0.000 1.750 294211 0.128 0.000 2.452

We used the median strategy for replaced our missing data. We believe this strategy
is adequate because of low expected variability in adjacent samples. After cleaning and
replacing manipulations, all data sets were recorded into separate files and will be used in
data mining method development to recognize outliers from performance curves.

5.3.3.3 Normalization of data

Variable Normalization is one of the most important concepts of predictive modeling. The
data should be normalized or standardized to bring all of the variables into proportion with
one another. For example, if one variable is 100 times larger than another (on average),
then the model may be better behaved if we normalize/standardize the two variables to be
approximately equivalent. The normalized/standardized coefficients associated with each
variable will scale appropriately to adjust for the disparity in the variable sizes. Moreover,
the normalized/standardized coefficients will reflect meaningful relative activity between
each variable: i.e., a positive coefficient will mean that the variable acts positively towards
the objective function, and vice versa; a large coefficient versus a small coefficient will
reflect the degree to which that variable influences the objective function. In contrast, the
coefficients from un-normalized/un-standardized data will reflect the positive/negative
contribution towards the objective function, but will be much more difficult to interpret
in terms of their relative impact on the objective function.

Traditionally data normalization entails fitting the data within unity (1), so that all
data values will take on a value in the interval from 0 to 1. This approach is also called
Min-Max Scaling. This method is used to make equal ranges but different means and
standard deviations. The formula is shown in equation 5.1.

x̄ = x−xmin
xmax−xmin

(5.1)

The motivation to use this scaling includes robustness to very small standard deviations
of features and preserving zero entries in sparse data.
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5.3.3.4 Codification of data

In several cases data and events inside a time series are seasonal. In such cases the month
and the year of the event matters significantly. In such scenarios binary variables are
commonly used to represent if the event is during a given month/year or not.

From our previous analysis we concluded that power produced varies from month to
month (see Figures 5.2b and 5.2a). For this reason the variables from date data were
binary-encoded into months. This resulted of the 12 new features in ours data sets. All
data sets after data preparation process were recorded into separate files and will be used
in development of prediction models.

5.3.4 Modeling

Within the field of machine learning, there are two main types of tasks: supervised and
unsupervised. The main difference between the two types is that supervised learning is
done using prior knowledge of what the output values for samples should be. The goal
of supervised learning is to learn a function that, given a sample of data and desired
outputs, best approximates the relationship between input and output observable in the
data. Unsupervised learning, on the other hand, does not have labeled outputs, so its goal
is to infer the implicit structure present within a set of data points.

Supervised learning is typically done in the context of classification, when we want to
map input to output labels, or regression, when we want to map input to a continuous
output. Common algorithms in supervised learning include logistic regression, naive bayes,
support vector machines, artificial neural networks, and random forests. In both regression
and classification, the goal is to find specific relationships or structure in the input data
that allow us to effectively produce correct output data.

The most common tasks within unsupervised learning are clustering, representation
learning, and density estimation. In all of these cases, we wish to learn the inherent struc-
ture of our data without using explicitly-provided labels. Some common algorithms include
k-means clustering, principal component analysis, and autoencoders. Since no labels are
provided, there is no specific way to compare model performance in most unsupervised
learning methods.

It is easy to see that supervised type of task is more suitable in the context of classifica-
tion, considered in this work. Recall that the objective of this work is solve two problems:
detection of data rejected from performance curve of wind turbines, and development of
a prediction model to identify status patterns of wind turbines.

For solving the first task we used the data sets resulting from cleaning and replacing
manipulations of data, see in Section 5.3.3.2. The second task of status pattern identifi-
cation will build on the results of the first one.

A wind turbine is expected to produce a certain amount of energy for a given wind
speed. The relationship between the wind speed and its power output is expressed as a
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power curve, which has a logistic function shape. For a variety of reasons, discussed below,
the power curve is not an ideal logistic function. In fact, all regions outside of the logistic
curve represent power losses. This abnormality of power curves is one of the central factors
in this part of our work.

The statistical results discussed point to four main sources of outliers [43]:

Wind speed. The low output power is due to the wind speed around the cut-in point
(the cut-in speed is set at 2.4 m/s) or the wind speed around the cut-out point
(the cut-out speed is set at 20 m/s - 32 m/s). A turbine with wind speed below
the cut-in point operates abnormally because insufficient wind energy cannot power
the turbine. On the other hand, wind speed above the cut-out point causes the
turbine to vibrate. To avoid the negative impact of high wind speed on the turbine’s
lifecycle, the control system shuts down its operation.

Environmental issues. Environmental issues other than the wind speed may produce
power curve outliers. Blades affected by dirt, bugs, and ice may impact power curves
of individual turbines and produce outliers reflected in the wind farm power curve.

Control system issues. The conditions of the wind could be in the normal range, yet
the power produced could be below the values indicated by the power curve. A
possible reason is that the control parameters may be not appropriate for the wind
regime. The specific reason may be attributed to the malfunction of the sensors,
pitch control malfunctions, blade pitch angle errors, blade damage, control program
problems, incorrect controller settings, constrained operations, and so on.

Maintenance or energy curtailment. Scheduled or unscheduled maintenance opera-
tions as well as energy curtailment due to diminished transmission capacity may lead
to disrupted operations of individual turbines or the entire wind farm.

In Figure 5.3 we present a global view of the power curves for the all wind turbines
under normal operation, included in our four data sets. All produced data for power
output was classified as normal data, including data classified by INEGI as rejected data
(see in Table 5.2).

5.3.5 Evaluation and Deployment

The most used approach to deal with the nonlinear characteristic of the wind turbine
power curve is to consider a discrete model. For example, the method for estimating
the power curve, described in the IEC 61400-12 [31] standard, takes a discretization of
the wind speed range into bins of 0.5 m/s of size. For each bin the mean and standard
deviation of the produced power is computed and used to characterize the power curve.
The different models have been developed, applied and analyzed with the objective of
detecting erroneous data.
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(a) Cumulative power curve of the wind turbine
E 70 (data set WT_70E).

(b) Cumulative power curve of the wind turbine
E 82 (data set WT_82E).

(c) Cumulative power curve of the wind turbine
E 92 (data set WT_92E).

(d) Cumulative power curve of the wind farm
(data set WT_FARM).

Figure 5.3: Global view of the power curves considering all data points from the four data
sets.

The WT_70E, WT_82E, WT_92 and WTS_FARM data sets comprised of 52330
data points, 52343 data points, 51732 data points and 2536934 data points, respective
observations were considered.

• Data filtering by binned mean ± 2.57σ criterion.

The first method that was applied to detecting rejected data is "binned mean" [67].
It consists in computing for each bin the mean value ( µ ) and the standard deviation
(σ) of the power, similar to the IEC standard. In this case, all the data that are
bigger than µ + 2.57 σ or smaller than µ – 2.57σ are considered as rejected data.
If the noise was Gaussian, this threshold th = 2.57 supposes that 1% of the data
eliminated is correct. The resulting power curves with the rejected data detected for
the four data sets is presented in Figure 5.4.

• Data filtering using KNN classifier method.

In this method, k-NN is used to predict wind farm power based on the wind speed.

K nearest neighbors is a simple algorithm that stores all available cases and classifies
new cases based on a similarity measure.
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(a) Linear model for wind turbine E 70 E with
binned speed partition (data set WT_70E).

(b) Linear model for wind turbine E 82 E with
binned speed partition (data set WT_82E).

(c) Linear model for wind turbine E 92 E with
binned speed partition (data set WT_92E).

(d) Linear model for wind farm with binned speed
partition (data set WT_FARM).

Figure 5.4: Linear models for the four data sets with binned speed partition.

In [43] research study, the parameter k in each k-NN model was optimized for
prediction accuracy, and the values of k were chosen for best accuracy. The best
performance of the k-NN model was observed for k = 250.

The basic steps of the k-NN algorithm are as follows:

1. Represent each instance in a multi-dimensional space.

2. Divide the entire data set into training and test data sets.

3. Given a test instance, a distance metric is computed between the test instance
and all training instances, then the k-nearest neighbors are selected from the
training data.

4. The predicted value of the target variable for the test instance is the average
value of the target variable of the selected neighbors.

The rejected data points are those whose prediction error deviates from mean error
by more than 2.57 criterion of standard deviation. The resulting power curves with
the rejected data detected for the four data sets is presented in Figure 5.5.

• Data filtering using KNN&Bin classifier method.
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(a) Knn classification power curve for WT 92 E
(data set WT_70E).

(b) Knn classification power curve for WT 82 E
(data set WT_82E).

(c) Knn classification Power Curve for WT 92 E
(data set WT_92E).

(d) Knn classification power curve for wind farm
(data set WT_FARM).

Figure 5.5: Knn classification power curves for the four data sets.

We observe that the first two methods showed poor performance. In order to signif-
icantly improve the performance curve, we propose a combination of KNN method
and outliers detection based on the binned mean ± 2.57r criterion. The resulting
power curves with the rejected data detected in the four data set is presented in
Figure 5.6.

• Data filtering using INEGI internal procedures.

During its development, several methods were used and improved over time by IN-
EGI company. A number of other methods have also been tested and dismissed due
to their unsatisfactory performance.

Currently the rejection of data is done by calculating Cp. The theoretical Cp is given
by the equation 3.10 (see in Section 3.2). The real Cp is derived from the SCADA
values of the power and wind speed and with the values of the density provided by
the meteorological station.

The real Cp and the theoretical Cp are calculated, and the difference between these
two values is subsequently analyzed. Based on this analysis the decision is made as
to whether the register should be rejected.
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(a) Knn&Bin classification power curve for WT
92 E (data set WT_70E).

(b) Knn&Bin classification power curve for WT
82 E (data set WT_82E).

(c) Knn&Bin classification power curve for WT
92 E (data set WT_92E).

(d) Knn&Bin classification power curve for wind
farm (data set WT_FARM).

Figure 5.6: Knn&Bin classification power curves for the four data sets.

We used the values of SCADA speed and density to compute theoretical Cp, and we
interpolated from the description provided by the manufacturer the theoretical Cp.

By dividing the two values of Cp, we get the following equation:

vreal = vtheor
3

√
Cpreal
Cptheor

(5.2)

We can now calculate the theoretical speed from the above equation.

Having the two velocity values, we calculated the error between them. From here,
the error limit values are set manually, and the values outside the limits are rejected.
These limits are defined separately for each wind turbine and for each speed bin.

The resulting power curves with the rejected data detected in the four data sets is
presented in Figure 5.7.

5.3.5.1 Evaluation of prediction models

The second part of the work addresses the development of prediction models to identify
and predict status patterns of wind turbines.
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(a) INEGI method of classification power curve
for WT 92 E (data set WT_70E).

(b) INEGI method of classification power curve
for WT 82 E (data set WT_82E).

(c) INEGI method of classification power curve
for WT 92 E (data set WT_92E).

(d) INEGI method of classification power curve
for wind farm (data set WT_FARM).

Figure 5.7: INEGI method of classification for the four data sets.

For this purpose were selected four different machine learning algorithms for classi-
fication: Decision Tree, Nearest Neighbors, Multi-layer Perceptron and Gaussian Naive
Bayes. The main idea of these algorithms is described briefly below:

Decision tree builds classification or regression models in the form of a tree structure.
It breaks down a dataset into smaller and smaller subsets while at the same time an
associated decision tree is incrementally developed. The final result is a tree with
decision nodes and leaf nodes. A decision node has two or more branches. Leaf node
represents a classification or decision. The topmost decision node in a tree which
corresponds to the best predictor called root node. Decision trees can handle both
categorical and numerical data.

Nearest Neighbor methods look for a predefined number of training samples closest
in distance to the new point, and predict the label from these. The number of
samples can be a user-defined constant (k-nearest neighbor learning), or vary based
on the local density of points (radius-based neighbor learning). The distance can, in
general, be any metric measure: standard Euclidean distance is the most common
choice



62 Methodology and Results

Table 5.4: Rejected data under normal operation of wind turbines for all data sets.

Techniques
WT_70E

(52330 data points)
WT_82E

(52343 data points)
WT_92E

(51732 data points)
WTS_FARM

(2536934 data points)

% of rejected data under normal operation

Binned mean Classifier 1.171 % 1.132 % 1.977 % 1.391 %
KNN Classifier 11.845 % 11.640 % 11.892 % 16.506 %
INEGI Classifier 1.614 % 1.203 % 2.271 % 2.448 %
KNN&Bin Classifier 12.734 % 12.911 % 13.745% 17.956 %

Multilayer perceptron classifier (MLPC) is a classifier based on the feedforward ar-
tificial neural network. MLPC consists of multiple layers of nodes. Each layer is
fully connected to the next layer in the network. Nodes in the input layer represent
the input data. All other nodes map inputs to outputs by a linear combination of
the inputs with the node’s weights and bias and applying an activation function.
MLPC employs backpropagation for learning the model.

Naive Bayesian classifier is based on Bayes theorem with the independence assump-
tions between predictors. A Naive Bayesian model is easy to build, with no compli-
cated iterative parameter estimation which makes it particularly useful for very large
datasets. Despite its simplicity, the Naive Bayesian classifier often does surprisingly
well and is widely used because it often outperforms more sophisticated classification
methods.

For development of prediction models we used all four data sets recorded after data
preparation process (see Subsection 5.3.3.4), consisting of 3546334 instances with 23 fea-
tures for WTS_FARM, and 61344 instances with 23 features for WT_70E, WT_82E,
WT_92E.

Our target variable was status classifier of wind turbines provided by INEGI (see in
Table 5.2). Note that data for rejected classifiers was replaced with classifiers that resulted
from data filtering using KNN&Bin method.

We divided the available data into training (70% of data) and test (30% of data) sets
20 using different instantiations of a random number generator. In order to evaluate the
predicted models were did multiple runs for each algorithm.

The machine learning algorithm with the best performance was identified and applied
for training prediction model on all historical data of the four data sets.

5.4 Results

To evaluate the quality of the filtering techniques considered in this work, we compare the
percentages of the rejected data under normal operation of wind turbines. The results are
presented in Table 5.4.
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Analyzing the on-line monitoring results of a power curve for a single turbine and wind
farm, we see that the KNN&Bin model achieved the best performance. The parametric
Binned mean and INEGI, and non-parametric KNN achieved average performance in
detecting anomalies in the power generation.

We observe that each of the four approaches has its own advantages and disadvantages.
The k-NN algorithm is more computationally expensive than the Binned mean ap-

proach in identifying anomalies. The computational time depends on the parameter k and
the size of the training data set. However, the k-NN algorithm training time is almost
negligible, as it is an instanced-based scheme. In certain cases it can be more robust in
detecting anomalies. Although the Binned mean method is less expensive, it showed worse
result. In Figure 5.4 depicting the power curves from Binned mean filtering method, we
see that data below the referencing curve (i.e., the curve close to the theoretical optimal
curve) almost half of the data from abnormal operation was not detected. In contrast, the
KNN model showed a much higher accuracy (please see Figure 5.5). In detecting wrong
data above the referencing curve, Binned mean results were close to those of the KNN
method.

The INEGI method has the disadvantage that it required manual definition of the errors
limits for each wind turbine. Each time the anemometer transfer function is changed, it
is necessary to change the error limits. According to INEGI, it was also verified that this
method performed differently for different manufacturers. In addition to being a method
that involves some initial manual manipulation, this method is not easily generalizable.
In the results of our study (please see Figure 5.7), the power curves resulting from INEGI
filtering method use error wind speed limit of 25 m/s. The data points outside the limit
were accurately detected for rejection. However, this strategy could be applied only to
wind turbines with storm control deactivated, which was not the case in all scenarios.

We see that the results obtained from our KNN&Bin method are of the highest quality
in comparison to the other three State-of-the-Art power curves. This method showed
high robustness rejecting wrong data, both for a single turbine with different technical
descriptions and for the entire wind farm. In particular, the KNN&Bin filtering method
showed comparable performance to the Binned mean and KNN methods in detecting
wrong data above and below the referencing curve (please see Figure 5.6). Additionally,
note that this method also takes in consideration the existence of a special storm control
feature.

We now present the evaluation results of prediction models for status patterns of wind
turbines. For this purpose were selected four different machine learning classification’s
algorithms with different behinds: i) Decision Tree (DTreeClas), ii) Nearest Neighbors
(NeareNeighborsClas), iii) Multi-layer Perceptron (MLPClas) and iv) Gaussian Naive
Bayes (GNaiveBayes).

To evaluate the performance of these prediction models we performed 10 different runs,
selecting 1000000 random data points of data for each run, for training on WTS_FARM
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Table 5.5: Performance and computational time for WT_70E, WT_82E WT_92E data
sets.

Run DTreeClas NeareNeighborsClas MLPClas GNaiveBayes

Accuracy
score

Computing
time

Accuracy
score

Computing
time

Accuracy
score

Computing
time

Accuracy
score

Computing
time

WT_70E 1 0.988 0.214 0.885 2.109 0.974 21.767 0.158 0.034
2 0.989 0.232 0.883 2.005 0.975 11.836 0.113 0.046
3 0.991 0.240 0.885 1.889 0.972 13.377 0.055 0.031
4 0.991 0.251 0.880 2.034 0.972 15.890 0.146 0.019
5 0.989 0.240 0.882 2.066 0.975 19.005 0.149 0.046

WT_82E 1 0.987 0.179 0.881 2.441 0.971 17.098 0.060 0.046
2 0.986 0.185 0.889 2.472 0.971 16.609 0.062 0.039
3 0.987 0.178 0.886 2.257 0.973 17.407 0.004 0.090
4 0.986 0.368 0.886 3.215 0.967 14.140 0.010 0.080
5 0.985 0.271 0.886 2.371 0.974 17.520 0.017 0.049

WT_92E 1 0.986 0.380 0.878 3.286 0.973 21.966 0.189 0.031
2 0.986 0.244 0.879 2.456 0.975 21.729 0.085 0.048
3 0.987 0.226 0.877 3.415 0.975 19.790 0.098 0.046
4 0.987 0.221 0.877 2.560 0.971 15.821 0.052 0.057
5 0.987 0.275 0.881 5.914 0.971 16.666 0.025 0.032

data set, and 5 different runs selecting random data points of totality data for training
on WT_70E, WT_82E, WT_92E data sets. It is well known that machine learning
algorithms have stochastic nature. Repeated runs reduce the effect of randomness on the
results.

In our evaluation we used the metric called Accuracy Classification Score (i.e., a ratio
of correctly predicted observation to the total observations). In addition, we measured the
computational time for each run. The results from the multiples runs for tree WT_70E,
WT_82E, WT_92E data sets and for WTS_FARM are shown in Table 5.5 and Table 5.6
respectively.

Table 5.6: Performance and computational time on randomly selected data for
WTS_FARM data set.

Run
DTreeClas NeareNeighborsClas MLPClas GNaiveBayes

Accuracy
score

Computing
time

Accuracy
score

Computing
time

Accuracy
score

Computing
time

Accuracy
score

Computing
time

1 0.973 12.566 0.834 2063.686 0.951 554.556 0.221 1.366
2 0.974 13.750 0.834 1939.527 0.955 431.961 0.290 1.475
3 0.974 14.562 0.833 2288.701 0.945 847.745 0.307 1.311
4 0.973 12.762 0.835 2275.945 0.953 485.947 0.345 1.385
5 0.973 14.434 0.833 2049.392 0.941 589.087 0.337 1.481
6 0.973 13.981 0.834 2792.353 0.955 607.763 0.222 1.438
7 0.974 14.047 0.833 2411.119 0.954 618.685 0.297 1.475
8 0.974 13.945 0.834 2052.550 0.957 458.841 0.261 1.309
9 0.974 12.700 0.833 2035.999 0.955 494.407 0.153 1.288
10 0.974 12.329 0.833 1782.820 0.953 663.235 0.319 1.385



5.5 Summary 65

Table 5.7: Statistical analysis of performance and computational time on randomly se-
lected data for all data sets.

DTreeClas NeareNeighborsClas MLPClas GNaiveBayes

Data set Performance min mean max min mean max min mean max min mean max

WT_70E
(5 runs)

Accuracy
score(%)

0.988 0.990 0.991 0.880 0.883 0.885 0.972 0.974 0.975 0.055 0.124 0.158

Computing
time(min)

0.214 0.235 0.251 1.889 2.021 2.109 11.836 16.375 21.767 0.019 0.035 0.046

WT_82E
(5 runs)

Accuracy
score(%)

0.985 0.986 0.987 0.881 0.886 0.889 0.967 0.971 0.974 0.004 0.030 0.062

Computing
time(min)

0.178 0.236 0.368 2.257 2.551 3.215 14.140 16.555 17.520 0.039 0.061 0.090

WT_92E
(5 runs)

Accuracy
score(%)

0.986 0.986 0.987 0.877 0.878 0.881 0.971 0.973 0.975 0.025 0.090 0.189

Computing
time(min)

0.221 0.269 0.380 2.456 3.526 5.914 15.821 19.195 21.966 0.031 0.043 0.057

WTS_FARM
(10 runs)

Accuracy
score(%)

0.973 0.974 0.974 0.833 0.834 0.835 0.941 0.952 0.957 0.153 0.275 0.345

Computing
time(min)

12.329 13.507 14.562 1782.820 2169.209 2792.353 431.961 575.223 847.745 1.288 1.391 1.481

The statistical analysis of performance and computational time for multiples runs of
all machine learning algorithms and all data sets is presented in Table 5.7. We see that,
out of the four models, only DtreeClass and MLPClass showed satisfactory performance.

Looking at the accuracy score from the multiple runs, we see that the DTreeClass
model has the better average performance (in bold font in Table 5.7) for all four data sets.
Moreover, its computational time is in the low range, when compared to other approaches.
MLPClass, despite its good performance with respect to accuracy score classifier metric, is
significantly more time consuming than DTreeClass. Therefore, MLPClass is more limited
in its scalability.

In contrast, NeareNeighborsClass and GNaiveBayes showed poor performance. Specif-
ically, the averages of accuracy score are several times lower than the acceptable values for
prediction techniques. Since the error metric is unsatisfactory, we do not discuss the com-
putational times of these approaches and consider NeareNeighborsClass and GNaiveBayes
not suitable for our prediction task.

Finally, we note that the performance and computational time of prediction models
depend on the volume of data: as the volume of data increases, the performance and
computational time is expected to also increase. Therefore we take in consideration both
the performance and computational time and conclude that the DtreeClass approach is
the most suitable for our task of prediction of status patterns.

5.5 Summary

In this section we described in detail the methodology used for this research work. Specif-
ically, We followed the CRISP-DM reference model. CRISP-DM reference model for data
mining provides an overview of the life cycle of a data mining project. It contains the
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phases of a project, their respective tasks, and their outputs. We chose CRISP-DM be-
cause it has become a standard methodology for execution of data-mining projects across
industries.

We then presented in detail the setting for our study and described the approaches
chosen for evaluation. In particular, in the first part we evaluated three existing power
curve approaches: Binned mean, KNN, and INEGI method. We presented the evaluation
results and discussed the advantages and disadvantages of each approach. Based on this
analysis, we proposed an improved solution that combines KNN and Binned approaches.
We called this solution KNN&Bin. In our evaluation, we showed that KNN&Bin outper-
forms the other three existing approaches.Our findings were also presented to INEGI and
it was suggested that the KNN&Bin approach is the one that best suit their needs.

In the second part, we evaluated four different techniques for prediction of status
patterns of wind turbines: Decision Tree, Nearest Neighbors, Multi-layer Perceptron and
Gaussian Naive Bayes. The results show that Decision Tree based approach performed
best with respect to accuracy score classifier metric and computational time, on our data
set. Hence, this technique was selected for further deployment in production at INEGI.
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Conclusions and Future Work

Wind energy is a fast growing renewable energy source, however to make wind power com-
petitive with other sources of energy, availability, reliability and the life time of turbines
will all need to be improved. As the wind energy sector grows, business economics, will
demand increasingly careful management of Operation and Maintenance costs.

Unfortunately, faults and unscheduled shutdowns of wind turbines are costly. As
the size and number of wind turbines continue to rise, monitoring for faults has become
increasingly important for companies to remain competitive. Moreover, early prediction
of status patterns may allow for predictive maintenance actions and possible avoidance
of faults. This can be achieved through identification of status patterns of wind turbine,
as the health of a system or component may deteriorate gradually, rather than failing
instantly.

In our research we considered power curve models of wind turbines. Power curve is
an important characteristic since it is used in energy assessment, warranty formulations,
and performance monitoring of the turbines. Power curve models are also important for
turbine health monitoring. Given an accurate power curve model, performance deviation
can be detected by comparing the predicted output to the actual output, adjusted for the
current conditions (typically collected in real time by a SCADA system).

Accurate characterization of the wind turbine power curve is necessary to optimize
the operation and maintenance of a wind farm. The accuracy of such characterizations
depends on the amount and quality of measurement data collected from real turbines in
operation. It is well known that such measurements are prone to outliers, so the application
of automatic filtering techniques is essential to deal with this problem.

We used a robust statistical technique to filter the raw data taken from a real wind
farm. To study the nonlinear nature of the power curve in function of the wind speed and
power output, we tested and compared different models.

More specifically, in the first part of this work, were compared the anomaly detection
power of three existing power curve models using the following techniques: i) Data filtering
by binned mean ± 2.57σ criterion, iii) Data filtering using KNN classifier method, iii)

67
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Data filtering using INEGI method. The power curves were developed using historical
wind turbine data.

We showed that the above techniques reduce the need for various filtering steps usually
done manually to reject outliers, reducing the time and costs required for the process
in a great factor. Moreover, this techniques have shown potential to be employed in
automatic systems that evaluate the efficiency deviations of the installed wind power
turbines. However, as we discussed in the previous chapter, each approach showed some
technical limitations. In particular, Data filtering by binned mean ± 2.57σ criterion
showed high level of inaccuracy detecting abnormal data points. Data filtering using
KNN classifier method showed better accuracy, but it is computationally more expensive.
Finally, the INEGI method reveal the required manual steps for setting error limits, which
greatly hurts its generality and scalability.

Based on the above analysis, we introduced an improved power curve model called
Data filtering using KNN&Bin method. We showed that this model outperforms all three
existing models on the historical data used for this research. The KNN&Bin method
demonstrated high accuracy at no additional computational cost, compared to other so-
lutions. As a result of its demonstrated accuracy and practicality, our approach will be
suggested to INEGI.

The second part of the research addressed the problem of real-time status reporting of
a turbine, based on status classification used at INEGI.

Automated monitoring of the performance of wind turbines and early fault predic-
tion is an effective way to reduce operational costs. However, traditional maintenance
strategies, such as reactive maintenance or periodic maintenance, are more prevalent in
the wind industry. Fortunately, over the last couple of years, the research pertaining to
wind turbines started to also address the condition monitoring and maintenance. The
goal of condition monitoring is to provide continuous monitoring of the wind turbines and
identify fault signatures in the event of faults. Most of the studies reported in literature
are preliminary: they are based on the simulated dataset or constrained experiments. In
reality, the external environment plays an important role in governing the turbine oper-
ations. Note that condition monitoring bares additional cost of installations of specific
sensors and other equipment. Therefore, optimization of the process is highly relevant.

Our approach uses data mining and several machine learning algorithms to identify
and predict status patterns of wind turbines. Monitoring the performance of overall wind
farm provides the current status of all wind turbines installed in a wind farm. The goal
of prediction is to facilitate planned future maintenance. As a result, the performance of
overall wind farm can be assessed on a daily, weekly, or monthly basis, depending on the
requirements.

For our study we selected four different machine learning algorithms for classification:
Decision Tree, Nearest Neighbors, Multi-layer Perceptron and Gaussian Naive Bayes. The
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prediction models were trained on operational and status data collected from SCADA sys-
tems of 13 wind turbines of 3 different models, and the recorded data of the closest weather
stations. We compared the four approaches with regard to accuracy classification score
metric and computational time. We showed that he best performance was displayed by
the Decision Tree based approach, which we selected for further deployment in production.

In future research, it will be interesting to focus on development of more comprehensive
power curves with more parameters such as wind direction, rotor speed, etc. We believe
that such models will be able to further minimize the prediction errors and will be more
suitable for on-line monitoring of turbines.

Other promising techniques of the machine learning approach, such as Artificial Neural
Networks, can be applied to predict fault status patterns of wind turbines. The quality
of such networks is improved as more data is collected and ingested into the model. Un-
fortunately, handling large volumes of data incurs high computational cost and is often
time consuming. This can be addressed by parallel computation techniques, such as map-
reduce.
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