
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Advanced processing and object
detection techniques for assisted and

autonomous driving systems

Filipa Ramos

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Rosaldo Rossetti

Second Supervisor: Alexandre Correia

July 25, 2018

© Filipa Ramos, 2018

Advanced processing and object detection techniques for
assisted and autonomous driving systems

Filipa Ramos

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Doctor Daniel Castro Silva
External Examiner: Doctor Maria Vasconcelos
Supervisor: Doctor Rosaldo Rossetti
July 25, 2018

Abstract

The ultimate dream that has been long standing in the minds of all those concerned or related with
the transportation systems is to develop fully operational unmanned vehicles capable of being fully
operational by themselves. The rising of autonomous driving could be one of the most decisive
technological feats of this era - not only can these systems reduce traffic accidents to a minimal,
they will be shockingly more efficient in managing fuel and energy consumption.

On the scope of autonomous driving, the process designated by object detection is one of the
basic foundations for self driving vehicles. Being defined as the activity of collecting sensory
information which allows the interpretation of all object locations in the vehicle’s environment,
this process is invaluable on the scope of road navigation. Deep learning has allowed the industry
to take a huge step forward in the area. Although, even with all the techniques that have been
explored until now, there are still many uncharted areas on the field. For this reason, this work
provides an in depth study of methodologies for camera and LiDAR based object detection. The
project at hand starts by demonstrating the prowess of the YOLO algorithm both in speed and
accuracy through an analysis of its incremental evolution in between versions on the autonomous
driving scenario. More than this, a novel network, the HGNet is proposed for segmentation of
object areas from an envisioned height grid representation that works through the bird’s eye view.
Furthermore, a pipeline is described so that information from both sensors can be easily fused and
leveraged together in order to obtain three dimensional based spatial and object relationships.

Making use of the renowned KITTI Vision dataset for object detection, the models are severely
experimented on and their effectiveness is assessed. Even though the newest version of YOLO
seemed to have potential to reach state-of-the-art results, its mean average precision is quite poor
on the KITTI object detection benchmark which leads to the conclusion that its applicability on
autonomous driving is reduced to a small pool of set conditions. On the other hand, the proposed
HGNet is only just a little short of breaking the 80% barrier for f1 score whilst proposing oriented
object areas working on incredibly small sized images featuring very few LiDAR sample points at
a fast rate.

Keywords: Deep Learning, Computer Vision, Object Detection, Autonomous Driving

i

ii

Resumo

O sonho transcendente que permanece e floresce nas mentes de todos os indivíduos ou organi-
zações remotamente relacionados com a indústria automóvel é o de desenvolver veículos com-
pletamente autónomos que são capazes de operar sem qualquer ajuda externa. O crescimento do
apelo à condução autónoma poderá vir a ser um dos feitos tecnológicos mais marcantes desta era -
na verdade, estes sistemas não só poderão reduzir os acidentes rodoviários a minímos nunca antes
previstos mas também terão um impacto chocante no consumo e gerência do uso dos combustíveis.

Dentro do tópico da condução autónoma, o processo designado como detecção de objetos
revela-se como uma das fundações dos veículos não populados. Sendo definido como a atividade
de colecionar informação sensorial que permita a interpretação de todas as localizações de objetos
no ambiente envolvente ao sistema de transporte, este processo tem um valor incalculável para
o cumprimento da navegação nas estradas. O uso de técnicas de deep learning tem permitido à
indústria uma evolução astronómica na área. No entanto, mesmo com todas as possibilidades já
exploradas, ainda existem inúmeras direções por explorar. Devido a isto, este trabalho procura
estudar, de forma aprofundada, metodologias para detecão de objectos baseada em cameras e
sensores LiDAR. Primeiramente é demonstrado o poder de adaptabilidade do algoritmo YOLO
tanto em velocidade como em eficácia através de uma análise incremental da evolução sofrida
entre as suas versões no cenário da condução autónoma. Para além disto, uma nova rede neuronal,
a HGNet é proposta para fazer segmentação de áreas de objeto a partir de uma representação
criada a partir da perspetiva apelidada de bird’s eye view. Ainda mais, uma pipeline é descrita
para permitir uma fusão da informação vinda de ambos sensores de forma a que estes possam ser
usados em conjunto para obter relações tridimensionais tanto sobre o espaço como os objetos.

Fazendo ainda uso do reconhecido KITTI Vision dataset para detecção de objetos, os modelos
são extensivamente postos à prova e a sua eficácia é avaliada. Apesar do grande potencial que o
YOLO demonstrava para obter resultados do estado da arte, a sua precisão média é bastante pobre
na benchmark de deteção de objetos do KITTI o que leva à conclusão de que a sua aplicabilidade
no cenário da condução autónoma é reduzido para um grupo mínimo de condições predefinidas.
Por outro lado, a rede proposta, a HGNet, consegue praticamente atingir eficácias de 80% de f1
score ao propor áreas de objecto orientadas de forma rápida a partir de imagens espantosamente
pequenas que contém um grupo reduzido de pontos LiDAR.

Palavras-chave: Aprendizagem Profunda, Visão por Computador, Detecção de Objectos, Con-
dução Autónoma

iii

iv

Acknowledgements

There are so many people without whom I would not have made it here. This goes, sincerely,
to all of them. Thank you. In many more ways than you can tell, you have pushed me forward,
urged me never to give up my crazily huge ambitions and, first and foremost, told me to believe in
myself on the days that even I could not.

Specifically, I give out my appreciation to the whole LiDAR team at Bosch Car Multimedia
who received me with open arms and helped me grow not only as a professional but as a person. I
feel sincerely grateful towards Alexandre Correia for investing in me and believing in my potential.
It was a pleasure to embrace this dreamy project.

For my colleagues at FEUP, I appreciate all the questions answered, even when they seemed
rather nonsensical or confusing. I will never forget all the moments we spent growing together,
supporting each other through fire and blood. If I am sure of anything is that I could not be finishing
this master’s degree without the companionship you offered every step of the way. Gustavo Silva,
for all the precious time you did not have and still dedicated to helping me scientifically and
personally, thank you. I would certainly not be able to be proud of this work the way that I am
right now without you. I believed I could do it because of you.

From my own faculty as well, my supervisor, Rosaldo Rossetti, who always had the most
supportive position, who helped me even through holidays, weekends and let me decide where I
wanted to go with this work every step of the way. I feel very thankful for your mentoring.

For the family that I did not choose but found, my friends Rita Carvalho, Sara Alves and
Manuela Rodrigues. Even through the distance, you were always my beacon of light. Your sup-
port means the world to me and has kept me going through the darkest of times. For all the
conversations, for all the fights and for all the hugs, thank you. I will never forget what you have
done for me.

Finally, I give a special mention to my family. You, more than anyone else, suffered through
everything with me. You, more than anyone else, know that it was not easy to get here. If I am
able to be persistent and not to give up in the face of difficulty it is because you always showed me
so through your own resilience. My mother and father, I can only say you inspire me every day
and I only wish that I could grow to be such amazing people as you are.

Filipa Ramos

v

vi

“After all, the ultimate goal of all
research is not objectivity, but truth.”

Helene Deutsch

“Faithless is he that says farewell
when the road darkens.”

J.R.R. Tolkien

vii

viii

Contents

1 Introduction 1
1.1 Context . 2
1.2 Motivation and Objectives . 3
1.3 Document Structure . 4

2 Deep Learning and the Problematic of Object Detection 7
2.1 Automated Object Detection . 7

2.1.1 Camera Detection . 8
2.1.2 Spatial Representations . 12
2.1.3 LiDAR Detection . 15
2.1.4 Camera and LiDAR Fusion . 18

2.2 Theoretical Foundations . 19
2.2.1 You Only Look Once . 19
2.2.2 YOLO Version 2 . 20
2.2.3 YOLO Version 3 . 21
2.2.4 Focal Loss . 22

2.3 Overview of Datasets and Benchmarks for Object Detection 23
2.4 Summary . 24

3 Machine Vision and Autonomous Driving 27
3.1 The Concept of Sensory Perception . 28

3.1.1 KITTI Vision Dataset Setup . 28
3.1.2 RGB Cameras . 29
3.1.3 LiDAR Sensor . 32
3.1.4 Comparative Analysis of RGB Camera and LiDAR 34

3.2 The Problem of Object Detection in Autonomous Driving 35
3.2.1 Autonomous Driving . 35
3.2.2 Constraints to the Problem Formulation 37
3.2.3 Obstacles to Object Detection in Autonomous Driving Scenarios 38
3.2.4 Metric Discussion . 39
3.2.5 Recall, Precision and F1 . 40
3.2.6 Intersection of Union . 41

3.3 Summary . 42

4 Envisioned Fusion of Camera and LiDAR Based Object Detection 43
4.1 Pipeline . 43

4.1.1 Dataset Statistical Analysis . 43
4.1.2 Envisioned Fusion of Models . 45

ix

CONTENTS

4.2 Camera Based Object Detection Experimentation 46
4.2.1 Network Resolution . 47
4.2.2 Anchors . 47
4.2.3 Random . 48
4.2.4 Grayscale . 48
4.2.5 Version Comparison Analysis . 48

4.3 Benchmark Environment . 51
4.3.1 Training on Raw Dataset . 51
4.3.2 Training on Object Dataset . 51
4.3.3 State of the Art Comparative Analysis 53

4.4 Summary . 55

5 The HGNet Approach for LiDAR Based Object Segmentation 57
5.1 Preprocessing . 57

5.1.1 Frustum . 57
5.1.2 Normalization . 58

5.2 Representations . 58
5.2.1 The Bird’s Eye View . 59
5.2.2 The Height Grid . 59

5.3 Eigenvector Based Ground Segmentation . 60
5.4 Using k−means Clustering for Object Segmentation 61
5.5 The Height Grid Network . 62

5.5.1 Input Preliminaries . 62
5.5.2 Architecture . 63
5.5.3 Focal Loss for Binary Pixelwise Classification 65
5.5.4 Threshold Behavioral Analysis . 66
5.5.5 Data Augmentation . 66
5.5.6 Visualized Extractions . 67

5.6 Experiments with HGNet . 69
5.6.1 Grid Dimensions . 69
5.6.2 Focal Loss Analysis . 70
5.6.3 Data Augmentation Factor Analysis . 72

5.7 Segmentation Speed Analysis . 73
5.8 Summary . 73

6 Conclusions and Future Work 75
6.1 Main Contributions . 75
6.2 Final Remarks . 76
6.3 Future Work . 77

References 79

A YOLO Architecture and Processing Breakdown 85
A.1 Version 1 Full Architecture . 85
A.2 Darknet-19 and Darknet-53 . 86
A.3 Training Evolution . 87

x

CONTENTS

B HGNet Training Observations 89
B.1 Evolution Over Epochs . 89
B.2 Training Processes . 91

B.2.1 Grid Dimensions Tuning . 91
B.2.2 Threshold Tuning . 91
B.2.3 α Tuning . 92
B.2.4 γ Tuning . 92
B.2.5 Augmentation Factor Tuning . 93

xi

CONTENTS

xii

List of Figures

2.1 From the Rich feature hierarchies for accurate object detection and semantic seg-
mentation paper, R-CNN detection pipeline. 10

2.2 From the You Only Look Once: Unified, Real-Time Object Detection paper, YOLO
detection pipeline. 20

3.1 Sensors used by KITTI’s team to collect the data. 29
3.2 RGB camera image capture pipeline. Adapted from Digital Camera World’s arti-

cle Cheat Sheet: how your digital camera turns captured light into an image. . . 29
3.3 Examples of different white balances. 30
3.4 Effects of focus changes. 30
3.5 Effects of ISO regulation. 31
3.6 LiDAR data collection process example. 32
3.7 Some limitations of the LiDAR sensors. 33
3.8 Relationship between object recognition, detection and identification. 37
3.9 Binary classification metric analysis breakdown. 40
3.10 Recall and precision in a binary classification scenario. 40
3.11 Recall and precision in a bounding box regression scenario. 41
3.12 Intersection of union for bounding box regression. 42

4.1 Statistics on the KITTI raw data. 44
4.2 Statistics on the KITTI object dataset. 45
4.3 Pipeline for the experimental process with sensory data. 46
4.4 YOLO version 3 detection outcome on a painting of cars. 49
4.5 YOLO version 3 on the KITTI dataset for lane detection. 50
4.6 Precision recall curves for the raw training dataset experiment over the three de-

tected classes. 52
4.7 Precision recall curves for the object training dataset experiment over the three

detected classes. 53

5.1 Frustum and normalized coordinates axis change. 58
5.2 Color map of a height grid in a frustum with the respective pixels belonging to the

object. 60
5.3 Some examples of labeled images with filled bounding boxes from the evaluation

dataset. 62
5.4 The HGNet architecture breakdown. 64
5.5 Detail on the convolutional chain found at each feature map dimensional level of

the contraction path. 64
5.6 HGNet expansion path overview. 65

xiii

LIST OF FIGURES

5.7 Reversion techniques for data augmentation. (a) Original labeled grid. (b) Hori-
zontally inverted labeled grid. (c) Vertically inverted labeled grid. (d) Vertical and
horizontally inverted labeled grid. 67

5.8 Model’s prediction through epochs on an image from the validation set with the
input grid and ground truth label showcased on the upper left corner. 68

5.9 Precision and recall plots through different α values. 71
5.10 Segmentation time per number of frustum over several grid dimensions. 74

A.1 YOLO version 1 full architecture breakdown. 85
A.2 Darknet-19 architecture. 86
A.3 Darknet-53 architecture. 86
A.4 Darknet-19 and Darknet-53 architectures. 86
A.5 YOLO training loss evolution chart. 87

B.1 Model’s prediction through epochs on an image from the validation set with the
input grid and ground truth label showcased on the upper left corner. 89

B.2 Model’s prediction through epochs on another image from the validation set with
the input grid and ground truth label showcased on the upper left corner. 90

B.3 Training loss and evaluation loss plots for several resolutions of the HGNet. . . . 91
B.4 Training loss and evaluation loss plots from the HGNet threshold tuning experiments. 91
B.5 Training loss and evaluation loss plots over different α values. 92
B.6 Plots of the training and validation loss originated with different γ parameters on

the loss function. 92
B.7 Plots of the training and validation loss obtained with different augmentation factors. 93

xiv

List of Tables

3.1 Sensory setup of the test vehicle from KITTI’s dataset project. 28
3.2 Constraints of the RGB Camera and the LiDAR. 34
3.3 Information that can be extracted by both sensors and some applications. 35

4.1 Network resolution variation results on the raw dataset. 47
4.2 Anchor study on the raw dataset. 47
4.3 Random resolution training and its effects on the raw dataset. 48
4.4 Grayscale evaluation results on the raw grayscale dataset. 48
4.5 Comparison of the best configurations laid out by version. 49
4.6 Best performing hyper parameters. 51
4.7 Average precision by class for the raw training dataset experiment. 51
4.8 Comparison of results obtained on the object dataset using the YOLO version 3. . 52
4.9 KITTI benchmark top models for each category on the Car class. 54
4.10 KITTI benchmark top models for each category on the Pedestrian class. 54
4.11 KITTI benchmark top models for each category on the Cyclist class. 55
4.12 YOLO evaluation on the KITTI Vision Object Detection Benchmark. 55

5.1 Results obtained through threshold variation. 66
5.2 Recall and precision obtained through different grid dimensions with pixelwise

object labels. 69
5.3 Recall and precision through different dimensions with filled box labeling style. . 70
5.4 Results of precision and recall with the variation of the α parameter. 71
5.5 Results obtained in precision and recall through variations on the γ factor. 72
5.6 Results obtained with different augmentation factors. 72

xv

LIST OF TABLES

xvi

Abbreviations and Acronyms

2D 2 Dimensional
3D 3 Dimensional
BEV Bird’s Eye View
CE Cross Entropy
CNN Convolutional Neural Network
FCNN Fully Convolutional Neural Network
FEUP Faculdade de Engenharia da Universidade do Porto
FFNN Feed Forward Neural Network
FL Focal Loss
FOV Field Of View
FPN Feature Pyramid Network
FR-CNN Fast Region Based Convolutional Neural Network
HGNet Height Grid Network
IoU Intersection of Union
LiDAR Light Detection And Ranging
mAP Mean Average Precision
R-CNN Region Based Convolutional Neural Network
YOLO You Only Look Once
YOLO9000 You Only Look Once 9000 Class Prediction

xvii

Chapter 1

Introduction

It has been a long lasting dream throughout generations of scientists and engineers dedicated to

the transportation market to develop technology that would allow vehicles to confidently navigate

all kinds of roads in an independent manner. In order to make this dream come true, many teams

filled with talented people from all around the world have gathered to study and perfect such a

mythic technology. However, even with so much investment, there are still many challenges that

have yet to be solved. The setting of autonomous driving poses as a natural hurdle since the current

machines do not have yet the sense to compute many types of operations that humans do naturally

and the sensibility to make decisions with the necessary trustable degree.

Autonomous driving is described as the process of navigation of unmanned vehicles through

the detection of surroundings that allow the system to make intelligent decisions. The first step

in the automation of vehicles is then giving computers the ability to constantly understand the

environment around itself in the most accurate and speedy way possible. In fact, one of the first

and biggest challenges of autonomous driving is the recognition of objects around the vehicle

so as to allow it to make the decisions necessary to take passengers in between their destinations.

Although many studies have become successful in achieving this task with a somewhat satisfactory

degree of confidence, it was not until the development and discovery of neural networks and deep

learning that the task of object recognition gained its momentum towards the integration in real

world vehicles. Framed in this setting, this work then focuses on the exploration of existent and

new techniques for object detection or operations supporting it. In order to ascertain how this

science can become a decisive factor in the steps towards the automated driving industry’s dream,

all methodologies that were created or worked with are thoroughly experimented on in order to

better predict and understand their behaviour in possible world like situations.

Aside from the core issue at hand, no matter the methods used in the autonomous driving

environment recognition, there is no approach that does not rely on the use of hardware support in

order to gather the sensory information from the vehicle’s outward system. On this topic as well,

many sensors in a wide range of areas have been made use of in order to support the intricate task.

1

Introduction

Through the mixed use of RGB cameras and LiDAR, object detection methodologies are explored

both in the sense of combining both sensory input data or single-handedly leveraging either. A

comparison of their own intrinsic shortcomings is ensued in order to ensure a correct inference on

the models’ accuracy. Furthermore, it is also interesting to observe what types of information can

be extracted for each object on each representation.

In order to achieve a working flow for an autonomous vehicle a pipeline for fusion of detec-

tion outputs on camera and LiDAR is proposed. Specifically on this pipeline, implementation is

focused on each individual path. On the topic of RGB camera based detection, the YOLO model

is assessed and explored on the KITTI Vision Benchmark through the testing of many fold config-

urations and hyper parameters. Results are then thoroughly reported. Furthermore, on the LiDAR

based detection, a network is proposed for segmentation of object areas in frustum.

This work aims to unfold itself as an exploratory project. Testing new approaches is not always

completely successful and for progress to happen many others have to fail and ascertain which

paths must be closed and which paths we must press on through. On this sense, the implementation

relies on the report of a bundle of experiments, whether they showcased proficient results or not

so as to underline topics that would be promising in future research efforts. There are still many

unknown variables and intricacies on the process of object detection. Exploring the unknown may

bring new perspectives to the table, inspiring future works that gain a new direction and bring out

great results.

Through out the present work, one can sense a natural flow that starts with an overview of the

techniques that are being used for object detection on the current research works. Following the

state-of-the-art, the theoretical foundations are described, providing an overview of the specific

models and deep learning techniques that will be discussed later so as to provide the reader with a

succinct notion of the concepts in play. Chapter 3 reflects on the methods of operation, shortcom-

ings and applications for the sensors in question. The objective is to bring forward the concept

of sensory perception. The referred chapter also presents a more theoretical and driven problem

formulation on object detection and their constraints. Implementation remarks are then ensued,

starting from the pipeline towards the explanation of the tested experiments and their scopes of

operation. Finally, all conclusions are drawn, the future paths for research are delineated and the

document comes to its closing.

1.1 Context

The present work was developed at Bosch Car Multimedia S.A., rightly framed in their starting

project of advancement of processing and object identification techniques for autonomous and

assisted driving systems.

Bosch Car Multimedia S.A. is a filial branch of Group Bosch which has a huge presence in

several wide ranging markets such as home appliances, security systems and mobility solutions.

The mission of Bosch Car Multimedia S.A. is to provide intelligent solutions in areas integrated

in driving systems as broad as entertainment, communication and driving assistance.

2

Introduction

Bosch Car Multimedia has always aimed at shaping the vehicles of tomorrow and this project

comes associated with the ever standing wish to ensure safety on the road. Bringing the perceptive

vehicle to life would be the greatest step forward for the automobile industry.

1.2 Motivation and Objectives

Autonomous driving is, as mentioned before, a huge dream that humanity wishes to achieve in

the future. However, the issue is rather problematic, intricate and complex and this is reflected by

the many challenges still faced by scientists and engineers in the area alike. One of the biggest

monsters in the way is the fact that every method applied on these systems needs to be absolutely

fault proof. Critical settings such as this one require a yet to reach level of confidence on computa-

tions so as to guarantee the safety of the passengers at all times. This means that not only do these

methodologies for autonomous driving need to be 100% accurate, they need to be faster than real

life threatening situations. Characteristics such as portability, lightness and performance have as

much importance as the results outputted by the software.

Even more challenging than the technological and scientific angles of autonomous driving

remains the work to be done on a social level. No technology can be successful may it not be

accepted and understood by society. A critical system such as a self driving car is still a step

too grand in the minds of many and its possibility of failure remains one shadow overbearing the

confidence that possible users may express towards the system.

As far as autonomous driving goes, the impacts that such an innovation can bring to society

are far reaching and their relevance speaks for itself. First of all, these types of vehicles can

help reduce accidents and decrease traffic which leads to safer roads for both pedestrians and

other vehicles alike. Moreover, these systems can have a great impact on the fuel and energetic

consumption, bringing sustainability one step further for these transportation systems. Besides

this, autonomous vehicles can be a decisive factor to improve the life quality of motor impaired

drivers which have high difficulties in driving by themselves. On a general plane, advancing

autonomous driving can definitively have a major impact on people’s lives and thus these impacts

are the first motivators for the present work.

On another plane, there is also value to be found on the fact that this project can provide a

platform for future exploration of the use of deep learning in the several possible settings of the

phases of object recognition. It aims to be a step towards filling the void still present on the issue

and to show both researchers and clients alike that a self sufficient driving system can be a reality

without fear or consequence.

Specifically on the topic of object detection, the applications of a reliable software capable of

understanding its environment is much larger than that of autonomous driving. Advancements on

this field can bring about incredible potential products that range from daily life uses to compli-

cated security systems. In general, object detection is motivated by its many unfolding applications

and by the impact it could possibly have on the lives of the future.

3

Introduction

The main line of objectives is lead by the exploration of techniques for object identification

both in camera and LiDAR sensor settings as well as the combination of information obtained

from both. Furthermore, this work pretends to be a platform for more research in the sense of

exploration of new methodologies and perspectives that may lead to the finding of complete, final

solutions to these issues.

1.3 Document Structure

The remaining of this work comprises 5 more chapters. Their explicit content is summarized

below.

Chapter 2 The state of the art in object detection techniques is explored both on the two and three

dimensional planes. Some related works in the area of both general purpose and autonomous

driving specific methodologies for object finding are thoroughly explained. Theoretical

foundations are laid out so that the reader is informed on the models that were put to use or

even inspired some implementation paths that are described on the following chapters.

Chapter 3 Sensory perception is explained alongside with the setup of the platform for data col-

lection employed by KITTI’s team. RGB camera and LiDAR sensors follow, shining light

on their methods of operation and a discussion of their applicability on autonomous driv-

ing scenarios. Furthermore, a comparison is ensued which intends to clarify each sensor’s

strengths and weaknesses. The issue of object detection is then thoroughly explored in the

sense of autonomous driving through the found constraints, obstacles and some evaluation

metrics to testify for the methods accuracy.

Chapter 4 Some statistics on the datasets are presented. A pipeline is built for joining camera

and LiDAR based information that would be extracted separately. It is shown how these

sensors, together, can lead to the regression of 3D bounding boxes. The YOLO model is

experimented on, following an incremental process that intends to uncover its applicability

value on the issue at hand. The end results are then discussed on the benchmark environment

so as to provide a comparison point with literature.

Chapter 5 LiDAR based object detection experimentation is described. A search space reduction

technique called frustum is adapted from [QLW+17]. A representation based on bird’s eye

view elevation images is then laid out. Furthermore, a network, the HGNet, is proposed

for LiDAR object area segmentation on this height grid representation. Starting from its

architecture, data augmentation processes and visualized extractions, some experiments are

carried out in order to better understand the network’s effectiveness. Besides this, a loss

function based off of the focal loss is explored.

Conclusion 6 A summary of all the work serves the purpose of enlightening the reader on what

was built. A critical analysis of the methodologies employed is then carried out, showcasing

4

Introduction

both the strengths and weaknesses of the work achieved. Building up from what was found

to be lacking, directions for improvement are identified. Purposely following that, new paths

for possible research are also delineated.

5

Introduction

6

Chapter 2

Deep Learning and the Problematic of
Object Detection

The extraction of object shapes and identification from several types of input data such as camera

images, laser and LiDAR point clouds is an issue that has gained its relevance and momentum

from the turn of the century. Older methodologies that surfaced when the issue of object detection

started to gain relevance relied on the possibility of recognition of object’s geometrical features.

Progressive thinking believes that there is much more to extract than the standard geometry intri-

cacies when doing object recognition. On this topic, it is stated in recent works that objects can

have an hierarchical relationship, for example, some objects may be placed inside, on top or under

other objects. Extracting these relationships becomes then important in order to completely have

machines understand the involving environment. Furthermore, a whole object can have in itself

a panoply of colors, textures and combination of shapes which complicate the process even more

since discerning in between these characteristics does not always signify discerning objects.

As one can see, the issue of object detection is far more complex and wide in application than

it seems at first sight. For this reason, it is important to dive into the work that has been carried out

so far in the area. Understanding what is behind us is the key to creating relevant innovation.

2.1 Automated Object Detection

The issue at hand - object detection - has been a constant topic addressed in literature due to its

complexity and still current lack of reliability at the level necessary for autonomous driving. The

methodologies adopted all over the literature in early years seemed to shift towards the mentality

that 2 dimensional data is easier to process. Hereby, many algorithms surfaced on the area of

image processing and recognition. At the same time, the recognition of objects in LiDAR was

also carried out through 2D based representations, such as [QCS+16], being more often than not

abstracted to 2 dimensional settings. An example of this behaviour can be found in [Mel15] in

7

Deep Learning and the Problematic of Object Detection

which the author first projects the 3D data into a 2D setting, uses a region based convolutional

neural network to detect objects and exports the results back to a 3D environment.

Overall, for both sensors, the approaches taken can be segmented into two major groups: data

segmentation with geometrical based extracted features or unsupervised learning of the features to

observe from the data itself.

The first type of techniques hope to extract by hand sort of geometrically based features that

represent the objects. They rely either on the recognition of line segments, circles or other basic

kinds of shapes. All the approaches that fall on this type have the basis that in order to separate

the objects on the scene, their basic forms have to be considered.

Even with all the advancement, even if camera exploration has been done much more widely,

object detection on either of them is not yet considered as solved. Specially in a three dimensional

setting, the interpretation and use of effective methods is still poorly explored. The fact that

these models need to be fast and accurate all at the same time contributes to the difficulty of the

achievement of a whole solution.

Since understanding what has already been done is the key to producing newer, effective

methodologies, the work on the field is summarized through the following sections.

2.1.1 Camera Detection

As a general issue, camera based object detection has suffered many advancements already and

is currently enjoying its greatest times as the accuracy of the methods discovered hits the roof.

Since much work is available on the area, the divisions below aim at giving a general idea of what

researchers are applying on this field to achieve such great accuracy levels.

Starting from primal algorithms that extracted features by hand from images, the field of cam-

era based detection has come a long way. In fact, in the beginning, the methodologies struggled to

find the best features to extract manually, having a bundle of authors released many different views

on the subject. Whilst some believed that shapes were the most important features, others relied

on textures and color if available. However, it was fast understood that objects might be occluded

and thus shapes can be twisted or destroyed in the uniform sense. More than this, texture often

occurs differently on several places of the object alongside with color being absolutely variable

even on standard, equal objects. These hand by hand extractions were not enough and the field did

not get a boost until the real applications of convolutional neural networks were discovered.

At the start of it all was the AlexNet [KSH12], a deep convolutional neural network that

showcased impressive results on the ImageNet Large-Scale Visual Recognition Challenge never

seen before with the use of CNN. This starting architecture was simple in design, featuring simply

5 convolutional layers alongside with 3 fully connected layers. However, it was the start of the

reign of the deep convolutional networks on the field. Inspired by Alex Krizhevsky et al.’s efforts,

the millions of works that would come after brought incredible progress, leaving AlexNet’s mark

on the field forever.

From the bundle of projects that would come forward, there are some that have played a more

relevant part on the issue at hand. For example, the ZF Net [ZF14], which came out shortly

8

Deep Learning and the Problematic of Object Detection

after, showcased how to optimize AlexNet even further towards higher accuracy performance.

Besides, it had a great impact on the way convolutional networks were perceived and analyzed.

Another important piece of the contributions made by Zeiler et al. [ZF14] was the introduction of

deconvolution. A deconvolution is usually described as a path back to the image pixels and was

mostly used in order to understand which images created which feature maps.

Another milestone on the computer vision scenario was the VGG Net [SZ14]. The introduction

that most shocked the community on this paper was the combination of great results with a general

simplicity on the convolutions applied. In fact, the architecture of this network always made use

of 3x3 filters with stride 1 alongside with 2x2 max pooling layers with stride 2. Even though the

use of these sizes for filters and strides are common currently, before VGG Net they were seldom

recurred to. And yet, nowadays, models like YOLO [RFA18] still make use of these simple

concepts.

Moving even more forward, building up from AlexNet and what followed, deep learning was

established as the way to go for object detection. Influenced by so, the evolution on the field

of generally referred to as two dimensional object detection has been characterized by two main

different approaches. These methodologies seem to divide themselves into two stage detectors,

which seem to prime in accuracy and the one stage detectors which are usually the fastest.

The concept of two stage detectors really kicked off with the surface of the R-CNN [GDDM14]

model. What this model had in accuracy, it did not have in detection speed which invalidated it

for such scenarios as autonomous transportation systems. In fact, the original system took over

40 seconds to perform detection on a single image. Over the years, many updates were proposed

namely the Fast R-CNN [Gir15], the Faster R-CNN [RHGS17] and most currently the Mask R-

CNN [HGDG17] which specializes in object instance segmentation. Lenc et al. even proposed

R-CNN minus r [LV15] which used static bounding box proposals instead of the selective search

[UVGS13]. Furthermore, through further improvements made on R-CNN, specifically from Faster

R-CNN [RHGS17], the selective search [UVGS13] ended up being substituted for a fully qual-

ified region proposal neural network. Selective search proposals were estimated to take around

2 seconds per image which invalidates its application on a real time scenario. Incrementally, the

updates that the model suffered unified the network, reducing the strenuous process of having to

train or tune independently the feature extraction convolutional neural network, the box scoring

SVM, the bounding box adjustment linear model and the non-max suppression step. Unifying this

pipeline meant the network became much faster.

At its core, the R-CNN [GDDM14] intends to divide the process of object finding and clas-

sification into two different pipelines. The first pipeline, as seen from steps 1-2 on figure 2.1,

is focused on proposing regions of interest on which is probable to find objects. This starting

process has suffered many increments over the years as it has been previously mentioned. Fol-

lowing that, on the regions of interest, CNN are applied in order to extract object related features,

discern whether there is truly something recognizable there and then classification into a group is

made. Like all object detectors, the R-CNN includes previous training on the ImageNet [RDS+15]

9

Deep Learning and the Problematic of Object Detection

Figure 2.1: From the Rich feature hierarchies for accurate object detection and semantic segmen-
tation [GDDM14] paper, R-CNN detection pipeline.

dataset. The ImageNet dataset was truly a remarkable advancement for all flat image based pro-

cessing tasks like object detection and much more similar or related fields.

In order to provide a more in depth insight into the R-CNN and due to its importance to the

field, the following paragraphs will dwell on its internal workings through the updates.

R-CNN uses a region proposal network to achieve the already referred to as the first step. The

region proposal network works with sliding windows that run spatially on the features extracted

through convolution. Using this process, anchor boxes are built with varied sizes. Each anchor is

then sorted with a value which is the output of the following formula:

p∗=

1, IoU > 0.7

−1, IoU < 0.3

0, otherwise

(2.1)

The value of IoU represents the relation between the anchors proposed and the true boxes and

is calculated through the following equation:

IoU =
anchor∩box
anchor∪box

(2.2)

Using then a regression tool, the coordinates for the regions are proposed using the p∗ values

that were obtained on each of the anchors.

Since selective search could propose the most probable region locations, this output was then

parametrized and flattened in order to be fed to a convolutional neural network that extracts the

prominent features for the regions. The feature vectors serve as an input to SVM classifiers which

discern the object type and labeling. Besides this, the R-CNN proposed in [GDDM14] also con-

siders the effectiveness of drawing a box per object and improve this process through the feeding

of the feature vector to a bounding box regressor that obtains the most accurate coordinates to

bound the object in question.

As the final step, redundancy is considered and avoided through the identification and suppres-

sion of bounding boxes that overlap by a certain desired tunable limit.

10

Deep Learning and the Problematic of Object Detection

As it has been previously stated, this architecture revealed outstanding results in accuracy.

However, the running time reported to process, identify and classify all objects within a single

image was 53 seconds which is evidently impossible to apply in an autonomous driving context.

Furthermore, the model was so complex that it required expensive computations per image which

is another make or break factor in a vehicle in movement. Due to these reasons, several researchers

created variations of the algorithm proposed by Girshick et al. in order to tackle these specific

issues.

The first variation that would be impactful was named Fast R-CNN and it was a follow-up

work by Girshick (one of the authors of R-CNN), presented on the paper [Gir15]. The main topic

of improvement proposed was to share the convolutional layers to extract features for more than

one region at the same time. Moreover, it was declared that the region proposals could be done

after the features had already been extracted through convolution. This enabled the architecture to

have far better performance.

However, there was even more room for improvement and so several authors worked on im-

proving this type of network even more. This movement lead to the birth of the Faster R-CNNN

[RHGS17]. This network aimed to be faster and less computational expensive with only one

small detailed change from Fast R-CNN. On this approach, only the last feature maps extracted

from convolution were selectively searched for region boundaries. This effectively reduced the

necessary computations for selective search.

The work by Ren et al. [RHGS17] relies heavily on a region proposal network that selects

object locations from the image. They also implement a sharing system between full-image con-

volutional features and the detection network, which enables them to reach an almost cost-free

region proposal methodology. The R-CNN uses then these region proposals in order to detect the

objects in a straightforward method following up on what has been described previously.

Further than the great achievements in the field of object detection that the R-CNN brought,

its launch created a raised interest on unifying network’s pipelines under one compiled and more

simple training architecture. This was the sense of development followed through Fast R-CNN and

Faster R-CNN likewise. As well on the topic of unified architectures, the YOLO9000 paper [RF17]

even proposes a method for training a joint model for detection and classification simultaneously.

Even though these are not directly object detection related principles, they are methodologies that

can bring great effect when applied in those settings.

On the topic of one stage detection, the field was dominated by models such as SSD [LSZ+16]

and YOLO [RFA18] for quite some time. The SSD, Single Shot MultiBox Detector, relied on loos-

ing the feature re-sampling step and the evaluation of default boxes for feature maps of different

sizes. This model surpassed, at the time, its competitor YOLO version 1. Following SSD, Fu et al

proposed DSSD [FLR+17] which introduced feed forward modules with deconvolutional layers

which improved accuracy over the original model. However, the contribution did not seem to be

significant in terms of detection speed, having approximately equal and at some resolutions even

worse detection times than its predecessor.

Recently as well, Facebook’s FAIR proposed a novel network, the Retinanet which has been

11

Deep Learning and the Problematic of Object Detection

performing outstandingly well in both accuracy and speed. This network is inserted in that of 1

stage detectors, however, it uses a new balanced focal loss which reduces the impact of imbalance

between foreground and background classes on the data. The Retinanet detector’s backbone is

based on the feature pyramid network [LDG+17] which has established itself as a strong architec-

ture choice on the field of deep learning for object detection and convolutional related tasks. This

network uses an hierarchy of pyramidal features each merged and combined following a top-down

order. The existence of both lateral and top down connections in between feature maps enables

the network to be more accurate and fast at the same time.

2.1.2 Spatial Representations

The task of object recognition from point cloud data is a complex operation that has puzzled

researchers over the years. From the get to go, several challenges need to be considered on terms

of the collected data. In fact, LiDAR can become corrupted and confusing to interpret when objects

are overlapping from the perspective of the sensor. Furthermore, due to the beam reflection based

approach that this particular sensor uses, objects hidden behind other objects become impossible

to see or discern in the point cloud data. Many occurrences may lead to noisy datasets with

corrupted geometric features. The authors of [BSC12] have reflected upon this issue, pointing the

importance of selection and extraction of meaningful features from LiDAR data. They propose

several histogram descriptors that reflect the distribution of the points in order to guarantee a

successful analysis of the data. Several works have dangled on the possibility of fitting data with

statistical distributions and have been successful in doing so in a wide range of application areas.

Even more, some more issues might be spotted upon the operation of collecting the data. As

has been stated by several authors before, in particular in [MNG17], if data is collected in real

time, inconsistency may start to show in between frames. The authors also mention the difficulty

of analysis of geometrical shapes for when the sensor is in motion, the objects appear distorted due

to the changing position of the vehicle. Furthermore, when analyzing LiDAR data collected in real

time, some frames may have the same object represented in different angles. Instead of classifying

and recognizing this object again, it is more efficient to fuse this kind of data. Based on these facts,

the paper first presents a motion correction technique in order to cope with displacement errors.

This methodology suggests computing the timestamp of the initialization of each channel’s laser

beam output and using the resolution and duration of the scan to work out the transformation

matrix that will then be used to correct the point cloud measurements. Furthermore, a temporal

fusion in between frames which show the same objects in different positions and distortions is

proposed in order to make the point cloud more dense and allow for a more easy object filtering

operation.

Taking in mind such considerations, the procedure of processing LiDAR data into usable rep-

resentations is then an important step before the start of object detection concerns.

Before deep learning was revealed, the identification of objects was made in the most varied

approaches. Overall, the methods found in literature tried to represent the data in structures more

easily handled and in which objects could become more evident. These methods can be grouped

12

Deep Learning and the Problematic of Object Detection

mainly into parametric, clustering, occupancy grid and break points detection. Even though these

groups enclose the most widely known and applied techniques, several other approaches that un-

derstand geometrical considerations have also been explored.

Parametric methods consist of the identification of line segments or any kind of geometrical

shape such as circles or ellipses that can be fit to the points in analysis. Approaches such as this

tend to have a great performance in indoors environments since the objects are more geometrically

defined. However, in the outdoor setting, it becomes harder to discern shapes specially in objects

such as trees, bushes and all kind of plants. Some of the most well known methods that can be

fit into the parametric approach are the RANSAC (as presented by Martin A. Fischler and Robert

C. Bolles in [FB81]), split and merge (for example [TRC+]) and iterative end point fit (as in

[MYLX11]).

RANSAC has been a very impactful algorithm in a wide range of applications. As was pre-

sented at SRI International1 by Fischler et al., this method allows the estimation of the best model

parameters in an iterative way that has the higher probability of succeeding as the number of

iterations increases. The algorithm was first used in order to find a solution to the Location De-

termination Problem (LDP). The basic assumption of this approach is that inlier points can be

explained by certain parameters that follow a distribution. For this reason, the identification of

the inliers allowed RANSAC to be effective at recognizing object shapes such as lines and circles.

Since outliers were identified, the noise could also be removed from the input data.

Once researchers realized the potential of this techniques on other areas, it was applied to more

object detection related environments. As such, it was one of the first methodologies that had an

interesting approach at the issue.

Besides RANSAC, the split and merge approach was also proposed in order to segment scenes

and eventually to solve the issue of object recognition. This technique used in many works such

as [TRC+], [WT04] and [MYLX11] consists of dividing the scene into uniform parts based on

homogeneity. If the region is found not to be homogeneous, then it is split once more until the

condition is reached. Finally, similar regions are merged back together. This made it possible to

discern, specially in images, areas that presented similar traits and might have represented objects

in itself. However, having an homogeneous region does not necessarily mean that it is meaningful

as an object representation and since data can show different features all in the same object’s area,

this algorithm was best fitted to binary data and not so much sensor information obtained from

vehicles even though it has been widely applied in such settings. For example, the work by Teo et

al. [TRC+] uses split and merge as a tool to process LiDAR data. On this work, split and merge

is used specifically to identify the shapes of buildings.

On the other hand, clustering methodologies rely on the principle that the data points can

be grouped together and represent a certain object. This way, clustering algorithms are applied

in order to grasp the objects on the scene. However, as mentioned in [PJ17], clustering is also

a complex process which implicates the use of a function that expresses correctly distance in

between points and clusters. This is a known hard issue of clustering. Finding metric functions that

1SRI International is a research institute located in California that belongs to the Stanford University.

13

Deep Learning and the Problematic of Object Detection

express the real relationships of data in the real world and sometimes finding distance preserving

embeddings of these is not a trivial problem. In fact, sometimes, such functions do not exist at all.

Moreover, the constant queries needed for distance comparison can become an heavily expensive

operation which can not be fit for use in vehicles or applied in the contexts of autonomous driving.

Related to these methods, the authors of [KWB08] propose the use of not only the distance but

the angular disposition as well when building clusters. The work also presents a counter evasive

rule to avoid the high number of comparison queries. The use of the kd-trees structure also makes

the process more efficient as they are proved to be specialized in queries that are radially bounded.

This work reflects on the two types of clustering possible for this issue - hierarchy and partition.

Using the hierarchy method of clustering means finding levels of similarity in between objects

which are reflected using a dendogram. However, this approach is disregarded since in laser

data the relationships between objects are often irrelevant. For this reason, the proposed radially

bounded clustering focuses on partitioning the set of points.

On the topic of occupancy grids, there is a wide range of varied algorithms which have proved

their worth in many different applications of 3D data interpretation. The original concept is to

project 3D data points unto a 2 dimensional grid identifying cells with the parameters obtained

from the sensor (for example height). A connected components algorithm is then applied to iden-

tify the objects. This specific methodology using occupancy grids was introduced by Rubio et al.

in [RLR13]. However, connected components have also been used single handedly in order to

segment LiDAR data. Even though Rubio et al. present a novel method applicable to 2D LiDAR

data [RLR13], they nevertheless achieved scene segmentation using a variation of the algorithm

generally called one-pass connected components.

Much like the previous approaches, there are some limitations and dangers in the application

of such algorithms. On LiDAR data, the furthest the object is the less dense is its point cloud.

This is a threatening setting to the occupancy grids since it may lead to overfitting for points not

connected may belong to the same object in reality and be segmented as different items through the

algorithm. On the contrary, the closer the objects are to the sensor the more dense will be the final

point clouds which leads to an underfitting plane with several different objects being identified as

one item only. The adjustment of the size of the grid has a huge impact on its performance and

is one of the biggest hurdles to overcome when implementing such an approach. This is the main

reason why structures such as the quadtrees were created. Langerwisch et al. have even proposed

a new quadtree structure to support a new inverse laser scanner sensor in their work [LW13].

Techniques such as these have been widely implemented in the literature. Specifically in the

autonomous industry, a variation called Pyramid Grid Processing is introduced in [RLW+09] in-

cluded in a system that predicts the size, direction and speed of the movement of objects from

LiDAR data. This grid introduces the tracking of object velocity besides the standard occupa-

tion/free space cell information holding.

Besides this, another variation presented by Weiss et al. on the work [WSD07] proposed using

a grid of probabilities which were updated at each real time scan of the LiDAR sensor using the

Bayes Rule. These probabilities model the possibility of the cell being occupied or being free on

14

Deep Learning and the Problematic of Object Detection

the real data.

Occupancy grids can also be an invaluable asset as a preprocessing step before segmentation

of the point cloud into objects. This goes even for deep learning approaches. Some works explore

some segmentation with grids in order to remove the ground and back planes. An example of this

type of preprocessing can be found on the work of Börcs et al. [BNB17] in which LiDAR data is

processed.

Techniques associated with break points segmentation aim to discern different objects through

the detection of the spaces between the connections inside the data. Some authors have proposed

methods based on this principle as is the example of Zhang et al. in [ZATX03] who based their

implementation on the use of an Extended Kalman Filter. Further works on the principle estimate

the boundaries of the objects.

The authors of [MNG17] discuss another range of techniques - the tree based - as opposed to

the grid based which the occupancy grids, parametric methods and voxels are an example of. On

the mentioned work, two groups of segmentation based techniques are reported as the octree and

range tree.

Following the mention of voxels, the works [APPN16] and [BP16] are also an example of its

use in object detection. Moreover, mentioned below in more depth, voxelization is widely used as

an input data representation for neural networks.

Wang et al. reflects on the possibility of using structures such as octrees in order to success-

fully interpret LiDAR 3D data. Specifying on the possibility to grasp spacial features hidden in

the depth dimension of the third dimensionality, their work [WT04] presents a proposal for a vari-

ant split and merge algorithm which is based off uniquely on the octree. The pipeline of their

achievements describes a starting point with raw unprocessed LiDAR data becoming an output in

3D planes filled with conceptual information from the scene.

Even if these are the most widely known and popular methodologies that surfaced on the start

of the century, several researchers also appointed a variety of other possible approaches to the

issue in question. On this area, the work of Magnier et al. in [MGG17] presents an unseen method

which relies on the belief theory to merge criteria of the several features and predict the objects

in the scene using a voting strategy. On this proposed algorithm even classification is carried on

using the belief system and the fusion of all the collected beliefs with their confidence degree

which are processed using a Kalman Filter.

On the use of varied techniques, [HL09] achieve a real time classification system making

use of point feature histograms. On their approach, point cloud is segmented in two and a half

occupancy grids. This is also an example of the use of occupancy grids as a processing tool.

2.1.3 LiDAR Detection

Even if these image based methodologies have a long history and a curriculum of successes in

various applications, as 3D dimensional data started to be easily accessible with various types of

sensors within vehicles, the focus of research shifted towards the three dimensional space, even if

keeping the inspiration from the discoveries made on the 2D field.

15

Deep Learning and the Problematic of Object Detection

An example of such adaptations and based mostly off of the R-CNN, some authors adjusted

that same network towards a more three dimensional oriented setting. Based on this concept, a

Faster R-CNN was employed to process LiDAR data and recognize objects in the work of TJ

Melanson [Mel15].

Mostly even recently, all data segmentation is still interpreted as a two dimensional problem.

The status of the literature up until very recently was solely to represent or transform 3D data into

two dimensional representations in which the issue was solved, being the results extracted once

again to the three dimensional spaces. On this regard, one of the biggest recent evolution steps

taken on the field was the creation of PointNet. The work by Qi et al. [RQSMJG17] describes a

neural network capable of completing scene parsing, object segmentation and classification using

only raw, unordered point data. This methodology surpassed the previous state of the art accuracy

for object detection in 3D data.

The basis idea behind this network is that the points in the cloud should be processed as

unordered bundles on the network. This means that even if objects are rotated on the scene, they

are still the same object to our network. In fact, it simply means that if the point cloud is considered

as a set, then the network needs to be independent of any permutation of the set. This translates

itself on a mathematical expression, presented in 2.3, that reflects the property of symmetry.

f (x1, ...,xn)≡ f (xπ1 , ...,xπn), xi ∈ RD (2.3)

The authors of PointNet realized then that the issue they had to tackle was to create a fam-

ily of symmetric functions that could produce the same result to any permutation of the set of

points as input. From these steps, they built a network which on a baseline transforms points into

embeddings followed by a simple symmetric function which gives the output classification. The

symmetric function that was reported to be the most effective was the maximum pooling function.

Simply put, this network only embeds 3D unordered data into feature maps (data is segmented

and partitioned) and then applies a maximum function on them for classification. Remarkably,

this architecture was able to beat the state-of-the-art results for object detection using 3D data and

is a huge remark that shows how the representation of data can be done differently through a more

interesting and result achieving setting. Before PointNet the issue was interpreted as an identifi-

cation of coordinates for bounding boxes. With PointNet, labeling is done for each point in the

cloud which eventually reaches an entirely semantic segmentation of the space that had seldom

been considered previously.

Overall, PointNet is a flexible network which can perform all three operations of scene seman-

tic parsing (in which all objects in the scene are identified), object part identification (in which

specific objects are divided in their own composing parts) and object classification (the objects

are labeled from a wide range of classes). The fact that such a simple architecture can tackle so

many problems with high effectiveness using only raw unordered, unprocessed 3D data proves

that the investigation in the area is taking the right steps towards a system that can achieve this

task reliably.

16

Deep Learning and the Problematic of Object Detection

The pipeline of the classification network is as follows: first the points are transformed a

couple of times by passing through one independent network which is called T-Net. This network

has a similar architecture as the one previously explained, using max pooling and a multi-layer

perceptron in order to apply transformations on the input cloud points. After the transformations

are done, a perceptron extracts features from the processed point clouds. Max pooling is then

applied in order to obtain the global features for the cloud. Finally, another perceptron outputs

classification probabilities for the k possible classes using the global features.

In order to segment the scene, a few more steps are employed. Since segmenting the whole

point cloud needs the reflection upon several different features that are both local (to each point)

and global (to the whole scene), the segmentation network extracts the local point features through

two perceptron layers with shared weights and joins them with the global ones obtained through

the classification network. The output has then the size of nxm which represents both the points

and objects dimensions.

On a recent paper, Charles Qi et al. have launched a variant network, the Frustum PointNet

[QLW+17]. On this work, a pipeline is proposed for the use of camera based detectors for search

space reduction on RGB-D data.

A camera detector then feeds bounding boxes coordinates on 2D space alongside with a classi-

fication label. These flat coordinates are projected into the three dimensional space and a frustum

is removed from the pointcloud. A dataset built from frustum areas is then fed to a segmentation

PointNet followed by a residual center T-Net and a final amodal 3D box estimation network. This

methodology still holds the podium on most categories of the KITTI benchmark for 2D and 3D

object detection. One great achievement of this model is the several axis modifications suffered

inside the frustum coordinates which make the data non sensible to rotations. Another one is the

introduction of a corner loss which makes use of both the center and the bounding box coordinates

together since they are naturally related on spatial environments.

Taking as ground work the region proposal network [GDDM14] and the PointNet method-

ology [RQSMJG17], some Apple researchers took it upon them to improve even further such

techniques and present on their paper [ZT17] a network which they called VoxelNet. Much like

PointNet, VoxelNet also works with raw, 3D data that serves as input to a feature learning network.

This first network divides the space in voxels and then extracts the points belonging to those vox-

els into vectors with shape related information. Following this process, convolutional layers are

added on top in order to aggregate the respective context of the working space. Finally, the region

proposal network propose bounding boxes for all objects that have been found from the data.

Voxel representations have been widely used in deep learning approaches to 3D object detec-

tion. Voxels are grids that represent a three dimensional space and are specially oriented towards

the representation of heterogeneous models. The grids of voxels may save a wide range of in-

formation such as color or height. These have been widely used in several applications and are

specifically popular in the game graphics business.

Using convolutional networks, specifically, voxels are the most preferred representations to

extract the 3D information for the network. Several works such as [MS15] and [JS16] have made

17

Deep Learning and the Problematic of Object Detection

use of the voxelized representation for object detection and classification with convolutional neural

networks.

Also making use of the CNN, several laserscanner based methodologies have worked on

widely ranging, area specific issues inside object detection and autonomous driving. For example,

[MET17], a paper by Matti et al. adapted the region proposal network [GDDM14] to specific

pedestrian detection with a 4-layer sparse laser sensor on the KITTI dataset2. Many other works

have their attention on the use of convolutional neural network for urban areas specially for pedes-

trian detection. The work [SSJ06] is one of the oldest applications of these techniques.

Even more broadly on the topic of object detection for autonomous driving, convolutional net-

works have also been widely employed and experimented on. The work by Lange et al. [LUG16]

describes the use of a standard convolutional neural network on 2D image based data. They

compared several net topologies and concluded the best to be the following architecture: four

convolutional layers with relu activation followed by max pooling (pooling layers include normal-

ization afterwards), three fully connected layers with dropout in between and the use of gropping.

The several topologies studied showed rather discerning outcomes which proved the impact that

architectural design had on the use of these types of networks.

Li [Li16] also presents a possible approach for convolutional neural networks in which two

output maps are described. On his fully convolutional network the activation chosen is the relu.

The output maps, called objectness map and bounding box map, have the function of returning

whether a region belongs to an object and the specific coordinates of the bounding box, respec-

tively. The author points out the slower performance, consequence of executing 3D convolution

when compared to the same operation in 2D. Following this issue, on another work, Li et al. pro-

pose the use of a 2D fully convolutional network to perform the tasks of bounding box and class

label prediction simultaneously [LZX16] for 3D data. The network follows much the same struc-

ture, doing 3 different convolutions followed by deconvolutional layers which lead to the output

of both maps.

Another CNN implementation for object detection in 3D LiDAR data, more specifically on

the KITTI dataset, is the work by Asvadi et al. [AGP+17]. The particularity of this paper is the

reporting of the effects of data augmentation on the effectiveness of the network. The authors

revealed an impactful improvement in performance when using such a technique to expand the

training set.

2.1.4 Camera and LiDAR Fusion

Some authors like Oh et al. [OK17] have relied on using the fusion of the classification outputs

obtained both on 3D LiDAR data and camera based approaches with convolutional layers. They

also introduce region of interest pooling on each convolutional layer grouping together both color

and semantic features.

2The KITTI Vision Benchmark Suite has datasets for 3D object detection available at http://www.cvlibs.
net/datasets/kitti/eval_object.php?obj_benchmark=3d

18

http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d

Deep Learning and the Problematic of Object Detection

Other kind of works have tried to tie the distance in between the 2D and 3D convolution. Liu

et al. have proposed a volumetric spatial transformer network in order to do so in their work

[LSZ+16]. The basic concept is to extract the depth information after doing a 3D convolution on

a volumetric grid. The azimuth and polar angles are then used in order to extract the necessary

depth information which leads to a use of the representation of the projection of the object on that

surface. This is achieved with the help of a dense layer which computes the loss gradients of the

depth representation (θ ,ρ), azimuth and polar angles, with the standard back propagation method

used in feed forward networks. Using the extracted features, finally, the 2D convolution is applied

once again resulting in the outputting classification probabilities for all 40 considered classes. The

activation used at the end is the soft-max loss.

Convolution seems to be the preferred methodology for object detection. However, some few

works have reflected upon the use of recurrent neural networks for the task at hand. These types

of works are specially directed towards an real time setting having the data being analyzed frame

by frame as the sensor collects the data online.

On this purpose, the work of Prokhorov [Pro09] reflects exactly on the use of a recurrent neural

network for real time laser data scanning. Having the data being inputted in a sequence allows the

network to grasp the information in a temporal order. On this work, the problem is interpreted as

having two classes only. This way, even if rarely, neural networks are employed for other tasks of

object detection. These types of networks have been proved to be able to handle both sensory data

in a real time approach. The studies of their applications have been moving towards that specific

perspective.

2.2 Theoretical Foundations

Some models were toyed with specifically on the implementation so this section intends to en-

lighten the reader fully on the theoretical concepts behind those particular approaches.

2.2.1 You Only Look Once

The You Only Look Once model looks at the full image once. This was the original premise and

with this, YOLO was able to efficiently extract context from the whole consumed image, joining

both the global features and each object’s specific characteristics. Taken from its original paper

[RDGF16], image 2.2 shows the pipeline proposed initially for object detection. This model is a

general purpose object recognition tool for color and grayscale images standardly.

As one can denote in Figure 2.2, the pipeline starts from the division of the image into an SxS

grid. Each cell will then predict B bounding boxes along with a confidence score for each of them.

A box confidence is evaluated over the multiple classes conditional probabilities and the overall

intersection over union of the predicted box with the ground truth one. All classes are predicted

at the same time for the whole image and that is the premise that makes the model as fast as it

has always been. The resulting tensor encodes both the number of grids, the number of classes to

classify and the number of bounding boxes that each cell predicts.

19

Deep Learning and the Problematic of Object Detection

Figure 2.2: From the You Only Look Once: Unified, Real-Time Object Detection[RDGF16] paper,
YOLO detection pipeline.

A cell on the grid is responsible for a detection and classification if the object’s centre is found

within it. A bounding box is then represented by 5 different variables: (x,y) is the tuple that

represents the centre coordinates of the box, the (w,h) contain the width and height of the box

according to the image proportion and a confidence value that the box contains the object. As

such, the loss function is modelled over these 5 parameters, being a combination of the sum of

squared errors with some characteristics added in order to balance errors in large or small boxes

and distinguish between classification and localization mistakes. The full network architecture

breakdown is described fully on annex A.1.

The whole YOLO model is implemented using the Darknet framework [Red16] and its clas-

sifier was previously trained on Imagenet [RDS+15]. The architecture is quite simple, being a

standard convolutional network with 24 layers followed by 2 fully connected layers. Non maxi-

mum suppression is also used in order to eliminate duplicated boxes. For a specific breakdown of

darknet’s architecture, refer to annex A.2.

Just like any other model, YOLO has its strengths and weaknesses. The incremental work

done with the updates was in the sense of reducing the handicaps and augment even more the

existent strengths. The most flagrant obstacle to tackle is the reduction of the sources of error from

wrong localization. In a comparison in between Fast R-CNN and YOLO, Redmon et al. reported

that whilst their network makes much less false positive classifications coming from background

image areas, it looses most of its mAP on localization errors. Moreover, detection of small objects

specially grouped together has been a great challenge to overcome.

2.2.2 YOLO Version 2

The 2016 paper [RF17] introduced the second incremental version of the model alongside a

joint training algorithm that enables training on both detection and classification data namely

YOLO9000.

20

Deep Learning and the Problematic of Object Detection

On the newest architecture, some changes were made which focused directly on the region

proposal setup, diminishing the number of location errors and the low recall achieved by its pre-

decessor. All the while, the objective was to always maintain the classifier’s accuracy. One direct

point of approach was the difficulty that the original YOLO model had with small objects.

The incremental approaches taken are described below.

Batch normalization Its application on all convolutional layers improved mAP and stabilized

the model. It also eliminated the need for dropout.

Higher resolution The classifier is tuned for 448x448 input resolution on ImageNet which helps

adjust the filters for higher resolutions on the detection step. Opposed to the initial model which

trained the classifier at a 224x224 resolution and used 448x448 for detection.

Anchors Inspired by Faster R-CNN’s offset prediction, anchor boxes are used. Network reso-

lution is reduced to 416x416 in order to have only one cell at the centre of the image. Higher

resolution output after the removal of one pooling layer.

Clustering Anchor priors are chosen through k−means clustering. With a k=5, anchors are

defined using a distance metric that involves the intersection of union between the box and its

centroid.

Location predictions Bounding boxes are predicted according to the responsible cell. Sigmoid

activation is used in order to constraint the ground truth to a range between 0 and 1. Parameters

tx, ty, tw, th, to are used to calculate the boxes centre/dimensions alongside with the top left corner

offset coordinates (cx,cy) and the prior width and height pw, ph.

Fine-Grained Features Additional feature map of larger resolution (26x26) stacked with the

13x13 feature map through a pass-through layer.

Multi-Scale Training Training done with random net resolutions switched at each 10 batches.

Darknet-19 Classifier network changes to Darknet-19, a more mature and evolved model with

19 convolutional layers and 5 max pooling layers. Data augmentation, hue, saturation, crops,

rotations and exposure shifts used in order to introduce variety in the data.

2.2.3 YOLO Version 3

Most recently, the YOLO project web page3 has launched a newer update – version 3. On a

preprint arXiv archive the changes are described through a technical report and the newer results

are advertised as still being much faster than any model and on par with accuracy on the AP .50

3Found at https://pjreddie.com/darknet/yolo/.

21

Deep Learning and the Problematic of Object Detection

metric. However, on the newer .95 metric, the model can not keep up with Retinanet in terms of

accuracy, having around 7% less mAP. Throughout the analysis of the growth of YOLO, a fact

immediately stands out. Even though this model seems to be great at localizing and classifying

objects, it does not seem to be able to provide an exact, almost perfect bounding box that contains

the object at its precise location.

The newer additions are generally explained on the following descriptors.

Objectness Objectness score was introduced in version 2. However, on the newest update, this

score is calculated using logistic regression which represents the ratio of overlapping in between

the ground truth object and the bounding boxes prior.

Classification Softmax is removed and independent logistic classifiers are added instead. Pre-

dictions are then obtained using binary cross-entropy.

Pyramid extraction Much like feature pyramid networks [LGG+17], YOLOv3 extracts features

at several scales and concatenates the upsampled feature maps with ones obtained on earlier stages.

Anchors Box priors are still extracted through k−means clustering, only now with 9 clusters

and 3 arbitrary scales.

Darknet-53 The classifying network evolves towards 53 layers and adds shortcut connections

in order to process the connected feature maps with more fine grained information. This network

is also trained on ImageNet [RDS+15] and achieves top classification on par with ResNet-152 but

much faster. The Darknet-53 architecture is described on annex A.2.

With these newer updates, the model moves towards more accuracy. Even whilst loosing some

speed, it is still a very powerful and fast network. It is reported that small objects are not such a

challenge for the model anymore however, it seems that more difficulties arise on the larger and

medium objects.

2.2.4 Focal Loss

Being used specifically on chapters to follow, the focal loss introduced by FAIR [LGG+17] is

of interest for the total understanding of the concepts underlying some implementation choices.

Having been developed with the intent to balance foreground and background classes on one

stage image based object detectors, the focal loss primes in applications for classification with

unbalanced data.

22

Deep Learning and the Problematic of Object Detection

As it has been described on the paper Focal Loss for Dense Object Detection, the focal loss is

derived from the cross entropy loss for binary classification. The CE loss is showcased through

equation 2.4 and described as the negative log of the probability of the active class.

CE(p,y) =

{
− log(p) if y = 1

− log(1− p) if y = 0
(2.4)

On equation 2.4, the p corresponds to the probability of the class being classified as active

when the ground truth is active as well. From this loss function, one fundamental issue can be

denoted. When there are many easy examples, meaning a sample can be easily classified, its loss

value will be small. However, if many samples are easily classified, these even though being

small values, when summed will still overwhelm the class that would be considered as rare. For

this reason, two balancing parameters are then introduced. One is mentioned on the paper as a

modulating factor, an exponent applied on the opposing probability. The other is more commonly

used on many other cases, a regularization factor multiplied by the loss value.

Compiling these concepts gave rise to the focal loss formula, presented through equation 2.5

where pt represents both the probability of active or non active classification in respect to their

labels. Through the use of this loss, the dominant class does not overwhelm the gradient as the

value it would adopt on CE is downsized through the γ factor operating on the opposite class. The

α provides more balance to the loss and improves stability.

FL(pt) =−αt(1− pt)
γ log(pt) (2.5)

2.3 Overview of Datasets and Benchmarks for Object Detection

One of the most widely known and research used benchmark for object detection in 3D data is the

KITTI Vision Benchmark Suite [GLU12]. Built using a test vehicle that has collected data in real

world varied urban locations, this tool provides raw datasets accompanied by benchmarks and the

availability of performance evaluation on their website platform4. The datasets and benchmarking

options range from the areas of stereo, optical flow, visual odometry, object detection both in

2D and 3D and tracking of objects. The evaluation for 3D object detection scores are carried on

through the evaluation of results with three different standards: easy, medium and hard. These

levels are determined according to the bounding boxes height, occlusion level and truncation.

Overall, this benchmark expects 70% of overlap on the bounding boxes for cars and an overlap of

50% for cyclists and pedestrians. The collection of 3D data is carried on with a Velodyne HDL

64E.

Another recent benchmarking tool which revolves around an interesting dataset for both 2D

and 3D LiDAR point and RGB camera classification is the Semantic3D.Net [HSL+17] dataset.

Contrary to the representation required in KITTI which uses bounding boxes, Semantic3D.Net

4KITTI Vision Benchmark Suite’s website allows the upload of the results obtained on their datasets at http:
//www.cvlibs.net/datasets/kitti/index.php.

23

http://www.cvlibs.net/datasets/kitti/index.php
http://www.cvlibs.net/datasets/kitti/index.php

Deep Learning and the Problematic of Object Detection

interprets each point separately, labeling each and every single one with a color that represents its

class. This approach is the closer to the mindset used in PointNet which estimates labels by points

and not by bounding box (the so called semantic segmentation). With the results shown by this

network, it seems plausible to think that this approach to representation and labeling might be just

as effective or perhaps in the future even more interesting for object detection5.

On the topic of broad datasets, there are several ones that have been quite important to the

evolution on the field of 2D and 3D based detection alike. Even if most of these have a general

purpose kind of scope, many do contain certain classes such as vehicles. Furthermore, it is impor-

tant to denote that there is also work done on other types of 3D based data. Some efforts on this

direction are then contemplatively named.

Working with three dimensional digital based models, the Princeton Shape Benchmark [04]

was one of the first to surface on the field. Offering a wide range of objects to classify, the

objective was to allow evaluation of shape-based retrieval and analysis algorithms.

Recently, Princeton university has also created a benchmarking dataset called ModelNet6

[WSK+15]. This benchmark is based off of 3D models extracted from CAD. PointNet was one

of the networks to be developed under this benchmark and is currently ranked on the ModelNet10

and ModelNet40 datasets for object classification. The dataset has 662 object categories available.

The models presented however are not indicated for autonomous driving since the majority of the

models represent objects found in indoor locations.

Under the PASCAL name, there are interesting datasets and benchmarks to be found. The

PASCAL VOC [EEV+14] is a long lasting project which aimed at providing standardized im-

age data sets for object class recognition. More contemporaneously, the PASCAL3D+ [XMS14]

launched. Being characterized as a three dimensional based benchmark for object detection and

pose estimation, it features a panoply of CAD models including classes such as vehicles, bikes

and bicycles.

The recent Large Dataset of Object Scans [CZMK16] featured an interesting collection pro-

cess. Having publicly released both RGBD scans and 3D based models, Choi et al. asked common

workers to scan objects of their daily lives. This resulted on a huge, greatly varied bundle of data

made available for object detection and classification research.

2.4 Summary

Object recognition techniques can be divided in two major groups: geometrical or deep learning

driven. The geometrically oriented techniques focus on the extraction of features by hand related

to the objects geometric properties such as shape detection, fitting of line segments, grouping of

points and many more. On LiDAR, these techniques can be grouped under four major basis: para-

metric, clustering, occupancy grids and breakpoints. In methodologies grouped under parametric

the approach is to fit the points to known basic shapes. On this group we find algorithms such as

5Dataset and documentation can be found at http://www.semantic3d.net/.
6ModelNet available at http://modelnet.cs.princeton.edu/.

24

http://www.semantic3d.net/
http://modelnet.cs.princeton.edu/

Deep Learning and the Problematic of Object Detection

RANSAC [FB81], Split and merge and iterative end point fit for example. On the other hand, clus-

tering is based off of the idea that points can be grouped and these groupings represent objects.

The radially bounded clustering ([KWB08] and [PJ17]) is one of the techniques that fall under

this category. Occupancy grids have a huge importance in the field as much as an object detection

tool, used as much for points segmentation and for preprocessing for the use of deep learning.

Their representational power gave them an advantageous position in the field, being used in order

to depict the object’s three dimensional properties. Finally, breakpoints explore the intervals in

between segments. On camera detection, simple visual features were extracted such as color and

texture. These methodologies were archaic and non adaptable to new scenarios. The field only

suffered evolution once the power of CNN was discovered.

On the field of deep learning, the use of 3D data is still very limited. Most work focuses

on the extraction of non oriented bounding boxes from camera images. On the state-of-the-art,

from what was found, only one methodology - PointNet [RQSMJG17] - works with real, raw 3D

data. Other approaches convert or transform the three dimensionality into a two dimensional issue

which then is extracted back to the original dimension. The most widely popularized used deep

learning techniques for object detection are convolutional neural networks. Several architectures

and settings have been explored in order to achieve higher accuracy levels, portability and speed.

Recurrent neural networks have also been applied on a very few cases more specifically on real

time settings. Both 2D and 3D based approaches count on the use of the convolution as their main

process of feature extraction.

The labeling representation is also a step that has proved to be important for the end results

of deep learning in object detection. Most conventional approaches expect the identification of

bounding boxes and classify objects within those boxes. However, recent works have explored

a point by point labeling which enables the techniques to extract both local and global features.

Approaches on this area have proved to be as good or even better sometimes at detecting and

labeling objects. Even though the research seems to be on the right track, there is still much space

for exploration for object detection in 3D environments. For camera detection, the field seems to

have matured almost as much as desirable. Even so, improvements can still be made.

On the topic of camera detection, a bundle of algorithms are explained. One of the most

important ones, the R-CNN [RDS+15] is extensively demonstrated even through the incremental

process it suffered. The two categories of object detectors are also delineated, featuring the most

impactful models that helped bring the field forward. That is the case of the SSD [LSZ+16], the

YOLO [RFA18] and the RetinaNet [LGG+17]. The operational methods of these models are also

described.

The theoretical concepts that were found to be the most important for the implemented solution

are laid out as well. Starting from the description of the YOLO model in depth, the incremental

process in between its versions over the years is delineated. Besides this, the focal loss is explained

as a derivation over the binary cross entropy loss that facilitates training of deep learning models

in cases that feature heavy class imbalance.

25

Deep Learning and the Problematic of Object Detection

An overall summary of datasets for research and evaluation of methodologies for object de-

tection in both 2D and 3D is also carried out. Works are mentioned as much on the general plane

as on the specific, autonomous driving efforts orientated.

26

Chapter 3

Machine Vision and Autonomous
Driving

In order to give a vehicle the ability to perceive its surrounding environment, several differently

wired sensors are made use of for special, specific tasks. The two most popular sensors to be found

on today’s autonomous driving vehicles are the RGB cameras and the LiDAR. These two can give

an accurate perception of the scene the vehicle is inserted in, leveraging from two dimensional

representations to three dimensional, more geometrical intuitive settings. As such, these are widely

popular and invaluable for most tasks required by autonomous driving scenarios. The work at hand

focuses on the tasks of object detection using the designated sensors separatly or jointly. Even if

other types of hardware, such as radars, GPS, proximity sensors and others are also necessary and

widely applied to contemporary vehicles, the two chosen sensors provide a great tool for they do

the biggest bulk of the task of construction of both 2D and 3D environments. These sensors, alone,

can facilitate the task of object detection and it is desired that the future of investigation on the

area leads to the shrinking number of employed sensors on such vehicles, preferably using only

cameras and/or LiDAR.

Following up, this section describes methods of operation for both sensors and develops on

the concept that this work aims at studying in order to help further the efforts towards autonomous

driving. The description of the sensors processing methodology is not deepened as the study

of sensors is not a goal of this project. Instead, these general considerations are presented on

this section only to enlighten on the capability of information retrieval of each sensor, with the

objective in mind that the shortcomings and advantages of each need to be leveraged through

software as best as possible in order to arrive at the best, most accurate result pool.

On the case of autonomous driving, the topic is broad and the issues to be solved are over-

whelmingly challenging, all the while with these requiring a certain, quantifiable guarantee of the

safety level that is required for such critical systems. An introduction to the specific object of

study is then ensued.

27

Machine Vision and Autonomous Driving

Table 3.1: Sensory setup of the test vehicle from KITTI’s dataset project.

Sensor Type Quantity Available data

Velodyne HDL-64E Laserscanner 1 Pointcloud
Point Grey Flea 2 RGB Camera 2 Left/right frames
Point Grey Flea 2 Grayscale Camera 2 Left/right frames

Edmund Optics NT59-917 Varifocal lenses 4 -
OXTS RT 3003 Navigation 1 Coordinates

3.1 The Concept of Sensory Perception

Machine vision has become more and more popular on the contemporaneous field research. In

fact, terms such as sensor fusion and sensory perception are all the rage as much in companies as

in final consumers. The efforts towards the construction of vehicles that can smartly and accurately

understand their environment is a dream of many generations that seems to be closer each second

as research stumbles and pushes forward the concept. The sensory perception idea entails the mix

of hardware and software that can give a vehicle an accurate and valuable representation of the

world. It entails invaluable knowledge such as the interpretation of the vehicle’s own global and

local position relatively to what surrounds it, may it be other vehicles, pedestrians or natural and

artificial obstacles.

At the center of it all, the sensors are the foundation of perception. How they collect, what

they collect, in which conditions and the percentage of workable information that they can pro-

duce are the basic questions that forge the line between a well built perceptive vehicle and an

uninspired failure. As such, it becomes urgent to evaluate the hardware used for sensory percep-

tion through its fundamental description and the comparative analysis of their standalone strengths

and shortcomings as well as their possible outcomes when fused together.

3.1.1 KITTI Vision Dataset Setup

Since the work at hand did not intend to build a reliable data source collected from these sensors,

in order to shift the focus directly towards the issue, a renowned dataset built for autonomous

driving research was used. Having both camera and LiDAR information available for investigation

characterizing the same frames, this collection of data was incredible useful as an input measure.

The test vehicle used to collect the information had specific versions of the discussed sensors

and as such, the particular setup described on the KITTI paper [GLU12] is discussed on table

3.1. As can be seen, the setup vehicle contains a location system, the GPS and varifocal lenses

for focusing purposes. Besides that, the standard RGB and grayscale cameras are also present.

Finally, the LiDAR sensor used is one of the most powerful by company Velodyne.

Even if the principal sensors in study the RGB camera and LiDAR, some experiments de-

scribed on further sections were run on the grayscale camera images (entry 3 on the table). These

28

Machine Vision and Autonomous Driving

Figure 3.1: Sensors used by KITTI’s team to collect the data.

particular experiments are rightfully identified as produced on the grayscale frames. Future re-

search on this topic could include the exploration of sensory fusion between RGB and Grey im-

ages in order to develop a deep learning training platform for object detection in night or extreme

conditions.

3.1.2 RGB Cameras

In summary, RGB cameras are produced and designed following the human eye mode of operation.

Even if not totally in pair with the quality of the human eye, most cameras nowadays can capture

the photographed scenes almost as well as a human looking directly at it would. This means

that, in the spectrum of visible light, colors and white balances are collected, having environments

described through RGB pixels.

3.1.2.1 Method of Operation

RGB cameras have diverged into groups accordingly to their method of operation. However, most

RGB cameras fundamentally operate using four main, invaluable components. Those can be listed

as a lens, an infrared filter, color filters and a sensor.

The pipeline of the capture of a color image is illustrated through the component directional

representation found on figure 3.2. When the light is captured by the lens, it goes through an

infrared filter and following that, in RGB cameras, there is also a color filter in order to extract

color information from the scene. The sensor brings everything together by creating and balancing

the information received, outputting a signal for transformation into a digital, standard image.

Figure 3.2: RGB camera image capture pipeline. Adapted from Digital Camera World’s article
Cheat Sheet: how your digital camera turns captured light into an image [Wor12].

29

Machine Vision and Autonomous Driving

Figure 3.3: Examples of different white balances.

A camera can capture anything so long as it is on the scenario facing the lens covered by the

zooming space supported. The lens incorporated will always influence greatly the outcome, since

this may mean less or more horizontal field of view, directed or univalent focus and many other

characteristics. The importance of the sensor can not be disregarded either since it is responsible

for understanding the light conditions and work through them in order to balance the whites of the

final picture. Figure 3.3 showcases two examples of incorrect white balancing on A and C. Only

picture B has the correct light setting.

Even if these components create the main working pipeline, more specific parts are needed in

order to ensure the retrieval of information that would be successfully processed afterwards. This

is even more noticeable on the mounting of these types of sensors on vehicles. Such mechanisms

are needed for example to help stabilize the image and to ensure that the picture is focused over

different depth ranges. This usually means the completion of such setups with other kinds of

components such as the varifocal lenses used on the KITTI’s test vehicle described on table 3.1.

The importance of the effectiveness of these components is demonstrated through some exam-

ples of the output that badly mounted systems can bring out. Figure 3.4 showcases two samples

from the object dataset with two different focusing techniques. A is focused on the global scene

whilst B is focused on the traffic sign noticeable on the right which makes the identification of the

vehicle more challenging. On the other hand, figure 3.5 exemplifies the noise introduced through

an uneducated ISO regulation. These examples are somewhat in over proportion however, the dan-

Figure 3.4: Effects of focus changes.

30

Machine Vision and Autonomous Driving

Figure 3.5: Effects of ISO regulation.

gers of wrongly setup RGB cameras are still existent and may influence the software interpretation

on the final end.

3.1.2.2 RGB Cameras and Autonomous Driving Scenarios

RGB cameras compile a flat representation of the three dimensional world which is close to the

apparently flat observations extracted by the human eye on a similar way. The fact is that research

work on such data is made easier as it is faster for humans to abstract geometrical properties

based on the methodology they make use of in daily life. This is proved by the huge amount of

work found on the area of 2D object detection and the advancements made through those efforts.

Besides this, processing computationally images is rather fast and efficient nowadays which makes

RGB bi-dimensional data a great candidate for speedy achievements in 2D.

The most notable advantage brought by RGB cameras over grayscale is the fact that each pixel

contains 3 channels of information - color. This is useful for more meaningful extraction of data

and the use of color might be a factor that improves performance on neural networks.

Moreover, humans have been driving vehicles around for many decades and their own sensory

perception has allowed a somewhat safe navigation in such environments. However, humans are

armed with more perceptional tools and intelligence to process such information than current

camera fed object detection algorithms are. Even if a human does not see a certain object, it can

still identify it through sound, shadows, touch or even smell. These special abilities are not shared

by machines yet which makes this a sort of shortcoming on only using cameras for road based

object detection.

A more pressing issue is that such sensors suffer greatly with inadequate weather conditions.

Even the best existing sensors can not cope well enough with these scenarios delivering images

that may be deemed useless for object detection and algorithmic processing. Fundamentally, an

RGB camera needs light in order to operate. This limits its applications on the road from the

starting point since driving occurs at any time of day or night and at any environmental condition.

Besides this, cameras have the handicap of capturing only what is in zooming range of the

lens. This means that, if the objective is to give a vehicle a 360 degree view of its environment

using only cameras, it is necessary to have a panoply of these sensors in different positions which

leads to a more complex setup.

31

Machine Vision and Autonomous Driving

Figure 3.6: LiDAR data collection process example.
* Image by Guest Post on ValueWalk’s "Why Tesla Motors Inc.’ Autopilot is Fundamentally Flawed".

Further perception of the scenario is not possible in only 2D settings. Whether the work is

done in segmentation masks or bounding boxes, the outcome is bi-dimensional like its data so no

information about the object’s depth is available through these methodologies. This eventually

means that a vehicle can not navigate safely as it does not understand with confidence whether

an object is up close and in dangerous range or if it is far away with no impact on the vehicle’s

immediate field of action. It also limits the guidance in situations such as overtaking long vehicles.

In order to avoid such lack of important information, some investigators wonder about the

possibility of use of depth cameras which also give a depth distancing factor. However, more

research on the applicability of this process is necessary to provide a defining conclusion. Besides

this, depth based cameras are outside of the present scope thus are not considered.

3.1.3 LiDAR Sensor

Opposed to camera sensors, the objective behind the development and inclusion of LiDAR sensors

on current autonomous driving vehicles is the collection of three dimensional data. Based on the

principle that, upon being hit with an electromagnetic wave, any object will produce a reflection,

these sensors are able to determine the distance at which surrounding objects encounter themselves

from the sensor, building a point cloud with a three coordinate axis representation.

3.1.3.1 Method of Operation

LiDAR fundamentally works through the emission of laser pulses at a predetermined frequency.

When these pulses hit the objects around it, the material reflects the pulse back to the sensor. Using

the readings for the travelling time between the discharge of the laser pulse and the reception of

its reflection on the sensor, a point cloud can be built in three dimensions which accurately depicts

the environment.

Figure 3.6 shows an example of the functioning of the sensor. When the laser beams do not

hit an object, the point cloud will produce empty space on the respective area of the pointcloud.

32

Machine Vision and Autonomous Driving

(a) Distance between beams increases with
range.

(b) A person can "disappear" from the data as
distance to the sensor increases.

Figure 3.7: Some limitations of the LiDAR sensors.

When the beam finds itself on an object (red lines), the reflection is collected and the respective

points are added to the point cloud.

Just like any other sensor, LiDAR has its own shortcomings and obstacles that are still a

research topic to this day. The sensor in question can build more or less dense point clouds

depending on the specific limitations coming from its hardware. The sensor has a shadow zone in

which objects are not easily detected. This happens due to the fact that as the horizontal distance

gets larger, the angle in between laser beams leads to a larger distance in between them. For

example, looking at figure 3.7a, if we consider that this sensor1 only outputs 8 laser beams (only

the upward side is shown), it can easily be seen that the distance (represented in red) in between

the beams becomes larger as the distance to the sensor enlarges. In fact, taking a look at 3.7b, one

can conclude that a person may "disappear" from the point cloud since as the distance to the sensor

is larger, a shadow area surfaces that is larger than the size of the person on that perspective.

Furthermore, another known issue related to LiDAR object detection surfaces when black ob-

jects are considered. Since these types of items absorb most of the laser beams received, the point

cloud becomes sparse and sometimes it becomes illegible to recognize the existence of objects

even with the human perception. This may lead to various types of objects (even vehicles) to be

occluded and missed from the object detection process.

3.1.3.2 LiDAR and Autonomous Driving Scenarios

The premise of the laser scanner type of sensor is to provide information that no other sensor is

able to in autonomous driving scenarios. Even if it is not fully reliable at all times due to the prop-

erties showcased on the previous section, it has the power to build a uniform, three dimensional,

360°representation of the surroundings. The intricacies found in a three axis based interpretation

still have a lot more exploration to be done. However, it is the researchers belief that this could

leverage real strength in road scenarios so long as software becomes more evolved and able to

process 3D based data in more efficient ways.

1Version represented on the pictures is the Velodyne VLP-16 PUCK.

33

Machine Vision and Autonomous Driving

Table 3.2: Constraints of the RGB Camera and the LiDAR.

Sensor Constraints

Weather Object Range Time Field of view
RGB Camera Light - Resolution - Zoom space

LiDAR - Black materials Point density Refresh times -

Another prospect of using LiDAR on these environments is the fact that it can present a view

of the entire surroundings with the single use of a sensor. Even if it is less complex in terms

of setup (since a panoply of cameras needs synchronization and calibration procedures), LiDAR

sensors are known to be rather expensive and the better they are able to represent the environment

reliably, the more pricey they get.

Furthermore, the limitations intrinsic to the hardware explained on the previous sections may

lead to failures in object detection procedures that are not due to the own software’s accuracy.

These types of situations make it harder to ascertain the model’s efficacy. This is another reason to

use a processed dataset that already has filtered out objects with heavy occlusion from the precision

measurement. It makes the process of enhancing models all the more strong due to the correct and

reliable tracing of errors.

3.1.4 Comparative Analysis of RGB Camera and LiDAR

As it has been previously discussed, both sensors in discussion leverage advantages as well as some

shortcomings. Overall, it is of interest to consider a comparison of the extracted data and their

possible explorations when in application on the issue at hand. Table 3.2 describes the constraints

found on each sensor. When employing such hardware in autonomous driving scenarios, these

constraints need to be taken in consideration in order to ensure the reliability of the end results. As

can be denoted on table 3.2, both sensors suffer as distance from the vehicle increases. Pointclouds

become sparser the further the object is and in images, their representation becomes a small bundle

of pixels with weak resolution. On the other hand, cameras suffer from weather conditions that

entail lack of light or diminished lightning. LiDAR has the drawback of badly representing black

objects. Furthermore, LiDAR has a refresh interval in between each scan which means that it can

not provide a 360°view as fast as a setup of several cameras would. Approximately, cameras can

be three times faster than a LiDAR sensor. However, in order to achieve the whole environment

view, the several cameras need to be configured so that their scope covers the whole setting.

On the topic of information leveraged by both sensors, table 3.3 showcases the different pos-

sible features to be found on data provided by each sensor. Both sensors extract width and height

information even if on different planes. LiDAR has the advantage of providing a depth coordinate

which gives a better understanding of the object’s location on projected 3D space.

RGB cameras provide data related to textures and color of objects which is quite useful in-

formation for convolutional neural networks to extract. The fact that, on the 2D plane, objects

34

Machine Vision and Autonomous Driving

Table 3.3: Information that can be extracted by both sensors and some applications.

Sensor Contained features Principal additional applications

RGB Camera

Texture
Color
Height
Width
Shape

Traffic lights and signs recognition
Lane detection
Object tracking

Semantic and instance segmentation

LiDAR

Intensity
Material

Spatial distribution
Proximity

Height
Width
Depth

Orientation estimation
Object tracking

3D Semantic segmentation

mostly keep their shape intact (with some dimensional variations) is also an advantageous factor

that networks may learn to identify.

On the other hand, LiDAR contains intensity and material representations. Due to the collec-

tion of reflected rays, physical properties are intuitively derived. This sensor is also useful in order

to extract proximity relations in between the vehicle and the space around it. Due to the three

dimensional distribution of LiDAR data, the spacial relations inside objects and between them are

more easily described. These can be a decisive factor for networks of the future.

3.2 The Problem of Object Detection in Autonomous Driving

The issue of object detection is quite wide in application and range. For such reason, it would

be of interest to consider this issue on a research based perspective when applied to autonomous

driving settings. Furthermore, there are several constraints that limit the scope of this work at

hand. It is also important to lay them out, alongside with the obstacles to be faced when applying

these methodologies on the real world scenarios.

3.2.1 Autonomous Driving

The core issue addressed by this work is, on the first plane, that of autonomous driving. Assisted

driving systems reflect certain levels of automation of the vehicles. Lower levels indicate that

the system aids the driver in some driving tasks. However, the human driver is still very much

essential to the process. On the last level, an autonomous driving system is defined as an unmanned

process in which a vehicle can safely understand its surrounding environment and make intelligent

decisions in order to guide its passengers from their starting point to their destination.

With autonomous driving gaining its momentum in popularity, several semi autonomous or

even fully autonomous driving vehicles have started to be tested on all kinds of roads. Even with

35

Machine Vision and Autonomous Driving

all the optimistic results achieved by these vehicles, their 100% safety is still not assured. Recent

developments in the industry have seen these kinds of vehicles be involved in polemic due to their

inability to prevent some accidents. This means that there is still more on the road to be paved in

order to achieve the dream of a widely popularized use of these types of vehicles or transportation

systems.

On current setups for autonomous driving experiences, a panoply of sensors that measure

important information to assist driving processes are present. The most relevant categories of

sensors are defined below:

LiDAR sensor 3D information gathering sensor.

GPS Synchronize the vehicle’s position on the internal location map.

Camera 2D information gathering sensor.

Distance sensor Measure distance to immediate objects.

The leverage of such complex mixture of sensors implies processes of sensor fusion and other

relevant techniques that are not fully covered on this work. However, it is to be denoted the high

price that such systems still entail and the lack of completely reliable processes that ensure the

elimination of precision uncertainty. This work discusses sensor fusion or similar processes on the

software level and aims at concluding how these sensors can be of help to each other as much as a

certainty reduction methodology but as a platform to diminish search spaces.

3.2.1.1 Object Detection

Autonomous driving includes a wide range of complicated issues and processes that provide chal-

lenges of great research interest. The focus of this work is, however, solely on the phase of object

detection. Object detection is the process in which the vehicle collects all kinds of data on the

environment and uses this data to recognize the existence of all objects surrounding it. The final

goal of object detection is to ensure that the vehicle makes the best driving decisions at all times

and, even on the topic, more specialized topics can be approached such as distinguishing driving

from non driving areas on the path planning module.

Object detection goes hand in hand with the topics of object identification and recognition.

Diagram 3.8 showcases the relation in between the object areas mentioned. As it can be denoted,

object recognition involves both processes of finding the object’s location and classifying it into

a group. On the other hand, object detection and object identification are specific tasks inside the

area of object recognition in which objects location’s are found and are classified, respectively.

This work is presented as an object detection project since it does not focus specifically on classi-

fying objects correctly. In fact, the most explored methodologies intend to detect objects through

the use of a bounding box limiting their predicted location. Even so, classification is also part of

the ensemble of such algorithms that are to be described on following sections. However, the sole

focus was to have a system capable of understanding that there is an object there.

36

Machine Vision and Autonomous Driving

Figure 3.8: Relationship between object recognition, detection and identification.

Once object detection becomes robust enough, classifier networks can then confidently report

that the object there is this. Since this project aimed at understanding the foundations of object

recognition, object detection becomes the evident starting direction of exploration.

3.2.2 Constraints to the Problem Formulation

The issue at hand is very broad in terms of its practical application. So as to reduce the complexity

to the available time constraints, the problem will be approached in an exploratory sense. This

work intends to test different deep learning techniques for object detection in several environments

with different constraints. Even if machine learning can be a power house in such issues as well,

this work tens to focus more on variations of deep learning techniques. Through this project,

experiments are digested and performed with a curious mindset that wants to understand what

would be an interesting future research pathway or not.

Due to the decreased study of classification of objects, only critical classes of objects are

considered. Critical classes can be explained as the groups of objects that are most frequent on

roads and the ones for which safety is more pressing to be ensured at all times. The classes of

interest in most experiments are then Car, Pedestrian and Cyclist. On some experiments, more

classes are included, however, for metric evaluation purposes, these are the three main groups to

be considered.

Furthermore, due to the difficulty of sourcing both camera and LiDAR information, only the

dataset available for research from KITTI is used at all times even if on different ways. Real world

testing is not considered even if it is a future objective. Besides this, some constraints come as

standing principles from the dataset’s own benchmark methodology. From the start, evaluated

bounding boxes have a minimum size of 25 pixels. This ultimately means that any accuracy met-

rics explored in any experiment do not take into account predicted boxes below this size pool.

No false positives are considered either from this behaviour. An intersection of union overlap

37

Machine Vision and Autonomous Driving

is not considered whilst evaluating the performance of the implemented models. However, on

the benchmark, only boxes with minimum overlap of 70% and 50% for cars and pedestrians/cy-

clists respectively are counted. Don’t care areas with labels are not imported even for training

operations. These are also not included in evaluation for the benchmark. Finally, the division

in difficulties presented is not considered on experiments. On the contrary, all data is used for

training and testing purposes equally. This is taken into account when remarks are made on the

modeled solution’s accuracy. Accuracy over difficulty levels is exposed in some sections that

contain benchmark information.

On real world scenarios these constraints are not found. However, in order to have a better

understanding of what an accuracy value truly signifies, these aspects are taken into account.

This helps the process of result comparison and effective critical analysis. When the problem is

extracted to more complex, world-like settings, the metrics must be carefully adapted in order to

extract meaningful knowledge.

The use of cameras alongside LiDAR creates many calibration issues. The most notorious

one would be the fact that the dataset only presents the front view of the vehicle on camera im-

ages whilst LiDAR has a 360 °view of the environment. For this reason, only the front view is

considered whether in mixed sensory information experiments or in standalone LiDAR settings.

3.2.3 Obstacles to Object Detection in Autonomous Driving Scenarios

Even with the leverage of powerful sensors and techniques, challenging situations will always

arise on the road. A perfect system would be able to predict every single outcome at every fraction

of second as the scenarios unfolded on the road. However, even with the greatest hardware aligned

with the best software, the roadblocks to overcome are many still to achieve this dream-like talked-

of ensemble.

One of the major issues that object detection in autonomous driving faces is the fact that

all methodologies applied need to be computationally solved at an incredible speed rate all the

while leaving a small memory footprint. Employing such technology on a vehicle means that the

processing power is limited to the existent, closed system and the software has to deal with faults

in a way that does not put internal and external users at risk. Furthermore, inference must be as

fast and as accurate as possible. Even if the vehicle is capable of understanding its environment

with perfect precision, if the working time of each cycle takes more than one fraction of a second,

the system will fail to ensure safety. The same issue will be faced when the roles are reversed.

Moreover, even if a model is trained to recognize an astounding group of limitless classes,

new objects that the model does not have a reference point on will eventually start appearing on

the road. This would happen for example with the introduction of new cars with fundamental

differences in design (as it is expected to happen in the future). This raises a question that would

risk the durability of such systems. How to viably update these models in a way that they keep old

knowledge mixed with the new introduced, learnt shapes? And, more importantly, how to quantify

the quality that each model has in metric accuracy after it has suffered such increments? These are

still on going research topics with many more questions than answers still.

38

Machine Vision and Autonomous Driving

On the topic of datasets, there is also the introduced uncertainty of whether the used training

sets are representative enough of the real world. Evaluating these kinds of systems on laboratory,

human made sets can give a reliable confidence that the model will transport well to the application

settings? If not, can these systems be safely tested on real roads?

As these vehicles start populating the road, sometimes with disastrous results, more obstacles

start rising for autonomous driving. Failed experiments in public set back the field and there

are still many unanswered moral, social and technological questions on the topic. All these are

obstacles to object detection itself for, from a certain point, there is no possibility of reaching new

conclusions if no new, out-of-the-box steps are taken.

3.2.4 Metric Discussion

A bundle of metrics were made use of in order to evaluate the quality of the results. Even if

calculated through the same methodologies, these metrics extract different meanings for each task

at hand. The theoretical foundations of each metric are laid out below.

All metrics rely on the interpretation of outputted labels as true or false positives and of true or

false negatives. These categories are relative to a class and can build a confusion matrix. The con-

fusion matrix is a notion that simply compiles these categories on the form of a matrix structure.

These concepts are laid out on figure 3.9 for an example of binary classification.

True positive of class 1 The sample is classified as belonging to class 1 correctly.

True negative of class 1 The sample is classified as class 0 correctly.

False positive of class 1 The sample is classified as class 1 when it actually is 0.

False negative of class 1 The sample is classified as class 0 when it belongs to class 1.

As one can denote on figure 3.9, there are borders in between the relevant elements and the

selected elements. In relation to a class, on this case would be class 1, there are a bundle of

elements correctly belonging to it. If our model can classify all of them correctly, the border of

the selected elements will be situated at the relevant elements corner. On the figure, the samples

are evenly split through the various categories. However, it rarely ever happens on real training

situations. The borders move as the classifier becomes better or worse at labeling samples.

The use of false positives and true negatives is necessary in order to understand whether our

model classifies not only the existence of the class of interest but also its nonexistence. If our model

would classify all samples as 1, then it would have as many true positives as relevant elements

which eventually means it has learned to classify well all the elements in study. However, if we

take a look at the other side of the categories, it would become easy to understand the model has

learnt nothing at all, thinking all samples belong to the class at hand.

Through the use of these concepts, correct assumptions can be truly made on the quality of the

model’s results.

39

Machine Vision and Autonomous Driving

Figure 3.9: Binary classification metric analysis breakdown. Adapted from [Wik18].

3.2.5 Recall, Precision and F1

The recall metric is directly related with the precision and f1 score. These metrics operate on the

distribution of the confusion matrix. Figure 3.10 showcases the areas that each represent out of

the example representation on 3.9.

On binary classification, precision then represents the ratio of true positives out of all the

selected elements. This value varies in between zero and one. If it is zero, it means that all the

selected elements are false positives and if it assumes one, all selected elements are true positives.

On the other hand, recall signifies the amount of true positives in relation to the amount of

false negatives. When this value takes its maximum (1), it translates the fact that the model selects

all relevant elements. If it reaches zero, then no relevant elements are selected by the model.

On the case of segmentation of interest areas, recall being over a certain threshold is more

important than precision being high. This behaviour would signify that the model can select a

high rate of relevant elements even if it classified some non active pixels as active.

Figure 3.10: Recall and precision as seen from 3.9 in a binary classification scenario. Adapted
from [Wik18].

40

Machine Vision and Autonomous Driving

Figure 3.11: Recall and precision in a bounding box regression scenario. Adapted from [Ale18].

On the case of bounding box prediction, however, the metrics of recall and precision take on

a new representation. Figure 3.11 showcases the meaning extracted through these metrics on a

bounding box regression scenario.

Precision now signifies the ratio of intersection in between the ground truth box and the pre-

dicted box over the area of the detected box. On the other hand, recall represents the ratio of

intersection over the object’s box. These are important metrics that ensure that the accuracy ob-

tained from the overlap between the boxes is not affected by their difference in size. For example,

if the detected box is inside the object’s box, the precision will be really high. However, through

recall, the adjustments to be made can be deduced for it represents the percentage of intersection

compared to the ground truth size. On the opposite situation, the metric’s values would be reversed

and likewise, the model’s accuracy can still be correctly analyzed.

Summing up both precision and recall, the f1 score is an harmonic mean of both values. Its

formula is described through equation 3.1. Giving a concise overview of the recall and precision

values, the f1 score can describe the general relationship in between both behaviours. However, its

value is unable to give the indications as to what might be happening on the model more precisely.

For this reason, most experiments express recall and precision instead of a standalone f1 score.

f1 = 2× precision× recall
precision+ recall

(3.1)

Some models use the metric generally mentioned as mAP, namely mean average precision.

This is the averaged value of the already fore-mentioned precision.

3.2.6 Intersection of Union

In order to evaluate the quality of detected boxes through the model, the intersection of union, IoU,

is made use of. This metrics represents the percentage of intersection between the ground truth

and detected box over the union of the areas of both boxes. Figure 3.12 describes this relationship

visually. This metric sums up the relationships delivered through the respective precision and

recall. Being the most widely used metric for bounding box prediction, in studies of location

prediction it is indispensable.

41

Machine Vision and Autonomous Driving

Figure 3.12: Intersection of union for bounding box regression. Adapted from [Ale18].

3.3 Summary

As an input process for object detectors, sensory information is an invaluable piece of the pipeline

of autonomous driving. From a panoply of possible hardware used on autonomous vehicles, the

sensors in discussion on this work are solely the RGB camera and the LiDAR. Camera and LiDAR

represent data in 2D and 3D respectively. Their methods of operation diverge, however, they can

leverage information that, even alone can enable object detection on the road.

Through the documentation of the shortcomings of each sensor, it is expected to create a sys-

tem more sustainable in real world scenarios. Furthermore, understanding which representations

each sensor can give is the key to more effectively explore the capabilities of each one.

Further than sensory perception, this chapter reflects on the issue of object detection as a

specific problematic inserted in autonomous driving scenarios. On that topic, the objectives and

limitations surrounding the subject are discussed as well as some constraints that also affect the

end results. Autonomous driving is being pushed forward even with all the unattended concerns

and the faults in technology. Leveraging the weaknesses and strengths is the path to follow.

Finally, metrics are discussed and thoroughly explained in order to give the reader a grasp of

how the evaluation processes evolved.

42

Chapter 4

Envisioned Fusion of Camera and
LiDAR Based Object Detection

Leveraging sensory information including categories such as cameras and LiDAR sensors is a

complex issue that has been the target of many research works. Even though the work at hand

does not focus specifically on the intricacies that come with this process, a vision of a working

pipeline to combine information extracted from both sensors is proposed.

In order to provide a methodology to fulfill the pipeline, later on, a bundle of experiments

performed with YOLO on camera images are presented throughout the sections to be found below.

Experimentation was carried out in a matter of increasing conceptual complexity.

4.1 Pipeline

As every object detection approach relies on great compilations of data, it is of interest to explore

the intricacies of the datasets that were found to be of interest. Further than that, a pipeline is

envisioned which has the objective of joining information extracted from cameras and LiDAR. Its

full description is then featured.

4.1.1 Dataset Statistical Analysis

Some statistics on the dataset’s distribution are drawn in order to make some informed conclusions

when the metric analysis is carried out.

As one can denote from 4.1, the raw dataset has an abundance of Car labels which is many

times larger than any other class. From the start, this showcases class imbalance which will make

it harder for the model to learn to correctly classify other classes. The most notable imbalance

though, is the lack of person (sitting) labels. This eventually leads to the hardened task of learning

to classify this class, making its average IoU very low.

43

Envisioned Fusion of Camera and LiDAR Based Object Detection

Figure 4.1: Statistics on the KITTI raw data.

Moreover, the distribution of tracklets by frame is rather varied. Having no more than 20 at

any time, most of the frames on the raw dataset showcase a number of tracklets in between one

and five. Larger number of tracklets by frame starts to get more rare as the number increases.

Frames with more than 12 tracklets are hard examples. With that many objects on the scene, the

task of distinguishing in between them is much more difficult.

All in all, the raw dataset poses many challenges to object detection and classification. Its use

is directly related to the experimental analysis of the 2D detection and classification algorithm.

On this dataset, it becomes interesting to observe the impact of changes on a network’s hyper

parameters.

For effects of training and testing on this bundle, some conceptual choices were made. Since

this collection encompasses all frames taken during the trips made with the test vehicle, several

consecutive images are very similar with small changes. Due to this fact, a validation dataset was

drawn from 355 frames. The validation set always contains frames from different drives since

inside the same drive the variation of data is very small. Even though the validation set is small

compared to the number of existent frames, the data extracted is very significant since it eliminates

any kind of repetition and similarity in between most of the frames from training. Through this

process, the validation results presented are more meaningful.

On the other hand, the object dataset, even if still figuring plenty more Car labels, the ratio of

unbalance is more smooth. Even so, the classes Pedestrian and Cyclist are harder to localize and

classify due to their small, similar size and shape. Figure 4.2 showcases the relationships between

labels and tracklets through frames.

The distribution of tracklets shows a better flow, having almost a logarithmic descent through

the increase of the number of objects by frame. Hard examples such as containing around 20

objects are very rare to find. Overall, the frequency is more distributed around 1 and 5 tracklets.

As it can be denoted, this dataset is a lot more evened out and training operations with it have

proved to be much more stable. Accuracy also receives a boost as the class imbalance is toned

down through including a more balanced ratio of all labeled objects. On this case, it is possible to

use the popular split of 60/40% in order to create the training and validation sets.

This dataset is used in all benchmark comparison attempts and even though it is possible to

extract labels on all eight classes, only the three main ones are extracted and validated. On the 3D

44

Envisioned Fusion of Camera and LiDAR Based Object Detection

Figure 4.2: Statistics on the KITTI object dataset.

methodologies analysis, this dataset is used exclusively for training in order to ascertain the best

possible outcome.

4.1.2 Envisioned Fusion of Models

The issue of joining together information obtained from different sensors is a great topic of re-

search that is still being explored. A pipeline is proposed for the leveraging of both camera and

LiDAR based extractions in order to achieve a more accurate three dimensional representation of

the scenario with all objects detected.

The experimental process follows then a pipeline including all the interaction in between sen-

sory data detection. Figure 4.3 describes the connection in between sensors that is ideally visioned.

The pipeline starts with a RGB camera image of the scenario. This image is given as input to the

2D detection model, YOLO, and it outputs the bounding boxes for all objects that it found along-

side with their respective class. These boxes then serve as a selective tool for the 3D workspace.

The boxes are projected into the LiDAR plane and a frustum is then removed by object (guiding

lines in red over the LiDAR pointcloud). The removed frustum areas are used as input to the

HGNet, the BEV LiDAR object location network proposed. On the top view, detection is carried

out in each individual frustum. Ideally, the extracted information would be compiled in order

to obtain the 3D bounding boxes. Through the use of the height coordinate from 2D bounding

boxes plus the oriented top view box from LiDAR, the 3D bounding boxes are naturally derived.

Naturally following this idealized pipeline, the work focuses on exploring techniques to more

effectively reach this flow.

Classification is only explored on the two dimensional space and through the YOLO model

applied. This would pose as a limitation that, in future work, would be solvable by using a mixed

classification model that leveraged 2D and 3D classification in order to produce the most trustable

outputs. However, the main objective at hand is to explore spatial features and spatial representa-

tions for images and LiDAR scans that may aid in object localization.

For such reasons already stated, certain parts of the pipeline were prioritized. The final con-

catenation of the LiDAR bird’s eye view detection and the camera’s bounding boxes is quite intu-

itive. In fact, little processing would be needed when the desired information is already existent.

As such, the natural directions of focused exploration were the two dimensional bounding box

45

Envisioned Fusion of Camera and LiDAR Based Object Detection

Figure 4.3: Pipeline for the experimental process with sensory data.

prediction and the creation of an effective bird’s eye view LiDAR representation alongside with

methodologies to extract features from such ensemble.

4.2 Camera Based Object Detection Experimentation

Camera detection was the first step to be developed according to the pipeline already delineated

on the previous section. As far as two dimensional object detection goes, the final process was to

use a standard, general purpose detector and classifier. As the pipeline includes several steps and

2D detection serves the bigger purpose of diminishing the 3D search space, this model had to be

extremely fast. In fact, it was important for it to be more fast than accurate.

Judging from these required characteristics, the most intuitive choice would be to use the You

Only Look Once Model. As far as public state-of-the-art research goes and counting on the newest

update, YOLO is the fastest model at giving detection output. Thus its relevance to this study case.

A bundle of experiences were performed using the two different dataset setups and the YOLO

model version 2 and 3. The objectives of these were diverging, however, the unified goal was to

achieve the configuration that would best demonstrate a great trade off in between accuracy and

speed of detection. Below are presented these experiments as well as their run conditions.

All experiments described on this work were run on a single NVIDIA Geforce GTX 1080

Ti with 11GB of dedicated memory. Libraries CUDA and CudNN are used on version 9.1 and

7.1 respectively for 2D and version 8.0 and 6.0 for 3D. Generally, models were trained until they

stabilized and reached a convergence stage. The weights chosen for each result comparison are

those at the best early stopping point in order to avoid overfitting. Loss values displayed are taken

46

Envisioned Fusion of Camera and LiDAR Based Object Detection

Table 4.1: Network resolution variation results on the raw dataset.

Network Resolution Loss mAP IOU Val time
YOLOv2 416x416 0.30 56.06 55.05% 4 s
YOLOv3 416x416 0.9 72.58 65.72% 8 s

YOLOv2 256x832 0.28 69.91 59.27% 4 s
YOLOv3 256x832 0.43 75.51 73.12% 9 s

from an average around the early stopping point. Val time corresponds to the time that takes to

validate performance on the whole testing dataset (which means detection time for 355 images on

the raw dataset and detection time for 2992 images on the object dataset). The threshold used for

custom mAP calculations on two dimensional models is 0.25. Training thresh equals 0.6 for the

YOLO algorithm.

Experiments follow an incremental evolution pattern. In fact, if a parameter is found to be

better than the others in a given experiment, in following experiences these best performing con-

figurations are kept, varying only the tweaks in study.

4.2.1 Network Resolution

A study that was found to be interesting was the variation of the network resolution. Since the input

images have a rectangular resolution (width larger than height by approximately 3.6 times), when

training was deployed on squared resolutions, the end results seemed to be rather ineffective. For a

squared resolution test, the 416x416 size was chosen. Since resolutions over 832 are not advisable,

the testing rectangular resolution 256x832 was used. This is approximately a factor of 1.5 (closer

resolution multiple of 32 as expected by the model) times smaller than the original dataset image

size. Outcomes are layed out on table 4.1.

4.2.2 Anchors

YOLO comes with default anchors. However, for each dataset, using the specified k−means ap-

proach for each version it is possible to generate new anchors that are supposedly more appropriate

for the training in question. Training was carried out for both versions with the default priors and

with calculated ones. The results can be observed in Table 4.2.

Table 4.2: Anchor study on the raw dataset.

Network Anchors Loss mAP IOU Val time
YOLOv2 standard 0.28 69.91 59.27% 4 s
YOLOv3 standard 0.43 75.51 73.12% 9s

YOLOv2 generated 0.3 68.59 59.71% 4 s
YOLOv3 generated 0.56 73.48 69.56% 9 s

47

Envisioned Fusion of Camera and LiDAR Based Object Detection

Table 4.3: Random resolution training and its effects on the raw dataset.

Network Random Resolution mAP IOU Val time
YOLOv2 0 256x832 69.91 59.27% 4 s
YOLOv2 1 416x416 61.05 55.59% 4 s
YOLOv2 1 256x832 22.21 54.27% 4 s
YOLOv3 0 256x832 75.51 73.12% 9 s
YOLOv3 1 416x416 72.58 65.72% 8 s
YOLOv3 1 256x832 11.42 50.13% 9 s

4.2.3 Random

One of the new introductions made by the YOLOv2 paper [RF17] was the enabling of the model

to switch its own resolution at random in order to enable the model to generalize better for other

input dimensions. Tests with this configuration were also carried out. The comparison is made

between random training runs, starting either with a squared or a rectangular resolution for both

models and the achieved results are presented on table 4.3.

4.2.4 Grayscale

Having trained the model on RGB images and using the exact same validation set, however this

time with grayscale left pictures, the model was validated. YOLO uses saturation, hue changes

and other techniques referred on previous sections for data augmentation. This experiment shows

how this technique can help the model generalize better to other environments. The results were

quite positive and are described in Table 4.4. Figure 4.4 shows a detection with the model on a

painting, as an example for other kinds of generalization.

4.2.5 Version Comparison Analysis

Wrapping up all the experiences previously exposed, the best configurations from each version are

chosen in order to directly compare how both models wage on the raw dataset. On this dataset, the

best configuration found for both models does not use random training but a rectangular resolution

and the standard anchors. Table 4.5 shows a strong improvement on mean average precision of

around 5 points and an increase for intersection of union of over 13 percent which are incredibly

substantial results for YOLO version 3 over its predecessor.

From the bundle of experiments carried out, it is possible to conclude that, overall, the YOLO

model has improved considerably from its predecessor version 2 to its newest ensemble, version

3. Even so, there is still a visible trade-off in the newest update such as the loss of detection

Table 4.4: Grayscale evaluation results on the raw grayscale dataset.

Network mAP IOU Val time
YOLOv2 63.79 57.59% 5 s
YOLOv3 71.45 70.27% 8 s

48

Envisioned Fusion of Camera and LiDAR Based Object Detection

Figure 4.4: YOLO version 3 detection outcome on a painting of cars.

speed in detriment of accuracy, which is obvious in all previous experiments. In most cases, it

has approximately doubled the detection time for 355 images, properly observable in Table 4.5

through the column Val time. There certainly is a trade-off between accuracy and speed which

may influence the applications of this model in certain real-world situations. However, it is still

the fastest model known publicly, producing detection in around 25 ms per image on the newest

update at a large resolution (of 832 in one parameter). This behaviour was more than expected as

the number of layers was more than doubled from Darknet-19 to Darknet-53.

As for resolution, the YOLO model shows different behaviours in version 2 and in the newest

update. It seems reasonable to conclude that keeping the aspect ratio of the original training images

is the best approach regardless of the model being used. However, it is also obvious to conclude

that YOLO version 2 was much more sensible to the object’s original ratio. This is proved by the

astounding improvement in mAP of 13.85 points gained by using a rectangular resolution as seen

in Table 4.1. Meanwhile, the improvement in version 3 is only of around 3 points. This may be

due to the use of connection of the different scales and feature maps that make it more invariable

to natural scales on the newest update. The lack of sensibility in between resolutions is certainly a

good aspect as it may increase the capacity of the model to generalize better in new conditions.

When it comes to the prior generation, the results seem a bit puzzling. Even if the standard

anchors have been properly tuned on larger datasets such as COCO [LMB+14] and PASCAL VOC

[EEV+14] with a large abundance of classes and cases, it is still surprising to find that the standard

anchors produce slightly better end results for both models. Nevertheless, this is good news as it

means that YOLO can be adapted to new datasets with minimal pre-processing overhead. Table 4.2

shows small differences between using standard and generated anchors, having only an increase

around 1-2 points on mean average precision. Even though slightly, the use of generated anchors

over the standard ones for version 3 seems to produce worse results compared to the behaviour of

version 2.

Table 4.5: Comparison of the best configurations laid out by version.

Network Loss mAP IOU Val time
YOLOv2 0.28 69.91 59.27% 4 s
YOLOv3 0.43 75.51 73.12% 9 s

49

Envisioned Fusion of Camera and LiDAR Based Object Detection

Figure 4.5: YOLO version 3 on the KITTI dataset for lane detection [FKG13].

The possibility to variate resolution during training was also tested and yielded interesting re-

sults. The use of random for training with a starting squared resolution gives good results even

though the testing images are rectangular in both version 2 and 3. Even so, training for a rect-

angular resolution specifically proves to be the best approach, assumption proved by the results

showcased in Table 4.3.

Moreover, the use of random training from a starting rectangular resolution produces rather

poor results on both metrics even if more heavily on average precision. This seems to be a limi-

tation in the classifier. Both versions of the model have the same kind of behaviour towards this

parameter. From Table 4.3 one can denote that having a direct rectangular resolution produces

superior outcomes compared to having a randomly sized training process which consumes more

gpu resources and takes around twice the time to train. When the ratio of the images is known

beforehand, it is preferable to keep the network’s resolution parallel to that of the original aspect

whilst still keeping it under 832 for width or height since larger resolutions have a directly pro-

portional decrease in detection speed that would nullify the objective of trading off speed over

accuracy. This was also tested in extra experiments.

YOLO is able to generalize to different resolutions, environments, lightning conditions and

even paintings. On the grayscale experience, with results showcased in Table 4.4, it is only no-

ticeable a little drop in mean average precision compared to the colour validation set. This is an

invaluable quality for an autonomous driving situation. On the road, many unplanned, new sce-

narios arise and the model needs to be elastic enough to respond to all of them with the degree of

safety and confidence as the cases it was trained for. On this aspect, YOLO maintains and in some

aspects even increments on its generalization value. Table 4.4 depicts less loss in average precision

in the newest version than in its predecessor whilst comparing these with the best obtained on the

RGB set.

For all the reasons listed, YOLO version 3 was the final choice made for a 2D detector. Since

its speed kept up with the requirements whilst its accuracy had an incredible boost, this seemed to

be the most sensible decision. On table 4.6 are the final, best results obtained with YOLO version

3 on the raw dataset figuring the best found hyper parameters.

50

Envisioned Fusion of Camera and LiDAR Based Object Detection

Table 4.6: Best performing hyper parameters.

Network Resolution mAP IOU Val time
YOLOv3 256x832 82.31 74.70% 315 s (for train dataset with 12131 images)

4.3 Benchmark Environment

Opposing the previously exposed environment, the experiments to follow have the intention of

providing an overview of the model’s performance on the benchmark target classes and method-

ologies.

4.3.1 Training on Raw Dataset

On the following experiment, the training weights and configuration for the raw dataset are used

for evaluation on the object dataset. Described on table 4.7 are the outcomes. As it can be denoted,

specially on the Easy category, for the label Car, the accuracy is maintained. However, the model

generalizes wrongly to other classes such as pedestrians and cyclists. This outcome is entirely

expected. Since the model was trained on the unbalanced dataset, the classification accuracy of

any class beyond Car, such as Pedestrian and Cyclist, specifically on this case, suffers greatly.

Graphics 4.6 showcases the relationship between the two used metrics recall and precision. From

the relationships between recall and precision, it becomes evident that the model is able to keep its

precision high, however, the recall reaches considerably lower values specially on the Pedestrian

and Cyclist classes. This means that the model has low rates of false positives. On the contrary,

it features a high value of false negatives. In fact, the model fails at finding the location of many

pedestrians and cyclists on the validation set.

4.3.2 Training on Object Dataset

Incrementally, from the previous experience, the same setting is repeated, however, this time using

the configuration and weights from training on the object dataset. Using a train/val split of 60/40%

respectively, for the splitting of the object dataset, the results are laid out over iterations, classes

and difficulty levels. The difference in between the use of the datasets becomes obvious through

this experiment. Even though the raw dataset contains most of the frames on the object dataset,

the more balanced training enables the model to reach great precision and specifically, recall rates

which, on the end results, brings a staggering impact over all classes.

Table 4.7: Average precision by class for the raw training dataset experiment.

Class Easy Moderate Hard
Car 81.88 68.80 63.18

Pedestrian 45.68 39.28 39.77
Cyclist 53.74 39.94 39.49

51

Envisioned Fusion of Camera and LiDAR Based Object Detection

Car Pedestrian Cyclist

Figure 4.6: Precision recall curves for the raw training dataset experiment over the three detected
classes.

The results showcased by the model on table 4.8 are outstanding, reaching a maximum ac-

curacy of 98% on the easy category for Cars, 85% for Pedestrians and 86% for Cyclists on the

validation set. Even on the hard category, which, as explained on the KITTI dataset web page,

exists only as a reference, the maximum values achieved are impressive. As stated, around 2 % of

the hard boxes are not recognized by even the human eye.

Opposing the previous experimental environment, the model still performs accordingly well

for pedestrians and cyclists. On this case, it was expected that YOLO would bring out less accurate

results since it has been appointed that the model has difficulties with smaller boxes. Even so, the

results achieved on this experiment showcase that there has been an evolution of the model on this

specific domain.

Benchmark positions are ascertained through the Moderate level of difficulty. As such, on this

category, cars reach a maximum mAP value of 89.9%, whilst for pedestrians and cyclists the value

circles around 77%.

Overall, the 2D detection results seem to have a great balance of accuracy and detection speed.

Specifically on the classes Pedestrian and Cyclist, the model showcases an accuracy fitting of the

first 5 models on the benchmark. All the while maintaining a much higher detection speed in

general.

Figure 4.7 showcases the recall precision curves for one iteration from table 4.8. The differ-

ence can be denoted from the previous featured curves (figure 4.6). On all three classes precision

Table 4.8: Comparison of results obtained on the object dataset using the YOLO version 3.

Iteration
Car Pedestrian Cyclist

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

15400 98 89.9 80.99 76.27 67.37 66.86 85.54 66.6 66.27
16000 97.06 89.48 80.62 77.18 68.2 67.76 86.41 68.43 67.85
16600 89.52 89.76 89.3 76.04 67.26 66.83 74.59 64.45 64.67
17000 89.5 89.47 80.69 78.3 76.91 69.02 85.32 76.59 68.39
17500 97.78 89.7 80.83 85.09 76.19 68.26 77.81 67.85 67.72
17600 89.81 89.65 80.85 78.57 69.64 69.1 76.28 67.11 67.08

52

Envisioned Fusion of Camera and LiDAR Based Object Detection

Car Pedestrian Cyclist

Figure 4.7: Precision recall curves for the object training dataset experiment over the three detected
classes.

starts at 1.0 and as recall gets higher, the precision stays almost squared on the higher levels. Even

though, it is still visible a clear gap in between the classes Car and Pedestrian/Cyclist. The reason

that justifies this behaviour is not only based on the smaller size presented by these objects but on

the under sampling of these classes comparatively to the Car class as seen on figure 4.2.

For more insight into the training evolution of the YOLO model on the object dataset, refer to

annex A.3.

4.3.3 State of the Art Comparative Analysis

Tables 4.9, 4.10 and 4.11 showcase the results that are found on the benchmark environment for

all classes and categories. As ranking is awarded through the Moderate difficulty, the positions

of the models are respectively shown. Furthermore, the bold values represent the best performing

ones for each category.

One model dominates the first ranking for all classes. The iDST-VC/iDST-VT is an anony-

mous submission with no information available besides the results showcased on the benchmark.

However, for all its rankings, the registered runtime is quite high, reaching even the huge value of

4 seconds on the Car category. It seems that the model can not be applied on autonomous driving

scenarios as it is, being quite far from the desirable detection speed.

The leading accuracy values on the Car class reach the incredible value of 90.55 on the Mod-

erate category whilst, for Easy and Hard, mAP amounts to 97.25 and 87.44, respectively, as seen

on table 4.9. Out of the published methods, the RRC [RCL+17] and the Deep MANTA [CCR+17]

dominate the leaderboard on the Car class.

On the Pedestrian class high scores are comparatively smaller, refer to table 4.10. The F-

PointNet [QLW+17] is one of the few published methodologies on the top of this specific board.

Finally, the Cyclist class, even if not featuring mAP values as high as the Pedestrian class, has

a more distributed gap in between the leading models. Once more, the RRC [RCL+17] model

proves its value with great results.

In order to be able to compare YOLO with the current state-of-the-art models that have the

best ranking on the benchmark, a private submission was made. The results that were obtained are

53

Envisioned Fusion of Camera and LiDAR Based Object Detection

Table 4.9: KITTI benchmark top models for each category on the Car class.

Car

Ranking Model Moderate Easy Hard
1 iDST-VC 90.55 90.88 81.04
6 RRC [RCL+17] 90.22 90.61 87.44

11 Deep MANTA [CCR+17] 90.03 97.25 80.62
16 SG 89.89 90.51 80.67

showcased through table 4.12. As it can be denoted, YOLO has maintained a mean average pre-

cision much below what would be expected of it. On the Car class, the drop in average precision

is not as substantial as the other classes. Even so, it is still under the mark that would be expected

on the autonomous driving scenario.

On classes Pedestrian and Cyclist, the average precision seems to be severely under the ex-

pected result pool. Specifically on the ranking category, the Moderate, the average precision is

around 30% which is rather low compared to the top models discussed previously.

Through the analysis of table 4.12, it seems possible to conclude that YOLO has a bigger

tendency to classify Easy examples substantially better, whilst the gap towards other difficulty

levels enlarges. Once more, its difficulty in identifying smaller objects becomes evident through

the large gap in precision found in between classes Car and Pedestrian, Cyclist.

There is not enough data to make informed conclusions on the speed of the benchmark method-

ologies. Even so, from the published models that feature on these top positions, no paper has

proved to have detection speed values even close to that of YOLO. For this reason, YOLO still

maintains its great advantage on the real time application scenario. Even so, the precision that was

reached can not ever be transported to the real world. For this reason, the model showcases not to

be indicated for this specific environment.

One thing that can be denoted on the benchmark is that it is rather hard for a model to hold

high ranking positions on all classes at the same time. In fact, the testing dataset in general seems

to represent more challenging situations than that of the training database. This is also a factor to

be taken into consideration when analysing these models.

Specifically, the benchmark only counts results for the AP calculation if the bounding boxes

overlap is greater than 70% for cars and 50% for both pedestrians and cyclists. Redmon et al.

[RDGF16] have demonstrated that most errors that occur on the YOLO model are based on loca-

Table 4.10: KITTI benchmark top models for each category on the Pedestrian class.

Pedestrian

Ranking Model Moderate Easy Hard
1 iDST-VC 80.90 88.13 74.08
3 F-PointNet [QLW+17] 77.25 87.81 74.46
5 VCTNet 75.88 84.03 71.60

54

Envisioned Fusion of Camera and LiDAR Based Object Detection

Table 4.11: KITTI benchmark top models for each category on the Cyclist class.

Cyclist

Ranking Model Moderate Easy Hard
1 iDST-VT 78.21 86.06 69.47
4 RRC [RCL+17] 76.47 84.96 65.46

tion mistakes. It is observable through testing on the KITTI dataset that the objects are identified

correctly, however, the bounding boxes miss a part of the objects more often that not and are some-

times wrongly centered. This would lead the results to not having the overlap that is admissible

by the benchmark and thus the identification of these objects would not be counted towards the

average precision metric. It is believed that this fact is one of the major factors contributing to the

disappointing results obtained.

Furthermore, the fact that the testing dataset is populated with many samples containing sev-

eral small objects grouped such as groups of pedestrians, cyclists or even bicycles alone. These are

cases in which YOLO starts to show weak results for its difficulty with smaller objects is denoted

even more.

4.4 Summary

Building up from the dataset’s fundamental statistics, some general considerations on the distribu-

tion of the samples are drawn. The raw dataset provides an unordered bundle of frames whilst the

object dataset is specifically built for detection training on only three main classes - Car, Pedes-

trian, Cyclist.

The first step taken on the implementation phase was the envisioning of a pipeline that would

jointly leverage information from 2D and 3D object detection methodologies. Even if not entirely

implemented, this setup is described fully, delineating the prioritized tasks.

Moreover, the experiments made with camera images and YOLO are featured as an incremen-

tal process. Playing with the network’s hyper parameters and conceptual architectures, several

configurations are tested in search for the best performing one. Besides this, the two competing

versions of YOLO, the second and most recent, are compared in both quantitative and qualita-

tive result pools. The submission to the KITTI object detection benchmark is carried out and the

disappointing results are respectively discussed.

Table 4.12: YOLO evaluation on the KITTI Vision Object Detection Benchmark.

Model Car Pedestrian Cyclist

YOLOv3
AP70 AP70 AP70 AP50 AP50 AP50 AP50 AP50 AP50
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard
88.11 78.80 69.68 48.08 33.07 32.53 45.03 29.94 29.73

55

Envisioned Fusion of Camera and LiDAR Based Object Detection

56

Chapter 5

The HGNet Approach for LiDAR Based
Object Segmentation

In order to aggregate and segment the areas of objects to be found on LiDAR, a novel network is

proposed that leverages the focal loss for binary classification in order to solve the proposed task.

5.1 Preprocessing

Processing pointclouds is not an easily achieved computational task. In order to ascertain that the

task of finding the objects in 3D LiDAR would be able to achieve the desired detection speeds,

some preprocessing steps are carried out before any feeding to a neural network.

5.1.1 Frustum

The biggest hurdle to overcome when searching 3D space is to find an effective methodology of

search space reduction. Since pointclouds are rather extensive, processing them all at once is quite

a challenging process for current computers. Even more, these pointclouds usually include huge

gaps of empty space spread out through three dimensional space. Processing this emptiness only

increases the time needed to analyze the space and is, in the end, a wasted effort of resources. As

such, it becomes urgent to define a preprocessing step that enables the search space to be reduced

and at the same time to minimize the empty sides of the pointcloud.

The chosen approach is based on a recent model proposed by Charles Qi et al. [QLW+17].

On the mentioned paper, for each object found in two dimensions, a frustum is removed from

the pointcloud. From the projection of the 2D bounding box over the frustum, a slice of three

dimensional points is removed. Through this process, it is guaranteed that each frustum contains

one object on the minimum.

57

The HGNet Approach for LiDAR Based Object Segmentation

Figure 5.1: Frustum and normalized coordinates axis change. Adapted from [QLW+17].

The frustum projection is decided through the use of the calibration matrix available for the

dataset in order to transform from the camera axis into the LiDAR coordinates. Points inside the

space limited by the 2D bounding box are then extracted and compose the object frustum.

The coordinate system of the frustum is represented on figure 5.1 by the most left aligned

coordinate system. The slice is removed in a certain angle from the orthogonal natural LiDAR

coordinates.

5.1.2 Normalization

Since frustum angles can be quite random depending on the structural shape of the pointcloud and

the object’s location, the resulting pointclouds may be quite different even if the same object is

present in two removed frustums in the same orientation. In order to facilitate the model’s task of

learning through repetition and connection of similarities a normalization step is performed after

the frustum removal. This normalization makes the frustum centroid the new origin axis which

also contributes to accelerate the end model’s biased behaviour towards frustum rotation. This

is a design choice in order to be able to extract box orientation directly through the training of a

segmentation three dimensional space angle-sensitive model. Since the rotation of the boxes is

also affected by the frustum angle, this provides a platform for the model to learn more spatial

intuitive orientations or tendencies towards directions.

Through normalization, the axis is shifted to the centroid which in turn becomes the new

reference, seen through figure 5.1 on the center plane. After this step is finalized, the coordinate

system is switched so as to have x reflect depth and y the width through the frustum.

5.2 Representations

Since LiDAR scans feature three dimensional features, it is important to dwell on a representa-

tional method so that the points can be fed to a model. Even if it seems to be possible to work

with all three dimensions at the same time, as proposed by Charles Qi et al. [QLW+17], the use

for leveraging of three dimensional features is deemed useless since the two dimensional model

can give the classification and the respective height coordinate. As such, in order to better allow

for fusion with the 2D based modeled output, a representational method is proposed and explored

so as to extract the top view oriented boxes.

58

The HGNet Approach for LiDAR Based Object Segmentation

5.2.1 The Bird’s Eye View

Bird’s eye view corresponds to the upper view of the pointcloud. Detection of 2 dimensional

bounding boxes on LiDAR seen from this perspective has been more studied than natural process-

ing of 3 dimensional points. Since representations in bird’s eye view are more intuitive to the way

humans process and deal with geometrical information, more advancements were made on the

topic. This work dwells on LIDAR detection methods for this specific perspective due to the fact

that it is advantageous for the currently designed pipeline.

This view is constructed through the elimination of the height coordinate so as to be a repre-

sentation of what would look like if the pointcloud was being seen from above (a bird’s point of

view). A plane on xy is then constructed and the third axis is shown as the flat difference through

heights.

5.2.2 The Height Grid

A new representation is drawn from LiDAR bird’s eye view so that the tasks carried on by the

networks are made easier. From each removed frustum, the points are transformed into a bi-

dimensional grid that saves a variable height value found from the points aligned within the cell

in question. When points fall under the same pixel, a sampling process in ensued. Opposing other

typical sampling procedures that only select a bundle of points at random, the use of this grid

enables the sampling of points that have a high overlapping percentage guaranteed that the grid

dimensions are high enough. Grid dimensions then represent a specified sample rate, that may be

different or not in both axis. The resulting grids can be interpreted as images, outputting a repre-

sentation close to that of a color map representing height. Figure 5.2 shows an example of a height

grid of dimension (160,128) built from a frustum with an object of label Car. The representation

on the right showcases the pixels that belong to the object in question. The remainder of points in

the frustum are either ground points or noise generated by other kinds of objects.

This representation is based on Yu et al. own’s elevation grid [YWH+17]. On their version,

the resulting images are of the RGB type, having the three channels be simulated through the

maximum, medium and minimum height value at each cell’s location. Through the curiosity to

explore the efficiency of this method on the grayscale format, the height grid was then thought of.

The size of this grid is further explored on the experiments to follow. However, it is intuitive

to understand that the sampling rate has an effect on the final representation obtained. The smaller

are the dimensions the more points will fall under the same pixel and precise location will be

lost, leading to errors on models that would use this representation non wisely. Even so, having a

size too big will not be advantageous either since the grid will become too expensive to create or

process, leading to close to no sampling. The choice of the grid size is an important process for its

advantageous use. As such, it must be carefully dwelt on.

When these grids are extracted, they are represented as grayscale images with the dimensions

of the grid and with values ranging in height that will showcase different shades of grey on the

final extraction.

59

The HGNet Approach for LiDAR Based Object Segmentation

Figure 5.2: Color map of a height grid in a frustum with the respective pixels belonging to the
object.

5.3 Eigenvector Based Ground Segmentation

The removal of the ground points is also studied on full, 3D front view coordinate based scans.

Even though most authors remove the ground plane through the fitting of a plane to the lower

points, such as [KML+17], the current work studies the possibility of using the eigenvectors and

eigenvalues of the pointcloud for the same objective. The effect of the three largest eigenvalued

eigenvectors is then analyzed on front view pointclouds using the raw, non normalized points. The

observations presented below were found through the study of several pointclouds from the raw

dataset.

First eigenvector Represents the first axis of variation of the 3D points. Usually leads forward.

Second eigenvector Second most prominent direction of variation. Important when the road is

perpendicular to the vehicle’s positional orientation.

Third eigenvector Manifestation of the height distribution.

The study of eigenvectors obtained from the pointcloud can be an effective measure for ex-

tracting spatial, coordinate based features. Furthermore, the direction of the road can be efficiently

and accurately deduced. This was tested through an eigenvalue priority ordering of the eigenvec-

tors. If the second eigenvector has an eigenvalue similar to that of the first, then the road follows

the direction indicated by that vector (on most cases perpendicular - for example in crossroads).

Using this simple evaluation process, the ground plane is found rapidly.

More than this, the use of eigenvectors for pointcloud analysis can bring up many advantages

for many other related tasks such as lane detection and object tracking. A further study of these

properties is ensued. However, it is shown that great potential is contained on the use of these

properties of the data.

60

The HGNet Approach for LiDAR Based Object Segmentation

5.4 Using k−means Clustering for Object Segmentation

In order to enable the finding of the object’s location on the frustum, it is of interest to understand

which points on the scenario belong to the object or not. This process, generally denominated as

segmentation, was tested through machine learning and deep learning techniques.

As a base model, k−means clustering was tested for segmentation on the bird’s eye view.

Through the creation of a height grid, the filled pixels were extracted and extrapolated back to

frustum coordinates. Using the samples obtained through this process, the behaviour of the clus-

tering process was observed.

Following up to the experimental and observation process, several empirical observations were

made on the effectiveness of the k−means clustering.

• The optimal k factor depends on the grid and object dimensions.

• The same k could not be effective for classes Car, Pedestrian and Cyclist simultaneously.

• The k factor to be used is not trivial to find, increasing the pre processing overhead greatly.

• Clustering is unable to extract object related spatial features.

• The features accentuated were the density distribution of points.

• Outliers were a real danger to the effectiveness of the segmentation.

• Clustering segmentation achieved bad results in terms of precision and recall due to the high

number of false positives and false negatives respectively.

• End results featured a low 0.2 f1 score.

In order to filter outliers, the local outlier factor technique was experimented on. This method-

ology was used in an unsupervised manner. In fact, some data with examples of expected points to

be considered outliers alongside with shapes of interest were generated in order to make sure that

the model would consider as outliers the points that do not contribute to the formation of a shape.

Even if this method was able to remove some of the outliers, the end results were still rather

weak for these types of approaches are unable to learn spatial features which are invaluable for the

process of segmentation. Furthermore, machine learning methodologies are rather slow compared

to the current deep learning models.

These empirical observations have been corroborated through literature. Several works have

made use of the k−means in order to segment all kinds of data. For a fact, many works have delt

with the difficulty of finding an optimal k factor for segmentation tasks. On this topic, Kalam et

al. [KM11] have studied the possibility of optimizing the initialization process. However, even

so, clustering proves to be much slower than deep learning and unable to identify several features

at once. More closely related to LiDAR based segmentation, the work of Chehata et al. [CDB18]

reaches good results with the k−means clustering of terrain from landscapes. However, they also

realize the sensitivity to parameters showcased by the algorithm.

61

The HGNet Approach for LiDAR Based Object Segmentation

Figure 5.3: Some examples of labeled images with filled bounding boxes from the evaluation
dataset.

As such, it becomes evident that the k−means clustering approach is not great for the segmen-

tation of objects on LiDAR based pointclouds. Even if good results would be possibly achieved,

these would be too specific to each scenario and would implicate a huge processing overhead.

5.5 The Height Grid Network

Building up from the failed experiments and running towards the desire to provide a reliable

method for effective segmentation, a deep learning approach is then adopted. A network is pro-

posed, HGNet, namely Height Grid Network, which works on the height grid representation pre-

viously exposed and combines a v shaped model with a focal binary crossentropy loss.

5.5.1 Input Preliminaries

Using the frustum analysis previously exposed, the data is then transformed into a frustum dataset

in which each entry includes only the points inside each frustum. The objective for each frustum

is then to analyze the location of the oriented object in bird’s eye view. Having loaded the 2D

detection results into a python pickle object for frustum, these are loaded through a generator

which transforms each pointcloud into an height grid. The height grids are the inputs for the

model and are processed in the form of an image in which each x,y pixel represents a location

on the BEV LiDAR coordinates and the channels contain information on the height of the points

contained on each pixel.

The channels used can be one of the motives of study for the network. The first approach

was to use only the maximum height value found for each pixel. The end result from this grid

has the sort of representational significance as a relief map. However, some works such as Yu et

al. [YWH+17] have proposed using a channel organization based off of RGB, through the use of

the maximum, minimum and median elevation levels. The use of only the highest coordinate is

an interesting study case which minimizes the steps of preprocessing and speeds up computation.

Moreover, it is possible to explore models that work on contrast imagery since the relief color

map presents a similar color gradient towards the object. This affirmation is based on the fact that,

generally, on a frustum, the only mass of points that present high and low height values closely

are the objects of study.

62

The HGNet Approach for LiDAR Based Object Segmentation

The issue is digested as a binary classification problem. In fact, it is the objective that the pixels

that are inside or near the object’s bounding box area are classified as 1 whilst all other pixels are

labeled as 0. The methodology of labeling training samples was experimented on as well. At first,

labels were simply the classification of pixels that contained existent points belonging to the object.

This representation is of the sort of 5.2 as seen on the right. On the other hand, the other kinds

of labels explored were simply the use of an image with black background and a white bounding

box drawn over the pixels that fall on it’s area, figure 5.3. Whatever labeling methodology made

use of, this leads to a very unbalanced binary classification issue. Most samples are of class 0

since height grids have a huge amount of empty space that is translated from the pointcloud’s

distribution. Using traditional accuracy methodologies, the results would be erroneous since even

if the model predicted all labels as zero, it would have gotten more than 70% of the labels right.

Through the observation of this behaviour, it was decided to deal with the metrics of precision,

recall and f1 score. These metrics provide a more meaningful comparison basis. Moreover, this

is the reason why the use of the focal loss was studied. Through its use, even if the unbalanced

data is dangerous for the model, the training is able to proceed smoothly and the learning task is

successfully completed as the easily labeled class does not overwhelm the gradient.

5.5.2 Architecture

The network’s architecture is represented on figure 5.4. The diagram showcases a v-shaped de-

sign featuring two main paths - contraction and the followup expansion. In fact, the image is

consecutively downsampled through chained two dimensional convolutions. Then, once a certain

minimum is reached, the image is upsampled through each level that it went through on the con-

traction path back to its original input shape. The output format is then a grayscale image featuring

binary classification values for each pixel.

Through the contraction and expansion paths, the activation used is the relu function except for

the sigmoid on the outputting layer. Dropout is made use of with a factor of 0.5. All convolutional

operations are simple and performed with a kernel size of (3,3), featuring a stride of 1, in the

fashion of the VGG Net [SZ14].

At each dimensional level, a chain of convolution is carried out. The process followed on

each feature map dimensional level is detailed on figure 5.5. The input or the concatenation from

the previous level is fed to a convolutional layer. The channels are doubled from the previous

size. After some dropout, another convolutional layer is added with no impact on the shape.

A concatenation is always ensued. This layer joins the current feature map with the previous

max pooling directed output. Through this operation, the feature maps are enriched, making

sure that the previously extracted information is not lost and fusing extraction outputs throughout

all the contraction path. The dimensions of the feature map are then downsampled through the

max pooling that cuts in half the size on the x and y axis. The channels then correspond to the

concatenation resulting shape.

63

The HGNet Approach for LiDAR Based Object Segmentation

Figure 5.4: The HGNet architecture breakdown.

Figure 5.5: Detail on the convolutional chain found at each feature map dimensional level of the
contraction path.

64

The HGNet Approach for LiDAR Based Object Segmentation

Figure 5.6: HGNet expansion path overview.

The contraction path leads to the creation of feature maps up to 16 times smaller than the

original input image size. The input dimensions are kept at multiples of 16 in order to ensure that

there is no loss of information through the reducing dimensionality.

The expansion path is rather simple, containing only a bundle of bi-dimensional upsampling

layers that double the size of the previous feature map. Each expansion is followed by a simple

convolutional layer which divides by half the channels from the previous layer. This leads to the

increasing pixel dimensions across the x and y axis. At the same time, the channels suffer the

opposing process of shrinking down until they hit their minimum, labeling style size, the one or

zero binary classification of the pixel. Figure 5.6 showcases this process. As it can be denoted

through the imagery, the final step includes two convolutional layers that simply downsize the

channels back to one. No batch normalization and or dropout is carried out on the expansion path

due to the possibility of losing extracted features and its proven unnecessary application.

5.5.3 Focal Loss for Binary Pixelwise Classification

Adapted directly from the focal loss proposed on [LGG+17], the loss function used for training

of the HGNet is presented through equation 5.1 where pt represents the matrix of predicted labels

intersected with the ground truth for each respective class. The m× n represents the number of

pixels existent on each image of size (m,n) and so, all pixelwise classification outputs contribute

to the final loss value. Due to this fact, the loss values tend to be quite high during training and

evaluation procedures. This does not interfere with the procedures of the model as values are put

in a comparative perspective.

L =−
m×n

∑
i=0

α(1− pt1)γ log(pt1)−
m×n

∑
i=0

(1−α)ptγ

0 log(1− pt0) (5.1)

Like the original focal loss, this loss function includes an attenuating factor to balance the

variation, the α . Moreover, the modulating factor is added with a variable γ parameter. The

logarithmic expressions come from the cross entropy loss for binary classification and, on the

implementation, contain an epsilon in order to avoid infinite or nan values during training and/or

evaluation.

65

The HGNet Approach for LiDAR Based Object Segmentation

Table 5.1: Results obtained through threshold variation.

Resolution Threshold Precision Recall f1 score

160x128
0.50 0.7608 0.7767 0.77
0.60 0.6953 0.6465 0.67

5.5.4 Threshold Behavioral Analysis

Threshold has been known as a border of transgression in between precision and recall values.

On the general plane, the threshold does not impact the f1 score too greatly. The impact is on

the borderline in between the recall and precision. In fact, the higher the thresh value used, the

higher is the precision and recall becomes smaller in its stead, keeping the f1 score evened out.

On the other hand, as the thresh decreases, the recall hits remarkable values all the while keeping

precision at incredible low averages. At this point, this is known deep learning knowledge.

Three threshold values were tested roughly - 0.3, 0.50, 0.7. From the results obtained, the

0.50 seems to be the value that balances the best the relationship between precision and recall,

as it was expected. Whether the desired outcome is to delineate the best area without having

actual, pixelwise, high precision, a smaller threshold must then be used. If the desired output is

the opposite, the contrary behaviour must be followed. Even if these follow through, the recall can

achieve staggering values over 90% whilst the precision seems to be limited by an upper limit a

little short of 80%. That would be the natural borderline of what the model can learn at most.

For analytic reasons, in all experiments, a pixel is considered labeled as 1 if the logit is above

the 0.50 marked threshold. The opposite would happen for class 0. However, if the HGNet were to

be used as a region proposal, allied with other methods, recall would need to be necessarily high.

As such, on that specific case, it would be of interest to test a threshold of 0.3.

For the model optimization, in order to confirm the most optimal thresh to use, a directed

experiment was made on threshold values. Table 5.1 showcases the difference in results between

using a threshold of 0.60 or 0.50. Since the 0.5 demonstrated having the best balance in between

precision and recall, alongside with better results, that value was used for all experiments explored

on posterior sections.

For more detailed information on the threshold variation training sessions, refer to annex B.2.2.

5.5.5 Data Augmentation

The use of methods for data augmentation are applied in a different focus rather than the traditional

in order to study their own possibilities of effectiveness.

The first approach for data augmentation is the insertion of random points inside a height

grid in order to ensure the model is strong against noise in the pointcloud. This is done on the

preprocessing of the input and points are created inside the boundaries of the grid. Since the

coordinates are chosen at random, they may be completely outside of the frustum angled area.

Furthermore, another approach was taken for data augmentation. Since the rotation of the

frustum was kept through the height grid, most training examples might end up being rotated over

66

The HGNet Approach for LiDAR Based Object Segmentation

(a) (b) (c) (d)

Figure 5.7: Reversion techniques for data augmentation. (a) Original labeled grid. (b) Horizontally
inverted labeled grid. (c) Vertically inverted labeled grid. (d) Vertical and horizontally inverted
labeled grid.

a certain angle. In order to make the network more robust towards this, a tunable percentage of the

samples on each batch are repeated but reversed height grids which are created at training time.

Frustums go through depth which means that, in a height grid, they will have a disposition

from the bottom to the top. Reversing the grid means that the depth variance is inverted and so the

image will have a gradient from top to bottom. This helps the model be invariant to the disposition

of the frustum on the plane. These reversions are made through the x and y axis. Graphically,

these flips on the axis correspond to the inversion of the image horizontal and/or vertically. These

inversions may be done only on one axis or on both simultaneously. Since the grids are hard

to distinguish through the naked eye, some examples of reversed grids are presented through the

filled box label style on figure 5.7.

5.5.6 Visualized Extractions

A system of saving predictions on some validation set examples over epochs of the training process

was implemented in order to better understand what the model is specifically learning.

Through this process, the debug is made automatically on the labels, grids and learnt fea-

tures. One example of the visualization of these improvements is shown on figure 5.8. For more

examples, refer to annex B.1.

The first observation that was made was the fact that, on the height grid representation, it

is almost impossible to discern through the naked eye where the points are to be found. The

representation on png format decreases even more on the quality of shadow discernment. However,

even on the array representation, the variations of value in between heights are quite small on most

grids for it to have a significant impact on the grayscale gradient variation. Despite this difficulty,

the network seems to be learning to have good sensibility to small float variations in height. Even

on the hard examples, the model learns to identify a more prominent area on which an object might

be found.

67

The HGNet Approach for LiDAR Based Object Segmentation

Grid GT

Figure 5.8: Model’s prediction through epochs on an image from the validation set with the input
grid and ground truth label showcased on the upper left corner.

68

The HGNet Approach for LiDAR Based Object Segmentation

Table 5.2: Recall and precision obtained through different grid dimensions with pixelwise object
labels.

Label type Resolution Loss Precision Recall Detection time (s/frustum)

Object
pixelwise

96x64 1423.5092 0.4950 0.7222 0.0156
128x96 1579.3886 0.4890 0.7279 0.0104

160x128 1394.0702 0.4545 0.7051 0.0149
192x160 830.2281 0.5021 0.6361 0.0184
320x288 381.9638 0.5018 0.5005 0.0485

5.6 Experiments with HGNet

In order to properly analyze and incrementally optimize the model, some experiments were carried

out with focus on different aspects of the network. The first area of action was to understand the

impact that the size of the grid had on the training process and evaluation results. Moreover, it was

found interesting to study the behaviour of the addition of data augmentation techniques.

Even more, the focal loss is also studied in terms of both stability, training outcomes and how

it can impact the training of models for unbalanced classification tasks.

Through optimization procedures, it is found that batch normalization, even though advan-

tageous for most models, impacts negatively the accuracy in terms of both recall and precision.

Furthermore, learning rate is kept at an uncommon large value, 1e-4, used alongside with the

Adam algorithm for gradient optimization. Both choices were made after heavy experimenting

with the network’s hyper parameters. These are kept through the variations made over the next

sections.

5.6.1 Grid Dimensions

Table 5.2 and 5.3 showcase the results obtained for recall and precision with validation after train-

ing with different grid dimensions. Aside from this, the labeling styles discussed on previous

sections are analyzed through out some label specific experimentation. On the ones identified as

object pixelwise labeling, the labels used for metrics evaluation are the input image zero valued

with only classification 1 at pixels occupied by an object’s coordinate based point. On the other

hand, when the methodology is identified as filled box, the labels are the entire oriented bounding

box over a black background.

Through the analysis of table 5.2, loss value shows signs of better stabilization with the in-

crease in dimensions. Even if precision seems to be non affected by the grid size, recall increases

as the resolution of the grid gets smaller. The time necessary to process a frustum suffers with

the increased grid dimensions generally, as expected. Even so, the time necessary for detection

on each frustum is rather slim. This labeling format does not seem to be too effective for training

and evaluation operations. Precision is not able to go beyond 0.5 due to the fact that the algorithm

extracts areas better than exact pixelwise classification and comparison is ensued in between the

bounding box area and object pixel.

69

The HGNet Approach for LiDAR Based Object Segmentation

Table 5.3: Recall and precision through different dimensions with filled box labeling style.

Label type Resolution Loss Precision Recall Detection time (s/frustum)

Filled box
128x96 4213.1544 0.5776 0.6016 0.0123
160x128 4511.3496 0.7279 0.6966 0.0213
320x288 4135.5612 0.5432 0.5974 0.0407

It is reasonable to conclude that precision values are much higher when using filled labels.

This has a simple explanation. As it has been discussed, due to the fact that the algorithm outlines

areas rather than pixelwise driven segmentation leads to a smaller precision when evaluating over

only bordered pixel bounded segmentation. On the other hand, bounding boxes represent an area

of interest that can be successfully and more precisely removed by the base model. So, using filled

labels seems to be more advantageous for backbone training with this model. Besides this, the

areas extracted also feature an orientation which might be useful for final bounding box extraction.

Table 5.3 showcases the results obtained on the filled box experiments. First of all, the prediction

of filled labels takes a larger portion of time over the prediction of the border even if slightly.

Validation loss values are quite large. However, during training, the focal loss is much more stable

with the filled box labeling style.

From table 5.3 and from the bundle of resolution experiments performed, the 160x128 reso-

lution was found to be the most effective to bring out good result pools. This may be explained

by the architecture of the network. As it can be denoted through figure 5.4, the contraction path

diminishes the image until it reaches a 1/16 of its initial size. For the dimension 160x128, this pro-

duces perfectly sized results since it downsizes to the 10x8 size. Through these results and due to

the fact that the smaller the image size the faster would be training and segmentation procedures,

it was chosen to keep the 160x128 resolution on follow up experimentation.

For detailed plots of the training procedures through different resolutions please refer to annex

B.2.1.

5.6.2 Focal Loss Analysis

Focal loss involves two hyper parameters that can be adjusted, the alpha and gamma. So, as to

better comprehend how these might affect training and evaluation operations, some experiments

are performed with different alpha/gamma values.

Through training, it has been noticed that sometimes the focal loss is not too stable on the

binary classification ensemble when using certain parameters. For example, as it can be denoted

on table 5.4, when the α value is higher than 0.9, the training goes astray, resulting on the tendency

showcased by the model to select all elements as the non active class. For exhaustive plots of the

training and validation losses, refer to annex B.2.3.

At the same time, it can be observed through table 5.4 that the alpha balancing factor has an

impact on the relationship between precision and recall. In fact, as values approximate zero, the

70

The HGNet Approach for LiDAR Based Object Segmentation

Table 5.4: Results of precision and recall with the variation of the α parameter.

γ α Precision Recall f1 score

2.0

2 0.01345 1.0 0.027
1 0.01497 1.0 0.029

0.9 0.6306 0.8657 0.73
0.75 0.7608 0.7767 0.77
0.6 0.7518 0.7688 0.76
0.4 0.8174 0.6899 0.75
0.25 0.8501 0.6520 0.74

tendency is to increase the precision whilst the recall suffers a decrease. This relationship is best

visualized through graphic 5.9.

With the increasing α value, precision tends to drop whilst recall increases. The point at which

both values almost meet is the ideal parameter value since it holds the common maximum for both

recall and precision. This ideal would be around 0.75. Another aspect of the relationship that

can be denoted through the plot is that even if the recall only varies inside a small interval (ap-

proximately from 0.65 to 1.0), the precision can be much more greatly affected by the parameters

chosen for the focal loss. In fact, precision varies throughout almost the entire possible scale, only

featuring an upper bound situated at 0.85. This showcases the capacity that the model is great at

choosing the relevant pixels.

Building up from this experiment, the α value was kept at 0.75 and some variations on to γ

were tested. Table 5.5 showcases the results obtained. Using a value of 0.5 for γ makes training go

astray after a bundle of epochs. The loss suddenly hits nan values and no more learning is possible.

However, values above 2.0 showcase good results with even f1 scores. However, training is more

unstable with values larger than 2.0. For this reason, the adopted γ factor is of 2.0.

Unlike α , the γ parameter does not seem to affect the training and validation procedures as

much. In fact, recall and precision do not showcase such a dependence towards this loss parameter.

Figure 5.9: Precision and recall plots through different α values.

71

The HGNet Approach for LiDAR Based Object Segmentation

Table 5.5: Results obtained in precision and recall through variations on the γ factor.

α γ Precision Recall f1 score

0.75
0.5 0.6510 0.6761 0.66
2 0.7608 0.7767 0.77
5 0.7542 0.7808 0.77

This would be expected since both parameters have different objectives. The γ parameter is more

oriented towards the balancing of under sampled classes and as such has the greatest impact on

the loss values obtained and the smoothness of the training procedures.

For further insight into the training procedures for the focal loss γ variation, refer to the annex

B.2.4.

5.6.3 Data Augmentation Factor Analysis

It is of interest to grasp how effectively the data augmentation methodologies can have an impact

on final accuracy. For this purpose, a data augmentation factor is added to the network hyper

parameters. This factor is balanced in between 0 and 1. Its value represents the percentage through

which to augment the original training data. On each batch, the tunable percentage will be some

samples at random flipped at random as well. This means that any sample might be picked and

any reversion might be applied, either only vertical or horizontal or both simultaneously.

The effects of data augmentation are then studied through the realization of training sessions

with different augmentation factors. The results can be observed through table 5.6.

From the observation of the results, even if the precision wavers around similar values, the

recall does get a boost due to the presence of more data. Eventually, this leads the model to achieve

better performance generally. On this case, it can be seen that it only provides an increment of

around 0.1 0.2 points in score. The relationship between the factor used for data augmentation and

the increase of the results is not straightforward. In fact, as it can be observed from table 5.6, the

use of a factor of 0.2 brings about similar results as a factor of 0.5. However, more experiments

are necessary in order to provide an informed conclusion.

For a more in depth view of the training processes for the data augmentation factor, refer to

annex B.2.5.

Table 5.6: Results obtained with different augmentation factors.

Aug factor Precision Recall f1 score

0.0 0.7608 0.7767 0.77
0.2 0.7499 0.8112 0.78
0.5 0.7429 0.7967 0.77

72

The HGNet Approach for LiDAR Based Object Segmentation

5.7 Segmentation Speed Analysis

Since detection times are absolutely invaluable for application on the scenario of autonomous

driving, it is of interest to analyze the timing values by frustum.

Figure 5.10 showcases the exponential relationship in between the summed segmentation time

and the number of frustum over several different grid dimensions. The summed segmentation

time is the time to segment all resulting frustum present on a sample, considering that a sample is

from the full pipeline and features an unknown number of objects. All times used for calculations

on segmentation time include the creation of the height grid, model compilation, prediction and

evaluation. The hardware used to extract the statistics was the already before mentioned NVIDIA

GeForce GTX 1080 Ti.

Since all segmentation experiments were carried out on the object dataset, the statistics from

that specific dataset are considered. If we recall the figure 4.2, from the previous section, a sample

from that specific bundle of data would never have over 20 objects on the same frame. From the

segmentation times extracted, this would mean that, at a standard grid resolution of 160x128 the

summed segmentation time would be around 0.29 seconds if all frustum are processed separately.

Basing the assumption once more on figure 4.2, most frames include 1 to 6 objects. On that

case, with a resolution of 160x128, the summed time would be between 0.01489 and 0.08934

seconds. The segmentation times would only feature such high values in the case that every single

frustum is processed one at a time.

Timing constraints are not the objective of this work. However, from the top of the head,

estimating that most GPU’s are able to parallel tasks in the order of 10’s of thousands, this would

mean that the time needed to segment a frame, even with 20 objects, would be approximately

equal to that of segmenting a sample with only one frustum removed.

Observing now other aspects of figure 5.10, it is demonstrated clearly that the higher is the

grid dimension, the higher will be its segmentation time. This is naturally expected since the more

resolution is added to the grid, the more computational resources would be necessary to create and

process it.

5.8 Summary

This chapter showcases the progress made whilst researching new methodologies for exploration

of both representations and segmentation of LiDAR pointclouds. Through experimentation of

machine learning such as the k−means algorithm and eigenvector analysis, some conclusions are

drawn.

An occupancy grid representation is proposed, inspired by the modulated RGB channel ele-

vation grid proposed by Yu et al. [YWH+17]. This grid samples pointcloud points through the

bird’s eye view perspective and compiles them on a flat, grayscale image which showcases the

maximum elevation found at any cell. A methodology for search space reduction is also adopted,

based off of Qi et al. [QLW+17], through the removal of pointcloud frustum.

73

The HGNet Approach for LiDAR Based Object Segmentation

Figure 5.10: Segmentation time per number of frustum over several grid dimensions.

Furthermore, a novel network is explored for segmentation on the height grid representation.

This network aims at classifying pixels as active or non active accordingly to the pixel belonging

to the object’s area or not in a frustum. Aside from presenting the architecture, several experi-

ments are carried out on different configurations and settings in order to ascertain the network’s

capabilities. The focal loss was used for the training procedures. Its parameter variation is also

delineated through experiences on the HGNet.

74

Chapter 6

Conclusions and Future Work

Through the course of this project, many experiments were carried out and varied, intricate con-

clusions were drawn after discussion and observation. This section serves the purpose of enlight-

ening the reader on a general plane over the achievements made by this work, what came to be

understood and what will come to be explored. As such, the satisfaction of the objectives is first

delivered in the form of a summary on the work that was made during the project’s development

time. A critical analysis is then carried out in order to point out what was successful and what

would need further development. Besides that, the future work is dwelt on, in order to give a grasp

of what are the topics of interest that were found to be promising moving forward.

6.1 Main Contributions

The first and most prominent objective of the work at hand was to explore methodologies for

object detection in autonomous driving scenarios. Throughout the course of the development

phase, dozens of models were tested and analyzed on the context of unmanned driving processes.

Even going further from the initially imposed objectives, this work extended the scope from only

working with the LiDAR sensor to including RGB camera images as well.

At first, several existent models, whether generalized or specifically applied were explored

on the specified setting in order to ascertain their own effectiveness and adaptation possibilities

towards these issues. On this topic, the YOLO image detector was tested with the KITTI dataset,

being able to detect up to eight classes effectively on basic, standard scenarios. Many fold configu-

rations were tested on this detector which eventually lead to the joining of the ideal conditions and

a guide for configuration of the model on the general plane. Furthermore, it was even proved how

YOLO could generalize to other sensory data without much training and/or further configuration

hassle such as grayscale imagery. The submission to the benchmark, however, did not showcase

results on par with what would be expected of the model, bringing the conclusion that it is unfit

for many recurrently incurring road situations.

75

Conclusions and Future Work

Moving towards 3D sensory data, machine learning techniques were explored for a wide range

of tasks. Starting from pointcloud processing and analysis methodologies, contributions were

made on reduction of object’s search space, eigenvector based analysis and ground segmentation.

A bundle of possibilities were explored and a guide is presented over the directions to follow and

what not to test since it brings out unsatisfying results.

More importantly, a new representation for LiDAR is presented and analyzed in terms of qual-

itative potential for posterior bounding box regression. The designed height grid can be though of

as a relief map in bird’s eye view. Sources of errors for this representation are described alongside

with the great advantages to be gained with its use.

Moreover, a new model is proposed for object area segmentation working on the height grid

representation. This model achieves a staggering f1 score of 0.78 for images with 3 times smaller

resolution than the standard image recognition algorithms dare to work with. This leads to a

fast training process which means the network can be easily extrapolated to any kind of scenario

with little processing overhead. The proposed HGNet is not only able to achieve good pixelwise

segmentation. In fact, it is able to delineate the bounding box area with orientation information

from a small sample of points taken from the LiDAR in bird’s eye view. At the same time, the

HGNet showcased a great segmentation speed by frustum which contributes to the possibility of

using the model on real time scenarios. From the outputs of the network, bounding boxes can be

easily derived with further simple assisting processes.

On the overall plane, a possible pipeline for 3D object detection is proposed which mixes

information from two types of sensors. This pipeline leverages a simple, light and fast fusion

of the 2D information extracted through both cameras and LiDAR bird’s eye view in order to

bring real 3D powered bounding boxes. Overcoming some shortcomings of similar pipelines, the

process for the use of joint information is idealized in a way that makes the most use of both

sensors.

To sum up, contributions were made both on the field of 2D image based object detection and

LiDAR processing. The objectified view of exploring new uncharted areas or methodologies was

also fulfilled, having research been carried out with no fear of testing out of the box concepts. As

such, all objectives are deemed as concluded and with great achievements through them.

6.2 Final Remarks

Even through all that was achieved, one can still distinguish between the strong and weak points

on the work that was done. A critical analysis is always necessary in retrospective so that one has

an idea of what has been done right and what needs further development.

As such, the first denoted weakness was the reduced testing of camera detection models. Many

more models exist and particularly, the YOLO model has been known to be falling behind com-

pared with other general purpose detectors. Further than the general plane, there are several models

that are specifically built for the autonomous driving scenario. Having a comparison analysis with

these models would be of interest for the designed objectives.

76

Conclusions and Future Work

On another note, the proposed pipeline can certainly achieve the desired outcomes. It can

successfully leverage the use of both sensors with a concise, simple flow. However, the fact that the

procedures are carried out as individual steps contributes to the complexity of training all models

separately and adds to the detection time since each frame needs to go through processing steps

in between models. Furthermore, some of the parts of the pipeline are not possible to optimize as

it is. For example, parallel processing is impossible before the frustum is removed. Besides that,

objects can only be found on LiDAR if they are found on camera beforehand. This eventually

means that the final pipeline will have a mean average precision with an upper bound defined by

the 2D model’s own mAP.

On another topic, the height grid explored for LiDAR segmentation creates an obstacle on

certain rare cases. When the object is close to a corner of the image, it may happen that a bounding

box is rotated towards the outside of the image field of view. On this case, it would be harder

to regress oriented bounding boxes from the grid image only even if the points belonging to the

object are all inside the image. On this precise situation, the HGNet would then loose some quality

of the outputted information since the segmentation would not be helpful in the guessing of the

orientation and exact boxed coordinates.

The proposed HGNet has brought extensively impressive results. In fact, it is able to extract

meaningful features from an image with such small variations in height. Since the frustum are nor-

malized, the height values sometimes end up having variations only starting on the fourth numeric

float point. This would be another weakness of the height grid. Furthermore, since the height grids

are not formalized in between each other, the model needs to learn through completely different

settings each time. However, even with such limitations, the model was able to reach an F1 score

of 0.78 which is incredibly high considering it extracts areas and not pixelwise activation. More-

over, depending on the objective at hand, it has been shown that this network can be tuned to have

outstanding recall over some precision cost or vice versa. The fact that the frustum is imprinted

on the images with its original rotation does not help make the model invariant to rotation of the

data. This would be another weakness provoked by the pre processing steps. Furthermore, ideally,

more optimization experimentation would have to be done on the HGNet in order to truly have it

achieve its full potential. For example, the effects of data augmentation are not fully documented

yet and the study of gradient optimization algorithms could only benefit the end results.

6.3 Future Work

Building up from what was considered to be lacking, the following paths of improvement would

be of interest to follow. For example, the poor performance of YOLO on the benchmark brings

forward the question on whether the general purpose object detectors can be adapted to such a

demanding environment as the autonomous driving one. On that thought, it would be of interest to

explore the RetinaNet, currently the general purpose state-of-the-art model, so as to closely assess

whether the weakness showcased is directly related with the YOLO model or with the general

approach taken by such algorithms.

77

Conclusions and Future Work

On the topic of the pipeline, it is identified the optimization of the whole flow through the

creation of a model capable of leveraging both camera and LiDAR information at the same time.

One great improvement could certainly be achieved whilst researching language transgression

methodologies in between camera and LiDAR, of the style of the joint model proposed by Redmon

et al. [RF17]. If a model could join the models through one unique processing flow, it would be

of interest to find a common transgression in between both spaces.

Furthermore, the height grid could be improved thought the transformation on RGB images

as it is proposed on [YWH+17]. The exploration of several methods for channel use would be of

interest aside from features such as elevation. Further than that, it is also identified a possibility of

evolving the HGNet through a more FPN [LDG+17] styled approach. It is idealized that several

grids could be leveraged with channels dedicated to different features such as height, density and

intensity for example. Using then those grids for an entranced, collaborative feature extraction

would be a potential filled direction of study. On that specific note, it would also be of interest to

test another architecture through the addition of short connections in between the mid steps of the

contraction and expansion path, in the fashion of the U-Net [RFB15].

On a more general setting, this work would allow the further study of the joint pipeline. It is

desirable that the extra steps left on the pipeline would be implemented on a future perspective.

This would include adding complexity to the HGNet with the use of the logit segmentation in

order to regress bounding boxes with orientation.

Other identified projects moving forward would be the start of object classification. As it has

been mentioned beforehand, it would be interesting to develop a mixed camera and LiDAR object

identification model that could classify a bundle of categories from both sensory information. Even

further than that, moving on to the tracking scenario, a possible direction of exploration would be

the use of both sensory data in order to keep track of all objects even when it would leave a certain

sensor’s field of view.

To sum up, many contributions were made to the field. With the exploration of existent and

new methods for object detection in both camera and LiDAR, this work has dealt with the topic

of autonomous driving as the huge research question mark it is. Moving forward, more experi-

ments and analysis can be made on the explored topics with the perspective of improving their

shortcomings as well as completely new paths that seem to have the potential to bring out great

results.

78

References

[04] The princeton shape benchmark. In Proceedings of the Shape Modeling Interna-
tional 2004, SMI ’04, pages 167–178, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[AGP+17] A. Asvadi, L. Garrote, C. Premebida, P. Peixoto, and U. J. Nunes. Depthcn: Vehicle
detection using 3d-lidar and convnet. In 2017 IEEE 20th International Conference
on Intelligent Transportation Systems (ITSC), pages 1–6, Oct 2017.

[Ale18] AlexeyAB. Yolo-v3 and yolo-v2 for windows and linux. https://github.
com/AlexeyAB/darknet, 2018. [Online; accessed 13-June-2018].

[APPN16] Alireza Asvadi, Cristiano Premebida, Paulo Peixoto, and Urbano Nunes. 3d lidar-
based static and moving obstacle detection in driving environments. Robot. Auton.
Syst., 83(C):299–311, September 2016.

[BNB17] A. Börcs, B. Nagy, and C. Benedek. Instant object detection in lidar point clouds.
IEEE Geoscience and Remote Sensing Letters, 14(7):992–996, July 2017.

[BP16] Axel Bender and El'ias Marel Porsteinsson. Object Classification using 3D Con-
volutional Neural Networks. Chalmers University of Technology, 2016.

[BSC12] Jens Behley, Volker Steinhage, and Armin B Cremers. Performance of Histogram
Descriptors for the Classification of 3D Laser Range Data in Urban Environments.
IEEE International Conference on Robotics and Automation, pages 4391–4398,
2012.

[CCR+17] F. Chabot, M. Chaouch, J. Rabarisoa, C. Teulière, and T. Chateau. Deep manta: A
coarse-to-fine many-task network for joint 2d and 3d vehicle analysis from monoc-
ular image. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1827–1836, July 2017.

[CDB18] Nesrine Chehata, Nicolas David, and Frédéric Bretar. Lidar data classification
using hierarchical k-means clustering. 06 2018.

[CZMK16] Sungjoon Choi, Qian-Yi Zhou, Stephen Miller, and Vladlen Koltun. A large dataset
of object scans. 02 2016.

[EEV+14] Mark Everingham, S. M Ali Eslami, Luc Van Gool, Christopher K I Williams,
John Winn, and Andrew Zisserman. The Pascal Visual Object Classes Challenge:
A Retrospective. International Journal of Computer Vision, 2014.

[FB81] Martin a Fischler and Robert C Bolles. Paradigm for Model. Communications of
the ACM, 24(6):381–395, 1981.

79

https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet

REFERENCES

[FKG13] Jannik Fritsch, Tobias Kuehnl, and Andreas Geiger. A new performance measure
and evaluation benchmark for road detection algorithms. In International Confer-
ence on Intelligent Transportation Systems (ITSC), 2013.

[FLR+17] Cheng-Yang Fu, Wei Liu, Ananth Ranga, Ambrish Tyagi, and Alexander C. Berg.
Dssd : Deconvolutional single shot detector. CoRR, abs/1701.06659, 2017.

[GDDM14] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hi-
erarchies for accurate object detection and semantic segmentation. Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, pages 580–587, 2014.

[Gir15] Ross Girshick. Fast R-CNN. Proceedings of the IEEE International Conference
on Computer Vision, pages 1440–1448, 2015.

[GLU12] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2012.

[HGDG17] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask R-CNN.
Proceedings of the IEEE International Conference on Computer Vision, 2017-
October:2980–2988, 2017.

[HL09] M. Himmelsbach and T. Luettel. Real-time object classification in 3D point clouds
using point feature histograms. IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 994–1000, 2009.

[HSL+17] Timo Hackel, Nikolay Savinov, Lubor Ladicky, Jan Dirk Wegner, Konrad
Schindler, and Marc Pollefeys. Semantic3d.net: A new large-scale point cloud
classification benchmark. CoRR, abs/1704.03847, 2017.

[JS16] Jing Huang and Suya You. Point cloud labeling using 3D Convolutional Neural
Network. 2016 23rd International Conference on Pattern Recognition (ICPR),
pages 2670–2675, 2016.

[KM11] R. Kalam and K. Manikandan. Enhancing k-means algorithm for image segmen-
tation. In 2011 International Conference on Process Automation, Control and
Computing, pages 1–4, July 2011.

[KML+17] Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh, and Steven Lake
Waslander. Joint 3d proposal generation and object detection from view aggre-
gation. CoRR, abs/1712.02294, 2017.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification
with deep convolutional neural networks. In Proceedings of the 25th International
Conference on Neural Information Processing Systems - Volume 1, NIPS’12, pages
1097–1105, USA, 2012. Curran Associates Inc.

[KWB08] K. Klasing, D. Wollherr, and M. Buss. A clustering method for efficient segmen-
tation of 3d laser data. In 2008 IEEE International Conference on Robotics and
Automation, pages 4043–4048, May 2008.

80

REFERENCES

[LDG+17] T. Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature
pyramid networks for object detection. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 936–944, July 2017.

[LGG+17] Tsung Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal
Loss for Dense Object Detection. Proceedings of the IEEE International Confer-
ence on Computer Vision, 2017-Octob:2999–3007, 2017.

[Li16] Bo Li. 3D Fully Convolutional Network for Vehicle Detection in Point Cloud.
2016.

[LMB+14] Tsung Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: Common
objects in context. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014.

[LSZ+16] Min Liu, Yifei Shi, Lintao Zheng, Yueshan Xiong, and Kai Xu. Volumetric spatial
transformer network for object recognition. SIGGRAPH ASIA 2016 Posters on -
SA ’16, (1):1–2, 2016.

[LUG16] Stefan Lange, Fritz Ulbrich, and Daniel Goehring. Online vehicle detection using
deep neural networks and lidar based preselected image patches. IEEE Intelligent
Vehicles Symposium, Proceedings, 2016-Augus(Iv):954–959, 2016.

[LV15] K. Lenc and A. Vedaldi. R-cnn minus r. In British Machine Vision Conference,
2015.

[LW13] Marco Langerwisch and Bernardo Wagner. Building variable resolution occupancy
maps assuming unknown but bounded sensor errors. In IEEE International Con-
ference on Intelligent Robots and Systems, 2013.

[LZX16] Bo Li, Tianlei Zhang, and Tian Xia. Vehicle detection from 3d lidar using fully
convolutional network. CoRR, abs/1608.07916, 2016.

[Mel15] T J Melanson. Using Faster-RCNN to Improve Shape Detection in LIDAR. Stan-
ford University, 2015.

[MET17] D. Matti, H. K. Ekenel, and J. P. Thiran. Combining lidar space clustering and
convolutional neural networks for pedestrian detection. In 2017 14th IEEE Inter-
national Conference on Advanced Video and Signal Based Surveillance (AVSS),
pages 1–6, Aug 2017.

[MGG17] Valentin Magnier, Dominique Gruyer, and Jerome Godelle. Automotive LIDAR
objects detection and classification algorithm using the belief theory. IEEE Intelli-
gent Vehicles Symposium, Proceedings, (Iv):746–751, 2017.

[MNG17] M. P. Muresan, S. Nedevschi, and I. Giosan. Real-time object detection using a
sparse 4-layer lidar. In 2017 13th IEEE International Conference on Intelligent
Computer Communication and Processing (ICCP), pages 317–322, Sept 2017.

[MS15] D. Maturana and S. Scherer. Voxnet: A 3d convolutional neural network for real-
time object recognition. In 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 922–928, Sept 2015.

81

REFERENCES

[MYLX11] Z Man, W Ye, P Lou, and H Xiao. Feature extraction based on split-merge in range
image of lidar. 22:2303–2306, 10 2011.

[OK17] Sang-Il Oh and Hang-Bong Kang. Object Detection and Classification by
Decision-Level Fusion for Intelligent Vehicle Systems. Sensors, 17(1):207, 2017.

[PJ17] Marek Pavelka and Václav Jirovský. Lidar based object detection near vehicle.
2017 Smart Cities Symposium Prague, SCSP 2017 - IEEE Proceedings, 2017.

[Pro09] D.V. Prokhorov. Object recognition in 3D lidar data with recurrent neural net-
work. 2009 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops, pages 9–15, 2009.

[QCS+16] B. Qin, Z. J. Chong, S. H. Soh, T. Bandyopadhyay, M. H. Ang, E. Frazzoli, and
D. Rus. A spatial-temporal approach for moving object recognition with 2D LI-
DAR. Springer Tracts in Advanced Robotics, 109:807–820, 2016.

[QLW+17] Charles Ruizhongtai Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J. Guibas.
Frustum pointnets for 3d object detection from rgb-d data. CoRR, abs/1711.08488,
2017.

[RCL+17] J. Ren, X. Chen, J. Liu, W. Sun, J. Pang, Q. Yan, Y. W. Tai, and L. Xu. Accurate
single stage detector using recurrent rolling convolution. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 752–760, July 2017.

[RDGF16] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified,
real-time object detection. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 779–788, June 2016.

[RDS+15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision, 115(3):211–252, 2015.

[Red16] Joseph Redmon. Darknet: Open source neural networks in c.
http://pjreddie.com/darknet/, 2013–2016. [Online; accessed 05-May-2018].

[RF17] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 6517–
6525, July 2017.

[RFA18] Joseph Redmon, Ali Farhadi, and Coco Ap. YOLOv3 : An Incremental Improve-
ment. Tech Report, 2018.

[RFB15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional net-
works for biomedical image segmentation. In Nassir Navab, Joachim Hornegger,
William M. Wells, and Alejandro F. Frangi, editors, Medical Image Computing
and Computer-Assisted Intervention – MICCAI 2015, pages 234–241, Cham, 2015.
Springer International Publishing.

[RHGS17] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 39(6):1137–1149, 2017.

82

REFERENCES

[RLR13] D. O. Rubio, A. Lenskiy, and J. H. Ryu. Connected components for a fast and
robust 2d lidar data segmentation. In 2013 7th Asia Modelling Symposium, pages
160–165, July 2013.

[RLW+09] Eric Richter, Philipp Lindner, Gerd Wanielik, Kiyokazu Takagi, and Akira Isogai.
Advanced occupancy grid techniques for lidar based object detection and tracking.
IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, pages
450–454, 2009.

[RQSMJG17] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet:
Deep learning on point sets for 3d classification and segmentation. IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2017.

[SSJ06] M. Szarvas, U. Sakai, and Jun Ogata. Real-time Pedestrian Detection Using LI-
DAR and Convolutional Neural Networks. 2006 IEEE Intelligent Vehicles Sympo-
sium, pages 213–218, 2006.

[SZ14] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. CoRR, abs/1409.1556, 2014.

[TRC+] TA Teo, JY Rau, LC Chen, JK Liu, and WC Hsu. a Spilt-and-Merge Technique for
Building Shaping. Loc.Geomatics.Ncku.Edu.Tw.

[UVGS13] J R R Uijlings, K E A Van De Sande, T Gevers, and A W M Smeulders. Selective
Search for Object Recognition. Int J Comput Vis, 2013.

[Wik18] Wikipedia. F1 score — Wikipedia, the free encyclopedia. http:
//en.wikipedia.org/w/index.php?title=F1%20score&oldid=
841695054, 2018. [Online; accessed 13-June-2018].

[Wor12] Digital Camera World. Cheat sheet: how your digital camera turns captured light
into an image, August 2012.

[WSD07] Thorsten Weiss, Bruno Schiele, and Klaus Dietmayer. Robust Driving Path De-
tection in Urban and Highway Scenarios Using a Laser Scanner and Online Occu-
pancy Grids. 2007 IEEE Intelligent Vehicles Symposium, pages 184–189, 2007.

[WSK+15] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou
Tang, and Jianxiong Xiao. 3D ShapeNets: A deep representation for volumetric
shapes. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2015.

[WT04] Miao Wang and YH Tseng. Lidar data segmentation and classification based on
octree structure. Parameters, 2(1):1–6, 2004.

[XMS14] Y. Xiang, R. Mottaghi, and S. Savarese. Beyond pascal: A benchmark for 3d object
detection in the wild. In IEEE Winter Conference on Applications of Computer
Vision, pages 75–82, March 2014.

[YWH+17] S. L. Yu, T. Westfechtel, R. Hamada, K. Ohno, and S. Tadokoro. Vehicle detection
and localization on bird’s eye view elevation images using convolutional neural
network. In 2017 IEEE International Symposium on Safety, Security and Rescue
Robotics (SSRR), pages 102–109, Oct 2017.

83

http://en.wikipedia.org/w/index.php?title=F1%20score&oldid=841695054
http://en.wikipedia.org/w/index.php?title=F1%20score&oldid=841695054
http://en.wikipedia.org/w/index.php?title=F1%20score&oldid=841695054

REFERENCES

[ZATX03] Sen Zhang Sen Zhang, M. Adams, Fan Tang Fan Tang, and Lihua Xie Lihua Xie.
Geometrical Feature Extraction Using 2D Range Scanner. 2003 4th International
Conference on Control and Automation Proceedings, (June):10–12, 2003.

[ZF14] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars,
editors, Computer Vision – ECCV 2014, pages 818–833, Cham, 2014. Springer
International Publishing.

[ZT17] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based
3d object detection. CoRR, abs/1711.06396, 2017.

84

Appendix A

YOLO Architecture and Processing
Breakdown

An in depth view into the workings of the YOLO model.

A.1 Version 1 Full Architecture

Full architecture of the first version of YOLO presented on Redmon et al. first’s paper[RDGF16]

is showcased on figure A.1.

Figure A.1: YOLO version 1 full architecture breakdown. Adapted from [RDGF16].

85

YOLO Architecture and Processing Breakdown

A.2 Darknet-19 and Darknet-53

Figure A.4 shows the evolution in architecture of the classifier named Darknet. Going from 19 to

53 layers, the newest Darknet[Red16] version is much more complex.

Figure A.2: Darknet-19 architecture. Figure A.3: Darknet-53 architecture.

Figure A.4: Darknet-19 and Darknet-53 architectures. Adapted from [RF17] and [RFA18] respec-
tively.

86

YOLO Architecture and Processing Breakdown

A.3 Training Evolution

Figure A.5 features the YOLO loss evolution over iterations from the training session with the

object dataset.

Figure A.5: YOLO training loss evolution chart.

87

YOLO Architecture and Processing Breakdown

88

Appendix B

HGNet Training Observations

A more in depth view of the learning process through epochs of the HGNet are presented through

some exhibits.

B.1 Evolution Over Epochs

Predictions of the model by epoch when evaluating on the test set. Figures B.1 and 5.8 showcase

two different grids from the test set. The grid image is imperceptible on the png imaging format.

Grid GT

Figure B.1: Model’s prediction through epochs on an image from the validation set with the input
grid and ground truth label showcased on the upper left corner.

89

HGNet Training Observations

Grid GT

Figure B.2: Model’s prediction through epochs on another image from the validation set with the
input grid and ground truth label showcased on the upper left corner.

90

HGNet Training Observations

B.2 Training Processes

Compilation of the training/validation loss plots obtained through different experiments. Plots

were drawn each 10 epochs and the maximum shown epoch does not correspond to the point at

which values were taken for evaluation purposes. A early stopping time is identified for all the

training sessions.

B.2.1 Grid Dimensions Tuning

Graphics showcased on B.3 demonstrate the smooth training processes throughout different di-

mensions. The loss drops constantly until it stabilizes due to the use of the focal loss. Even though

the increased dimensions of the grid stabilize the loss to smaller values, the evaluation loss gets a

little more rocky.

96x64 128x96 192x160

Figure B.3: Training loss and evaluation loss plots for several resolutions of the HGNet.

B.2.2 Threshold Tuning

From the two threshold values specifically tested, the plots showcased on figure B.4 of the training

and validation losses were obtained.

thresh = 0.6 thresh = 0.5

Figure B.4: Training loss and evaluation loss plots from the HGNet threshold tuning experiments.

91

HGNet Training Observations

B.2.3 α Tuning

Using α values over 0.9 spoils training. With a value of 1, training and evaluation losses reach

zero and stay there through all epochs. With a larger value, of 2 on this specific case, the loss is

negative for both training and evaluation procedures, with no effective change after the minimal

values have been attained. Figure B.5 showcases these relationships.

α = 2 α = 1

Figure B.5: Training loss and evaluation loss plots over different α values.

B.2.4 γ Tuning

Making use of γ values under 2 seems to lead training astray as it is represented by figure B.6

through the existence of loss only until epoch 4 when it suddenly turns nan. Values over 2.0 are

unstable provoking several peaks on loss value through training. However, in general, the loss

values obtained are much smaller, being at the border of the hundreds.

γ = 0.5 γ = 5

Figure B.6: Plots of the training and validation loss originated with different γ parameters on the
loss function.

92

HGNet Training Observations

B.2.5 Augmentation Factor Tuning

As it can be denoted from figure B.7, the training is more smooth when using an augmentation

factor of 0.2. Loss wavers around quite more with a doubling data factor.

f actor = 0.2 f actor = 0.5

Figure B.7: Plots of the training and validation loss obtained with different augmentation factors.

93

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation and Objectives
	1.3 Document Structure

	2 Deep Learning and the Problematic of Object Detection
	2.1 Automated Object Detection
	2.1.1 Camera Detection
	2.1.2 Spatial Representations
	2.1.3 LiDAR Detection
	2.1.4 Camera and LiDAR Fusion

	2.2 Theoretical Foundations
	2.2.1 You Only Look Once
	2.2.2 YOLO Version 2
	2.2.3 YOLO Version 3
	2.2.4 Focal Loss

	2.3 Overview of Datasets and Benchmarks for Object Detection
	2.4 Summary

	3 Machine Vision and Autonomous Driving
	3.1 The Concept of Sensory Perception
	3.1.1 KITTI Vision Dataset Setup
	3.1.2 RGB Cameras
	3.1.3 LiDAR Sensor
	3.1.4 Comparative Analysis of RGB Camera and LiDAR

	3.2 The Problem of Object Detection in Autonomous Driving
	3.2.1 Autonomous Driving
	3.2.2 Constraints to the Problem Formulation
	3.2.3 Obstacles to Object Detection in Autonomous Driving Scenarios
	3.2.4 Metric Discussion
	3.2.5 Recall, Precision and F1
	3.2.6 Intersection of Union

	3.3 Summary

	4 Envisioned Fusion of Camera and LiDAR Based Object Detection
	4.1 Pipeline
	4.1.1 Dataset Statistical Analysis
	4.1.2 Envisioned Fusion of Models

	4.2 Camera Based Object Detection Experimentation
	4.2.1 Network Resolution
	4.2.2 Anchors
	4.2.3 Random
	4.2.4 Grayscale
	4.2.5 Version Comparison Analysis

	4.3 Benchmark Environment
	4.3.1 Training on Raw Dataset
	4.3.2 Training on Object Dataset
	4.3.3 State of the Art Comparative Analysis

	4.4 Summary

	5 The HGNet Approach for LiDAR Based Object Segmentation
	5.1 Preprocessing
	5.1.1 Frustum
	5.1.2 Normalization

	5.2 Representations
	5.2.1 The Bird's Eye View
	5.2.2 The Height Grid

	5.3 Eigenvector Based Ground Segmentation
	5.4 Using k-means Clustering for Object Segmentation
	5.5 The Height Grid Network
	5.5.1 Input Preliminaries
	5.5.2 Architecture
	5.5.3 Focal Loss for Binary Pixelwise Classification
	5.5.4 Threshold Behavioral Analysis
	5.5.5 Data Augmentation
	5.5.6 Visualized Extractions

	5.6 Experiments with HGNet
	5.6.1 Grid Dimensions
	5.6.2 Focal Loss Analysis
	5.6.3 Data Augmentation Factor Analysis

	5.7 Segmentation Speed Analysis
	5.8 Summary

	6 Conclusions and Future Work
	6.1 Main Contributions
	6.2 Final Remarks
	6.3 Future Work

	References
	A YOLO Architecture and Processing Breakdown
	A.1 Version 1 Full Architecture
	A.2 Darknet-19 and Darknet-53
	A.3 Training Evolution

	B HGNet Training Observations
	B.1 Evolution Over Epochs
	B.2 Training Processes
	B.2.1 Grid Dimensions Tuning
	B.2.2 Threshold Tuning
	B.2.3 Tuning
	B.2.4 Tuning
	B.2.5 Augmentation Factor Tuning

