
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Dynamic Real-Time IoT Orchestration

Tiago José Viana Fragoso

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: André Restivo, Assistant Professor

Second Supervisor: Hugo Sereno, Assistant Professor

July 21, 2021

Dynamic Real-Time IoT Orchestration

Tiago José Viana Fragoso

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Prof. Gil Gonçalves

External Examiner: Prof. Filipe Sousa

Supervisor: Prof. André Restivo

July 21, 2021

Abstract

Internet-of-Things (IoT) is a network of heterogeneous Internet-connected devices and has been
rapidly growing in device numbers, spreading across several application domains. As the number
of devices grows, so does the data produced by them. Consequently, traditional IoT architectures
where data produced by fog/edge devices (i.e., sensors, actuators) is processed on the cloud be-
come less suitable to handle the large amounts of data, incurring in bandwidth limitations, higher
latency, and even privacy concerns as data may cross political boundaries. In the interest of miti-
gating these issues and leveraging the ever-growing computational capabilities at the edge of the
network, the fog and edge computing paradigms have developed.

Fog/edge orchestration platforms for IoT have emerged as an implementation of the fog/edge
computing paradigms and provide application partitioning and dynamic allocation of tasks to de-
vices. As devices closer to the edge are, generally, more failure-prone, some parts of the applica-
tion may be assigned to a device that fails, causing service disruption. Thus, fog/edge orchestra-
tion platforms must ensure the system’s dependability, usually through fault-tolerance/self-healing
mechanisms that aim to provide correct service in the presence of faults. However, available sys-
tems often overlook this need — either only offering a mechanism that re-distributes tasks when
device failure is detected or offering no fault-tolerance at all.

In a previous work, a Node-RED-based real-time orchestration system for IoT was developed,
NoRDOr. However, some limitations hinder the systems’ resilience, such as (1) limited self-
healing mechanisms that are not suitable to handle device instability and memory constraints,
(2) (re-)orchestration deploys the entire system, not taking into account the current state, leading
to greater orchestration overhead, and (3) certain task configurations lead the system to produce
unbalanced assignments, which, in turn, may lead to considerable service disruption in case of
device failure.

In this work, we address these limitations in order to achieve greater resilience by (1) em-
ploying probing mechanisms to leverage real-time information from devices, such as stability and
resources, to produce orchestrations less susceptible to device failure, (2) altering the greedy algo-
rithm to mitigate its task-order bias, thus generating balanced assignments, and (3) leveraging the
current orchestration to produce minimal disturbance to the system when re-orchestrating, thus
allowing it to provide correct service for a greater amount of time which may be crucial to ensure
safety in critical systems.

To validate our solution, a real-time orchestration simulator was developed to easily create
and measure reproducible scenarios that mimic real-world IoT orchestration ones, tightening the
validation cycle of the proposed improvements. Then, the solution was ported to NoRDOr and
tested in virtual and physical IoT devices, using smart-home scenarios, where several metrics were
collected to evaluate the system’s resilience. We concluded that leveraging runtime information
from the devices would lead to a system better suited to provide correct service in the presence of
faults.

Keywords: IoT, Edge computing, Node-RED, Self-healing, Fault-tolerance

i

ii

Resumo

A Internet-of-Things (IoT) é uma rede de dispositivos heterogéneos ligados à Internet e está a
crescer rapidamente em número de dispositivos, alastrando-se a diversos domínios. Com o cresci-
mento do número de dispositivos, a quantidade de dados por eles produzida também cresce. Con-
sequentemente, as arquiteturas tradicionais de IoT, onde a maioria dos dados produzidos por dis-
positivos fog/edge são processadas na cloud, tornam-se menos adequadas para processar grandes
quantidades de dados, devido a limitações de largura de banda, maior latência e transferências de
dados entre fronteiras políticas. De modo a mitigar estes problemas e aproveitar o poder computa-
cional disponível na periferia da rede, sugiram os paradigmas de fog e edge computing.

As plataformas de orquestração em fog/edge emergem como implementações dos paradigmas
fog/edge computing, oferecendo partição de aplicações em tarefas e alocação dinâmica dessas
tarefas aos dispositivos. Tais dispositivos na periferia da rede são, geralmente, mais suscetíveis
a falhas. Assim, é possível que parte da aplicação estejam alocadas a dispositivos que falham,
causando uma interrupção do bom funcionamento da aplicação. Deste modo, as plataformas de
orquestração em fog/edge devem garantir a dependability do sistema, normalmente através de
mecanismos de self-healing, que visam manter o funcionamento do sistema na presença de falhas.
No entanto, as plataformas existentes negligenciam esta necessidade — apenas oferecendo um
mecanismo de redistribuição das tarefas quando uma falha é detetada ou até nenhum mecanismo.

Num trabalho anterior, foi desenvolvida uma plataforma de orquestração para IoT em tempo-
real, baseada em Node-RED, NoRDOr. Contudo, existem algumas limitações que prejudicam a
resiliência do sistema, tal como (1) mecanismos limitados de self-healing que não são adequados
para lidar com a instabilidade e restrições de memória dos dispositivos, (2) a re-orquestração
implica re-alocar todas as tarefas do sistema, ignorando o estado atual, o que leva a um maior
overhead de orquestração, e (3) certas configurações levam a que o sistema produza alocações
desbalanceadas, que podem causar interrupções no funcionamento do sistema em caso de falha de
um dispositivo.

Este trabalho foca-se em colmatar estas limitações, de modo a melhorar a resiliência do sis-
tema, através de (1) utilização de mecanismos de probing para tirar partido da informação dos dis-
positivos em tempo-real, como estabilidade e recursos, e realizar orquestrações menos suscetíveis
às falhas dos dispositivos, (2) alterações ao algoritmo greedy de forma a mitigar o impacto da
ordem de processamento das tarefas, resultando em alocações mais balanceadas, e (3) utilizar a
alocação atual de modo a reduzir as perturbações introduzidas no sistema aquando de uma re-
orquestração, permitindo que o bom funcionamento seja garantido durante mais tempo, o que
pode ser crucial para garantir a segurança de sistemas críticos.

Com o intuito de validar a solução proposta, um simulador de orquestração em tempo-real
foi desenvolvido para criar e medir cenários de forma reproduzível, comprimindo o ciclo de val-
idação. De seguida, a solução foi aplicada ao sistema NoRDOr e testada em dispositivos IoT
virtuais e físicos, usando cenários de smart-home, onde várias métricas foram recolhidas para
avaliar a resiliência do sistema. Foi possível concluir que as melhorias propostas, que utilizam
informação dos dispositivos em runtime, resultam num sistema mais capaz de garantir o seu bom
funcionamento na presença de falhas.

Keywords: IoT, Edge computing, Node-RED, Self-healing, Fault-tolerance

iii

iv

Acknowledgements

Firstly, I would like to thank the supervisors of this dissertation, André Restivo and Hugo Sereno
Ferreira, for providing guidance and insights, motivating me to produce the best work possible.
Additionally, I would also like to thank João Pedro Dias, who was present throughout the whole
process, and provided valuable advice and feedback.

Then, I would like to thank my friends and colleagues in Road and LabES no Telegrama that
relentlessly heard my frustrations and echoed theirs, whilst offering advice and cheering me up
through jokes and repeated questioning as to why we are writing a dissertation in the first place.
A special thanks to Pedro Costa, that produced a work closely related to mine, for his availability
and willingness to pair with me in finding solutions to common problems.

Finally, I would like to thank Beatriz Mendes, my girlfriend, for always being there for me,
but especially for accompanying me in procrastinating during this dissertation.

Tiago Fragoso

v

vi

“Sent from my iPhone”

Randall Munroe, in XKCD 1942

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Problem . 2
1.4 General goals . 2
1.5 Document structure . 4

2 Background 5
2.1 Internet-of-Things . 5

2.1.1 Fog computing . 6
2.1.2 Edge computing . 6

2.2 Self-healing & fault-tolerance . 7

3 State of the Art 9
3.1 Methodology . 9

3.1.1 Survey research questions . 9
3.1.2 Databases . 9
3.1.3 Process . 9

3.2 Distributed fog/edge orchestration . 10
3.3 Self-healing & fault-tolerance in IoT . 19
3.4 Summary . 22

4 Problem Statement 25
4.1 Current issues . 25
4.2 Desiderata . 26
4.3 Scope . 27
4.4 Hypothesis & research questions . 27
4.5 Methodology . 28
4.6 Summary . 28

5 Orchestration simulator 29
5.1 Motivation . 29
5.2 Desiderata . 29
5.3 Scope . 30
5.4 Implementation . 30

5.4.1 Scenario . 30
5.4.2 Node . 31
5.4.3 Device . 31
5.4.4 Orchestrator . 32
5.4.5 Metrics . 33

5.5 Simulation lifecycle . 33
5.6 Known limitations . 33
5.7 Summary . 34

ix

x CONTENTS

6 Orchestration strategy 37
6.1 Methodology . 37
6.2 Base strategy . 38
6.3 Initial improvements . 38

6.3.1 Identified problems . 39
6.3.2 Solutions . 39

6.4 Handling device instability . 41
6.4.1 Identified problem . 41
6.4.2 Solution . 41

6.5 Generating balanced assignments . 44
6.5.1 Identified problems . 45
6.5.2 Solution . 45

6.6 Dealing with memory limitations . 46
6.6.1 Identified problem . 47
6.6.2 Solution . 48

6.7 Exploring the solution space . 48
6.7.1 Identified problem . 48
6.7.2 Solution . 49

6.8 Minimizing the disturbance on re-orchestration 50
6.8.1 Identified problem . 50
6.8.2 Solution . 51

6.9 Handling faulty assignments . 54
6.9.1 Identified problem . 54
6.9.2 Solution . 56

6.10 Summary . 57

7 Reference implementation 61
7.1 Implementation . 61

7.1.1 Device firmware . 61
7.1.2 Node-RED . 62

7.2 Known limitations . 65
7.3 Summary . 66

8 Evaluation 67
8.1 Experimental setups . 67

8.1.1 System . 67
8.1.2 Flows . 68

8.2 Metrics . 68
8.3 Experiments overview . 70

8.3.1 ES1 experiments . 70
8.3.2 ES2 experiments . 71

8.4 Discussion . 71
8.4.1 ES1 experiments . 71
8.4.2 ES2 experiments . 86

8.5 Hypothesis evaluation . 93
8.6 Summary . 97

CONTENTS xi

9 Conclusions 99
9.1 Conclusions . 99
9.2 Contributions . 100
9.3 Difficulties . 101
9.4 Future work . 101

References 103

xii CONTENTS

List of Figures

2.1 Self-healing loop . 7

3.1 Exogenous Coordination in DNR . 12
3.2 DDFlow component architecture . 13
3.3 FogFlow system architecture . 15
3.4 NoRDoR orchestration sequence diagram . 17
3.5 Relation of Recipes and OSRs . 18
3.6 SHEN self-healing sequence . 20

5.1 Orchestration simulator class diagram . 31
5.2 Simulation sequence diagram . 34

6.1 SIM-SC1 using v0 . 39
6.2 SIM-SC2 using v0 . 40
6.3 SIM-A using v0 . 42
6.4 SIM-A using v1 . 44
6.5 SIM-A average node uptime . 45
6.6 SIM-B using v0 . 46
6.7 SIM-B using v1 . 47
6.8 SIM-C using v1 . 49
6.9 SIM-C using v2 . 50
6.10 SIM-D using v3 . 52
6.11 SIM-D using v4 . 55
6.12 SIM-E using v4 . 56
6.13 SIM-E using v5 . 58

7.1 Proposed system sequence diagram . 62
7.2 distributeFlow call graph . 64

8.1 Flow Setup 1 . 68
8.2 Flow Setup 2 . 69
8.3 Flow Setup 3 (partial) . 70
8.4 ES1-SC1 in NoRDOr . 72
8.5 ES1-SC1 in proposed system . 73
8.6 ES1-SC2 in NoRDOr . 74
8.7 ES1-SC2 in proposed system . 76
8.8 ES1-A in NoRDOr . 77
8.9 ES1-A in proposed system . 78
8.10 ES1-B in NoRDOr . 79
8.11 ES1-B in proposed system . 81
8.12 ES1-C in NoRDOr . 82
8.13 ES1-C in proposed system . 83
8.14 ES1-D in NoRDOr . 84
8.15 ES1-D in proposed system . 85
8.16 ES1-E in NoRDOr . 86
8.17 ES1-E in proposed system . 87

xiii

xiv LIST OF FIGURES

8.18 ES2-SC1 in NoRDOr . 88
8.19 ES2-SC1 in proposed system . 89
8.20 ES2-SC1_2 in proposed system . 90
8.21 ES2-SC2 in NoRDOr . 91
8.22 ES2-SC2 in proposed system . 92
8.23 ES2-A in NoRDOr . 94
8.24 ES2-A in proposed system . 95

List of Tables

3.1 Fog/edge orchestration solution features . 18

6.1 Improvements by simulator version . 38

xv

xvi LIST OF TABLES

Abbreviations

API Application Programming Interface
CPU Central Processing Unit
HTTP Hypertext Transfer Protocol
IoT Internet-of-Things
M2M Machine-to-Machine
MQTT Message Queuing Telemetry Transport
MTBF Mean Time Between Failure
MSC Minimum Set (of) Changes
RAM Random Access Memory
VPL Visual Programming Language

xvii

Chapter 1

Introduction

1.1 Context . 1

1.2 Motivation . 2

1.3 Problem . 2

1.4 General goals . 2

1.5 Document structure . 4

This chapter describes the motivation and problem at hand, as well as the goals this project aims

to achieve. Section 1.1 introduces the context of this work, while Section 1.2 (p. 2) introduces its

motivation. Then, Section 1.3 (p. 2) defines the problem under study, and Section 1.4 (p. 2) details

the goals this work aims to achieve and how they are evaluated. Finally, the document structure is

presented in Section 1.5 (p. 4).

1.1 Context

Internet-of-Things (IoT) is a network of heterogeneous [6] Internet-connected devices that has

applications in, for example, smart transportation, smart cities [32] and smart homes [5, 49]. The

number of IoT device connections is expected to grow more than twofold, from 2018 to 2023,

to almost 15 billion, according to Cisco [12]. With the increase in computational capabilities

and the sheer number of IoT devices scattered across different applications, the amounts of data

to be exchanged with the Cloud can incur in bandwidth limitations, higher latency, and privacy

concerns. Further, as IoT embraces mission-critical domains (e.g., Ambient Assisted Living), the

dependability of theses systems becomes crucial [38, 23].

In order to mitigate this problem, two paradigms have emerged: Fog and Edge computing.

Both aim to bring cloud computing benefits closer to the edge of the network [29]. The first aims

to bring cloud capabilities to devices closer to the edge (e.g., gateways) and provide computing

and storage at an intermediate level between the cloud and the edge, reducing the dependency on

cloud [50]. The latter aims to leverage edge devices’ computational capabilities. This is motivated

by the increase in computational and communication capabilities at the edge, as well as the change

in the data flow. Edge devices, traditionally data consumers, are now both data consumers and data

producers [44].

Although moving computation to the edge has advantages (e.g., lower latency, privacy), it also

comes with challenges as edge devices are highly heterogeneous, computationally constrained, and

failure-prone. Fog/edge orchestration platforms (cf. Section 3.2, p. 10) have been developed as a

1

2 Introduction

way to partition applications and distribute tasks through edge devices based on capabilities and

constraints of each task and device, abstracting the edge device’s run-time environment either by

developing custom frameworks or using OS-level virtualization tools [47].

1.2 Motivation

As computation moves towards the edge of the network with the emergence of fog and edge

computing paradigms, a pressing need for dependability concerns arises (cf. Section 2.2, p. 7).

Edge computing orchestration platforms partition large applications into tasks or sets of tasks

that are then dynamically allocated to the connected devices to be executed in a distributed manner.

Some of these devices may be assigned a crucial part of the application, such as processing data

from a door sensor for a smart home’s alarm system.

Particularly, when working with edge devices, reliability is not a given due to fragmentation

in the IoT field (i.e., high heterogeneity, different protocols, and standards), resource constraints,

and hardware failures, meaning that, at a certain point, a subset of the application may be deployed

in an unstable or faulty device [14, 4].

Hence, mechanisms must be employed to ensure the dependability of the system. In IoT

environments, self-healing mechanisms are particularly suitable as they minimize the impact to

the end-user by requiring no user interaction. In these platforms, it can be achieved by removing

tasks from unstable or faulty devices and moving them to healthier devices in the system.

1.3 Problem

Although necessary, fault-tolerance is considerably limited in the available fog/edge orchestration

platforms. Some offer a self-healing mechanism that detects device failure and re-distributes the

tasks to other devices, while others do not provide any fault-tolerance mechanisms. Given the

possible instability and resource constraints of edge devices, failing to employ comprehensive

mechanisms that aim to ensure the system’s dependability in such dynamic systems, can result in

downtime.

Additionally, specific issues were found in a real-time orchestration system for IoT, NoR-

DOr [45, 46], that limit its ability to provide correct service in the presence of faults. In this work,

we tackle these issues in pursuit of achieving a more resilient system.

1.4 General goals

The main goal of this dissertation is to improve the resilience of a real-time orchestration plat-

form for IoT systems at the edge. In order to do this, we extend a previously existing system,

NoRDOr [45, 46], that is comprised of (1) a modified version of Node-RED, enhanced with the

ability to dynamically partition and allocate computational tasks to edge devices, and (2) a custom

MicroPython framework that enables general-purpose code executing on edge devices. NoRDOr

1.4 General goals 3

author’s choice for Node-RED as a base work was motivated by being open-source, its gener-

alized popularity, and the widely adoption by the research community as a target/base for other

experiments [8, 14, 52, 30].

To achieve greater resilience, the system should:

Generate balanced assignments so that the computation is distributed and device failure has a

lower impact on the system.

To do this, we explore the possibility of processing the computational tasks to be assigned

to the currently devices in a specific order, such that the algorithm can produce a balanced

solution.

Leverage device stability so that the system can produce assignments less susceptible to device

failure.

Probing mechanisms are introduced to allow the system to get real-time information from

the devices and compute stability metrics derived from their stability or the stability of their

assignment. Collecting this data makes it possible to leverage it on orchestration, generating

assignments that make the system less susceptible to experience downtime due to device

failure.

Leverage current state upon re-orchestration so that the set of changes to be deployed is re-

duced in order to minimize orchestration overhead.

In order to reduce the overhead caused by the re-assigning a new set of computational tasks

to all devices, we minimize the set of changes that need to be deployed to devices on re-

orchestration by focusing on tasks that were assigned to failed devices and attempt to deploy

them while affecting the least number of healthy devices.

Estimate memory limitations so that the system can generate assignments within the memory

limitations of each device without causing downtime.

Memory is a limited and dynamic resource at the edge of the network. Hence, edge devices

report their memory resources when connecting to the system, allowing to estimate if a

given assignment is within the memory limitations of each device.

In the interest of validating the proposed solutions, the improvements are iteratively tested

on an Orchestration simulator before being extensively compared to the original system in a set

of experiments comprised of virtual and physical IoT devices, where fault injection is used to

simulate real-world scenarios, in pursuit of finding solid answers to each of the research questions

of this dissertation.

4 Introduction

1.5 Document structure

This chapter introduced the context and motivation for this work, as well as the problem under

study and the general goals. This document is composed of eight more chapters, structured as

follow:

• Chapter 2 (p. 5), Background, introduces key concepts and their relationships, which are

required to comprehend this work fully;

• Chapter 3 (p. 9), State of the Art, describes the current state of the art on the topic of

orchestration of distributed IoT systems at the fog/edge and self-healing mechanisms in

IoT;

• Chapter 4 (p. 25), Problem Statement, presents the current issues this dissertation aims to

tackle, the requirements a solution must fulfill, and the research questions it aims to answer;

• Chapter 5 (p. 29), Orchestration simulator, describes the scope, implementation details,

and simulation lifecycle of the developed simulation tool;

• Chapter 6 (p. 37), Orchestration strategies, outlines the development methodology and the

implementation details of the several iterations produced in order to reach the end solution;

• Chapter 7 (p. 61), Reference implementation, details the implementation of the developed

improvements to the base system, as well as its limitations;

• Chapter 8 (p. 67), Evaluation, analyzes the results of the proposed system against the orig-

inal system in a set of experimental tasks designed to highlight the issues under study and

derives answers to the research questions of this work;

• Chapter 9 (p. 99), Conclusions, presents a summary of the developed work, outlines diffi-

culties that slowed down development, and describes future research directions.

Chapter 2

Background

2.1 Internet-of-Things . 5

2.2 Self-healing & fault-tolerance . 7

This chapter introduces key concepts and their relationships, which are required to comprehend

this work fully. Section 2.1 defines Internet-of-Things (IoT) and IoT tiers, namely Cloud, Fog and

Edge. Then, Section 2.2 (p. 7) presents the concepts of Fault-tolerance and Self-healing.

2.1 Internet-of-Things

As Whitmore et al. [53] pointed out, there is no universal definition for the Internet-of-Things

(IoT), but at its core, it “is a paradigm where everyday objects can be equipped with identifying,

sensing, networking, and processing capabilities that will allow them to communicate with one

another and with other devices and services over the Internet to accomplish some objective”.

The IoT network is comprised of varied devices from everyday objects to sensors and actu-

ators, powered by a diverse range of underlying technologies, thus creating a network of inter-

connected heterogeneous devices [15]. Its applications range from the transportation and logistics

domain to healthcare to smart home/office environments [6].

Cloud computing solutions (e.g., Amazon Web Services (AWS) [1] and Google Cloud Plat-

form [2]) provide centralized, scalable, and high-performance computation capabilities that were

suitable for storing and processing IoT data [21, 32]. However, as the number of devices in-

creases [12], so does the amount of data produced and the geographical distribution, and it be-

comes increasingly difficult, costly, or even illegal to centralized data storage and processing in

the cloud [21, 36]. Moreover, the emergence of delay-sensitive IoT applications motivates the

division of IoT systems into three tiers [14, 54, 15]: Cloud, Fog, and Edge.

Cloud: High availability, scalability, and performance but also high latency. Composed of data

centers and servers.

Fog: Lower performance than the cloud, higher heterogeneity, and geographical distribution but

lower latency. Located in between cloud and edge and composed of gateways or on-premise

servers.

Edge: High heterogeneity, computationally limited, and considerably low latency. Composed of

sensors, actuators, embedded systems.

5

6 Background

New paradigms have emerged in response to the needs of modern IoT networks, fuelled by

the increase of computation capabilities of edge devices and their low latency: Fog computing and

Edge computing.

2.1.1 Fog computing

Fog computing was introduced in 2012 [9] as an extension of cloud computing closer to the

edge. This paradigm is still being extensively studied, and, thus, there are different definitions

and approaches to its architecture [33]. However, authors converge on fog computing’s essential

characteristics [9, 29]: low latency, geographical distribution, heterogeneity, interoperability, and

real-time processing.

The main goal of fog computing is bringing cloud computing benefits to the edge network

and, thereby allowing for low-latency data management and processing. Some approaches em-

ploy high-performance servers as fog nodes, while others make use of networking devices (e.g.,

gateways) that are closer to the edge devices. As a result, fog computing can be applied to different

environments.

Although there are many benefits to Fog computing when compared to Cloud computing for

IoT networks, it also faces some challenges [33]. Resource allocation is a particularly challenging

one since fog nodes are distributed and heterogeneous; thus, efficient resource provisioning and

allocation needs to be performed. Moreover, due to the heterogeneity of the edge network, not all

devices are prepared to perform general-purpose computation.

2.1.2 Edge computing

Edge computing takes advantage of the computational resources of edge devices to process data.

Driven by the increase in the numbers of devices and, consequently, the amount of data to be

exchanged with the cloud, this paradigm is a distributed architecture that aims to reduce latency

and response time [28].

As more devices become connected at the edge, different dynamics appear as well. Particu-

larly, devices at the edge are moving from being data consumers to being both data consumers and

producers [44], which increases the amount of data being sent to the cloud. Furthermore, since

most data will be consumed at the edge, it does not need to be stored in the cloud.

Privacy concerns may also arise from cloud computing, where data sometimes travels through

political boundaries, which may incur illegalities. This can be mitigated by using an edge com-

puting architecture.

However, there are also some drawbacks to this paradigm, namely the computational con-

straints and heterogeneity of edge devices are challenging for developers. Moreover, reliability

at the edge is limited. It may be hard to detect failures and the underlying cause since hardware

issues may be involved.

2.2 Self-healing & fault-tolerance 7

2.2 Self-healing & fault-tolerance

In 2004, Avizienis et al. [7] sought to give clear definitions of relevant terms in the realm of

dependability, i.e., “the ability to deliver service that can justifiably be trusted”. Some of the key

definitions relevant to this work are introduced below.

Correct service: “service implements the system function”

(Service) Failure: “an event that occurs when the delivered service deviates from correct ser-

vice”

Error: “the part of the total state of the system that may lead to its subsequent service failure”

Fault: the “hypothesized cause of an error”

Fault-tolerance/Self-healing/Resilience: “avoid service failures in the presence of faults”

Safety: “absence of catastrophic consequences on the user(s) and the environment”

The author then splits fault-tolerance into two components: (1) error detection and (2) recov-

ery. The former occurs earlier than the latter, and it “identifies the presence of an error”. The

recovery component is responsible for “transforming a state that contains one or more errors (...)

into a state without errors”. Itself can also be subdivided into two components: (1) error handling,

which “eliminates errors from the system state”, and (2) fault handling, which “prevents faults

from being activated again”.

Figure 2.1: Self-healing loop [39].

Moreover, Ganek et al. [24] defined a self-healing system as one that is capable of maintaining

correct service while detecting and isolating failed components and fixing them or introducing

replacement components into the system. The authors also highlighted the need for the system to

predict eventual problems and take action accordingly, such that the fault does not lead to service

failure.

Psaier et al. [39] propose a three-stage self-healing loop (cf. Figure 2.1) comprised of (1) de-

tecting, (2) diagnosing, and (3) recovering phases. In the detecting phase, the input is analyzed,

8 Background

and detected errors are reported to the next phase. The diagnosing phase is responsible for finding

the fault for a given error and deciding on the recovery policy to apply. The recovering phase is

responsible for applying the recovery policy defined previously while ensuring that system con-

straints are respected. The three phases are thus connected by data flow.

Chapter 3

State of the Art

3.1 Methodology . 9

3.2 Distributed fog/edge orchestration . 10

3.3 Self-healing & fault-tolerance in IoT . 19

3.4 Summary . 22

This chapter describes the state of the art for the topics of interest to this work: (1) distributed

fog/edge orchestration, and (2) self-healing/fault-tolerance in IoT. First, the methodology is pre-

sented in Section 3.1. In Section 3.2 (p. 10), results for distributed fog/edge orchestration are pre-

sented and analysed. The same is done for self-healing/fault-tolerance in IoT in Section 3.3 (p. 19).

3.1 Methodology

An ad hoc methodology was used for this literature review. Several databases (cf. Section 3.1.2)

were queried with the relevant terms for each research question (cf. Section 3.1.1) and the results

were sorted and filtered using criteria such as the number of citation and the publication year. This

was done using an iterative process (cf. Section 3.1.3).

3.1.1 Survey research questions

The following survey research questions were developed to guide this literature review:

SRQ1: What solutions exist to orchestrate distributed IoT systems at the edge?

SRQ2: What self-healing/fault-tolerance mechanisms are employed in distributed IoT systems?

3.1.2 Databases

Three of the most relevant digital libraries in Computer Science were chosen as the main source

of the literature analyzed in this work: ACM DL, IEEE Xplore, and Scopus.

3.1.3 Process

An iterative process was adopted in order to increase the amount of relevant material examined.

To do this, lessons learned from each iteration are fed into the next (e.g., synonyms) so that the

search space is as wide as possible while staying inside the scope. A brief overview of the process

used is shown below.

9

10 State of the Art

1. Translate each research question into a query;

2. Submit query into library (sort based on citations, filter based on year);

3. Identify each result as relevant or not based on title, abstract, and conclusions;

4. Add relevant results to read-list if not present;

5. Read articles in the list, expanding select references;

6. Go back to 2., refining search terms based on previous results (e.g., synonyms, missed

terms).

3.2 Distributed fog/edge orchestration

Using the methodology described in Section 3.1 (p. 9) to attempt to respond to SQR1 (cf. Sec-

tion 3.1.1, p. 9), the following query was elaborated:

(iot OR internet-of-things OR "internet-of-things") AND (edge OR fog OR

distributed OR decentralized OR decentralised)

From the pool of results, the following are considered to be the most relevant for this work.

DNR
In 2014, Blackstock et al. [8] and Giang et al. [25, 26] in subsequent works proposed an

open-source edge computing platform – Distributed Node-RED (DNR) – that extends Node-

RED to deploy application flows on devices ranging from the edge to the Cloud. The latest

iteration of this software (DNR v3 [26]) was built with large-scale applications in mind, al-

lowing developers to set context-aware constraints (e.g., the physical location of the device)

and making use of an external coordination layer for communication management, thereby

supporting inter-component constraints. This is particularly important essential when build-

ing more complex systems (e.g., smart cities).

The authors [26] explain the iterative process on which the system was built, outlining the

challenges and problems motivating each new version and how they solved them.

First [8], Node-RED nodes were extended to support a device Id, specifying the device

where each node should run. To allow for inter-device communication, each device sub-

scribes and publishes the data in the corresponding MQTT topic of each node that is running

in an external device.

In the second version [25], scalability issues of the previous implementation are addressed

– namely, (1) the simplistic mapping of nodes to devices, and (2) the lack of an automated

flow deployment system. To improve (1), the authors extended nodes with a constraint

property that defines which device can run each node based on several aspects (e.g., CPU

3.2 Distributed fog/edge orchestration 11

and memory resources available, physical location, etc.). Furthermore, the concept of wire

cardinality is introduced as a way to clearly define the mapping of inputs and outputs of

each node which is crucial in large-scale environments where nodes can be deployed in

different devices at the same time. The naming of each MQTT topic is then based on the

wire cardinality of each node. In order to solve (2), each device subscribes to an MQTT

topic which contains the current state of the application flow – called main flow and, upon

receiving a new main flow, subsequently parses it and decides if it should run a given sub-

flow based on its constraints and the device’s own capabilities.

In the latest version [26], another set of scalability issues are addressed – (1) as the system

grows, individual devices might not be able to decide on their own if they should run a

node, and (2) communication between different nodes needs to be coordinated. This led to

the introduction of a coordination layer (cf. Figure 3.1, p. 12), composed of 3 components:

the Global coordinator, which is a centralized instance with system-wide knowledge and,

in each device, a Flow coordinator, responsible for synchronizing device context with the

Global coordinator and a set of Coordinator nodes that coordinate node communication. A

seen in Figure 3.1 (p. 12), there are four possible coordination states that these nodes can

be in (1) NORMAL, where they pass the data through its outputs (requires that input and

output nodes are deployed in the same device), (2) DROP, where the data is not forwarded

but rather dropped (useful to avoid processing of duplicate data), (3) FETCH_FORWARD,

where the node gets the input from an external device, and (4) RECEIVE_REDIRECT,

where it forwards data to an external device.

The proposed solution is well suited for large-scale systems where geographic dispersion

is high and has an important part in the computation distribution. However, requiring all

nodes to run Node-RED limits the number of supported edge devices. Moreover, the au-

thors fail to mention the system’s fault-tolerance. This might be due to the participatory

model followed in their approach, as stated in [27]. Using this approach, task completion is

not guaranteed as devices contribute resources with some inconsistency. According to the

authors, this approach is more suitable to highly dynamic systems compared to guaranteed

task completion because the latter implies constant monitoring and orchestration of devices

and can lead to considerable coordination overhead.

DDFlow
Noor et al. [34] introduced DDFlow – an extension to Node-RED runtime engine that allows

for dynamic scaling and real-time adaptation in distributed IoT networks. The system is

managed by a distributed coordinator responsible for mapping tasks to devices and monitor-

ing the network for significant changes or device failure, which result in a re-orchestration.

The aim of this solution is to provide developers with an extensible abstraction capable of

producing a high-quality distributed application while minimizing end-to-end latency.

The authors extend Node-RED primitives such as Nodes and Wires in order to support dy-

namic scalability based on resources and constraints and communication cardinality. In

12 State of the Art

Figure 3.1: Exogenous Coordination in DNR [26].

DDFlow, a Node represents a task that is deployed to one or more devices in the network.

Its (optional) inputs and outputs are in the form of a key-value dictionary and contain ap-

plication data as well as metadata. Moreover, Nodes can be constrained either by Region

(only selecting devices inside one or more physical locations) or Device (only selecting de-

vices contained in a subset of all network devices). During deployment, the system will

fulfill these constraints dynamically (e.g., when devices are mobile and change location fre-

quently). Another key concept is Wires, which transport information from the output of a

Node to the input of another, also in a key-value format. In order to support multiple deploy-

ments of the same task in different nodes, Wires can be of three different types: (1) Stream,

where one input is mapped to one output, (2) Broadcast, where one output feeds multiple

inputs, and (3) Unite, where multiple outputs feed one input.

As seen in Figure 3.2 (p. 13), DDFlow consists of two main components: Coordinator and

Device. The Coordinator is a web server that may be replicated among several devices and

manages the network. It’s composed of three main components: (1) a Web Interface where

developers can set up their applications, (2) a Deployment Manager which communicates

with each device to deliver their task assignment, and (3) a Placement Solver that assigns

nodes to devices. Each Device offers a set of Services – i.e., implementations of each Node

in DDFlow, which are communicated to the Coordinator by each device’s Device Manager

along with the current resources information (e.g., CPU load) and capabilities. The Device

3.2 Distributed fog/edge orchestration 13

Manager is a web server that is also responsible for intra and inter-device communication.

Figure 3.2: DDFlow component architecture [34].

To achieve dynamic adaptation and recovery, the Coordinator monitors the network periodi-

cally for environmental changes (e.g., device failure, device overload, etc.). Upon detection

of an error, the Coordinator preventively re-orchestrates the network by formulating the as-

signment as a linear programming problem that minimizes end-to-end latency and solving

it while satisfying the application constraints (e.g., physical location of devices) as well

as network constraints (e.g., connectivity between devices). The assignment is then prop-

agated by the Deployment Manager to each device’s Device Manager. Furthermore, the

system can also adapt to network-level failures by switching from TCP/IP to Wi-Fi ad hoc

mode.

The authors evaluated the system against device and network failures in a scenario consisting

of image capture and processing. When compared to a static system (i.e., not self-adapting),

DDFlow performed significantly better, showcasing fault-tolerance by (1) preventive net-

work re-orchestration (i.e., before device failure), and (2) network adaptation upon wireless

access point failure. In both cases, the static deployment crashed upon device or network

failure.

The proposed solution would be a rather complete one if it were not for the fact that it is

not open-source, which makes it impossible to confirm their findings. It is also important to

mention that each device must have an implementation of tasks it can compute, which can

be cumbersome in such heterogeneous IoT networks.

14 State of the Art

FogFlow
Cheng et al. [10, 11] proposed an open-source distributed execution framework, FogFlow,

with the goal of dynamically orchestrating IoT networks. The framework is based on the

data-flow programming model but requires developers to create dockerized applications

called operators, representing the implementation of a certain task. These applications must

be based on the Next Generation Service Interfaces (NGSI) standard, which defines a data

model and communication interface for context-based communication. The former is com-

posed of the entity description (e.g., ID and type) and metadata (e.g., location). The latter

defines a lightweight interface with context-aware publish, query, and subscribe function-

ality (e.g., query by location). In FogFlow [10], a service performed by an IoT device can

be represented by (1) a service topology (i.e., multiple operators linked together) which

is deployed when consumers request data, or (2) a fog function, a more simplistic service

topology with only one operator which is triggered as soon as input data becomes available.

As illustrated in Figure 3.3 (p. 15), the system is comprised of three different types of

heterogeneous resources: (1) service management, (2) context management, and (3) data

processing. The service management division is composed of: (1) the task designer, a Web-

based interface that allows developers to monitor and develop flow-based applications to be

deployed, (2) the docker image repository, where developers can submit their specific ser-

vice implementations, and (3) the topology manager (TM) which is responsible for mapping

the application flow to a concrete system orchestration. The context management division

contains: (1) a set of IoT Brokers which communicate with workers providing context up-

dates, queries, and subscriptions, (2) a centralized IoT Discovery component, responsible

for handling the registration and discovery of context entities, and (3) a Federated Broker

which extends the IoT Broker and serves a the bridge to exchange context information be-

tween different domains (e.g., different smart cities). The data processing division includes

a set of workers that perform computation based on their assigned tasks by the TM, commu-

nicated through a RabbitMQ broker. Each worker can deploy multiple tasks, being limited

by the available docker images and their resources and context.

Developers can specify hints when creating operators in the task designer, which allows

them to filter (e.g., by location) and group (e.g., by ID) input streams for a given operator

and also set the cardinality of the input streams (e.g., unicast, broadcast).

Once developers have submitted the application flow and developed the necessary docker

images, the deployment is triggered. The TM executes a Topology lookup to find a possible

processing path, then generates an Execution plan based on the topology and application

flow, and, finally, deploys the tasks to workers.

FogFlow is a scalable solution that takes advantage of parallel brokers to achieve low-latency

discovery. However, its approach has some problems: (1) developers need to manually

develop an implementation of a task and publish it to the docker image repository, which

not only incurs in work for developers but also limits the device support, and (2) the use of

3.2 Distributed fog/edge orchestration 15

Figure 3.3: FogFlow system architecture [11].

NGSI and the lack of common support for this technology means that some edge devices

need to communicate through a proxy device that implements this standard. Moreover, the

authors fail to mention or evaluate the fault-tolerance of the system, only adding that support

for fault-tolerance in extreme conditions is part of future work.

ECHO
Ravindra et al. [41] presented an open-source platform, ECHO, aimed at developing and

deploying dynamic applications throughout the whole IoT tier (Cloud, Fog, Edge). It fol-

lows the data-flow programming model, supports hybrid data sources and the use of native

runtime engines (e.g., Tensorflow). A centralized Platform Master service is responsible

for deploying data-flows based on the information present on the Resource Directory, which

contains current information about the fog devices and their resources. Each fog device is

managed by a Platform service that decides which parts of the data flow are run on each

device.

However, the platform does not offer any self-adaptability functionality, as the operator must

manually create the new deployment and trigger the re-orchestration in the system. More-

over, there is no mention of support for non-functional properties for automatic deployment,

which have been proven essential in large-scale distributed fog systems [27, 34, 43].

NoRDOr
Silva et al. [45, 46] proposed a decentralized execution method for IoT systems with a

twofold approach: (1) extend of Node-RED, to achieve automatic partitioning of application

flows and dynamic deployment to edge devices, and (2) develop a MicroPython framework

16 State of the Art

for resource-constrained micro-controllers which allows them to run custom code. The ex-

tended version of Node-RED includes two new nodes: (1) Registry, which keeps a list of

available devices in the system, and (2) Orchestrator, which decomposes the application

flow into tasks and deploys them to edge devices. Additionally, Node-RED was also modi-

fied to use MQTT as the communication protocol so that nodes can be deployed externally;

and, finally, some existing nodes were altered to generate MicroPython code, which in turn

is run by edge devices. These devices run a custom framework that exposes endpoints for

monitoring (i.e., PING/ECHO) and executing a custom script. Furthermore, they announce

themselves and their capabilities as they enter the system, allowing the Orchestrator to

(re-)orchestrate the system dynamically.

Upon starting the system, the Orchestrator waits for device announcements for a short pe-

riod of time before performing the first orchestration. After partitioning the application flow,

a greedy algorithm is used to map nodes to devices. This algorithm takes into account each

node’s Predicates and Priorities, such that predicates are always fulfilled. Priorities are used

alongside the number of nodes already deployed in each device to calculate the value of the

heuristic used in the algorithm. After the assignment process is concluded, the MicroPy-

thon script for each node is generated and sent to the device. In case of a failed deployment

(e.g., device does not have enough memory), the device informs the orchestrator, and a

re-orchestration is performed. A PING/ECHO strategy is employed to monitor each device’s

status, which can also trigger the orchestrator in case no response is sent from the edge de-

vice. Furthermore, upon crash, a device will restart and announce itself to the system again,

and a re-orchestration is triggered. A sequence diagram representing the sequence of events

in the system can be seen in (cf. Figure 3.4, p. 17).

According to the author, there are several known limitations in the present solution: (1) a

re-orchestration does not minimize the set of changes to be performed, leading to greater

overhead, (2) the mechanism for detecting node failures is too sensitive, i.e., one failed

PING request is assumed as device failure, which might not be the case in unreliable IoT

devices, (3) the system halts during the assignment process, drastically reducing system

availability, and (4) the assignment algorithm does not take advantage of intra-device com-

munication by deploying connected nodes to the same device. In addition to the limitations

identified by the author, we also found that the employed self-healing mechanisms that deal

with general device failure and memory-driven device failure are rather basic, failing to

handle situations of high device instability and requiring a trial-and-error cycle to prevent

future memory errors.

Seeger et al.
In 2018, Seeger et al. [43] proposed a system capable of running distributed and dynamic

IoT orchestrations. Given the centralized approaches present on the market for automation

in commercial buildings and the need for a technician to perform changes in the systems,

the authors introduced a distributed approach that allows for sensors and actuators to be

3.2 Distributed fog/edge orchestration 17

Figure 3.4: NoRDOr orchestration sequence diagram [45, 46]

orchestrated without the need for a centralized controller. The solution is based on a seman-

tic model for IoT defined in a previous work by Thuluva et al. [51], called Recipes. This

data-flow based model contains the concepts of: (1) recipes, which are templates for the con-

figuration of ingredients and their interactions, (2) ingredients, which are placeholders for

offerings, (3) interactions, which describe the flow of data between ingredients, and (4) of-

ferings that describe service or device instances. Additionally, offerings are represented in

an "offering description" format, containing information about its inputs and outputs, as

well as how to access them.

In order to describe non-functional requirements for each ingredient, the authors introduced

offering selection rules (OSR) that are evaluated against the non-functional properties of

an offering. When instantiating a recipe (i.e., replacing ingredients with offerings), OSRs

must be respected. A recipe has many recipe runtime configurations (RRC) (e.g., different

orchestrations of the same recipe) and, each, multiple ingredient runtime configurations

(IRC). Each IRC can contain multiple OSRs (e.g., , restrictions on the location of each

18 State of the Art

device), and an RRC can contain one OSR, defining non-functional properties of the recipe

(e.g., cardinality). The relation diagram can be seen in Figure 3.5.

Figure 3.5: Relation of Recipes and OSRs [43].

The system’s performance was evaluated by the time required to resolve OSRs, by varying

the number of RRCs and OSRs, and was found to scale relatively well, completing the

computation under one second up until 650 RRCs.

The authors also highlight some improvements to be made to the system – namely, (1) the

current recipe model is limited to modeling REST services, and (2) the lack of fault-tolerance

in the system, which was then explored in a later work [42].

The analyzed tools were characterized according to their support or approach to the following

features:

VPL: makes use of Visual Programming Languages to design the application flow;

Open-source: allows for modification and redistribution;

Device requirements: IoT devices are considerably heterogeneous. Thus, it is relevant to analyze

how broadly the solution can be applied;

Automatic task allocation: tasks are automatically allocated to devices based on the require-

ments of each task and capabilities of each device;

Self-healing: makes use of self-healing mechanisms.

Table 3.1: Fog/edge orchestration solution features

Solution VPL Open-source Edge device requirements Automatic task allocation Self-healing

DNR [8, 25, 26] • • Must run Node-RED • -
DDFlow [34] • -4 • •
FogFlow [10, 11] • • Must run Docker • -
ECHO [41] • • Must run LXC
NoRDOr [45, 46] • • Custom framework • Limited2,3

Seeger et al. [43] - - • Limited2

Bullets (•) mean yes, hyphens (-) mean no information available, and empty means no.
1 Developers must create a docker image for each specific task and upload it to an image repository
2 Performs full re-orchestration on (1) device failure or (2) device introduction
3 System halts during orchestration
4 Although no specific requirements are mentioned, edge devices must contain a set of services, i.e., implementations of the tasks it can execute

3.3 Self-healing & fault-tolerance in IoT 19

From the analysis present in Table 3.1 (p. 18), we can conclude that the requirements for edge

devices are varied, which is due to the high heterogeneity of devices in IoT networks. Because

of this, some of the solutions [10, 11, 41] use OS-level virtualization to abstract the underlying

heterogeneity. DNR [8, 25, 26] requires Node-RED on all devices, which excludes devices that are

not running x86 or ARM-based Linux systems. Finally, Silva et al. [45, 46] developed a custom

MicroPython framework for specific resource-constrained edge devices, and, to the best of our

knowledge, DDFlow [34] had a similar approach, but the code is not open-source, contrary to

most of the analyzed solutions.

Regarding task allocation, most technologies perform it automatically based on application-

level constraints, except in ECHO which requires that developers manually deploy the system.

Finally, most solutions are limited in self-healing capabilities. Silva et al. [45, 46] and Seeger

et al. [43] offer recovery from device failure and balancing upon device introduction, while DDFlow [34]

also provides preventive balancing based on metrics such as CPU load but fails to provide further

details on the implementation.

3.3 Self-healing & fault-tolerance in IoT

In this section, we explored self-healing/fault-tolerance mechanisms in IoT systems, using the

following query:

(iot OR internet-of-things OR "internet-of-things") AND (fault-tolerance OR fault-

tolerant OR self-healing OR "run-time verification" OR "runtime verification")

Some authors [31, 3] present Run-time verification — i.e., inspecting a running system by

monitoring relevant events and metadata — as a good approach to ensure that IoT systems are

reliable and compliant with the specification, given the heterogeneity of software and hardware

in some systems. Leotta et al. [31] propose a run-time verification mechanism that (1) provides

a monitoring mechanism, and (2) checks the event values against the previously formally defined

system expected behavior using state machines. The authors implemented a new Node-RED node

such that devices make a check-event POST request to an HTTP server, the monitor, which per-

forms the verification against the model and communicates the result. However, this solution

cannot be applied to dynamic edge computing scenarios where the system cannot be formally

defined a priori.

Aligned with the run-time verification principle, but in the VPL realm, Dias et al. [17, 18]

discussed the implementation of Self-Healing Extensions for Node-RED (SHEN) [20], a set of

reusable Node-RED nodes that add run-time verification and self-healing capabilities. According

to the authors, the motivation for the work was twofold: (1) the lack of IoT-specific testing systems,

namely in popular IoT platforms such as Node-RED, and (2) the missing feedback loop between

run-time verification and self-healing (taking action) in IoT systems.

20 State of the Art

A simplified version of Psaier’s Self-healing loop [39] is used as a basis for the developed

nodes in this work (cf. Figure 3.6). The detection nodes provide run-time verification by probing

the system, detecting and diagnosing possible errors. Then, maintenance nodes provision recovery

mechanisms. These mechanisms, as well as probing mechanisms, are also described in the form

of patterns in a work by the same authors [19]. This paradigm of self-adaptive systems has been

already explored in other contexts [22]. Although not designed for edge computing platforms,

this work tackles some issues those platforms face (e.g., proposes a redundancy mechanism for

message brokers, thus removing a single point of failure).

Figure 3.6: SHEN self-healing sequence [17].

Seeger et al. [42] identified the main steps of self-healing in IoT orchestration and presented

a twofold approach to solving some of the challenges inherent to device failure and recovery:

(1) detection of device failure, and (2) optimal allocation of tasks to edge devices. A policy-based

failure detector based on the φ -accrual principle of failure detection is proposed as a more suitable

solution than existing ones due to the nature of edge IoT networks as it is (1) lightweight and

thereby easily executable by distributed nodes with low computing capabilities, and (2) capable of

detecting failures on unreliable and inconsistent networks.

However, the failure detection approach is limited to node crashes and fails to take into account

other device degradation real-time metrics. The authors then introduce a heuristic-based approach

to the challenge of assigning tasks to nodes, which resembles an NP-hard problem. Through

this heuristic, they are able to reach a sub-optimal solution that can be deployed in real-time IoT

systems, albeit with a considerable performance trade-off. Although the presented use case can be

applied to a general IoT system as it minimizes the energy consumption of the network for a given

distributed workflow, its definition of optimality might not be relevant for other IoT networks.

Another approach to run-time verification, namely Complex Event Processing (CEP), is used

by other authors [3, 37] as a means to detect errors. CEP is an event processing technique that

aims to extract patterns or events by combining data from multiple sources in (near) real-time.

Aktas et al. propose a Run-time verification module that utilizes CEP to extract patterns based on

the metadata sent by devices (e.g., CPU load, memory load, bandwidth) and match them to a set

of rules defined by the authors. These rules map a certain condition (e.g., device exceeded a CPU

load threshold in a given time period) to a self-healing action (e.g., re-orchestrate network). The

authors outline possible self-healing actions but do not implement them, as they are considered

out-of-scope. Upon evaluation, the introduction of the run-time verification mechanism showed

negligible overhead.

3.3 Self-healing & fault-tolerance in IoT 21

Power et al. [37] go one step further and combines CEP with a Machine Learning (ML) model

to achieve reactive and proactive fault-tolerance in IoT, using a microservice-based approach. The

Real-time FT microservice is responsible for communicating with edge devices and retrieving

measures and possible errors. The incoming data is fed to a CEP component that uses pattern-

matching between current values and previous ones to flag data as erroneous. Based on the exten-

siveness of the detected error (e.g., erroneous data from 3 sensors), the system can also employ

different recovery strategies. Furthermore, it can block data flagged as erroneous from going into

the database. The Predictive FT microservice uses ML to consume the error and recovery data

and attempts to generate fault patterns that allow the system to predict if, for a given state, it is

likely that there will be errors in the future.

Although most of the solutions are centralized, it is also possible to perform distributed mon-

itoring [35, 5]. Ozeer et al. [35] present a self-monitoring framework for dynamic Fog networks.

Fog nodes monitor each other using and themselves and report the suspected failure to a global

manager which can trigger re-orchestrations of the system. The system is suitable for stateful

applications as it can re-construct and, thereby, recover the system state upon failure by the use of

checkpoints and message logs.

Rivulet [5] is a fault-tolerant platform for IoT aimed at "smart-home" environments. The

authors identified the common and varied failures of hubs, sensors, and actuators as the main driver

for the platform, as well as the danger of event loss in critical scenarios (e.g., elder-care apps,

fire and intrusion sensors, etc.). In order to mitigate event loss, Rivulet employs two strategies:

(1) Gapless delivery, where all processes query the available sensors and propagate the events

using a lightweight ring protocol, and (2) Gap delivery, where only one process queries each

sensor and propagates the events in a logical chain. The former comes at a greater guarantee

that events are not lost, albeit also with a greater network overhead. Whereas the latter may lose

some events if the process responsible for querying a sensor crashes but provides smaller network

overhead.

When it comes to recovery mechanisms, Dias et al. [19] present them in the form of patterns.

Most solutions offer a balancing mechanism, i.e., moving load from one device to another. This is

present in some of the previously analyzed edge computing platforms [46, 34, 42] and is achieved

by re-orchestrating the network to cope with the current state in an attempt to maintain correct

service.

Skarlat et al. [48] provide some insight into the difficulty of orchestrating a fog network by

modeling and evaluating a fog computing system comprised of cloud and fog nodes, with the latter

being organized in fog colonies. Only devices with relatively high computing resources, fog cells,

are considered for computation tasks. Applications contain a set of services that can be time or

resource-constrained (e.g., CPU, RAM, storage demand). The authors identify the Fog Service

Placement Problem (FSPP) as the placement of services in IoT nodes while satisfying Quality-

of-Service (QoS) and time constraints. This is formulated as an Integer Linear Problem (ILP)

and solved using IBM CPLEX. The ILP maximizes the utilization of the fog nodes, prioritizes

applications with closer deadlines, and makes sure that the assigned services do not exceed the

22 State of the Art

node’s capabilities.

The authors evaluate the system in terms of cost vs. a Cloud solution, with the latter proving

considerably more costly (assuming ownership of the fog landscape). This is achieved while

meeting application time constraints. Finally, the FSPP computational time is also evaluated with

positive results – under one second even for large-scale applications.

Zhou et al. [55] present a fault-tolerant approach to IoT using virtual service composition.

The authors mention the challenge of applying redundancy mechanisms in IoT, mostly due to cost

and physical limitations (e.g., deploying two sensors in the exact place). As an alternative, they

deploy virtual services that combine data from different sensors and apply regression models to

infer an approximate value, similar to the DIVERSITY pattern [19].

From the work analyzed above, it is possible to conclude that self-healing in IoT is a diverse

topic but not a very researched one [31]. Run-time verification has emerged as one of the most

relevant approaches to self-healing in IoT, being used in several ways from state-machine model-

ing [31] to CEP [3, 37], sometimes used in combination ML to achieve not only fault detection

but also fault prediction [37] Dias et al. [17] present a VPL solution for self-healing in Node-

RED, using probing mechanisms to detect failures and applying recovery mechanisms. Seeger

et al. [42] introduce a failure detection mechanism more suitable for edge networks and evaluate a

heuristic-based approach to the node assignment problem in distributed IoT orchestrations, while

Skarlat et al. [48] formulate the node assignment problem as an ILP and uses IBM CPLEX to

solve it. Distributed monitoring is explored by Ozeer et al. [35], allowing edge devices to report

a detected fault to the orchestrator. On the other hand, Ardekani et al. [5] propose a fault-tolerant

"smart-home" IoT platform that ensures event delivery.

Dias et al. [19] present detection and recovery mechanisms in the form of patterns and apply

some of them in [17], providing a VPL solution for self-healing in Node-RED. Zhou et al. [55]

present virtual service composition as an alternative to redundancy in order to provide fault re-

covery in IoT networks. However, these solutions are not applied to the dynamic allocation of

computing tasks – orchestration — across available devices but attempt to improve the already

existent orchestration and processing solutions, thus not being suitable for our objectives.

3.4 Summary

Section 3.1 (p. 9) describes the methodology, including the research questions guiding this work,

the queried databases, and the process used.

Section 3.2 (p. 10) presents the analyzed solutions for the orchestration of distributed IoT

networks at the fog/edge. Each tool is summarized, and its main goal, characteristics, and draw-

backs are described. From the analysis of the results, we can conclude that most solutions use

VPLs, but implementation and requirements for edge devices are varied due to the high hetero-

geneity of IoT networks. Most solutions also provide automatic deployment, usually through

the use of application-level constraints specified by the developer when building the application

3.4 Summary 23

model. Finally, we can also conclude that self-healing capabilities are rather limited in the an-

alyzed solutions. Only one of them employed preventive mechanisms, but it is closed-source,

and the implementation description is not very clear. Two other frameworks were found to have

self-healing capabilities but to a limited extent.

Section 3.3 (p. 19) describes self-healing approaches in IoT systems, highlighting the run-time

verification approach and included detection mechanisms such as probing and CEPs and recovery

mechanisms such as balancing and isolation.

It was found that there is a clear gap when it comes to self-healing in IoT orchestration, as

most solutions lack comprehensive self-healing mechanisms. We consider these to be crucial for

IoT systems at the edge of the network, as these devices may be considerably unreliable Sec-

tion 2.1.2 (p. 6), and their failure hinders the resilience of the system.

24 State of the Art

Chapter 4

Problem Statement

4.1 Current issues . 25

4.2 Desiderata . 26

4.3 Scope . 27

4.4 Hypothesis & research questions . 27

4.5 Methodology . 28

4.6 Summary . 28

This chapter presents the problem under study in this dissertation, research questions, and val-

idation methods. Section 4.1 describes the limitations derived from the current state of the art.

Section 4.2 (p. 26) details a set of requirements for the system to be developed. Then, Sec-

tion 4.3 (p. 27) sets the bounds of this work and Section 4.4 (p. 27) describes the hypothesis

and research questions to be explored. Finally, Section 4.5 (p. 28) outlines the development and

evaluation methodology to be followed in this dissertation.

4.1 Current issues

Section 3.2 (p. 10) presents several solutions that aim to orchestrate distributed IoT systems at the

fog and edge. However, these tools lack comprehensive mechanisms to ensure dependability.

We focus on one particular tool — NoRDOr [45, 46] due to its rather complete feature set. It is

an open-source system that integrates with Node-RED, meaning it can be used by non-developer

end-users. Furthermore, it offers automatic partitioning and allocation of tasks, based on a set

of requirements for each task and a set of capabilities for each device. Although limited, it also

provides some fault-tolerance, re-orchestrating when device failure is detected, and providing a

mechanism to deal with memory limitations.

Nevertheless, it fails to provide fault-tolerance in scenarios where devices are unstable or

memory-constrained, ignoring the first and providing a flawed mechanism to handle the second.

Moreover, the system’s state is not leveraged upon re-orchestration, deploying the same or an

entirely different script to each device every time. We further identify the specific issues found in

the NoRDOr system:

Inconsistent state Many orchestrations can be triggered concurrently, sometimes producing dif-

ferent assignment outputs, leaving that the system in an incoherent state;

25

26 Problem Statement

Script re-deployment Scripts are re-deployed to devices even if they are already assigned the

same set of nodes, causing needless orchestration overhead and unnecessary data transfers;

Unbalanced assignments Certain scenarios may lead to an unbalanced assignment due to the

underlying greedy algorithm used for assignment, meaning the failure of one device can

cause a considerable disruption;

Device (in-)stability In the likely event that devices fail, the system does not leverage this in-

formation to improve future orchestrations, decreasing the system’s resilience as nodes are

assigned to unstable devices;

Re-orchestration overhead Whenever a new orchestration is computed, the system does not take

the current assignment into account, performing a full re-orchestration that provokes orches-

tration overhead;

Memory limitations The mechanism for handling the devices’ memory limitations relies on a

trial-and-error mechanism that may require multiple re-orchestrations until devices’ mem-

ory limitations are correctly estimated;

Device-Node failures In cases where a Device-Node pairing causes the device to fail, the system

resorts to assuming it is memory limited instead of attempting to identify and mitigate the

pairing.

The presented issues contribute to lower system resilience, as the failure of devices may highly

impair the correct service. In this work, we focus on solving the aforementioned issues in the

interest of achieving a fault-tolerant IoT orchestration platform for distributed task execution.

4.2 Desiderata

This work proposes a system capable of addressing the limitations stated above drawn from the

NoRDOr system. Such a system should satisfy the following desiderata:

D1: Generate balanced assignments The orchestrator must be able to generate balanced assign-

ments, given the currently available devices and the tasks’ requirements;

D2: Leverage device stability The orchestration mechanism must take into account the device

stability when calculating an assignment;

D3: Minimal perturbation of the system The orchestration mechanism must take into account

the current assignment to minimize the disturbance introduced into the system;

D4: Memory limitations The orchestrator must be able to generate an assignment within the

memory limitations of each device;

D5: Detect device-node failure The orchestrator must be able to identify and mitigate device-

node pairings that cause device failure.

4.3 Scope 27

By generating balanced assignments, we refer to evenly distributing the tasks through the

available devices that may change dynamically. By memory limitations, we are referring to RAM

limitations. RAM is a limited resource at the edge and changes dynamically in runtime, meaning

that it can considerably impact the amount of tasks a device can execute.

4.3 Scope

The scope of this work is to develop a prototype of a platform for real-time orchestration of IoT

at the edge that ensures dependability in dynamic scenarios. This is to be developed on top of

existing distributed orchestration platforms; thus, the development of the underlying platform it-

self is considered out-of-scope. Additionally, the focus of this work is the orchestration strategy,

meaning that the distributed task execution mechanism is out-of-scope.

The target audience of the developed platform is IoT developers or system integrators that

wish to leverage the computational capabilities of existing IoT devices while ensuring system

dependability.

4.4 Hypothesis & research questions

Given a distributed heterogeneous IoT system, with dynamic task allocation, orchestration, the

central research question this work intends to answer is:

“What mechanisms can be employed in dynamically orchestrated IoT systems that

improve the system’s dependability?”

Following the previous question and the requirements set by the desiderata, we claim the

following hypothesis:

“Runtime information from dynamically orchestrated IoT systems can be used to

achieve greater system resilience.”

In order to validate our hypothesis, we defined the following research questions that guide this

work, in pursuit of fulfilling our desiderata:

RQ1: If we change the order in which tasks are processed, can we generate balanced assignments

in dynamic settings?

RQ2: If we measure device stability and leverage it to make decisions on orchestration, can we

produce solutions that are less susceptible to device failure?

RQ3: If we leverage the current assignment on re-orchestration, can we generate solutions that

result in less orchestration overhead?

RQ4: If we leverage the real-time information on device resources to make decisions on the

orchestration, can we produce solutions that are less susceptible to memory limitations?

28 Problem Statement

RQ5: If we measure the stability of device-node pairings, can we leverage it on orchestration to

identify and mitigate device-node pairings that cause device failure?

4.5 Methodology

To validate whether the proposed system fulfills the desiderata and provides solid answers to

the research questions, we designed test scenarios and controlled experiments using both virtual

and physical devices. Each of the experiments will be compared with a baseline of the original

NoRDOr system and aims to validate one or more of the developed improvements.

However, not only is creating reproducible scenarios hard when working with cyber-physical

real-time systems, but it is also challenging to collect real-time metrics that are agnostic to underly-

ing device characteristics. In the interest of running a tighter validation cycle and streamlining the

implementation of the proposed system, we developed a software-only Orchestration Simulator,

where the improvements were tested before being ported into the NoRDOr architecture.

4.6 Summary

The current issues in existing edge computing orchestration platforms are introduced in Sec-

tion 4.1 (p. 25), derived from the gap identified in the literature. A set of requirements for the

system that the system must meet is detailed in Section 4.2 (p. 26), which summarises the char-

acteristics required to address the limitations identified. The focus of this work is the orches-

tration strategy in an edge computing orchestration platform, and it is clearly defined in Sec-

tion 4.3 (p. 27). Furthermore, the underlying platform is also excluded from the scope of this

dissertation. As described in Section 4.5, it will be developed and validated in a tight validation

cycle using an Orchestration simulator. Then, we transition to a system with physical and vir-

tual IoT devices where we simulate failures and different system configurations in an attempt to

prove the enhanced resilience of the system and provide answers to the questions singled out in

Section 4.4 (p. 27).

Chapter 5

Orchestration simulator

5.1 Motivation . 29

5.2 Desiderata . 29

5.3 Scope . 30

5.4 Implementation . 30

5.5 Simulation lifecycle . 33

5.6 Known limitations . 33

5.7 Summary . 34

This chapter presents an overview of the Orchestration simulator. First, the motivation for the

development of this tool is described in Section 5.1. Then, a set of requirements that the system

should fulfill is outlined in Section 5.2, and its boundaries are defined in Section 5.3 (p. 30).

The implementation details are presented in-depth in Section 5.4 (p. 30), and an overview of

the simulation lifecycle is described in Section 5.5 (p. 33). Finally, the systems’ limitations are

detailed in Section 5.6 (p. 33).

5.1 Motivation

Performing experiments with easily reproducible scenarios in cyber-physical real-time systems is

not a trivial task, as the devices are susceptible to hardware and connectivity limitations, making

it hard to ensure that only the relevant variables are in play.

In addition to low reproducibility, crafting complex scenarios and tweaking parameters is also

cumbersome, as it may require building and deploying custom versions of the software [16, 13].

Consequently, reaching satisfactory solutions may prove to be a prolonged process without a tool

that tackles these issues.

5.2 Desiderata

D1: Real-time orchestration The simulator must be able to dynamically allocate tasks to a set

of devices in real-time;

D2: Reproducible scenarios The simulator must provide an interface to define and run repro-

ducible scenarios, comprised of a set of tasks and devices;

29

30 Orchestration simulator

D3: Configurable devices Each device must be configurable in terms of its resources and behav-

iors;

D4: Orchestration strategies The simulator must provide a modular interface to create different

orchestration strategies;

D5: Metrics It must be possible to see real-time metrics and collect them to formatted files;

D6: Extensibility The simulator must be easily extended to include more complex concepts.

5.3 Scope

This simulator aims to mimic the functionality of a real-time orchestration platform for IoT sys-

tems. Its scope is limited to the orchestration component, i.e., the functional component of dis-

tributed code execution is out-of-scope. The orchestration component includes the monitoring of

devices by the orchestrator, the assignment process, and devices’ behaviors.

This simulator is targeted at IoT developers that wish to test orchestration strategies in a con-

trolled setting.

5.4 Implementation

The simulator was built using Node.js1, and provides a Command Line Interface (CLI) as the

entry-point, which allows the user to specify what previously defined Scenario to run, as well as

define logging parameters, a time limit for the experiment and which orchestrator version to use.

A high-level view of the different components in the system is shown in Figure 5.1 (p. 31),

and each is presented in detail in the next sections.

5.4.1 Scenario

The Scenario is the entry point class to the system. It is defined by its name — for logging

purposes — but, most importantly, it contains a set of nodes and devices. The run method starts

an experiment, i.e., a single run of a scenario, by setting up the Orchestrator, the Devices,

and the set of Nodes. Additionally, it also sets up the Metrics object that takes care of all the

logging.

During the experiment, its only responsibilities are (1) increasing the experiment clock —

the Scenario is the source of truth in this regard, and (2) optionally, running a custom scenario

behavior, which allows for the definition of any custom function that is not easily encapsulated into

individual device behaviors, e.g., restarting devices in a specific order throughout the experiment.

1Node.js: https://nodejs.org/en/

https://nodejs.org/en/

5.4 Implementation 31

1 1

1

*

1 1

1

*

1*

Metrics

 run()
 logToConsole()
 logToCSV()

Scenario

 name: string
 uptime: integer
 customBehaviour()
 run()

Orchestrator

 version: string
 currDeviceState: object
 currAssignment: object
 shouldReorchestrate: bool
 assignmentScore: int
 announce()

assigned to

Node

 id: integer
 task: string
 payloadSize: integer
 ramSize: integer

Device

 id: integer
 capabilities: string[]
 status: DeviceStatus
 uptime: integer
 resources: object
 turnOn()
 turnOff()
 restart()
 checkHealth()
 setNodes()

Behaviour

 run()
 stop()

AssignmentStrategy

 distributeFlow()
 calculateAssignmentScore()

1

1

1 *

Figure 5.1: Orchestration simulator class diagram

5.4.2 Node

A Node is a simplified version of a Node in NoRDOr. It is also identified by an id, but instead

of the predicates concept, it only has one associated task. A device can execute the node if

its task is included in the device’s capabilities. Additionally, each Node has a configurable

payload size and RAM size, both defaulting to a value of 2.

5.4.3 Device

A Device has similar properties to the real devices in the NoRDOr system. It is identified by its

id, has a set of capabilities — i.e., the set of tasks it is able to execute, a DeviceStatus

— ON/OFF, a set of resources — including static resources like flash size and total

RAM, both defaulting to a value of 99999, and dynamic resources like allocated RAM, and

an internal clock, in order to report their uptime. To abstract different device behaviors, each

device can have a set of synchronous and asynchronous behaviors. Each synchronous behavior

is executed in the run cycle of the device through the run method that also increments its clock.

On the other hand, asynchronous behaviors run concurrently, allowing the user to define behaviors

without relying on the device clock.

For the Orchestrator to communicate with a Device, the latter offers the setNodes

and checkHealth methods. The first provides the interface through which the Orchestrator

32 Orchestration simulator

deploys an assignment to the device — equivalent to the POST /execute request in NoRDOr,

while the latter sends a report of its current state to the Orchestrator — equivalent to GET

/health. The return value of these methods is actually a Promise that is resolved in a small

random amount of seconds to mimic the real-world latency of making an HTTP request. As this

promise resolves, the Orchestrator receives a Response object, which contains a status

and data. Similarly to HTTP requests, the status indicates the result of the request — in this case,

these can be SUCCESS, FAIL or MEM_ERROR, with the last only being used in the setNodes

method.

A Behaviour encapsulates a common behavior of a Device. This is usually related to trig-

gering a device failure for different reasons but could be extended to simulate resource degradation,

for example.

In asynchronous behaviors, the Device executes the behavior’s run method to start

the behavior interval when the device boots up and the stop method when it turns off.

In the case of synchronous behaviors, the Device executes the behavior’s run method

on every tick of its clock.

Currently, the following behaviors are implemented:

DeviceNodeFail Synchronous behavior that restarts the device if it is assigned a specific node;

ProbabilisticFail Asynchronous behavior that restarts the device given a certain probabil-

ity;

RecurrentFail Asynchronous behavior that restarts the device at a given interval;

SingleFail Asynchronous behavior that turns off or restarts the device once.

Each of these behaviors is highly customizable, from the interval at which they run to the time

the device should take to restart.

5.4.4 Orchestrator

The Orchestrator contains the core logic of the system. It’s responsible for assigning Nodes to

Devices, as well as monitoring the latter and performing re-orchestrations as needed. It combines

the functionality from the Registry and Orchestrator nodes in NoRDOr, becoming the source of

truth for the device state. Additionally, it stores the nodes it should distribute, the current

assignment, and its score.

In order to allow Devices to announce themselves to the Orchestrator, the latter provides

the announce method that devices use as if they were announcing themselves to the MQTT topic

in NoRDOr, i.e., they call this method but expect no response from it.

The Orchestrator also runs a periodic health check that calls the checkHealth method

on each device so that it can keep a quasi-real-time record of the device’s state, as well as update

any derived metrics relevant to the system.

5.5 Simulation lifecycle 33

Finally, the assignment logic is extracted using the STRATEGY design pattern by providing

the Orchestrator with a version that can be mapped to a specific AssignmentStrategy

at runtime. This allows the developers to create different strategies and compare them in various

scenarios without using manually versioned code.

Each AssignmentStrategy can employ a different orchestration mechanism, as long as

they provide the distributeFlowmethod that is called by the Orchestrator. The superclass

implements some common methods, such as the calculateAssignmentScoremethod that all

subclasses can use. Each subclass must also take care of deploying the assignment to the devices.

5.4.5 Metrics

The Metrics object provides the logging capabilities to both the console and CSV files. The

object has access to the Orchestrator and Devices and can derive metrics as the experiment

progresses by accessing the other objects. This means that the precision of the metrics is consid-

erably higher than in a real system that relies on larger intervals and latency to collect information

on the physical devices. Some of the collected metrics include device uptime, number of assigned

nodes, and node uptime.

5.5 Simulation lifecycle

A simulation starts when the run method of the Scenario is executed. This triggers a set of

method calls on other objects in the system — Metrics, Orchestrator, and all Devices,

that run their initial setup. After this, the Scenario updates its experiment clock, resorting to the

setInterval timing method.

Similarly, the Metrics object performs two operations every second: (1) update the metrics it

keeps on devices and nodes with the latest information, and (2) log this information to the console

and to CSV files.

The Orchestrator object permanently runs 2 parallel intervals. The first, every 500ms,

checks if the system should trigger a re-orchestration, which may be due to a new device in the

system, a failed device, or because the current assignment is incomplete. The second runs every

3s to check the health of every device.

Finally, each Device announces itself to the Orchestratorwhen it turns on, letting it know

that it is available to be assigned nodes. Conversely, the Orchestrator can assign a set of nodes

to the device. Additionally, every second, the device updates its uptime and runs all synchronous

behaviors. In parallel, all the asynchronous behaviors execute their tasks at their defined intervals.

A visual representation of the events comprised in a simulation can be seen in Figure 5.2 (p. 34).

5.6 Known limitations

The simulator was deliberately designed to be a simplified and easier way to test real scenarios

that offer low reproducibility. However, in doing so, the system may behave differently to a real

34 Orchestration simulator

Scenario Metrics Orchestrator Device

announce

assignment

loop

error
success

loop
check health

OK {report}

error

loop
tick clock
execute sync behaviours

distributeFlow

start

start

start

loop

tick clock

loop

log

loop execute async
behaviours

Figure 5.2: Simulation sequence diagram

system due to the lack of real concurrency — the system runs on the Node.js runtime environment,

which is single-threaded.

Moreover, the simulator does not completely mimic the flows from NoRDOr as the Node is

isolated and lacks the concept of input and output nodes. Nevertheless, we expect this to be easily

implemented if need be due to the high extensibility of the system.

5.7 Summary

This chapter describes the implementation of an Orchestration simulator which is a Node.js appli-

cation that allows the creation and simulation of reproducible scenarios for dynamic task allocation

in IoT environments.

In Section 5.1 (p. 29), the motivation for this tool is described. Then, in Section 5.2 (p. 29),

5.7 Summary 35

a set of requirements the simulator must fulfill are presented, having been derived from the re-

quirements of NoRDOr, and from the reproducibility issues that led to the development of this

simulator.

The system focuses on the orchestration component — dynamic allocation of tasks through

the available devices but does not include the task execution component, as outlined in Sec-

tion 5.3 (p. 30).

In Section 5.4 (p. 30), we present an overview of the system and its main components, as well

as a detailed explanation of the responsibility and core concepts of each one. We also highlight

the fact that different iterations of the assignment strategy can be chosen at runtime due to the use

of a STRATEGY design pattern, enabling developers to test different solutions without having to

manually replace the code.

The lifecycle of a simulation and the associated interval-based events are presented in Sec-

tion 5.5 (p. 33), alongside a sequential representation of them.

Finally, in Section 5.6 (p. 33), we describe the limitations of the developed system, such as the

lack of pure concurrency that can impair the simulator’s resemblance to a real-world system.

36 Orchestration simulator

Chapter 6

Orchestration strategy

6.1 Methodology . 37

6.2 Base strategy . 38

6.3 Initial improvements . 38

6.4 Handling device instability . 41

6.5 Generating balanced assignments . 44

6.6 Dealing with memory limitations . 46

6.7 Exploring the solution space . 48

6.8 Minimizing the disturbance on re-orchestration 50

6.9 Handling faulty assignments . 54

6.10 Summary . 57

In this chapter, the several iterations that took place during the improvement of the orchestration

strategy are outlined. First, the methodology and an overview of each iteration are presented in

Section 6.1. Then, in Section 6.2 (p. 38) the basic behavior of the simulator is validated. Finally,

each improvement is described in detail in Sections 6.3 (p. 38) to 6.9 (p. 54).

6.1 Methodology

When developing the solutions to tackle the current problems with the NoRDOr system (cf. Sec-

tion 4.1, p. 25), we leveraged the Orchestration simulator to test and tweak the possible solutions

quickly. This allowed us to validate quickly, although with lower confidence, the improvements

by crafting and running a scenario in both the current and previous version. Since we took an iter-

ative approach, adding cumulative changes to the system, the ability to separate each version and

compare it with previous versions in deterministic scenarios, allows us to (1) evaluate the impact

of previous improvements on each of the tackled problems, and (2) clearly measure the impact of

a specific improvement, due to the baseline already containing the previous ones.

For each version, we craft one or more scenarios that highlight the problems we wish to tackle

from the previous version. Then, we proceed to apply the proposed changes and compare the

results of the same scenarios with the baseline version.

The several improvements to be made to the original system in order to fulfill the Desiderata

and answer the Research Questions (cf. Chapter 4, p. 25) led to a total of five versions of the

37

38 Orchestration strategy

orchestration strategy, excluding the baseline version ported from NoRDOr. In this chapter, this

version is referred to as v0, while the enhanced versions are referred to as v1, v2, v3, v4, and v5.

Each version contains all the improvements to previous versions with one or more additional

improvements, as shown in Table 6.1.

Table 6.1: Improvements by simulator version

Improvement v0 v1 v2 v3 v4 v5

General enhancements • • • • •
Device stability • • • • •
Orchestration score • • • • •
Sorted nodes • • • • •
RAM monitoring • • • •
Backtracking • • •
Minimum set of changes • •
Device-node stability •

6.2 Base strategy

In the interest of validating the basic behavior of the simulator, this version, v0, is ported from

NoRDOr, with the least possible modifications.

We design 2 Sanity Checks to ensure that the orchestration and re-orchestration mechanisms

are aligned with the expectations. For both experiments, we use a scenario comprised of 36 nodes

and 4 devices, where any device can be assigned any node.

In the first, SIM-SC1, we shut down one device at a time and expect that nodes are re-

distributed through the available devices, maintaining a balanced assignment. As shown in Fig-

ure 6.1 (p. 39), the expectations are completely met.

In the second, SIM-SC2, we restart one device at a time and expect that nodes are re-distributed

both when devices disappear but also when they re-appear. Figure 6.2 (p. 40) shows that the or-

chestration mechanism is indeed triggered in both cases. However, when Devs. 3 and 4 are

restarted, the Number of nodes graph does not show this clearly, even though it can be seen in the

Payload graph. We attribute this to the discretization of time and the need to aggregate data, losing

some precision in the case of the heatmap graphs.

6.3 Initial improvements

We start by identifying some lower-priority problems that do not necessarily contribute to our

hypothesis (cf. Section 4.4, p. 27), and solve them in version v1.

6.3 Initial improvements 39

0

20

40

60

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 20 40 60 80 100 120 140

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

Payload Size

Uptime (s)

Number of nodes allocated per device

Time (s)

9 19 29 38

9 19 29 39 49 59 69 78

9 19 29 39 49 59 69 79 89 99 109 118

9 19 29 39 49 59 69 79 89 99 109 119 129 139 149

9 9

9 9 9 9 12 12

9 9 9 9 12 12 12 12 18 18

9 9 9 9 12 12 12 12 18 18 18 18 36 36

Figure 6.1: SIM-SC1 using v0

6.3.1 Identified problems

Firstly, it is possible for different calls of the distributeFlow method to be running concur-

rently, leading to an inconsistent state. Additionally, the same method can incur in recursive calls

when a deployment fails, making it harder to measure its performance. Finally, the deployment

mechanism does not take into account if the assignment it is deploying to a certain device has not

changed, causing unnecessary network traffic and orchestration overhead.

6.3.2 Solutions

Firstly, we extract the re-orchestration trigger, distributeFlow, to a single execution point.

When a device enters or leaves the system, a shouldReorchestrate boolean flag is set to

40 Orchestration strategy

0

5

10

15

20

25

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 20 40 60 80 100 120 140

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

Payload Size

Uptime (s)

Number of nodes allocated per device

Time (s)

9 13 10 20 30 40 50 60 70 80 90 100 110 120

9 19 29 39 43 10 20 30 40 50 60 70 80 90

9 19 29 39 49 59 69 73 10 20 30 40 50 60

9 19 29 39 49 59 69 79 89 99 103 10 20 30

9 12 9 9 9 9 9 9 9 9 9

9 12 9 9 9 9 9 9 9 9 9 9

9 12 9 9 9 9 9 9 9 9 9 9

9 12 9 9 12 9 9 9 9 9 9 9

Figure 6.2: SIM-SC2 using v0

true and is set to false when a successful orchestration is completed. Additionally, we carry

the assigning boolean flag from the original system that signals that the distributeFlow

method is running. Combining these two flags, every 500ms, the system checks if it should

re-orchestrate, and if it is not currently assigning, calls the distributeFlow method. These

changes ensure that there are no concurrent orchestrations running and that there is no recursion

on the orchestration method itself. In addition to this change, we also prevent a script from being

deployed if the device is already executing those same nodes. This is achieved by comparing the

set of nodes resulting from the new assignment and the ones the device is currently executing.

6.4 Handling device instability 41

6.4 Handling device instability

Version v1 also introduces a mechanism for leveraging device stability on orchestration.

6.4.1 Identified problem

If a device is behaving incorrectly, causing it to fail repeatedly or failing more often than would

be considered acceptable, the system should converge to a state where that device is not assigned

any nodes, if possible. Because there is no such mechanism, whenever a device either re-connects

or disconnects, the system will perform a re-orchestration, even if that device has shown unstable

behavior in the past.

In order to confirm our expectations and validate a possible solution, we design a scenario,

SIM-A, comprised of 36 nodes and 4 devices, 2 of which fail every 5s, taking 15s to restart. We

expect the system to re-orchestrate whenever the devices fail and re-connect.

Figure 6.3 (p. 42) shows that our assumptions hold. Whenever a device re-connects, the system

generates a new assignment, including the failing devices, leading to a countless number of re-

orchestrations. As the device fails shortly after, another re-orchestration needs to happen for the

system to return to a correct state. It is also possible to notice that during the whole experiment,

the 36 nodes are only being executed in 3 separate instances — since data is aggregated by 10s

intervals, this does not mean it only happened for 3s.

6.4.2 Solution

To measure device stability, we resort to the Mean Time Between Failures (MTBF) metric. This

can be calculated by dividing the total number of operational time (seconds in this case) by the

total number of failures, as shown in (6.1). A lower MTBF means that the device has failed more

often and can be considered unstable, and vice-versa.

MT BF =
Total_uptime

f ailures
(6.1)

Each device’s MTBF is updated on 2 separate occasions: (1) on health check — if the device is

alive, the total uptime is updated, and consequently the MTBF, and (2) on announce — the number

of fails is incremented, and the MTBF re-calculated. This is possible because the proposed system

replaces the PING pattern with the HEALTH CHECK pattern, where the device sends a report of its

state instead of simple OK to signal it is alive. In this report, each device sends its current uptime,

which is kept in the Orchestrator, along with the total uptime for that device.

The device stability metric is then included in the greedy heuristic when calculating the score

for each device. Since the MTBF value is not upper bound, we normalize it by applying 2 opera-

tions, as show in (6.2). Firstly, the MTBF value is divided by α , which is the STABILITY_FACTOR

(in seconds) configured for the system. If the MTBF value is greater than this factor, the device is

considered stable; otherwise, it is a value between 0 and 1, with 0 meaning highly unstable and 1

meaning stable. Afterward, because this value can still be greater than 1 — if the MTBF is greater

42 Orchestration strategy

0

10

20

30

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 50 100 150 200

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

Payload Size

Uptime (s)

Number of nodes allocated per device

Time (s)

9 19 29 39 49 59 69 79 89 99 109 119 129 139 149 159 169 179 189 199

4 4 4 4 4 4 4 4 4 4

9 19 29 39 49 59 69 79 89 99 109 119 129 139 149 159 169 179 189 199

4 4 4 4 4 4 4 4 4 4

9 9 12 9 18 9 9 12 12 9 9 9 18 12 12 9 18 9 9

18 9 9 9 18 9 12 12 18 9 9 9 18 12 12 12 18 9 9

Figure 6.3: SIM-A using v0

than STABILITY_FACTOR, we take the minimum between the calculated value and 1, effectively

setting the upper bound to 1. On the other hand, if the device has not failed at all, the MTBF would

be infinity, so we set the stability to 1.

stability =

{
min(MT BF

α
,1) if device.failures > 0

1 otherwise
(6.2)

The greedy heuristic, h, for each device d, becomes h = 0.3 · d.vacancy + 0.7 · d.stability,

where vacancy is the inverse of the number of nodes that the device has been assigned so far —

this was ported from the NoRDOr system, where it is also used to ensure the balancing as the

assignment progresses. This means that less stable devices receive fewer nodes and that stability

takes precedence over balancing.

6.4 Handling device instability 43

In addition to modifying the heuristic, we should also prevent an assignment from being de-

ployed if it is worse than the previous. Thus, we introduce the concept of assignment score — a

floating-point number between 0 and 1 for a successful assignment; -1 otherwise. Using the score

to decide if an assignment should be deployed allows us to prevent the system from constantly

deploying a new assignment when an unstable device connects. The score is calculated indepen-

dently from the greedy algorithm, as it should objectively assess the quality of a full assignment,

and it encompasses the concepts of device stability and balancing.

To compute the score, as shown in (6.3), we start by calculating the mean of nodes per device

— this represents the expected, not the observed value. We then calculate the total absolute

deviation for the observed values. Because we want to normalize this value to be between 0 and

1, and since we know the largest possible deviation, we divide the total absolute deviation by the

largest deviation possible — when all nodes are assigned to one device. At this point, the more

unbalanced the system is, the greater the balancing value is, so we reverse it.

Additionally, we calculate the average node stability by computing the total stability and di-

viding it by the number of nodes. Since each device stability value, as shown in (6.2), is bound

between 0 and 1, dividing the total by the number of nodes means that the average node stability

will also be between 0 and 1. Finally, the assignment score is computed as the arithmetic mean

of the stability and balancing values if the assignment is complete (all nodes are assigned); or -1,

otherwise.

mean =
nodes

devices
deviation = ∑

d∈devices
|d.#nodes−mean|

balancing = 1− deviation
(# devices−1) ·mean + (# nodes−mean)

stability =
1

nodes ∑
d∈devices

d.stability · d.#nodes

score =

{
−1 if incomplete assignment

0.5 ·balancing + 0.5 · stability otherwise

(6.3)

The assignment score is stored whenever an assignment is successfully deployed, and when a

new one is computed, it is only deployed if the score is greater than the current one. However, if a

device is found to have failed, the current score is set to -1 to allow for any complete assignment

to be deployed, restoring the correct service.

After implementing these changes, we re-test scenario SIM-A with version v1 and expect that

the system does not re-orchestrate as the unstable devices keep re-connecting. Figure 6.4 (p. 44)

indeed shows that our assumptions are correct. By looking at the Payload graph, we can see that

in the first assignment, all devices are assigned nodes, but as Devs. 2 and 4 fail shortly after

receiving the assignment, it is not observable in the Number of nodes graph. As Devs. 2 and 4

restart, the system does not assign them any nodes because they are considered unstable; thus, the

44 Orchestration strategy

new assignment does not have a higher score than the previous one.

0

10

20

30

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 50 100 150 200

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

Payload Size

Uptime (s)

Number of nodes allocated per device

Time (s)

9 19 29 39 49 59 69 79 89 99 109 119 129 139 149 159 169 179 189 199

3 4 4 4 4 4 4 4 4 4

9 19 29 39 49 59 69 79 89 99 109 119 129 139 149 159 169 179 189 199

3 4 4 4 4 4 4 4 4 4

18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18

18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18

Figure 6.4: SIM-A using v1

Comparatively to v0, v1 yields a average node uptime almost 15% higher, meaning that the

system is providing correct service for a considerable greater amount of time, as shown in Fig-

ure 6.5 (p. 45).

6.5 Generating balanced assignments

The final improvement introduced in version v1 is a strategy that aims to provide balanced assign-

ments in dynamic settings.

6.5 Generating balanced assignments 45

0 50 100 150 200

0

20

40

60

80

100

Orchestrator version v0 v1Average Node Uptime (%)

Time (s)

84.8

98.1

Figure 6.5: SIM-A average node uptime comparison between versions v0 and v1

6.5.1 Identified problems

The greedy algorithm always processes nodes in the same order, meaning that there are some

cases where it can lead to an unbalanced assignment. If a large number of specific nodes (only

executable by a subset of devices) is processed last, then the assignment will always be unbalanced.

Because the greedy algorithm solves for locally optimal solutions, it does not consider that the last

nodes that it will process will all be assigned to a smaller number of devices. Additionally, the

devices available to the system change dynamically, meaning that a balanced assignment for a set

of devices might not be as balanced for a different one.

As a practical example, a scenario, SIM-B, is comprised of 10 nodes and 2 devices. The first 6

nodes can be executed by any device, while the other 4 need to be executed by Dev. 1. The system

should assign 3 nodes to each of the devices after processing the first 6 nodes, and then assign the

last 4 nodes to Dev. 1, resulting in 7 nodes assigned to Dev. 1 and 3 nodes assigned to Dev. 2. In

larger, more complex scenarios, this could possibly result in a highly unbalanced assignment.

As shown in Figure 6.6 (p. 46), the system behaves exactly as expected, producing an unbal-

anced assignment.

6.5.2 Solution

To solve the highligted balancing issues, we take a simple approach — sort the nodes by their

specificity, which is given by the number of devices that can currently execute it. This is done

before the start of the assignment process in order to ensure that the specificity is limited to the

currently available devices.

Using scenario SIM-B described above, we run a new simulation using v1. We expect that

this change results in the following: (1) the 4 specific nodes are assigned to Dev. 1 (the only one

46 Orchestration strategy

0

5

10

15

Dev. 1

Dev. 2

0 10 20 30 40 50

Dev. 1

Dev. 2

Dev. 1 Dev. 2

Payload Size

Uptime (s)

Number of nodes allocated per device

Time (s)

9 19 29 39 49

9 19 29 39 49

7 7 7 7

3 3 3 3

Figure 6.6: SIM-B using v0

that can execute them), and (2) the following 6 general nodes are distributed 1 to 5 for Devs. 1 and

2, respectively, because of the balancing heuristic, resulting in a total of 5 nodes for each device.

Figure 6.7 (p. 47) shows that the behavior is as expected.

6.6 Dealing with memory limitations

Version v2 introduces changes to the mechanism responsible for preventing device failure caused

by memory limitations.

6.6 Dealing with memory limitations 47

0

2

4

6

8

10

Dev. 1

Dev. 2

0 10 20 30 40 50

Dev. 1

Dev. 2

Dev. 1 Dev. 2

Payload Size

Uptime (s)

Number of nodes allocated per device

Time (s)

9 19 29 39 49

9 19 29 39 49

5 5 5 5

5 5 5 5

Figure 6.7: SIM-B using v1

6.6.1 Identified problem

The NoRDOr system uses the concept of memoryErrorNodes to deal with memory limitations.

This is an integer value associated with each device that should represent the maximum amount

of nodes it can execute. Whenever a device fails with a memory error — either on deployment or

by announcing a failure — its memoryErrorNodes value is set to the number of nodes it was

executing. This behavior can be both over-restrictive and not restrictive enough. Since different

nodes have a different impact on RAM usage, and some specific nodes can even cause a specific

device failure, the memoryErrorNodes may be decremented so much to the point that we are

no longer leveraging the device’s capabilities. On the other hand, it can also take a trial-and-error

cycle to get to a reasonable memorryErrorNodes value because the system will keep trying to

48 Orchestration strategy

assign memorryErrorNodes−1 nodes to the device until it no longer crashes.

In order to highlight this limitation, we design a scenario, SIM-C, where 2 of the 4 devices are

RAM-constrained. There is a total of 36 nodes to be distributed, and any device can execute any

node. Due to the impact of the device stability feature (cf. Section 6.4, p. 41), we also restart one

of the non-constrained devices, forcing the system to perform a re-orchestration. We expected the

system to clearly show several attempted deployments to the constrained devices, as the system

adjusted to the correct memoryErrorNodes value.

Figure 6.8 (p. 49) shows that our assumptions hold but not as clearly as expected. Looking

at the Payload graph for the first assignment, it is noticeable that there are several assignment

attempts to Devs. 1 and 3, which are RAM-constrained. Because they repeatedly fail so early,

their stability becomes very low, causing the system not to assign them any nodes. When Dev. 2

is restarted at around 60s, Devs. 1 and 3 are still not assigned any nodes, presumably due to its

still low stability — they fail multiple times in the early instances. At around 140s, when Dev. 2

is restarted again, the Devs. 1 and 3 are already considered more stable, and the system attempts

to distribute them nodes — we can clearly see that the payload sent to these devices is lower than

the ones attempted at the beginning of the experiment, but still too big for the devices, causing

them to fail again and becoming too unstable to be considered on orchestration. At around 210s,

Devs. 1 and 3 are, finally, assigned nodes without crashing. They are not kept at their RAM limit,

possibly due to their still low stability causing the system to assign them fewer nodes.

6.6.2 Solution

By leveraging the ability to gather real-time data from the devices (from the health check), we

can replace the memoryErrorNodes with the RAM size of each device. Since the orchestrator

knows the RAM size of each node and each device, it can perform a perfect assignment in this

regard. Specifically, we exclude a device from being assigned a certain node if adding it to its

current assignment would exceed the device’s RAM size.

In the same scenario SIM-C, v2 performs a perfect orchestration, assigning the highest possi-

ble amount of nodes to each of the devices in the system (cf. Figure 6.9, p. 50).

6.7 Exploring the solution space

In version v3, we introduce a backtracking mechanism to mitigate some downfalls of the greedy

algorithm.

6.7.1 Identified problem

As Silva et al. [45, 46] pointed out, the greedy algorithm can lead to some problems — namely,

memory constraints may cause impossible orchestrations when the only device capable of execut-

ing a certain node is already assigned nodes that keep it at its memory limit. This happens because

the algorithm employs neither a backtracking mechanism nor a RAM-related heuristic.

6.7 Exploring the solution space 49

0

20

40

60

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 50 100 150 200 250 300

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

Payload Size

Uptime (s)

Number of nodes allocated per device

Time (s)

5 15 25 35 45 55 65 75 85 95 105 115 125 135 139 14 24 34 44 54 64 74 84 94 104 114 124 134 144 154

9 19 29 39 49 59 63 5 15 25 35 45 55 64 10 20 30 40 50 60 64 5 15 25 35 45 55 64

5 15 25 35 45 55 65 75 85 95 105 115 125 135 138 12 22 32 42 52 62 72 82 92 102 112 122 132 142 144

9 19 29 39 49 59 69 79 89 99 109 119 129 139 149 159 169 179 189 199 209 219 229 239 249 259 269 279 289 299

18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 1 1 1 1 1

2 3 3 3 3 3 3

18 32 32 32 32 32 32 32 29

Figure 6.8: SIM-C using v1

6.7.2 Solution

In order to mitigate this problem, we introduce a backtracking mechanism in the algorithm that

will attempt to select the best device for each node, backtracking if the current solution fails, and

attempting the next best device. Specifically, we replace the getBestDevice method, respon-

sible for finding the best device for a specific node, with the getDeviceScores that returns

a sorted list of the devices that can execute a specific node. Additionally, we encapsulate the

backtracking behavior in a recursive method, generateAssignment, that makes use of the

getDeviceScores to compute the assignment and returns the full assignment when a solution

is found, as shown in Algorithm 1 (p. 51).

We opt not to include a RAM component in the greedy heuristic because it’s not clear that

the system would benefit from it to the detriment of the current stability and balancing-based

heuristic. Thus, we stick to excluding a device from the assignment if it will not be able the node

being tested (cf. Section 6.6, p. 46). This means that even though we are using backtracking to

fight the RAM limitations, we are not actually solving for the best RAM allocation, which may be

considered illogical.

50 Orchestration strategy

0

10

20

30

40

50

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 50 100 150 200 250 300

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

Payload Size

Uptime (s)

Number of nodes allocated per device

Time (s)

9 19 29 39 49 59 69 79 89 99 109 119 129 139 149 159 169 179 189 199 209 219 229 239 249 259 269 279 289 299

9 19 29 39 49 59 63 5 15 25 35 45 55 64 10 20 30 40 50 60 64 5 15 25 35 45 55 64

9 19 29 39 49 59 69 79 89 99 109 119 129 139 149 159 169 179 189 199 209 219 229 239 249 259 269 279 289 299

9 19 29 39 49 59 69 79 89 99 109 119 129 139 149 159 169 179 189 199 209 219 229 239 249 259 269 279 289 299

6 6

12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

6 6

12 12

Figure 6.9: SIM-C using v2

Because of this limitation, we noticed that when testing highly constrained scenarios with a

considerable amount of nodes, the backtracking mechanism is impractical because of the brute-

force approach. We do not consider this to be a very likely scenario, so we opted to maintain

the backtracking mechanism for its benefits and add an early stopping strategy that interrupts the

backtracking if it takes longer than 3 seconds to find a solution.

6.8 Minimizing the disturbance on re-orchestration

Version v4 introduces a mechanism to leverage the current assignment on re-orchestration as a

means to minimize orchestration overhead.

6.8.1 Identified problem

Currently, when a new orchestration is generated, the current one, if valid, is not taken into ac-

count. Deploying a new assignment to a device is costly because it needs to stop executing the

current nodes, delete the script and re-install the new script. Although this is not necessarily very

time-consuming, it may have a functional impact on the system, as critical data from sensors could

6.8 Minimizing the disturbance on re-orchestration 51

Algorithm 1: generateAssignment()
Recursive greedy assignment algorithm with backtracking mechanism

input : nodes: Node[],
index: integer,
devices: Device[],
assignment: Map<Device, Node[]>

output: Map<Device, Node[]>

begin
if index ≥ nodes.length then

return assignment
end
node← nodes[index]
devices← getDeviceScores(node, devices, assignment)
for device ∈ devices do

newAssignment← assignment ∪ {device→ node}
next← generateAssignment(nodes, index + 1, devices, newAssignment)
if next 6= NULL then

return next
end

end
return NULL

end

be lost when a device is re-assigned nodes. Additionally, it also adds entropy to the system as it

increases the chance of causing a failure in the system, e.g., device-node fail (cf. Chapter 6.9,

p. 54).

In the interest of validating our solution to this problem, we set up a scenario, SIM-D, com-

prised of 35 nodes and 4 devices, where any device can execute any node. One of the devices is

turned off shortly after, and the system re-orchestrates. We expect that, in v3, a full re-orchestration

takes place, re-assigning all nodes. As expected, Figure 6.10 (p. 52) shows that when Dev. 3 fails

at around 30s, all of the nodes are re-orchestrated, assigning 12 nodes to Devs. 1 and 2, and 11 to

Dev. 4.

6.8.2 Solution

In order to address this issue, the current orchestration must be leveraged in order to mitigate the

impact of the re-orchestration. Because the NoRDOr system requires the deployment of the full

script for each device, i.e., it is not possible to add or remove a specific node from a device, and due

to the fact that changing the code execution component is out-of-scope (cf. Section 4.3, p. 27), we

attempt to minimize the set of changes on re-orchestration by minimizing the number of affected

nodes.

Specifically, we define the Minimum Set of Changes (MSC) as the set of changes to the

assignment that minimize the number of nodes that need to stop during the deployment of the

assignment. In case the re-orchestration is triggered due to device failure, this is done in 4 steps:

52 Orchestration strategy

0

5

10

15

20

25

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 20 40 60 80 100 120

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

Payload Size

Uptime (s)

Number of nodes allocated per device

Time (s)

9 19 29 39 49 59 69 79 89 99 109 119

9 19 29 39 49 59 69 79 89 99 109 119

9 19 28 10 20 30 40 50 60 70 80

9 19 29 39 49 59 69 79 89 99 109 119

9 9 9 12 12 12 12 12 12 12 12

9 9 9 12 12 12 12 12 12 12 12

9

8 8 8 11 11 11 11 11 11 11 11

Figure 6.10: SIM-D using v3

1. Keep track of failed devices, when checking the health of devices or when a new device

announces itself;

2. When assigning, only consider the nodes currently assigned to failed devices;

3. Take into account the number of affected nodes when choosing in which device to deploy

each node;

4. In case an assignment cannot be reached, perform a full re-orchestration.

In case the orchestration is triggered by a new device announcing itself, we compare not only

the new and old assignment scores but also take into account the number of affected nodes.

6.8 Minimizing the disturbance on re-orchestration 53

We start by adding a Set of failed devices that the Orchestrator keeps. When the distributeFlow

method is called, we compute the nodes that were assigned to every failed device. If there is any,

we attempt to re-distribute only these nodes. If this fails — either by the algorithm not finding a

solution or by deploy failure — the system will try to perform a full re-orchestration. A simplified

version of distributeFlow highlighting this mechanism is shown in Algorithm 2.

Algorithm 2: distributeFlow()
Entry-point method to trigger re-orchestration (simplified)

input : currentAssignment: Map<Device, Node[]>,

failedDevices: Device[],

α = 0.5,

β = 0.5

begin
failedNodes← currentAssignment.filterKeys(failedDevices).values().flatten()

failedDevices.clear()

if failedNodes.length > 0 then
assignment← generateAssignment(failedNodes, 0, devices, currentAssignment)

if assignment 6= NULL and deploy(assignment) then
setCurrentAssignment(assignment)

return
end

end
assignment← generateAssignment(allNodes, 0, devices, emptyAssignment)

if assignment 6= NULL then
newScore← α· assignment.score + β · affectedNodesScore

if newScore > currentAssignment.score then
if deploy(assignment) then

setCurrentAssignment(assignment)

end
end

end
end

In addition to these changes, two more are necessary to implement our solution: (1) add a new

component to the greedy heuristic that minimizes the number of affected nodes, and (2) take into

account the number of affected nodes when comparing the old and new assignment scores.

Regarding the heuristic change, we add a new component to the existing ones (cf. Sec-

tion 6.4, p. 41): changeIndex — the inverse of the number of affected nodes. The greater the

changeIndex, the fewer nodes need to be stopped when the new script is deployed, which is con-

sidered to be favorable for the system. In order to calculate this value, at every step of the as-

signment algorithm, the number of affected nodes is either the number of nodes that the device is

currently executing or 0 if it has already been assigned a new node during the current assignment

process. This means that if we assign 2 nodes to a device, the number of affected nodes for the

54 Orchestration strategy

first node will be the current number of nodes it is executing, but will be 0 for the following node

because deploying 2 nodes results in the same number of affected nodes as deploying 1 node. The

calculation of these values is shown in (6.4). The greedy heuristic, h, for each device d, becomes

h = 0.15 ·d.changeIndex + 0.15 ·d.vacancy + 0.7 ·d.stability.

a f f ectedNodes =

{
0 if device.newNodes 6= device.nodes

device.nodes otherwise

changeIndex = (a f f ectedNodes + 1)−1

(6.4)

In addition to changing the heuristic, another change is necessary to complete the feature. If

the system applied the MSC when a device failed but performed a full re-orchestration when it

re-connected, due to a better assignment score (cf. Section 6.9), the purpose of MSC would be

defeated. In order to mitigate this behavior, we make a slight adjustment to how the comparison

works. Instead of comparing the new and old assignment scores, the new score is calculated as the

arithmetic mean between the new assignment score and the affectedNodesScore, as shown in (6.5).

a f f ectedNodesScore = 1− # a f f ected_nodes
nodes

newScore = 0.5 ·a f f ectedNodesScore+0.5 · score
(6.5)

Although the operational impact of MSC is impossible to evaluate in this simulator due to the

lack of the code execution component, we validate the orchestration strategy nonetheless. Using

the scenario SIM-D, we repeat the experiment using v4, expecting that when Dev. 3 fails, only its

nodes are re-assigned to the device with the least assigned nodes. Figure 6.11 (p. 55) shows that

our assumptions hold. When Dev. 3 fails, its 9 nodes are re-assigned to Dev. 4 because it affects

the least number of nodes, as it is only executing 8 nodes, compared to the remaining devices’ 9

nodes.

6.9 Handling faulty assignments

In the final version, v5, we extend the device stability to device-node pairings in the interest of

reducing device failure caused by faulty assignments.

6.9.1 Identified problem

There may be cases where a specific device-node pairing causes the device to crash. The system

should be able to mitigate this situation by attempting not to assign this device-node combination.

In order to assess how the system responds to device-node pairings that cause device failure,

we design a scenario, SIM-E, with 12 nodes and 4 devices, where each device fails if executing

a specific node (one of the devices fails if executing any of 2 specific nodes). We then restart

6.9 Handling faulty assignments 55

0

10

20

30

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 20 40 60 80 100 120

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

Payload Size

Uptime (s)

Number of nodes allocated per device

Time (s)

9 19 29 39 49 59 69 79 89 99 109 119

9 19 29 39 49 59 69 79 89 99 109 119

9 19 28 10 20 30 40 50 60 70 80

9 19 29 39 49 59 69 79 89 99 109 119

9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9

9

8 8 8 17 17 17 17 17 17 17 17

Figure 6.11: SIM-D using v4

all 4 devices in a random order every 40s, to allow the nodes to rotate to different devices. We

expect that the system will keep assigning the nodes that cause devices to fail because there is no

mechanism to prevent it.

Figure 6.12 (p. 56) shows that for most of the re-orchestrations, devices are assigned that cause

them to fail. It is possible to clearly observe this behavior between 130 and 180s, where devices

seem to have restarted multiple times due to being assigned a faulty node — their uptime does not

increase steadily as it should.

56 Orchestration strategy

0

10

20

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 50 100 150 200 250 300

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

Payload Size

Uptime (s)

Number of nodes allocated per device

Time (s)

6 16 26 35 8 18 28 37 8 18 28 37 1 10 20 28 6 4 9 18 8 18 28 37 1 10 20 29 8 18

4 13 23 32 2 9 19 28 8 18 28 37 8 18 24 2 4 5 12 21 8 18 28 37 8 18 28 37 8 18

6 16 26 35 1 10 20 29 8 18 28 37 8 1 5 14 8 18 20 2 8 18 28 37 8 18 28 37 8 18

3 10 20 29 7 2 9 18 8 18 28 37 8 18 28 37 1 1 5 1 8 18 28 37 8 18 28 37 8 18

2 2 1 1 3 3 1 4 4 3 3 3

5 7 5 4 4 3 3 5 5 6 6 6

2 2 2 4 4 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1

Figure 6.12: SIM-E using v4

6.9.2 Solution

Similarly to the device stability concept introduced in Section 6.4 (p. 41), we introduce a device-

node stability metric, which is calculated as the MTBF of each device-node pairing. At every

health check, for each node that each device is executing, its total number of ticks is incremented.

If the device is found to have failed or has reconnected, the total number of fails for each of the

nodes it was executing is incremented. Contrary to the device stability, we measure it in ticks

instead of seconds because it is unknown for how long each device has been executing each node.

Additionally, this metric is not as precise as the device stability because even though only one node

might have caused the failure, all of the nodes that were being executed will have their device-node

stability decreased. Nevertheless, as time progresses, we expect that as the system collects more

data, the metric will become more precise.

When calculating the greedy heuristic for each node and for each device, instead of only using

the device stability, we also take into account the device-node stability. Although the heuristic

stays the same as the one presented in v4 (cf. Section 6.8, p. 50), the calculation of stability

component changes, as shown in (6.6). Similarly to device stability, we normalize the MTBF

6.10 Summary 57

value to a value between 0 and 1. If the pairing device-node has not failed, the MTBF value would

be infinity; thus, it is set to 1. Otherwise, we divide the MTBF by α which is analogous to the

STABILITY_FACTOR concept used for device stability (cf. Section 6.4, p. 41). Because we are

combining both stability values, the STABILITY_FACTOR should be consistent. However, since

the one in device stability is measured in seconds, and device-node MTBF is measured in ticks,

we convert the STABILITY_FACTOR to its corresponding value in ticks. Thus, α is equal to the

value of STABILITY_FACTOR in ticks, as shown in (6.6).

stability = 0.5 ·deviceStability +0.5 ·

{
1 if device-node has not failed

min(MT BF
α

,1) otherwise

α =
STABILITY_FACTOR

health_check_interval

(6.6)

When then run the same scenario SIM-E and expect the system to identify the device-node

pairings that are causing failures as the experiment progresses, making it less likely for devices to

fail due to being assigned a faulty node.

Upon analyzing Figure 6.13 (p. 58), it is possible to notice that the system seems to have

adapted better to the situation, clearly showing that recurrent assignments that cause device failure

occur less often. However, in the last two orchestrations, at around 250 and 290s, the system still

assigns nodes that cause Devs. 2 and 3 to fail. Although it is unclear how positive the impact

of device-node stability, it is possible to conclude that it does not completely solve the identified

problem.

6.10 Summary

This chapter describes the iterative methodology and the several steps that were taken to reach the

final solution.

In Section 6.1 (p. 37), we outline the methodology for developing each improvement using the

Orchestration simulator (cf. Chapter 5, p. 29), consisting of a 4-step process: (1) identify one or

more current issues, (2) create a scenario that reproduces these issues, (3) craft improvements to

mitigate the issues, and (4) re-evaluate the scenario given the new improvements and compare the

results. An overview of the changes introduced in each version is also presented.

Section 6.2 (p. 38) validates the basic behvaior of the simulator. Then, Sections 6.3 (p. 38)

to 6.9 (p. 54) describe, or each iteration, the identified problems and proposed solutions, alongside

a discussion of the results drawn from the set of experiments that aim to validate each solution. A

total of 5 iterations were developed, resulting in 5 Orchestrator versions, from v1 to v5.

Version v1 contains the most changes when compared to the previous version, as it is the first

to deviate from the original system. In this version, a set of general enhancements are introduced

that aim to solve some undesirable characteristics found in NoRDOr. Then, we present a device

stability metric, and an assignment score value, that are leveraged on orchestration to mitigate the

58 Orchestration strategy

0

5

10

15

20

25

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 50 100 150 200 250 300

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

Payload Size

Uptime (s)

Number of nodes allocated per device

Time (s)

5 5 9 18 8 18 28 37 8 18 28 37 8 18 28 37 8 18 28 37 8 18 28 37 8 18 28 37 8 18

6 1 9 18 8 18 28 37 8 18 28 37 8 18 28 37 1 10 20 29 8 18 28 37 8 18 28 37 3 13

5 15 25 34 8 18 28 37 4 3 13 22 8 18 28 37 8 7 17 26 8 18 28 37 2 1 11 20 8 18

5 15 16 14 8 18 28 37 4 11 21 30 1 10 20 29 2 9 19 28 2 9 19 28 8 18 28 37 8 18

1 1 1 3 3 3 2 2 2 2 3 3 3

1 1 1 3 3 4 1 5 6 5 6 5

3 3 9 9 4 3 3 2 2 1 2

3 1 1 1 2 2 2 1 2 2 2 2

Figure 6.13: SIM-E using v5

impact of unstable devices on the system’s resilience. Lastly, we changed the processing order of

the nodes in the system in the interest of producing a balanced assignment in dynamic scenarios

where some nodes strictly need to be executed in a subset of devices.

In the next version, v2, the original mechanism for handling memory limitations is replaced

with a RAM monitoring solution that aims to eliminate the need for a trial-and-error cycle that

could cause devices to fail repeatedly due to memory limitations.

Version v3 addresses a key drawback of the greedy algorithm used for assignment. The lack of

backtracking or heuristics to solve for memory limitations would prevent the system from reaching

a valid assignment in cases where some devices are memory-constrained. Hence, we introduce

a backtracking mechanism coupled with an early stopping strategy to prevent the system from

halting during the greedy algorithm’s brute-force attempt to find a solution in scenarios comprised

of highly constrained devices.

In version v4, the current assignment is leveraged to produce the new one in the interest of

reducing the orchestration overhead. The Minimum Set of Changes (MSC) assignment aims to

reduce the number of nodes that need to be stopped (while the device re-installs the script) on

re-orchestration by only deploying the nodes assigned to failed devices preferably to the healthy

6.10 Summary 59

devices executing the least number of nodes.

Finally, version v5 extends the concept of device stability to the device-node pairings in order

to identify and mitigate scenarios where a specific device-node pairing causes device failure.

In the next chapter, we port these improvements to the original system and provide possible

limitations of the solution.

60 Orchestration strategy

Chapter 7

Reference implementation

7.1 Implementation . 61

7.2 Known limitations . 65

7.3 Summary . 66

This chapter presents the reference implementation of the proposed improvements to the NoRDOr

system. Firstly, the implementation is detailed in Section 7.1, and, then, its limitations are outlined

in Section 7.2 (p. 65).

7.1 Implementation

The last version of the simulator, v5 (cf. Section 6.9, p. 54), is ported into the NoRDOr system in

the interest of validating the solution with real-world scenarios.

The system can be divided into four agents: (1) Node-RED (editor), (2) Registry node, (3) Or-
chestrator node, and (4) Device as shown in Figure 7.1 (p. 62).

Slight changes are required in the device firmware, but most of the changes occur in the Node-

RED component of the system, encompassing the Node-RED editor, Orchestrator, and Registry

nodes.

7.1.1 Device firmware

The NoRDOr Micropython firmware is altered to meet the new system’s requirements, namely

the communication mechanisms. Firstly, in addition to the GET /ping route used for the PING

mechanism, a GET /health is added to serve the new HEALTH CHECK mechanism. This new

route returns a JSON output containing its current state — including metrics such as uptime,

assigned nodes, and available resources. Then, the announce message that each device uses to

let the Orchestrator know it is online and wants to connect to the system is extended to include

the available RAM. Because we cannot assign, or remove, individual nodes to/from a device, but

rather the full assignment, the Orchestrator relies on the value of available RAM that the device

reports when connecting instead of looking at real-time RAM data. This approach is taken under

the assumption that when the device connects and is not executing any script, its available RAM

size will be close to the available size when it deletes the script to start executing a new one.

61

62 Reference implementation

Node-RED Registry Orchestrator Device

start

deploy all flows

announce

loop

device

assignment

loop

error

success

loop
check health

OK {report}

no response

loop execute
script

distributeFlow

Figure 7.1: Proposed system sequence diagram

7.1.2 Node-RED

The Node-RED editor is responsible for deploying the flows created by the user. We assume this

happens once and sets up the nodes that run on Node-RED — Registry and Orchestrator.

7.1.2.1 Registry node

In the original system, the Registry node is responsible for keeping a record of all devices and

handling (re-)connections. However, it is the Orchestrator that handles the PING mechanism,

meaning that when it finds a failed device, the device state is updated on the Orchestrator but not

on the Registry. In fact, this behavior may lead to the system assuming that some failed devices

7.1 Implementation 63

are available when performing an orchestration, requiring it to re-orchestrate when the deployment

fails.

In the proposed system, the Registry node acts as a parser — when a device publishes its an-

nouncement message to the MQTT topic, the registry processes it and sends a formatted JavaScript

Object to the Orchestrator node, where the state of all devices is kept and updated.

7.1.2.2 Orchestrator node

The Orchestrator node is the core component of the system. It is responsible for keeping the

orchestration state (including the list of devices), perform the necessary orchestrations, and peri-

odically check the health of the devices in the system. Apart from absorbing part of the Registry

node’s responsibilities, the Orchestrator node suffered the most changes.

Health check
As mentioned in Section 6.4 (p. 41), the PING mechanism is replaced with a HEALTH CHECK

that allows the Orchestrator to gather real-time information about each device. The imple-

mentation is similar since only the route needed to be changed. Additionally, when the

device responds to the HTTP request, the system updates not only the device status (to

ON/OFF) but also other stability metrics.

RAM heuristic
Most of the improvements developed using the Orchestration simulator are ported with

minimal changes to NoRDOr, with one notable exception — the RAM heuristic.

In the simulator, each node has a corresponding RAM size, and each device reports the exact

available RAM. However, this is not applicable in a real-world scenario, as the available

RAM for each device is dynamic, and statically calculating the expected RAM impact of a

code script is not trivial.

As this is not the main focus of this work, we tackle this problem by attempting to find a sim-

ple but effective heuristic that would remove the limitations of the memorryErrorNodes

implementation (cf. Section 6.6, p. 46). Upon analyzing the available characteristics from

the code script — lines of code and size (in bytes), a correlation was found between the size

of the script and the devices’ available RAM before and after installing the script. There is

a correlation of approximately 2, thus, we define a RAM heuristic, h, as h(assignment) =

2 ·assginment.scriptSize, with all values being in bytes.

At every step of the assignment algorithm, we check if the available RAM the device re-

ported when it connected to the system is larger than the expected RAM impact of the

script. It is worth noting that we only measured the initial impact — when the script is

installed, not during the execution of the script.

Orchestration strategy
The triggers for computing an orchestration — distributeFlow — are twofold: (1) the

64 Reference implementation

current assignment is invalid (score = −1) — this can be due to a correct device having

failed or simply because the assignment is impossible, or (2) a device has (re-)connected.

The re-orchestration flow has two possible paths (cf. Algorithm 2, p. 53). If the system has

found a failed device and that device had assigned nodes, then it will try to assign those

nodes to minimize the correct nodes that need to be stopped. However, if the system is

healthy and a device connects, a full re-orchestration takes place — it is only deployed if

the new score is higher than the current assignment (cf. Section 6.8, p. 50).

The distributeFlow method encompasses not only the assignment generation but also

the deployment — its call graph is shown in Figure 7.2.

distributeFlow

calculateAssignmentScore generateAssignment deploy

sendCodegetDeviceScores

getDeviceStability getDeviceNodeStability

Figure 7.2: distributeFlow call graph

To generate the assignment, the system makes use of the recursive greedy algorithm with a

backtracking mechanism — generateAssignment (cf. Algorithm 1, p. 51). The method

that computes the greedy heuristic for each node is getDeviceScores. It can be consid-

ered the core of the assignment algorithm; thus, we provide a full pseudo-code version of it

in Algorithm 3 (p. 65).

The method outputs a list of devices for every node, sorted by their fitness to execute the

node. The devices in the system are filtered by 3 conditions: (1) available RAM to execute

the node, according to the RAM heuristic, (2) are currently connected, and (3) are capable

7.2 Known limitations 65

of executing the node. The latter is true if the set of predicates for a given node is contained

in the set of capabilities announced by a device.

The fitness of each device is calculated using a weighted average with 3 predefined weights.

The changeIndex represents the inverse of the impact this assignment has on the device (cf.

Section 6.8, p. 50) and has a weight of 0.15. With the same weight, the vacancy represents

the inverse of the number of nodes the device is being assigned and is responsible for keep-

ing the assignment balanced. Lastly, the stability is a compound metric, with a weight of

0.7, comprised of the device stability and device-node stability (cf. Section 6.9, p. 54).

Algorithm 3: getDeviceScores()
Greedy heuristic for node assignment

input : node: Node,

devices: Device[],

α = 0.15,

β = 0.15,

γ = 0.7,

δ = 0.5,

ε = 0.5

output: Device[]

begin
electible← {d ∈ devices | hasMem(d) ∧ isAvailable(d) ∧ isCapable(d)} orderedBy

fitness(d)

where
hasMem(d)← d.availableRAM >= 2· {d.nodes ∪ node}.scriptSize

isAvailable(d)← d.status = ON

isCapable(d)← node.predicates ⊆ d.capabilities

fitness(d) = α ·d.changeIndex + β ·d.vacancy + γ· stability

where
changeIndex← (#d.affectedNodes + 1)−1

vacancy← (#d.nodes + 1)−1

stability← δ ·d.stability + ε· getDeviceNodeStability(d, node)
end

For the deployment component, the system employs the deploy and sendCode methods

that handle the response and generate and make the HTTP request, respectively.

7.2 Known limitations

Comparatively, with the NoRDOr system, the new orchestration strategy introduces some limita-

tions — the concept of node priorities is not taken into account, and nodes are only deployed to

devices, never to the Node-RED runtime. Since these features do not contribute to our research

66 Reference implementation

questions (cf. Section 4.4, p. 27), they were removed for simplicity. However, they should be

easily plugged back into the system.

Regarding the developed improvements, there are also some limitations to be pointed out.

Firstly, in the assignment score (cf. Section 6.4, p. 41), the total absolute deviation is used as a

metric to define the balancing of the system due to the ease of normalization of its value. However,

there is one key drawback with this metric — it is not a squared deviation. This means that there

are some cases where the distribution of nodes is slightly different, but the balancing has the same

value due to a lack of relevance given to more deviated values.

Secondly, the RAM heuristic used is too simplistic — RAM usage is a dynamic metric, and

statically calculating the expected RAM impact of a code script is not a trivial problem. Further

research should be conducted in this direction in order to perform a better estimation of the RAM

usage for a MicroPython script.

Furthermore, the greedy algorithm proved to be not very scalable, prompting us to include

an early stopping mechanism (cf. Section 6.7, p. 48) to prevent the system from incurring in

errors, such as a stack overflow error. As the system becomes more complex and more conditions

are considered in the assignment process, it should be considered the possibility of replacing the

greedy approach with a better-suited one.

We revisit these topics and provide possible solutions in Section 9.4 (p. 101).

7.3 Summary

This chapter describes the reference implementation of the improvements described in Chapter 6

(p. 37) ported into the NoRDOr system.

In Section 7.1 (p. 61), an overview of the changes the system suffered is presented, alongside

an overview of the sequence of relevant events on orchestration. In addition to the specific imple-

mentation details of each improvement already described in Chapter 6 (p. 37), we detail some key

changes that took place when implementing the changes in NoRDOr — namely the changes to the

device firmware that took place mainly in the communication mechanisms and the shift in respon-

sibility of the Registry node. A full overview of the final orchestration strategy is then presented,

combining all the concepts introduced in each different iteration.

Then, in Section 7.2 (p. 65), we explore the limitations of the proposed solution that may

impair its success. Specifically, we identified possible improvements to the assignment score and

RAM heuristic that could be explored in future work.

Chapter 8

Evaluation

8.1 Experimental setups . 67

8.2 Metrics . 68

8.3 Experiments overview . 70

8.4 Discussion . 71

8.5 Hypothesis evaluation . 93

8.6 Summary . 97

This chapter outlines the experimental process utilized for the evaluation of our solution. Sec-

tion 8.1 presents the different experimental setups used throughout the experiments. Then, Sec-

tion 8.3 (p. 70) describes the experiments to be conducted, detailing the flow and devices to be

used in each one. Section 8.4 (p. 71) presents and analyzes the obtained results. Finally, Sec-

tion 146 (p. 93) re-visits the research questions and draws conclusions from the results of the

experiments.

8.1 Experimental setups

In order to evaluate if the proposed improvements reach their expected goals, we tested several

scenarios against the baseline original NoRDOr system.

8.1.1 System

The experiments are performed in a Macbook Pro 2016, with an Intel(R) Core(TM) i5-6267U

CPU @ 2.90GHz and 8GB of RAM running macOS Big Sur 11.3. Using Docker 20.10.6 to

containerize (1) the modified version of Node-RED (NoRDOr), which is an extension of Node-

RED 1.0.6, (2) a Eclipse Mosquitto MQTT Broker 2.0.11, and (3) a InfluxDB 1.8. Both virtual

IoT devices and physical IoT devices are used in the experiments — the first for its flexibility

in dynamically introducing different parameters to the system; the latter for its proximity to a

real-world scenario of resource-constrained IoT devices, resulting in the following setups:

ES1 4 virtual IoT devices, each running in a Docker container, using the Unix-port of the Mi-

cropython 1.14 framework (slight variation for ES1-B and ES1-E).

ES2 4 Espressif Systems ESP32 devices, running a custom firmware generated using the ESP32-

port of the Micropython 1.14 framework, connected to the same Wi-Fi network.

67

68 Evaluation

8.1.2 Flows

We use two different flows in the experiments, both similar to what would be expected of the

system in a home/small office environment, with an additional custom scenario for a specific

experiment.

FS1 A room has one sensor that measures temperature and humidity every 5 seconds. Based on

the combination of these readings, the system may trigger the AC unit to turn on or off

and control its humidification mode. This results in 13 nodes to be distributed through the

devices (cf. Figure 8.1).

Figure 8.1: Flow Setup 1

FS2 A room has three sensors that measure temperature and humidity every 5 seconds. Based on

the combination of these readings with the other sensors’ readings, the system may trigger

the AC unit to turn on or off and control its humidification mode. This results in 36 nodes

to be distributed through the devices (cf. Figure 8.2, p. 69).

FS3 In addition to FS2, the house has 3 door sensors which report the status of each door (open or

closed) every 2 seconds. If any of these sensors report that the door is open, the alarm is trig-

gered. This results in 45 nodes to be distributed through the devices (cf. Figure 8.3, p. 70).

8.2 Metrics

In this section, we outline how and which metrics are collected during the experiments and their

importance in the assessment of the system’s performance [40].

8.2 Metrics 69

Figure 8.2: Flow Setup 2

Every 5 seconds, each device in the system publishes its state to a topic in the Mosquitto

MQTT broker, which is then piped to the InfluxDB. These metrics are the following:

Free RAM (bytes) Allows us to evaluate the memory load of each device.

Uptime (s) Allows us to identify which devices are running at each point of the experiment.

Number of assigned nodes Allows us to assess how balanced the system is and if all of the nodes

are being executed.

Additionally, another two metrics are collected at different rates. Every second, each device

publishes the nodes it is currently executing, which allows us to calculate the Average Node
Uptime of the system. Lastly, the Payload size that each device receives is published whenever

code is deployed to the device.

Average Node Uptime (%) Allows us to assess the system’s resilience as it measures the per-

centage of correct service.

70 Evaluation

Figure 8.3: Flow Setup 3 (partial)

Payload size (bytes) Allows us to pinpoint when code is distributed to each device and to identify

possible memory errors.

8.3 Experiments overview

For every experiment, the results of the proposed system are evaluated against the results of the

original NoRDOr system.

8.3.1 ES1 experiments

ES1-SC1 Using FS2, turn off one device at a time, forcing the system to re-distribute the nodes

to different devices.

ES1-SC2 Using FS2, restart one device at a time, forcing the system to handle the disappearance

and appearance of devices.

ES1-A Using FS2, 2 of the 4 devices recurrently fail seconds after entering the system, forcing

the system to handle the quick disappearance and appearance of the same devices.

ES1-B Using FS3, devices are modified to take a longer time to re-install a script. Then, 3 of

the 9 devices are turned off, one at a time, forcing the system to re-orchestrate. During the

re-installation of the script, a message is injected into the system, allowing us to assess if

the message is processed.

ES1-C Using FS2, devices are kept at a lower RAM limit than normal, and 1 device is turned off

after a short period of time, forcing the system to perform a careful re-orchestration taking

into account the limited resources.

8.4 Discussion 71

ES1-D Using FS1, devices are modified to crash if a certain node is assigned to them and are

restarted in a different order throughout the experiment, forcing the system to perform a

re-orchestration taking into account possible device-node failures.

ES1-E Using a modified FS1, where 6 nodes require a specific capability from devices, and only

2 devices in the system, where only 1 of them has that same capability, the system is forced

to find a balanced orchestration.

8.3.2 ES2 experiments

ES2-SC1 Using FS2, turn off one device at a time, forcing the system to re-distribute the nodes

to different devices.

ES2-SC2 Using FS2, restart one device at a time, forcing the system to handle the disappearance

and appearance of devices.

ES2-A Using FS2, 2 of the 4 devices recurrently fail seconds after entering the system, forcing

the system to handle the quick disappearance and appearance of the same devices.

8.4 Discussion

In this section, we present the results of each experiment in the form of graphs containing the

relevant metrics for each case and interpret the results and limitations of the proposed changes. For

each Experimental Setup (ES), there are two Sanity Checks (SC) that mimic the most simplistic

behaviors of the system. These experiments allow us to confirm that the basic re-orchestration

mechanism works as expected but also demonstrate some of the proposed improvements that affect

the entire orchestration mechanism. The remaining experiments represent more specific behaviors

or system configurations that warrant a more complex orchestration mechanism.

It is also worth mentioning that all of the experiments were conducted using the value of the

STABILITY_FACTOR (cf. Section 6.4, p. 41) as 60s, meaning that for all purposes, a device

is considered stable if its Mean Time Between Failure (MBTF) is higher than 60s. For short

experiments, this showed to perform well; however, for real-world scenarios, this value may be

increased or decreased as the developers see fit.

8.4.1 ES1 experiments

8.4.1.1 ES1-SC1

This experiment is intended to validate the re-orchestration mechanism that should ensure that

when one device fails, its nodes must be re-assigned to the other correct devices.

Since there are 36 nodes to be distributed, we expect the original NoRDOr system to assign 9

to each of the 4 devices and that as devices fail, all nodes are re-distributed, maintaining a balanced

assignment. Figure 8.4 (p. 72) shows that this is indeed the case. When the first assignment occurs

72 Evaluation

around 10s, each device gets 9 nodes. Around 40s, Dev. 1 is turned off, and the system performs

a full re-orchestration, assigning 12 nodes to each of the 3 available devices. Around the time of

this assignment, Dev. 2 is turned off; thus, the graph for the number of nodes does not show the 12

nodes assigned to this device. The system performs a new orchestration to cope with this failure

at 80s, assigning 18 nodes to the remaining devices. At around 85s, Dev. 3 is turned off, and all

36 nodes are assigned to Dev. 4.

0

20k

40k

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 20 40 60 80 100 120

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

Payload Size (bytes)

Uptime (s)

Number of nodes allocated per device

Time (s)

21.0 26.0 37.0 47.0

21.0 26.0 37.0 47.0 58.0 68.0

21.0 26.0 37.0 47.0 52.0 63.0 73.0 83.0 94.0

21.0 26.0 37.0 47.0 57.0 63.0 73.0 83.0 94.0 104.0 115.0 125.0

9 9 9

9 9 9 9 9

9 9 9 9 12 12 12 18

9 9 9 9 12 12 12 18 18 36 36

Figure 8.4: ES1-SC1 in NoRDOr

Comparatively, we expect the new system to have a slightly different behavior in terms of

balancing due to the MSC assignment (cf. Section 6.8, p. 50) — as devices fail, only their nodes

are re-distributed, and this is done in a way that minimizes the number of affected nodes, i.e.,

the nodes should be assigned to the devices with the least number of assigned nodes. The results

in Figure 8.5 (p. 73) match our expectation. The first assignment occurs at around 10s and results

8.4 Discussion 73

in a balanced orchestration, with 9 nodes running in each device. When Dev. 1 is turned off at

around 40s, its 9 nodes are re-assigned to Dev. 2, totaling 18 nodes. When this device is turned

off at around 60s, the 18 nodes are then re-assigned to Dev. 3, which is turned off a few seconds

later at around 80s. Finally, the 27 nodes from Dev. 3 are re-assigned to the remaining device.

0

20k

40k

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 20 40 60 80 100 120

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

Payload Size (bytes)

Uptime (s)

Number of nodes allocated per device

Time (s)

26.0 37.0 47.0 52.0

26.0 31.0 42.0 52.0 63.0 73.0

21.0 31.0 42.0 52.0 63.0 68.0 78.0 89.0

21.0 31.0 42.0 52.0 58.0 68.0 78.0 89.0 99.0 110.0 120.0 131.0

9 9 9

9 9 9 18 18

9 9 9 9 9 9 27

9 9 9 9 9 9 9 9 36 36 36

Figure 8.5: ES1-SC1 in proposed system

8.4.1.2 ES1-SC2

Contrary to the previous experiment, devices are restarted instead of turning off for the remainder

of the experiment. This allows us to evaluate how the system deals with a device disappearing and

then re-appearing.

74 Evaluation

It is expected that, in both systems, the first assignment yields 9 nodes for each device. In

NoRDOr, we expect that every time a device is turned off, all of the nodes are re-distributed to

the remaining devices, and as soon as it is turned back on, another re-orchestration will occur,

re-distributing the nodes through the 4 devices. Because the devices are manually turned off,

the NoRDOr system does not consider it a failure, and thus, devices that have failed can still be

assigned the same number of nodes.

By taking a look at the number of nodes graph in Figure 8.6, we can confirm that when a

device is turned off, 12 nodes are allocated to each device, and when it is turned back on, the

system assigns 9 nodes to each device. This leads to several full re-orchestrations in the system

and, consequently, a considerable number of payloads being sent.

0

5k

10k

15k

20k

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 20 40 60 80 100 120 140 160

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

Payload Size (bytes)

Uptime (s)

Number of nodes allocated per device

Time (s)

21.0 32.0 43.0 5.0 16.0 26.0 32.0 43.0 53.0 64.0 74.0 85.0 95.0 106.0

21.0 32.0 42.0 53.0 63.0 74.0 11.0 21.0 32.0 42.0 53.0 63.0 68.0

21.0 32.0 42.0 52.0 63.0 73.0 84.0 94.0 100.0 110.0 11.0 21.0 31.0 42.0

16.0 21.0 32.0 42.0 53.0 63.0 73.0 84.0 94.0 100.0 111.0 121.0 131.0 142.0 11.0

9 9 9 9 9 9 9 12 9 9 9 9

9 9 9 9 12 9 9 12 9 9 12 9

9 9 9 9 12 9 9 9 9 9 9 12 9

9 9 9 9 12 9 9 9 9 9 12 9 9

Figure 8.6: ES1-SC2 in NoRDOr

On the other hand, we expect the proposed system to use the MSC assignment to assign the

8.4 Discussion 75

nodes of failed devices to other available devices instead of performing a full re-orchestration.

Moreover, when a device is turned back on, it is expected that the system will only re-orchestrate

if it finds a new orchestration with a better score than the previous.

When analyzing the results in Figure 8.7 (p. 76), we noticed that when the first device, Dev.

1, is turned off, its nodes are re-assigned to Dev. 2, leaving it with 18 nodes, and when Dev. 1

is turned back on, it is not assigned any nodes. However, for the following device restarts, the

system has a slightly different behavior. When Dev. 2 is turned off, its 18 nodes are assigned to

Dev. 1 because it had 0 assigned nodes, meaning it was essentially a free assignment, i.e., it did

not affect any running nodes. When the Devs. 3 and 4 are restarted, we see a similar behavior —

the system takes advantage of the last device that has joined the system and has 0 nodes assigned

to it to deploy the failed nodes.

It is also worth noting the sheer difference in payloads sent compared to the NoRDOr sys-

tem. This is justified by the MSC assignment and the introduction of a conditional deployment

mechanism that will not send the payload if the device is already executing it.

8.4.1.3 ES1-A

The instability of IoT devices can considerably hinder the system’s resilience, as many nodes

can be assigned to unstable devices. Hence, the device stability metric is introduced in Sec-

tion 6.4 (p. 41) as a counter-measure, providing the system with an actionable stability score for

each device that can be leveraged in the assignment mechanism. In the interest of evaluating the

effectiveness of this measure, we test both systems in a scenario where some devices are highly

unstable.

It is expected that, in the original system, every time a device re-enters the system, a full

re-orchestration is triggered, even if that device has failed recurrently.

Upon analysing Figure 8.8 (p. 77), we can conclude that our assumption was correct. During

the first assignment, all devices are available, and 9 nodes are assigned to each device. Devs. 2

and 3 are turned off shortly after that, leaving the system only executing a total of 18 nodes. When

the system notices that the devices have failed, a new assignment is calculated for the 2 available

devices — this is observable in the payload graph at around 32s. However, right after this, the 2

failing devices re-connect, and a new assignment is calculated, which includes them. It is unclear

if they failed before confirming the reception of the assignment, but it is likely that at least one

of them died after confirming the reception of 12 nodes around 50s. From 60s to 80s, there is a

period of stability in the system, with the 2 correct devices executing 18 nodes each. After this,

there seems to be a similar situation as the previous assignment, causing the system to run only

part of the 36 nodes until the end of the experiment.

In the proposed system, we expect to not encounter the same problem as in the NoRDOr

system due to the inclusion of the concept of the device stability metric in the orchestration mech-

anism. The failing devices should not be assigned any nodes when re-connecting to the system

because they are considered unstable.

76 Evaluation

0

10k

20k

30k

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 20 40 60 80 100 120 140 160

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

Payload Size (bytes)

Uptime (s)

Number of nodes allocated per device

Time (s)

26.0 37.0 47.0 11.0 16.0 26.0 37.0 47.0 58.0 68.0 79.0 89.0 100.0

21.0 31.0 42.0 52.0 63.0 73.0 5.0 16.0 26.0 37.0 47.0 57.0 68.0

21.0 31.0 42.0 52.0 63.0 73.0 83.0 94.0 99.0 5.0 16.0 26.0 37.0

21.0 31.0 42.0 52.0 63.0 73.0 83.0 94.0 99.0 109.0 120.0 130.0 5.0

9 9 18 18 18 18 18 18 18 18

9 9 9 18 18 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9

Figure 8.7: ES1-SC2 in proposed system

Figure 8.9 (p. 78) shows, indeed, that our assumption holds. In the first assignment, around

10s, all the devices are included, causing the system to distribute 9 nodes to each device. However,

Devs. 3 and 4 fail shortly after being assigned the nodes, and the system moves the failed nodes

to Dev. 1. The failing devices re-connect several times, but a new orchestration is never triggered

because of their low stability. In order to ensure that this is not happening due to the system’s

reluctance of re-orchestrating without a device failure, Dev. 2 is turned off at around 100s. Then,

its nodes are not distributed to the failing devices, which both are online and have 0 nodes assigned.

Instead, they are assigned to Dev. 1 because of its greater stability, despite its already high number

of nodes. In this case, the system is running all 36 for most of the experiment.

8.4 Discussion 77

0

20k

40k

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 20 40 60 80 100 120

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

Payload Size (bytes)

Uptime (s)

Number of nodes allocated per device

Time (s)

0.2 10.7 21.1 31.5 42.0 52.6 63.1 73.6 84.1 94.5 105.0 110.2

5.5 0.2 0.3 0.2

0.3 10.7 0.2 0.2 0.2

0.2 10.6 21.1 31.5 42.0 52.7 63.1 73.9 79.9 90.3 100.8

9 9 9 18 12 18 18 12 12 12 12

9

9 9 9 12 12 18 18 12 18 18

Figure 8.8: ES1-A in NoRDOr

8.4.1.4 ES1-B

Some IoT systems may be critical systems — the loss of one measurement can have a considerable

impact. The designed scenario — FS3 (cf. Figure 8.3, p. 70) — mimics a critical door alarm

system comprised of 3 door sensors. These sensors are represented by MQTT IN nodes, and the

measurements are manually injected. If any of these door sensors receives the message "open",

then the alarm is triggered. The logic nodes — if nodes that check if the door is open — and the

alarm nodes — MQTT OUT nodes that trigger the alarm — are replicated and strongly connected

to increase the likelihood that these are deployed to correct devices.

In this experiment, only 3 of the 9 devices can execute the door-alarm nodes, and every 50s,

one of the other devices is turned off, causing the system to re-orchestrate. The devices’ firmware

78 Evaluation

0

20k

40k

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 20 40 60 80 100 120 140

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2

Payload Size (bytes)

Uptime (s)

Number of nodes allocated per device

Time (s)

5.5 15.9 26.4 36.8 47.5 58.0 68.4 73.6 84.8 95.5 105.9 116.5 126.9 137.3

5.4 15.8 26.3 36.8 42.0 52.4 62.8 73.4 83.8 94.4 104.8

0.2 0.2 0.2 5.4 0.2 0.2 5.4 0.4 5.6 0.2 5.4 15.8 26.3

0.2 0.2 0.2 5.4 0.2 0.2 0.2 0.2 5.4 15.9 26.5

9 27 27 27 27 27 27 27 27 27 27 36 36

9 9 9 9 9 9 9 9 9 9

Figure 8.9: ES1-A in proposed system

was modified to take 10s to re-install a script, allowing us to simulate real-time measurements

entering the system during this time. Particularly, we inject a "open" message to each of the

door-alarm nodes when devices are re-installing the script.

With this experiment, we intend to evaluate the impact of a full re-orchestration on critical

systems, compared to the impact of a MSC orchestration, by monitoring the relevant topics and

assessing if the alarm is triggered when a door sensor reports itself as open. We represent this data

in the Door sensors and Alarm output graph — where 1 represents the "open" message for doors

or that the alarm was triggered, and 0 represents either a "closed" message for doors or that the

alarm was not triggered.

We expect that, in the NoRDOr system, because the system performs a full re-orchestration

every time, causing all devices to re-install the script, some messages may be lost. This should be

8.4 Discussion 79

visible when monitoring the alarm that is not expected to be triggered for all the "open" messages

injected in the door-alarm topics.

In fact, Figure 8.10 shows that none of the injected "open" messages triggered the alarm.

When Dev. 6 fails at around 80s, its 5 nodes are re-distributed to 5 other devices, but all devices

re-install the script, causing the injected message in Door 1 to not trigger the alarm. Similarly, at

130 and 180s, the re-installation causes all devices to stop executing their nodes, and, thus, they

miss the "open" messages, causing the alarm never to be triggered.

0

5k

10k

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 5

Dev. 6

Dev. 7

Dev. 8

Dev. 9

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 5

Dev. 6

Dev. 7

Dev. 8

Dev. 9

0 50 100 150 200

Door 1

Door 2

Door 3

Alarm

Dev. 1 Dev. 2 Dev. 3 Dev. 4 Dev. 5 Dev. 6 Dev. 7 Dev. 8 Dev. 9

Payload Size (bytes)

Uptime (s)

Number of nodes allocated per device

Door sensors and Alarm output

Time (s)

42.9 48.2 59.0 64.6 75.6 86.6 97.0 107.8 118.4 129.1 134.3 146.4 157.4 167.9 178.4 189.2 194.5 205.2 215.7 226.1 236.6

43.4 54.2 65.4 76.1 87.0 97.6 108.1 118.8 124.0 134.9 145.7 157.0 167.6 178.2 183.7 194.4 205.2 215.9 226.5 237.0

43.2 54.0 64.8 75.4 86.3 97.2 107.8 113.0 123.5 134.2 145.2 156.5 167.0 177.6 183.1 193.8 204.4 215.0 225.5 236.0

64.4 69.9 75.3 86.1 96.7 107.8 118.7 129.2 139.8 145.0 155.6 167.0

69.8 80.6 86.4 97.6 108.6 119.2 129.7 140.2 150.9 156.2 167.9 179.5 190.0 200.7 206.0 216.9 227.5 238.2 248.8 259.6

64.5 75.6 87.1 97.9 108.8 119.6

69.7 80.4 91.0 101.8 107.4 118.3 129.6 140.5 151.3 157.7 168.7 179.3 189.9 200.6 211.2 221.9

65.0 75.7 86.2 96.9 107.8 113.1 124.2 135.0 146.4 157.0 168.2 173.4 184.1 195.3 205.7 216.3 227.3 238.1 243.4 253.9

64.4 75.1 86.6 97.5 108.3 113.8 125.1 136.5 147.2 158.0 164.3 174.7 185.7 196.6 207.3 217.8 228.7 234.0 244.6 255.3

5 5 5 5 5 5 5 5 6 6 6 6 6 7 7 7 7 7

5 5 5 5 5 5 5 5 6 6 6 6 6 7 7 7 7 7

5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 7

5 5 5 5 5 5 5 5 6

5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 8

5 5 5 5

5 5 5 5 5 5 5 5 6 6 6 6 7 7 7

5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 8

5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 8

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0

Figure 8.10: ES1-B in NoRDOr

On the other hand, we expect that the proposed system will be able to process the door-alarm

"open" messages because when one device fails, only its nodes are deployed, and the number of

devices needing to re-install the script is minimized. It is still possible that not all messages are

80 Evaluation

caught, in case that the devices that are chosen to be assigned the failing nodes are, in fact, the

ones with door-alarm sensors.

Figure 8.11 (p. 81) shows that all of the injected "open" messages are caught, and the alarm

is always triggered. At around 60s, when Dev. 4 fails, its 5 nodes are re-distributed to Dev. 7.

During this re-installation, Door 1 is reported as open, and the alarm is triggered. At around 120s,

Dev. 5 fails, and its nodes are re-distributed to Dev. 6. Door 2 is reported as open, and the alarm

is also triggered — the graph shows some latency between the door-alarm sensor and the alarm,

but it is considered to be within the acceptable range. Finally, at around 170s, Dev. 9 fails, and its

nodes are re-distributed to Dev. 8. Again, Door 3 is reported as open, and the alarm is triggered.

Because the alarm was triggered on all three occasions, we conclude that the devices containing

door-alarm senors were never re-assigned nodes and were able to execute their function for the

whole experiment.

8.4.1.5 ES1-C

Memory limitations in IoT devices are common and should be considered by the system when

generating its assignment in order to minimize the possibility of causing a device failure due to

memory.

In the interest of comparing the approach of both systems to the RAM limitations of edge

devices, we design an experiment where all devices are RAM-limited — 3 of them are limited to

50kB of RAM, while the fourth is limited to 20kB. This limitation strictly applies to installing the

code script and not to its execution due to technical limitations of the UNIX-port of the MicroPy-

thon framework.

When one of the less RAM-constrained devices is turned off, we expect the systems to re-

orchestrate, taking into consideration the limitations of the remaining devices, and pay special

attention to the more RAM-constrained one.

The original system is expected to perform a full re-orchestration when one device is turned

off, maintaining the balance in the assignment, which may attribute a larger amount of nodes to

the constrained device than it can handle, causing it to crash.

Figure 8.12 (p. 82) shows that after the original assignment of 9 nodes to each device, Dev.

4 is turned off at around 40s, causing the system to re-orchestrate. When this happens, Dev. 3

— the more RAM-constrained device fails repeatedly. This is likely due to its RAM limitations,

as we can see that the payload data points for this device firstly increase, causing it to fail, and

then start to decrease as the system employs the memoryErrorNodes metric to determine the

device’s limitations. As a result of these failures, the system generates 2 extremely unbalanced

assignments that cause Devs. 1 and 2 to crash also due to memory limitations. When then turn

Dev. 3 back on, at around 90s, the system returns to the initial assignment of 9 nodes per device.

Finally, we turn off Dev. 2 at around 100s, causing the system to assign 12 nodes to each of the

available devices, leading to yet another crash by Dev. 3 due to memory limitations. It is unclear

why the memoryErrorNodes mechanism did not prevent this assignment as it had previously

determined it would lead to device failure.

8.4 Discussion 81

0

5k

10k

15k

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 5

Dev. 6

Dev. 7

Dev. 8

Dev. 9

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 5

Dev. 6

Dev. 7

Dev. 8

Dev. 9

0 50 100 150 200

Door 1

Door 2

Door 3

Alarm

Dev. 1 Dev. 2 Dev. 3 Dev. 4 Dev. 5 Dev. 6 Dev. 7 Dev. 8 Dev. 9

Payload Size (bytes)

Uptime (s)

Number of nodes allocated per device

Door sensors and Alarm output

Time (s)

42.6 53.0 58.3 69.5 80.6 91.2 102.2 113.1 118.5 129.7 140.4 151.0 161.5 172.1 182.6 188.2 199.0 209.4 219.8 230.6 241.4

42.7 53.4 58.7 69.9 80.8 91.7 102.7 113.3 118.8 129.9 140.9 151.6 163.2 168.4 179.1 189.7 200.9 211.4 222.0 232.6

42.6 47.9 58.6 69.7 80.6 91.3 102.3 113.0 118.4 129.9 141.4 152.5 163.1 168.4 179.2 189.8 201.0 211.6 222.3 233.1 238.6

74.9 80.2 90.7 101.5 112.7 123.3 133.8

69.7 80.1 90.8 101.6 107.0 117.6 128.5 139.4 150.5 161.1 172.1 177.9

70.0 80.4 91.1 101.8 107.1 117.7 128.9 139.4 150.1 160.6 171.2 182.2 187.6 198.0 208.7 219.5 230.6 242.2 247.7 258.4 269.1

74.9 80.4 90.9 101.3 112.1 123.4 129.8 140.5 151.4 162.0 172.8 178.1 189.9 200.7 211.1 221.5 232.0 243.5 248.7 259.2 269.6

69.5 79.9 90.5 101.3 106.7 117.2 128.2 139.1 150.0 160.7 171.9 177.6 188.3 199.1 209.7 220.1 230.7 241.8 247.2 257.6 268.7

69.2 79.7 90.2 101.2 106.5 117.1 128.1 138.8 150.1 160.9 166.2 177.0 188.0 198.7 209.2 219.9 230.6

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

5 5 5 5 5

5 5 5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5 5 5 5 10 10 10 10 10 10 10 10

5 5 5 5 5 5 5 10 10 10 10 10 10 10 10 10 10 10 10

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 10 10

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0

Figure 8.11: ES1-B in proposed system

On the contrary, we expect the proposed system to not provoke any memory errors in the

constrained devices, as it leverages the available RAM size they have reported when connecting

to the system.

Upon analysing Figure 8.13 (p. 83), we can see that the first assignment is not balanced, as the

more RAM-constrained device is only assigned 6 nodes. This means that even though the RAM

heuristic is working, it is likely too restrictive, as we saw the same device handling another 3

nodes without any memory limitations when using the original system. When we turn off Dev. 4,

at around 30s, its 10 nodes are not deployed using the MSC assignment as it would cause devices

to crash. The system generates an assignment where Devs. 1 and 2 get 15 nodes each, and Dev. 3

maintains its assignment, allowing the system to provide correct service continuously. When Dev.

2 is turned off at around 90s, its 15 nodes are re-assigned to Dev. 4, which is already back in the

82 Evaluation

0

20k

40k

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 20 40 60 80 100 120

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

Payload Size (bytes)

Uptime (s)

Number of nodes allocated per device

Time (s)

15.9 21.1 26.3 36.7 47.3 57.7 68.1 4.4 14.9 25.4 35.9 46.3

10.6 21.0 31.4 41.8 52.4 63.4 74.0 1.4 7.0

10.7 21.2 31.6 42.0 0.6 1.9 7.3 12.5 1.1 6.4 16.8

10.6 21.2 31.6 0.2 5.4 15.9 26.3 36.7

9 9 9 9 9 14 14 9 12 12

9 9 9 12 14 14 36 9

9 9 9 9 8 8 6 9

9 9 9 9 12 14

Figure 8.12: ES1-C in NoRDOr

system.

We can conclude that monitoring the device’s RAM is an effective measure to prevent failures

due to memory limitations, providing the system with information that it can leverage on orches-

tration, thus increasing the system’s resilience. On the other hand, it is also noticeable that the

developed heuristic needs tuning as it may be over-restrictive.

8.4.1.6 ES1-D

IoT devices are likely to fail due to memory limitations or hardware failures which may be trig-

gered by a specific node being assigned to them. In the interest of evaluating the effectiveness of

8.4 Discussion 83

0

5k

10k

15k

20k

25k

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 20 40 60 80 100

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

Payload Size (bytes)

Uptime (s)

Number of nodes allocated per device

Time (s)

26.3 31.5 41.9 52.3 62.7 73.4 78.6 89.1 99.5 110.1 120.5

21.0 31.4 41.8 52.2 62.7 67.9 78.3 88.6 99.1

26.2 31.5 41.9 52.3 62.7 73.2 78.4 88.8 99.3 109.7 120.1

21.0 31.4 41.8 0.2 5.4 15.8 21.0 31.4

10 10 10 10 15 15 15 15 15 15

10 10 10 15 15 15 15 15

6 6 6 6 6 6 6 6 6 6

10 10 15

Figure 8.13: ES1-C in proposed system

the device-node stability metric introduced in Section 6.9 (p. 54), we test if the system can identify

and mitigate the specific device-node pairings that cause them to crash.

Every 50s, we restart all devices in a random order in an attempt to rotate the node assignments,

allowing devices to come into contact with more nodes and allowing the system to collect data on

which assignments cause instability for each device.

We expect that the NoRDOr system keeps assigning the faulty parings as it possesses no

mechanism to detect or prevent these faults. Figure 8.14 (p. 84) shows that in all assignments, the

devices were assigned nodes that caused them to crash. This is observable by the growth in uptime

from one data point to the next — since data is aggregated for every 10s, when the uptime data

does not increase by 1̃0s in the next data point, we know that the device has restarted in that time.

On the other hand, the changes introduced in the proposed system should mean that as the

84 Evaluation

0

5k

10k

15k

0

50

100

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 50 100 150 200 250

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

Payload Size (bytes)

Avg. node uptime (%)

Uptime (s)

Number of nodes allocated per device

Time (s)

78.1

0.2 5.4 15.8 26.2 36.6 47.0 0.3 5.5 15.9 26.3 36.7 47.1 0.2 1.2 11.7 22.1 32.6 0.2 10.6 21.0 26.2 36.6 0.2 9.4 19.8 30.2

0.2 2.2 12.6 23.1 33.5 43.9 0.3 5.6 0.7 5.9 16.4 26.8 0.2 10.6 21.0 31.4 41.9 0.2 5.5 2.6 13.0 0.2 1.2 11.6 22.0 32.4

0.2 5.4 15.8 26.2 36.6 47.0 0.2 10.6 21.0 26.2 0.2 5.4 15.8 26.2 36.7 0.2 1.2 12.0 22.4 32.9 0.2 10.6 21.0 31.5

0.2 5.4 15.8 26.2 36.6 47.0 57.4 0.2 5.4 15.8 26.2 36.8 0.2 5.4 15.8 26.3 0.2 4.3 9.5 19.9 30.4 40.8 0.2 5.4 15.8 26.3

3 3 3 3 3 3 4 3 3 3 2 7 7 7 4 4 4

3 3 3 3 3 3 3 3 5 5 3 3 3 2 2 2

4 4 4 4 4 3 4 4 5 5 5 4 5 2 1 1 4 4 4

3 3 3 3 3 3 4 3 3 3 4 4 3 2 2 2 11 3 3

Figure 8.14: ES1-D in NoRDOr

experiment progresses, the system gathers more data about which device-node pairings cause fail-

ure and should be able to prevent it from happening so often. However, as the results show in

the simulator experiments (cf. Section 6.9, p. 54), a noticeable improvement is unclear. Fig-

ure 8.15 (p. 85) confirms the latter assumption. Devices are assigned nodes that cause them to

fail in most of the re-orchestrations. It is expected that, in the last assignment, at around 220s, the

system should have gathered enough data to prevent these faulty pairings, but, in fact, devices are

still assigned those nodes and failed shortly after. More noticeably, Dev. 1 is assigned the same

nodes multiple times that cause it to fail more than once.

We can conclude that the benefits of the device-node stability metric are very reduced if any.

As the Average Node Uptime of both systems is roughly the same, this feature seems not to favor

neither hinder the system’s resilience.

8.4.1.7 ES1-E

In complex scenarios, we may want or need to restrict the executing of some nodes to some devices

— this may be due to specific sensors being connected to these devices or because the location of

the device has an impact on the nodes it can execute. So, there may be cases where a big portion of

8.4 Discussion 85

0

5k

10k

15k

0

50

100

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 50 100 150 200 250

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

Payload Size (bytes)

Avg. node uptime (%)

Uptime (s)

Number of nodes allocated per device

Time (s)

79.1

21.1 4.3 9.5 19.9 30.3 40.7 0.2 5.4 15.9 26.3 36.7 47.1 0.2 5.4 15.8 26.2 36.6 0.2 5.4 15.8 26.2 36.6 3.9 0.2 5.4 15.8

21.4 0.2 10.7 21.1 31.6 42.0 0.2 10.7 21.1 31.5 0.2 5.4 15.9 26.3 36.7 47.1 0.2 10.7 21.1 31.5 41.9 0.4 6.2 11.4 22.0

21.2 26.4 36.8 47.2 57.6 68.1 73.3 0.2 5.4 15.9 26.3 0.2 10.6 21.0 31.4 41.8 52.2 0.2 9.4 19.8 0.2 5.5 15.9 26.3 36.7

21.1 26.3 36.7 47.1 57.5 62.7 73.1 83.6 0.2 10.6 21.0 31.4 1.7 0.2 10.6 21.0 0.2 5.4 15.9 26.3 36.7 47.1 0.2 9.4 20.2 30.6

3 1 1 1 1 1 1 1 1 1

2 2 2 2 2 1 1 1 1 1 5 5

3 9 9 9 9 9 7 7 7 6 6 6 6 6 10 10 1 4 4 4

3 3 3 3 3 3 3 6 6 6 8 5 5 5 1 1 1 4 4 4

Figure 8.15: ES1-D in proposed system

nodes need to be executed in a certain subset of devices. Additionally, the available devices change

dynamically, meaning that a balanced assignment depdents on the currently availabe devices.

This experiment aims to assess the impact of the order in which nodes are processed on the

balancing of the system. In order to do this, we modified the last 6 nodes in the FS1 (cf. Fig-

ure 8.1, p. 68) flow to require the capability c1, which only 1 of the 2 devices possesses.

We expect that the original NoRDOr system generates an unbalanced assignment by process-

ing the less specific nodes first and then being forced to assign the last 6 more specific nodes to

the same device.

Figure 8.16 (p. 86) shows that the system generated a quite unbalanced assignment of 9 to 4

nodes. This was likely caused by the following: (1) the first 7 general nodes are distributed 3 to 4

to Devs. 1 and 2, respectively, and (2) the remaining 6 nodes can only be deployed to Dev. 1, so it

gets a total of 9 nodes.

In the proposed system, it is expected that this unbalance does not happen due to the processing

order of nodes — sorted in ascending order by their specificity, i.e., the number of currently

available devices that can execute them.

As is shown in Figure 8.17 (p. 87), the nodes are assigned 7 to 6, which is as balanced as

86 Evaluation

0

5k

10k

Dev. 1

Dev. 2

0 5 10 15 20 25 30 35 40

Dev. 1

Dev. 2

Dev. 1 Dev. 2

Payload Size (bytes)

Uptime (s)

Number of nodes allocated per device

Time (s)

21.0 26.2 31.4 41.8

15.8 21.0 31.4

9 9

4

Figure 8.16: ES1-E in NoRDOr

possible. The system first processes the 6 specific nodes, assigning them to Dev. 1, then proceeds

to the 7 general nodes. Most likely, the first 6 of these are assigned to Dev. 2, and the last one is

assigned to Dev. 1. Even though the MSC assignment leads to an unbalanced orchestration when

performing a full re-orchestration, a balanced one is considered to be preferable.

8.4.2 ES2 experiments

8.4.2.1 ES2-SC1

Similarly to ES1-SC1 (cf. Section 8.4.1.1, p. 71), the aim of this experiment is to validate the

re-orchestration mechanism which is triggered as each device fails.

8.4 Discussion 87

0

5k

10k

Dev. 1

Dev. 2

0 5 10 15 20 25 30

Dev. 1

Dev. 2

Dev. 1 Dev. 2

Payload Size (bytes)

Uptime (s)

Number of nodes allocated per device

Time (s)

15.8 26.2

15.8 26.2

7

6

Figure 8.17: ES1-E in proposed system

Naturally, the expectations are also aligned with the ones expressed in ES1-SC1: the origi-

nal NoRDOr system should re-orchestrate when each device is turned off and reach a balanced

assignment every time, whereas the proposed system should use the MSC mechanism and deploy

the failed nodes to one of the available devices on re-orchestration, resulting in a less balanced

assignment.

After analyzing the results of the experiment shown in Figure 8.18 (p. 88), we can conclude

that our expectations are met, as the system re-orchestrates when each device fails and generates

balanced assignments every time. The first assignment yields 9 nodes for each of the 4 devices,

the second yields 12 nodes for each of the 3 devices at around 40s, the third yields 18 for each of

the 2 devices at around 70s, and, finally, the fourth should yield 36 nodes to the remaining device.

However, we can see that when the, presumably, 36 nodes are deployed to Dev. 4, it crashes due

88 Evaluation

to a memory error. Since the NoRDOr system does not take into account the RAM of the devices

in the system but rather assumes they can execute an unlimited amount of nodes until they fail for

the first time, this is not entirely unexpected.

0

50k

100k

0

20k

40k

0

50

100

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 20 40 60 80 100 120
Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

Free RAM (bytes)

Payload Size (bytes)

Avg. node uptime (%)

Uptime (s)

Number of nodes allocated per device

Time (s)

58.9

17.1 28.8

17.1 29.4 40.6 46.2 57.3

17.0 28.7 39.8 45.3 56.5 67.6 78.9 85.5

11.6 17.0 28.2 39.6 51.4 56.9 68.2 79.3 90.7 101.7 1.6

9 9

9 9 9 12

9 9 9 12 12 12 18

9 9 9 12 12 12 18 18 18 18

Figure 8.18: ES2-SC1 in NoRDOr

Correspondingly, the proposed system also meets our expectations, however, with slight dif-

ferences due to the RAM limitations. It is possible to see the MSC mechanism in action at around

50s, assigning the 9 nodes from Dev. 1 to Dev. 2, and at around 70s, re-assigning the 18 nodes

from Dev. 2 to Devs. 3 and 4. We attribute the fact that not all nodes were distributed to Dev. 3

to the RAM heuristic (cf. Section 7.1, p. 61), causing the 18 to be split to Devs. 3 and 4. Accord-

ingly, the system does not perform the last orchestration of 36 nodes to Dev. 4 because the RAM

heuristic signals the device cannot handle all of the nodes.

8.4 Discussion 89

0

50k

100k

0

10k

20k

30k

0

50

100

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 20 40 60 80 100
Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

Free RAM (bytes)

Payload Size (bytes)

Avg. node uptime (%)

Uptime (s)

Number of nodes allocated per device

Time (s)

55.6

22.8 28.7 34.4 45.6

22.7 28.3 34.8 45.9 57.0 64.6

22.5 28.1 34.4 45.5 56.6 67.9 79.0 84.6

22.4 33.6 45.4 56.9 62.7 73.9 86.3 97.4 103.0

9 9 9

9 9 9 18

9 9 9 9 9 22

9 9 9 9 9 14 14 14

Figure 8.19: ES2-SC1 in proposed system

It is also worth noting that the Average Node Uptime of the NoRDOr system is slightly higher

than the one of the proposed system at the end of the experiment, around 3% higher. After ana-

lyzing the data, it is possible to conclude that in the proposed system, the devices that are turned

off are always the ones executing the most number of nodes, meaning that the MSC assignment

negatively impacts these cases. In order to assess if the inverse yields a higher node uptime, we

repeated the experiment but turned off the devices in another order.

Figure 8.20 (p. 90) shows that if the devices that are turned off are not the ones executing the

most nodes, the Average Node Uptime is actually around 9% higher than the original system at the

end of the experiment, meaning that the positive impact is slightly higher than the negative impact

it produced in the opposite case.

90 Evaluation

0

50k

100k

0

10k

20k

30k

0

50

100

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 20 40 60 80 100
Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

Free RAM (bytes)

Payload Size (bytes)

Avg. node uptime (%)

Uptime (s)

Number of nodes allocated per device

Time (s)

67.2

28.3 36.4 42.0

28.2 33.7 45.0 56.7 62.7 74.4 86.5 92.5 104.5 116.4 122.3

28.0 33.6 44.7 56.1 61.7 72.9 84.1

23.0 29.9 35.5 46.6 58.0

9 9

9 9 9 18 18 18 18 18 18 18

9 9 9 9 9 9 18

9 9 9 9

Figure 8.20: ES2-SC1_2 in proposed system

8.4.2.2 ES2-SC2

This experiment, like ES1-SC2 (cf. Section 8.4.1.2, p. 73), intends to validate the re-orchestration

mechanism when devices disappear and re-appear in the system.

Consequently, we expect the same results as the ones observed in ES1-SC2. While the NoR-

DOr system should re-orchestrate when devices fail and re-appear, keeping the number of nodes

balanced throughout the devices, the proposed system should become slightly unbalanced when

the first device is turned off but should also leverage the re-appearing devices to distribute the

failed nodes as the experiment progresses.

As expected, Figure 8.21 (p. 91) shows that when Dev. 1 is turned off around 30s, all of the

nodes are re-assigned, distributing 12 nodes to each of the available devices. However, Dev. 2

8.4 Discussion 91

is turned off around 50s, leaving only the other 2 devices running 12 nodes each. The next re-

orchestration, around 90s, yields an unexpected result — 9 nodes to Dev. 4, while Devs. 1 and

3 are executing 12 nodes. We are unsure as to what causes this behavior, but it might be due

to 2 orchestrations running concurrently, each assuming a different number of available devices.

The system eventually reaches a complete orchestration of 12 nodes per each of the 3 available

devices at around 120s. Right after this, Dev. 4 is turned off the system, and the system seems to

have performed, again, concurrent orchestrations that have led to inconsistent assignment results.

Comparatively to the corresponding experiment ES1-SC2, the results are slightly less positive,

which may be related to the increased network latency of working with physical devices.

0

50k

100k

0

5k

10k

15k

20k

0

50

100

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 20 40 60 80 100 120 140 160
Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

Free RAM (bytes)

Payload Size (bytes)

Avg. node uptime (%)

Uptime (s)

Number of nodes allocated per device

Time (s)

71.9

28.3 39.6 45.3 0.5 6.1 17.2 28.8 34.5 46.0 58.0 63.9 75.3 86.5 93.6 106.3

28.4 39.5 45.2 56.5 67.7 0.4 6.1 17.2 22.8 34.2 45.8 57.9 63.6 76.3

28.1 39.4 44.9 56.0 67.2 79.4 85.0 96.2 107.2 0.4 6.0 17.0 28.0 35.3 46.6

22.5 28.1 33.7 44.9 56.6 69.1 75.1 86.6 97.8 104.4 116.6 127.8 134.7 0.4 5.9 17.0

9 9 9 12 12 12 12 12 12 9 12

9 9 9 9 9 12 12 12 9 12

9 9 9 9 9 12 12 12 12 12 12

9 9 9 9 12 12 12 12 9 12 12 12

Figure 8.21: ES2-SC2 in NoRDOr

On the other hand, the proposed system works exactly as in ES1-SC2. As shown in Fig-

ure 8.22 (p. 92), the first re-orchestration accumulates 18 nodes in Dev. 2, which is turned off right

92 Evaluation

after being assigned the nodes. The system then assigns its 18 nodes Dev. 1, which has 0 assigned

nodes. The following re-orchestrations also follow the same logic, taking advantage of the last

re-connected device, which has 0 assigned nodes.

0

50k

100k

0

10k

20k

30k

0

50

100

150

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 20 40 60 80 100 120 140 160
Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

Free RAM (bytes)

Payload Size (bytes)

Avg. node uptime (%)

Uptime (s)

Number of nodes allocated per device

Time (s)

79.8

52.3 65.4 71.0 0.4 11.7 17.3 28.6 39.8 51.3 56.8 68.7 80.5 91.6 97.2

50.6 63.5 74.9 80.4 91.8 0.4 6.1 18.0 24.9 36.1 47.3 58.6 70.0

50.2 61.2 72.5 84.2 90.2 102.1 113.9 119.6 130.6 0.4 6.0 17.1 30.3 35.9

44.9 50.5 62.5 68.0 79.3 90.6 101.8 107.4 118.6 130.0 141.7 147.6 159.5 0.3 5.9

9 9 18 18 18 18 18 18 18 18

9 9 9 18 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9

Figure 8.22: ES2-SC2 in proposed system

It is also possible to notice an 8% increase in Average Node Uptime in the proposed system.

We attribute this to the unexpected assignments we outlined in the NoRDOr system, as well as

the same MSC advantage we explored in ES2-SC1 (cf. Section 8.4.2.1, p. 86) — in cases where

the failing nodes have a lower number of nodes assigned, MSC leads to a higher Average Node

Uptime.

8.5 Hypothesis evaluation 93

8.4.2.3 ES2-A

Similarly to ES1-A (cf. Section 8.4.1.3, p. 75), this experiment aims to evaluate the system’s

capability to adapt to unstable devices.

It is expected that the original NoRDOr system re-orchestrates every time a device disconnects

or connects, regardless of how unstable it is. On the other hand, the proposed system should handle

device instability by not assigning them nodes when they re-connect.

After analyzing Figure 8.23 (p. 94), we can conclude that, indeed, the system behaves as

expected. The first assignment occurs almost at 20s and assigns 9 nodes to each of the 4 devices.

Because Devs. 1 and 2 keep failing, they do not report their assigned nodes. At around 30s, the

system assigns 14 nodes to Devs. 3 and 4. It is unclear why they are assigned this amount of nodes.

By taking a look at the payload graph, we can see that Dev. 1 was also assigned some nodes, but it

failed before reporting the number of nodes assigned. After this, the system keeps re-orchestrating

on every re-connection, leaving 9 nodes to each of the correct devices for the remainder of the

experiment.

Figure 8.24 (p. 95) also shows that the expected behavior is indeed the observed one. The

first assignment at around 15s yields 18 nodes to each of the correct devices, and this remains

constant throughout the experiment. As the failing devices re-connect, a different assignment is

never deployed because of their lower stability. This behavior yields a much greater Average Node

Uptime — almost 40% higher at the end of the experiment.

8.5 Hypothesis evaluation

The evaluation process was intended to provide answers to the research questions and to validate

the hypothesis defined in Section 4.4 (p. 27). Thus, we re-visit them, summarize our findings and

provide a clear answer to each one:

RQ1: If we change the order in which tasks are processed, can we generate balanced assignments

in dynamic settings?

As pointed out by Silva et al. [45, 46] and shown in ES2-SC1 (cf. Section 8.4.2.1, p. 86),

a balanced system is more resilient because device failures cause less node downtime, thus

providing correct service for a greater amount of time. However, since devices can leave and

enter the system, it is imperative that we are able to generate balanced assignments given

the currently available devices in the system.

Sorting the nodes by their specificity related to the currently available devices proved to

solve the highlighted balancing issues, allowing the greedy heuristic to generate balanced

assignments in dynamic situations. Thus, we consider the answer to this research question

to be affirmative — processing the nodes in a different order can produce more balanced

solutions.

94 Evaluation

0

50k

100k

0

20k

40k

0

50

100

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 20 40 60 80 100
Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

Free RAM (bytes)

Payload Size (bytes)

Avg. node uptime (%)

Uptime (s)

Number of nodes allocated per device

Time (s)

49.3

0.5 6.1 0.4 0.4 0.3 5.9 0.4 0.5 0.3 5.9

17.6 0.3 0.4 0.4 0.3 5.9 0.4 0.4 0.4 6.0

17.2 29.3 34.8 47.1 59.4 65.0 76.1 87.3 98.5 109.6

11.8 17.3 22.8 36.3 44.6 57.0 68.2 73.8 85.0 96.3 107.5

9

9

9 14 9 9 9 9 9 9 9

9 9 14 9 9 9 9 9 9 9

Figure 8.23: ES2-A in NoRDOr

RQ2: If we measure device stability and leverage it to make decisions on orchestration, can we

produce solutions that are less susceptible to device failure?

The instability of edge devices is likely, and if unaccounted for, can considerably hinder the

system’s resilience, as unstable devices can cause node downtime.

By employing a probing mechanism, we use the Mean Time Between Failure (MTBF) of

each device to calculate a device stability metric that allows the system to consider assigning

fewer nodes to less stable devices. Additionally, we also leverage this metric to introduce the

concept of assignment score, which is independent of the assignment algorithm, enhancing

the system with the ability to decide if a re-orchestration benefits the current state of the

system.

8.5 Hypothesis evaluation 95

0

50k

100k

0

10k

20k

30k

0

50

100

150

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 20 40 60 80 100
Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

Free RAM (bytes)

Payload Size (bytes)

Avg. node uptime (%)

Uptime (s)

Number of nodes allocated per device

Time (s)

86.8

0.4 6.0 0.3 5.9 0.3 0.4 0.4 0.4 6.0 0.4 6.0

0.4 0.3 5.9 0.4 0.3 0.4 6.0 0.3 0.4 6.0

16.9 28.2 39.3 45.0 56.9 68.8 74.7 86.7 98.7 104.6

11.4 23.4 34.5 45.7 51.4 62.5 73.7 84.8 95.8 101.7

18 18 18 18 18 18 18 18 18

18 18 18 18 18 18 18 18 18

Figure 8.24: ES2-A in proposed system

ES2-A (cf. Section 8.4.2.3, p. 93) shows that node uptime almost doubled in the proposed

system that measures node stability and assigns fewer nodes to unstable devices. Hence, we

consider that measuring device stability and leveraging it on orchestration can prevent the

system from incurring in assignments where unstable devices have assigned nodes, provid-

ing an affirmative answer to this research question.

RQ3: If we leverage the current assignment on re-orchestration, can we generate solutions that

result in less orchestration overhead?

Re-distributing all nodes every time the system re-orchestrates is a limitation that can prove

costly to the system — it adds orchestration overhead and entropy to already possibly un-

stable devices. However, it may be hard to measure the impact of this behavior.

96 Evaluation

Due to the underlying code execution mechanism, deploying a node to a device requires

the deployment of the full code script containing every node it must execute. Consequently,

devices need to delete the current script and install the new one. To tackle this issue, we

introduce the Minimum Set of Changes (MSC) concept that aims to minimize the number of

affected nodes — nodes that need to be stopped while the device re-installs the script — on

re-orchestration, by taking into account the current assignment. It does so at the expense of

the assignment balancing, which may be contradictory to the purpose of RQ1.

Given the results of the experiments, we can conclude that there are two clearly opposite

forces in the system. While on the one hand, the MSC can produce a better result in critical

systems, as shown in ES1-B (cf. Section 8.4.1.4, p. 77), it produces mixed results in ES2-
SC1 (cf. Section 8.4.2.1, p. 86). While balancing makes the system more resilient, in

general, because the failure of a device has a lower impact than in a system where a device

can be executing a high portion of nodes, it may also come at the expense of safety in critical

systems.

Although leveraging the current assignment to produce the new orchestration results in less

orchestration overhead, it is also clear that this solution warrants further research. The cur-

rent execution mechanism sets some boundaries on other possible solutions to be explored

in this regard, but changes to this mechanism would permit a deeper exploration of this

topic. We provide possible research directions in Section 9.4 (p. 101).

RQ4: If we leverage the real-time information on device resources to make decisions on the

orchestration, can we produce solutions that are less susceptible to memory limitations?

Memory constraints limit the number of nodes each device can be assigned and may cause

the device to crash if unaccounted for. Furthermore, available RAM is a dynamic resource

that cannot be statically assumed.

Due to the underlying code execution component, devices need to be assigned a full script on

orchestration, meaning that the real-time RAM usage is not of much use to the Orchestrator.

On the other hand, the device’s idle RAM usage that it reports when it connects to the

system should be similar to its available RAM when no script is being executed. Thus, the

Orchestrator can leverage this value, using a heuristic that estimates if the RAM usage of a

set of nodes is likely to crash the device and stop its deployment.

After analyzing the experiments, we can conclude that the proposed system can effectively

estimate the RAM usage of a given script and prevent memory errors, making the system

more resilient. We did, however, find that the developed heuristic might be overly restrictive

at times and requires further tuning to better estimate the target value. We consider that the

answer to this research question is affirmative but acknowledge the solution may be flawed.

RQ5: If we measure the stability of device-node pairings, can we leverage it on orchestration to

identify and mitigate device-node pairings that cause device failure?

8.6 Summary 97

The execution of certain nodes by some devices can lead to failure, either by memory errors

or hardware failure. Failing to identify these pairings causes the system to keep assigning

them, and thus, devices may fail more often than expected.

In order to identify these pairings and mitigate them, we follow the same approach as with

device stability — using the MTBF of a device-node pairing — resulting in the device-node

stability metric. However, even if only one node causes the device to fail, all the nodes

they were executing are considered to have caused the failure as it is currently impossible to

discern what node was the root cause of the issue.

By observing the result of the experiments, we can conclude that our approach did not

have a clear positive impact in mitigating this problem. Nevertheless, it is also important

to mention that it did not have a negative impact on the system as well. What this means

is that it is possible that the metric proves more useful as the system evolves and gathers

more information on different pairings. Hence, we cannot provide a positive answer to this

research question.

Finally, after answering each individual research question, we can evaluate the hypothesis

claimed by this work:

“Runtime information from dynamically orchestrated IoT systems can be used to

achieve greater system resilience.”

Considering the answers to the research questions, we can conclude that a greater system re-

silience can be achieved in the NoRDOr system by (1) employing probing mechanisms to leverage

real-time information from devices, such as stability and resources, to generate better orchestra-

tions, (2) altering the greedy algorithm to mitigate is node-order bias, thus generating balanced

assignments dynamically, and (3) leveraging the current orchestration to produce minimal distur-

bance to the system when re-orchestrating, thus allowing it to provide correct service for a greater

amount of time which may be crucial to ensure safety in critical systems. Thus, we consider our

hypothesis to be validated as the runtime information gathered from devices led to a more resilient

system.

8.6 Summary

In this chapter, the results drawn from the evaluation process are presented. Section 8.1 (p. 67)

starts by defining the system configuration for the experiments, then Section 8.2 (p. 68) describes

each collected metric and its purpose, and Section 8.3 (p. 70) summarizes the setup and high-level

event sequence for each experiment.

In Section 8.4 (p. 71), we present the results of each experiment and provide a detailed anal-

ysis of them, highlighting the impact of the improvements compared to the original system. In

Section 146 (p. 93), we re-visit the research questions and hypothesis driving this dissertation (cf.

98 Evaluation

Section 4.4, p. 27), and sum up the conclusions taken from the aforementioned results: (a) the pro-

posed system achieves greater resilience by leveraging real-time information about edge devices to

measure their stability, which it then uses to make decisions on assignment, (b) changing the order

in which nodes are processed by the greedy algorithm can lead to more balanced assignments in

dynamic settings, (c) the Orchestrator can take advantage of the RAM measurements reported by

the device on orchestration to produce solutions that are less susceptible to memory limitations,

(d) an assignment that minimizes the number of affected nodes by leveraging the current assign-

ment can be beneficial in critical system but produces mixed results in more general scenarios,

and (e) using a device-node stability metric based on the MTBF of device-node pairings does not
produce solutions less susceptible to device failures due to faulty nodes. Additionally, we iden-

tify opposite forces in the developed solution that lead the system to highly balanced solutions in

some cases and highly unbalanced solutions in others. We explore the benefits and drawbacks of

prioritizing each direction but ultimately highlight the need for further research.

Chapter 9

Conclusions

9.1 Conclusions . 99

9.2 Contributions . 100

9.3 Difficulties . 101

9.4 Future work . 101

This chapter presents an overview of this dissertation and outlines future research topics. In Sec-

tion 9.1, we present the key conclusions and remarks of this work. Then, the contributions that

resulted from this dissertation are introduced in Section 9.2 (p. 100). The main difficulties expe-

rienced during this work are outlined in Section 9.3 (p. 101). Finally, possible research directions

drawn from this dissertation and presented in Section 9.4 (p. 101).

9.1 Conclusions

With the steady increase in the number of Internet-of-Things devices and a clear boost in their

computational capabilities, new applications are also surging. Some of these new applications can

no longer rely on the traditional cloud architecture of large-scale IoT systems due to the amount

of data produced and geographical distribution, making it increasingly difficult, costly, or even

illegal to perform centralized data storage and processing in the cloud.

Fog and Edge computing paradigms emerge as a response to these issues, having its main

premise be the bringing IoT computation closer to the edge, allowing for low-latency and lower-

cost systems while also setting clear boundaries for data transfers. However, they, too, come with

drawbacks. Fog nodes are distributed and heterogeneous; thus, efficient resource provisioning and

allocation need to be performed. Additionally, the computational constraints and heterogeneity of

edge devices are challenging for developers, coupled with the lack of reliability due to hardware

failures.

During the analysis of the state of the art, many edge orchestration platforms were found

that leverage the edge devices computational capabilities by providing the user with: (1) ease

of development, through the use of Visual Programming Languages (VPL), (2) general-purpose

frameworks for heterogeneous edge devices capable of custom code execution, (3) automatic de-

composition and allocation of tasks, and (4) self-healing mechanisms to improve the resilience

of the system. However, we found that the fault-tolerance capabilities are usually overlooked,

offering little to no dependability improvements.

99

100 Conclusions

The developed solution addresses many of the issues found in a particular open-source edge

orchestration platform for IoT, NoRDOr [45] as an attempt to improve the system’s dependability.

Particularly, a probing mechanism was implemented, allowing the system to monitor the device’s

stability and resources. Having these real-time metrics, the Orchestrator can perform better as-

signments by considering deploying fewer nodes to more unstable devices and is also able to

assess the device’s memory capabilities and adjust the number of nodes to deploy.

In addition to improving the monitoring of devices, the system must also leverage the current

assignment as a means to minimize re-orchestration overhead. Hence, a new assignment heuristic

was developed that aims to reduce the number of affected nodes in each deployment by only

assigning the currently failed nodes to the least possible number of devices.

Performing experiments with easily reproducible scenarios in cyber-physical real-time sys-

tems is not a trivial task, as the devices are susceptible to hardware and connectivity limitations,

making it hard to ensure that only the relevant variables are in play. In the interest of reproducing

the issues found in NoRDOr, and as a way to tighten the validation cycle, an Orchestration simu-

lator application was developed. Its architecture mimics that of the NoRDOr system, containing

a set of devices that execute code, a set of nodes (computational tasks) to be executed, and an

Orchestrator component that manages the assignment of tasks to devices. More importantly, it

allows for the definition of reproducible scenarios, controlling the nodes and their requirements

and the devices’ resources and behaviors.

After reproducing the issues and iteratively validating the solutions in the simulator, the pro-

posed system changes were ported into the NoRDOr system and tested both on virtual (Docker-

ized) and physical IoT devices. In these experiments, we injected faults and limitations in the

devices and compared the original system with the proposed one, analyzing their ability to cope

with the faults and converge to a stable orchestration. The proposed system showed to not only

perform as well as NoRDOr in some scenarios but also to be able to maintain correct service in

more unstable situations that the original system could not handle.

Considering the results of the experiments, we can conclude that the improvements resulting

from this dissertation make the system more able to cope with the instability and limitations of

heterogeneous edge device devices and, thus, more resilient.

9.2 Contributions

The work developed in the course of this dissertation resulted in the following contributions:

Orchestration simulator A modular and extensible simulator that streamlines the evaluation of

a task assignment algorithm in the realm of real-time orchestration platforms.

Set of improvements on the orchestration strategy of IoT systems A set of proposed improve-

ments to NoRDOr, a real-time IoT orchestration system, that improve its dependability by

leveraging runtime information.

9.3 Difficulties 101

9.3 Difficulties

During the development of our solution, some difficulties arose that delayed the process — namely

when porting the solution to NoRDOr and experimenting on the system.

When performing changes to the devices’ MircoPython framework, we came across several

limitations that would result in odd behavior. Notably, the existence of multiple MQTT clients

in the same device proved to cause inconsistent behavior, failing to report metrics, or failing to

connect to the Registry node.

Reproducing the same scenario in both systems was also challenging as it mostly required

manually stopping a virtual or physical device, only relying on the experiment clock. In some

cases, changes to the devices’ firmware were also necessary to simulate a specific behavior which

meant re-building the firmware and restarting the whole system repeatedly.

9.4 Future work

The proposed improvements contain implementation limitations, as described in Section 7.2 (p. 65)

but also introduces problems that warrant further research.

Firstly, and most pressingly, we identified two different forces that contribute to the system’s

resilience in opposite ways — balancing and minimizing the set of changes. While the first im-

proves the general resilience of the system, the latter emerges a better solution for critical systems

where safety is a priority. Given the current code execution mechanism — where devices cannot

be assigned or removed a single node, but rather their entire node assignment, the balance of these

forces lies in the use of hyper-parameters. A welcome change that could allow for a more suitable

minimum set of changes assignment would be the modification of the code execution mechanism,

allowing each device to be assigned a full set of nodes but also individually assigned or removed a

single node. However, even with this change, further research is still warranted in order to assess

the impact of adding or removing a single node from a healthy device, as it adds entropy to the

system, which can be an undesirable force in a critical system.

Secondly, the monitoring of the stability of device-node pairings proved to be non-beneficial,

as it is currently impossible to discern what node introduced the fault, meaning that the metric is

not precise enough. A possible solution would be to enhance the devices’ firmware with the ability

to report which node caused the failure, using an exception handling mechanism. However, this

solution is not perfect as (1) there may be cases where the fault is so strong it causes a complete

device shutdown/restart, thus losing the ability to report the cause of failure, and (2) a specific

device-node pairing may not be the cause of the problem but rather a set of various nodes assigned

to the device.

Finally, the greedy assignment algorithm proved to be not very scalable in complex scenarios

with a high level of memory limitations. As the system grows, and as more metrics are used to

generate the best possible assignment, the greedy algorithm should eventually be replaced by a

102 Conclusions

better suitable alternative, such as modeling the problem as an Integer Linear Problem (ILP) and

using optimization techniques to solve it, as proposed by Skarlat et al. [48].

References

[1] Amazon Web Services (AWS) - Cloud Computing Services. Available at
https://aws.amazon.com/. Accessed in January 2021.

[2] Google Cloud: Cloud Computing Services. Available at https://cloud.google.com/. Accessed
in January 2021.

[3] Mehmet S. Aktas and Merve Astekin. Provenance aware run-time verification of things for
self-healing internet of things applications. Concurr. Comput. Pract. Exp., 31(3), 2019.

[4] M. Aly, F. Khomh, Y. Guéhéneuc, H. Washizaki, and S. Yacout. Is fragmentation a threat to
the success of the internet of things? IEEE Internet of Things Journal, 6(1):472–487, 2019.

[5] Masoud Saeida Ardekani, Rayman Preet Singh, Nitin Agrawal, Douglas B. Terry, and
Riza O. Suminto. Rivulet: a fault-tolerant platform for smart-home applications. In K. R.
Jayaram, Anshul Gandhi, Bettina Kemme, and Peter R. Pietzuch, editors, Proceedings of the
18th ACM/IFIP/USENIX Middleware Conference, Las Vegas, NV, USA, December 11 - 15,
2017, pages 41–54. ACM, 2017.

[6] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A survey. Com-
put. Networks, 54(15):2787–2805, 2010.

[7] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl E. Landwehr. Basic con-
cepts and taxonomy of dependable and secure computing. IEEE Trans. Dependable Secur.
Comput., 1(1):11–33, 2004.

[8] Michael Blackstock and Rodger Lea. Toward a distributed data flow platform for the web of
things (distributed node-red). In Proceedings of the 5th International Workshop on Web of
Things, WoT 2014, Cambridge, MA, USA, October 8, 2014, pages 34–39. ACM, 2014.

[9] Flavio Bonomi, Rodolfo A. Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing and
its role in the internet of things. In Mario Gerla and Dijiang Huang, editors, Proceedings of
the first edition of the MCC workshop on Mobile cloud computing, MCC@SIGCOMM 2012,
Helsinki, Finland, August 17, 2012, pages 13–16. ACM, 2012.

[10] Bin Cheng, Ernoe Kovacs, Atsushi Kitazawa, Kazuyuki Terasawa, Tooru Hada, and Mamoru
Takeuchi. FogFlow: Orchestrating IoT services over cloud and edges. NEC Technical Jour-
nal, 13(1):48–53, 2018.

[11] Bin Cheng, Gürkan Solmaz, Flavio Cirillo, Ernö Kovacs, Kazuyuki Terasawa, and Atsushi
Kitazawa. Fogflow: Easy programming of iot services over cloud and edges for smart cities.
IEEE Internet Things J., 5(2):696–707, 2018.

[12] CISCO. Cisco {Annual} {Internet} {Report} (2018–2023) {White} {Paper}. Technical
report, 2020.

[13] João Pedro Dias, F. Couto, A. C. R. Paiva, and Hugo Sereno Ferreira. A brief overview
of existing tools for testing the internet-of-things. In 2018 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW), pages 104–109, April
2018.

103

https://aws.amazon.com/
https://cloud.google.com/

104 REFERENCES

[14] João Pedro Dias, João Pascoal Faria, and Hugo Sereno Ferreira. A reactive and model-based
approach for developing internet-of-things systems. In 2018 11th International Conference
on the Quality of Information and Communications Technology (QUATIC), pages 276–281,
September 2018.

[15] João Pedro Dias and Hugo Sereno Ferreira. State of the software development life-cycle for
the internet-of-things. CoRR, abs/1811.04159, 2018.

[16] Joao Pedro Dias, Hugo Sereno Ferreira, and Tiago Boldt Sousa. Testing and deployment
patterns for the internet-of-things. In Proceedings of the 24th European Conference on Pat-
tern Languages of Programs, EuroPLop ’19, New York, NY, USA, 2019. Association for
Computing Machinery.

[17] João Pedro Dias, Bruno Lima, João Pascoal Faria, André Restivo, and Hugo Sereno Fer-
reira. Visual self-healing modelling for reliable internet-of-things systems. In Valeria V.
Krzhizhanovskaya, Gábor Závodszky, Michael Harold Lees, Jack J. Dongarra, Peter M. A.
Sloot, Sérgio Brissos, and João Teixeira, editors, Computational Science - ICCS 2020 - 20th
International Conference, Amsterdam, The Netherlands, June 3-5, 2020, Proceedings, Part
V, volume 12141 of Lecture Notes in Computer Science, pages 357–370. Springer, 2020.

[18] Joao Pedro Dias, André Restivo, and Hugo Sereno Ferreira. Empowering visual internet-of-
things mashups with self-healing capabilities. In 2021 IEEE/ACM 2nd International Work-
shop on Software Engineering Research Practices for the Internet of Things (SERP4IoT),
2021.

[19] João Pedro Dias, Tiago Boldt Sousa, André Restivo, and Hugo Sereno Ferreira. A pattern-
language for self-healing internet-of-things systems. In EuroPLoP ’20: European Confer-
ence on Pattern Languages of Programs 2020, Virtual Event, Germany, 1-4 July, 2020, pages
25:1–25:17. ACM, 2020.

[20] J.P. Dias. jpdias/node-red-contrib-self-healing: Replication package for ICCS 2020., April
2020.

[21] Erik Elmroth, Philipp Leitner, Stefan Schulte, and Srikumar Venugopal. Connecting fog and
cloud computing. IEEE Cloud Comput., 4(2):22–25, 2017.

[22] Hugo Sereno Ferreira, Ademar Aguiar, and João Pascoal Faria. Adaptive object-modelling:
Patterns, tools and applications. In 2009 Fourth International Conference on Software Engi-
neering Advances, pages 530–535. IEEE, 2009.

[23] Hugo Sereno Ferreira, Tiago Boldt Sousa, and Angelo Martins. Scalable integration of mul-
tiple health sensor data for observing medical patterns. In International Conference on Co-
operative Design, Visualization and Engineering, pages 78–84. Springer, 2012.

[24] Alan G. Ganek and Thomas A. Corbi. The dawning of the autonomic computing era. IBM
Syst. J., 42(1):5–18, 2003.

[25] Nam Ky Giang, Michael Blackstock, Rodger Lea, and Victor C. M. Leung. Developing iot
applications in the fog: A distributed dataflow approach. In 5th International Conference on
the Internet of Things, IOT 2015, Seoul, South Korea, 26-28 October, 2015, pages 155–162.
IEEE, 2015.

REFERENCES 105

[26] Nam Ky Giang, Rodger Lea, Michael Blackstock, and Victor C. M. Leung. Fog at the edge:
Experiences building an edge computing platform. In 2018 IEEE International Conference
on Edge Computing, EDGE 2018, San Francisco, CA, USA, July 2-7, 2018, pages 9–16.
IEEE Computer Society, 2018.

[27] Nam Ky Giang, Rodger Lea, and Victor C. M. Leung. Developing applications in large scale,
dynamic fog computing: A case study. Softw. Pract. Exp., 50(5):519–532, 2020.

[28] Salam Hamdan, Moussa Ayyash, and Sufyan Almajali. Edge-computing architectures for
internet of things applications: A survey. Sensors, 20(22):6441, 2020.

[29] Michaela Iorga, Larry Feldman, Robert Barton, Michael J Martin, Nedim S Goren, and
Charif Mahmoudi. Fog computing conceptual model. 2018.

[30] André Sousa Lago, João Pedro Dias, and Hugo Sereno Ferreira. Managing non-trivial
internet-of-things systems with conversational assistants: A prototype and a feasibility ex-
periment. Journal of Computational Science, 51:101324, 2021.

[31] Maurizio Leotta, Davide Ancona, Luca Franceschini, Dario Olianas, Marina Ribaudo, and
Filippo Ricca. Towards a runtime verification approach for internet of things systems. In
Cesare Pautasso, Fernando Sánchez-Figueroa, Kari Systä, and Juan Manuel Murillo Ro-
driguez, editors, Current Trends in Web Engineering - ICWE 2018 International Workshops,
MATWEP, EnWot, KD-WEB, WEOD, TourismKG, Cáceres, Spain, June 5, 2018, Revised Se-
lected Papers, volume 11153 of Lecture Notes in Computer Science, pages 83–96. Springer,
2018.

[32] Jie Lin, Wei Yu, Nan Zhang, Xinyu Yang, Hanlin Zhang, and Wei Zhao. A survey on internet
of things: Architecture, enabling technologies, security and privacy, and applications. IEEE
Internet Things J., 4(5):1125–1142, 2017.

[33] Redowan Mahmud, Ramamohanarao Kotagiri, and Rajkumar Buyya. Fog computing: A tax-
onomy, survey and future directions. In Beniamino Di Martino, Kuan-Ching Li, Laurence T.
Yang, and Antonio Esposito, editors, Internet of Everything - Technology, Communications
and Computing, pages 103–130. Springer, 2018.

[34] Joseph Noor, Hsiao-Yun Tseng, Luis Garcia, and Mani B. Srivastava. Ddflow: visualized
declarative programming for heterogeneous iot networks. In Olaf Landsiedel and Klara
Nahrstedt, editors, Proceedings of the International Conference on Internet of Things De-
sign and Implementation, IoTDI 2019, Montreal, QC, Canada, April 15-18, 2019, pages
172–177. ACM, 2019.

[35] Umar Ozeer, Xavier Etchevers, Loïc Letondeur, François-Gaël Ottogalli, Gwen Salaün, and
Jean-Marc Vincent. Resilience of stateful iot applications in a dynamic fog environment. In
Henning Schulzrinne and Pan Li, editors, Proceedings of the 15th EAI International Confer-
ence on Mobile and Ubiquitous Systems: Computing, Networking and Services, MobiQui-
tous 2018, 5-7 November 2018, New York City, NY, USA, pages 332–341. ACM, 2018.

[36] D. Pinto, João Pedro Dias, and Hugo Sereno Ferreira. Dynamic allocation of serverless
functions in iot environments. In 2018 IEEE 16th International Conference on Embedded
and Ubiquitous Computing (EUC), pages 1–8, October 2018.

106 REFERENCES

[37] Alexander Power and Gerald Kotonya. A microservices architecture for reactive and proac-
tive fault tolerance in iot systems. In 19th IEEE International Symposium on "A World of
Wireless, Mobile and Multimedia Networks", WoWMoM 2018, Chania, Greece, June 12-15,
2018, pages 588–599. IEEE Computer Society, 2018.

[38] Sandra Prescher, Alan K Bourke, Friedrich Koehler, Angelo Martins, Hugo Sereno Fer-
reira, Tiago Boldt Sousa, Rui Nuno Castro, António Santos, Marc Torrent, Sergi Gomis,
et al. Ubiquitous ambient assisted living solution to promote safer independent living in
older adults suffering from co-morbidity. In 2012 Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, pages 5118–5121. IEEE, 2012.

[39] Harald Psaier and Schahram Dustdar. A survey on self-healing systems: approaches and
systems. Computing, 91(1):43–73, 2011.

[40] Antonio Ramadas, Gil Domingues, Joao Pedro Dias, Ademar Aguiar, and Hugo Sereno Fer-
reira. Patterns for Things that Fail. In Proceedings of the 24th Conference on Pattern Lan-
guages of Programs, PLoP ’17. ACM - Association for Computing Machinery, 2017.

[41] Pushkara Ravindra, Aakash Khochare, Sivaprakash Reddy, Sarthak Sharma, Prateeksha
Varshney, and Yogesh Simmhan. ECHO: an adaptive orchestration platform for hybrid
dataflows across cloud and edge. CoRR, abs/1707.00889, 2017.

[42] Jan Seeger, Arne Bröring, and Georg Carle. Optimally self-healing iot choreographies. ACM
Trans. Internet Techn., 20(3):27:1–27:20, 2020.

[43] Jan Seeger, Rohit Arunrao Deshmukh, and Arne Bröring. Running distributed and dynamic
iot choreographies. In 2018 Global Internet of Things Summit, GIoTS 2018, Bilbao, Spain,
June 4-7, 2018, pages 1–6. IEEE, 2018.

[44] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing: Vision
and challenges. IEEE Internet Things J., 3(5):637–646, 2016.

[45] Margarida Silva. Orchestration for Automatic Decentralization in Visually-defined IoT. Mas-
ter’s thesis, University of Porto, 2020.

[46] Margarida Silva, Joao Pedro Dias, Andre Restivo, and Hugo Sereno Ferreira. Visually-
defined real-time orchestration of iot systems. In Proceedings of the 16th EAI International
Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, Mo-
biQuitous ’20. Association for Computing Machinery, 2020.

[47] Margarida Silva, João Pedro Dias, André Restivo, and Hugo Sereno Ferreira. A review on vi-
sual programming for distributed computation in iot. In Proceedings of the 21st International
Conference on Computational Science (ICCS). Springer, 2021.

[48] Olena Skarlat, Matteo Nardelli, Stefan Schulte, and Schahram Dustdar. Towards qos-aware
fog service placement. In 1st IEEE International Conference on Fog and Edge Computing,
ICFEC 2017, Madrid, Spain, May 14-15, 2017, pages 89–96. IEEE Computer Society, 2017.

[49] Danny Soares, João Pedro Dias, André Restivo, and Hugo Sereno Ferreira. Programming
iot-spaces: A user-survey on home automation rules. In Proceedings of the 21st International
Conference on Computational Science (ICCS). Springer, 2021.

REFERENCES 107

[50] Tiago Boldt Sousa, Filipe Figueiredo Correia, and Hugo Sereno Ferreira. Patterns for soft-
ware orchestration on the cloud. In Proceedings of the 22nd Conference on Pattern Lan-
guages of Programs, pages 1–12, 2015.

[51] Aparna Saisree Thuluva, Arne Bröring, Ganindu P. Medagoda, Hettige Don, Darko Anicic,
and Jan Seeger. Recipes for iot applications. In Simon Mayer, Stefan Schneegass, Bernhard
Anzengruber, Alois Ferscha, Gabriele Anderst-Kotsis, and Joe Paradiso, editors, Proceed-
ings of the Seventh International Conference on the Internet of Things, IOT 2017, Linz,
Austria, October 22-25, 2017, pages 10:1–10:8. ACM, 2017.

[52] D. Torres, J. P. Dias, A. Restivo, and H. S. Ferreira. Real-time feedback in node-red for
iot development: An empirical study. In 2020 IEEE/ACM 24th International Symposium on
Distributed Simulation and Real Time Applications (DS-RT), pages 1–8, 2020.

[53] Andrew Whitmore, Anurag Agarwal, and Li Da Xu. The internet of things—a survey of
topics and trends. Information systems frontiers, 17(2):261–274, 2015.

[54] Yang Yang. Multi-tier computing networks for intelligent iot. Nature Electronics, 2(1):4–5,
2019.

[55] Sen Zhou, Kwei-Jay Lin, Jun Na, Ching-Chi Chuang, and Chi-Sheng Shih. Supporting
service adaptation in fault tolerant internet of things. In 8th IEEE International Conference
on Service-Oriented Computing and Applications, SOCA 2015, Rome, Italy, October 19-21,
2015, pages 65–72. IEEE Computer Society, 2015.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Problem
	1.4 General goals
	1.5 Document structure

	2 Background
	2.1 Internet-of-Things
	2.1.1 Fog computing
	2.1.2 Edge computing

	2.2 Self-healing & fault-tolerance

	3 State of the Art
	3.1 Methodology
	3.1.1 Survey research questions
	3.1.2 Databases
	3.1.3 Process

	3.2 Distributed fog/edge orchestration
	3.3 Self-healing & fault-tolerance in IoT
	3.4 Summary

	4 Problem Statement
	4.1 Current issues
	4.2 Desiderata
	4.3 Scope
	4.4 Hypothesis & research questions
	4.5 Methodology
	4.6 Summary

	5 Orchestration simulator
	5.1 Motivation
	5.2 Desiderata
	5.3 Scope
	5.4 Implementation
	5.4.1 Scenario
	5.4.2 Node
	5.4.3 Device
	5.4.4 Orchestrator
	5.4.5 Metrics

	5.5 Simulation lifecycle
	5.6 Known limitations
	5.7 Summary

	6 Orchestration strategy
	6.1 Methodology
	6.2 Base strategy
	6.3 Initial improvements
	6.3.1 Identified problems
	6.3.2 Solutions

	6.4 Handling device instability
	6.4.1 Identified problem
	6.4.2 Solution

	6.5 Generating balanced assignments
	6.5.1 Identified problems
	6.5.2 Solution

	6.6 Dealing with memory limitations
	6.6.1 Identified problem
	6.6.2 Solution

	6.7 Exploring the solution space
	6.7.1 Identified problem
	6.7.2 Solution

	6.8 Minimizing the disturbance on re-orchestration
	6.8.1 Identified problem
	6.8.2 Solution

	6.9 Handling faulty assignments
	6.9.1 Identified problem
	6.9.2 Solution

	6.10 Summary

	7 Reference implementation
	7.1 Implementation
	7.1.1 Device firmware
	7.1.2 Node-RED

	7.2 Known limitations
	7.3 Summary

	8 Evaluation
	8.1 Experimental setups
	8.1.1 System
	8.1.2 Flows

	8.2 Metrics
	8.3 Experiments overview
	8.3.1 ES1 experiments
	8.3.2 ES2 experiments

	8.4 Discussion
	8.4.1 ES1 experiments
	8.4.2 ES2 experiments

	8.5 Hypothesis evaluation
	8.6 Summary

	9 Conclusions
	9.1 Conclusions
	9.2 Contributions
	9.3 Difficulties
	9.4 Future work

	References

