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� Doctor Maria Eduarda Silva (University of Porto)

� Doctor Carlos Ferreira (University of Aveiro)

� Doctor Ricardo Jorge Bessa(Supervisor)
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Abstract

The growing integration of Renewable Energy Sources (RES) brings new challenges to
system operators and market players due to its dependence on the whims of the weather.
Consequently, accurate forecasts are essential to reduce electrical energy imbalances in
the electricity market and design advanced decision-aid tools to support the integration
of large amounts of RES into the power system.

The first challenge tackled by the thesis is related to the necessity of accurate modeling of
extreme quantiles (tails of the probability distribution), since it is paramount to accurately
model the risk (i.e., avoid over and underestimation of risk metrics like value-at-risk).

The second and third challenges relate to the fact that geographically distributed wind
turbines, photovoltaic panels, and sensors produce large volumes of data that can be
used to improve RES forecasting skill – for instance, by benefiting from spatio-temporal
dependencies. These dependencies are a consequence of the weather patterns: the weather
at a certain site is related to its historical values, and the weather variables at multiple
sites within a certain geographic scale are not statistically independent; instead, they have
spatial correlations with others.

Due to business competitive factors and personal data protection concerns, data owners
(or agents) might be unwilling to share their data, despite the potential benefits. Two
important properties (that represent our second and third challenges) are required to
motivate the agents to perform collaborative forecasting models: (1) that data privacy is
preserved during the collaboration, and (2) that data owners are not allowed to free-ride
on others and are compensated for the data they contribute (data monetization).

The main contributions from this thesis are: (i) the development of a conditional extreme
quantile forecasting model, that combines extreme value theory estimators for truncated
generalized generalized Pareto distribution with non-parametric methods, conditioned by
spatio-temporal information; (ii) a numerical and mathematical analysis of the existing
privacy-preserving regression models and identification of weaknesses in the current liter-
ature; (iii) the development of a privacy-preserving forecasting algorithm for vector au-
toregressive models, that protects data by combining linear algebra transformations with
a decomposition-based algorithm; and (iv) the development of an algorithmic solution for
data monetization in RES collaborative forecasting, in which agents buy forecasts from a
trusted entity instead of directly buying sensible data.

Along the thesis, the proposed models are empirically evaluated using synthetic data
(sampled from autoregressive processes), and real publicly available datasets (from wind
and solar energy power plants).

Keywords: Renewable Energy; Forecasting; Conditional Extreme Quantiles; Data Pri-
vacy; Data Monetization; Collaborative Forecasting.
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Resumo

A integração em larga escala de energia produzida por fontes renováveis representa novos
desafios para os operadores e participantes do mercado elétrico devido à sua dependência
dos caprichos do clima. Consequentemente, o desenvolvimento de modelos de previsão é
essencial para reduzir desvios na produção e projetar ferramentas de aux́ılio à decisão para
apoiar a integração de grandes quantidades de energias renováveis no sistema elétrico.

O primeiro desafio abordado relaciona-se com a necessidade de modelar quantis extremos
(caudas da distribuição de probabilidade), uma vez que é fundamental modelar o risco com
precisão (ou seja, evitar sobre- e sub-estimação de métricas de risco como o Value at Risk).

O segundo e terceiro desafios relacionam-se com o facto de grandes volumes de dados
serem produzidos por turbinas eólicas, painéis fotovoltaicos e sensores geograficamente
distribúıdos, podendo ser usados para melhorar a habilidade de previsão das energias
renováveis – por exemplo, beneficiando de dependências espaço-temporais. Essas de-
pendências são uma consequência dos padrões climáticos: o clima num determinado local
está relacionado com os seus valores históricos e as variáveis climáticas em vários locais
dentro de uma determinada região não são estatisticamente independentes; em vez disso,
têm correlações espaciais com outros.

Devido a fatores competitivos e preocupações com a proteção de dados, os proprietários
dos dados (ou agentes) podem não estar dispostos a partilhá-los, apesar dos potenci-
ais benef́ıcios. Duas propriedades (que representam o segundo e terceiro desafios) são
necessárias para motivar os agentes a participar em modelos de previsão colaborativa:
(1) a privacidade dos dados deve ser preservada durante a colaboração, e (2) os agentes
dos dados devem ser compensados pelos dados com os quais contribuem (monetização de
dados) – evitando situações em que agentes não queiram colaborar por não terem qual-
quer benef́ıcio na sua previsão, apesar dos seus dados serem relevantes para a previsão de
produção dos seus competidores.

As principais contribuições desta tese são: (i) o desenvolvimento de um modelo de pre-
visão de quantis extremos condicionados por covariáveis, que combina estimadores da teo-
ria de valores extremos para a distribuição de Pareto generalizada (truncada) com métodos
não-paramétricos, condicionados por informação espaço-temporal; (ii) uma análise numérica
e matemática dos modelos de preservação de privacidade aplicados a problemas de regressão,
com identificação dos pontos fracos na literatura atual; (iii) o desenvolvimento de um
algoritmo de previsão que preserva a privacidade considerando colaboração através de
modelos autorregressivos vetoriais, os dados são protegidos combinando transformações
por álgebra linear com um algoritmo baseado em decomposição; e (iv) o desenvolvimento
de uma solução algoŕıtmica para a monetização de dados em previsão colaborativa, assu-
mindo que os agentes compram previsões de uma entidade confiável em vez de comprar
diretamente dados senśıveis.

Ao longo da tese, os modelos propostos são empiricamente avaliados usando dados
sintéticos (amostrados usando processos autoregressivos vetoriais) e dados reais publica-
mente dispońıveis (de parques eólicos e solares).

Keywords: Energias Renováveis; Previsão; Quantis Extremos Condicionais; Privacidade
de Dados; Monetização de Dados; Previsão Colaborativa.
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Introduction

E
lectrical energy generation comes from many sources that may be divided into con-
ventional generation technologies (Figure I.1), such as nuclear energy and fossil en-

ergy (e.g., oil, coal, natural gas), and Renewable Energy Sources (RES) like wind, solar,
geothermal, and hydropower (Figure I.2). In 2018, RES accounted for 18.9% of European
energy consumption [1], and the goal of the European Union (EU) is to reach at least 32%
of its energy consumption from RES by 2030 [2].

Despite the many benefits of renewable energy sources, there are challenges to overcome
since their generation depends on non-human factors, i.e., the weather (wind, clouds, solar
irradiance, etc.). Consequently, accurate forecasts are essential to reduce electrical energy
imbalances in the electricity market and design decision-aid tools to support the integration
of large amounts of RES into the power system.

(a) Coal

xxxxx

(b) Oil

t
(c) Natural Gas (d) Nuclear

Figure I.1: Conventional genera-
tion technologies.

(a) Wind (b) Solar (c) Waves

(d) Water (e) Biomass (f) Geothermal

Figure I.2: Renewable energy sources.

Three main challenges are covered by this PhD thesis for RES:

1. Forecast uncertainty must be minimized so that system operators and electricity
market players can make better decisions. Accurate modeling of extreme quantiles
(tails of the probability distribution) is paramount to accurately model the risk (i.e.,
avoid over and underestimation of risk metrics like value-at-risk).

2. Cooperation between multiple RES power plant owners can lead to an improvement
in forecast accuracy thanks to the spatio-temporal dependencies in time series data.
Such cooperation between agents makes data privacy a necessity since they usually
are competitors. However, existing methods of data privacy are unsatisfactory when
it comes to time series and can lead to confidentiality breaches – which means the
reconstruction of the entire private dataset by another party.
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3. Incentives must also exist so that agents are motivated to cooperate by exchanging
their data. In fact, agents may be unwilling to share their data, even if privacy is
ensured, due to a form of prisoner’s dilemma: all could benefit from data sharing,
but in practice no one is willing to do so.

The remaining of this chapter contextualizes the thesis by providing its motivation
(Section I.1), objectives and contributions (Section I.2), structure (Section I.3), related
publications (Section I.4), and a general description of the experimental setup (Section I.5).

I.1 Motivation

A few decades ago, electricity was provided by a single monopoly, usually owned by the
state. The EU has pushed (through Directives 2003/54/EC [3], 2009/72/EC [4], and
2019/944 [5]) for energy liberalization, allowing consumers to purchase from different
providers. Usually, consumers do not buy directly from the producer, they buy from a
retailer, such as EDP Comercial or Galp Energia – these in turn buy electricity from the
producers.

The daily electricity market, so-called spot market, is a type of market in which
electricity producers offer to sell different quantities of electricity at different prices for
each hour of the next day. The line that represents all these proposals constitutes the
supply curve. In that market, electricity consumers also bid, for each hour of the next
day, at what price they are willing to buy electricity. The demand curve is the line with
all these bids. The intersection of these two lines determines the value of the wholesale
market for that hour.

However, unforeseen events arise that vary the energy forecasts and are resolved through
intraday sessions, in which agents update their offers. For instance, in Portugal and
Spain, there are six intraday sessions. Those sessions are necessary because

i) conventional power plants can produce with great reliability, and even then, there
is always the possibility of breakdowns and unavailability that cause last-minute
changes;

ii) retailers bids are based on demand forecasting, and then deviations can occur;

iii) RES power generation has high variability due to weather dependence, and large de-
viations may occur between the offered and the real produced value, highly affecting
the supply curve, leading to extra costs.

In fact, the increasing introduction of variable RES generation has emphasized the im-
portance of efficient intraday markets – the European Commission is pushing for a new
objective of continuous intraday markets with only 60 minutes of margin, enabling electri-
cal energy trading between control areas with surplus and shortage [6]. The main idea is
to introduce a single European continuous intraday market based on a common system to
which local intraday markets will be linked, as well as the availability of all the capacity of
cross-border interconnections that will be facilitated by Transmission System Operators
(TSOs) – which are the entities responsible by the transmission grids transporting large
quantities of high and very high voltage electricity across vast distances (the Portuguese
TSO entity is REN). As long as cross-border transport capacity is available between zones,
energy offers and demands introduced by market participants in a country may be matched
by orders filed similarly by market participants in any other country that is connected to
the central system.
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Currently, one of the rules of these TSOs is to ensure the provision of reserves that will
allow for sudden imbalances. For the provision of reserves, the TSO tries to determine the
optimal reserve production for each market trading period, instructing producers when
and how much electricity to generate, and managing any contingent events that cause the
balance between supply and demand to be disrupted. The TSO is interested in defining
a risk metric for this imbalance, such as loss of load probability, and typically wants this
probability to be below 1% [7, 8]. These low risk levels motivate the development of prob-
abilistic models that could be improved by using spatio-temporal weather measurements
or forecasts, as discussed in what follows.

Probabilistic forecast: Probabilistic RES forecasting models, e.g., to estimate condi-
tional extreme quantiles of power production, are crucial to design advanced decision-aid
tools to support not only the definition of reserve levels [7] but also the maximum import
net transfer capacity of interconnections [8], simulation of power generation scenarios [9],
dynamic line rating [10], etc. However, there is a research gap when it comes to improving
probabilistic forecasts using spatio-temporal time series data.

In 2006, the proposal of Gneiting et al. [11] was pioneer. The authors introduced the
regime-switching space-time method, which merges meteorological and statistical exper-
tise to obtain probabilistic forecasts of wind resources for two hours-ahead wind speed
forecasting. Regarding the expected value forecasting, the monthly Root Mean Squared
Error (RMSE) reduced up to 28.6% when compared to the persistence forecasts, and the
90% prediction intervals were, on average, about 18% lower than the intervals obtained by
AutoRegressive (AR) models. More recently, in 2017, Andrade and Bessa proposed a fore-
casting framework to explore information from a Numerical Weather Prediction (NWP)
grid applied to both wind and solar energy [12], based on Gradient Boosting Trees (GBTs)
models with feature engineering. Relative to a model that only considers one NWP point,
it shows an average point forecast improvement, in terms of Mean Absolute Error (MAE),
of 16.09% and 12.85% for solar and wind power, respectively. The authors also considered a
probabilistic forecast, from the quantile 5% until 95% with 5% increments, which revealed
an improvement in the continuous ranking probabilistic score of 13.11% and 12.06% for
solar and wind power, respectively. These works show that spatio-temporal information,
from measurements (e.g., weather and power) and numerical weather predictions (e.g., a
grid of weather forecasts), results in considerable improvements in forecasting accuracy,
both in terms of deterministic (expected value) and probabilistic (conditional quantiles)
forecasts. However, none of these works consider the forecast of extreme quantiles (e.g.,
quantiles with a nominal percentage between 0.01% and 1%, or between 99% and 99.99%).
Indeed, little research was conducted to predict extreme conditional quantiles, and none
that makes use of spatio-temporal information.

This spatio-temporal data might have different owners, which introduces new challenges
like data privacy and monetization. Moreover, this requires a collaborative analytics
framework, as described in the following paragraphs.

Collaborative models: On the one hand, the weather at a certain site (e.g., a wind farm
or a solar farm) is related to its historical values. On the other hand, the weather variables
at multiple sites within a certain geographic scale are not statistically independent, instead,
they have spatial correlations with others [11]. Given this spatio-temporal reliance on the
weather, RES producers located in one region benefit from the data of producers located in
another region. In the two aforementioned approaches [11, 12], there is an agent that wants
to improve its forecasts using weather measurements and forecasts around its location.
However, it would be desirable to combine this with historical power measurements from
other producers. For this purpose, Tastu et al. [13] uses a Vector AutoRegressive (VAR)
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model that makes use of information from multiple power plants. They consider 15 groups
of wind power producers. This information can reduce prediction errors by up to 18.46%,
in terms of RMSE, when evaluated on the test case of western Denmark. However, sharing
data between competing power plants is not always possible, especially if they belong to
different companies, due to competitive and privacy concerns.

In this thesis, we evaluate existing approaches for data privacy and find them to
be unsatisfactory for time series because the methods do not ensure data privacy when
lags are used, and existing methods do not work well for data split by features which is
necessary for such spatial problems. Therefore, a robust data-privacy protocol is required
for VAR models and with the potential to be applied to a broader set of statistical learning
models.

Furthermore, agents are unwilling to share data with their competitors unless they are
benefited from doing so. Existing literature on how to monetize information sharing
is either too broad or not generalizable to model forecasting. A mechanism does not
exist that can compensate data owners by an amount proportional to the benefit accrued
by those who integrate the data into their models. Thus, it is important to develop an
algorithmic solution for data markets where the forecasting accuracy, value for a specific
use case, and buyer/seller bids define the value of traded data.

I.2 Research Questions and Contributions

From a general point of view, the objective of this thesis is to develop new mathematical
and statistical approaches to explore spatio-temporal time series data in forecasting prob-
lems, considering data potentially owned by different entities. We recognize three research
gaps, related to the three main challenges identified at the beginning of this Prologue,
that motivate the following objectives and contributions:

Objective 1. Extreme Conditional Quantiles Forecasting

Research question: How to take
advantage of covariates when fore-
casting extreme quantiles of a trun-
cated random variable?

Contributions: Improvement of the probabilistic fore-
cast accuracy on extreme events by combining Extreme
Value Theory (EVT) estimators for truncated generalized
Pareto distribution (GPD) with non-parametric methods,
conditioned by spatio-temporal information.

Objective 2. Privacy-preserving Forecasting Model

Research question: How to per-
form collaborative forecasting with-
out sharing private data and related
statistics?

Contributions:
1—Numerical and mathematical analysis of the existing
privacy-preserving regression models and identification of
weaknesses in the current literature;
2—Development of privacy-preserving forecasting algo-
rithms. Data privacy is ensured by combining linear alge-
bra transformations with a decomposition-based algorithm,
allowing to compute the model’s coefficients in a parallel
fashion.

Objective 3. Data Markets for Collaborative Forecasting

Research question: Why should
an agent collaborate with others,
even when its model accuracy does
not improve?

Contributions: Development of an algorithmic solution
for data monetization in collaborative forecasting.

While the motivation and empirical evaluation of the thesis is on RES forecasting, the
contributions themselves are not specific to RES and could be applied to other areas, such
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as:

� Weather and climate: Forecasting conditional extreme quantiles for wind speed,
precipitation, air pollution, etc, can be improved by using data from multiple mon-
itoring stations.

� Economics and finance: Extreme events are important for insurance compa-
nies [14]. Furthermore, cooperation between entities can help forecasting product
prices more accurately. For instance, in [15] the retail prices for a specific product
are predicted at every outlet by using historical retail prices of the product at a
target outlet and at competing outlets.

� Logistics: Cooperation between supply chains can reduce their forecasting errors.
For example, the VAR model is used in [16, 17] for inventory control in supply chains;
Extreme conditional quantile forecasting is also of interest for production planning
and inventory management [18].

I.3 Thesis Structure

Chapter Topic # Agents

4 Monetization Market

2 & 3 Data Privacy Group

1 Extreme quantiles One

Figure I.3: Relation between objectives and thesis structure.

The thesis is structured into four major chapters related to the contributions described
in the previous section, and depicted in Figure I.3. A brief description of each chapter:

Chapter 1 focuses on the first objective: forecasting conditional extreme quantiles given
a set of covariates. In this document, extreme quantiles correspond to the
quantiles with a nominal proportion below 0.05 and above 0.95. This chapter
describes a novel forecasting method combining non-parametric methods with
truncated GPD.

Chapter 2 relates to the second objective and analyzes the state-of-the-art and unveils
several shortcomings of existing methods in guaranteeing data privacy when
employing VAR models.

Chapter 3 relates also to the second objective and proposes a novel forecasting model
that allows a model to be estimated in a distributed fashion with privacy
protection for the data, coefficients and covariance matrix.

Chapter 4 focuses on the third objective, data monetization. An algorithmic solution for
data monetization is proposed, in which agents buy forecasts from a trusted
entity instead of directly buying sensible data.

I.4 Publications

Each chapter along the thesis has one companion publication published in a peer-reviewed
journal with quartile score Q1 (the impact factor is indicated as IF).
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Objective 1. Extreme Conditional Quantiles Forecasting

Chapter 1. C. Gonçalves, L. Cavalcante, M. Brito, R.J. Bessa and J. Gama, “Fore-
casting conditional extreme quantiles for wind energy,” Electric Power Systems Re-
search, vol. 190, pp. 106636, Jan. 2021, doi:10.1016/j.epsr.2020.106636. [IF=3.211,
Q1]

Objective 2. Privacy-preserving Forecasting Model

Chapter 2. C. Gonçalves, R.J. Bessa, and P. Pinson, “A critical overview of privacy-
preserving approaches for collaborative forecasting,” International Journal of Fore-
casting, vol. 37, no. 1, pp. 322-342, 2021, doi:10.1016/j.ijforecast.2020.06.003.
[IF=2.825, Q1]

Chapter 3. C. Gonçalves, R.J. Bessa, and P. Pinson, “Privacy-preserving dis-
tributed learning for renewable energy forecasting,” Under review in IEEE Trans-
actions on Sustainable Energy, 2020. [IF=7.44, Q1]

Objective 3. Data Markets for Collaborative Forecasting

Chapter 4. C. Gonçalves, P. Pinson, and R. J. Bessa. “Towards data markets in
renewable energy forecasting”. IEEE Transactions on Sustainable Energy, vol. 12,
no. 1, pp. 533-542, Jan. 2021, doi: 10.1109/TSTE.2020.3009615. [IF=7.44, Q1]

The work developed in this thesis was also disseminated by conferences:

� The Chapter 1 proposal was presented at the international XXI “Power Systems
Computation Conference” (PSCC 2020).

C. Gonçalves, L. Cavalcante, M. Brito, R. J. Bessa, and J. Gama, “Forecasting
conditional extreme quantiles for wind energy,” https://pscc-central.epfl.ch/

repo/papers/2020/225.pdf, PSCC 2020, (accessed November 19, 2020).

� The Chapter 4 proposal was presented at the 40th International Symposium on
Forecasting (ISF 2020).

C. Gonçalves, R. J. Bessa, and P. Pinson, “Data market for collaborative renew-
able energy forecasting,” https://whova.com/embedded/speaker/iiofe202006/

12531898/, ISF 2020, (accessed November 19, 2020).

In addition, a patent was submitted to the European Patent Office (EPO) in Oct 2020,
related to the privacy-preserving model proposed in Chapter 3.

R. J. Bessa and C. Gonçalves, “Method and device for preserving privacy of linear
regression distributed learning”, Submitted to EPO.

Furthermore, during these four years, parallel work related to energy analytics models was
conducted as part of collaborations between INESC TEC and energy companies, which
we decided not worth including in the body of the thesis, but are here briefly mentioned:

Advantages of uncertainty models. Development of computation methods and tools
to assess the advantages of using uncertainty models to predict the security of electri-
cal systems in case of overloading in the branches, in collaboration with RTE France, a
transmission system operator.

M.H. Vasconcelos, C. Gonçalves, J. Meirinhos, N. Omont, A. Pitto, & G. Ceresa.
“A methodology to evaluate the uncertainties used to perform security assessment
for branch overloads.” International Journal of Electrical Power & Energy Systems
112 (2019): 169-177. [IF=3.588, Q1]
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I.5 Datasets used in the Experiments

M.H. Vasconcelos, C. Gonçalves, J. Meirinhos, N. Omont, A. Pitto, & G. Ceresa.
”Evaluation of the uncertainties used to perform flow security assessment: a real
case study,” 13th IEEE PES PowerTech Conference (2019).

Causality analysis. Understanding the main factors that influence the electricity prices
and the mobilization of reserves. The applied techniques include Least Absolute Shrinkage
and Selection Operator (LASSO) linear and logistic regression, and causal analysis based
on algorithms of causality discovery, such as segmentation techniques with classification
trees and neural network models. This work was done in collaboration with EDP – Gestão
da Produção de Energia, S.A.

C. Gonçalves, M. Ribeiro, J. Viana, R. Fernandes, J. Villar, R. Bessa, et al. “Ex-
planatory and causal analysis of the MIBEL electricity market spot price,” 13th

IEEE PES PowerTech Conference (2019).

C. Gonçalves, M. Ribeiro, J. Viana, R. Fernandes, J. Villar, R. Bessa, et al. “Ex-
planatory and causal analysis of the Portuguese manual balancing reserve,” Submit-
ted to 14th IEEE PES PowerTech Conference (2021).

I.5 Datasets used in the Experiments

Table I.1 provides a brief description of the data considered in this thesis, as well
as the related chapters. Datasets include power time series data, NWP for a set of
locations around power plants, and synthetic data. The use of synthetic data was
a common practice to verify the correct implementation of the algorithms proposed
in this thesis. Also, some details about practical implementation are provided. The
experiments were carried out using R [27] and Python [28] programming languages.
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Table I.1: General description of the experimental setup.
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II

Background Knowledge

B
efore proceeding to the proposed forecasting models and applications, an overview
of the different aspects of Renewable Energy Sources (RES) forecasting, and the

related limitations, is covered in this chapter. First, the main concepts and taxonomy for
RES forecasting are introduced in Section II.1, and a brief literature review is provided
in Sections II.1.2 to II.1.4 for the forecasting methods. Section II.2 describes the most
common evaluation metrics. Then a mathematical description of the relevant models is
provided in Section II.3.

II.1 Overview of Renewable Energy Forecasting

In order to improve decision-making under risk in power systems and electricity markets
with high RES integration, system operators, market agents, and RES producers require
highly accurate point and probabilistic forecasts. It is important to underline that vari-
ability in RES time series is inherently and the role of statistical models is to decrease
uncertainty.

II.1.1 Taxonomy

When forecasting power generation Y for time t+ h, Yt+h, it is important to consider the
information collected at current time t, Ωt, such as wind speed, irradiance, past generation
level (i.e., lagged power generation), etc. Different types of conditional forecast models
are identified in the literature (see Figure II.1):

a) Point or deterministic forecasts are an estimation, issued at time t for time
t+h, based on the conditional expectation of Yt+h given a modelM with estimated
parameters Θ̂, and the information set Ωt,

ŷt+h|t = E(Yt+h|Ωt,M, Θ̂). (II.1)

b) Conditional quantile forecast q̂τt+h|t with nominal level τ ∈ [0, 1] is an estimate,
issued at time t for time t+ h, of the quantile qτt+h for random variable Yt+h, given

a model M with estimated parameters Θ̂, and the information set Ωt, i.e.,

Pr[Yt+h ≤ q̂τt+h|t|Ωt,M, Θ̂] = τ. (II.2)

By issuing a quantile forecast q̂τt+h|t, the forecaster tells at time t that there is a
probability τ that RES generation will be less than q̂τt+h|t at time t+ h. These con-
ditional quantiles need to be carefully interpreted, otherwise misleading information
may be relayed to the decision-maker, e.g., misinterpret each one of the quantiles in
Figure II.1 (b) as a possible temporal evolution.
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Prologue II Background Knowledge

k

P
ow

er
expected observed

(a) Point forecast

k

P
ow

er

quantile 5% quantile 50%

quantile 95% observed

(b) Conditional quantile forecast

k

P
ow

er

90% interval 80% interval

70% interval observed

(c) Forecast interval

k
Power

P
ro
b
a
b
il
it
y observed

(d) Conditional predictive
PDF

k

P
ow

er
scenarios observed

(e) Random vectors

k
Reserve

R
is
k

(f) Risk indices

Figure II.1: Types of forecasting models output.

c) Forecast interval is a range Î
(β)
t+h|t of potential values for Yt+h for a certain level

probability β ∈ [0, 1] such that

Pr
[
Yt+h ∈ Î

(β)
t+h|t|Ωt,M, Θ̂

]
= β. (II.3)

Such an interval must be defined as

Î
(β)
t+h|t =

[
q̂
β/2
t+h|t, q̂

1−β/2
t+h|t

]
, (II.4)

where q̂
β/2
t+h|t, q̂

1−β/2
t+h|t are conditional quantile forecasts. As in the previous case, in-

tervals can only be interpreted individually for each lead time.

d) Conditional predictive PDF for Yt+h issued at time t is a complete description
f̂t+h|t of the Probability Distribution Function (PDF) of Yt+h conditional on a model

M with estimated parameter Θ̂, and information set Ωt. Similarly, F̂t+h|t is a com-
plete description of the conditional Cumulative Distribution Function (CDF) of Yt+h
issued at time t.

e) Random vectors, trajectories, scenarios or ensemble forecasting are dif-
ferent terms for the same concept: equally-likely samples of multivariate predictive
densities for power generation (in time and/or space). Random-vectors are the term
used in statistics, while trajectories, scenarios or ensemble forecasting are terms com-
monly used in economics and finance, meteorology, and energy modeling. Scenarios
issued at time t for a set of h successive lead times are samples of the predicted
multivariate CDF for (Yt+1, . . . , Yt+h), and consist in a set of J time trajectories

z(j) = (y
(j)
t+1|t, y

(j)
t+2|t, . . . , y

(j)
t+h|t), j ∈ {1, . . . , J}.
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II.1 Overview of Renewable Energy Forecasting

f) Risk indices are not typically considered models, since they are obtained by post-
processing the output of some of the previous models. They are a summary of the
probability distribution; e.g., (conditional) value-at-risk.

These conditional models may be classified as either point or probabilistic forecasting
models. Point forecasts are easier to interpret since they only provide one value for each
lead time t + h, but they do not provide any information about the uncertainty around
the predicted value. For example, if the power production point forecast for the next hour
is 1000 MW, then the Transmission System Operator (TSO) is unaware whether there
is a strong possibility of the production coming closer to 500 MW or 1500 MW or some
other value, and these values may represent different decisions since the final goal is to
balance power system production and consumption. For this reason, probabilistic forecasts
through the form of conditional quantiles or prediction intervals or PDFs or trajectories,
all of which are essential to help agents to make better decisions.

Recent reviews [29, 30, 31] outline the several methods that have been applied in RES
forecasting. These methods are usually classified according to the prediction horizon h
(which is the time interval between the actual and effective time of prediction) or the
methodology:

� Prediction horizon: the classification of RES forecasting approaches is not con-
sensual, but taking [32] as reference, four categories are considered: very short-term
(up to 6 hours), short-term (> 6 hours to 3 days), medium-term (4 to 7 days) and
long-term (> 7 days). Naturally, the selection of the input variables Ωt and the most
suitable models M are highly dependent on the time horizon.

� Methodology: Four groups of RES forecasting approaches are identified: persis-
tence model, physical models, statistical models, and hybrid models. The following
subsections are organized by methodology.

An overview of RES forecasting approaches is provided in the next subsections, detailing
more on statistical models because they are the focus of this thesis. Section II.1.2 briefly
describes the literature on persistence, physical and statistical models, regarding point
forecasting. Then, Section II.1.3 describes the models to perform uncertainty forecasting.
Commonly, these point and probabilistic RES forecasting models are focused on individ-
ual RES power plants, and only consider data for their geographical location. But, as
explained in Prologue I, the weather variables at a certain site are related to its historical
values, and their values at multiple sites within a certain geographic scale are not sta-
tistically independent. Given this spatio-temporal weather reliance, new approaches are
being considered that perform RES forecasting using spatio-temporal time series data, as
described in Section II.1.4.

II.1.2 Point Forecast Models

Point forecast models predict the expected value of the series, as illustrated by Fig-
ure II.1 (a). The topography of point forecast models, which is summarized in Figure II.2,
is now elaborated.

Persistence model

This is a popular model for very short-term forecasting since it has a less computational
cost and low time delay. This technique states that the future generation Ŷt+h issued at
time t will be the same as the last measured value yt.
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Prologue II Background Knowledge

Point forecast models
(Section II.1.2)

Persistence
• Last observed
power value

Physical
• NWP
• Clear Sky

Statistical

Classical Time Series
• ARIMA
• Exponential smoothing
• AR-X
• Regime-switching models like
SETAR, STAR, and Markov-
switching AR

Machine Learning
• ANN-based
• SVM-based
• Combined models
− Random forests
− GBT
− MLP+RBFNN+RNN

Hybrid
• Residuals from ARIMA
models are predicted by a
machine learning approach
− ARIMA+ANN
− ARIMA+SVR

Hybrid
• Statistical approaches fed
with data from physical models

Figure II.2: Topography of point forecast models.

Physical models

The most popular physical model provides a grid of Numerical Weather Predictions
(NWPs). This predictor is based on a mathematical set of equations, which describes
the physical state and dynamic motion of the atmosphere. Since the NWP are provided
to a set of grid points covering an area, a more detailed characterization of the weather
variables in the RES power plants location requires an extrapolation of these forecasts.
Weather extrapolation is usually performed with mesoscale, computational fluid dynamic
(which includes for example Navier-Stokes equations) or linear models [33].

NWP models provide forecasts of variables such as temperature, relative humidity and
wind speed and direction at different heights, but also global and direct irradiance, which
is relevant for solar power plants. However, extrapolating the irradiance to solar power
plants’ location can result in misleading predictions since the cloud cover is not taken into
account. To address this limitation, clear sky models have been proposed to estimate solar
irradiance under clear-sky conditions in specific locations, simplifying the atmospheric dy-
namics with relatively simple characterizations. An up-to-date review on clear sky models
can be found in [34]. The assumption of clear sky conditions is the main disadvantage of
these models.

The conversion of weather variables to power may be performed through manufacturers’
power curves (e.g., the wind power curve is proportional to the cube of wind speed [35])
or statistically. Physical forecasting methods such as NWP models show higher accuracy
when the environment is stable. However, the complex atmospheric information require-
ments add high computation complexity in solving these models.

Statistical models

This class of models use mathematical equations to extract the patterns and correlation
from input data, and are estimated by minimizing the difference between past measured
values and predicted values, meaning the prediction accuracy depends on the quality and
dimension of the data. Commonly, statistical models are divided into three main subjects:
classical time series models, machine learning models and hybrids between the two.

Classical times series models use historical time series and real-time generated power
data to predict the power generation. Usually, these techniques achieve good accuracy
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II.1 Overview of Renewable Energy Forecasting

target Y︷ ︸︸ ︷ p lags of wind power︷ ︸︸ ︷ example of NWP︷ ︸︸ ︷
yt+1 yt . . . yt+1−p ̂wind speedt+1

̂wind directiont+1

yt+2 yt+1 . . . yt+2−p ̂wind speedt+2
̂wind directiont+2

...
...

...
...

...
...

yt+h yt+h−1 . . . yt+h−p ̂wind speedt+h
̂wind directiont+h︸ ︷︷ ︸

classical time series︸ ︷︷ ︸
machine learning models

(a) Wind power forecasting

target Y︷ ︸︸ ︷ p lags of solar power︷ ︸︸ ︷ example of NWP︷ ︸︸ ︷ calendar variables︷ ︸︸ ︷
yt+1 yt . . . yt+1−p ̂irradiancet+1 ̂temperaturet+1

̂cloud covert+1 hourt+2 montht+1

yt+2 yt+1 . . . yt+2−p ̂irradiancet+2 ̂temperaturet+2
̂cloud covert+2 hourt+2 montht+2

...
...

...
...

...
...

...
...

...

yt+h yt+h−1 . . . yt+h−p ̂irradiancet+h ̂temperaturet+1
̂cloud covert+hhourt+h montht+h︸ ︷︷ ︸

classical time series︸ ︷︷ ︸
machine learning models

(b) Solar power forecasting

Figure II.3: Illustration of data used by statistical models.

for very short-term RES forecasting; however, exogenous variables (e.g. wind speed fore-
casting or solar irradiance) are fundamental for larger forecast horizons, motivating the
extension of these approaches to include those extra input variables. For example, the
authors of [36, 37] forecast 24h-ahead wind and solar power, respectively, by combining
power measurements with weather forecasts through an AR-X model.

Examples of these models are: AutoRegressive Moving Average (ARMA), (seasonal)
AutoRegressive Integrated Moving Average (ARIMA), exponential smoothing, General-
ized AutoRegressive Conditional Heteroskedasticity (GARCH) [30], and regime-switching
models [38] like Markov-switching AutoRegressive (AR) models, Self-Exciting Threshold
AutoRegressive (SETAR), and Smooth Transition AutoRegressive (STAR).

The main limitation of classical times series models is that they are generally limited
to linear coefficients.

Machine learning models learn more complex relationships between input variables
and power values, and have been used in several papers about RES power forecasting.
In addition to historical power data, these models tend to use meteorological informa-
tion, as illustrated in Figure II.3. For solar forecasting, exogenous variables are usually
related to irradiance and temperature, while for wind forecasting the tendency is vari-
ables related to wind speed and direction. An up-to-date literature review about RES
forecasting using machine learning models can be found at [39]. Successfully applied
methods include Support Vector Regression (SVR)-based approaches [40] and Artificial
Neural Network (ANN)-based approaches such as Multi-Layer Perceptron (MLP) [41],
Radial Basis Function Neural Networkss (RBFNNs) [42], Adaptive Neuro-Fuzzy Inference
System (ANFIS) [43], and Recurrent Neural Networks (RNNs) [44] which models temporal
dependencies between consecutive input and predicted/observed power. Usually, RNNs
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Prologue II Background Knowledge

perform better than classical time series models [45].
Since these methods capture different relationships, combining machine learning meth-

ods can improve the final forecasting accuracy [46]. Two main combination structures are
here identified:

i) Weight-based combined approaches assign a weighting coefficient wi to each method
Mi proportional to their past forecasting performance,

ŷt+h|t =
∑
i

wiŷ
(i)
t+h|t, (II.5)

where ŷ
(i)
t+h|t is the final forecast for time t + h performed at time t, using model

Mi, i ≥ 2. For example, random forests perform RES forecasting based on equal
weighting multiple regression trees, which are trained from random samples (selected
by bootstrapping) of data under analysis [47]. Similarly, the authors of [48] combine
MLP, RBFNN and RNN. Thordarson et al. [49] combine multiple forecasts by using
conditional weights estimated through a linear regression model, but in this case the
individual models are trained with all samples.

ii) Sequential combined approaches first apply a model for RES forecasting and then
use its residuals or forecasts as the input of another statistical model. For example,
Gradient Boosting Tree (GBT) sequentially trains multiple random trees – first a re-
gression tree models the power values using input variables, then a second regression
tree models the residuals from the first tree using the input variables, and so on [50].
Also, in [51], an ANFIS model firstly predicts solar power by using historical power,
irradiation and temperature measurements, and then these forecasts are used, in
addition to the previous input data, as input in a feed-forward neural network.

Although the choice of the forecasting model is an important factor, imprudent input
selection can cause a low accuracy rate on highly accurate forecast models. This has mo-
tivated the application of feature engineering techniques that extract relevant information
from input data using lags (past values) of the variables, moving averages, differentiation,
etc. The relevance of these techniques was demonstrated at the Global Energy Forecast-
ing Competition 2014 (GEFCom2014), in which the models that ranked first and second
combined feature engineering techniques with machine learning models [25], and more
recently, such techniques won first place in the European Energy Market 2020 (EEM20)
competition [52].

Another common practice to improve the conversion of input variables to power forecasts
is to decompose the output time series, by using pre-processing models, into stationary
and regular subseries which are generally easier to model. Thus, the ensuing subseries are
individually predicted by a statistical model, and the final forecast consists of the aggre-
gation of these individual forecasts. In [53], two different signal decomposition methods
are introduced for short-term wind power forecasting: wavelet transform, and another is
empirical mode decomposition. ANN is then used to model the decomposed time series.
Similarly, a combination of empirical mode decomposition with kernel ridge regression and
SVR are proposed in [54, 55], respectively.

The main limitation of machine learning techniques is to interpret the models since
they map the input variables into power values using highly-complex functions. For this
reason, explainable machine learning has become an emerging research field since it is
important to understand why a model makes its forecast decision. For example, random
forests are applied in Kuzlu et al. [56] to forecast solar power using temperature, humidity,
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II.1 Overview of Renewable Energy Forecasting

hour of the day, etc. Then, the importance of each variable is determined by: (i) Local
Interpretable Model-agnostic Explanations (LIME), i.e., for each observation a “local sen-
sitivity analysis” is performed to understand how sensitive is the prediction with regards
to each feature of this particular observation, and (ii) Shapley additive explanations which
are a game-theoretic approach that estimates the importance of each feature by training
models with multiple combinations of the input variables.

Hybrid models, which combine classical time series with machined learning models,
usually model the linear dependencies by using an ARIMA model, and then the residuals
are predicted through an ANN or SVR-based model [57], aiming to capture the nonlinear
relationships.

Physical and statistical models

Results derived from physical modeling are enriched or statistically corrected by power
plant data. The weather conditions predicted by the physical models are used as inputs to
the statistical models. Some examples include: combining an ANN with the clear sky solar
radiation model [58]; statistical normalization of the solar power data using a clear sky
model, followed by an AR model or an AR with exogenous input from NWP [37]; RBFNNs
fed with past power measurements and meteorological forecasts of wind speed and direction
(from NWP) interpolated at the site of the wind farm [59]; and combination of GBT
with feature engineering techniques, such as lagging variables and Principal Component
Analysis (PCA), that extract the maximum information from the NWP grid centered at
the wind and solar power site [12]. For the solar power forecasting, the considered NWP
variables include cloud cover for different levels, irradiance, and temperature; while for
wind power forecasting, they are the wind azimuthal and meridional wind speed, wind
module, and wind direction at different levels.

II.1.3 Probabilistic Forecast Models

The approaches described in the previous section are commonly used to predict the con-
ditional expected power values. However as discussed before, the information provided
by point forecasts is unsatisfactory for some decision-making problems and needs to be
complemented with information about the uncertainty around such point forecasts. The
topography of probabilistic forecasting models, which is summarized in Figure II.4, is now
elaborated:

Weather ensembles. Traditional approaches of physical models have been built on a
foundation of deterministic modeling, i.e., the models start with initial conditions, and
end up with a prediction about future weather. However, different weather trajectories
can be considered with slightly different starting conditions or model assumptions. These
trajectories are commonly called weather ensembles [60].

Usually, statistical models are used to post-process weather ensembles, allowing: 1)
calibration of quantiles – the employed methods range from simple bias corrections to
very sophisticated distribution-adjusting techniques that incorporate correlations among
the variables [61]; 2) conversion of meteorological variables to power forecasts.

Statistical models. An up-to-date literature review about RES probabilistic forecasting
can be found at [29]. Two main techniques to construct predictive distributions involve:
parametric and non-parametric approaches.

Parametric models assume that data are generated from a known probability distribu-
tion (e.g., Gaussian, Beta, generalized logit-Normal distribution), whose parameters are
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Probabilistic forecast models
(Section II.1.3)

Physical
• Weather ensembles

Statistical

Parametric
(model and uncertainty)

• Gaussian
• Beta
• Generalized Logit-Normal
• Gaussian copulas

Non-parametric
(uncertainty)

• QR
• GBT
• Conditional KDE
• Quantile random forests

Semi-parametric
• Parametric models with loca-
tion and shape parameters esti-
mated through point forecasting
approaches
• EVT as a post-processing of
non-parametric models
• Exponential functions combined
with non-parametric models

Figure II.4: Topography of probabilistic forecast models.

estimated from the data. Non-parametric models do not make any assumptions about the
shape of the probability distribution, instead they learn from data by using a parametric
formula. Non-parametric models comprise techniques such as linear Quantile Regression
(QR) that models uncertainty by linearly combining input variables, QR with radial basis
functions [62], local QR [63], additive quantile regression [64], Quantile Regression Neu-
ral Network (QRNN) [65], conditional Kernel Density Estimation (KDE) [66], k-Nearest
Neighbor (k-NN) based approaches [25], quantile regression forests [52] and GBT [12]. It
is also possible to find semi-parametric approaches, e.g., a mixture of a censored distri-
bution and probability masses on the upper and lower boundaries that transform wind
power data into a Gaussian distribution, whose mean and standard deviation are predicted
with a statistical model [67]; a combination of linear regression, inverse (power-to-wind)
transformation and censored normal distribution [68]; a combination of QR models (for
quantiles with nominal proportions between 0.05 and 0.95) with exponential functions (for
the remaining quantiles); extreme quantile forecasting by applying Extreme Value Theory
(EVT) as a post-processing step over a set of quantiles first estimated by a non-parametric
method [69].

The main advantage of parametric methods is that the distribution’s shape only depends
on a few parameters, resulting in a simplified estimation and consequently requiring low
computational costs. However, the choice of the parametric function is not straightforward.
On the other hand, non-parametric models require a large number of observations to
achieve good performance. Therefore, when estimating extreme quantiles, non-parametric
models tend to have poor performance due to a lack of data representing extreme events.
This is critical because a poor forecast of extreme quantiles can have a high impact on
different decision-aid problems, in particular when decision-makers are highly risk-averse,
as discussed in Prologue I.

Moreover, the generation of temporal and/or spatio-temporal trajectories with a para-
metric statistical method, such as copulas, requires the estimation of the entire CDF for
each time and/or location, and an accurate estimation of the tails avoids trajectories with
unrealistic “extreme” values. Let us assume we want to generate temporal trajectories
for the random vector (Yt+1, . . . , Yt+h) at time t. Copulas are multivariate cumulative
distribution functions for which the marginal probability distribution of each variable
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is uniform, U [0, 1]. By applying the probability integral transform, the random vector
(Ut+1, . . . , Ut+h) = (F̂t+1|t(Yt+1), . . . , F̂t+h|t(Yt+h)) has uniform marginals. Then, the cop-
ula C(.) of (Yt+1, . . . , Yt+h) is defined as the multivariate cumulative distribution function
of (Ut+1, Ut+2, . . . , Ut+h),

C(ut+1, . . . , ut+h) = Pr[Ut+1 ≤ ut+1, . . . , Ut+h ≤ ut+h]. (II.6)

The temporal trajectories are then sampled by reversing these steps. That is, given a
procedure to generate a sample (Ut+1, . . . , Ut+h), the random sample for (Yt+1, . . . , Yt+h)
can be computed as (

F̂−1
t+1|t(Ut+1), . . . , F̂−1

t+h|t(Ut+h)
)
. (II.7)

Applied copulas include the Gaussian [70], t-student, vine copulas [71], etc.
There are also non-parametric models to generate such trajectories. Generative Adver-

sarial Networks (GANs) are applied in [72] to generate wind generation trajectories using
wind time series historical data. GAN refers to a class of machine learning methods, in
which two neural networks are trained: a generator network that samples data, and a dis-
criminator network that distinguishes historical data from the generated data. The main
disadvantage of these models is that they have an overly complex structure and require
large amounts of wind data for training.

In fact, as argued in [29], when dimension increases using such scenarios may not be
practical, owing to the difficulty in solving the resulting optimization problems, and may
not be possible at reasonable computational costs. This motivated various developments
in stochastic optimization and control that, instead of relying on a large number of tra-
jectories, prefer to solve problems based on multivariate forecast regions, possibly taking
the form of ellipsoids [73] or polyhedra [74].

Lastly, regarding forecast intervals, other techniques exist in addition to constructing
intervals using the conditional quantile forecasting models described before. For example,
an ANN approach with two outputs is used in [75] to predict directly both inferior and
superior interval limits. Also, in [76], extreme learning machines (an ANN-based approach)
are used to predict forecast intervals for multiple nominal coverage rates at the same time.
Both works predict the intervals for each time horizon separately. To capture temporal
dependence between consecutive forecast intervals, the work in [77] first generates temporal
trajectories by using the Gaussian copula method and the marginal prediction intervals.
Then, two methods proposed in the literature are used to construct simultaneous intervals.

II.1.4 Forecasting with Geographically Distributed Data

The development of smart grids and RES dispatch centers provide real-time measurements
from sensors distributed geographically, which the forecasting methodologies can take
advantage of. In summary, the data used to forecast the power of a production unit
can refer only to its specific location (Figure II.5 (a)) or to a more comprehensive set of
geographical points. In the latter case, two types of spatio-temporal data are distinguished:
power measurements or weather variables collected (or predicted) by other production
units (Figure II.5 (b)); and meteorological data for a grid of points (Figure II.5 (c)),
usually provided by an external entity that performs NWP.

The proposal of Gneiting et al. [11] was a pioneer in taking advantage of spatio-temporal
data, collected by different production units. The authors introduced the regime-switching
space-time method, which merges meteorological and statistical expertise to obtain prob-
abilistic forecasts of wind resources, for two hours-ahead wind speed forecasting. This and
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Figure II.5: Illustration of three major geographical points for data collection.

other similar work motivated the recent research that explores spatio-temporal informa-
tion.

In 2010, Tastu et al. used Vector AutoRegressive (VAR) models to capture the errors
in wind power forecasts which propagate in space and time under the influence of me-
teorological conditions [13, 78]. Later, in 2015, a sparse autoregressive coefficient matrix
constructed by expert knowledge and partial correlation analysis is considered in [79]. The
main limitation of these approaches is that automatic feature selection is not performed.
A very-short-term sparse-VAR approach is proposed in [80] within a parametric frame-
work based on the logit-normal distribution [67]. In [81], the Least Absolute Shrinkage
and Selection Operator (LASSO) is combined with VAR models and Alternating Direction
Method of Multipliers (ADMM) has been used to optimize the model.

Concerning machine learning approaches, Kou et al. used an online sparse Bayesian
model based on a warped Gaussian process to generate probabilistic wind power fore-
casts [82]. The explanatory variables of the model come from multiple nearby reference
sites and NWP data. In the same vein, but for photovoltaic predictions, a multilayer per-
ceptron neural network is implemented using local meteorological data and measurements
of neighboring photovoltaic systems as inputs [83]. In [84], Bessa et al. uses component-
wise gradient boosting to explore observations from distributed photovoltaic systems in a
smart grid environment. In [85], deep learning models are applied using fully connected
multilayer perceptrons and convolutional neural networks that can take advantage of the
spatial and feature structure of the NWP patterns. Hierarchical forecasting models to
leverage turbine-level data were proposed in [86], which used deterministic power forecasts
from the turbine-level as explanatory variables in a wind farm level forecasting model, as
well as an alternative based on a spatial multivariate probabilistic forecast of all turbines.

The main limitation of these approaches is that production units might have different
owners, which introduces new challenges like data privacy and monetization, which is not
addressed in the existing literature.

Regarding the scheme illustrated in Figure II.5 (c), Andrade and Bessa [12] described
a forecasting framework to explore information from a NWP applied to both wind and
solar energy [12]. Alternative models are also being applied to this problem, most notably
deep learning techniques such as convolutional neural networks or long short-term mem-
ory networks [87, 88]. Convolution neural networks are widely used in image processing
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problems aiming to automatically extract relevant information. Since NWP are provided
for a grid of points, each of these geographical points can be interpreted as a pixel of an
image, and each weather variable is analogous to the color channels. That said, convo-
lution neural networks extract relevant data from NWP which are then used to perform
power forecasting.

However, none of these works consider the forecast of extreme quantiles (e.g., quantiles
with a nominal percentage between 0.01% and 1%, or between 99% and 99.99%). Indeed,
little research was conducted to predict extreme conditional quantiles and none that makes
use of spatio-temporal information.

Finally, to generate RES power trajectories for multiple locations, probabilistic spatial
models with sparse Gaussian random fields are considered in [89, 90], but the computa-
tional time to obtain accurate results is high. In [90], the emphasis is placed on generating
space-time trajectories for the wind power generation using a Gaussian copula approach.
This study considers the problem of obtaining a joint multivariate predictive density to
describe wind power generation, at several distributed locations and for several successive
time horizons, from the set of marginal predictive densities, targeting each location and
each time horizon individually.

II.2 Forecasting Skill Evaluation Metrics

Evaluation of forecasts is also of great importance to both deterministic and probabilistic
forecasting methods. The metrics commonly used are described in this section:

Point Forecasts

The evaluation metrics for point forecasting compares a set of point forecasts ŷt to corre-
sponding observations yt, ∀t ∈ {1, . . . , T}. Naturally, a good forecast ŷt should be as close
as possible to yt. Usual metrics include MAE, MSE, RMSE, MBE, and MAPE [91].

Mean Absolute Error (MAE) averages the absolute differences between actual and
predicted values, giving all individual deviations equal weight,

MAE(y, ŷ) =

∑T
t=1 |ŷt − yt|

T
. (II.8)

Similarly, Mean Square Error (MSE) averages the squared differences between actual
and predicted values,

MSE(y, ŷ) =

∑T
t=1(ŷt − yt)2

T
, (II.9)

meaning the units of this metric are squared. Based on MSE, the Root Mean Squared
Error (RMSE) simply considers the square root of MSE,

RMSE(y, ŷ) =

√∑T
t=1(ŷt − yt)2

T
, (II.10)

providing a more interpretable statistic, since it has the same units as the variable being
predicted. Notice that RMSE is more robust, when compared to MAE, in dealing with
large deviations that are especially undesirable, giving the user the ability to identify
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outliers. Also, normalized RMSE is applied to evaluate overall deviations by taking
into account the amplitude of the actual values,

NRMSE(y, ŷ) =
RMSE

max({yt}Tt=1)−min({yt}Tt=1)
× 100. (II.11)

Forecasting bias is measured by Mean Bias Error (MBE),

MBE(y, ŷ) =

∑T
t=1(ŷt − yt)

T
. (II.12)

The MBE is usually not used as a measure of the model error as high individual errors in
prediction can also produce a low MBE.

All these metrics are based on equally weighted averages. In contrast, Mean Abso-
lute Percentage Error (MAPE) is a standard prediction technique that measures the
accuracy of forecasting by weighting the absolute deviations according to the actual values,

MAPE(y, ŷ) =

∑T
t=1 | ŷt−ytyt

|
T

, (II.13)

but it is not used in RES forecasting due to zeros.
Let us assume the existence of two prediction models A and B. After computing some

of the discussed metrics, if the values for model A and B are similar, it is difficult to decide
whether the result is due to chance or decisive. To solve this problem, the Diebold-Mariano
(DM) test has been proposed.

DM test [92] compares the forecast accuracy of two forecast methods. Let ŷAt and ŷBt be
the forecasting series for model A and B, respectively. Supposing the forecasting errors
are eAt = yt− ŷAt and eBt = yt− ŷBt , the accuracy of each forecast is measured by a function
L that can be the MAE, RMSE, etc. To determine whether one forecasting model predicts
more accurately than another, the equal accuracy hypothesis is tested. Mathematically,
the null hypothesis is

H0: E[dt] = 0, (II.14)

where dt = L(eAt )− L(eBt ), and the alternative hypothesis is

H1: E[dt] 6= 0. (II.15)

The empirical value for E[dt] is the sample mean

d̄ =
1

T

T∑
t=1

[
L(eAt )− L(eBt )

]
. (II.16)

Under the assumption that the loss differential is a covariance stationary series, the sample
average, d̄, converges asymptotically to a normal distribution and the DM test statistic is

DM =
d̄√

2πf̂d(0)
T

distribution−−−−−−−→ N (0, 1) (II.17)

where 2πf̂d(0) is the consistent estimate of the asymptotic variance of
√
T d̄ based on

sample autocovariance [92]. Then, assuming a significance level of 5%, the null hypothesis
is rejected if |DM| > 1.96.

The DM test can also be applied to test the null hypothesis against the alternative
hypothesis that model B performs better than A, H1: E[dt] > 0. In this case, the null
hypothesis is rejected for a significance level of 5% if DM > 1.64.
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Probabilistic Forecasts

The evaluation metrics for probabilistic forecasting through quantiles compare the set of
conditional quantiles forecasts q̂τt = Q̂(τ |xt) to corresponding observations yt, where Q̂
is the estimator and xt are the covariates for time t, ∀t ∈ {1, . . . , T}. Common metrics
to evaluate how well quantiles q̂τt represent the distribution of Yt are [93]: calibration,
sharpness, Continuous Ranked Probability Score (CRPS), and pinball loss function.

Calibration measures the mismatch between the empirical probabilities (or long-run
quantile proportions) and nominal (or subjective) probabilities, e.g. a quantile with nom-
inal proportion 0.25 should contain 25% of the observed values lower or equal to its value.
For each quantile τ , the observed proportion α̂(τ) of observations bellow the estimated
quantile is

α̂(τ) =
1

T

T∑
t=1

1yt≤q̂τt . (II.18)

Sharpness measures the “degree of uncertainty” of the probabilistic forecast, which nu-
merically corresponds to compute the average interval size between two symmetric quan-
tiles, e.g., 0.10 and 0.90 centered in the 0.50 quantile (median), as follows

sharp(τ) =
1

T

T∑
t=1

q̂1−τ
t − q̂τt , (II.19)

for τ ∈ [0, 0.5].
When assessing the quality of probabilistic forecasts, we are guided by the paradigm

that probabilistic forecasts strive to maximize the sharpness of the predictive distributions
under the constraint of calibration [93]. To assess this trade-off CRPS has been proposed,
as described in the next paragraph.

CRPS evaluates the forecasting skill of a probabilistic forecast in terms of the entire
predictive CDF, using an omnibus scoring function that simultaneously addresses calibra-
tion and sharpness [94]. Let yt be the observation, and F̂t the CDF associated with an
empirical probabilistic forecast,

CRPS(F̂t, yt) =

∫ ∞
−∞

(
F̂t(z)−H(z − yt)

)2
dz, (II.20)

where H is the Heaviside function. A graphical representation of CRPS is depicted in
Figure II.6 (a).
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Figure II.6: Probabilistic forecasting metrics.
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Although CRPS is very popular in evaluating the quality of CDF forecast, recent work
in [95] concluded that the mean of the CRPS is unable to discriminate forecasts with
different tails behavior since it tends to benefit distributions with smaller uncertainty
intervals, even if the calibration is poor. A more suitable scoring rule, following the
suggestion in [94], is the pinball function or quantile loss in (II.21).

Pinball loss function or quantile score (depicted in Figure II.6 (b)) assess the accuracy
of each quantile forecast q̂τt by weighting the differences, between q̂τt and yt, according to
its sign and τ value [96],

ρτ (yt, q̂
τ
t ) =

{
τ [yt − q̂τt ] , if yt > q̂τt ,

(τ − 1) [yt − q̂τt ] , otherwise.
(II.21)

Smaller the value of the quantile score, the better the model when forecasting quantile τ .

II.3 Theoretical Background: Statistical Learning Models

The original contributions of this PhD thesis are developed on top of, or compared to,
existing statistical learning methods. In what follows, a mathematical description of these
relevant models is provided. Section II.3.1 describes the conditional and non-conditional
quantiles forecasting models which are useful to understand the contents of Chapters 1
and 4. Section II.3.2 describes the VAR model, a successful collaborative forecasting
model, as well as the most common estimators and employed optimization algorithm,
essential for Chapters 2 and 3.

II.3.1 Conditional Quantile Forecasting

Again, the two classes of conditional quantile forecast are the non-parametric methods
and the parametric methods.

Non-parametric Methods

The following non-parametric methods have been used:

Linear Quantile Regression. The QR model [96] estimates the conditional quantile
function of a random variable Y given a set of covariates X1, X2,. . . , Xp,

QQR(τ |X) ≈ β0(τ) + β1(τ)X1 + · · ·+ βp(τ)Xp, (II.22)

for the nominal proportion τ ∈ [0, 1], by minimizing

β̂(τ) = arg min
β

T∑
i=1

ρτ

(
yi − β0(τ)−

p∑
j=1

βj(τ)xij

)
, (II.23)

where β̂(τ) = (β̂0(τ), . . . , β̂p(τ)) are unknown coefficients depending on τ , and ρτ (u) is
the pinball loss function described in Section II.2.

Gradient Boosting Trees. A GBT model for quantile forecasting is constructed by
combining base learners (i.e., regression trees), fj , recurrently on modified data,

QGBT
j (τ |X) ≈ QGBT

j−1 (τ |X) + ηfj(τ |X). (II.24)
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with each regression tree fj fitted using the negative gradients as target variable, and as
part of an additive training process to minimize the pinball loss function

f̂j(τ |X) = arg min
fj

T∑
i=1

ρτ
(
yi, Q̂

GBT
j−1 (τ |xi) + ηfj(τ |xi)

)
. (II.25)

The initial model Q̂GBT
1 is typically the unconditional τ -quantile of y. The challenge

of GBT is to tune the different hyperparameters, which are related with the regression
trees and the boosting process — in this work they are estimated by using Bayesian
Optimization algorithm, see [12] for more details.

Rearrangement of quantiles

Since both QR and GBT independently solve an optimization problem for each quantile
τ , quantile crossing may happen, i.e., Q(τ1|x) < Q(τ2|x) for τ1 > τ2. Post-processing is
applied to the model’s output to ensure that the estimated cumulative function is mono-
tonically non-decreasing. We can monotonize the function by considering the proportion
of times the quantile Q(τ |x) is bellow a certain y, mathematically provided by the CDF

F (y|x) =

∫ 1

0
1Q(τ |x)≤ydτ (II.26)

which is monotone at the level y, and then use its quantile function

Q̃(τ |x) = F−1(τ |x) (II.27)

which is monotone in τ [97].

Parametric Methods for Extreme Quantiles

The following parametric methods have been used, and combined with non-parametric
models in order to estimate the entire CDF, as depicted in Figure II.7:

Exponential function. In [98], distribution’s tails of wind power are approximated by
exponential functions. Given the estimated conditional quantiles for nominal proportion
between 0.05 and 0.95, the extreme quantiles are computed as

Q̂exp(τ |x) =


Q̂(0.05|x)

log( 0.05
ρ

)

log( τ
ρ

) , τ < 0.05,

C

(
1−

(
1− Q̂(0.95|x)

C

)
log( 1−0.95

ρ
)

log( 1−τ
ρ

)

)
, τ > 0.95,

(II.28)

where ρ corresponds to the thickness parameter for the exponential extrapolation and C
is the installed capacity. Since the lower and upper tails may have different behaviors, ρ
is independently estimated for each tail by maximum likelihood [8].
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Figure II.7: Estimation of the entire CDF.

23



Prologue II Background Knowledge

Hill-based methods. In [69] and [99], a QR model is combined with EVT estimators.
First, a local QR model is used to estimate the conditional quantiles τj = j/(T + 1),
denoted as Q̂QR(τj |x), j ∈ {1, ..., T − [T η]}, for some 0 < η < 1, being [u] the integer part
of u, and T the number of observations. Then, using these values, extreme quantiles are
computed through an adaptation of Weissman’s estimator,

Q̂W(τ |x) =

(
1− τT−k

1− τ

)γ̂(x)

Q̂QR(τT−k|x), (II.29)

where γ̂(x) is based on Hill’s estimator,

γ̂(x) =
1

k − [T η]

k∑
j=[T η ]

log
Q̂QR(τT−j |x)

Q̂QR(τT−k|x)
. (II.30)

In EVT, the selection of k is an important and challenging problem. The value k represents
the effective sample size for tail extrapolation. A smaller k leads to estimators with
larger variance, while larger k results in more bias, when estimating γ(x). In practice,
a commonly used heuristic approach for choosing k is to plot the estimated γ versus k
and then choose a suitable k corresponding to the first stable part of the plot [100], see
Figure II.8.

In [99], the response variable of the QR model is the power transformation Λλ(.) of Y
that aims to improve the linear relation with x. That is,

Λλ(y) =

{
yλ−1
λ , if λ 6= 0,

log(y), if λ = 0.
(II.31)

For this approach, k is estimated to minimize

arg min
k≥1

T∑
i=1

λ̂γ̂(xi)− γ̂∗(xi), (II.32)

where

γ̂∗(x) = M
(1)
0,T + 1− 1

2

1−
(M

(1)
0,T )2

M
(2)
0,T

−1

, (II.33)

M
(i)
0,T =

1

k − [T η]

k∑
j=[T η ]

(
log

Q̂QR(τT−j)

Q̂QR(τT−k)

)i
. (II.34)
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Figure II.8: Illustration of γ value in function of k. The first stable part of the plot happens
when k ≈ 700.
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Peaks-over-threshold (POT) method with truncation. Since RES generation is
limited between 0 and installed capacity C, we observe the truncated random variable Y ,
Y ≤ C. The work in [101] provides an estimator for the extreme quantiles by using a
random sample of Y , with independent and identically distributed observations, i.e., does
not consider that Y is conditioned by covariates x. The POT method [102] is adapted
to estimate extreme quantiles from a generalized Pareto distribution (GPD) distribution
affected by truncation at point C. The quantiles for Y are estimated by

Q̂tGPD(1− τ) = YT−k,T +
σ̂k

ξ̂k


D̂C,k + (k+1)

(T+1)

τ(D̂C,k + 1)

ξ̂k − 1

 , (II.35)

where Y1,T < · · · < YT,T is the ordered sample, ξ̂k and σ̂k are the maximum likelihood

estimates adapted for truncation, and D̂C the truncation odds estimator

D̂C,k = max

{
0,
k

T

(1 + (ξ̂k/σ̂k)E1,k)
−1/ξ̂k − 1

k

1− (1 + (ξ̂k/σ̂k)E1,k)−1/ξ̂k

}
, (II.36)

with Ej,k = YT−j+1,T − YT−k,T .

II.3.2 Collaborative Forecasting with VAR

This section presents the VAR model, a model for the analysis of multivariate time series
and collaborative forecasting.

Forecasting problem formulation

Let {yt}Tt=1 be an n-dimensional multivariate time series, where n is the number of data
owners. Then, {yt}Tt=1 follows a VAR model with p lags, represented as VARn(p), when
the following relationship holds:

yt = η +

p∑
`=1

yt−`B
(`) + εt , (II.37)

for t = 1, . . . , T , where η = [η1, . . . , ηn] is the constant intercept (row) vector, η ∈ Rn;
B(`) represents the coefficient matrix at lag ` = 1, ..., p, B(`) ∈ Rn×n, and the coefficient
associated with lag ` of time series i (to estimate time series j) is positioned at (i, j)
of B(`), for i, j = 1, ..., n; and εt = [ε1,t, . . . , εn,t], εt ∈ Rn, indicates a white noise vector
that is independent and identically distributed with mean zero and nonsingular covariance
matrix. By simplification, yt is assumed to follow a centered process, η = 0, i.e., as a
vector of zeros of appropriate dimensions. A compact representation of a VARn(p) model
reads as follows:

Y = ZB + E , (II.38)

where

Y =

 y1

...
yT

 , B =

 B(1)

...
B(p)

 , Z =

 z1
...
zT

 , and E =

 ε1
...
εT

 ,
are obtained by joining the vectors row-wise, and defining, respectively define the T × n
response matrix, the np×n coefficient matrix, the T ×np covariate matrix, and the T ×n
error matrix, with zt = [yt−1, . . . ,yt−p].
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Figure II.9: Common data division structures and VAR model.

Notice that the VAR formulation adopted in this chapter is not the usual Y> = B>Z>+
E>, because a large proportion of the literature on privacy-preserving techniques derives
from the standard linear regression problem, in which each row is a record and each column
is a feature.

Notwithstanding the high potential of the VAR model for collaborative forecasting,
namely by linearly combining time series from different data owners, data privacy or con-
fidentiality issues might hinder this approach. For instance, renewable energy companies,
competing in the same electricity market, will never share their electrical energy produc-
tion data, even if this leads to a forecast error improvement in all individual forecasts.

For classical linear regression models, there are several techniques for estimating coef-
ficients without sharing private information. However, in the VAR model, the data are
divided by features, i.e., the data owners (denoted by Ai, i ∈ {1, . . . , n}) observe different
features of the same records, as illustrated at the bottom of Figure II.9, and the variables
to be forecasted are also covariates. This is challenging for privacy-preserving techniques
(especially because it is also necessary to protect the data matrix Y, as illustrated in
Figure II.10). In what follows, when defining a VAR model, YAi ∈ RT×1 and ZAi ∈ RT×p
respectively denote the target and covariate matrix for the ith data owner. Therefore, the
covariates and target matrices are obtained by joining the individual matrices column-
wise, i.e., Z = [ZA1 , . . . ,ZAn ] and Y = [YA1 , . . . ,YAn ]. For distributed computation, the
coefficient matrix of data owner i is denoted by BAi ∈ Rp×n, ∀i ∈ {1, . . . , n}.

Model sparsity with LASSO

Commonly, when the number of covariates included, np, is substantially smaller than the
length of the time series, T , the VAR model can be fitted using multivariate least squares
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Y of ith data owner︷ ︸︸ ︷ covariates values of ith data owner︷ ︸︸ ︷
yi,t yi,t−1 yi,t−2 yi,t−3 . . . yi,t−p+1 yi,t−p
yi,t+1 yi,t yi,t−1 yi,t−2 . . . yi,t−p+2 yi,t−p+1

yi,t+2 yi,t+1 yi,t yi,t−1 . . . yi,t−p+3 yi,t−p+2

...
...

...
...

...
...

...
yi,t+h yi,t+h−1 yi,t+h−2 yi,t+h−3 . . . yi,t+h−p+1 yi,t+h−p

Figure II.10: Illustration of the data used by the ith data owner when fitting a VAR model.

solution, given by
B̂LS = arg min

B

(
‖Y − ZB‖22

)
, (II.39)

where ‖.‖r represents both vector and matrix Lr norms. However, in collaborative fore-
casting, as the number of data owners increases, as well as the number of lags, it becomes
crucial to use regularization techniques such as LASSO to introduce sparsity into the co-
efficient matrix estimated by the model. In the standard LASSO-VAR approach (see [103]
for different variants of the LASSO regularization in the VAR model), the coefficients are
given by

B̂ = arg min
B

(
1

2
‖Y − ZB‖22 + λ‖B‖1

)
, (II.40)

where λ > 0 is a scalar penalty parameter.

Distributed optimization with ADMM

With the addition of the LASSO regularization term, the convex objective function in (II.40)
becomes non-differentiable, limiting the variety of optimization techniques that can be em-
ployed. In this domain, the ADMM (which is detailed in what follows) is a widespread
and computationally efficient technique that enables parallel estimations for data divided
by features. In what follows, a description of the ADMM algorithm is provided, as well
as its application to estimate LASSO-VAR.

ADMM algorithm. The ADMM is efficient and well suited for distributed convex
optimization, in particular for large-scale statistical problems [104]. Let E be a convex
forecast error function between the true values Y and the forecasted values given by the
model Ŷ = f(B,Z) using a set of covariates Z and coefficients B, and let R be a convex
regularization function. The ADMM method [104] solves the optimization problem

min
B

E(B) +R(B), (II.41)

by splitting B into two variables (B and H),

min
B,H

E(B) +R(H) subject to AB + CH = D, (II.42)

and using the related augmented Lagrangian function formulated with dual variable U,

L(B,H,U) = E(B) +R(H) + U>(AB+CH−D) +
ρ

2
‖AB + CH−D‖22. (II.43)

The quadratic term ρ
2‖AB + CH−D‖22 provides theoretical convergence guarantees be-

cause it is strongly convex. This implies mild assumptions on the objective function. Even
if the original objective function is convex, the augmented Lagrangian is strictly convex
(in some cases strongly convex) [104].
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The ADMM solution is estimated by the following iterative system:
Bk+1 := arg min

B
L(B,Hk,Uk)

Hk+1 := arg min
H

L(Bk+1,H,Uk)

Uk+1 := Uk + ρ(ABk+1 + CHk+1 −D).

(II.44)

For data split by records, the data owners observe the same features for different groups
of samples as illustrated on top of Figure II.9. In these cases, the consensus problem splits
primal variables B and separately optimizes the decomposable cost function E(B) =∑n

i=1Ei(BAi) for all data owners under global consensus constraints. Considering that
the sub-matrix ZrAi ∈ RTAi×np of Z ∈ RT×np corresponds to the local data of the i−th
data owner, the coefficients BAi ∈ Rnp×n are given by

arg min
Γ

∑
i

Ei(BAi) +R(H)

s.t. BA1 −H = 0, BA2 −H = 0, . . . , BAn −H = 0 ,

(II.45)

where Γ = {BA1 , . . . ,BAn ,H}. In this case, Ei(BAi) measures the error between the true
values Yr

Ai
and the forecasted values given by the model ŶAi = f(BAi ,Z

r
Ai

).

For data split by features, the sharing problem splits Z into ZAi ∈ RT×p, and B into
BAi ∈ Rp×n. Auxiliary HAi ∈ RT×n are introduced for the ith data owner based on ZAi
and BAi . In this case, the sharing problem is formulated based on the decomposable cost
function E(B) = E(

∑n
i=1 BAi) and R(B) =

∑n
i=1R(BAi). Then, BAi is given by

arg min
Γ′

E(
∑
i

HAi) +
∑
i

R(BAi)

s.t. ZA1BA1 −HA1 = 0, ZA2BA2 −HA2 = 0, . . . , ZAnBAn −HAn = 0 ,

(II.46)

where Γ′ = {BA1 , . . . ,BAn ,HA1 , . . . ,HAn}. In this case, E(
∑n

i=1 HAi) is related to the
error between the true values Y and the forecasted values given by the model Ŷ =∑n

i=1 f(BAi ,ZAi).

Undeniably, ADMM provides a desirable formulation for parallel computing [105].

LASSO-VAR optimization with ADMM. The ADMM formulation of the non-dif-
ferentiable cost function associated to LASSO-VAR model in (II.40) solves the following
optimization problem:

min
B,H

(1

2
‖Y − ZB‖22 + λ‖H‖1

)
subject to H = B , (II.47)

which differs from (II.40) by splitting B into two parts (B and H). Thus, the objective
function can be split in two distinct objective functions, f(B) = 1

2‖Y−ZB‖22 and g(H) =
λ‖H‖1. The augmented Lagrangian [104] of this problem is

Lρ(B,H,W) =
1

2
‖Y − ZB‖22 + λ‖H‖1 + W>(B−H) +

ρ

2
‖B−H‖22 , (II.48)

where W is the dual variable and ρ > 0 is the penalty parameter. The scaled form of this
Lagrangian is

Lρ(B,H,U) =
1

2
‖Y − ZB‖22 + λ‖H‖1 +

ρ

2
‖B−H + U‖2 − ρ

2
‖U‖2 , (II.49)
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where U = (1/ρ)W is the scaled dual variable associated with the constrain B = H.
Hence, according to (II.44), the ADMM formulation for LASSO-VAR consists in the fol-
lowing iterations [81]:

Bk+1 := arg min
B

(1

2
‖Y−ZB‖22+

ρ

2
‖B−Hk + Uk‖22

)
=(Z>Z+ρI)−1(Z>Y + ρ(H

k−Uk))

Hk+1 := arg min
H

(
λ‖H‖1 +

ρ

2
‖Bk+1 −H + Uk‖22

)
= Sλ/ρ(B

k+1 + Uk)

Uk+1 := Uk + Bk+1 −Hk+1,
(II.50)

where Sλ/ρ is the soft thresholding operator.
Concerning the LASSO-VAR model, and since data are naturally divided by features

(i.e., Y = [YA1 , . . . ,YAn ], Z = [ZA1 , . . . ,ZAn ] and B = [B>A1
, . . . ,B>An ]>) and the func-

tions ‖Y − ZB‖22 and ‖B‖1 are decomposable (i.e., ‖Y − ZB‖22 = ‖Y −∑n
i=1 ZAiBAi‖22

and ‖B‖1 =
∑n

i=1 ‖BAi‖1), the model fitting problem (II.40) becomes the following:

arg min
Γ

(
1

2
‖Y −

n∑
i=1

ZAiBAi‖22 + λ

n∑
i=1

‖BAi‖1
)
, (II.51)

Γ = {BA1 , . . . ,BAn}, which is rewritten as

arg min
Γ′

(
1

2
‖Y −

n∑
i=1

HAi‖22 + λ
n∑
i=1

‖BAi‖1
)

s.t. BA1ZA1 = HA1 , . . . , BAnZAn = HAn ,

(II.52)
Γ′ = {BA1 , . . . ,BAn ,HA1 , . . . ,HAn}, while the corresponding distributed ADMM formu-
lation [104, 81] is the one presented in the system of equations (II.53),

Bk+1
Ai

= arg min
BAi

(ρ
2
‖ZAiBk

Ai + H
k − ZB

k −Uk − ZAiBAi‖22 + λ‖BAi‖1
)
, (II.53a)

H
k+1

=
1

n+ ρ

(
Y + ρZB

k+1
+ ρUk

)
, (II.53b)

Uk+1 = Uk + ZB
k+1 −H

k+1
, (II.53c)

where ZB
k+1

= 1
n

∑n
j=1 ZAjB

k+1
Aj

and Bk+1
Ai
∈ Rp×n, ZAi ∈ RT×p,Y ∈ RT×n, H

k
,U ∈

RT×n, ∀i ∈ {1, . . . , n}, and (II.53a) can be estimated by adapting (II.47) as

arg min
B

(1

2
‖Ŷ−ZAiBAi‖22+λ̂‖HAi‖1

)
s.t. HAi=BAi , (II.54)

where ŶAi = ZAiB
k
Ai

+ H
k − ZB

k −Uk and λ̂ = λ/ρ.
Although parallel computation is an appealing property for the design of a privacy-

preserving approach, the ADMM is an iterative optimization process that requires interme-
diate calculations. Hence, careful analysis is needed to determine whether a confidentiality
breach will occur after enough iterations.

Selection of the number of lags p

When considering autoregressive models, the number of lags to be used is commonly iden-
tified by the Partial AutoCorrelation Function (PACF) [106]. PACF gives the correlation
between Yt and Yt−` by removing the effect of the lags between Yt and Yt−`, ` > 1.
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Mathematicaly, when considering the regression of a target variable Y on covariates X1,
X2, X3, the partial correlation between Y and X1 is computed as

PACF(Y,X1) =
cov(Y,X1|X2, X3)√

var(Y |X2, X3)var(X1|X2, X3)
. (II.55)

This can be computed as the correlation between the residuals of the regression of Y on X2

and X3 with the residuals of X1 on X2 and X3. A small value (i.e.,
[
−1.96/

√
T , 1.96/

√
T
]
)

indicates that X1 is not statistically relevant when predicting Y . Therefore, the partial
correlation for multiple lags of multiple data owners can be recursively computed in order
to identify the value of p.

A less sophisticated approach is to use cross-validation on a range of values for p,
choosing the best p as judged by the metrics from Section II.2.
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1

Extreme Conditional Quantile Forecasting

Abstract. Probabilistic forecast of distribution tails (quantiles with nominal proportion
below 0.05 and above 0.95) is challenging for non-parametric approaches since data for
extreme events are scarce. A poor forecast of extreme quantiles can have a high impact on
various power system decision-aid problems. An alternative approach more robust to data
sparsity is Extreme Value Theory (EVT), which uses parametric functions for modeling
distribution’s tails. In this chapter, we apply conditional EVT estimators to historical
data by directly combining non-parametric models with a truncated generalized Pareto
distribution. The parameters of a parametric function are conditioned by covariates such
as wind speed/direction from a numerical weather predictions grid. The results for a syn-
thetic dataset show that the proposed approach better captures the overall tails’ behavior,
with smaller deviations between real and estimated quantiles. The proposed method also
outperforms state-of-the-art methods in terms of quantile score when evaluated using real
data from a wind power plant located in Galicia, Spain, and a solar power plant in Porto,
Portugal.

1.1 Introduction

The growing integration of Renewable Energy Sources (RES) brings new challenges to
system operators and market players and robust forecasting models are crucial for handling
variability and uncertainty. This has fomented a growing interest in RES probabilistic
forecasting techniques and its integration in decision-aid under risk [107].

Many satisfying methods already exist to forecast RES generation quantiles with nom-
inal proportion between 0.05 and 0.95, which can be parametric or non-parametric, as
described in Section II.1.3 of Prologue II. While parametric models assume that data are
generated from a known probability distribution (e.g., Gaussian, Beta) whose parameters
are estimated from the data, the non-parametric models do not make any assumptions
about the shape of the probability distribution.

The main advantage of parametric methods is that the distribution’s shape only depends
on a few parameters, resulting in a simplified estimation and consequently requiring low
computational costs. However, the choice of the parametric function is not straightfor-
ward. On the other hand, non-parametric models require a large number of observations
to achieve good performance. Therefore, when estimating quantiles below 0.05 and above
0.95, non-parametric models tend to have poor performance due to data sparsity. This
suggests the combination of both approaches to forecast the conditional probability func-
tion: intermediate quantiles are estimated with a non-parametric model and the extreme
quantiles (or tails) with a parametric approach.

A poor forecast of extreme quantiles can have a high impact in different decision-aid
problems, in particular when decision-makers are highly risk-averse or the regulatory
framework imposes high-security levels. For instance, when setting operating reserve
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requirements system operators usually define risk (e.g., loss of load probability) levels
below 1% [7]; the accuracy forecast of the distribution’s tails affects the decision quality
of advanced RES bidding strategies that are based on risk metrics such as conditional
value-at-risk [108]; dynamic line rating uncertainty forecasting for transmission grids also
requires the use of low quantiles (e.g., 1%) [109]. Moreover, the generation of temporal
and/or spatial-temporal trajectories (or random vectors) with a statistical method, such
as the Gaussian copula [70], requires a full modeling of the distribution function and an
accurate estimation of the tails avoids trajectories with “extreme” values. In all these use
cases, it is important to underline that poor modeling of distribution’ tails might lead to
over- and under-estimation of risk and consequently to worst decisions. This impact can
be measured by metrics such as the Value of the Right Distribution that measures the
difference in the cost of the optimal solution, in stochastic programming, obtained with
the forecasted and realized probability distribution [110].

By exploring concepts from EVT, which is dedicated to characterize the stochastic be-
havior of extreme values [100], the present chapter proposes a novel forecasting methodol-
ogy, focused on improving the forecasting skill of the distribution’s tails, which combines
spatio-temporal information (obtained through feature engineering), a non-parametric
method for quantiles in the central part of the distribution and the truncated general-
ized Pareto distribution (GPD) for the tails.

The remaining of this chapter is organized as follows. Section 1.2 presents related
work and contributions. Section 1.3 proposes a novel forecasting method that combines a
non-parametric model with a truncated GPD, based on the statistical background of non-
parametric and parametric methods previously described in Section II.3.1 of Prologue II.
Section 1.4 describes experiments and evaluates the proposed method. Concluding remarks
are drawn in Section 1.5.

1.2 Related Work and Contributions

In [8] and [98], a Quantile Regression (QR) model is used to forecast the RES power
quantiles from 0.05 to 0.95 and the distribution’ tails are modeled using an exponential
function. The exponential function requires the estimation of a single parameter that
controls the tails’ decay, the thickness parameter ρ. This parameter can be estimated
by computing the mean of the observed power conditioned by the forecasted power, i.e.,
observed power is divided into equally populated bins according to forecasted power, then
ρ is the average power associated to each bin. This procedure is not as flexible as those
provided by an EVT estimator like GPD (used in this chapter), which models extreme
events through distributions with two parameters (scale and shape), allowing it to estimate
lightweight and heavier tails.

A two-stage EVT approach is proposed in [111] to estimate the extreme quantiles of
a random variable Y conditioned by covariate X. First, the conditional quantiles are
estimated with a local QR. Then, generalized extreme value distribution with a single
parameter (i.e., extreme value index estimated using maximum likelihood) is applied to
these non-parametrically estimated quantiles in order to construct an estimator for ex-
treme quantiles. Similarly, the authors of [69] apply linear QR to estimate the interme-
diate conditional quantiles, which are then extrapolated to the upper tails by applying
EVT estimators (e.g., Hill estimator) for heavy-tailed distributions (GPD is assumed).
However, the conditional quantiles of Y are assumed to have a linear relation with X at
the tails, which may be too restrictive in real-world applications. In order to overcome
this limitation, the approach proposed in [99] works by first finding an appropriate power
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estimation

Parametric
estimation

Non-parametric
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Figure 1.1: The proposed method uses different estimators for intermediate and extreme quan-
tiles.

transformation of Y , then estimating the intermediate conditional quantiles of the trans-
formed Y using linear QR and finally extrapolating these estimates to extreme tails with
EVT estimators. In the end, these quantiles are transformed back to the original scale.

More importantly, existing works only apply EVT as a post-processing step over a set
of quantiles first estimated (or forecasted) by a non-parametric method [69]. However,
since non-parametric models can suffer from high variability at the tails, the performance
of EVT estimators may be compromised. In order to overcome this problem, we restrict
non-parametric estimation to the intermediate quantiles, as depicted in Figure 1.1. This
estimation is then used to guide the parametric model by rating historically similar periods
conditioned by the covariates.

Finally, two works proposed the use of spatio-temporal data in RES probabilistic fore-
casting: a combination of Gradient Boosting Tree (GBT) with feature engineering tech-
niques to extract information from a grid of Numerical Weather Prediction (NWP) [12];
hierarchical forecasting models to leverage turbine-level data [86]. Both works do not deal
with or propose a specific methodology to forecast conditional distribution’s tails.

This chapter proposes combining EVT estimators for truncated GPD with non-parametric
methods, conditioned by spatio-temporal information. The GPD estimator is considered
because (i) the shape parameter ξ allows modeling everything from extreme events with
lightweight distribution (ξ<0) to events with exponential distribution (ξ=0) and events
with heavy distribution (ξ>0); (ii) the existence of estimators for truncated GPD that can
handle random variables with limited support like RES power.

1.3 Combining Non-parametric Models with a Truncated
Generalized Pareto Distribution

As previously discussed in Section 1.2, EVT estimators are, at present, used in post-
processing steps for quantiles forecasted with a non-parametric model, i.e., the non-
parametric model forecasts all quantiles (including extreme quantiles) and EVT estimators
are applied to correct the forecasted distribution’s tails. However, since non-parametric
approaches do not properly estimate extreme quantiles due to data sparsity, the perfor-
mance of EVT estimators may be compromised. In this section and to overcome this
gap, we propose to apply EVT estimator to historical data directly. The selection of the
relevant historical data is guided by the non-parametric model.

Our proposal consists of the following steps, also depicted in Figure 1.2:

Step 1 Non-parametric estimation: A non-parametric model Q(τ |x) is estimated for
intermediate quantiles, e.g., τ ∈ τ = {0.05, .10, . . . , 0.95}, i.e., 19 models are
estimated using available historical data {(xtr

i , y
tr
i )}Ti=1. A rearrangement is also
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Training data
{(xtr

i , y
tr
i )}Ti=1

New
observation x∗

Step 1: {q̂tri (τ)}i
(non-parametric)

0.05

0.95

Step 2: q̂∗(τ)
(non-parametric)

0.05

0.95

q̂∗(τ), 0.05 ≤ τ ≤ 0.95

Step 3: Historical
similarity

0.05

0.95

Step 4: Data
sample

0.05

0.95

Step 5: EVT
estimator (II.35)

0.05

0.95

q̂∗(τ), τ < 0.05, τ > 0.95

Figure 1.2: Overview of the proposed forecasting model.

performed as described in (II.27). For a given training observation i, (xtr
i , y

tr
i ),

there is an estimation q̂tr
i (τ) = Q(τ |xtr

i ).

Step 2 Non-parametric forecast: Given a new observation x∗, the estimation q̂∗(τ) is
given by the aforementioned non-parametric model Q(τ |x) for τ ∈ τ .

Step 3 Historical similarity: A similarity score s (q1,q2) is computed between two
quantile curves along several values of τ . The quantile curve q̂∗ from the new
sample q̂∗ = [q̂∗(τ) | τ ∈ τ ] is compared with the quantile curve of each historical
observation i, q̂tr

i =
[
q̂tr
i (τ) | τ ∈ τ

]
. This similarity function is the Kolmogorov-

Smirnov statistic given by

s(q1,q2) = sup
τ
|q̂1(τ)− q̂2(τ)| . (1.1)

The new observation is scored against each historical observation, si = s(q̂∗, q̂tr
i ).

Since both quantile curves q̂∗ and q̂tr
i are conditioned by the covariates, the

selection of the similar periods through si is also conditioned by the covariates.

Step 4 EVT data sample: The EVT estimator for the truncated GPD (II.35) is applied
twice, for the lower-tail (τ < 0.05) and the upper-tail (τ > 0.95) quantiles. The
historical values of yi, used as the fitting sample of the EVT estimator, are selected
as those corresponding to the top-ν (hyperparameter) values of si = s(q̂∗, q̂tr

i ). To
avoid quantile crossing, these values are further narrowed down to yi ≤ q̂∗(0.05)
and yi ≥ q̂∗(0.95), respectively.
Furthermore, EVT requires that the sample encompasses the entire quantile curve,
therefore the remaining 90% quantiles, which correspond to 0.9ν

0.05 observations, are
sampled from a spline interpolation constructed from the discrete q̂∗ curve. The
ensuing sample is called y′.

Step 5 EVT estimation: Lower-tail and upper-tail quantiles are estimated through
the estimator for the truncated GPD (II.35), considering the sample y′. Since, by
convention, EVT distributions are defined for quantiles close to 1, the estimation
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of the lower-tail is obtained by considering the sample y′′i = C − y′i. EVT estima-
tion is performed by (II.35) so that forecasted values are non-negative and below
the installed capacity, 0 ≤ ŷ ≤ C.

Note that step Step 3 chooses i by comparing the probability distribution q̂ of the target
variable conditioned on x∗ and xtr

i . This is different from the usual approach of choosing i
by comparing x∗ against xtr

i directly, as in [111], which assumes that covariates have equal
weight and does not take the target variable into consideration. For instance, covariate
j may be uncorrelated to the target, i.e., corr((xtr)j , y

tr) = 0, yet it contributes to the
similarity through the Euclidean distance as ((xtr

i )j − (x∗)j)
2. Our modification avoids

that problem.

1.4 Case Studies

To evaluate the added-value of the proposed method, the models described in Table 1.1
are compared using three different datasets. The implementation is performed through
R and Python programming languages, as described in Table I.1 of Prologue I. The lo-
cal tGPD benchmark is a naive model: the estimator for the truncated GPD (II.35) is
applied to a b% of training samples listed in ascending order according to the Euclidean
distance between xtr

i and x∗. The hyperparameter ν was determined by cross-validation
(12 folds) in the training set, testing all values from 5% to 50%, with increments of 5%.
This model is used to assess if the mapping between covariates (e.g., weather forecasts)
and the target variable is important (as discussed in the last paragraph of the previous
section). The hyperparameters of the GBT models were estimated using the Bayesian op-
timization algorithm from the Python implementation in [112]. A 12-fold cross-validation
was employed and, since all real-world training sets contemplate one year of data, 12-folds
guarantees 12 different monthly validation scenarios. For the final evaluation, the average
of monthly Continuous Ranked Probability Score (CRPS) (II.20) is considered for each
training set in the optimization process.

Also, the EVT estimators, in (II.29) and (II.35), require the selection of the number of
ordered samples (k) for each time step. We followed the heuristic approach for choosing
the first stable part of the plot of γ versus k, as illustrated in Figure II.8 of Prologue II.
The stable part is found by computing a moving average on the differences of γ. In our
approach, hyperparameter h was selected by cross-validation in the training set (12 folds),
testing all values from 50 to 500 with increments of 50.

Three datasets are now described, and results are analyzed. The first experiment con-
sists of using synthetic data that captures the three types of tails (lightweight, exponential,

Table 1.1: Evaluated forecasting models.

Notation Description
GBT GBT (non-parametric model)
local tGPD Hill estimator and truncated GPD in (II.35)*

Exp Tails Exponential functions in (II.28), using GBT
QR EVT QR combined with Hill estimator in (II.29)**, as in [69]
QR EVT T QR, Hill estimator and transformed power data as in (II.31)**, as in [99]
GBT EVT GBT combined with Hill estimator (II.29)**

GBT tGPD Proposed method combining GBT with truncated GPD
* applied to b% of training samples ranked by similarity (Euclidean distance) between covariates

** EVT estimator used in post-processing stage
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and heavy), while the second and third experiments consist of real data from wind and
solar production units, respectively. For synthetic data, the results are evaluated in terms
of deviations between predicted and real quantiles, but for real data the real quantiles
are unknown, motivating the use of literature metrics such as calibration (II.18), sharp-
ness (II.19) and quantile score function (II.21).

1.4.1 Synthetic Data

Data Description

The proposed approach is firstly studied through simulation. The distribution from which
we simulated Y is the truncated GPD for which the Cumulative Distribution Function
(CDF) is given by

F tGPD
(C,µ,σ,ξ)(y) =

F(µ,σ,ξ)(y)− F(µ,σ,ξ)(C)

1− F(µ,σ,ξ)(C)
(1.2)

with

F(µ,σ,ξ)(y) =

1−
(

1 + ξ(y−µ)
σ

)−1/ξ
for ξ 6= 0,

1− exp
(
−y−µ

σ

)
for ξ = 0,

(1.3)

where the support of non-truncated Y is y ≥ µ when ξ ≥ 0 and µ ≤ y ≤ µ − σ/ξ when
ξ < 0, and C is the truncation value.

In this study, we take C = 10, µ = 0, σ = 1 and ξ(X1, X2) = (X1 +X2) exp(X1 +X2),
where X1, X2 are covariates, i.e., the distribution of Y is conditioned by X1, X2. We
generate 500 datasets of size 4000, and the values for covariates X1, X2 are drawn from the
U [−2, 2]. Then, the estimation problem at (x∗1, x

∗
2) ∈ {(0,−1), (0, 0), (0, 1)} is considered

to illustrate the proposed approach. The corresponding CDF is depicted in Figure 1.3, for
which ξ < 0, ξ = 0 and ξ > 0, respectively.

Results and Discussion

The proposed approach requires choosing two things: (i) the non-parametric model to es-
timate the quantiles for the central nominal proportions, and (ii) the nominal proportions
to apply the selected non-parametric model, i.e., “should we consider τ ∈ {0.05, . . . , 0.95}
or τ ∈ {0.01, . . . , 0.99}?” The evaluation of GBT and QR is performed through 400 ob-
servations, the remaining 3600 are used to optimize the aforementioned hyperparameters
by 12-fold cross-validation. Since the real quantiles values are known, the deviation be-
tween estimated and real values for the 500 datasets is depicted in Figure 1.4, considering
τ = {0.05, 0.35, 0.5, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.96, 0.99}. For nominal proportions below

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
Q(τ|X)

τ

(x1,x2)=(0,−1) (x1,x2)=(0,0) (x1,x2)=(0,1)

Figure 1.3: CDF for (x∗1, x
∗
2) ∈ {(0,−1), (0, 0), (0, 1)}.
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Figure 1.4: Comparison between GBT and QR (× represents the mean values).
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Figure 1.5: Improvement in terms of normalized absolute deviations, considering (x∗1, x
∗
2) ∈

{(0,−1), (0, 0), (0, 1)} (× represents the mean values).

0.5 the deviations are similar, but for superior levels GBT has smaller deviations, motivat-
ing the selection of GBT. In fact, the QR approach tends to result in heavier tails. In ad-
dition, due to model degradation when τ = {0.96, 0.99}, the benchmark models Exp Tails,
QR EVT, QR EVT T, GBT EVT and GBT tGPD consider the non-parametric approach
for τ ∈ {0.05, . . . , 0.95}.

Next, the quantiles with nominal proportion τ e = {0.96, 0.97, 0.98, 0.99, 0.995, 0.999}
are estimated for (x∗1, x

∗
2) ∈ {(0,−1), (0, 0), (0, 1)}. Figure 1.5 summarizes the difference

between the normalized absolute deviations,

|Q̂benchmark(τ |x)−QtGPD(τ |x)| − |Q̂GBT tGPD(τ |x)−QtGPD(τ |x)|
QtGPD(τ |x)

× 100, (1.4)

τ ∈ τ e. Positive values indicate the deviations obtained by our proposal are smaller. Ac-
cording to this analysis, for τ ∈ {0.96, 0.97, 0.98} in almost 75% of the observations our pro-
posal has smaller deviations when compared to QR-based approaches, Exp Tails, and lo-
cal tGPD. But, when compared to GBT, GBT combined with Hill estimator (GBT EVT),
and Exp Tails, this superiority is not observed, and similar deviations are achieved. How-
ever, for the most extreme quantiles, τ ∈ {0.99, 0.995, 0.999}, our proposal has been more
effective than all benchmarks.

To complement this analysis, Table 1.2 splits the results by (x∗1, x
∗
2) for τ ∈ {0.99, 0.995,

0.999}. The mean of Q̂(τ |x) over the 500 datasets is presented and the Diebold-Mariano
(DM) test, discussed in Section II.2 of Prologue II, is used to test the hypothesis of equal
deviations. When ξ < 0 the quantiles estimated by our proposal are closer to the real
values. Regarding the exponential tails, (x∗1, x

∗
2) = (0, 0), Exp Tails, and GBT-based

methods performed similarly to our proposal. Lastly, since QR-based approaches tend to
result in heavier tails, their performance is favored for the point (x∗1, x

∗
2) = (0, 1) for which
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Chapter 1 Extreme Conditional Quantile Forecasting

Table 1.2: Mean quantile forecasts for τ ∈ {0.99, 0.995, 0.999}.

x = (0,−1), ξ < 0 x = (0, 0), ξ = 0 x = (1, 0), ξ > 0
τ 0.99 0.995 0.999 0.99 0.995 0.999 0.99 0.995 0.999

QtGPD(τ) 2.22 2.33 2.50 4.60 5.29 6.86 9.35 9.67 9.93
GBT 3.85 5.37 8.3 5.17 6.34 8.78 6.97 7.54 8.95

local tGPD 5.48 6.75 8.98 7.91 8.89 9.78 8.90 9.46 9.60
Exp Tails 3.32 3.73 4.49 5.39 5.85 6.61 8.31 8.61 9.00
QR EVT 6.04 7.89 10.00 7.54 9.57 10.00 9.01 9.97 10.00

QR EVT T 4.85 6.10 9.05 6.43 7.97 9.83 8.32 9.44 9.99
GBT EVT 3.37 3.96 5.8 5.09 5.37X 7.34 6.87 7.28 8.32

GBT tGPD 2.89X 3.13X 3.57X 5.13 5.68 6.59 8.26 8.90 9.68
X statistically significant improvement against all others (DM test)

the quantile 0.9 is 9.34 (almost the limit C = 10). QR-based approaches result in larger
forecasting intervals [Q̂(1− τ), Q̂(τ)] for all considered (x∗1, x

∗
2).

Since QR-based approaches has poor performances when ξ ∈ {−1, 0}, we conclude that
the proposed approach models better the overall tails’ behaviors.

1.4.2 Wind Power Data

Data Description

The proposed method is also tested with a wind power dataset from the Sotavento wind
power plant, located in Galicia (Spain), as depicted in Figure 1.6, with a total installed
capacity of 17.56 MW. The dataset extends from January 1st, 2014 to September 22nd,
2016, with hourly time steps.

The NWP data was retrieved from the MeteoGalicia THREDDS server, which is a
publicly available service that provides historical and daily forecasts of several weather
variables. The NWP is run at 0h UTC and the time horizon is 96 hours-ahead, meaning
that for each day a set of four forecasts are available for each point of the grid (one
generated in the current day at 0h UTC plus three generated on the previous days).
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Figure 1.6: Geographical representation of data collection points for real datasets.
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The NWP model provides forecasts for: (a) u (m/s), azimuthal wind speed; (b) v (m/s),
meridional wind speed; (c) mod (m/s), wind speed module; (d) dir [0, 360], wind direction.
Four model levels (0 to 3) are available, meaning a total of 16 variables in each grid point.

Covariates extracted from the NWP grid. The features created by the authors
of [12], from a NWP grid with 13×13 equally distributed points (Figure 1.6), were used in
this work and are described below. Our goal is to forecast the wind power for 24h-ahead
and the majority of the covariates are constructed with the most recent NWP run.

Temporal information is represented by:

� Temporal variance for the mod variable (level 3) at the central point of the grid,
computed as

σtime(t+ h) =

√∑7
i=−7(modt+h+i −mod)2

14
. (1.5)

� Lags and leads, xt+h±z, for mod and dir (level 3) at the central point of the grid,
z = 1, 2, 3.

� Four predictions generated for mod (level 3) at the central point of the grid.

The spatial information is represented through:

� Principal Component Analysis (PCA) applied to mod and dir (levels 1, 2, 3), and
to u and v (level 3) with a 95% variance threshold.

� Spatial standard deviation for mod, u and v at level 3, computed as

σspatial(t+ h) =

√∑Np
i=1 (xi,t+h − xt+h)2

Np − 1
, (1.6)

where Np is the number of geographical points in the NWP grid, xi,t+h is the value
of variable x at time t+h and location i, and xt+h is the mean of x for all locations.

� Spatial mean computed with the grid values of mod, u and v at model levels 1, 2, 3.

Data division. A sliding-window approach was used for training the models. Table 1.3
presents the four distinct test folds. Each train and test set consists of 12 and 5 months,
respectively, allowing an evaluation under different conditions.

Results and Discussion

Since the GBT model performs better for power data, due to the nonlinear relationship
between wind and power, GBT is used to estimate quantiles between 0.05 and 0.95 [12].

Table 1.3: Time period for training and testing folds.

Fold Train set range Test set range
1 01/01/2014–31/12/2014 01/01/2015–31/05/2015
2 01/06/2014–31/05/2015 01/06/2015–31/10/2015
3 01/11/2015–30/10/2016 01/11/2015–31/03/2016
4 01/04/2015–31/03/2016 01/04/2016–22/09/2016
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Table 1.4: Relative quantile loss improvement (%) over the baseline models (wind power dataset),
considering the extreme quantiles τ e.

Folds Fold 1 Fold 2 Fold 3 Fold 4 W.Avg.
GBT 5.40 1.97 7.03 0.12 3.76
local tGPD 22.27 29.34 21.71 27.80 26.25
Exp Tails 12.87 11.03 9.44 14.79 12.55
QR EVT 10.16 7.10 4.56 8.90 8.21
QR EVT T 12.39 7.20 10.78 8.55 10.39
GBT EVT 12.20 9.06 9.33 5.03 9.75

Table 1.5: Quantile loss for each model (lower is better), with regard to the wind power dataset.

τ 0.001 0.005 0.01 0.99 0.995 0.999
GBT 3.20 15.49 29.60 52.65 30.98 10.60

local tGPD 3.16 15.74 31.05 84.52 45.21 9.69
Exp Tails 8.63 20.95 32.47 53.14 32.26 9.43
QR EVT 3.14 15.64 29.67 54.90 32.17 8.89

QR EVT T 3.19 15.55 29.84 59.27 34.48 9.68
GBT EVT 3.17 15.72 31.97 67.13 35.23 8.45

GBT tGPD� 3.13 15.28 29.30 50.35X 28.23X 8.01X

� the proposed method

X statistically significant improvement against all others (DM test)

The proposed model is then used to estimate the quantiles τ e = {0.001, 0.005, 0.01, 0.02,
0.03, 0.04, 0.96, 0.97, 0.98, 0.99, 0.995, 0.999}.

Table 1.4 summarizes the relative quantile score improvement obtained by GBT tGPD
over the baseline models. Quantile score is computed by considering the extreme quantiles
for nominal proportions τ e. The GBT tGPD improvement is greater than 3.5% for all
testing folds, except over GBT.

The statistics of the wind power generation for the train and test periods are summarized
in Figure 1.7. Two factors might justify the different improvements obtained in the four
folds: the variability of the wind power values and the differences between train and test
data distributions. When high variability is associated with different distributions for train
and test sets, as is the case of fold 3, the selection of 200 observations results on more
dispersed power measurements and, consequently, the EVT estimator has longer tails.

Table 1.5 shows a finer-grained view of the quantile loss for the most extreme quantiles,
averaged over the testing folds. It can be noticed that the improvement of the proposed
method is slightly higher for the upper quantiles, but, all in all, the proposed method
shows the best results.

Figure 1.8 complements the previous analysis by showing the calibration values for each
model. For the upper tail, the GBT tGPD model exhibits almost perfect calibration for all
quantiles. In the lower tail, it produces a lower overestimation of the quantiles. However,
when considering all quantiles, QR-based models are the most well-calibrated models.
Yet, when analyzing the sharpness of the forecast intervals generated by these methods
in Figure 1.9, these methods show that the better calibration comes at the cost of a
higher amplitude (i.e., lower sharpness), which is a trade-off well-known in the forecasting
literature. The lower sharpness from GBT EVT, QR EVT T and QR EVT is justified by
the fact that the Hill estimator is more suitable for heavy-tailed distributions.

For illustrative purposes, the most extreme forecasted quantiles (i.e., 0.001 and 0.999)
obtained with GBT, Exp Tails and GBT tGPD are depicted in Figure 1.10. The Exp Tails
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Figure 1.7: Boxplot for the wind power considering the division on Table 1.3.
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Figure 1.8: Deviation between nominal and empirical quantiles for wind power data, considering
all folds. Dashed black line represents perfect calibration.

●

●

●

●
●

●30

40

50

60

70

92 94 96 98 99 99.8
Nominal coverage rate (%)

S
ha

rp
 (

%
 o

f i
ns

ta
lle

d 
ca

pa
ci

ty
)

●

GBT

local_tGPD

Exp_Tails

QR_EVT

QR_EVT_T

GBT_EVT

GBT_tGPD

Figure 1.9: Sharpness results for wind power data, considering all folds.
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Figure 1.10: Illustrative forecast of extreme quantiles for GBT, Exp Tails and GBT tGPD, con-
sidering wind power data.
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model was chosen since it is the model with the lowest sharpness. This plot clearly shows
that GBT tGPD has a better calibration than Exp Tails, but wider intervals, and also
shows a higher temporal variability of the forecast generated by GBT tGPD.

The baseline model GBT shows small sharpness for all nominal coverage rates (between
92% and 99%) except the most extreme one (99.8%), as depicted in Figure 1.9. The small
sharpness is explained by the fact that GBT fails to capture the variability for the most
extreme quantiles. The forecast of the lower quantiles is particularly bad with values very
close to zero, as depicted in Figure 1.10.

1.4.3 Solar Power Data

Data Description

The solar power dataset consists of hourly power measurements from a 16320 W peak
photovoltaic power plant located in Porto city, Portugal, as illustrated in Figure 1.6. The
dataset extends from March 28th, 2013 to June 28th, 2016, with hourly time steps.

As in the previous case study, the NWP data was retrieved from the MeteoGalicia
THREDDS server, and the NWP model provides forecasts for: (a) swflx (W/m2), surface
downwelling shortwave flux; (b) temp (K), ambient temperature at 2 meters; (c) cfl [0, 1],
cloud cover at low levels; (d) cfm [0, 1], cloud cover at mid levels; (e) cfh [0, 1], cloud cover
at high levels; (f) cft [0, 1], cloud cover at low and mid levels.

Covariates extracted from the NWP grid. The features created by the authors
of [12], from a NWP grid with 13× 13 equally distributed points (Figure 1.6), were used
in this work and are described below. Our goal is to forecast solar power for 24h-ahead.
Since night hours have zero power production, these hours are removed.

Temporal information is represented by:

� Temporal variance for the swflx variable at the central point of the grid, as in (1.5).

� Lags and leads, xt+h±z, for mod and dir at the central point of the grid, z = 1, 2, 3.

� Four predictions generated for mod at the central point of the grid.

The spatial information is represented through:

� PCA applied to swflx, cfl, cfm and cft with a 90% variance threshold.

� Spatial standard deviation for swflx computed as in (1.6).

� Spatial mean computed with the grid values of swflx.

Moreover, calendar variables (month and hour of the day) are also used.

Data division. Five distinct test folds are considered (Table 1.6). Each train and test set
consists of 12 and 5 months, respectively, allowing an evaluation under different conditions.

Table 1.6: Time period for training and testing folds.

Fold Train set range Test set range
1 01/05/2013–30/04/2014 01/05/2014–30/09/2014
2 01/10/2013–30/09/2014 01/10/2014–28/02/2015
3 01/11/2014–31/10/2015 01/11/2015–31/07/2015
4 01/08/2014–31/07/2015 01/08/2015–31/12/2015
5 01/01/2015–31/12/2015 01/01/2016–28/06/2016
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Results and Discussion

Based in [12], GBT is used to estimate quantiles between 0.05 and 0.95. Again, the
proposed model is used to estimate the quantiles τ e = {0.001, 0.005, 0.01, 0.02, 0.03, 0.04,
0.96, 0.97, 0.98, 0.99, 0.995, 0.999}.

The relative quantile score improvement obtained by GBT tGPD over the baseline mod-
els is provided in Table 1.7, considering nominal proportions τ e. The GBT tGPD improve-
ment over the local tGPD, QR-based approaches and GBT EVT is greater than 14% for
all folds. Regarding GBT and Exp Tails, the improvement over all folds is 2.09% and
3.25%, respectively, but in some folds our proposal results in greater quantile scores.

To justify the different improvements obtained in the five folds, the statistics of the solar
power generation for the train and test periods are summarized in Figure 1.11. When high
variability is associated with different distributions for train and test sets, as is the case
of fold 3, the selection of a given number of observations results in more dispersed power
measurements and, consequently, the EVT estimator for truncated GPD has longer tails.

Table 1.8 summarizes the quantile loss for the most extreme quantiles, τ ∈ {0.001, 0.005,
0.01, 0.99, 0.995, 0.999}, averaged over the testing folds. The improvement of the proposed
method is slightly higher for the lower quantiles, but in general, the proposed method
shows the best performance.

Figure 1.12 complements the previous analysis by showing the calibration values for
each model. For the lower tail, the GBT tGPD model exhibits almost perfect calibration
for all quantiles. In the upper tail, it produces a lower underestimation of the quantiles for
nominal proportions 0.96 and 0.97. However, when considering all quantiles, QR-based
models are the most well-calibrated models. Yet, when analyzing the sharpness of the
forecast intervals generated by these methods in Figure 1.13, these methods show that the
better calibration comes at the cost of higher amplitude (i.e., lower sharpness).

Table 1.7: Relative quantile loss improvement (%) over the baseline models (solar power dataset),
considering the extreme quantiles τ e.

Folds Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 W.Avg.
GBT 0.65 5.90 -1.42 1.35 3.95 2.09

local tGPD 56.32 42.73 54.18 46.05 49.40 49.74
Exp Tails 8.24 10.52 -2.10 0.08 0.65 3.25
QR EVT 46.66 36.68 41.20 34.17 33.56 38.45

QR EVT T 48.55 40.19 44.85 37.15 35.26 41.20
GBT EVT 25.18 14.84 27.26 19.23 19.72 21.25

Table 1.8: Quantile loss for each model (lower is better), with regard to the solar power dataset.

τ 0.001 0.005 0.01 0.99 0.995 0.999
GBT 4.72 20.90 232.16 31.23 17.37 6.12

local tGPD 4.79 23.97 479.42 86.15 44.11 8.72
Exp Tails 5.99 21.39 232.21 34.13 20.07 5.30
QR EVT 4.72 22.37 360.07 58.99 32.78 8.54

QR EVT T 4.95 23.75 360.05 65.28 36.88 9.07
GBT EVT 4.79 23.97 479.42 29.92 17.57 5.06

GBT tGPD� 3.76X 17.64X 223.54X 28.88X 16.86X 4.54X

� the proposed method

X statistically significant improvement against all others (DM test)
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Figure 1.11: Boxplot for the solar power considering the division on Table 1.6.

● ● ● ● ● ●

● ● ● ● ● ●

a) Lower tail b) Upper tail

0.001
0.005

0.010
0.020

0.030
0.040

0.960
0.970

0.980
0.990

0.995
0.999

−0.04

−0.02

0.00

−0.05
0.00
0.05
0.10
0.15
0.20

τ

α̂(
τ)

−
τ

●

local_tGBT

Exp_Tails

QR_EVT

QR_EVT_T

GBT

GBT_EVT

GBT_tGPD

Figure 1.12: Deviation between nominal and empirical quantiles for solar power data, considering
all folds. Dashed black line represents perfect calibration.
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Figure 1.13: Sharpness results for solar power data, considering all folds.
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Figure 1.14: Illustrative forecast of extreme quantiles for GBT, Exp Tails and GBT tGPD, con-
sidering solar power data.

Finally, the most extreme forecasted quantiles (i.e., 0.001 and 0.999) obtained with
GBT, Exp Tails and GBT tGPD are depicted in Figure 1.14. Considering τ = 0.001,
Exp Tails and GBT tGPD perform similarly, while GBT tend to provide a value close to
zero every time. For τ = 0.999, GBT and GBT tGPD clearly outperforms Exp Tails in
hours with smaller power production, possibly due to the fact that for this hours the tails

44



1.5 Concluding Remarks

are lightweight.

1.5 Concluding Remarks

Accurate forecasting of distribution tails remains a challenge in the RES forecasting litera-
ture since are often associated with data sparsity. Furthermore, information from the tails
is of major importance in power system operation (e.g., reserve capacity setting, dynamic
line rating) and RES market trading. For this reason, concepts were borrowed from EVT
for truncated variables and combined with a non-parametric forecasting framework that
includes features created from spatial-temporal information.

Two major benefits are provided by this work: (a) covariates are used to produce con-
ditional forecasts of quantiles without any limitation in the number of variables; (b) the
parametric EVT-based estimator can be combined with any non-parametric model (ar-
tificial neural networks, GBT, random forests, etc.) without any major modification.
Moreover, the results for a wind farm located in Galicia, Spain, and a power plant located
in Porto, Portugal, show that the proposed method can provide sharp and calibrated
forecasts (important to avoid over- and under-estimation of risk) and outperforms state-
of-the-art methods in terms of the quantile score. Finally, the proposed method can be
transposed to other use cases in the energy sector, such as risk management in portfolio’s
future returns and study grid resilience to adverse weather events.
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2

Finding the Privacy Gaps in Collaborative
Forecasting

Abstract. Cooperation between different data owners may lead to an improvement in
forecast quality – for instance, by benefiting from spatio-temporal dependencies in geo-
graphically distributed time series. Due to business competitive factors and personal data
protection concerns, however, said data owners might be unwilling to share their data.
Interest in collaborative privacy-preserving forecasting is thus increasing. This chapter
analyzes the state-of-the-art and unveils several shortcomings of existing methods in guar-
anteeing data privacy when employing vector autoregressive models. The methods are
divided into three groups: data transformation, secure multi-party computations, and de-
composition methods. The analysis shows that state-of-the-art techniques have limitations
in preserving data privacy, such as (i) the necessary trade-off between privacy and fore-
casting accuracy, empirically evaluated through simulations and real-world experiments
based on wind and solar data; and (ii) iterative model fitting processes, which reveal data
after a number of iterations.

2.1 Introduction

The progress of the internet-of-things (IoT) and big data technologies is fostering a dis-
ruptive evolution in the development of innovative data analytics methods and algorithms.
This also yields ideal conditions for data-driven services (from descriptive to prescriptive
analysis), in which the accessibility to large volumes of data is a fundamental require-
ment. In this sense, the combination of data from different owners can provide valuable
information for end-users and increase their competitiveness.

In order to combine data coming from different sources, several statistical approaches
have emerged. For example, in time series collaborative forecasting, the Vector AutoRe-
gressive (VAR) model has been widely used to forecast variables that may have different
data owners. In the energy sector, the VAR model is deemed appropriate to update very
short-term forecasts (e.g., from 15 min to 6 h ahead) with recent data, thus taking ad-
vantage of geographically distributed data collected from sensors (e.g., anemometers and
pyranometers) and/or wind turbines and solar power inverters [78, 84]. The VAR model
can also be used in short-term electricity price forecasting [113]. Furthermore, the large
number of potential data owners favors the estimation of the VAR model’s coefficients
by applying distributed optimization algorithms. The Alternating Direction Method of
Multipliers (ADMM) is a widely used convex optimization technique; see [104]. The com-
bination of the VAR model and ADMM can be used jointly for collaborative forecasting
[81], which consists of collecting and combining information from diverse owners. Collabo-
rative forecasting methods require sharing data or coefficients, depending on the structure
of the data, and may or may not be focused on data privacy. This process is also called
federated learning [114].
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Some other examples of collaborative forecasting include: (a) forecasting and inventory
control in supply chains, in which the benefits of various types of information-sharing
options are investigated [16, 17]; (b) forecasting traffic flow (i.e., traffic speed) at different
locations [115]; (c) forecasting retail prices of a specific product at every outlet by using
historical retail prices of the product at a target outlet and at competing outlets [15].
The VAR model is the simplest collaborative model, but conceptually, a collaborative
forecasting model for time series does not need to be a VAR. Furthermore, it is possible to
extend the VAR model to include exogenous information (see [103] for more details) and
to model non-linear relationships with past values (e.g., [116] extend the additive model
structure to a multivariate setting).

Setting aside the significant potential of the VAR model for collaborative forecasting, the
concerns with the privacy of personal and commercially sensitive data constitute a critical
barrier and require privacy-preserving algorithmic solutions for estimating the coefficients
of the model.

A confidentiality breach occurs when third parties recover without consent any data
provided in confidence. A single record leaked from a dataset is of more or less importance
depending on the nature of the data. For example, in medical data, where each record
represents a different patient, a single leaked record can disclose all the details about a
patient. By contrast, with renewable energy generation time series, the knowledge that
30 MWh was produced in a given hour is not very relevant to a competitor. Hereafter, the
term confidentiality breach designates the reconstruction of the entire dataset by another
party.

These concerns with data confidentiality motivated research into methods that can han-
dle confidential data, such as linear regression and classification problems [117], ridge linear
regression [118], logistic regression [119], survival analysis [120], and aggregated statistics
for time series data [121]. Aggregated statistics consist of aggregating a set of time series
data through a specific function, such as the average (e.g., the average amount of daily
exercise), sum, minimum, and maximum. However, certain approaches are vulnerable to
confidentiality breaches, showing that the statistical methods developed to protect data
privacy should be analyzed to confirm their robustness, and that additional research may
be required to address overlooked limitations [122]. Furthermore, the application of these
methods to the VAR model needs to be carefully analyzed, since the target variables are
the time series of each data owner, and the covariates are the lags of the same time series,
meaning that both target and covariates share a large proportion of values.

The simplest solution would be to have the data owners agree on a commonly trusted
entity (or a central node) capable of gathering private data, solving the associated model’s
fitting problem on behalf of the data owners, and then returning the results [123]. However,
in many cases, the data owners are unwilling to share their data even with a trusted central
node. This has motivated the development of data markets to monetize data and promote
data sharing [124], which can be driven by blockchain and smart contracts technology [125].
Data markets will be the focus of Chapter 4.

Another possibility would be to apply differential privacy mechanisms, which consist
of adding properly calibrated noise to an algorithm (e.g., adding noise to the coefficients
estimated during each iteration of the fitting procedure) or directly to the data. Differential
privacy is not an algorithm, but rather a rigorous definition of privacy that is useful for
quantifying and bounding privacy loss (i.e., how much original data a party can recover
when receiving data protected with added noise) [126]. It requires computations insensitive
to changes in any particular record or intermediate computations, thereby restricting data
leaks through the results; see A.1. While computationally efficient and popular, these
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techniques invariably degrade the predictive performance of the model [114] and are not
very effective, as we show in what follows.

This chapter is a review of the state-of-the-art in statistical methods for collaborative
forecasting with privacy-preserving approaches. This work is not restricted to a simple
overview of the existing methods. It includes a critical evaluation of said methods from a
mathematical and numerical point of view – namely, when applied to the VAR model. The
major contribution to the literature is to show gaps and downsides to current methods,
and to present insights for further improvements towards fully privacy-preserving VAR
forecasting methods. Suggestions to improve on these methods are then presented in the
chapter after this one.

In this chapter, we analyze existing state-of-the-art privacy-preserving techniques, di-
viding them into the following groups:

� Data transformation methods: each data owner transforms the data before the
model’s fitting process, by adding randomness to the original data in such a way
that high accuracy and privacy can be achieved at the end of the fitting process.
The statistical method is independent of the transformation function and it is applied
to the transformed data.

� Secure multi-party computation protocols: data encryption occurs while fitting the
statistical model (i.e., intermediate calculations of an iterative process) and data
owners are required to conjointly compute a function over their data with protocols
for secure matrix operations. A protocol consists of rules that determine how data
owners must operate to determine said function. These rules establish the calcula-
tions assigned to each data owner, what information should be shared among them,
and the conditions necessary for the adequate implementation of said calculations.

� Decomposition-based methods: the optimization problem is decomposed into sub-
problems, allowing each data owner to fit model coefficients separately.

The remainder of the chapter is organized as follows: Section 2.2 describes the state-
of-the-art for collaborative privacy-preserving forecasting. Section 2.3 critically evaluates
state-of-the-art methods when applied to the VAR model. Wind and solar energy time se-
ries data are used in the numerical analysis. Section 2.4 offers a discussion and comparison
of the presented approaches, and concluding remarks are presented in Section 2.5.

2.2 Privacy-preserving Approaches

For notation purposes, in this section, Z ∈ RT×M is the covariate matrix and Y ∈ RT×N
is the target matrix, considering n data owners. The values T , M and N are the number
of records, covariates and target variables, respectively. When considering collaborative
forecasting models, different divisions of the data may be considered. Figure 2.1 shows
the two most common:

1. Data split by records: the data owners, represented as Ai, i ∈ {1, . . . , n}, observe the
same features for different groups of samples, e.g., different timestamps in the case
of time series. Z is split into ZrAi ∈ RTAi×M and Y into Yr

Ai
∈ RTAi×N , such that∑n

i=1 TAi = T ;

2. Data split by features: the data owners observe different features of the same records.
Z = [ZA1 , . . . ,ZAn ], Y = [YA1 , . . . ,YAn ], such that ZAi ∈ RT×MAi , YAi ∈ RT×NAi ,
with

∑n
i=1MAi = M and

∑n
i=1NAi = N ;
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Figure 2.1: Common data division structures.

This section summarizes state-of-the-art approaches to deal with privacy-preserving col-
laborative forecasting methods. Section 2.2.1 describes the methods that ensure confiden-
tiality by transforming the data. Section 2.2.2 presents and analyzes the secure multi-party
protocols. Section 2.2.3 describes the decomposition-based methods.

2.2.1 Data Transformation Methods

Data transformation methods use operator T to transform the data matrix X into X̃ =
T (X). Then, the problem is solved in the transformed domain. A common method of
masking sensitive data is adding or multiplying it by perturbation matrices. In additive
randomization, random noise is added to the data in order to mask the values of records.
Consequently, the more masked the data becomes, the more secure it will be, as long as the
differential privacy definition is respected (see A.1). However, the use of randomized data
implies the deterioration of the estimated statistical models, and the estimated coefficients
of said data should be close to the estimated coefficients after using original data [127].

Multiplicative randomization involves changing the dimensions of the data by multiply-
ing it by random perturbation matrices. If the perturbation matrix W ∈ Rk×m multiplies
the original data X ∈ Rm×n on the left (pre-multiplication), i.e., WX, then it is possible to
change the number of records; otherwise, if W ∈ Rn×s multiplies X ∈ Rm×n on the right
(post-multiplication), i.e., XW, it is possible to modify the number of features. Hence, it
is possible to change both dimensions by applying both pre- and post-multiplication by
perturbation matrices.

Single Data Owner

The use of linear algebra to mask data is a common practice in recent outsourcing ap-
proaches, in which a data owner resorts to the cloud to fit model coefficients without
sharing confidential data. For example, in [128] the coefficients that optimize the linear
regression model

y = Xβ + ε , (2.1)

with covariate matrix X ∈ Rm×n, target variable y ∈ Rm, coefficient vector β ∈ Rn and
error vector ε ∈ Rn, are estimated through the regularized least squares estimate for the
ridge linear regression, with penalization term λ > 0,

β̂ridge = (X>X + λI)−1X>y. (2.2)
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In order to compute β̂ridge via a cloud server, the authors consider that

β̂ridge = A−1b , (2.3)

where A = (X>X + λI)−1 and b = X>y, A ∈ Rn×n, b ∈ Rn. Then, the masked matrices
MAN and M(b + Ar) are sent to the server, which computes

β̂
′
= (MAN)−1(M(b + Ar)) , (2.4)

where M, N, and r are randomly generated matrices, M,N ∈ Rn×n, r ∈ Rn. Finally, the

data owner receives β̂
′
and recovers the original coefficients by computing β̂ridge = Nβ̂

′−r.
Data normalization is a data transformation approach that masks data by transforming

the original features into a new range through the use of a mathematical function. There
are many methods of data normalization, the most important ones being z-score and
min-max normalization [129], which are useful when the actual minimum and maximum
values of the features are unknown. However, in many applications, these values are either
known or publicly available, and normalized values still encompass commercially valuable
information.

For time series data, other approaches to data randomization make use of the Fourier
and wavelet transforms. A Fourier transform can represent periodic time series as a
linear combination of sinusoidal components (sine and cosine). In [130], each data owner
generates a noise time series by (i) adding Gaussian noise to relevant coefficients, or (ii)
disrupting each sinusoidal component by randomly changing its magnitude and phase.
Similarly, a wavelet transform can represent time series as a combination of functions
(e.g., the Mexican hat or Poisson wavelets), and randomness can be introduced by adding
random noise to the coefficients [130]. However, there are no privacy guarantees, since
noise does not respect any formal definition, unlike differential privacy.

Multiple Data Owners

The task of masking data is even more challenging when dealing with different data owners,
since it is crucial to ensure that the transformations that data owners make to their data
preserve the real relationship between the variables or the time series.

Usually, for generalized linear models (e.g., linear regression models, logistic regression
models, etc.), where n data owners observe the same features –i.e., data are split by records,
as illustrated in Figure 2.1 – each data owner Ai, i = 1, ..., n, can individually multiply
their covariate matrix ZrAi ∈ RTAi×M and target variable Yr

Ai
∈ RTAi×N by a random

matrix MAi ∈ Rk×TAi (with a jointly defined k value), providing MAiZ
r
Ai
,MAiY

r
Ai

to the
competitors [131, 132], which allows pre-multiplying the original data,

Zr =

 ZrA1
...

ZrAn

 and Yr =

 Yr
A1
...

Yr
An

 ,
by M = [MA1 , . . . ,MAn ], since

MZr = MA1Z
r
A1

+ · · ·+ MAnZrAn . (2.5)

The same holds for the multiplication MYr, M ∈ Rk×
∑n
i=1 TAi ,Zr ∈ R

∑n
i=1 TAi×M ,Yr ∈

R
∑n
i=1 TAi×N . This definition of M is possible because when multiplying M and Zr, the

jth column of M only multiplies the jth row of Zr. For some statistical learning algorithms,
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a property of such a matrix is the orthogonality, i.e., M−1 = M>. Model fitting is then
performed with this new representation of the data, which preserves the solution to the
problem. This is true of the linear regression model because the multivariate least squares
estimate for the linear regression model with covariate matrix MZr and target variable
MYr is

B̂LS =
(

(Zr)>Zr
)−1 (

(Zr)>Yr
)
, (2.6)

which is also the multivariate least squares estimate for the coefficients of a linear regression
considering data matrices Zr and Yr, respectively. Despite this property, the application in
Least Absolute Shrinkage and Selection Operator (LASSO) regression does not guarantee
that the sparsity of the coefficients is preserved, and careful analysis is needed to ensure
the correct estimation of the model [127]. Liu et al. [133] discussed attacks based on
prior knowledge, in which a data owner estimates M by knowing a small collection of
original data records. Furthermore, when considering the linear regression model for
which Z = [ZA1 , . . . ,ZAn ] and Y = [YA1 , . . . ,YAn ], i.e., data is split by features, it is not
possible to define a matrix M∗ = [M∗

A1
, . . . ,M∗

An
] ∈ Rk×T and then privately compute

M∗Z and M∗Y, because as explained, the jth column of M∗ multiplies the jth row of Z,
which, in this case, consists of data coming from different owners.

Similarly, if the data owners observe different features, a linear programming problem
can be solved in such a way that individual data owners multiply their data XAi ∈ RT×MAi

by a private random matrix NAi ∈ RMAi
×s (with a jointly defined value s) and, then,

shares XAiNAi [134], i ∈ {1, ..., n}, which is equivalent to post-multiplying the original
dataset X = [XA1 , ...,XAn ] by N = [N>A1

, . . . ,N>An ]>, which represents the joining of
NAi , i ∈ {1, . . . , n}, through a row-wise operation. However, the obtained solution is in a
different space, and it needs to be recovered by multiplying it by the corresponding NAi , i ∈
{1, ..., n}. For linear regression, which models the relationship between the covariates
Z ∈ RT×M and the target Y ∈ RT×N , this algorithm corresponds to solving a linear
regression that models the relationship between ZNz and YNy. That is,the solution is
given by

B̂′LS = arg min
B

(
1

2
‖YNy − ZNzB‖22

)
, (2.7)

where ZNz and YNy are shared matrices. Two private matrices Nz ∈ RM×s, Ny ∈ RN×w
are required to transform the data, since the number of columns for Z and Y is different
(s and w values are jointly defined). The problem is that the multivariate least squares
estimate for (2.7) is given by

B̂′LS =
(

(ZNz)>(ZNz)
)−1(

(ZNz)>(YNy)
)

= (Nz)−1 (Z>Z)−1Z>Y︸ ︷︷ ︸
= arg minB

(
1
2
‖Y − ZB‖22

)Ny , (2.8)

which implies that this transformation does not preserve the coefficients of the linear
regression considering data matrices Z and Y, respectively, and therefore Nz and Ny

would have to be shared.

Generally, data transformation is performed through the generation of random matrices
that pre- or post- multiply the private data. However, there are other techniques through
which data are transformed with matrices defined according to that data, as with principal
component analysis (PCA). PCA is a widely used statistical procedure for reducing the
dimensions of data, by applying an orthogonal transformation that retains as much data
variance as possible. Considering the matrix W ∈ RM×M of the eigenvectors of the
covariance matrix Z>Z, Z ∈ RT×M , PCA can be used to represent the data by L variables
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performing ZNL, where NL denotes the first L columns of W, L ∈ {1, ...,M}. For data
split by records, Dwork et al. [135] suggested a differentially private PCA, assuming that
each data owner takes a random sample of the fitting records to form the covariate matrix.
In order to protect the covariance matrix, one can add Gaussian noise to this matrix
(determined without sensible data sharing), leading to the computation of the principal
directions of the noisy covariance matrix. To finalize the process, the data owners multiply
the sensible data by said principal directions before feeding the data into the model fitting.
Nevertheless, the application to collaborative linear regression with data split by features
would require sharing the data when computing the Z>Z matrix, since Z> is divided by
rows. Furthermore, as explained in (2.7) and (2.8), it is difficult to recover the original
linear regression model by performing the estimation of the coefficients using transformed
covariates and target matrices, through post-multiplication by random matrices.

Regarding the data normalization techniques mentioned above, Zhu et al. [136] proposed
that data owners mask their data by using z-score normalization, followed by the sum of
random noise (from uniform or Gaussian distributions), to allow greater control over their
data. The data can then be shared with a recommendation system that fits the model.
However, the noise does not meet the differential privacy definition (see A.1).

For data collected by different sensors (e.g., smart meters or mobile users) it is common
to proceed to the aggregation of data through privacy-preserving techniques – for instance,
by adding carefully calibrated Laplacian noise to each time series [137, 138]. The addition
of noise to the data is an appealing technique given its easy application. However, even
if this noise meets the definition of differential privacy, there is no guarantee that the
resulting model will perform well.

2.2.2 Secure Multi-party Computation Protocols

In secure multi-party computations, intermediate calculations required by the fitting al-
gorithms, which require data owners to jointly compute a function over their data, are
performed through protocols for secure operations, such as matrix addition or multipli-
cation. In these approaches, the encryption of the data occurs while fitting the model,
instead of as a pre-processing step, as with the data transformation methods described in
the previous section.

Linear Algebra-based Protocols

The simplest secure multi-party computation protocols are based on linear algebra and
address the situation where matrix operations with confidential data are necessary. Du
et al. [117] proposed secure protocols for product A.C and inverse of the sum (A+C)−1, for
any two private matrices A and C with appropriate dimensions. The aim is to fit a (ridge)
linear regression between two data owners who observe different covariates but share the
target variable. Essentially, the A.C protocol transforms the product of matrices, A ∈
Rm×s, C ∈ Rs×k, into a sum of matrices, Va+Vc, that are equally secret, Va,Vc ∈ Rm×k.
However, since the estimate of the coefficients for linear regression with covariate matrix
Z∈ RT×M and target matrix Y∈ RT×N is

B̂LS = (Z>Z)−1Z>Y, (2.9)

the A.C protocol is used to perform the computation of Va,Vc such that

Va + Vc = (Z>Z) , (2.10)
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which requires the definition of an (A + C)−1 protocol to compute

(Z>Z)−1 = (Va + Vc)
−1. (2.11)

For the A.C protocol, A ∈ Rm×s, C ∈ Rs×k, there are two different formulations,
according to the existence, or not, of a third entity. In cases where only two data owners
perform the protocol, a random matrix M ∈ Rs×s is jointly generated and the A.C
protocol achieves the following results, by dividing the M and M−1 into two matrices
with the same dimensions:

AC = AMM−1C = A[Mleft,Mright]

[
(M−1)top
(M−1)bottom

]
C (2.12)

= AMleft(M
−1)topC + AMright(M

−1)bottomC , (2.13)

where Mleft and Mright respectively represent the left and right part of M, and (M−1)top

and (M−1)bottom respectively denote the top and bottom part of M−1. In this case,

Va = AMleft(M
−1)topC, (2.14)

is derived by the first data owner, and

Vc = AMright(M
−1)bottomC, (2.15)

by the second data owner. Otherwise, a third entity is assumed to generate random
matrices Ra, ra and Rc, rc, such that

ra + rc = RaRc, (2.16)

which are sent to the first and second data owners, respectively, Ra ∈ Rm×s, Rc ∈ Rs×k,
ra, rc ∈ Rm×k. In this case, the data owners start by trading the matrices A + Ra and
C + Rc, and then the second data owner randomly generates a matrix Vc and sends

T = (A + Ra)C + (rc −Vc) , (2.17)

to the first data owner in such a way that, at the end of the A.C protocol, the first data
owner keeps the information

Va = T + ra −Ra(C + Rc) , (2.18)

and the second keeps Vc (since the sum of Va with Vc is AC).
Finally, the (A + C)−1 protocol considers two steps, where A,C ∈ Rm×k. Initially, the

matrix (A + C) is jointly converted to P(A + C)Q using two random matrices, P and
Q, which are only known to the second data owner preventing the first one from learning
matrix C, P ∈ Rr×m,Q ∈ Rk×t. The results of P(A + C)Q are known only by the first
data owner, who can conduct the inverse computation Q−1(A+C)−1P−1. In the following
step, the data owners jointly remove Q−1 and P−1 and get (A + C)−1. Both steps can be
achieved by applying the A.C protocol. Although these protocols are efficient techniques
for solving problems with a shared target variable, one cannot say the same when Y is
private, as further elaborated in Section 2.3.2.

Another example of secure protocols for producing private matrices can be found in [118].
Their protocol applies data from multiple owners who observe different covariates and
target features – which are also assumed to be secret. The proposed protocol allows two
data owners, with correspondent data matrix A and C, A ∈ Rm×k, C ∈ Rm×s, to perform
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the multiplication A>C as follows: (i) the first data owner generates W = [w1, ....,wg],
W ∈ Rm×g, such that

w>i Aj = 0 , (2.19)

where Aj is the jth column of A matrix, i ∈ {1, ..., g} and j ∈ {1, ..., k}, and then sends
W to the second owner; (ii) the second data owner computes (I−WW>)C and shares
it; and (iii) the first data owner performs

A>(I−WW>)C= A>C− A>WW>C︸ ︷︷ ︸
=0, since A>W=0

= A>C , (2.20)

without the possibility of recovering C, since the rank((I−WW>)C) = m− g. To gen-
erate W, Karr et al. [118] suggested selecting g columns from the Q matrix, computed
by QR decomposition of the private matrix C, and excluding the first k columns. Fur-
thermore, the authors defined the optimal value for g according to the number of linearly
independent equations (represented by NLIE) on the other data owner’s data. The sec-
ond data owner obtains A>C (providing ks values, since A>C ∈ Rk×s) and receives W,
knowing that A>W = 0 (which contains kg values). That is,

NLIE(Owner#1) = ks+ kg. (2.21)

Similarly, the first data owner receives A>C (providing ks values) and (I−WW>)C
(providing s(m− g) values since (I−WW>)C ∈ Rm×s and rank(W) = m− g). That is,

NLIE(Owner#2) = ks+ s(m− g). (2.22)

Karr et al. [118] determined the optimal value for g by assuming that both data owners
equally share NLIE, so that no agent benefits from the order assumed when running the
protocol:

|NLIE(Owner#1)−NLIE(Owner#2)| = 0 , (2.23)

which allows the optimal value g∗ = sm
k+s to be obtained.

An advantage to this approach, when compared to the one proposed by [117], is that
W is simply generated by the first data owner, while the invertible matrix M proposed
by [117] needs to be agreed upon by both parties, which entails substantial communication
costs when the number of records is high.

Homomorphic Cryptography-based Protocols

The use of homomorphic encryption was successfully introduced in model fitting and works
by encrypting the original values in such a way that the application of arithmetic operations
in the public space does not compromise the encryption. Homomorphic encryption ensures
that, after the decryption stage (in the private space), the resulting values correspond
to the ones obtained by operating on the original data. Consequently, homomorphic
encryption is especially responsive and engaging to privacy-preserving applications. As an
example, the Paillier homomorphic encryption scheme stipulates that (i) two integer values
encrypted with the same public key may be multiplied together to give an encryption of
the sum of the values, and (ii) an encrypted value may be taken to some power, yielding
encryption of the product of the values. Hall et al. [139] proposed a secure protocol
for summing and multiplying real numbers by extending Paillier encryption, aiming to
perform the matrix products required to solve linear regression for data divided by features
or records.
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Equally based in Paillier encryption, the work of Nikolaenko et al. [140] proposed a
scheme whereby two parties can correctly perform their tasks without teaming up to
discover private data: a crypto-service provider (i.e., a party that provides software- or
hardware-based encryption and decryption services) and an evaluator (i.e., a party who
runs the learning algorithm). With this scheme, secure linear regression can be performed
for data split by records. Similarly, Chen et al. [141] used Paillier and ElGamal encryption
to fit the coefficients of ridge linear regression while including these entities. In both works,
the use of the crypto-service provider is prompted by assuming that the evaluator does
not corrupt its computation by producing an incorrect result. Two conditions are required
to prevent confidentiality breaches: the crypto-service provider must publish the system
keys correctly, and there can be no collusion between the evaluator and the crypto-service
provider. The data can be reconstructed if the crypto-service provider supplies correct
keys to a curious evaluator. For data divided by features, [142] extended the approach
of [140] by designing a secure multi/two-party inner product.

Jia et al. [143] explored a privacy-preserving data classification scheme with a support
vector machine, to ensure that the data owners can successfully conduct data classification
without exposing their learned models to a “tester”, while the “testers” keep their data
private. For example, a hospital (owner) can create a model to learn the relation between
a set of features and the existence of a disease, and another hospital (tester) can use this
model to obtain forecasting values, without any knowledge about the model. The method
is supported by cryptography-based protocols for secure computation of multivariate poly-
nomial functions, but unfortunately, this only works for data split by records.

Li and Cao [144] addresses the privacy-preserving computation of the sum and the min-
imum of multiple time series collected by different data owners, by combining homomor-
phic encryption with a novel key management technique to support large data dimensions.
These statistics with a privacy-preserving solution for individual user data are quite useful
for exploring mobile sensing in different applications such as environmental monitoring
(e.g., the average level of air pollution in an area), traffic monitoring (e.g., the highest
moving speed during rush hour), healthcare (e.g., the number of users infected by a flu),
etc. Liu et al. [145] and Li et al. [146] explored similar approaches based on Paillier or
ElGamal encryption concerning their application to smart grids. However, the estimation
of models such as the linear regression model also requires protocols for the secure product
of matrices. Homomorphic cryptography was further explored to solve secure linear pro-
gramming problems through intermediate steps of the simplex method, which optimizes
the problem by using slack variables, tableaus, and pivot variables [147]. However, the au-
thor observed that the proposed protocols are not viable when solving linear programming
problems with numerous variables and constraints, which are common in practice.

Aono et al. [148] combined homomorphic cryptography with differential privacy in order
to deal with data split by records. In summary, if data are split by records, as illustrated in
Figure 2.1, each ith data owner observes the covariates ZrAi and target variable Yr

Ai
, ZrAi ∈

RTAi×M ,Yr
Ai
∈ RTAi×N , i ∈ {1, ..., n}. Then, (ZrAi)

>ZrAi and (ZrAi)
>Yr

Ai
are computed

and Laplacian noise is added to them. This information is encrypted and sent to the cloud
server, which works on the encrypted domain, summing all the matrices received. Finally,
the server provides the result of this sum to a client who decrypts it and obtains relevant
information to perform the linear regression, i.e.,

∑n
i=1(ZrAi)

>ZrAi ,
∑n

i=1(ZrAi)
>Yr

Ai
, etc.

However, the addition of noise can result in a poor estimation of the coefficients, limiting
the performance of the model. Furthermore, this approach is not valid when data are
divided by features, because Z>Z 6= ∑n

i=1 Z>AiZAi and Z>Y 6= ∑n
i=1 Z>AiYAi .

In summary, cryptography-based methods are usually robust to confidentiality breaches
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but may require a third party to generate keys, as well as external entities to per- form the
computations in the encrypted domain. Furthermore, the high computational complexity
is a challenge when dealing with real applications [147, 149, 150].

2.2.3 Decomposition-based Methods

In decomposition-based methods, problems are solved by breaking them up into smaller
sub-problems and solving each separately, either in parallel or in sequence. Consequently,
private data are naturally distributed between the data owners. However, this natural divi-
sion requires sharing intermediate information. For that reason, some approaches combine
decomposition-based methods with data transformation or homomorphic cryptography-
based methods; here, we focus on these methods separately.

ADMM Method

The ADMM, described in Section II.3.2 in Prologue II, is a powerful algorithm that cir-
cumvents problems without a closed-form solution, such as the LASSO regression. The
algorithm is efficient and well suited for distributed convex optimization, in particular for
large-scale statistical problems. Undeniably, ADMM provides a desirable formulation for
parallel computing [105]. However, it is not possible to ensure continuous privacy, since
the ADMM requires intermediate calculations, allowing the most curious competitors to
recover the data after enough iterations by solving non-linear equation systems [151]. An
ADMM-based distributed LASSO algorithm, in which each data owner only communi-
cates with its neighbor to protect data privacy, is described by [152], with applications in
signal processing and wireless communications. Unfortunately, this approach is only valid
in cases where data are distributed by records.

The concept of differential privacy was also explored in the ADMM by introducing
randomization when computing the primal variables. That is, during the iterative process,
each data owner estimates the corresponding coefficients and perturbs them by adding
random noise [153]. However, these local randomization mechanisms can result in a non-
convergent algorithm with poor performance even under moderate privacy guarantees. To
address these concerns, Huang et al. [154] used an approximate augmented Lagrangian
function and Gaussian mechanisms with time-varying variance. Nevertheless, the addition
of noise is insufficient to guarantee privacy, as a competitor can potentially use the results
from all iterations to infer information [155].

Zhang et al. [156] recently combined a variant of the ADMM with homomorphic encryp-
tion for cases where data are divided by records. As explained by the authors, however,
the incorporation of their mechanism in decentralized optimization under data divided by
features is quite difficult. Whereas for data split by records, the algorithm only requires
sharing the coefficients, the exchange of coefficients in data split by features is insufficient,
since each data owner observes different features. Division by features requires a local
estimation of Bk+1

Ai
∈ RMAi

×N by using information related to ZAjB
k
Aj

, and Y, meaning
that, for each new iteration, an ith data owner shares TN new values, instead of MAiN
(from Bk

Ai
), i, j ∈ {1, ..., n}. Huo and Liu [157] also combined ADMM with homomorphic

encryption and they also consider data split by features. However, after each iteration
k, agents decrypt the matrix

∑
j ZAjB

k
Aj

, which can provide enough information for a
curious agent to recover the original data.

For data split by features, Zhang and Wang [158] proposed a probabilistic forecasting
method that combines ridge linear quantile regression with the ADMM. The output is a set
of quantiles instead of a unique value (usually the expected value). In this case, the ADMM
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is applied to split the corresponding optimization problem into sub-problems, which are
solved by each data owner, assuming that all the data owners communicate with a central
node in an iterative process. Consequently, intermediate results are provided, rather
than private data. In fact, the authors claimed that their method achieves wind power
probabilistic forecasting with off-site information in a privacy-preserving and distributed
fashion. However, the authors did not conduct an in-depth analysis of the method, as
shown in 2.3. Furthermore, their method assumes that the central node knows the target
matrix.

Newton-Raphson Method

The ADMM is now a standard technique used in research on distributed computing in
statistical learning, but it is not the only one. For generalized linear models, distributed
optimization for model fitting has been efficiently achieved through the Newton–Raphson
method, which minimizes a twice differentiable forecast error function E between the
true values Y and the forecasted values given by the model Ŷ = f(B,Z) using a set of
covariates Z, including lags of Y. B is the coefficient matrix, which is updated iteratively.
The estimate for B at iteration k + 1, represented by Bk+1, is given by

Bk+1 = Bk − (∇2E(Bk))−1∇E(Bk) , (2.24)

where ∇E and ∇2E are the gradient and Hessian of E, respectively. With certain prop-
erties, convergence to a certain global minima can be guaranteed [159].

In order to enable distributed optimization, ∇E and ∇2E must be decomposable over
multiple data owners. That is, these functions can be rewritten as the sum of functions
that depend exclusively on local data from each data owner. Slavkovic et al. [160] proposed
a secure logistic regression approach for data split by records and features by using secure
multi-party computation protocols during iterations of the Newton–Raphson method. Al-
though distributed computing is feasible, there is no sufficient guarantee of data privacy,
because it is an iterative process. While a single iteration cannot reveal private informa-
tion, sufficient iterations can: in a logistic regression with data split by features, for each
iteration k the data owners exchange the matrix ZAiB

k
Ai

, making it possible to recover
the local data ZAi after enough iterations [122].

An example of an earlier promising work that combined logistic regression with the
Newton-Raphson method for data distributed by records was the Grid binary LOgistic
REgression (GLORE) framework [119]. The GLORE model is based on model sharing
rather than patient-level data, and it has motivated subsequent improvements. Some of
these continue to suffer from confidentiality breaches on intermediate results, and others
resort to protocols for matrix addition and multiplication. Later, Li et al. [161] explored
the issue concerning the Newton–Raphson method over data distributed by features by
considering a server that receives the transformed data and computes the intermediate
results, returning them to each data owner. In order to avoid disclosing local data while
obtaining an accurate global solution, the authors applied the kernel trick to obtain the
global linear matrix, computed using dot products of local records (ZAiZ

>
Ai

), which can be
used to solve the dual problem for logistic regression. However, they identified a technical
challenge from scaling up the model with a large sample size, since each record requires a
parameter.
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Gradient-Descent Methods

Different gradient-descent methods have also been explored, aiming to minimize a forecast
error function E between the true values Y and the forecasted values given by the model
Ŷ = f(B,Z) using a set of covariates Z, including lags of Y. The coefficient matrix B is
updated iteratively such that the estimate at iteration k + 1, Bk+1, is given by

Bk+1 = Bk + η∇E(Bk) , (2.25)

where η is the learning rate. This allows for parallel computation when the optimization
function E is decomposable. A common error function is the multivariate least squared
error:

E(B) =
1

2
‖Y − f(B,Z)‖2. (2.26)

With certain properties, convergence to a certain global minima can be guaranteed [162]:
(i) E is convex, (ii) ∇E is Lipschitz-continuous with constant L, i.e., for any F, G,

‖∇E(F)−∇E(G)‖2 ≤ L‖F−G‖2 , (2.27)

and (iii) η ≤ 1/L.
Han et al. [163] proposed a privacy-preserving linear regression technique for data dis-

tributed over features (with shared Y) by combining distributed gradient descent with
secure protocols, based on pre- or post-multiplication of the data by random private ma-
trices. Wei et al. [164] consider the case in which an agent wants to improve its logistic
regression model with data from a second agent. The authors combine a gradient-based
algorithm with homomorphic encryption to protect data from the first agent. However,
after each iteration the second agent provides ZA2B

k
A2

, which can be enough for the first
agent to recover data. Song et al. [165] introduced differential privacy by adding random
noise W in the B updates:

Bk+1 = Bk + η
(
∇E(Bk) + W

)
. (2.28)

When this iterative process uses a few randomly selected samples (or even a single sample),
rather than the entire data, the process is known as stochastic gradient descent (SGD). The
authors argued that the trade-off between performance and privacy is most pronounced
when smaller batches are used. A similar framework was also proposed in [166] to perform
probabilistic solar irradiation forecasting by using a neural network that combines data
split by records.

2.3 Collaborative Forecasting with VAR: Privacy Analysis

This section presents a privacy analysis of collaborative forecasting with the VAR model, a
model for the analysis of multivariate time series, described in Section II.3.2 of Prologue II.
The VAR model is not only used for forecasting tasks in different domains (and with
significant improvements over univariate autoregressive models), but also for structural
inference, where the main objective is to explore certain assumptions about the causal
structure of the data [167]. A variant with LASSO regularization is also covered. We
critically evaluate the methods described in Section 2.2 from a mathematical and numerical
point of view.

Using the notation of Section II.3.2 of Prologue II, each of the n data owners is assumed
to use the same number of lags p to fit a LASSO-VAR model with a total number of
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T records. YAi ∈ RT×1 and ZAi ∈ RT×p respectively denote the target and covariate
matrix for the ith data owner. In LASSO-VAR, the covariates and target matrices are
obtained by joining the individual matrices column-wise, i.e., Z = [ZA1 , . . . ,ZAn ] and
Y = [YA1 , . . . ,YAn ]. For distributed computation, the coefficient matrix of data owner i
is denoted by BAi ∈ Rp×n, i ∈ {1, . . . , n}.

2.3.1 Data Transformation with Noise Addition

This section presents experiments with simulated data, wind energy data from Global
Energy Forecasting Competition 2014 (GEFCom2014), and solar energy data collected
from a smart grid pilot in Portugal. The objective was to quantify the impact of data
distortion (through noise addition) on the model forecasting skill.

Synthetic Data

An experiment was performed to add random noise from a Gaussian distribution with
zero mean and variance b2, a Laplace distribution with zero mean and scale parameter
b and a uniform distribution with support [−b, b] – represented by N (0, b2), L(0, b) and
U(−b, b), respectively. Synthetic data generated by VAR processes were used to measure
the differences between the coefficients’ values when adding noise to the data. The simplest
case considered a VAR with two data owners and two lags, described by

(
y1,t y2,t

)
=
(
y1,t−1 y2,t−1 y1,t−2 y2,t−2

)
0.5 0.3
0.3 0.75
−0.3 −0.05
−0.1 −0.4

+
(
ε1,t ε2,t

)
.

The second case included ten data owners and three lags and introduced a high percent-
age of null coefficients (≈ 86%). Figure 2.2 illustrates the considered coefficients. Since a
specific configuration can generate various distinct trajectories, 100 simulations were per-
formed for each specified VAR model, with 20,000 timestamps each. For both simulated
datasets, the errors εt were assumed to follow a multivariate normal distribution with
a zero mean vector and a covariance matrix equal to the identity matrix of appropriate
dimensions. A distributed ADMM (detailed in Section II.3.2 of Prologue II) was used to
estimate the LASSO-VAR coefficients, considering two different noise characterizations,
b ∈ {0.2, 0.6}.

−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8
1

ow
ne

r 
1

ow
ne

r 
2

ow
ne

r 
3

ow
ne

r 
4

ow
ne

r 
5

ow
ne

r 
6

ow
ne

r 
7

ow
ne

r 
8

ow
ne

r 
9

ow
ne

r 
10

ow
ne

r 
1

ow
ne

r 
2

ow
ne

r 
3

ow
ne

r 
4

ow
ne

r 
5

ow
ne

r 
6

ow
ne

r 
7

ow
ne

r 
8

ow
ne

r 
9

ow
ne

r 
10

ow
ne

r 
1

ow
ne

r 
2

ow
ne

r 
3

ow
ne

r 
4

ow
ne

r 
5

ow
ne

r 
6

ow
ne

r 
7

ow
ne

r 
8

ow
ne

r 
9

ow
ne

r 
10

owner 1
owner 2
owner 3
owner 4
owner 5
owner 6
owner 7
owner 8
owner 9

owner 10

0.75

0

0

0

0

0

0

0

0

0.1

−0.1

0.77

0

0.15

0

0

0

0

0

0

0

0

0.81

0

0

0

0

0

0

0

0

0

0

0.88

0

0

0

0

0

0

0

0

0

0

0.74

0

0

0

0

0

0

0

0

0

−0.15

0.88

0

0

0

0

0

0

0

0

0

0

0.89

0

0

0

0

0

0

0

0

0

0

0.83

0

0

0

0

0

0

0

0

0

0

0.83

0

0

−0.25

0

0

0

0

0

0

0

0.71

−0.44

0

0

0

−0.15

0

0

0

0

0

0

−0.54

0

0

0

0

0

0

0

0

−0.1

0

−0.51

0

0

0

0

0

0

0

0

0

0

−0.43

0

0

0

0

0

0

0

−0.25

0

0

−0.59

0

0

0

0

0

0

0

0

0

0

−0.59

0

0

0

0

0

0

0

0.15

0

0

−0.43

0

0

0

0

0

0

0

0

0

0

−0.57

0

0

0

0

0

0

0

0

0

0

−0.49

0.1

0

0

0

0

0

0

0

0

0

−0.51

0.03

0

0

0

0

0

0

−0.1

0

0

0

0.12

0

0

0

0

0

0

0

0

0

0

0.06

0

0

0

0

0

0

0

0

0

0

0.05

0

0

0

0

0

0

0

0

0

0

0.09

0

0

0

0

0

0.15

0

0

0

0

0.09

0

0

0

0

0

0

0.1

0

0

0

0.02

0

0

0

0

0

0

0

0

0

0

0.04

0

0

0

0

0

0

0

0

0

0

0.09

0

0

0

0

0

0

0

0

0

0

0.09

Figure 2.2: Transpose of the coefficient matrix used to generate the VAR10(3).
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Figure 2.3: Mean ± standard deviation for the absolute difference between the real and estimated
coefficients (left: VAR with 2 data owners, right: VAR with 10 data owners).

Figure 2.3 summarizes the mean and the standard deviation of the absolute difference
between the real and estimated coefficients for both VAR processes from the 100 simu-
lations. The greater the noise b, the greater the distortion of the estimated coefficients.
Moreover, the Laplace distribution, which has desirable properties to make data private
according to a differential privacy framework, registered the greater distortion in the esti-
mated model.

Using the original data, the ADMM solution tended to stabilize after 50 iterations,
and the value of the coefficients was correctly estimated (the difference was approximately
zero). The distorted time series converged faster, but the coefficients deviated from the real
ones. In fact, adding noise contributed to decreasing the absolute value of the coefficients.
That is, the relationships between the time series weakened.

These experiments allow us to draw conclusions about the use of differential privacy. The
Laplace distribution has advantageous properties, since it ensures ε-differential privacy
when random noise follows L(0, ∆f1

ε ). For the VAR with two data owners, ∆f1 ≈ 12,
since the observed values are in the interval [−6, 6]. Therefore, ε = 20 when L(0, 0.6) and
ε = 15 when L(0, 0.8), meaning that the data still encompass much relevant information.
Finally, we verified the impact of noise addition on forecasting performance. Figure 2.4
illustrates the improvement of each estimated VAR2(2) model (with and without noise
addition) over the autoregressive (AR) model estimated with original time series, in which
collaboration is not used. This improvement was measured in terms of the Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE). In the case of ten data owners and
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Figure 2.4: Improvement (%) of VAR2(2) model over AR(2) model, in terms of MAE and RMSE
for synthetic data.
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Figure 2.5: Improvement (%) of VAR model over AR model, in terms of MAE and RMSE for
synthetic data.

when using data without noise, seven data owners improved their forecasting performance,
which was expected from the coefficient matrix in Figure 2.2. When Laplacian noise was
applied to the data, only one data owner (the first one) improved its forecasting skill (when
compared to the AutoRegressive (AR) model) by using the estimated VAR model. Even
though the masked data continued to provide relevant information, the model obtained
for the Laplacian noise performed worse than the AR model for the second data owner,
making the VAR useless for the majority of the data owners.

However, these results cannot be generalized for all VAR models, especially regarding
the illustrated VAR10(3), which is very close to the AR(3) model. Given that, we con-
ducted a third experiment, in which 200 random coefficient matrices were generated for a
stationary VAR2(2) and VAR10(3) following the algorithm proposed by Ansley and Kohn
[168]. Usually, the generated coefficient matrix has no null entries and the higher values
are not necessarily found on diagonals. Figure 2.5 illustrates the improvement for each
data owner when using a VAR model (with and without noise addition) over the AR
model. In this case, the percentage of times the AR model performed better than the
VAR model with distorted data was smaller, but the degradation of the models was still
noticeable, especially in the case with ten data owners.

Wind Power Data

The method was also evaluated in a real dataset, comprising hourly time series of wind
power generation in 10 zones, corresponding to 10 wind farms in Australia [25]. These data
was used in the Global Energy Forecasting Competition 2014 (GEFCom2014), covering
the period from January 1, 2012 to November 30, 2013. The power generation for the next
hour was modeled through the VAR model, which combined data from the 10 data owners
and considered three consecutive lags (1h, 2h, and 3h), based on the partial correlation
discussed in Section II.3.2 of Prologue II. Figure 2.6 (a) summarizes the improvement for
the 10 wind power plants over the autoregressive model, in terms of the MAE and RMSE.
In both metrics, all data owners improved their forecasting accuracy when using data from
other data owners. Although the data obtained after adding Laplacian noise retained its
temporal dependency, as illustrated in Figure 2.6 (b), in general the corresponding VAR
model was useless for all data owners.
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Figure 2.6: Results for real case-study with wind power time series.

Solar Power Data

Furthermore, the method was evaluated in a real dataset comprising hourly time series of
solar power generation from 44 micro-generation units located in Évora city (Portugal),
covering the period from February 1, 2011 to March 6, 2013. As in Cavalcante and Bessa
[169], records corresponding to a solar zenith angle higher than 90◦ were removed, in order
to take off nighttime hours (i.e., hours without any generation). To make the time series
stationary, a normalization of the solar power was applied by using a clear-sky model
(see [37]) that gives an estimate of solar power under clear sky conditions at any given
time. The power generation for the next hour was modeled through the VAR model,
which combined data from the 44 data owners and considered three non-consecutive lags
(1h, 2h, and 24h). These lags were selected based on the partial correlation between the
multiple lagged time series. Figure 2.7 (a) summarizes the improvement for the 44 solar
power plants over the autoregressive model, in terms of the MAE and RMSE. The quartile
25% shows that the MAE improved by at least 10% for 33 of the 44 solar power plants,
when the data owners share their observed data. The improvement to the RMSE was
not as significant, but is still greater than zero. Although the data obtained after adding
Laplacian noise retained its temporal dependency, as illustrated in Figure 2.7 (b), the
corresponding VAR model was useless for 4 of the 44 data owners.
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Figure 2.7: Results for real case-study with solar power time series.
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When considering the RMSE, 2 of the 44 data owners obtain better results by using an
autoregressive model. Once again, the resulting model suffers a significant reduction in
terms of forecasting capability.

2.3.2 Linear Algebra-based Protocols

Let us consider a case with two data owners. Since the multivariate least squares estimate
for the VAR model with covariates Z = [ZA1 ,ZA2 ] and target Y = [YA1 ,YA2 ] is

B̂LS =

([
Z>A1

Z>A2

]
[ZA1 ,ZA2 ]

)−1([
Z>A1

Z>A2

]
[YA1 ,YA2 ]

)
(2.29)

=

(
Z>A1

ZA1 Z>A1
ZA2

Z>A2
ZA1

Z>A2
ZA2

)−1(
Z>A1

YA1 Z>A1
YA2

Z>A2
YA1

Z>A2
YA2

)
, (2.30)

the data owners need to jointly compute Z>A1
ZA2 , Z>A1

YA2 and Z>A2
YA1 .

As mentioned in the introduction of Section 2.2.2, the work of Du et al. [117] proposed
protocols for secure matrix multiplication for situations where two data owners observe the
same common target matrix and different confidential covariates. Unfortunately, without
assuming a trusted third entity for generating random matrices, the proposed protocol
fails when applied to the VAR model. This is because 2(T − 1)p values of the covariate
matrix Z ∈ RT×2p are included in the target matrix Y ∈ RT×2, which is also undisclosed.
Additionally, ZAi ∈ RT×p has T + p − 1 unique values instead of Tp – regarding which,
see Figure II.10 in Prologue II.

Proposition 1 Consider a case in which two data owners with private data ZAi ∈ RT×p
and YAi ∈ RT×1, want to estimate a VAR model without trusting a third entity, i ∈ {1, 2}.
Assume that the T records are consecutive, as well as the p lags. The multivariate least
squares estimate for the VAR model with covariates Z = [ZA1 ,ZA2 ] and target Y =
[YA1 ,YA2 ] requires the computation of Z>A1

ZA2, Z>A1
YA2 and Z>A2

YA1.

If data owners use the protocol proposed by [117] for computing such matrices, then the
information exchanged allows to recover data matrices.

Proof As in [117], let us consider a case with two data owners without a third entity
generating random matrices.

In order to compute Z>A1
ZA2 both data owners define a matrix M ∈ RT×T and compute

its inverse M−1. Then, the protocol stipulates that

Z>A1
ZA2 = Z>A1

MM−1ZA2 = A[Mleft,Mright]

[
(M−1)top
(M−1)bottom

]
ZA2

= Z>A1
Mleft(M

−1)topZA2︸ ︷︷ ︸
derived by Owner #1

+ Z>A1
Mright(M

−1)bottomZA2︸ ︷︷ ︸
derived by Owner #2

,

requiring the data owners to share Z>A1
Mright ∈ Rp×T/2 and (M−1)topZA2 ∈ RT/2×p,

respectively. This implies that each data owner shares pT/2 values.

Similarly, the computation of Z>A1
YA2 implies that the data owners define a matrix

M∗, and share Z>A1
M∗

right ∈ Rp×T/2 and (M∗−1)topYA2 ∈ RT/2×p, respectively, providing

new pT/2 values. This means that Owner #2 receives Z>A1
Mright and Z>A1

M∗
right, i.e., Tp

values, and may recover ZA1 , which consists of Tp values and represents a confidentiality
breach. Furthermore, when considering a VAR model with p lags, ZA1 has T + p − 1
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unique values, meaning there are fewer values to recover. Analogously, Owner #1 may
recover ZA2 through the matrices shared for the computation of Z>A1

ZA2 and Z>A2
YA1 .

Finally, when considering a VAR with p lags, YAi only has p values that are not in ZAi .
While computing Z>A1

YA2 , Owner #1 receives T/2 values from (M∗−1)topYA2 ∈ RT/2×1,
such that a confidentiality breach can occur (in general T/2 > p). In the same way,
Owner #2 recovers YA1 when computing Z>A2

YA1 . �

The main disadvantage of linear algebra-based methods is that they do not take into
account that, in the VAR model, both target variables and covariates are private, and that
a large proportion of the covariates matrix is determined by knowing the target variables.
This means that the data shared between data owners may be enough for competitors to
be able to reconstruct the original data. For the method proposed by [118], a consequence
of such data is that the assumption rank

(
(I−WW>)C

)
= m−g may still provide a

sufficient number of linearly independent equations on the other data owner’s data to
recovering the latter’s data.

2.3.3 ADMM Method and Central Node

Zhang and Wang [158] offered a promising approach to dealing with the problem of pri-
vate data during the ADMM iterative process described by (II.53). According to their
approach, for each iteration k, each data owner i communicates local results, ZAiB

k
Ai

,

to the central node, ZAi ∈ RT×p,Bk
Ai
∈ Rp×n, i ∈ {1, . . . , n}. Then, the central node

computes the intermediate matrices in (II.53b)-(II.53c), i.e.,

H
k+1

=
1

N + ρ

(
Y + ρZB

k+1
+ ρUk

)
,

Uk+1 = Uk + ZB
k+1 −H

k+1
,

and returns the matrix H
k − ZB

k −Uk to each data owner, in order to update BAi in
the next iteration, as seen in (II.53a). Figure 2.8 illustrates this method for the LASSO-
VAR with three data owners. In this solution, there is no direct exchange of private data.
However, as we explain next, not only can the central node recover the original data, but
also the individual data owners can obtain a good estimation of the data used by their
competitors.

Central
Node

ZB
k

ZB
k+13

H
k

H
k+13

U
k

U
k+13

Owner #1 Bk
A1

Bk+1
A1

1

Owner #2 Bk
A2

Bk+1
A2

1

Owner #3 Bk
A3

Bk+1
A3

1

H
k+1 − ZB

k+1 −Uk+1
4

ZA1B
k+1
A1

2

H
k+1 − ZB

k+1 −Uk+1
4

ZA2B
k+1
A2

2

H
k+1 − ZB

k+1 −Uk+1
4

ZA3B
k+1
A3

2

Figure 2.8: Distributed ADMM LASSO-VAR with a central node and 3 data owners (related to
the algorithm in (II.53)).
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Proposition 2 In the most optimistic scenario, without repeated values in YAi ∈ RT×1

and ZAi ∈ RT×p, when applying the algorithm from [156] to solve the LASSO-VAR model
in (II.53), the central agent can recover the sensible data after

k =

⌈
Tp

Tn− pn

⌉
(2.31)

iterations, where dxe denotes the ceiling function.

Proof Using the notation of Section II.3.2, each of the n data owners is assumed to
use the same number of lags p to fit a LASSO-VAR model with a total number of T
records. (Importantly, T > np; otherwise more coefficients must be determined than
system equations.) After k iterations, the central node receives a total of Tnk values
from each data owner i, corresponding to ZAiB

1
Ai
,ZAiB

2
Ai
, ...,ZAiB

k
Ai
∈ RT×n, and does

not know pnk + Tp, corresponding to B1
Ai
, ...,Bk

Ai
∈ Rp×n and ZAi∈ RT×p, respectively,

i ∈ {1, ..., n}. Given that, the solution of the inequality

Tnk ≥ pnk + Tp , (2.32)

in k suggests that a confidentiality breach can occur after

k =

⌈
Tp

Tn− pn

⌉
(2.33)

iterations. Since T tends to be large, k tends to dp/ne, which may represent a confiden-
tiality breach if the number of iterations required for the algorithm to converge is greater
than dp/ne.

�

Proposition 3 In the most optimistic scenario, without repeated values in YAi ∈ RT×1

and ZAi ∈ RT×p, when applying the algorithm from [156] to solve the LASSO-VAR model
in (II.53), the data owners can recover sensible data from competitors after

k =

⌈
Tn+ (n− 1)(Tp+ T )

Tn− (n− 1)pn

⌉
(2.34)

iterations.

Proof Without loss of generality, Owner #1 is considered a semi-trusted data owner. (A
semi-trusted data owner completes and shares his/her computations faithfully, but tries
to learn additional information while or after the algorithm runs.) For each iteration k,

this data owner receives the intermediate matrix H
k− ZB

k︸︷︷︸
= 1
n

∑n
i=1 ZAiB

k
Ai

−Uk∈ RT×n, which

provides Tn values. However, Owner #1 does not know

−Uk + H
k︸ ︷︷ ︸

∈RT×n

, Bk
A2
, . . . ,Bk

An︸ ︷︷ ︸
n− 1 matrices ∈ Rp×n

, ZA2 , . . . ,ZAn︸ ︷︷ ︸
n− 1 matrices ∈ RT×p

, YA2 , . . . ,YAn︸ ︷︷ ︸
n− 1 matrices ∈ RT×1

,

which corresponds to Tn+(n−1)pn+(n−1)Tp+(n−1)T values. Nevertheless, since all the

data owners know that H
k

and Uk are defined by the expressions in (II.53b) and (II.53c),
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it is possible to perform some simplifications in which Uk and H
k − ZB

k −Uk becomes
(2.35) and (2.36), respectively:

Uk (II.53c)
= Uk−1 + ZB

k −H
k

= Uk−1 + ZB
k − 1

N + ρ

(
Y + ρZB

k
+ ρUk−1

)
︸ ︷︷ ︸

= H
k
, according to (II.53b)

=
[
1− ρ

N + ρ

]
Uk−1 +

[
1− ρ

N + ρ

]
ZB

k − 1

N + ρ
Y ,

(2.35)

H
k−ZB

k−Uk=
1

N + ρ

(
Y + ρZB

k
+ ρUk−1

)
︸ ︷︷ ︸

=H
k
, according to (II.53b)

−ZB
k −Uk.

(2.36)

Therefore, the iterative process of finding the competitors’ data proceeds as follows:

1. Initialization: The central node generates U0 ∈ RT×n, and the ith data owner
generates B1

Ai
∈ Rp×n, i ∈ {1, ..., n}.

2. Iteration #1: The central node receives ZAiB
1
Ai

and computes U1, returning H
1 −

ZB
1−U1 ∈ RT×n which is returned for all n data owners. At this point, Owner #1

receives Tn values and does not know

U0︸︷︷︸
∈RT×n

, B1
A2
, ...,B1

An︸ ︷︷ ︸
n− 1 matrices ∈ Rp×n

, ZA2 , ...,ZAn︸ ︷︷ ︸
n− 1 matrices ∈ RT×p

,

and n−1 columns of Y ∈ RT×n, corresponding to Tn+ (n− 1)[pn+ Tp+ T ] values.

3. Iteration #2: The central node receives ZAiB
2
Ai

and computes U2, returning H
2 −

ZB
2−U2 for the n data owners. At this point, only new estimations for the matrices

BA2 , ...,BAn were introduced in the system, which means more (n−1)pn values must
be estimated.

As a result, after k iterations, Owner #1 has received ZAiB
1
Ai
, . . . ,ZAiB

k
Ai
∈ RT×n corre-

sponding to Tnk values and needs to estimate

U0︸︷︷︸
∈RT×n

,B1
A2
, ...,B1

An ,B
2
A2
, ...,B2

An , . . . ,B
k
A2
, ...,Bk

An︸ ︷︷ ︸
(n− 1)k matrices ∈ Rp×n

, ZA2 , ...,ZAn︸ ︷︷ ︸
n− 1 matrices ∈ RT×p

,

and n−1 columns of Y ∈ RT×n, corresponding to Tn+(n−1)[kpn+Tp+T ]. Then, the
solution for the inequality

Tnk ≥ Tn+ (n− 1)[kpn+ Tp+ T ], (2.37)

suggests that a confidentiality breach may occur after

k =

⌈
Tn+ (n− 1)(Tp+ T )

Tn− (n− 1)pn

⌉
(2.38)

iterations. �

Figure 2.9 illustrates the k value for different combinations of T , n, and p. In general,
the greater the number of records T , the smaller the number of iterations necessary
for a confidentiality breach. This is because more information is shared during each
iteration of the ADMM algorithm. By contrast, the number of iterations before a possible
confidentiality breach increases with the number of data owners (n). The same is true for
the number of lags (p).
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Figure 2.9: Number of iterations until a possible confidentiality breach, considering the central-
ized ADMM-based algorithm in [156].

2.3.4 ADMM Method and Noise Mechanisms

The target matrix Y = [YA1 , . . . ,YAn ] corresponds to the sum of private matrices IYAi
∈

RT×n. That is,
y1,t y2,t . . . yn,t
y1,t+1 y2,t+1 . . . yn,t+1

y1,t+2 y2,t+2 . . . yn,t+2

...
. . .

...
y1,t+h y2,t+h . . . yn,t+h


︸ ︷︷ ︸

Y

=


y1,t 0 . . . 0
y1,t+1 0 . . . 0
y1,t+2 0 . . . 0
...

. . .
...

y1,t+h 0 . . . 0


︸ ︷︷ ︸

IYA1

+


0 y2,t . . . 0
0 y1,t+1 . . . 0
0 y1,t+2 . . . 0
...

. . .
...

0 y1,t+h . . . 0


︸ ︷︷ ︸

IYA2

+ · · ·+


0 0 . . . yn,t
0 0 . . . yn,t+1

0 0 . . . yn,t+2

...
. . .

...
0 0 . . . yn,t+h


︸ ︷︷ ︸

IYAn

,

(2.39)
where [IYAi

]i,j=[Y]i,j in cases where the entry (i, j) of Y is from ith data owner and
[IYAi

]i,j=0 otherwise.
Since the LASSO-VAR ADMM formulation is provided by (II.53), at iteration k, the

data owners receive the intermediate matrix H
k −ZB

k −Uk and then update their local
solution through (II.53a). The combination of (2.35) with (2.39) can be used to rewrite
Uk as

Uk =
[
1− ρ

N + ρ

]
Uk−1 +

n∑
i=1

[
1− ρ

N + ρ

] 1

n
ZAiB

k
Ai −

1

N + ρ
IYAi︸ ︷︷ ︸

information from owner i

, (2.40)

and, similarly, H
k − ZB

k
can be rewritten as

H
k − ZB

k
=

1

N + ρ
Y +

[ ρ

N + ρ
− 1
]
ZB

k
+

ρ

N + ρ
Uk−1 −Uk

=

n∑
i=1

( 1

N + ρ
IYAi

+
[ ρ

N + ρ
− 1
] 1

n
ZAiB

k
Ai

)
︸ ︷︷ ︸

information from owner i

+
ρ

N + ρ
Uk−1 −Uk ,

(2.41)
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where

Y =
n∑
i=1

IYAi
, (2.42)

ZB
k+1

=
n∑
i=1

ρ

n
ZAiB

k+1
Ai

. (2.43)

By analyzing (2.40) and (2.41), it is possible to verify that data owner i only needs to
share

1

N + ρ
IYAi

+
[ ρ

N + ρ
− 1
] 1

n
ZAiB

k
Ai , (2.44)

for the computation of H
k − ZB

k −Uk.

Let W1,Ai ∈ RT×n, W2,Ai ∈ RT×p, W3,Ai ∈ Rp×n, W4,Ai ∈ RT×n, represent noise
matrices generated according to the differential privacy framework. The noise mechanism
could be introduced by

(i) adding noise to the data itself, i.e., replacing IYAi
and ZAi by

IYAi
+ W1,Ai and ZAi + W2,Ai , (2.45)

(ii) adding noise to the estimated coefficients, i.e., replacing Bk
Ai

by

Bk
Ai + W3,Ai , (2.46)

(iii) adding noise to the intermediate matrix (2.44),

1

N + ρ
IYAi

+
[ ρ

N + ρ
− 1
] 1

n
ZAiB

k
Ai + W4,Ai . (2.47)

The addition of noise to the data itself (2.45) was empirically analyzed in Section 2.3.1.
As we showed, confidentiality comes at the cost of deteriorating model accuracy. The
question is whether adding noise to the coefficients or intermediate matrix can ensure that
data are not recovered after a number of iterations.

Proposition 4 Consider noise addition in an ADMM-based framework by

(i) adding noise to the coefficients, as described in (2.46);

(ii) adding noise to the exchanged intermediate matrix, as described in (2.47).

In both cases, a semi-trusted data owner can recover the data after

k =

⌈
Tn+ (n− 1)(Tp+ T )

Tn− (n− 1)pn

⌉
(2.48)

iterations.

Proof These statements are promptly deduced from the Proof presented for Proposi-
tion 3. Without loss of generality, Owner #1 is considered the semi-trusted data owner.
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(i) Owner #1 can estimate BAi , without distinguishing between BAi and W3,Ai in (2.46),

by recovering IYAi
and ZAi . Let B′Ai = BAi + W3,Ai and H′

k
, U′k be the ma-

trices H
k
, Uk replacing BAi by B′Ai . Then, at iteration k Owner #1 receives

H′
k − ZB′

k −U′k ∈ RT×n (Tn values) and does not know

H′
k −U′k︸ ︷︷ ︸
∈RT×n

, B′
k
A2
, . . . ,B′

k
An︸ ︷︷ ︸

n− 1 matrices ∈ Rp×n

, ZA2 , . . . ,ZAn︸ ︷︷ ︸
n− 1 matrices ∈ RT×p

, YA2 , . . . ,YAn︸ ︷︷ ︸
n− 1 matrices ∈ RT×1

,

which corresponds to Tn+(n−1)pn+(n−1)Tp+(n−1)T values. As in Proposition 3,
this means that, after k iterations, Owner #1 has received Tnk values and needs to
estimate

U′0︸︷︷︸
∈RT×n

,B′1A2
, ...,B′1An ,B

′2
A2
, ...,B′2An , . . . ,B

′k
A2
, ...,B′kAn︸ ︷︷ ︸

(n− 1)k matrices ∈ Rp×n

, ZA2 , ...,ZAn︸ ︷︷ ︸
n− 1 matrices ∈ RT×p

,

and n−1 columns of Y ∈ RT×n, corresponding to Tn+(n−1)[kpn+Tp+T ]. Then,
the solution for the inequality Tnk ≥ Tn + (n − 1)[kpn + Tp + T ] suggests that a
confidentiality breach may occur after

k =

⌈
Tn+ (n− 1)(Tp+ T )

Tn− (n− 1)pn

⌉
iterations.

(ii) Since Owner #1 can estimate BAi by recovering data, adding noise to the interme-
diate matrix reduces to the case of adding noise to the coefficients, in (i), because
Owner #1 can rewrite (2.47) as

1

N + ρ
IYAi

+
[ ρ

N + ρ
− 1
] 1

n
ZAi

[
Bk
Ai +

[ ρ

N + ρ
− 1
]−1

Z−1
Ai

W4,Ai︸ ︷︷ ︸
=B′Ai

]
. (2.49)

�

2.4 Discussion

Table 2.1 summarizes the methods from the literature. These privacy-preserving algo-
rithms ought to be carefully constructed, and two key components should be considered:
(i) how data are distributed between data owners, and (ii) the statistical model used.
Decomposition-based methods are very sensitive to data partitioning, while data trans-
formation and cryptography-based methods are very sensitive to the problem structure.
Differential privacy methods are notable exceptions, as they simply add random noise,
from specific probability distributions, directly to the data. This property makes these
methods appealing, but differential privacy usually involves a trade-off between accuracy
and privacy.

Cryptography-based methods are usually more robust to confidentiality breaches, but
they have some disadvantages: (i) some of them require a third-party to generate keys,
as well as external entities to perform the computations in the encrypted domain; and
(ii) there are challenges to the scalability and implementation efficiency, mostly due to
the high computational complexity and overhead of existing homomorphic encryption
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Table 2.1: Summary of state-of-the-art privacy-preserving approaches.

Split by features Split by records
Data Transformation [134] [131], [132], [135]
Secure Multi-party
Computation

Linear Algebra [117], [118], [136],
[137]*, [138]

[136], [148]

Homomorphic-
cryptography

[114], [139], [142], [160] [114], [139], [140],
[141], [143], [160]

Decomposition-based
Methods

Pure [123], [158] [119], [120], [170],
[152]

Linear Algebra [161], [163] [153], [154], [155],
[166]

Homomorphic-
cryptography

[114], [144]*, [145]*,
[146]*, [122], [171],
[157], [164]

[114], [156], [122],
[171]

* secure data aggregation.

schemes [147, 149, 150]. Regarding some protocols, such as secure multiparty computation
through homomorphic cryptography, communication complexity grows exponentially with
the number of records [172].

Data transformation methods do not affect the computational time for training the
model, since data owners transform their data before the model fitting process. The same
is true of decomposition-based methods, in which data are split by data owners. Secure
multi-party protocols have the disadvantage of transforming the information while fitting
the statistical model, which implies a higher computational cost.

As mentioned above, the main challenge to the application of existing privacy-preserving
algorithms in the VAR model is the fact that Y and Z share a high percentage of values,
not only during the fitting of the statistical model but also when using it to perform
forecasts. A confidentiality breach can occur during the forecasting process if, after the
model is estimated, the algorithm to maintain privacy provides the coefficient matrix B
for all data owners. When using the estimated model to perform forecasts, we assume
that each ith data owner sends its own contribution for time series forecasting to every
other j-th data owner:

1. In the LASSO-VAR models with one lag, since ith data owner sends yi,t[B
(1)]i,j for

the jth data owner, the value yi,t may be directly recovered when the coefficient
[B(1)]i,j is known by all data owners, being [B(1)]i,j the coefficient associated with
lag 1 of time series i, to estimate j.

2. In the LASSO-VAR models with p consecutive lags, the forecasting a new timestamp
only requires the introduction of one new value in the covariate matrix of the ith data
owner. In other words, after h timestamps, the jth data owner receives the h values.
However, there are h + p values that the data owner does not know about. This
may represent a confidentiality breach, since a semi-trusted data owner can assume
different possibilities for the initial p values and then generate possible trajectories.

3. In the LASSO-VAR models with p non-consecutive lags, p1, . . . , pp, after pp − pp−1

timestamps, only one new value is introduced in the covariate matrix, meaning that
the model is also subject to a confidentiality breach.

Therefore, and considering the issue of data naturally split by features, it would be more
advantageous to apply decomposition-based methods, since the time required for model
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fitting is unaffected by data transformations and data owners only have access to their
own coefficients. However, with state-of-the-art approaches, it is difficult to guarantee
that these techniques can indeed offer a robust solution to data privacy when addressing
data split by features.

Finally, we offer a remark on specific business applications of VAR, where data owners
know some exact past values of competitors. For example, consider a VAR model with
lags ∆t = 1, 2 and 24, which predicts the production of solar plants. When forecasting
the first sunlight hour of a day, all data owners will know that the previous lags 1 and 2
have zero production (no sunlight). Irrespective of whether the coefficients are shared, a
confidentiality breach may occur. In these special cases, the estimated coefficients cannot
be used for a long time horizon, and online learning may represent an efficient alternative.

The privacy issues analyzed in this chapter are not restricted to the VAR model, nor
to point forecasting tasks. Probabilistic forecasts, using data from different data own-
ers (or geographical locations), can be generated with splines quantile regression [78],
component-wise gradient boosting [173], a VAR that estimates the location parameter
(mean) of data transformed by a logit-normal distribution [174], linear quantile regression
with LASSO regularization [175], and others. These are some examples of collaborative
probabilistic forecasting methods. However, none of them considers the confidentiality
of data. Moreover, the method proposed by [174] can be influenced by the confidential-
ity breaches discussed throughout this chapter, since the VAR model is directly used to
estimate the mean of transformed data from different data owners. By contrast, when
performing non-parametric models such as quantile regression, each quantile is estimated
by solving an independent optimization problem, which means that the risk of a confiden-
tiality breach increases with the number of quantiles being estimated. (Note that quantile
regression-based models may be solved through the ADMM [156]. However, as discussed
in Section 2.2.3, a semi-trusted agent can collect enough information to infer the confi-
dential data. The quantile regression method may also be estimated by applying linear
programming algorithms [175], which may be solved through homomorphic encryption,
despite being computationally demanding for high-dimensional multivariate time series.

2.5 Concluding Remarks

This chapter presented a critical overview of techniques used to handle privacy issues in
collaborative forecasting methods. In addition, we analyzed their application to the VAR
model. The techniques were divided into three groups of approaches: data transformation,
secure multiparty computation, and decomposition of the optimization problem into sub-
problems.

For each group, several points can be concluded. Starting with data transformation
techniques, two remarks were made. The first concerns the addition of random noise
to the data. While the algorithm is simple to apply, this technique demands a trade-
off between privacy and the correct estimation of the model’s parameters [114]. In our
experiments, there was clear model degradation even though the data continued to pro-
vide relevant information (Section 2.3.1). The second relates to the multiplication by an
undisclosed random matrix. Ideally, and in what concerns data where different data own-
ers observe different variables, this secret matrix would post-multiply data, thus enabling
each data owner to generate a few lines of this matrix. However, as demonstrated in (2.8)
in Section 2.2.1, this transformation does not preserve the estimated coefficients, and the
reconstruction of the original model may require sharing the matrices used to encrypt the
data, thus exposing the original data.
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The second group of techniques, secure multi-party computation, introduce privacy to
the intermediate computations by defining the protocols for addition and multiplication
of the private datasets. Confidentiality breaches are avoided by using either linear algebra
or homomorphic encryption methods. For independent records, data confidentiality is
guaranteed for (ridge) linear regression through linear algebra-based protocols; not only
do records need to be independent, but some also require that the target variable is known
by all data owners. These assumptions might prevent their application when covariates
and target matrices share a large proportion of values–in the case of the VAR model, for
instance. This means that data shared between agents might be enough for competitors
to be able to reconstruct the data. Homomorphic cryptography methods can result in
computationally demanding techniques, since each dataset value must be encrypted. The
protocols we discussed preserve privacy while using (ridge) linear regression, provided
that there are two entities that correctly perform the protocol without agent collusion.
These entities are an external server (e.g., a cloud server) and an entity that generates
the encryption keys. In some approaches, all data owners know the coefficient matrix B
after model estimation. This is a disadvantage when applying models in which covariates
include the lags of the target variable, because confidentiality breaches can occur during
the forecasting phase.

Finally, decomposition of the optimization problem into sub-problems (which can be
solved in parallel) have all the desired properties of a collaborative forecasting problem,
since data owners only estimate their own coefficients. A common assumption of such
methods is that the objective function is decomposable. However, these approaches consist
of iterative processes that require sharing intermediate results for the next update, meaning
that each new iteration conveys more information about the secret datasets to the data
owners, with the possibility of breaching data confidentiality.

A method will be proposed in the next chapter (Chapter 3) to solve the privacy limita-
tions of the LASSO-VAR model here identified. Furthermore, even if privacy is ensured,
a data owner may be unwilling to share their data, therefore an algorithmic solution for
data monetization will be proposed in Chapter 4.
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3

Privacy-preserving Distributed Learning for
RES Forecasting

Data exchange between multiple renewable energy power plant owners can lead to an
improvement in forecast skill thanks to the spatio-temporal dependencies in time series
data. However, owing to business competitive factors, these different owners might be
unwilling to share their data. In order to tackle this privacy issue, this chapter formulates a
novel privacy-preserving framework that combines data transformation techniques with the
alternating direction method of multipliers. This approach allows not only to estimate the
model in a distributed fashion but also to protect data privacy, coefficients and covariance
matrix. Besides, asynchronous communication between peers is addressed in the model
fitting, and two different collaborative schemes are considered: centralized and peer-to-
peer. The results for solar and wind energy datasets show that the proposed method
is robust to privacy breaches and communication failures, and delivers a forecast skill
comparable to a model without privacy protection.

3.1 Introduction

The forecast skill of Renewable Energy Sources (RES) has improved over the past two
decades through R&D activities across the complete model chain, i.e., from Numerical
Weather Prediction (NWP) to statistical learning methods that convert weather variables
into power forecasts [29]. The need to bring forecast skill to significantly higher levels
is widely recognized in the majority of roadmaps that deal with high RES integration
scenarios for the next decades. This is expected not only to facilitate RES integration in
the system operation and electricity markets but also to reduce the need for flexibility and
associated investment costs on remedies that aim to hedge RES variability and uncertainty
like storage, demand response, and others.

In this context, intraday and hour-ahead electricity markets are becoming increasingly
important to handle RES uncertainty and thus accurate hours-ahead forecasts are essen-
tial. Recent findings showed that feature engineering, combined with statistical models,
can extract relevant information from spatially distributed weather and RES power time
series and improve hours-ahead forecast skill [29]. Indeed, for very short-term lead times
(from 15 minutes to 6 hours ahead), the Vector AutoRegressive (VAR) model, when com-
pared to univariate time series models, has shown competitive results for wind [78] and
solar [84] power forecasting. Alternative models are also being applied to this problem,
most notably deep learning techniques such as convolutional neural networks or long short-
term memory networks [88]. While there may always be a debate about the interest and
relevance of statistical modeling vs. machine learning approaches, VAR models have the
advantages of flexibility, interpretability, acceptability by practitioners, as well as robust-
ness in terms of forecast skill.
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Five important challenges for RES forecasting have been identified when using VAR:
(a) sparse structure of the coefficients’ matrix [176], (b) uncertainty forecasting [174],
(c) distributed learning [81], (d) online learning [177], and (e) data privacy.

Data privacy is a critical barrier to the application of collaborative forecasting models.
Although multivariate time series models offer forecast skill improvement, the lack of
privacy-preserving mechanisms makes data owners unwilling to cooperate. For instance,
in the VAR model, the covariates are the lags of the target variable of each RES site, which
means that agents (or data owners) cannot provide covariates without also providing their
power measurements.

To the best of our knowledge, only three works have proposed privacy-preserving ap-
proaches for RES forecasting. Zhang and Wang described a privacy-preserving approach
for wind power forecasting with off-site time series, which combined ridge linear quantile
regression with Alternating Direction Method of Multipliers (ADMM) [158]. However,
privacy with ADMM is not always guaranteed since it requires intermediate calculations,
allowing the most curious competitors to recover the data at the end of several itera-
tions, as shown in Section 2.3.3. Moreover, the central node can also recover the original
and private data. Sommer et al. [178] considered an encryption layer, which consists
of multiplying the data by a random matrix. However, the focus of this work was not
data privacy, but rather online learning, and the private data are revealed to the cen-
tral agent who performs intermediary computations. Berdugo et al. described a method
based on local and global analog-search (i.e., template matching) that uses solar power
time series from neighboring sites [179]. However, agents only share reference time-stamps
and normalized weights of the analogs identified by the neighbors, hence forecast error is
only indirectly reduced. In this chapter, we also use ADMM as a central framework for
distributed learning and forecasting, in view of its flexibility in terms of communication
setup for all agents involved, the possibility to add a privacy-preserving layer, as well as
the promising resulting forecast skill documented in the literature.

In the previous chapter, a literature analysis of privacy-preserving techniques for VAR
has grouped these techniques as (a) data transformation, such as the generation of random
matrices that pre- or post-multiply the data [180] or using principal component analysis
with differential privacy [181], (b) secure multi-party computation, such as linear algebra
protocols [182] or homomorphic encryption (encrypting the original data in a way that
arithmetic operations in the public space do not compromise the encryption [183]), and
(c) decomposition-based methods like the ADMM [184] or the distributed Newton-Raphson
method [185]. The main conclusions were that data transformation requires a trade-off
between privacy and accuracy, secure multi-party computations either result in computa-
tionally demanding techniques or do not fully preserve privacy in VAR models, and that
decomposition-based methods rely on iterative processes and after a number of iterations,
the agents have enough information to recover private data.

With our focus on privacy-preserving protocols for very short-term forecasting with
the VAR model, the main research outcome from this chapter is a novel combination of
data transformation and decomposition-based methods so that the VAR model is fitted
in another feature space without decreasing the forecast skill (which contrasts with [179]).
The main advantage of this combination is that the ADMM algorithm is not affected and
therefore: (a) asynchronous communication between peers can be addressed while fitting
the model; (b) a flexible privacy-preserving collaborative model can be implemented using
two different schemes, centralized communication with a neutral node and peer-to-peer
communication, and in a way that original data cannot be recovered by central node or
peers (this represents a more robust approach compared to the ADMM implementation
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in [158, 178]).
The remaining of this chapter is organized as follows: Section 3.2 describes the dis-

tributed learning framework. Section 3.3 formulates a novel privacy-preserving Least Ab-
solute Shrinkage and Selection Operator (LASSO)-VAR model. Then, two case studies
with solar and wind energy data are considered in Section 3.4. Concluding remarks are
provided in Section 3.5.

3.2 Distributed Learning Framework

This section discusses the distributed learning framework that enables different agents
or data owners (e.g., RES power plant, market players, forecasting service providers) to
exploit geographically distributed time series data (power and/or weather measurements,
NWP, etc.) and improve forecast skill while keeping data private. In this context, data
privacy can either refer to commercially sensitive data from grid-connected RES power
plants or personal data (e.g., under European Union General Data Protection Regulation)
from households with RES technology. Distributed learning (or collaborative forecast-
ing) means that instead of sharing their data, the model fitting problem is solved in a
distributed manner. Two collaborative schemes are possible: centralized communication
with a central node (central hub) and peer-to-peer communication (P2P).

In the central hub model, the scope of the calculations performed by the agents is limited
by their local data and the only information transmitted to the central node is statistics,
e.g., average values or local data multiplied by locally estimated coefficients. The central
node is responsible for combining these local estimators and, when considering iterative
solvers like ADMM, coordinating the individual optimization processes to solve the main
optimization problem. The central node can be either a transmission/distribution system
operator (TSO/DSO) or a forecasting service provider. The TSO or DSO could operate a
platform that promotes collaboration between competitive RES power plants in order to
improve the forecasting accuracy and reduce system balancing costs. On the other hand,
the forecasting service provider could host the central node and make available APIs and
protocols for information (not data) exchange between different data owners, during model
fitting, and receives a payment for this service.

In the P2P, the agents equally conduct a local computation of their estimators, but
share their information with peers, meaning that each agent is itself agent and central
node. While P2P tends to be more robust (i.e., lower points of failure), it is usually
difficult to make it as efficient as the central hub model in terms of communication costs
— when considering n agents, each agent communicates with the remaining n−1.

The P2P model is suitable for data owners that do not want to rely (or trust) upon a
neutral agent. Potential business models could be: P2P forecasting between prosumers
or RES power plants [186]; smart cities characterized by an increasing number of sensors
and devices installed at houses, buildings, and transportation network [187].

In order to make these collaborative schemes feasible, the following fundamental princi-
ples must be respected: (a) ensure improvement in forecast skill, compared to a scenario
without collaboration; (b) guarantee data privacy, i.e., agents and the central node cannot
have access to (or recover) original data; (c) consider synchronous and asynchronous com-
munication between agents. The formulation that will be described in Section 3.3 fully
guarantees these three core principles.
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3.3 Privacy-preserving Distributed LASSO-VAR

Using the notation in Section II.3.2, n data owners are assumed to use the same number
of lags p to fit a LASSO-VAR model with a total number of T records. YAi ∈ RT×1

and ZAi ∈ RT×p respectively denote the target and covariate matrix for the ith data
owner. In LASSO-VAR, the covariates and target matrices are obtained by joining the
individual matrices column-wise, i.e., Z = [ZA1 , . . . ,ZAn ] and Y = [YA1 , . . . ,YAn ]. For
distributed computation, the coefficient matrix of data owner i is denoted by BAi ∈
Rp×n, i ∈ {1, . . . , n}.

When applying the collaboration schemes discussed in Section 3.2 to the distributed
ADMM LASSO-VAR formulation described in (II.53), at each iteration k each agent
determines and transmits (II.53a), given by

Bk+1
Ai

= arg min
BAi

(ρ
2
‖ZAiBk

Ai + H
k − ZB

k −Uk − ZAiBAi‖22 + λ‖BAi‖1
)

and then it is up to the central agent or peers (depending on the adopted structure) to
compute the quantities in (II.53b), i.e.,

H
k+1

=
1

n+ ρ

(
Y + ρZB

k+1
+ ρUk

)
and (II.53c), i.e.,

Uk+1 = Uk + ZB
k+1 −H

k+1
.

As shown in the previous chapter, although there is no direct exchange of private data,
the computation of (II.53b) and (II.53c) provides indirect information about these data,
meaning that confidentiality breaches can occur after a number of iterations.

This section describes the novel privacy-preserving collaborative forecasting method,
which combines multiplicative randomization of the data (Section 3.3.1) with the dis-
tributed ADMM for the generalized LASSO-VAR model (Section 3.3.2), which had been
previously formulated in Section II.3.2. Communication issues (Section 3.3.5) are also
addressed since they are common in distributed systems.

3.3.1 Data Transformation with Multiplicative Randomization

Multiplicative randomization of the data [188] consists of multiplying the data matrix
X ∈ RT×ns by full rank perturbation matrices. If the perturbation matrix M ∈ RT×T
pre-multiplies X, i.e., MX, the records are randomized. On the other hand, if perturbation
matrix Q ∈ Rns×ns post-multiplies X, i.e., XQ, then the features are randomized. The
challenges related to such transformations are two-fold: (i) M and Q are algebraic encryp-
tion keys, and consequently should be fully unknown by agents, (ii) data transformations
need to preserve the relationship between the original time series.

When X is divided by features, as is the case with matrices Z and Y when defining VAR
models, Q can be constructed as a diagonal matrix – see (3.1), where matrices in diagonal,
QAi ∈ Rs×s, are privately defined by agent i ∈ {1, . . . , n}. Then, agents post-multiply
their data without sharing QAi , since

[
XA1 ,. . . ,XAn

]︸ ︷︷ ︸
=X

QA1
0

. . .

0 QAn


︸ ︷︷ ︸

=Q

=
[
XA1QA1 ,. . . ,XAnQAn

]
. (3.1)
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Unfortunately, the same reasoning is not possible when defining M, because all elements
of column j of M multiplies all elements of row j in X (containing data from every agent).
Therefore, the challenge is to define a random matrix M, unknown but at the same time
built by all agents.

We propose to define M as

M = MA1MA2 . . .MAn , (3.2)

where MAi ∈ RT×T is privately defined by agent i. This means that

MX = [MA1 . . .MAnXA1︸ ︷︷ ︸
=MXA1

, . . . ,MA1 . . .MAnXAn︸ ︷︷ ︸
=MXAn

]. (3.3)

Some linear algebra-based protocols exist for secure matricial product, but they were
designed for matrices with independent observations and have proven to fail when applied
to such matrices as Z and Y (see Section 2.3.2 for a proof). The calculation of MXAi is
described in Algorithm 1:

Algorithm 1 Data Encryption.

Input from ith agent: XAi ∈ RT×s and MAi ∈ RT×T
Input from jth agent (j 6= i): MAj ∈ RT×T
Output: MXAi = MA1 . . .MAnXAi

1: Initialization: Agent i generates random invertible matrices CAi ∈ RT×(r−s), DAi ∈
Rr×r, and shares WAi ∈ RT×r with the n-th agent,

WAi = [XAi ,CAi ]DAi . (3.4)

2: Agent n receives WAi , ∀i.
3: Agent n shares MAnWAi with the (n− 1)-th agent.
4: for agent j = n− 1, . . . , 1 do

5: Agent j receives
(∏n

k=j+1 MAk

)
WAi , and

6: if j > 1 then

7: shares MAj

(∏n
k=j+1 MAk

)
WAi with agent j − 1

8: else
9: shares MAj

(∏n
k=j+1 MAk

)
WAi with agent i

10: end if
11: end for
12: Agent i receives MWAi from the 1-st agent and recovers MXAi ,

[MXAi ,MCAi ] = MWAiD
−1
Ai
. (3.5)

The privacy of this protocol depends on r, which is chosen according to the number
of unique values on XAi . The optimal value for r is discussed in Proposition 5 of Ap-
pendix A.2.

3.3.2 Formulation of the Collaborative Forecasting Model

When applying the ADMM algorithm, the protocol presented in the previous section
should be applied to transform matrices Z and Y in such a way that: (i) the estimated
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coefficients do not coincide with the originals, instead they are a secret transformation of
them, (ii) agents are unable to recover the private data through the exchanged information,
and (iii) cross-correlations cannot be obtained, i.e., agents are unable to recover Z>Z nor
Y>Y.

To fulfill these requirements, both covariate and target matrices are transformed through
multiplicative noise. Both M and Q must be invertible, which is ensured if MAi and QAi

are invertible for i ∈ {1, . . . , n}.

Formulation

Let ZQ be the covariate matrix obtained through (3.1) and Y the target matrix. Covariate
matrix ZQ is divided by features, and the optimization problem which allows recovering
the solution in the original space, i.e.,

arg min
B

(1

2
‖Y −

∑
i

ZAiBAi‖22 + λ
∑
i

‖BAi‖1
)
, (3.6)

is

arg min
Bpost

(1

2
‖Y−

∑
i

ZAiQAiB
post
Ai
‖22+λ

∑
i

‖QAiB
post
Ai
‖1
)
. (3.7)

After a little algebra, the relation between the ADMM solution for (3.6) and (3.7) is

Bpost
Ai

k+1
= QAiB

k+1
Ai

, (3.8)

suggesting coefficients’ privacy since the original B is no longer used. However, the lim-
itations identified in the previous chapter for (3.6) are valid for (3.7). That is, a curious
agent can obtain both Y and ZQ, and because Y and Z share a large proportion of values,
Z can also be recovered.

Taking covariate matrix MZQ and target MY, the ADMM solution for the optimization
problem

arg min
B′

(1

2
‖MY−

∑
i

MZAiQAiB
′
Ai‖22+λ

∑
i

‖QAiB
′
Ai‖1

)
, (3.9)

preserves the relation between the original time series if M is orthogonal, i.e., MM>=I.
In this case, a competitor can only obtain MY without distinguishing between M and
Y. But the orthogonality of M ensures that (MY)>MY = Y>Y, meaning that the
covariance matrix is not protected.

Note that the orthogonality of M is necessary to ensure that, while computing B′Ai ,

Q>AiZ
>
AiM

>
[
MZAiQAiB

′k
Ai −MZQB′

k
+ . . .

]
=

Q>AiZ
>
Ai

[
ZAiQAiB

′k
Ai − ZQB′

k
+ . . .

]
.

(3.10)

We remove the orthogonality condition on matrix M by using Q>AiZ
>
Ai

M−1 instead of

Q>AiZ
>
Ai

M>,

Q>AiZ
>
AiM

−1
[
MZAiQAiB

′k
Ai −MZQB′

k
+ . . .

]
. (3.11)

Our proposal requires agents to compute MZAiQAi , MYAi and Q>AiZ
>
Ai

M−1, where M
is a random invertible matrix. Algorithm 2 summarizes our proposal for estimating a
privacy-preserving LASSO-VAR model.
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Figure 3.1: Error evolution (left: global error; right: error by agent with black lines representing

the two agents who add random noise to MZAi
QAi

B′
k
Ai

).

Q>AiZ
>
Ai

M−1 is obtained by adapting Algorithm 1. In this case, the value of r is more

restrictive because we need to ensure that agent i does not obtain both Y>AiM
−1 and

MYAi . Otherwise, the covariance and cross-correlation matrices are again vulnerable.
Let us assume that ZAi and QAi represent u unique unknown values and YAi has v
unique unknown values that are not in ZAi . Then, privacy is ensured by computing
MZAiQAi and Q>AiZ

>
Ai

M−1 using the smaller integer r such that
√
Tp− u<r<T/2∧r > p,

and then MYAi with
√
T−v<r′<T−2r ∧ r′ > 1 (see Proposition 6 in Appendix A.2 for

determination of the optimal r). Appendix A.3 presents an analysis of the data privacy
for scenarios without and with collusion between agents (data owners) during encrypted
data exchange.

Finally, it is important to underline that Algorithm 2 can be applied to both central
hub model and P2P model schemes without any modification – depending on who (central
node or peers, respectively) receives MZAiQAiB

′k+1
Ai

and computes (3.13)–(3.15).

Malicious agents

The proposed approach assumes that agents should only trust themselves, requiring con-
trol mechanisms to detect when agents share wrong estimates of their coefficients, com-
promising the global model. Since MY and MZQB′k can be known by agents without
exposing private data, a malicious agent is detected through the analysis of the global
error ‖MY−MZQB′k‖22. That is, during the iterative process, this global error should
smoothly converge, as depicted in Figure 3.1 (left plot), and the same is expected for the
individual errors ‖MY−MZAiQAiB

′k
Ai‖22,∀i.

In the example of Figure 3.1, two agents are assumed to add random noise to their
coefficients. This results in the erratic curve for the global error shown in Figure 3.1. An
analysis of individual errors, in Figure 3.1 (right plot), shows that all agents have smooth
curves, except the two who shared distorted information.

3.3.3 Tuning of Hyperparameters

Since the ADMM solutions for (3.6) is related to the solution for (3.9), agents can tune
hyperparameters (ρ and λ) by applying common techniques, such as cross-validation grid-
search, Nelder-Mead optimization, Bayesian optimization, etc., to minimize the loss func-
tion in (3.9). This requires the definition of fitting and validation datasets and correspond-
ing encryption by Algorithm 1, taking into account that, for each fitting and validation
pair, the matrix QAi needs to be the same, but all the others should be changed to keep
data private.
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Algorithm 2 Synchronous Privacy-preserving LASSO-VAR.

Input: Randomized data MZAiQAi , MYAi , Q>AiZ
>
Ai

M−1

Output: Transformed coefficients B′Ai=QAiBAi , i=1, . . . , n

1: Initialization: B′0Ai , H
0
, U0 = 0, ρ ∈ R+, k = 0

2: for agent i = 1, . . . , n do

3: PAi =
(

(ZAiQAi)
>(ZAiQAi) + ρQ>AiQAi

)−1

4: end for
5: while stopping criteria not satisfied do
6: for agent i = 1, . . . , n do

7: Initialization: B̃0
Ai

, H̃
0
, Ũ0 = 0, j = 0

8:

KAi=MZAiQAiB
′k
Ai+H

k−MZQB′
k−Uk (3.12)

9: while stopping criteria not satisfied do

10: B̃j+1
Ai

= PAi

(
Q>AiZ

>
Ai

M−1KAi+ρ(H̃
j
−Ũj)

)
11: H̃

j+1
= Sλ/ρ

(
QAiB̃

j+1
Ai

+ Ũj
)

12: Ũj+1 = Ũj + QAiB̃
j+1
Ai
− H̃

j+1

13: j = j + 1
14: end while
15: B′k+1

Ai
= B̃j

Ai
16: end for

MZAiQAiB
′k
Ai is shared with peers or central node, who computes (3.13)–(3.15),

17: MZQB′
k

=
1

n

∑
i

MZAiQAiB
′k
Ai (3.13)

18:

H
k+1

=
1

n+ ρ

(
MY + MZQB′

k
+ ρUk

)
(3.14)

19: Uk+1 = Uk + MZQB′
k+1 −H

k+1
(3.15)

20: k = k + 1
21: end while
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Table 3.1: Floating-point operations in Algorithm 1.

Encrypted information Operations

(MZAi
QAi

, Q>Ai
Z>Ai

M−1) O(2Tr2 + 2T 2nr + T (p2 + r2))

MYAi O(Tr′2 + T 2nr′ + Tr′2)
∗ r = max(d√Tp− ue, p+ 1) and

√
T−v<r′<T−2r ∧ r′ > 1
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Figure 3.2: Mean running time as a function of the number of agents.

3.3.4 Computational Complexity

Typically, the computational complexity of an algorithm is estimated by the number of
required floating-point operations (defined as one addition, subtraction, multiplication,
or division of two floating-point numbers). When compared to the existing distributed
ADMM literature applied to the LASSO-VAR model (e.g., [81, 169]), the computational
complexity of the ADMM algorithm remains almost the same – only p2n extra floating-
point operations come from considering QAiB̃

j+1
Ai

instead of B̃j+1
Ai

in line 11 and 12 of
Algorithm 2. However, there is also the computational cost related to the data trans-
formation, performed before running the ADMM algorithm. Table 3.1 summarizes the
floating-point operations necessary to encrypt the data matrices ZAi and YAi . The com-
putational time for such data encryption is expected to increase linearly with the number
of agents, and quadratically with the number of records.

A numerical analysis was performed by simulating data from VAR models with n ∈
{10, 100, 200, . . . , 1600}, T ∈ {10000, 15000} and p = 5. Figure 3.2 summarizes the mean
running times using an i7-8750H @ 2.20GHz with 16 GB of RAM. To properly analyze
the mean time per ADMM iteration, the computational times for the cycle between lines
6 to 15 of Algorithm 2 (coefficients’ update) are measured assuming that the n agents
update it in parallel. That said, considering for example a case with 10000 records and
500 agents, the data encryption takes around 15 minutes, and then the Algorithm 2 takes
around 10 seconds per iteration.

3.3.5 Asynchronous Communication

When applying the proposed method, the matrices (3.13)–(3.15) combine the solutions of
all data owners, meaning that the “slowest” agent dictates the duration of each iteration.
Since communication delays and failures may occur due to computation or communica-
tion issues, the proposed algorithm should be robust to this scenario. Otherwise, the
convergence to the optimal solution may require too much time. The proposed approach
deals with these issues by considering the last information sent by agents, but different
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strategies are followed according to the adopted collaborative scheme.
Regarding the centralized scheme, let Ωk

i be the set of iterations for which agent i com-
municated its information, until current iteration k. After receiving the local contributions,

central agent computes H
k

and Uk, in (3.14)–(3.15), by using
∑n

i=1 MZAiQAiB
′max(Ωki )
Ai

.

Then, central agent returns H
k

and Uk, informing agents about max(Ωk
i ). To proceed,

B′k+1
Ai

is updated by using MZAiQAiB
′max(Ωki )
Ai

in (3.12).

For the P2P approach, let Λki be the set of agents sharing information computed at

iteration k, with agent i, i.e., Λki ={j : agent j sent MZAjQAjB
′k
Aj to agent i}. After

computing and sharing MZAiQAiB
′k
Ai , a second round of peer-to-peer communication

is proposed, where agents share both Λki and
∑

j∈Λki
MZAjQAjB

′k
Aj . After this extra

communication round, agent i can obtain missing information when Λki 6= Λkj , ∀i, j.

3.4 Case Studies

To simulate the proposed method, communication failures are modeled through Bernoulli
random variables Fit, with failure probability pi, Fit∼Bern(pi), for each agent i=1, . . . , n
at each communication time t. In this experimental setup, equal failure probabilities
pi are assumed for all agents and, since a specific pi can generate various distinct failure
sequences, 20 simulations were performed for each pi ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The ADMM
iterative process stops when all agents achieve

‖Bk+1
Ai
−Bk

Ai
‖2

max(1,min(‖Bk+1
Ai
‖1, ‖Bk

Ai
‖1))
≤ε, (3.16)

where ε is the tolerance parameter (ε=5×10−4 is considered).
Regarding the benchmark models, the persistence and LASSO-autoregressive (LASSO-

AR) models are implemented to assess the impact of collaboration over a model without
collaboration. The analog method described in [179] is also implemented as a benchmark
model because: (a) it is the only work in the RES forecasting literature that implements
collaborative forecasting without data disclosure; (b) when the forecasting algorithm was
designed, a trade-off between accuracy and privacy was necessary and the choice was
privacy over accuracy. This method is now briefly described.

Firstly, agent i searches the k situations most similar to the current power produc-
tion values yi,t−`+1, . . . ,yi,t. This similarity is measured through the Euclidean distance.
Secondly, the k most similar situations (called analogs) are weighted according to the cor-
responding Euclidean distance. Agent i attributes the weight wAi(a) to the analog a. The
forecast for h steps ahead is obtained by applying the computed weights on the h values
registered immediately after the k analogs. The collaboration between agents requires the
exchange of the time indexes for the selected analogs and corresponding weights. Two
analogs belong to the same global situation if they occur at the same or at close times-
tamps. Agent i scores the analog a, observed at timestamps ta, by performing

sAi(a)= (1−α)wAi(a)︸ ︷︷ ︸
own contribution

+
α

n

n∑
i=1

k∑
j=1

wAj (j)Iε(ta, tj),︸ ︷︷ ︸
others’ weights for close timestamps

(3.17)

where α is the weight given to neighbor information, j are the analogs from other agents,
registered at timestamps tj , and Iε(ta, tj) is the indicator function taking value 1 if
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|tj−ta| ≤ ε, with ε being the maximum time difference for two analogs to be considered
part of the same global situation.

In the next subsections, two datasets are described, and results are analyzed. The
model’s accuracy is measured in terms of Normalized Root Mean Squared Error (NRMSE)
calculated for agent i and lead-time h, with h=1, . . . , 6, as

NRMSEi,h =

√
1
T

∑T
t=1(ŷi,t+h − yi,t+h)2

max({yi,t+h}Tt=1)−min({yi,t+h}Tt=1)
, (3.18)

where ŷi,t+h represents the forecast generated at time t.

3.4.1 Solar Power Data

Data Description

The proposed algorithm is also applied to forecast solar power up to 6 hours ahead. The
data is publicly available in [24] and consists of hourly time series of solar power from 44
micro-generation units, located in a Portuguese city, and covers the period from February
1, 2011 to March 6, 2013. Since the VAR model requires the data to be stationary,
the solar power is normalized through a clear sky model, which gives an estimate of the
solar power in clear sky conditions at any given time [37]. This clear-sky model is fully
data-driven and does not require any site-specific information (coordinates, rated power,
etc.) since it estimates the clear-sky power time series exclusively from historical on-site
power observations. Also, night-time hours are excluded by removing data for which the
solar zenith angle is larger than 90. Based on previous work [84], a LASSO-VAR model
to forecast yi,t+h at time t (using lags t − 1, t − 2 and t + h − 23) is evaluated with a
sliding-window of one month and the model’s fitting period consists of 12 months, h ≤ 6.

It is important to note that the LASSO-VAR model can be applied to both solar and
wind power time series without any modification. Furthermore, when compared to wind
power, solar power forecasting is more challenging because the lags 1 and 2 are zero for the
first daylight hours, i.e., there are fewer unknown data, and this makes it easier to recover
original data. In our protocol, this means more restrictive values for u and v, which are
crucial when defining r and r′, as stated in Proposition 6.

Results and Discussion

The hyperparameters ρ and λ were determined by cross-validation (12 folds) in the initial
model’s fitting dataset, by considering the values of ρ, λ ∈ {0.5, 1, 2, 3, 4, 5, 10, 15, 20, 25}.
Figure 3.3 illustrates the results in terms of NRMSE, for h = 1.
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Figure 3.3: Impact of hyperparameters for h = 1, considering solar power dataset.
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Table 3.2: NRMSE for synchronous models, considering solar power dataset.

h=1 h=2 h=3 h=4 h=5 h=6
Persistence (t)∗ 0.1605 0.2792 0.3768 0.4510 0.5020 0.5326

Persistence (t+ h-23)∗ 0.1728 0.1728 0.1728 0.1728 0.1728 0.1728
Analogs [179]† 0.1044 0.1305 0.1476 0.1578 0.1628 0.1649

LASSO-AR∗ 0.1010 0.1317 0.1429 0.1475 0.1492 0.1499
LASSO-VAR† 0.0923X 0.1236X 0.1385X 0.1451X 0.1469X 0.1484X

∗ non-collaborative † collaborative
X statistically significant improvement against all others (DM test)

To access the quality of the proposed collaborative forecasting model, the synchronous
LASSO-VAR is compared with benchmark models. Both central hub and P2P model have
the same accuracy when considering synchronous communication. Table 3.2 presents the
NRMSE for all agents, distinguishing between lead-times. In general, the smaller the
forecasting horizon, the larger the NRMSE improvement, i.e.,

(NRMSEBench. −NRMSELASSO-VAR) /NRMSEBench. · 100%.

Besides, since the proposed LASSO-VAR and the LASSO-AR models have similar NRMSE
for h > 3, the Diebold-Mariano test (described in Section II.2) is applied to test the su-
periority of the proposal, assuming a significance level of 5%. This test showed that the
improvement is statistically significant for all horizons. It is important to note that the
decrease in the improvement is explained by the cross-correlation between the geograph-
ically distributed time series data, as depicted in Figure 3.4. Since the dataset is from a
small municipality in Portugal, it is expected that the highest improvement occurs for the
first lead times (in particular the first one), where the cross-dependencies between time
series have the most effect. However, this depends on the geographical layout and distance
between power plants. For instance, in [81], the results for wind power plants show the
highest improvement for the second lead time; in the test case of western Denmark [189],
the highest cross-dependency between two groups of wind farms was observed for lag two.

Figure 3.5 depicts the relative improvement in terms of NRMSE for the 44 agents.
According to the Diebold-Mariano test, the LASSO-VAR model outperforms benchmarks
in all lead-times for at least 25 of the 44 agents. Indeed, some agents contribute to
improving the competitors’ forecast without having a benefit to their own forecasting
accuracy. Then, even if privacy is ensured, such agents can be unwilling to collaborate,
which motivates data monetization through data markets, as proposed in the next chapter.
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Figure 3.4: Cross-correlation plot (CCF) between two solar power plants.
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Figure 3.5: Relative NRMSE improvement (%) over the baseline models, considering solar power
dataset.

Table 3.3 presents the mean running times and the number of iterations of both non-
distributed and distributed approaches. The proposed schemes require larger execution
times since they require estimating B′kAi through a second ADMM cycle (Algorithm 2).
However, the non-distributed LASSO-VAR requires more iterations to converge.

For asynchronous communication, equal failure probabilities pi are assumed for all
agents. Table 3.4 shows the mean NRMSE improvement for different failure probabili-
ties pi, i ∈ {1, . . . , n}. In general, the greater the pi the smaller the improvement. Despite
the model’s accuracy decreases slightly, the LASSO-VAR model continues to outperform
the AR model for both collaborative schemes, which demonstrates high robustness to
communication failures.

Figure 3.6 complements this analysis by showing the evolution of the loss while fitting
the LASSO-VAR model, for pi ∈ {0.5, 0.9}. For the centralized approach, the loss tends
to stabilize around larger values. In general, the results are better for the P2P scheme
since in the centralized approach if an agent fails the algorithm proceeds with no chance

Table 3.3: Mean running times (in sec) per iteration and number of iterations until convergence,
considering solar power dataset.

Non distributed Central LASSO-VAR P2P LASSO-VAR
LASSO-VAR Enc. data ADMM Enc. data ADMM
0.035 (≈ 410) 65.46 0.052 (≈ 300) 65.46 0.1181 (≈ 300)

Table 3.4: Mean relative NRMSE improvement (%) of the asynchronous ADMM LASSO-VAR
over the LASSO-AR model, considering solar power dataset.

h=1 h=2 h=3 h=4 h=5 h=6
pi central P2P central P2P central P2P central P2P central P2P central P2P

0 8.41 6.05 2.95 1.52 1.39 0.93
0.1 7.93 8.41 5.98 6.05 2.91 2.95 1.49 1.52 1.35 1.39 0.89 0.93
0.3 7.45 ” 5.89 ” 2.89 ” 1.40 ” 1.18 ” 0.69 ”
0.5 6.69 ” 5.77 ” 2.88 ” 1.30 ” 1.00 ” 0.52 ”
0.7 5.71 ” 5.54 ” 2.84 ” 1.24 ” 0.89 ” 0.33 ”
0.9 3.75 8.10 5.19 5.75 2.74 2.78 0.75 1.47 0.62 1.38 -0.82 0.88
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Figure 3.6: Loss while fitting LASSO-VAR model, considering solar power dataset.

of obtaining its information. In P2P, this agent may have communicated his contribution
to some peers and the probability of losing information is smaller.

3.4.2 Wind Power data

Data Description

The proposed method is also experimented with a real wind power dataset, comprising
hourly time series of wind power generation in 10 zones, corresponding to 10 wind farms
in Australia [25], as depicted in Figure 3.7. This dataset was used in the Global Energy
Forecasting Competition 2014 (GEFCom2014) and it is publicly available, covering the
period from January 1, 2012 to November 30, 2013. The power generation for the next
6 hours is modeled through the LASSO-VAR model, which combines data from the 10
data owners and consider the most recent power measurements (lags 1h to 6h), based
on the correlation analysis discussed in Section II.3.2. A sliding-window of one month is
considered and the model’s fitting period consists of 12 months.
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Figure 3.7: GEFCom2014 wind power dataset.

Results and Discussion

The hyperparameters ρ and λ were determined by cross-validation (12 folds) in the initial
model’s fitting dataset, by considering the values of ρ, λ ∈ {1, 2, 3, 4, 5, . . . , 10}. Figure 3.8
illustrates the results in terms of NRMSE, when h = 1.
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Figure 3.8: Impact of hyperparameters for h = 1, considering wind power dataset.

Table 3.5: NRMSE for synchronous models, considering wind power dataset.

h=1 h=2 h=3 h=4 h=5 h=6
Persistence (t)∗ 0.1045 0.1578 0.1939 0.2220 0.2452 0.2651
Analogs [179]† 0.1048 0.1552 0.1889 0.2145 0.2346 0.2515

LASSO-AR∗ 0.1008 0.1513 0.1830 0.2063 0.2242 0.2386
LASSO-VAR† 0.0985X 0.1446X 0.1729X 0.1938X 0.2104X 0.2239X

∗ non-collaborative † collaborative
X statistically significant improvement against all others (DM test)

To access the quality of the proposed collaborative forecasting model, the synchronous
LASSO-VAR is compared with benchmark models. Table 3.5 presents the NRMSE for all
agents, per lead-time. According to the Diebold-Mariano test with a significance level of
5%, the improvements obtained by our proposal are statistically significant for all horizons.

Figure 3.9 complements this analysis by showing the relative improvement in terms of
NRMSE for the 10 agents. Again, according to the Diebold-Mariano test, the LASSO-
VAR model outperforms benchmarks in all lead-times for at least 9 out of the 10 agents.
In general, the spatio-temporal information is more relevant for the highest lead-times, as
corroborated by the cross-correlation plots at Figure 3.10, which shows cross-correlations
between a sample of wind power plants. The cross-correlation between these wind power
plants keeps increasing until lag 6; this means that, for example, the current power mea-
surement at WF9 is more correlated with the power measurement of WF2 at 6 hours
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Figure 3.9: Relative NRMSE improvement (%) over the baseline models, considering wind power
dataset.
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Figure 3.10: Cross-correlation plot (CCF) between two wind power plants.

ago. It is intuitively expected that this is due to the geographical layout (Figure 3.7 (a))
of the various wind farms and meteorological particularities of the region, such as wind
speed. Figure 3.7 (b) depicts the wind rose for a location close to WF91, which shows
that the wind direction during these two years was quite varied, but the strongest winds
occur mostly from northwest or west, meaning that wind power plants located to the east
(WF9, WF10) or southeast (WF5, WF6, WF7, WF8) can strongly benefit from the lags
of wind farms WF1 to WF4.

Concerning computational complexity, Table 3.6 presents the mean running times and
the number of iterations of both non-distributed and distributed approaches. When com-
pared to a non-distributed LASSO-VAR version, the proposed schemes require larger
execution times since they require estimating B′kAi through a second ADMM cycle (Algo-
rithm 2). However, the non-distributed LASSO-VAR requires more iterations to converge.

Table 3.6: Mean running times (in sec) per iteration and number of iterations until convergence,
considering wind power dataset.

Non distributed Central LASSO-VAR P2P LASSO-VAR
LASSO-VAR Enc. data ADMM Enc. data ADMM
0.038 (≈ 400) 125.46 0.059 (≈ 300) 125.46 0.1309(≈ 300)

Table 3.7: Mean relative NRMSE improvement (%) of the asynchronous ADMM LASSO-VAR
over the LASSO-AR model, considering wind power dataset.

h=1 h=2 h=3 h=4 h=5 h=6
pi central P2P central P2P central P2P central P2P central P2P central P2P

0 2.25 4.26 5.30 5.83 5.94 5.95
0.1 2.11 2.25 4.18 4.26 5.22 5.30 5.71 5.83 5.76 5.94 5.71 5.95
0.3 1.97 ” 4.09 ” 4.21 ” 4.53 ” 5.04 ” 5.58 ”
0.5 1.85 ” 3.48 ” 3.65 ” 3.84 ” 4.27 ” 4.72 ”
0.7 1.51 ” 2.97 ” 2.89 ” 3.41 ” 3.80 ” 3.98 ”
0.9 0.97 1.04 2.21 4.01 2.32 4.98 2.97 5.52 3.09 5.76 3.12 5.63

Finally, regarding asynchronous LASSO-VAR (pi ≥ 0.1), Table 3.7 summarizes the mean
NRMSE improvement for all agents over the LASSO-AR model, considering different
failure probabilities pi, i ∈ {1, . . . , n}. In general, the greater the pi the smaller the

1https://mesonet.agron.iastate.edu/ (accessed on January 2021)
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3.5 Concluding Remarks

improvement. Despite the model’s accuracy decreases slightly, the LASSO-VAR model
continues to outperform the LASSO-AR model for both collaborative schemes, which
demonstrates high robustness to communication failures.

3.5 Concluding Remarks

RES forecast skill can be improved by combining data from multiple geographical loca-
tions. One of the simplest and most effective collaborative models for very short-term
forecasts is the vector autoregressive model. However, different data owners might be
unwilling to share their time series data. In order to ensure data privacy, this work com-
bined the advantages of the ADMM decomposition method with data encryption through
linear transformations of data. It is important to underline that the coefficients matrix ob-
tained with the privacy-preserving protocol is the same one obtained without any privacy
protection.

This novel method also included an asynchronous distributed ADMM algorithm, making
it possible to update the forecast model based on information from a subset of agents and
improve the computational efficiency of the proposed model. The mathematical formula-
tion is flexible enough to be applied in two different collaboration schemes (central hub
model and P2P) and paved the way for learning models distributed by features, instead
of observations.

The results obtained for a solar and a wind energy dataset show that the privacy-
preserving LASSO-VAR model delivers a forecast skill comparable to a model without
privacy protection and outperformed a state-of-the-art method based on analog search.
Furthermore, it exhibited high robustness to communication failures, in particular for the
P2P scheme.

Lastly, an alternative business model to privacy-preserving models are data markets,
where different agents sell and buy data of relevance for RES forecasting. In this case,
agents are prone to share their data if being remunerated for it. The next chapter is
focused on data monetization, and an auction mechanism is proposed in which both data
privacy and monetization are possible by considering that agents buy forecasts from a
trusted entity instead of directly buying sensible data.
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Data Market for RES Forecasting

Abstract. Geographically distributed wind turbines, photovoltaic panels and sensors
(e.g., pyranometers) produce large volumes of data that can be used to improve Renewable
Energy Sources (RES) forecasting skill. However, data owners may be unwilling to share
their data, even if privacy is ensured, due to a form of prisoner’s dilemma: all could benefit
from data sharing, but in practice no one is willing to do so. Our proposal hence consists
of a data marketplace, to incentivize collaboration between different data owners through
the monetization of data. We adapt here an existing auction mechanism to the case of
RES forecasting data. It accommodates the temporal nature of the data, i.e., lagged time
series act as covariates and models are updated continuously using a sliding window. Two
test cases, with wind and solar energy data, are presented to illustrate and assess the
effectiveness of such data markets. All agents (or data owners) are shown to benefit in
terms of higher revenue resulting from the combination of electricity and data markets.
The results support the idea that data markets can be a viable solution to promote data
exchange between RES agents and contribute to reducing system imbalance costs.

4.1 Introduction

A large amount of data is being collected from geographically distributed RES such as
wind turbines and photovoltaic panels. These data include power generation and weather
measurements like air temperature, wind speed and direction, irradiation, etc.

Recent literature suggests that time series data from spatially distributed RES agents
can improve forecasting skill for different time horizons. For instance, a spatial grid of
Numerical Weather Prediction (NWP) can improve days-ahead forecasts [12]; turbine-level
data can improve the day-ahead forecasting skill of wind energy through density forecasts
generated for all wind turbines with spatial dependency structure modelled via copula
theory [86]. Geographically distributed time series data can improve forecasting skill up
to 6 hours-ahead for wind [78] and solar energy [84]. In fact, hours-ahead forecasts will
become a crucial input for decision-aid as intraday electricity markets (e.g., European
cross-border intraday – XBID) become increasingly important for RES technology.

However, since RES agents are most likely competitors in the same electricity market,
they are unwilling to share data, particularly power measurements, even if data privacy
is ensured. An effective way to encourage agents to share their data is through monetary
compensation [190, 191]. A “secondary” market to trade data is necessary to monetize
RES forecasting data. Moreover, this data market should operate in a way that, after
some iterations, agents realize which data is relevant to improve its gain, so that sellers
are paid according to their data. The buyers’ gain should be a function of the forecast
accuracy and value in a specific use case, e.g., imbalance costs reduction in electricity
market bidding. It is important to mention that a RES plant owner can buy, from a
vendor, NWP for neighbor power plants, but not their power measurements (or forecasts)
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that contain relevant information to improve hours-ahead forecasting skill. By joining a
data market, the data owner can also sell this additional data (e.g., NWP for nearby sites)
and decrease its purchasing cost. Moreover, there are no guarantees that NWP for other
locations are cheaper than buying information from a data market where the payment is
a function of the forecasting skill improvement. In fact, when buying NWP from vendors,
there are no a priori guarantees of improvement in the existing forecasting model.

A data auction mechanism is proposed in [192] where sellers compute the privacy cost of
selling the data and then send it to a buyer that computes a utility score associated with
the data. Several iterations are performed until a Bayesian Nash equilibrium is reached.
A market mechanism is introduced in [193] to solve a social welfare maximization problem
that defines the data allocation and corresponding price. In this case, data are only
shared after payment. However, in order to compute data price, a utility function, which
depends solely on quantity (i.e., data quality is not considered), is assumed to exist. This
is not directly applicable to time series forecasting with RES spatial data where correlated
data from neighbor agents might be less informative than data from more distant agents
(or sites). Furthermore, in [194], the impact of a strong correlation between data of
different agents is analyzed as a negative externality from data sharing, e.g., buying the
data from user A may reveal too much information about user B and the market price
tends to zero (i.e., no value for data privacy). Different policies (e.g., “de-correlation”)
and regulatory schemes to data markets are proposed and analyzed. In [195], evolutionary
game theory is combined with blockchain smart contracts to dynamically adjust incentives
and participation costs in data sharing. In the energy domain, a market is proposed
in [196] for smart meter data. The proposed game theory mechanism works as follows: (i)
the consumer maximizes its reward from sharing consumption data; (ii) data aggregator
expects to receive more money from the data analyst, rather than providing incentives to
consumers; (iii) data analyst is interested in high quality data at the lowest possible cost.
Also for smart meter data, a blockchain smart contract is designed in [197] to define a
set of rules for data access control and reward against privacy risk. In both works, the
payment is directly related to the privacy loss and not directly linked to the gain obtained
from using this data in a specific decision-making problem. The concept of pricing data
as a function of privacy loss is further discussed in [198], where the impact of sellers’ risk
attitude is analyzed.

Moreover, the temporal nature of RES forecasting also needs to be considered. An
auction mechanism for time series data is proposed in [199] where privacy is guaranteed
with data distortion by adding random noise, in a way that preserves some time series
statistics and avoids the original series to be recreated when sold incrementally. Buyers
ask for specific features together with the maximum noise they are willing to tolerate.
Based on the level of noise, the market operator determines the privacy loss for selected
data owners and sets the market prices to compensate them for the privacy loss. Buyer
gain is not considered.

Since RES agents may be unwilling to share their data with competitors and mask
of sensible data through noise addition involves a trade-off between privacy and accu-
racy [114], the framework from [200] offers an appealing alternative based on cooperative
game theory. As far as we know, this is the first work to consider a marketplace where
data owners purchase forecasts and pay according to resulting forecasting accuracy. This
avoids the confidentiality problem of sharing raw data directly. Cooperation between sell-
ers is done through a market operator who receives all agents data and prepares forecasts:
(i) sellers with similar information receive similar revenue, (ii) the market price is a func-
tion of the buyer’s benefit, and so the buyer does not pay if there is no improvement in the
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forecasting skill, (iii) buyers pay according to incremental gain, and (iv) buyers purchase
forecasts, instead of features, and have no knowledge about which datasets were used to
produce these forecasts. Sellers’ loss is assumed to be zero.

Nevertheless, adaptions are necessary since time series models require temporal updates
of the input variables. Thus, the present chapter presents the following original contribu-
tions:

i) The approach from [200] is extended for a sliding window environment and the gain
function is adapted for RES forecasting and bidding in the electricity market.

ii) With geographically distributed time series data, buyers want to integrate private
and local data into the market operator’s forecasts in order to avoid paying for
highly-correlated data from close neighbors and this requirement is covered in the
proposed approach – the approach in [200] does not consider RES agents with in-
ternal forecasting models and for which highly-correlated features might provide no
improvement.

iii) Agents trade between themselves, i.e., sellers are buyers and buyers are sellers –
sellers and buyers are independent agents in [200], thus adaptions are required to
ensure that agents do not pay for their own or redundant data.

To the best of our knowledge, this is the first work to describe an algorithmic solution for
data markets that enable different RES agents to sell data (historical power production,
NWP, etc.) and buy forecasts of their power production, and where the economic value
of this data is fundamentally related to imbalance cost reduction in electricity markets.

The chapter is organized as follows. Section 4.2 formalizes the electricity market and
forecasting framework. Section 4.3 proposes a data market for RES forecasting. Then,
three test cases are considered in Section 4.4, two with synthetic data and another with
Nord Pool wind energy data. The work concludes in Section 4.5.

4.2 Electricity Market

RES market agents aim to minimize imbalance costs (i.e., maximize electricity market
profit) by improving forecasting skill. This section presents the market profit function and
the formulation of the forecasting problem.

4.2.1 Profit Function

In a typical electricity market with dual price imbalance settlement [201], the profit func-
tion of a RES market agent, with power measurement xt and forecast x̂t, is determined
for each time step t as

ρ(x̂t, xt) = πstxt − C↑/↓t , (4.1)

where

C
↑/↓
t =

{
λ↑(x̂t − xt), x̂t > xt

−λ↓(x̂t − xt), x̂t < xt,
(4.2)

λ↑t = max(0, π↑t − πst ), (4.3)

λ↓t = max(0, πst − π↓t ), (4.4)
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with πst , π
↑
t and π↓t denoting the spot price, imbalance price for upward and downward

regulation, respectively; λ↑t and λ↓t give the regulation unit cost for upward and downward
directions.

For simplicity, generation costs are not considered in the profit function ρ. Furthermore,
by calculating the derivative of the expected regulation cost with respect to the bid [201], it
is possible to conclude that forecasts that maximize the profit in (4.1) do not correspond to
the expected value of xt, instead, they correspond to the quantile of the following nominal
level,

α∗t =
λ̂↓t

λ̂↑t + λ̂↓t
, (4.5)

where λ̂↑t , λ̂
↓
t are deterministic forecasts for λ↑t , λ

↓
t .

This means that the optimal bid (i.e., the one that minimizes the expected imbalance
costs in (4.2)) for a RES agent i ∈ {1, . . . , N} is given by F̂−1

i,t (α∗t ) [201], where F̂−1
i,t is the

inverse of the forecasted cumulative distribution function or, in other words, corresponds
to the forecasted conditional quantile for nominal level α∗t . These analytical formulas for
optimal bidding can be generalized for other situations, such as a joint offer of energy and
reserve capacity [202].

In order to compute the “optimal” quantile from (4.5), a forecast of the regulation unit
costs is required. Since we do not aim to propose a new forecasting model for imbalance
prices, the Holt-Winters model described in [203] was used in this work. The upward
regulation unit cost is estimated as the product between the forecasted upward regulation
price (ψ̂↑t ) and the probability of the system to be in upward regulation direction (p̂↑t ), i.e.

λ̂↑t = ψ̂↑t p̂
↑
t . (4.6)

Similarly,

λ̂↓t = ψ̂↓t p̂
↓
t , (4.7)

where p̂↓t = 1− p̂↑t since we only care about relative probabilities for upward and downward
regulation. The regulation prices are forecasted by

ψ̂it|t−1=

{
ηψ̂it−1|t−2+(1−η)(λit−1−ψ̂it−1|t−2), |λit−1|>0

λ̂it−1|t−2, |λit−1|=0,
(4.8)

for i ∈ {↑, ↓}, and the probability of system regulation direction by

p̂↑t|t−1=

{
ηp̂↑t−1|t−2+(1−η)(p↑t−1−p̂↑t−1|t−2), p↑t−1 6=0.5

p̂↑t−1|t−2, p↑t−1=0.5,
(4.9)

where η ∈ [0, 1[ is a smoothing factor, and

p↑t−1=


1, λ↑t−1 > λ↓t−1

0.5, λ↑t−1 = λ↓t−1

0, λ↑t−1 < λ↓t−1.

(4.10)

Initialization of p↑0, λ↑0 and λ↓0 is required, and η is estimated by minimizing the mean of
squared residuals.

Given the forecasted values for regulation unit costs, the last step is to forecast the
quantile with nominal level α∗t using linear quantile regression as described in the next
subsection. Note that here we are assuming a price-taker RES agent for the regulation
market.
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4.2.2 RES Forecasting Problem

In this work, we formulate a very short-term forecasting problem (up to 6h-ahead) involv-
ing multiple RES power plants. The forecasting model only uses recent measurements at
all sites of interest, but longer time horizons with extra variables, such as grid of NWP [12]
and turbine-level data [86], may also be considered using the same framework.

Assume that RES power plants generation data are collected at n sites, and xi,t denotes
the power measurement at site i and time t, i ∈ A, t ∈ {1, . . . , T}, where T is the number
of time steps in the dataset and A={1, . . . , n} is the overall set of power plants. We
consider that these agents operate a single power plant, but the case where agents operate
a portfolio of RES power plants may also be elaborated using the same framework.

The linear Quantile Regression (QR) model, discussed in Section II.3.1, is a standard
and straightforward method of conditional quantile estimation [204]. For very short-term
forecasts, satisfactory results may be obtained by using the L most recent observations,
as shown in [84] and [78] for both solar and wind energy.

In this case, the quantile α∗t+h of power xi,t+h in site i ∈ A is expressed as

q̂iα∗t+h
=β

(α∗t+h)

0,i +
L∑
`=1

( ∑
j∈A\{i}

β̂
(α∗t+h)

j,i,` xj,t−`︸ ︷︷ ︸
data from the market

+ β̂
(α∗t+h)

i,i,` xi,t−`︸ ︷︷ ︸
own data

)
, (4.11)

where h ≤ 6 is the forecasting horizon, β
(α∗t )
0,i , β

(α∗t )
j,i,` and β

(α∗t )
i,i,` are the unknown coefficients,

estimated through the minimization of the pinball loss function [204].

4.3 Market based in Cooperative Game Theory

This section proposes a no-regret auction mechanism for trading RES forecasts, as illus-
trated in Figure 4.1. The buyers should never buy data because its value is unknown
before using it for a forecasting task. Instead, they should purchase forecasts of their
power production and pay according to the obtained forecasting accuracy. The data mar-
ket formulation is inspired by the cooperative game in [200] and described in the following
subsection in order to be self-content.

In addition to large RES power plants, this data market is also open to prosumers.
Interestingly, data traders can also be interpreted as data prosumers, i.e., data owners
that consume and supply data.

Sellers

RES1...

RESn

Buyers

RES1...

RESn

Market
Operator

data {x1,t}Tt=1

payment

features

bid (and{x1,t}
T
t=1)

Figure 4.1: Proposed data market framework.
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4.3.1 Data Market Agents

Like any standard market, the data market has three types of agents described in this
subsection: sellers, buyers and market operator.

Sellers

A seller i observes and sells sample xS
i ={xi,t}Tt=1, xS

i ∈ RT , i ∈ {1, . . . , n}. Additionally,
sellers have no idea of the forecasting methods that will use their data and simply aim
to maximize their revenue. The set of features provided by all sellers is denoted by
XS=[xS

1 , . . . ,x
S
n], XS ∈ RT×n.

Buyers

A buyer i observes and seeks to improve sample xB
i = {xi,t}Tt=1, i ∈ {1, . . . , n}, and

enters the data market to purchase the collection of features that allow a certain gain
when forecasting {xi,t}T+H

t=T+1, through a selected method (statistical model) Mi, H ≥ 1.

Buyers naturally have a local forecasting modelMi(x
B
i ), and enter the market to improve

it with more features from the other agents, XS
¬i, where XS

¬i=[xS
1 , . . . ,x

S
i−1,x

S
i+1, . . . ,x

S
n],

XS
¬i ∈ RT×(n−1). Therefore, the gain of power agent i at time t ∈ {T+1, . . . , T+H} is

measured by its marginal profit,

Gi(xi,t; XS,Mi) =
(
ρ(x̂market

i,t , xi,t)− ρ(x̂local
i,t , xi,t)

)+
, (4.12)

where (x)+= max(0, x), x̂local
i,t =Mi(x

B(ts)
i ; x

B(tr)
i ) is the forecast using only data from buyer

i and x̂market
i,t =Mi(X

S(ts); XS(tr)) is the forecast obtained by combining local data and data

from other agents — x
B(tr)
i ,XS(tr) are the sets used to train the models, while x

B(ts)
i ,XS(ts)

are the sets used to forecast {x̂i,t}T+H
t=T+1. By simplicity, the same model M and gain

function G are used for all the buyers, but conceptually buyers may provide their ownMi

and Gi to the market operator.

The last two parameters from buyers are the private valuation of gain µi ∈ R+, i.e.,
a trade-off value that means how much buyer i is willing to pay for a unit increase in
gain, and the public bid price bi ≤ µi, bi ∈ R+. Note that buyers enter the market to buy
forecasts {x̂i,t}T+H

t=T+1, without knowing which data were used to produce the forecasts,
H ≥ 1.

Market Operator

The role of the market operator includes feature allocation (Section 4.3.3), market price
definition (Sections 4.3.3 and 4.3.3), revenue extraction from the buyers (Section 4.3.3)
and corresponding distribution to the sellers (Section 4.3.3).

It is important to underline that only the market operator has access to input data
(power measurements, NWP, etc.) and is responsible for fitting the quantile regression
model described in Section 4.2.2. Sellers only have access to their own time series and buy-
ers only have access to power forecasts produced for their power plants. Therefore, data
privacy is guaranteed, assuming that the market operator is a trustworthy and neutral
agent. Note that the data market framework can be applied to any forecasting methodol-
ogy and the use of quantile regression is not a fundamental requirement.
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Market Operator

S1 Fixes pi

S2 Bids bi

S3 Available data allocation: X̃=AF(pi, bi; X
S)

S4 Computes payment ri

S5 Divides payment ri among sellers

Buyer i

{xi,t}Tt=1
Mi,Gi,bi

ri

{x̂i,t}T+H
t=T+1

RES1

RES2
. . .

RESn

{x1,t}Tt=1

{x2,t}Tt=1

{xn,t}Tt=1

ψi(1)

ψi(2)

ψi(n)

Figure 4.2: Data market mechanism at time t = T .

4.3.2 Data Market Mechanism

At time t = T , RES agents provide their historical data to the market operator. Then,
agent i aims to forecast the power for the next H time steps, {x̂i,t}T+H

t=T+1, and the following
steps occur in sequence (illustrated in Figure 4.2):

Step 1 The marketplace sets a market price pi ∈ R+ for a unit increase in gain when
forecasting {x̂i,t}T+H

t=T+1, following the market solution (i.e., bid and market price,
forecasting accuracy) for the previous buyer i−1,

pi = PF(bi−1, pi−1; Θi−1), (4.13)

where PF is the market price update function, and Θi−1 = (Mi−1,Gi−1,X
S,xB

i−1)
– market operator decides pi before buyer i arrives and according to the previous
prices, otherwise truthfulness is not ensured.

Step 2 Buyer i bids bi, which maximizes its value function,

bi= arg maxEz∈R+ µi
∑

t Gi(xi,t; Θi)−RF(pi, z; Θi)︸ ︷︷ ︸
Ui(z,{xi,t}T+H

t=T+1) = value function

, (4.14)

and is related to the difference between the value derived from the gain in fore-
casting accuracy and the data market price, t ∈ {T + 1, . . . , T + H}. RF is the
revenue function.

Step 3 The marketplace allocates available features according to the market price and
bid price,

X̃ = AF(pi, bi; X
S), (4.15)

with AF representing the allocation function.

Step 4 The marketplace extracts revenue ri from buyer i,

ri = RF(pi, bi; Θi). (4.16)

Step 5 Market divides ri among the n−1 sellers using

ψi(m) = PD(xB
i , X̃,K;Mi,Gi), (4.17)

where PD is the payment division function, m ∈ A\{i}.
Step 6 Buyer i receives {x̂i,t}T+H

t=T+1 and leaves the market.

Step 7 If a new time step occurred, sellers update their data and send it to the market
operator.
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4.3.3 Market Configuration

Certain properties must be met in order to produce a fair auction mechanism when defining
PF , AF , RF and PD, from (4.13) to (4.17). First, the auction mechanism needs to
encourage buyers to declare their true valuation for an increase in forecasting skill. This
is achieved through the allocation and revenue functions. From the other side, the market
operator needs to incentivize sellers to participate in the market, meaning that the revenue
division function should ensure three properties:

i) money paid by the buyer is totally divided by the sellers;

ii) sellers with similar information receive the same amount of money;

iii) irrelevant information receives zero payment.

Allocation Function

The allocation function AF(pi, bi; X
S) defines the information that marketplace should

use when forecasting the time series of buyer i. The proposed mechanism assumes that all
available features are used to train and evaluate the forecasting model. However, in order
to ensure that the allocated features are a function of the difference between the bid price
and the market price, the model is fitted (and the gain is estimated) using a perturbed
version of competitors’ data. More specifically, the allocated features are obtained by

x̃j,t =

{
xj,t + max(0, pi − bi)N (0, σ2), j 6= i

xj,t, j = i.
(4.18)

where N (0, σ2) is a univariate Gaussian distribution.

Revenue Function

The revenue functionRF(pi, bi; Θi) is computed by the market operator based on its model
estimation for each buyer i. The market price is based on the gain to buyer i, which is
unknown for the future but can be estimated through holdout cross-validation. While
forecasting {xi,t}T+H

t=T+1, the marketplace splits XS into training, validation and testing

data, XS(tr) is used to estimate the model, XS(val) is used to estimate the gain and XS(ts)

to forecast {xi,t}T+H
t=T+1. XS(val) corresponds to the set used to forecast the last ∆ values

{xi,t}T−∆+1
t=T , and XS(tr) to the sample used to forecast the remaining T−∆ observations

{xi,t}T−∆
t=1 , as illustrated in Figure 4.3, ∆ ≥ 1. Moreover, as previously mentioned, the data

market should price the forecasts according to the marginal gain accrued to its buyers.
Figure 4.4 illustrates the difference between paying by the gain and paying by the marginal
gain as defined by the Myerson’s payment function rule [205]

RF(pi, bi; Θi) = biGi(xB(val)
i ;AF(pi, bi; X

S),Mi)

−
∫ bi

0
Gi(xB(val)

i ;AF(z, bi; X
S),Mi)dz,

(4.19)

t∗t∗−∆

Training period Validation period
(gain estimation)

Test period
(forecast)

Figure 4.3: Timeline for current time t∗.
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0 b′i b′′i . . . bi pi

Gi(b′i)
Gi(b′′i )

Gi(bi) Gi

(a) Based on gain (Gi)

0 b′i b′′i . . . bi pi

Gi(b′i)
Gi(b′′i )

Gi(bi) Gi

(b) Based on marginal gain (RF)

Figure 4.4: Difference between paying by the gain and paying by the marginal gain (market price
= shadow area, x axis = bid price, y axis = gain).

which is adopted in this chapter — if bid prices b′i and b′′i , with b′′i > b′i, might produce
similar gain, Gi(b′i) ≈ Gi(b′′i ), then a RES agent is incentivized to bid b′′i anyway since it
would only pay b′i according to the marginal gain rule.

A revenue close to zero means that the buyer is purchasing low-quality forecasts, par-
ticularly when bid and market prices are high and an higher revenue from data sharing
was expected.

Payment Division Function

The payment division function PD(x
B(val)
i ,AF(pi, bi; X

S),K;Mi,Gi) divides the value ri
paid by buyer i among the n − 1 sellers. Ideally, the relevance of each feature would
be estimated by training the statistical model Mi with all possible feature combinations.
This method is known as Shapley Allocation [206] and ensures the three properties listed
at the beginning of this section. However, when a large number of sellers is considered,
this strategy may be computationally infeasible.

To overcome this challenge, the Shapley Approximation method uses a smaller number
of possible feature combinations [207]. Given a random permutation σ of all features’
indices {1, . . . , n}, from an universe σ, two models are trained using the features given
by σi < m and σi ≤ m. The importance of a feature m is given by the difference in
gains between these two models. The process is repeated K times and averaged out.
Theoretically, the Shapley approximation ψ̂i(m) achieves ‖ψshapley

i (m)− ψ̂i(m)‖ < ε, with
probability 1− ζ if K > [n log(2/ζ)]/(2ε)2. Since the models are trained multiple times for
different agents, the choice of the modelMi clearly affects the computational efficiency of
the payment division function.

Furthermore, a post-processing step is applied to make the algorithm more robust to
data replication. Consider a data market with three sellers, S1, S2 and S3, such that S1

and S2 have uncorrelated and equally relevant data for buyer i, while S3 is irrelevant,
i.e ψi(1)=ψi(2)=0.5 and ψi(3)=0. If S1 replicate its data once and sell again in the
marketplace, the proportion of received payment will be ψi(1)=2/3, ψi(2)=1/3. Since
sellers provide a unique time series, they cannot replicate data; yet, they can collude with
other agents and negotiate a portion of the extra revenue. If S1 and S3 collude, then
ψi(1)=ψi(2)=ψi(3)=1/3.

In order to avoid data replication, the weight ψi(m) of each seller m is penalized if its
data are similar to others in the market. This penalty is related to the cosine similarity,
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which measures the similarity between two vectors x1,x2 ∈ RT as

SM(x1,x2) =
|〈x1,x2〉|
‖x1‖‖x2‖

,x1,x2 ∈ RT , (4.20)

where |〈.〉| and ‖.‖ denote the absolute value of the dot product and the Euclidean norm,
respectively.

Algorithm 3 illustrates the algorithm to determine the proportion that a seller should
receive from the buyer’s payment. Regarding the example with three sellers, if S1 replicates
data then the Shapley allocation using Algorithm 3 (with λ=1) decreases to 1/(2 + e2) <
1/2.

Algorithm 3 Payment division algorithm (PD).

1: Input: xS
i , X̃ = AF(pi, bi; X

S), Mi, Gi, K
2: Output: ψi = [ψi(m) : m ∈ A\{i}]
3: for m ∈ A\{i} do
4: for k ∈ {1, . . . ,K} do
5: σk ← Uniform(σ)

# Train models with “tr” data and forecast with “val” data

6: G = Gi(xS(val)
i ; X̃[σk<m],Mi)

7: G+m = Gi(xS(val)
i ; X̃[σk<m]∪m,Mi)

8: ψ̂ki (m) = (G+m −G)+

9: end for
10: ψ̂i(m) = 1

K

∑K
k=1 ψ̂

k
i (m)

11: end for
12: ψ′i(m) = ψ̂i(m) exp(−λ∑j∈A\{i,m} SM(xS

m,x
S
j ))

13: ψi(m) = ψ′i(m)/
∑

m∈A\{i} ψ
′
i(m)

Market Price Update Function

The function PF(bi−1, pi−1; Θi−1) computes the market price of the data for buyer i
based on the gain from the other agents. We assume a set of possible market prices Bp,
which ranges from a minimum value pmin and a maximum value pmax, with increment ∆p.
When the data market initializes, the market price is uniformly sampled from Bp. Then,
the market operator uses the forecasting accuracy from the first agent and estimates the
revenue for each possible market price. The probabilities are updated and used to generate
the market price when a new buyer arrives, iteratively, ensuring the truthfulness of the
data market. Algorithm 4 proposes an online balance for the trade-off between large and
small market prices. Considering a bid price bi, if pi is too large then the positive term
in RF will be small (as the deterioration of XS is very high) leading to lower revenue.
Similarly, if pi is too small, the negative term in RF will be large, which again leads to
an undesired loss in revenue.

4.3.4 Available Platforms for Implementation

This marketplace can be implemented in readily available platforms and protocols, re-
viewed below, which enable data transaction, verification and payment capabilities.

Ocean Protocol is an ecosystem for data trading, built on top of blockchain technol-
ogy, where Oceans Tokens are used as the unit of exchange for buying or selling data
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Algorithm 4 Market price update algorithm (PF).

1: Input: bi−1, pi−1, pmin, pmax, ∆p, Θi=(Mi,Gi,XS,xB
i )

2: Output: pi
3: Bp ← [pmin, pmin + ∆p, pmin + 2∆p, . . . , pmax]

# Initialize the weights for each possible market price
4: wj1 ← 1,∀j = 1, . . . , |Bp|

# When a buyer enters the market, the market price is determined and the weights
are updated for the next buyer

5: for i = 1, . . . , |A| do

6: pi ← Bp(j) with probability wji /
∑|Bp|

j=1w
j
i

7: for j = 1, . . . , |Bp| do

8: gji ← RF(Bp(j), bi; Θi) # revenue for the j-th price

9: wji+1 ← wji (1 + δgji ) # update weights
10: end for
11: end for

services [208]. Enigma provides a protocol for secret contracts, which are similar to
smart contracts but bring privacy by offloading the computation over sensitive data to
an external network where it may be broken into different nodes and apply cryptographic
techniques [209]. SingularityNET is a decentralized platform for trading Artificial Intel-
ligence (AI) services, including data, through the native platform’s cryptocurrency [210].
Numerai is an AI platform that aims at bringing together the best experts in data science
for making forecasts for a common dataset and those who perform well are reward with
some Numeraires (i.e., cryptocurrency token) and those who did not perform well will lose
the Numeraires staked [211].

The majority of these platforms lack from an advanced model for data trading and,
therefore, a synergy between the market mechanism described in this work and blockchain-
powered platforms (e.g, tokens, protocols and smart contracts) can be established for a
real-world implementation of this concept.

4.4 Case Studies

In this section, four different case studies are constructed to evaluate the proposed no-
regret auction mechanism: (i) synthetic data with 3 agents aiming to verify, with a simple
setup, how the data market operates; (ii) synthetic data with 50 agents, aiming to eval-
uate the effect of different covariance matrices in the data market; (iii) wind power data
publicly available from the Nord Pool electricity market; and (iv) solar power data used
in Chapters 2 and 3.

4.4.1 Synthetic Data: Simple Setup with 3 Agents

Data Description and Experiments

Three agents are assumed. Let xi,t denote the observations from agent i at time t, and
xt=[x1,t, x2,t, x3,t], where i ∈ {1, 2, 3} and t ∈ {1, . . . , T}. The synthetic data are gener-
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ated from the Vector AutoRegressive (VAR) model,

xt = xt−1

0.5 0.7 −0.1
0 0.7 0.1
0 0 0.8

+εt, (4.21)

where εt =
[
ε1,t, ε2,t, ε3,t

]
are the error terms, εi,t ∼ N (0, 1).

As experiments, hour-ahead forecasts are validated using an out-of-sample fold with 150
consecutive time steps. The market operator uses a sliding window with the 8760 most
recent observations divided in 8592 for model fitting and 168 to estimate the improvement
in gain.

For the data market simulation, a linear regression is used as the model Mi, ∀i ∈
{1, 2, 3}, with covariates provided by the 1h-lagged time series. The gain function Gi is
the improvement over the model estimated by using only its own (lagged) time series, in
terms of percentage of Normalized Root Mean Squared Error (NRMSE) measured for each
agent i as

NRMSE =

√∑T
t=1(x̂i,t−xi,t)2

T

max({xi,t}Tt=1)−min({xi,t}Tt=1)
× 100. (4.22)

The market operator sets a market price between 0.50e and 10e, with 0.50e increment,
for each 1% improvement in NRMSE when forecasting one time-step ahead. The auction
mechanism is simulated through the following experiments, which assume that the buyers
have the following bid prices (both market and bid prices are expressed in e per 1%
improvement in NRMSE):

E1 A fixed bid price of 5e; i.e., each agent values a marginal improvement of 1% in
NRMSE as 5e.

E2 Agents bid fixed values of 3e, 5e and 7e, respectively.

E3 Agents bid fixed values of 7e, 5e and 3e, respectively.

E4 Agents bid price according to the NRMSE of their local model. Agents with a
poor local model are more prone to improve 1% in NRMSE. The functional relation
between the bid price and local model NRMSE is expressed as

b(NRMSE) =
10

1 + exp(−0.3×NRMSE + 5)
. (4.23)

The NRMSE for the local model is estimated using the ∆ most recent observations.

Results and Discussion

Figure 4.5 depicts market dynamics when buyers always bid price 5e. At the end of some
iterations, the market price tends to the bid’s price values. As expected, when the market
price is below or equal to the bid price, the gain corresponds to the gain using the real
model. On the other hand, when the market price is higher than the bid price, the gain is
reduced as a consequence of the noise addition into the covariates from the other agents.
Furthermore, in all experiments, agent 1 has the highest benefit when using data from the
market, which was expected by (4.21).

Additionally, since the gain for agents 2 and 3 is small, their payment is also small
even when the market is not adding noise to the covariates. The payment from agent 1
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Figure 4.5: Market dynamics for experiment E1 (bid price is constant and equal to 5e).
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Figure 4.6: Market dynamics for agent 1 in experiments E2 and E3.

is divided by agents 2 and 3 through a mean percentage of 97.6% and 2.4%, respectively,
which is coherent with the fair distribution. When some gain is estimated for agent 2,
agent 3 receives 100% of the value paid. Even though agent 3 does not benefit in terms of
forecast accuracy improvement, it receives money from agents 1 and 2 who are not aware
that agent 3 is selling data in the market.

Figure 4.6 depicts data market dynamics for agent 1, at experiments E2 and E3. Since
the gain to agents 2 and 3 is small, the market price is influenced by the bid price of
agent 1, and the former conclusions stand. Furthermore, when the agent with the highest
gain bids closer to the initial market price, the market price converges faster.

The market price and revenue dynamics for E4 (not depicted in Figure 4.6) are similar
to the ones from E2, where agent 1 bids at a price higher than agents 2 and 3. Since the
NRMSE for the local forecasting model is stationary for all agents (with values around
9.8%, 7.7% and 5.8%, respectively), the agents bid prices around 1.2e, 0.65e and 0.37e
per 1% improvement in NRMSE, respectively. The market price converges to 1e per 1%
improvement in NRMSE.

4.4.2 Synthetic Data: 50 Agents

Data Description and Experiments

Let xt=[x1,t, . . . , x50,t]. The synthetic data for the 50 agents are generated from the VAR
model

xt = xt−1B+εt, (4.24)

where B is the coefficient matrix, B ∈ R50×50, and εt= [ε1,t, . . . , ε50,t] is the error vector,
εi,t ∼ N (0, 1), ∀i ∈ {1, . . . , 50}. Two datasets (D1 and D2) are generated to evaluate the
effect of different covariance matrices in the proposed approach.
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D1 assumes a sparse B matrix where: Agents 1, 2, 12, 16, 21 and 43 should benefit with
forecasts from the data market; agents 2, 3, 11, 12, 36 and 44 should receive payment from
the data market. D2 assumes a B matrix such that a large number of time series is
highly-correlated.

As in Subsection 4.4.1, hour-ahead forecasts are validated using an out-of-sample fold
with 150 consecutive time steps. The market operator uses a sliding window with the
8760 most recent observations divided in 8592 for model fitting and 168 to estimate the
improvement in gain. Mi is a linear regression with covariates given by the 1h-lagged time
series, and Gi is the improvement over the model estimated by using only its own (lagged)
time series, in terms of NRMSE. The market operator sets a market price between 0.50e
and 10e, with 0.50e increment, and each agent values a marginal improvement of 1% in
NRMSE as 5e.

Results and Discussion

Table 4.1 summarizes the results for D1, at the end of 150 time steps. Sellers with
data that improve the forecasts of other agents get higher revenue from the data market,
when compared to the others. Conversely, agents that buy forecasts with higher accuracy
pay higher values, but are compensated by the gain associated with the imbalance costs
reduction. For instance, agent 1 pays 589.3e but the extra gain from using these forecasts,
instead of those obtained by its internal (or local) model, is 1107.9e.

Figure 4.7 summarizes the covariance and correlation matrices for D2, as well as the
total gain (boxplot) for the 50 agents. There is a large number of correlated time series.
But once again, agents gain money by improving their forecasting accuracy or by selling
their data to others. The lowest total gain is 333.4e and more than 30 agents receive at
least 1000e.

Table 4.1: Cumulative gains with D1 by agent (e).

1 2 3 11 12 16 21 36 43 44 Others
Payment 589.3 30.0 0.0 0.1 88.2 58.4 22.7 0.0 101.4 0.0 [0,2[
Revenue* 0.6 570.8 26.6 98.7 48.9 2.3 0.3 19.1 0.5 90.0 [0,2[
Tot. Gain** 519.2 595.1 26.6 98.7 176.3 123.4 17.6 19.1 110.8 90.0 [0,4[
* Revenue = data market revenue (i.e., value received by selling data)

** Tot. Gain = data market revenue + revenue with purchased forecasts - value paid
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Figure 4.7: Covariance and correlation for data D2 and gain after 150 time steps.
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4.4.3 Wind Power Data
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Figure 4.8: Nord Pool regions in Denmark (DK) and Sweden (SE), as well as the wind roses for
the wind direction observed in Copenhagen and Malmo.

Data Description and Experiments

Nord Pool runs the largest market for electrical energy in Europe, operating in several
northern Europe countries. For illustrative purposes, we use the historical wind power
values, spot price and imbalance prices for upward and downward regulation, available
in the Nord Pool website1, from 6 regions: 4 in Sweden (SE1, SE2, SE3, SE4) and 2
in Denmark (DK1 and DK2). In this test case, each region is assumed to represent an
electricity market agent. The dataset ranges between 1st January 2016 and 12th October
2017 with hourly resolution. Figure 4.8 provides a geographical representation of these
regions as well as the wind roses for the wind direction observed in Copenhagen and Malmo
during this period2.

The agents are assumed to maximize their electricity market’s revenue at time t by

forecasting the optimal quantile τ∗t =
λ̂↓t

λ̂↓t+λ̂↑t
, as in Section 4.2.1. Lags 1, 2 and 3 are used

as covariates in the linear quantile regression model provided by (4.11), motivated by
preliminary cross-correlation analysis of the time series. The gain is computed by the
improvement in the electricity market revenue, as defined in (4.12), which measures how
much money an agent earns on the electricity market when using the forecast provided
by the data market instead of the forecasts obtained through the use of local data (and
model).

As in the previous case-study, hour-ahead power forecasts are generated and validated
in the same way. The market operator uses a sliding window with one year divided in 8592
for model fitting and 168 (one week) to estimate the improvement in gain. The parameter
η, used for forecasting upward and downward regulation unit costs, is estimated (i.e.,
select the value with minimum mean square error) by dividing the first one-year data in
9 months for training the Holt-Winters model and the remaining 3 months for computing
the corresponding mean squared error, for η ∈ {0.9, 0.95, 0.99, 0.999}.

In this test case, the market operator is assumed to set a market price between 5%
and 70% of the gain, with 5% increments, i.e., for each 1e increase in electricity market
revenue, the market operator may define a market price between 0.05e and 0.70e. On

1https://www.nordpoolgroup.com/ (accessed on November 2020)
2https://www.weatheronline.co.uk (accessed on November 2020)
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Figure 4.9: Cumulative values for electricity market revenue (over a quantile regression using
only local data), data market revenue and payment, considering wind power data.

the other hand, the bid price is 50% for all buyers, i.e., the buyers are willing to pay a
maximum of 0.50e for each 1e increase in electricity market revenue.

Results and Discussion

For each time step, the gain in electricity market revenue is computed as the difference
between the revenue obtained when using forecasts from the data market and the revenue
obtained by using a local forecasting model built without neighbor time series. Figure 4.9
depicts the cumulative revenue gain from the electricity market, i.e., the extra revenue
obtained by using the forecast provided by the data market. Furthermore, the same plot
shows the cumulative revenue from the data market, i.e., how much each agent receives
by sharing data with the market operator, and, finally, the cumulative payment that each
agent pays to the data market in order to buy forecasts. Table 4.2 supports the graphical
analysis by presenting the cumulative gains and total revenue at the end of the testing
period (approx. 10 months).

An agent participating in the data market may increase its revenue either by receiving
more money from the electricity market (i.e., minimizing imbalance costs) or by receivsing
money from the data market (i.e., selling data to competitors). The fundamental goal of
the data market is to have a total revenue (i.e., sum of revenues obtained in the data
and electricity market minus the payment to the data market) higher than the revenue
obtained in the electricity market without third-party data or data monetization.

Agent DK2 benefits the most from the data market, followed by agent SE4. These
benefits are mainly due to the increase in the revenue from the electricity market, i.e.,

Table 4.2: Cumulative gains (e) at the end of testing period.

(1st January 2017 to 12th October 2017)

SE1 SE2 SE3 SE4 DK1 DK2
Electricity market 5303 1907 13668 27393 15609 48883
Paid value 3028 4166 5950 8898 14854 9018
Data market 2770 7105 3751 8688 14151 9449
Total revenue 5045 4846 11469 27184 14907 49315
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Table 4.3: Payment division by the competitors (in %).

SE1 SE2 SE3 SE4 DK1 DK2
SE1 — 29.11 10.70 20.86 35.69 3.64
SE2 19.45 — 12.52 24.51 29.79 13.73
SE3 10.21 25.96 — 15.33 39.80 8.70
SE4 10.62 27.01 9.54 — 42.55 10.28
DK1 1.52 9.60 10.73 28.78 — 49.38
DK2 2.01 9.42 5.13 20.50 62.94 —

from the improvement of the forecasting models. This is explained by the fact that wind
comes predominately from the West (as depicted in Fig. 4.8), and their forecast models
are improved by the time series from agent DK1 (located to the East).

On the other hand, the agent DK1 receives a higher reward for sharing its data with
the market operator, which is also coherent with predominant wind direction. Southwest
locations will be more relevant to improve forecasting models. Consequently, northwestern
regions tend to benefit most from using forecasts with information from the other agents.
The sudden decrease in accumulated gains (e.g., for agent DK1) occur due to extremely
high values for regulation unit costs. For agent DK1, the high losses are associated with
a upward regulation unit costs higher than 200e/MWh (when the values in 99% of the
historical period are smaller than 30e/MWh).

Finally, Table 4.3 summarizes how the value paid by each agent is divided by the other
agents (data sellers). By construction, the proportion that a data seller receives is related
to the relevance (i.e., explanatory power) of its time series when forecasting the RES
generation of a buyer. Agent DK1 receives a higher reward for sharing its data, which is
due to its geographical location. Following the same reasoning, it would be expected that
SE1 received a smaller proportion of money from all the competitors.

In order to assess the added value of a quantile regression with varying nominal pro-
portions over time (τt) instead of a constant value τ , the mean values for λ↑ and λ↓ are
computed for the testing period and the related nominal proportion is estimated. The
value for the nominal proportion is 0.60. The results show that the revenue from the
electricity market for agents SE1, SE2, SE3, SE4, DK1 and DK2 increases, respectively,
176,298e, 517,218e, 437,747e, 293,813e, 887,684e and 344,883e when using τt instead
of τ .

4.4.4 Solar Power Data

Data Description and Experiments

The proposed algorithm is now evaluated using a solar power dataset. The power data
consist of hourly time series of solar power from 44 micro-generation units, located in a
Portuguese city, covering the period from February 1, 2011 to March 6, 2013. To make the
data stationary, the solar power is normalized through a clear sky model, which gives an
estimate of the solar power in clear sky conditions at any given time [37]. This clear-sky
model estimates the clear-sky power time series exclusively from historical on-site power
observations.

Since the prices for the electricity market during this period are not available, we il-
lustrate the proposal by using the prices from the region DK1 of the Nord Pool dataset.
Furthermore, we change the power units from Wh to kWh to make gains more salient.

Similarly to the previous experiment, we assume that agents select the quantile regres-
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Figure 4.10: Cumulative values for electricity market revenue (over a local quantile regression),
data market revenue and payment, considering solar power data.

sion model aiming to maximize their electricity market’s revenue for the next hour, as
described in Section 4.3.3. The lags 1, 2 and 24 of all agents are used as covariates, moti-
vated by previous work with linear models [84]. The gain function is computed from the
improvement in the electricity market revenue, as defined in (4.12). Also, to exclude the
night-time hours, data corresponding to a solar zenith angle larger than 90 are removed
during the training phase. For these hours, the improvement in electricity market revenue
is considered zero. All agents are assumed to bid at a constant value of 50%, i.e., for each
increase of e1 in electricity market revenue, the agents are willing to pay up to e0.50.

The market operator uses a sliding window with one year, the most recent week is used
to estimate the improvement in gain, and the remaining for model fitting.

Results and Discussion

For each time step, the gain in electricity market revenue is computed as the difference
between the revenue obtained when using forecasts from the data market and the revenue
obtained by using a local forecasting model built without neighbor time series. A sample
of 5 of these 44 agents is considered to illustrate the results. Figure 4.10 depicts the
cumulative extra revenue obtained by using the forecast provided by the data market,
the cumulative revenue from sharing data with the market operator, and the cumulative
payment that each agent pays to the data market to buy forecasts.

In terms of extra revenue from the electricity market, the collaboration between agents
seems to benefit agents PV1 to PV4, with PV4 being the most benefited. However, PV5
tends to lose money when considering the forecasts provided by the data market. This
result was expected since in the previous chapter this same agent showed that collaboration
through a vector autoregressive model does not improve accuracy when compared to an
autoregressive model. In fact, PV5 should not consider the forecasts provided by the data
market, since the corresponding payments are mostly zero, which means that the data
market estimates no value from such forecasts.

Since PV4’s data is relevant to some of its competitors, the data market places a positive
value on its data, motivating its participation in collaborative forecasting. Therefore, all
agents benefit from the higher revenue accrued either from the data market or the better
forecast in the electricity market.

4.5 Concluding Remarks

Data sharing between different owners has a high potential to improve RES forecasting
skill in different time horizons (e.g., hours-ahead, day-ahead) and consequently the revenue

110



4.5 Concluding Remarks

from electricity market players. However, economic incentives, trough data monetization,
are fundamental to implement collaborative forecasting schemes since RES agents can
be competitors, and therefore unwilling to share their confidential data without benefits.
This work was inspired by [200] and adapted for RES forecasting. The gain function of
buyers was adapted for RES agents, which have a local model with their own variables
and enter the market to improve it with more information. Furthermore, an evaluation
was performed using three case studies.

Synthetic data was used in a controlled case study where it was possible to confirm:
(i) the correct allocation of revenue across sellers by the market operator, and (ii) the
buyers who did not benefit from the forecasts of others did not pay for such forecasts.
Data from the Nord Pool market and a small municipality in Portugal were used to
evaluate the potential of a data market for RES agents, and it was concluded that: (i) all
agents benefit (from the economic point of view) from the data market, (ii) agents that
first observe wind-flow (or wind generation) in one location, e.g., at timestep t−1, provide
relevant information to improve the forecasting model (e.g., for t+1) of neighbor agents in
other locations, conditioned by wind direction, and then all agents benefit by the higher
revenue accrued either from the data market or the better forecast in the electricity market.
In summary, data markets can be a solution to foster data exchange between RES agents
and contribute to reduce imbalance costs.

In this work, linear quantile regression and the Holt-Winters statistical models were
used for the power and imbalance prices forecasts respectively. However, the choice of
these models, considering aspects such as time horizon, non-linear relation between power
and NWP, etc., must be carefully considered to deliver maximum gains in the electricity
and data markets. For instance, the market operator can use a statistical model tailored to
each RES agent, as long as the forecasting skill is maximized since it impacts the financial
incentives to share data.
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III

Conclusion

This epilogue summarizes the main contributions and findings from this PhD thesis. The
topics for future work are also identified.

III.1 Summary

Despite the many benefits of Renewable Energy Sources (RES), there are challenges to
overcome since their generation depends on weather factors (wind speed, clouds, solar
irradiance, etc.). Consequently, accurate forecasts are essential to reduce electrical energy
imbalances in the electricity market and design advanced decision-aid tools to support the
integration of large amounts of RES into the power system.

The following main contributions are provided by this PhD thesis, which had been
previously discussed in Section I.2:

1. Extreme quantile forecasting. Forecast uncertainty is minimized by combin-
ing extreme value theory estimators for truncated generalized Pareto distribution
with non-parametric methods, conditioned by spatio-temporal information. In this
framework, covariates are used to produce conditional forecasts of quantiles with-
out any limitation in the number of variables, and the parametric extreme value
theory-based estimator can be combined with any non-parametric model (artificial
neural networks, gradient boosting trees, random forests, etc.) without any major
modification.

The results for a synthetic dataset shows that the proposed approach better cap-
tures the overall tails’ behavior, with smaller deviations between real and estimated
quantiles. The proposed method also outperforms state-of-the-art methods in terms
of quantile score when evaluated using real data from wind and solar power plants.

2. Privacy-preserving collaborative models. Cooperation between multiple RES
power plant owners can lead to an improvement in forecast accuracy thanks to
the spatio-temporal dependencies in time series data. Such cooperation between
agents makes data privacy a necessity since they usually are competitors. The main
contributions to this topic are:

a) A numerical and mathematical analysis of the existing privacy-preserving re-
gression models and identification of weaknesses in the current literature. Ex-
isting methods of data privacy are unsatisfactory when it comes to time series
and can lead to confidentiality breaches – which means the reconstruction of
the entire private dataset by another party.

These techniques are grouped as (a) data transformation, such as the genera-
tion of random matrices that pre- or post-multiply the data or using principal
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component analysis with differential privacy, (b) secure multi-party computa-
tion, such as linear algebra protocols or homomorphic encryption (encrypting
the original data in a way that arithmetic operations in the public space do
not compromise the encryption), and (c) decomposition-based methods like the
ADMM or the distributed Newton-Raphson method. The main conclusions
were that data transformation requires a trade-off between privacy and accu-
racy, secure multi-party computations either result in computationally demand-
ing techniques or do not fully preserve privacy in Vector AutoRegressive (VAR)
models, and that decomposition-based methods rely on iterative processes and
after a number of iterations, the agents have enough information to recover
private data.

b) Based on the previous state-of-the-art analysis, a privacy-preserving forecasting
algorithms is proposed. Data privacy is ensured by combining linear algebra
transformations with a decomposition-based algorithm, allowing to compute the
model’s coefficients in a parallel fashion. This novel method also included an
asynchronous distributed algorithm, making it possible to update the forecast
model based on information from a subset of agents and improve the com-
putational efficiency of the proposed model. The mathematical formulation is
flexible enough to be applied in two different collaboration schemes (central hub
model and peer-to-peer) and paved the way for learning models distributed by
features, instead of observations.

The results obtained for wind and solar energy datasets show that the privacy-
preserving model delivers a forecast skill comparable to a model without privacy
protection and outperformed a state-of-the-art method based on analog search.

3. Algorithmic solution for data trading. Incentives must also exist so that agents
are motivated to cooperate by exchanging their data. The contribution for this topic
is the development of an algorithmic solution for data monetization in RES collab-
orative forecasting. Cooperation between sellers is done through a market operator
who receives all agents data and prepares forecasts: (i) sellers with similar informa-
tion receive similar revenue, (ii) the market price is a function of the buyer’s benefit,
and so the buyer does not pay if there is no improvement in the forecasting skill,
(iii) buyers pay according to incremental gain, and (iv) buyers purchase forecasts, in-
stead of features, and have no knowledge about which datasets were used to produce
these forecasts.

Experiments have shown that all agents (or data owners) benefit in terms of higher
revenue resulting from the combination of electricity and data markets. The results
support the idea that data markets can be a viable solution to promote data exchange
between RES agents and contribute to reducing system imbalance costs.

All in all, all four main chapters have an associated publication (one under review),
in journals ranging in impact factors from 2.8 up to 7.4, as previously mentioned in
Section I.4. These works have contributed to the Smart4RES project, a collaboration
involving institutions from six countries that aims to improve efficiency from RES, and
we are currently collaborating with other colleagues to advance the state-of-the-art, espe-
cially with regard to data markets, and the extension of the privacy-preserving analytics
to other use cases in the energy sector (e.g., smart grids).
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III.2 Future Work

The following topics were identified for future work:

1. Extreme quantile forecasting. Forecasting rare events remains a challenge given
to the scarcity of data to represent them. Future research should consider:

a) the inclusion of information from weather ensembles, as additional covariates, in
order to exploit its capability to capture extreme events with a physically-based
approach;

b) the generalization of the proposed method to other energy-related time series,
e.g., electricity market prices (energy, system services, etc.);

c) the development of new proper scoring rules are needed to evaluate the fore-
casting skill of extreme (rare) events (see [212] for instance).

2. Privacy-preserving collaborative models. Privacy-preserving techniques are
very sensitive to data partitioning and the problem structure. Future research should
consider:

a) Uncertainty forecasting and application to non-linear models (and consequently
longer lead times), which we plan to investigate in a forthcoming work. Never-
theless, uncertainty forecast can be readily generated by transforming original
data using a logit-normal distribution [174]. The proposed privacy-preserving
protocol can be applied to non-linear regression by extending the additive model
structure to a multivariate setting [213] or by local linear smoothing [214].

b) The extension to other non-linear multivariate models recently considered in
collaborative learning [215], such as long short-term memory networks and vari-
ants which can make use of NWP as input. These models would require changes
in the protocol for data transformation. For example, the rectifier (ReLU),
which is an activation function commonly used in neural networks and defined
as f(x) = max(0, x), has the problem that f(MZQB) 6= Mf(ZQB).

3. Algorithmic solution for data trading. Topics for future work include:

a) The loss of RES agents when sharing their data should be considered when
defining the data price. Evidently, a seller sharing data with its competitors
expects compensation for the potential impact on its business.

b) Some improvements are required when using a sliding-window approach. The
current version of the algorithm works by adding noise to the covariates, which
means that, for each new time step, the market operator needs to perform a
batch train that can result in a high computational effort as more and more
agents enter the market. Ideally, the noise should be introduced in the output of
the model, allowing the market operator to update the model weights through
online learning whenever the variables in the data market remain the same.

c) The privacy of the data should be addressed since in our simulations the agents
share the data with the market operator, which may represent an obstacle for
some agents. The privacy-preserving protocol proposed in this PhD thesis can
be combined with the data markets concept in order to increase the privacy of
the data market.

d) The development of peer-to-peer data trading schemes (i.e., without a central
node as market operator) for prosumers (producers and consumers of renewable

115



Epilogue III Conclusion

energy) in local energy communities, in such a way that data sellers can set their
own data price.

e) extension of the data markets concept to other data sources, such as a network of
weather stations or numerical weather predictions (i.e., monetization of weather
forecasts).

116



Bibliography

[1] eurostat, Renewable energy statistics, 2020 (accessed November 15, 2020).
[Online]. Available: https://ec.europa.eu/eurostat/statistics-explained/index.php/
Renewable energy statistics

[2] EU, 2030 climate & energy framework, Accessed in November 2020. [Online].
Available: https://ec.europa.eu/clima/policies/strategies/2030 en

[3] E. Commission, “Directive 2003/54/EC concerning common rules for the internal
market in electricity,” Official Journal of the European Union, vol. 176, pp. 37–56,
2003.

[4] ——, “Directive 2009/72/EC of the european parliament and of the council of 13 july
2009 concerning common rules for the internal market in electricity and repealing
directive 2003/54/ec,” Official Journal of the European Union, vol. 211, pp. 55–93,
2009.

[5] ——, “Directive (EU) 2019/944 of the european parliament and of the council of
5 june 2019 on common rules for the internal market for electricity and amending
directive 2012/27/EU (text with EEA relevance.),” Official Journal of the European
Union, vol. 158, p. 125–199, 2019.

[6] REN, European Cross-Border Intraday Market XBID, 2018 (accessed November
15, 2020). [Online]. Available: https://www.mercado.ren.pt/EN/Electr/InterProj/
XBID/Pages/default.aspx

[7] M. A. Matos and R. J. Bessa, “Setting the operating reserve using probabilistic wind
power forecasts,” IEEE Transactions on Power Systems, vol. 26, no. 2, pp. 594–603,
2010.
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[24] C. Gonçalves and R. J. Bessa, “Geographically distributed solar power time series,”
Sep. 2020. [Online]. Available: https://doi.org/10.25747/gywm-9457

[25] T. Hong, P. Pinson, S. Fan, H. Zareipour, A. Troccoli, and R. J. Hyndman, “Proba-
bilistic energy forecasting: Global energy forecasting competition 2014 and beyond,”
International Journal of Forecasting, vol. 32, pp. 896–913, 2016.

[26] N. Pool, Nord Pool data, Accessed in November 2020. [Online]. Available:
https://www.nordpoolgroup.com/

118

https://CRAN.R-project.org/package=quantreg
https://CRAN.R-project.org/package=Rearrangement
https://CRAN.R-project.org/package=Rearrangement
https://CRAN.R-project.org/package=ReIns
https://doi.org/10.25747/edf8-m258
https://doi.org/10.25747/edf8-m258
https://doi.org/10.25747/gywm-9457
https://www.nordpoolgroup.com/


Bibliography

[27] R Core Team, R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, 2018. [Online]. Available:
https://www.R-project.org/

[28] G. Van Rossum and F. L. Drake Jr, Python tutorial. Centrum voor Wiskunde en
Informatica Amsterdam, The Netherlands, 1995.

[29] C. Sweeney, R. J. Bessa, J. Browell, and P. Pinson, “The future of forecasting
for renewable energy,” Wiley Interdisciplinary Reviews: Energy and Environment,
vol. 9, no. 2, p. e365, Mar. 2020.

[30] R. Ahmed, V. Sreeram, Y. Mishra, and M. Arif, “A review and evaluation of the
state-of-the-art in pv solar power forecasting: Techniques and optimization,” Re-
newable and Sustainable Energy Reviews, vol. 124, p. 109792, 2020.

[31] T. Ahmad, H. Zhang, and B. Yan, “A review on renewable energy and electricity
requirement forecasting models for smart grid and buildings,” Sustainable Cities and
Society, vol. 55, p. 102052, 2020.

[32] A. M. Foley, P. G. Leahy, A. Marvuglia, and E. J. McKeogh, “Current methods and
advances in forecasting of wind power generation,” Renewable Energy, vol. 37, no. 1,
pp. 1–8, 2012.

[33] C. Monteiro, R. Bessa, V. Miranda, A. Botterud, J. Wang, G. Conzelmann et al.,
“Wind power forecasting: State-of-the-art 2009.” Argonne National Lab.(ANL), Ar-
gonne, IL (United States), Tech. Rep., 2009.

[34] F. Antonanzas-Torres, R. Urraca, J. Polo, O. Perpiñán-Lamigueiro, and R. Escobar,
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A

Appendices

A.1 Differential Privacy

Mathematically, a randomized mechanism A satisfies (ε,δ)-differential privacy [126] if, for
every possible output t of A and for every pair of datasets D and D′ (differing in at most
one record),

Pr(A(D) = t) ≤ δ + exp(ε)Pr(A(D′) = t). (A.1)

In practice, differential privacy can be achieved by adding random noise W to some desir-
able function f of the data D. That is,

A(D) = f(D) +W. (A.2)

The (ε,0)-differential privacy is achieved by applying noise from Laplace distribution with
scale parameter ∆f1

ε , with ∆fk = max{‖f(D) − f(D′)‖k}. A common alternative is the
Gaussian distribution but, in this case, δ > 0 and the scale parameter which allows (ε,δ)-

differential privacy is σ ≥
√

2 log
(

1.25
δ

)
∆2f
ε . Dwork and Smith [126] showed that the data

can be masked by considering

A(D) = D + W. (A.3)

A.2 Optimal value of r

Proposition 5 Let XAi ∈ RT×s be the sensible data from agent i, with u unique values,
and MAj ∈ RT×T be the private encryption matrix from agent j. If agents compute
MAjXAi applying the protocol in (3.4)–(3.5), then two invertible matrices DAi ∈ Rr×r

and CAi ∈ RT×(r−s) are generated by agent i and data privacy is ensured for

√
Ts− u < r < T. (A.4)

Proof Since agent i only receives MAj [XAiCAi ]DAi ∈ RT×r, the matrix MAj ∈ RT×T
is protected if r < T . Furthermore, agent j receives [XAiCAi ]DAi ∈ RT×r and does not
know XAi ∈ RT×s,CAi ∈ RT×r−s and DAi ∈ Rr×r. Although XAi ∈ RT×s, we assume
this matrix has u unique values whose positions are known by all agents – when defining
a VAR model with p consecutive lags ZAi has T+p−1 unique values, see Figure II.10 –
meaning there are fewer values to recover.

Given that, agent j receives Tr values and wants to determine u+ T (r − s) + r2. The
solution of the inequality Tr < u+ T (r− s) + r2, in r, determines that data from agent i
is protected when r >

√
Ts− u.

�

133



Appendix A Appendices

Proposition 6 Let XAi∈RT×s and GAi∈RT×g be private data matrices, such that XAi

has u unique values to recover and GAi has v unique values that are not in XAi. Assume
the protocol in (3.4)–(3.5) is applied to compute MXAi, X>AiM

−1 and MGAi, with M

as defined in (3.2). Then, to ensure privacy while computing MXAi and X>AiM
−1, the

protocol requires √
Ts− u < r < T/2 ∧ r > s. (A.5)

In addition, to compute MGAi, the protocol should take√
Tg − v < r′ < T − 2r ∧ r′ > g. (A.6)

Proof (i) To compute MXAi , the i-th agent shares WAi = [XAi ,CAi ]DAi ∈ RT×r with
the n-th agent, CAi ∈ RT×(r−s), DAi ∈ Rr×r, r > s. Then, the process repeat until the
1-st agent receives MA2 . . .MAnWAi and computes MWAi = MA1MA2 . . .MAnWAi .
Consequently, agent j = 1, . . . , n receives Tr values during the protocol.

(ii) X>AiM
−1 is computed using the matrix WAi defined before. Since M−1 = M−1

An
. . .M−1

A1
,

the n-th agent computes W>
Ai

M−1
An

. Then, the process repeat until the 1-st agent receives

W>
Ai

M−1
An
. . .M−1

A2
and computes W>

Ai
M−1 = W>

Ai
M−1

An
. . .M−1

A2
M−1

A1
. Again, the j-th

agent receives Tr values related to the unknown data from the i-th agent.

In summary, the n-th agent receives Tr values and unknowns u + T (r − s) + r2 (from
XAi , CAi , DAi). The solution for Tr<u+T (r−s)+r2 allows to infer that XAi is protected
if

r >
√
Ts− u.

On the other hand, the i-th agent receives 2Tr values (MWAi , W>
Ai

M−1) and unknowns
T 2 from M⇒ r<T/2.

(iii) Finally, to compute MGAi , the i-th agent should define new matrices C′Ai ∈
RT×(r′−g) and D′Ai ∈ Rr′×r′ sharing W′

Ai
= [GAi ,C

′
Ai

]D′Ai ∈ RT×r′ , r′ > g. The compu-

tation of MW′ provides Tr′ new values, meaning that after computing MXAi , X>AiM
−1

and MGAi , the n-th agent has Tr + Tr′ values and does not know u + T (r − s) + r2 +
v + T (r′ − g) + r′2 (from XAi , CAi , DAi , GAi , C′Ai and D′Ai respectively). The solution
of the inequality Tr + Tr′ < u + T (r − s) + r2 + v + T (r′ − g) + r′2 allows to infer that
r′ >

√
Ts− u− r2 − v + Tg >

√
Tg − v.

On the other hand, the i-th agent receives 2Tr + Tr′ and does not know T 2, meaning
that r′ < T − 2r. �

A.3 Privacy Analysis

The proposed approach requires agents to encrypt their data and then exchange that
encrypted data. This appendix section analyzes the global exchange of information. First,
we show that the proposed privacy protocol is secure in a scenario without collusion, i.e.,
no alliances between agents (data owners) to determine the private data. Then, we analyze
how many agents have to collude for a privacy breach to occur.

A.3.1 No collusion between agents

While encrypting sensible data XAi∈RT×s and GAi∈RT×g such that XAi has u unique
values to recover and GAi has v unique values that are not in XAi , the 1-st agent obtains
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M[XAi ,CAi ]DAi∈RT×r, [[XAi ,CAi ]DAi ]
>M−1∈Rr×T and M[GAi ,C

′
Ai

]D′Ai∈RT×r
′
, ∀i,

which provides 2nTr + nTr′ values. At this stage, the agent does not know

T 2︸︷︷︸
M

+ (n− 1)u︸ ︷︷ ︸
XAi

,∀i 6=1

+ (n− 1)v︸ ︷︷ ︸
GAi

,∀i 6=1

+ (n− 1)T (r − s)︸ ︷︷ ︸
CAi

,∀i 6=1

+ (n− 1)r2︸ ︷︷ ︸
DAi

,∀i 6=1

+ (n− 1)T (r′ − g)︸ ︷︷ ︸
C′Ai ,∀i 6=1

+ (n− 1)r′
2︸ ︷︷ ︸

D′Ai ,∀i 6=1

values. Then, while fitting the LASSO-VAR model, the 1-st agent can recover MX ∈
RT×ns and MG ∈ RT×ng, as shown in Chapter 2. That said, the 1-st agent receives
2nTr+nTr′+nTs+nTg, and a confidentiality breach occurs if T (2nr+nr′+ns+ng) ≥
T 2 + (n− 1)[u+ v + T (r − s) + r2 + T (r′ − g) + r′2].

After a little algebra, it is possible to verify that taking (A.5), ∃ r′ in (A.6), such as the
previous inequality is not satisfied.

A.3.2 Collusion between agents

A set of agents C can come together to recover the data of the remaining competitors.
This collusion assumes that such agents are willing to share their private data. Let c be
the number of agents colluding. In this scenario, the objective is to determine M ∈ RT×T ,
knowing MWAi ∈ RT×r, W>

Ai
M−1 ∈ Rr×T , MW

′
Ai
∈ RT×r′ , MXAi ∈ RT×s, and

MGAi ∈ RT×g, i ∈ C.
Mathematically, it means that colluders can recover T 2 values by solving cT (r+r+r′+

s+ g) equations, which is only possible for c ≥ d T
2r+r′+s+g e.
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