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Abstract

This thesis is devoted to the problem of constructing a convolution-like operator associated with a
given diffusion process. Such convolution-like operators, whose defining property is that a convolution
semigroup representation should hold for the law of the given diffusion, allow one to develop the basic
notions of harmonic analysis in parallel with the standard theory. Among other applications, this
construction leads to a better understanding of the properties of the elliptic and parabolic differential
equations determined by the generator of the diffusion process; moreover, it allows us to describe the
natural class of Lévy-like processes associated with the diffusion.

We begin by studying the case of the Shiryaev process, a diffusion process with various applications
in mathematical finance. After establishing a novel closed-form product formula for the eigenfunctions
(namely, for the Whittaker 𝑊 function), we show that it induces a convolution-like structure on
the space of probability measures in which the Shiryaev process becomes a Lévy-like process. A
Lévy-Khintchine type representation is obtained, as well as a martingale characterization for the
Shiryaev process.

Unlike all other known examples of convolution-like structures for Sturm-Liouville operators,
the convolution for the Shiryaev process does not satisfy the property of compactness of support.
Motivated by this, we introduce a unified framework for the construction of convolutions associated
with a general class of Sturm-Liouville operators, in which the generator of the Shiryaev process is
merely a particular case. Our approach is based on the application of Sturm-Liouville spectral theory
to the study of the (possibly degenerate) associated hyperbolic Cauchy problem, and gives rise to
convolutions whose support can be either compact or noncompact. This construction leads to an
improvement of the known existence theorems for Sturm-Liouville hypergroups.

We also provide a general discussion of the problem of constructing convolution-like operators
for diffusions on a (generally multidimensional) locally compact metric space. We show that the
existence of a common maximizer for the eigenfunctions is necessary for such a convolution to allow
for the development of a probabilistic harmonic analysis. The failure of this necessary condition yields
nonexistence theorems for convolutions on smooth domains of R𝑑 . Finally, we examine the role of
separation of variables in the construction of nontrivial multidimensional convolutions, which we
illustrate via a thorough investigation of the example of Laplace-Beltrami operators on two-dimensional
manifolds endowed with cone-like metrics. Such operators are seen to admit a family of convolutions,
giving rise to a convolution semigroup property for the associated diffusion process and to other
properties analogous to those of Sturm-Liouville convolutions.

Keywords: Convolution-like operators, Diffusion processes, Elliptic differential operators, Lévy Pro-
cesses, Product formulas, Sturm-Liouville spectral theory, Hyperbolic Cauchy problems, Hypergroups.





Resumo

Esta tese aborda o problema de construir um operador de tipo convolução associado a um dado processo
de difusão. Estes operadores de tipo convolução, que por definição devem induzir uma representação
sob a forma de semigrupo de convolução para a distribuição da dada difusão, permitem-nos desenvolver
as noções básicas de análise harmónica em paralelo com a teoria clássica. Uma construção deste tipo
constitui uma ferramenta útil para o estudo das propriedades das equações diferenciais elípticas e
parabólicas determinadas pelo gerador do processo de difusão; para além disso, permite-nos descrever
a classe natural de processos de tipo Lévy associados à difusão.

Começamos por estudar o caso do processo de Shiryaev, um processo de difusão que possui várias
aplicações em matemática financeira. Deduzimos uma nova fórmula de produto em forma fechada
para as funções próprias (isto é, para a função𝑊 de Whittaker); de seguida, provamos que esta fórmula
induz uma estrutura de tipo convolução no espaço de medidas de probabilidade e que o processo de
Shiryaev pertence à classe de processos de tipo Lévy em relação a esta convolução. Obtemos um
análogo do teorema de Lévy-Khintchine, bem como uma caracterização do processo de Shiryaev
análoga à caracterização de Lévy do movimento Browniano.

Ao contrário de todos os exemplos conhecidos de estruturas de tipo convolução para operadores de
Sturm-Liouville, a convolução para o processo de Shiryaev não satisfaz a propriedade de compacidade
do suporte. Partindo desta motivação, introduzimos uma abordagem unificada para a construção
de convoluções associadas a uma classe geral de operadores de Sturm-Liouville, na qual o gerador
do processo de Shiryaev é apenas um caso particular. Esta abordagem baseia-se na aplicação da
teoria espetral de Sturm-Liouville ao estudo do problema de Cauchy hiperbólico associado (que é
possivelmente degenerado), e dá origem a convoluções que podem ou não satisfazer a propriedade
de compacidade do suporte. Esta construção produz uma melhoria dos teoremas conhecidos sobre
existência de hipergrupos de Sturm-Liouville.

Apresentamos ainda uma discussão do problema geral de construir operadores de tipo convolução
associados a difusões (em geral, multidimensionais) num espaço métrico localmente compacto.
Mostramos que a existência de um maximizante comum para as funções próprias é condição necessária
para que se possa desenvolver uma análise harmónica probabilística numa tal álgebra de convolução.
A falha desta condição necessária resulta em teoremas de inexistência para convoluções em domínios
infinitamente diferenciáveis de R𝑑 . Por último, estudamos o papel da separação de variáveis na
construção de convoluções multidimensionais não triviais, que é ilustrado através de uma análise do
exemplo dos operadores de Laplace-Beltrami em variedades bidimensionais munidas com métricas
de tipo cónico. Provamos que estes operadores admitem uma família de convoluções, dando origem
a uma propriedade de semigrupo de convolução para o processo de difusão associado e a outras
propriedades semelhantes às das convoluções de Sturm-Liouville.



viii

Palavras-chave: Operadores de tipo convolução, Processos de difusão, Operadores diferenciais
elípticos, Processos de Lévy, Fórmulas de produto, Teoria espetral de Sturm-Liouville, Problemas de
Cauchy hiperbólicos, Hipergrupos.
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Chapter 1

Introduction

The aim of this thesis is to investigate the following problem: given a diffusion process {𝑋𝑡 }𝑡≥0 on a
metric space 𝐸 , can we construct a convolution-like operator ∗ on the space of probability measures
on 𝐸 with respect to which the law of 𝑋𝑡 has the ∗-convolution semigroup property, i.e. can be written
as 𝑃[𝑋𝑡 ∈ ·] = `𝑡 ∗ 𝛿𝑋0 , where the measures `𝑡 are such that `𝑡+𝑠 = `𝑡 ∗ `𝑠 for all 𝑡, 𝑠 ≥ 0?

The significance of this problem stems both from its interpretation as a generalization of classical
harmonic analysis and from its probabilistic applications. These motivations are discussed in the next
section, where we highlight the connections between the construction of convolution-like structures
and topics such as stochastic processes, ordinary and partial differential equations, spectral theory,
special functions, and integral transforms. In Section 1.2 we describe the logical sequence of the
chapters and provide an overview of the scope and main contributions of this thesis. Section 1.3
contains a list of publications and preprints which were prepared during the dissertation period and
contain part of the material included in the subsequent chapters.

1.1 Motivation

Harmonic analysis for elliptic differential operators. A first motivation for the problem formulated
above comes from the fact that the existence of a generalized convolution structure for the diffusion
process generated by a given elliptic differential operator L puts at our disposal a valuable tool for
the study of elliptic and parabolic partial differential equations determined by L. Indeed, the most
straightforward way to investigate the properties of various heat-type equations (and their nonlocal
counterparts) is, in many cases, by making use of techniques from (standard) harmonic analysis
[5, 121, 141, 150]. If the properties of the convolution-like operator are similar to those of the ordinary
convolution, then the resulting algebraic structure allows one to develop the basic notions of harmonic
analysis in parallel with the standard theory [12, 119]; therefore, it is natural to expect that a positive
answer to our problem will lead to a better understanding of the properties of the corresponding
differential operators and the associated potential-theoretic objects. We note that the problem of
constructing a generalized convolution can be formulated for a large class of operators which includes,
in particular, the (Dirichlet, Neumann, Robin) Laplacian on Euclidean domains and Riemannian
manifolds.

1



2 1. Introduction

This interplay between convolutions and elliptic operators originates in the observation that the
existence of a convolution-like operator for the diffusion {𝑋𝑡 } is closely related to the properties of
the generalized eigenfunctions of its (infinitesimal) generator L, i.e. of the solutions of the elliptic
equation L𝑢 = _𝑢 (_ ∈ C). Indeed, suppose that ∗ is a bilinear operator on the set P(𝐸) of probability
measures on 𝐸 satisfying the conditions

C1. (Convolution semigroup property) 𝑃𝑥 [𝑋𝑡 ∈ ·] = `𝑡 ∗ 𝛿𝑥 (𝑡 > 0, 𝑥 ∈ 𝐸), where {`𝑡 }𝑡≥0 ⊂ P(𝐸)
is such that `𝑡+𝑠 = `𝑡 ∗ `𝑠 for all 𝑡, 𝑠 ≥ 0, and 𝑃𝑥 stands for the distribution of {𝑋𝑡 } started at 𝑥;

C2. There exists a family Θ of bounded continuous functions such that∫
𝐸

𝜗 𝑑 (` ∗ a) =
(∫
𝐸

𝜗 𝑑`

)
·
(∫
𝐸

𝜗 𝑑a

)
for all 𝜗 ∈ Θ and `, a ∈ P(𝐸). (1.1)

(Notice that (1.1) holds if ∗ is the ordinary convolution and 𝜗(𝑥) = 𝑒_𝑥 with _ ∈ C; condition C2 can
thus be interpreted as a general formulation of a trivialization property similar to that of the Fourier
transform with respect to the ordinary convolution.) Then it is not difficult to deduce (cf. Chapter 5)
that each 𝜗 ∈ Θ is a generalized eigenfunction of the transition semigroup of {𝑋𝑡 } and, consequently,
a generalized eigenfunction of the elliptic operator L. Replacing ` and a by Dirac measures in (1.1),
we find that there exists a family of measures a𝑥,𝑦 ∈ P(𝐸) such that the probabilistic product formula∫

𝐸

𝜗_ 𝑑a𝑥,𝑦 = 𝜗_(𝑥) 𝜗_(𝑦), 𝑥, 𝑦 ∈ 𝐸 (1.2)

holds for bounded solutions 𝜗_ of L𝜗_ = _𝜗_. (We use the word ‘probabilistic’ in order to emphasize
that {a𝑥,𝑦} is a family of probability measures.) Conversely, if a probabilistic product formula of the
form (1.2) holds for a sufficiently large family of generalized eigenfunctions of L, then the generalized
convolution operator defined as (` ∗ a) (𝑑b) =

∫∫
a𝑥,𝑦 (𝑑b) `(𝑑𝑥) a(𝑑𝑦) is such that the ∗-convolution

semigroup property C1 holds for the distribution of {𝑋𝑡 }.
The historical development of the topic of generalized harmonic analysis began with the seminal

works of Delsarte [43] and Levitan [110], where it was first noticed that product formulas are the
key ingredient for the construction of such convolution-like structures. The nontrivial motivating
example came from the Bessel differential operator, for which the existence of the product formula
(1.2) follows from a classical result on the Bessel function. (An overview on this motivating example
will be presented in Section 2.2.) This led, on the one hand, to the proposal of axiomatic structures
— often referred to as generalized convolutions, generalized translations, hypercomplex systems or
hypergroups — which aimed to identify the essential features which allow one to derive analogues of
the basic facts of classical harmonic analysis [12, 16, 119, 178]. The range of such axiomatic theories
extends far beyond the particular case of structures associated with diffusion processes or elliptic
operators.

On the other hand, there has been a continuous interest in finding additional examples of
nontrivial product formulas associated with Sturm-Liouville and elliptic operators. Besides the
Bessel example, other product formulas have been obtained by exploiting the properties of special
functions of hypergeometric type [67, 70, 98]. An alternative strategy relies on the fact that certain
differential operators are related with topological groups [98]. Yet another approach, which (unlike
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the former techniques) is applicable to one-dimensional operators with general coefficients, is to rely
on the associated hyperbolic PDE: if L is the Sturm-Liouville operator 1

𝑟

[
−(𝑝𝑢′) ′ + 𝑞𝑢

]
and 𝜗_

are the generalized eigenfunctions satisfying the boundary condition 𝜗_(𝑎) = 1, then the product
𝑓 (𝑥, 𝑦) = 𝜗_(𝑥)𝜗_(𝑦) is a solution of the hyperbolic PDE

1
𝑟 (𝑥)

{
−𝜕𝑥

[
𝑝(𝑥) 𝜕𝑥 𝑓 (𝑥, 𝑦)

]
+ 𝑞(𝑥) 𝑓 (𝑥, 𝑦)

}
=

1
𝑟 (𝑦)

{
−𝜕𝑦

[
𝑝(𝑦) 𝜕𝑦 𝑓 (𝑥, 𝑦)

]
+ 𝑞(𝑦) 𝑓 (𝑥, 𝑦)

}
.

satisfying the boundary condition 𝑓 (𝑥, 𝑎) = 𝜗_(𝑥); studying the properties of this PDE is therefore
a natural strategy for proving the existence of a product formula of the form (1.2) and extracting
information about the measure a𝑥,𝑦 [27, 36, 112, 197].

The existing theory on convolution-like operators associated with elliptic operators is mostly
limited to the one-dimensional (Sturm-Liouville) case. One of the reasons for this is the fact that there
is a well-developed spectral theory for Sturm-Liouville operators which, in particular, ensures that
(under suitable boundary conditions) the corresponding generalized eigenfunctions are the kernel
of a Sturm-Liouville type integral transform (F ℎ) (_) :=

∫
𝐼
ℎ(𝑥) 𝑤_(𝑥) 𝑑m(𝑥) which, similar to the

Fourier transform, defines an isometric isomorphism between 𝐿2 spaces. This class of transformations
includes many common integral transforms (Hankel, Kontorovich-Lebedev, Mehler-Fock, Jacobi,
Laguerre, etc.). The construction of Sturm-Liouville convolutions satisfying the trivialization
identity F (ℎ ∗ 𝑔) = (F ℎ) · (F 𝑔) triggers a better understanding of the mapping properties of such
Sturm-Liouville integral transforms.

Due to our probabilistic motivations, the present discussion focuses on convolution-like structures
where the convolution is a bilinear operator acting on finite complex measures. We observe, however,
that in the theory of integral transforms and special functions it is more common to define a convolution
(say, associated with a given integral transform) as an operator acting on suitable spaces of integrable
functions [70, 194]. In this context, it usually becomes less of a concern whether or not the convolution
preserves properties such as positivity or boundedness.

Construction of Lévy-like processes. Lévy processes are a very important class of Markov processes.
By definition, they are stochastically continuous and have stationary and independent increments. Lévy
processes are a versatile class of processes with jumps whose continuous representatives are the drifted
Brownian motions (in the sense that any Lévy process with continuous paths is a drifted Brownian
motion); therefore, they can be seen as a natural generalization of Brownian motion. Replacing
Brownian motions by Lévy processes with jumps is a common strategy for obtaining models with
greater flexibility in mathematical finance and other applications [5, 133].

The Brownian motion is the most famous diffusion process, but many other diffusion processes
also find diverse applications in a wide range of fields. One such field is mathematical finance,
where one-dimensional diffusions such as the Bessel, Ornstein-Uhlenbeck and Shiryaev processes are
often used in the modelling of the underlying financial variables, while two-dimensional diffusion
processes have been extensively applied in the context of stochastic volatility models [114, 133]. It is
relevant to ask whether these other diffusion processes can also be generalized into a class of processes
characterized by some analogue of the notions of stationarity and independence.
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By a well-known characterization, Lévy processes can be equivalently defined as Feller processes
whose law satisfies the convolution semigroup property (as stated in condition C1) with respect to
the usual convolution. It is thus natural to generalize the notion of Lévy process by replacing the
requirement of stationarity and independence by the convolution semigroup property with respect to
any convolution-like operator with suitable properties. This provides us with a recipe for defining a
class of Lévy-like processes associated with a given diffusion process: as prescribed in the problem
above, one should construct a convolution-like operator such that condition C1 holds for the law of
the given diffusion. This generalized notion of Lévy process has been proposed in various papers
[20, 81, 153]; however, the class of diffusions which have been proved to admit such an associated
family of Lévy-like processes is still very limited.

The notion of a convolution semigroup is closely related with that of an infinitely divisible
distribution. In the case of the usual convolution, a central role is played by the Lévy-Khintchine
theorem which provides a complete description of the set of infinitely divisible distributions; in
addition, laws of large numbers and other limit theorems have been established for random walks
(the discrete analogues of Lévy processes). It is, of course, desirable to determine what are the
properties which ensure that analogues of those fundamental results hold for convolution-like operators
constructed via the above procedure.

1.2 Contributions and organization

One of the main contributions of this thesis is to establish the existence of an associated convolution-like
operator for a large class of diffusion processes which were not covered by the existing theory.

Our trust that there was room for generalization of previous results was stimulated by a few
simple but noteworthy facts concerning the Shiryaev process. On the one hand, its generator
𝑥2 𝑑2

𝑑𝑥2 + (1 + 2(1 − 𝛼)𝑥) 𝑑
𝑑𝑥

does not belong to the class of Sturm-Liouville operators which were
known to admit an associated convolution (of probability measures), and this cannot be achieved
via changes of variable. On the other hand, this generator is equivalent to the differential operator
whose generalized eigenfunctions (the Whittaker𝑊 functions) determine the so-called index Whittaker
transform. In the special case 𝛼 = 0, this integral transform reduces to the Kontorovich-Lebedev
transform, and it is well-known that the latter can be endowed with a convolution operator (acting
on integrable functions) called the Kontorovich-Lebedev convolution. Suprisingly, it had never been
noticed that an elementary change of variables transforms this convolution into an operator which
preserves both positivity and boundedness, giving rise to a convolution of measures associated with
the Shiryaev process with parameter 𝛼 = 0. After this observation, the natural question becomes
whether a similar construction can be achieved for Shiryaev processes with parameters 𝛼 ≠ 0.

In Chapter 3 we establish a novel product formula for the Whittaker 𝑊 function whose kernel
does not depend on the second parameter and is given in closed form in terms of the parabolic cylinder
function. Our method is based on special function theory and standard integral transform techniques.
Furthermore, we show that if 𝛼 < 1

2 then the Whittaker convolution induced by the product formula
has the property that the convolution of probability measures is a probability measure, and therefore
defines a measure algebra in which the Shiryaev process becomes a Lévy-like process. We also provide
a Lévy-Khintchine type theorem which describes the general form of an index Whittaker transform
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of a Lévy-like process, and we show that the Shiryaev process admits a martingale characterization
analogous to Lévy’s characterization of Brownian motion.

Chapter 3 also contains three other results of independent interest: a novel (integral) representation
for the Whittaker function as a Fourier transform of a parabolic cylinder function, an analogue of the
Wiener-Lévy theorem for the index Whittaker transform, and an existence and uniqueness theorem
for a family of convolution-type integral equations. An example is provided where the existence and
uniqueness theorem yields an explicit expression for the solution of an integral equation with the
Whittaker function in the kernel.

A property of the Whittaker convolution is that the support of the measures of the underlying
product formula is the whole half-line. This fact is remarkable because, in contrast, all other known
convolution-like operators for one-dimensional diffusions — whose general construction is based on the
associated hyperbolic PDE introduced above — have the property that the measures of the underlying
product formula have compact support. This distinction raises a natural question, namely whether it is
possible to construct other one-dimensional convolutions where the measures of underlying product
formula do not have compact support.

A positive answer is given in Chapter 4, where we develop a unified approach for constructing
Sturm-Liouville convolutions whose supports can be either compact or noncompact. Our technique
is based on the hyperbolic PDE approach, which we extend to a larger class of Sturm-Liouville
operators whose associated hyperbolic equations are possibly degenerate at the initial line. To this end,
we prove an existence and uniqueness theorem for hyperbolic Cauchy problems which is useful in
itself, as it covers many parabolically degenerate cases which are outside the scope of the classical
theory and for which the problem of well-posedness of the Cauchy problem was, to the best of our
knowledge, open. We also introduce a regularization method which makes use of the properties of the
diffusion semigroup to construct a sequence of regularized product formulas, from which the desired
product formula is obtained via a weak convergence argument. Many probabilistic properties of the
Whittaker convolution, such as the interpretation of the associated diffusion as a Lévy-like process or
the Lévy-Khintchine type theorem, extend to this general family of Sturm-Liouville convolutions.

The convolutions constructed in Chapter 4 satisfy the compactness axiom if and only if the
hyperbolic equation determined by the Sturm-Liouville operator is uniformly hyperbolic on its domain.
If this is the case, then one can check that the convolution satisfies all the axioms of hypergroups; this
leads to an existence theorem for Sturm-Liouville hypergroups which improves previous results in the
literature. In turn, the case where the hyperbolic PDE is parabolically degenerate yields a general
family of degenerate Sturm-Liouville hypergroups which includes the Whittaker convolution as a
particular case.

The results described thus far are restricted to convolution structures for one-dimensional diffusions,
but our opening discussion makes it clear that the problem of constructing convolution-like operators
associated with diffusion processes is meaningful in a much more general framework. In Chapter
5 we study the construction of convolutions for diffusions on a general locally compact separable
metric space. We start by identifying the requirements that such a convolution should satisfy in order
to allow for the development of the basic notions of probabilistic harmonic analysis, and we then
determine necessary and sufficient conditions which relate the existence of the convolution structure
with certain properties of the eigenfunctions of the generator. One of the necessary conditions is that
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the eigenfunctions should have a common maximizer, which is quite restrictive in dimension greater
than 1; this explains in part why the existing work on the subject of this thesis is mostly restricted to
the one-dimensional setting.

Using standard results on spectral theory of differential operators, we prove that the common
maximizer property does not hold for reflected Brownian motions on smooth domains of R𝑑 (𝑑 ≥ 2)
or on compact Riemannian manifolds; this leads to a nonexistence theorem for convolutions on such
domains. Going back to the one-dimensional problem, we show that (the failure of) the common
maximizer property also yields nonexistence theorems for some one-dimensional diffusions which are
not covered in the preceding chapter.

Another difficulty which arises in the multidimensional setting is that the associated hyperbolic
equation becomes ultrahyperbolic, and therefore the PDE approach for the construction of convolutions
is only applicable if the elliptic operator admits separation of variables. This is a significant limitation,
but it does not hinder the construction of nontrivial multidimensional convolutions, as there are many
elliptic operators which admit separation of variables but do not decompose trivially into a product of
one-dimensional operators. In the final section of Chapter 5 we discuss the interesting example of the
Laplace-Beltrami operator on a general class of two-dimensional manifolds endowed with cone-like
metrics. The product formula for the generalized eigenfunctions is shown to depend on one of the two
spectral parameters; accordingly, it induces a family of convolution operators (rather than a single
convolution). This structure gives rise to a Lévy-like representation for the reflected Brownian motion
on the manifold, together with other analogues of the one-dimensional results.

Chapter 2 sets up the stage by providing the necessary background on stochastic processes,
harmonic analysis and Sturm-Liouville theory. Appendix A collects some open problems which
naturally arise from the present work.

1.3 Publications

Part of the results presented in this thesis are contained in the following papers and manuscripts:

• [165]: contains most of the results of Sections 3.1–3.2 and 3.6–3.7;

• [163]: contains most of the results of Sections 3.3–3.5;

• [164]: contains most of the results of Sections 4.1–4.3 and 4.6–4.7;

• [166]: contains most of the results of Sections 4.4–4.5;

• [167]: contains most of the results of Section 5.4.

(To ensure consistency between the different sections and chapters of the thesis, some results are here
presented in a modified form.)



Chapter 2

Preliminaries

Our opening discussion in the introductory chapter sketched some connections between the problem
of constructing generalized convolutions and various fields of mathematics such as harmonic analysis,
stochastic processes, differential equations, spectral theory and special functions. Some prerequisite
notions and facts from these disciplines are reviewed in this chapter.

2.1 Continuous-time Markov processes

In what follows we write 𝑃𝑥0 for the distribution of a given time-homogeneous Markov process started
at the point 𝑥0 and E𝑥0 for the associated expectation operator.

Feller semigroups and processes. We begin by recalling that a family {𝑇𝑡 }𝑡≥0 of linear operators
from a Banach spaceV to itself is said to be a semigroup if 𝑇0 = Id (the identity operator onV) and
𝑇𝑡+𝑠 = 𝑇𝑡𝑇𝑠 for all 𝑡, 𝑠 ≥ 0. The semigroup is said to be a contraction semigroup if ∥𝑇𝑡 ∥ ≤ 1 for all
𝑡 and strongly continuous if for all 𝑓 ∈ V we have ∥𝑇𝑡 𝑓 − 𝑓 ∥ −→ 0 as 𝑡 ↓ 0. We also recall that a
sequence of finite complex measures `𝑛 on a locally compact separable metric space 𝐸 converges
weakly (respectively, vaguely) to the finite complex measure ` if lim𝑛

∫
𝐸
𝑔(b)`𝑛 (𝑑b) =

∫
𝐸
𝑔(b)`(𝑑b)

for all 𝑔 ∈ Cb(𝐸) (respectively, for all 𝑔 ∈ Cc(𝐸)).
A Feller semigroup on a locally compact separable metric space 𝐸 is a strongly continuous

contraction semigroup of positive operators on C0(𝐸). A time-homogeneous Markov process {𝑋𝑡 }𝑡≥0

with state space 𝐸 is called a Feller process if its transition semigroup (𝑇𝑡 𝑓 ) (𝑥) := E𝑥 [ 𝑓 (𝑋𝑡 )]
( 𝑓 ∈ C0(𝐸)) is a Feller semigroup.

Given a Feller semigroup {𝑇𝑡 }𝑡≥0 on 𝐸 , one can use the Riesz representation theorem [9, §29] to
write it as (𝑇𝑡 𝑓 ) (𝑥) =

∫
𝐸
𝑓 (𝑦) 𝑝𝑡 ,𝑥 (𝑑𝑦), where {𝑝𝑡 ,𝑥 (·)} is a uniquely defined family of sub-probability

measures on 𝐸 which is vaguely continuous in 𝑥 (i.e. 𝑝𝑡 ,𝑥𝑛 (·)
𝑣−→ 𝑝𝑡 ,𝑥 (·) whenever 𝑥𝑛 → 𝑥). We can

then use the basic Kolmogorov consistency theorem to construct a Markov process {𝑋𝑡 } on 𝐸 such that
(𝑇𝑡 𝑓 ) (𝑥) := E𝑥 [ 𝑓 (𝑋𝑡 )] (cf. [8, §36]). Therefore, Feller processes are in one-to-one correspondence
with Feller semigroups. Moreover, this representation allows us to define the natural extension of a
Feller semigroup to a semigroup of operators on Bb(𝐸) as

(𝑇𝑡 𝑓 ) (𝑥) =
∫
𝐸

𝑓 (𝑦) 𝑝𝑡 ,𝑥 (𝑑𝑦), 𝑓 ∈ Bb(𝐸).

7
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If this extension is such that 𝑇𝑡
(
Bb(𝐸)

)
⊂ Cb(𝐸) for all 𝑡 > 0, then we say that {𝑇𝑡 } is a strong Feller

semigroup and {𝑋𝑡 } is a strong Feller process.
A Feller semigroup {𝑇𝑡 }𝑡≥0 on 𝐸 (and the associated Feller process) is said to be conservative if

𝑇𝑡1 = 1 for all 𝑡 (where 1 denotes the function identically equal to one) or, equivalently, if {𝑝𝑡 ,𝑥 (·)}
is a family of probability measures on 𝐸 . (In this case the family {𝑝𝑡 ,𝑥 (·)} is weakly continuous in
𝑥, cf. [9, Theorem 30.8].) If {𝑇𝑡 }𝑡≥0 is a conservative Feller semigroup, then the strong continuity
on C0(𝐸) extends to local uniform continuity on Cb(𝐸), i.e. we have lim𝑡↓0 𝑇𝑡 𝑓 = 𝑓 uniformly on
compact sets for all 𝑓 ∈ Cb(𝐸) (cf. [157, Lemma 3.1]).

The (infinitesimal) generator
(
G,D(G)

)
of a strongly continuous semigroup {𝑇𝑡 }𝑡≥0 on a Banach

spaceV is the unbounded operator

D(G) :=
{
𝑓 ∈ V

��� lim
𝑡↓0

1
𝑡
(𝑇𝑡 𝑓 − 𝑓 ) exists in the topology ofV

}
G : D(G) ⊂ V −→ V, G 𝑓 := lim

𝑡↓0
1
𝑡
(𝑇𝑡 𝑓 − 𝑓 ).

In particular, the domain of a Feller semigroup {𝑇𝑡 }𝑡≥0 is the set D(G (0) ) of functions 𝑓 ∈ C0(𝐸)
such that 1

𝑡
(𝑇𝑡 𝑓 − 𝑓 ) exists as a uniform limit. This is, however, equivalent to requiring pointwise

convergence to an element of C0(𝐸):

Proposition 2.1. [22, Theorem 1.33] Let {𝑇𝑡 } be a Feller semigroup. Then its infinitesimal generator
(G (0) ,D(G (0) )) is a closed, densely defined unbounded operator on C0(𝐸). Moreover, the domain
D(G (0) ) can be written as

D(G (0) ) =
{
𝑓 ∈ C0(𝐸)

���� ∃𝑔 ∈ C0(𝐸) such that 𝑔(𝑥) = lim
𝑡↓0

(𝑇𝑡 𝑓 ) (𝑥) − 𝑓 (𝑥)
𝑡

for all 𝑥 ∈ 𝐸
}
.

Next we state some basic sample path properties which hold for all Feller processes:

Proposition 2.2. [34, Section 2.2] Let {𝑋𝑡 }𝑡≥0 be a Feller process on 𝐸 and let d be the distance on
𝐸 . Then:

(a) {𝑋𝑡 } is stochastically continuous, i.e. for each 𝑡 ≥ 0 we have lim𝑠→𝑡 𝑃[d(𝑋𝑠, 𝑋𝑡 ) > Y] = 0.

(b) {𝑋𝑡 } has a càdlàg modification, i.e. there exists a Feller process {𝑋𝑡 } such that 𝑃[𝑋𝑡 = 𝑋𝑡 ] = 1
for all 𝑡 ≥ 0, and the sample path 𝑡 ↦→ 𝑋𝑡 (𝜔) is for a.e. 𝜔 right continuous with finite left-hand
limits.

Proposition 2.3. [54, Chapter 4, Proposition 2.9 and Remark 2.10] Let {𝑋𝑡 }𝑡≥0 be a càdlàg Feller
process on 𝐸 . If for all Y > 0, 𝑥 ∈ 𝐸 we have

𝑃𝑥 [𝑋𝑡 ∈ 𝐸 \B(𝑥, Y)] = 𝑜(𝑡) as 𝑡 ↓ 0 (2.1)

then the paths 𝑡 ↦→ 𝑋𝑡 (𝜔) are continuous for a.e. 𝜔.
In particular, if the domain D(G (0) ) of the infinitesimal generator of {𝑋𝑡 } is such that for all

Y > 0, 𝑥 ∈ 𝐸 there exists 𝑓 ∈ D(G (0) ) such that 𝑓 (𝑥) = ∥ 𝑓 ∥, sup𝑦∈𝐸\B(𝑥,Y) 𝑓 (𝑦) < ∥ 𝑓 ∥ and
G (0) 𝑓 (𝑥) = 0, then (2.1) holds and consequently the Feller process {𝑋𝑡 } has a.s. continuous paths.
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Proposition 2.4. [22, Theorem 1.40] Let {𝑋𝑡 }𝑡≥0 be a Feller process on R𝑑 whose paths are a.s.
continuous. Then the infinitesimal generator (G (0) ,D(G (0) )) is a local operator, i.e. we have
(G (0) 𝑓1) (𝑥) = (G (0) 𝑓2) (𝑥) whenever 𝑓1, 𝑓2 ∈ D(G (0) ) and 𝑓1 |B(𝑥,Y) = 𝑓2 |B(𝑥,Y) for some Y > 0.

Martingales and local martingales. An adapted integrable stochastic process {𝑋𝑡 }𝑡≥0 on a filtered
probability space (Ω,F, {F𝑡 }, 𝑃) is called a submartingale if

E[𝑋𝑡 |F𝑠] ≥ 𝑋𝑠, 0 ≤ 𝑠 ≤ 𝑡 ≤ ∞.

It is called a supermartingale if {−𝑋𝑡 }𝑡≥0 is a submartingale, and a martingale if

E[𝑋𝑡 |F𝑠] = 𝑋𝑠, 0 ≤ 𝑠 ≤ 𝑡 ≤ ∞.

The basic connection between martingales and Feller processes is given in the following theorem:

Theorem 2.5. [96, Theorem 4.10.3] Let {𝑋𝑡 }𝑡≥0 be a càdlàg Feller process on a locally compact
separable metric space 𝐸 with initial distribution ` = 𝑃[𝑋0 ∈ · ] and let (G (0) ,D(G (0) )) be its
generator. Let D be a core of D(G (0) ), i.e. a subset D ⊂ D(G (0) ) such that (G (0) ,D(G (0) )) is the
closure of the operator (G (0) ,D). For each 𝑓 ∈ D, the process

𝑓 (𝑋𝑡 ) − 𝑓 (𝑋0) −
∫ 𝑡

0
(G (0) 𝑓 ) (𝑋𝑠) 𝑑𝑠, 𝑡 ≥ 0 (2.2)

is a martingale with respect to the same filtration for which {𝑋𝑡 } is a Markov process. Moreover,
{𝑋𝑡 } is the unique càdlàg 𝐸-valued stochastic process with initial distribution ` such that the process
defined by (2.2) is a martingale for any 𝑓 ∈ D.

A stopping time on the filtered probability space (Ω, F , {F𝑡 }, 𝑃) is a random variable 𝜏 : Ω ↦→
[0,∞] such that {𝜏 ≤ 𝑡} ∈ F𝑡 for all 𝑡 ≥ 0. A stochastic process {𝑋𝑡 }𝑡≥0 on the space (Ω, F , F𝑡 , 𝑃)
is said to be a local martingale if there exists an increasing sequence {𝜏𝑛}𝑛∈N of stopping times
with lim𝑛 𝜏𝑛 = +∞ a.s. and such that for every 𝑛 ∈ N the process {𝑋𝑡∧𝜏𝑛}𝑡≥0 is a martingale, where
𝑋𝑡∧𝜏𝑛 = 𝑋𝑡1{𝜏𝑛≥𝑡 } + 𝑋𝜏𝑛1{𝜏𝑛<𝑡 }.

The fundamental martingale characterization of Brownian motion is stated below. Here and later
we denote by {[𝑋]𝑡 }𝑡≥0 the quadratic variation of a stochastic process {𝑋𝑡 }𝑡≥0, defined as [𝑋]𝑡 =
lim

∑𝑚(𝜋𝑛)−1
𝑗=0 (𝑋𝑡𝑛

𝑗+1
− 𝑋𝑡𝑛

𝑗
)2, where the limit is in probability, taken over all sequences of partitions

𝜋𝑛 = {0 = 𝑡𝑛0 < 𝑡
𝑛
1 < . . . < 𝑡

𝑛
𝑚(𝜋𝑛) = 𝑡} such that max 𝑗 (𝑡𝑛𝑗+1 − 𝑡

𝑛
𝑗
) → 0 as 𝑛→∞.

Theorem 2.6 (Lévy’s characterization of Brownian motion). [95, Theorem 25.28] Let {𝑋𝑡 }𝑡≥0 be a
local martingale on R with a.s. continuous paths and 𝑋0 = 0. The following are equivalent:

(i) {𝑋𝑡 } is a standard Brownian motion (i.e. for each 𝑠 < 𝑡, the random variable 𝑋𝑡 −𝑋𝑠 is normally
distributed with mean zero and variance 𝑡 − 𝑠 and is independent of {𝑋𝑢 : 𝑢 ≤ 𝑠});

(ii) {𝑋2
𝑡 − 𝑡}𝑡≥0 is a local martingale;

(iii) [𝑋]𝑡 = 𝑡 for all 𝑡 ≥ 0.
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One-dimensional diffusion processes. A diffusion process on an open interval 𝐼 ⊂ R is a strong
Markov process {𝑋𝑡 }𝑡≥0 with state space 𝐼 and such that 𝑡 ↦→ 𝑋𝑡 (𝜔) is continuous for a.e. 𝜔. We say
that {𝑋𝑡 }𝑡≥0 is an irreducible diffusion if, in addition, we have 𝑃𝑥 (𝜏𝑦 < ∞) > 0 for all 𝑥, 𝑦 ∈ 𝐼, where
𝜏𝑦 = inf{𝑡 ≥ 0|𝑋𝑡 = 𝑦}.

An irreducible diffusion process {𝑋𝑡 } on an open interval 𝐼 ⊂ R is not in general a Feller process.
However, it is Cb-Feller in the sense that its transition semigroup (𝑇𝑡 𝑓 ) (𝑥) = E[ 𝑓 (𝑋𝑡 )] is such that
𝑇𝑡

(
Cb(𝐼)

)
⊂ Cb(𝐼) [19, II.5]. We can therefore define the [-resolvent operator of {𝑋𝑡 } as

R[ : Cb(𝐼) −→ Cb(𝐼), R[ 𝑓 :=
∫ ∞

0
𝑒−[𝑡 𝑇𝑡 𝑓 𝑑𝑡 ([ > 0) (2.3)

and we can also define the Cb-generator
(
G (𝑏) ,D(G (𝑏) )

)
of {𝑋𝑡 } as the operator with domain

D(G (𝑏) ) = R[
(
Cb(𝐼)

)
and given by

(G (𝑏)𝑢) (𝑥) = [𝑢(𝑥) − 𝑔(𝑥) for 𝑢 = R[𝑔, 𝑔 ∈ Cb(𝐼), 𝑥 ∈ 𝐼 . (2.4)

(G (𝑏) is independent of [, cf. [62, p. 295]; it is also clear that if {𝑇𝑡 } is a Feller semigroup with generator(
G (0) ,D(G (0) )

)
, then we have D(G (0) ) = R[

(
C0(𝐼)

)
and G (0) 𝑓 = G (𝑏) 𝑓 for all 𝑓 ∈ D(G (0) ).)

A canonical scale 𝑠 is a strictly increasing continuous function 𝑠 : 𝐼 −→ R. A speed measure 𝑚 is
a positive Radon measure on 𝐼 with support supp(𝑚) = 𝐼. We say that (𝑠, 𝑚, 𝑘) is a canonical triplet
if 𝑠 is a canonical scale, 𝑚 is a speed measure and 𝑘 is a positive Radon measure on 𝐼 (called the killing
measure). The following theorem provides a correspondence between (generators of) one-dimensional
diffusions and canonical triplets:

Theorem 2.7. [62, Section 2.2] If {𝑋𝑡 } is an irreducible diffusion process on the open interval 𝐼, then
there exists a canonical triplet (𝑠, 𝑚, 𝑘) on 𝐼 such that

(G (𝑏) 𝑓 ) (𝑥) = 𝑑𝐷𝑠 𝑓 − 𝑓 𝑑𝑘
𝑑𝑚

(𝑥), 𝑓 ∈ D(G (𝑏) ), 𝑥 ∈ 𝐼 (2.5)

(where 𝐷𝑠 𝑓 (𝑥) := limY↓0
𝑓 (𝑥+Y)− 𝑓 (𝑥)
𝑠 (𝑥+Y)−𝑠 (𝑥) ) in the sense that the measure 𝑑𝐷𝑠 𝑓 − 𝑓 𝑑𝑘 is absolutely

continuous with respect to 𝑑𝑚 and the corresponding Radon-Nikodym derivative has a representative
which belongs to Cb(𝐼) and is equal to G (𝑏) 𝑓 .

Conversely, if (𝑠, 𝑚, 𝑘) is an arbitrary canonical triplet on 𝐼, then there exists an irreducible
diffusion process {𝑋𝑡 } on 𝐼 whose Cb-generator is given by (2.5) for all 𝑓 ∈ D(G (𝑏) ).

Let {𝑋𝑡 } be a diffusion on 𝐼 = (𝑎, 𝑏), where −∞ ≤ 𝑎 < 𝑏 ≤ +∞, and let (𝑠, 𝑚, 𝑘) be its canonical
triple. Write 𝑗 = 𝑚 + 𝑘 , and for 𝑐 ∈ 𝐼 consider the integrals

𝐼𝑎 =

∫ 𝑐

𝑎

∫ 𝑦

𝑎

𝑠(𝑑𝑥) 𝑗 (𝑑𝑦), 𝐽𝑎 =

∫ 𝑐

𝑎

∫ 𝑐

𝑦

𝑠(𝑑𝑥) 𝑗 (𝑑𝑦),

𝐼𝑏 =

∫ 𝑏

𝑐

∫ 𝑏

𝑦

𝑠(𝑑𝑥) 𝑗 (𝑑𝑦), 𝐽𝑏 =

∫ 𝑏

𝑐

∫ 𝑦

𝑐

𝑠(𝑑𝑥) 𝑗 (𝑑𝑦).
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The endpoint 𝑒 ∈ {𝑎, 𝑏} is said to be:

regular if 𝐼𝑒 < ∞, 𝐽𝑒 < ∞;
exit if 𝐼𝑒 < ∞, 𝐽𝑒 = ∞;

entrance if 𝐼𝑒 = ∞, 𝐽𝑒 < ∞;
natural if 𝐼𝑒 = ∞, 𝐽𝑒 = ∞.

(2.6)

(the classification is independent of the choice of 𝑐). This is the so-called Feller boundary classification
of the diffusion process {𝑋𝑡 }, and it determines the behaviour of {𝑋𝑡 } near the endpoints of (𝑎, 𝑏)
(see [19, II.6]). In particular, if the endpoint 𝑒 is entrance or natural then the process {𝑋𝑡 } cannot
reach 𝑒 in finite time. Moreover, if neither 𝑎 nor 𝑏 is a regular endpoint then there exists a unique
diffusion process {𝑋𝑡 } on (𝑎, 𝑏) with canonical triple (𝑠, 𝑚, 𝑘). (Uniqueness here means that the
domain D(G (𝑏) ) of the Cb-generator is uniquely determined by (𝑠, 𝑚, 𝑘), see [19, 62].)

Theorem 2.7 ensures, in particular, that each second-order differential operator of the form

𝔞(𝑥) 𝑑
2

𝑑𝑥2 + 𝔟(𝑥)
𝑑

𝑑𝑥
− 𝔠(𝑥) (𝑥 ∈ 𝐼)

where 𝔞, 𝔟, 𝔠 ∈ C(𝐼) with 𝔞 > 0 and 𝔠 ≥ 0 on 𝐼, is the generator of an irreducible diffusion process
{𝑋𝑡 }𝑡≥0. The associated canonical triplet is

𝑠(𝑥) =
∫ 𝑥

𝑥0

𝑒−𝐵 (𝑦)𝑑𝑦, 𝑚(𝑑𝑥) = 𝑒𝐵 (𝑥)

𝔞(𝑥) 𝑑𝑥, 𝑘 (𝑑𝑥) = 𝔠(𝑥) 𝑒
𝐵 (𝑥)

𝔞(𝑥) 𝑑𝑥

where 𝐵(𝑥) :=
∫ 𝑥
𝑥0

𝔟( b )
𝔞( b ) 𝑑b and 𝑥0 ∈ 𝐼 is arbitrary.

Consider the stochastic differential equation (SDE)

𝑑𝑋𝑡 = 𝔟(𝑋𝑡 ) 𝑑𝑡 + 𝜎(𝑋𝑡 ) 𝑑𝑊𝑡 (2.7)

where 𝜎(𝑥) =
√

2𝔞(𝑥) and {𝑊𝑡 }𝑡≥0 is a standard Brownian motion. An 𝐼-valued stochastic process
{𝑋𝑡 }𝑡≥0 is said to be a solution of the SDE (2.7) if it satisfies the integral equation 𝑋𝑡 = 𝑋0 +∫ 𝑡

0 𝔟(𝑋𝑠)𝑑𝑠 +
∫ 𝑡

0 𝜎(𝑋𝑠)𝑑𝑊𝑠, where the latter term is a stochastic integral with respect to the standard
Brownian motion. (For the definition of the stochastic integral and other basic notions of stochastic
calculus, we refer to [19, 92].) By [105, Theorem II.5.2], the SDE (2.7) has a unique solution {𝑋𝑡 } up
to a possibly finite lifetime Z := inf{𝑡 ≥ 0 | 𝑋𝑡 ∉ 𝐼}. If both endpoints 𝑎 and 𝑏 are entrance or natural,
then it follows from [76], [92, Theorem 5.29] that {𝑋𝑡 } is a diffusion process on 𝐼 whose lifetime is
infinite a.s. and whose generator is the differential operator 𝔞(𝑥) 𝑑2

𝑑𝑥2 + 𝔟(𝑥) 𝑑𝑑𝑥 .

Even though diffusions are not always Feller processes on the open interval 𝐼, they become Feller
processes after a suitable extension to the boundaries of the interval:

Proposition 2.8. [62, Sections 4 and 6] Let {𝑋𝑡 } be an irreducible diffusion on 𝐼 = (𝑎, 𝑏), and let 𝐼
be the interval obtained by attaching the regular or entrance endpoints of {𝑋𝑡 } to the interval 𝐼. Then
there exists a Feller process {𝑋 𝑡 } with state space 𝐼 satisfying the following conditions:

• The process {𝑋 𝑡 } is an extension of {𝑋𝑡 }, in the sense that 𝑋𝑡 (𝜔) = 𝑋 𝑡 (𝜔) for 0 ≤ 𝑡 ≤ 𝜏𝐼 (𝜔) :=
inf{𝑡 ≥ 0 | 𝑋𝑡 (𝜔) ∉ 𝐼};
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• If 𝑎 ∈ 𝐼 (respectively 𝑏 ∈ 𝐼), then {𝑋 𝑡 } is instantaneously reflecting at the endpoint 𝑎 (resp. 𝑏),
in the sense that we have 𝑃𝑥 [𝑋 𝑡 ≠ 𝑎 for a.e. 𝑡 ≥ 0] = 1 (resp. 𝑃𝑥 [𝑋 𝑡 ≠ 𝑏 for a.e. 𝑡 ≥ 0] = 1);

• The transition semigroup of {𝑋 𝑡 } is a Feller semigroup whose infinitesimal generator is given
by

D(G (0) ) =
{
𝑢 ∈ C0(𝐼)

����� 𝑑𝐷𝑠 𝑓 − 𝑓 𝑑𝑘
𝑑𝑚

∈ C0(𝐼)
𝐷𝑠𝑢(𝑒) = 0 if the endpoint 𝑒 ∈ {𝑎, 𝑏} is regular or entrance

}
(G (0) 𝑓 ) (𝑥) = 𝑑𝐷𝑠 𝑓 − 𝑓 𝑑𝑘

𝑑𝑚
(𝑥)

(
𝑓 ∈ D(G (0) ), 𝑥 ∈ 𝐼

)
.

If {𝑋𝑡 } has no regular endpoints, then {𝑋 𝑡 } is the unique extension of {𝑋𝑡 } to a strong Markov process
with continuous paths on the interval 𝐼.

Lévy processes, infinitely divisible distributions and convolution semigroups. A stochastic
process {𝑋𝑡 }𝑡≥0 on R𝑑 with 𝑋0 = 0 is said to be a Lévy process if it is stochastically continuous, has
independent increments (i.e. 𝑋𝑡 − 𝑋𝑠 is independent of {𝑋𝑢 : 𝑢 ≤ 𝑠} for all 𝑠 < 𝑡) and has stationary
increments (i.e. 𝑋𝑡+𝑠 − 𝑋𝑠 has the same distribution as 𝑋𝑡 − 𝑋0 for all 𝑡, 𝑠 ≥ 0).

It is clear from this definition that any drifted Brownian motion on R𝑑 started at zero (i.e. any
process of the form 𝐵𝑡 = 𝛼𝑡 + 𝐴𝑊𝑡 with 𝛼 ∈ R𝑑 , 𝐴 a symmetric nonnegative definite 𝑑 × 𝑑-matrix
and {𝑊𝑡 } a 𝑑-dimensional standard Brownian motion) is a Lévy process.

In the definition of Lévy process, some authors also require that {𝑋𝑡 } is càdlàg. This is unimportant
because of the following proposition:

Proposition 2.9. [156, Theorem 11.5], [22, Theorem 2.6] If {𝑋𝑡 }𝑡≥0 is a Lévy process on R𝑑 , then:

(a) {𝑋𝑡 } has a càdlàg modification;

(b) The transition semigroup (𝑇𝑡 𝑓 ) (𝑥) := E𝑥 [ 𝑓 (𝑋𝑡 )] ≡ E[ 𝑓 (𝑋𝑡 + 𝑥)] is a Feller semigroup on R𝑑

(and, therefore, {𝑋𝑡 } is a Feller process).

There is a one-to-one correspondence between Lévy processes, convolution semigroups and
infinitely divisible distributions. Before stating this result, we recall some notions. The (ordinary)
convolution of two measures `, a ∈ MC(R𝑑) is defined by (` ∗ a) (𝐵) :=

∫
R𝑑

∫
R𝑑
𝛿𝑥+𝑦 (𝐵)`(𝑑𝑥)a(𝑑𝑦)

for each Borel subset 𝐵 ⊂ R𝑑 . A probability measure ` ∈ P(R𝑑) is said to be infinitely divisible if
for each integer 𝑛 ∈ N, there exists a measure a𝑛 ∈ P(R𝑑) such that ` = a∗𝑛𝑛 , where a∗𝑛𝑛 denotes the
𝑛-fold convolution of a𝑛 with itself. A family {`𝑡 }𝑡≥0 ⊂ P(R𝑑) is called a convolution semigroup if
we have `𝑠 ∗ `𝑡 = `𝑠+𝑡 (𝑠, 𝑡 ≥ 0), `0 = 𝛿0 and `𝑡

𝑤−→ 𝛿0 as 𝑡 ↓ 0.

Proposition 2.10. [22, Theorem 2.6], [156, Theorem 7.10] Let {𝑋𝑡 }𝑡≥0 be a Feller process on R𝑑 .
The following assertions are equivalent:

(i) {𝑋𝑡 } is a Lévy process;

(ii) There exists a convolution semigroup {`𝑡 }𝑡≥0 ⊂ P(R𝑑) such that E[ 𝑓 (𝑋𝑡 )] =
∫
R𝑑
𝑓 (𝑦)`𝑡 (𝑑𝑦)

for each 𝑓 ∈ Bb(R𝑑).
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If these conditions hold then `𝑡 is, for all 𝑡 ≥ 0, an infinitely divisible measure. Conversely,
if ` ∈ P(R𝑑) is an infinitely divisible measure then there exists a Lévy process {𝑋𝑡 } such that
E[ 𝑓 (𝑋1)] =

∫
R𝑑
𝑓 (𝑦)`(𝑑𝑦) for 𝑓 ∈ Bb(R𝑑).

Given a random variable 𝑋 with law ` = P[𝑋 ∈ · ], the Fourier transform of ` (also called the
characteristic function of 𝑋) is defined as (𝔉`) (𝑧) := E[𝑒𝑖𝑧 ·𝑋 ] ≡

∫
R𝑑
𝑒𝑖𝑧 ·𝑥`(𝑑𝑥) (𝑧 ∈ R𝑑). The

celebrated Lévy-Khintchine formula provides an explicit characterization of the characteristic function
(or Fourier transform of the law) of a Lévy process:

Theorem 2.11 (Lévy-Khintchine representation). [156, Theorem 8.1] Let {𝑋𝑡 }𝑡≥0 be a Lévy process
and {`𝑡 } ⊂ P(R𝑑) the associated convolution semigroup. We have

E[𝑒𝑖𝑧 ·𝑋𝑡 ] ≡ (𝔉`𝑡 ) (𝑧) = 𝑒−𝑡 𝜙 (𝑧) (𝑡 ≥ 0, 𝑧 ∈ R𝑑) (2.8)

for some function 𝜙(·) of the form

𝜙(𝑧) = 𝑧 ·𝑄𝑧 + 𝑖𝛼 · 𝑧 +
∫
R𝑑\{0}

(
1 − 𝑒𝑖𝑧 ·𝑦 + 𝑖𝑧 · 𝑦

1 + |𝑦 |2

)
a(𝑑𝑦) (2.9)

where 𝑄 is a symmetric nonnegative definite 𝑑 × 𝑑-matrix, 𝛼 ∈ R𝑑 and a is a Lévy measure on R𝑑 , i.e.
a positive measure on R𝑑\{0} such that

∫
R𝑑\{0}

|𝑦 |2
1+|𝑦 |2 a(𝑑𝑦) < ∞. Conversely, for any function 𝜙(·) of

the form (2.9) there exists a convolution semigroup {`𝑡 } ⊂ P(R𝑑) with (𝔉`𝑡 ) (𝑧) = 𝑒−𝑡 𝜙 (𝑧) .

The function 𝜙(·) in (2.9) is called the Lévy symbol of the process {𝑋𝑡 }. One can show that the
integral term in the expression for the Lévy symbol is, for every Lévy measure a, the characteristic
function of a discontinuous Lévy process, and therefore the following result holds:

Proposition 2.12. [96, Theorem 3.3.1] Let {𝑋𝑡 } be a càdlàg Lévy process on R𝑑 with Lévy-Khintchine
representation (2.8)–(2.9). The following are equivalent:

(i) {𝑋𝑡 } has a.s. continuous paths;

(ii) a = 0;

(iii) 𝑋𝑡 = 𝛼𝑡 +
√
𝑄𝑊𝑡 , where {𝑊𝑡 } is a standard Brownian motion on R𝑑 .

2.2 Harmonic analysis with respect to the Kingman convolution

We saw in the previous section that the drifted Brownian motion {𝐵𝑡 } has the convolution semigroup
property, namely it satisfies 𝑃𝑥 [𝐵𝑡 ∈ · ] = `𝑡 ∗𝛿𝑥 for some convolution semigroup {`𝑡 }. The Kingman
convolution is the seminal example of a binary operator ◦ on the space of probability measures
which allows us to obtain the following analogue of the convolution semigroup property of drifted
Brownian motion: for a diffusion process {𝑋𝑡 } other than the Brownian motion (in the case of the
Kingman convolution, the Bessel process), we have 𝑃𝑥 [𝑋𝑡 ∈ · ] = `𝑡 ◦ 𝛿𝑥 , where {`𝑡 } is a family of
measures satisfying `𝑡+𝑠 = `𝑡 ◦ `𝑠. In this section we briefly present the construction of the Kingman
convolution and some properties which mirror well-known facts in classical harmonic analysis. This
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construction should be kept in mind throughout the subsequent chapters, as it serves as a benchmark
for our later work in developing structures of generalized harmonic analysis associated with other
diffusion processes.

Let {𝑋𝑡 }𝑡≥0 be the Bessel process with index [ > −1
2 (started at 𝑥0 ≥ 0), defined as 𝑋𝑡 =

√
𝑍𝑡

where {𝑍𝑡 }𝑡≥0 is the unique strong solution of the SDE

𝑑𝑍𝑡 = 2([ + 1)𝑑𝑡 + 2
√
𝑍𝑡𝑑𝑊𝑡 , 𝑍0 = 𝑥2

0

(cf. [154, §XI.1], [19, IV.6]). The process {𝑋𝑡 } is a one-dimensional diffusion with infinitesimal
generator G = 1

2
𝑑2

𝑑𝑥2 +
[+ 1

2
𝑥

𝑑
𝑑𝑥

. In the case 0 < [ < 1 the boundary 𝑥 = 0 is instantaneously reflecting,
while in the case [ ≥ 1 the endpoint 𝑥 = 0 is never reached by {𝑋𝑡 }. The transition probabilities of the
Bessel process are given by the closed-form expression

𝑝𝑡 ,𝑥 (𝑑𝑦) := 𝑃[𝑋𝑡 ∈ 𝑑𝑦 |𝑋0 = 𝑥] =


𝑡−1𝑥−[ 𝑦[+1 exp

(
− 𝑥

2+𝑦2

2𝑡
)
𝐼[

(√𝑥𝑦
𝑡

)
𝑑𝑦, if 𝑥, 𝑡 > 0

2−[ 𝑡−[−1

Γ([+1) 𝑦
2[+1 exp

(
− 𝑦

2

2𝑡
)
𝑑𝑦, if 𝑥 = 0, 𝑡 > 0

𝛿𝑥 (𝑑𝑦), if 𝑡 = 0

(2.10)

where Γ(·) is the Gamma function [52, Chapter I] and 𝐼[ (𝑧) :=
∑∞
𝑘=0

(𝑧/2)[+2𝑘
𝑘!Γ([+𝑘+1) is the modified Bessel

function of the first kind with index [ [135, §10.25].

The infinitesimal generator 1
2
𝑑2

𝑑𝑥2 +
[+ 1

2
𝑥

𝑑
𝑑𝑥

is associated with the invertible integral transform
H : 𝐿2(R+; 𝑥2[+1𝑑𝑥) −→ 𝐿2(R+; 𝜏2[+1𝑑𝜏) defined by

(H 𝑓 ) (𝜏) =
∫ ∞

0
𝑓 (𝑥) 𝐽[ (𝜏𝑥) 𝑥2[+1𝑑𝑥, (H−1𝜑) (𝑥) = 2−2[

Γ([ + 1)2

∫ ∞

0
𝜑(𝜏) 𝐽[ (𝜏𝑥) 𝜏2[+1𝑑𝜏

(2.11)
where 𝐽[ (𝑧) := 2[Γ([ + 1)𝑧−[𝐽[ (𝑧) and 𝐽[ (𝑧) :=

∑∞
𝑘=0

(−1)𝑘 (𝑧/2)[+2𝑘
𝑘!Γ([+𝑘+1) is the Bessel function of the

first kind [135, §10.2]. The operatorH , which is known as the Hankel transform [82], [70, Section
1.8.1], is a particular case of the general Sturm-Liouville integral transform (2.27)–(2.28) which will
be introduced in Section 2.4; correspondingly, the function 𝑢(𝑥) = 𝐽[ (𝜏𝑥) is the unique solution of
the boundary value problem − 1

2
𝑑2

𝑑𝑥2 −
[+ 1

2
𝑥

𝑑
𝑑𝑥
𝑢 = 𝜏2𝑢, 𝑢(0) = 1, lim𝑥↓0 𝑥

2[+1𝑢′(𝑥) = 0 (see [135]).

Proposition 2.13. Define the extension of the Hankel transform to finite complex measures by

(H`) (𝜏) :=
∫
R+0

𝐽[ (𝜏𝑥)`(𝑑𝑥), (` ∈ MC(R+0), 𝜏 ≥ 0).

Then (H`) (𝜏) is, for each ` ∈ MC(R+0), a continuous function of 𝜏 ≥ 0 which determines uniquely
the measure `. Moreover, the Hankel transform of the transition probabilities (2.10) equals

(H 𝑝𝑡 ,𝑥) (𝜏) = 𝑒−𝑡 𝜏
2
𝐽[ (𝜏𝑥) (𝑡 > 0, 𝑥 ≥ 0).

Proof. Since |𝐽[ (𝑦) | ≤ 1 for 𝑦 ≥ 0 [82, Theorem 2a], dominated convergence yields that 𝜏 ↦→
(H`) (𝜏) is continuous. By [94, Lemma 2], (H`) (𝜏) determines uniquely the measure `. The fact
that (H 𝑝𝑡 ,𝑥) (𝜏) = 𝑒−𝑡 𝜏

2
𝐽[ (𝜏𝑥) can be verified using [146, Equation 2.12.39.3]. �
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We will say that ◦ :MC(R+0) ×MC(R
+
0) −→ MC(R

+
0) is a generalized convolution for the Bessel

process if the transition probabilities are such that

𝑝𝑡 ,𝑥 = `𝑡 ◦ 𝛿𝑥 , where {`𝑡 }𝑡≥0 ⊂ P(R+0) is such that `𝑡+𝑠 = `𝑡 ◦ `𝑠 (𝑡, 𝑠 ≥ 0). (2.12)

It follows from Proposition 2.13 that if ◦ is such thatH(` ◦ a) ≡ (H`)·(Ha) for all `, a ∈ P(R+0),
then ◦ is a generalized convolution for the Bessel process. This suggests that a crucial requirement
for the generalized convolution ◦ is that it should satisfy the product formula

(
H(𝛿𝑥 ◦ 𝛿𝑦)

)
(𝜏) ≡

(H𝛿𝑥) (𝜏)·(H𝛿𝑦) (𝜏) or, equivalently, 𝐽[ (𝜏𝑥) 𝐽[ (𝜏𝑦) =
∫
R+0
𝐽[ (𝜏b) (𝛿𝑥 ◦ 𝛿𝑦) (𝑑b), where the measure

𝛿𝑥 ◦ 𝛿𝑦 should not depend on 𝜏. It turns out that such a product formula indeed exists, and we will see
below that it gives rise to a convolution for which the desired (generalized) convolution semigroup
property (2.12) holds.

Theorem 2.14 (Product formula for the Bessel function of the first kind). The following identity holds
for all 𝑥, 𝑦 > 0, 𝜏 ≥ 0 and [ > 0:

𝐽[ (𝜏𝑥) 𝐽[ (𝜏𝑦) =
21−2[Γ([ + 1)
√
𝜋 Γ([ + 1

2 )
(𝑥𝑦)−2[

∫ 𝑥+𝑦

|𝑥−𝑦 |
𝐽[ (𝜏b)

[
(b2 − (𝑥 − 𝑦)2) ((𝑥 + 𝑦)2 − b2)

] [−1/2
b 𝑑b.

Proof. This follows from a classical integration formula for the Bessel function [187, p. 411], [82]. �

Definition 2.15. The operator ◦ :MC(R+0) ×MC(R
+
0) −→ MC(R

+
0) defined by

(` ◦ a) (𝐵) :=
∫
R+0

∫
R+0

𝛾𝑥,𝑦 (𝐵) `(𝑑𝑥)a(𝑑𝑦) (`, a ∈ MC(R+0), 𝐵 a Borel subset of R+0)

where 𝛾𝑥,0 = 𝛾0,𝑥 = 𝛿𝑥 and 𝛾𝑥,𝑦 (𝑑b) = 𝑘(𝑥, 𝑦, b)b2[+1𝑑b, with

𝑘(𝑥, 𝑦, b) = 21−2[Γ([ + 1)
√
𝜋 Γ([ + 1

2 )
(𝑥𝑦b)−2[ [(b2−(𝑥−𝑦)2) ((𝑥+𝑦)2−b2)

] [−1/2
1[ |𝑥−𝑦 |,𝑥+𝑦 ] (b), 𝑥, 𝑦, b > 0

is called the Kingman convolution (of order [) [94, 182].

One can easily verify that the Kingman convolution preserves the space P(R+0) (i.e. the Kingman
convolution of two probability measures is indeed a probability measure) and, moreover, that it is
trivialized by the Hankel transform of measures:

Proposition 2.16. Let 𝜋, `, a ∈ MC(R+0). We have 𝜋 = ` ◦ a if and only if (H𝜋) (𝜏) = (H`) (𝜏) ·
(Ha) (𝜏) for all 𝜏 ≥ 0.

We observe that the theorem, definition and proposition above are counterparts of the following
facts from classical harmonic analysis: the kernel 𝑒𝑖𝑧 ·𝑥 of the Fourier transform satisfies the
trivial product formula 𝑒𝑖𝑧 ·𝑥𝑒𝑖𝑧 ·𝑦 =

∫
R𝑑
𝑒𝑖𝑧 ·b 𝛿𝑥+𝑦 (𝑑b); the ordinary convolution is computed as

(` ∗ a) (𝐵) =
∫
R𝑑

∫
R𝑑
𝛾𝑥,𝑦 (𝐵) `(𝑑𝑥)a(𝑑𝑦), where 𝛾𝑥,𝑦 = 𝛿𝑥+𝑦 is the measure of the product formula;

we have 𝜋 = ` ∗ a if and only if (𝔉𝜋) (𝑧) = (𝔉`) (𝑧) · (𝔉a) (𝑧) for all 𝑧 ∈ R𝑑 , where 𝔉 is the Fourier
transform.
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Definition 2.17. A family {`𝑡 }𝑡≥0 ⊂ P(R+0) is said to be a Kingman convolution semigroup if

`𝑠 ◦ `𝑡 = `𝑠+𝑡 for all 𝑠, 𝑡 ≥ 0, `0 = 𝛿0 and `𝑡
𝑤−→ 𝛿0 as 𝑡 ↓ 0.

Corollary 2.18. Let `𝑡 = 𝑝𝑡 ,0, where {𝑝𝑡 ,𝑥}𝑡 ,𝑥≥0 are the transition probabilities (2.10) of the Bessel
process started at zero. Then {`𝑡 }𝑡≥0 is a Kingman convolution semigroup. Moreover, we have
𝑝𝑡 ,𝑥 = `𝑡 ◦ 𝛿𝑥 for all 𝑡, 𝑥 ≥ 0 (i.e. ◦ is a generalized convolution for the Bessel process).

Proof. See the comments before Theorem 2.14 and observe that the weak continuity `𝑡
𝑤−→ 𝛿0 as 𝑡 ↓ 0

follows from the fact that the Bessel process is a Feller process (Proposition 2.8). �

The next two results show that (an analogue of) two important properties of ordinary convolution
semigroups — the fact that a convolution semigroup determines a Feller semigroup on R (cf.
Proposition 2.9), and the Lévy-Khintchine representation (cf. Theorem 2.11) — can also be established
for Kingman convolution semigroups.

Proposition 2.19. Let {`𝑡 }𝑡≥0 ⊂ P(R+0) be a Kingman convolution semigroup. Then the family
{𝑇𝑡 }𝑡≥0 defined by

𝑇𝑡 : Cb(R+0) −→ Cb(R+0)

𝑇𝑡 𝑓 = T `𝑡 𝑓 , where (T `𝑡 𝑓 ) (𝑥) :=
∫
R+0

𝑓 𝑑 (𝛿𝑥 ◦ `𝑡 )

is a conservative Feller semigroup.

Proof. See [153, Proposition 2.1]. �

Theorem 2.20 (Lévy-Khintchine type representation). If {`𝑡 }𝑡≥0 ⊂ P(R+0) is a Kingman convolution
semigroup, then

(H`𝑡 ) (𝜏) = 𝑒−𝑡 𝜓 (𝜏) (2.13)

for some function 𝜓(·) of the form

𝜓(𝜏) = 𝑐𝜏2 +
∫
R+

(
1 − J[ (𝜏𝑥)

)
a(𝑑𝑥) (2.14)

where 𝑐 ≥ 0 and a is a measure on R+ which is finite on the complement of any neighbourhood of 0
and such that for 𝜏 ≥ 0 we have ∫

R+

(
1 − 𝐽[ (𝜏𝑥)

)
a(𝑑𝑥) < ∞.

Conversely, for each function of the form (2.14) there exists a Kingman convolution semigroup {`𝑡 }
such that (H`𝑡 ) (𝜏) = 𝑒−𝑡 𝜓 (𝜏) for all 𝜏 ≥ 0.

In particular, the functions 𝜓𝛽 (𝜏) := 𝜏𝛽 (0 < 𝛽 < 2) belong to the set of admissible functions of
the form (2.14).
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Proof. See [178, Theorem 13] and [182, Theorem 2] �

Unlike the Lévy symbol (2.9) in the Lévy-Khintchine representation for ordinary convolution
semigroups, the symbol 𝜓(·) in the Lévy-Khintchine type formula (2.13)–(2.14) for the Kingman
convolution has no imaginary terms. This is unsurprising, because the Hankel transform of a
probability measure on R+0 is real-valued, while the Fourier transform of probability measures on
R𝑑 is complex-valued. The resemblance between the two formulas becomes yet more evident
when {`𝑡 } ⊂ P(R𝑑) is an ordinary convolution semigroup of symmetric measures: an ordinary
convolution semigroup is symmetric if and only if 𝛼 = 0 and the measure a is symmetric, so that
𝜙(𝑧) = 𝑧 ·𝑄𝑧 +

∫
R𝑑\{0}

(
1 − cos(𝑧 · 𝑦)

)
a(𝑑𝑦). (Since 𝐽− 1

2
(b) = cos b [135, §10.16], this right-hand side

is, for 𝑑 = 1, the limiting form of the representation (2.14) when [ ↓ −1
2 .)

A Kingman Lévy process is a Feller process associated with a Kingman convolution semigroup.
By the above Lévy-Khintchine type representation, the class of Kingman Lévy processes generalizes
the Bessel processes in an analogous way as the class of (ordinary) Lévy processes generalizes the
Brownian motion. We note, in particular, that the class of Kingman Lévy processes includes many
processes which do not admit continuous versions (cf. [153, Theorem 2.2]). For further properties of
the Kingman convolution and the associated Lévy processes, we refer to [16, 20, 94, 153, 178].

The results stated thus far refer to the probabilistic properties of the Kingman convolution (seen as
a binary operator on the space of probability measures). There is also an extensive literature on the
Hankel convolution of functions, which is defined by

( 𝑓 ◦ 𝑔) (𝑥) :=
∫ ∞

0

∫ ∞

0
𝑓 (𝑦) 𝑘(𝑥, 𝑦, b)𝑦2[+1𝑑𝑦 𝑔(b) b2[+1𝑑b.

In other words, the Hankel convolution 𝑓 ◦ 𝑔 is defined as the density of the Kingman convolution of
the measures ` 𝑓 (𝑑𝑥) = 𝑓 (𝑥)𝑥2[+1𝑑𝑥 and `𝑔 (𝑑𝑥) = 𝑔(𝑥)𝑥2[+1𝑑𝑥.

It is clear that H( 𝑓 ◦ 𝑔) = (H 𝑓 ) · (H𝑔) for 𝑓 , 𝑔 ∈ 𝐿1(R+; 𝑥2[+1𝑑𝑥); this result is the Hankel
counterpart of the usual convolution theorem 𝔉( 𝑓 ∗ 𝑔) = (𝔉 𝑓 ) · (𝔉𝑔), where ( 𝑓 ∗ 𝑔) (𝑥) =

∫
R𝑑
𝑓 (𝑥 −

𝑦)𝑔(𝑦)𝑑𝑦 and 𝔉 is the Fourier transform on R𝑑 . The Hankel convolution has many other properties
which are parallel to those of the ordinary convolution of functions, such as a Young-type inequality.
Let us recall that the classical Young convolution inequality [59, Proposition 8.9] states that if
𝑓 ∈ 𝐿 𝑝1 (R𝑑), 𝑔 ∈ 𝐿 𝑝2 (R𝑑) (𝑝1, 𝑝2 ∈ [1,∞]) and 𝑠 ∈ [1,∞] is defined by 1

𝑠
= 1
𝑝1
+ 1
𝑝2
− 1, then the

integral defining ( 𝑓 ∗ 𝑔) (𝑥) converges for a.e. 𝑥 and ∥ 𝑓 ∗ 𝑔∥𝐿𝑠 (R𝑑) ≤ ∥ 𝑓 ∥𝐿𝑝1 (R𝑑) · ∥𝑔∥𝐿𝑝2 (R𝑑) . The
following analogue holds for the Hankel convolution. (We write 𝐿 𝑝[ := 𝐿 𝑝 (R+; 𝑥2[+1𝑑𝑥).)

Proposition 2.21. Let 𝑓 ∈ 𝐿
𝑝1
[ , 𝑔 ∈ 𝐿

𝑝2
[ (𝑝1, 𝑝2 ∈ [1,∞]) and let 𝑠 ∈ [1,∞] be defined by

1
𝑠
= 1
𝑝1
+ 1
𝑝2
− 1. Then ( 𝑓 ◦ 𝑔) (𝑥) converges for a.e. 𝑥 > 0 and

∥ 𝑓 ◦ 𝑔∥𝐿𝑠
[
≤ ∥ 𝑓 ∥

𝐿
𝑝1
[
· ∥𝑔∥

𝐿
𝑝2
[
.

If 𝑓 ∈ 𝐿 𝑝[ and 𝑔 ∈ 𝐿𝑞[ with 1
𝑝
+ 1
𝑞
= 1, then 𝑓 ◦ 𝑔 ∈ Cb(R+).

Proof. See [82, Theorem 2b]. �
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Additional examples of analogues of classical properties which have been established for the Hankel
convolution include: an analogue of the Marcinkiewicz multiplier theorem [75], a characterization of
variation diminishing convolution kernels similar to that for the ordinary convolution [82], a parallel
theory for Hankel convolution equations [32], among others.

2.3 Generalized convolutions and hypergroups

Taking the Kingman convolution as a reference model, and aiming at identifying the minimal
requirements for developing an abstract theory of harmonic analysis, various authors have introduced
axiomatic notions of convolution-like structures (and the closely related translation-like operators).
Here we review some axiomatic definitions which are relevant for our later work.

Definition 2.22. Let 𝐾 be a locally compact space and ∗ a bilinear operator onMC(𝐾). The pair
(𝐾, ∗) is said to be a weak hypergroup if the following axioms are satisfied:

H1. If `, a ∈ P(𝐾), then ` ∗ a ∈ P(𝐾);

H2. ` ∗ (a ∗ 𝜋) = (` ∗ a) ∗ 𝜋 for all `, a, 𝜋 ∈ MC(𝐾);

H3. The map (`, a) ↦→ ` ∗ a is continuous (in the weak topology) from MC(𝐾) × MC(𝐾) to
MC(𝐾);

H4. There exists an element e ∈ 𝐾 such that 𝛿e ∗ ` = ` ∗ 𝛿e = ` for all ` ∈ MC(𝐾);

H5. There exists a homeomorphism (called involution) 𝑥 ↦→ 𝑥 of 𝐾 onto itself such that (𝑥)̌ = 𝑥 and
(𝛿𝑥∗𝛿𝑦 )̌ = 𝛿 �̌�∗𝛿 �̌� , where (𝛿𝑥∗𝛿𝑦 )̌ is defined via

∫
𝑓 (b) (𝛿𝑥∗𝛿𝑦 )̌ (𝑑b) =

∫
𝑓 (b̌) (𝛿𝑥∗𝛿𝑦) (𝑑b);

H6. supp(𝛿𝑥 ∗ 𝛿𝑦) is compact for all 𝑥, 𝑦 ∈ 𝐾 .

A weak hypergroup (𝐾, ∗) is called a hypergroup if, in addition,

H7. e ∈ supp(𝛿𝑥 ∗ 𝛿𝑦) if and only if 𝑦 = 𝑥;

H8. (𝑥, 𝑦) ↦→ supp(𝛿𝑥 ∗ 𝛿𝑦) is continuous from 𝐾 × 𝐾 into the space of compact subsets of 𝐾
(endowed with the Michael topology, see [88]).

The definition of hypergroup was introduced by Jewett in [88] and (with slightly different axioms)
also by Dunkl [46] and Spector [169], while the notion of weak hypergroup is taken from [80]. The
reference monograph on the theory of hypergroups, which contains most of the research developed
until 1994, is the book of Bloom and Heyer [16]. For more recent work, see [174] and references
therein.

We say that a positive Borel measure 𝑚 on 𝐾 is left invariant if
∫
𝐾
𝑓 𝑑 (𝛿𝑥 ∗ 𝑚) =

∫
𝐾
𝑓 𝑑𝑚 for

all 𝑥 ∈ 𝐾 and 𝑓 ∈ Cc(𝐾). Right invariant measures are defined similarly. It is known that if the
hypergroup (𝐾, ∗) is commutative (i.e. ` ∗ a = a ∗ ` for all measures `, a ∈ MC(𝐾)) then there exists
a left (and right) invariant measure on 𝐾 [16, Theorem 1.3.15].
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Proposition 2.23. If (𝐾, ∗) is a weak hypergroup endowed with an identity element 𝑒 ∈ 𝐾 (cf. axiom
H4) and a left invariant measure 𝑚, then the family of operators {T 𝑥}𝑥∈𝐾 defined by

(T 𝑥 𝑓 ) (𝑦) :=
∫
𝐾

𝑓 (b) (𝛿𝑥 ∗ 𝛿𝑦) (𝑑b), 𝑓 Borel measurable (2.15)

is such that the following properties hold for 𝑥, 𝑦 ∈ 𝐾:

(i) T 𝑥1 = 1, and if 𝑓 ≥ 0 then T 𝑥 𝑓 ≥ 0;

(ii) ∥T 𝑥 𝑓 ∥𝐿2 (𝐾,𝑚) ≤ ∥ 𝑓 ∥𝐿2 (𝐾,𝑚) ;

(iii) T𝑦 T 𝑥 = T 𝑥T𝑦 , where we write (T𝑦 𝑓 ) (𝑥) := (T 𝑥 𝑓 ) (𝑦);

(iv) T e = Id;

(v) If 𝑓 ∈ Cc(𝐾), then the function (𝑥, 𝑦) ↦→ (T 𝑥 𝑓 ) (𝑦) is continuous in each variable;

(vi) (T 𝑥 𝑓 ) (𝑦) = (T �̌� 𝑓 ) (𝑥) for all 𝑓 ∈ 𝐿2(𝐾, 𝑚), where we set 𝑓 (𝑥) = 𝑓 (𝑥);

(vii) For every pair of relatively compact subsets 𝐵1, 𝐵2 ⊂ 𝐾 there exists a compact set 𝐾0 ⊂ 𝐾 such
that if supp 𝑓 ∩ 𝐾0 = ∅ then (T 𝑥 𝑓 ) (𝑦) = 0 for 𝑚-a.e. 𝑥 ∈ 𝐵1, 𝑦 ∈ 𝐵2.

Conversely, if {T 𝑥}𝑥∈𝐾 is an arbitrary family of linear operators (not necessarily of the form (2.15))
which satisfy (i)-(vii) above, then the convolution ∗ onMC(𝐾) defined by

(` ∗ a) (𝐵) :=
∫
𝐾

∫
𝐾

(T 𝑥1𝐵) (𝑦) `(𝑑𝑥) a(𝑑𝑦) (𝐵 a Borel subset of 𝐾)

endows 𝐾 with a weak hypergroup structure.

Proof. See [12, pp. 60–62]. �

The operators T 𝑥 (𝑥 ∈ 𝐾) described in the above proposition are called generalized translation
operators. Historically, generalized translation operators were defined and extensively studied prior to
the development of the theory of hypergroups as convolution measure algebras. Seminal works on
generalized translation operators are the papers by Delsarte [43] and Levitan [111]; early work on
the subject is collected in Levitan’s monograph [113]. Another closely related concept is that of a
hypercomplex system. We refer to [12] for the definition of the latter and a discussion of the connection
with generalized translation operators and hypergroups. See also [119] for further historical remarks.

A hypergroup homomorphism between (𝐾1, ∗1) and (𝐾2, ∗2) is a map 𝜏 :MC(𝐾1) −→ MC(𝐾2)
such that 𝜏(` ∗1 a) = 𝜏(`) ∗2 𝜏(a) for all `, a ∈ MC(𝐾1) and 𝜏(𝛿𝑥) is a Dirac measure for all
𝑥 ∈ 𝐾1. If 𝜏 is bijective, then it is said to be a hypergroup isomorphism. Given a hypergroup
(𝐾1, ∗1) and a continuous bijection 𝜏 : 𝐾1 −→ 𝐾2, one can define a convolution ∗2 on 𝐾2 by
letting 𝛿𝑥 ∗2 𝛿𝑦 = 𝜏(𝛿𝜏−1 (𝑥) ∗1 𝛿𝜏−1 (𝑦) ) and (` ∗2 a) (·) =

∫
𝐾2

∫
𝐾2
(𝛿𝑥 ∗2 𝛿𝑦) (·) `(𝑑𝑥) a(𝑑𝑦). (Here

𝜏(𝛿𝜏−1 (𝑥) ∗1 𝛿𝜏−1 (𝑦) ) stands for the pushforward of the measure 𝛿𝜏−1 (𝑥) ∗1 𝛿𝜏−1 (𝑦) under the map
b ↦→ 𝜏(b).) It is then straightforward to check that the hypergroup axioms hold for (𝐾2, ∗2), so that
(𝐾1, ∗1) and (𝐾2, ∗2) are isomorphic hypergroups.
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Let (𝐾1, ∗1), . . . , (𝐾𝑛, ∗𝑛) be a finite family of hypergroups and write 𝐾 = 𝐾1 × . . . × 𝐾𝑛. Define
the convolution operator ∗ :MC(𝐾) ×MC(𝐾) −→ MC(𝐾) by

(` ∗ a) (·) =
∫
𝐾

∫
𝐾

(
(𝛿𝑥1 ∗1 𝛿𝑦1) ⊗ . . . ⊗ (𝛿𝑥𝑛 ∗𝑛 𝛿𝑦𝑛)

)
(·) `(𝑑𝑥) a(𝑑𝑦).

One can easily verify that this operator satisfies all the hypergroup axioms. The hypergroup (𝐾, ∗) is
called the product of the hypergroups (𝐾1, ∗1), . . . , (𝐾𝑛, ∗𝑛).

We now proceed to Urbanik’s definition of a generalized convolution on the space 𝐾 = R+0 :

Definition 2.24. For 𝑎 > 0, let Θ𝑎 : R+0 −→ R
+
0 be the multiplication map 𝑥 ↦→ Θ𝑎 (𝑥) := 𝑎𝑥. A

bilinear operator � onMC(R+0) is said to be an Urbanik (generalized) convolution if the following
axioms hold:

U1. If `, a ∈ P(R+0), then ` � a ∈ P(R+0);

U2. ` � a = a � ` and ` � (a � 𝜋) = (` � a) � 𝜋 for all `, a, 𝜋 ∈ MC(R+0);

U3. If `𝑛
𝑤−→ `, then `𝑛 � a

𝑤−→ ` � a for all a ∈ MC(R+0);

U4. 𝛿0 � ` = ` for all ` ∈ MC(R+0);

U5. Θ𝑎 (` � a) = (Θ𝑎`) � (Θ𝑎a) for all `, a ∈ P(R+0) and 𝑎 > 0;

U6. There exists a sequence {𝑐𝑛}𝑛∈N ⊂ R+ such that Θ𝑐𝑛𝛿�𝑛1
𝑤−→ ` for some measure ` ≠ 𝛿0.

This notion of generalized convolution was introduced by Urbanik in [178] and thoroughly studied
in a series of papers of the same author [179–182]. Recent research on Urbanik convolutions can be
found e.g. in [20, 131] and references therein.

The Kingman convolution defined in the previous section (Definition 2.15) is an example both of a
hypergroup structure on R+0 and of an Urbanik convolution. But, in general, hypergroups on R+0 do not
satisfy the homogeneity axiom U5 of Urbanik convolutions, and Urbanik convolutions do not satisfy
the compactness axiom H6 of hypergroups. See [16, 178] for examples of both types.

Finally, we present yet another notion of generalized convolution, which was introduced and
studied by Volkovich in [183, 185]. Here the axioms refer to the existence of a compatible (generalized)
characteristic function:

Definition 2.25. Let 𝐸 be a locally compact space. A bilinear operator ◦ onMC(𝐸) is said to be a
stochastic convolution (in the sense of Volkovich) if it has the following properties:

V1. If `, a ∈ P(𝐸), then ` ◦ a ∈ P(𝐸);

V2. There exists a separable complete metric space 𝑆 and a bounded real continuous function
𝜔(𝑥, 𝜎) on 𝐸 × 𝑆 such that the transform

Φ` (𝜎) :=
∫
𝐸

𝜔(𝑥, 𝜎)`(𝑑𝑥) (` ∈ P(𝐸), 𝜎 ∈ 𝑆)

determines uniquely the probability measure `, and no proper closed subset of 𝑆 has the same
property;
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V3. There exists e ∈ 𝐸 such that 𝜔(e, 𝜎) = 1 for all 𝜎 ∈ 𝑆;

V4. `𝑛
𝑤−→ ` if and only if Φ`𝑛 (𝜎) → Φ` (𝜎) for all 𝜎 ∈ 𝑆;

V5. `3 = `1 ◦ `2 if and only if Φ`3 (𝜎) = Φ`1 (𝜎)Φ`2 (𝜎) for all 𝜎 ∈ 𝑆;

V6. Let 𝔓 ⊂ P(𝐸). The set D(𝔓) of all divisors (with respect to the convolution ◦) of measures
a ∈ 𝔓 is relatively compact if and only if 𝔓 is relatively compact.

Any Urbanik convolution is a stochastic convolution [185], as well as all known examples of
hypergroups on R+0 (cf. Section 4.1 below).

The axioms V1–V6 of stochastic convolutions can be interpreted as the basic structural properties
which enable one to study infinite divisibility of measures on the convolution algebra and establish an
analogue of the usual Lévy-Khintchine representation [183]. The additional structure provided by the
stronger axioms of hypergroups or of Urbanik convolutions gives rise to many other analogues of
fundamental results of harmonic analysis, such as laws of large numbers and characterizations of Lévy
processes (these results can be found in the literature cited above).

2.4 Sturm-Liouville theory

Most of our work in extending the class of stochastic processes for which one can construct an
associated generalized convolution operator will be centred around diffusions whose generators are
(reducible to) Sturm-Liouville operators. This section collects the necessary background material
from Sturm-Liouville theory.

We will consider the Sturm-Liouville expression

ℓ(𝑢) (𝑥) :=
1
𝑟 (𝑥)

(
−(𝑝𝑢′) ′(𝑥) + 𝑞(𝑥)𝑢(𝑥)

)
, 𝑥 ∈ (𝑎, 𝑏) ⊂ R (2.16)

where we assume that the coefficients are such that 𝑝, 𝑟 > 0 on (𝑎, 𝑏), 𝑝, 𝑟 are locally absolutely
continuous, 𝑞 is locally integrable on (𝑎, 𝑏) and∫ 𝑐

𝑎

∫ 𝑐

𝑦

𝑑𝑥

𝑝(𝑥)
(
𝑟 (𝑦) + 𝑞(𝑦)

)
𝑑𝑦 < ∞ (2.17)

where 𝑐 ∈ (𝑎, 𝑏) is arbitrary.

The Sturm-Liouville expression (2.16) is of the form − 𝑑𝐷𝑠 𝑓 − 𝑓 𝑑𝑘
𝑑𝑚

with 𝑠(𝑥) =
∫ 𝑥
𝑥0

𝑑𝑦

𝑝 (𝑦) , 𝑚(𝑑𝑥) =
𝑟 (𝑥)𝑑𝑥 and 𝑘 (𝑑𝑥) = 𝑞(𝑥)𝑑𝑥. As in Section 2.1, an endpoint 𝑒 ∈ {𝑎, 𝑏} is called regular, entrance,
exit or natural according to the classification (2.6), where 𝐼𝑎 =

∫ 𝑐
𝑎

∫ 𝑦
𝑎

𝑑𝑥
𝑝 (𝑥)

(
𝑟 (𝑦) + 𝑞(𝑦)

)
𝑑𝑦, 𝐽𝑎 =∫ 𝑐

𝑎

∫ 𝑐
𝑦

𝑑𝑥
𝑝 (𝑥)

(
𝑟 (𝑦) + 𝑞(𝑦)

)
𝑑𝑦, 𝐼𝑏 =

∫ 𝑏
𝑐

∫ 𝑏
𝑦

𝑑𝑥
𝑝 (𝑥)

(
𝑟 (𝑦) + 𝑞(𝑦)

)
𝑑𝑦 and 𝐽𝑏 =

∫ 𝑏
𝑐

∫ 𝑦
𝑐

𝑑𝑥
𝑝 (𝑥)

(
𝑟 (𝑦) + 𝑞(𝑦)

)
𝑑𝑦.

The standing assumption that the coefficients {𝑝, 𝑞, 𝑟} satisfy (2.17) means that the endpoint 𝑎 is
regular or entrance.
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2.4.1 Solutions of the Sturm-Liouville equation

It is a basic fact that the vector space of solutions of the Sturm-Liouville equation ℓ(𝑢) = _𝑢 is
two-dimensional, and that a basis is formed by the (unique) solutions 𝑢1,_(𝑥), 𝑢2,_(𝑥) which satisfy
the initial conditions

𝑢1,_(𝑐) = sin𝛼, 𝑢′1,_(𝑐) = cos𝛼, 𝑢2,_(𝑐) = − cos𝛼, 𝑢′2,_(𝑐) = sin𝛼,

where 𝛼 ∈ [0, 𝜋) and 𝑐 is any (interior) point of the interval (𝑎, 𝑏). When the initial conditions are
instead given at an endpoint of the interval, the possibility of solving the Sturm-Liouville problem
depends on the boundary classification for the set of coefficients {𝑝, 𝑞, 𝑟}. Our starting lemma asserts
that under the assumption (2.17) we have existence and uniqueness of solution for the Sturm-Liouville
problem with Neumann-type condition at the left endpoint. Let us recall that an entire function
ℎ : C −→ C is said to be of exponential type if there exist constants 𝑐, 𝑀 > 0 such that |ℎ(𝑧) | ≤ 𝑀𝑒𝑐 |𝑧 |

for all 𝑧 ∈ C.

Lemma 2.26. The initial value problem

ℓ(𝑤) = _𝑤 (𝑎 < 𝑥 < 𝑏, _ ∈ C), 𝑤(𝑎) = 1, (𝑝𝑤′) (𝑎) = 0 (2.18)

has a unique solution 𝑤_(·). Moreover, _ ↦→ 𝑤_(𝑥) is, for fixed 𝑥, an entire function of exponential
type.

We emphasize that the boundary assumption (2.17) for this lemma includes Sturm-Liouville
equations where the left endpoint can be either limit point or limit circle. Here we recall the well-known
Weyl limit point/limit circle endpoint classification: the endpoint 𝑎 (respectively 𝑏) is called limit
point if

∫ 𝑐
𝑎
|𝑢_(𝑥) |2𝑟 (𝑥)𝑑𝑥 = ∞ (respectively

∫ 𝑏
𝑐
|𝑢_(𝑥) |2𝑟 (𝑥)𝑑𝑥 = ∞) for some solution of ℓ(𝑢) = _𝑢

and limit circle if
∫ 𝑐
𝑎
|𝑢_(𝑥) |2𝑟 (𝑥)𝑑𝑥 < ∞ (respectively

∫ 𝑏
𝑐
|𝑢_(𝑥) |2𝑟 (𝑥)𝑑𝑥 < ∞) for all solutions

of ℓ(𝑢) = _𝑢. (See [51, Theorem 2.1] for the connection between Feller’s boundary classification
and Weyl’s limit point/limit circle classification.) The usual existence and uniqueness theorems for
Sturm-Liouville problems with initial condition at an endpoint rely on the assumption that the endpoint
is regular or limit circle, cf. e.g. [10, Section 5]; the lemma above also includes some Sturm-Liouville
equations which are (entrance and) limit point at the left endpoint. Lemma 2.26 is not new — a special
case is established in [90, Lemma 3] — but seems to be little known. We give a self-contained proof
based on that of [90, Lemma 3].

Proof of Lemma 2.26. Pick an arbitrary 𝛽 ∈ (𝑎, 𝑏). Define 𝔰(𝑥) :=
∫ 𝑥
𝑐

𝑑b

𝑝 ( b ) and S(𝑥) =
∫ 𝑥
𝑎

(
𝔰(𝛽) −

𝔰(b)
) (
𝑞(b) + 𝑟 (b)

)
𝑑b. From the boundary assumption (2.17) it follows that 0 ≤ S(𝑥) ≤ S(𝛽) < ∞

for 𝑥 ∈ (𝑎, 𝛽]. Let

[0(𝑥;_) = 1, [ 𝑗 (𝑥;_) =
∫ 𝑥

𝑎

(
𝔰(𝑥) − 𝔰(b)

)
[ 𝑗−1(b;_)

(
𝑞(b) − _𝑟 (b)

)
𝑑b ( 𝑗 = 1, 2, . . .). (2.19)

One can check (using induction) that |[ 𝑗 (𝑥;_) | ≤ 1
𝑗!
(
(1+ |_ |)S(𝑥)

) 𝑗 for all 𝑗 . Therefore, the function

𝑤_(𝑥) =
∞∑
𝑗=0
[ 𝑗 (𝑥;_) (𝑎 < 𝑥 ≤ 𝛽, _ ∈ C) (2.20)
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is well-defined as an absolutely convergent series. The entireness of _ ↦→ 𝑤_(𝑥) follows at once from
the Weierstrass theorem for compactly convergent series of holomorphic functions, and the estimate

|𝑤_(𝑥) | ≤
∞∑
𝑗=0

1
𝑗!

(
(1 + |_ |)S(𝑥)

) 𝑗
= 𝑒 (1+|_ |)S (𝑥) ≤ 𝑒 (1+|_ |)S (𝛽) (𝑎 < 𝑥 ≤ 𝛽) (2.21)

shows that _ ↦→ 𝑤_(𝑥) is of exponential type. For 𝑎 < 𝑥 ≤ 𝛽 we have

1 +
∫ 𝑥

𝑎

1
𝑝(𝑦)

∫ 𝑦

𝑎

𝑤_(b)
(
𝑞(b) − _𝑟 (b)

)
𝑑b 𝑑𝑦

= 1 +
∫ 𝑥

𝑎

(𝔰(𝑥) − 𝔰(b))𝑤_(b)
(
𝑞(b) − _𝑟 (b)

)
𝑑b

= 1 +
∫ 𝑥

𝑎

(𝔰(𝑥) − 𝔰(b))
( ∞∑
𝑗=0
[ 𝑗 (b;_)

) (
𝑞(b) − _𝑟 (b)

)
𝑑b

= 1 +
∞∑
𝑗=0

∫ 𝑥

𝑎

(𝔰(𝑥) − 𝔰(b))[ 𝑗 (b;_)
(
𝑞(b) − _𝑟 (b)

)
𝑑b

= 1 +
∞∑
𝑗=0
[ 𝑗+1(𝑥;_) = 𝑤_(𝑥),

i.e., 𝑤_(𝑥) satisfies

𝑤_(𝑥) = 1 +
∫ 𝑥

𝑎

1
𝑝(𝑦)

∫ 𝑦

𝑎

𝑤_(b)
(
𝑞(b) − _𝑟 (b)

)
𝑑b 𝑑𝑦. (2.22)

This integral equation is equivalent to (2.18), so the proof is complete. �

Corollary 2.27. If _ < 0, 𝑞 ≥ 0 and the endpoint 𝑏 is exit or natural, then the solution of (2.18) is
strictly increasing and unbounded.

Proof. Rewriting the functions [ 𝑗 (𝑥;_) from the proof of Lemma 2.26 as

[ 𝑗 (𝑥;_) =
∫ 𝑥

𝑎

1
𝑝(𝑦)

∫ 𝑦

𝑎

[ 𝑗−1(b;_)
(
𝑞(b) − _𝑟 (b)

)
𝑑b 𝑑𝑦

we see at once (using induction on 𝑗) that each [ 𝑗 (·;_) is positive and strictly increasing, and
therefore 𝑤_(·) =

∑∞
𝑗=0 [ 𝑗 (·;_) is strictly increasing. Moreover, lim𝑥↑𝑏 [1(𝑥;_) =

∫ 𝑏
𝑎

1
𝑝 (𝑦)

∫ 𝑦
𝑎

(
𝑞(b)−

_𝑟 (b)
)
𝑑b 𝑑𝑦 ≥ min{1, |_ |}𝐽𝑏 = ∞, hence 𝑤_ is unbounded. �

It is also worth noting that the following converse of Lemma 2.26 holds: if
∫ 𝑐
𝑎

∫ 𝑐
𝑦

𝑑𝑥
𝑝 (𝑥) 𝑟 (𝑦)𝑑𝑦 = ∞

(so that (2.17) fails to hold) then for _ < 0 there exists no solution of ℓ(𝑤) = _𝑤 satisfying the
boundary conditions 𝑤(𝑎) = 1 and (𝑝𝑤′) (𝑎) = 0. Indeed, if the integral

∫ 𝑐
𝑎

∫ 𝑐
𝑦

𝑑𝑥
𝑝 (𝑥) 𝑟 (𝑦)𝑑𝑦 diverges,

then it follows from [86, Sections 5.13–5.14] that any solution 𝑤 of ℓ(𝑤) = _𝑤 (_ < 0) either satisfies
𝑤(𝑎) = 0 or (𝑝𝑤′) (𝑎) = +∞, so in particular (2.18) cannot hold.

In the sequel, {𝑎𝑚}𝑚∈N will denote a sequence 𝑏 > 𝑎1 > 𝑎2 > . . . with lim 𝑎𝑚 = 𝑎. Next we
verify that the solution 𝑤_(·) for the Sturm-Liouville equation on the interval (𝑎, 𝑏) is approximated
by the corresponding solutions on the intervals (𝑎𝑚, 𝑏):
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Lemma 2.28. For 𝑚 ∈ N and _ ∈ C, let 𝑤_,𝑚(𝑥) be the unique solution of the boundary value problem

ℓ(𝑤) = _𝑤 (𝑎𝑚 < 𝑥 < 𝑏), 𝑤(𝑎𝑚) = 1, (𝑝𝑤′) (𝑎𝑚) = 0. (2.23)

Then
lim
𝑚→∞

𝑤_,𝑚(𝑥) = 𝑤_(𝑥) and lim
𝑚→∞
(𝑝𝑤′_,𝑚) (𝑥) = (𝑝𝑤′_) (𝑥) (2.24)

pointwise for each 𝑎 < 𝑥 < 𝑏 and _ ∈ C.

Proof. In the same way as in the proof of Lemma 2.26 we can check that the solution of (2.23) is
given by

𝑤_,𝑚(𝑥) =
∞∑
𝑗=0
[ 𝑗 ,𝑚(𝑥;_) (𝑎𝑚 < 𝑥 < 𝑏, _ ∈ C)

where [0,𝑚(𝑥;_) = 1 and [ 𝑗 ,𝑚(𝑥;_) =
∫ 𝑥
𝑎𝑚

(
𝔰(𝑥) − 𝔰(b)

)
[ 𝑗−1,𝑚(b;_)

(
𝑞(b) − _𝑟 (b)

)
𝑑b. As before we

have |[ 𝑗 ,𝑚(𝑥;_) | ≤ 1
𝑗!
(
(1 + |_ |)S(𝑥)

) 𝑗 for 𝑎𝑚 < 𝑥 ≤ 𝛽 (where S is the function from the proof of
Lemma 2.26). Using this estimate and induction on 𝑗 , it is easy to see that [ 𝑗 ,𝑚(𝑥;_) → [ 𝑗 (𝑥;_)
as 𝑚 → ∞ (𝑎 < 𝑥 ≤ 𝛽, _ ∈ C, 𝑗 = 0, 1, . . .). Noting that the estimate on |[ 𝑗 ,𝑚(𝑥;_) | allows us to
take the limit under the summation sign, we conclude that 𝑤_,𝑚(𝑥) → 𝑤_(𝑥) as 𝑚 →∞ (𝑎 < 𝑥 ≤ 𝛽).
Finally, by (2.22) we have for 𝑎 < 𝑥 ≤ 𝛽

lim
𝑚→∞
(𝑝𝑤′_,𝑚) (𝑥) = −_ lim

𝑚→∞

∫ 𝑥

𝑎𝑚

𝑤_,𝑚(b) 𝑟 (b)𝑑b = −_
∫ 𝑥

𝑎

𝑤_(b) 𝑟 (b)𝑑b = (𝑝𝑤′_) (𝑥)

using dominated convergence and the estimates |𝑤_,𝑚(𝑥) | ≤ 𝑒 (1+|_ |)S (𝛽) , |𝑤_(𝑥) | ≤ 𝑒 (1+|_ |)S (𝛽) . �

The following lemma provides a sufficient condition for the solution 𝑤_(·) to be uniformly bounded
in the variables 𝑥 ∈ (𝑎, 𝑏) and _ ≥ 0:

Lemma 2.29. If 𝑞 ≡ 0, _ ≥ 0 and 𝑥 ↦→ 𝑝(𝑥)𝑟 (𝑥) is an increasing function, then the solution of (2.18)
is bounded:

|𝑤_(𝑥) | ≤ 1 for all 𝑎 < 𝑥 < 𝑏, _ ≥ 0. (2.25)

Proof. (Adapted from [197, Proposition 4.3].) Let us start by assuming that 𝑝(𝑎)𝑟 (𝑎) > 0. For _ = 0
the result is trivial because 𝑤0(𝑥) ≡ 1. Fix _ > 0. Multiplying both sides of the differential equation
ℓ(𝑤_) = _𝑤_ by 2𝑝𝑤′

_
, we obtain − 1

𝑝𝑟
[(𝑝𝑤′

_
)2] ′ = _(𝑤2

_
) ′. Integrating the differential equation and

then using integration by parts, we get

_
(
1 − 𝑤_(𝑥)2

)
=

∫ 𝑥

𝑎

1
𝑝(b)𝑟 (b)

(
(𝑝𝑤′_) (b)2

) ′
𝑑b

=
(𝑝𝑤′

_
) (𝑥)2

𝑝(𝑥)𝑟 (𝑥) +
∫ 𝑥

𝑎

(
𝑝(b)𝑟 (b)

) ′( (𝑝𝑤′_) (b)
𝑝(b)𝑟 (b)

)2
𝑑b, 𝑎 < 𝑥 < 𝑏

where we also used the fact that (𝑝𝑤′
_
) (𝑎) = 0 and the assumption that 𝑝(𝑎)𝑟 (𝑎) > 0. The right hand

side is nonnegative, because 𝑥 ↦→ 𝑝(𝑥)𝑟 (𝑥) is increasing and therefore (𝑝(b)𝑟 (b)) ′ ≥ 0. Given that
_ > 0, it follows that 1 − 𝑤_(𝑥)2 ≥ 0, so that |𝑤_(𝑥) | ≤ 1.
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If 𝑝(𝑎)𝑟 (𝑎) = 0, the above proof can be used to show that the solution of (2.23) is such that
|𝑤_,𝑚(𝑥) | ≤ 1 for all 𝑎 < 𝑥 < 𝑏, _ ≥ 0 and 𝑚 ∈ N; then Lemma 2.28 yields the desired result. �

2.4.2 Eigenfunction expansions

Eigenfunction expansion theorems for ordinary and partial differential operators are a key tool for the
construction of generalized convolutions. Under the running assumption that the left endpoint is regular
or entrance, the Sturm-Liouville operator (2.16) has a self-adjoint realization with Neumann-type
boundary conditions, and the corresponding spectral expansion gives rise to an invertible integral
transform whose kernel is the solution 𝑤_(·): (For brevity we write 𝐿 𝑝 (𝑟) := 𝐿 𝑝

(
(𝑎, 𝑏); 𝑟 (𝑥)𝑑𝑥

)
.)

Theorem 2.30. The operator

L (2) : D(L (2) ) ⊂ 𝐿2(𝑟) −→ 𝐿2(𝑟), L (2)𝑢 = ℓ(𝑢)

where

D(L (2) ) :=


{
𝑢 ∈ 𝐿2(𝑟)

�� 𝑢, 𝑢′ ∈ ACloc(𝑎, 𝑏), ℓ(𝑢) ∈ 𝐿2(𝑟), (𝑝𝑢′) (𝑎) = 0
}

if 𝑏 is limit point{
𝑢 ∈ 𝐿2(𝑟)

���� 𝑢, 𝑢′ ∈ ACloc(𝑎, 𝑏), ℓ(𝑢) ∈ 𝐿2(𝑟),
(𝑝𝑢′) (𝑎) = (𝑝𝑢′) (𝑏) = 0

}
if 𝑏 is limit circle

(2.26)
is positive and self-adjoint. There exists a unique locally finite positive Borel measure 𝜌L on R such
that the map ℎ ↦→ F ℎ, where

(F ℎ) (_) :=
∫ 𝑏

𝑎

ℎ(𝑥) 𝑤_(𝑥) 𝑟 (𝑥)𝑑𝑥
(
ℎ ∈ Cc [𝑎, 𝑏), _ ≥ 0

)
, (2.27)

induces an isometric isomorphism F : 𝐿2(𝑟) −→ 𝐿2(R; 𝜌L) whose inverse is given by

(F −1𝜑) (𝑥) =
∫
R
𝜑(_) 𝑤_(𝑥) 𝜌L (𝑑_), (2.28)

the convergence of the latter integral being understood with respect to the norm of 𝐿2(𝑟), i.e. the
integral in the right-hand side denotes the function 𝑔 ∈ 𝐿2(𝑟) such that

lim
𝑁→∞

∫ 𝑏

𝑎

����𝑔(𝑥) − ∫ 𝑁

−𝑁
𝜑(_) 𝑤_(𝑥) 𝜌L (𝑑_)

����2 𝑑𝑥 = 0.

The spectral measure 𝜌L is supported on R+0 . Moreover, the operator F is a spectral representation
of L (2) , i.e. we have

D(L (2) ) =
{
𝑢 ∈ 𝐿2(𝑟)

��� _ · (F 𝑢) (_) ∈ 𝐿2 (R+0 , 𝜌L )} (2.29)(
F (L (2)ℎ)

)
(_) = _ · (F ℎ) (_), ℎ ∈ D(L (2) ). (2.30)

Proof. The fact that (L (2) ,D(L (2) )) is a positive self-adjoint operator is a known result, see [129, 175].
The existence of a spectral transformation F associated with the operator L is a consequence of the
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standard Weyl-Titchmarsh-Kodaira theory of eigenfunction expansions of Sturm-Liouville operators
(cf. [168, Section 3.1] and [188, Section 8]).

In the general case the eigenfunction expansion is written in terms of two linearly independent
solutions of ℓ(𝑢) = _𝑢 and a 2 × 2 matrix measure. However, from the boundary condition (2.17) it
follows that the function 𝑤_(𝑥) is square-integrable near 𝑥 = 0 with respect to the measure 𝑟 (𝑥)𝑑𝑥;
moreover, by Lemma 2.26, 𝑤_(𝑥) is (for fixed 𝑥) an entire function of _. Therefore, the possibility
of writing the expansion in terms only of the eigenfunction 𝑤_(𝑥) follows from the results of [50,
Sections 9 and 10]. �

The isometric integral transform F will be called the L-transform.

Remark 2.31. Assume that the coefficients of the Sturm-Liouville expression (2.16) are such that
𝑝′, 𝑟 ′ are locally absolutely continuous on (𝑎, 𝑏). Let 𝑢 be a solution of ℓ(𝑢) = _𝑢, and consider a
transformation of independent and dependent variables of the form

𝑢 = 𝑍 (𝑥)𝑣, 𝑦 =

∫ 𝑥

𝑐

𝐻 (b) 𝑑b

where the functions 𝑍, 𝐻 are positive and sufficiently smooth. A straightforward computation
(cf. [14, pp. 320-322]) yields that the function 𝑣(𝑦) is a solution of the Sturm-Liouville equation
ℓ̃(𝑣) (𝑦) := 1

�̃� (𝑦)
(
−(𝑝𝑣′) ′(𝑦) + 𝑞(𝑦)𝑣(𝑦)

)
= _𝑣(𝑦), where

�̃� =
𝑟𝑍2

𝐻
, 𝑝 = 𝑝𝐻𝑍2, 𝑞 =

𝑞𝑍2

𝐻
+ 𝑍 𝑑

𝑑𝑦

(
𝑝𝐻

𝑑𝑍

𝑑𝑦

)
.

We can write ℓ̃(𝑣) = 𝑈−1ℓ(𝑈𝑣), where 𝑈 : 𝐿2 ((𝛾−1(𝑎), 𝛾−1(𝑏)), �̃�
)
−→ 𝐿2(𝑟) is the isometry defined

by

(𝑈𝑣) (𝑥) = 𝑍 (𝑥) 𝑣(𝛾(𝑥)), (𝑈−1𝑢) (𝑦) = 𝑢(𝛾−1(𝑦))
𝑍 (𝛾−1(𝑦))

with 𝛾(𝑥) :=
∫ 𝑥
𝑐
𝐻 (b) 𝑑b and 𝛾−1 its inverse function. Therefore, the operator F̃ defined by

(F̃ ℎ) (_) :=
(
F (𝑈ℎ)

)
(_) =

∫ 𝛾−1 (𝑏)

𝛾−1 (𝑎)
ℎ(𝑦) 𝑤_(𝛾

−1(𝑦))
𝑍 (𝛾−1(𝑦))

�̃� (𝑦)𝑑𝑦, (F̃ −1𝜑) (𝑦) :=
(
𝑈−1(F −1𝜑)

)
(𝑦)

is a spectral representation of the self-adjoint realization L̃ := 𝑈−1L𝑈 of the operator ℓ̃. Under
suitable additional assumptions (for instance, if 𝑍 (𝑎) = 1, (𝑝𝑍 ′) (𝑎) = 0 and ℓ is limit point at 𝑏), one
can check that this spectral representation coincides with that obtained by applying Theorem 2.30
to the transformed operator ℓ̃; in particular, the spectral measure given by Theorem 2.30 is invariant
under such transformations of variable.

A special case is the so-called Liouville transformation 𝑢 = [𝑝(𝑥)𝑟 (𝑥)]1/4𝑣, 𝑦 =
∫ √

𝑟 (𝑥)/𝑝(𝑥) 𝑑𝑥
[14, 55]. This choice yields a simplified operator ℓ̃ without first-order term, namely ℓ̃(𝑣) (𝑦) =
𝑣′′(𝑦) + 𝑞(𝑦)𝑣(𝑦), where 𝑞 =

𝑞

𝑟
+ (𝑝𝑟)− 1

4 𝑑2

𝑑𝑦2 [(𝑝𝑟)
1
4 ]. This is called the Liouville normal form of the

operator ℓ.
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Theorem 2.30 establishes the existence of a spectral measure 𝜌L such that the L-transform maps
the space 𝐿2(𝑟) isometrically onto 𝐿2(R; 𝜌L), but it provides no information on how to compute the
measure 𝜌L . When the Sturm-Liouville operator has no natural endpoints, the spectral measure is
discrete and can be obtained by determining the eigenvalues and the norms of the eigenfunctions:

Proposition 2.32. Suppose that the endpoint 𝑏 is regular, entrance or exit. Let 𝑢_(·) be a nontrivial
solution of ℓ(𝑢) = _𝑢 (_ ∈ C) such that

𝑢_(𝑏) = 1, (𝑝𝑢′_) (𝑏) = 0 if 𝑏 is regular or entrance (2.31)

𝑢_ ∈ 𝐿2((𝑐, 𝑏), 𝑟 (𝑥)𝑑𝑥) for some 𝑐 ∈ (𝑎, 𝑏) if 𝑏 is exit (2.32)

and let Wr(𝑤_, 𝑢_) := 𝑝(𝑤_𝑢′_ − 𝑢_𝑤′_) be the modified Wronskian of the solutions 𝑤_ and 𝑢_. Then
Wr(𝑤_, 𝑢_) is independent of 𝑥 and its positive zeros 0 ≤ _1 < _2 < _3 < . . . ↑ ∞ are eigenvalues of
the self-adjoint operator L. The spectrum of L is {_𝑘 }𝑘∈N, and its (purely discrete) spectral measure
is given by

𝜌L =

∞∑
𝑘=1
∥𝑤_𝑘 ∥−2

𝐿2 (𝑟 ) 𝛿_𝑘 .

Proof. See [114, Section 5.1]. �

If the endpoint 𝑏 is natural, the spectrum of L has, in general, a more complicated structure.
We refer to [114] for a complete characterization of the structure of the spectrum of a large class of
Sturm-Liouville operators with natural endpoints. The following results describe two approaches for
computing the spectral measure of operators whose endpoint 𝑏 is natural — the so-called real variable
approach, where 𝜌L is obtained as a limit of discrete measures which correspond to eigenvalue
problems on approximating intervals, and an alternative approach which relies on complex analysis
and the so-called Weyl-Titchmarsh 𝑚-function:

Proposition 2.33. Suppose that the endpoint 𝑏 is natural. For 𝛽 ∈ (𝑎, 𝑏), let 0 ≤ _1,𝛽 < _2,𝛽 < . . . ↑
∞ be the zeros of the function _ ↦→ 𝑤_(𝛽) and let 𝜌𝛽L be the measure

𝜌
𝛽

L =

∞∑
𝑘=1
∥𝑤_𝑘,𝛽 ∥−2

2,𝛽 𝛿_𝑘,𝛽 , where ∥ 𝑓 ∥2,𝛽 =

∫ 𝛽

𝑎

| 𝑓 (𝑥) |2𝑟 (𝑥)𝑑𝑥.

There exists a right continuous, monotone increasing functionΨ(·) onR such that lim𝛽↑𝑏 𝜌
𝛽

L (−∞, _] =
Ψ(_) at all points of continuity of Ψ. Moreover, the spectral measure of L is the Lebesgue-Stieltjes
measure with distribution function Ψ(_), i.e. we have 𝜌L (_1, _2] = Ψ(_2) −Ψ(_1) for all _1, _2 ∈ R
with _1 < _2.

Proof. See [35, Chapter 9, Section 3], [114, Section 5.2]. �

Proposition 2.34. Suppose that the endpoint 𝑏 is natural. Let \_(·) be a solution of ℓ(\) = _\ which
is real entire in _ (i.e. for fixed 𝑥 ∈ (𝑎, 𝑏) the function _ ↦→ \_(𝑥) is entire, and we have \_(𝑥) ∈ R for
_ ∈ R) and such that Wr(𝑤_, \_) = 1. (Under our assumptions, such a solution always exists, see [50,
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Theorem 9.6].) There exists a function 𝑚 : C\R −→ C, called the Weyl-Titchmarsh 𝑚-function, which
is uniquely defined by the requirement that 𝜓_(𝑥) := \_(𝑥) +𝑚(_)𝑤_(𝑥) belongs to 𝐿2((𝑐, 𝑏), 𝑟 (𝑥)𝑑𝑥)
for some 𝑐 ∈ (𝑎, 𝑏). The spectral measure of the operator L is given by

𝜌L (_1, _2] = lim
𝛿↓0

lim
Y↓0

1
𝜋

∫ _2+𝛿

_1+𝛿
Im(𝑚(_ + 𝑖Y)) 𝑑_ (_1, _2 ∈ R, _1 < _2). (2.33)

Proof. See [50, Sections 9 and 10]. �

It is often important to know whether the inversion integral for the L-transform is absolutely
convergent. A sufficient condition, which is valid for any Sturm-Liouville operator satisfying the left
boundary assumption (2.17), is given in the next lemma:

Lemma 2.35. Set 𝐽 = [𝑎, 𝑏) if
∫ 𝑐
𝑎

∫ 𝑦
𝑎

𝑑𝑥
𝑝 (𝑥)

(
𝑞(𝑦) + 𝑟 (𝑦)

)
𝑑𝑦 < ∞ and 𝐽 = (𝑎, 𝑏) otherwise. Then:

(a) For each ` ∈ C \ R, the integrals∫
R+0

𝑤_(𝑥) 𝑤_(𝑦)
|_ − ` |2

𝜌L (𝑑_) and
∫
R+0

(𝑝𝑤′
_
) (𝑥) (𝑝𝑤′

_
) (𝑦)

|_ − ` |2
𝜌L (𝑑_) (2.34)

converge uniformly on compact squares in 𝐽 × 𝐽.

(b) If ℎ ∈ D(L (2) ), then

ℎ(𝑥) =
∫
R+0

(F ℎ) (_) 𝑤_(𝑥) 𝜌L (𝑑_) (2.35)

(𝑝ℎ′) (𝑥) =
∫
R+0

(F ℎ) (_) (𝑝𝑤′_) (𝑥) 𝜌L (𝑑_) (2.36)

where the right-hand side integrals converge absolutely and uniformly on compact subsets in 𝐽.

Proof. (a) It is known that the resolvent of the Sturm-Liouville operator (L (2) ,D(L (2) )) is given by

(L (2) − `)−1𝑔(𝑥) =
∫ 𝑏

𝑎

𝑔(𝑦)𝐺 (𝑥, 𝑦, `) 𝑟 (𝑦)𝑑𝑦, 𝑔 ∈ 𝐿2(𝑟), ` ∈ C \ R

where

𝐺 (𝑥, 𝑦, `) =


1
Wr(𝑤` ,𝑢`)𝑤` (𝑥)𝑢` (𝑦), 𝑥 < 𝑦

1
Wr(𝑤` ,𝑢`)𝑤` (𝑦)𝑢` (𝑥), 𝑥 ≥ 𝑦

and 𝑢_(·) (_ ∈ C \ R) is a nontrivial solution of ℓ(𝑢) = _𝑢 satisfying (2.31) if 𝑏 is regular or entrance
and (2.32) if 𝑏 is exit or natural; moreover, the L-transform of the resolvent kernel is(

F 𝐺 (𝑥, ·, `)
)
(_) = 𝑤_(𝑥)

_ − ` .
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(These facts follow from general results in Sturm-Liouville spectral theory, see [188, Theorem 7.8],
[50, Lemma 10.6].) We have∫

R+0

𝑤_(𝑥)𝑤_(𝑦)
|_ − ` |2

𝜌L (𝑑_) =
∫ 𝑏

𝑎

𝐺 (𝑥, b, `)𝐺 (𝑦, b, `) 𝑟 (b)𝑑b = 1
Im(`) Im

(
𝐺 (𝑥, 𝑦, `)

)
where the first equality follows from the isometric property ofF and the second equality is a consequence
of the resolvent formula (L (2) − `1)−1 − (L (2) − `2)−1 = (`1 − `2) (L (2) − `1)−1(L (2) − `2)−1.
Letting 𝜕 [1]

b
:= 𝑝(b) 𝜕

𝜕b
, it is easy to check that the functions Im

(
𝐺 (𝑥, 𝑦, `)

)
, 𝜕 [1]𝑥 Im

(
𝐺 (𝑥, 𝑦, `)

)
and

𝜕
[1]
𝑥 𝜕

[1]
𝑦 Im

(
𝐺 (𝑥, 𝑦, `)

)
are continuous in 𝑎 < 𝑥, 𝑦 < 𝑏. From this we can conclude, after a careful

estimation of the differentiated integrals (see the proof of [134, §21.2, Corollary 3]), that∫
R+0

(𝑝𝑤′
_
) (𝑥) (𝑝𝑤′

_
) (𝑦)

|_ − ` |2
𝜌L (𝑑_) =

1
Im(`) 𝜕

[1]
𝑥 𝜕

[1]
𝑦 Im

(
𝐺 (𝑥, 𝑦, `)

)
and that the integrals (2.34) converge uniformly for 𝑥, 𝑦 in compact subsets of 𝐽.

(b) By Theorem 2.30 and the classical theorem on differentiation under the integral sign for
Riemann-Stieltjes integrals, to prove (2.35)–(2.36) it only remains to justify the absolute and uniform
convergence of the integrals in the right-hand sides.

Recall from Theorem 2.30 that the condition ℎ ∈ D(L (2) ) implies that F ℎ ∈ 𝐿2
(
R+0 , 𝜌L

)
and

also _ (F ℎ) (_) ∈ 𝐿2
(
R+0 , 𝜌L

)
. As a consequence, we obtain∫

R+0

��(F ℎ) (_)𝑤_(𝑥)��𝜌L (𝑑_)
≤

∫
R+0

_
��(F ℎ) (_)������𝑤_(𝑥)_ + 𝑖

����𝜌L (𝑑_) +∫
R+0

��(F ℎ) (_)������𝑤_(𝑥)_ + 𝑖

����𝜌L (𝑑_)
≤

(
∥_ (F ℎ) (_)∥𝜌 + ∥(F ℎ) (_)∥𝜌

)𝑤_(𝑥)_ + 𝑖


𝜌

< ∞

where ∥ · ∥𝜌 denotes the norm of the space 𝐿2
(
R; 𝜌L

)
, and similarly∫

R+0

��(F ℎ) (_) (𝑝𝑤′_) (𝑥)��𝜌L (𝑑_) ≤ (
∥_ (F ℎ) (_)∥𝜌 + ∥(F ℎ) (_)∥𝜌

) (𝑝𝑤′_) (𝑥)_ + 𝑖


𝜌

< ∞.

We know from part (a) that the integrals which define
𝑤_ (𝑥)
_+𝑖


𝜌

and
 (𝑝𝑤′_) (𝑥)

_+𝑖

𝜌

converge uniformly,
hence the integrals in (2.35)–(2.36) converge absolutely and uniformly on compact subsets of 𝐽. �

2.4.3 Diffusion semigroups generated by Sturm-Liouville operators

Being a positive self-adjoint operator, the Neumann realization (L (2) ,D(L (2) )) of the Sturm-Liouville
expression (2.16) is the (negative of the) infinitesimal generator of a strongly continuous semigroup
{𝑇 (2)𝑡 }𝑡≥0 on 𝐿2(𝑟). Since 𝑇 (2)𝑡 = 𝑒−𝑡L

(2) (the latter being defined via the spectral calculus), the
eigenfunction expansion of this semigroup is a by-product of Theorem 2.30:
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Proposition 2.36. The semigroup {𝑇 (2)𝑡 }𝑡≥0 generated by (L (2) ,D(L (2) )) is sub-Markovian, i.e. such
that ∥𝑇 (2)𝑡 ℎ∥𝐿∞ (𝑟 ) ≤ ∥ℎ∥𝐿∞ (𝑟 ) for all ℎ ∈ 𝐿2(𝑟) ∩ 𝐿∞(𝑟) and 𝑇 (2)𝑡 ℎ ≥ 0 whenever ℎ ≥ 0. Moreover,
this semigroup admits the representations

(𝑇 (2)𝑡 ℎ) (𝑥) = F −1 [𝑒−𝑡 ·(F ℎ) (·)] (𝑥) =
∫
R+0

𝑒−𝑡_𝑤_(𝑥) (F ℎ) (_) 𝜌L (𝑑_) (2.37)

=

∫ 𝑏

𝑎

ℎ(𝑦) 𝑝(𝑡, 𝑥, 𝑦) 𝑟 (𝑦)𝑑𝑦
(
𝑡 > 0, ℎ ∈ 𝐿2(𝑟)

)
(2.38)

where

𝑝(𝑡, 𝑥, 𝑦) := F −1 [𝑒−𝑡 ·𝑤(·) (𝑥)] (𝑦) =
∫
R+0

𝑒−𝑡_ 𝑤_(𝑥) 𝑤_(𝑦) 𝜌L (𝑑_)
(
𝑡 > 0, 𝑥, 𝑦 ∈ 𝐽

)
(2.39)

(here 𝐽 is defined as in Lemma 2.35) and the latter integral converges absolutely and uniformly on
compact squares in 𝐽 × 𝐽 for each fixed 𝑡 > 0.

Proof. One can check (see [62, Section 2.3]) that L (2) is the positive self-adjoint operator associated
with the unbounded sesquilinear form EL : D(EL) × D(EL) −→ C defined by

D(EL) =
{
𝑢 ∈ 𝐿2(𝑟) ∩ 𝐿2(𝑞)

�� 𝑢 ∈ ACloc(R+), 𝑢′ ∈ 𝐿2(𝑝)
}

EL (𝑢, 𝑣) =
∫ ∞

0
𝑢′(𝑥)𝑣′(𝑥) 𝑝(𝑥)𝑑𝑥 +

∫ ∞

0
𝑢(𝑥)𝑣(𝑥) 𝑞(𝑥)𝑑𝑥

where 𝐿2(𝑝) = 𝐿2 ((𝑎, 𝑏); 𝑝(𝑥)𝑑𝑥) and 𝐿2(𝑞) = 𝐿2 ((𝑎, 𝑏); 𝑞(𝑥)𝑑𝑥) . According to [30, Section 2.2.3]
and [62, Lemma 2.1],

(
EL ,D(EL)

)
is closed and Markovian. (The closedness means that D(EL)

is a Hilbert space with respect to the inner product EL (𝑢, 𝑣) + ⟨𝑢, 𝑣⟩𝐿2 (𝑟 ) , while the Markovianity
means that if 𝑢 ∈ D(EL) then 𝑣 := max(min(𝑢, 1), 0) ∈ D(EL) and EL (𝑣, 𝑣) ≤ EL (𝑢, 𝑢).) Using
the well-known Beurling-Deny criterion (e.g. [30, Theorem 1.1.3]), it follows that the semigroup
{𝑇 (2)𝑡 } is sub-Markovian.

The representation (2.37) is a direct consequence of the spectral theorem for unbounded self-adjoint
operators. It follows from Lemma 2.35(a) that the right hand side of (2.39) converges absolutely
and uniformly in compact subsets of 𝐽 × 𝐽, hence for 𝑥 ∈ 𝐽 the function _ ↦→ 𝑒−𝑡_𝑤_(𝑥) belongs to
𝐿2

(
R; 𝜌L

)
. The representation (2.38) is therefore obtained by combining (2.37) with the isometric

property of F . �

As noted in the beginning of this section, the (negative of the) Sturm-Liouville expression
considered here is of the form (2.5). Assume that the endpoint 𝑏 is not exit, and let 𝐼 = [𝑎, 𝑏) if 𝑏 is
natural and 𝐼 = [𝑎, 𝑏] if 𝑏 is regular or entrance. By Theorem 2.7 and Proposition 2.8, there exists a
diffusion process {𝑋𝑡 }𝑡≥0 on 𝐼 which is a Feller process whose infinitesimal generator is the operator
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(−L (0) ,D(L (0) )), where

L (0)𝑢 = ℓ(𝑢), D(L (0) ) =
{
𝑢 ∈ C0(𝐼)

����� 𝑢, 𝑢′ ∈ ACloc(𝑎, 𝑏), ℓ(𝑢) ∈ C0(𝐼)
(𝑝𝑢′) (𝑎) = 0, (𝑝𝑢′) (𝑏) = 0 if 𝑏 is regular or entrance

}
.

(2.40)
The Feller semigroup generated by (L (0) ,D(L (0) )) is the restriction to C0(𝐼) of the 𝐿∞(𝑟)-extension
of the semigroup {𝑇 (2)𝑡 }, cf. [30, Equation (1.1.9)]. The next corollary gives some consequences of
the preceding remarks.

Corollary 2.37. Assume that the endpoint 𝑏 is not exit. Let {𝑇𝑡 }𝑡≥0 and {𝑋𝑡 }𝑡≥0 be, respectively, the
Feller semigroup and diffusion generated by

(
−L (0) ,D(L (0) )

)
. Then {𝑇𝑡 }𝑡≥0 is consistent with the

strongly continuous contraction semigroup {𝑇 (2)𝑡 } generated by (L (2) ,D(L (2) )), in the sense that
𝑇𝑡ℎ = 𝑇

(2)
𝑡 ℎ if ℎ ∈ C0(𝐼) ∩ 𝐿2(𝑟). The function 𝑝(𝑡, 𝑥, ·) defined in (2.39) is the density (with respect

to 𝑟 (𝑦)𝑑𝑦) of the transition kernel of the Feller semigroup {𝑇𝑡 }𝑡≥0, i.e. we have

(𝑇𝑡ℎ) (𝑥) = E𝑥 [ℎ(𝑋𝑡 )] =
∫ 𝑏

𝑎

ℎ(𝑦) 𝑝(𝑡, 𝑥, 𝑦) 𝑟 (𝑦)𝑑𝑦
(
𝑡 > 0, 𝑥 ∈ 𝐽, ℎ ∈ C0(𝐼)

)
.

If 𝑞 ≡ 0, then {𝑇𝑡 }𝑡≥0 is a conservative Feller semigroup and therefore 𝑝(𝑡, 𝑥, ·) 𝑟 (·) is, for each 𝑡 > 0
and 𝑥 ∈ 𝐽, the density of a probability measure on 𝐼.

2.4.4 Remarkable particular cases

The general family of Sturm-Liouville operators studied above includes many differential operators
which are of hypergeometric type in the sense that the solutions of ℓ(𝑢) = _𝑢 can be written in terms
of hypergeometric functions. In such cases, it is often possible to determine, using Propositions
2.32–2.34 and known identities from the theory of special functions, a closed-form expression for the
spectral measure. As the examples below demonstrate, one can recover, in particular, the inversion
theorem for many common integral transforms, as well as an explicit (spectral) representation for the
transition probabilities of important diffusion processes.

We start with an example which is nearly trivial, but quite instructive:

Example 2.38. The Sturm-Liouville operator

ℓ = − 𝑑
2

𝑑𝑥2 , 0 < 𝑥 < ∞

is obtained by setting 𝑝 = 𝑟 = 1 and (𝑎, 𝑏) = R+. Since the solution of the Sturm-Liouville initial
value problem (2.18) is 𝑤_(𝑥) = cos(𝜏𝑥) (where _ = 𝜏2), the L-transform is simply the cosine
Fourier transform (F ℎ) (𝜏) =

∫ ∞
0 ℎ(𝑥) cos(𝜏𝑥)𝑑𝑥. The function \_(𝑥) = 1

𝜏
sin(𝜏𝑥) satisfies the

requirement of Proposition 2.34, and one can easily check that the Weyl-Titchmarsh 𝑚-function is
given by 𝑚(_) = 1

𝑖
√
_

for _ ∈ C with Im_ > 0. Using (2.33), we obtain that 𝜌L (𝑑_) = 0 on (−∞, 0]
and 𝜌L (𝑑_) = 𝑑_

𝜋
√
_
= 2
𝜋
𝑑𝜏 on R+. As one would expect, this result confirms the classical inversion

formula (F −1𝜑) (𝜏) = 2
𝜋

∫ ∞
0 ℎ(𝑥) cos(𝜏𝑥)𝑑𝑥 for the cosine Fourier transform. The Feller process on
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R+0 generated by ℓ is the reflected Brownian motion, whose transition density is given by

𝑝(𝑡, 𝑥, 𝑦) = 2
𝜋

∫ ∞

0
𝑒−𝑡 𝜏

2
cos(𝜏𝑥) cos(𝜏𝑦)𝑑𝜏 = 1

√
2𝜋𝑡

(
exp

(
− (𝑥 − 𝑦)

2

2𝑡

)
+ exp

(
− (𝑥 + 𝑦)

2

2𝑡

))
(2.41)

(the second equality follows from integral 2.5.36.1 in [145]). The fact that the expression in the
right-hand side of (2.41) is the transition density of the reflected Brownian motion is well-known, cf.
e.g. [19, p. 250].

Our next case illustrates the fact that various classical expansions of functions as series of
orthogonal polynomials are also a particular case of the general Sturm-Liouville spectral theory.

Example 2.39. Let 𝛼, 𝛽 > −1. The Jacobi differential operator

ℓ = −(1 − 𝑥2) 𝑑
2

𝑑𝑥2 − (𝛽 − 𝛼 − (𝛼 + 𝛽 + 1)𝑥) 𝑑
𝑑𝑥
, −1 < 𝑥 < 1

is of the form (2.16) with 𝑞 ≡ 0, 𝑟 (𝑥) = (1 − 𝑥)𝛼 (1 + 𝑥)𝛽 and 𝑝(𝑥) = (1 − 𝑥)1+𝛼 (1 + 𝑥)1+𝛽. The
endpoint 1 is regular if −1 < 𝛼 < 0 and entrance if 𝛼 ≥ 0; similarly, the endpoint −1 is regular if
−1 < 𝛽 < 0 and entrance if 𝛽 ≥ 0. In all cases, the Neumann self-adjoint realization (L,D(L)) has
a purely discrete spectrum. The function

𝑤_(𝑥) = 2𝐹1

(
[ − 𝜏, [ + 𝜏;𝛼 + 1;

1 − 𝑥
2

)
([ = 1

2 (𝛼 + 𝛽 + 1), _ = 𝜏2 − [2)

is a solution of ℓ(𝑢) = _𝑢 such that 𝑤_(1) = 1 and (𝑝𝑤′
_
) (1) = 0. Here 2𝐹1 denotes the hypergeometric

function [135, Chapter 15]. One can verify that this is an eigenfunction of (L,D(L)) if and
only if _ = 𝑛(2[ + 𝑛) (𝑛 ∈ N) [118]. Therefore, the eigenfunctions are the Jacobi polynomials
𝑤𝑘 (2[+𝑘) (𝑥) ≡ 𝑅 (𝛼,𝛽)𝑘

(𝑥) := (−1)𝑘
2𝑘 (𝛼+1)𝑘

1
(1−𝑥)𝛼 (1+𝑥)𝛽

𝑑𝑘

𝑑𝑥𝑘
[(1 − 𝑥)𝑘+𝛼 (1 + 𝑥)𝑘+𝛽]. Since ∥𝑅 (𝛼,𝛽)

𝑘
∥2
𝐿2 (𝑟 ) =

22[−1𝑘!Γ(𝑘+𝛼+1)Γ(𝑘+𝛽+1)
[ (1+𝛼)𝑘 ]2 (𝑘+[) Γ(𝑘+2[)

[42, Section 15.2], the integral transform pair (2.27)–(2.28) is the Jacobi series
expansion

ℎ(𝑥) =
∞∑
𝑘=0

[(𝛼 + 1)𝑘]2(𝑘 + [)Γ(𝑘 + 2[)
22[−1𝑘!Γ(𝑘 + 𝛼 + 1)Γ(𝑘 + 𝛽 + 1)

(F ℎ) (𝑘) 𝑅 (𝛼,𝛽)
𝑘
(𝑥)

where (F ℎ) (𝑘) =
∫ 1
−1 ℎ(𝑥) 𝑅

(𝛼,𝛽)
𝑘
(𝑥) (1 − 𝑥)𝛼 (1 + 𝑥)𝛽𝑑𝑥. Accordingly, the transition probability

density of the diffusion process on [−1, 1] generated by ℓ is

𝑝(𝑡, 𝑥, 𝑦) =
∞∑
𝑘=0

𝑒−𝑡 𝑘 (2[+𝑘)
[(𝛼 + 1)𝑘]2(𝑘 + [)Γ(𝑘 + 2[)

22[−1𝑘!Γ(𝑘 + 𝛼 + 1)Γ(𝑘 + 𝛽 + 1)
𝑅
(𝛼,𝛽)
𝑘
(𝑥)𝑅 (𝛼,𝛽)

𝑘
(𝑦).

In the literature, this stochastic process is known as the Jacobi diffusion [93, 114].

Next we present in some detail an example of how one can determine the spectral measure of
a Sturm-Liouville operator whose spectrum is not discrete and whose fundamental solutions are
nontrivial special functions of hypergeometric type.
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Example 2.40. The Bessel process with drift ` > 0 and index 𝛼−1
2 (𝛼 > 0) is, according to [115], the

diffusion generated by the differential operator

ℓ = − 𝑑
2

𝑑𝑥2 −
(𝛼
𝑥
+ 2`

) 𝑑
𝑑𝑥
, 0 < 𝑥 < ∞

This Sturm-Liouville operator is obtained by choosing 𝑞 ≡ 0 and 𝑝(𝑥) = 𝑟 (𝑥) = 𝑥𝛼𝑒2`𝑥 . One can
check that the endpoint 0 is regular if 0 < 𝛼 < 1 and entrance if 𝛼 ≥ 1, while the endpoint +∞ is
natural.

The solution of the initial value problem (2.18) is

𝑤_(𝑥) = (2𝑖𝜏)−
𝛼
2 𝑒−`𝑥𝑥−

𝛼
2 𝑀− 𝛼`

2𝑖𝜏 ,
𝛼−1

2
(2𝑖𝜏𝑥) (2.42)

where _ = 𝜏2 + `2 and 𝑀^,a (𝑧) := 𝑒−
𝑧
2
∑∞
𝑛=0

( 1
2+a−^)𝑛
(1+2a)𝑛𝑛! 𝑧

1
2+a+𝑛 is the Whittaker function of the first

kind [135, §13.14]. (The fact that (2.42) is a solution of ℓ(𝑢) = _𝑢 follows from [143, Equation
2.1.2.108], and we can use the results of [135, §13.14(iii) and §13.15(ii)] to check that 𝑤_(0) = 1 and
(𝑝𝑤′

_
) (0) = 0.) If 𝛼 ∉ N, a suitable linearly independent solution of ℓ(𝑢) = _𝑢 is

\_(𝑥) = (1 − 𝛼)−1(2𝑖𝜏) 𝛼2 −1𝑒−`𝑥𝑥−
𝛼
2 𝑀− 𝛼`

2𝑖𝜏 ,
1−𝛼

2
(2𝑖𝜏𝑥).

(Using [135, §13.2(i)] and [115, Remark 1], one verifies that \_(𝑥) is real entire; [135, Equation
13.2.33] yields that Wr(𝑤_, \_) = 1. The case 𝛼 ∈ N can be treated using [135, §13.2(v)].) Now,
it follows from [135, Equation 13.14.21] that a solution of the Sturm-Liouville equation which is
square-integrable with respect to 𝑟 (𝑥)𝑑𝑥 near infinity is

𝜓_(𝑥) =
Γ( 𝛼2 (1 +

`

𝑖𝜏
))

Γ(𝛼) (2𝑖𝜏) 𝛼2 −1𝑒−`𝑥𝑥−
𝛼
2 𝑊− 𝛼`

2𝑖𝜏 ,
𝛼−1

2
(2𝑖𝜏𝑥) (_ ∈ C \ R)

where 𝑊𝛼,a (𝑥) is the Whittaker function of the second kind [135, §13.14]. By [135, Equation
13.14.33] this solution can be written as \_(𝑥) + 𝑚(_)𝑤_(𝑥), where

𝑚(_) = −Γ(𝛼)−2(2𝜏)𝛼−1 sin( 𝜋𝛼2 (1 +
`

𝑖𝜏
))

sin(𝜋𝛼) Γ
(
𝛼
2 (1 +

`

𝑖𝜏
)
)
Γ
(
𝛼
2 (1 −

`

𝑖𝜏
)
)

(_ ∈ C \ R).

Taking the limit we obtain

lim
Y↓0

1
𝜋
𝑚(_ + 𝑖Y) =


2𝛼−2

𝜋Γ(𝛼)2 𝜏
𝛼−1 exp

(
− 𝜋𝛼`2𝜏

) ��Γ(
𝛼
2 (1 +

`

𝑖𝜏
)
) ��2, _ > `2

0, _ < `2

which, by Proposition 2.34, is the density of the (absolutely continuous) spectral measure 𝜌L .

Letting 𝜎(𝜏) := 2𝛼−1

𝜋Γ(𝛼)2 𝜏
𝛼 exp

(
− 𝜋𝛼`2𝜏

) ��Γ(
𝛼
2 (1 +

`

𝑖𝜏
)
) ��2, it follows that the pair of index transforms

(F ℎ) (𝜏) = (2𝑖𝜏)− 𝛼
2

∫ ∞

0
ℎ(𝑥) 𝑀− 𝛼`

2𝑖𝜏 ,
𝛼−1

2
(2𝑖𝜏𝑥) 𝑒`𝑥𝑥 𝛼

2 𝑑𝑥 (2.43)

(F −1𝜑) (𝑥) = (2𝑖𝑥)− 𝛼
2 𝑒−`𝑥

∫ ∞

0
𝜑(𝜏) 𝑀− 𝛼`

2𝑖𝜏 ,
𝛼−1

2
(2𝑖𝜏𝑥) 𝜏− 𝛼

2 𝜎(𝜏)𝑑𝜏 (2.44)
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defines an isometry between the spaces 𝐿2(R+, 𝑥𝛼𝑒2`𝑥𝑑𝑥) and 𝐿2(R+, 𝜎(𝜏) 𝑑𝜏). In the limit `→ 0,
using [135, Equations 10.27.6 and 13.18.8] we recover the Hankel transform (2.11) whose kernel is
the Bessel function of the first kind. From the above it also follows that the transition density of the
Bessel process with drift is given by

𝑝(𝑡, 𝑥, 𝑦) = (−4𝑥𝑦)− 𝛼
2 𝑒−` (𝑥+𝑦)

∫ ∞

0
𝑒−𝑡 (𝜏

2+`2) 𝑀− 𝛼`

2𝑖𝜏 ,
𝛼−1

2
(2𝑖𝜏𝑥) 𝑀− 𝛼`

2𝑖𝜏 ,
𝛼−1

2
(2𝑖𝜏𝑦) 𝜏−𝛼𝜎(𝜏)𝑑𝜏.

This spectral representation for the law of the Bessel process was established by Linetsky in [115], based
on the related results of Titchmarsh in [176, §4.17]. However, the pair of confluent hypergeometric
type integral transforms (2.43)–(2.44) is apparently little known; in particular, it is not reported in
reference monographs on integral transforms such as [148, 191, 194].

Example 2.41. Another integral transform related to the Whittaker functions is obtained by considering
the operator

ℓ = −𝑥2 𝑑
2

𝑑𝑥2 − (1 + 2(1 − 𝛼)𝑥) 𝑑
𝑑𝑥
, 0 < 𝑥 < ∞ (2.45)

which is of the form (2.16) with 𝑞 ≡ 0, 𝑟 (𝑥) = 𝑥−2𝛼𝑒−1/𝑥 and 𝑝(𝑥) = 𝑥2(1−𝛼)𝑒−1/𝑥 . The operator
(2.45) is the generator of the Shiryaev process (Chapter 3). Here the solution of the initial value
problem (2.18) is a normalized Whittaker𝑊 function (Proposition 3.1). For 𝛼 ≤ 1

2 , the corresponding
spectral measure has density 𝜎(𝜏) = 𝜋−2𝜏 sinh(2𝜋𝜏)

��Γ( 1
2 −𝛼+ 𝑖𝜏

) ��2, where we write _ = 𝜏2 + ( 12 −𝛼)
2.

The L-transform specializes into

(F ℎ) (𝜏) =
∫ ∞

0
ℎ(𝑥)𝑊𝛼,𝑖𝜏 ( 1

𝑥
) 𝑥−𝛼𝑒− 1

2𝑥 𝑑𝑥 (2.46)

(F −1𝜑) (𝑥) = 1
𝜋2 𝑥

𝛼𝑒
1

2𝑥

∫ ∞

0
𝜑(𝜏)𝑊𝛼,𝑖𝜏 ( 1

𝑥
) 𝜏 sinh(2𝜋𝜏)

��Γ( 1
2 − 𝛼 + 𝑖𝜏

) ��2𝑑𝜏 (2.47)

Accordingly, (2.39) specializes into an explicit spectral representation for the transition density of the
Shiryaev process.

The integral transform (2.46)–(2.47) is a modified form (cf. Remark 2.31) of the so-called index
Whittaker transform, which was first introduced by Wimp [189] as a particular case of an integral
transform having the Meijer-G function in the kernel. Its 𝐿 𝑝 theory was studied in [171]. The index
Whittaker transform includes as a particular case the Kontorovich-Lebedev transform, which is one of
the most well-known index transforms [191, 194] and has a wide range of applications in physics.

The spectral measure 𝜎(𝜏)𝑑𝜏 can be deduced using either the approach based on the Weyl-
Titchmarsh 𝑚-function or the real variable approach (we refer to [168, Example 2] and [116]
respectively).

Example 2.42. The coefficients 𝑞 ≡ 0, 𝑝(𝑥) = 𝑟 (𝑥) = (sinh 𝑥)2𝛼+1(cosh 𝑥)2𝛽+1 (with 𝛽 ∈ R, 𝛼 > −1,
𝛼 ± 𝛽 + 1 ≥ 0) give rise to the Jacobi operator

ℓ = − 𝑑

𝑑𝑥2 − [(2𝛼 + 1) coth 𝑥 + (2𝛽 + 1) tanh 𝑥] 𝑑
𝑑𝑥
, 0 < 𝑥 < ∞. (2.48)
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The so-called Jacobi function

𝑤_(𝑥) = 𝜙 (𝛼,𝛽)𝜏 (𝑥) := 2𝐹1

(
1
2 ([ − 𝑖𝜏),

1
2 ([ + 𝑖𝜏);𝛼 + 1;−(sinh 𝑥)2

)
([ = 𝛼 + 𝛽 + 1, _ = 𝜏2 + [2)

can be shown to be the unique solution of the Sturm-Liouville initial value problem (2.18). Using
Proposition 2.34, one can show (cf. [98] and references therein, see also [168, Example 3]) that the

spectral measure is absolutely continuous with density 𝜎(𝜏) =
����Γ( 1

2 ([+𝑖𝜏))Γ(
1
2 ([+𝑖𝜏)−𝛽)

Γ( 1+𝑖𝜏
2 )Γ(

𝑖𝜏
2 )Γ(𝛼+1)

����2, so that the

L-transform becomes

(F ℎ) (𝜏) =
∫ ∞

0
ℎ(𝑥) 𝜙 (𝛼,𝛽)𝜏 (𝑥) (sinh 𝑥)2𝛼+1(cosh 𝑥)2𝛽+1𝑑𝑥

(F −1𝜑) (𝑥) =
∫ ∞

0
𝜑(𝜏) 𝜙 (𝛼,𝛽)𝜏 (𝑥)

�����Γ( 12 ([ + 𝑖𝜏))Γ( 12 ([ + 𝑖𝜏) − 𝛽)Γ( 1+𝑖𝜏2 )Γ(
𝑖𝜏
2 )Γ(𝛼 + 1)

�����2 𝑑𝜏. (2.49)

This is the so-called (Fourier-)Jacobi transform, which is closely related (via a suitable change of
variables) to the Olevskii transform, the index hypergeometric transform or, in the case 𝛼 = 𝛽, the
generalized Mehler-Fock transform [193].

If 𝛽 = − 1
2 , the Feller process generated by the Neumann self-adjoint realization of (2.48) is

known as the hyperbolic Bessel process; more generally, it is called a hypergeometric diffusion [18].
Like in the previous examples, the transition probabilities admit the explicit integral representation
𝑝(𝑡, 𝑥, 𝑦) =

∫ ∞
0 𝑒−𝑡 (𝜏

2+[2)𝜙 (𝛼,𝛽)𝜏 (𝑥)𝜙 (𝛼,𝛽)𝜏 (𝑦)𝜎(𝜏)𝑑𝜏.

For ease of presentation, in Examples 2.40–2.42 the range of the parameters 𝛼, 𝛽 and ` was chosen
so that the spectral measure is purely absolutely continuous. In general, the measure decomposes into
a discrete and an absolutely continuous part, both of which can be determined using the results of
Subsection 2.4.2 (for details, see [114]). For instance, if we let 𝛼 > 1

2 in the Sturm-Liouville operator
of Example 2.41 and let 𝑁𝛼 be the integer part of 𝛼 − 1

2 , then the spectral measure becomes [108, 115]

𝜌L (𝑑_) =
𝑁𝛼∑
𝑛=0

2𝛼 − 1 − 2𝑛
𝑛!Γ(2𝛼 − 𝑛) 𝛿𝑛(2𝛼−1−𝑛) (𝑑_) + 1[ (𝛼− 1

2 )2,∞)
(_) 𝜏 sinh(2𝜋𝜏)

��Γ( 1
2 − 𝛼 + 𝑖𝜏

) ��2𝑑𝜏
so that a finite sum must be added to the inversion formula (2.47) for the index Whittaker transform.

The examples presented above do not exhaust the class of Sturm-Liouville operators whose spectral
measure is known in closed form. Additional examples can be found e.g. in [45, 64, 109, 170].





Chapter 3

The Whittaker convolution

The goal of this chapter is to construct a generalized convolution for the one-dimensional diffusion
process known as the Shiryaev process. The properties of this convolution-like operator will allow us
to interpret the Shiryaev process as a Lévy-like process, thereby providing a positive answer to the
general question formulated in the Introduction.

The Shiryaev process (started at 𝑦0 ≥ 0) is defined in [139] as the unique strong solution {𝑌𝑡 }𝑡≥0

of the SDE
𝑑𝑌𝑡 = (1 + `𝑌𝑡 )𝑑𝑡 + 𝜎𝑌𝑡 𝑑𝑊𝑡 , 𝑌0 = 𝑦0 (3.1)

where ` ∈ R, 𝜎 > 0 and {𝑊𝑡 }𝑡≥0 is a standard Brownian motion. The infinitesimal generator of the
Shiryaev process is the differential operator A defined as A𝑢(𝑦) = 𝜎2

2 𝑦
2𝑢′′(𝑦) + (1 + `𝑦)𝑢′(𝑦).

The Shiryaev process, whose defining SDE (3.1) was first derived by Shiryaev in the context of
quickest detection problems [159], has various applications in mathematical finance; in particular,
it plays a fundamental role in the problem of Asian option pricing under the famous Black-Scholes
model [44, 116]. See [142] for a survey of other applications in physics and finance.

We will restrict our attention to the standardized Shiryaev process with parameters 𝜎 =
√

2 and
` = 2(1 − 𝛼) ∈ R, i.e. the one-dimensional diffusion generated by the operator

A𝛼𝑢(𝑦) = 𝑦2𝑢′′(𝑦) + (1 + 2(1 − 𝛼)𝑦)𝑢′(𝑦) = 1
𝑟𝛼 (𝑦)

(
𝑝𝛼𝑢

′) ′(𝑦) (3.2)

where 𝑟𝛼 (b) := b−2𝛼𝑒−1/b and 𝑝𝛼 (b) := b2(1−𝛼)𝑒−1/b . This restriction does not introduce any loss
of generality, because we know (cf. [18, Section II.8]) that if {𝑋𝑡 }𝑡≥0 is a one-dimensional diffusion
generated by A𝛼,𝛾,𝑐 := 𝛾𝑥2 𝑑2

𝑑𝑥2 + 𝛾(𝑐 + 2(1 − 𝛼)𝑥) 𝑑
𝑑𝑥

(𝑐, 𝛾 > 0), then the process {𝑌𝑡 = 1
𝑐
𝑋𝛾𝑡 }𝑡≥0 is

a one-dimensional diffusion generated by (3.2). In fact, once we have constructed the convolution
structure for the standardized Shiryaev process, the convolution structure for A𝛼,𝛾,𝑐 is simply a
by-product which is obtained via elementary changes of variable (cf. Remark 3.71).

From Section 3.2 onwards we will mostly assume that 𝛼 ≤ 1
2 ; this is a necessary and sufficient

condition for the underlying product formula to have the positivity and conservativeness property
which is required for the induced convolution to be a binary operator on the space of probability
measures.

37
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3.1 The product formula for the Whittaker function

Our key ingredient for constructing a generalized convolution for the Shiryaev process will be a novel
product formula of the form 𝑤_(𝑥)𝑤_(𝑦) =

∫
R+0
𝑤_(b) a𝑥,𝑦 (𝑑b) for the solutions of the Sturm-Liouville

boundary value problem

−A𝛼𝑢 = _𝑢 (𝑦 ∈ R+, _ ∈ C), 𝑢(0) = 1, (𝑝𝛼𝑢′) (0) = 0. (3.3)

Since these solutions can be expressed in terms of the Whittaker functions, the generalized convolution
for the Shiryaev process will be called the Whittaker convolution.

Proposition 3.1. The unique solution of the boundary value problem (3.3) is given by

𝑊𝛼,Δ_
(𝑦) := 𝑦𝛼𝑒

1
2𝑦𝑊𝛼,Δ_

( 1
𝑦
) (3.4)

where Δ_ =
√
( 12 − 𝛼)2 − _ and𝑊𝛼,a (𝑥) is the Whittaker function of the second kind.

Throughout this chapter, the function𝑊𝛼,a (𝑦) = 𝑦𝛼𝑒
1

2𝑦𝑊𝛼,a ( 1
𝑦
) will be called the normalized

Whittaker𝑊 function. To prove Proposition 3.1, one just needs to check, using the basic properties of
the Whittaker function stated below, that (3.4) is a solution of −A𝛼𝑢 = _𝑢 which satisfies the given
boundary conditions.

Remark 3.2 (Some basics on the Whittaker 𝑊 function). Let 𝛼, a ∈ C. The Whittaker function
𝑊𝛼,a (𝑥) is, by definition, the solution of Whittaker’s differential equation 𝑑2𝑢

𝑑𝑥2 +
(
− 1

4 +
𝛼
𝑥
+ 1/4−a2

𝑥2

)
𝑢 = 0

which is determined uniquely by the property

𝑊𝛼,a (𝑥) ∼ 𝑥𝛼𝑒−
𝑥
2 , |𝑥 | → ∞, Re 𝑥 > 0. (3.5)

The Whittaker𝑊 function is an analytic function of 𝑥 on the half-plane Re 𝑥 > 0, and for fixed 𝑥 it
is an entire function of the first and the second parameter [135, §13.14(ii)]. It admits the integral
representation (cf. [145], integral 2.3.6.9)

𝑊𝛼,a (𝑥) =
𝑒−

𝑥
2 𝑥𝛼

Γ( 12 − 𝛼 + a)

∫ ∞

0
𝑒−𝑠𝑠−

1
2−𝛼+a

(
1 + 𝑠

𝑥

)− 1
2+𝛼+a

𝑑𝑠 (Re 𝑥 > 0, Re𝛼 < 1
2 +Re a). (3.6)

The Whittaker 𝑊 function is an even function of the parameter a [135, Equation 13.14.31]. For
𝛼 ≠ 1

2 ± a,
3
2 ± a, . . ., its asymptotic behaviour near the origin is, cf. [135, §13.14(iii)]

𝑊𝛼,a (𝑥) = 𝑂
(
𝑥

1
2−Re a ) (Re a ≥ 0, a ≠ 0),

𝑊𝛼,0(𝑥) = 𝑂
(
−𝑥 1

2 log 𝑥
)
,

𝑥 → 0. (3.7)

The asymptotic expansion for𝑊𝛼,a (𝑥) as |𝑥 | → ∞ is given by [135, Equation 13.19.3]

𝑊𝛼,a (𝑥) ∼ 𝑒−
𝑥
2 𝑥𝛼

∞∑
𝑘=0

( 12 − 𝛼 + a)𝑘 (
1
2 − 𝛼 − a)𝑘

𝑘!
(−𝑥)−𝑘 , |𝑥 | → ∞, Re 𝑥 > 0. (3.8)
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The Whittaker function satisfies the recurrence relation and the differentiation formula [135, Equations
13.15.13 and 13.15.23]

𝑥
1
2𝑊𝛼+ 1

2 ,a+
1
2
(𝑥) = (𝑥 + 2a)𝑊𝛼,a (𝑥) + ( 12 − 𝛼 − a) 𝑥

1
2𝑊𝛼− 1

2 ,a−
1
2
(𝑥) (3.9)(

𝑥
𝑑

𝑑𝑥
𝑥

)𝑛 (
𝑒𝑥/2𝑥−𝛼−1𝑊𝛼,a (𝑥)

)
=

( 1
2 + a − 𝛼

)
𝑛

( 1
2 − a − 𝛼

)
𝑛
𝑒𝑥/2 𝑥𝑛−𝛼−1𝑊𝛼−𝑛,a (𝑥), 𝑛 ∈ N (3.10)

where (𝑎)𝑛 =
∏𝑛−1
𝑗=0 (𝑎 + 𝑗) is the Pochhammer symbol. When the parameter 𝛼 is equal to zero (resp.,

equal to 1
2 + a), the Whittaker function reduces to the modified Bessel function of the second kind

(resp., to an elementary function) [135, §13.18(i), (iii)],

𝑊0,a (2𝑥) = 𝜋−
1
2 (2𝑥) 1

2𝐾a (𝑥) (3.11)

𝑊 1
2+a,a
(𝑥) = 𝑥 1

2+a𝑒−𝑥/2 (3.12)

(see [135, §10.25] for the definition of the Bessel function 𝐾a (𝑥)). By [191, Theorem 1.11], for 𝛼 ∈ R
the asymptotic expansion of the Whittaker function with imaginary parameter a = 𝑖𝜏 as 𝜏 →∞ is

𝑊𝛼,𝑖𝜏 (𝑥) = (2𝑥)
1
2 𝜏𝛼−

1
2 𝑒−𝜋𝜏/2 cos

(
𝜏 log

( 𝑥
4𝜏

)
+ 𝜋

2

(1
2
− 𝛼

)
+ 𝜏

) [
1 +𝑂 (𝜏−1)

]
, (3.13)

the expansion being uniform in 0 < 𝑥 ≤ 𝑀 (𝑀 > 0).

By Proposition 3.1, our problem reduces to that of determining a product formula for the Whittaker
function𝑊𝛼,a (𝑥) whose measures should not depend on the second parameter a. If 𝛼 = 0, so that by
(3.11) the Whittaker𝑊 function reduces to the Bessel function 𝐾a (𝑥), it is well-known that such a
product formula exists and has an explicit closed-form expression:

Theorem 3.3 (Product formula for the modified Bessel function of the second kind). The product
𝐾a (𝑥)𝐾a (𝑦) of two modified Bessel functions of the second kind with different arguments admits the
integral representation

𝐾a (𝑥)𝐾a (𝑦) =
1
2

∫ ∞

0
𝐾a (b) exp

(
−𝑥𝑦

2b
− 𝑥b

2𝑦
− 𝑦b

2𝑥

)
𝑑b

b
(𝑥, 𝑦 > 0, a ∈ C). (3.14)

Proof. This result, which is known as the Macdonald formula, is classical and can be found in standard
texts on special functions (cf. [53, §7.7.6] and [191, Equation (1.103)]). �

By a change of variables, the identity (3.14) can be equivalently written as

𝑊0,a (𝑥)𝑊0,a (𝑦) =
1

2(𝜋𝑥𝑦)1/2
exp

(
1
2𝑥
+ 1

2𝑦

) ∫ ∞

0
𝑊0,a (b) exp

(
− 1

2b
− 𝑥

4𝑦b
− 𝑦

4𝑥b
− b

4𝑥𝑦

)
𝑑b

b1/2,

showing that in the case 𝛼 = 0 the desired product formula for the normalized Whittaker𝑊 function
holds for the measures defined by a𝑥,𝑦 (𝑑b) = 1

2 (𝜋𝑥𝑦b)
−1/2 exp

( 1
2𝑥 +

1
2𝑦 −

1
2b −

𝑥
4𝑦 b −

𝑦

4𝑥 b −
b

4𝑥𝑦
)
𝑑b.

The Macdonald formula (3.14) has been used to construct the Kontorovich-Lebedev convolution,
which was introduced by Kakichev in [91] and has been an object of much interest [83, 84, 144, 192, 194].
Given that the properties of the index Whittaker transform in the general case are similar to those of
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the Kontorovich-Lebedev transform [171], one would expect that the Whittaker𝑊 function admits a
similar product formula which also gives rise to a generalized convolution structure. However, to the
best of our knowledge, neither an explicit product formula for 𝑊𝛼,a (𝑥) with kernel not depending
on the parameter a is known in the literature, nor the existence of such a formula has been deduced
through techniques such as those described in [36].

The following theorem, which will be proved in this section, settles this problem:

Theorem 3.4. The product 𝑊𝛼,a (𝑥)𝑊𝛼,a (𝑦) of two Whittaker functions of the second kind with
different arguments admits the integral representation

𝑊𝛼,a (𝑥)𝑊𝛼,a (𝑦) =
∫ ∞

0
𝑊𝛼,a (b) ^𝛼 (𝑥, 𝑦, b)

𝑑b

b2 (𝑥, 𝑦 > 0, 𝛼, a ∈ C) (3.15)

where

^𝛼 (𝑥, 𝑦, b) :=2−1−𝛼𝜋−
1
2 (𝑥𝑦b) 1

2 exp
(
𝑥

2
+ 𝑦

2
+ b

2
− (𝑥𝑦 + 𝑥b + 𝑦b)

2

8𝑥𝑦b

)
𝐷2𝛼

(
𝑥𝑦 + 𝑥b + 𝑦b
(2𝑥𝑦b)1/2

)
being 𝐷` (𝑧) the parabolic cylinder function [53, Section 8.2].

Remark 3.5. Before the proof, let us collect some facts on the parabolic cylinder function 𝐷` (𝑧)
which will be needed in the sequel.

The parabolic cylinder function is given in terms of the Whittaker function by

𝐷` (𝑧) = 2
`

2 +
1
4 𝑧−

1
2𝑊 `

2 +
1
4 ,

1
4

(
𝑧2

2
)
.

This function is a solution of the differential equation 𝑑2𝑢
𝑑𝑧2 +

(
` + 1

2 −
𝑧2

4
)
𝑢 = 0, and it is an entire

function of the parameter `. An integral representation for the parabolic cylinder function is [135,
Equation 12.5.3]

𝐷` (𝑧) =
𝑧 ` 𝑒−

𝑧2
4

Γ
( 1

2 (1 − `)
) ∫ ∞

0
𝑒−𝑠𝑠−

1
2 (1+`)

(
1 + 2𝑠

𝑧2

)`
2

𝑑𝑠 (Re 𝑧 > 0, Re ` < 1). (3.16)

The asymptotic form of 𝐷` (𝑧) for large 𝑧 is [53, Equation 8.4(1)]

𝐷` (𝑧) ∼ 𝑧`𝑒−
𝑧2
4 𝑧 →∞. (3.17)

The recurrence relation and differentiation formula for 𝐷` (𝑧) are [53, Equations 8.2(14) and 8.2(16)]

𝐷`+1(𝑧) = 𝑧𝐷` (𝑧) − `𝐷`−1(𝑧) (3.18)
𝑑𝑛

𝑑𝑧𝑛

[
𝑒−

𝑧2
4 𝐷` (𝑧)

]
= (−1)𝑛𝑒−

𝑧2
4 𝐷`+𝑛 (𝑧) (𝑛 ∈ N) (3.19)

and the parabolic cylinder function reduces to an exponential function when its parameter equals zero
[53, Equation 8.2(9)],

𝐷0(𝑧) = 𝑒−
𝑧2
4 . (3.20)
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We will prove Theorem 3.4 through a sequence of lemmas, where we shall assume that 𝛼 is a
negative real number and a is purely imaginary. In the final step of the proof, an analytic continuation
argument will be used to remove this restriction.

Our first lemma gives an alternative product formula which is less useful than (3.15) because its
kernel also depends on the second parameter of the Whittaker function.

Lemma 3.6. If 𝛼 ∈ (−∞, 0) and 𝜏 ∈ R, then the integral representation

𝑊𝛼,𝑖𝜏 (𝑥)𝑊𝛼,𝑖𝜏 (𝑝)

=
(𝑥𝑝)𝛼𝑒− 𝑥

2 −
𝑝

2

|Γ( 12 − 𝛼 + 𝑖𝜏) |2

∫ ∞

0
b−1−𝛼𝑒−

b

2 𝑊𝛼,𝑖𝜏 (b)
∫ ∞

0
𝑤−2𝛼 exp

(
−𝑤 −

(1
𝑥
+ 1
𝑝
+ 𝑤

𝑥𝑝

)
𝑤b

)
𝑑𝑤 𝑑b

(3.21)

is valid for 𝑥, 𝑝 > 0.

Proof. From relation 2.21.2.17 in [147] it follows that

𝑊𝛼,𝑖𝜏 (𝑥)𝑊𝛼,𝑖𝜏 (𝑝) = (𝑥𝑝)
1
2−𝑖𝜏𝑒−

𝑥
2 −

𝑝

2 Ψ

(1
2
− 𝛼 − 𝑖𝜏, 1 − 2𝑖𝜏; 𝑥

)
Ψ

(1
2
− 𝛼 − 𝑖𝜏, 1 − 2𝑖𝜏; 𝑝

)
=
(𝑥𝑝) 1

2−𝑖𝜏𝑒−
𝑥
2 −

𝑝

2

Γ(1 − 2𝛼)

∫ ∞

0
𝑒−𝑤 𝑤−2𝛼 [

(𝑤 + 𝑥) (𝑤 + 𝑝)
]− 1

2+𝛼+𝑖𝜏

× 2𝐹1

(
1
2
− 𝛼 − 𝑖𝜏, 1

2
− 𝛼 − 𝑖𝜏; 1 − 2𝛼; 1 − 𝑥𝑝

(𝑤 + 𝑥) (𝑤 + 𝑝)

)
𝑑𝑤

=
(𝑥𝑝)𝛼𝑒− 𝑥

2 −
𝑝

2

Γ(1 − 2𝛼)

∫ ∞

0
𝑒−𝑤 𝑤−2𝛼

2𝐹1

(
1
2
− 𝛼 − 𝑖𝜏, 1

2
− 𝛼 + 𝑖𝜏; 1 − 2𝛼; −

(1
𝑥
+ 1
𝑝

)
𝑤 − 𝑤

2

𝑝𝑥

)
𝑑𝑤.

(3.22)

Here Ψ(𝑎, 𝑏; 𝑥) := 𝑒𝑥/2𝑥−𝑏/2𝑊 𝑏
2 −𝑎,

𝑏
2 −

1
2
(𝑥) is the confluent hypergeometric function of the second

kind [52, Chapter VI] (also known as the Tricomi function or the Kummer function of the second kind);
in the last step we used the transformation formula 2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) = (1 − 𝑧)−𝑎2𝐹1

(
𝑎, 𝑐 − 𝑏; 𝑐; 𝑧

𝑧−1
)

for
the Gauss hypergeometric function, cf. [135, Equation 15.8.1].

Next, according to integral 2.19.3.5 in [147], the Gauss hypergeometric function in (3.22) admits
the integral representation

2𝐹1

(
1
2
− 𝛼 − 𝑖𝜏, 1

2
− 𝛼 + 𝑖𝜏; 1 − 2𝛼;−

(1
𝑥
+ 1
𝑝

)
𝑤 − 𝑤

2

𝑝𝑥

)
=

Γ(1 − 2𝛼)
|Γ( 12 − 𝛼 + 𝑖𝜏) |2

∫ ∞

0
b−1−𝛼 exp

(
−b

2
−

(1
𝑥
+ 1
𝑝
+ 𝑤

𝑥𝑝

)
𝑤b

)
𝑊𝛼,𝑖𝜏 (b)𝑑b

and thus we have

𝑊𝛼,𝑖𝜏 (𝑥)𝑊𝛼,𝑖𝜏 (𝑝)

=
(𝑥𝑝)𝛼𝑒− 𝑥

2 −
𝑝

2

|Γ( 12 − 𝛼 + 𝑖𝜏) |2

∫ ∞

0
𝑒−𝑤 𝑤−2𝛼

∫ ∞

0
b−1−𝛼 exp

(
−b

2
−

(1
𝑥
+ 1
𝑝
+ 𝑤

𝑥𝑝

)
𝑤b

)
𝑊𝛼,𝑖𝜏 (b) 𝑑b 𝑑𝑤.

(3.23)
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Using the assumption Re𝛼 < 0 and the limiting forms (3.5), (3.7) of the Whittaker function, we see
that the integrals

∫ ∞
0 𝑒−𝑤𝑤−2𝛼 𝑑𝑤 and

∫ ∞
0 b−1−𝛼𝑒−

b

2 𝑊𝛼,𝑖𝜏 (b)𝑑b converge absolutely. Therefore, we
can use Fubini’s theorem to reverse the order of integration in (3.23); doing so, we obtain (3.21). �

The previous lemma gives an integral representation for |Γ( 12 −𝛼 + 𝑖𝜏) |
2𝑊𝛼,𝑖𝜏 (𝑥)𝑊𝛼,𝑖𝜏 (𝑝) whose

kernel does not depend on 𝜏. Integral representations for |Γ( 12 − 𝛼 + 𝑖𝜏) |
2𝑊𝛼,𝑖𝜏 (𝑥) which share

the same property are also known. In the next two lemmas we take advantage of these integral
representations and of the uniqueness theorem for Laplace transforms in order to deduce that the
product formula (3.15) holds when 𝛼 is a negative real number and a = 𝑖𝜏 ∈ 𝑖R.

Lemma 3.7. The identity

22𝛼𝑥−𝛼𝑊𝛼,𝑖𝜏 (𝑥)
∫ ∞

0
𝑒
− 𝑠

2𝑦−
𝑦

2 𝑦𝛼−2𝑊𝛼,𝑖𝜏 (𝑦)𝑑𝑦

=

∫ ∞

0

(
1 + 2𝑠

𝑥b

)− 1
2
((

1 + 2𝑠
𝑥b

)1/2
+ 1

)2𝛼
exp

[
−
( 𝑥
2
+ b

2

) (
1 + 2𝑠

𝑥b

)1/2]
𝑊𝛼,𝑖𝜏 (b) b𝛼−2𝑑b

(3.24)

holds for 𝛼 ∈ (−∞, 0), 𝜏 ∈ R and 𝑥, 𝑠 > 0.

Proof. Using the change of variable 𝑠 = 2𝑤b (1 + 𝑤
𝑥
), we rewrite (3.21) as

|Γ( 12 − 𝛼 + 𝑖𝜏) |
2𝑊𝛼,𝑖𝜏 (𝑥)𝑊𝛼,𝑖𝜏 (𝑝)

=
1
2
(𝑥𝑝)𝛼𝑒− 𝑥

2 −
𝑝

2

∫ ∞

0
𝑒−

b

2 b𝛼−2𝑊𝛼,𝑖𝜏 (b)
∫ ∞

0
𝑒
− 𝑠

2𝑝 𝑠−2𝛼
(
1 + 2𝑠

𝑥b

)− 1
2
((

1 + 2𝑠
𝑥b

)1
2 + 1

)2𝛼

× exp
[( 𝑥

2
+ b

2

) (
1 −

(
1 + 2𝑠

𝑥b

)1
2
)]
𝑑𝑠 𝑑b

=
1
2
(𝑥𝑝)𝛼𝑒−

𝑝

2

∫ ∞

0
𝑒
− 𝑠

2𝑝 𝑠−2𝛼
∫ ∞

0

(
1 + 2𝑠

𝑥b

)− 1
2
((

1 + 2𝑠
𝑥b

)1
2 + 1

)2𝛼

× exp
[
−
( 𝑥
2
+ b

2

) (
1 + 2𝑠

𝑥b

)1
2
]
𝑊𝛼,𝑖𝜏 (b) b𝛼−2𝑑b 𝑑𝑠

(3.25)

where the absolute convergence of the iterated integral (see the proof of the previous lemma) justifies
the change of order of integration.

On the other hand, by relation 2.19.5.18 in [147] we have

|Γ( 12 − 𝛼 + 𝑖𝜏) |
2𝑊𝛼,𝑖𝜏 (𝑝) = 22𝛼−1Γ(1 − 2𝛼)𝑝𝛼𝑒−

𝑝

2

∫ ∞

0

( 1
2𝑦
+ 1

2𝑝

)−1+2𝛼
𝑒−

𝑦

2 𝑦𝛼−2𝑊𝛼,𝑖𝜏 (𝑦) 𝑑𝑦

= 22𝛼−1𝑝𝛼𝑒−
𝑝

2

∫ ∞

0

∫ ∞

0
𝑒
− 𝑠

2𝑦−
𝑠

2𝑝 𝑠−2𝛼𝑑𝑠 𝑒−
𝑦

2 𝑦𝛼−2𝑊𝛼,𝑖𝜏 (𝑦) 𝑑𝑦

= 22𝛼−1𝑝𝛼𝑒−
𝑝

2

∫ ∞

0
𝑒
− 𝑠

2𝑝 𝑠−2𝛼
∫ ∞

0
𝑒
− 𝑠

2𝑦−
𝑦

2 𝑦𝛼−2𝑊𝛼,𝑖𝜏 (𝑦) 𝑑𝑦 𝑑𝑠.
(3.26)

Comparing (3.25) and (3.26), and recalling the injectivity of Laplace transform, we deduce that (3.24)
holds. �

Lemma 3.8. The product formula (3.15) holds for 𝛼 < 0, 𝜏 ∈ R and 𝑥, 𝑦 > 0.
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Proof. We begin by deriving the following representation for the function of 𝑠 appearing in the
right-hand side of (3.24):(

1 + 2𝑠
𝑥b

)− 1
2
((

1 + 2𝑠
𝑥b

)1
2 + 1

)2𝛼
exp

[
−
( 𝑥
2
+ b

2

) (
1 + 2𝑠

𝑥b

)1
2
]

=
1

Γ(−2𝛼) exp
[
−
( 𝑥
2
+ b

2

) (
1 + 2𝑠

𝑥b

)1
2
] ∫ ∞

0
exp

(
−𝑢

(
1 + 2𝑠

𝑥b

)1
2
)
𝛾(−2𝛼, 𝑢) 𝑑𝑢

=
(𝜋𝑥b)− 1

2

Γ(−2𝛼)

∫ ∞

0

(
𝑢 + 𝑥

2
+ b

2

)
𝛾(−2𝛼, 𝑢)

∫ ∞

0
𝑦−

1
2 exp

[
−
(
2𝑠 + 𝑥b

) 1
4𝑦
−

(
𝑢 + 𝑥

2
+ b

2

)2 𝑦
𝑥b

]
𝑑𝑦 𝑑𝑢

=
(𝜋𝑥b)− 1

2

Γ(−2𝛼)

∫ ∞

0
𝑒
− 𝑠

2𝑦 exp
(
−𝑥b

4𝑦

)
𝑦−

1
2

∫ ∞

0

(
𝑢 + 𝑥

2
+ b

2

)
exp

(
−
(
𝑢 + 𝑥

2
+ b

2

)2 𝑦
𝑥b

)
𝛾(−2𝛼, 𝑢)𝑑𝑢 𝑑𝑦

where 𝛾(·, ·) is the incomplete Gamma function [53, Chapter IX]. In the first two equalities we have
used integral 8.14.1 in [135] and integral 2.3.16.3 in [145], respectively, and the positivity of the
integrand allows us to change the order of integration. Substituting in (3.24), we find that

Γ(−2𝛼)2 1
2+2𝛼𝜋−

1
2 𝑥

1
2−𝛼𝑊𝛼,𝑖𝜏 (𝑥)

∫ ∞

0
𝑒
− 𝑠

2𝑦−
𝑦

2 𝑦𝛼−2𝑊𝛼,𝑖𝜏 (𝑦)𝑑𝑦

=

∫ ∞

0
b−

5
2+𝛼𝑊𝛼,𝑖𝜏 (b)

∫ ∞

0
𝑒
− 𝑠

2𝑦 exp
(
−𝑥b

4𝑦

)
𝑦−

1
2

×
∫ ∞

0

(
𝑢 + 𝑥

2
+ b

2

)
exp

(
−
(
𝑢 + 𝑥

2
+ b

2

)2 𝑦
𝑥b

)
𝛾(−2𝛼, 𝑢)𝑑𝑢 𝑑𝑦 𝑑b

=

∫ ∞

0
𝑒
− 𝑠

2𝑦 𝑦−
1
2

∫ ∞

0
b−

5
2+𝛼 exp

(
−𝑥b

4𝑦

)
𝑊𝛼,𝑖𝜏 (b)

×
∫ ∞

0

(
𝑢 + 𝑥

2
+ b

2

)
exp

(
−
(
𝑢 + 𝑥

2
+ b

2

)2 𝑦
𝑥b

)
𝛾(−2𝛼, 𝑢)𝑑𝑢 𝑑b 𝑑𝑦

(3.27)

where the order of integration can be interchanged because of the absolute convergence of the triple
integral, which follows from the inequality 𝛾(−2𝛼, 𝑢) ≤ Γ(−2𝛼) and the equalities∫ ∞

0
b−

5
2+𝛼

��𝑊𝛼,𝑖𝜏 (b)
��∫ ∞

0
𝑒
− 𝑠

2𝑦 𝑦−
1
2 exp

(
−𝑥b

2𝑦

)∫ ∞

0

(
𝑢 + 𝑥

2
+ b

2

)
exp

(
−
(
𝑢 + 𝑥

2
+ b

2

)2 𝑦
𝑥b

)
𝑑𝑢 𝑑𝑦 𝑑b

=
𝑥

2

∫ ∞

0
b−

5
2+𝛼

��𝑊𝛼,𝑖𝜏 (b)
��∫ ∞

0
exp

(
− 𝑠

2𝑦
− 𝑥b

4𝑦
− 𝑦

2
− 𝑥𝑦

4b
− b𝑦

4𝑥

)
𝑦−

3
2 𝑑𝑦 𝑑b

= 2−
1
2 (𝜋𝑥) 1

2

∫ ∞

0
b−3+𝛼

(
1 + 2𝑠

𝑥b

)− 1
2 exp

(
−
( 𝑥
2
+ b

2

) (
1 + 2𝑠

𝑥b

)1
2
)��𝑊𝛼,𝑖𝜏 (b)

�� 𝑑b < ∞
(which follow from integral 2.3.16.3 in [145] and straighforward calculations; the convergence of the
latter integral can be verified using the limiting forms (3.5), (3.7) of the Whittaker function).

Using, as in the previous proof, the injectivity of Laplace transform, from (3.27) it follows that

𝑊𝛼,𝑖𝜏 (𝑥)𝑊𝛼,𝑖𝜏 (𝑦) =
2−2𝛼𝜋−

1
2

Γ(−2𝛼) 𝑥
− 1

2+𝛼𝑦
3
2−𝛼𝑒

𝑦

2

∫ ∞

0
b−

5
2+𝛼 exp

(
−𝑥b

4𝑦

)
𝑊𝛼,𝑖𝜏 (b)

×
∫ ∞

0

(
𝑢 + 𝑥

2
+ b

2

)
exp

(
−
(
𝑢 + 𝑥

2
+ b

2

)2 𝑦
𝑥b

)
𝛾(−2𝛼, 𝑢)𝑑𝑢 𝑑b.

(3.28)
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Let us compute the inner integral. Since 𝑑
𝑑𝑢
𝛾(−2𝛼, 𝑢) = 𝑢−1−2𝛼𝑒−𝑢 and∫ (

𝑢 + 𝑥
2
+ b

2

)
exp

(
−
(
𝑢 + 𝑥

2
+ 𝑦

2

)2 𝑦
𝑥b

)
𝑑𝑢 = −𝑥b

2𝑦
exp

(
−
(
𝑢 + 𝑥

2
+ b

2

)2 𝑦
𝑥b

)
,

we obtain, using integration by parts,∫ ∞

0

(
𝑢 + 𝑥

2
+ b

2

)
exp

(
−
(
𝑢 + 𝑥

2
+ b

2

)2 𝑦
𝑥b

)
𝛾(−2𝛼, 𝑢)𝑑𝑢

=
𝑥b

2𝑦

∫ ∞

0
𝑢−1−2𝛼𝑒−𝑢 exp

(
−
(
𝑢 + 𝑥

2
+ b

2

)2 𝑦
𝑥b

)
𝑑𝑢

= Γ(−2𝛼)
( 𝑥b
2𝑦

)1−𝛼
exp

( 𝑥
4
+ b

4
− 𝑦

4
+ 𝑥b

8𝑦
− 𝑥𝑦

8b
− 𝑦b

8𝑥

)
𝐷2𝛼

(
𝑥𝑦 + 𝑥b + 𝑦b
(2𝑥𝑦b)1/2

) (3.29)

where we applied relation 2.3.15.3 in [145]. Substituting this in (3.28), we conclude that (3.15) holds
for all 𝛼 < 0 and a = 𝑖𝜏 ∈ 𝑖R. �

Proof of Theorem 3.4. To simplify the notation, throughout the proof we write 𝑣𝛼,a (𝑡) := 𝑡−𝛼𝑊𝛼,a (𝑡).
We use an analytic continuation argument to extend the identity (3.15) to all 𝛼, a ∈ C. To that end, let
us prove that the right-hand side of (3.15) is an entire function of each of the variables 𝛼 and a. Let
𝑀 > 0 and suppose that 1

𝑀
≤ 1

2 − Re𝛼 ≤ 𝑀 and 0 ≤ Re a ≤ 𝑀 . Then for 𝑡 > 0 we have

��𝑣𝛼,a (𝑡)�� = ��𝑣𝛼,−a (𝑡)�� = 𝑒−
𝑡
2

|Γ( 12 − 𝛼 + a) |

����∫ ∞

0
𝑒−𝑠𝑠−

1
2−𝛼+a

(
1 + 𝑠

𝑡

)− 1
2+𝛼+a

𝑑𝑠

����
≤ 𝑒−

𝑡
2

|Γ( 12 − 𝛼 + a) |

∫ ∞

0
𝑒−𝑠𝑠−1(𝑠1/𝑀 + 𝑠2𝑀 )

(
1 + 𝑠

𝑡

)𝑀
𝑑𝑠

=
1

|Γ( 12 − 𝛼 + a) |

[
Γ
( 1
𝑀

)
𝑣 1

2 (𝑀−
1
𝑀
+1) , 1

2 (𝑀+
1
𝑀
) (𝑡) + Γ(2𝑀)𝑣 1

2 (1−𝑀 ) ,
3𝑀

2
(𝑡)

]
where we have used the integral representation (3.6). Moreover, letting 𝑛 ∈ N, a repeated application
of the recurrence relation (3.9) shows that

𝑣𝛼+ 𝑛2 ,a+
𝑛
2
(𝑡) = 𝑄 (1)𝑛,𝛼,a

(1
𝑡

)
𝑣𝛼,a (𝑡) +𝑄 (2)𝑛,𝛼,a

(1
𝑡

)
𝑣𝛼− 1

2 ,a−
1
2
(𝑡),

where the 𝑄 (𝑖)𝑛,𝛼,a (·) are polynomials of degree at most 𝑛 whose coefficients depend on 𝛼 and a.
Therefore, for 1

𝑀
≤ 1

2 − Re𝛼 ≤ 𝑀 − 1
2 and −𝑀 + 1

2 ≤ Re a ≤ 𝑀 we have��𝑣𝛼+ 𝑛2 ,a+ 𝑛2 (𝑡)�� ≤ ��𝑄 (1)𝑛,𝛼,a ( 1
𝑡

)
𝑣𝛼,a (𝑡)

�� + ��𝑄 (2)𝑛,𝛼,a ( 1
𝑡

)
𝑣𝛼− 1

2 ,a−
1
2
(𝑡)

��
≤

(��𝑄 (1)𝑛,𝛼,a ( 1
𝑡

) �� + ��𝑄 (2)𝑛,𝛼,a ( 1
𝑡

) ��) 𝐺 (𝛼, a) [Γ( 1
𝑀

)
𝑣 1

2 (𝑀−
1
𝑀
+1) , 1

2 (𝑀+
1
𝑀
) (𝑡) + Γ(2𝑀)𝑣 1

2 (1−𝑀 ) ,
3𝑀

2
(𝑡)

]
(3.30)

where

𝐺 (𝛼, a) =


2|Γ( 12 − 𝛼 + a) |

−1, 1
2 ≤ Re a ≤ 𝑀

|Γ( 12 − 𝛼 + a) |
−1 + |Γ( 32 − 𝛼 − a) |

−1, 0 ≤ Re a < 1
2

|Γ( 12 − 𝛼 − a) |
−1 + |Γ( 32 − 𝛼 − a) |

−1, −𝑀 + 1
2 ≤ Re a < 0.
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Similarly, for 1
𝑀
≤ 1

2 − Re𝛼 ≤ 𝑀 the integral representation (3.16) gives

��𝐷2𝛼 (𝑡)
�� = 𝑒−

𝑡2
4

|Γ( 12 − 𝛼) |
𝑡2 Re 𝛼

����∫ ∞

0
𝑒−𝑠𝑠−

1
2−𝛼

(
1 + 2𝑠

𝑡2

)𝛼
𝑑𝑠

����
≤ 𝑒−

𝑡2
4 𝑡

|Γ( 12 − 𝛼) |
(𝑡−2𝑀 + 𝑡− 2

𝑀)
∫ ∞

0
𝑒−𝑠𝑠−1(𝑠 1

𝑀 + 𝑠𝑀 )
(
1 + 2𝑠

𝑡2

)1
2−

1
𝑀

𝑑𝑠

=
𝑡

|Γ( 12 − 𝛼) |
(𝑡−2𝑀 + 𝑡− 2

𝑀)
[
Γ
( 1
𝑀

)
𝑣 3

4−
1
𝑀
, 1

4

(
𝑡2

2
)
+ Γ(𝑀)𝑣 3

4−
1
2 (𝑀+

1
𝑀
) , 1

4+
1
2 (𝑀+

1
𝑀
)
(
𝑡2

2
) ]

and, by (3.18), for each 𝑛 ∈ N we have 𝐷2𝛼+𝑛 (𝑡) = 𝑄 (3)𝑛,𝛼 (𝑡)𝐷2𝛼 (𝑡) +𝑄 (4)𝑛,𝛼 (𝑡)𝐷2𝛼−1(𝑡), being𝑄 ( 𝑗)𝑛,𝛼 (·)
polynomials of degree at most 𝑛 with coefficients depending on 𝛼, hence��𝐷2𝛼+𝑛 (𝑡)

�� ≤ (
|Γ( 12 − 𝛼) |

−1+ |Γ(1 − 𝛼) |−1) ( |𝑄 (3)𝑛,𝛼,a (𝑡) | + |𝑄 (4)𝑛,𝛼 (𝑡) |) 𝑡 (𝑡−2𝑀 + 𝑡− 2
𝑀)

×
[
Γ
( 1
𝑀

)
𝑣 3

4−
1
𝑀
, 1

4

(
𝑡2

2
)
+ Γ(𝑀)𝑣 3

4−
1
2 (𝑀+

1
𝑀
) , 1

4+
1
2 (𝑀+

1
𝑀
)
(
𝑡2

2
) ]
.

(3.31)

Using the inequalities (3.30), (3.31) and the limiting forms (3.5), (3.7) for the Whittaker function, one
can verify without difficulty that

sup
(𝛼,a) ∈R𝑀

∫ ∞

0

���𝑊𝛼+ 𝑛2 ,a+
𝑛
2
(b) ^𝛼+ 𝑛2 (𝑥, 𝑦, b)

���𝑑b
b2 < ∞

where R𝑀 =
{
(𝛼, a)

�� 1
𝑀
≤ 1

2 − Re𝛼 ≤ 𝑀 − 1
2 , −𝑀 +

1
2 ≤ Re a ≤ 𝑀

}
. Since 𝑀 and 𝑛 are

arbitrary, the known results on the analyticity of parameter-dependent integrals (e.g. [127]) yield
that

∫ ∞
0 𝑊𝛼,a (b) ^𝛼 (𝑥, 𝑦, b) 𝑑bb 2 is an entire function of the parameter 𝛼 and the parameter a. As the

left-hand side of (3.15) is also an entire function of 𝛼 and a, by analytic continuation we conclude that
the product formula (3.15) extends to all 𝛼, a ∈ C, as we wanted to show. �

Remark 3.9. (a) The product formula (3.15) can be equivalently written in terms of the normalized
Whittaker𝑊 function as

𝑊𝛼,a (𝑥)𝑊𝛼,a (𝑦) =
∫ ∞

0
𝑊𝛼,a (b) 𝑘𝛼 (𝑥, 𝑦, b) b−2𝛼𝑒−1/b 𝑑b (3.32)

where

𝑘𝛼 (𝑥, 𝑦, b) := (𝑥𝑦b)𝛼𝑒
1

2𝑥 +
1

2𝑦 +
1

2b ^𝛼 ( 1
𝑥
, 1
𝑦
, 1
b
)

= 2−1−𝛼𝜋−
1
2 (𝑥𝑦b)− 1

2+𝛼 exp
(
1
𝑥
+ 1
𝑦
+ 1
b
− (𝑥 + 𝑦 + b)

2

8𝑥𝑦b

)
𝐷2𝛼

(
𝑥 + 𝑦 + b
(2𝑥𝑦b)1/2

)
.

(3.33)

(b) It follows from (3.11) and (3.20) that in the particular case 𝛼 = 0, (3.15) specializes into

𝐾a (𝑥)𝐾a (𝑦) =
1
2

∫ ∞

0
𝐾a (b) exp

(
−𝑥𝑦

2b
− 𝑥b

2𝑦
− 𝑦b

2𝑥

)
𝑑b

b

which is the product formula for the modified Bessel function stated in Theorem 3.3.
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(c) Since the parabolic cylinder function 𝐷a (𝑡) is a positive function of 𝑡 > 0 whenever a ∈ (−∞, 1]
(as can be seen e.g. from the representation (3.16)), we have

𝑘𝛼 (𝑥, 𝑦, b) > 0 for all 𝛼 ≤ 1
2 and 𝑥, 𝑦, b > 0. (3.34)

This positivity property means that the convolution operator induced by the product formula (3.32) (cf.
Section 3.4) is positivity-preserving.

(d) A useful upper bound for the kernel of the product formula (3.32) is the following:��𝑘𝛼 (𝑥, 𝑦, b)�� ≤ 𝐴(𝑦) (𝑥𝑦b)− 1
2 (𝑥 + 𝑦 + b)2𝛼 exp

(
1
b
− (𝑥 + 𝑦 − b)

2

4𝑥𝑦b

)
(𝑥, 𝑦, b > 0, 𝛼 ∈ R), (3.35)

where
𝐴(𝑦) = 2−1−𝛼𝜋−

1
2 ·

(
max
𝑡≥𝑦−1/2

𝑡−2𝛼𝑒
𝑡2
4 𝐷𝛼 (𝑡)

)
< ∞ (𝑦 > 0)

This upper bound follows from the inequality (𝑥+𝑦+b )
2

2𝑥𝑦 b ≥ 1
𝑦

and the fact that, by (3.17), the function
𝑡−2𝛼𝑒𝑡

2/4𝐷2𝛼 (𝑡) is bounded on the interval [𝑦−1/2,∞).

The normalized Whittaker 𝑊 function includes, as a particular case, the (generalized) Bessel
polynomial 𝐵𝑛 (𝑥;𝛼) (𝛼 ∈ R \ {1, 3

2 , 2, . . .}, 𝑛 ∈ N0) introduced in [102] as the polynomial of
degree 𝑛, with constant term equal to 1, which is a solution of the Sturm-Liouville equation
𝑦2𝑢′′(𝑦) + (1 + 2(1 − 𝛼)𝑦)𝑢′(𝑦) = 𝑛(𝑛 + 1 − 2𝛼)𝑢(𝑦). By [135, Equation 13.14.9] and [102, §15],
these polynomials are given by

𝐵𝑛 (𝑥;𝛼) =𝑊𝛼, 1
2−𝛼+𝑛

(𝑥) = 𝑥2𝛼𝑒
1
𝑥
𝑑𝑛

𝑑𝑥𝑛
[𝑥2(𝑛−𝛼)𝑒−

1
𝑥 ] (𝑛 ∈ N0, 𝛼 ≠ 1, 3

2 , 2, . . .).

The Bessel polynomials are one of the four canonical families of classical orthogonal polynomials
(see [124, 125]). We refer to the book [74] for a detailed exposition on the properties and applications
of the Bessel polynomials. As an immediate corollary of (3.32), the following product formula holds
for the Bessel polynomials:

Corollary 3.10. The product 𝐵𝑛 (𝑥;𝛼)𝐵𝑛 (𝑦;𝛼) of Bessel polynomials admits the integral representation

𝐵𝑛 (𝑥;𝛼)𝐵𝑛 (𝑦;𝛼) =
∫ ∞

0
𝐵𝑛 (b;𝛼) 𝑘𝛼 (𝑥, 𝑦, b) b−2𝛼𝑒−1/b 𝑑b

where 𝑘𝛼 (𝑥, 𝑦, b) is defined by (3.33).

3.2 Whittaker translation

We now define the generalized translation operator induced by the product formula (3.32) for the
normalized Whittaker function:
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Definition 3.11. Let 1 ≤ 𝑝 ≤ ∞ and 𝛼 ≤ 1
2 . The linear operator

(T 𝑦𝛼 𝑓 ) (𝑥) =
∫ ∞

0
𝑓 (b)𝑘𝛼 (𝑥, 𝑦, b) 𝑟𝛼 (b)𝑑b

(
𝑓 ∈ 𝐿 𝑝

(
R+; 𝑟𝛼 (𝑥)𝑑𝑥

)
, 𝑥, 𝑦 > 0

)
(3.36)

where 𝑘𝛼 (𝑥, 𝑦, b) is defined by (3.33), will be called the Whittaker translation operator (of order 𝛼).

The operator T 𝑦𝛼 is called a translation operator because it is obtained from the ordinary translation
operator (𝑇 𝑦 𝑓 ) (𝑥) = 𝑓 (𝑥 + 𝑦) ≡

∫
𝑓 (b) 𝛿𝑥+𝑦 (𝑑b) by replacing the measure 𝛿𝑥+𝑦 of the product

formula for the Fourier kernel by the measure 𝑘𝛼 (𝑥, 𝑦, b) 𝑟𝛼 (b)𝑑b of the product formula for the
Whittaker function. Accordingly, many of the properties given in Proposition 3.13 below resemble the
properties of the ordinary translation operator. We first establish the following lemma which gives the
closed-form expression for the Whittaker translation of the power function 𝜗(𝑥) = 𝑥𝛽 .

Lemma 3.12. For 𝛼, 𝛽 ∈ C, we have∫ ∞

0
b𝛽𝑘𝛼 (𝑥, 𝑦, b) 𝑟𝛼 (b)𝑑b = (𝑥 + 𝑦)𝛽𝑊𝛼,𝛼− 1

2−𝛽

( 𝑥𝑦

𝑥 + 𝑦

)
(𝑥, 𝑦 > 0). (3.37)

In particular,
∫ ∞

0 𝑘𝛼 (𝑥, 𝑦, b) 𝑟𝛼 (b)𝑑b = 1 for 𝛼 ∈ C and 𝑥, 𝑦 > 0.

Proof. Fix 𝑥, 𝑦 > 0, and suppose that 𝛼 < 0 and 𝛽 ∈ R. Using the definition (3.33) and the integral
representation of 𝐷2𝛼

( 𝑥+𝑦+b
(2𝑥𝑦 b )1/2

)
obtained by exchanging the variables (𝑥, 𝑦, b) by ( 1

𝑥
, 1
b
, 1
𝑦
) in (3.29),

we find that for each 𝛼 < 0 we have

𝑘𝛼 (𝑥, 𝑦, b) b−2𝛼𝑒−1/b =

=
2−1−2𝛼𝜋−

1
2

Γ(−2𝛼) (𝑥𝑦b)
− 1

2 exp
( 1
2𝑥
+ 1

2𝑦
− b

4𝑥𝑦

)∫ ∞

0
𝑢−1−2𝛼 exp

(
−𝑢 −

(
𝑢 + 1

2𝑥
+ 1

2𝑦

)2 𝑥𝑦
b

)
𝑑𝑢.

Consequently, we may compute∫ ∞

0
b𝛽𝑘𝛼 (𝑥, 𝑦, b) 𝑟𝛼 (b)𝑑b

=
2−1−2𝛼𝜋−

1
2

Γ(−2𝛼) (𝑥𝑦)
− 1

2 exp
( 1
2𝑥
+ 1

2𝑦

)∫ ∞

0
𝑢−1−2𝛼𝑒−𝑢

∫ ∞

0
b𝛽−

1
2 exp

(
−
(
𝑢 + 1

2𝑥
+ 1

2𝑦

)2 𝑥𝑦
b
− b

4𝑥𝑦

)
𝑑b𝑑𝑢

=
2𝛽+ 1

2−2𝛼

Γ(−2𝛼) 𝜋
− 1

2 (𝑥𝑦)𝛽 exp
( 1
2𝑥
+ 1

2𝑦

) ∫ ∞

0
𝑢−1−2𝛼

(
𝑢 + 1

2𝑥
+ 1

2𝑦

)𝛽+ 1
2
𝑒−𝑢𝐾𝛽+ 1

2

(
𝑢 + 1

2𝑥
+ 1

2𝑦

)
𝑑𝑢

=
2𝛽+ 1

2−2𝛼

Γ(−2𝛼) 𝜋
− 1

2 (𝑥𝑦)𝛽 exp
(1
𝑥
+ 1
𝑦

) ∫ ∞

1
2𝑥 +

1
2𝑦

𝑡𝛽+
1
2

(
𝑡 − 1

2𝑥
− 1

2𝑦

)−1−2𝛼
𝑒−𝑡𝐾𝛽+ 1

2
(𝑡) 𝑑𝑡

= (𝑥 + 𝑦)𝛽𝑊𝛼,𝛼− 1
2−𝛽

( 𝑥𝑦

𝑥 + 𝑦

)
where the first equality is obtained by changing the order of integration (note the positivity of the
integrand), the second equality follows from integral 2.3.16.1 in [145] and a few simplifications, the
third equality results from the change of variables 𝑢 = 𝑡 − 1

2𝑥 −
1

2𝑦 , and the last equality uses relation
2.16.7.5 in [146]. This proves that (3.37) holds in the case 𝛼 < 0 and 𝛽 ∈ R.
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To extend the result to all 𝛼, 𝛽 ∈ C, we can use an analytic continuation argument similar to that
of the proof of Theorem 3.4. Indeed, using (3.31) and the elementary inequality |b𝛽 | ≤ b−𝑀 + b𝑀

(b > 0, 𝛽 ∈ [−𝑀, 𝑀]) one can verify, as in the previous proof, that

sup
(𝛼,𝛽) ∈R̄𝑀

∫ ∞

0

�� b𝛽𝑘𝛼+ 𝑛2 (𝑥, 𝑦, b) b−2𝛼−𝑛�� 𝑒−1/b 𝑑b < ∞

where R̄𝑀 =
{
(𝛼, 𝛽)

�� 1
𝑀
≤ 1

2 −Re𝛼 ≤ 𝑀 − 1
2 , −𝑀 ≤ Re 𝛽 ≤ 𝑀

}
, being 𝑀 > 0 and 𝑛 ∈ N arbitrary.

Both sides of (3.37) are therefore entire functions of the parameter 𝑎 and the parameter 𝛽; consequently,
the principle of analytic continuation gives (3.37) in the general case. By (3.12), the right-hand side
of (3.37) equals 1 when 𝛽 = 0. �

The next proposition gives the basic continuity and 𝐿 𝑝 properties of the Whittaker translation
operator. We consider the weighted 𝐿 𝑝 spaces

𝐿 𝑝 (𝑟𝛼) := 𝐿 𝑝
(
R+; 𝑟𝛼 (𝑥)𝑑𝑥

)
(1 ≤ 𝑝 ≤ ∞, −∞ < 𝛼 ≤ 1

2 ) (3.38)

with the usual norms

∥ 𝑓 ∥𝑝,𝛼 =

(∫ ∞

0
| 𝑓 (𝑥) |𝑝𝑟𝛼 (𝑥)𝑑𝑥

)1/𝑝
(1 ≤ 𝑝 < ∞)

∥ 𝑓 ∥∞ ≡ ∥ 𝑓 ∥∞,𝛼 = ess sup
0<𝑥<∞

| 𝑓 (𝑥) |.

Proposition 3.13. Fix 𝛼 ≤ 1
2 and 𝑦 > 0. Then:

(a) If 𝑓 ∈ 𝐿∞(𝑟𝛼) is such that 0 ≤ 𝑓 ≤ 1, then 0 ≤ T 𝑦𝛼 𝑓 ≤ 1;

(b) For each 1 ≤ 𝑝 ≤ ∞, we have

∥T 𝑦𝛼 𝑓 ∥𝑝,𝛼 ≤ ∥ 𝑓 ∥𝑝,𝛼 for all 𝑓 ∈ 𝐿 𝑝 (𝑟𝛼)

(in particular, T 𝑦𝛼
(
𝐿 𝑝 (𝑟𝛼)

)
⊂ 𝐿 𝑝 (𝑟𝛼));

(c) If 𝑓 ∈ 𝐿 𝑝 (𝑟𝛼) where 1 < 𝑝 ≤ ∞, then T 𝑦𝛼 𝑓 ∈ C(R+), and for 1 < 𝑝 < ∞ we also have

lim
ℎ→0
∥T 𝑦+ℎ𝛼 𝑓 − T 𝑦𝛼 𝑓 ∥𝑝,𝛼 = 0;

(d) If 𝑓 ∈ Cb(R+), then (T 𝑥𝛼 𝑓 ) (𝑦) → 𝑓 (𝑦) as 𝑥 → 0;

(e) If 𝑓 ∈ 𝐿∞(𝑟𝛼) is such that lim𝑥→∞ 𝑓 (𝑥) = 0, then lim𝑥→∞(T 𝑦𝛼 𝑓 ) (𝑥) = 0.

Proof. Throughout this proof the letter 𝐶 stands for a constant whose exact value may change from
line to line.

(a) By Lemma 3.12, if 𝑓 ≡ 1 then T 𝑦𝛼 𝑓 ≡ 1. Moreover, Remark 3.9(c) means that T 𝑦𝛼 𝑓 is
nonnegative whenever 𝑓 is nonnegative. Recalling that T 𝑦𝛼 is a linear operator, we see that we have
0 ≤ T 𝑦𝛼 𝑓 ≤ 1 whenever 0 ≤ 𝑓 ≤ 1.



3.2. Whittaker translation 49

(b) The case 𝑝 = ∞ was proved in part (a). Now, for 1 ≤ 𝑝 < ∞ and 𝑓 ∈ 𝐿 𝑝 (𝑟𝛼) we have

∥T 𝑦𝛼 𝑓 ∥ 𝑝𝑝,𝛼 =

∫ ∞

0

����∫ ∞

0
𝑓 (b)𝑘𝛼 (𝑥, 𝑦, b) 𝑟𝛼 (b)𝑑b

����𝑝𝑟𝛼 (𝑥)𝑑𝑥
≤

∫ ∞

0

∫ ∞

0
| 𝑓 (b) |𝑝𝑘𝛼 (𝑥, 𝑦, b) 𝑟𝛼 (b)𝑑b 𝑟𝛼 (𝑥)𝑑𝑥

=

∫ ∞

0

∫ ∞

0
𝑘𝛼 (𝑥, 𝑦, b) 𝑟𝛼 (𝑥)𝑑𝑥 | 𝑓 (b) |𝑝𝑟𝛼 (b)𝑑b = ∥ 𝑓 ∥ 𝑝𝑝,𝛼

where we have used the final statement in Lemma 3.12, the fact that 𝑘𝛼 (𝑥, 𝑦, b) is positive and
symmetric, and Hölder’s inequality.

(c) For 𝑓 ∈ 𝐿 𝑝 (𝑟𝛼) (1 < 𝑝 < ∞), by Young’s inequality we have∫ ∞

0
| 𝑓 (b) |𝑘𝛼 (𝑥, 𝑦, b) 𝑟𝛼 (b)𝑑b ≤

1
𝑝
∥ 𝑓 ∥ 𝑝𝑝,𝛼 +

1
𝑞

∫ ∞

0
|𝑘𝛼 (𝑥, 𝑦, b) |𝑞𝑟𝛼 (b)𝑑b

and therefore the continuity of T 𝑦𝛼 𝑓 will be proved if we show that, for each 1 ≤ 𝑞 < ∞, the integral∫ ∞
0 |𝑘𝛼 (𝑥, 𝑦, b) |

𝑞 𝑟𝛼 (b)𝑑b converges absolutely and locally uniformly. In fact, let us fix 𝑀 > 0; then,

𝑘𝛼 (𝑥, 𝑦, b) ≤ 𝐴1(𝑦) b−
1
2 (1 + b) exp

(
− b

4𝑀𝑦

)
, 1

𝑀
≤ 𝑥 ≤ 𝑀, b > 0 (3.39)

where 𝐴1(𝑦) = 2𝐴(𝑦)𝑦2𝛼− 3
2 (1 + 𝑦)𝑀 1

2 exp(𝑀2 +
1

2𝑦 ); this estimate is obtained using (3.35), together
with the inequalities 𝑥 + 𝑦 + b ≤ (1 + 𝑥) (1 + 𝑦) (1 + b) and (𝑥 + 𝑦 + b)2𝛼−1 ≤ 𝑦2𝛼−1. Clearly, (3.39)
implies that

∫ ∞
0 |𝑘𝛼 (𝑥, 𝑦, b) |

𝑞𝑟𝛼 (b)𝑑b converges absolutely and uniformly in 𝑥 ∈ [ 1
𝑀
, 𝑀], and it

follows that T 𝑦𝛼 𝑓 ∈ C(R+).
To prove the 𝐿 𝑝-continuity of the translation, let 𝑓 ∈ Cc(R+) and 1 < 𝑝 < ∞. Fix 𝑀 > 0 such

that the support of 𝑓 is contained in [ 1
𝑀
, 𝑀]. Interchanging the role of 𝑥 and b in the estimate (3.39),

we easily see that

|T 𝑦+ℎ𝛼 𝑓 (𝑥) | ≤ ∥ 𝑓 ∥∞
∫ 𝑀

1
𝑀

𝑘𝛼 (𝑥, 𝑦 + ℎ, b) 𝑟𝛼 (b)𝑑b ≤ ∥ 𝑓 ∥∞ 𝐴2(𝑦 + ℎ) 𝑥−
1
2 (1 + 𝑥) exp

(
− 𝑥

4𝑀 (𝑦 + ℎ)

)
(3.40)

where 𝐴2(𝑦) = 𝐴1(𝑦)
∫ 𝑀

1/𝑀
𝑟𝛼 (b)𝑑b. It is easy to check that the function 𝐴2(𝑦) is locally bounded

on R+, so it follows from (3.40) that there exists 𝑔 ∈ 𝐿 𝑝 (𝑟𝛼) such that |T 𝑦+ℎ𝛼 𝑓 (𝑥) | ≤ 𝑔(𝑥) for
all 0 < 𝑥 < ∞ and all |ℎ| < 𝛿 (where 𝛿 > 0 is sufficiently small). We have already proved that
(T 𝑦𝛼 𝑓 ) (𝑥) ≡ (T 𝑥𝛼 𝑓 ) (𝑦) is continuous in 𝑦, hence by 𝐿 𝑝-dominated convergence we conclude that
∥T 𝑦+ℎ𝛼 𝑓 − T 𝑦𝛼 𝑓 ∥𝑝,𝛼 → 0 as ℎ→ 0. As in the proof of the 𝐿 𝑝-continuity of the ordinary translation,
for general 𝑓 ∈ 𝐿 𝑝 (𝑟𝛼) the result is proved by taking a sequence of functions 𝑓𝑛 ∈ Cc(R+) which tend
to 𝑓 in the norm ∥ · ∥𝑝,𝛼.

(d) We start by studying the behaviour as 𝑥 → 0 of the integral
∫
𝐸𝛿
𝑘𝛼 (𝑥, 𝑦, b) 𝑟𝛼 (b)𝑑b, where

𝐸𝛿 =
{
b ∈ R+

�� |𝑦 − b | > 𝛿} and 𝛿 ∈ (0, 𝑦) is some fixed constant. We have

𝑘𝛼 (𝑥, 𝑦, b)𝑒−1/b ≤ 𝐶 𝑥 + 𝑦 + b
|𝑥 + 𝑦 − b | exp

(
− (𝑥 + 𝑦 − b)

2

8𝑥𝑦b

)
, 𝑥, b > 0 (3.41)
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(where 𝐶 < ∞ is independent of 𝑥 and b). This follows by combining (3.35) with the boundedness of
the function |𝑡 |𝑒−𝑡2 and the inequality (𝑥 + 𝑦 + b)2𝛼−1 ≤ 𝑦2𝛼−1. Furthermore, if 𝑥 ≤ 𝛿

2 and b ∈ 𝐸𝛿 ,
the inequalities

𝑥 + 𝑦 + b
|𝑥 + 𝑦 − b | =

����1 + 2b
𝑥 + 𝑦 − b

���� ≤ 1 + 4b
𝛿

exp
(
− (𝑥 + 𝑦 − b)

2

8𝑥𝑦b

)
≤ exp

(
1

4𝑦
− 1

4b
− (𝑦 − b)

2

4𝛿𝑦b

)
lead us to

𝑘𝛼 (𝑥, 𝑦, b)b−2𝛼𝑒−1/b ≤ 𝐶 b−2𝛼 (1 + b) exp
(
− 1

4b
− (𝑦 − b)

2

4𝛿𝑦b

)
, 𝑥 ≤ 𝛿

2 , b ∈ 𝐸𝛿 . (3.42)

Since the right-hand side of (3.42) clearly belongs to 𝐿1(𝐸𝛿), the dominated convergence theorem is
applicable, and letting 𝑥 → 0 in (3.41) we find that

lim
𝑥↓0

∫
𝐸𝛿

𝑘𝛼 (𝑥, 𝑦, b) 𝑟𝛼 (b)𝑑b =
∫
𝐸𝛿

(
lim
𝑥↓0

𝑘𝛼 (𝑥, 𝑦, b)
)
𝑟𝛼 (b)𝑑b = 0. (3.43)

Let us now fix Y > 0, and write 𝑉𝛿 = R+ \ 𝐸𝛿 . Since 𝑓 is continuous, we can choose 𝛿 > 0 such that
| 𝑓 (b) − 𝑓 (𝑦) | < Y for all b ∈ 𝑉𝛿 . By this choice of 𝛿 and the positivity of 𝑘𝛼 (𝑥, 𝑦, b), we find��(T 𝑦𝛼 𝑓 ) (𝑥) − 𝑓 (𝑦)�� = ����∫ ∞

0
𝑘𝛼 (𝑥, 𝑦, b)

(
𝑓 (b) − 𝑓 (𝑦)

)
𝑟𝛼 (b)𝑑b

����
≤

����∫
𝐸𝛿

𝑘𝛼 (𝑥, 𝑦, b)
(
𝑓 (b) − 𝑓 (𝑦)

)
𝑟𝛼 (b)𝑑b

���� + Y ∫
𝑉𝛿

𝑘𝛼 (𝑥, 𝑦, b)𝑟𝛼 (b)𝑑b

≤ 2∥ 𝑓 ∥∞
∫
𝐸𝛿

𝑘𝛼 (𝑥, 𝑦, b) 𝑟𝛼 (b)𝑑b + Y.

By (3.43), it follows that lim sup𝑥↓0
��(T 𝑦𝛼 𝑓 ) (𝑥) − 𝑓 (𝑦)�� ≤ Y. Since Y is arbitrary, the proof of part (d)

is finished.

(e) We begin by claiming that for each 𝑀 > 0 we have
∫ 𝑀

0 𝑘𝛼 (𝑥, 𝑦, b) 𝑟𝛼 (b)𝑑b → 0 as 𝑥 → ∞.
Indeed, if 𝑥 > 2𝑀 and b ≤ 𝑀 , combining (3.41) with the inequalities

𝑥 + 𝑦 + b
|𝑥 + 𝑦 − b | = 1 + 2b

𝑥 + 𝑦 − b ≤ 1 + 2𝑀
𝑦 + 𝑀 , exp

(
− (𝑥 + 𝑦 − b)

2

8𝑥𝑦b

)
≤ exp

(
1

4𝑦
− 1

4b
− 𝑀

4𝑦b

)
we see that

𝑘𝛼 (𝑥, 𝑦, b)b−2𝛼𝑒−1/b ≤ 𝐶 b−2𝛼 exp
(
− 1

4b
− 𝑀

4𝑦b

)
, 𝑥 ≥ 2𝑀, b ≤ 𝑀

where the right-hand side is integrable on the interval (0, 𝑀]; hence, if we let 𝑥 → ∞ in (3.41), by
dominated convergence we obtain

lim
𝑥→∞

∫ 𝑀

0
𝑘𝛼 (𝑥, 𝑦, b) 𝑟𝛼 (b)𝑑b =

∫ 𝑀

0

(
lim
𝑥→∞

𝑘𝛼 (𝑥, 𝑦, b)
)
𝑟𝛼 (b)𝑑b = 0. (3.44)
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Let 𝑓 ∈ Bb(R+) be such that lim𝑥→∞ 𝑓 (𝑥) = 0, and let Y > 0. Choose 𝑀 such that | 𝑓 (𝑥) | < Y for all
𝑥 ≥ 𝑀 . Then,

| (T 𝑦𝛼 𝑓 ) (𝑥) | ≤ ∥ 𝑓 ∥∞
∫ 𝑀

0
𝑘𝛼 (𝑥, 𝑦, b) 𝑟𝛼 (b)𝑑b + Y

∫ ∞

𝑀

𝑘𝛼 (𝑥, 𝑦, b) 𝑟𝛼 (b)𝑑b

≤ ∥ 𝑓 ∥∞
∫ 𝑀

0
𝑘𝛼 (𝑥, 𝑦, b) 𝑟𝛼 (b)𝑑b + Y

so that (3.44) yields lim sup𝑥→∞ | (T
𝑦
𝛼 𝑓 ) (𝑥) | ≤ Y, where Y is arbitrary. �

We observe that, as a consequence of Proposition 3.13, the Whittaker translation (3.36) (with the
convention that (T 𝑥𝛼 𝑓 ) (0) = (T 0

𝛼 𝑓 ) (𝑥) = 𝑓 (𝑥) for all 𝑥) satisfies the properties

T 𝑦𝛼
(
Cb(R+0)

)
⊂ Cb(R+0) and T 𝑦𝛼

(
C0(R+0)

)
⊂ C0(R+0) (𝑦 ≥ 0), (3.45)

as well as the obvious symmetry property

(T 𝑦𝛼 𝑓 ) (𝑥) = (T 𝑥𝛼 𝑓 ) (𝑦) (𝑥, 𝑦 ≥ 0).

It is also easy to check that the Whittaker translation is symmetric with respect to the measure 𝑟𝛼 (𝑥)𝑑𝑥,
in the sense that for 𝑓 , 𝑔 ∈ Cb(R+0) ∩ 𝐿

1(𝑟𝛼) we have∫ ∞

0
(T 𝑦𝛼 𝑓 ) (𝑥)𝑔(𝑥) 𝑟𝛼 (𝑥)𝑑𝑥 =

∫ ∞

0
𝑓 (𝑥) (T 𝑦𝛼 𝑔) (𝑥) 𝑟𝛼 (𝑥)𝑑𝑥. (3.46)

3.3 Index Whittaker transforms

The integral transform determined by the generator (3.2) of the Shiryaev process, which we will call
the index Whittaker transform (of order 𝛼), is defined by

(W𝛼 𝑓 ) (𝜏) :=
∫ ∞

0
𝑓 (𝑦)𝑊𝛼,𝑖𝜏 (𝑦) 𝑟𝛼 (𝑦)𝑑𝑦, 𝜏 ≥ 0. (3.47)

(This is a modified form of the index Whittaker transform defined in [171].) As we will see, this
integral transform is a fundamental tool for studying the Whittaker convolution (defined in the next
section), since it is the object which will play a role similar to that of the Hankel transform in the
construction of the Kingman convolution.

As noted in Example 2.41, the spectral expansion of the differential operator A𝛼 yields the
following theorem:

Proposition 3.14. For 𝛼 < 1
2 , the index Whittaker transform (3.47) defines an isometric isomorphism

W𝛼 : 𝐿2(𝑟𝛼) −→ 𝐿2 (R+; 𝜌𝛼 (𝜏)𝑑𝜏)
where 𝜌𝛼 (𝜏) := 𝜋−2𝜏 sinh(2𝜋𝜏)

��Γ( 1
2 − 𝛼 + 𝑖𝜏

) ��2, whose inverse is given by

(W−1
𝛼 𝜑) (𝑥) =

∫ ∞

0
𝜑(𝜏)𝑊𝛼,𝑖𝜏 (𝑥) 𝜌𝛼 (𝜏)𝑑𝜏 (3.48)
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the convergence of the integrals (3.47) and (3.48) being understood with respect to the norm of
the spaces 𝐿2 (R+; 𝜌𝛼 (𝜏)𝑑𝜏) and 𝐿2(𝑟𝛼) respectively. Moreover, the differential operator (3.2) is
connected with the index Whittaker transform via the identity[

W𝛼 (−A𝛼 𝑓 )
]
(𝜏) =

(
𝜏2 + ( 12 − 𝛼)

2) · (W𝛼 𝑓
)
(𝜏), 𝑓 ∈ D (2)𝛼

where

D (2)𝛼 :=
{
𝑢 ∈ 𝐿2(𝑟𝛼)

��� 𝑢, 𝑢′ ∈ ACloc(R+), A𝛼𝑢 ∈ 𝐿2(𝑟𝛼), (𝑝𝛼𝑢′) (0) = 0
}

=

{
𝑢 ∈ 𝐿2(𝑟𝛼)

��� (
𝜏2 + ( 12 − 𝛼)

2)·(W𝛼 𝑓
)
(𝜏) ∈ 𝐿2 (R+; 𝜌𝛼 (𝜏)𝑑𝜏)}.

We note that, for 𝛼 < 1
2 and a = 𝑖𝜏, the product formula (3.32) can be written as

𝑊𝛼,𝑖𝜏 (𝑥)𝑊𝛼,𝑖𝜏 (𝑦) = [W𝛼𝑘𝛼 (𝑥, 𝑦, ·)] (𝜏), (𝑥, 𝑦 > 0, 𝛼 < 1
2 , 𝜏 ≥ 0).

Applying the inverse Whittaker transform (3.48), we find that for 𝑥, 𝑦, b > 0 and 𝛼 < 1
2 we have

𝑘𝛼 (𝑥, 𝑦, b) =
∫ ∞

0
𝑊𝛼,𝑖𝜏 (𝑥)𝑊𝛼,𝑖𝜏 (𝑦)𝑊𝛼,𝑖𝜏 (b) 𝜌𝛼 (𝜏)𝑑𝜏 (3.49)

where the integral on the right-hand side converges absolutely, as can be verified using the asymptotic
forms (3.13) and

��Γ( 12 − 𝛼 + 𝑖𝜏)�� ∼ (2𝜋) 1
2 𝜏−𝛼 exp(− 𝜋𝜏2 ), 𝜏 → +∞ (cf. [135, Equation 5.11.9]).

The product formula (3.32) ensures that for each fixed 𝛼 < 1
2 the normalized Whittaker functions

𝑊𝛼,a (·) (a ∈ C) are solutions of the functional equation

𝜔(𝑥)𝜔(𝑦) =
∫ ∞

0
𝜔(b) 𝑘𝛼 (𝑥, 𝑦, b) 𝑟𝛼 (b)𝑑b (𝑥, 𝑦 > 0). (3.50)

Using the representation (3.49) for the kernel of the product formula, one can prove a lemma which
rules out the existence of other nontrivial solutions for this functional equation:

Lemma 3.15. Let 𝛼 < 1
2 and a ≥ 0. Suppose that the function 𝜔(𝑥) is such that there exists 𝐶 > 0 for

which ��𝜔(𝑥)�� ≤ 𝐶𝑊𝛼,a (𝑥) for a.e. 𝑥 > 0 (3.51)

and that 𝜔(𝑥) is a nontrivial solution of the functional equation (3.50). Then 𝜔(𝑥) =𝑊𝛼,𝜌 (𝑥) for
some 𝜌 ∈ C with |Re 𝜌 | ≤ a.

Proof. We begin by noting that

A𝛼,𝑥 𝑘𝛼 (𝑥, 𝑦, b) = A𝛼,𝑦 𝑘𝛼 (𝑥, 𝑦, b) = −
∫ ∞

0
𝑊𝛼,𝑖𝜏 (𝑥)𝑊𝛼,𝑖𝜏 (𝑦)𝑊𝛼,𝑖𝜏 (b)

(
𝜏2 + ( 12 − 𝛼)

2)𝜌𝛼 (𝜏)𝑑𝜏
(3.52)

whereA𝛼,𝑥 andA𝛼,𝑦 denote the differential operator (3.2) acting on the variable 𝑥 and 𝑦 respectively.
The identity (3.52) is obtained via differentiation of (3.49) under the integral sign, which is admissible
because the differentiated integrals converge absolutely and locally uniformly, as can be verified in a
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straightforward way using the identity

𝑑

𝑑𝑦
𝑊𝛼,a (𝑦) =

(
a2 − ( 12 − 𝛼)

2)𝑊𝛼−1,a (𝑦) (3.53)

(which follows from (3.10)) and the asymptotic expansion (3.13). (Recall also that, by Proposition 3.1,
the function𝑊𝛼,a (·) satisfies the differential equation A𝛼𝑢 =

(
a2 − ( 12 − 𝛼)

2)𝑢.)
Now, assuming that the right-hand side of the functional equation (3.50) can also be differentiated

under the integral sign, it follows from (3.52) that(
A𝛼,𝑥𝜔(𝑥)

)
𝜔(𝑦) =

(
A𝛼,𝑦𝜔(𝑦)

)
𝜔(𝑥) (𝑥, 𝑦 > 0). (3.54)

Here the possibility of interchanging derivative and integral follows again from the locally uniform
convergence of the differentiated integrals, which can be straightforwardly checked using (3.51), the
identity

𝜕𝑘𝛼 (𝑥, 𝑦, b)
𝜕𝑥

=
𝑦 + b − 𝑥

2𝑥2𝑦b
𝑘𝛼+ 1

2
(𝑥, 𝑦, b) −

(
𝑥−2 + (1 − 2𝛼)𝑥−1) 𝑘𝛼 (𝑥, 𝑦, b) (3.55)

(which is a consequence of (3.19)) and the upper bound (3.35) for the function 𝑘𝛼 (𝑥, 𝑦, b).
Notice that (3.54) holds for arbitrary values of 𝑥 and 𝑦. Therefore, we must have

A𝛼,𝑥𝜔(𝑥)
𝜔(𝑥) =

A𝛼,𝑦𝜔(𝑦)
𝜔(𝑦) = _

for some _ ∈ C, meaning that 𝜔(𝑥) is a solution of the Sturm-Liouville equation

A𝛼𝜔(𝑥) =
(
𝜌2 − ( 12 − 𝛼)

2)𝜔(𝑥)
where 𝜌 is the principal square root of _ + ( 12 − 𝛼)

2. Consequently, the function 𝜔(𝑥) is a linear
combination of the functions𝑊𝛼,𝜌 (𝑥) and

𝑀𝛼,𝜌 (𝑥) :=
∞∑
𝑘=0

( 12 − 𝛼 + 𝜌)𝑘
Γ(1 + 2𝜌 + 𝑘) 𝑘!

𝑥−(
1
2−𝛼+𝜌+𝑘) ≡ 1

Γ(1 + 2𝜌) 𝑥
𝛼𝑒

1
2𝑥𝑀𝛼,𝜌 ( 1

𝑥
)

where 𝑀𝛼,𝜌 (𝑥) is the Whittaker function of the first kind [135, §13.14]. (Here we are using the well-
known fact that the Whittaker functions𝑊𝛼,𝜌 (𝑧) and 1

Γ(1+2𝜌)𝑀𝛼,𝜌 (𝑧) are, for 1
2 −𝛼+ 𝜌 ≠ 0,−1,−2, . . .,

two linearly independent solutions of 𝑑2𝑢
𝑑𝑧2 +

(
− 1

4 +
𝛼
𝑧
+ 1/4−𝜌2

𝑧2

)
𝑢 = 0. Recall also that the vector

space of solutions of a Sturm-Liouville equation is two-dimensional.) However, it follows from the
limiting forms for the Whittaker 𝑀 function [135, Equation 13.14.20] that 𝑀𝛼,𝜌 (𝑥) is, for all 𝜌 ∈ C,
unbounded as 𝑥 goes to zero, and this violates (3.51). In addition, the limiting forms (3.5), (3.7) for
the Whittaker function show that

��𝑊𝛼,𝜌 (𝑥)
�� ≤ 𝐶𝑊𝛼,a (𝑥) holds if and only if |Re 𝜌 | ≤ a. Therefore,

we must have 𝜔(𝑥) =𝑊𝛼,𝜌 (𝑥) for 𝜌 belonging to the strip |Re 𝜌 | ≤ a. �

We proceed with the definition of the index Whittaker transform of finite complex measures, which
will allow us to interpret (3.47) as the index Whittaker transform of an absolutely continuous measure
with density 𝑓 (·) 𝑟𝛼 (·):
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Definition 3.16. Let ` ∈ MC(R+0). The index Whittaker transform of the measure ` is the function
defined by the integral

̂̀(_) ≡ ̂̀(_;𝛼) =
∫
R+0

𝑊𝛼,Δ_
(𝑦) `(𝑑𝑦), _ ≥ 0. (3.56)

For convenience this transformation is regarded as a function of _ = 𝜏2 + ( 12 − 𝛼)
2 (recall that

Δ_ =

√
( 12 − 𝛼)2 − _).

Before we state the basic properties of the index Whittaker transform of finite measures, we
will prove an auxiliary result of independent interest: an integral representation for the normalized
Whittaker function𝑊𝛼,a (𝑦) which we will call the Laplace-type representation for𝑊𝛼,a (𝑦) because it
is of the same form as the Laplace representation for the characters of Sturm-Liouville hypergroups,
cf. [197, (4.7)–(4.8)]. To the best of our knowledge, this integral representation is new; in particular, it
cannot be found in standard references such as [145–147].

Theorem 3.17. The normalized Whittaker𝑊 function admits the integral representation

𝑊𝛼,a (𝑦) =
∫ ∞

−∞
𝑒a𝑠[𝛼,𝑦 (𝑠)𝑑𝑠 = 2

∫ ∞

0
cosh(a𝑠)[𝛼,𝑦 (𝑠)𝑑𝑠 (𝛼, a ∈ C, 𝑦 > 0) (3.57)

where [𝛼,𝑦 is the function defined by

[𝛼,𝑦 (𝑠) := 2−1−𝛼𝜋−
1
2 𝑦−

1
2+𝛼 exp

(
1
𝑦
− 1

2𝑦
cosh2

( 𝑠
2

))
𝐷2𝛼

(
2

1
2 𝑦−

1
2 cosh

( 𝑠
2

))
and 𝐷` (𝑧) is the parabolic cylinder function.

Proof. Only the first equality in (3.57) needs proof. Let us temporarily assume that a ≥ 0 and
−∞ < 𝛼 < 1

2 , and let b > 0. We begin by noting the identity

b1−2𝛼
∫ ∞

0
exp

(
−b

2 𝑦

4
− 1
𝑦

)
𝑦−2𝛼𝑊𝛼,a (𝑦) 𝑑𝑦 = 22−2𝛼𝐾2a (b) = 2−2𝛼

∫ ∞

−∞
𝑒a𝑠 exp

(
−b cosh

( 𝑠
2

))
𝑑𝑠

(3.58)
which is a consequence of integrals 2.4.18.12 in [145] and 2.19.4.7 in [147]. To deduce the theorem
from this identity, we will use the injectivity property of the Laplace transform, after rewriting the
right-hand side as an iterated integral. To that end, we point out that, according to integral 2.11.4.4 in
[146], for 𝑠, b > 0 we have

b2𝛼−1 exp
(
−b cosh

( 𝑠
2

))
= 2𝛼−1𝜋−

1
2

∫ ∞

0
exp

(
−b

2 𝑦

4
− 1

2𝑦
cosh2

( 𝑠
2

))
𝑦−

1
2−𝛼𝐷2𝛼

(
2

1
2 𝑦−

1
2 cosh

( 𝑠
2

))
𝑑𝑦

Substituting in (3.58) and interchanging the order of integration (which is valid because, as noted
in Remark 3.9(c), we have 𝐷` (𝑦) > 0 for 𝑦 > 0 and ` < 1, and therefore the iterated integral has
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positive integrand), we find that∫ ∞

0
exp

(
−b

2 𝑦

4
− 1
𝑦

)
𝑦−2𝛼𝑊𝛼,a (𝑦) 𝑑𝑦 =

= 2−1−𝛼𝜋−
1
2

∫ ∞

0
exp

(
−b

2 𝑦

4

)
𝑦−

1
2−𝛼

∫ ∞

−∞
exp

(
a𝑠 − 1

2𝑦
cosh2

( 𝑠
2

))
𝐷2𝛼

(
2

1
2 𝑦−

1
2 cosh

( 𝑠
2

))
𝑑𝑠 𝑑𝑦

Given that the Laplace transform is one-to-one, this identity yields

𝑒
− 1

𝑦𝑊𝛼,a (𝑦) = 2−1−𝛼𝜋−
1
2 𝑦−

1
2+𝛼

∫ ∞

−∞
exp

(
a𝑠 − 1

2𝑦
cosh2

( 𝑠
2

))
𝐷2𝛼

(
2

1
2 𝑦−

1
2 cosh

( 𝑠
2

))
𝑑𝑠,

finishing the proof for the case −∞ < 𝛼 < 1
2 , a ∈ R.

To extend (3.57) to all 𝛼, a ∈ C, it is enough to show that
∫ ∞
−∞𝑒

a𝑠[𝛼,𝑥 (𝑠)𝑑𝑠 is an entire function of
the parameter 𝛼 and the parameter a (so that the usual analytic continuation argument can be applied).
For 𝑡 > 0 and 𝛼 ∈ C with Re𝛼 ≤ 0, the integral representation (3.16) gives

��𝐷2𝛼 (𝑡)
�� = 𝑒−

𝑡2
4 𝑡2 Re 𝛼

|Γ( 12 − 𝛼) |

����∫ ∞

0
𝑒−𝑠𝑠−

1
2−𝛼

(
1 + 2𝑠

𝑡2

)𝛼
𝑑𝑠

����
≤ 𝑒

− 𝑡2
4 𝑡2 Re 𝛼

|Γ( 12 − 𝛼) |

∫ ∞

0
𝑒−𝑠𝑠−

1
2−Re 𝛼𝑑𝑠

=
Γ( 12 − Re𝛼)
|Γ( 12 − 𝛼) |

𝑒−
𝑡2
4 𝑡2 Re 𝛼.

Furthermore, for each 𝑛 ∈ N0 we have 𝐷2𝛼+𝑛 (𝑡) = 𝑄 (3)𝑛,𝛼 (𝑡)𝐷2𝛼 (𝑡) + 𝑄 (4)𝑛,𝛼 (𝑡)𝐷2𝛼−1(𝑡) (cf. proof of
Theorem 3.4), being 𝑄 ( 𝑗)𝑛,𝛼 (·) polynomials of degree at most 𝑛 whose coefficients are continuous
functions of 𝛼. It is easy to see that |𝑄 ( 𝑗)𝑛,𝛼 (𝑡) | ≤ 𝐶𝑛 (𝛼) (1 + 𝑡𝑛) for some function 𝐶𝑛 (𝛼) that depends
continuously on 𝛼 ∈ C and, consequently,��𝐷2𝛼+𝑛 (𝑡)

�� ≤ 𝐶𝑛 (𝛼) (1 + 𝑡𝑛) [𝐷2𝛼 (𝑡) + 𝐷2𝛼−1(𝑡)
]

≤ 𝐶𝑛 (𝛼) 𝑒−
𝑡2
4 𝑡2 Re 𝛼 (1 + 𝑡𝑛)

[
Γ( 12 − Re𝛼)
|Γ( 12 − 𝛼) |

+ Γ(1 − Re𝛼)
|Γ(1 − 𝛼) | 𝑡

−1
]
,

sup
|𝛼 | ≤𝑀
Re 𝛼≤0

��𝐷2𝛼+𝑛 (𝑡)
�� ≤ 𝐶𝑀,𝑛 𝑒− 𝑡2

4 (𝑡−2𝑀−1 + 𝑡𝑛) (3.59)

where 𝑀 > 0 and 𝑛 ∈ N0 are arbitrary and the constant 𝐶𝑀,𝑛 depends on 𝑀 and 𝑛. Using (3.59), we
see that

sup
(𝛼,a) ∈R𝑀

∫ ∞

−∞

���� exp
(
a𝑠 − 1

2𝑦
cosh2

( 𝑠
2

))
𝐷2𝛼+𝑛

(
2

1
2 𝑦−

1
2 cosh

( 𝑠
2

))���� 𝑑𝑠 < ∞
where R𝑀 =

{
(𝛼, a)

�� |𝛼 | ≤ 𝑀, Re𝛼 ≤ 0, |a | ≤ 𝑀
}
. Applying the standard results on the

analyticity of parameter-dependent integrals (e.g. [127]), we obtain the entireness in 𝛼 and in a of∫ ∞
−∞𝑒

a𝑠[𝛼,𝑥 (𝑠)𝑑𝑠, completing the proof. �
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It is worth observing that

[𝛼,𝑦 (𝑠) ≥ 0 for all 𝛼 ≤ 1
2 , 𝑦 > 0

and so it follows from Theorem 3.17 that

|𝑊𝛼,a (𝑦) | ≤𝑊𝛼,a0 (𝑦) whenever 𝛼 ≤ 1
2 , |Re a | ≤ a0 (a0 ≥ 0). (3.60)

Together with the identity𝑊𝛼, 1
2−𝛼
(𝑦) = 1 (see (3.12)), this implies that

|𝑊𝛼,a (𝑦) | ≤ 1 for all 𝑦 > 0, 𝛼 ≤ 1
2 , a in the strip |Re a | ≤ 1

2 − 𝛼. (3.61)

We are now ready to establish some important facts on the index Whittaker transform (3.56):

Proposition 3.18. For 𝛼 < 1
2 , the index Whittaker transform ̂̀ ≡ ̂̀(·;𝛼) of ` ∈ MC(R+0) has the

following properties:

(i) ̂̀ is uniformly continuous on R+0 . Moreover, if a family of measures {` 𝑗} ⊆ MC(R+0) is such
that the family of restricted measures

{
` 𝑗 |R+

}
is tight and uniformly bounded, then {̂̀𝑗} is

uniformly equicontinuous on R+0 .

(ii) Each measure ` ∈ MC(R+0) is uniquely determined by ̂̀| [( 12 − 𝛼)2,∞) .
(iii) If {`𝑛} is a sequence of measures belonging toM+(R+0), ` ∈ M+(R

+
0), and `𝑛

𝑤−→ `, then

̂̀𝑛 −−−−−→
𝑛→∞

̂̀ uniformly on compact sets.

(iv) If {`𝑛} is a sequence of measures belonging toM+(R+0) whose index Whittaker transforms are
such that ̂̀𝑛 (_) −−−−−→

𝑛→∞
𝑓 (_) pointwise in _ ≥ 0 (3.62)

for some real-valued function 𝑓 which is continuous at a neighborhood of zero, then `𝑛
𝑤−→ `

for some measure ` ∈ M+(R+0) such that ̂̀≡ 𝑓 .
Proof. (i) Let us prove the second statement, which implies the first. Fix Y > 0. By the tightness
assumption, we can choose 𝑀 > 0 such that ` 𝑗

(
(0, 1

𝑀
) ∪ (𝑀,∞)

)
< Y. Moreover, noting that

|ReΔ_ | ≤ 1
2 − 𝛼, it is easily seen that | exp(Δ_1 𝑠) − exp(Δ_2 𝑠) | ≤ |Δ_1 − Δ_2 |𝑠 𝑒 (

1
2−𝛼)𝑠 for all

𝑠, _1, _2 ≥ 0 and, consequently, from Theorem 3.17 we get��𝑊𝛼,Δ_1
(𝑦) −𝑊𝛼,Δ_2

(𝑦)
�� ≤ |Δ_1 − Δ_2 |

∫ ∞

−∞
𝑠 𝑒 (

1
2−𝛼)𝑠[𝛼,𝑦 (𝑠) 𝑑𝑠 (3.63)

where the integral on the right-hand side converges uniformly with respect to 𝑦 in compact subsets of
R+ and is therefore a continuous function of 𝑦 > 0. By continuity of _ ↦→ Δ_, we can choose 𝛿 > 0
such that

|Δ_1 − Δ_2 | <
Y

𝐶𝑀
whenever |_1 − _2 | < 𝛿 (_1, _2 ≥ 0) (3.64)
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where 𝐶𝑀 = max𝑦∈[ 1
𝑀
,𝑀 ]

∫ ∞
−∞ 𝑠 𝑒

( 1
2−𝛼)𝑠[𝛼,𝑦 (𝑠) 𝑑𝑠 < ∞. Set 𝑆 = sup 𝑗 ∥` 𝑗 ∥. Combining (3.63)–

(3.64), (3.61) and the fact that𝑊𝛼,Δ_
(0) ≡ 1, we deduce that��̂̀𝑗 (_1) − ̂̀𝑗 (_2)

�� = ����∫
R+

(
𝑊𝛼,Δ_1

(𝑦) −𝑊𝛼,Δ_2
(𝑦)

)
` 𝑗 (𝑑𝑦)

����
≤

∫
(0, 1

𝑀
)∪(𝑀,∞)

��𝑊𝛼,Δ_1
(𝑦) −𝑊𝛼,Δ_2

(𝑦)
��` 𝑗 (𝑑𝑦) + ∫

[ 1
𝑀
,𝑀 ]

��𝑊𝛼,Δ_1
(𝑦) −𝑊𝛼,Δ_2

(𝑦)
��` 𝑗 (𝑑𝑦)

≤ 2Y + 𝑆Y = (𝑆 + 2)Y

for all 𝑗 , provided that |_1 − _2 | < 𝛿, which means that {̂̀𝑗} is uniformly equicontinuous.

(ii) Writing _ = 𝜏2 + ( 12 − 𝛼)
2 with 𝜏 ≥ 0, the index Whittaker transform ̂̀(𝜏2 + ( 12 − 𝛼)

2) can be
written as

̂̀(
𝜏2 + ( 12 − 𝛼)

2) = 21+2𝛼

|Γ( 12 − 𝛼 + 𝑖𝜏) |2

∫
R+0

∫ ∞

0
exp

(
− 𝑦𝑡

2

4
)
𝑡−2𝛼𝐾2𝑖𝜏 (𝑡) 𝑑𝑡 `(𝑑𝑦)

=
21+2𝛼

|Γ( 12 − 𝛼 + 𝑖𝜏) |2

∫ ∞

0
𝐾2𝑖𝜏 (𝑡) 𝑡−2𝛼

∫
R+0

exp
(
− 𝑦𝑡

2

4
)
`(𝑑𝑦) 𝑑𝑡 (3.65)

where we have applied integral 2.16.8.4 in [146], and the change of order of integration is easily
justified. Suppose that ̂̀1(_) = ̂̀2(_) for all _ ≥ ( 12 − 𝛼)

2. Then (3.65), together with the injectivity
of the Kontorovich-Lebedev transform (see [194, Theorem 6.5]), imply that∫ ∞

0
exp

(
− 𝑦𝑡

2

4
)
`1(𝑑𝑦) =

∫ ∞

0
exp

(
− 𝑦𝑡

2

4
)
`2(𝑑𝑦) for almost every 𝑡 > 0.

In fact, by continuity this equality holds for all 𝑡 ≥ 0, because the integrals converge uniformly with
respect to 𝑡 ≥ 0. Consequently,∫ ∞

0
𝑒−𝑦𝑠`1(𝑑𝑦) =

∫ ∞

0
𝑒−𝑦𝑠`2(𝑑𝑦) for all 𝑠 ≥ 0.

Since the measures ` 𝑗 are uniquely determined by their Laplace transforms [95, Theorem 15.6], it
follows that `1 = `2.

(iii) Since𝑊𝛼,Δ_
(·) is continuous and bounded, the pointwise convergence ̂̀𝑛 (_) → ̂̀(_) follows

from the definition of weak convergence. For the restricted measures, we clearly have `𝑛 |R+
𝑤−→ ` |R+.

Using the well-known Prokhorov’s theorem which states that a family of measures on a complete
separable metric space is relatively compact in the weak topology if and only if it is tight [95, Theorem
13.29], we see that {`𝑛 |R+} is tight and therefore (by part (i)) {̂̀𝑛} is uniformly equicontinuous.
Invoking a general result which asserts that if {𝑔𝑛} is a uniformly equicontinuous sequence of functions
then 𝑔𝑛 → 𝑔 pointwise implies that 𝑔𝑛 → 𝑔 uniformly on compact sets [95, Lemma 15.22], we
conclude that the convergence ̂̀𝑛 → ̂̀ is uniform on compact sets.

(iv) We only need to show that the sequence {`𝑛} is tight. Indeed, if {`𝑛} is tight, then Prokhorov’s
theorem yields that for any subsequence {`𝑛𝑘 } there exists a further subsequence {`𝑛𝑘 𝑗} and a measure

` ∈ M+(R+0) such that `𝑛𝑘 𝑗
𝑤−→ `. Then, due to part (iii) and to (3.62), we have ̂̀(_) = 𝑓 (_) for all
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_ ≥ 0, which implies (by part (ii)) that all such subsequences have the same weak limit; consequently,
the sequence `𝑛 itself converges weakly to `.

To prove the tightness, take Y > 0. Since 𝑓 is continuous at a neighborhood of zero, we have
1
𝛿

∫ 2𝛿
0

(
𝑓 (0) − 𝑓 (_)

)
𝑑_ −→ 0 as 𝛿 ↓ 0; therefore, we can choose 𝛿 > 0 such that

1
𝛿

∫ 2𝛿

0

(
𝑓 (0) − 𝑓 (_)

)
𝑑_ < Y.

Next we observe that, as a consequence of (3.7) and the dominated convergence theorem, we have∫ 2𝛿
0

(
1 −𝑊𝛼,Δ_

(𝑦)
)
𝑑_ −→ 2𝛿 as 𝑦 →∞, meaning that we can pick 𝑀 > 0 such that∫ 2𝛿

0

(
1 −𝑊𝛼,Δ_

(𝑦)
)
𝑑_ ≥ 𝛿 for all 𝑦 > 𝑀.

By our choice of 𝑀 and Fubini’s theorem,

`𝑛
(
[𝑀,∞)

)
=

1
𝛿

∫ ∞

𝑀

𝛿 `𝑛 (𝑑𝑦)

≤ 1
𝛿

∫ ∞

𝑀

∫ 2𝛿

0

(
1 −𝑊𝛼,Δ_

(𝑦)
)
𝑑_ `𝑛 (𝑑𝑦)

≤ 1
𝛿

∫ ∞

0

∫ 2𝛿

0

(
1 −𝑊𝛼,Δ_

(𝑦)
)
𝑑_ `𝑛 (𝑑𝑦)

=
1
𝛿

∫ 2𝛿

0

(̂̀𝑛 (0) − ̂̀𝑛 (_))𝑑_.
Hence, using the dominated convergence theorem,

lim sup
𝑛→∞

`𝑛
(
[𝑀,∞)

)
≤ 1
𝛿

lim sup
𝑛→∞

∫ 2𝛿

0

(̂̀𝑛 (0) − ̂̀𝑛 (_))𝑑_
=

1
𝛿

∫ 2𝛿

0
lim
𝑛→∞

(̂̀𝑛 (0) − ̂̀𝑛 (_))𝑑_ =
1
𝛿

∫ 2𝛿

0

(
𝑓 (0) − 𝑓 (_)

)
𝑑_ < Y

due to the choice of 𝛿. Since Y is arbitrary, we conclude that {`𝑛} is tight, as desired. �

Remark 3.19. Parts (iii) and (iv) of the proposition above show that the following analogue of the
Lévy continuity theorem holds for the index Whittaker transform: the index Whittaker transform is a
topological homeomorphism between P(R+0) with the weak topology and the set P̂ of index Whittaker
transforms of probability measures with the topology of uniform convergence in compact sets.

3.4 Whittaker convolution of measures

The parameter 𝛼 < 1
2 will be fixed throughout the rest of this chapter.

Motivated by the connection between the Bessel product formula and the Kingman convolution,
we now define the Whittaker convolution in order that the convolution of Dirac measures is the kernel
of the product formula (3.32) for the normalized Whittaker𝑊 function:
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Definition 3.20. Let `, a ∈ MC(R+0). The measure ` �
𝛼
a defined by∫

R+0

𝑓 (𝑥) (` �
𝛼
a) (𝑑𝑥) =

∫
R+0

∫
R+0

(T 𝑦𝛼 𝑓 ) (𝑥) `(𝑑𝑥)a(𝑑𝑦), 𝑓 ∈ Cb(R+0)

is called the Whittaker convolution (of order 𝛼) of the measures ` and a.

It clearly follows from this definition (and Definition 3.11) that for 𝑥, 𝑦 > 0 the Whittaker
convolution of Dirac measures 𝛿𝑥 �

𝛼
𝛿𝑦 is the absolutely continuous measure defined by

(𝛿𝑥 �
𝛼
𝛿𝑦) (𝑑b) = 𝑘𝛼 (𝑥, 𝑦, b) 𝑟𝛼 (b)𝑑b.

Due to (3.37) and (3.34), the Whittaker convolution of two probability measures `, a ∈ P(R+0)
is also a probability measure. Furthermore, Proposition 3.22 below shows that the Whittaker
convolution is commutative, associative and such that (𝑐1`1 + 𝑐2`2) �

𝛼
a = 𝑐1(`1 �

𝛼
a) + 𝑐2(`2 �

𝛼
a) for

`1, `2, a ∈ P(R+0) and 𝑐1, 𝑐2 ∈ C. Consequently:

Proposition 3.21. The vector spaceMC(R+0) (with usual addition and scalar multiplication), endowed
with the convolution multiplication �

𝛼
, is a commutative algebra over C whose multiplicative identity is

the Dirac measure 𝛿0.

Since
∫
R+0
𝑓 (b) (𝛿𝑥 �

𝛼
𝛿𝑦) (𝑑b) = (T 𝑦𝛼 𝑓 ) (𝑥), the fact that 𝑘𝛼 (𝑥, 𝑦, b) is strictly positive for 𝑥, 𝑦, b > 0

yields that supp(𝛿𝑥 �
𝛼
𝛿𝑦) = R+0 for all 𝑥, 𝑦 > 0, in sharp contrast with the compactness axiom H6

which is part of the definition of a hypergroup (Definition 2.22). It is worth mentioning that positive
product formulas which lead to convolution operators not satisfying the hypergroup requirements on
supp(𝛿𝑥 �

𝛼
𝛿𝑦) have also been found for certain families of orthogonal polynomials [37].

We now state the fundamental connection between the Whittaker convolution and the index
Whittaker transform (3.56). (The analogous trivialization property for the Kingman convolution was
stated in Proposition 2.16.)

Proposition 3.22. Let `, `1, `2 ∈ MC(R+0). We have ` = `1 �
𝛼
`2 if and only if

̂̀(_) = ̂̀1(_) ̂̀2(_) for all _ ≥ 0.

Proof. In view of (3.32), we have
(
T 𝑦𝛼𝑊𝛼,Δ_

)
(𝑥) =𝑊𝛼,Δ_

(𝑥)𝑊𝛼,Δ_
(𝑦), hence

�̀1 �
𝛼
`2(_) =

∫
R+0

𝑊𝛼,Δ_
(𝑥) (`1 �

𝛼
`2) (𝑑𝑥)

=

∫
R+0

∫
R+0

(
T 𝑦𝛼𝑊𝛼,Δ_

)
(𝑥) `1(𝑑𝑥)`2(𝑑𝑦)

=

∫
R+0

∫
R+0

𝑊𝛼,Δ_
(𝑥)𝑊𝛼,Δ_

(𝑦) `1(𝑑𝑥)`2(𝑑𝑦) = ̂̀1(_)̂̀2(_), _ ≥ 0.
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This proves the “only if" part, and the converse follows from the uniqueness property in Proposition
3.18(ii). �

Remark 3.23. It was noted above that the Whittaker convolution cannot be interpreted as a particular
case of the axiomatic framework of hypergroups. One can show that, in addition, the Whittaker
convolution also does not constitute an example of an Urbanik convolution algebra (cf. Definition
2.24), because the homogeneity axiom U5 fails to hold for the Whittaker convolution.

Indeed, let 𝑎 ∈ R+ \ {1} and assume that the identity Θ𝑎 (𝛿𝑥 �
𝛼
𝛿𝑦) = Θ𝑎 (𝛿𝑥) �

𝛼
Θ𝑎 (𝛿𝑦) holds for

all 𝑥, 𝑦 > 0. Then

𝑊𝛼,Δ_
(𝑎𝑥)𝑊𝛼,Δ_

(𝑎𝑦) = �Θ𝑎 (𝛿𝑥) (_) ·�Θ𝑎 (𝛿𝑦) (_)
= [Θ𝑎 (𝛿𝑥) �

𝛼
Θ𝑎 (𝛿𝑦)]̂ (_)

= [Θ𝑎 (𝛿𝑥 �
𝛼
𝛿𝑦)]̂(_)

=

∫
𝑊𝛼,Δ_

(𝑎b) (𝛿𝑥 �
𝛼
𝛿𝑦) (𝑑b)

=

∫
𝑊𝛼,Δ_

(𝑎b) 𝑘𝛼 (𝑥, 𝑦, b) 𝑟𝛼 (b)𝑑b.

Therefore, 𝑥 ↦→𝑊𝛼,Δ_
(𝑎𝑥) is, for each _ ≥ 0, a solution of the functional equation (3.50). However, it

follows from Lemma 3.15 that any bounded solution of this functional equation is of the form𝑊𝛼,𝜎 (𝑥)
for some 𝜎 ∈ C with |Re𝜎 | ≤ 1

2 − 𝛼. One can check (using e.g. the asymptotic expansion (3.8), see
also (3.68) below) that the identity𝑊𝛼,Δ_

(𝑎𝑥) ≡𝑊𝛼,𝜎 (𝑥) does not hold for any pair (_, 𝜎) ∈ R+0 × C,
so we obtain a contradiction.

As advertised in the introduction to this chapter, the Whittaker convolution �
𝛼

can be extended to a

more general family of convolutions associated with the differential operators 𝛾𝑥2 𝑑2

𝑑𝑥2 + 𝛾(𝑐 + 2(1 −
𝛼)𝑥) 𝑑

𝑑𝑥
(𝛾, 𝑐 > 0). We will see in Remark 3.71 that this is achieved via the rescaled convolutions

` ���
𝛼, 𝑐

a := Θ𝑐
(
(Θ1/𝑐 `) �𝛼 (Θ1/𝑐 a)

) (
≠ ` �

𝛼
a if 𝑐 ≠ 1

)
.

3.4.1 Infinitely divisible distributions

The set of �
𝛼
-infinitely divisible distributions is defined as

P𝛼,id =
{
` ∈ P(R+0)

�� for all 𝑛 ∈ N there exists a𝑛 ∈ P(R+0) such that ` = (a𝑛)�𝛼𝑛
}

(3.66)

where (a𝑛)�𝛼𝑛 denotes the 𝑛-fold Whittaker convolution of a𝑛 with itself.

Lemma 3.24. Let ` ∈ P𝛼,id. Then 0 < ̂̀(_) ≤ 1 for all _ ≥ 0. Moreover, ` has no nontrivial
idempotent divisors, i.e., if ` = 𝜗 �

𝛼
a (with 𝜗, a ∈ P(R+0)) where 𝜗 is idempotent with respect to the

Whittaker convolution (that is, it satisfies 𝜗 = 𝜗 �
𝛼
𝜗), then 𝜗 = 𝛿0.
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Proof. The inequality ̂̀(_) ≤ 1 is obvious from (3.61). The positivity can be proved as follows
(the argument is similar to that of [156, Lemma 7.5]): for every 𝑛 ∈ N there exists a𝑛 such that̂̀(_) = â𝑛 (_)𝑛. We can define

𝜙(_) := lim
𝑛→∞

â𝑛 (_) =


1 if ̂̀(_) ≠ 0

0 if ̂̀(_) = 0

and then (by the continuity of ̂̀, Proposition 3.18(i)) we have 𝜙(_) = 1 in a neighbourhood of 0.
Therefore (Proposition 3.18(iv)) 𝜙 is the index Whittaker transform of a probability measure; in
particular, it is continuous on R+0 , so we conclude that 𝜙 ≡ 1. Thus ̂̀has no zeros, and by continuity it
follows that ̂̀(_) > 0 for all _.

Assume that ` = 𝜗 �
𝛼
a with 𝜗 idempotent. Then

(
𝜗(_)

)2
= 𝜗(_) for all _, and consequently

𝜗(_) only takes the values 0 and 1. However, ̂̀(_) = 𝜗(_) â(_) ≠ 0; hence 𝜗(_) = 1 for all _, i.e.,
𝜗 = 𝛿0. �

The first part of the lemma shows that the index Whittaker transform of any measure ` ∈ P𝛼,id is
of the form ̂̀(_) = 𝑒−𝜓` (_)

where 𝜓` (_) (_ ≥ 0) is a positive continuous function such that 𝜓` (0) = 0, which we shall call the
log-Whittaker transform of `. The next result shows that the log-Whittaker transform of an infinitely
divisible distribution grows at most linearly:

Proposition 3.25. Let ` ∈ P𝛼,id. Then

𝜓` (_) ≤ 𝐶` (1 + _) for all _ ≥ 0

for some constant 𝐶` > 0 which is independent of _.

The proof relies on the following lemma:

Lemma 3.26. The normalized Whittaker𝑊 function satisfies the inequality

1 −𝑊𝛼,a (𝑦) ≤
(
( 12 − 𝛼)

2 − a2)𝑦 for each 𝑦 ≥ 0 and a ∈ [0, 1
2 − 𝛼] ∪ 𝑖R.

Proof. By Proposition 3.1,𝑊𝛼,a ( ·) solves the equation −A𝛼𝑢 =
(
( 12 − 𝛼)

2 − a2)𝑢, and thus we have

− 𝑑
𝑑b

[
b2−2𝛼𝑒−1/b 𝑑

𝑑b
𝑊𝛼,a (b)

]
=

(
( 12 − 𝛼)

2 − a2) b−2𝛼𝑒−1/b𝑊𝛼,a (b).

Recalling that𝑊𝛼,a (𝑥) satisfies the boundary conditions given in (3.3), after integrating both sides
between 0 and 𝑦 and then between 0 and 𝑥 we obtain

1 −𝑊𝛼,a (𝑥) =
(
( 12 − 𝛼)

2 − a2)∫ 𝑥

0
𝑦2𝛼−2𝑒1/𝑦

∫ 𝑦

0
b−2𝛼𝑒−1/b𝑊𝛼,a (b) 𝑑b 𝑑𝑦. (3.67)
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Using (3.61) and the inequality ( b
𝑦
)2−2𝛼 ≤ 1 (which holds for 0 < b ≤ 𝑦 due to the assumption

𝛼 < 1
2 ), we thus find that

1 −𝑊𝛼,a (𝑥) ≤
(
( 12 − 𝛼)

2 − a2)∫ 𝑥

0
𝑦2𝛼−2𝑒1/𝑦

∫ 𝑦

0
b2𝛼𝑒−1/b 𝑑b 𝑑𝑦

≤
(
( 12 − 𝛼)

2 − a2)∫ 𝑥

0
𝑒1/𝑦

∫ 𝑦

0
b−2𝑒−1/b 𝑑b 𝑑𝑦

=
(
( 12 − 𝛼)

2 − a2)𝑥
as required. �

Proof of Proposition 3.25. Let a𝑛 ∈ P(R+0) be defined as in (3.66), so that â𝑛 (_) ≡ exp(− 1
𝑛
𝜓` (_)).

Due to the inequality 1 − 𝑒−𝜏 ≤ 𝜏 (𝜏 ≥ 0) and the fact that lim𝑛 𝑛(1 − 𝑒−𝑘/𝑛) = 𝑘 for each 𝑘 ∈ R, we
have

𝑛
(
1 − â𝑛 (_)

)
≤ 𝜓` (_) for all 𝑛 ∈ N, lim

𝑛→∞
𝑛
(
1 − â𝑛 (_)

)
= 𝜓` (_).

Pick _1 > 0. It follows from the asymptotic expansion (3.8) (which can be differentiated term by
term, cf. [135, §2.1(iii)]) that

𝑑𝑛

𝑑𝑦𝑛
𝑊𝛼,a (𝑦) −−−−→

𝑦→0
(−1)𝑛

( 1
2 − 𝛼 + a

)
𝑛

( 1
2 − 𝛼 − a

)
𝑛

(𝑛 = 0, 1, 2, . . .). (3.68)

In particular, lim𝑦→0
𝑑
𝑑𝑦
𝑊𝛼,Δ_

(𝑦) = −_, hence there exists Y > 0 such that 𝑑
𝑑𝑦
𝑊𝛼,Δ_1

(𝑦) ≤ −_1
2 for all

0 < 𝑦 ≤ Y, and then we have

1
_1

(
1 −𝑊𝛼,Δ_1

(𝑦)
)
= − 1

_1

∫ 𝑦

0

𝑑

𝑑𝑥
𝑊𝛼,Δ_1

(𝑥) 𝑑𝑦 ≥ 𝑦

2
for all 0 ≤ 𝑦 ≤ Y. (3.69)

Using also Lemma 3.26, we get

𝑛

∫
[0, Y)

(
1 −𝑊𝛼,Δ_

(𝑦)
)
a𝑛 (𝑑𝑦) ≤ _𝑛

∫
[0, Y)

𝑦 a𝑛 (𝑑𝑦)

≤ 2_𝑛
_1

∫
[0, Y)

(
1 −𝑊𝛼,Δ_1

(𝑦)
)
a𝑛 (𝑑𝑦)

≤ 2_𝑛
_1

(
1 − â𝑛 (_1)

)
≤ 2_
_1
𝜓` (_1).

(3.70)

Next, from the asymptotic expansion given in (3.13) we easily see that there exists _2 > 0 such that��𝑊𝛼,Δ_2
(𝑦)

�� ≤ 1
2

for all 𝑦 ≥ Y

and using (3.61) we obtain

𝑛

∫
[Y,∞)

(
1 −𝑊𝛼,Δ_

(𝑦)
)
a𝑛 (𝑑𝑦) ≤ 2𝑛

∫
[Y,∞)

a𝑛 (𝑑𝑦)

≤ 4𝑛
∫
[Y,∞)

(
1 −𝑊𝛼,Δ_2

(𝑦)
)
a𝑛 (𝑑𝑦)

≤ 4𝑛
(
1 − â𝑛 (_2)

)
≤ 4𝜓` (_2).

(3.71)
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Combining (3.70) and (3.71) one sees that

𝑛(1 − â𝑛 (_)) = 𝑛
∫
R+0

(
1 −𝑊𝛼,Δ_2

(𝑦)
)
a𝑛 (𝑑𝑦) ≤

2_
_1
𝜓` (_1) + 4𝜓` (_2) ≤ 𝐶` (1 + _) (3.72)

where 𝐶` = max
{ 2
_1
𝜓` (_1), 4𝜓` (_2)

}
. Taking the limit 𝑛→∞ in the inequality (3.72) yields

𝜓` (_) ≤ 𝐶` (1 + _)

which completes the proof. �

3.4.2 Lévy-Khintchine type representation

One can prove that an analogue of the classical Lévy-Khintchine formula holds for the log-Whittaker
transforms of �

𝛼
-infinitely divisible distributions. To establish this result, one needs to adapt the notions

of compound Poisson and Gaussian measures to the context of the Whittaker convolution algebra:

Definition 3.27. Let ` ∈ P(R+0) and 𝑎 > 0. The measure e𝛼 (𝑎`) defined by

e𝛼 (𝑎`) = 𝑒−𝑎
∞∑
𝑛=0

𝑎𝑛

𝑛!
`�𝛼𝑛

(the infinite sum converging in the weak topology) is said to be the �
𝛼
-compound Poisson measure

associated with 𝑎`.

This definition is completely analogous to that of the classical compound Poisson measure. From
the definition it immediately follows that e𝛼 (𝑎`) ∈ P(R+0). Moreover, its index Whittaker transform
can be easily deduced using Proposition 3.22:

�e𝛼 (𝑎`) (_) = 𝑒−𝑎 ∞∑
𝑛=0

𝑎𝑛

𝑛!
̂̀�𝛼𝑛 (_) = 𝑒−𝑎 ∞∑

𝑛=0

𝑎𝑛

𝑛!
(̂̀(_))𝑛 = exp

(
𝑎(̂̀(_) − 1)

)
.

Since e𝛼 ((𝑎 + 𝑏)`) = e𝛼 (𝑎`) �
𝛼

e𝛼 (𝑏`), every �
𝛼
-compound Poisson measure belongs to P𝛼,id.

Definition 3.28. A measure ` ∈ P(R+0) is called a �
𝛼
-Gaussian measure if ` ∈ P𝛼,id and

` = e𝛼 (𝑎a) �
𝛼
𝜗

(
𝑎 > 0, a ∈ P(R+0), 𝜗 ∈ P𝛼,id

)
=⇒ a = 𝛿0.

Remark 3.29. This definition is similar to the definition of Gaussian measures on locally compact
abelian groups as in [136, Chapter IV]. It is analogous with the classical notion of a Gaussian measure
on R by the following result:

Let 𝖊(𝑎a) := 𝑒−𝑎
∑∞
𝑘=0

𝑎𝑘

𝑘! `
∗𝑘 , where ∗ is the ordinary convolution. For a measure ` ∈ P(R), the

following conditions are equivalent:

(i) `(𝑑𝑥) = 1√
2𝜋 𝜎

exp
(
− (𝑥−𝑐)

2

2𝜎2

)
𝑑𝑥 for some 𝑐 ∈ R and 𝜎 > 0;

(ii) ` is infinitely divisible, and if ` = 𝖊(𝑎a) ∗ 𝜗 (with 𝑎 > 0, a ∈ P(R) and 𝜗 ∈ P(R) infinitely
divisible), then a = 𝛿0.



64 3. The Whittaker convolution

(The implication (i) =⇒ (ii) is a consequence of the Lévy-Cramer theorem [117, §III.1] which asserts
that if ` ∈ P(R) is a Gaussian measure (in the sense of (i)) and ` = `1 ∗ `2 with `1, `2 ∈ P(R),
then `1 and `2 are also Gaussian measures. The converse implication follows from the fact that if
an infinitely divisible ` ∈ P(R) is such that ` = 𝖊(𝑎a) ∗ 𝜗 implies a = 𝛿0, then the Lévy measure in
the classical Lévy-Khintchine formula must be the zero measure, which means that ` is a Gaussian
measure; see the discussion after Equation (16.8) in [95].)

The Lévy-Khintchine type representation for measures ` ∈ P𝛼,id reads as follows:

Theorem 3.30. The log-Whittaker transform of a measure ` ∈ P𝛼,id can be represented in the form

𝜓` (_) = 𝜓𝛾 (_) +
∫
R+

(
1 −𝑊𝛼,Δ_

(𝑥)
)
a(𝑑𝑥) (3.73)

where a is a 𝜎-finite measure on R+ which is finite on (Y,∞) for all Y > 0 and such that∫
R+

(
1 −𝑊𝛼,Δ_

(𝑥)
)
a(𝑑𝑥) < ∞

and 𝛾 is a �
𝛼
-Gaussian measure with log-Whittaker transform 𝜓𝛾 (_). Conversely, each function of the

form (3.73) is a log-Whittaker transform of some ` ∈ P𝛼,id.

This result should be compared with the Lévy-Khintchine representation for the Kingman
convolution, stated in Theorem 2.20.

Theorem 3.30 is a particular case of a known theorem on the Lévy-Khintchine representation of
infinitely divisible distributions with respect to a stochastic convolution in the sense of Volkovich
(cf. Definition 2.25). The proof, which is sketched below (see [183] for further details), relies on the
adaptation of an algebraic-topological technique which has been earlier used to establish a canonical
representation for infinitely divisible distributions on locally compact abelian groups [136, 137].

Proof. Let ` ∈ P𝛼,id, let ∞ > 𝑎1 > 𝑎2 > . . . with lim 𝑎𝑛 = 0, and let 𝐼𝑛 = [0, 𝑎𝑛), 𝐽𝑛 = [𝑎𝑛,∞).
Consider the set Q` of all proper divisors of ` of the form e𝛼 (𝜋) such that 𝜋(𝐼1) = 0. (A measure
a ∈ P(R+0) is said to be a proper divisor of ` ∈ P𝛼,id if a ∈ P𝛼,id and ` = a �

𝛼
\ for some \ ∈ P𝛼,id.)

Using Proposition 3.18 and the properties of the normalized Whittaker 𝑊 function, one can prove
(see [185, Corollary 1]) that the set D(𝔓) of all divisors (with respect to the Whittaker convolution)
of measures a ∈ 𝔓 is relatively compact whenever 𝔓 ⊂ P(R+0) is relatively compact. This, in turn,
implies that supe𝛼 (𝜋) ∈Q`

[∫
R+0

(
1 −𝑊𝛼,Δ_

(𝑥)
)
𝜋(𝑑𝑥)

]
< ∞ and therefore, by compactness of the set of

proper divisors of `, there exists a divisor `1 = e𝛼 (𝜋1) ∈ Q` such that 𝜋1(𝐽1) is maximal among all
elements of Q`. Write

` = `1 �
𝛼
𝛽1 (𝛽1 ∈ P𝛼,id).

Applying the same reasoning to 𝛽1 with 𝐼1 replaced by 𝐼2, we get 𝛽1 = `2 �
𝛼
𝛽2 = e𝛼 (𝜋2) �

𝛼
𝛽2. If we

perform this successively, we get

` = 𝛽𝑛 �
𝛼
\𝑛, where \𝑛 = `1 �

𝛼
`2 �

𝛼
. . . `𝑛, `𝑘 = e𝛼 (𝜋𝑘)
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with 𝜋𝑘 (𝐼𝑘) = 0 and 𝜋𝑘 (𝐽𝑘) having the specified maximality property. The sequences {𝛽𝑛} and {\𝑛}
are relatively compact; letting 𝛽 and \ be limit points, we have

` = 𝛽 �
𝛼
\ (𝛽, \ ∈ P𝛼,id).

Suppose, by contradiction, that 𝛽 is not �
𝛼
-Gaussian, and let e𝛼 ([), with [ ≠ 𝛿0, be a divisor of 𝛽.

Clearly [(𝐽𝑘) > 0 for some 𝑘; given that each 𝛽𝑛 divides 𝛽𝑛−1, we have 𝛽𝑘 = e𝛼 ([) �
𝛼
a (a ∈ P𝛼,id).

If we let [̃ be the restriction of [ to the interval 𝐽𝑘 , then

𝛽𝑘−1 = e𝛼 (𝜋𝑘 + [̃) �
𝛼

e𝛼 ([ − [̃) �
𝛼
a

which is absurd (because (𝜋𝑘 + [̃) (𝐽𝑘) > 𝜋𝑘 (𝐽𝑘), contradicting the maximality property which defines
𝜋𝑘 ). To determine the log-Whittaker transform of \, note that \𝑛 = e𝛼 (𝛱𝑛) is the �

𝛼
-compound Poisson

measure associated with 𝛱𝑛 :=
∑𝑛
𝑘=1 𝜋𝑘 , thus 𝜓\𝑛 (_) =

∫
R+0

(
1 −𝑊𝛼,Δ_

(𝑥)
)
𝛱𝑛 (𝑑𝑥). Since {𝛱𝑛} is an

increasing sequence of measures and each e𝛼 (𝛱𝑛) dividing `, there exists a 𝜎-finite measure a such
that

𝜓\ (_) = lim
𝑛

∫
R+0

(
1 −𝑊𝛼,Δ_

(𝑥)
)
𝛱𝑛 (𝑑𝑥)

=

∫
R+0

(
1 −𝑊𝛼,Δ_

(𝑥)
)
a(𝑑𝑥)

< ∞

(` ∈ P𝛼,id ensures the finiteness of the integral); from the relative compactness of D({`}) it is possible
to conclude that a(𝐽𝑘) < ∞ for all 𝑘 .

For the converse, let a𝑛 be the restriction of a to the interval 𝐽𝑛 defined as above. It is verified
without difficulty that the right-hand side of (3.73) is continuous at zero, hence by Proposition 3.18(d)
𝛽 �
𝛼

e𝛼 (a𝑛)
𝑤−→ ` ∈ P(R+0), and ` ∈ P𝛼,id because P𝛼,id is closed under weak convergence. �

Remark 3.31. Proposition 3.38 below ensures that the function 𝜓𝑐 (_) = −𝑐_ is, for each 𝑐 > 0, the
log-Whittaker transform of a �-Gaussian measure. However, the above Lévy-Khintchine representation
provides no information on whether the log-Whittaker transform of the �-Gaussian measure 𝛾 must be
of the form 𝜓𝛾 (_) = −𝑐_ for some 𝑐 > 0. Such a characterization of Gaussian measures has been
established for Urbanik convolution algebras [178, 179] and for Sturm-Liouville hypergroups on R+0
[27, 153]; however, the proofs of these results depend on assumptions which are not satisfied by the
Whittaker convolution. (The proof for Urbanik convolutions relies on the homogeneity axiom U5 of
Definition 2.24, while the proof for Sturm-Liouville hypergroups depends on a regularity property of
the associated Sturm-Liouville type integral transform which cannot be easily extended to the index
Whittaker transform.) A related characterization of Gaussian measures has also been established on
spaces endowed with a generalized characteristic function

∫
𝜔_(𝑥)`(𝑑𝑥) having properties similar to

those of Proposition 3.18, and in which there exists not only a convolution with respect to the variable
𝑥 but also a positivity-preserving convolution with respect to the dual variable _ (see [185]). We leave
open the problem of extending these characterizations to the Whittaker convolution.
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3.5 Lévy processes with respect to the Whittaker convolution

3.5.1 Convolution semigroups

Having in mind the study of Lévy-like processes on the Whittaker convolution algebra, we first
introduce the notion of a Whittaker convolution semigroup.

Definition 3.32. A family {`𝑡 }𝑡≥0 ⊂ P(R+0) is called a �
𝛼
-convolution semigroup if it satisfies the

conditions

• `𝑠 �
𝛼
`𝑡 = `𝑠+𝑡 for all 𝑠, 𝑡 ≥ 0;

• `0 = 𝛿0;

• `𝑡
𝑤−→ 𝛿0 as 𝑡 ↓ 0.

Remark 3.33. Similarly to the classical case (cf. [156, Section 7]), the�
𝛼
-infinitely divisible distributions

are in one-to-one correspondence with the �
𝛼
-convolution semigroups:

(i) If {`𝑡 } is a �
𝛼
-convolution semigroup, then `𝑡 is (for each 𝑡 ≥ 0) a �

𝛼
-infinitely divisible

distribution.
(Indeed, for each 𝑛 ∈ N the measure `𝑡/𝑛 ∈ P(R+0) is such that (`𝑡/𝑛)�𝛼𝑛 = `𝑡 .)

(ii) If ` is a �
𝛼
-infinitely divisible distribution with log-Whittaker transform 𝜓` (_), then the semigroup

{`𝑡 } defined by ̂̀𝑡 (_) = exp(−𝑡 𝜓` (_)) is the unique �
𝛼
-convolution semigroup such that `1 = `.

(To prove this, it suffices to justify that exp(−𝑡 𝜓` (_)) is, for each 𝑡 > 0, the index Whittaker
transform of a probability measure. If 𝑡 =

𝑝

𝑞
∈ Q, this is true because �(a𝑞)�𝛼𝑝 (_) =

exp
(
− 𝑝
𝑞
𝜓` (_)

)
, where a𝑞 ∈ P(R+0) is defined as in (3.66). If 𝑡 > 0 is irrational, let

{ 𝑝𝑛
𝑞𝑛

}
⊂ Q

be a sequence converging to 𝑡 and define `𝑡 ∈ P(R+0) as the weak limit of the measures
(a𝑞𝑛)�𝛼𝑝𝑛 ; the existence of the weak limit follows from Proposition 3.18(iv), and it is clear that̂̀𝑡 (_) = exp(−𝑡 𝜓` (_)).)

From this it follows, in particular, that �
𝛼
-convolution semigroups admit a Lévy-Khintchine type

representation (Theorem 3.30).

Unsurprisingly, each �
𝛼
-convolution semigroup is associated with a conservative Feller semigroup

of operators which commute with the Whittaker translation:

Proposition 3.34. Let {`𝑡 }𝑡≥0 be a �
𝛼
-convolution semigroup. Then the family {𝑇𝑡 }𝑡≥0 of convolution

operators defined by
𝑇𝑡 : Cb(R+0) −→ Cb(R+0), 𝑇𝑡 𝑓 := T `𝑡𝛼 𝑓 (3.74)

where T a𝛼 (a ∈ MC(R+0)) is the operator defined by

(T a𝛼 𝑓 ) (𝑥) :=
∫
R+0

(T 𝑦𝛼 𝑓 ) (𝑥) a(𝑑𝑦)
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is a conservative Feller semigroup. Furthermore, we have 𝑇𝑡T a𝛼 𝑓 = T a𝛼 𝑇𝑡 𝑓 for all 𝑡 ≥ 0 and
a ∈ MC(R+0) (in particular, 𝑇𝑡T 𝑥𝛼 𝑓 = T 𝑥𝛼 𝑇𝑡 𝑓 for 𝑥 ≥ 0).

One should note that this result is similar to the Feller property for Kingman convolution semigroups,
stated in Proposition 2.19.

Proof. For `, a ∈ P(R+0) we have
∫
(T `𝛼 𝑓 ) (𝑥)a(𝑑𝑥) =

∬
(T 𝑦𝛼 𝑓 ) (𝑥)`(𝑑𝑥)a(𝑑𝑦) =

∫
𝑓 (𝑥)

(
` �
𝛼
a
)
(𝑑𝑥).

Therefore, by associativity and commutativity of the Whittaker convolution,

(T `𝛼 (T a𝛼 𝑓 )) (𝑥) =
∫
R+0

T `𝛼 (T a𝛼 𝑓 ) 𝑑𝛿𝑥 =
∫
R+0

T a𝛼 𝑓 𝑑
(
` �
𝛼
𝛿𝑥

)
=

∫
R+0

𝑓 𝑑
(
a �
𝛼

(
` �
𝛼
𝛿𝑥

) )
=

∫
R+0

𝑓 𝑑
( (
` �
𝛼
a
)
�
𝛼
𝛿𝑥

)
=

(
T𝛼
`�
𝛼
a
𝑓
)
(𝑥)

(
`, a ∈ P(R+0)

) (3.75)

and the convolution semigroup property yields that 𝑇0 = Id and 𝑇𝑡𝑇𝑠 = 𝑇𝑡+𝑠 for 𝑡, 𝑠 ≥ 0. The property
𝑇𝑡

(
C0(R+0)

)
⊂ C0(R+0) follows at once from (3.45) and the dominated convergence theorem. The

positivity and conservativeness of 𝑇𝑡 follows from the corresponding property of the Whittaker
translation (Proposition 3.13(a)). To prove the strong continuity of the semigroup, let 𝑓 ∈ C0(R+0) and
𝑥 ≥ 0. From the definition of weak convergence and the fact that (T 0

𝛼 𝑓 ) (𝑥) = 𝑓 (𝑥) we deduce that��(𝑇𝑡 𝑓 ) (𝑥) − 𝑓 (𝑥)�� = ����∫
R+0

(
(T 𝑦𝛼 𝑓 ) (𝑥) − 𝑓 (𝑥)

)
`𝑡 (𝑑𝑦)

���� −−−→
𝑡↓0

����∫
R+0

(
(T 𝑦𝛼 𝑓 ) (𝑥) − 𝑓 (𝑥)

)
𝛿0(𝑑𝑦)

���� = 0.

and therefore ∥𝑇𝑡 𝑓 − 𝑓 ∥∞ −→ 0 as 𝑡 ↓ 0 (cf. Proposition 2.1). The concluding statement is a
consequence of (3.75). �

Proposition 3.35. Let {𝑇𝑡 } be a Feller semigroup determined by the �
𝛼
-convolution semigroup {`𝑡 }𝑡≥0.

Then, for each 1 ≤ 𝑝 < ∞,
{
𝑇𝑡 |Cc (R+0 )

}
has an extension {𝑇 (𝑝)𝑡 } which is a strongly continuous

contraction semigroup on 𝐿 𝑝 (𝑟𝛼). Moreover, the operators 𝑇 (𝑝)𝑡 are given by(
𝑇
(𝑝)
𝑡 𝑓

)
(𝑥) = (T `𝑡𝛼 𝑓 ) (𝑥) :=

∫
R+0

(T 𝑦𝛼 𝑓 ) (𝑥) `𝑡 (𝑑𝑦)
(
𝑓 ∈ 𝐿 𝑝 (𝑟𝛼)

)
. (3.76)

Proof. By Proposition 3.13(b) and Minkowski’s integral inequality, we have

𝑇 (𝑝)𝑡 𝑓

𝑝,𝛼
≤

[∫ ∞

0

(∫
R+0

| (T 𝑦𝛼 𝑓 ) (𝑥) | `𝑡 (𝑑𝑦)
)𝑝
𝑟𝛼 (𝑥)𝑑𝑥

] 1
𝑝

≤
∫
R+0

∥T 𝑦𝛼 𝑓 ∥𝑝,𝛼 `𝑡 (𝑑𝑦) ≤ ∥ 𝑓 ∥𝑝,𝛼

(3.77)
showing that the operators 𝑇 (𝑝)𝑡 defined by (3.76) are contractions on 𝐿 𝑝 (𝑟𝛼). To prove the strong
continuity, let 𝑓 ∈ 𝐿 𝑝 (𝑟𝛼), Y > 0 and choose 𝑔 ∈ C∞c (R+) such that ∥ 𝑓 − 𝑔∥𝑝,𝛼 ≤ Y. Then it follows
from (3.77) and the strong continuity of the Feller semigroup {𝑇𝑡 } that

lim sup
𝑡↓0

𝑇 (𝑝)𝑡 𝑓 − 𝑓

𝑝,𝛼
≤ lim sup

𝑡↓0

(𝑇 (𝑝)𝑡 𝑓 − 𝑇 (𝑝)𝑡 𝑔

𝑝,𝛼
+ ∥ 𝑓 − 𝑔∥𝑝,𝛼 + ∥𝑇𝑡𝑔 − 𝑔∥𝑝,𝛼

)
≤ 2Y + 𝐶 · lim sup

𝑡↓0
∥𝑇𝑡𝑔 − 𝑔∥∞ = 2Y
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where 𝐶 = [
∫

supp(𝑔) 𝑟𝛼 (𝑥)𝑑𝑥]
1/𝑝 (𝐶 < ∞ because the support supp(𝑔) ⊂ R+ is compact). Since Y is

arbitrary, we find that lim𝑡↓0
𝑇 (𝑝)𝑡 𝑓 − 𝑓


𝑝,𝛼

= 0 for each 𝑓 ∈ 𝐿 𝑝 (𝑟𝛼) �

It is worth pointing out that, taking advantage of the correspondence between functions 𝑓 ∈ 𝐿2(𝑟𝛼)
and their index Whittaker transforms (Proposition 3.14), the action of the 𝐿2-Markov semigroup
{𝑇 (2)𝑡 } can be explicitly written as

W𝛼 (𝑇 (2)𝑡 𝑓 ) (𝜏) = 𝑒−𝑡 𝜓 (𝜏2+( 1
2−𝛼)

2) · (W𝛼 𝑓 ) (𝜏), 𝑓 ∈ 𝐿2(𝑟𝛼). (3.78)

where 𝜓 is the log-Whittaker transform of the �
𝛼
-convolution semigroup {`𝑡 } (i.e., of the measure `1).

Indeed, for 𝑓 ∈ Cc(R+0) and ` ∈ MC(R+0) we have

(
W𝛼 (T `𝛼 𝑓 )

)
(𝜏) =

∫ ∞

0
𝑊𝛼,𝑖𝜏 (𝑥)

∫
R+0

(T 𝑦𝛼 𝑓 ) (𝑥)`(𝑑𝑦) 𝑟𝛼 (𝑥)𝑑𝑥

=

∫
R+0

(
W𝛼 (T 𝑦𝛼 𝑓 )

)
(𝜏) `(𝑑𝑦)

=

∫
R+0

∫
R+0

∫
R+0

𝑊𝛼,𝑖𝜏 (𝑥)𝑘𝛼 (𝑥, 𝑦, b) 𝑟𝛼 (𝑥)𝑑𝑥 𝑓 (b)𝑟𝛼 (b)𝑑b `(𝑑𝑦)

=

∫
R+0

∫
R+0

𝑊𝛼,𝑖𝜏 (𝑦)𝑊𝛼,𝑖𝜏 (b) 𝑓 (b)𝑟𝛼 (b)𝑑b `(𝑑𝑦)

= ̂̀(𝜏2 + ( 12 − 𝛼)
2) · (W𝛼 𝑓 ) (𝜏)

(the second, third and fourth equalities being obtained by changing the order of integration and using
(3.32)). The identity

(
W𝛼 (T `𝛼 𝑓 )

)
(𝜏) = ̂̀(𝜏2 + ( 12 − 𝛼)

2) · (W𝛼 𝑓 ) (𝜏) extends, by continuity, to all
𝑓 ∈ 𝐿2(𝑟𝛼), and then Remark 3.33 yields (3.78).

The index Whittaker transform also allows us to give the following characterization of the generator
of the semigroup {𝑇 (2)𝑡 }:

Proposition 3.36. Let {`𝑡 } be a�
𝛼
-convolution semigroup with log-Whittaker transform𝜓 and let {𝑇 (2)𝑡 }

be the associated Markovian semigroup on 𝐿2(𝑟𝛼). Then the infinitesimal generator (G (2) ,D(G (2) ))
of the semigroup {𝑇 (2)𝑡 } is the self-adjoint operator given by(

W𝛼 (G (2) 𝑓 )
)
(𝜏) = −𝜓(𝜏2 + ( 12 − 𝛼)

2) · (W𝛼 𝑓 ) (𝜏), 𝑓 ∈ D(G (2) )

where

D(G (2) ) =
{
𝑓 ∈ 𝐿2(𝑟𝛼)

���� ∫ ∞

0

��𝜓(𝜏2 + ( 12 − 𝛼)
2)

��2��(W𝛼 𝑓 ) (𝜏)
��2𝜌𝛼 (𝜏)𝑑𝜏 < ∞}

.

Proof. The proof is very similar to that of the corresponding result for the Fourier transform and the
generator of an ordinary convolution semigroup (see [13, Theorem 12.16]), so we only give a sketch.

It follows from (3.46) that ⟨𝑇 (2)𝑡 𝑓 , 𝑔⟩ = ⟨ 𝑓 , 𝑇 (2)𝑡 𝑔⟩ for 𝑓 , 𝑔 ∈ 𝐿2(𝑟𝛼), i.e. {𝑇 (2)𝑡 } is a semigroup
of symmetric operators in 𝐿2(𝑟𝛼). It is well-known from the theory of semigroups on Hilbert
spaces that the generators of self-adjoint contraction semigroups are the operators −𝔄 where 𝔄 is a
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positive self-adjoint operator [40, Theorem 4.6]. Hence, in particular, the generator (G (2) ,D(G (2) ))
is self-adjoint.

Letting 𝑓 ∈ D(G (2) ), so that 𝐿2-lim𝑡↓0
1
𝑡
(𝑇 (2)𝑡 𝑓 − 𝑓 ) = G (2) 𝑓 ∈ 𝐿2(𝑟𝛼), from (3.78) we get

𝐿2-lim
𝑡↓0

1
𝑡

(
𝑒−𝑡 𝜓 − 1

)
·W𝛼 𝑓 =W𝛼 (G (2) 𝑓 )

(here we write 𝜓(𝜏) := 𝜓(𝜏2 + ( 12 −𝛼)
2)). The convergence holds almost everywhere along a sequence

{𝑡𝑛}𝑛∈N such that 𝑡𝑛 → 0, so we conclude thatW𝛼 (G (2) 𝑓 ) = −𝜓 ·W𝛼 𝑓 ∈ 𝐿2 (R+; 𝜌𝛼 (𝜏)𝑑𝜏) .
Conversely, if we let 𝑓 ∈ 𝐿2(𝑟𝛼) with −𝜓 ·W𝛼 𝑓 ∈ 𝐿2 (R+; 𝜌𝛼 (𝜏)𝑑𝜏) , then we have

𝐿2-lim
𝑡↓0

1
𝑡

(
W𝛼 (𝑇 (2)𝑡 𝑓 ) −W𝛼 𝑓

)
= −𝜓 ·W𝛼 𝑓 ∈ 𝐿2 (R+; 𝜌𝛼 (𝜏)𝑑𝜏)

and the isometry gives that 𝐿2-lim𝑡↓0
1
𝑡

(
𝑇
(2)
𝑡 𝑓 − 𝑓

)
∈ 𝐿2(𝑟𝛼), meaning that 𝑓 ∈ D(G (2) ). �

3.5.2 Lévy and Gaussian processes

Definition 3.37. Let {`𝑡 }𝑡≥0 be a �
𝛼
-convolution semigroup. An R+0-valued Markov process 𝑋 =

{𝑋𝑡 }𝑡≥0 is said to be a �
𝛼
-Lévy process associated with {`𝑡 }𝑡≥0 if its transition probabilities are given

by
𝑃
[
𝑋𝑡 ∈ 𝐵|𝑋𝑠 = 𝑥

]
= (`𝑡−𝑠 �

𝛼
𝛿𝑥) (𝐵), 0 ≤ 𝑠 ≤ 𝑡, 𝑥 ≥ 0, 𝐵 a Borel subset of R+0 .

In other words, a �
𝛼
-Lévy process is a Feller process associated with the Feller semigroup defined in

(3.74). Consequently, the general connection between Feller semigroups and Feller processes (Section
2.1) ensures that for each (initial) distribution a ∈ P(R+0) and �

𝛼
-convolution semigroup {`𝑡 }𝑡≥0 there

exists a �
𝛼
-Lévy process 𝑋 associated with {`𝑡 }𝑡≥0 and such that 𝑃[𝑋0 ∈ · ] = a. Being a Feller

process, any �
𝛼
-Lévy process is stochastically continuous and has a càdlàg modification (Proposition

2.2).
As expected (cf. Corollary 2.18 for the Kingman convolution), the �

𝛼
-Lévy processes are a subclass

of Feller processes which includes the Shiryaev process generated by the Sturm-Liouville operator
(3.2):

Proposition 3.38. The Shiryaev process {𝑌𝑡 }𝑡≥0 is a �
𝛼
-Lévy process.

Proof. For 𝑡, 𝑥 ≥ 0 let us write 𝑝𝑡 ,𝑥 (𝑑𝑦) ≡ 𝑃𝑥 [𝑌𝑡 ∈ 𝑑𝑦]. According to Corollary 2.37, we have

𝑝𝑡 ,𝑥 (𝑑𝑦) =
∫
R+0

𝑒−𝑡 (𝜏
2+( 1

2−𝛼)
2)𝑊𝛼,𝑖𝜏 (𝑥)𝑊𝛼,𝑖𝜏 (𝑦) 𝜌𝛼 (𝜏)𝑑𝜏 𝑟𝛼 (𝑦)𝑑𝑦, 𝑡, 𝑥 > 0 (3.79)

where the integral converges absolutely. Consequently, by Proposition 3.14,

𝑝𝑡 ,𝑥 (_) = 𝑒−𝑡_𝑊𝛼,Δ_
(𝑥), 𝑡, 𝑥 ≥ 0 (3.80)
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(the weak continuity of 𝑝𝑡 ,𝑥 justifies that the equality also holds for 𝑡 = 0 and for 𝑥 = 0). This shows that
𝑝𝑡 ,𝑥 = 𝑝𝑡 ,0 �

𝛼
𝛿𝑥 where �̂�𝑡 ,0(_) = 𝑒−𝑡_. It is clear from the properties of the index Whittaker transform

of measures that {𝑝𝑡 ,0}𝑡≥0 is a �
𝛼
-convolution semigroup; therefore, 𝑌 is a �

𝛼
-Lévy process. �

Remark 3.39. The proposition above ensures that there exists a �
𝛼
-convolution semigroup {`𝑡 } such

that ̂̀𝑡 (_) = 𝑒−𝑡_. An interesting problem, which we do not address in this work, is to prove or
disprove the existence of convolution semigroups {`𝛽𝑡 }𝑡≥0 such that ̂̀𝛽

𝑡 (_) = 𝑒−𝑡_
𝛽 , where 0 < 𝛽 < 1.

A positive answer has been given for Urbanik convolution algebras (see [178]), but the proof depends
on the homogeneity axiom U5 which is not satisfied by the Whittaker convolution.

In the context of Urbanik convolution algebras, if a is a measure with generalized characteristic
function 𝑒−𝑡_𝛽 , then a satisfies the property

given 𝑎, 𝑏 > 0, there exists 𝑐 > 0 such that Θ𝑎a �Θ𝑏a = Θ𝑐a.

Such measures are therefore called stable measures with respect to the generalized convolution. (This
is analogous to the classical notion of a strictly stable probability distribution on R as a measure
a ∈ P(R) such that given 𝑎, 𝑏 ∈ R there exists 𝑐 ∈ R for which we have 𝑎𝑋1 + 𝑏𝑋2

𝑑
= 𝑐𝑋 , where

𝑋, 𝑋1, 𝑋2 are mutually independent random variables with common distribution a and 𝑑
= denotes

equality in distribution; see e.g. [57, Chapter VI] for the basics on stable distributions on R.) For a
discussion of the notion of stable measures in the context of generalized (hypergroup) convolutions
not satisfying the homogeneity axiom, we refer to [198].

Since �
𝛼
-Lévy processes are Feller processes, they can be characterized as the solution of the

corresponding martingale problem, as stated in Theorem 2.5. The next proposition provides some
additional equivalent martingale characterizations of �

𝛼
-Lévy processes. For an R+0-valued càdlàg

process 𝑋 = {𝑋𝑡 }𝑡≥0, a linear operator 𝐴 : D −→ C(R+0) with domain D ⊂ C(R+0) and a function
𝑓 ∈ D, we introduce the notation 𝑍𝐴, 𝑓

𝑋
=

{
𝑍
𝐴, 𝑓

𝑋,𝑡

}
𝑡≥0, where

𝑍
𝐴, 𝑓

𝑋,𝑡
:= 𝑓 (𝑋𝑡 ) − 𝑓 (𝑋0) −

∫ 𝑡

0
(𝐴 𝑓 ) (𝑋𝑠) 𝑑𝑠. (3.81)

Proposition 3.40. Let {`𝑡 }𝑡≥0 be a �
𝛼
-convolution semigroup with log-Whittaker transform 𝜓 and let

(𝐴,D𝐴) be the infinitesimal generator of the Feller semigroup determined by {`𝑡 } (cf. Proposition
3.34). Let 𝑋 be an R+0-valued càdlàg Markov process. The following assertions are equivalent:

(i) 𝑋 is a �
𝛼
-Lévy process associated with {`𝑡 };

(ii) {𝑒𝑡 𝜓 (_)𝑊𝛼,Δ_
(𝑋𝑡 )}𝑡≥0 is a martingale for each _ ≥ 0;

(iii)
{
𝑊𝛼,Δ_

(𝑋𝑡 ) −𝑊𝛼,Δ_
(𝑋0) + 𝜓(_)

∫ 𝑡
0 𝑊𝛼,Δ_

(𝑋𝑠) 𝑑𝑠
}
𝑡≥0 is a martingale for each _ ≥ 0;

(iv) 𝑍𝐴,𝑊𝛼,Δ_
(·)

𝑋
is a martingale for each _ ≥ 0;

(v) 𝑍𝐴, 𝑓
𝑋

is a martingale for each 𝑓 ∈ D𝐴.

Proof. The proof is identical to that of the corresponding martingale characterization for Lévy
processes on commutative hypergroups [153, Theorem 3.4]. �



3.5. Lévy processes with respect to the Whittaker convolution 71

A �
𝛼
-convolution semigroup {`𝑡 }𝑡≥0 such that `1 is a �

𝛼
-Gaussian measure will be called a �

𝛼
-

Gaussian convolution semigroup, and a �
𝛼
-Lévy process associated with a �

𝛼
-Gaussian convolution

semigroup is said to be a�
𝛼
-Gaussian process. An alternative characterization of�

𝛼
-Gaussian convolution

semigroups (which in particular implies that any �
𝛼
-Gaussian convolution semigroup is fully composed

of �
𝛼
-Gaussian measures) is given in the next lemma.

Lemma 3.41. Let ` ∈ P𝛼,id and let {`𝑡 } be the �
𝛼
-convolution semigroup {`𝑡 } such that `1 = `. Then,

the following conditions are equivalent:

(i) ` is a �
𝛼
-Gaussian measure;

(ii) lim𝑡↓0
1
𝑡
`𝑡 [Y,∞) = 0 for every Y > 0;

(iii) lim𝑡↓0
1
𝑡
(`𝑡 �

𝛼
𝛿𝑥)

(
R+0 \ (𝑥 − Y, 𝑥 + Y)

)
= 0 for every 𝑥 ≥ 0 and Y > 0.

Proof. (i)=⇒ (ii): Let {𝑡𝑛}𝑛∈N be a sequence such that 𝑡𝑛 → 0 as 𝑛 → ∞, and let a𝑛 = e𝛼
( 1
𝑡𝑛
`𝑡𝑛

)
.

We have
lim
𝑛→∞

â𝑛 (_) = lim
𝑛→∞

exp
[

1
𝑡𝑛

(̂̀1(_)𝑡𝑛 − 1
) ]

= ̂̀1(_), _ > 0 (3.82)

and therefore, by Proposition 3.18(iv), a𝑛
𝑤−→ `1 as 𝑛→∞. From this it follows, cf. [183], that if 𝜋𝑛

denotes the restriction of 1
𝑡𝑛
`𝑡𝑛 to [𝑎, 𝑏) \ V𝑎, then {𝜋𝑛} is relatively compact; if 𝜋 is a limit point,

then e𝛼 (𝜋) is a divisor of `1. Since `1 is Gaussian, e𝛼 (𝜋) = 𝛿𝑎, hence 𝜋 must be the zero measure,
showing that (ii) holds.

(ii)=⇒ (i): As in (3.82), for _ > 0 we have

̂̀1(_) = lim
𝑛→∞

exp
[

1
𝑡𝑛

∫
[𝑎,𝑏)

(
𝑊𝛼,Δ_

(𝑥) − 1
)
`𝑡𝑛(𝑑𝑥)

]
= lim
𝑛→∞

exp
[

1
𝑡𝑛

∫
V𝑎

(
𝑊𝛼,Δ_

(𝑥) − 1
)
`𝑡𝑛(𝑑𝑥)

]
where the second equality is due to (ii), noting that 1

𝑡𝑛

∫
[𝑎,𝑏)\V𝑎

(𝑊𝛼,Δ_
(𝑥) − 1)`𝑡𝑛(𝑑𝑥) ≤ 2

𝑡
`𝑡𝑛

(
[𝑎, 𝑏) \

V𝑎
)
. Given that a𝑛 = e𝛼

( 1
𝑡𝑛
`𝑡𝑛

) 𝑤−→ `1, we have (again, see [183])

̂̀1(_) = exp
[∫
(𝑎,𝑏)

(
𝑊𝛼,Δ_

(𝑥) − 1
)
[(𝑑𝑥)

]
, _ > 0

for some 𝜎-finite measure [ on (𝑎, 𝑏) which, by the above, vanishes on the complement of any
neighbourhood of the point 𝑎. Therefore, `1 is Gaussian.

(ii)⇐⇒ (iii): To prove the nontrivial direction, assume that (ii) holds, and fix 𝑥, Y > 0 with
0 < 𝑥 < Y. Write 𝐸Y = R+0 \ (𝑥 − Y, 𝑥 + Y), and let 1Y denote its indicator function. We start the proof
by establishing an upper bound for the function (T 𝑥𝛼 1Y) (𝑦), with 𝑦 > 0 small. Using the estimate
(3.35), together with the inequalities(

1 + 𝑥
b
+ 𝑦
b

)2𝛼
≤ (1 + b−1) (1 + 𝑥 + 𝛿), |𝑥 − b |5

(8𝑥𝑦b)52
exp

(
− |𝑥 − b |

2

8𝑥𝑦b

)
≤ 1 (𝑥, b > 0, 𝑦 < 𝛿)
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it is easily seen that

𝑘𝛼 (𝑥, 𝑦, b)𝑟𝛼 (b) ≤ 𝐶1 𝑦
2 |𝑥 − b |−5b (1 + b) exp

(
− 1

2b
− 𝑦

4𝑥b
− (𝑥 − b)

2

8𝑥𝑦b

)
≤ 𝐶2 𝑦

2b (1 + b) exp
(
− 1

2b
− (𝑥 − b)

2

8𝛿𝑥b

)
(𝑦 ≤ 𝛿, b ∈ 𝐸Y)

where the constants 𝐶1, 𝐶2 > 0 depends only on 𝑥, 𝛿 and Y. Consequently, for 𝑦 < 𝛿 we have

(T 𝑥𝛼 1Y) (𝑦) =
∫
𝐸Y

𝑘𝛼 (𝑥, 𝑦, b)𝑟𝛼 (b)𝑑b

≤ 𝐶2 𝑦
2
∫ ∞

0
b (1 + b) exp

(
− 1

2b
− (𝑥 − b)

2

8𝛿𝑥b

)
𝑑b

≤ 𝐶3 𝑦
2 (3.83)

the convergence of the integral justifying that the last inequality holds for a possibly larger constant 𝐶2.
Let _ > 0 be arbitrary. If 𝛿 > 0 is sufficiently small, then from (3.69) and (3.83) it follows that

(T 𝑥𝛼 1Y) (𝑦)
1 −𝑊𝛼,Δ_

(𝑦) ≤ 2𝐶3_
−1 𝑦, 𝑦 ≤ 𝛿

and therefore there exists 𝛿′ > 0 (which depends on _) such that (T 𝑥𝛼 1Y) (𝑦) ≤ 1 −𝑊𝛼,Δ_
(𝑦) for all

𝑦 ∈ [0, 𝛿′). We then estimate

1
𝑡
(`𝑡 �

𝛼
𝛿𝑥) (𝐸Y) =

1
𝑡

∫
R+0

(T 𝑥𝛼 1Y) (𝑦)`𝑡 (𝑑𝑦)

≤ 1
𝑡

∫
[0, 𝛿′)

(
1 −𝑊𝛼,Δ_

(𝑦)
)
`𝑡 (𝑑𝑦) +

1
𝑡
`𝑡 [𝛿′,∞)

≤ 1
𝑡

∫
R+0

(
1 −𝑊𝛼,Δ_

(𝑦)
)
`𝑡 (𝑑𝑦) +

1
𝑡
`𝑡 [𝛿′,∞)

=
1
𝑡

(
1 − ̂̀𝑡 (_)) + 1

𝑡
`𝑡 [𝛿′,∞).

Since we are assuming that (ii) holds and we know that lim𝑡↓0
1
𝑡

(
1 − ̂̀𝑡 (_)) = − log ̂̀(_) (cf. proof of

Proposition 3.25), the above inequality gives

lim sup
𝑡↓0

1
𝑡
(`𝑡 �

𝛼
𝛿𝑥) (𝐸Y) ≤ − log ̂̀(_).

By the properties of the index Whittaker transform, the right-hand side is continuous and vanishes for
_ = 0, so from the arbitrariness of _ we see that lim𝑡↓0

1
𝑡
(`𝑡 �

𝛼
𝛿𝑥) (𝐸Y) = 0, as desired. �

Denoting, as in (3.79), the law of the Shiryaev process started at 𝑥 by 𝑝𝑡 ,𝑥 , it follows from
Propositions 2.3 and 2.8 that lim𝑡↓0

1
𝑡
𝑝𝑡 ,𝑥

(
R+0 \ (𝑥 − Y, 𝑥 + Y)

)
= 0 for any 𝑥 ≥ 0 and Y > 0, meaning

that the Shiryaev process is a �
𝛼
-Gaussian process. It turns out that, as a consequence of the previous

lemma, any other �
𝛼
-Gaussian process is also a one-dimensional diffusion:
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Corollary 3.42. Let 𝑋 = {𝑋𝑡 }𝑡≥0 be a �
𝛼
-Gaussian process associated with the �

𝛼
-Gaussian convolution

semigroup {`𝑡 }𝑡≥0. Then:

(i) 𝑋 has a modification whose paths are a.s. continuous;

(ii) Let (G,D(G)) be the infinitesimal generator of the Feller semigroup determined by {`𝑡 }. Then
G is a local operator, i.e., (G 𝑓 ) (𝑥) = (G𝑔) (𝑥) whenever 𝑓 , 𝑔 ∈ D(G) and 𝑓 = 𝑔 on some
neighborhood of 𝑥 ≥ 0.

Proof. We know from Lemma 3.41 that the associated �
𝛼
-Gaussian convolution semigroup is such

that lim𝑡↓0
1
𝑡
(`𝑡 �

𝛼
𝛿𝑥)

(
R+0 \ (𝑥 − Y, 𝑥 + Y)

)
= 0 for every 𝑥 ≥ 0 and Y > 0. Using Proposition 2.3,

we conclude that the càdlàg modification of 𝑋 has a.s. continuous sample paths. The locality of the
generator is then proved by applying Proposition 2.4 to the R-valued process 𝑋 = {𝑋𝑡 }𝑡≥0 which is the
extension of 𝑋 obtained by setting 𝑋𝑡 (𝜔) = 𝑥 whenever the initial distribution is a = 𝛿𝑥 , 𝑥 < 0. �

3.5.3 Some auxiliary results on the Whittaker translation

In this subsection we return to the Whittaker translation operator (3.36), which we will now interpret
as an operator on the space

𝔛 :=
{
𝑓 ∈ 𝐿0(R+) : | 𝑓 (𝑥) | ≤ 𝑏1 exp

(
1
𝑥
+ 𝑏2(𝑥−𝛽 + 𝑥𝛽)

)
for some 𝑏1, 𝑏2 ≥ 0 and 0 ≤ 𝛽 < 1

}
(3.84)

being 𝐿0(R+) the space of Lebesgue measurable functions 𝑓 : R+ −→ C. The goal of this digression
is to determine some properties which will be useful for introducing (in the next subsection) the notion
of moment functions with respect to the Whittaker convolution.

We first note that the condition 𝑓 ∈ 𝔛 ensures that for each 𝑥, 𝑦 > 0 the Whittaker translation
(T 𝑦𝛼 𝑓 ) (𝑥) =

∫ ∞
0 𝑓 (b)𝑘𝛼 (𝑥, 𝑦, b) 𝑟𝛼 (b)𝑑b exists as an absolutely convergent integral, as can be verified

using (3.35).

Lemma 3.43. Fix 𝑦, 𝑀 > 0. Let 𝑓 ∈ 𝔛 and 𝑝 ∈ N0. Then, for each Y > 0 there exists 𝛿, 𝑀0 > 0 such
that ∫

𝐸𝑀

| 𝑓 (b) |
��� 𝜕 𝑝
𝜕𝑥𝑝

𝑘𝛼 (𝑥, 𝑦, b)
���𝑟𝛼 (b) 𝑑b < Y for all 𝑥 ∈ (0, 𝛿] and 𝑀 ≥ 𝑀0

where 𝐸𝑀 = (0, 1
𝑀
] ∪ [𝑀,∞).

Proof. Fix 𝑘 ≥ −1
2 +max{𝛼, 0}. Note that if 𝜎 ∈ C then (after a new choice of 𝑏2 and 𝛽) the function

b ↦→ b𝜎 𝑓 (b) also belongs to 𝔛. Let 𝛿 < 𝑦

4 . If |b − 𝑦 | ≥ 2𝛿 and 𝑥 ≤ 𝛿, using (3.35), the boundedness
of the function |𝑡 |𝑘+ 1

2 𝑒−|𝑡 | and the inequalities

(𝑥 + 𝑦 + b)2𝛼
|𝑥 + b − 𝑦 |2𝑘+1

≤
(
1 + 2𝑦

𝛿

)2𝛼 ( 𝛿
4

)2𝛼−2𝑘−1
, 𝛼 ≥ 0

(𝑥 + 𝑦 + b)2𝛼
|𝑥 + b − 𝑦 |2𝑘+1

≤ 𝑦2𝛼

𝛿2𝑘+1 , 𝛼 ≤ 0
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we find that

𝑥−𝑘 | 𝑓 (b) | 𝑘𝛼 (𝑥, 𝑦, b) 𝑟𝛼 (b) ≤
𝐶

(𝑥𝑦b)𝑘+ 1
2
(𝑥 + 𝑦 + b)2𝛼 exp

(
𝑏2(b−𝛽 + b𝛽) −

(𝑥 + b − 𝑦)2
4𝑥𝑦b

)
≤ 𝐶 exp

(
𝑏2(b−𝛽 + b𝛽) −

(𝑥 + b − 𝑦)2
8𝑥𝑦b

)
, |b − 𝑦 | ≥ 2𝛿, 𝑥 ≤ 𝛿

(3.85)
where 𝐶 depends only on 𝑦 and 𝛿. Since 0 ≤ 𝛽 < 2, the integral

∫ ∞
0 exp

{
𝑏2(b−𝛽+ b𝛽) − (𝑥+b−𝑦)

2

8𝑥𝑦 b

}
𝑑b

converges uniformly in 𝑥 ∈ [0, 𝛿]. Combining this with the inequality (3.85), we conclude that 𝑀0 > 0
can be chosen so large that∫

𝐸𝑀

𝑥−𝑘 | 𝑓 (b) | 𝑘𝛼 (𝑥, 𝑦, b) 𝑟𝛼 (b) 𝑑b < 𝛿 for all 0 < 𝑥 <
(
𝛿
2
)1/2 and 𝑀 ≥ 𝑀0. (3.86)

Using the identity (3.55), one can deduce (by induction) that the function 𝑓 (b) 𝜕𝑝

𝜕𝑥𝑝
𝑘𝛼 (𝑥, 𝑦, b)

can be written as a finite sum of the form
∑
𝑗 𝐶 𝑗𝑥

−𝑘 𝑗𝑔 𝑗 (b) 𝑘𝛼𝑗
(𝑥, 𝑦, b), where 𝑔 𝑗 ∈ 𝔛 and 𝑘 𝑗 ≥

−1 +max{2𝛼 𝑗 , 0} for all 𝑗 . Therefore, the conclusion of the lemma follows from (3.86). �

Lemma 3.44. Let 𝑓 ∈ 𝔛 ∩ C2(R+) and 𝑦 > 0. Then:

(i) lim
𝑥→0
(T 𝑦𝛼 𝑓 ) (𝑥) = 𝑓 (𝑦);

(ii) lim
𝑥→0

𝑝𝛼 (𝑥) 𝜕𝜕𝑥 (T
𝑦
𝛼 𝑓 ) (𝑥) = 0.

Proof. (i) We will first show that it is enough to prove the result for 𝑓 ∈ C2
c (R+). Suppose that part

(i) of the lemma holds for 𝑓 ∈ C2
c (R+). Let 𝑔 ∈ 𝔛 ∩ C2(R+) and Y, 𝑀 > 0; then, choose 𝛿 > 0 and

𝑔c ∈ C2
c (R+) such that 𝑔(b) = 𝑔c(b) for all b ∈ [ 1

𝑀
, 𝑀] and

| (T 𝑦𝛼 𝑔) (𝑥) − (T 𝑦𝛼 𝑔c) (𝑥) | < Y for all 𝑥 ∈ (0, 𝛿]

(to see that this is possible, apply the case 𝑝 = 0 of Lemma 3.43). If 𝑦 ∈ [ 1
𝑀
, 𝑀], we obtain

lim sup
𝑥→0

| (T 𝑦𝛼 𝑔) (𝑥) − 𝑔(𝑦) | ≤ Y + lim
𝑥→0
| (T 𝑦𝛼 𝑔c) (𝑥) − 𝑔c(𝑦) | = Y.

As 𝑀 and Y are arbitrary, we conclude that lim𝑥→0(T 𝑦𝛼 𝑔) (𝑥) = 𝑔(𝑦) for all 𝑦 > 0 and 𝑔 ∈ 𝔛∩C2(R+).
Let us now prove that lim𝑥→0(T 𝑦𝛼 𝑓 ) (𝑥) = 𝑓 (𝑦) holds for 𝑓 ∈ C2

c (R+). Using the integral
representation for 𝑘𝛼 (𝑥, 𝑦, b) given in (3.49), we write

(T 𝑦𝛼 𝑓 ) (𝑥) =
∫ ∞

0
𝑓 (b)

∫ ∞

0
𝑊𝛼,𝑖𝜏 (𝑥)𝑊𝛼,𝑖𝜏 (𝑦)𝑊𝛼,𝑖𝜏 (b) 𝜌𝛼 (𝜏)𝑑𝜏 𝑟𝛼 (b)𝑑b

=

∫ ∞

0
(W𝛼 𝑓 ) (𝜏)𝑊𝛼,𝑖𝜏 (𝑥)𝑊𝛼,𝑖𝜏 (𝑦) 𝜌𝛼 (𝜏)𝑑𝜏

(3.87)

where the second equality is obtained by changing the order of integration, which is valid because
𝑓 has compact support. It was noted above that the index Whittaker transformW𝛼 is a particular
case of the Sturm-Liouville integral transform (2.27)–(2.28), thus it follows from Lemma 2.35(b)
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that (W𝛼 𝑓 ) (𝜏)𝑊𝛼,𝑖𝜏 (𝑦) ∈ 𝐿1 (R+; 𝜌𝛼 (𝜏)𝑑𝜏) . Recalling also that |𝑊𝛼,𝑖𝜏 (𝑥) | ≤ 1 (𝑥, 𝜏 ≥ 0) and
|𝑊𝛼,𝑖𝜏 (0) | = 1, cf. (3.61) and (3.68), by dominated convergence we obtain that

lim
𝑥→0
(T 𝑦𝛼 𝑓 ) (𝑥) =

∫ ∞

0
(W𝛼 𝑓 ) (𝜏)

(
lim
𝑥→0

𝑊𝛼,𝑖𝜏 (𝑥)
)
𝑊𝛼,𝑖𝜏 (𝑦) 𝜌𝛼 (𝜏)𝑑𝜏 = 𝑓 (𝑦),

concluding the proof.

(ii) Identical reasoning as in part (i) shows that it is enough to prove the result for 𝑓 ∈ C2
c (R+).

Taking 𝑓 ∈ C2
c (R+), differentiation of (3.87) under the integral sign gives

𝑝𝛼 (𝑥)
𝜕

𝜕𝑥
(T 𝑦𝛼 𝑓 ) (𝑥) =

∫ ∞

0
(W𝛼 𝑓 ) (𝜏)

(
𝑝𝛼𝑊

′
𝛼,𝑖𝜏

)
(𝑥)𝑊𝛼,𝑖𝜏 (𝑦) 𝜌𝛼 (𝜏)𝑑𝜏

If we now apply (3.68), by dominated convergence we conclude that lim
𝑥→0

𝑝𝛼 (𝑥) 𝜕𝜕𝑥 (T
𝑦
𝛼 𝑓 ) (𝑥) = 0. �

3.5.4 Moment functions

Moment functions for generalized convolutions are functions having the same additivity property
which is satisfied by the monomials under the classical convolution. Such functions have been applied
to the study of limit theorems for hypergroup convolution structures (see the discussion in [16, pp.
530–531]). Let us introduce, in a similar way, the notion of moment functions with respect to the
Whittaker convolution:

Definition 3.45. The sequence of functions {𝜑𝑘 }𝑘=1,...,𝑛 is said to be a �
𝛼
-moment sequence (of length

𝑛) if 𝜑𝑘 ∈ 𝔛 for 𝑘 = 1, . . . , 𝑛 (cf. (3.84)) and

(T 𝑦𝛼 𝜑𝑘) (𝑥) =
𝑘∑
𝑗=0

(
𝑘

𝑗

)
𝜑 𝑗 (𝑥)𝜑𝑘− 𝑗 (𝑦) (𝑘 = 1, . . . , 𝑛; 𝑥, 𝑦 ≥ 0) (3.88)

where 𝜑0(𝑥) := 1 (𝑥 ≥ 0).

It is worth recalling that for 𝑥, 𝑦 > 0 the left-hand side of (3.88) is given by the integral∫ ∞
0 𝜑𝑘 (b)𝑘𝛼 (𝑥, 𝑦, b) 𝑟𝛼 (b)𝑑b, which converges absolutely. This actually implies that �

𝛼
-moment

functions are necessarily smooth:

Lemma 3.46. If {𝜑𝑘 }𝑘=1,...,𝑛 is a �
𝛼
-moment sequence, then 𝜑𝑘 ∈ C∞(R+) for all 𝑘 .

Proof. Let 𝑀 > 0 and 1 ≤ 𝑘 ≤ 𝑛. Let 𝑓 ∈ C∞c (2𝑀, 3𝑀) be such that
∫ 3𝑀

2𝑀 𝑓 (𝑥) 𝑟𝛼 (𝑥)𝑑𝑥 = 1, and
set 𝑓 (𝑥) = 0 for 𝑥 ∉ (2𝑀, 3𝑀). Then

𝑘∑
𝑗=0

(
𝑘

𝑗

)
𝜑 𝑗 (𝑦)

∫ ∞

0
𝜑𝑘− 𝑗 (𝑥) 𝑓 (𝑥) 𝑟𝛼 (𝑥)𝑑𝑥 =

∫ ∞

0
(T 𝑦𝛼 𝜑𝑘) (𝑥) 𝑓 (𝑥) 𝑟𝛼 (𝑥)𝑑𝑥

=

∫ ∞

0
𝜑𝑘 (𝑥) (T 𝑦𝛼 𝑓 ) (𝑥) 𝑟𝛼 (𝑥)𝑑𝑥
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where the second equality follows from the identity (3.46), which is easily seen to hold also for
𝑓 ∈ C∞c (R+) and 𝑔 ∈ 𝔛. Hence if we prove that the right-hand side is an infinitely differentiable
function of 0 < 𝑦 < 𝑀 , then by induction it follows that each 𝜑𝑘 ∈ C∞(0, 𝑀) and, by arbitrariness of
𝑀 , 𝜑𝑘 ∈ C∞(R+).

By (3.35), we have

(T 𝑦𝛼 𝑓 ) (𝑥) ≤ 𝐶1∥ 𝑓 ∥∞(𝑥𝑦)−
1
2 exp

(
1

2𝑦

) ∫ 3𝑀

2𝑀
b−

1
2−2𝛼 (𝑥 + 𝑦 + b)2𝛼 exp

(
− 1

2b
− 𝑥

4𝑦b
− (𝑦 − b)

2

4𝑥𝑦b

)
𝑑b

≤ 𝐶2∥ 𝑓 ∥∞ (𝑥𝑦)−
1
2 (1 + 𝑥2𝛼) exp

(
1

2𝑦
− 𝑥

12𝑀2 −
1

12𝑥

)
where 𝐶1 and 𝐶2 are constants depending only on 𝑀 . Since 𝜑𝑘 ∈ 𝔛, we find that

𝜑𝑘 (𝑥) (T 𝑦𝛼 𝑓 ) (𝑥) 𝑟𝛼 (𝑥) ≤ 𝐶 (𝑥𝑦)−
1
2 (1 + 𝑥−2𝛼) exp

(
1

2𝑦
+ 𝑏2(𝑥𝛽 + 𝑥−𝛽) −

𝑥

12𝑀2 −
1

12𝑥

)
(3.89)

where 𝐶 > 0, 𝑏2 ≥ 0 and 0 ≤ 𝛽 < 1 do not depend on 𝑦. Denoting the right-hand side of
(3.89) by 𝐽 (𝑥, 𝑦), it is easily seen that the integral

∫ ∞
0 𝐽 (𝑥, 𝑦)𝑑𝑥 converges locally uniformly and,

therefore,
∫ ∞

0 𝜑𝑘 (𝑥) (T 𝑦𝛼 𝑓 ) (𝑥)m(𝑥)𝑑𝑥 is a continuous function of 0 < 𝑦 < 𝑀. Using the identity
(3.55) (with 𝑥 and 𝑦 interchanged) and similar arguments, one can derive an upper bound for the
derivatives 𝜕𝑛

𝜕𝑦𝑛
(T 𝑦𝛼 𝑓 ) (𝑥) (𝑛 = 1, 2, . . .) and then deduce that

∫ ∞
0 𝜑𝑘 (𝑥) (T 𝑦𝛼 𝑓 ) (𝑥) 𝑟𝛼 (𝑥)𝑑𝑥 is 𝑛 times

continuously differentiable. �

Proposition 3.47. {𝜑𝑘 }𝑘=1,...,𝑛 is a �
𝛼
-moment sequence if and only if there exist _1, . . . , _𝑛 ∈ R such

that

A𝛼𝜑𝑘 (𝑥) =
𝑘∑
𝑗=1

(
𝑘

𝑗

)
_ 𝑗𝜑𝑘− 𝑗 (𝑥), 𝜑𝑘 (0) = 0, (𝑝𝛼𝜑′𝑘) (0) = 0 (𝑘 = 1, . . . , 𝑛), (3.90)

where 𝜑0 ≡ 1 and A𝛼 is the differential operator (3.2).

Proof. Let {𝜑𝑘 }𝑘=1,...,𝑛 be a �
𝛼
-moment sequence. First we will show that 𝜑𝑘 ∈ C∞(R+) ∩ C1(R+0)

with 𝜑𝑘 (0) = (𝑝𝛼𝜑′𝑘) (0) = 0. By Lemma 3.46, 𝜑𝑘 ∈ 𝔛 ∩ C∞(R+). It thus follows from Lemma 3.44
that for fixed 𝑦 > 0 we have lim𝑥→0(T 𝑦𝛼 𝜑𝑘) (𝑥) = 𝜑𝑘 (𝑦) and lim𝑥→0 𝑝𝛼 (𝑥) 𝜕𝜕𝑥 (T

𝑦
𝛼 𝜑𝑘) (𝑥) = 0. If we

rewrite (3.88) as

𝜑𝑘 (𝑥) = (T 𝑦𝛼 𝜑𝑘) (𝑥) −
𝑘−1∑
𝑗=0

(
𝑘

𝑗

)
𝜑 𝑗 (𝑥)𝜑𝑘− 𝑗 (𝑦) (3.91)

and let 𝑥 → 0 on the right-hand side, we deduce (by induction on 𝑘) that lim𝑥→0 𝜑𝑘 (𝑥) = 0 for all 𝑘 .
After differentiating both sides of (3.91), we similarly find that lim𝑥→0(𝑝𝛼𝜑′𝑘) (𝑥) = 0 for each 𝑘 .

We now prove that 𝜑𝑘 satisfies A𝛼𝜑𝑘 =
∑𝑘
𝑗=1

(𝑘
𝑗

)
_ 𝑗𝜑𝑘− 𝑗 , omitting the details which are similar

to the proof of [174, Theorem 4.5]. We know from (3.52) that A𝛼,𝑥𝑘𝛼 (𝑥, 𝑦, b) = A𝛼,𝑦𝑘𝛼 (𝑥, 𝑦, b).
Moreover, from the identity (3.55) it follows that the integral defining (T 𝑦𝛼 𝜑𝑘) (𝑥) can be differentiated
under the integral sign. Therefore, the right-hand side of (3.88) is, for each 𝑘 , a solution of
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A𝛼,𝑥𝑢 = A𝛼,𝑦𝑢, i.e.

𝑘∑
𝑗=0

(
𝑘

𝑗

)
(A𝛼𝜑 𝑗) (𝑥) 𝜑𝑘− 𝑗 (𝑦) =

𝑘∑
𝑗=0

(
𝑘

𝑗

)
𝜑 𝑗 (𝑥) (A𝛼𝜑𝑘− 𝑗) (𝑦).

Assume by induction that A𝛼𝜑ℓ (𝑥) =
∑ℓ
𝑗=1

(ℓ
𝑗

)
_ 𝑗𝜑ℓ− 𝑗 (𝑥) for ℓ = 1, . . . , 𝑘 − 1. Using the induction

hypothesis and rearranging the terms in a suitable way, we find that

(A𝛼𝜑𝑘) (𝑥) −
𝑘−1∑
𝑗=1
_ 𝑗𝜑𝑘− 𝑗 (𝑥) = (A𝛼𝜑𝑘) (𝑦) −

𝑘−1∑
𝑗=1
_ 𝑗𝜑𝑘− 𝑗 (𝑦) for all 𝑥, 𝑦 > 0

and, consequently,

(A𝛼𝜑𝑘) (𝑥) −
𝑘−1∑
𝑗=1
_ 𝑗𝜑𝑘− 𝑗 (𝑥) = _𝑘

for some _𝑘 ∈ R.
For the converse, suppose that {𝜑𝑘 }𝑘=1,...,𝑛 are solutions of (3.90). Integrating, we obtain

𝜑𝑘 (𝑥) = −
∫ 𝑥

0
1

𝑝𝛼 (𝑦)
∫ 𝑦

0 𝑟𝛼 (b)
[∑𝑘

𝑗=1
(𝑘
𝑗

)
_ 𝑗𝜑𝑘− 𝑗 (b)

]
𝑑b 𝑑𝑦. Straightforward bounds on this integral

yield that 𝜑𝑘 ∈ 𝔛 (see the proof of Proposition 3.49). We can assume by induction that

(T 𝑦𝛼 𝜑𝑟 ) (𝑥) =
𝑟∑
ℓ=0

(
𝑟

ℓ

)
𝜑ℓ (𝑥)𝜑𝑟−ℓ (𝑦) for 𝑟 = 1, . . . , 𝑘 − 1

and the goal is to prove that Φ𝑘,𝑦 (𝑥) := (T 𝑦𝛼 𝜑𝑘) (𝑥) −
∑𝑘
𝑗=0

(𝑘
𝑗

)
𝜑 𝑗 (𝑥)𝜑𝑘− 𝑗 (𝑦) vanishes identically. We

compute

A𝛼,𝑥

[
Φ𝑘,𝑦 (𝑥)

]
= T 𝑦𝛼 (A𝛼𝜑𝑘) (𝑥) −

𝑘∑
𝑗=0

(
𝑘

𝑗

)
(A𝛼𝜑 𝑗) (𝑥)𝜑𝑘− 𝑗 (𝑦)

=

𝑘∑
𝑗=1

(
𝑘

𝑗

)
_ 𝑗 (T 𝑦𝛼 𝜑𝑘− 𝑗) (𝑥) −

𝑘∑
𝑗=0

(
𝑘

𝑗

)
𝜑𝑘− 𝑗 (𝑦)

𝑘∑
ℓ=1

(
𝑗

ℓ

)
_ℓ𝜑 𝑗−ℓ (𝑥)

=

𝑘∑
𝑗=1

(
𝑘

𝑗

)
_ 𝑗

𝑘− 𝑗∑
ℓ=0

(
𝑘 − 𝑗
ℓ

)
𝜑ℓ (𝑥)𝜑𝑘− 𝑗−ℓ (𝑦) −

𝑘∑
𝑗=0

(
𝑘

𝑗

)
𝜑𝑘− 𝑗 (𝑦)

𝑘∑
ℓ=1

(
𝑗

ℓ

)
_ℓ𝜑 𝑗−ℓ (𝑥)

= 0.

Here, the first equality follows from the identity T 𝑦𝛼 (A𝛼𝜑) (𝑥) ≡ A𝛼,𝑥 (T 𝑦𝛼 𝜑) (𝑥), which can be
verified using (3.52) and integration by parts; the second equality applies (3.90); the induction
hypothesis gives the third equality; and the last step is obtained by rearranging the sums. Furthermore,
lim𝑥→0 Φ𝑘,𝑦 (𝑥) = lim𝑥→0 𝑝𝛼 (𝑥) 𝜕𝜕𝑥Φ𝑘,𝑦 (𝑥) = 0 (due to Lemma 3.44); by uniqueness of solution,
Φ𝑘,𝑦 (𝑥) ≡ 0, showing that (3.88) holds. �

The functions 𝜑𝛼,𝑘 (𝑘 ∈ N) defined as the unique solution of

A𝛼𝜑𝛼,𝑘 (𝑥) = −𝑘 (1 − 2𝛼)𝜑𝛼,𝑘−1(𝑥) − 𝑘 (𝑘 − 1)𝜑𝛼,𝑘−2(𝑥), 𝜑𝛼,𝑘 (0) = 0, (𝑝𝛼𝜑′𝛼,𝑘) (0) = 0
(3.92)
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(where 𝜑𝛼,−1(𝑥) := 0 and 𝜑𝛼,0(𝑥) := 1) are said to be the canonical �
𝛼
-moment functions. By

integration of the differential equation, we find the explicit recursive expression

𝜑𝛼,𝑘 (𝑥) = 𝑘
∫ 𝑥

0

1
𝑝𝛼 (𝑦)

∫ 𝑦

0
𝑟𝛼 (b)

[
(1 − 2𝛼)𝜑𝛼,𝑘−1(b) + (𝑘 − 1)𝜑𝛼,𝑘−2(b)

]
𝑑b 𝑑𝑦, 𝑘 ∈ N.

(3.93)
Moreover, as a consequence of the uniqueness of solution for (3.92) and the Laplace representation
(3.57), the canonical moment functions can also be represented as

𝜑𝛼,𝑘 (𝑥) =
𝜕𝑘

𝜕𝜎𝑘

���
𝜎= 1

2−𝛼
𝑊𝛼,𝜎 (𝑥) =

∫ ∞

−∞

[
𝜕𝑘 (𝑒𝜎𝑠)
𝜕𝜎𝑘

���
𝜎= 1

2−𝛼

]
[𝛼,𝑥 (𝑠)𝑑𝑠 =

∫ ∞

−∞
𝑠𝑘𝑒 (

1
2−𝛼)𝑠[𝛼,𝑥 (𝑠)𝑑𝑠.

The first (canonical) moment function can be written in closed form:

Proposition 3.48. We have

𝜑𝛼,1(𝑥) =
1

Γ(1 − 2𝛼)𝐺
31
23

(
1
𝑥

��� 0, 1
0, 0, 1 − 2𝛼

)
(3.94)

where 𝐺𝑚𝑛𝑝𝑞
(
𝑧 | 𝑎1,...,𝑎𝑝
𝑏1,...,𝑏𝑞

)
denotes the Meijer-G function [147, Section 8.2]. In the particular case 𝛼 = 0,

we have 𝜑𝛼,1(𝑥) = 𝑒
1
𝑥 Γ(0, 1

𝑥
), where Γ(𝑎, 𝑧) is the incomplete Gamma function [53, Chapter IX].

Proof. We know from (3.93) that 𝜑𝛼,1(𝑥) = (1 − 2𝛼)
∫ 𝑥

0
1

𝑝𝛼 (𝑦)
∫ 𝑦

0 𝑟𝛼 (b)𝑑b 𝑑𝑦. Consequently,

𝜑𝛼,1(𝑥) = (1 − 2𝛼)
∫ ∞

1
𝑥

𝑣−2𝛼𝑒𝑣
∫ ∞

𝑣

𝑤2𝛼−2𝑒−𝑤𝑑𝑤 𝑑𝑣

= (1 − 2𝛼)
∫ ∞

1
𝑥

𝑣−2𝛼𝑒𝑣Γ(−1 + 2𝛼, 𝑣)𝑑𝑣

=
1

Γ(1 − 2𝛼)

∫ ∞

1
𝑥

𝐺21
12

(
𝑣

��� −1
−2𝛼,−1

)
𝑑𝑣

=
1

Γ(1 − 2𝛼)𝐺
31
23

(
1
𝑥

��� 0, 1
0, 0, 1 − 2𝛼

)
where the first equality is obtained via a change of variables, the second equality follows from the
definition of the incomplete Gamma function, the third step is due to [147, Relations 8.2.2.15 and
8.4.16.13] and the final step applies [120, Equation 5.6.4(6)]. The result for 𝛼 = 0 follows from the
identity 𝐺31

23
( 1
𝑥
| 0,1

0,0,1
)
= 𝑒

1
𝑥 Γ(0, 1

𝑥
), cf. [147, Relations 8.2.2.9 and 8.4.16.13]. �

Actually, the right-hand side of (3.94) can be written (for 𝛼 < 1
2 ) as a sum of simpler special

functions. Such representation can be obtained by applying [6, Equation (A13)].
Returning to moment functions of general order, it is clear from the explicit representation (3.93)

that 𝜑𝛼,𝑘 (𝑥) > 0 for all 𝑥 > 0 and 𝑘 ∈ N. We note that 𝜑𝛼,2 ≥ 𝜑2
𝛼,1 (by Jensen’s inequality applied to

𝜑𝛼,𝑘 (𝑥) =
∫ ∞
−∞𝑠

𝑘𝑒 (
1
2−𝛼)𝑠[𝛼,𝑥 (𝑠)𝑑𝑠) and that the Taylor expansions of the first two moment functions

as 𝑥 → 0 are

𝜑𝛼,1(𝑥) = (1−2𝛼)𝑥−(1−2𝛼) (1−𝛼)𝑥2+𝑜(𝑥2), 𝜑𝛼,2(𝑥) = 2𝑥−(1+2𝛼−4𝛼2)𝑥2+𝑜(𝑥2) (3.95)
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(these relations can be deduced from the asymptotic expansion (3.8), taking into account that
𝜑𝛼,𝑘 (𝑥) = 𝜕𝑘

𝜕𝜎𝑘

��
𝜎= 1

2−𝛼
𝑊𝛼,𝜎 (𝑥)). Concerning the growth of the moment functions as 𝑥 →∞, we have:

Proposition 3.49. Let Y > 0. For each 𝑘 ∈ N, 𝜑𝛼,𝑘 (𝑥) = 𝑂 (𝑥Y) as 𝑥 →∞.

Proof. Due to (3.7), it suffices to prove that 𝜑𝛼,𝑘 (𝑥) = 𝑂
(
𝑊𝛼, 1

2−𝛼+Y
(𝑥)

)
as 𝑥 → ∞ for each 𝑘 ∈ N.

This is trivial for 𝑘 = 0 since 𝜑𝛼,0 ≡ 1 = 𝑂 (𝑥Y) = 𝑂
(
𝑊𝛼, 1

2−𝛼+Y
(𝑥)

)
. By induction, suppose that

𝜑𝛼, 𝑗 (𝑥) = 𝑂
(
𝑊𝛼, 1

2−𝛼+Y
(𝑥)

)
for 𝑗 = 0, . . . , 𝑘 − 1. This implies that 𝜑𝛼, 𝑗 (𝑥) ≤ 𝐶 ·𝑊𝛼, 1

2−𝛼+Y
(𝑥) for all

𝑥 ≥ 0 and 𝑗 = 0, . . . , 𝑘 − 1 (where 𝐶 > 0 does not depend on 𝑥). Recalling (3.67) and (3.93), we find

𝜑𝛼,𝑘 (𝑥) ≤ 𝐶
∫ 𝑥

0

1
𝑝𝛼 (𝑦)

∫ 𝑦

0
𝑟𝛼 (b)𝑊𝛼, 1

2−𝛼+Y
(b)𝑑b 𝑑𝑦 = 𝐶 · 1

Y(1 − 2𝛼 + Y)
(
𝑊𝛼, 1

2−𝛼+Y
(𝑥) − 1

)
and therefore 𝜑𝛼,𝑘 (𝑥) = 𝑂

(
𝑊𝛼, 1

2−𝛼+Y
(𝑥)

)
, proving the proposition. �

The previous proposition shows that the modified moments E[𝜑𝛼,𝑘 (𝑋)] will only diverge if the
tails of the random variable 𝑋 are very heavy. The next result shows that the modified moments can
be computed via the index Whittaker transform:

Proposition 3.50. Let ` ∈ P(R+0) and 𝑘 ∈ N. The following assertions are equivalent:

(i)
∫
R+0
𝜑𝛼,𝑘 (𝑥)`(𝑑𝑥) < ∞;

(ii) 𝜎 ↦→
∫
R+0
𝑊𝛼,𝜎 (𝑥)`(𝑑𝑥) is 𝑘 times differentiable on [0, 1

2 − 𝛼].

If (i) and (ii) hold, then
∫
R+0

𝜕𝑘𝑊𝛼,𝜎 (𝑥)
𝜕𝜎𝑘 `(𝑑𝑥) = 𝜕𝑘

𝜕𝜎𝑘

[∫
R+0
𝑊𝛼,𝜎 (𝑥)`(𝑑𝑥)

]
for all 𝜎 ∈ [0, 1

2 − 𝛼] and, in

particular,
∫
R+0
𝜑𝛼,𝑘 (𝑥)`(𝑑𝑥) = 𝜕𝑘

𝜕𝜎𝑘

��
𝜎= 1

2−𝛼

[∫
R+0
𝑊𝛼,𝜎 (𝑥)`(𝑑𝑥)

]
.

Proof. The following proof is similar to that of the corresponding result for Sturm-Liouville hyper-
groups (see [195, Theorem 4.11] for further details). Write𝑊{𝑘 }𝛼,𝜎(𝑥) := 𝜕𝑘𝑊𝛼,𝜎 (𝑥)

𝜕𝜎𝑘 . By the Laplace
representation (3.57),

𝑊
{𝑘 }
𝛼,𝜎(𝑥) =

∫ ∞

0
𝑠𝑘 (𝑒𝜎𝑠 + (−1)𝑘𝑒−𝜎𝑠) [𝛼,𝑥 (𝑠)𝑑𝑠

Since sinh and cosh are both increasing and convex functions on R+, we have

0 ≤𝑊{𝑘 }𝛼,𝜎1(𝑥) ≤𝑊
{𝑘 }
𝛼,𝜎2(𝑥) ≤ 𝜑𝛼,𝑘 (𝑥) for 0 ≤ 𝜎1 ≤ 𝜎2 ≤ 1

2 − 𝛼 (3.96)

𝜑𝛼,𝑘 (𝑥) −𝑊{𝑘 }𝛼,𝜎1(𝑥)
1
2 − 𝛼 − 𝜎1

≤
𝜑𝛼,𝑘 (𝑥) −𝑊{𝑘 }𝛼,𝜎2(𝑥)

1
2 − 𝛼 − 𝜎2

for 0 ≤ 𝜎1 ≤ 𝜎2 <
1
2 − 𝛼. (3.97)

Moreover, from the inequalities sinh 𝑦 ≤ 𝑦 cosh 𝑦 and cosh 𝑦 ≤ 𝑦 sinh 𝑦 + 1[0,2] (𝑦) we can deduce
that 𝑦𝑘 (𝑒𝑦 + (−1)𝑘𝑒−𝑦) ≤ 𝑦𝑘+1(𝑒𝑦 + (−1)𝑘+1𝑒−𝑦) + 2𝑘 for all 𝑘 ∈ N and, therefore,

𝜑𝛼,𝑘 (𝑥) ≤ ( 12 − 𝛼)𝜑𝛼,𝑘+1(𝑥) +
(

2
1
2 − 𝛼

)𝑘
for 𝑥 ≥ 0, 𝑘 ∈ N. (3.98)
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Suppose that (i) holds. By (3.98),
∫
R+0
𝜑𝛼, 𝑗 (𝑥)`(𝑑𝑥) < ∞ for 𝑗 = 1, . . . , 𝑘 , so we can as-

sume by induction that 𝜎 ↦→
∫
R+0
𝑊𝛼,𝜎 (𝑥)`(𝑑𝑥) is 𝑘 − 1 times differentiable on [0, 1

2 − 𝛼] and∫
R+0

𝜕𝑘−1𝑊𝛼,𝜎 (𝑥)
𝜕𝜎𝑘−1 `(𝑑𝑥) = 𝜕𝑘−1

𝜕𝜎𝑘−1

[∫
R+0
𝑊𝛼,𝜎 (𝑥)`(𝑑𝑥)

]
. Combining (3.97) with the dominated conver-

gence theorem (and the well-known corollary on the differentiation of Lebesgue integrals under the
integral sign), we can then conclude that (ii) holds and

∫
R+0

𝜕𝑘𝑊𝛼,𝜎 (𝑥)
𝜕𝜎𝑘 `(𝑑𝑥) = 𝜕𝑘

𝜕𝜎𝑘

[∫
R+0
𝑊𝛼,𝜎 (𝑥)`(𝑑𝑥)

]
.

Conversely, suppose that (ii) holds and assume by induction that
∫
R+0
𝜑𝛼, 𝑗 (𝑥)`(𝑑𝑥) < ∞ for

𝑗 = 1, . . . , 𝑘 − 1. Observe that from (3.97) it follows that 𝜑𝛼,𝑘−1 (𝑥)−𝑊 {𝑘−1}
𝛼,𝜎 (𝑥)

1
2−𝛼−𝜎

is an increasing function

of 𝜎 which tends to 𝜑𝛼,𝑘 (𝑥) as 𝜎 ↑ 1
2 −𝛼. Using the monotone convergence theorem, we thus find that∫

R+0

𝜑𝛼,𝑘 (𝑥)`(𝑑𝑥) = lim
𝜎↑ 1

2−𝛼

∫
R+0

𝜑𝛼,𝑘−1(𝑥) −𝑊{𝑘−1}
𝛼,𝜎 (𝑥)

1
2 − 𝛼 − 𝜎

`(𝑑𝑥) = 𝜕𝑘

𝜕𝜎𝑘

���
𝜎= 1

2−𝛼

[∫
R+0

𝑊𝛼,𝜎 (𝑥)`(𝑑𝑥)
]

so that (i) holds �

The martingale property of �
𝛼
-moment functions applied to �

𝛼
-Lévy processes is given below. (See

[197, Proposition 6.11] for similar results on hypergroup convolution structures.)

Proposition 3.51. Let {𝜑𝑘 }𝑘=1,2 be a pair of �
𝛼
-moment functions. Let 𝑋 = {𝑋𝑡 }𝑡≥0 be a �

𝛼
-Lévy

process. Then:

(a) If E[𝜑1(𝑋𝑡 )] exists for all 𝑡 > 0, then the process
{
𝜑1(𝑋𝑡 ) − E[𝜑1(𝑋𝑡 )]

}
𝑡≥0 is a martingale;

(b) If, in addition, E[𝜑2(𝑋𝑡 )] exists for all 𝑡 > 0, then the process{
𝜑2(𝑋𝑡 ) − 2𝜑1(𝑋𝑡 )E[𝜑1(𝑋𝑡 )] − E[𝜑2(𝑋𝑡 )] + 2E[𝜑1(𝑋𝑡 )]2

}
𝑡≥0

is a martingale.

In particular, if we let 𝑌 be the Shiryaev process started at 𝑌0 = 0 and let _1, _2 be as in Proposition
3.47, then the processes {𝜑1(𝑌𝑡 ) + _1𝑡}𝑡≥0 and {𝜑2(𝑌𝑡 ) + 2_1𝑡𝜑1(𝑌𝑡 ) + _2𝑡 + _2

1𝑡
2}𝑡≥0 are martingales.

Proof. To prove (a), we let 0 ≤ 𝑠 < 𝑡 and compute

E[𝜑1(𝑋𝑡 ) | 𝑋𝑠] =
∫
R+0

𝜑1 𝑑
(
`𝑡−𝑠 �

𝛼
𝛿𝑋𝑠

)
= (T `𝑡−𝑠𝛼 𝜑1) (𝑋𝑠) =

∫
R+0

𝜑1 𝑑`𝑡−𝑠 + 𝜑1(𝑋𝑠).

Taking the expectation of both sides yields
∫
R+0
𝜑1 𝑑`𝑡−𝑠 = E[𝜑1(𝑋𝑡 )] − E[𝜑1(𝑋𝑠)]; consequently,

E
[
𝜑1(𝑋𝑡 ) −E[𝜑1(𝑋𝑡 )]

��� 𝜑1(𝑋𝑠) −E[𝜑1(𝑋𝑠)]
]
= E

[
𝜑1(𝑋𝑡 ) −E[𝜑1(𝑋𝑡 )]

�� 𝑋𝑠] = 𝜑1(𝑋𝑠) −E[𝜑1(𝑋𝑠)]

which shows that 𝜑1(𝑋𝑡 ) − E[𝜑1(𝑋𝑡 )] is a martingale. Part (b) can be proved by similar arguments.
Let 𝑌 be the Shiryaev process started at zero and {𝑝𝑡 ,0}𝑡≥0 be the associated �

𝛼
-convolution

semigroup. Then by (3.80) we have
∫
R+0
𝑊𝛼,𝜎 (𝑥) 𝑝𝑡 ,0(𝑑𝑥) = 𝑒𝑡 (𝜎

2−( 1
2−𝛼)

2) for 𝜎 ∈ [0, 1
2 − 𝛼],

and it therefore follows from Proposition 3.50 that E[𝜑𝛼,1(𝑋𝑡 )] =
∫
𝜑𝛼,1 𝑑𝑝𝑡 ,0 = (1 − 2𝛼)𝑡 and
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E[𝜑𝛼,2(𝑋𝑡 )] = 2𝑡 + (1 − 2𝛼)2𝑡2. It follows from Proposition 3.47 that 𝜑1 = − _1
1−2𝛼𝜑𝛼,1 and

𝜑2 =
_2

1
(1−2𝛼)2 𝜑𝛼,2−

( 2_2
1

(1−2𝛼)3 +
_2

1−2𝛼
)
𝜑𝛼,1. Consequently,E[𝜑1(𝑌𝑡 )] = −_1𝑡 andE[𝜑2(𝑌𝑡 )] = _2

1𝑡
2−_2𝑡,

so that the final statement holds. �

3.5.5 Lévy-type characterization of the Shiryaev process

In this subsection we will show that the martingale property given in the last statement of the previous
proposition is in fact a (Lévy-type) characterization of the Shiryaev process. For this purpose, it is
convenient to focus on the moment functions 𝜙1 and 𝜙2 that correspond to the choice _1 = −1 and
_2 = 0, i.e.

𝜙1(𝑥) ≡ 𝜙𝛼,1(𝑥) =
∫ 𝑥

0

1
𝑝𝛼 (𝑦)

∫ 𝑦

0
𝑟𝛼 (b) 𝑑b 𝑑𝑦 =

1
1 − 2𝛼

𝜑𝛼,1(𝑥)

𝜙2(𝑥) ≡ 𝜙𝛼,2(𝑥) = 2
∫ 𝑥

0

1
𝑝𝛼 (𝑦)

∫ 𝑦

0
𝑟𝛼 (b) 𝜙1(b) 𝑑b 𝑑𝑦 =

1
(1 − 2𝛼)2

[
𝜑𝛼,2(𝑥) −

2
1 − 2𝛼

𝜑𝛼,1(𝑥)
]
.

In the following results, we write

C𝑘,ℓ (R+0) := { 𝑓 ∈ C𝑘 (R+0) : 𝑓
��
[0, Y) ∈ Cℓ [0, Y) for some Y > 0}.

Lemma 3.52. (a) If 𝑓 ∈ C2,4(R+0) with 𝑓 ′(0) = 𝑓 ′′′(0) = 0, then there exists ℎ ∈ C2(R+0) with
𝑓 (𝑥) = ℎ(𝜙1(𝑥2)) for 𝑥 ≥ 0.

(b) There exists a unique function ℎ0 ∈ C2(R+0) such that ℎ0(𝜙1(𝑥)) = 𝜙2(𝑥) for 𝑥 ≥ 0, and it
satisfies ℎ′′0 (𝑥) > 0 for all 𝑥 ≥ 0.

Proof. From (3.95) we find that the Taylor expansions of the functions 𝜙1(𝑥2) and 𝜙2(𝑥2) as 𝑥 → 0 are
of the form 𝜙1(𝑥2) = 𝑐1𝑥

2 + 𝑐2𝑥
4 + 𝑜(𝑥4) and 𝜙2(𝑥2) = 𝑐3𝑥

4 + 𝑜(𝑥4), with 𝑐1, 𝑐3 > 0. Consequently,
part (a) can be proved using the same arguments as in [153, Lemma 5.7]. Letting 𝑓 (𝑥) = 𝜙2(𝑥2),
we deduce that in particular there exists ℎ0 ∈ C2(R+0) such that ℎ0(𝜙1(𝑥)) = 𝜙2(𝑥) for all 𝑥 ≥ 0. A
straightforward adaptation of the proof of [153, Lemma 5.8] yields that ℎ′′0 (𝑥) > 0 for 𝑥 ≥ 0. �

Lemma 3.53. Let 𝑋 = {𝑋𝑡 }𝑡≥0 be an R+0-valued process with a.s. continuous paths and such that the
processes 𝑍A𝛼 ,𝜙 𝑗

𝑋
defined by (3.81) are local martingales for 𝑗 = 1, 2. Then

[
𝑍
A𝛼 ,𝜙1
𝑋

]
𝑡
= 2

∫ 𝑡

0
𝑋2
𝑠 (𝜙′1(𝑋𝑠))

2 𝑑𝑠 almost surely.

Moreover, 𝑍A𝛼 ,𝑔

𝑋
is a local martingale whenever 𝑔 ∈ C2,4(R+0).

Proof. This proof is analogous to that of [153, Lemma 6.2], to which we refer for further details.

Let ℎ ∈ C2(R+0). Given thatA𝛼𝜙1 = 1, an application of the chain rule shows thatA𝛼 (ℎ(𝜙1)) (𝑥) =
𝑥2ℎ′′(𝜙1(𝑥)) (𝜙′1(𝑥))

2 + ℎ′(𝜙1(𝑥)). Since 𝑍A𝛼 ,𝜙1
𝑋

is a local martingale, we can apply Itô’s formula
for continuous semimartingales [130, Theorem 6.2] to the process ℎ(𝜙1(𝑋𝑡 )) and deduce that
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𝑑 (ℎ(𝜙1(𝑋𝑡 ))) = ℎ′(𝜙1(𝑋𝑡 )) 𝑑 𝜙1(𝑋𝑡 ) + 1
2ℎ
′′(𝜙1(𝑋𝑡 )) 𝑑 [𝜙1(𝑋)]𝑡 . Consequently,

𝑑 (ℎ(𝜙1(𝑋𝑡 ))) − A𝛼 (ℎ(𝜙1(𝑋𝑡 ))) 𝑑𝑡 = ℎ′′(𝜙1(𝑋𝑡 ))
(

1
2𝑑 [𝜙1(𝑋)]𝑡 − 𝑋2

𝑡 (𝜙′1(𝑋𝑡 ))
2𝑑𝑡

)
+ 𝑑𝑉ℎ𝑡 (3.99)

where
{
𝑉ℎ𝑡 :=

∫ 𝑡
0 ℎ
′(𝜙1(𝑋𝑠)) (𝑑 𝜙1(𝑋𝑠) − 𝑑𝑠)

}
is a local martingale (cf. [130, Proposition 2.63]; note

that 𝑑 𝜙1(𝑋𝑡 ) − 𝑑𝑡 = 𝑑 𝑍
A𝛼 ,𝜙1
𝑋,𝑡

is the differential of a local martingale). If, in particular, ℎ is the
function ℎ0 from Lemma 3.52(b), then

∫ 𝑡
0 𝑑 (ℎ0(𝜙1(𝑋𝑠))) − A𝛼 (ℎ0(𝜙1(𝑋𝑠))) 𝑑𝑠 = 𝑍A𝛼 ,𝜙2

𝑋,𝑡
is also a

local martingale, and from (3.99) we find that∫ 𝑡

0
ℎ′′0 (𝜙1(𝑋𝑠))

(
1
2𝑑 [𝜙1(𝑋)]𝑠 − 𝑋2

𝑠 (𝜙′1(𝑋𝑠))
2𝑑𝑠

)
is a local martingale.

But
∫ 𝑡

0 ℎ
′′
0 (𝜙1(𝑋𝑠))

( 1
2𝑑 [𝜙1(𝑋)]𝑠−𝑋2

𝑠 (𝜙′1(𝑋𝑠))
2𝑑𝑠

)
is also a process of locally finite variation (cf. [130,

Proposition 2.73]; note that 1
2𝑑 [𝜙1(𝑋)]𝑠−𝑋2

𝑠 (𝜙′1(𝑋𝑠))
2𝑑𝑠 is the differential of a process of locally finite

variation), hence it is a.s. equal to zero (see [130, Theorem 2.11]). Consequently, taking into account that
ℎ′′0 > 0 (Lemma 3.52(b)), we have 𝑑 [𝑍A𝛼 ,𝜙1

𝑋
]𝑡 −2𝑋2

𝑡 (𝜙′1(𝑋𝑡 ))
2𝑑𝑡 = 𝑑 [𝜙1(𝑋)]𝑡 −2𝑋2

𝑡 (𝜙′1(𝑋𝑡 ))
2𝑑𝑡 = 0

a.s., proving the first assertion.
The result just proved, combined with (3.99), implies that

{
ℎ(𝜙1(𝑋𝑡 )) −

∫ 𝑡
0 A𝛼 (ℎ(𝜙1)) (𝑋𝑠)𝑑𝑠

}
𝑡≥0

is, for each ℎ ∈ C2(R+0), a local martingale. Applying Lemma 3.52(a) with 𝑓 (𝑥) := 𝑔(𝑥2) ∈ C2,4(R+0),
we find that 𝑔(𝑥) ≡ ℎ(𝜙1(𝑥)) for some ℎ ∈ C2(R+0), and this proves the second assertion. �

We are finally ready to establish the martingale characterization of the Shiryaev process. (We call
it a Lévy-type characterization because it resembles the Lévy characterization of Brownian motion
stated in Theorem 2.6. A parallel result for hypergroup structures is given in [153, Theorem 6.3].)

Theorem 3.54 (Lévy-type characterization for the Shiryaev process). Let𝑌 = {𝑌𝑡 }𝑡≥0 be an R+0-valued
Markov process with a.s. continuous paths. The following assertions are equivalent:

(i) 𝑌 is the Shiryaev process;

(ii) {𝜙1(𝑌𝑡 ) − 𝑡}𝑡≥0 and {𝜙2(𝑌𝑡 ) − 2𝑡𝜙1(𝑌𝑡 ) + 𝑡2}𝑡≥0 are martingales (or local martingales);

(iii) 𝑍A𝛼 ,𝜙1
𝑌

is a local martingale with [𝑍A𝛼 ,𝜙1
𝑌

]𝑡 = 2
∫ 𝑡

0 𝑌
2
𝑠 (𝜙′1(𝑌𝑠))

2 𝑑𝑠.

Proof. (i) =⇒ (ii): This follows from Proposition 3.51.
(ii) =⇒ (iii): Assume that (ii) is true. Since 𝑑 𝑍A𝛼 ,𝜙1

𝑌 ,𝑡
= 𝑑𝜙1(𝑌𝑡 ) − 𝑑𝑡, the process 𝑍A𝛼 ,𝜙1

𝑌
is a

local martingale. Furthermore,

𝑑 𝑍
A𝛼 ,𝜙2
𝑌 ,𝑡

= 𝑑𝜙2(𝑌𝑡 ) − 2𝜙1(𝑌𝑡 )𝑑𝑡 = 𝑑
(
𝜙2(𝑌𝑡 ) − 2𝑡𝜙1(𝑌𝑡 ) + 𝑡2

)
+ 2𝑡

(
𝑑𝜙1(𝑌𝑡 ) − 𝑑𝑡

)
(where integration by parts [130, Proposition 2.28] gives the second equality) and therefore the process
𝑍
−A𝛼 ,𝜙2
𝑌

is also a local martingale. By Lemma 3.53, [𝑍−A𝛼 ,𝜙1
𝑌

]𝑡 = 2
∫ 𝑡

0 𝑌
2
𝑠 (𝜙′1(𝑌𝑠))

2 𝑑𝑠.
(iii) =⇒ (i): Assuming that (iii) holds, Equation (3.99) and the proof of Lemma 3.53 show that, for

each _ ≥ 0, 𝑍A𝛼 ,𝑊𝛼,Δ_
(·)

𝑌
is a local martingale and (by boundedness on compact time intervals, cf. [130,

Corollary 1.145]) a true martingale. Proposition 3.40 now yields that 𝑌 is the Shiryaev process. �
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Remark 3.55. In this section we have focused on continuous-time stochastic processes which are
additive with respect to the Whittaker convolution. In a similar way, one can introduce the discrete-time
counterparts of the processes studied above.

An R+0-valued Markov chain {𝑆𝑛}𝑛∈N0 with 𝑆0 = 0 is said to be �
𝛼
-additive if there exist measures

`𝑛 ∈ P(R+0) such that

𝑃[𝑆𝑛 ∈ 𝐵|𝑆𝑛−1 = 𝑥] = (`𝑛 �
𝛼
𝛿𝑥) (𝐵), 𝑛 ∈ N, 𝑥 ≥ 0, 𝐵 a Borel subset of R+0 .

If `𝑛 = ` for all 𝑛, then {𝑆𝑛} is said to be a �
𝛼
-random walk. One can give an explicit construction for

�
𝛼
-additive Markov chains, cf. [16, Section 7.1] (see also Subsection 4.5.3 below).

In the context of hypergroups, moment functions have been successfully applied to the study
of the limiting behaviour of additive Markov chains (cf. [16, Chapter 7]). Parallel results hold for
the Whittaker convolution. For instance, letting {𝑆𝑛} be a �

𝛼
-additive Markov chain constructed as

above, the following strong laws of large numbers are established as in [16, Theorems 7.3.21 and 7.3.24]:

(a) If {𝑟𝑛}𝑛∈N is a sequence of positive numbers such that lim𝑛 𝑟𝑛 = ∞ and
∑∞
𝑛=1

1
𝑟𝑛

(
E[𝜑𝛼,2(𝑋𝑛)]−

E[𝜑𝛼,1(𝑋𝑛)]2
)
< ∞, then

lim
𝑛

1
√
𝑟𝑛

(
𝜑𝛼,1(𝑆𝑛) − E[𝜑𝛼,1(𝑆𝑛)]

)
= 0 𝑃-a.s.

(b) If {𝑆𝑛} is a �
𝛼
-random walk such that E[𝜑𝛼,2(𝑋1) \/2] < ∞ for some 1 ≤ \ < 2, then

E[𝜑𝛼,1(𝑋1)] < ∞ and

lim
𝑛

1
𝑛1/\

(
𝜑𝛼,1(𝑆𝑛) − 𝑛E[𝜑𝛼,1(𝑋1)]

)
= 0 𝑃-a.s.

3.6 Whittaker convolution of functions

After having studied the probabilistic properties of the Whittaker convolution, we return to the study
of the basic properties of this convolution, which we shall now regard as a binary operator on weighted
𝐿 𝑝 spaces.

Definition 3.56. Let 𝑓 , 𝑔 : R+ → C be complex-valued functions. If the double integral

( 𝑓 �
𝛼
𝑔) (𝑥) :=

∫ ∞

0
(T 𝑥𝛼 𝑓 ) (b) 𝑔(b) 𝑟𝛼 (b)𝑑b =

∫ ∞

0

∫ ∞

0
𝑘𝛼 (𝑥, 𝑦, b) 𝑓 (𝑦) 𝑔(b) 𝑟𝛼 (𝑦)𝑑𝑦 𝑟𝛼 (b)𝑑b

exists for almost every 0 < 𝑥 < ∞, then we call it the Whittaker convolution (of order 𝛼) of the
functions 𝑓 and 𝑔.

Note that this definition is obtained from Definition 3.20 by letting ` and a be the absolutely
continuous measures defined by `(𝑑𝑥) = 𝑓 (𝑥) 𝑟𝛼 (𝑥)𝑑𝑥 and a(𝑑𝑥) = 𝑔(𝑥) 𝑟𝛼 (𝑥)𝑑𝑥. The Whittaker
convolution of functions is positivity-preserving (i.e., 𝑓 �

𝛼
𝑔 ≥ 0 whenever 𝑓 , 𝑔 ≥ 0) and commutative
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(i.e., 𝑓 �
𝛼
𝑔 = 𝑔 �

𝛼
𝑓 ). Moreover, it generalizes the convolution associated with the Kontorovich-Lebedev

transform: indeed, in the case 𝛼 = 0 it is straightforward to verify, using (3.20), that

(2𝜋) 1
2 𝑥−

3
2 𝑒−𝑥 ( 𝑓 �

0
𝑔) ( 1

2𝑥 ) = (𝔣 ∗𝐾𝐿𝔤) (𝑥)

where 𝔣(𝑥) = 𝑥− 3
2 𝑒−𝑥 𝑓 ( 1

2𝑥 ), 𝔤(𝑥) = 𝑥
− 3

2 𝑒−𝑥𝑔( 1
2𝑥 ) and ∗

𝐾𝐿
is the Kontorovich-Lebedev convolution

operator (defined as (𝔣 ∗
𝐾𝐿
𝔤) (𝑥) := 1

2𝑥

∫ ∞
0

∫ ∞
0 exp

(
− 𝑥𝑦2b −

𝑥 b

2𝑦 −
𝑦 b

2𝑥
)
𝔣(𝑦)𝔤(b)𝑑𝑦𝑑b, cf. e.g. [191]).

3.6.1 Mapping properties in the spaces 𝐿𝑝 (𝑟𝛼)

The well-known Young convolution inequality has a natural analogue for the Whittaker convolution of
functions belonging to the family of 𝐿 𝑝 spaces defined in (3.38). (The following result should also be
compared with the Young inequality for the Hankel convolution stated in Proposition 2.21.)

Proposition 3.57 (Young inequality for the Whittaker convolution). Let 𝑝1, 𝑝2 ∈ [1,∞] such that
1
𝑝1
+ 1
𝑝2
≥ 1. For 𝑓 ∈ 𝐿 𝑝1 (𝑟𝛼) and 𝑔 ∈ 𝐿 𝑝2 (𝑟𝛼), the L-convolution 𝑓 �

𝛼
𝑔 is well-defined and, for

𝑠 ∈ [1,∞] defined by 1
𝑠
= 1
𝑝1
+ 1
𝑝2
− 1, it satisfies

∥ 𝑓 �
𝛼
𝑔∥𝑠,𝛼 ≤ ∥ 𝑓 ∥𝑝1,𝛼∥𝑔∥𝑝2,𝛼

(in particular, 𝑓 �
𝛼
𝑔 ∈ 𝐿𝑠 (𝑟𝛼)). Consequently, the Whittaker convolution is a continuous bilinear

operator from 𝐿 𝑝1 (𝑟𝛼) × 𝐿 𝑝2 (𝑟𝛼) into 𝐿𝑠 (𝑟𝛼).

Proof. The proof is analogous to that of the Young inequality for the ordinary convolution. Define
1
𝑡1
= 1
𝑝1
− 1
𝑠

and 1
𝑡2
= 1
𝑝2
− 1
𝑠
. Observe that

| (T 𝑥𝛼 𝑓 ) (𝑦) | |𝑔(𝑦) | ≤ |(T 𝑥𝛼 𝑓 ) (𝑦) |𝑝1/𝑡1 |𝑔(𝑦) |𝑝2/𝑡2 [ | (T 𝑥𝛼 𝑓 ) (𝑦) |𝑝1 |𝑔(𝑦) |𝑝2
]1/𝑠

.

Since 1
𝑠
+ 1
𝑡1
+ 1
𝑡2
= 1, we have by Hölder’s inequality and Proposition 3.13(b)∫ ∞

0
| (T 𝑥𝛼 𝑓 ) (𝑦) | |𝑔(𝑦) | 𝑟𝛼 (𝑦)𝑑𝑦

≤
(∫ ∞

0
| (T 𝑥𝛼 𝑓 ) (𝑦) |𝑝1𝑟𝛼 (𝑦)𝑑𝑦

) 1
𝑡1
(∫ ∞

0
|𝑔(𝑦) |𝑝2𝑟𝛼 (𝑦)𝑑𝑦

) 1
𝑡2
(∫ ∞

0
| (T 𝑥𝛼 𝑓 ) (𝑦) |𝑝1 |𝑔(𝑦) |𝑝2𝑟𝛼 (𝑦)𝑑𝑦

) 1
𝑠

≤ ∥ 𝑓 ∥ 𝑝1/𝑡1
𝑝1 ∥𝑔∥

𝑝2/𝑡2
𝑝2

(∫ ∞

0
| (T 𝑥𝛼 𝑓 ) (𝑦) |𝑝1 |𝑔(𝑦) |𝑝2𝑟𝛼 (𝑦)𝑑𝑦

)1/𝑠
.

Using again Proposition 3.13(b) we conclude that

∥ 𝑓 �
𝛼
𝑔∥𝑠,𝛼 ≤ ∥ 𝑓 ∥ 𝑝1/𝑡1

𝑝1,𝛼 ∥𝑔∥
𝑝2/𝑡2
𝑝2,𝛼 ∥ 𝑓 ∥

𝑝1/𝑠
𝑝1,𝛼 ∥𝑔∥

𝑝2/𝑠
𝑝2,𝛼 = ∥ 𝑓 ∥𝑝1,𝛼∥𝑔∥𝑝2,𝛼. �

Another analogue of a well-known property of the ordinary convolution is the fact that the Whittaker
convolution of functions belonging to 𝐿 𝑝 spaces with conjugate exponents defines a continuous
function:
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Proposition 3.58. Let 𝑝, 𝑞 ∈ [1,∞] with 1
𝑝
+ 1
𝑞

= 1. If 𝑓 ∈ 𝐿 𝑝 (𝑟𝛼) and 𝑔 ∈ 𝐿𝑞 (𝑟𝛼), then
𝑓 �
𝛼
𝑔 ∈ Cb(R+).

Proof. The previous proposition ensures the boundedness of 𝑓 �
𝛼
𝑔. For the continuity, let 𝑥0 > 0; then

for 1 < 𝑝 < ∞ we have��( 𝑓 �
𝛼
𝑔) (𝑥) − ( 𝑓 �

𝛼
𝑔) (𝑥0)

�� = ����∫ ∞

0

(
(T 𝑥𝛼 𝑓 ) (b) − (T

𝑥0
𝛼 𝑓 ) (b)

)
𝑔(b) 𝑟𝛼 (b)𝑑b

����
≤ ∥T 𝑥𝛼 𝑓 − T

𝑥0
𝛼 𝑓 ∥𝑝,𝛼∥𝑔∥𝑞,𝛼 → 0 as 𝑥 → 𝑥0

by Hölder’s inequality and Proposition 3.13(c). In the case 𝑝 = ∞ (and by symmetry 𝑝 = 1), the
continuity of 𝑓 �

𝛼
𝑔 follows by dominated convergence, using parts (a) and (c) of Proposition 3.13. �

Some fundamental connections between the Whittaker convolution (and translation), the index
Whittaker transform and the differential operator A𝛼 are given in the following proposition.

Proposition 3.59. Let 𝑦 > 0 and 𝜏 ≥ 0. Then:

(a) If 𝑓 ∈ 𝐿2(𝑟𝛼), then
(
W𝛼 (T 𝑦𝛼 𝑓 )

)
(𝜏) =𝑊𝛼,𝑖𝜏 (𝑦) (W𝛼 𝑓 ) (𝜏);

(b) If 𝑓 ∈ 𝐿2(𝑟𝛼) and 𝑔 ∈ 𝐿1(𝑟𝛼), then
(
W𝛼 ( 𝑓 �

𝛼
𝑔)

)
(𝜏) = (W𝛼 𝑓 ) (𝜏) (W𝛼𝑔) (𝜏);

(c) If 𝑓 ∈ 𝐿2(𝑟𝛼) and 𝑔 ∈ 𝐿1(𝑟𝛼), then T 𝑦𝛼 ( 𝑓 �𝛼 𝑔) = (T
𝑦
𝛼 𝑓 ) �𝛼 𝑔;

(d) If 𝑓 ∈ D (2)𝛼 , then T 𝑦𝛼 𝑓 ∈ D (2)𝛼 and A𝛼 (T 𝑦𝛼 𝑓 ) = T 𝑦𝛼 (A𝛼 𝑓 );

(e) If 𝑓 ∈ D (2)𝛼 and 𝑔 ∈ 𝐿1(𝑟𝛼), then 𝑓 �
𝛼
𝑔 ∈ D (2)𝛼 and A𝛼 ( 𝑓 �

𝛼
𝑔) = (A𝛼 𝑓 ) �

𝛼
𝑔.

Proof. (a) Let 𝑓 ∈ 𝐿1(𝑟𝛼) ∩ 𝐿2(𝑟𝛼). Using Fubini’s theorem and the product formula (3.32), we
compute (

W𝛼 (T 𝑦𝛼 𝑓 )
)
(𝜏) =

∫ ∞

0

∫ ∞

0
𝑓 (b)𝑘𝛼 (𝑥, 𝑦, b) 𝑟𝛼 (b)𝑑b𝑊𝛼,𝑖𝜏 (𝑥) 𝑟𝛼 (𝑥)𝑑𝑥

=𝑊𝛼,𝑖𝜏 (𝑦)
∫ ∞

0
𝑓 (b)𝑊𝛼,𝑖𝜏 (b) 𝑟𝛼 (b)𝑑b

=𝑊𝛼,𝑖𝜏 (𝑦) (W𝛼 𝑓 ) (𝜏).

By denseness and continuity, the equality extends to all 𝑓 ∈ 𝐿2(𝑟𝛼), as required.

(b) For 𝑓 ∈ 𝐿1(𝑟𝛼) ∩ 𝐿2(𝑟𝛼) and 𝑔 ∈ 𝐿1(𝑟𝛼) we have(
W𝛼 ( 𝑓 �

𝛼
𝑔)

)
(𝜏) =

∫ ∞

0

∫ ∞

0
(T 𝑥𝛼 𝑓 ) (b) 𝑔(b) 𝑟𝛼 (b)𝑑b𝑊𝛼,𝑖𝜏 (𝑥) 𝑟𝛼 (𝑥)𝑑𝑥

=

∫ ∞

0
𝑔(b)

(
W𝛼 (T b𝛼 𝑓 )

)
(𝜏) 𝑟𝛼 (b)𝑑b

= (W𝛼 𝑓 ) (𝜏)
∫ ∞

0
𝑔(b)𝑊𝛼,𝑖𝜏 (b) 𝑟𝛼 (b)𝑑b = (W𝛼 𝑓 ) (𝜏) (W𝛼𝑔) (𝜏)

where we have used Fubini’s theorem and part (a). Again, denseness yields the result.
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(c) By the previous properties,

W𝛼

[
T 𝑦𝛼 ( 𝑓 �𝛼 𝑔)

]
(𝜏) =W𝛼

[
(T 𝑦𝛼 𝑓 ) �𝛼 𝑔

]
(𝜏) =𝑊𝛼,𝑖𝜏 (𝑦) (W𝛼 𝑓 ) (𝜏) (W𝛼𝑔) (𝜏).

Since both T 𝑦𝛼 ( 𝑓 �𝛼 𝑔) and (T 𝑦𝛼 𝑓 ) �𝛼 𝑔 are elements of the space 𝐿2(𝑟𝛼) (see Proposition 3.60 below),

this implies that T 𝑦𝛼 ( 𝑓 �𝛼 𝑔) = (T
𝑦
𝛼 𝑓 ) �𝛼 𝑔.

(d) Recalling the inequality (3.61), it is evident that T 𝑦𝛼
(
D (2)𝛼

)
∈ D (2)𝛼 . Since the index Whittaker

transforms of A𝛼 (T 𝑦𝛼 𝑓 ) and T 𝑦𝛼 (A𝛼 𝑓 ) are both equal to
(
𝜏2 + ( 12 − 𝛼)

2)𝑊𝛼,𝑖𝜏 (𝑦) (W𝛼 𝑓 ) (𝜏), the
result follows.

(e) The proof is similar to that of (d). �

We have seen in Proposition 3.57 that if 𝑓 ∈ 𝐿2(𝑟𝛼) and 𝑔 ∈ 𝐿 𝑝 (𝑟𝛼) (1 ≤ 𝑝 < 2) then the
Whittaker convolution 𝑓 �

𝛼
𝑔 exists and belongs to 𝐿

2𝑝
2−𝑝 (𝑟𝛼). Using the index Whittaker transform,

this result can be strengthened as follows:

Proposition 3.60. Let 𝑓 ∈ 𝐿2(𝑟𝛼) and 𝑔 ∈ 𝐿 𝑝 (𝑟𝛼) (1 ≤ 𝑝 < 2). Then 𝑓 �
𝛼
𝑔 ∈ 𝐿2(𝑟𝛼), and we have

∥ 𝑓 �
𝛼
𝑔∥2,𝛼 ≤ 𝐶𝑝 ∥ 𝑓 ∥2,𝛼∥𝑔∥𝑝,𝛼

where 𝐶𝑝 =
𝑊𝛼,0𝑞,𝛼 < ∞ (being 1

𝑝
+ 1
𝑞
= 1).

Proof. The fact that ∥𝑊𝛼,0∥𝑞,𝛼 is finite for each 2 < 𝑞 ≤ ∞ is easily verified using the limiting forms
(3.5), (3.7). Now, for 𝑓 , 𝑔 ∈ Cc(R+) we have

∥ 𝑓 �
𝛼
𝑔∥2,𝛼 =

(W𝛼 𝑓 ) · (W𝛼𝑔)

𝐿2 (𝜌𝛼) ≤ sup

𝜏≥0

��(W𝛼𝑔) (𝜏)
�� ·W𝛼 𝑓


𝐿2 (𝜌𝛼) ≤

𝑊𝛼,0𝑞,𝛼∥𝑔∥𝑝,𝛼∥ 𝑓 ∥2,𝛼
where we denoted 𝐿2(𝜌𝛼) = 𝐿2 (R+; 𝜌𝛼 (𝜏)𝑑𝜏); we have used the isometric property of the index
Whittaker transform, and the final step relies on the inequality |𝑊𝛼,𝑖𝜏 (𝑥) | ≤𝑊𝛼,0(𝑥) (proved in (3.60))
and on Hölder’s inequality. As usual, the result for 𝑓 ∈ 𝐿2(𝑟𝛼) and 𝑔 ∈ 𝐿 𝑝 (𝑟𝛼) follows from the
denseness of Cc(R+) in these 𝐿 𝑝 spaces. �

Corollary 3.61. (a) If 𝑓 , 𝑔 ∈ 𝐿2(𝑟𝛼), then 𝑓 �
𝛼
𝑔 ∈ 𝐿𝑞 (𝑟𝛼) for all 2 < 𝑞 ≤ ∞, with

∥ 𝑓 �
𝛼
𝑔∥𝑞,𝛼 ≤ 𝐶𝑞 ∥ 𝑓 ∥2,𝛼∥𝑔∥2,𝛼

being 𝐶𝑞 =
𝑊𝛼,0𝑞,𝛼.

(b) Let 1 ≤ 𝑝1 < 2 and 1 ≤ 𝑝2 ≤ 2 such that 1
𝑝1
+ 1
𝑝2
≤ 3

2 . Let 𝑡 be defined by 1
𝑡
= 1
𝑝1
+ 1
𝑝2
− 1. If

𝑓 ∈ 𝐿 𝑝1 (𝑟𝛼) and 𝑔 ∈ 𝐿 𝑝2 (𝑟𝛼), then 𝑓 �
𝛼
𝑔 ∈ 𝐿𝑠 (𝑟𝛼) for all 𝑠 ∈ [2, 𝑡].

Proof. The following proof is adapted from [58, Section 5].
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(a) Let ℎ ∈ 𝐿 𝑝 (𝑟𝛼) ( 1
𝑝
+ 1
𝑞
= 1) and 𝑓 , 𝑔 ∈ Cc(R+). Using Proposition 3.60 and Fubini’s theorem,

we obtain����∫ ∞

0
( 𝑓 �

𝛼
𝑔) (𝑥) ℎ(𝑥) 𝑟𝛼 (𝑥)𝑑𝑥

���� ≤ ∫ ∞

0
( | 𝑓 | �

𝛼
|ℎ|) (𝑥) |𝑔(𝑥) |𝑟𝛼 (𝑥)𝑑𝑥

≤ ∥𝑔∥2,𝛼
| 𝑓 | �

𝛼
|ℎ|


2,𝛼 ≤ 𝐶𝑞 ∥𝑔∥2,𝛼 ∥ 𝑓 ∥2,𝛼 ∥ℎ∥𝑝,𝛼.

Therefore

∥ 𝑓 �
𝛼
𝑔∥𝑞,𝛼 = sup

ℎ∈𝐿𝑝 (𝑟𝛼)
∥ℎ ∥𝑝,𝛼≤1

����∫ ∞

0
( 𝑓 �

𝛼
𝑔) (𝑥) ℎ(𝑥) 𝑟𝛼 (𝑥)𝑑𝑥

���� ≤ 𝐶𝑞 ∥ 𝑓 ∥2,𝛼∥𝑔∥2,𝛼
and the usual continuity argument yields the result.

(b) By the Young inequality (Proposition 3.57) 𝑓 �
𝛼
𝑔 ∈ 𝐿𝑡 (𝑟𝛼), and we know that 𝐿2(𝑟𝛼) ∩

𝐿𝑡 (𝑟𝛼) ⊂ 𝐿𝑠 (𝑟𝛼), thus we just need to show that 𝑓 �
𝛼
𝑔 ∈ 𝐿2(𝑟𝛼). Observe that 𝑔1 := 𝑔 ·1{ |𝑔 | ≥1} ∈

𝐿1(𝑟𝛼) ∩ 𝐿 𝑝2 (𝑟𝛼) and 𝑔2 := 𝑔 ·1{ |𝑔 |<1} ∈ 𝐿 𝑝2 (𝑟𝛼) ∩ 𝐿∞(𝑟𝛼). It follows from Propositions 3.57 and
3.60 that, respectively, 𝑓 �

𝛼
𝑔1 ∈ 𝐿 𝑝1 (𝑟𝛼) ∩ 𝐿𝑡 (𝑟𝛼) ⊂ 𝐿2(𝑟𝛼) and 𝑓 �

𝛼
𝑔2 ∈ 𝐿2(𝑟𝛼); consequently,

𝑓 �
𝛼
𝑔 = 𝑓 �

𝛼
𝑔1 + 𝑓 �

𝛼
𝑔2 ∈ 𝐿2(𝑟𝛼). �

3.6.2 The convolution Banach algebra 𝐿𝛼,a

In this subsection we focus on the properties of the Whittaker convolution in the family of spaces
{𝐿𝛼,a}a≥0, where

𝐿𝛼,a := 𝐿1 (R+, 𝑊𝛼,a (𝑥) 𝑟𝛼 (𝑥)𝑑𝑥) (𝛼 < 1
2 , a ≥ 0).

We observe that, by the limiting forms of the Whittaker𝑊 function,

𝑓 ∈ 𝐿𝛼,a if and only if 𝑓 ∈ 𝐿1 ((0, 1], 𝑥−2𝛼𝑒−
1
𝑥 𝑑𝑥

)
∩ 𝐿1 ([1,∞), 𝑥− 1

2−𝛼+a𝑑𝑥
)
(a > 0)

𝑓 ∈ 𝐿𝛼,0 if and only if 𝑓 ∈ 𝐿1 ((0, 1], 𝑥−2𝛼𝑒−
1
𝑥 𝑑𝑥

)
∩ 𝐿1 ([1,∞), 𝑥− 1

2−𝛼 log 𝑥 𝑑𝑥
)

(3.100)
and therefore the spaces 𝐿𝛼,a are ordered:

𝐿𝛼,a1 ⊂ 𝐿𝛼,a2 whenever a1 > a2.

It is also interesting to note that the family {𝐿𝛼,a}a≥0 contains the space 𝐿1(𝑟𝛼) ≡ 𝐿𝛼, 1
2−𝛼

. (Recall
that by (3.12) we have𝑊𝛼, 1

2−𝛼
(𝑦) = 1.)

The following lemma collects some properties of the index Whittaker transform in the spaces 𝐿𝛼,a
(𝛼 < 1

2 , a ≥ 0):

Lemma 3.62. If 𝑓 ∈ 𝐿𝛼,a , then its index Whittaker transform (W𝛼 𝑓 ) (𝜏) =
∫ ∞

0 𝑓 (𝑦)𝑊𝛼,𝑖𝜏 (𝑦) 𝑟𝛼 (𝑦)𝑑𝑦
is, for every 𝜏 belonging to the complex strip |Im 𝜏 | ≤ a, well-defined as an absolutely convergent
integral, and it satisfies

(W𝛼 𝑓 ) (𝜏) −−−−−→
𝜏→∞

0 uniformly in the strip |Im 𝜏 | ≤ a. (3.101)
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Moreover, if (W𝛼 𝑓 ) (𝜏) = 0 for all 𝜏 ≥ 0, then 𝑓 (𝑥) = 0 for almost every 𝑥 > 0.

Proof. The absolute convergence of the integral definingW𝛼 𝑓 is clear from the inequality (3.60). It
follows from (3.57) and the Riemann-Lebesgue lemma that for each 𝑦 > 0 we have𝑊𝛼,𝑖𝜏 (𝑦) −→ 0
as 𝜏 →∞ uniformly in the strip |Im 𝜏 | ≤ a, hence dominated convergence gives (3.101). Letting `
be the (possibly unbounded) measure `(𝑑𝑥) = 𝑓 (𝑥) 𝑟𝛼 (𝑥)𝑑𝑥, the same proof of Proposition 3.18(ii)
shows that if ̂̀(𝜏2 + ( 12 − 𝛼)

2) ≡ (W𝛼 𝑓 ) (𝜏) = 0 for all 𝜏 ≥ 0, then ` is the zero measure, so that
𝑓 (𝑥) = 0 a.e. �

Proposition 3.63. For 𝑓 , 𝑔 ∈ 𝐿𝛼,a , the Whittaker convolution 𝑓 �
𝛼
𝑔 is well-defined and satisfies

∥ 𝑓 �
𝛼
𝑔∥𝐿𝛼,a

≤ ∥ 𝑓 ∥𝐿𝛼,a
∥𝑔∥𝐿𝛼,a

(in particular, 𝑓 �
𝛼
𝑔 ∈ 𝐿𝛼,a). Moreover, properties (a) and (b) in Proposition 3.59 are valid when 𝑓

and 𝑔 belong to 𝐿𝛼,a and 𝜏 is a complex number such that |Im 𝜏 | ≤ a.

Proof. We compute

∥ 𝑓 �
𝛼
𝑔∥𝐿𝛼,a

≤
∫ ∞

0

∫ ∞

0

∫ ∞

0
| 𝑓 (𝑦) |𝑘𝛼 (𝑥, 𝑦, b)𝑟𝛼 (𝑦)𝑑𝑦 |𝑔(b) |𝑟𝛼 (b)𝑑b𝑊𝛼,a (𝑥)𝑟𝛼 (𝑥)𝑑𝑥

=

∫ ∞

0

∫ ∞

0

∫ ∞

0
𝑊𝛼,a (𝑥)𝑘𝛼 (𝑥, 𝑦, b)𝑟𝛼 (𝑥)𝑑𝑥 | 𝑓 (𝑦) |𝑟𝛼 (𝑦)𝑑𝑦 |𝑔(b) |𝑟𝛼 (b)𝑑b

=

∫ ∞

0
| 𝑓 (𝑦) |𝑊𝛼,a (𝑦)𝑟𝛼 (𝑦)𝑑𝑦

∫ ∞

0
|𝑔(b) |𝑊𝛼,a (b)𝑟𝛼 (b)𝑑b

= ∥ 𝑓 ∥𝐿𝛼,a
∥𝑔∥𝐿𝛼,a

where the positivity of the integrand justifies the change of order of integration, and the second equality
follows from the product formula (3.32). The final statement is proved using the same calculations as
before. �

Corollary 3.64. The Banach space 𝐿𝛼,a , equipped with the convolution multiplication 𝑓 · 𝑔 ≡ 𝑓 �
𝛼
𝑔,

is a commutative Banach algebra without identity element.

Proof. Proposition 3.63 shows that the Whittaker convolution defines a binary operation on 𝐿𝛼,a
for which the norm is submultiplicative. The commutativity and associativity of the Whittaker
convolution in the space 𝐿𝛼,a follows from the property

(
W𝛼 ( 𝑓 �

𝛼
𝑔)

)
(𝜏) = (W𝛼 𝑓 ) (𝜏) (W𝛼𝑔) (𝜏)

and the injectivity property of Lemma 3.62.

Suppose now that there exists e ∈ 𝐿𝛼,a such that 𝑓 �
𝛼

e = 𝑓 for all 𝑓 ∈ 𝐿𝛼,a . This means that

(W𝛼 𝑓 ) (𝜏) (W𝛼e) (𝜏) = (W𝛼 𝑓 ) (𝜏) for all 𝑓 ∈ 𝐿𝛼,a and 𝜏 ≥ 0.

Clearly, this implies that (W𝛼e) (𝜏) = 1 for all 𝜏 ≥ 0, which contradicts Lemma 3.62. This shows that
there exists no identity element for the Whittaker convolution on the space 𝐿𝛼,a . �
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We will see that the index Whittaker transform on the Banach algebra 𝐿𝛼,a admits a Wiener-Lévy
type theorem which resembles the classical Wiener-Lévy theorem on integral equations with difference
kernel (cf. [68, §17, Corollary 1], [104, p. 164]). For this, we will need the following lemma:

Lemma 3.65. Let 𝐽 : 𝐿𝛼,a −→ C be a linear functional satisfying

𝐽 ( 𝑓 �
𝛼
𝑔) = 𝐽 ( 𝑓 ) · 𝐽 (𝑔) for all 𝑓 , 𝑔 ∈ 𝐿𝛼,a . (3.102)

Then 𝐽 ( 𝑓 ) =
∫ ∞

0 𝑓 (b)𝑊𝛼,𝑖𝜏 (b) 𝑟𝛼 (b)𝑑b for some 𝜏 belonging to the complex strip |Im 𝜏 | ≤ a,
including infinity.

Notice that 𝜏 = ∞ corresponds, by (3.101), to the zero functional on 𝐿𝛼,a .

Proof. By the standard theorem on duality of 𝐿 𝑝 spaces,

𝐽 ( 𝑓 ) =
∫ ∞

0
𝑓 (b) 𝜔(b) 𝑟𝛼 (b)𝑑b

where 𝜔
𝑊𝛼,a

∈ 𝐿∞(𝑟𝛼), i.e., (3.51) holds. Since 𝐽 ( 𝑓 �
𝛼
𝑔) = 𝐽 ( 𝑓 ) · 𝐽 (𝑔), for 𝑓 , 𝑔 ∈ 𝐿𝛼,a we have

∫ ∞

0
𝑓 (b) 𝜔(b) 𝑟𝛼 (b)𝑑b ·

∫ ∞

0
𝑔(b) 𝜔(b) 𝑟𝛼 (b)𝑑b =

∫ ∞

0

∫ ∞

0
(T b𝛼 𝑓 ) (𝑦) 𝑔(𝑦)𝑟𝛼 (𝑦)𝑑𝑦 𝜔(b)𝑟𝛼 (b)𝑑b

=

∫ ∞

0

∫ ∞

0
(T 𝑦𝛼 𝑓 ) (b) 𝜔(b)𝑟𝛼 (b)𝑑b 𝑔(𝑦)𝑟𝛼 (𝑦)𝑑𝑦

=

∫ ∞

0

∫ ∞

0
(T 𝑦𝛼 𝜔) (b) 𝑓 (b)𝑟𝛼 (b)𝑑b 𝑔(𝑦)𝑟𝛼 (𝑦)𝑑𝑦

where the last equality follows from the commutativity of the Whittaker convolution, cf. Corollary
3.64. (The commutativity easily extends to 𝑓 ∈ 𝐿𝛼,a and 𝜔

𝑊𝛼,a
∈ 𝐿∞(𝑟𝛼) via a continuity argument.)

Since 𝑓 and 𝑔 are arbitrary,

𝜔(𝑥) 𝜔(𝑦) = (T 𝑦𝛼 𝜔) (𝑥) ≡
∫ ∞

0
𝜔(b) 𝑘𝛼 (𝑥, 𝑦, b) 𝑟𝛼 (b)𝑑b for almost every 𝑥, 𝑦 > 0

and the conclusion follows from Lemma 3.15. �

Theorem 3.66 (Wiener-Lévy type theorem). Let 𝑓 ∈ 𝐿𝛼,a (𝛼 < 1
2 , a ≥ 0) and 𝜚 ∈ C. The following

assertions are equivalent:

(i) 𝜚 + (W𝛼 𝑓 ) (𝜏) ≠ 0 for all 𝜏 belonging to the complex strip |Im 𝜏 | ≤ a, including infinity;

(ii) There exists a unique function 𝑔 ∈ 𝐿𝛼,a such that

1
𝜚 + (W𝛼 𝑓 ) (𝜏)

= 𝜚−1 + (W𝛼𝑔) (𝜏) ( |Im 𝜏 | ≤ a). (3.103)

Before the proof, we need to introduce some relevant notions from Gelfand’s theory of maximal
ideals in commutative Banach algebras (cf. e.g. [161, Chapter 6]). Let 𝑉 be a commutative Banach
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algebra with identity element. A proper ideal on 𝑉 is a nonempty linear subspace I $ 𝑉 such that
𝑣 ·𝑥 = 𝑥 · 𝑣 ∈ I whenever 𝑣 ∈ 𝑉 and 𝑥 ∈ I. A proper ideal I is said to be maximal in 𝑉 if I = J
whenever J is a proper ideal such that I ⊂ J . A linear functional 𝐹 : 𝑉 −→ C is said to be a
multiplicative linear functional if 𝐹 . 0 and 𝐹 (𝑥 · 𝑦) = 𝐹 (𝑥)𝐹 (𝑦) for all 𝑥, 𝑦 ∈ 𝑉 . (This implies that
𝐹 (e) = 1, where e is the identity element in 𝑉 .) We will make use of the following basic results [161,
Proposition 6.1.12 and Theorem 6.2.2]:

• If 𝑣 ∈ 𝑉 is not invertible, then 𝑣 is contained in a maximal ideal of 𝑉 ;

• If 𝐹 is a multiplicative linear functional on 𝑉 , then I = Ker(𝐹) ≡ {𝑣 ∈ 𝑉 | 𝐹 (𝑣) = 0} is a
maximal ideal on 𝑉 , and conversely if I is a maximal ideal on 𝑉 then there exists a unique
multiplicative linear functional 𝐹 : 𝑉 −→ C such that I = Ker(𝐹).

Proof of Theorem 3.66. (i) =⇒ (ii): Let 𝑉𝛼,a be the Banach algebra obtained from 𝐿𝛼,a by formally
adjoining an identity element e, that is, 𝑉𝛼,a := {𝜚e + 𝑓 (·) | 𝜚 ∈ C, 𝑓 ∈ 𝐿𝛼,a} endowed with the
norm ∥𝜚e + 𝑓 ∥ = |𝜚 | + ∥ 𝑓 ∥𝐿𝛼,a

. The index Whittaker transform is naturally extended to 𝑉𝛼,a as(
W𝛼 (𝜚e + 𝑓 )

)
(𝜏) := 𝜚 + (W𝛼 𝑓 ) (𝜏) (|Im 𝜏 | ≤ a). It follows from Proposition 3.63 that

𝐽𝛼,𝜏 : 𝑉𝛼,a −→ C, 𝐽𝛼,𝜏 (𝜚e + 𝑓 ) :=
(
W𝛼 (𝜚e + 𝑓 )

)
(𝜏) (3.104)

is, for each 𝜏 in the strip |Im 𝜏 | ≤ a (including infinity), a multiplicative linear functional on 𝑉𝛼,a . We
claim that there are no multiplicative linear functionals in 𝑉𝛼,a other than the functionals 𝐽𝛼,𝜏 defined
in (3.104). Indeed, if 𝐽 : 𝑉𝛼,a −→ C is a multiplicative linear functional, then restricting to 𝐿𝛼,a we
obtain a functional 𝑓 ↦→ 𝐽 ( 𝑓 ) on 𝐿𝛼,a such that (3.102) holds. By Lemma 3.65, 𝐽 ( 𝑓 ) = (W𝛼 𝑓 ) (𝜏)
for some 𝜏 in the strip |Im 𝜏 | ≤ a (including infinity), and thus by linearity 𝐽 (𝜚e+ 𝑓 ) = 𝜚+ (W𝛼 𝑓 ) (𝜏).
Hence 𝐽 = 𝐽𝛼,𝜏 , as we had claimed.

Assume that 𝜚 + (W𝛼 𝑓 ) (𝜏) ≠ 0 for all 𝜏 with |Im 𝜏 | ≤ a. By the above, we have 𝜚e + 𝑓 ∉ Ker(𝐽)
for all multiplicative linear functionals 𝐽 : 𝑉𝛼,a −→ C, and using the results stated before the proof we
deduce that 𝜚e+ 𝑓 is invertible on𝑉𝛼,a . Denoting the inverse by 𝜚′e+ 𝑔 (𝜚′ ∈ C, 𝑔 ∈ 𝐿𝛼,a), we obtain(

𝜚 + (W𝛼 𝑓 ) (𝜏)
)
·
(
𝜚′ + (W𝛼𝑔) (𝜏)

)
= 1 ( |Im 𝜏 | ≤ a).

We know that lim𝜏→∞𝑊𝛼,𝑖𝜏 (𝑦) = 0 for 𝑦 > 0, hence as in Lemma 3.62 it follows that the left hand
side equals 𝜚 𝜚′ when 𝜏 = ∞. We thus have 𝜚′ = 𝜚−1, so that (3.103) holds.

(ii) =⇒ (i): This implication is straightforward: given that 𝑔 ∈ 𝐿𝛼,a , Lemma 3.62 ensures that
| (W𝛼𝑔) (𝜏) | ≤ (W𝛼 |𝑔 |) (𝑖a) < ∞ for all 𝜏 in the strip |Im 𝜏 | ≤ a. Since (3.103) holds, it follows that
𝜚 + (W𝛼 𝑓 ) (𝜏) = 1

𝜚−1+(W𝛼𝑔) (𝜏)
≠ 0 for all 𝜏 with |Im 𝜏 | ≤ a. �

3.7 Convolution-type integral equations

In this final section of the chapter we demonstrate that the Whittaker convolution, and especially the
analogue of the Wiener-Lévy theorem proved above, can be used to study the existence of solution for
integral equations of the second kind which can be represented as Whittaker convolution equations, in
the sense defined as follows:
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Definition 3.67. The integral equation of the second kind

𝑓 (𝑥) +
∫ ∞

0
𝐽 (𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦 = ℎ(𝑥), (3.105)

where ℎ is a known function and 𝑓 is to be determined, is said to be a Whittaker convolution equation
if there exists 𝛼 < 1

2 and \ ∈ 𝐿𝛼,0 such that 𝐽 (𝑥, 𝑦) = (T 𝑥𝛼 \) (𝑦) 𝑟𝛼 (𝑦) ≡ (T 𝑥𝛼 \) (𝑦) 𝑦−2𝛼𝑒−1/𝑦 . In
other words, (3.105) is a Whittaker convolution equation if it can be written in the form

𝑓 (𝑥) + ( 𝑓 �
𝛼
\) (𝑥) = ℎ(𝑥) (3.106)

for some 𝛼 < 1
2 and \ ∈ 𝐿𝛼,0.

Suppose that ℎ, \ ∈ 𝐿𝛼,a (being 𝛼 < 1
2 and a ≥ 0), and consider the convolution-type equation

(3.106). Applying the index Whittaker transform to both sides of the convolution equation, we get

(W𝛼 𝑓 ) (𝜏)
[
1 + (W𝛼\) (𝜏)

]
= (W𝛼ℎ) (𝜏) ( |Im 𝜏 | ≤ a). (3.107)

Now, Theorem 3.66 shows that the condition

1 + (W𝛼\) (𝜏) ≠ 0 throughout the strip |Im 𝜏 | ≤ a

is a necessary and sufficient condition for the existence of a unique 𝑔 ∈ 𝐿𝛼,a satisfying

1
1 + (W𝛼\) (𝜏)

= 1 + (W𝛼𝑔) (𝜏) ( |Im 𝜏 | ≤ a), (3.108)

and if this holds then from (3.107) we obtain (W𝛼 𝑓 ) (𝜏) = (W𝛼ℎ) (𝜏)
[
1 + (W𝛼𝑔) (𝜏)

]
(|Im 𝜏 | ≤ a)

or, equivalently,
𝑓 (𝑥) = ℎ(𝑥) + (ℎ �

𝛼
𝑔) (𝑥) = ℎ(𝑥) +

∫ ∞

0
𝐽𝑔 (𝑥, 𝑦) ℎ(𝑦) 𝑑𝑦 (3.109)

where 𝐽𝑔 (𝑥, 𝑦) = (T 𝑥𝛼 𝑔) (𝑦) 𝑟𝛼 (𝑦). In summary, we have proved the following:

Theorem 3.68. Let 𝐽 (𝑥, 𝑦) = (T 𝑥𝛼 \) (𝑦) 𝑟𝛼 (𝑦) where \ ∈ 𝐿𝛼,a (𝛼 < 1
2 , a ≥ 0), and suppose that

1 + (W𝛼\) (𝜏) ≠ 0 for all 𝜏 in the strip |Im 𝜏 | ≤ a, including infinity. Then the integral equation
(3.106) has, for any ℎ ∈ 𝐿𝛼,a a unique solution 𝑓 ∈ 𝐿𝛼,a which can be represented in the form (3.109)
for some 𝑔 ∈ 𝐿𝛼,a . Conversely, if 1 + (W𝛼\) (𝜏0) = 0 for some 𝜏0 with |Im 𝜏0 | ≤ a, then the equation
(3.106) is not solvable in the space 𝐿𝛼,a .

We point out that as long as (W𝛼 \) (𝜏)
1+(W𝛼 \) (𝜏) = 𝑂 (𝜏

−2), the representation (3.109) for the solution of
the integral equation can be rewritten as

𝑓 (𝑥) = ℎ(𝑥) −
∫ ∞

0

∫ ∞

0

(W𝛼\) (𝜏)
1 + (W𝛼\) (𝜏)

𝑊𝛼,𝑖𝜏 (𝑥)𝑊𝛼,𝑖𝜏 (𝑦) 𝜌𝛼 (𝜏)𝑑𝜏 ℎ(𝑦) 𝑟𝛼 (𝑦)𝑑𝑦 (3.110)

(here we used (3.48) and Proposition 3.59(a)). In many cases of interest, the index Whittaker transform
(W𝛼\) (𝜏) can be computed in closed form using integration formulas for the Whittaker𝑊 function
(which can be found in published tables of integrals, see e.g. [147, Section 2.19]), so that (3.110)
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becomes an explicit expression for the solution of the convolution integral equation, which can be
evaluated using numerical integration.

The Whittaker translation of the power function \ (𝑥) = 𝑥𝛽, whose closed form was computed in
Lemma 3.12, yields a large family of Whittaker convolution integral equations to which this theorem
can be applied:

Corollary 3.69. Let ℎ ∈ 𝐿𝛼,a (𝛼 < 1
2 , a ≥ 0), _ ∈ C, and 𝛽 ∈ C with Re 𝛽 < −1

2 + 𝛼 − a. The integral
equation

𝑓 (𝑥) + _
∫ ∞

0
(𝑥 + 𝑦)𝛽𝑊𝛼,𝛼− 1

2−𝛽

( 𝑥𝑦

𝑥 + 𝑦

)
𝑓 (𝑦) 𝑟𝛼 (𝑦)𝑑𝑦 = ℎ(𝑥), (3.111)

has a unique solution 𝑓 ∈ 𝐿𝛼,a if and only if the condition

Γ(𝛽) + _ Γ
(
𝛽 − 1

2 + 𝛼 + 𝑖𝜏
)
Γ
(
𝛽 − 1

2 + 𝛼 − 𝑖𝜏
)
≠ 0

holds for all 𝜏 ∈ C in the strip |Im 𝜏 | ≤ a, including infinity.

Proof. Let \ (𝑥) = _𝑥𝛽 . It is clear from (3.100) that \ ∈ 𝐿𝛼,a . We have seen in Lemma 3.12 that

(T 𝑥𝛼 \) (𝑦) = _ (𝑥 + 𝑦)𝛽𝑊𝛼,𝛼− 1
2−𝛽

( 𝑥𝑦

𝑥 + 𝑦

)
.

The index Whittaker transformW𝛼\ is computed using relation 2.19.3.7 in [147]:

(W𝛼\) (𝜏) = _
∫ ∞

0
𝑥𝛽𝑊𝛼,𝑖𝜏 (𝑥) 𝑟𝛼 (𝑥)𝑑𝑥 =

_

Γ(−𝛽) Γ
(
−𝛽− 1

2 +𝛼+𝑖𝜏
)
Γ
(
−𝛽− 1

2 +𝛼−𝑖𝜏
)
, |Im 𝜏 | ≤ a.

The corollary is therefore obtained by setting \ (𝑥) = _𝑥𝛽 in Theorem 3.68. �

It should be emphasized that Theorem 3.68 is not just an existence and uniqueness theorem for the
solution of Whittaker convolution integral equations: under a mild assumption, (3.110) provides an
explicit expression for the solution which involves integration with respect to the parameters of the
Whittaker function. However, if we are able to determine a closed-form expression for the function
𝑔 ∈ 𝐿𝛼,a which satisfies (3.108), then the representation (3.109) yields a more tractable explicit
expression for the solution which does not involve index integrals. This is illustrated in the following
corollary:

Corollary 3.70. If ℎ ∈ 𝐿−𝑛,a where 𝑛 ∈ N0 and 0 ≤ a < 1
2 , then the integral equation

𝑓 (𝑥) + 𝑛!
𝜋

∫ ∞

0
(𝑥 + 𝑦)−𝑛−1𝑊−𝑛, 1

2

( 𝑥𝑦

𝑥 + 𝑦

)
𝑓 (𝑦) 𝑦2𝑛𝑒−

1
𝑦 𝑑𝑦 = ℎ(𝑥) (3.112)

has a unique solution 𝑓 ∈ 𝐿−𝑛,a , which is given by

𝑓 (𝑥) = ℎ(𝑥) + (ℎ �−𝑛 𝑔𝑛) (𝑥) = ℎ(𝑥) +
∫ ∞

0

∫ ∞

0
𝑘−𝑛 (𝑥, 𝑦, b) ℎ(𝑦) 𝑔𝑛 (b) (𝑦b)2𝑛𝑒−

1
𝑦
− 1

b 𝑑𝑦 𝑑b

where

𝑔𝑛 (𝑥) := − 𝑛!
𝜋2

𝑛∑
𝑘=0

Γ( 12 + 𝑘)
2

𝑘!
𝑥−𝑛+𝑘−1𝑊−𝑘,0(𝑥). (3.113)
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Proof. The integral equation (3.112) is the particular case of (3.111) which is obtained by setting
𝛼 = −𝑛, 𝛽 = −𝑛 − 1 and _ = 𝑛!

𝜋
. In this case, (W−𝑛\) (𝜏) = 1

𝜋
Γ( 12 + 𝑖𝜏)Γ(

1
2 − 𝑖𝜏) =

1
cosh(𝜋𝜏) . Clearly,

if |Im 𝜏 | < 1
2 then Re[cosh(𝜋𝜏)] > 0, hence the solvability condition 1 + (W−𝑛\) (𝜏) ≠ 0 holds in the

strip |Im 𝜏 | ≤ a < 1
2 and, according to Theorem 3.68, the unique solution of (3.112) is the function

𝑓 (𝑥) = ℎ(𝑥) + (ℎ �−𝑛 𝑔) (𝑥), where 𝑔 is the function satisfying

(W−𝑛𝑔) (𝜏) =
1

1 + (W−𝑛\) (𝜏)
− 1 = − 1

2 cosh2( 𝜋𝜏2 )
.

It remains to show that the function (3.113) satisfies this requirement. Using integral 2.16.48.14 of
[146] and recalling the identity (3.11), we find that∫ ∞

0

1
2 cosh2( 𝜋𝜏2 )

𝑊0,𝑖𝜏 (𝑥) 𝜌0(𝜏)𝑑𝜏 =
1
𝜋𝑥
𝑊0,0(𝑥). (3.114)

Now, by (3.53) and the recurrence relation for the Gamma function we have��Γ( 1
2 + 𝑖𝜏

) ��2 𝑑𝑛
𝑑𝑥𝑛

𝑊0,𝑖𝜏 (𝑥) = (−1)𝑛
��Γ( 1

2 + 𝑖𝜏
) ��2�� ( 1

2 + 𝑖𝜏
)
𝑛

��2𝑊−𝑛,𝑖𝜏 (𝑥)
= (−1)𝑛

��Γ( 1
2 + 𝑛 + 𝑖𝜏

) ��2𝑊−𝑛,𝑖𝜏 (𝑥). (3.115)

Therefore, applying 𝑑𝑛

𝑑𝑥𝑛
to both sides of (3.114) we obtain∫ ∞

0

1
2 cosh2( 𝜋𝜏2 )

𝑊−𝑛,𝑖𝜏 (𝑥) 𝜌−𝑛 (𝜏)𝑑𝜏 = (−1)𝑛 𝑑
𝑛

𝑑𝑥𝑛

( 1
𝜋𝑥
𝑊0,0(𝑥)

)
=
𝑛!
𝜋2

𝑛∑
𝑘=0

|Γ(𝑘 + 1
2 ) |

2

𝑘!
𝑥−𝑛+𝑘−1𝑊−𝑘,0(𝑥)

where the possibility of differentiating under the integral is justified as in the proof of Lemma 3.15, and
the last equality follows from Leibniz’s rule and the identities 𝑑𝑛−𝑘

𝑑𝑥𝑛−𝑘
(𝑥−1) = (−1)𝑛−𝑘 (𝑛 − 𝑘)!𝑥−𝑛+𝑘−1

and (3.115). Recalling (3.48), we see that
[
W−1
−𝑛

( 1
2 cosh−2( 𝜋𝜏2 )

) ]
(𝑥) = −𝑔𝑛 (𝑥) and, consequently,

(W−𝑛𝑔𝑛) (𝜏) = − 1
2 cosh−2( 𝜋𝜏2 ), as was to be proved. �

The integral equation

𝑓 (𝑥) + _
∫ ∞

0
𝑓 (𝑦) 𝑒

−𝑥−𝑦

𝑥 + 𝑦 𝑑𝑦 = ℎ(𝑥) (3.116)

which has been introduced by Lebedev in [107], can be interpreted as the particular case of (3.111)
which is obtained by setting 𝛼 = 0, 𝛽 = −1, 𝑓 (𝑥) = 𝑥−1𝑒−𝑥 𝑓 ( 1

2𝑥 ) and ℎ(𝑥) = 𝑥−1𝑒−𝑥ℎ( 1
2𝑥 ). It is

shown in [194, Section 17.1] that Lebedev’s equation (3.116) is a convolution equation with respect to
the Kontorovich-Lebedev convolution, and an explicit representation for the solution has been derived
for _ = 1

𝜋
. The equation (3.112) is therefore a natural generalization of Lebedev’s integral equation

for which Corollary 3.70 provides an explicit expression for the solution. The existence of explicit
solution for the generalized Lebedev equation (3.112) is noteworthy because the Whittaker function
𝑊𝛼, 1

2
(·) is often encountered in problems in physics and chemistry [106].
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Remark 3.71. For ease of presentation, throughout the chapter we have introduced the Whittaker
convolution as the generalized convolution determined by the Sturm-Liouville operator A𝛼𝑢(𝑦) =
𝑦2𝑢′′(𝑦) + (1 + 2(1 − 𝛼)𝑦)𝑢′(𝑦). It is, however, not difficult to extend our construction in order to
define the generalized convolution associated with a Sturm-Liouville operator A ≡ A𝛼,𝛾,𝑐 of the
more general form

A𝑢(𝑦) = 𝛾𝑦2𝑢′′(𝑦) + 𝛾(𝑐 + 2(1 − 𝛼)𝑦)𝑢′(𝑦) = 1
𝑟 (𝑦)

(
𝑝𝑢′

) ′(𝑦) (𝛾, 𝑐 > 0, 𝛼 < 1
2 )

where 𝑟 (b) := 1
𝑐
𝑟𝛼 ( b𝑐 ) and 𝑝(b) := 𝑐𝛾 b2(1−𝛼)𝑒−1/b . It should be noted that this extension includes

the infinitesimal generator of a general (nonstandardized) Shiryaev process (as defined in (3.1)) with
drift ` > 𝜎2

2 . The crucial observation here is that the solutions of the more general Sturm-Liouville
problem −A𝑢 = _𝑢 (with Neumann boundary conditions) can also be expressed in terms of the
Whittaker𝑊 function and, therefore, the corresponding product formula can be obtained by applying
elementary changes of variables to the product formula determined in Section 3.1. The kernels of the
more general product formula also constitute a family of probability densities, so the induced notions
of generalized translation, convolution, Lévy processes and moment functions (defined in analogy
with those of the previous sections) have essentially the same properties as before.

Table 3.1 collects the product formula and the definitions of the fundamental objects which underlie
the construction of this extension of the Whittaker convolution structure. Using these definitions and
the same proofs as before, it is straightforward to check that the main results of the previous sections
— such as the Lévy-type martingale characterization for the nonstandardized Shiryaev process or
the Wiener-Lévy type theorem for the index Whittaker transform — are also valid for the extended
Whittaker convolution structure.

Table 3.1 Basic results and definitions for the extended Whittaker convolution

Solution of the Sturm-Liouville boundary
value problem
[−A𝑢 = _𝑢, 𝑢(0) = 1, (𝑝𝑢′) (0) = 0]

𝑊𝛼,Λ ( 𝑥𝑐 )
[
Λ :=

√
( 1

2 − 𝛼)2 −
_
𝛾

]
Product formula for the Sturm-Liouville
solutions

𝑊𝛼,a ( 𝑥𝑐 )𝑊𝛼,a ( 𝑦𝑐 ) =
∫ ∞

0 𝑊𝛼,a ( b𝑐 ) 𝑘(𝑥, 𝑦, b) 𝑟 (b)𝑑b[
𝑘(𝑥, 𝑦, b) := 𝑘𝛼 ( 𝑥𝑐 ,

𝑦
𝑐 ,

b
𝑐 )

]
Extended Whittaker translation operator (T 𝑦 𝑓 ) (𝑥) :=

∫ ∞
0 𝑓 (b) 𝑞(𝑥, 𝑦, b) 𝑟 (b)𝑑b ≡

(
T 𝑦/𝑐𝛼 𝑓 (𝑐 ·)

)
( 𝑥
𝑐
)

Extended index Whittaker transform of
functions and measures

(W 𝑓 ) (𝜏) :=
∫ ∞

0 𝑓 (𝑦)𝑊𝛼,𝑖𝜏 ( 𝑦𝑐 ) 𝑟 (𝑦)𝑑𝑦 ≡
(
W𝛼 𝑓 (𝑐 ·)

)
(𝜏)

(W`) (_) :=
∫
R+0
𝑊𝛼,Λ ( 𝑦𝑐 ) `(𝑑𝑦) ≡ �Θ1/𝑐 `(𝛾_)

Extended Whittaker convolution of func-
tions and measures

( 𝑓 ���𝑔) (𝑥) :=
∫ ∞

0 (T
𝑥 𝑓 ) (b) 𝑔(b) 𝑟 (b)𝑑b =

(
𝑓 (𝑐 ·)�

𝛼
𝑔(𝑐 ·)

)
( 𝑥
𝑐
)

(` ��� a) (𝑑b) :=
∫
R+0

∫
R+0
𝑞(𝑥, 𝑦, b)𝑟 (b)𝑑b `(𝑑𝑥) a(𝑑𝑦)

���-infinitely divisible measures, ���-convo-
lution semigroups and ���-Lévy processes Replace �

𝛼
by ��� in the previous definitions

(Canonical) ���-moment functions 𝜑𝑘 (𝑥) = 𝜑𝑘 ( 𝑥𝑐 ), where 𝜑𝑘 (·) are (canonical) �
𝛼
-moment functions

Extended Whittaker convolution equation An equation of the form (3.105), with 𝐽 (𝑥, 𝑦) = (T 𝑥\) (𝑦) 𝑟 (𝑦)



Chapter 4

Generalized convolutions for
Sturm-Liouville operators

This chapter is dedicated to the problem of constructing Sturm-Liouville convolutions, i.e. generalized
convolution operators associated with Sturm-Liouville differential expressions. The convolutions
constructed here will, in particular, allow us to interpret the diffusion process generated by the
Neumann realization (L (2) ,D(L (2) )) of the Sturm-Liouville operator as a Lévy-like process.

We consider Sturm-Liouville operators of the form (2.16) but without zero order term, that is,

ℓ = −1
𝑟

𝑑

𝑑𝑥

(
𝑝
𝑑

𝑑𝑥

)
, 𝑥 ∈ (𝑎, 𝑏) (4.1)

(−∞ ≤ 𝑎 < 𝑏 ≤ ∞). Throughout the chapter we always assume that the coefficients are such that
𝑝(𝑥), 𝑟 (𝑥) > 0 for all 𝑥 ∈ (𝑎, 𝑏), 𝑝, 𝑝′, 𝑟, 𝑟 ′ ∈ ACloc(𝑎, 𝑏) and

∫ 𝑐
𝑎

∫ 𝑐
𝑦

𝑑𝑥
𝑝 (𝑥) 𝑟 (𝑦)𝑑𝑦 < ∞.

Remark 4.1. We shall make extensive use of the fact that the differential expression (4.1) can be
transformed into the standard form

ℓ̃ = − 1
𝐴

𝑑

𝑑b

(
𝐴
𝑑

𝑑b

)
= − 𝑑

2

𝑑b2 −
𝐴′

𝐴

𝑑

𝑑b
.

This is achieved by setting
𝐴(b) :=

√
𝑝(𝛾−1(b)) 𝑟 (𝛾−1(b)), (4.2)

where 𝛾−1 is the inverse of the increasing function

𝛾(𝑥) =
∫ 𝑥

𝑐

√
𝑟 (𝑦)
𝑝(𝑦) 𝑑𝑦,

𝑐 ∈ (𝑎, 𝑏) being a fixed point (if
√
𝑟 (𝑦)
𝑝 (𝑦) is integrable near 𝑎, we may also take 𝑐 = 𝑎). Indeed, we

know from Remark 2.31 that a given function 𝜔_ : (𝑎, 𝑏) → C satisfies ℓ(𝜔_) = _𝜔_ if and only if
𝜔_(b) := 𝜔_(𝛾−1(b)) satisfies ℓ̃(𝜔_) = _𝜔_.
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4.1 Known results and motivation

As noted in the Introduction, the subject of this chapter is not new. The roots of the problem of
constructing Sturm-Liouville convolutions originate in the work of Delsarte and Levitan on generalized
translation operators determined by ordinary differential operators [43, 110–113]. This theory was
later developed by Chébli [27], who constructed convolutions satisfying the hypergroup axioms for
Sturm-Liouville operators belonging to a family which includes the Bessel operator 1

2
𝑑2

𝑑𝑥2 +
[+ 1

2
𝑥

𝑑
𝑑𝑥

([ > − 1
2 ) and the Jacobi operator (2.48) with 𝛼 ≥ 𝛽 ≥ 1

2 . In turn, Zeuner [196, 197] introduced the
general notion of a Sturm-Liouville hypergroup and extended the results of Levitan and Chébli to a
larger class of differential operators. (Further remarks on the historical development of the topic can
be found in [16, pp. 256–257].)

The definition of Sturm-Liouville hypergroup proposed by Zeuner reads as follows:

Definition 4.2. [196] A hypergroup (R+0 , ∗) is said to be a Sturm-Liouville hypergroup if there exists a
function 𝐴 on R+0 satisfying the condition

SL0 𝐴 ∈ C(R+0) ∩ C1(R+) and 𝐴(𝑥) > 0 for 𝑥 > 0

such that, for every function 𝑓 ∈ C∞c,even, the convolution

𝑣 𝑓 (𝑥, 𝑦) =
∫
R+0

𝑓 (b) (𝛿𝑥 ∗ 𝛿𝑦) (𝑑b) (4.3)

belongs to C2 ((R+0)2) and satisfies (ℓ𝑥𝑣 𝑓 ) (𝑥, 𝑦) = (ℓ𝑦𝑣 𝑓 ) (𝑥, 𝑦), (𝜕𝑦𝑣 𝑓 ) (𝑥, 0) = 0 (𝑥 > 0), where
ℓ𝑥 = − 1

𝐴(𝑥)
𝜕
𝜕𝑥
(𝐴(𝑥) 𝜕

𝜕𝑥
).

The following fundamental existence theorem for Sturm-Liouville hypergroups was established in
[197]:

Theorem 4.3. Suppose that 𝐴 satisfies SL0 and is such that

SL1 One of the following assertions holds:

SL1.1 𝐴(0) = 0 and 𝐴′ (𝑥)
𝐴(𝑥) =

𝛼0
𝑥
+ 𝛼1(𝑥) for 𝑥 in a neighbourhood of 0, where 𝛼0 > 0 and

𝛼1 ∈ C∞(R) is an odd function;

SL1.2 𝐴(0) > 0 and 𝐴 ∈ C1(R+0).

SL2 There exists [ ∈ C1(R+0) such that [ ≥ 0, the functions 𝜙[ := 𝐴′

𝐴
− [, 𝜓[ := 1

2[
′ − 1

4[
2 + 𝐴′

2𝐴 ·[
are both decreasing on R+ and lim𝑥→∞ 𝜙[ (𝑥) = 0.

Define the convolution ∗ via (4.3) where, for 𝑓 ∈ C∞c,even, 𝑣 𝑓 denotes the unique solution of
ℓ𝑥𝑣 𝑓 = ℓ𝑦𝑣 𝑓 , 𝑣 𝑓 (𝑥, 0) = 𝑣 𝑓 (0, 𝑥) = 𝑓 (𝑥), (𝜕𝑦𝑣 𝑓 ) (𝑥, 0) = (𝜕𝑥𝑣 𝑓 ) (0, 𝑦) = 0. Then (R+0 , ∗) is a
Sturm-Liouville hypergroup.

Remark 4.4. In this chapter we focus on the construction of convolutions defined on noncompact
intervals of R. However, it is worth noting that Sturm-Liouville hypergroups have also been studied
on compact intervals: a hypergroup ( [𝑏1, 𝑏2], ∗) is said to be a Sturm-Liouville hypergroup of
compact type [16, Definition 3.5.76] if there exists a function 𝐴 ∈ C[𝑏1, 𝑏2] ∩ C1(𝑏1, 𝑏2) such
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that 𝐴(𝑥) > 0 for 𝑏1 < 𝑥 < 𝑏2 and
∫ 𝑏2
𝑏1

𝐴(𝑥)𝑑𝑥 = 1 which satisfies the following requirement:
for each 𝑓 ∈ C∞c (𝑏1, 𝑏2) the convolution

∫
[𝑏1,𝑏2 ]

𝑓 (b) (𝛿𝑥 ∗ 𝛿𝑦) (𝑑b) is twice differentiable and
satisfies (ℓ𝑥𝑣 𝑓 ) (𝑥, 𝑦) = (ℓ𝑦𝑣 𝑓 ) (𝑥, 𝑦) and (𝜕𝑦𝑣 𝑓 ) (𝑥, 𝑏1) = (𝜕𝑦𝑣 𝑓 ) (𝑥, 𝑏2) = 0 (𝑏1 < 𝑥 < 𝑏2), where
ℓ𝑥 = − 1

𝐴(𝑥)
𝜕
𝜕𝑥
(𝐴(𝑥) 𝜕

𝜕𝑥
) is the associated Sturm-Liouville operator. The simplest example (where 𝐴 is

constant) is the two-point support hypergroup ( [0, 𝛽], }
𝛽
) defined as 𝛿𝑥 }

𝛽
𝛿𝑦 =

1
2 (𝛿 |𝑥−𝑦 | + 𝛿𝛽−|𝛽−𝑥−𝑦 |).

Another important example (cf. [16, p. 242]) is that of the compact Jacobi hypergroup ( [−1, 1], ~
𝛼, 𝛽
):

for (𝛼, 𝛽) such that −1 < 𝛽 ≤ 𝛼 and either 𝛽 ≥ −1
2 or 𝛼 + 𝛽 ≥ 0, this hypergroup is defined as

𝛿𝑥 ~
𝛼, 𝛽
𝛿𝑦 := a(𝛼,𝛽)𝑥,𝑦 , where a(𝛼,𝛽)𝑥,𝑦 is the unique measure such that the product formula

𝑅
(𝛼,𝛽)
𝑛 (𝑥)𝑅 (𝛼,𝛽)𝑛 (𝑦) =

∫
[−1,1]

𝑅
(𝛼,𝛽)
𝑛 (b) a(𝛼,𝛽)𝑥,𝑦 (𝑑b) (𝑛 ∈ N0) (4.4)

holds for the Jacobi polynomials 𝑅 (𝛼,𝛽)𝑛 defined in Example 2.39. (It is proved in [67] that for
each 𝑥, 𝑦 ∈ [−1, 1] there exists a unique measure a(𝛼,𝛽)𝑥,𝑦 ∈ P[−1, 1] such that (4.4) holds.) Further
existence theorems for Sturm-Liouville hypergroups of compact type associated with suitable families
of differential operators have been established in [16, 197].

To the best of our knowledge, Theorem 4.3 is the most general known result giving sufficient
conditions for the existence of a Sturm-Liouville hypergroup on R+0 associated with a given function 𝐴.
In fact, as far as we are aware, all the concrete examples of hypergroup structures on R+0 which were
known prior to this work are (modulo a suitable change of variables, cf. Remark 2.31) particular cases
of Sturm-Liouville hypergroups satisfying conditions SL0, SL1 and SL2 (see [16, 65]).

In the previous chapter we studied the problem of existence of a Sturm-Liouville convolution for
the particular case of the generator (3.2) of the Shiryaev process, and we established the following
result:

Proposition 4.5. Let T 𝑦𝛼 and �
𝛼

be the Whittaker translation and convolution (Definitions 3.11 and

3.20 respectively), and let 𝑓 ∈ C∞c,even. Then the function

𝑣 𝑓 (𝑥, 𝑦) := (T 𝑦𝛼 𝑓 ) (𝑥) ≡
∫
R+0

𝑓 (b) (𝛿𝑥 �
𝛼
𝛿𝑦) (𝑑b)

is a solution ofA𝛼,𝑥𝑣 𝑓 = A𝛼,𝑦𝑣 𝑓 , 𝑣 𝑓 (𝑥, 0) = 𝑣 𝑓 (0, 𝑥) = 𝑓 (𝑥), (𝜕 [1]𝑦 𝑣 𝑓 ) (𝑥, 0) = (𝜕 [1]𝑥 𝑣 𝑓 ) (0, 𝑦) = 0.
(HereA𝛼,𝑥 andA𝛼,𝑦 denote the differential operator (3.2) acting on the variable 𝑥 and 𝑦 respectively,
and 𝜕 [1]

b
:= 𝑝𝛼 (b) 𝜕𝜕b .)

Proof. The fact that 𝑣 𝑓 is a solution of A𝛼,𝑥𝑣 𝑓 = A𝛼,𝑦𝑣 𝑓 follows from the proof of Lemma 3.15,
and the claimed boundary conditions at the axes 𝑥 = 0 and 𝑦 = 0 were proved in Lemma 3.44. �

This result is not a particular case of Theorem 4.3 because the Sturm-Liouville operator A𝛼 does
not belong to the family of operators satisfying assumptions SL1–SL2. (Note that A𝛼 is transformed,
via the change of variables 𝑧 = log 𝑥, into the operator 𝑑2

𝑑𝑧2 + (1 − 2𝛼 + 𝑒−𝑧) 𝑑
𝑑𝑧

defined on the interval
(𝑎, 𝑏) = (−∞,∞).) Moreover, it was observed in Section 3.4 that, unlike the convolutions of Theorem
4.3, the Whittaker convolution does not satisfy the compactness axiom H6 of hypergroups; this is a
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distinguishing property of the Whittaker convolution, because as far as we are aware all other known
examples of Sturm-Liouville convolutions satisfy the compactness axiom. However, many of the
properties of the Whittaker convolution established in Chapter 3 are remarkably similar to those of
Sturm-Liouville hypergroups. This leads to natural questions, namely whether one can construct other
Sturm-Liouville convolutions which do not satisfy the compactness axiom and, more specifically,
whether it is possible to achieve this by extending the PDE approach of [197] to the Sturm-Liouville
operatorA𝛼 and other operators of a similar sort. A positive answer to these questions is given within
this chapter.

4.2 Laplace-type representation

The possibility of constructing a generalized convolution associated with the Sturm-Liouville expression
(4.1) is strongly connected with the positivity-preservingness of solutions of the hyperbolic Cauchy
problem ℓ𝑥𝑣 = ℓ𝑦𝑣, 𝑣(𝑥, 0) = 𝑣(0, 𝑥) = 𝑓 (𝑥), (𝜕𝑦𝑣) (𝑥, 0) = (𝜕𝑥𝑣) (0, 𝑦) = 0. We now introduce an
assumption which will be seen to be sufficient for the Cauchy problem to be positivity preserving.
Recall that the function 𝐴, defined in (4.2), is the coefficient associated with the transformation of ℓ
into the standard form (Remark 4.1).

Assumption MP. We have 𝛾(𝑏) =
∫ 𝑏
𝑐

√
𝑟 (𝑦)
𝑝 (𝑦) 𝑑𝑦 = ∞, and there exists [ ∈ C1(𝛾(𝑎),∞) such that

[ ≥ 0, the functions 𝜙[ := 𝐴′

𝐴
− [, 𝜓[ := 1

2[
′ − 1

4[
2 + 𝐴′

2𝐴 ·[ are both decreasing on (𝛾(𝑎),∞) and 𝜙[
satisfies limb→∞ 𝜙[ (b) = 0.

The reader will notice that this assumption is similar to condition SL2 in the existence theorem for
Sturm-Liouville hypergroups stated above (Theorem 4.3), but it is more general as it does not require
the function [ to be C1 at the left endpoint of the interval.

As in Section 2.4, in the sequel we denote by 𝑤_(·) the unique solution of (2.18), and {𝑎𝑚}𝑚∈N
will denote a sequence 𝑏 > 𝑎1 > 𝑎2 > . . . with lim 𝑎𝑚 = 𝑎. Having in mind the product formula
that we shall establish for Sturm-Liouville expressions (4.1) which satisfy Assumption MP, in this
section we prove the related fact that the solution 𝑤_(𝑥) of the initial value problem (2.18) admits
a representation as the Fourier transform of a subprobability measure. To this end, we need a few
lemmas. We start by stating some important properties which hold for all Sturm-Liouville operators
of the form (4.1) which satisfy Assumption MP.

Lemma 4.6.

(a) The function 𝐴′

𝐴
is nonnegative, and there exists a finite limit 𝜎 := limb→∞

𝐴′ ( b )
2𝐴( b ) ∈ R

+
0 .

(b) If _ ≤ 𝜎2, then 𝑤_(𝑥) > 0 for all 𝑥 ∈ [𝑎, 𝑏).

(c) If _ > 𝜎2, then 𝑤_(·) has infinitely many zeros on [𝑎, 𝑏).

(d) 𝑏 is a natural endpoint for the Sturm-Liouville operator ℓ.

Proof. The proofs of (a) and (b) are rather technical and rely on a careful study of (the coefficients of)
the differential operator ℓ̃; see, respectively, Section 2 and Proposition 4.2 of [197].
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Concerning part (c), we first apply the Liouville transformation (Remark 2.31) to deduce that that
the function

√
𝐴(b) 𝑤_(𝛾−1(b)) is a solution of −𝑣′′ + (𝔮 − _)𝑣 = 0, where

𝔮(b) =
( 𝐴′(b)
2𝐴(b)

)2
+

( 𝐴′(b)
2𝐴(b)

) ′
=

1
4
𝜙2
[ (b) + 𝜓[ (b) +

1
2
𝜙′[ (b), b ∈ (𝛾(𝑎),∞). (4.5)

We know from Assumption MP and [197, Lemma 2.9] that limb→∞ 𝜙[ (b) = 0 and limb→∞ [′(b) = 0.
In turn, the fact that 𝜙[ is positive and decreasing clearly implies that 𝜙′[ ∈ 𝐿1( [𝑐,∞), 𝑑b) for
𝑐 > 𝛾(𝑎) and, therefore, limb→∞ 𝜙′[ (b) = 0. We thus have limb→∞ 𝔮(b) = 𝜎2. Using a basic
oscillation criterion for second order ordinary differential equations [45, XIII.7.37], we conclude that√
𝐴(b) 𝑤_(𝛾−1(b)) has infinitely many zeros on [𝛾(𝑎),∞) whenever _ > 𝜎2, so that (c) holds.

Part (d) follows from the general fact that the existence of oscillatory solutions for the Sturm-
Liouville equation (that is, solutions with infinitely many zeros) implies that the essential spectrum
of any self-adjoint realization of the Sturm-Liouville expression is nonempty [45, XIII.7.39], which
in turn implies that, in the Feller boundary classification, at least one endpoint must be natural [129,
Theorem 3.1]. �

Our second lemma states that the family of Sturm-Liouville expressions satisfying Assumption MP
is closed under changes of variable determined by the multiplication of the coefficients by (squared)
strictly positive solutions of the Sturm-Liouville problem. It is based on a known result on changes of
spectral functions for Sturm-Liouville operators and Krein strings ([103], see also [48, Section 6.9]).

Lemma 4.7. Let ℓ = − 1
𝑟
𝑑
𝑑𝑥

(
𝑝 𝑑
𝑑𝑥

)
be a Sturm-Liouville expression satisfying Assumption MP. For

−∞ < ^ ≤ 𝜎2, consider the modified differential expression

ℓ ⟨^ ⟩ = − 1
𝑟 ⟨^ ⟩

𝑑

𝑑𝑥

(
𝑝 ⟨^ ⟩

𝑑

𝑑𝑥

)
, 𝑥 ∈ (𝑎, 𝑏)

where 𝑝 ⟨^ ⟩ = 𝑤2
^ · 𝑝 and 𝑟 ⟨^ ⟩ = 𝑤2

^ ·𝑟. Then Assumption MP also holds for ℓ ⟨^ ⟩, and the function

𝑤
⟨^ ⟩
_
(𝑥) :=

𝑤^+_(𝑥)
𝑤^ (𝑥)

(4.6)

is, for each _ ∈ C, the unique solution of ℓ ⟨^ ⟩(𝑤) = _𝑤, 𝑤(𝑎) = 1 and (𝑝 ⟨^ ⟩𝑤′) (𝑎) = 0. Moreover, the
spectral measure associated with ℓ ⟨^ ⟩ (Theorem 2.30) is given by

𝜌
⟨^ ⟩
L (_1, _2] = 𝜌L (_1 + ^, _2 + ^] (−∞ < _1 ≤ _2 < ∞).

Proof. Fix −∞ < ^ ≤ 𝜎2. The functions 𝐴 and 𝐴 ⟨^ ⟩ associated to the operators ℓ and ℓ ⟨^ ⟩ respectively
(defined as in (4.2)) are connected by 𝐴 ⟨^ ⟩ = 𝑤2

^ · 𝐴, where 𝑤^ (b) = 𝑤^ (𝛾−1(b)).
In order to show that Assumption MP holds for ℓ ⟨^ ⟩, write �̃�𝑚 = 𝛾(𝑎𝑚) and consider the

function 𝐴 ⟨^,𝑚⟩(b) := 𝑤2
^,𝑚(b) · 𝐴(b), where �̃�𝑚 ≤ b < ∞ and 𝑤_,𝑚(b) = 𝑤_,𝑚(𝛾−1(b)). Let

[ ⟨^,𝑚⟩ := [ + 2𝑤
′
^,𝑚

𝑤^,𝑚
, where [ satisfies the conditions of Assumption MP. By Lemma 4.6(b) we have

[ ⟨^,𝑚⟩ ∈ C1 [�̃�𝑚,∞), and it is easily seen (cf. [197, Example 4.6]) that

𝜙[⟨^,𝑚⟩ :=
(𝐴 ⟨^,𝑚⟩) ′

𝐴 ⟨^,𝑚⟩
− [ ⟨^,𝑚⟩ = 𝜙[ , 𝜓[⟨^,𝑚⟩ = 𝜓[ − ^, [ ⟨^,𝑚⟩(�̃�𝑚) = [(�̃�𝑚) ≥ 0
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and then one can show that [ ⟨^,𝑚⟩ ≥ 0 (see [197, Remark 2.12]), hence Assumption MP holds for the
function 𝐴 ⟨^,𝑚⟩. If we now let [ ⟨^ ⟩(b) := [(b) + 2𝑤

′
^ ( b )
𝑤^ ( b ) = lim𝑚→∞ [ ⟨^,𝑚⟩(b) (where 𝛾(𝑎) < b < ∞;

the second equality is due to (2.24)), then it is clear that the limit function [ ⟨^ ⟩ satisfies Assumption
MP for the function 𝐴 ⟨^ ⟩ associated with the operator ℓ ⟨^ ⟩.

A simple computation gives

− 1
𝑟 ⟨^ ⟩

[
𝑝 ⟨^ ⟩

(𝑤^+_
𝑤^

) ′] ′
= − 1

𝑤2
^ ·𝑟

[
𝑝 𝑤′^+_𝑤^ − 𝑝 𝑤^+_𝑤′^

] ′
= − 1

𝑤2
^

[
ℓ(𝑤^+_) 𝑤^ − 𝑤^+_ ℓ(𝑤^ )

]
= _

𝑤^+_(𝑥)
𝑤^ (𝑥)

so that ℓ ⟨^ ⟩(𝑤 ⟨^ ⟩
_
) = _𝑤 ⟨^ ⟩

_
. The boundary conditions at 𝑎 are also straightforwardly checked. To

prove the last assertion, notice that the eigenfunction expansions associated with ℓ and ℓ ⟨^ ⟩ are related
through the identity (

F ⟨^ ⟩ 𝑓
𝑤^

)
(_) = (F 𝑓 ) (^ + _), 𝑓 ∈ 𝐿2(𝑟)

(where, as in Section 2.4, we write 𝐿 𝑝 (𝑟) := 𝐿 𝑝
(
(𝑎, 𝑏); 𝑟 (𝑥)𝑑𝑥

)
) and therefore

∥F 𝑓 ∥𝐿2 (R,𝜌L ) = ∥ 𝑓 ∥𝐿2 (𝑟 ) =

 𝑓

𝑤^


𝐿2 (𝑟 ⟨^⟩)

=
(F 𝑓 ) (^ + ·)

𝐿2 (R,𝜌⟨^⟩L )
.

Recalling the uniqueness of the spectral measure for which the isometric property in Theorem 2.30
holds, we deduce that 𝜌⟨^ ⟩L (_1, _2] = 𝜌L (_1 + ^, _2 + ^]. �

Corollary 4.8. If 0 < _ ≤ 𝜎2, then 𝑤_(·) is strictly decreasing and such that lim𝑥↑𝑏 𝑤_(𝑥) = 0.

Proof. By the previous lemma, 𝑤_(𝑥) =
[
𝑤
⟨_⟩
−_ (𝑥)

]−1. By Corollary 2.27, 𝑤 ⟨_⟩−_ (𝑥) is strictly increasing
and unbounded, yielding the result. �

The remaining ingredient for the proof of the Laplace representation is the weak maximum
principle for the hyperbolic PDE 𝜕2

𝑥𝑢 = 𝜕2
𝑦𝑢 + 𝜙[ (𝑦) 𝜕𝑦𝑢 − 𝜓[ (𝑦) 𝑢. (This equation is equivalent, up

to a change of variables, to the PDE 𝜕2
𝑥𝑢 = −ℓ𝑦𝑢.) In the following lemma and corollary we state and

prove this maximum principle in a general form which also serves as a preparation for our study of the
hyperbolic PDE ℓ𝑥𝑢 = ℓ𝑦𝑢 (Section 4.3).

Lemma 4.9. Let the functions 𝜙1, 𝜙2, 𝜓1, 𝜓2 : (𝛾(𝑎),∞) −→ R be such that

𝜙2, 𝜓2 are decreasing, 0 ≤ 𝜙1 ≤ 𝜙2, 0 ≤ 𝜓1 ≤ 𝜓2, lim
b→∞

𝜙2(b) = 0. (4.7)

Denote by ℘ 𝑗 ( 𝑗 = 1, 2) the differential expression

℘ 𝑗 (𝑣) := −𝑣′′ − 𝜙 𝑗𝑣′ + 𝜓 𝑗𝑣 = −
1
𝐴𝜙 𝑗

(
𝐴𝜙 𝑗

𝑣′
) ′ + 𝜓 𝑗𝑣

where 𝐴𝜙 𝑗
(𝑥) = exp(

∫ 𝑥
𝛽
𝜙 𝑗 (b)𝑑b) (with 𝛽 > 𝛾(𝑎) arbitrary). For 𝛾(𝑎) < 𝑐 ≤ 𝑦 ≤ 𝑥, consider the

triangle Δ𝑐,𝑥,𝑦 := {(b, Z) ∈ R2 | Z ≥ 𝑐, b + Z ≤ 𝑥 + 𝑦, b − Z ≥ 𝑥 − 𝑦}, and let 𝑣 ∈ C2(Δ𝑐,𝑥,𝑦). Then
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the following integral equation holds:

𝐴𝜙1 (𝑥)𝐴𝜙2 (𝑦) 𝑣(𝑥, 𝑦) = 𝐻 + 𝐼0 + 𝐼1 + 𝐼2 + 𝐼3 − 𝐼4 (4.8)

where

𝐻 := 1
2 𝐴𝜙2 (𝑐)

[
𝐴𝜙1 (𝑥 − 𝑦 + 𝑐) 𝑣(𝑥 − 𝑦 + 𝑐, 𝑐) + 𝐴𝜙1 (𝑥 + 𝑦 − 𝑐) 𝑣(𝑥 + 𝑦 − 𝑐, 𝑐)] (4.9)

𝐼0 := 1
2 𝐴𝜙2 (𝑐)

∫ 𝑥+𝑦−𝑐

𝑥−𝑦+𝑐
𝐴𝜙1 (𝑠) (𝜕𝑦𝑣) (𝑠, 𝑐) 𝑑𝑠 (4.10)

𝐼1 := 1
2

∫ 𝑦

𝑐

𝐴𝜙1 (𝑥 − 𝑦 + 𝑠)𝐴𝜙2 (𝑠)
[
𝜙2(𝑠) + 𝜙1(𝑥 − 𝑦 + 𝑠)

]
𝑣(𝑥 − 𝑦 + 𝑠, 𝑠) 𝑑𝑠 (4.11)

𝐼2 := 1
2

∫ 𝑦

𝑐

𝐴𝜙1 (𝑥 + 𝑦 − 𝑠)𝐴𝜙2 (𝑠)
[
𝜙2(𝑠) − 𝜙1(𝑥 + 𝑦 − 𝑠)

]
𝑣(𝑥 + 𝑦 − 𝑠, 𝑠) 𝑑𝑠 (4.12)

𝐼3 := 1
2

∫
Δ𝑐,𝑥,𝑦

𝐴𝜙1 (b)𝐴𝜙2 (Z)
[
𝜓2(Z) − 𝜓1(b)

]
𝑣(b, Z) 𝑑b𝑑Z (4.13)

𝐼4 := 1
2

∫
Δ𝑐,𝑥,𝑦

𝐴𝜙1 (b)𝐴𝜙2 (Z) (℘2,Z 𝑣 − ℘1, b 𝑣) (b, Z) 𝑑b𝑑Z (4.14)

and ℘ 𝑗 ,𝑧 denotes the differential expression ℘ 𝑗 acting on the variable 𝑧.

Proof. Just compute

𝐼4 − 𝐼3 = 1
2

∫
Δ𝑐,𝑥,𝑦

(
𝜕

𝜕b

[
𝐴𝜙1 (b)𝐴𝜙2 (Z) (𝜕b 𝑣) (b, Z)

]
− 𝜕

𝜕Z

[
𝐴𝜙1 (b)𝐴𝜙2 (Z) (𝜕Z 𝑣) (b, Z)

] )
𝑑b𝑑Z

= 𝐼0 − 1
2

∫ 𝑦

𝑐

𝐴𝜙1 (𝑥 − 𝑦 + 𝑠)𝐴𝜙2 (𝑠) (𝜕Z 𝑣 + 𝜕b 𝑣) (𝑥 − 𝑦 + 𝑠, 𝑠) 𝑑𝑠

− 1
2

∫ 𝑦

𝑐

𝐴𝜙1 (𝑥 + 𝑦 − 𝑠)𝐴𝜙2 (𝑠) (𝜕Z 𝑣 − 𝜕b 𝑣) (𝑥 + 𝑦 − 𝑠, 𝑠) 𝑑𝑠

= 𝐼0 + 𝐼1 −
∫ 𝑦

𝑐

𝑑

𝑑𝑠

[
𝐴𝜙1 (𝑥 − 𝑦 + 𝑠)𝐴𝜙2 (𝑠) 𝑣(𝑥 − 𝑦 + 𝑠, 𝑠)

]
𝑑𝑠

+ 𝐼2 −
∫ 𝑦

𝑐

𝑑

𝑑𝑠

[
𝐴𝜙1 (𝑥 + 𝑦 − 𝑠)𝐴𝜙2 (𝑠) 𝑣(𝑥 + 𝑦 − 𝑠, 𝑠)

]
𝑑𝑠

where in the second equality we used Green’s theorem, and the third equality follows easily from the
fact that (𝐴𝜙 𝑗

) ′ = 𝜙 𝑗𝐴𝜙 𝑗
. �

Corollary 4.10 (Weak maximum principle). In the conditions of Lemma 4.9, let 𝛾(𝑎) < 𝑐 ≤ 𝑦0 ≤ 𝑥0.
If 𝑢 ∈ C2(Δ𝑐,𝑥0,𝑦0) satisfies

(℘2,𝑦𝑢 − ℘1,𝑥𝑢) (𝑥, 𝑦) ≤ 0, (𝑥, 𝑦) ∈ Δ𝑐,𝑥0,𝑦0

𝑢(𝑥, 𝑐) ≥ 0, 𝑥 ∈ [𝑥0 − 𝑦0 + 𝑐, 𝑥0 + 𝑦0 − 𝑐]
(𝜕𝑦𝑢) (𝑥, 𝑐) ≥ 0, 𝑥 ∈ [𝑥0 − 𝑦0 + 𝑐, 𝑥0 + 𝑦0 − 𝑐]

(4.15)

then 𝑢 ≥ 0 in Δ𝑐,𝑥0,𝑦0 .

Proof. Pick a function 𝜔 ∈ C2 [𝑐,∞) such that ℘2𝜔 < 0, 𝜔(𝑐) > 0 and 𝜔′(𝑐) ≥ 0. Clearly, it is
enough to show that for all Y > 0 we have 𝑣(𝑥, 𝑦) := 𝑢(𝑥, 𝑦) + Y𝜔(𝑦) > 0 for (𝑥, 𝑦) ∈ Δ𝑐,𝑥0,𝑦0 .
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By Lemma 4.9, the integral equation (4.8) holds for the function 𝑣. Assume by contradiction
that there exist Y > 0, (𝑥, 𝑦) ∈ Δ𝑐,𝑥0,𝑦0 for which we have 𝑣(𝑥, 𝑦) = 0 and 𝑣(b, Z) ≥ 0 for all
(b, Z) ∈ Δ𝑐,𝑥,𝑦 ⊂ Δ𝑐,𝑥0,𝑦0 . It is clear from the choice of 𝜔 that 𝑣(·, 𝑐) > 0, thus we have 𝐻 ≥ 0 in the
right hand side of (4.8). Similarly, (𝜕𝑦𝑣) (·, 𝑐) = (𝜕𝑦𝑢) (·, 𝑐) + Y𝜔′(𝑐) ≥ 0, hence 𝐼0 ≥ 0. Since the
functions 𝜙1, 𝜙2, 𝜓1, 𝜓2 satisfy (4.7) and we are assuming that 𝑢 ≥ 0 on Δ𝑐,𝑥,𝑦 , we have 𝐼1 ≥ 0, 𝐼2 ≥ 0
and 𝐼3 ≥ 0. In addition, 𝐼4 < 0 because (℘2,Z 𝑣−℘1, b 𝑣) (b, Z) = (℘2,Z 𝑢−℘1, b𝑢) (b, Z)+ (℘2𝜔) (Z) < 0.
Consequently, (4.8) yields 0 = 𝐴𝜙1 (𝑥)𝐴𝜙2 (𝑦)𝑣(𝑥, 𝑦) ≥ −𝐼4 > 0. This contradiction shows that
𝑣(𝑥, 𝑦) > 0 for all (𝑥, 𝑦) ∈ Δ𝑐,𝑥0,𝑦0 . �

Finally, we state the announced Laplace-type representation for the solutions of the Sturm-Liouville
initial value problem.

Theorem 4.11 (Laplace-type representation). Let ℓ be a Sturm-Liouville expression of the form (4.1),
and suppose that Assumption MP holds. Let 𝑤_ be the solution of the initial value problem (2.18). For
each 𝑥 ∈ [𝑎, 𝑏) there exists a subprobability measure 𝜋𝑥 on R such that

𝑤𝜏2+𝜎2 (𝑥) =
∫
R
𝑒𝑖𝜏𝑠𝜋𝑥 (𝑑𝑠) =

∫
R

cos(𝜏𝑠) 𝜋𝑥 (𝑑𝑠) (𝜏 ∈ C) (4.16)

where 𝜎 = limb→∞
𝐴′ ( b )
2𝐴( b ) . In particular, the boundedness property (2.25) extends to

|𝑤𝜏2+𝜎2 (𝑥) | ≤ 1 on the strip |Im(𝜏) | ≤ 𝜎 (𝑎 ≤ 𝑥 < 𝑏). (4.17)

We first show that a similar representation holds for the solutions 𝑤_,𝑚 of the initial value problem
on the approximating intervals (𝑎𝑚, 𝑏) (Lemma 2.28); the result of Theorem 4.11 will then be deduced
by a limiting argument.

Proposition 4.12. Let ℓ be a Sturm-Liouville expression of the form (4.1), and suppose that Assumption
MP holds. Let 𝑤_,𝑚 be defined as in Lemma 2.28. For each 𝑚 ∈ N and 𝑥 ∈ [𝑎𝑚, 𝑏) there exists a
subprobability measure 𝜋𝑥,𝑚 on R such that

𝑤𝜏2+𝜎2,𝑚(𝑥) =
∫
R
𝑒𝑖𝜏𝑠𝜋𝑥,𝑚(𝑑𝑠) =

∫
R

cos(𝜏𝑠) 𝜋𝑥,𝑚(𝑑𝑠) (𝜏 ∈ C). (4.18)

Proof. Throughout the proof we assume, without loss of generality, that we have chosen 𝑐 = 𝑎𝑚 in the
definition of the function 𝛾 introduced in Remark 4.1, so that 𝛾(𝑎𝑚) = 0.

We begin by proving that the result holds when 𝜎 = 0. Let [, 𝜙[ , 𝜓[ be defined as in Assumption
MP. The function 𝜗_,𝑚(𝑦) := exp( 12

∫ 𝑦
0 [(b)𝑑b)𝑤_,𝑚(𝛾−1(𝑦)) is the solution of

℘(𝑢) = _𝑢 (0 < b < ∞), 𝑢(0) = 1, 𝑢′(0) = 0

where ℘(𝑣) := −𝑣′′ − 𝜙[𝑣′ + 𝜓[𝑣. From this it follows that the function 𝑢𝜏 (𝑥, 𝑦) := cos(𝜏𝑥) 𝜗𝜏2,𝑚(𝑦)
(𝑥, 𝑦 ∈ R+0) is, for each 𝜏 ∈ C, a solution of the hyperbolic PDE 𝜕2

𝑥𝑢 = −℘𝑦𝑢. It follows from Corollary
4.10 that the Cauchy problem

(𝜕2
𝑥 + ℘𝑦)𝑢 = 0, 𝑢(𝑥, 0) = 𝑓 (𝑥), (𝜕𝑦𝑢) (𝑥, 0) = 0
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has the property that if 𝑓 ∈ C∞c (R), 𝑓 ≥ 0 then the solution 𝑢 𝑓 is such that 𝑢 𝑓 (𝑥, 𝑦) ≥ 0 for
all 𝑥 ≥ 𝑦 ≥ 0. Thus 𝑓 ↦→ 𝑢 𝑓 (𝑥, 𝑦) is a positive linear functional on C∞c (R) and, consequently,
𝑢 𝑓 (𝑥, 𝑦) =

∫
R
𝑓 𝑑`𝑥,𝑦,𝑚 for all 𝑓 ∈ C∞c (R), where `𝑥,𝑦,𝑚 is, for each 𝑥 ≥ 𝑦 ≥ 0, a finite positive

Borel measure; moreover, it follows from the domain of dependence for the Cauchy problem that
`𝑥,𝑦,𝑚 has compact support. In particular we can write

cos(𝜏𝑥) 𝜗𝜏2,𝑚(𝑦) =
∫
R

cos(𝜏𝑠) `𝑥,𝑦,𝑚(𝑑𝑠), 𝑥 ≥ 𝑦 ≥ 0. (4.19)

Assume that each measure `𝑥,𝑦,𝑚 is symmetric (if not, replace it by its symmetrization), and let
𝜘𝑦,𝑚 = `𝑦,𝑦,𝑚 ∗

R

1
2 (𝛿𝑦 + 𝛿−𝑦) − `2𝑦,𝑦,𝑚. We then have∫

R
cos(𝜏𝑠) 𝜘𝑦,𝑚(𝑑𝑠) =

∫
R

cos(𝜏𝑠) `𝑦,𝑦,𝑚(𝑑𝑠)
∫
R

cos(𝜏𝑠)
( 1

2 (𝛿𝑦 + 𝛿−𝑦)
)
(𝑑𝑠) −

∫
R

cos(𝜏𝑠) `2𝑦,𝑦,𝑚(𝑑𝑠)

=
(
cos2(𝜏𝑦) − 2 cos(𝜏𝑦)

)
𝜗𝜏2,𝑚(𝑦)

= 𝜗𝜏2,𝑚(𝑦).

We claim that 𝜘𝑦,𝑚 is a positive measure. Indeed, we have

cos(𝜏𝑥) 𝜗𝜏2,𝑚(𝑦) =
∫
R

cos(𝜏𝑠)
(
𝜘𝑦,𝑚 ∗

R

1
2 (𝛿𝑥 + 𝛿−𝑥)

)
(𝑑𝑠)

where the right-hand side is, by (4.19), a positive-definite function of 𝜏 ∈ R; therefore, the convolution
𝜘𝑦,𝑚 ∗

R

1
2 (𝛿𝑥 + 𝛿−𝑥) is, for all 𝑥 ≥ 𝑦 ≥ 0, a positive Borel measure. Since the support of 𝜘𝑦,𝑚

is compact, the supports of 𝜘𝑦,𝑚 ∗
R
𝛿𝑥 and 𝜘𝑦,𝑚 ∗

R
𝛿−𝑥 are disjoint for 𝑥 sufficiently large, and this

implies that the measures 𝜘𝑦,𝑚 ∗
R
𝛿𝑥 and (consequently) 𝜘𝑦,𝑚 are both positive. Setting 𝜋𝑥,𝑚 :=

exp
(
− 1

2

∫ 𝛾 (𝑥)
0 [(b)𝑑b

)
𝜘𝛾 (𝑥) ,𝑚, we conclude that (4.18) holds for all 𝜏 ∈ C. Since 𝑤0,𝑚(𝑥) ≡ 1, we

have 𝜋𝑥,𝑚 ∈ P(R) for all 𝑥 ∈ [𝑎𝑚, 𝑏).
Suppose now that 𝜎 > 0. Then the result for the case 𝜎 = 0 can be applied to the operator

ℓ ⟨𝜎
2 ⟩ defined in Lemma 4.7 and the corresponding eigenfunctions 𝑤 ⟨𝜎

2 ⟩
_,𝑚
(𝑥) :=

𝑤
_+𝜎2 ,𝑚 (𝑥)
𝑤
𝜎2 ,𝑚 (𝑥)

. (Indeed, it

follows from Lemma 4.6 that the function 𝐴 ⟨𝜎2 ⟩ associated to the operator ℓ ⟨𝜎2 ⟩ , defined as in (4.2),
is such that limb→∞

(𝐴⟨𝜎2⟩)′ ( b )
2𝐴⟨𝜎2⟩ ( b )

= 0.) Hence

𝑤𝜏2+𝜎2,𝑚(𝑥)
𝑤𝜎2,𝑚(𝑥)

=

∫
R

cos(𝜏𝑠) 𝜋𝑥,𝑚(𝑑𝑠)

where 𝜋𝑥,𝑚 is, for each 𝑥 ∈ [𝑎, 𝑏), a symmetric probability measure. Setting 𝜋𝑥,𝑚 := 𝑤𝜎2,𝑚(𝑥) 𝜋𝑥,𝑚,
we obtain (4.18). By Lemma 2.29 we have 𝑤𝜎2,𝑚(·) ≤ 1, hence each 𝜋𝑥,𝑚 is a subprobability
measure. �

Proof of Theorem 4.11. We proved in Proposition 4.12 that for each 𝑚 ∈ N there exists a symmetric
subprobability measure 𝜋𝑥,𝑚 whose Fourier transform is the function 𝜏 ↦→ 𝑤𝜏2+𝜎2,𝑚(𝑥) (𝜏 ∈ R). We
also know (from Lemmas 2.26–2.28) that 𝑤𝜏2+𝜎2,𝑚(𝑥) −→ 𝑤𝜏2+𝜎2 (𝑥) pointwise as 𝑚 →∞, the limit
function being continuous in 𝜏. Applying the Lévy continuity theorem (e.g. [8, Theorem 23.8]), we
conclude that 𝑤𝜏2+𝜎2 (𝑥) is the Fourier transform of a symmetric subprobability measure 𝜋𝑥 and, in
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addition, the measures 𝜋𝑥,𝑚 converge weakly to 𝜋𝑥 as 𝑚 →∞. Therefore, for 𝑥 > 𝑎 we have

𝑤𝜏2+𝜎2 (𝑥) =
∫
R

cos(𝜏𝑠) 𝜋𝑥 (𝑑𝑠) (𝜏 ∈ R). (4.20)

In order to extend (4.20) to 𝜏 ∈ C, we let 0 ≤ 𝜙1 ≤ 𝜙2 ≤ . . . be functions with compact support
such that 𝜙𝑛 ↑ 1 pointwise, and for fixed 𝑥 > 𝑎, ^ > 0 we compute∫

R
cosh(^𝑠) 𝜋𝑥 (𝑑𝑠) = lim

𝑛→∞

∫
R
𝜙𝑛 (𝑠) cosh(^𝑠) 𝜋𝑥 (𝑑𝑠)

= lim
𝑛→∞

lim
𝑚→∞

∫
R
𝜙𝑛 (𝑠) cosh(^𝑠) 𝜋𝑥,𝑚(𝑑𝑠)

≤ lim
𝑚→∞

∫
R

cosh(^𝑠) 𝜋𝑥,𝑚(𝑑𝑠) = lim
𝑚→∞

𝑤𝜎2−^2,𝑚(𝑥) = 𝑤𝜎2−^2 (𝑥) < ∞

From this estimate we easily see that the right-hand side of (4.20) is an entire function of 𝜏; therefore,
by analytic continuation, (4.20) holds for all 𝜏 ∈ C.

Finally, if |Im(𝜏) | ≤ 𝜎 then

|𝑤𝜏2+𝜎2 (𝑥) | ≤
∫
R
| cos(𝜏𝑠) |𝜋𝑥 (𝑑𝑠) ≤

∫
R

cosh(𝜎𝑠) 𝜋𝑥 (𝑑𝑠) = 𝑤0(𝑥) = 1

and therefore (4.17) is true. �

We finish this section by presenting a description of the spectrum of the Neumann realization
of the Sturm-Liouville operator ℓ which will later be useful, and whose proof relies on the Laplace
representation. Recall that the Neumann realization (L (2) ,D(L (2) )) was defined in Theorem 2.30 as
the self-adjoint operator obtained by restricting the Sturm-Liouville operator ℓ to the domain which
(considering that, by Lemma 4.6(d), the endpoint 𝑏 is limit point) was defined in (2.26) as

D(L (2) ) =
{
𝑢 ∈ 𝐿2(𝑟)

�� 𝑢, 𝑢′ ∈ ACloc(𝑎, 𝑏), ℓ(𝑢) ∈ 𝐿2(𝑟), (𝑝𝑢′) (𝑎) = 0
}
.

Proposition 4.13. Let ℓ be a Sturm-Liouville expression of the form (4.1), and suppose that Assumption
MP holds. The spectral measure 𝜌L of Proposition 2.30 is such that supp(𝜌L) = [𝜎2,∞). In addition,
L has purely absolutely continuous spectrum in (𝜎2,∞).

Proof. It follows from the proof of Lemma 4.6 that the operator L is unitarily equivalent to a
self-adjoint realization of the differential expression − 𝑑2

𝑑b 2 + 𝔮 (𝛾(𝑎) < b < ∞), where 𝔮 is defined by
(4.5) and satisfies 𝔮 = 𝔮1 + 𝔮2, with limb→∞ 𝔮1(b) = 𝜎2 and 𝔮2 ∈ 𝐿1( [𝑐,∞), 𝑑b) for 𝑐 > 𝛾(𝑎). Using
a general result on the spectral properties of Sturm-Liouville operators stated in [188, Theorem 15.3],
we conclude that the spectrum of L is purely absolutely continuous on (𝜎2,∞) and the essential
spectrum equals [𝜎2,∞). (The result of [188] is stated for Sturm-Liouville operators whose left
endpoint is regular, but we can apply it here because a well-known result [175, Theorem 9.11] ensures
that the essential spectrum of L is the union of the essential spectrums of self-adjoint realizations
of ℓ restricted to the intervals (𝑎, 𝑐) and (𝑐, 𝑏), 𝑎 < 𝑐 < 𝑏. Recall also that, as noted in the proof of
Lemma 4.6, Sturm-Liouville operators with no natural endpoints have a purely discrete spectrum.)
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It remains to show that L has no eigenvalues on [0, 𝜎2]. Indeed, if we assume that 0 ≤ _0 ≤ 𝜎2 is
an eigenvalue of L, then 𝑤_0 belongs to D(L (2) ) and therefore, by the Laplace representation (4.16),
𝑤_ belongs to D(L (2) ) for all _ ≥ 𝜎2; since the eigenvalues are discrete, this is a contradiction. �

4.3 The existence theorem for Sturm-Liouville product formulas

As in the particular cases of the Kingman and the Whittaker convolutions, the product formula for
the solutions 𝑤_ of the Sturm-Liouville problem (2.18) is the tool which will allow us to introduce
a generalized convolution associated with the operator ℓ. The probabilistic property of the product
formula (i.e. the property that the kernel of the product formula is composed of probability measures)
is the requirement which will ensure that the convolution preserves the space of probability measures.

The aim of this section is to show that Assumption MP is a sufficient condition for the existence of
such a probabilistic product formula. Namely, we will prove the following result:

Theorem 4.14 (Product formula for 𝑤_). Let ℓ be a Sturm-Liouville expression of the form (4.1), and
suppose that Assumption MP holds. For each 𝑥, 𝑦 ∈ [𝑎, 𝑏) there exists a measure a𝑥,𝑦 ∈ P[𝑎, 𝑏) such
that the product 𝑤_(𝑥) 𝑤_(𝑦) admits the integral representation

𝑤_(𝑥) 𝑤_(𝑦) =
∫
[𝑎,𝑏)

𝑤_(b) a𝑥,𝑦 (𝑑b), 𝑥, 𝑦 ∈ [𝑎, 𝑏), _ ∈ C. (4.21)

4.3.1 The associated hyperbolic Cauchy problem

The proof of Theorem 4.14 relies crucially on the basic properties (existence, uniqueness and positivity-
preservingness of solution) of the hyperbolic Cauchy problem associated with ℓ, i.e., of the boundary
value problem defined by

(ℓ𝑥ℎ) (𝑥, 𝑦) = (ℓ𝑦ℎ) (𝑥, 𝑦) (𝑥, 𝑦 ∈ (𝑎, 𝑏)), ℎ(𝑥, 𝑎) = 𝑓 (𝑥), (𝜕 [1]𝑦 ℎ) (𝑥, 𝑎) = 0
(4.22)

where 𝜕 [1]𝑦 = 𝑝(𝑦) 𝜕
𝜕𝑦

.
Since ℓ𝑦 − ℓ𝑥 = 𝑝 (𝑥)

𝑟 (𝑥)
𝜕2

𝜕𝑥2 − 𝑝 (𝑦)
𝑟 (𝑦)

𝜕2

𝜕𝑦2 + lower order terms, the equation ℓ𝑥ℎ = ℓ𝑦ℎ is hyperbolic at
the line 𝑦 = 𝑎 if 𝑝 (𝑎)

𝑟 (𝑎) > 0; otherwise, the initial conditions of the Cauchy problem are given at a line

of parabolic degeneracy. If 𝛾(𝑎) = −
∫ 𝑐
𝑎

√
𝑟 (𝑦)
𝑝 (𝑦) 𝑑𝑦 > −∞, then we can remove the degeneracy via

the change of variables 𝑥 = 𝛾(b), 𝑦 = 𝛾(Z) (cf. Remark 4.1), through which the partial differential
equation is transformed to the standard form ℓ̃b𝑢 = ℓ̃Z 𝑢, with initial condition at the line Z = 𝛾(𝑎). In
the case 𝛾(𝑎) = −∞, the standard form of the equation is also parabolically degenerate in the sense
that its initial line is Z = −∞.

Theorem 4.15 (Existence of solution). Let ℓ be a Sturm-Liouville expression of the form (4.1), and
suppose that 𝑥 ↦→ 𝑝(𝑥)𝑟 (𝑥) is an increasing function. If 𝑓 ∈ D(L (2) ) and ℓ( 𝑓 ) ∈ D(L (2) ), then the
function

ℎ 𝑓 (𝑥, 𝑦) :=
∫
[𝜎2,∞)

𝑤_(𝑥) 𝑤_(𝑦) (F 𝑓 ) (_) 𝜌L (𝑑_) (4.23)

solves the Cauchy problem (4.22).
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For ease of notation, unless necessary we drop the dependence in ℎ and denote (4.23) by ℎ(𝑥, 𝑦).

Proof. Let us begin by justifying that ℓ𝑥ℎ can be computed via differentiation under the integral sign.
Since 𝑤_ is a solution of the initial value problem (2.18), we have (𝑝𝑤′

_
) (𝑥) = −_

∫ 𝑥
𝑎
𝑤_(b) 𝑟 (b)𝑑b

and therefore (by Lemma 2.29) | (𝑝𝑤′
_
) (𝑥) | ≤ _

∫ 𝑥
𝑎
𝑟 (b)𝑑b. Hence∫

[𝜎2,∞)

��(F 𝑓 ) (_) (𝑝𝑤′_) (𝑥) 𝑤_(𝑦)��𝜌L (𝑑_) ≤ ∫ 𝑥

𝑎

𝑟 (b)𝑑b ·
∫
[𝜎2,∞)

_
��(F 𝑓 ) (_) 𝑤_(𝑦)��𝜌L (𝑑_) < ∞,

(4.24)
where the convergence (which is uniform in compacts) follows from (2.30) and Lemma 2.35. The conver-
gence of the differentiated integral yields that (𝜕 [1]𝑥 ℎ) (𝑥, 𝑦) =

∫
[𝜎2,∞)(F 𝑓 ) (_) (𝑝𝑤

′
_
) (𝑥) 𝑤_(𝑦) 𝜌L (𝑑_).

Since (ℓ𝑤_) (𝑥) = _𝑤_(𝑥), in the same way we check that
∫
[𝜎2,∞) (F 𝑓 ) (_) (ℓ𝑤_) (𝑥) 𝑤_(𝑦) 𝜌L (𝑑_)

converges absolutely and uniformly on compacts and is therefore equal to (ℓ𝑥ℎ) (𝑥, 𝑦). Consequently,

(ℓ𝑥ℎ) (𝑥, 𝑦) = (ℓ𝑦ℎ) (𝑥, 𝑦) =
∫
[𝜎2,∞)

_ (F 𝑓 ) (_) 𝑤_(𝑥) 𝑤_(𝑦) 𝜌L (𝑑_). (4.25)

Concerning the boundary conditions, Lemma 2.35(b) together with the fact that 𝑤_(𝑎) = 1 imply that
ℎ(𝑥, 𝑎) = 𝑓 (𝑥), and from (4.24) we easily see that lim𝑦↓𝑎 (𝜕 [1]𝑦 ℎ) (𝑥, 𝑦) = 0. This shows that ℎ is a
solution of the Cauchy problem (4.22). �

Under the assumptions of the theorem, the solution (4.23) of the hyperbolic Cauchy problem
satisfies the following conditions:

(𝛼) ℎ(·, 𝑦) ∈ D(L (2) ) for all 𝑎 < 𝑦 < 𝑏;

(𝛽) There exists a zero 𝜌L-measure set Λ0 ⊂ [𝜎2,∞) such that for each _ ∈ [𝜎2,∞) \ Λ0 we have

F [ℓ𝑦ℎ(·, 𝑦)] (_) = ℓ𝑦 [F ℎ(·, 𝑦)] (_) for all 𝑎 < 𝑦 < 𝑏, (4.26)

lim
𝑦↓𝑎
[F ℎ(·, 𝑦)] (_) = (F 𝑓 ) (_), lim

𝑦↓𝑎
𝜕
[1]
𝑦 F [ℎ(·, 𝑦)] (_) = 0. (4.27)

Indeed, by Theorem 2.30 we have [F ℎ(·, 𝑦)] (_) = (F 𝑓 ) (_) 𝑤_(𝑦) for all _ ∈ supp(𝜌L) and 𝑎 < 𝑦 <
𝑏. Since 𝑓 ∈ D(L (2) ) and |𝑤_(·) | ≤ 1 (Lemma 2.29), it is clear from (2.29) that ℎ(𝑥, 𝑦) satisfies (α).
Moreover, it follows from (4.25) that F [ℓ𝑦ℎ(·, 𝑦)] (_) = _ (F 𝑓 ) (_) 𝑤_(𝑦) = ℓ𝑦 [F ℎ(·, 𝑦)] (_), hence
(4.26) holds. The properties (4.27) follow immediately from Lemma 2.26.

Next we show that the solution from the above existence theorem is the unique solution satisfying
conditions (𝛼)–(𝛽):

Theorem 4.16 (Uniqueness). Let ℓ be a Sturm-Liouville expression of the form (4.1), and suppose
that 𝑥 ↦→ 𝑝(𝑥)𝑟 (𝑥) is an increasing function. Let 𝑓 ∈ D(L (2) ) and let ℎ1, ℎ2 ∈ C2 ((𝑎, 𝑏)2) be two
solutions of (ℓ𝑥ℎ) (𝑥, 𝑦) = (ℓ𝑦ℎ) (𝑥, 𝑦). Suppose that both ℎ1 and ℎ2 satisfy conditions (𝛼)–(𝛽). Then

ℎ1(𝑥, 𝑦) ≡ ℎ2(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ (𝑎, 𝑏). (4.28)

Proof. Fix _ ∈ R+0 \ Λ0 and let Ψ𝑗 (𝑦, _) := [F ℎ 𝑗 (·, 𝑦)] (_). We have

ℓ𝑦Ψ𝑗 (𝑦, _) = F [ℓ𝑦ℎ 𝑗 (·, 𝑦)] (_) = F [ℓ𝑥ℎ 𝑗 (·, 𝑦)] (_) = _Ψ𝑗 (𝑦, _), 𝑎 < 𝑦 < 𝑏
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where the first equality is due to (4.26) and the last step follows from (2.30). Moreover,

lim
𝑦↓𝑎

Ψ𝑗 (𝑦, _) = (F 𝑓 ) (_) and lim
𝑦↓𝑎
(𝜕 [1]𝑦 Ψ𝑗) (𝑦, _) = 0

by (4.27). It thus follows from Lemma 2.26 that

[F ℎ 𝑗 (·, 𝑦)] (_) = Ψ𝑗 (𝑦, _) = (F 𝑓 ) (_) 𝑤_(𝑦), 𝑎 < 𝑦 < 𝑏.

This equality holds for 𝜌L-almost every _, so the isometric property of F gives ℎ1(·, 𝑦) = ℎ2(·, 𝑦)
Lebesgue-a.e.; since the ℎ 𝑗 are continuous, we conclude that (4.28) holds. �

If the hyperbolic equation ℓ𝑥ℎ = ℓ𝑦ℎ (or the transformed equation ℓ̃b𝑢 = ℓ̃𝑦𝑢) is uniformly
hyperbolic, the existence and uniqueness of solution for this Cauchy problem is a standard result which
follows from the classical theory of hyperbolic problems in two variables (see e.g. [38, Chapter V]);
in fact, the existence and uniqueness holds under much weaker restrictions on the initial condition.
However, the existence and uniqueness theorems above become nontrivial in the presence of a
(non-removable) parabolic degeneracy at the initial line.

Indeed, even though many authors have addressed Cauchy problems for degenerate hyperbolic
equations in two variables, most studies are restricted to equations where the 𝜕2

𝜕𝑥2 term vanishes at
an initial line 𝑦 = 𝑦0 (we refer to [15, §2.3], [149, Section 5.4] and references therein). Much less is
known for hyperbolic equations whose 𝜕2

𝜕𝑦2 term vanishes at the same initial line: it is known that the
Cauchy problem is, in general, not well-posed, and the relevance of determining conditions for its
well-posedness has long been pointed out [15, §2.4], but as far as we are aware little progress has been
made on this problem (for related work see [122]). The application of spectral techniques to hyperbolic
Cauchy problems associated with Sturm-Liouville operators is by no means new, see e.g. [26, 27] and
references therein; however, it seems that such techniques had never been applied to degenerate cases.

An existence theorem analogous to Theorem 4.15 also holds when the initial line is shifted away
from the degeneracy, and this has the important consequence that the solution of the degenerate Cauchy
problem is the pointwise limit of solutions of nondegenerate problems. These facts are proved in the
following proposition.

Proposition 4.17 (Pointwise approximation by solutions of problems with shifted boundary). Let ℓ
be a Sturm-Liouville expression of the form (4.1), and suppose that 𝑥 ↦→ 𝑝(𝑥)𝑟 (𝑥) is an increasing
function. If 𝑓 ∈ D(L (2) ) and ℓ( 𝑓 ) ∈ D(L (2) ), then for each 𝑚 ∈ N the function

ℎ𝑚(𝑥, 𝑦) =
∫
[𝜎2,∞)

𝑤_(𝑥) 𝑤_,𝑚(𝑦) (F 𝑓 ) (_) 𝜌L (𝑑_)
(
𝑥 ∈ (𝑎, 𝑏), 𝑦 ∈ (𝑎𝑚, 𝑏)

)
(4.29)

is a solution of the Cauchy problem

(ℓ𝑥ℎ𝑚) (𝑥, 𝑦) = (ℓ𝑦ℎ𝑚) (𝑥, 𝑦), ℎ𝑚(𝑥, 𝑎𝑚) = 𝑓 (𝑥), (𝜕 [1]𝑦 ℎ𝑚) (𝑥, 𝑎𝑚) = 0. (4.30)

Moreover, we have

lim
𝑚→∞

ℎ𝑚(𝑥, 𝑦) = ℎ(𝑥, 𝑦) pointwise for each 𝑥, 𝑦 ∈ (𝑎, 𝑏) (4.31)
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where ℎ(𝑥, 𝑦) is the solution (4.23) of the Cauchy problem (4.22).

Proof. Let us begin by justifying that (𝜕 [1]𝑥 ℎ𝑚) (𝑥, 𝑦) and (ℓ𝑥ℎ𝑚) (𝑥, 𝑦) can be computed via differenti-
ation under the integral sign. The differentiated integrals are given by∫

[𝜎2,∞)
(𝑝𝑤′_) (𝑥) 𝑤_,𝑚(𝑦) (F 𝑓 ) (_) 𝜌L (𝑑_) (4.32)∫

[𝜎2,∞)
𝑤_(𝑥) 𝑤_,𝑚(𝑦) [F (ℓ( 𝑓 ))] (_) 𝜌L (𝑑_) (4.33)

(for the latter, we used the identities (ℓ𝑤_) (𝑥) = _𝑤_(𝑥) and (2.30)), and their absolute and uniform
convergence on compacts follows from the fact that 𝑓 , ℓ( 𝑓 ) ∈ D(L (2) ), together with Lemma 2.35(b)
and the inequality |𝑤_,𝑚(·) | ≤ 1 (which follows from Lemma 2.29 if we replace 𝑎 by 𝑎𝑚). This
justifies that (𝜕 [1]𝑥 ℎ𝑚) (𝑥, 𝑦) and (ℓ𝑥ℎ𝑚) (𝑥, 𝑦) are given by (4.32), (4.33) respectively.

We also need to ensure that (𝜕 [1]𝑦 ℎ𝑚) (𝑥, 𝑦) and (ℓ𝑦ℎ𝑚) (𝑥, 𝑦) are given by the corresponding
differentiated integrals, and to that end we must check that∫

[𝜎2,∞)
𝑤_(𝑥) (𝑝𝑤′_,𝑚) (𝑦) (F 𝑓 ) (_) 𝜌L (𝑑_)

converges absolutely and uniformly. Indeed, it follows from (2.23) that for 𝑦 ≥ 𝑎𝑚 we have
(𝑝𝑤′

_,𝑚
) (𝑦) = _

∫ 𝑦
𝑎𝑚
𝑤_,𝑚(b) 𝑟 (b)𝑑b and consequently | (𝑝𝑤′

_,𝑚
) (𝑦) | ≤ _

∫ 𝑦
𝑎𝑚

𝑟 (b)𝑑b; hence∫
[𝜎2,∞)

��𝑤_(𝑥) (𝑝𝑤′_,𝑚) (𝑦) (F 𝑓 ) (_)��𝜌L (𝑑_) ≤ ∫ 𝑦

𝑎𝑚

𝑟 (b)𝑑b ·
∫
[𝜎2,∞)

_
��𝑤_(𝑥) (F 𝑓 ) (_)��𝜌L (𝑑_)

(4.34)
and the uniform convergence in compacts follows from (2.30) and Lemma 2.35(b).

The verification of the boundary conditions is straightforward: Lemma 2.35(b) together with
the fact that 𝑤_,𝑚(𝑎𝑚) = 1 imply that ℎ𝑚(𝑥, 𝑎𝑚) = 𝑓 (𝑥), and from (4.34) we easily see that
(𝜕 [1]𝑦 ℎ𝑚) (𝑥, 𝑎𝑚) = 0. This shows that the function ℎ𝑚 defined by (4.29) is a solution of the Cauchy
problem (4.30).

Since 𝑤_,𝑚(𝑦) → 𝑤_(𝑦) as𝑚 →∞ (Lemma 2.28), the pointwise convergence ℎ𝑚(𝑥, 𝑦) → ℎ(𝑥, 𝑦)
follows from the dominated convergence theorem (which is applicable due to Lemmas 2.29 and
2.35(b)). �

It should be noted that the above existence and uniqueness theorems hold for all Sturm-Liouville
operators of the form (4.1) and such that the function 𝑥 ↦→ 𝑝(𝑥)𝑟 (𝑥) is increasing (and thus they are
applicable to many operators which do not satisfy Assumption MP).

The role of Assumption MP is to ensure that the solution of the Cauchy problem has the positivity-
preservingness property stated in the next proposition (and corollary), whose proof relies on the weak
maximum principle of Corollary 4.10.

Proposition 4.18 (Positivity of solution for the problem with shifted boundary). Let ℓ be a Sturm-
Liouville expression of the form (4.1), and suppose that Assumption MP holds. Let 𝑚 ∈ N. If



4.3. The existence theorem for Sturm-Liouville product formulas 109

𝑓 ∈ D(L (2) ), ℓ( 𝑓 ) ∈ D(L (2) ) and 𝑓 ≥ 0, then the function ℎ𝑚 given by (4.29) is such that

ℎ𝑚(𝑥, 𝑦) ≥ 0 for 𝑥 ≥ 𝑦 > 𝑎𝑚. (4.35)

If, in addition, 𝑓 ≤ 𝐶 (where 𝐶 is a constant), then ℎ𝑚(𝑥, 𝑦) ≤ 𝐶 for 𝑥 ≥ 𝑦 > 𝑎𝑚.

Proof. Let �̃�𝑚 := 𝛾(𝑎𝑚) and 𝐵(𝑥) := exp( 12
∫ 𝑥
�̃�𝑚
[(b)𝑑b). It follows from Proposition 4.17 that the

function 𝑢𝑚(𝑥, 𝑦) := 𝐵(𝑥)𝐵(𝑦)ℎ𝑚(𝛾−1(𝑥), 𝛾−1(𝑦)) is a solution of the Cauchy problem

(℘𝑥𝑢𝑚) (𝑥, 𝑦) = (℘𝑦𝑢𝑚) (𝑥, 𝑦), 𝑥, 𝑦 > �̃�𝑚 (4.36)

𝑢𝑚(𝑥, �̃�𝑚) = 𝐵(𝑥) 𝑓 (𝛾−1(𝑥)), 𝑥 > �̃�𝑚 (4.37)

(𝜕𝑦𝑢𝑚) (𝑥, �̃�𝑚) = 1
2[(�̃�𝑚) 𝐵(𝑥) 𝑓 (𝛾

−1(𝑥)), 𝑥 > �̃�𝑚 (4.38)

where ℘𝑥 := − 𝜕2

𝜕𝑥2 − 𝜙[ (𝑥) 𝜕𝜕𝑥 + 𝜓[ (𝑥). Clearly, 𝑢𝑚 satisfies the inequalities (4.15) for arbitrary
𝑥0 ≥ 𝑦0 ≥ �̃�𝑚 (here ℘1 = ℘2 and 𝑐 = �̃�𝑚). By Corollary 4.10, 𝑢𝑚(𝑥0, 𝑦0) ≥ 0 for all 𝑥0 ≥ 𝑦0 > �̃�𝑚;
consequently, (4.35) holds.

The proof that 𝑓 ≤ 𝐶 implies ℎ𝑚 ≤ 𝐶 is straightforward: if we have 𝑓 ≤ 𝐶, then �̃�𝑚(𝑥, 𝑦) =
𝐵(𝑥)𝐵(𝑦)

(
𝐶 − ℎ𝑚(𝛾−1(𝑥), 𝛾−1(𝑦))

)
is a solution of (4.36) with initial conditions

�̃�𝑚(𝑥, �̃�𝑚) = 𝐵(𝑥)
(
𝐶 − 𝑓 (𝛾−1(𝑥))

)
≥ 0, (𝜕𝑦 �̃�𝑚) (𝑥, �̃�𝑚) = 1

2[(�̃�𝑚) 𝐵(𝑥)
(
𝐶 − 𝑓 (𝛾−1(𝑥))

)
≥ 0

thus the reasoning of the previous paragraph yields that 𝐶 − ℎ𝑚 ≥ 0 for 𝑥 ≥ 𝑦 > �̃�𝑚. �

Corollary 4.19 (Positivity of solution for the Cauchy problem (4.22)). Let ℓ be a Sturm-Liouville
expression of the form (4.1), and suppose that Assumption MP holds. If 𝑓 ∈ D(L (2) ), ℓ( 𝑓 ) ∈ D(L (2) )
and 𝑓 ≥ 0, then the function ℎ given by (4.23) is such that

ℎ(𝑥, 𝑦) ≥ 0 for 𝑥, 𝑦 ∈ (𝑎, 𝑏).

If, in addition, 𝑓 ≤ 𝐶, then ℎ(𝑥, 𝑦) ≤ 𝐶 for 𝑥, 𝑦 ∈ (𝑎, 𝑏).

Proof. This is an immediate consequence of Proposition 4.18 together with the pointwise convergence
property (4.31). (By (4.23) we have 𝑓 (𝑥, 𝑦) = 𝑓 (𝑦, 𝑥), thus the conclusion holds for all 𝑥, 𝑦 ∈
(𝑎, 𝑏).) �

4.3.2 The time-shifted product formula

Before proving that there exists a product formula of the form (4.21) for the Sturm-Liouville
solutions {𝑤_(·)}_∈C, we will show that a similar product formula holds for the family of functions
{𝑒−𝑡_𝑤_(·)}_∈C. This auxiliary result will be called the time-shifted product formula because the latter
family is obtained by applying the diffusion semigroup generated by ℓ to the solutions 𝑤_(·). Indeed,
we saw in Subsection 2.4.3 that

𝑒−𝑡_𝑤_(𝑥) = (𝑇𝑡𝑤_) (𝑥) = [F 𝑝(𝑡, 𝑥, ·)] (_)
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where {𝑇𝑡 }𝑡≥0 denotes the Feller semigroup generated by the Neumann realization of ℓ and 𝑝(𝑡, 𝑥, 𝑦)
denotes the Feller transition density (2.39).

By the inversion formula (2.28) for the L-transform, a natural candidate for the measure of the
product formula for {𝑤_(·)}_∈C is

a𝑥,𝑦 (𝑑b) =
∫
[𝜎2,∞)

𝑤_(𝑥) 𝑤_(𝑦) 𝑤_(b) 𝜌L (𝑑_) 𝑟 (b)𝑑b.

This is only a formal solution, because in general the integral does not converge. But it suffices to
include the regularization term 𝑒−𝑡_ in order to obtain an integral which (under the assumptions of the
existence and uniqueness theorems above) always converges absolutely:

Lemma 4.20. Let ℓ be a Sturm-Liouville expression of the form (4.1), and suppose that 𝑥 ↦→ 𝑝(𝑥)𝑟 (𝑥)
is an increasing function. Let 𝑡0 > 0 and 𝐾1, 𝐾2 compact subsets of (𝑎, 𝑏). The integral∫

[𝜎2,∞)
𝑒−𝑡_𝑤_(𝑥) 𝑤_(𝑦) 𝑤_(b) 𝜌L (𝑑_)

converges absolutely and uniformly on (𝑡, 𝑥, 𝑦, b) ∈ [𝑡0,∞) × 𝐾1 × 𝐾2 × [𝑎, 𝑏).

Proof. This follows from Lemma 2.29 and the uniform convergence property of the integral represen-
tation of the transition density of the Feller semigroup {𝑇𝑡 }𝑡≥0 (Proposition 2.36). �

In what follows we write

𝑞𝑡 (𝑥, 𝑦, b) :=
∫
[𝜎2,∞)

𝑒−𝑡_𝑤_(𝑥) 𝑤_(𝑦) 𝑤_(b) 𝜌L (𝑑_). (4.39)

This function, which is (at least formally) the density of the measure of the time-shifted product
formula, is for fixed 𝑡, 𝑥, 𝑦 the density (with respect to 𝑟 (b)𝑑b) of a subprobability measure:

Lemma 4.21. Let ℓ be a Sturm-Liouville expression of the form (4.1), and suppose that Assumption
MP holds. The function 𝑞𝑡 (𝑥, 𝑦, b) is nonnegative and such that

∫ 𝑏
𝑎
𝑞𝑡 (𝑥, 𝑦, b) 𝑟 (b)𝑑b ≤ 1 for all

(𝑡, 𝑥, 𝑦) ∈ R+ × (𝑎, 𝑏) × (𝑎, 𝑏).

Throughout the proof (and in the sequel) we write D (2,0) := D(L (2) ) ∩ D(L (0) ), where

D(L (0) ) =
{
𝑢 ∈ C0 [𝑎, 𝑏)

�� 𝑢, 𝑢′ ∈ ACloc(𝑎, 𝑏), ℓ(𝑢) ∈ C0 [𝑎, 𝑏), (𝑝𝑢′) (𝑎) = 0
}

is the domain of the Feller semigroup {𝑇𝑡 }𝑡≥0 (cf. Subsection 2.4.3). Note that if 𝑔 ∈ C2
c [𝑎, 𝑏) with

𝑔′ ∈ Cc(𝑎, 𝑏), then 𝑔 ∈ D (2,0) ; consequently, any indicator function of an interval 𝐼 ⊂ [𝑎, 𝑏) is the
pointwise limit of functions 𝑔𝑛 ∈ D (2,0) .

Proof. Since 𝑞𝑡 (𝑥, 𝑦, ·) ∈ Cb [𝑎, 𝑏), it suffices to show that for all 𝑔 ∈ D (2,0) with 0 ≤ 𝑔 ≤ 1 we have

0 ≤ Q𝑡 ,𝑔 (𝑥, 𝑦) ≤ 1
(
𝑡 > 0, 𝑥, 𝑦 ∈ (𝑎, 𝑏)

)
where Q𝑡 ,𝑔 (𝑥, 𝑦) :=

∫ 𝑏
𝑎
𝑔(b) 𝑞𝑡 (𝑥, 𝑦, b) 𝑟 (b)𝑑b.



4.3. The existence theorem for Sturm-Liouville product formulas 111

Fix 𝑡 > 0 and 𝑔 ∈ D (2,0) with 0 ≤ 𝑔 ≤ 1. Since [F 𝑞𝑡 (𝑥, 𝑦, ·)] (_) = 𝑒−𝑡_𝑤_(𝑥) 𝑤_(𝑦), it follows
from the isometric property of the L-transform (Theorem 2.30) that

Q𝑡 ,𝑔 (𝑥, 𝑦) =
∫
[𝜎2,∞)

𝑒−𝑡_𝑤_(𝑥) 𝑤_(𝑦) (F 𝑔) (_) 𝜌L (𝑑_).

Differentiating under the integral sign we easily check (by dominated convergence and using Lemma
2.35(b)) that ℓ𝑥Q𝑡 ,𝑔 = ℓ𝑦Q𝑡 ,𝑔, (𝜕 [1]𝑦 Q𝑡 ,𝑔) (𝑥, 𝑎) = 0 and

Q𝑡 ,𝑔 (𝑥, 𝑎) =
∫
[𝜎2,∞)

𝑒−𝑡_𝑤_(𝑥) (F 𝑔) (_) 𝜌L (𝑑_) = (𝑇𝑡𝑔) (𝑥)

where the last equality follows from (2.37). The fact that 0 ≤ 𝑔 ≤ 1 clearly implies that 0 ≤ (𝑇𝑡𝑔) (𝑥) ≤
1 for 𝑥 ∈ (𝑎, 𝑏). One can verify via (2.29) that the function 𝑓 (𝑥) = (𝑇𝑡𝑔) (𝑥) is such that 𝑓 ∈ D(L (2) )
and ℓ( 𝑓 ) ∈ D(L (2) ). It then follows from the positivity property of the hyperbolic Cauchy problem
(Corollary 4.19) that 0 ≤ Q𝑡 ,𝑔 (𝑥, 𝑦) ≤ 1 for all 𝑥, 𝑦 ∈ (𝑎, 𝑏), as claimed. �

Proposition 4.22 (Time-shifted product formula). Let ℓ be a Sturm-Liouville expression of the form
(4.1), and suppose that Assumption MP holds. The product 𝑒−𝑡_𝑤_(𝑥) 𝑤_(𝑦) admits the integral
representation

𝑒−𝑡_𝑤_(𝑥) 𝑤_(𝑦) =
∫ 𝑏

𝑎

𝑤_(b) 𝑞𝑡 (𝑥, 𝑦, b) 𝑟 (b)𝑑b, 𝑡 > 0, 𝑥, 𝑦 ∈ (𝑎, 𝑏), _ ≥ 0 (4.40)

where the integral in the right hand side is absolutely convergent.
In particular,

∫ 𝑏
𝑎
𝑞𝑡 (𝑥, 𝑦, b) 𝑟 (b)𝑑b = 1 for all 𝑡 > 0, 𝑥, 𝑦 ∈ (𝑎, 𝑏).

Proof. The absolute convergence of the integral in the right hand side is immediate from Lemmas
2.29 and 4.21.

By Theorem 2.30, the equality in (4.40) holds 𝜌L-almost everywhere. Since supp(𝜌L) = [𝜎2,∞)
(Lemma 4.13), the fact that both sides of (4.40) are continuous functions of _ ≥ 0 allows us to extend
by continuity the equality (4.40) to all _ ≥ 𝜎2. If 𝜎 = 0, we are done.

Suppose that 𝜎 > 0. By (4.17) and Lemma 4.21, together with standard results on the analyticity
of parameter-dependent integrals, the function 𝜏 ↦→

∫ 𝑏
𝑎
𝑤𝜏2+𝜎2 (b) 𝑞𝑡 (𝑥, 𝑦, b) 𝑟 (b)𝑑b is an analytic

function of 𝜏 in the strip |Im(𝜏) | < 𝜎. It is also clear that 𝜏 ↦→ 𝑒−𝑡 (𝜏
2+𝜎2) 𝑤𝜏2+𝜎2 (𝑥) 𝑤𝜏2+𝜎2 (𝑦) is an

entire function. By analytic continuation we see that these two functions are equal for all 𝜏 in the strip
|Im(𝜏) | < 𝜎; consequently, (4.40) holds.

The last statement is obtained by setting _ = 0. �

4.3.3 The product formula for 𝑤_ as the limit case

Unsurprisingly, the product formula (4.21) is deduced by taking the limit as 𝑡 ↓ 0 in the time-shifted
product formula (4.40). If the functions 𝑤_(·) belong to C0 [𝑎, 𝑏), the limit can be straightforwardly
taken in the vague topology of measures. As shown below, the class of modified Sturm-Liouville
operators described in Lemma 4.7 can then be used to extend the product formula to the case where
the functions 𝑤_(·) do not belong to C0 [𝑎, 𝑏)



112 4. Generalized convolutions for Sturm-Liouville operators

Theorem 4.23 (Product formula for 𝑤_). Let ℓ be a Sturm-Liouville expression of the form (4.1),
and suppose that Assumption MP holds. For 𝑥, 𝑦 ∈ (𝑎, 𝑏) and 𝑡 > 0, let a𝑡 ,𝑥,𝑦 ∈ P[𝑎, 𝑏) be the
measure defined by a𝑡 ,𝑥,𝑦 (𝑑b) = 𝑞𝑡 (𝑥, 𝑦, b) 𝑟 (b)𝑑b. Then for each 𝑥, 𝑦 ∈ (𝑎, 𝑏) there exists a measure
a𝑥,𝑦 ∈ P[𝑎, 𝑏) such that a𝑡 ,𝑥,𝑦

𝑤−→ a𝑥,𝑦 as 𝑡 ↓ 0. Moreover, the product 𝑤_(𝑥) 𝑤_(𝑦) admits the
integral representation

𝑤_(𝑥) 𝑤_(𝑦) =
∫
[𝑎,𝑏)

𝑤_(b) a𝑥,𝑦 (𝑑b), 𝑥, 𝑦 ∈ (𝑎, 𝑏), _ ∈ C. (4.41)

In particular, Theorem 4.14 holds.

Proof. Let {𝑡𝑛}𝑛∈N be an arbitrary decreasing sequence with 𝑡𝑛 ↓ 0. It is a basic fact that any sequence
of probability measures contains a vaguely convergent subsequence (e.g. [9, p. 213]), thus there exists
a subsequence {𝑡𝑛𝑘 } and a measure a𝑥,𝑦 ∈ M+ [𝑎, 𝑏) such that a𝑡𝑛𝑘 ,𝑥,𝑦

𝑣−→ a𝑥,𝑦 as 𝑘 → ∞. Let us
show that all such subsequences {a𝑡𝑛𝑘 ,𝑥,𝑦} have the same vague limit. Suppose that 𝑡1

𝑘
, 𝑡2
𝑘

are two
different sequences with 𝑡 𝑗

𝑘
↓ 0 and that a

𝑡
𝑗

𝑘
,𝑥,𝑦

𝑣−→ a
𝑗
𝑥,𝑦 as 𝑘 →∞ ( 𝑗 = 1, 2). For 𝑔 ∈ D (2,0) we have∫

[𝑎,𝑏)
𝑔(b) a 𝑗𝑥,𝑦 (𝑑b) = lim

𝑘→∞

∫
[𝑎,𝑏)

𝑔(b) a
𝑡
𝑗

𝑘
,𝑥,𝑦
(𝑑b)

= lim
𝑘→∞

∫
[𝜎2,∞)

𝑒−𝑡
𝑗

𝑘
_𝑤_(𝑥) 𝑤_(𝑦) (F 𝑔) (_) 𝜌L (𝑑_)

=

∫
[𝜎2,∞)

𝑤_(𝑥) 𝑤_(𝑦) (F 𝑔) (_) 𝜌L (𝑑_)

(the second equality was justified in the proof of Lemma 4.21, and dominated convergence yields
the last equality). In particular,

∫
[𝑎,𝑏) 𝑔(b) a

1
𝑥,𝑦 (𝑑b) =

∫
[𝑎,𝑏) 𝑔(b) a

2
𝑥,𝑦 (𝑑b) for all 𝑔 ∈ D (2,0) , and

this implies that a1
𝑥,𝑦 = a2

𝑥,𝑦 . Since all subsequences have the same vague limit, we conclude that
a𝑡 ,𝑥,𝑦

𝑣−→ a𝑥,𝑦 as 𝑡 ↓ 0.
Suppose first that 𝜎 := limb→∞

𝐴′ ( b )
2𝐴( b ) > 0. Then Corollary 4.8 ensures that lim𝑥↑𝑏 𝑤_(𝑥) = 0

for 0 < _ ≤ 𝜎2, and by the Laplace-type representation (4.16) we have 𝑤_(·) ≤ 𝑤𝜎2 (·) for _ > 𝜎2,
hence 𝑤_ ∈ C0 [𝑎, 𝑏) for all _ > 0. Accordingly, by taking the limit as 𝑡 ↓ 0 of both sides of (4.40) we
deduce that the product formula (4.41) holds for all _ > 0.

To prove that (4.41) is valid in the general case, let ^ < 0 be arbitrary. We know that the operator
ℓ ⟨^ ⟩ defined in Lemma 4.7 satisfies Assumption MP; by Lemma 4.6 we have limb→∞

(𝐴⟨^⟩)′ ( b )
2𝐴⟨^⟩ ( b ) > 0

and consequently (by the reasoning in the previous paragraph) the corresponding Sturm-Liouville
solutions (4.6) belong to C0 [𝑎, 𝑏) for all _ > 0. From the previous part of the proof,

𝑤
⟨^ ⟩
_
(𝑥) 𝑤 ⟨^ ⟩

_
(𝑦) =

∫ 𝑏

𝑎

𝑤
⟨^ ⟩
_
(b) a⟨^ ⟩𝑥,𝑦 (𝑑b), 𝑥, 𝑦 ∈ (𝑎, 𝑏), _ > 0 (4.42)

with a⟨^ ⟩𝑥,𝑦 constructed as before. We easily verify that 𝑞 ⟨^ ⟩𝑡 (𝑥, 𝑦, b)𝑟 ⟨^ ⟩(b) =
𝑒𝑡^𝑤^ ( b )
𝑤^ (𝑥)𝑤^ (𝑦) 𝑞𝑡 (𝑥, 𝑦, b)𝑟 (b)

and, consequently, a⟨^ ⟩𝑥,𝑦 (𝑑b) = 𝑤^ ( b )
𝑤^ (𝑥)𝑤^ (𝑦) a𝑥,𝑦 (𝑑b). It thus follows from (4.42) that

𝑤^+_(𝑥) 𝑤^+_(𝑦) =
∫ 𝑏

𝑎

𝑤^+_(b) a𝑥,𝑦 (𝑑b), 𝑥, 𝑦 ∈ (𝑎, 𝑏), _ > 0,
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where ^ < 0 is arbitrary; hence (4.41) holds for all _ ∈ R. If we then set _ = 𝜏2 + 𝜎2 in (4.41), we
straightforwardly verify that both sides are entire functions of 𝜏 (for the right hand side, this follows
from the Laplace-type representation (4.16) and the fact that the integral converges for all _ < 0), so
by analytic continuation the product formula holds for all _ ∈ C.

Given that 𝑤0(𝑥) ≡ 1, setting _ = 0 in (4.41) shows that a𝑥,𝑦 ∈ P[𝑎, 𝑏); consequently, the
measures a𝑡 ,𝑥,𝑦 converge to a𝑥,𝑦 in the weak topology (cf. [9, Theorem 30.8]). Clearly, the product
formula (4.41) can be extended to 𝑥, 𝑦 ∈ [𝑎, 𝑏) by setting a𝑥,𝑎 := 𝛿𝑥 and a𝑎,𝑦 := 𝛿𝑦 , hence Theorem
4.14 holds. �

It is worth commenting that the reasoning used in this proof also allows us to justify that the
time-shifted product formula (4.40) is valid for all _ ∈ C.

As shown in the proof above, the measure a𝑥,𝑦 of the product formula (4.41) is characterized by
the identity∫

[𝑎,𝑏)
𝑓 (b) a𝑥,𝑦 (𝑑b) =

∫
[𝜎2,∞)

𝑤_(𝑥) 𝑤_(𝑦) (F 𝑓 ) (_) 𝜌L (𝑑_), 𝑓 ∈ D (2,0) . (4.43)

Furthermore, the relation between this measure and the measure a𝑡 ,𝑥,𝑦 (𝑑b) = 𝑞𝑡 (𝑥, 𝑦, b) 𝑟 (b)𝑑b of
the time-shifted product formula (4.40) can be written explicitly:

Corollary 4.24. The measure a𝑡 ,𝑥,𝑦 can be written in terms of the measure a𝑥,𝑦 and the transition
kernel 𝑝(𝑡, 𝑥, 𝑦) of the Feller semigroup generated by the Sturm-Liouville operator ℓ as

a𝑡 ,𝑥,𝑦 (𝑑b) =
∫ 𝑏

𝑎

a𝑧,𝑦 (𝑑b) 𝑝(𝑡, 𝑥, 𝑧) 𝑟 (𝑧)𝑑𝑧
(
𝑡 > 0, 𝑥, 𝑦 ∈ (𝑎, 𝑏)

)
.

Proof. Recalling (2.37) and the proof of the previous proposition, we find that for 𝑔 ∈ D (2,0) we have∫ 𝑏

𝑎

∫
[𝑎,𝑏)

𝑔(b)a𝑧,𝑦 (𝑑b) 𝑝(𝑡, 𝑥, 𝑧) 𝑟 (𝑧)𝑑𝑧

=

∫ 𝑏

𝑎

∫
[𝜎2,∞)

𝑤_(𝑧) 𝑤_(𝑦) (F 𝑔) (_) 𝜌L (𝑑_) 𝑝(𝑡, 𝑥, 𝑧) 𝑟 (𝑧)𝑑𝑧

=

∫
[𝜎2,∞)

𝑒−𝑡_𝑤_(𝑥) 𝑤_(𝑦) (F 𝑔) (_) 𝜌L (𝑑_)

=

∫ 𝑏

𝑎

𝑔(b) 𝑞𝑡 (𝑥, 𝑦, b) 𝑟 (b)𝑑b,

hence the measures a𝑡 ,𝑥,𝑦 (𝑑b) and
∫ 𝑏
𝑎
a𝑧,𝑦 (𝑑b) 𝑝(𝑡, 𝑥, 𝑧) 𝑟 (𝑧)𝑑𝑧 are the same. �

4.4 Sturm-Liouville transform of measures

In analogy with the definition of the index Whittaker transform of measures (Definition 3.16), it is
natural to define the L-transform of finite complex measures so that (2.27) is the L-transform of an
absolutely continuous measure with density 𝑓 (·) 𝑟 (·):
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Definition 4.25. Let ` ∈ MC [𝑎, 𝑏). The L-transform of the measure ` is the function defined by the
integral ̂̀(_) = ∫

[𝑎,𝑏)
𝑤_(𝑥) `(𝑑𝑥), _ ≥ 0.

It is immediate from Lemma 2.29 that |̂̀(_) | ≤ ̂̀(0) = ∥`∥ for all ` ∈ M+ [𝑎, 𝑏). In addition, this
definition leads to various properties which, as in the case of the Whittaker transform (cf. Proposition
3.18), resemble those of the Fourier transform of complex measures:

Proposition 4.26. Let ℓ be a Sturm-Liouville expression of the form (4.1), and suppose that Assumption
MP holds. Let ̂̀be the L-transform of ` ∈ MC [𝑎, 𝑏). The following properties hold:

(i) ̂̀ is continuous on R+0 . Moreover, if a family of measures {` 𝑗} ⊂ MC [𝑎, 𝑏) is tight and
uniformly bounded, then {̂̀𝑗} is equicontinuous on R+0 .

(ii) Each measure ` ∈ MC [𝑎, 𝑏) is uniquely determined by ̂̀| [𝜎2,∞) .

(iii) If {`𝑛} is a sequence of measures belonging toM+ [𝑎, 𝑏), ` ∈ M+ [𝑎, 𝑏), and `𝑛
𝑤−→ `, then

̂̀𝑛 −−−−−→
𝑛→∞

̂̀ uniformly for _ in compact sets.

(iv) Suppose that lim𝑥↑𝑏 𝑤_(𝑥) = 0 for all _ > 0. If {`𝑛} is a sequence of measures belonging to
M+ [𝑎, 𝑏) whose L-transforms are such that

̂̀𝑛 (_) −−−−−→
𝑛→∞

𝑓 (_) pointwise in _ ≥ 0

for some real-valued function 𝑓 which is continuous at a neighborhood of zero, then `𝑛
𝑤−→ `

for some measure ` ∈ M+ [𝑎, 𝑏) such that ̂̀≡ 𝑓 .
Proof. (i) It suffices to prove the second statement. Set 𝐶 = sup 𝑗 ∥` 𝑗 ∥. Fix _0 ≥ 0 and Y > 0. By the
tightness assumption, we can choose 𝛽 ∈ (𝑎, 𝑏) such that |` 𝑗 | (𝛽, 𝑏) < Y for all 𝑗 . Since the family of
derivatives {𝜕_𝑤(·) (𝑥)}𝑥∈(𝑎,𝛽 ] is locally bounded on R+0 (to verify this, differentiate the series (2.20)
term by term and then compute an upper bound as in (2.21)), we can choose 𝛿 > 0 such that

|_ − _0 | < 𝛿 =⇒ |𝑤_(𝑥) − 𝑤_0 (𝑥) | < Y for all 𝑎 < 𝑥 ≤ 𝛽.

Consequently,��̂̀𝑗 (_) − ̂̀𝑗 (_0)
�� = ����∫

(𝑎,𝑏)

(
𝑤_(𝑥) − 𝑤_0 (𝑥)

)
` 𝑗 (𝑑𝑥)

����
≤

∫
(𝛽,𝑏)

��𝑤_(𝑥) − 𝑤_0 (𝑥)
��|` 𝑗 | (𝑑𝑥) + ∫

(𝑎,𝛽 ]

��𝑤_(𝑥) − 𝑤_0 (𝑥)
��|` 𝑗 | (𝑑𝑥) ≤ (2 + 𝐶)Y

for all 𝑗 , provided that |_ − _0 | < 𝛿, which means that {̂̀𝑗} is equicontinuous at _0.

(ii) Let ` ∈ MC [𝑎, 𝑏) be such that ̂̀(_) = 0 for all _ ≥ 𝜎2. We need to show that ` is the zero
measure. For each 𝑔 ∈ D (2,0) we have for 𝑎 < 𝑥 < 𝑏

0 =

∫
[𝜎2,∞)

(F 𝑔) (_) 𝑤_(𝑥) ̂̀(_) 𝜌L (𝑑_) = ∫
[𝑎,𝑏)

∫
[𝜎2,∞)

(F 𝑔) (_)𝑤_(𝑥)𝑤_(𝑦) 𝜌L (𝑑_) `(𝑑𝑦)
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where the change of order of integration is valid because, by Lemmas 2.29 and 2.35(b), the double
integral converges absolutely; therefore∫

[𝑎,𝑏)
𝑔(𝑦) `(𝑑𝑦) =

∫
[𝑎,𝑏)

∫
[𝜎2,∞)

(F 𝑔) (_) 𝑤_(𝑦) 𝜌L (𝑑_)`(𝑑𝑦)

=

∫
[𝑎,𝑏)

lim
𝑥↓𝑎

∫
[𝜎2,∞)

(F 𝑔) (_) 𝑤_(𝑥) 𝑤_(𝑦) 𝜌L (𝑑_)`(𝑑𝑦)

= lim
𝑥↓𝑎

∫
[𝑎,𝑏)

∫
[𝜎2,∞)

(F 𝑔) (_) 𝑤_(𝑥) 𝑤_(𝑦) 𝜌L (𝑑_)`(𝑑𝑦)

= 0

using Lemma 2.35, the identity (4.43) and dominated convergence. This shows that
∫
[𝑎,𝑏) 𝑔(𝑦) `(𝑑𝑦) =

0 for all 𝑔 ∈ D (2,0) and, consequently, ` is the zero measure.

(iii) Since 𝑤_(·) is continuous and bounded, the pointwise convergence ̂̀𝑛 (_) → ̂̀(_) follows
from the definition of weak convergence of measures. By Prokhorov’s theorem {`𝑛} is tight and
uniformly bounded, thus (by part (i)) {̂̀𝑛} is equicontinuous on R+0 . The same argument from the
proof of Proposition 3.18(c) yields that the convergence ̂̀𝑛 → ̂̀ is uniform on compact sets.

(iv) The proof follows the same argument as that of Proposition 3.18(iv), replacing the interval R+0
and the function𝑊𝛼,Δ_

(·) by [𝑎, 𝑏) and 𝑤_(·) respectively. �

Remark 4.27. I. If lim𝑥↑𝑏 𝑤_(𝑥) = 0 for all _ > 0, then as in Remark 3.19 we obtain the following
analogue of the Lévy continuity theorem: the L-transform is a topological homeomorphism between
P[𝑎, 𝑏) with the weak topology and the set P̂ of L-transforms of probability measures with the
topology of uniform convergence in compact sets.

II. Much like weak convergence, vague convergence of measures can be formulated via theL-transform,
provided that lim𝑥↑𝑏 𝑤_(𝑥) = 0 for all _ > 0. Indeed, we can state:

II.1 If {`𝑛} ⊂ M+ [𝑎, 𝑏), ` ∈ M+ [𝑎, 𝑏), and `𝑛
𝑣−→ `, then lim ̂̀𝑛 (_) = ̂̀(_) pointwise for each

_ > 0;

II.2 If {`𝑛} ⊂ M+ [𝑎, 𝑏), {`𝑛} is uniformly bounded and lim ̂̀𝑛 (_) = 𝑓 (_) pointwise in _ > 0 for
some function 𝑓 ∈ Bb(R+), then `𝑛

𝑣−→ ` for some measure ` ∈ M+ [𝑎, 𝑏) such that ̂̀≡ 𝑓 .
(The first part is trivial, and the second part is proved as follows: since any uniformly bounded
sequence of positive measures contains a vaguely convergent subsequence, for any subsequence {`𝑛𝑘 }
there exists a further subsequence {`𝑛𝑘 𝑗} and a measure ` such that `𝑛𝑘 𝑗

𝑣−→ `; then II.1 implies
that ̂̀(_) = 𝑓 (_) for _ > 0, so the vague limit of such a subsequence is unique and, consequently,
`𝑛

𝑣−→ `.)

Consider the following stronger version of Assumption MP:

Assumption MP∞. The operator ℓ = − 1
𝑟
𝑑
𝑑𝑥

(
𝑝 𝑑
𝑑𝑥

)
satisfies Assumption MP and its coefficients satisfy

lim𝑥↑𝑏 𝑝(𝑥)𝑟 (𝑥) = ∞.
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This assumption will play an important role in the subsequent sections, mostly because it ensures
that the properties stated in the Remark 4.27 hold. Indeed, one can state:

Lemma 4.28. Let ℓ = − 1
𝑟
𝑑
𝑑𝑥

(
𝑝 𝑑
𝑑𝑥

)
be a Sturm-Liouville operator satisfying Assumption MP. Then

Assumption MP∞ holds if and only if lim𝑥↑𝑏 𝑤_(𝑥) = 0 for all _ > 0.

Proof. This follows from known results on the asymptotic behaviour of solutions of the Sturm-Liouville
equation −𝑢′′ − 𝐴′

𝐴
𝑢′ = _𝑢, see [61, proof of Lemma 3.7]. �

We note that, in particular, the lemma states that the condition lim𝑥↑𝑏 𝑤_(𝑥) = 0 (_ > 0) holds
whenever 𝜎 > 0. This particular case had already been pointed out in the proof of Theorem 4.23.

4.5 Sturm-Liouville convolution of measures

In what follows we always assume that the Sturm-Liouville expression ℓ satisfies Assumption MP. (In
general we allow for operators such that lim𝑥↑𝑏 𝑝(𝑥)𝑟 (𝑥) < ∞; whenever this is not the case, we will
explicitly state that Assumption MP∞ is required to hold.)

As usual (cf. Definitions 2.15 and 3.20, Proposition 2.23), we define the convolution ∗ :MC [𝑎, 𝑏)×
MC [𝑎, 𝑏) −→ MC [𝑎, 𝑏) as the natural extension of the mapping (𝑥, 𝑦) ↦→ 𝛿𝑥 ∗ 𝛿𝑦 := a𝑥,𝑦 (where
a𝑥,𝑦 is the measure of the product formula (4.41)), and we define the translation of functions as the
integral with respect to the convolution of Dirac measures:

Definition 4.29. Let `, a ∈ MC [𝑎, 𝑏). The complex measure

(` ∗ a) (𝑑b) =
∫
[𝑎,𝑏)

∫
[𝑎,𝑏)

a𝑥,𝑦 (𝑑b) `(𝑑𝑥) a(𝑑𝑦)

is called the L-convolution of the measures ` and a. The L-translation of a Borel measurable function
𝑓 : [𝑎, 𝑏) −→ C is defined as

(T 𝑦 𝑓 ) (𝑥) :=
∫
[𝑎,𝑏)

𝑓 (b) a𝑥,𝑦 (𝑑b) ≡
∫
[𝑎,𝑏)

𝑓 (b) (𝛿𝑥 ∗ 𝛿𝑦) (𝑑b), 𝑥, 𝑦 ∈ [𝑎, 𝑏).

More generally, theL-translation by ` ∈ M+ [𝑎, 𝑏) is defined as (T ` 𝑓 ) (𝑥) :=
∫
[𝑎,𝑏) 𝑓 (b) (𝛿𝑥∗`) (𝑑b).

We will see that, in the same spirit of Sections 3.4–3.7, analogues of many basic notions of
(generalized) probabilistic harmonic analysis can be developed on the measure algebra determined
by the L-convolution. Our first proposition states the unsurprising fact that the L-convolution is
trivialized by the Sturm-Liouville transform of measures:

Proposition 4.30. Let `, a, 𝜋 ∈ MC [𝑎, 𝑏). We have 𝜋 = ` ∗ a if and only if

�̂�(_) = ̂̀(_) â(_) for all _ ≥ 0.

Proof. Identical to that of Proposition 3.22 (replacing𝑊𝛼,Δ_
(·) by 𝑤_(·), etc.). �
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The following result collects some basic properties of the measure algebra determined by the
L-convolution.

Proposition 4.31. The space (MC [𝑎, 𝑏), ∗), equipped with the total variation norm, is a commutative
Banach algebra over C whose identity element is the Dirac measure 𝛿𝑎. The subset P[𝑎, 𝑏) is closed
under the L-convolution. Moreover, the map (`, a) ↦→ ` ∗ a is continuous (in the weak topology)
fromMC [𝑎, 𝑏) ×MC [𝑎, 𝑏) toMC [𝑎, 𝑏).

Proof. Since �̀∗ a = ̂̀· â (Proposition 4.30), the commutativity, associativity and bilinearity of the
L-convolution follow at once from the uniqueness property of the L-transform (Proposition 4.26(ii)).
One can verify directly from the definition of the L-convolution that the submultiplicativity property
∥` ∗ a∥ ≤ ∥`∥ · ∥a∥ holds, and that equality holds whenever `, a ∈ M+ [𝑎, 𝑏); it is also clear that the
convolution of positive measures is a positive measure. We conclude that the Banach algebra property
holds and that P[𝑎, 𝑏) is closed under convolution.

If lim𝑥↑𝑏 𝑤_(𝑥) = 0 for all _ > 0, the identity â𝑥,𝑦 (_) = 𝑤_(𝑥)𝑤_(𝑦) implies (by Proposition
4.26(iv)) that (𝑥, 𝑦) ↦→ a𝑥,𝑦 is continuous in the weak topology. If the functions 𝑤_(𝑥) do not vanish
at the limit 𝑥 ↑ 𝑏, let ^ < 0 be arbitrary and let ℎ ∈ Cb [𝑎, 𝑏). Since 𝑤^ is increasing and unbounded
(Corollary 2.27), ℎ

𝑤^
∈ C0 [𝑎, 𝑏). If we let a⟨^ ⟩𝑥,𝑦 be the measure defined in the proof of Theorem 4.23,

then by Remark 4.27.III the map (𝑥, 𝑦) ↦→ a
⟨^ ⟩
𝑥,𝑦 is continuous, and thus

(𝑥, 𝑦) ↦−→
∫
[𝑎,𝑏)

𝑓 (b)
𝑤^ (b)

a
⟨^ ⟩
𝑥,𝑦 (𝑑b) =

1
𝑤^ (𝑥)𝑤^ (𝑦)

∫
[𝑎,𝑏)

𝑓 (b) a𝑥,𝑦 (𝑑b)

is continuous. This shows that (𝑥, 𝑦) ↦→
∫
[𝑎,𝑏) 𝑓 (b) a𝑥,𝑦 (𝑑b) is continuous for all 𝑓 ∈ Cb [𝑎, 𝑏)

and therefore (𝑥, 𝑦) ↦→ a𝑥,𝑦 is continuous in the weak topology. Finally, for 𝑓 ∈ Cb [𝑎, 𝑏) and
`𝑛, a𝑛 ∈ MC [𝑎, 𝑏) with `𝑛

𝑤−→ ` and a𝑛
𝑤−→ a we have

lim
𝑛

∫
[𝑎,𝑏)

𝑓 (b) (`𝑛 ∗ a𝑛) (𝑑b) = lim
𝑛

∫
[𝑎,𝑏)

∫
[𝑎,𝑏)

(∫
[𝑎,𝑏)

𝑓 𝑑 a𝑥,𝑦

)
`𝑛 (𝑑𝑥)a𝑛 (𝑑𝑦)

=

∫
[𝑎,𝑏)

∫
[𝑎,𝑏)

(∫
[𝑎,𝑏)

𝑓 𝑑 a𝑥,𝑦

)
`(𝑑𝑥)a(𝑑𝑦)

=

∫
[𝑎,𝑏)

𝑓 (b) (` ∗ a) (𝑑b)

due to the continuity of the function in parenthesis; this proves that (`, a) ↦→ ` ∗ a is continuous. �

Next we summarize some useful facts about the generalized translation introduced in Definition
4.29. For simplicity we write ∥ · ∥𝑝 ≡ ∥ · ∥𝐿𝑝 (𝑟 ) (1 ≤ 𝑝 ≤ ∞).

Proposition 4.32. Let ` ∈ M+ [𝑎, 𝑏). The L-translation operator T ` has the following properties:

(i) Let 1 ≤ 𝑝 ≤ ∞. If 𝑓 ∈ 𝐿 𝑝 (𝑟), then (T ` 𝑓 ) (𝑥) is a Borel measurable function of 𝑥 ∈ [𝑎, 𝑏) and
satisfies ∥T ` 𝑓 ∥𝑝 ≤ ∥`∥ · ∥ 𝑓 ∥𝑝.

(ii) If 𝑓 ∈ 𝐿2(𝑟), then F (T ` 𝑓 ) (_) = ̂̀(_) (F 𝑓 ) (_) for 𝜌L-a.e. _.

(iii) If 𝑓 ∈ Cb [𝑎, 𝑏), then T ` 𝑓 ∈ Cb [𝑎, 𝑏).
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(iv) Suppose that Assumption MP∞ holds. If 𝑓 ∈ C0 [𝑎, 𝑏), then T ` 𝑓 ∈ C0 [𝑎, 𝑏).

Proof. (i) It suffices to prove the result for nonnegative 𝑓 . The map a ↦→ ` ∗ a is weakly continuous
(Proposition 4.31) and takes M+ [𝑎, 𝑏) into itself. By a technical result proved in [88, Section
2.3], this implies that, for each Borel measurable ℎ ≥ 0, the function 𝑥 ↦→ (T ` 𝑓 ) (𝑥) is Borel
measurable. It follows that

∫
[𝑎,𝑏) 𝑔(𝑥) (` ∗ 𝑟) (𝑑𝑥) :=

∫ 𝑏
𝑎
(T `𝑔) (𝑥)𝑟 (𝑥)𝑑𝑥 (𝑔 ∈ Cc [𝑎, 𝑏)) defines a

positive Borel measure. For 𝑎 ≤ 𝑐1 < 𝑐2 < 𝑏, let 1[𝑐1,𝑐2) be the indicator function of [𝑐1, 𝑐2), let
𝑓𝑛 ∈ D (2,0) be a sequence of nonnegative functions such that 𝑓𝑛 → 1[𝑐1,𝑐2) pointwise, and write
ℭ = {𝑔 ∈ C∞c (𝑎, 𝑏) | 0 ≤ 𝑔 ≤ 1}. We compute

(` ∗ 𝑟) [𝑐1, 𝑐2) = lim
𝑛

∫
[𝑎,𝑏)

𝑓𝑛 (𝑥) (` ∗ 𝑟) (𝑑𝑥)

= lim
𝑛

sup
𝑔∈ℭ

∫ 𝑏

𝑎

(T ` 𝑓𝑛) (𝑥) 𝑔(𝑥) 𝑟 (𝑥)𝑑𝑥

= lim
𝑛

sup
𝑔∈ℭ

∫
[𝜎2,∞)

(F 𝑓𝑛) (_) (F 𝑔) (_) ̂̀(_) 𝜌L (𝑑_)
= lim

𝑛
sup
𝑔∈ℭ

∫ 𝑏

𝑎

𝑓𝑛 (𝑥) (T `𝑔) (𝑥) 𝑟 (𝑥)𝑑𝑥

≤ ∥`∥ · lim
𝑛

∫ 𝑏

𝑎

𝑓𝑛 (𝑥) 𝑟 (𝑥)𝑑𝑥

= ∥`∥ ·
∫ 𝑐2

𝑐1

𝑟 (𝑥)𝑑𝑥

where the third and fourth equalities follow from (4.43) and the isometric property of the L-transform
(Theorem 2.30), and the inequality holds because ∥T `𝑔∥∞ ≤ ∥`∥ · ∥𝑔∥∞ ≤ ∥`∥. Therefore,
∥T ` 𝑓 ∥1 = ∥ 𝑓 ∥𝐿1 ( [𝑎,𝑏) ,`∗𝑟 ) ≤ ∥`∥ · ∥ 𝑓 ∥1 for each Borel measurable 𝑓 ≥ 0. Since 𝛿𝑥 ∗ ` ∈ M+ [𝑎, 𝑏),
Hölder’s inequality yields that ∥T ` 𝑓 ∥𝑝 ≤ ∥`∥1/𝑞 · ∥T ` | 𝑓 |𝑝 ∥1/𝑝1 ≤ ∥`∥ · ∥ 𝑓 ∥𝑝 for 1 < 𝑝 < ∞.

Finally, if 𝑓 ∈ 𝐿∞(𝑟), 𝑓 ≥ 0 then 𝑓 = 𝑓b + 𝑓0, where 0 ≤ 𝑓b ≤ ∥ 𝑓 ∥∞ and 𝑓0 = 0 Lebesgue-almost
everywhere. Since ∥T ` 𝑓0∥1 ≤ ∥`∥ · ∥ 𝑓0∥1 = 0, we have T ` 𝑓0 = 0 Lebesgue-a.e., and therefore
∥T ` 𝑓 ∥∞ = ∥T ` 𝑓b∥∞ ≤ ∥`∥ · ∥ 𝑓 ∥∞.

(ii) For 𝑓 ∈ D (2,0) , this identity follows at once from (4.43). The property extends to all 𝑓 ∈ 𝐿2(𝑟)
by the standard continuity argument.

(iii) This follows immediately from the fact that (`, a) ↦→ ` ∗ a is weakly continuous (Proposition
4.31).

(iv) It remains to show that (T `ℎ) (𝑥) → 0 as 𝑥 ↑ 𝑏. Since 𝑤_(𝑥) ̂̀(_) → 0 as 𝑥 ↑ 𝑏 (_ > 0), it
follows from Remark 4.27.II that 𝛿𝑥 ∗ `

𝑣−→ 0 as 𝑥 ↑ 𝑏, where 0 denotes the zero measure; this means
that for each 𝑓 ∈ C0 [𝑎, 𝑏) we have

(T ` 𝑓 ) (𝑥) =
∫
[𝑎,𝑏)

𝑓 (b) (𝛿𝑥 ∗ `) (𝑑b) −→
∫
[𝑎,𝑏)

𝑓 (b) 0(𝑑b) = 0 as 𝑥 ↑ 𝑏

showing that T ` 𝑓 ∈ C0 [𝑎, 𝑏). �
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4.5.1 Infinite divisibility and Lévy-Khintchine type representation

The set Pid of L-infinitely divisible distributions is defined in the usual way:

Pid =
{
` ∈ P[𝑎, 𝑏)

�� for all 𝑛 ∈ N there exists a𝑛 ∈ P[𝑎, 𝑏) such that ` = a∗𝑛𝑛
}

where a∗𝑛𝑛 denotes the 𝑛-fold L-convolution of a𝑛 with itself.

Lemma 4.33. Suppose that Assumption MP∞ holds. If ` ∈ Pid, then

̂̀(_) = 𝑒−𝜓` (_)

where 𝜓` (_) (_ ≥ 0) is a positive continuous function such that 𝜓` (0) = 0. Moreover, measures
` ∈ Pid have no nontrivial idempotent divisors, i.e., if ` = 𝜗 ∗ a (with 𝜗, a ∈ P[𝑎, 𝑏)) where 𝜗 is
idempotent with respect to the L-convolution (that is, it satisfies 𝜗 = 𝜗 ∗ 𝜗), then 𝜗 = 𝛿0.

Proof. Same as that of Lemma 3.24. �

The function 𝜓` (_) described in the lemma will be called the log L-transform of `. As in the
case of the log-Whittaker transform (cf. Proposition 3.25), its growth is at most linear:

Proposition 4.34. Suppose that Assumption MP∞ holds, and let ` ∈ Pid. Then

𝜓` (_) ≤ 𝐶` (1 + _) for all _ ≥ 0

for some constant 𝐶` > 0 which is independent of _.

Proof. Let a𝑛 ∈ P[𝑎, 𝑏) be the measure such that â𝑛 (_) ≡ exp(− 1
𝑛
𝜓` (_)). The inequality 𝑛

(
1 −

â𝑛 (_)
)
≤ 𝜓` (_) (𝑛 ∈ N) and the limit lim𝑛→∞ 𝑛

(
1 − â𝑛 (_)

)
= 𝜓` (_) are justified as in the proof of

Proposition 3.25.
Pick _1 > 0. We know that lim𝑥↑𝑏 𝑤_1 (𝑥) = 0 (Lemma 4.28), hence there exists 𝛽 ∈ (𝑎, 𝑏) such

that |𝑤_1 (𝑥) | ≤ 1
2 for all 𝛽 ≤ 𝑥 < 𝑏. Combining this with (2.25), we deduce that for all _ ≥ 0 we have

𝑛

∫
[𝛽,𝑏)

(
1 − 𝑤_(𝑥)

)
a𝑛 (𝑑𝑥) ≤ 2𝑛

∫
[𝛽,𝑏)

a𝑛 (𝑑𝑥)

≤ 4𝑛
∫
[𝛽,𝑏)

(
1 − 𝑤_1 (𝑥)

)
a𝑛 (𝑑𝑥)

≤ 4𝑛
(
1 − â𝑛 (_1)

)
≤ 4𝜓` (_1).

(4.44)

Next, it follows from the proof of Proposition 4.26(i) that we can choose _2 > 0 such that
1 − 𝑤_(𝑥) < 1

2 for all 0 ≤ _ ≤ _2 and all 𝑎 < 𝑥 ≤ 𝛽. Define [1(𝑥) :=
∫ 𝑥
𝑎

1
𝑝 (𝑦)

∫ 𝑦
𝑎
𝑟 (b)𝑑b 𝑑𝑦 ≡

[1(𝑥;−1), where [1(·, ·) is the function defined in (2.19). Recalling (2.22), we obtain

1 − 𝑤_2 (𝑥) = _2

∫ 𝑥

𝑎

1
𝑝(𝑦)

∫ 𝑦

𝑎

𝑤_2 (b) 𝑟 (b)𝑑b 𝑑𝑦 ≥
_2
2
[1(𝑥) for all 𝑎 ≤ 𝑥 ≤ 𝛽.
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On the other hand, by (2.25) we have 1 − 𝑤_(𝑥) ≤ _
∫ 𝑥
𝑎

1
𝑝 (𝑦)

∫ 𝑦
𝑎
|𝑤_(b) | 𝑟 (b)𝑑b 𝑑𝑦 ≤ _[1(𝑥) for all

𝑥 ∈ [𝑎, 𝑏) and _ ≥ 0. Consequently,

𝑛

∫
[𝑎,𝛽)

(
1 − 𝑤_(𝑥)

)
a𝑛 (𝑑𝑥) ≤ _𝑛

∫
[𝑎,𝛽)

[1(𝑥) a𝑛 (𝑑𝑥)

≤ 2_𝑛
_2

∫
[𝑎,𝛽)

(
1 − 𝑤_2 (𝑥)

)
a𝑛 (𝑑𝑥)

≤ 2_𝑛
_2

(
1 − â𝑛 (_2)

)
≤ 2_
_2
𝜓` (_2).

(4.45)

Combining (4.44) and (4.45) one sees that for all 𝑛 ∈ N and _ ≥ 0 we have 𝑛(1− â𝑛 (_)) ≤ 𝐶` (1 + _),
where 𝐶` = max

{
4𝜓` (_1), 2

_2
𝜓` (_2)

}
. The conclusion follows by taking the limit as 𝑛→∞. �

The log L-transforms of L-infinitely divisible distributions also admit an analogue of the classical
Lévy-Khintchine representation. The relevant notions of compound Poisson and Gaussian measures
are similar to those for the Whittaker convolution:

Definition 4.35. Let ` ∈ P[𝑎, 𝑏) and 𝑐 > 0. The measure e(𝑐`) ∈ P[𝑎, 𝑏) defined by

e(𝑐`) = 𝑒−𝑐
∞∑
𝑛=0

𝑐𝑛

𝑛!
`∗𝑛

(the infinite sum converging in the weak topology) is said to be the L-compound Poisson measure
associated with 𝑐`.

It is immediate that e(𝑐`) ∈ Pid and that its log L-transform is 𝜓e(𝑐`) (_) = 𝑐(1 − ̂̀(_)).
Definition 4.36. A measure ` ∈ P[𝑎, 𝑏) is called an L-Gaussian measure if ` ∈ Pid and

` = e(𝑐a) ∗ 𝜗
(
𝑐 > 0, a ∈ P[𝑎, 𝑏), 𝜗 ∈ Pid

)
=⇒ a = 𝛿𝑎 .

Theorem 4.37 (Lévy-Khintchine type formula). Suppose that Assumption MP∞ holds. The log
L-transform of a measure ` ∈ Pid can be represented in the form

𝜓` (_) = 𝜓𝛼 (_) +
∫
(𝑎,𝑏)

(
1 − 𝑤_(𝑥)

)
a(𝑑𝑥) (4.46)

where a is a 𝜎-finite measure on (𝑎, 𝑏) which is finite on the complement of any neighbourhood of 𝑎
and such that ∫

(𝑎,𝑏)

(
1 − 𝑤_(𝑥)

)
a(𝑑𝑥) < ∞

and 𝛼 is an L-Gaussian measure with log L-transform 𝜓𝛼 (_). Conversely, each function of the form
(4.46) is a log L-transform of some ` ∈ Pid.

This Lévy-Khintchine type representation, together with its counterpart for the Whittaker convolu-
tion (Theorem 3.30), are both particular cases of a general Lévy-Khintchine formula for stochastic
convolutions in the sense of Volkovich which was established in [183] and whose proof was sketched
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in Subsection 3.4.2. (The fact that the L-convolution satisfies axiom V6 of Definition 2.25 is argued
in the same way as in Subsection 3.4.2.)

4.5.2 Convolution semigroups

Definition 4.38. A family {`𝑡 }𝑡≥0 ⊂ P[𝑎, 𝑏) is called an L-convolution semigroup if it satisfies the
conditions

• `𝑠 ∗ `𝑡 = `𝑠+𝑡 for all 𝑠, 𝑡 ≥ 0;

• `0 = 𝛿𝑎;

• `𝑡
𝑤−→ 𝛿𝑎 as 𝑡 ↓ 0.

If the Sturm-Liouville operator satisfies Assumption MP∞, then there exists a one-to-one cor-
respondence {`𝑡 }𝑡≥0 ↦→ `1 ∈ Pid between the set of L-convolution semigroups and the set of
L-infinitely divisible distributions. (This can be justified exactly as in Remark 3.33.) Consequently,
any convolution semigroup {`𝑡 } has an L-transform of the form ̂̀𝑡 (_) = exp

(
−𝑡 𝜓`1 (_)

)
, where

𝜓`1 (·) is a function of the form (4.46).

The family of generalized translation operators determined by a given L-convolution semigroup
has the expected Feller-type properties:

Proposition 4.39. Suppose that Assumption MP∞ holds, and let {`𝑡 }𝑡≥0 be an L-convolution
semigroup. Then the family {𝑇𝑡 }𝑡≥0 defined by

𝑇𝑡 : Cb(R+0) −→ Cb(R+0), 𝑇𝑡 𝑓 := T `𝑡 𝑓

is a conservative Feller semigroup such that the identity 𝑇𝑡T a 𝑓 = T a𝑇𝑡 𝑓 holds for all 𝑡 ≥ 0 and
a ∈ MC [𝑎, 𝑏). The restriction

{
𝑇𝑡 |Cc [𝑎,𝑏)

}
can be extended to a strongly continuous contraction

semigroup {𝑇 (𝑝)𝑡 } on the space 𝐿 𝑝 (𝑟) (1 ≤ 𝑝 < ∞). Moreover, the operators 𝑇 (𝑝)𝑡 are given by
𝑇
(𝑝)
𝑡 𝑓 = T `𝑡 𝑓 ( 𝑓 ∈ 𝐿 𝑝 (𝑟)).

Proof. Similar to that of Propositions 3.34–3.35. �

Proposition 4.40. Suppose that Assumption MP∞ holds. Let {`𝑡 } be an L-convolution semigroup
with log L-transform 𝜓 and let {𝑇 (2)𝑡 } be the associated Markovian semigroup on 𝐿2(𝑟). Then the
infinitesimal generator (G (2) ,D(G (2) )) of the semigroup {𝑇 (2)𝑡 } is the self-adjoint operator given by(

F (G (2) 𝑓 )
)
(_) = −𝜓 · (F 𝑓 ), 𝑓 ∈ D(G (2) )

where
D(G (2) ) =

{
𝑓 ∈ 𝐿2(𝑟)

���� ∫ ∞

0

��𝜓(_)��2��(F 𝑓 ) (_)��2 𝜌L (_)𝑑_ < ∞}
.

Proof. Similar to that of Proposition 3.36. �
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4.5.3 Additive and Lévy processes

Definition 4.41. An [𝑎, 𝑏)-valued Markov chain {𝑆𝑛}𝑛∈N0 is said to be L-additive if there exist
measures `𝑛 ∈ P[𝑎, 𝑏) such that

𝑃[𝑆𝑛 ∈ 𝐵|𝑆𝑛−1 = 𝑥] = (`𝑛 ∗ 𝛿𝑥) (𝐵), 𝑛 ∈ N, 𝑎 ≤ 𝑥 < 𝑏, 𝐵 a Borel subset of [𝑎, 𝑏). (4.47)

If `𝑛 = ` for all 𝑛, then {𝑆𝑛} is said to be an L-random walk.

An explicit construction can be given for L-additive Markov chains, based on the following lemma:

Lemma 4.42. There exists a Borel measurable Φ : [𝑎, 𝑏) × [𝑎, 𝑏) × [0, 1] −→ [𝑎, 𝑏) such that

(𝛿𝑥 ∗ 𝛿𝑦) (𝐵) = 𝔪{Φ(𝑥, 𝑦, ·) ∈ 𝐵}, 𝑥, 𝑦 ∈ [𝑎, 𝑏), 𝐵 a Borel subset of [𝑎, 𝑏)

where 𝔪 denotes Lebesgue measure on [0, 1].

Proof. Let Φ(𝑥, 𝑦, b) = max
(
𝑎, sup{𝑧 ∈ [𝑎, 𝑏) : (𝛿𝑥 ∗ 𝛿𝑦) [𝑎, 𝑧] < b}

)
. Using the continuity of the

L-convolution, one can show that Φ is Borel measurable, see [16, Theorem 7.1.3]. It is straightforward
that 𝔪{Φ(𝑥, 𝑦, ·) ∈ [𝑎, 𝑐]} = 𝔪{(𝛿𝑥 ∗ 𝛿𝑦) [𝑎, 𝑐] ≥ b} = (𝛿𝑥 ∗ 𝛿𝑦) [𝑎, 𝑐]. �

Let 𝑋1, 𝑈1, 𝑋2, 𝑈2, . . . be a sequence of independent random variables (on a given probability
space (Ω,𝔄, 𝜋)) where the 𝑋𝑛 have distribution 𝑃𝑋𝑛

= `𝑛 ∈ P[𝑎, 𝑏) and each of the (auxiliary)
random variables𝑈𝑛 has the uniform distribution on [0, 1]. Set

𝑆0 = 0, 𝑆𝑛 = 𝑆𝑛−1 ⊕𝑈𝑛
𝑋𝑛 (4.48)

where 𝑋 ⊕𝑈 𝑌 := Φ(𝑋,𝑌,𝑈). Then the distributions 𝑃𝑆𝑛 of the random variables 𝑆𝑛 are such that
𝑃𝑆𝑛 = 𝑃𝑆𝑛−1 ∗ `𝑛 (𝑛 ∈ N0) and, consequently, {𝑆𝑛}𝑛∈N0 is an L-additive Markov chain satisfying
(4.47). The identity 𝑃𝑆𝑛 = 𝑃𝑆𝑛−1 ∗ `𝑛 is easily checked:

𝑃𝑆𝑛 (𝐵) = 𝑃
[
Φ(𝑆𝑛−1, 𝑋𝑛,𝑈𝑛) ∈ 𝐵

]
=

∫
[𝑎,𝑏)

∫
[𝑎,𝑏)

𝔪{Φ(𝑥, 𝑦, ·) ∈ 𝐵}𝑃𝑆𝑛−1 (𝑑𝑥)𝑃𝑋𝑛
(𝑑𝑦)

=

∫
[𝑎,𝑏)

∫
[𝑎,𝑏)
(𝛿𝑥 ∗ 𝛿𝑦) (𝐵)𝑃𝑆𝑛−1 (𝑑𝑥)𝑃𝑋𝑛

(𝑑𝑦)

= (𝑃𝑆𝑛−1 ∗ `𝑛) (𝐵).

The continuous-time analogue of L-random walks are the L-Lévy processes, defined in analogy
with Definition 3.37:

Definition 4.43. An [𝑎, 𝑏)-valued Markov process𝑌 = {𝑌𝑡 }𝑡≥0 is said to be an L-Lévy process if there
exists an L-convolution semigroup {`𝑡 }𝑡≥0 such that the transition probabilities of 𝑌 are given by

𝑃
[
𝑌𝑡 ∈ 𝐵|𝑌𝑠 = 𝑥

]
= (`𝑡−𝑠 ∗ 𝛿𝑥) (𝐵), 0 ≤ 𝑠 ≤ 𝑡, 𝑎 ≤ 𝑥 < 𝑏, 𝐵 a Borel subset of [𝑎, 𝑏). (4.49)
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If we let a ∈ P[𝑎, 𝑏) be a given measure and {`𝑡 }𝑡≥0 a given L-convolution semigroup, then in
the same manner as in the previous chapter one can construct a L-Lévy process satisfying (4.49) and
such that 𝑃[𝑋0 ∈ · ] = a. Like in Corollary 2.18 and Proposition 3.38, the class of Lévy processes
includes the diffusion generated by the associated Sturm-Liouville operator (as defined in Subsection
2.4.3):

Proposition 4.44. Suppose that Assumption MP∞ holds. The diffusion process 𝑋 generated by the
Neumann realization (L (2) ,D(L (2) )) of ℓ is an L-Lévy process.

Proof. Similar to that of Proposition 3.38. �

An analogue of the well-known theorem on approximation of Lévy processes by triangular arrays
holds for L-Lévy processes (below the notation 𝑑−→ stands for convergence in distribution):

Proposition 4.45. Suppose that Assumption MP∞ holds, and let 𝑋 be an [𝑎, 𝑏)-valued random variable.
The following assertions are equivalent:

(i) 𝑋 = 𝑌1 for some L-Lévy process 𝑌 = {𝑌𝑡 }𝑡≥0;

(ii) The distribution of 𝑋 is L-infinitely divisible;

(iii) 𝑆𝑛𝑚𝑛

𝑑−→ 𝑋 for some sequence of L-random walks 𝑆1, 𝑆2, . . . (with 𝑆 𝑗0 = 𝑎) and some integers
𝑚𝑛 →∞.

Proof. The equivalence between (i) and (ii) is a restatement of the one-to-one correspondence
{`𝑡 }𝑡≥0 ←→ `1 between L-infinitely divisible measures and L-convolution semigroups. It is obvious
that (i) implies (iii): simply let 𝑚𝑛 = 𝑛 and 𝑆𝑛 the random walk whose step distribution is the law of
𝑌1/𝑛.

Suppose that (iii) holds and let 𝜋𝑛, ` be the distributions of 𝑆𝑛
𝑗
, 𝑋 respectively. Choose Y > 0 small

enough so that ̂̀(_) > 𝐶Y > 0 for _ ∈ [0, Y], where 𝐶Y > 0 is a constant. By (iii) and Proposition
4.26(iii), 𝜋𝑛 (_)𝑚𝑛 → ̂̀(_) uniformly on compacts, which implies that 𝜋𝑛 (_) → 1 for all _ ∈ [0, Y]
and, therefore, by Proposition 4.26(iv) 𝜋𝑛

𝑤−→ 𝛿𝑎. Now let 𝑘 ∈ N be arbitrary. Since 𝜋𝑛
𝑤−→ 𝛿𝑎, we

can assume that each 𝑚𝑛 is a multiple of 𝑘 . Write a𝑛 = 𝜋
∗(𝑚𝑛/𝑘)
𝑛 , so that a∗𝑘𝑛

𝑤−→ `. By relative
compactness of D({𝜋∗𝑚𝑛

𝑛 }) (see [185, Corollary 1]), the sequence {a𝑛}𝑛∈N has a weakly convergent
subsequence, say a𝑛 𝑗

𝑤−→ `𝑘 as 𝑗 →∞, and from this it clearly follows that `∗𝑘
𝑘

= `. Consequently,
(ii) holds. �

An L-convolution semigroup {`𝑡 }𝑡≥0 such that `1 is an L-Gaussian measure is called an L-
Gaussian convolution semigroup, and an L-Lévy process associated with an L-Gaussian convolution
semigroup is called an L-Gaussian process.

Proposition 4.46 (Alternative characterizations of L-Gaussian convolution semigroups). Suppose
that Assumption MP∞ holds and that 𝐴 ∈ C3(𝑎, 𝑏) (where 𝐴 is the function defined in (4.2)). Let
𝑌 = {𝑌𝑡 }𝑡≥0 be an L-Lévy process, let {`𝑡 }𝑡≥0 be the associated L-convolution semigroup and
let (G (0) ,D(G (0) )) be the infinitesimal generator of the Feller semigroup associated with 𝑌 . The
following conditions are equivalent:
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(i) `1 is a Gaussian measure;

(ii) lim𝑡↓0
1
𝑡
`𝑡

(
[𝑎, 𝑏) \ V𝑎

)
= 0 for every neighbourhoodV𝑎 of the point 𝑎;

(iii) lim𝑡↓0
1
𝑡
(`𝑡 ∗ 𝛿𝑥)

(
[𝑎, 𝑏) \ V𝑥

)
= 0 for every 𝑥 ∈ [𝑎, 𝑏) and every neighbourhood V𝑥 of the

point 𝑥;

(iv) 𝑌 has a modification whose paths are a.s. continuous.

If any of these conditions hold then the infinitesimal generator of𝑌 is a local operator, i.e., (G (0) 𝑓 ) (𝑥) =
(G (0)𝑔) (𝑥) whenever 𝑓 , 𝑔 ∈ D(G (0) ) and ℎ = 𝑔 on some neighbourhood of 𝑥 ∈ [𝑎, 𝑏).

Proof. (i)⇐⇒ (ii): This can be proved as in Lemma 3.41 (with the obvious adaptations).

(ii)⇐⇒ (iii): To prove the nontrivial direction, assume that (ii) holds, and fix 𝑥 ∈ (𝑎, 𝑏). Let
V𝑥 be a neighbourhood of the point 𝑥 not containing 𝑎 and write 𝐸𝑥 = [𝑎, 𝑏) \ V𝑥 . Pick a function
𝑓 ∈ C4 such that 0 ≤ 𝑓 ≤ 1, 𝑓 = 0 on 𝐸𝑥 and 𝑓 = 1 on some smaller neighbourhoodU𝑥 ⊂ V𝑥 of the
point 𝑥. (Using the assumption 𝐴 ∈ C3(𝑎, 𝑏), it is easy to check that 𝑓 , ℓ( 𝑓 ) ∈ D (2,0) .)

We begin by showing that

lim
𝑦↓𝑎

1 − (T 𝑥 𝑓 ) (𝑦)
1 − 𝑤_(𝑦)

= 0 for each _ > 0. (4.50)

Indeed, it follows from (4.43) that lim𝑦↓𝑎 (T 𝑥 𝑓 ) (𝑦) = 1, lim𝑦↓𝑎 𝜕
[1]
𝑦 (T 𝑥 𝑓 ) (𝑦) = 0 and

ℓ𝑦 (T 𝑥 𝑓 ) (𝑦) =
∫
R+0

_ (F 𝑓 ) (_) 𝑤_(𝑥) 𝑤_(𝑦) 𝜌L (𝑑_) =
(
T 𝑥ℓ( 𝑓 )

)
(𝑦) −−−→

𝑦↓𝑎
ℓ( 𝑓 ) (𝑥) = 0,

hence using L’Hôpital’s rule twice we find that lim𝑦↓𝑎
1−(T𝑥 𝑓 ) (𝑦)

1−𝑤_ (𝑦) = lim𝑦↓𝑎
ℓ𝑦 (T𝑥 𝑓 ) (𝑦)
_ 𝑤_ (𝑦) = 0 (_ > 0).

By (4.50), for each _ > 0 there exists 𝑎_ > 𝑎 such that (T 𝑥1𝐸𝑥
) (𝑦) ≤

(
T 𝑥 (1− 𝑓 )

)
(𝑦) ≤ 1−𝑤_(𝑦)

for all 𝑦 ∈ [𝑎, 𝑎_). We then estimate

1
𝑡
(`𝑡 ∗ 𝛿𝑥) (𝐸𝑥) =

1
𝑡

∫
[𝑎,𝑏)
(T 𝑥1𝐸𝑥

) (𝑦)`𝑡 (𝑑𝑦)

≤ 1
𝑡

∫
[𝑎,𝑎_)

(
1 − 𝑤_(𝑦)

)
`𝑡 (𝑑𝑦) +

1
𝑡
`𝑡 [𝑎_, 𝑏)

≤ 1
𝑡

∫
[𝑎,𝑏)

(
1 − 𝑤_(𝑦)

)
`𝑡 (𝑑𝑦) +

1
𝑡
`𝑡 [𝑎_, 𝑏)

=
1
𝑡

(
1 − ̂̀𝑡 (_)) + 1

𝑡
`𝑡 [𝑎_, 𝑏).

Given that we are assuming that (ii) holds and, by the L-semigroup property, lim𝑡↓0
1
𝑡

(
1 − ̂̀𝑡 (_)) =

lim𝑡↓0
1
𝑡

(
1 − ̂̀1(_)𝑡

)
= − log ̂̀1(_), the above inequality gives

lim sup
𝑡↓0

1
𝑡
(`𝑡 ∗ 𝛿𝑥) (𝐸𝑥) ≤ − log ̂̀1(_).

This holds for arbitrary _ > 0. Since the right-hand side is continuous and vanishes for _ = 0, we
conclude that lim𝑡↓0

1
𝑡
(`𝑡 ∗ 𝛿𝑥) (𝐸𝑥) = 0, as desired.
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(iii)=⇒ (iv): This follows from Proposition 2.3.

(iv)=⇒ (iii): This is a general fact which is known as Ray’s theorem on one-dimensional diffusion
processes. The proof can be found in [86, Theorem 5.2.1].

The final assertion follows from Proposition 2.4. �

Remark 4.47. As in the context of the Whittaker convolution, one can introduce the notion of a
moment sequence associated with the L-convolution.

The canonical L-moment functions 𝜑𝑘 (𝑘 ∈ N) can be defined recursively as the solution of the
initial value problem

ℓ(𝜑𝑘) (𝑥) = −2𝜎𝑘𝜑𝑘−1(𝑥) − 𝑘 (𝑘 − 1)𝜑𝑘−2(𝑥), 𝜑𝑘 (𝑎) = 0, (𝑝𝜑′𝑘) (𝑎) = 0

(where 𝜑−1(𝑥) := 0 and 𝜑0(𝑥) := 1). Equivalently, we can write

𝜑𝑘 (𝑥) = 𝑘
∫ 𝑥

0

1
𝑝(𝑦)

∫ 𝑦

0
𝑟 (b)

[
2𝜎𝜑𝑘−1(b) + (𝑘 − 1)𝜑𝑘−2(b)

]
𝑑b 𝑑𝑦

=
𝜕𝑘

𝜕𝜏𝑘

���
𝜏=𝜎

𝑤𝜎2−𝜏2 (𝑥)

=

∫ ∞

−∞
𝑠𝑘𝑒𝜎𝑠𝜋𝑥 (𝑑𝑠).

Using the product formula (4.41), one can check that the canonical L-moment functions are a solution
of the functional equation (T 𝑦𝜑𝑘) (𝑥) =

∑𝑘
𝑗=0

(𝑘
𝑗

)
𝜑 𝑗 (𝑥)𝜑𝑘− 𝑗 (𝑦), meaning that the 𝜑𝑘 play a role

similar to that of the monomials under the classical convolution.

The canonical L-moment functions are a tool for establishing strong laws of large numbers for
L-additive Markov chains. In particular, the following results hold for a given L-additive Markov
chain {𝑆𝑛} constructed as in (4.48):

4.47.I. If {𝑟𝑛}𝑛∈N is a sequence of positive numbers such that lim𝑛 𝑟𝑛 = ∞ and
∑∞
𝑛=1

1
𝑟𝑛

(
E[𝜑2(𝑋𝑛)]−

E[𝜑1(𝑋𝑛)]2
)
< ∞, then

lim
𝑛

1
√
𝑟𝑛

(
𝜑1(𝑆𝑛) − E[𝜑1(𝑆𝑛)]

)
= 0 𝜋-a.s.

4.47.II. If {𝑆𝑛} is an L-random walk such that E[𝜑2(𝑋1) \/2] < ∞ for some 1 ≤ \ < 2, then
E[𝜑1(𝑋1)] < ∞ and

lim
𝑛

1
𝑛1/\

(
𝜑1(𝑆𝑛) − 𝑛E[𝜑1(𝑋1)]

)
= 0 𝜋-a.s.

4.47.III. Suppose that 𝜑1 ≡ 0. If {𝑟𝑛}𝑛∈N is a sequence of positive numbers such that lim𝑛 𝑟𝑛 = ∞
and

∑∞
𝑛=1

1
𝑟𝑛
E[𝜑2(𝑋𝑛)] < ∞, then

lim
𝑛

1
𝑟𝑛
𝜑2(𝑆𝑛) = 0 𝜋-a.s.
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4.47.IV. Suppose that 𝜑1 ≡ 0. If {𝑆𝑛} is an L-random walk such that E[𝜑2(𝑋1) \ ] < ∞ for some
0 < \ < 1, then

lim
𝑛

1
𝑛1/\ 𝜑2(𝑆𝑛) = 0 𝜋-a.s.

The above statements can be proved exactly as in the hypergroup framework, see [16, Section 7.3]. In
addition, one can show that the modified moments E[𝜑𝑘 (𝑋)] can be computed via the L-transform of
measures and that a martingale property holds for L-moment functions applied to L-Lévy processes
(these results are proved as in Propositions 3.50 and 3.51).

Under additional assumptions on the coefficients of ℓ, one can also establish a Lévy-type
characterization similar to that of Theorem 3.54 for the diffusion process associated with the Sturm-
Liouville operator. In particular, an adaptation of the proof of Theorem 3.54 yields the following
result: Set [1(𝑥) :=

∫ 𝑥
𝑎

1
𝑝 (𝑦)

∫ 𝑦
𝑎
𝑟 (b)𝑑b 𝑑𝑦 and [2(𝑥) :=

∫ 𝑥
𝑎

1
𝑝 (𝑦)

∫ 𝑦
𝑎
[1(b)𝑟 (b)𝑑b 𝑑𝑦. Suppose that

𝑎 > −∞, Assumption MP∞ holds and one of the following conditions is satisfied:

• [1(𝑥) = 𝑐1(𝑥 − 𝑎) + 𝑐2(𝑥 − 𝑎)2 + 𝑜((𝑥 − 𝑎)2) and [2(𝑥) = 𝑐3(𝑥 − 𝑎)2 + 𝑜((𝑥 − 𝑎)2) as 𝑥 ↓ 𝑎,
with 𝑐1, 𝑐3 > 0;

• [1(𝑥) = 𝑐1(𝑥 − 𝑎)2 + 𝑐2(𝑥 − 𝑎)4 + 𝑜((𝑥 − 𝑎)4) and [2(𝑥) = 𝑐3(𝑥 − 𝑎)4 + 𝑜((𝑥 − 𝑎)4) as 𝑥 ↓ 𝑎,
with 𝑐1, 𝑐3 > 0.

Let 𝑋 = {𝑋𝑡 }𝑡≥0 be an [𝑎, 𝑏)-valued Markov process with a.s. continuous paths. Then the following
assertions are equivalent:

(i) 𝑋 is the diffusion process generated by the Neumann realization (L (2) ,D(L (2) )) of ℓ;

(ii) {[1(𝑋𝑡 ) − 𝑡}𝑡≥0 and {[2(𝑋𝑡 ) − 𝑡 [1(𝑋𝑡 ) + 𝑡
2

2 }𝑡≥0 are martingales (or local martingales);

(iii) {[1(𝑋𝑡 ) − 𝑡}𝑡≥0 is a local martingale with [[1(𝑋)]𝑡 = 2
∫ 𝑡

0
𝑝 (𝑋𝑠)
𝑟 (𝑋𝑠) ([

′
1(𝑋𝑠))

2 𝑑𝑠.

4.6 Sturm-Liouville hypergroups

Our purpose here is to discuss whether the convolution algebra structure constructed in the previous
section satisfies the hypergroup axioms H1–H8 introduced in Definition 2.22. We will determine a
sufficient condition that leads to an existence theorem for Sturm-Liouville hypergroups which is more
general than that of Zeuner (stated above in Theorem 4.3). In addition to this, we will introduce a notion
of degenerate hypergroup which includes the Whittaker convolution and many other Sturm-Liouville
convolutions whose associated hyperbolic Cauchy problems are also parabolically degenerate.

4.6.1 The nondegenerate case

We saw in Proposition 4.31 that the L-convolution satisfies the hypergroup axioms H1–H5 (with
𝐾 = [𝑎, 𝑏) and e = 𝑎 as the identity element; H5 holds for the identity involution 𝑥 = 𝑥). In order to
verify axioms H6–H8, one needs to determine the support of a𝑥,𝑦 = 𝛿𝑥 ∗ 𝛿𝑦 .

A detailed study of supp(a𝑥,𝑦) was carried out by Zeuner in [197]. The next proposition shows
that the results of Zeuner can be applied to the L-convolution, provided that the differential operator
(4.1) has coefficients 𝑝 = 𝑟 = 𝐴 defined on R+, and there exists [ ∈ C1(R+0) satisfying the conditions
given in Assumption MP.
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Proposition 4.48. Let

ℓ = − 1
𝐴

𝑑

𝑑𝑥

(
𝐴
𝑑

𝑑𝑥

)
, 𝑥 ∈ R+

where 𝐴(𝑥) > 0 for all 𝑥 ≥ 0. Suppose that there exists [ ∈ C1(R+0) such that [ ≥ 0, the functions 𝜙[ ,
𝜓[ are both decreasing on R+ and lim𝑥→∞ 𝜙[ (𝑥) = 0. Let 𝑥0 = sup{𝑥 ≥ 0 | 𝜓[ (𝑥) = 𝜓[ (0)} and
𝑥1 = inf{𝑥 > 0 | 𝜙[ (𝑥) = 0}. Then:

(a) If 𝑥0 = ∞, 𝑥1 = 0 and [(0) = 0 then supp(𝛿𝑥 ∗ 𝛿𝑦) = {|𝑥 − 𝑦 |, 𝑥 + 𝑦} for all 𝑥, 𝑦 ≥ 0.

(b) If 0 < 𝑥0 < ∞, 𝑥1 = 0 and [(0) = 0 then

supp(𝛿𝑥 ∗ 𝛿𝑦) =


{|𝑥 − 𝑦 |, 𝑥 + 𝑦}, 𝑥 + 𝑦 ≤ 𝑥0,

{|𝑥 − 𝑦 |} ∪ [2𝑥0 − 𝑥 − 𝑦, 𝑥 + 𝑦], 𝑥, 𝑦 < 𝑥0 < 𝑥 + 𝑦,
[|𝑥 − 𝑦 |, 𝑥 + 𝑦], max{𝑥, 𝑦} ≥ 𝑥0.

(c) If 𝑥0 = ∞, 0 < 𝑥1 < ∞ and [(0) = 0 then

supp(𝛿𝑥 ∗ 𝛿𝑦) =

[|𝑥 − 𝑦 |, 𝑥 + 𝑦], min{𝑥, 𝑦} ≤ 2𝑥1,

[|𝑥 − 𝑦 |, 2𝑥1 + |𝑥 − 𝑦 |] ∪ [𝑥 + 𝑦 − 2𝑥1, 𝑥 + 𝑦], min{𝑥, 𝑦} > 2𝑥1.

(d) If 0 < 3𝑥1 < 𝑥0 < ∞ and [(0) = 0 then

supp(𝛿𝑥 ∗ 𝛿𝑦) =


[|𝑥 − 𝑦 |, 𝑥 + 𝑦], min{𝑥, 𝑦} ≤ 2𝑥1 or max{𝑥, 𝑦} ≥ 𝑥0 − 𝑥1,

[|𝑥 − 𝑦 |, 2𝑥1 + |𝑥 − 𝑦 |]∪
∪ [𝑥 + 𝑦 − 2𝑥1, 𝑥 + 𝑦],

min{𝑥, 𝑦} > 2𝑥1 and max{𝑥, 𝑦} < 𝑥0 − 𝑥1.

(e) If 𝑥0 ≤ 3𝑥1 or [(0) > 0 then supp(𝛿𝑥 ∗ 𝛿𝑦) = [|𝑥 − 𝑦 |, 𝑥 + 𝑦] for all 𝑥, 𝑦 ≥ 0.

The proof depends on the following lemma which ensures that the existence and uniqueness
theorems for the associated hyperbolic Cauchy problem (Theorems 4.15–4.16) are also valid for initial
conditions 𝑓 ∈ D (2,0) .

Lemma 4.49. If 𝑓 ∈ D (2,0), then there exists a unique solution ℎ ∈ C2 ((𝑎, 𝑏)2) of the Cauchy problem
(4.22) satisfying conditions (𝛼)–(𝛽) of Subsection 4.3.1, and this unique solution is given by (4.23).

Proof. The fact that there exists at most one solution of (4.22) satisfying the given requirements is
proved in the same way.

Let 𝑓 ∈ D (2,0)and consider the function ℎ(𝑥, 𝑦) defined by (4.23). The limit lim𝑦↓𝑎 ℎ(𝑥, 𝑦) = 𝑓 (𝑥)
follows from Lemma 2.35(b) and dominated convergence. Similarly, we have

lim
𝑦↓𝑎
(𝜕 [1]𝑦 ℎ) (𝑥, 𝑦) = lim

𝑦↓𝑎

∫
R+0

(F 𝑓 ) (_) 𝑤_(𝑥) 𝑤 [1]_ (𝑦) 𝜌L (𝑑_) = 0

(the absolute and uniform convergence of the differentiated integral justifies the differentiation under
the integral sign). Now fix 𝑦 ∈ (𝑎, 𝑏). By (4.43), we have ℎ(·, 𝑦) = T 𝑦 𝑓 . Using (2.30) and Lemma
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4.32(ii), we obtain

F (ℓ𝑥 (T 𝑦 𝑓 )) (_) = _ F (T 𝑦 𝑓 ) (_) = _ 𝑤_(𝑦) (F 𝑓 ) (_) = 𝑤_(𝑦) F (ℓ( 𝑓 )) (_) = F (T 𝑦ℓ( 𝑓 )) (_),

hence ℓ𝑥 (T 𝑦 𝑓 ) (𝑥) = (T 𝑦ℓ( 𝑓 )) (𝑥) for almost every 𝑥. Since (by the weak continuity of (𝑥, 𝑦) ↦→ a𝑥,𝑦 ,
see Proposition 4.31) (𝑥, 𝑦) ↦→ (T 𝑦ℓ( 𝑓 )) (𝑥) is continuous, it follows that

ℓ𝑥ℎ(𝑥, 𝑦) = (T 𝑦ℓ( 𝑓 )) (𝑥), for all 𝑥, 𝑦 ∈ (𝑎, 𝑏).

Exactly the same reasoning shows that ℓ𝑦ℎ(𝑥, 𝑦) = (T 𝑦ℓ( 𝑓 )) (𝑥), hence ℎ ∈ C2 ((𝑎, 𝑏)2) is a solution
of ℓ𝑥𝑢 = ℓ𝑦𝑢.

It remains to check that the function (4.23) satisfies conditions (𝛼)–(𝛽). As seen above we have
F (ℎ(·, 𝑦)) (_) = 𝑤_(𝑦) (F 𝑓 ) (_) and F [ℓ𝑦ℎ(·, 𝑦)] (_) = F [T 𝑦ℓ( 𝑓 )] (_) = _ 𝑤_(𝑦) (F 𝑓 ) (_), hence
(4.26)–(4.27) hold. Moreover, it is immediate from (2.29) that ℎ(·, 𝑦) ∈ D(L (2) ), and therefore (𝛼)
holds. �

Proof of Proposition 4.48. Fix 𝑧 ≥ 0, and let { 𝑓Y} ⊂ D (2,0) be a family of functions such that

𝑓Y (b) > 0 for 𝑧 − Y < b < 𝑧 + Y,
𝑓Y (b) = 0 for b ≤ 𝑧 − Y and b ≥ 𝑧 + Y.

(4.51)

Observe that 𝑧 ∈ supp(𝛿𝑥 ∗ 𝛿𝑦) if and only if
∫
R+0
𝑓Y 𝑑 (𝛿𝑥 ∗ 𝛿𝑦) > 0 for all Y > 0. Now, we know from

Lemma 4.49 that the function

ℎ 𝑓Y (𝑥, 𝑦) :=
∫
R+0

𝑓Y 𝑑 (𝛿𝑥 ∗ 𝛿𝑦) =
∫
[𝜎2,∞)

𝑤_(𝑥) 𝑤_(𝑦) (F 𝑓Y) (_) 𝜌L (𝑑_)

(the second equality is due to (4.43)) is a nonnegative solution of the Cauchy problem (4.22) with
𝑓 ≡ 𝑓Y; writing 𝐵(𝑥) := exp( 12

∫ 𝑥
0 [(b)𝑑b), it follows that 𝑢 𝑓Y (𝑥, 𝑦) = 𝐵(𝑥)𝐵(𝑦)ℎ 𝑓Y (𝑥, 𝑦) is a solution

of ℘𝑥𝑢 − ℘𝑦𝑢 = 0, where ℘𝑥 := − 𝜕2

𝜕𝑥2 − 𝜙[ (𝑥) 𝜕𝜕𝑥 + 𝜓[ (𝑥). Applying Lemma 4.9 with 𝑐 > 0 and
℘1(𝑣) = ℘2(𝑣) = −𝑣′′ − 𝜙[𝑣′ + 𝜓[𝑣 and then letting 𝑐 ↓ 0, we deduce that the following integral
equation holds:

𝐴(𝑥)𝐴(𝑦)
𝐵(𝑥)2𝐵(𝑦)2

𝑢 𝑓Y (𝑥, 𝑦) = 𝐻 + 𝐼0 + 𝐼1 + 𝐼2 + 𝐼3 (4.52)

where 𝐻 = 1
2 𝐴(0)

[ 𝐴(𝑥−𝑦)
𝐵 (𝑥−𝑦) 𝑓Y (𝑥 − 𝑦) +

𝐴(𝑥+𝑦)
𝐵 (𝑥+𝑦) 𝑓Y (𝑥 + 𝑦)

]
, 𝐼0 =

[ (0)
4

∫ 𝑥+𝑦
𝑥−𝑦

𝐴(𝑠)
𝐵 (𝑠) 𝑓Y (𝑠) 𝑑𝑠 and 𝐼1, 𝐼2, 𝐼3

are given by (4.11)–(4.13) with 𝑐 = 0 and 𝑣 = 𝑢 𝑓Y . Since 𝑓Y and ℎ 𝑓Y are nonnegative, all the terms in
the right-hand side of (4.52) are nonnegative; consequently, we have 𝑧 ∈ supp(𝛿𝑥 ∗ 𝛿𝑦) if and only if
at least one of the terms in the right-hand side of (4.52) is strictly positive for all Y > 0. In order to
ascertain whether this holds or not, one needs to perform a thorough analysis of the integrals 𝐼0, 𝐼1, 𝐼2
and 𝐼3. This has been done by Zeuner in [197, Proposition 3.9]; his results lead to the conclusion
stated in the proposition. �

Theorem 4.50 (Existence theorem for Sturm-Liouville hypergroups). Let ℓ be a differential expression
of the form (4.1). Suppose that 𝛾(𝑎) > −∞ and that there exists [ ∈ C1 [𝛾(𝑎),∞) satisfying the
conditions given in Assumption MP. Then

(
[𝑎, 𝑏), ∗

)
is a hypergroup.
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Proof. We need to check that the L-convolution satisfies axioms H6–H8. Assume first that ℓ satisfies
the assumptions of Proposition 4.48. Then the explicit expressions for supp(𝛿𝑥 ∗ 𝛿𝑦) show that (in
each of the cases (a)–(e)) supp(𝛿𝑥 ∗ 𝛿𝑦) is compact, depends continuously on (𝑥, 𝑦) and contains e = 0
if and only if 𝑥 = 𝑦, so that H6–H8 hold. (Verifying the continuity is easy after noting that the topology
in the space of compact subsets can be metrized by the Hausdorff metric, cf. [99, Subsection 4.1].)

In the general case of an operator ℓ of the form (4.1), the hypothesis that 𝛾(𝑎) > −∞ means that√
𝑟 (𝑦)
𝑝 (𝑦) is integrable near 𝑎, and thus we may assume that 𝛾(𝑎) = 0 (otherwise, replace the interior

point 𝑐 by the endpoint 𝑎 in the definition of the function 𝛾). By assumption the transformed operator
ℓ̃ = − 1

𝐴
𝑑
𝑑b
(𝐴 𝑑

𝑑b
) defined via (4.2) satisfies the assumptions of Proposition 4.48; by the above, the

associated convolution, which we denote by ∗̃, satisfies H6–H8. From the product formulas for the
solutions 𝑤_(𝑥) and 𝑤_(b) = 𝑤_(𝛾−1(b)) we deduce that∫

[𝑎,𝑏)
𝑤_ 𝑑 (𝛿𝑥 ∗ 𝛿𝑦) = 𝑤_(𝑥)𝑤_(𝑦) = 𝑤_(𝛾(𝑥))𝑤_(𝛾(𝑦)) =

∫
R+0

𝑤_(𝛾−1(𝑧))
(
𝛿𝛾 (𝑥) ∗̃𝛿𝛾 (𝑦)

)
(𝑑𝑧)

and, consequently, 𝛿𝑥∗𝛿𝑦 = 𝛾−1(𝛿𝛾 (𝑥) ∗̃𝛿𝛾 (𝑦) ). In particular, supp(𝛿𝑥∗𝛿𝑦) = 𝛾−1(supp(𝛿𝛾 (𝑥) ∗̃𝛿𝛾 (𝑦) )
)
;

since 𝛾 is a continuous bijection, we immediately conclude that the convolution ∗ also satisfies axioms
H6–H8. �

Recalling the definition of hypergroup isomorphism given in Section 2.3, we see that the
hypergroups

(
[𝑎, 𝑏), ∗

)
and

(
R+0 , ∗̃

)
considered above (associated with the differential operators ℓ and

ℓ̃ respectively) are isomorphic.
For Sturm-Liouville operators on R+ of the form ℓ(𝑢) = −𝑢′′− 𝐴′

𝐴
𝑢′, the assumption of the theorem

above can be re-expressed in terms of conditions SL0–SL2 introduced in Section 4.1:

Corollary 4.51. Suppose that 𝐴 satisfies SL0 and SL2. For 𝑓 ∈ D (2,0) , denote by 𝑣 𝑓 the unique
solution of ℓ𝑥𝑣 𝑓 = ℓ𝑦𝑣 𝑓 , 𝑣 𝑓 (𝑥, 0) = 𝑣 𝑓 (0, 𝑥) = 𝑓 (𝑥), (𝜕 [1]𝑦 𝑣 𝑓 ) (𝑥, 0) = (𝜕 [1]𝑥 𝑣 𝑓 ) (0, 𝑦) = 0 such that
conditions (𝛼)–(𝛽) of Subsection 4.3.1 hold for ℎ = 𝑣 𝑓 . Define the convolution ∗ via (4.3). Then(
R+0 , ∗

)
is a hypergroup.

Proof. Just notice that, by (4.43) and Lemma 4.49, the definition of convolution given in the statement
of the corollary is equivalent to Definition 4.29. �

The statement of Corollary 4.51 strongly resembles that of Zeuner’s existence theorem for Sturm-
Liouville hypergroups (Theorem 4.3), but its assumptions do not include condition SL1. The corollary
therefore shows that it is natural to modify the definition of Sturm-Liouville hypergroup (Definition
4.2) by replacing the space C∞c,even by D (2,0) and replacing 𝜕𝑦 by 𝜕 [1]𝑦 in the initial condition, because
in this way we are able to extend the class of Sturm-Liouville hypergroups to all functions 𝐴 satisfying
conditions SL0 and SL2.

We emphasize that condition SL1 imposes a great restriction on the behaviour of the Sturm-
Liouville operator ℓ(𝑢) = −𝑢′′ − 𝐴′

𝐴
𝑢′ near zero: in the singular case 𝐴(0) = 0, SL1 requires that

𝐴′ (𝑥)
𝐴(𝑥) ∼

𝛼0
𝑥

. Therefore, as shown in the next example, Corollary 4.51 leads, in particular, to a
considerable extension of the class of singular operators for which an associated hypergroup exists:
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Example 4.52. If 𝐴 satisfies SL0 and the function 𝐴′

𝐴
is nonnegative and decreasing, then SL2 is

satisfied with [ := 0. Therefore, Corollary 4.51 ensures that there exists a hypergroup associated with
the operator ℓ(𝑢) = −𝑢′′ − 𝐴′

𝐴
𝑢′. Notice that this existence result holds without any restriction on the

growth of 𝐴′ (𝑥)
𝐴(𝑥) as 𝑥 ↓ 0.

This class of examples includes the following special cases:

(a) ℓ = − 𝑑2

𝑑𝑥2 (0 < 𝑥 < ∞); here 𝐴(𝑥) ≡ 1.

As noted in Example 2.38, the Sturm-Liouville solutions are 𝑤_(𝑥) = cos(𝜏𝑥) (_ = 𝜏2) and
the L-transform is the cosine Fourier transform (F ℎ) (𝜏) =

∫ ∞
0 ℎ(𝑥) cos(𝜏𝑥)𝑑𝑥. By elementary

trigonometric identities, 𝑤𝜏 (𝑥)𝑤𝜏 (𝑦) = 1
2 [𝑤𝜏 ( |𝑥 − 𝑦 |) + 𝑤𝜏 (𝑥 + 𝑦)], hence the L-convolution is

given by
𝛿𝑥 ∗ 𝛿𝑦 =

1
2
(𝛿 |𝑥−𝑦 | + 𝛿𝑥+𝑦), 𝑥, 𝑦 ≥ 0.

In other words, ∗ is (up to identification) the ordinary convolution of symmetric measures.

(b) ℓ = −𝑥2−2𝛼 𝑑2

𝑑𝑥2 − (1 − 𝛼)𝑥1−2𝛼 (0 < 𝑥 < ∞, 𝛼 > 0).

This operator is of the form (4.1) with 𝑝(𝑥) = 𝑥1−𝛼 and 𝑟 (𝑥) = 𝑥𝛼−1, and it is transformed into
the operator − 𝑑2

𝑑𝑥2 via the change of variable b = 𝛾(𝑥) = 𝑥𝛼 (cf. Remark 4.1). Accordingly, it
follows from (a) that the L-convolution is given by

𝛿𝑥 ∗ 𝛿𝑦 =
1
2
(𝛿 |𝑥𝛼−𝑦𝛼 |1/𝛼 + 𝛿 (𝑥𝛼+𝑦𝛼)1/𝛼), 𝑥, 𝑦 ≥ 0.

This is the so-called (𝛼, 1)-convolution [178], which is a generalized convolution satisfying
Urbanik’s axioms (cf. Definition 2.24).

(c) ℓ = − 𝑑2

𝑑𝑥2 − 2[+1
𝑥

𝑑
𝑑𝑥

(0 < 𝑥 < ∞, [ > −1
2 ); here 𝐴(𝑥) ≡ 𝑥2[+1.

As noted in Section 2.2, the Sturm-Liouville solutions are 𝑤_(𝑥) = 𝐽[ (𝜏𝑥) (_ = 𝜏2, 𝐽[ the
normalized Bessel function of the first kind) and the L-transform is the Hankel transform
(F ℎ) (𝜏) =

∫ ∞
0 ℎ(𝑥) 𝐽[ (𝜏𝑥) 𝑥2[+1𝑑𝑥. The product formula for the Bessel function given in

Theorem 2.14 shows that the L-convolution is

(𝛿𝑥 ∗𝛿𝑦) (𝑑b) =
21−2[Γ([ + 1)
√
𝜋 Γ([ + 1

2 )
(𝑥𝑦)−2[ [(b2− (𝑥− 𝑦)2) ((𝑥+ 𝑦)2−b2)

] [−1/2
1[ |𝑥−𝑦 |,𝑥+𝑦 ] (b) b𝑑b.

This is the Kingman convolution (cf. Definition 2.15). The corresponding hypergroup
(
R+0 , ∗

)
,

which is known as the Bessel-Kingman hypergroup, plays a special role in the context of
Sturm-Liouville hypergroups; in particular, it appears as the limit distribution in central limit
theorems on hypergroups [16, Section 7.5].

(d) ℓ = −𝑥2−2𝛼 𝑑2

𝑑𝑥2 − (2𝛼[ + 1) 𝑥1−2𝛼 𝑑
𝑑𝑥

(0 < 𝑥 < ∞, [ > −1
2 , 𝛼 > 0).

This operator is of the form (4.1) with 𝑝(𝑥) = 𝑥2𝛼[+1 and 𝑟 (𝑥) = 𝑥2𝛼([+1)−1; similar to (b)
above, the change of variable b = 𝛾(𝑥) = 𝑥𝛼 transforms ℓ into the operator − 𝑑2

𝑑𝑥2 − 2[+1
𝑥

𝑑
𝑑𝑥

. The
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L-convolution is thus given by

(𝛿𝑥 ∗ 𝛿𝑦) (𝑑b) =
𝛼 21−2[Γ([ + 1)
√
𝜋 Γ([ + 1

2 )
(𝑥𝑦)−2𝛼[ [(b2𝛼 − (𝑥𝛼 − 𝑦𝛼)2) ((𝑥𝛼 + 𝑦𝛼)2 − b2𝛼)

] [−1/2

× 1[ |𝑥𝛼−𝑦𝛼 |1/𝛼 , (𝑥𝛼+𝑦𝛼)1/𝛼 ] (b) b2𝛼−1𝑑b.

This is the so-called (𝛼, 𝛽)-convolution [178]; as in (b), one can check that it satisfies axioms
U1–U6 of Urbanik convolutions.

(e) ℓ = − 𝑑2

𝑑𝑥2 − [(2𝛼 + 1) coth 𝑥 + (2𝛽 + 1) tanh 𝑥] 𝑑
𝑑𝑥

(0 < 𝑥 < ∞, 𝛼 ≥ 𝛽 ≥ −1
2 , 𝛼 ≠ − 1

2 ); here
𝐴(𝑥) = (sinh 𝑥)2𝛼+1(cosh 𝑥)2𝛽+1.

As noted in Example 2.42, the Sturm-Liouville solutions are𝑤_(𝑥) = 2𝐹1
( 1

2 ([−𝑖𝜏),
1
2 ([+𝑖𝜏);𝛼+1;

−(sinh 𝑥)2
)

([ = 𝛼 + 𝛽 + 1, _ = 𝜏2 + [2, 2𝐹1 the hypergeometric function) and the L-transform
is the (Fourier-)Jacobi transform (2.49). By a deep result of Koornwinder [58, 98], the measures
of the product formula 𝑤_(𝑥) 𝑤_(𝑦) =

∫
[𝑎,𝑏) 𝑤_ 𝑑 (𝛿𝑥 ∗ 𝛿𝑦) are given by

(𝛿𝑥 ∗ 𝛿𝑦) (𝑑b) =
2−2𝜎Γ(𝛼 + 1) (cosh 𝑥 cosh 𝑦 cosh b)𝛼−𝛽−1
√
𝜋 Γ(𝛼 + 1

2 ) (sinh 𝑥 sinh 𝑦 sinh b)2𝛼
×

× (1 − 𝑍2)𝛼−1/2
2𝐹1

(
𝛼 + 𝛽, 𝛼 − 𝛽;𝛼 + 1

2 ; 1
2 (1 − 𝑍)

)
1[ |𝑥−𝑦 |,𝑥+𝑦 ] (b)𝐴(b)𝑑b

where 𝑍 := (cosh 𝑥)2+(cosh 𝑦)2+(cosh b )2−1
2 cosh 𝑥 cosh 𝑦 cosh b ; the corresponding hypergroup is the so-called Jacobi

hypergroup.

For half-integer values of the parameters 𝛼, 𝛽, this hypergroup structure has various group
theoretic interpretations; in particular, it is related with harmonic analysis on rank one Riemannian
symmetric spaces [98]. Moreover, a remarkable property of the Jacobi hypergroup is that it
admits a positive dual convolution structure, i.e. there exists a family {\_1,_2} of finite positive
measures such that the dual product formula 𝑤_1 (𝑥) 𝑤_2 (𝑥) =

∫ ∞
0 𝑤_3 (𝑥) \_1,_2 (𝑑_3) holds, and

this permits the construction of a generalized convolution which trivializes the inverse Jacobi
transform [11].

(f) ℓ = − 𝑑2

𝑑𝑥2 −
(
𝛼
𝑥
+ 2`

)
𝑑
𝑑𝑥

(0 < 𝑥 < ∞, 𝛼, ` > 0); here 𝐴(𝑥) = 𝑥𝛼𝑒2`𝑥 .

As noted in Example 2.40, the solutions of the Sturm-Liouville initial value problem are 𝑤_(𝑥) =
(2𝑖𝜏)− 𝛼

2 𝑒−`𝑥𝑥−
𝛼
2 𝑀− 𝛼`

2𝑖𝜏 ,
𝛼−1

2
(2𝑖𝜏𝑥) (_ = 𝜏2 + `2, 𝑀^,a (·) the Whittaker function of the first kind)

and theL-transform is the index transform (F ℎ)(𝜏) = (2𝑖𝜏)− 𝛼
2
∫ ∞

0 ℎ(𝑥) 𝑀− 𝛼`

2𝑖𝜏 ,
𝛼−1

2
(2𝑖𝜏𝑥) 𝑥 𝛼

2 𝑒`𝑥𝑑𝑥.
It follows from Corollary 4.51 that there exists a family of probability measures {a𝑥,𝑦}𝑥,𝑦≥0 with
support [|𝑥 − 𝑦 |, 𝑥 + 𝑦] such that the Whittaker function of the first kind satisfies the product
formula

(2𝑖𝜏𝑥𝑦)− 𝛼
2 𝑒−` (𝑥+𝑦)𝑀− 𝛼`

2𝑖𝜏 ,
𝛼−1

2
(2𝑖𝜏𝑥)𝑀− 𝛼`

2𝑖𝜏 ,
𝛼−1

2
(2𝑖𝜏𝑦) =

∫
b−

𝛼
2 𝑒−`b𝑀− 𝛼`

2𝑖𝜏 ,
𝛼−1

2
(2𝑖𝜏b) a𝑥,𝑦 (𝑑b).

(4.53)
Unlike in cases (a)–(e) above, here the function 𝐴 does not satisfy condition SL1 of Zeuner’s
existence theorem for Sturm-Liouville hypergroups; the existence of the product formula (4.53)
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is, as far as we know, a novel result. It is natural to wonder whether one can determine the
closed-form expression of each of the measures a𝑥,𝑦 in terms of classical special functions. We
leave this as an open problem.

The convolutions discussed in cases (a)–(d) above are the only known examples of Sturm-Liouville
convolutions which satisfy axioms U1–U6 of Urbanik.

4.6.2 The degenerate case: degenerate hypergroups of full support

Definition 4.53. Let 𝐾 be a locally compact space and ∗ a bilinear operator onMC(𝐾). The pair
(𝐾, ∗) is said to be a degenerate hypergroup of full support if it satisfies the hypergroup axioms H1–H5,
together with the following axiom:

DH. supp(𝛿𝑥 ∗ 𝛿𝑦) = 𝐾 for all 𝑥, 𝑦 ∈ 𝐾 \ {e}.

In order to determine the conditions under which the Sturm-Liouville convolution algebra
( [𝑎, 𝑏), ∗) is a degenerate hypergroup of full support, we need to know when the solution of the
associated hyperbolic Cauchy problem (4.22) is strictly positive inside (𝑎, 𝑏)2. Our starting lemma
provides an integral inequality which proves to be useful for studying the strict positivity of solution.

Lemma 4.54. Write 𝑅(𝑥) := 𝐴(𝑥)
𝐵 (𝑥) , where 𝐵(𝑥) = exp( 12

∫ 𝑥
𝛽
[(b)𝑑b) (with 𝛽 > 𝛾(𝑎) arbitrary). Take

ℎ ∈ D (2,0) such that ℎ ≥ 0. Let 𝑢(𝑥, 𝑦) := ℎ(𝛾−1(𝑥), 𝛾−1(𝑦)), where ℎ ∈ C2 ((𝑎, 𝑏)2) is the solution
(4.23) of the Cauchy problem (cf. Lemma 4.49). Then the following inequality holds:

𝑅(𝑥)𝑅(𝑦)𝑢(𝑥, 𝑦) ≥ 1
2

∫ 𝑦

𝛾 (𝑎)
𝑅(𝑠)𝑅(𝑥 − 𝑦 + 𝑠)

[
𝜙[ (𝑠) + 𝜙[ (𝑥 − 𝑦 + 𝑠)

]
𝑢(𝑥 − 𝑦 + 𝑠, 𝑠) 𝑑𝑠

+ 1
2

∫ 𝑦

𝛾 (𝑎)
𝑅(𝑠)𝑅(𝑥 + 𝑦 − 𝑠)

[
𝜙[ (𝑠) − 𝜙[ (𝑥 + 𝑦 − 𝑠)

]
𝑢(𝑥 + 𝑦 − 𝑠, 𝑠) 𝑑𝑠

+ 1
2

∫
Δ

𝑅(b)𝑅(Z)
[
𝜓[ (Z) − 𝜓[ (b)

]
𝑢(b, Z) 𝑑b𝑑Z

(4.54)

where Δ ≡ Δ𝛾 (𝑎) ,𝑥,𝑦 = {(b, Z) ∈ R2 | Z ≥ 𝛾(𝑎), b + Z ≤ 𝑥 + 𝑦, b − Z ≥ 𝑥 − 𝑦}.

Proof. Let {𝑎𝑚}𝑚∈N be a sequence 𝑏 > 𝑎1 > 𝑎2 > . . . with lim 𝑎𝑚 = 𝑎. For 𝑚 ∈ N, set �̃�𝑚 = 𝛾(𝑎𝑚)
and define 𝑢𝑚(𝑥, 𝑦) := ℎ𝑚(𝛾−1(𝑥), 𝛾−1(𝑦)), where ℎ𝑚 is the function defined in (4.29). The function
𝑣𝑚(𝑥, 𝑦) = 𝐵(𝑥)𝐵(𝑦)𝑢𝑚(𝑥, 𝑦) is a solution of

(℘𝑥𝑣𝑚) (𝑥, 𝑦) = (℘𝑦𝑣𝑚) (𝑥, 𝑦), 𝑥, 𝑦 > �̃�𝑚

𝑣𝑚(𝑥, �̃�𝑚) = 𝐵(𝑥)𝐵(�̃�𝑚)ℎ(𝛾−1(𝑥)), 𝑥 > �̃�𝑚

(𝜕𝑦𝑣𝑚) (𝑥, �̃�𝑚) = 1
2[(�̃�𝑚)𝐵(𝑥)𝐵(�̃�𝑚)ℎ(𝛾

−1(𝑥)), 𝑥 > �̃�𝑚

where ℘𝑥 := − 𝜕2

𝜕𝑥2 − 𝜙[ (𝑥) 𝜕𝜕𝑥 + 𝜓[ (𝑥). Clearly, 𝑣𝑚(𝑥, �̃�𝑚), (𝜕𝑦𝑣𝑚) (𝑥, �̃�𝑚) ≥ 0. By Lemma 4.9
(with ℘1(𝑣) = ℘2(𝑣) = −𝑣′′ − 𝜙[𝑣′ + 𝜓[𝑣), the integral equation (4.8) holds with 𝑣 = 𝑣𝑚 and 𝑐 = 𝑎𝑚.
It is clear that we have 𝐻 ≥ 0, 𝐼0 ≥ 0 and 𝐼4 = 0 in the right hand side of (4.8); moreover, it
follows from Proposition 4.18 and Assumption MP that the integrands of 𝐼1, 𝐼2 and 𝐼3 are nonnegative.
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Consequently, for 𝛼 ∈ [�̃�𝑚, 𝑦] we have

𝑅(𝑥)𝑅(𝑦)𝑢𝑚(𝑥, 𝑦) ≥ 1
2

∫ 𝑦

𝛼

𝑅(𝑠)𝑅(𝑥 − 𝑦 + 𝑠)
[
𝜙[ (𝑠) + 𝜙[ (𝑥 − 𝑦 + 𝑠)

]
𝑢𝑚(𝑥 − 𝑦 + 𝑠, 𝑠) 𝑑𝑠

+ 1
2

∫ 𝑦

𝛼

𝑅(𝑠)𝑅(𝑥 + 𝑦 − 𝑠)
[
𝜙[ (𝑠) − 𝜙[ (𝑥 + 𝑦 − 𝑠)

]
𝑢𝑚(𝑥 + 𝑦 − 𝑠, 𝑠) 𝑑𝑠

+ 1
2

∫
Δ𝛼,𝑥,𝑦

𝑅(b)𝑅(Z)
[
𝜓[ (Z) − 𝜓[ (b)

]
𝑢𝑚(b, Z) 𝑑b𝑑Z

(4.55)

where Δ𝛼,𝑥,𝑦 = {(b, Z) ∈ R2 | Z ≥ 𝛼, b + Z ≤ 𝑥 + 𝑦, b − Z ≥ 𝑥 − 𝑦}. Since by Proposition 4.17
lim𝑚→∞ 𝑢𝑚(𝑥, 𝑦) = 𝑢(𝑥, 𝑦) pointwise for 𝑥, 𝑦 ∈ (𝛾(𝑎),∞), by taking the limit we deduce that for
each fixed 𝛼 ∈ (𝛾(𝑎), 𝑦] the inequality (4.55) holds with 𝑢𝑚 replaced by 𝑢. If we then take the limit
𝛼 ↓ 𝛾(𝑎), the desired integral inequality follows. �

The next lemma will help us in verifying the strict positivity of the integrands in the integral
inequality (4.54).

Lemma 4.55. If 𝛾(𝑎) = −∞, then at least one of the functions 𝜙[ , 𝜓[ defined in Assumption MP is
non-constant on every neighbourhood of −∞.

Proof. Suppose by contradiction that 𝛾(𝑎) = −∞ and 𝜙[ , 𝜓[ are both constant on an interval
(−∞, ^] ⊂ R. Recall from the proof of Proposition 4.13 that L is unitarily equivalent to a self-adjoint
realization of − 𝑑2

𝑑b 2 + 𝔮, where 𝔮 is given by (4.5). Clearly, 𝔮(b) = 𝔮∞ := 1
4 𝜙

2
[ (^) + 𝜓[ (^) < ∞ for

all b ∈ (−∞, ^). Using the theorem on the spectral properties of Sturm-Liouville operators stated
in [188, Theorem 15.3], we deduce that the essential spectrum of any self-adjoint realization of ℓ
restricted to an interval (𝑎, 𝑐) (for 𝑎 < 𝑐 < 𝑏) contains [𝔮∞,∞). However, we know from the proof of
Proposition 4.13 that self-adjoint realizations of ℓ restricted to (𝑎, 𝑐) have purely discrete spectrum.
This contradiction proves the lemma. �

We are now ready to prove that in the case 𝛾(𝑎) = −∞ the solution of the (nontrivial) Cauchy
problem (4.22) always has full support on (𝑎, 𝑏)2, even when the initial condition is compactly
supported:

Theorem 4.56 (Strict positivity of solution for the Cauchy problem (4.22)). Suppose that 𝛾(𝑎) = −∞.
Take ℎ ∈ D (2,0) . If 𝑓 ≥ 0 and 𝑓 (𝜏0) > 0 for some 𝜏0 ∈ (𝑎, 𝑏), then the function ℎ given by (4.23) is
such that

ℎ(𝑥, 𝑦) > 0 for 𝑥, 𝑦 ∈ (𝑎, 𝑏).

Proof. Let 𝑢(𝑥, 𝑦) := ℎ(𝛾−1(𝑥), 𝛾−1(𝑦)) and 𝜏0 = 𝛾(𝜏0). Fix 𝑥0 ≥ 𝑦0 > −∞. Since lim𝑦→−∞ 𝑢(𝜏0, 𝑦) =
𝑓 (𝜏0) > 0, there exists ^ ∈ (−∞,min{𝑦0, 𝜏0}) such that 𝑢(𝜏0, 𝑦) > 0 for all 𝑦 ≤ ^.

Suppose 𝜙[ is non-constant on every neighbourhood of −∞. Choosing a smaller ^ if necessary,
we may assume that 𝜙[ (^) > 𝜙[ (b) for all b > ^. For each 𝑥 > 𝜏0 and 𝑦 ≤ ^ we have by Lemma 4.54

𝑅(𝑥)𝑅(𝑦)𝑢(𝑥, 𝑦) ≥ 1
2

∫ 𝑦

−∞
𝑅(𝑠)𝑅(𝑥 − 𝑦 + 𝑠)

[
𝜙[ (𝑠) + 𝜙[ (𝑥 − 𝑦 + 𝑠)

]
𝑢(𝑥 − 𝑦 + 𝑠, 𝑠) 𝑑𝑠
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and the integrand in the right hand side is continuous and strictly positive at 𝑠 = 𝑦 − 𝑥 + 𝜏0, so the
integral is positive and therefore 𝑢(𝑥, 𝑦) > 0 for all 𝑥 ≥ 𝜏0 and 𝑦 ≤ ^. Again by Lemma 4.54,

𝑅(𝑥0)𝑅(𝑦0)𝑢(𝑥0, 𝑦0) ≥ 1
2

∫ 𝑦0

−∞
𝑅(𝑠)𝑅(𝑥0 + 𝑦0 − 𝑠)

[
𝜙[ (𝑠) − 𝜙[ (𝑥0 + 𝑦0 − 𝑠)

]
𝑢(𝑥0 + 𝑦0 − 𝑠, 𝑠) 𝑑𝑠

with the integrand being strictly positive for 𝑠 < min{^, 𝑥0 + 𝑦0 − 𝜏0}, thus 𝑢(𝑥0, 𝑦0) > 0.
Suppose now that 𝜓[ is non-constant on every neighbourhood of −∞ and that ^ is chosen such

that 𝜓[ (^) > 𝜓[ (b) for all b > ^. The integral inequality of Lemma 4.54 yields

𝑅(𝑥0)𝑅(𝑦0)𝑢(𝑥0, 𝑦0) ≥ 1
2

∫
Δ

𝑅(b)𝑅(Z)
[
𝜓[ (Z) − 𝜓[ (b)

]
𝑢(b, Z) 𝑑b𝑑Z .

where Δ = {(b, Z) ∈ R2 | b + Z ≤ 𝑥0 + 𝑦0, b − Z ≥ 𝑥0 − 𝑦0}. Clearly, the integrand is continuous and
> 0 on {(𝜏0, Z) | Z ≤ min(𝑦0 − |𝑥0 − 𝜏0 |, ^)} ⊂ Δ, and it follows at once that 𝑢(𝑥0, 𝑦0) > 0.

By Lemma 4.55 it follows that 𝑢(𝑥0, 𝑦0) > 0. Since 𝑥0 ≥ 𝑦0 > −∞ are arbitrary we conclude that
ℎ(𝑥, 𝑦) > 0 for 𝑏 > 𝑥 ≥ 𝑦 > 𝑎 and, by symmetry, for 𝑥, 𝑦 ∈ (𝑎, 𝑏). �

Corollary 4.57 (Existence theorem for degenerate hypergroups of full support). Let ℓ be a Sturm-
Liouville expression of the form (4.1) which satisfies Assumption MP, and suppose that 𝛾(𝑎) = −∞.
Then

(
[𝑎, 𝑏), ∗

)
is a degenerate hypergroup of full support.

Proof. By Proposition 4.31, the pair
(
[𝑎, 𝑏), ∗

)
satisfies axioms H1–H5. As in the proof of Proposition

4.48, 𝑧 ∈ [𝑎, 𝑏) belongs to supp(𝛿𝑥 ∗ 𝛿𝑦) if and only if
∫
[𝜎2,∞)𝑤_(𝑥) 𝑤_(𝑦) (F 𝑓Y) (_) 𝜌L (𝑑_) > 0 for

all Y > 0, where { 𝑓Y} ⊂ D (2,0) is a family of functions satisfying (4.51). But it follows from Theorem
4.56 that ℎ 𝑓Y (𝑥, 𝑦) =

∫
[𝜎2,∞)𝑤_(𝑥) 𝑤_(𝑦) (F 𝑓Y) (_) 𝜌L (𝑑_) > 0 for all 𝑥, 𝑦 ∈ (𝑎, 𝑏). Hence each

𝑧 ∈ [𝑎, 𝑏) belongs to all the sets supp(𝛿𝑥 ∗ 𝛿𝑦), 𝑥, 𝑦 ∈ (𝑎, 𝑏); therefore,
(
[𝑎, 𝑏), ∗

)
satisfies axiom

DH. �

This corollary confirms that, as anticipated in Section 4.1, the Whittaker convolution studied
in Chapter 3 is a particular case of a general family of Sturm-Liouville convolutions which do not
satisfy the compactness axiom, but which also allow us to develop the basic notions and facts from
probabilistic harmonic analysis.

Example 4.58. Let Z ∈ C1(R+) be a nonnegative decreasing function and let ^ > 0. The differential
expression

ℓ = −𝑥2 𝑑
2

𝑑𝑥2 −
[
^ + 𝑥

(
1 + Z (𝑥)

) ] 𝑑
𝑑𝑥
, 0 < 𝑥 < ∞

is a particular case of (4.1), obtained by considering 𝑝(𝑥) = 𝑥𝑒−^/𝑥+𝐼Z (𝑥) and 𝑟 (𝑥) = 1
𝑥
𝑒−^/𝑥+𝐼Z (𝑥) ,

where 𝐼Z (𝑥) =
∫ 𝑥

1 Z (𝑦) 𝑑𝑦
𝑦

. (If ^ = 1 and Z (𝑥) = 1 − 2𝛼 > 0, we recover the normalized Whittaker
operator (3.2).) The change of variable 𝑧 = log 𝑥 transforms ℓ into the standard form ℓ̃ = − 𝑑2

𝑑𝑧2 − 𝐴
′ (𝑧)
𝐴(𝑧)

𝑑
𝑑𝑧

,
where 𝐴′ (𝑧)

𝐴(𝑧) = ^𝑒−^𝑧 + Z (𝑒𝑧). It is clear that 𝛾(𝑎) = −∞ and that ℓ satisfies Assumption MP with
[ = lim𝑦→∞ Z (𝑦), and it is not difficult to show that the boundary condition

∫ 𝑐
𝑎

∫ 𝑐
𝑦

𝑑𝑥
𝑝 (𝑥) 𝑟 (𝑦)𝑑𝑦 < ∞

holds. Consequently, the Sturm-Liouville operator ℓ gives rise to a convolution algebra (R+0 , ∗) such
that supp(𝛿𝑥 ∗ 𝛿𝑦) = R+0 for all 𝑥, 𝑦 > 0.
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4.7 Harmonic analysis on 𝐿𝑝 spaces

Finally, we turn to the mapping properties of the L-convolution of functions, defined in the natural
way (compare with Section 3.6):

Definition 4.59. Let 𝑓 , 𝑔 : [𝑎, 𝑏) −→ C. If the integral

( 𝑓 ∗ 𝑔) (𝑥) =
∫ 𝑏

𝑎

(T 𝑦 𝑓 ) (𝑥) 𝑔(𝑦) 𝑟 (𝑦)𝑑𝑦 =
∫ 𝑏

𝑎

∫
[𝑎,𝑏)

𝑓 (b) (𝛿𝑥 ∗ 𝛿𝑦) (𝑑b) 𝑔(𝑦) 𝑟 (𝑦)𝑑𝑦

exists for almost every 𝑥 ∈ [𝑎, 𝑏), then we call it the L-convolution of the functions 𝑓 and 𝑔.

As usual, the convolution is trivialized by the L-transform and commutes with both the Sturm-
Liouville operator ℓ and the associated translation operator:

Proposition 4.60. Let 𝑦 ∈ [𝑎, 𝑏) and _ ≥ 0. Then:

(a) If 𝑓 ∈ 𝐿2(𝑟) and 𝑔 ∈ 𝐿1(𝑟), then
(
F ( 𝑓 ∗ 𝑔)

)
(_) = (F 𝑓 ) (_) (F 𝑔) (_);

(b) If 𝑓 ∈ 𝐿2(𝑟) and 𝑔 ∈ 𝐿1(𝑟), then T 𝑦 ( 𝑓 ∗ 𝑔) = (T 𝑦 𝑓 ) ∗ 𝑔;

(c) If 𝑓 ∈ D(L (2) ) and 𝑔 ∈ 𝐿1(𝑟), then 𝑓 ∗ 𝑔 ∈ D(L (2) ) and ℓ( 𝑓 ∗ 𝑔) = (ℓ 𝑓 ) ∗ 𝑔.

Proof. We know from Proposition 4.32 that F (T ` 𝑓 ) (_) = ̂̀(_) (F 𝑓 ) (_), hence these properties
can be proved using the same reasoning as in Proposition 3.59. �

The L-convolution also satisfies a Young inequality analogous to those of the previous chapters:

Proposition 4.61 (Young inequality for the L-convolution). Let 𝑝1, 𝑝2 ∈ [1,∞] such that 1
𝑝1
+ 1
𝑝2
≥ 1.

For 𝑓 ∈ 𝐿 𝑝1 (𝑟) and 𝑔 ∈ 𝐿 𝑝2 (𝑟), the L-convolution 𝑓 ∗ 𝑔 is well-defined and, for 𝑠 ∈ [1,∞] defined
by 1

𝑠
= 1
𝑝1
+ 1
𝑝2
− 1, it satisfies

∥ 𝑓 ∗ 𝑔∥𝑠 ≤ ∥ 𝑓 ∥𝑝1 ∥𝑔∥𝑝2

(in particular, 𝑓 ∗ 𝑔 ∈ 𝐿𝑠 (𝑟)). Consequently, the L-convolution is a continuous bilinear operator
from 𝐿 𝑝1 (𝑟) × 𝐿 𝑝2 (𝑟) into 𝐿𝑠 (𝑟).

Proof. Identical to that of Proposition 3.57. �

4.7.1 A family of 𝐿1 spaces

We will study the L-convolution as an operator acting on the family of Lebesgue spaces {𝐿1
^ }−∞<^≤𝜎2 ,

where 𝐿1
^ = 𝐿

1 ((𝑎, 𝑏), 𝑤^ (𝑥)𝑟 (𝑥)𝑑𝑥) . Observe that this is an ordered family:

𝐿1
^2 ⊂ 𝐿

1
^1 whenever −∞ < ^2 ≤ ^1 ≤ 𝜎2. (4.56)

This follows from the fact that (due to the Laplace-type representation (4.16)) we have 0 ≤ 𝑤^1 (𝑥) ≤
𝑤^2 (𝑥) for all 𝑥 ∈ [𝑎, 𝑏) whenever −∞ < ^2 ≤ ^1 ≤ 𝜎2. In particular, the space 𝐿1

0 ≡ 𝐿
1(𝑟) is

contained in the spaces 𝐿1
^ with 0 ≤ ^ ≤ 𝜎2.
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The basic properties of the L-transform, translation and convolution on the spaces 𝐿1
^ are as

follows (we write ∥ · ∥1,^ := ∥ · ∥𝐿1
^
):

Proposition 4.62. Let −∞ < ^ ≤ 𝜎2, let 𝑓 , 𝑔 ∈ 𝐿1
^ , and fix 𝑦 ∈ [𝑎, 𝑏). Then:

(a) The L-transform (F 𝑓 ) (_) :=
∫ 𝑏
𝑎
𝑓 (𝑥) 𝑤_(𝑥) 𝑟 (𝑥)𝑑𝑥 is, for all _ ≥ 𝜎2, well-defined as an

absolutely convergent integral; in addition, 𝑓 is uniquely determined by (F 𝑓 ) | [𝜎2,∞).

(b) The L-translation (T 𝑦 𝑓 ) (𝑥) :=
∫
[𝑎,𝑏) 𝑓 𝑑 a𝑥,𝑦 is well-defined and it satisfies ∥T 𝑦 𝑓 ∥1,^ ≤

𝑤^ (𝑦)∥ 𝑓 ∥1,^ (in particular, T 𝑦
(
𝐿1
^

)
⊂ 𝐿1

^ ).

(c) The L-convolution ( 𝑓 ∗ 𝑔) (𝑥) :=
∫ 𝑏
𝑎
(T 𝑦 𝑓 ) (𝑥) 𝑔(𝑦) 𝑟 (𝑦)𝑑𝑦 is well-defined and it satisfies

∥ 𝑓 ∗ 𝑔∥1,^ ≤ ∥ 𝑓 ∥1,^ · ∥𝑔∥1,^ (in particular, 𝐿1
^ ∗ 𝐿1

^ ⊂ 𝐿1
^ ).

Proof. (a) The absolute convergence of
∫ 𝑏
𝑎
𝑓 (𝑥) 𝑤_(𝑥) 𝑟 (𝑥)𝑑𝑥 is immediate from (4.56). Letting

`(𝑑𝑥) = 𝑓 (𝑥) 𝑟 (𝑥)𝑑𝑥, the same proof of Proposition 4.26(ii) shows that if ̂̀(_) ≡ (F 𝑓 ) (_) = 0 for
all _ ≥ 𝜎2, then ` is the zero measure; consequently, the function 𝑓 is uniquely determined by its
L-transform.

(b) Let 𝑓 ∈ 𝐿1
^ and let ℓ ⟨^ ⟩ be the operator defined in Lemma 4.7. We saw in the proof of Theorem

4.23 that a⟨^ ⟩𝑥,𝑦 (𝑑b) = 𝑤^ ( b )
𝑤^ (𝑥)𝑤^ (𝑦) a𝑥,𝑦 (𝑑b), hence

(T 𝑦 𝑓 ) (𝑥) =
∫
[𝑎,𝑏)

𝑓 𝑑 a𝑥,𝑦 = 𝑤^ (𝑥)𝑤^ (𝑦)
∫
[𝑎,𝑏)

𝑓

𝑤^
𝑑a
⟨^ ⟩
𝑥,𝑦 = 𝑤^ (𝑥)𝑤^ (𝑦)

(
T 𝑦⟨^ ⟩

𝑓

𝑤^

)
(𝑥),

here a⟨^ ⟩𝑥,𝑦 and T⟨^ ⟩ are, respectively, the measure of the product formula and the translation operator
associated with ℓ ⟨^ ⟩. Since ∥ 𝑓 ∥1,^ =

 𝑓

𝑤^


𝐿1 (𝑟 ⟨^⟩) , it follows from Proposition 4.32(a) that T 𝑦 𝑓 is

well-defined and

∥T 𝑦 𝑓 ∥1,^ = 𝑤^ (𝑦)
T 𝑦⟨^ ⟩ 𝑓𝑤^


𝐿1 (𝑟 ⟨^⟩) ≤ 𝑤^ (𝑦)

 𝑓

𝑤^


𝐿1 (𝑟 ⟨^⟩) = 𝑤^ (𝑦)∥ 𝑓 ∥1,^ .

(c) Using part (b), we compute

∥ 𝑓 ∗ 𝑔∥1,^ ≤
∫ 𝑏

𝑎

∫ 𝑏

𝑎

| (T 𝑥 𝑓 ) (b) | |𝑔(b) | 𝑟 (b)𝑑b 𝑤^ (𝑥)𝑟 (𝑥)𝑑𝑥

=

∫ 𝑏

𝑎

∫ 𝑏

𝑎

| (T b 𝑓 ) (𝑥) | 𝑤^ (𝑥)𝑟 (𝑥)𝑑𝑥 |𝑔(b) | 𝑟 (b)𝑑b

≤ ∥ 𝑓 ∥1,^
∫ 𝑏

𝑎

|𝑔(b) | 𝑤^ (b)𝑟 (b)𝑑b = ∥ 𝑓 ∥1,^ · ∥𝑔∥1,^ .�

Corollary 4.63. The Banach space 𝐿1
^ , equipped with the convolution multiplication 𝑓 · 𝑔 ≡ 𝑓 ∗ 𝑔, is

a commutative Banach algebra without identity element.

Proof. Proposition 4.62(c) shows that the L-convolution defines a binary operation on 𝐿1
^ for which

the norm is submultiplicative. Since the trivialization property F ( 𝑓 ∗ 𝑔) = (F 𝑓 ) · (F 𝑔) (Proposition
4.60(a)) extends (by continuity) to all 𝑓 , 𝑔 ∈ 𝐿1

^ , the commutativity and associativity of the L-
convolution in the space 𝐿1

^ is a consequence of the uniqueness of the L-transform (Proposition
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4.62(a)). An argument similar to that of the proof of Corollary 3.64 shows that the Banach algebra
(𝐿1
^ , ∗) has no identity element. �

Next we state a Wiener-Lévy type theorem for the L-convolution which includes, as a particular
case, the corresponding theorem for the Whittaker convolution established in Theorem 3.66.

Theorem 4.64 (Wiener-Lévy type theorem). For−∞ < ^ ≤ 𝜎2, write𝛱^ :=
{
_ ∈ C

�� |Im(√_ − 𝜎2 ) | ≤
Im(
√
^ − 𝜎2 )

}
. Let 𝑓 ∈ 𝐿1

^ and 𝜚 ∈ C. The following assertions are equivalent:

(i) 𝜚 + (F 𝑓 ) (_) ≠ 0 for all _ ∈ 𝛱^ (including _ = ∞);

(ii) There exists a unique function 𝑔 ∈ 𝐿1
^ and complex constant �̃� such that

1
𝜚 + (F 𝑓 ) (_) = �̃� + (F 𝑔) (_) (_ ∈ 𝛱^ ). (4.57)

If lim_→∞ 𝑤_(𝑥) = 0 for all 𝑎 < 𝑥 < 𝑏, then the unique complex constant in (4.57) is �̃� = 𝜚−1.

We note that the hypothesis lim_→∞ 𝑤_(𝑥) = 0 holds, in particular, for Sturm-Liouville operators
whose Laplace representation (4.16) is such that the measures 𝜋𝑥 ∈ M+(R) (𝑎 < 𝑥 < 𝑏) are absolutely
continuous with respect to the Lebesgue measure. (This follows from the Riemann-Lebesgue lemma,
as in the proof of Lemma 3.62.) In addition, it has been proved (see [27, Proposition 1]) that the
property lim_→∞ 𝑤_(𝑥) = 0 holds for all Sturm-Liouville operators of the form ℓ(𝑢) = −𝑢′′ − 𝐴′

𝐴
𝑢′

on R+ whose coefficient 𝐴 satisfies assumptions SL1.1 and SL2 with [ = 0. The latter class of
Sturm-Liouville operators includes those associated with the Hankel and the Fourier-Jacobi transforms
(Examples 4.52(c),(e)).

The proof of Theorem 4.64 relies on the following generalization of Lemma 3.15, which
characterizes the set of (suitably bounded) solutions of the functional equation determined by the
Sturm-Liouville product formula:

Lemma 4.65. Let −∞ < ^ ≤ 𝜎2. Assume that \ : [𝑎, 𝑏) −→ C is a Borel measurable function such
that there exists 𝐶 > 0 for which��\(𝑥)�� ≤ 𝐶 𝑤^ (𝑥) for almost every 𝑥 ∈ [𝑎, 𝑏) (4.58)

and that \(𝑥) is a nontrivial solution of the functional equation

\(𝑥) \(𝑦) =
∫
[𝑎,𝑏)

\(b) a𝑥,𝑦 (𝑑b) for almost every 𝑥, 𝑦 ∈ [𝑎, 𝑏). (4.59)

Then \(𝑥) = 𝑤_(𝑥) for some _ ∈ 𝛱^ .

Proof. For 𝑡 > 0 and 𝑥 ∈ (𝑎, 𝑏), let {𝑇𝑡 } be the Feller semigroup generated by the Neumann realization
of ℓ and write (𝑇𝑡ℎ) (𝑥) =

∫
[𝑎,𝑏) ℎ(b)𝑝𝑡 ,𝑥 (𝑑b), where {𝑝𝑡 ,𝑥}𝑡>0,𝑥∈(𝑎,𝑏) is the family of transition

kernels.
Assume for the moment that 0 < ^ ≤ 𝜎2, so that \ ∈ 𝐿∞(𝑟). We know from Corollary 4.24

that the measure a𝑡 ,𝑥,𝑦 (𝑑b) = 𝑞𝑡 (𝑥, 𝑦, b) 𝑟 (b)𝑑b of the time-shifted product formula is given by
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a𝑡 ,𝑥,𝑦 = 𝑝𝑡 ,𝑥 ∗ 𝛿𝑦; therefore, using the functional equation (4.59) we may compute(
𝑇𝑡 (T 𝑦 \)

)
(𝑥) =

∫
[𝑎,𝑏)

\(b) a𝑡 ,𝑥,𝑦 (𝑑b)

=

∫
[𝑎,𝑏)
(T 𝑦 \) (b) 𝑝𝑡 ,𝑥 (𝑑b)

= \(𝑦)
∫
[𝑎,𝑏)

\(b) 𝑝𝑡 ,𝑥 (𝑑b) = \(𝑦) (𝑇𝑡 \) (𝑥)

(4.60)

where we also used the fact that the transition kernels {𝑝𝑡 ,𝑥}𝑡>0,𝑥∈(𝑎,𝑏) are absolutely continuous
(Proposition 2.36). On the other hand, we know from a general result on one-dimensional diffusion
semigroups (see [129, Corollary 4.4]) that the Feller semigroup {𝑇𝑡 } is such that

𝜕

𝜕𝑡
(𝑇𝑡ℎ) (𝑥) = −ℓ𝑥 (𝑇𝑡ℎ) (𝑥) for all ℎ ∈ 𝐿∞(𝑟)

(
𝑡 > 0, 𝑥 ∈ (𝑎, 𝑏)

)
,

and we thus have (noting that T 𝑦 \ ∈ 𝐿∞(𝑟), cf. Proposition 4.32(iv))

ℓ𝑥
(
𝑇𝑡 (T 𝑦 \)

)
(𝑥) = − 𝜕

𝜕𝑡

(
𝑇𝑡 (T 𝑦 \)

)
(𝑥) = ℓ𝑦

(
𝑇𝑡 (T 𝑥 \)

)
(𝑦) (4.61)

where the second equality holds because
(
𝑇𝑡 (T 𝑦 \)

)
(𝑥) =

(
𝑇𝑡 (T 𝑥 \)

)
(𝑦). Combining (4.60) and (4.61),

we deduce that

ℓ𝑦 [\(𝑦) (𝑇𝑡 \) (𝑥)] = −
𝜕

𝜕𝑡
[\(𝑦) (𝑇𝑡 \) (𝑥)] = −

𝜕

𝜕𝑡
[\(𝑥) (𝑇𝑡 \) (𝑦)] = ℓ𝑥 [\(𝑥) (𝑇𝑡 \) (𝑦)]

for all 𝑡 > 0 and almost every 𝑥, 𝑦 ∈ (𝑎, 𝑏), and therefore

− 𝜕
𝜕𝑡
(𝑇𝑡 \) (𝑥)
(𝑇𝑡 \) (𝑥)

=
ℓ𝑥 \(𝑥)
\(𝑥) =

ℓ𝑦 \(𝑦)
\(𝑦) = _ (4.62)

for some constant _ ∈ C. From the last equality (which holds for almost every 𝑦) it follows that
\(𝑦) = 𝑐1𝑤_(𝑦) + 𝑐2𝑢_(𝑦), where 𝑢_ is a solution of ℓ(𝑢) = _𝑢 linearly independent of 𝑤_ and
𝑐1, 𝑐2 ∈ C are constants. In particular, \ is continuous (in fact, by (4.58) we have \ ∈ C0 [𝑎, 𝑏)), and
by continuity the functional equation (4.59) holds for all 𝑥, 𝑦 ∈ [𝑎, 𝑏); moreover, if we let 𝑦0 be such
that \(𝑦0) ≠ 0, we see that

\(𝑥) = 1
\(𝑦0)

∫
[𝑎,𝑏)

\(b) a𝑥,𝑦0 (𝑑b) −→
1

\(𝑦0)

∫
[𝑎,𝑏)

\(b) 𝛿𝑦0 (𝑑b) = 1 as 𝑥 ↓ 𝑎.

In order to show that \(𝑥) = 𝑤_(𝑥), by Lemma 2.26 it only remains to prove that lim𝑥↓𝑎 (𝑝 \′) (𝑥) =
0. We know that lim𝑡↓0(𝑇𝑡 \) (𝑥) = \(𝑥) and, by (4.62), 𝜕

𝜕𝑡
(𝑇𝑡 \) (𝑥) = −_(𝑇𝑡 \) (𝑥), hence

(𝑇𝑡 \) (𝑥) = 𝑒−_𝑡 \(𝑥) (𝑡 ≥ 0, 𝑥 ∈ (𝑎, 𝑏))

and therefore
(R[ \) (𝑥) =

\(𝑥)
_ + [ ([ > 0, 𝑥 ∈ (𝑎, 𝑏))
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where, as in (2.3), R[ 𝑓 =
∫ ∞

0 𝑒−[𝑡 𝑇𝑡 𝑓 𝑑𝑡 denotes the resolvent of the Feller semigroup {𝑇𝑡 }𝑡≥0. Since
\ ∈ C0 [𝑎, 𝑏), it follows that (R[ \) (𝑥) belongs to D(L (0) ), and therefore we have lim𝑥↓𝑎 (𝑝 \′) (𝑥) =
lim𝑥↓𝑎 (_ + [)𝑝(𝑥) (R[ \) ′(𝑥) −→ 0 as 𝑥 ↓ 𝑎, as desired.

Finally, suppose that ^ ≤ 0 and choose ^0 < ^. Recalling Lemma 4.7, it is easily seen that
the function \ ⟨^0 ⟩(𝑥) := \ (𝑥)

𝑤^0 (𝑥)
is bounded almost everywhere by 𝑤 ⟨^0 ⟩

^−^0 (𝑥) =
𝑤^ (𝑥)
𝑤^0 (𝑥)

∈ C0 [𝑎, 𝑏) and
satisfies the functional equation

\ ⟨^0 ⟩(𝑥) \ ⟨^0 ⟩(𝑦) =
∫
[𝑎,𝑏)

\ ⟨^0 ⟩(b) a⟨^0 ⟩
𝑥,𝑦 (𝑑b) for almost every 𝑥, 𝑦 ∈ [𝑎, 𝑏)

where, as seen above, a⟨^0 ⟩
𝑥,𝑦 (𝑑b) =

𝑤^0 ( b )
𝑤^0 (𝑥)𝑤^0 (𝑦)

a𝑥,𝑦 (𝑑b). Using the proof given for the case 0 < ^ ≤ 𝜎2

(where we replace the associated Sturm-Liouville operator by ℓ ⟨^0 ⟩), we deduce that \ ⟨^0 ⟩(𝑥) = 𝑤 ⟨^0 ⟩
_0
(𝑥)

for some _0 ∈ C. Consequently, \(𝑥) = 𝑤_(𝑥) for some _ ∈ C.
It only remains to show that _ ∈ 𝛱^ . Indeed, taking into account the Laplace-type representation

𝑤_(𝑥) =
∫
R

cos
(
𝑠
√
_ − 𝜎2 )

𝜋𝑥 (𝑑𝑠), the inequality (4.58) holds if and only if����∫
R

cos
(
𝑠
√
_ − 𝜎2 )

𝜋𝑥 (𝑑𝑠)
���� ≤ 𝐶 ∫

R
cos

(
𝑠
√
^ − 𝜎2 )

𝜋𝑥 (𝑑𝑠) for almost every 𝑥 ∈ [𝑎, 𝑏)

and clearly this takes place if and only if _ ∈ 𝛱^ . �

Proof of Theorem 4.64. Following the arguments from the proof of Lemma 3.65, one can prove the
following counterpart of Lemma 3.65: if 𝐽 : 𝐿1

^ −→ C (−∞ < ^ ≤ 𝜎2) is a linear functional
satisfying

𝐽 (ℎ ∗ 𝑔) = 𝐽 (ℎ) · 𝐽 (𝑔) for all ℎ, 𝑔 ∈ 𝐿1
^

then 𝐽 (ℎ) =
∫
[𝑎,𝑏) ℎ(b)𝑤_(b)𝑟 (b)𝑑b for some _ ∈ 𝛱^ . One can then establish the Wiener-Lévy type

theorem by a straightforward adaptation of the proof of Theorem 3.66 (replacing 𝐿𝛼,a andW𝛼 by,
respectively, 𝐿1

^ and F , etc.). �

4.7.2 Application to convolution-type integral equations

As in Section 3.7, the Wiener-Lévy type theorem established above is applicable to the study of a class
of integral equations of convolution type.

Definition 4.66. The integral equation

𝑓 (𝑥) +
∫ ∞

0
𝐽 (𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦 = ℎ(𝑥), (4.63)

where ℎ and 𝐽 are known functions and 𝑓 is to be determined, is said to be an L-convolution equation
if 𝐽 (𝑥, 𝑦) = (T 𝑥𝜑) (𝑦)𝑟 (𝑦) for some function 𝜑 ∈ 𝐿1

𝜎2 . In other words, (4.63) is an L-convolution
equation if it can be represented as

𝑓 (𝑥) + ( 𝑓 ∗ 𝜑) (𝑥) = ℎ(𝑥)

with ℎ ∈ 𝐿1
𝜎2 .
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An argument similar to the one given in Section 3.7 yields the following existence and uniqueness
theorem for L-convolution equations:

Theorem 4.67. Assume that 𝐽 (𝑥, 𝑦) = (T 𝑥𝜑) (𝑦)𝑟 (𝑦) for some 𝜑 ∈ 𝐿1
^ .

If 1 + (F 𝜑) (_) ≠ 0 for all _ ∈ 𝛱^ (including _ = ∞), then, for each given ℎ ∈ 𝐿1
^ , the integral

equation (4.63) admits a unique solution 𝑓 ∈ 𝐿1
^ ; moreover, this solution can be written in the form

𝑓 (𝑥) = 𝜚ℎ(𝑥) + (ℎ ∗ 𝑔) (𝑥) = 𝜚ℎ(𝑥) +
∫ 𝑏

𝑎

ℎ(𝑦) (T 𝑥𝑔) (𝑦) 𝑟 (𝑦)𝑑𝑦 (4.64)

for some function 𝑔 ∈ 𝐿1
^ and some constant 𝜚 ∈ C.

Conversely, if 1 + (F 𝜑) (_0) = 0 for some _0 ∈ 𝛱^ , then there exists no 𝑓 ∈ 𝐿1
^ satisfying the

integral equation (4.63).

As an interesting particular case, we deduce the existence and uniqueness of solution for integral
equations involving the density 𝑞𝑡 (𝑥, 𝑦, b) of the time-shifted product formula (cf. Proposition 4.22):

Corollary 4.68. For each fixed 𝑡 > 0, 𝑎 < 𝑥 < 𝑏 and 𝜓 ∈ 𝐿1(𝑟), the integral equation

ℎ(𝑦) +
∫ 𝑏

𝑎

ℎ(b) 𝑞𝑡 (𝑥, 𝑦, b)𝑟 (b)𝑑b = 𝜓(𝑦)

has a unique solution ℎ ∈ 𝐿1(𝑟) which can be written in the form (4.64) for some function 𝑔 ∈ 𝐿1(𝑟).

Proof. Let us justify that this result is obtained by setting 𝑓 = 𝑓𝑡 ,𝑥 := 𝑝(𝑡, 𝑥, ·) in the statement of
Theorem 4.67. Notice first that by Corollary 2.37 we have 𝑓𝑡 ,𝑥 ∈ 𝐿1

0 ≡ 𝐿
1(𝑟). Moreover, we have

(F 𝑓𝑡 ,𝑥) (_) = 𝑒−𝑡_𝑤_(𝑥) (cf. (2.39)), thus 1 + (F 𝑓𝑡 ,𝑥) (0) = 2 and

|1 + (F 𝑓𝑡 ,𝑥) (_) | ≥ 1 − 𝑒−𝑡 Re_ |𝑤_(𝑥) | > 0, _ ∈ 𝛱0 \ {0}

(this is easily seen to hold by setting _ = 𝜏2 + 𝜎2 and recalling the estimate (4.17)). Recalling that(
F (T 𝑦 𝑓𝑡 ,𝑥)

)
(_) = (F 𝑓𝑡 ,𝑥) (_) 𝑤_(𝑦) = 𝑒−𝑡_𝑤_(𝑥)𝑤_(𝑦) =

(
F 𝑞𝑡 (𝑥, 𝑦, ·)

)
(_)

where we used Proposition 4.32(ii), we see that (T 𝑦 𝑓𝑡 ,𝑥) (b) = 𝑞𝑡 (𝑥, 𝑦, b), so that the corollary is a
particular case of the theorem. �



Chapter 5

Convolution-like structures on
multidimensional spaces

After having constructed convolution-like operators associated with the Shiryaev process and with a
family of one-dimensional diffusion processes generated by Sturm-Liouville operators, we now turn
to a more general discussion of the problem formulated in the Introduction: the construction of a
generalized convolution associated with a given Feller process on a generally multidimensional state
space.

We start this chapter by describing the desired properties of such a generalized convolution structure;
these properties will be seen to lead to strong restrictions in the behaviour of the eigenfunctions of the
Feller generator. In Sections 5.2–5.3, after reviewing some basic notions and facts from spectral theory
and differential operators, we show that such restrictions fail to hold for reflected Brownian motions
on bounded smooth domains of R𝑑 (𝑑 > 2) and also for certain one-dimensional diffusions, leading
to negative results on the existence of associated convolution-like structures. Finally, in Section 5.4
we propose the notion of a family of convolutions associated with a given Feller semigroup as a
natural way of overcoming the difficulties in constructing convolutions on multidimensional spaces;
such families of convolutions will be shown to exist for a general class of two-dimensional manifolds
endowed with cone-like metrics.

5.1 Convolutions associated with conservative strong Feller semigroups

Our work in Chapters 3 and 4 indicates that none of the standard axiomatic definitions in the literature
on generalized harmonic analysis — hypergroups, hypercomplex systems, Urbanik generalized
convolutions, stochastic convolutions, etc. (see Section 2.3) — is fully satisfactory in identifying the
essential requirements for constructing a convolution-like operator associated with a given transition
semigroup. In light of the results of the previous chapters, here we propose the following notion of
convolution-like structure:

Definition 5.1. Let 𝐸 be a locally compact separable metric space, and let {𝑇𝑡 }𝑡≥0 be a conservative
strong Feller semigroup on 𝐸 . We say that a bilinear operator � onMC(𝐸) is a Feller-Lévy trivializable
convolution (FLTC) for {𝑇𝑡 } if the following conditions hold:

141
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I. (MC(𝐸),�) is a commutative Banach algebra over C (with respect to the total variation norm)
with identity element 𝛿𝑎 (𝑎 ∈ 𝐸), and (`, a) ↦→ ` � a is continuous in the weak topology of
measures;

II. P(𝐸) � P(𝐸) ⊂ P(𝐸);

III. There exists a family Θ ⊂ Bb(𝐸) \ {0} such that for `, `1, `2 ∈ P(𝐸) we have

` = `1 � `2 if and only if `(𝜗) = `1(𝜗) ·`2(𝜗) for all 𝜗 ∈ Θ

where `(𝜗) :=
∫
𝐸
𝜗(b)`(𝑑b);

IV. The transition kernel {𝑝𝑡 ,𝑥}𝑡≥0,𝑥∈𝐸 of the semigroup {𝑇𝑡 } is of the form

𝑝𝑡 ,𝑥 = `𝑡 � 𝛿𝑥 ,

where {`𝑡 }𝑡≥0 ⊂ P(𝐸) is a family of measures such that `𝑡+𝑠 = `𝑡 � `𝑠 for all 𝑡, 𝑠 ≥ 0.

Conditions I and II in the above definition can be interpreted as basic axioms that allow us to
interpret (MC(𝐸),�) as a probability-preserving convolution-like structure. Condition III requires the
existence of an integral transform with bounded kernels which determines uniquely a given measure
` ∈ MC(𝐸) (in the sense that if `(𝜗) = a(𝜗) for all 𝜗 ∈ Θ, then ` = a) and trivializes the convolution
in the same way as the Fourier transform trivializes the ordinary convolution. As noted in [184], it is
possible, in principle, to study infinite divisibility of probability measures on measure algebras not
satisfying Condition III; however, it is natural to require Condition III to hold, not only because, to
the best of our knowledge, all known examples of convolution-like structures are constructed from a
product formula of the form 𝜗(𝑥)𝜗(𝑦) = (𝛿𝑥 � 𝛿𝑦) (𝜗) (and therefore possess such a trivializing family
of functions) but also because this trivialization property leads to a richer theory. Lastly, condition
IV expresses the motivating goal discussed in the Introduction: the Feller semigroup {𝑇𝑡 } should
have the convolution semigroup property with respect to the operator � or, in other words, the Feller
process {𝑋𝑡 }𝑡≥0 determined by {𝑇𝑡 } is a Lévy process with respect to � in the sense that we have
𝑃
[
𝑋𝑡 ∈ · |𝑋𝑠 = 𝑥

]
= `𝑡−𝑠 � 𝛿𝑥 for every 0 ≤ 𝑠 ≤ 𝑡 and 𝑥 ∈ 𝐸 .

The problem of existence of an associated FLTC is meaningful for any given strong Feller
semigroup on a locally compact separable metric space. Before we present some notable examples of
this class of semigroups, let us recall some prerequisite notions from the theory of Dirichlet forms.
Let ` be a 𝜎-finite measure on 𝐸 . We say that (E,D(E)) is a Dirichlet form on 𝐿2(𝐸, `) if D(E)
is a dense subspace of 𝐿2(𝐸, `) and E is a nonnegative, closed, Markovian symmetric sesquilinear
form defined on D(E) × D(E). The associated non-positive self-adjoint operator (G (2) ,D(G (2) )) is
defined as

𝑢 ∈ D(G (2) ) if and only if ∃𝜙 ∈ 𝐿2(𝐸, `) such that E(𝑢, 𝑣) = −⟨𝜙, 𝑣⟩𝐿2 (𝐸,`) for all 𝑣 ∈ D(E)
(5.1)

and G (2)𝑢 := 𝜙 for 𝑢 ∈ D(G (2) ). The semigroup determined by E is defined by 𝑇 (2)𝑡 := 𝑒𝑡G (2) (where
the latter is obtained by spectral calculus); one can show [30, Theorem 1.1.3] that {𝑇 (2)𝑡 } is a strongly
continuous, sub-Markovian contraction semigroup on 𝐿2(𝐸, `). The Dirichlet form (E,D(E)) is
said to be strongly local if E(𝑢, 𝑣) = 0 whenever 𝑢 ∈ D(E) has compact support and 𝑣 ∈ D(E) is
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constant on a neighbourhood of supp(𝑢). It is said to be regular if D(E) ∩ Cc(𝐸) is dense both in
D(E) with respect to the norm ∥𝑢∥D(E) =

√
E(𝑢, 𝑢) + ∥𝑢∥𝐿2 (𝐸,`) and in Cc(𝐸) with respect to the

sup norm. A well-known result [63, Theorem 7.2.1] states that if (E,D(E)) is a regular Dirichlet
form on 𝐿2(𝐸, `) with semigroup {𝑇 (2)𝑡 }𝑡≥0, then there exists a Hunt process with state space 𝐸 whose
transition semigroup {𝑃𝑡 }𝑡≥0 is such that 𝑃𝑡𝑢 is, for all 𝑢 ∈ Cc(𝐸), a quasi-continuous version of
𝑇
(2)
𝑡 𝑢. (A Hunt process is essentially a strong Markov process whose paths are right-continuous and

quasi-left-continuous; for details we refer to [63, Appendix A.2].)

Example 5.2.

(a) Let (𝐸, 𝑔) be a complete Riemannian manifold and let m be the Riemannian volume on 𝐸 . The
sesquilinear form

E(𝑢, 𝑣) = 1
2

∫
𝐸

⟨∇𝑢,∇𝑣⟩𝑔 𝑑m, 𝑢, 𝑣 ∈ D(E)

with domain

D(E) = closure of C∞c (𝐸) in the Sobolev space 𝐻1(𝐸) ≡ {𝑢 ∈ 𝐿2(𝐸) | |∇𝑢 | ∈ 𝐿2(𝐸)}

is a strongly local regular Dirichlet form on 𝐿2(𝐸) ≡ { 𝑓 : 𝐸 → C | ∥ 𝑓 ∥𝐿2 (𝐸) ≡ (
∫
𝐸
| 𝑓 |2𝑑m)1/2 <

∞}. The Hunt diffusion process {𝑋𝑡 }𝑡≥0 with state space 𝐸 associated with this Dirichlet form is
the Brownian motion on (𝐸, 𝑔). One can show that the strongly continuous contraction semigroup
{𝑇𝑡 } determined by E is such that 𝑇𝑡

(
Bb(𝐸)

)
⊂ Cb(𝐸), so that the Brownian motion {𝑋𝑡 } is a

strong Feller process [172, Section 6]. Moreover, it is shown in [63, Example 5.7.2] that the
Feller semigroup {𝑇𝑡 } is conservative provided that the Riemannian volume m is such that

lim inf
𝑟→∞

1
𝑟2 log m(B(𝑥0; 𝑟)) < ∞ for some fixed 𝑥0 ∈ 𝐸.

Let G (0) : D(G (0) ) ⊂ C0(𝐸) −→ C0(𝐸) be the infinitesimal generator of the Brownian motion
{𝑋𝑡 }. Then G (0)𝑢 = 1

2Δ𝑢 for 𝑢 ∈ C∞c (𝐸) ⊂ D(G (0) ), where Δ is the Laplace-Beltrami operator
on the Riemannian manifold (𝐸, 𝑔).

(b) Let 𝐸 = R𝑑 , 𝑚 a positive function such that 𝑚, 1
𝑚
∈ Cb(R𝑑) and 𝐴 = (𝑎 𝑗𝑘) a symmetric 𝑑 × 𝑑

matrix-valued function such that 𝑎 𝑗𝑘 ∈ C(R𝑑) (for each 𝑗 , 𝑘 ∈ {1, . . . , 𝑑}) and

𝑐−1 |b |2 ≤
𝑑∑

𝑗 ,𝑘=1
𝑎 𝑗𝑘 (𝑥)b 𝑗b𝑘 ≤ 𝑐 |b |2, (𝑥, b) ∈ R𝑑 × R𝑑 (5.2)

for some constant 𝑐 > 0. The sesquilinear form

E(𝑢, 𝑣) = 1
2

𝑑∑
𝑗 ,𝑘=1

∫
R𝑑
𝑎 𝑗𝑘 (𝑥)

𝜕𝑢

𝜕𝑥 𝑗

𝜕𝑣

𝜕𝑥𝑘
𝑚(𝑥)𝑑𝑥, 𝑢, 𝑣 ∈ D(E)

with domain

D(E) = closure of C∞c (R𝑑) under the inner product E(·, ·) + ⟨·, ·⟩𝐿2 (m)
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is a strongly local regular Dirichlet form on the space 𝐿2(m) ≡ 𝐿2(R𝑑 , 𝑚(𝑥)𝑑𝑥) [63, Section 3.1].
The Hunt diffusion {𝑋𝑡 }𝑡≥0 associated with the Dirichlet form E is conservative [63, Example
5.7.1]. The process {𝑋𝑡 }, which is called the (𝐴, 𝑚)-diffusion on R𝑑 , is a strong Feller process,
cf. [173, Example 4.C and Proposition 7.5]. If, in addition, we have 𝜕(𝑚𝑎 𝑗𝑘 )

𝜕𝑥 𝑗
∈ 𝐿2

loc(R
𝑑) for each

𝑗 , 𝑘 ∈ {1, . . . , 𝑑}, then the infinitesimal generator G (0) of the Feller semigroup is the elliptic
operator (G (0)𝑢) (𝑥) = 1

2𝑚(𝑥)
∑𝑑
𝑗,𝑘=1

𝜕
𝜕𝑥 𝑗

(
𝑚(𝑥)𝑎 𝑗𝑘 (𝑥) 𝜕𝑢𝜕𝑥𝑘

)
(for 𝑢 ∈ C2

c (R𝑑) ⊂ D(G (0) )).

(c) Let 𝐸 be the closure of a bounded Lipschitz domain �̊� ⊂ R𝑑 and, as usual, let 𝐻𝑘 (𝐸) be the
Sobolev space defined as 𝐻𝑘 (𝐸) := {𝑢 ∈ 𝐿2(𝐸, 𝑑𝑥) | 𝜕𝛼𝑢 ∈ 𝐿2(𝐸, 𝑑𝑥) for all 𝛼 = (𝛼1, . . . , 𝛼𝑑)
with |𝛼 | ≤ 𝑘}. Let𝑚 ∈ 𝐻1(𝐸) be a positive function such that𝑚, 1

𝑚
∈ C(𝐸) and let 𝐴 = (𝑎 𝑗𝑘) be

a symmetric bounded 𝑑 × 𝑑 matrix-valued function such that 𝑎 𝑗𝑘 ∈ 𝐻1(𝐸) for 𝑗 , 𝑘 ∈ {1, . . . , 𝑑}
and the uniform ellipticity condition (5.2) holds for (𝑥, b) ∈ 𝐸 × R𝑑 . The sesquilinear form

E(𝑢, 𝑣) = 1
2

𝑑∑
𝑗 ,𝑘=1

∫
𝐸

𝑎 𝑗𝑘 (𝑥)
𝜕𝑢

𝜕𝑥 𝑗

𝜕𝑣

𝜕𝑥𝑘
𝑚(𝑥)𝑑𝑥, 𝑢, 𝑣 ∈ D(E) = 𝐻1(𝐸)

is a strongly local regular Dirichlet form on 𝐿2(𝐸,m) ≡ 𝐿2(𝐸, 𝑚(𝑥)𝑑𝑥) whose associated Hunt
diffusion process is a conservative Feller process, cf. [29, 31]. The process {𝑋𝑡 } is called
the (𝐴, 𝑚)-reflected diffusion on 𝐸 . The infinitesimal generator G (0) of the Feller process
{𝑋𝑡 } is such that C2

c (�̊�) ⊂ D(G (0) ) and (G (0)𝑢) (𝑥) = 1
2𝑚(𝑥)

∑𝑑
𝑗,𝑘=1

𝜕
𝜕𝑥 𝑗

(
𝑚(𝑥)𝑎 𝑗𝑘 (𝑥) 𝜕𝑢𝜕𝑥𝑘

)
for

𝑢 ∈ C2
c (�̊�). In the special case 𝑎𝑖 𝑗 = 𝛿𝑖 𝑗 and 𝑚 = 1, the (𝐴, 𝑚)-reflected diffusion is known as

the reflected Brownian motion on 𝐸 , whose infinitesimal generator G (0)𝑢 = 1
2Δ𝑢 is the so-called

Neumann Laplacian on 𝐸 .

(d) Let 𝐸 be a locally compact separable metric space with distance d and let m be a locally finite
Borel measure on 𝐸 with m(𝑈) > 0 for all nonempty open sets𝑈 ⊂ 𝐸 . Suppose that the triplet
(𝐸, d,m) satisfies the measure contraction property introduced in [173, Definition 4.1]; roughly
speaking, this means that there exists a family of quasi-geodesic maps connecting almost every
pair of points 𝑥, 𝑦 ∈ 𝐸 and which satisfy a contraction property which controls the distortions of
the measure m along each quasi-geodesic. It was proved in [173] that the family of Dirichlet
forms defined as

E𝑟 (𝑢, 𝑢) = 1
2

∫
𝐸

∫
B(𝑥;𝑟 )\{𝑥 }

����𝑢(𝑧) − 𝑢(𝑥)d(𝑧, 𝑥)

����2 m(𝑑𝑧)√
m(B(𝑧; 𝑟))

m(𝑑𝑥)√
m(B(𝑥; 𝑟))

, 𝑟 > 0

(and E𝑟 (𝑢, 𝑣) defined via the polarization identity) converges as 𝑟 ↓ 0 (in a suitable variational
sense, see [173]) to a strongly local regular Dirichlet form on 𝐿2(𝐸,m). The associated Hunt
diffusion {𝑋𝑡 }𝑡≥0 is a strong Feller process with state space 𝐸 . If the growth of the volumes
m(B(𝑥; 𝑟)) satisfies the condition stated in [63, Theorem 5.7.3], then the Feller process {𝑋𝑡 } is
conservative. This class of strong Feller processes includes, as particular cases, the diffusions of
Examples (a) and (b) above, diffusions on manifolds with boundaries or corners, spaces obtained
by gluing together manifolds, among others.

As discussed above, our motivating problem is that of determining, for a given Feller semigroup
{𝑇𝑡 }, necessary or sufficient conditions for the existence of an associated FLTC satisfying the
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requirements of Definition 5.1. The following proposition shows that the converse problem of
constructing a (strong) Feller semigroup associated with a given convolution-like semigroup of
measures on the space 𝐸 has a straightforward solution:

Proposition 5.3. Let 𝐸 be a locally compact separable metric space with the Heine-Borel property (i.e.
where each closed bounded subset is compact), and let � be a bilinear operator onMC(𝐸) satisfying
conditions I and II of Definition 5.1. Let {`𝑡 } ⊂ P(𝐸) be a family of measures such that

`𝑡+𝑠 = `𝑡 � `𝑠 for all 𝑡, 𝑠 ≥ 0, `𝑡
𝑤−→ `0 as 𝑡 ↓ 0, `0 = 𝛿𝑎 .

For a ∈ M+(𝐸), define (T a 𝑓 ) (𝑥) :=
∫
𝐸
𝑓 𝑑 (a � 𝛿𝑥), and assume that T 𝛿𝑦 𝑓 ∈ C0(𝐸) for all

𝑓 ∈ C0(𝐸) and 𝑦 ∈ 𝐸 . Then the operators

𝑇𝑡 : C0(𝐸) −→ C0(𝐸), 𝑇𝑡 𝑓 := T `𝑡 𝑓

constitute a conservative Feller semigroup. If, in addition, we have (`𝑡 � 𝛿𝑥) (𝑑𝑦) = 𝑝𝑡 (𝑥, 𝑦)m(𝑑𝑦)
(𝑡 > 0, 𝑥 ∈ 𝐸) for some measure m ∈ M+(𝐸) and some density function 𝑝𝑡 (𝑥, 𝑦) which is locally
bounded on 𝐸 × 𝐸 for each 𝑡 > 0, then {𝑇𝑡 }𝑡≥0 is a strong Feller process.

Proof. It is trivial that each operator 𝑇𝑡 is positivity-preserving and conservative. The semigroup
property 𝑇𝑡+𝑠 = 𝑇𝑡𝑇𝑠 and the strong continuity lim𝑡↓0 ∥𝑇𝑡 𝑓 − 𝑓 ∥∞ = 0 follow as in the proof of
Proposition 3.34. Next, let a ∈ M+(𝐸) and {𝑥𝑛} ⊂ 𝐸 a sequence such that 𝑑 (𝑥𝑛, 𝑎) → ∞ as 𝑛→∞.
By assumption T 𝛿𝑦 𝑓 ∈ C0(𝐸), thus by dominated convergence we have

| (T a 𝑓 ) (𝑥𝑛) | ≤
∫
𝐸

| (T 𝛿𝑦 𝑓 ) (𝑥𝑛) | a(𝑑𝑦) −→ 0 as 𝑛→∞

showing that for each Y > 0 the space {𝑥 : | (T a 𝑓 ) (𝑥) | ≥ Y} is bounded and, therefore, compact (by
the Heine-Borel property). This shows that T a

(
C0(𝐸)

)
⊂ C0(𝐸) for all bounded measures a; in

particular, 𝑇𝑡 (C0(𝐸)
)
⊂ C0(𝐸). The fact that {𝑇𝑡 } is strong Feller under the stated absolute continuity

condition follows from the criterion given in [22, Theorem 1.14]. �

We now prove an important fact concerning the family Θ of trivializing functions in the definition
of an FLTC, namely that each 𝜗 ∈ Θ is an eigenfunction of the Cb-generator of the associated Feller
semigroup. (As in (2.4), the notion of Cb-generator of a semigroup {𝑇𝑡 }𝑡≥0 refers to the operator G (𝑏)

with domain D(G (𝑏) ) = R[
(
Cb(𝐸)

)
([ > 0) and given by (G (𝑏)𝑢) (𝑥) = [𝑢(𝑥) − 𝑔(𝑥) for 𝑢 = R[𝑔,

𝑔 ∈ Cb(𝐸); recall that R[ 𝑓 =
∫ ∞

0 𝑒−[𝑡 𝑇𝑡 𝑓 𝑑𝑡 denotes the resolvent of the semigroup {𝑇𝑡 }.)

Proposition 5.4. Let {𝑇𝑡 } be a conservative strong Feller semigroup on a locally compact separable
metric space 𝐸 , and let � be a bilinear operator on MC(𝐸) satisfying conditions I, II and IV of
Definition 5.1. Suppose that 𝜗 ∈ Bb(𝐸), 𝜗 . 0 is a function such that

(𝛿𝑥 � 𝛿𝑦) (𝜗) = 𝜗(𝑥) ·𝜗(𝑦) for all 𝑥, 𝑦 ∈ 𝐸. (5.3)

Then 𝜗(𝑎) = ∥𝜗∥∞ = 1. Moreover, 𝜗 is an eigenfunction of the Cb-generator (G (𝑏) ,D(G (𝑏) ))
associated with an eigenvalue of nonpositive real part, in the sense that we have 𝜗 ∈ D(G (𝑏) ) and
G (𝑏)𝜗 = −_𝜗 for some _ ∈ C with Re_ ≥ 0.



146 5. Convolution-like structures on multidimensional spaces

Proof. Clearly, 𝜗(𝑥) = 𝛿𝑥 (𝜗) = (𝛿𝑥 � 𝛿𝑎) (𝜗) = 𝜗(𝑥)𝜗(𝑎) for all 𝑥 ∈ 𝐸 . Since 𝜗 . 0, this implies
that 𝜗(𝑎) = 1.

Next, pick Y > 0 and choose 𝑥0 ∈ 𝐸 such that |𝜗(𝑥0) | > ∥𝜗∥∞−Y. Then (∥𝜗∥∞−Y)2 < |𝜗(𝑥0) |2 =

| (𝛿𝑥0 � 𝛿𝑥0) (𝜗) | ≤ ∥𝜗∥∞ (by condition II, 𝛿𝑥0 � 𝛿𝑥0 ∈ P(𝐸), which justifies the last step). Since Y is
arbitrary, ∥𝜗∥2∞ ≤ ∥𝜗∥∞, hence ∥𝜗∥∞ ≤ 1.

Since � is bilinear and weakly continuous, a straightforward argument yields that (` � a) (𝑑b) =∫
𝐸

∫
𝐸
(𝛿𝑥 � 𝛿𝑦) (𝑑b)`(𝑑𝑥)a(𝑑𝑦) for `, a ∈ MC(𝐸). Consequently, (5.3) implies that (` � a) (𝜗) =

`(𝜗) ·a(𝜗) for all `, a ∈ MC(𝐸). In particular,

(𝑇𝑡𝜗) (𝑥) ≡ 𝑝𝑡 ,𝑥 (𝜗) = (`𝑡 � 𝛿𝑥) (𝜗) = `𝑡 (𝜗) ·𝜗(𝑥)

due to condition IV. Given that {𝑇𝑡 } is strong Feller, we have 𝑇𝑡𝜗 ∈ Cb(𝐸) and therefore 𝜗 =
𝑇𝑡𝜗

`𝑡 (𝜗) ∈ Cb(𝐸). Moreover, the fact that {𝑇𝑡 } is a conservative Feller semigroup ensures that
`𝑡 (𝜗) = (𝑇𝑡𝜗) (𝑎) is a continuous function of 𝑡 which, by condition IV, satisfies the functional equation
`𝑡+𝑠 (𝜗) = `𝑡 (𝜗)`𝑠 (𝜗). Therefore `𝑡 (𝜗) = 𝑒−_𝑡 for some _ ∈ C, and the fact that |`𝑡 (𝜗) | ≤ ∥𝜗∥∞ = 1
implies that Re_ ≥ 0. We thus have 𝑇𝑡𝜗 = 𝑒−_𝑡𝜗 and R[𝜗 = 𝜗

_+[ for [ > 0, so we conclude that
𝜗 ∈ D(G (𝑏) ) and G (𝑏)𝜗 = −_𝜗. �

Corollary 5.5. Let {𝑇𝑡 } be a conservative strong Feller semigroup on a locally compact separable
metric space 𝐸 . Let � be an FLTC for {𝑇𝑡 } and Θ the corresponding family of trivializing functions.
Then

Θ ⊂
{
𝜔 ∈ D(G (𝑏) )

�� 𝜔(𝑎) = ∥𝜔∥∞ = 1, G (𝑏)𝜔 = −_𝜔 for some _ ∈ C with Re_ ≥ 0
}
.

In particular, each ` ∈ MC(𝐸) is uniquely determined by the integrals `(𝜔) ≡
∫
𝐸
𝜔(𝑥)`(𝑑𝑥), where

𝜔 belongs to the set of solutions of G (𝑏)𝑢 = −_𝑢 (Re_ ≥ 0) satisfying 𝜔(𝑎) = ∥𝜔∥∞ = 1.

It is worth noting that if the strong Feller semigroup {𝑇𝑡 } is symmetric with respect to a finite
measure m ∈ M+(𝐸) (i.e. if

∫
𝐸
(𝑇𝑡 𝑓 ) (𝑥) 𝑔(𝑥)m(𝑑𝑥) =

∫
𝐸
𝑓 (𝑥) (𝑇𝑡𝑔) (𝑥)m(𝑑𝑥) for 𝑓 , 𝑔 ∈ Cc(𝐸)),

then the space Cb(𝐸) is contained in 𝐿2(𝐸,m); accordingly, the Feller semigroup {𝑇𝑡 }𝑡≥0 and the
Cb-generator G (𝑏) extend, respectively, to a strongly continuous semigroup {𝑇 (2)𝑡 } of symmetric
operators on 𝐿2(𝐸,m) and to the corresponding infinitesimal generator G (2) . In this setting, the
trivializing functions 𝜗 ∈ Θ are eigenfunctions of the 𝐿2-generator G (2) . Applying spectral-theoretic
results for self-adjoint operators on Hilbert spaces, we can deduce further properties for the trivializing
functions:

Proposition 5.6. Let {𝑇𝑡 } be a conservative Feller semigroup on a locally compact separable metric
space 𝐸 . Suppose that the corresponding transition kernels {𝑝𝑡 ,𝑥 (·)}𝑡>0,𝑥∈𝐸 are of the form
𝑝𝑡 ,𝑥 (𝑑𝑦) = 𝑝𝑡 (𝑥, 𝑦)m(𝑑𝑦) for some finite measure m ∈ M+(𝐸) and some density function 𝑝𝑡 (𝑥, 𝑦)
which is bounded and symmetric on 𝐸 × 𝐸 for each 𝑡 > 0. Then {𝑇𝑡 } is strong Feller, is symmetric
with respect to m, and admits an extension {𝑇 (2)𝑡 } which is a strongly continuous semigroup on the
space 𝐿2(𝐸,m). There exists a sequence 0 ≤ _1 ≤ _2 ≤ _3 < . . . with _ 𝑗 →∞ and an orthonormal
basis {𝜔 𝑗} 𝑗∈N of 𝐿2(𝐸,m) such that

𝑇
(2)
𝑡 𝜔 𝑗 = 𝑒

−_ 𝑗 𝑡𝜔 𝑗 (𝑡 ≥ 0), G (2)𝜔 𝑗 = −_ 𝑗𝜔 𝑗
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where G (2) stands for the generator of the 𝐿2-semigroup {𝑇 (2)𝑡 }. The sequence of eigenvalues is such
that

∑∞
𝑗=1 𝑒

−_ 𝑗 𝑡 < ∞ for each 𝑡 > 0 (so that, in particular, lim 𝑗→∞ _ 𝑗 = ∞).
Assume also that � is an FLTC for {𝑇𝑡 } and that Θ is the family of trivializing functions for �.

Write 𝑆𝑘 = { 𝑗 ∈ N | _ 𝑗 = _𝑘 } and 𝑚𝑘 = |𝑆𝑘 | (𝑘 ∈ N). Then each function 𝜗 ∈ Θ is a solution of
G (2)𝜗 = −_ 𝑗𝜗 for some 𝑗 ∈ N. Furthermore, there exist functions {𝜗 𝑗} 𝑗∈N ⊂ Θ such that

span({𝜔 𝑗} 𝑗∈𝑆𝑘 ) = span({𝜗 𝑗} 𝑗∈𝑆𝑘 )

and, consequently, span(Θ) = 𝐿2(𝐸,m).

Proof. The strong Feller property follows from [22, Theorem 1.14]. The symmetry with respect to m
is obvious, and it is straightforward to show that for 𝑓 ∈ Cc(𝐸) we have ∥𝑇𝑡 𝑓 ∥𝐿2 (𝐸,m) ≤ ∥ 𝑓 ∥𝐿2 (𝐸,m)
and ∥𝑇𝑡 𝑓 − 𝑓 ∥𝐿2 (𝐸,m) → 0 as 𝑡 ↓ 0, so that the extension {𝑇 (2)𝑡 } is a strongly continuous semigroup
on 𝐿2(𝐸,m).

Let ⟨·, ·⟩ be the inner product on 𝐿2(𝐸,m). By the spectral theorem for compact self-adjoint
operators (cf. e.g. [175, Theorem 6.7]), the operator 𝑇 (2)1 can be written as 𝑇 (2)1 =

∑∞
𝑗=1 ` 𝑗 ⟨𝜔 𝑗 , ·⟩𝜔 𝑗 ,

where `1 ≥ `2 ≥ . . . are the eigenvalues of 𝑇 (2)1 and {𝜔 𝑗} 𝑗∈N is an orthonormal basis of 𝐿2(𝐸,m)
such that each 𝜔 𝑗 is an eigenfunction of 𝑇 (2)1 associated with the eigenvalue ` 𝑗 ; in addition, we
have `1 ≤ ∥𝑇 (2)1 ∥ and ` 𝑗 ↓ 0 as 𝑗 → ∞. If we define _ 𝑗 = − log ` 𝑗 , then it follows that
𝑇
(2)
𝑡 =

∑∞
𝑗=1 𝑒

−_ 𝑗 𝑡 ⟨𝜔 𝑗 , ·⟩𝜔 𝑗 . (This can be justified as follows, cf. [69, pp. 463–464] for further
details: we know that (𝑇 (2)1 − ` 𝑗)𝜔 𝑗 = (𝑇 (2)1/2 + `

1/2
𝑗
) (𝑇 (2)1/2 − `

1/2
𝑗
)𝜔 𝑗 = 0, and all the eigenvalues of

(𝑇 (2)1/2 + `
1/2
𝑗
) are positive, hence 𝑇 (2)1/2𝜔 𝑗 = `

1/2
𝑗
𝜔 𝑗 ; similarly 𝑇 (2)𝑡 𝜔 𝑗 = 𝑒

−_ 𝑗 𝑡𝜔 𝑗 for all 𝑡 = 𝑚/2𝑘 and
thus, by strong continuity, for all 𝑡 > 0.) Consequently, G (2)𝜔 𝑗 = lim𝑡↓0

1
𝑡
(𝑇 (2)𝑡 𝜔 𝑗 − 𝜔 𝑗) = −_ 𝑗𝜔 𝑗 .

Since m is a finite measure and the densities 𝑝𝑡 (·, ·) are bounded, the operator 𝑇 (2)𝑡 is, for each 𝑡 > 0,
a Hilbert-Schmidt operator, and therefore we have

∑∞
𝑗=1 𝑒

−_ 𝑗 𝑡 < ∞ for all 𝑡 > 0.
By Corollary 5.5 each 𝜗 ∈ Θ is such that G (2)𝜗 = −_𝜗 for some _ ∈ C. Given that Θ ⊂ 𝐿2(𝐸,m)

and eigenfunctions associated with different eigenvalues are orthogonal, we have _ = _ 𝑗 because
otherwise we get a contradiction with the basis property of {𝜔 𝑗𝑘 }.

For the last part, fix 𝑡 > 0, 𝑘 ∈ N and let Θ𝑘 := {𝜗 ∈ Θ | 𝑇 (2)𝑡 𝜗 = 𝑒−_𝑘 𝑡𝜗} ⊂ 𝐿2(𝐸,m). Given
that {𝜔 𝑗} 𝑗∈𝑆𝑘 is a basis of the eigenspace associated with _𝑘 , we have span(Θ𝑘) ⊂ span({𝜔 𝑗} 𝑗∈𝑆𝑘 ).
To prove the reverse inclusion, let ℎ ∈ span({𝜔 𝑗} 𝑗∈𝑆𝑘 ) ∩ span(Θ𝑘)⊥, write aℎ (𝑑𝑥) := ℎ(𝑥)m(𝑑𝑥) and
observe that (since m is a finite measure) aℎ ∈ MC(𝐸). Then the integral

aℎ (𝜗) =
∫
𝐸

𝜗(𝑥)ℎ(𝑥)m(𝑑𝑥)

is equal to zero for 𝜗 ∈ Θ𝑘 because ℎ ∈ span(Θ𝑘)⊥, and is also equal to zero for 𝜗 ∈ Θ \ Θ𝑘
because then ℎ and 𝜗 are eigenfunctions of 𝑇 (2)𝑡 associated with different eigenvalues. Since measures
a ∈ MC(𝐸) are uniquely determined by the integrals {a(𝜗)}𝜗∈Θ, it follows that aℎ = 0 and therefore
ℎ = 0; this shows that span(Θ𝑘) = span({𝜔 𝑗} 𝑗∈𝑆𝑘 ). It follows at once that there exist linearly
independent functions {𝜗 𝑗} 𝑗∈N ⊂ Θ such that span({𝜔 𝑗} 𝑗∈𝑆𝑘 ) = span({𝜗 𝑗} 𝑗∈𝑆𝑘 ). �

The conclusions of Proposition 5.6 are valid, in particular, for the Feller semigroups associated
with the Brownian motion on a compact Riemannian manifold or with an (𝐴, 𝑚)-reflected diffusion
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on a bounded Lipschitz domain, cf. Examples 5.2(a) and (c) respectively. (Indeed, it follows from e.g.
[173, Theorem 7.4] that in both cases we have 𝑝𝑡 ,𝑥 (𝑑𝑦) = 𝑝𝑡 (𝑥, 𝑦)m(𝑑𝑦) with 𝑝𝑡 (𝑥, 𝑦) bounded and
symmetric; recall also that compact Riemannian manifolds have finite volume, cf. e.g. [72, Theorem
3.11].)

It is worth emphasizing that, by Corollary 5.5 and Proposition 5.6, the existence of an FLTC for a
Feller semigroup {𝑇𝑡 } satisfying the assumptions above implies that the following common maximizer
property holds:

CM. There exists a set {𝜗 𝑗} 𝑗∈N of eigenfunctions of G (2) which is dense in 𝐿2(𝐸,m) and such that
𝜗 𝑗 (𝑎) = ∥𝜗 𝑗 ∥∞ = 1 for some point 𝑎 ∈ 𝐸 .

(The functions 𝜗 𝑗 associated with a common eigenvalue need not be orthogonal in 𝐿2(𝐸,m).) This
necessary condition will play a fundamental role in the proof of the inexistence results established in
Section 5.2.

The next proposition and corollary show that the existence of an FLTC is closely related with
the positivity of a regularized kernel which resembles the density (4.39) of the time-shifted product
formula for Sturm-Liouville convolutions.

Proposition 5.7. In the conditions of the first paragraph of Proposition 5.6, assume that the metric space
𝐸 is compact. Let 0 ≤ _1 ≤ _2 ≤ _3 < . . . be the eigenvalues of −G (2) and let {𝜑 𝑗} 𝑗∈N ⊂ 𝐿2(𝐸,m)
be an orthogonal set of functions such that

𝑇
(2)
𝑡 𝜑 𝑗 = 𝑒

−_ 𝑗 𝑡𝜑 𝑗 , 𝜑1 = 1, sup
𝑗

∥𝜑 𝑗 ∥2 < ∞

where ∥ · ∥2 denotes the norm of the space 𝐿2(𝐸,m). Then 𝜑 𝑗 ∈ C(𝐸) for all 𝑗 ∈ N, and the series∑∞
𝑗=1

1
∥𝜑 𝑗 ∥22

𝑒−_ 𝑗 𝑡𝜑 𝑗 (𝑥) 𝜑 𝑗 (𝑦) 𝜑 𝑗 (b) is absolutely convergent for all 𝑡 > 0 and 𝑥, 𝑦, b ∈ 𝐸 . Moreover,
the following assertions are equivalent:

(i) We have

𝑞𝑡 (𝑥, 𝑦, b) :=
∞∑
𝑗=1

1
∥𝜑 𝑗 ∥22

𝑒−_ 𝑗 𝑡𝜑 𝑗 (𝑥) 𝜑 𝑗 (𝑦) 𝜑 𝑗 (b) ≥ 0 (5.4)

for all 𝑡 > 0 and 𝑥, 𝑦, b ∈ 𝐸 .

(ii) For each 𝑥, 𝑦 ∈ 𝐸 there exists a measure a𝑥,𝑦 ∈ P(𝐸) such that the product 𝜑 𝑗 (𝑥) 𝜑 𝑗 (𝑦) admits
the integral representation

𝜑 𝑗 (𝑥) 𝜑 𝑗 (𝑦) =
∫
𝐸

𝜑 𝑗 (b) a𝑥,𝑦 (𝑑b), 𝑥, 𝑦 ∈ 𝐸, 𝑗 ∈ N. (5.5)

If these equivalent conditions hold and, in addition, there exists 𝑎 ∈ 𝐸 such that 𝜑 𝑗 (𝑎) = 1 for all
𝑗 ∈ N, then the bilinear operator � onMC(𝐸) defined as

(` � a) (𝑑b) =
∫
𝐸

∫
𝐸

a𝑥,𝑦 (𝑑b) `(𝑑𝑥) a(𝑑𝑦) (5.6)

is an FLTC for {𝑇𝑡 } with trivializing family Θ = {𝜑 𝑗} 𝑗∈N.
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Proof. Denote the inner product of the space 𝐿2(𝐸,m) by ⟨·, ·⟩. For each Y > 0 we have

|𝜑 𝑗 (𝑥) | = 𝑒_ 𝑗 Y | (𝑇 (2)Y 𝜑 𝑗) (𝑥) | = 𝑒_ 𝑗 Y ⟨𝜑 𝑗 , 𝑝Y (𝑥, ·)⟩ ≤ 𝑐Y
√

m(𝐸) 𝑒_ 𝑗 Y ∥𝜑 𝑗 ∥2 < ∞ for m-a.e. 𝑥 ∈ 𝐸
(5.7)

where 𝑐Y = sup(𝑥,𝑦) ∈𝐸×𝐸 𝑝Y (𝑥, 𝑦). This shows that the function 𝜑 𝑗 belongs to the space Bb(𝐸)
(possibly after redefining 𝜑 𝑗 on a m-null set). Since {𝑇𝑡 } is strong Feller (Proposition 5.6), it follows
that 𝜑 𝑗 = 𝑒_ 𝑗 Y𝑇Y𝜑 𝑗 ∈ C(𝐸). The assumption that sup 𝑗 ∥𝜑 𝑗 ∥2 < ∞, together with the estimate (5.7),
ensures that the series

∑∞
𝑗=1

1
∥𝜑 𝑗 ∥22

𝑒−_ 𝑗 𝑡𝜑 𝑗 (𝑥) 𝜑 𝑗 (𝑦) 𝜑 𝑗 (b) is absolutely convergent.
Suppose that (5.4) holds and fix 𝑥, 𝑦 ∈ 𝐸 . For 𝑡 > 0, let a𝑡 ,𝑥,𝑦 ∈ M+(𝐸) be the measure defined

by a𝑡 ,𝑥,𝑦 (𝑑b) = 𝑞𝑡 (𝑥, 𝑦, b)m(𝑑b). We have∫
𝐸

𝜑 𝑗 (b) a𝑡 ,𝑥,𝑦 (𝑑b) =
∫
𝐸

𝜑 𝑗 (b)
∞∑
𝑘=1

1
∥𝜑 𝑗 ∥22

𝑒−_𝑘 𝑡𝜑𝑘 (𝑥) 𝜑𝑘 (𝑦) 𝜑𝑘 (b)m(𝑑b)

=

∞∑
𝑘=1

1
∥𝜑 𝑗 ∥22

𝑒−_𝑘 𝑡𝜑𝑘 (𝑥) 𝜑𝑘 (𝑦) ⟨𝜑 𝑗 , 𝜑𝑘⟩

= 𝑒−_ 𝑗 𝑡𝜑 𝑗 (𝑥) 𝜑 𝑗 (𝑦)

(5.8)

It then follows from (5.8) (with 𝑗 = 1) that a𝑡 ,𝑥,𝑦 (𝐸) = 1, so that

a𝑡 ,𝑥,𝑦 ∈ P(𝐸) for all 𝑡 > 0, 𝑥, 𝑦 ∈ 𝐸.

Now, let {𝑡𝑛}𝑛∈N be an arbitrary decreasing sequence with 𝑡𝑛 ↓ 0. Since any uniformly bounded
sequence of finite positive measures contains a vaguely convergent subsequence, there exists a
subsequence {𝑡𝑛𝑘 } and a measure a𝑥,𝑦 ∈ M+(𝐸) such that a𝑡𝑛𝑘 ,𝑥,𝑦

𝑣−→ a𝑥,𝑦 as 𝑘 →∞. Let us show
that all such subsequences {a𝑡𝑛𝑘 ,𝑥,𝑦} have the same vague limit. Suppose that 𝑡1

𝑘
, 𝑡2
𝑘

are two different
sequences with 𝑡𝑠

𝑘
↓ 0 and that a𝑡𝑠

𝑘
,𝑥,𝑦

𝑣−→ a𝑠𝑥,𝑦 as 𝑘 →∞ (𝑠 = 1, 2). Recalling that 𝐸 is compact, it
follows that for all ℎ ∈ C(𝐸) and Y > 0 we have∫

𝐸

(𝑇Yℎ) (b) a𝑠𝑥,𝑦 (𝑑b) = lim
𝑘→∞

∫
𝐸

(𝑇Yℎ) (b) a𝑡𝑠
𝑘
,𝑥,𝑦 (𝑑b)

= lim
𝑘→∞

∞∑
𝑗=1

1
∥𝜑 𝑗 ∥22

𝑒−_ 𝑗 (𝑡𝑠𝑘+Y)𝜑 𝑗 (𝑥) 𝜑 𝑗 (𝑦) ⟨ℎ, 𝜑 𝑗⟩

=

∞∑
𝑗=1

1
∥𝜑 𝑗 ∥22

𝑒−_ 𝑗 Y𝜑 𝑗 (𝑥) 𝜑 𝑗 (𝑦) ⟨ℎ, 𝜑 𝑗⟩

where the second equality follows from the identities ⟨𝑞𝑡 (𝑥, 𝑦, ·), 𝜑 𝑗⟩ = 𝑒−_ 𝑗 𝑡𝜑 𝑗 (𝑥) 𝜑 𝑗 (𝑦) and
⟨𝑇Yℎ, 𝜑 𝑗⟩ = ⟨ℎ, 𝑇Y𝜑 𝑗⟩ = 𝑒−_ 𝑗 Y ⟨ℎ, 𝜑 𝑗⟩. Consequently, we have∫

𝐸

(𝑇Yℎ) (b) a1
𝑥,𝑦 (𝑑b) =

∫
𝐸

(𝑇Yℎ) (b) a2
𝑥,𝑦 (𝑑b) for all Y > 0. (5.9)

Since ℎ ∈ C(𝐸), by strong continuity of the Feller semigroup {𝑇𝑡 } we have limY↓0 ∥𝑇Yℎ − ℎ∥∞ = 0,
so by taking the limit Y ↓ 0 in both sides of (5.9) we deduce that a1

𝑥,𝑦 (ℎ) = a2
𝑥,𝑦 (ℎ), where ℎ ∈ C(𝐸)

is arbitrary; therefore, a1
𝑥,𝑦 = a

2
𝑥,𝑦 . Thus all subsequences have the same vague limit, and from this
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we conclude that a𝑡 ,𝑥,𝑦
𝑣−→ a𝑥,𝑦 as 𝑡 ↓ 0. The product formula (5.5) is then obtained by taking the

limit 𝑡 ↓ 0 in the leftmost and rightmost sides of (5.8).
Conversely, suppose that (5.5) holds for some measure a𝑥,𝑦 ∈ M+(𝐸). Noting that for ℎ ∈ C(𝐸)

we have 〈
ℎ, 𝑝𝑡 (𝑥, ·)

〉
= (𝑇𝑡ℎ) (𝑥) =

∞∑
𝑗=1

1
∥𝜑 𝑗 ∥22

⟨𝑇𝑡ℎ, 𝜑 𝑗⟩ 𝜑 𝑗 (𝑥)

=

∞∑
𝑗=1

1
∥𝜑 𝑗 ∥22

𝑒−_ 𝑗 𝑡 ⟨ℎ, 𝜑 𝑗⟩ 𝜑 𝑗 (𝑥)

=

〈
ℎ,

∞∑
𝑗=1

1
∥𝜑 𝑗 ∥22

𝑒−_ 𝑗 𝑡𝜑 𝑗 (𝑥)𝜑 𝑗 (·)
〉

we see that 𝑝𝑡 (𝑥, 𝑦) =
∑∞
𝑗=1

1
∥𝜑 𝑗 ∥22

𝑒−_ 𝑗 𝑡𝜑 𝑗 (𝑥) 𝜑 𝑗 (𝑦). Consequently, for 𝑡 > 0 and 𝑥, 𝑦 ∈ 𝐸 we have

𝑞𝑡 (𝑥, 𝑦, b) =
∞∑
𝑗=1

1
∥𝜑 𝑗 ∥22

𝑒−_ 𝑗 𝑡𝜑 𝑗 (𝑥)
∫
𝐸

𝜑 𝑗 (𝑧) a𝑦, b (𝑑𝑧) =
∫
𝐸

𝑝𝑡 (𝑥, 𝑧) a𝑦, b (𝑑𝑧) ≥ 0

because both the density 𝑝𝑡 (𝑥, ·) and the measures a𝑦, b are nonnegative.
Finally, assume that 𝜑 𝑗 (𝑎) = 1 for all 𝑗 and that (ii) holds. Let � be the operator defined by (5.6).

To prove that Θ = {𝜑 𝑗} 𝑗∈N satisfies condition III in Definition 5.1, it only remains to show that each
` ∈ MC(𝐸) is uniquely characterized by {`(𝜑 𝑗)} 𝑗∈N. Indeed, if we take ` ∈ MC(𝐸) such that
`(𝜑 𝑗) = 0 for all 𝑗 , then for ℎ ∈ C(𝐸) and 𝑡 > 0 we have∫

𝐸

(𝑇𝑡ℎ) (𝑥) `(𝑑𝑥) =
∫
𝐸

∞∑
𝑗=1

1
∥𝜑 𝑗 ∥22

𝑒−_ 𝑗 𝑡 ⟨ℎ, 𝜑 𝑗⟩ 𝜑 𝑗 (𝑥) `(𝑑𝑥) =
∞∑
𝑗=1
𝑒−_ 𝑗 𝑡 ⟨ℎ, 𝜑 𝑗⟩ `(𝜑 𝑗) = 0

and this implies that `(ℎ) = 0 for all ℎ ∈ C(𝐸), so that ` ≡ 0. Using the fact that Θ satisfies condition
III, we can easily check that � is commutative, associative, bilinear and has identity element 𝛿𝑎. It is
also straightforward that ∥` � a∥ ≤ ∥`∥ · ∥a∥ and that P(𝐸) � P(𝐸) ⊂ P(𝐸). If 𝑥𝑛 → 𝑥 and 𝑦𝑛 → 𝑦,
then

(𝛿𝑥𝑛 � 𝛿𝑦𝑛) (𝜑 𝑗) = 𝜑 𝑗 (𝑥𝑛)𝜑 𝑗 (𝑦𝑛) −→ 𝜑 𝑗 (𝑥)𝜑 𝑗 (𝑦) = (𝛿𝑥 � 𝛿𝑦) (𝜑 𝑗) ( 𝑗 ∈ N)

and therefore (by compactness of 𝐸 and a vague convergence argument similar to that of Remark
4.27.II) 𝛿𝑥𝑛�𝛿𝑦𝑛

𝑤−→ 𝛿𝑥�𝛿𝑦; arguing as in the proof of Proposition 4.31 it follows that (`, a) ↦→ `�a is
continuous in the weak topology. Noting that 𝑝𝑡 ,𝑥 (𝜑 𝑗) = 𝑒−_ 𝑗 𝑡𝜑 𝑗 (𝑥) = 𝑝𝑡 ,𝑎 (𝜑 𝑗)𝛿𝑥 (𝜑 𝑗), we conclude
that � is an FLTC for {𝑇𝑡 }. �

Corollary 5.8. In the conditions of Proposition 5.7, assume that the operator 𝑇 (2)1 has simple spectrum
(i.e. all the eigenvalues 𝑒−_ 𝑗 have multiplicity 1). Let {(_ 𝑗 , 𝜔 𝑗)} 𝑗∈N be the eigenvalue-eigenfunction
pairs defined in Proposition 5.6. Then the following are equivalent:

(i) There exists an FLTC for {𝑇𝑡 }𝑡≥0;

(ii) There exists 𝑎 ∈ 𝐸 such that |𝜔 𝑗 (𝑎) | = ∥𝜔 𝑗 ∥∞ for all 𝑗 ∈ N, and the positivity condition (5.4)
holds for the nonnormalized eigenfunctions 𝜑 𝑗 (𝑥) := 𝜔 𝑗 (𝑥)

𝜔 𝑗 (𝑎) .
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Proof. The implication (ii) =⇒ (i) follows from the final statement in Proposition 5.7.
Conversely, if (i) holds then the common maximizer property discussed above implies that

Θ = {𝜑 𝑗} 𝑗∈N where 𝜑 𝑗 (𝑥) := 𝜔 𝑗 (𝑥)
𝜔 𝑗 (𝑎) ; from this it follows (by condition III of Definition 5.1) that the

product formula (5.5) holds with a𝑥,𝑦 = 𝛿𝑥 � 𝛿𝑦 and therefore (by Proposition 5.7) the 𝜑 𝑗 satisfy the
positivity condition (5.4). �

We note here that the assumption that 𝑇 (2)𝑡 (or, equivalently, the generator G (2) ) has no eigenvalues
with multiplicity greater than 1 is known to hold for many strong Feller semigroups of interest. In fact,
it is proved in [79, Example 6.4] that the property that all the eigenvalues of the Neumann Laplacian
are simple is a generic property in the set of all bounded connected C2 domains 𝐸 ⊂ R𝑑 . (The
meaning of this is the following: given a bounded connected C2 domain 𝐸 , consider the collection
of domains 𝔐3(𝐸) = {ℎ(𝐸) | ℎ : 𝐸 −→ R𝑑 is a C3-diffeomorphism}, which is a separable Banach
space, see [79] for details concerning the appropriate topology. Let 𝔐simp ⊂ 𝔐3(𝐸) be the subspace
of all 𝐸 ∈ 𝔐3(𝐸) such that all the eigenvalues of the Neumann Laplacian on 𝐸 are simple. Then
𝔐simp can be written as a countable intersection of open dense subsets of 𝔐3(𝐸).) Similar results
hold for the Laplace-Beltrami operator on a compact Riemannian manifold: it was proved in [177]
that, given a compact manifold 𝑀, the set of Riemannian metrics 𝑔 for which all the eigenvalues of
the Laplace-Beltrami operator on (𝑀, 𝑔) are simple is a generic subset of the space of Riemannian
metrics on 𝑀 .

However, one should not expect the property of simplicity of spectrum to hold for Euclidean
domains or Riemannian manifolds with symmetries. For instance, if a bounded domain 𝐸 ⊂ R2 is
invariant under the natural action of the dihedral group 𝐷𝑛, then one can show (see [77]) that the
Dirichlet or Neumann Laplacian on 𝐸 has infinitely many eigenvalues with multiplicity ≥ 2.

Remark 5.9 (Connection with ultrahyperbolic equations). Assume that there exists a dense orthogonal
set of eigenfunctions {𝜑 𝑗} 𝑗∈N such that 𝜑1 = 1 and 𝜑 𝑗 (𝑎) = ∥𝜑 𝑗 ∥∞ = 1 for all 𝑗 ∈ N. By the above,
in order to prove the existence of an FLTC for {𝑇𝑡 } we need to ensure that

Q𝑡 ,ℎ (𝑥, 𝑦) :=
∞∑
𝑗=1

1
∥𝜑 𝑗 ∥22

𝑒−𝑡_ 𝑗𝜑 𝑗 (𝑥) 𝜑 𝑗 (𝑦) ⟨ℎ, 𝜑 𝑗⟩ ≥ 0 for all ℎ ∈ C(𝐸) and 𝑡 > 0.

The function Q𝑡 ,ℎ (𝑥, 𝑦) is a solution of G (0)𝑥 𝑢 = G (0)𝑦 𝑢 (where G (0)𝑥 is the Feller generator G (0) acting
on the variable 𝑥) satisfying the boundary condition Q𝑡 ,ℎ (𝑥, 𝑎) = (𝑇𝑡ℎ) (𝑥). Since the point 𝑎 is a
maximizer of all the eigenfunctions 𝜑 𝑗 , the function Q𝑡 ,ℎ (𝑥, 𝑦) also satisfies (at least formally) the
boundary condition (∇𝑦Q𝑡 ,ℎ) (𝑥, 𝑎) = 0. (This could be justified e.g. by proving that the series can be
differentiated term by term. In the next section we will see that this argument can be applied to the
Neumann Laplacian on suitable bounded domains of R𝑑 .) This indicates that, as in Subsection 4.3.1,
the (positivity) properties of the boundary value problem

G (0)𝑥 𝑢 = G (0)𝑦 𝑢, 𝑢(𝑥, 𝑎) = 𝑢0(𝑥), (∇𝑦𝑢) (𝑥, 𝑎) = 0 (5.10)

are related with the problem of constructing a convolution associated with the given strong Feller
semigroup.
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Consider Examples 5.2(b)–(c) or, more generally, any example of a strong Feller semigroup
generated by a uniformly elliptic differential operator on 𝐸 ⊂ R𝑑 (𝑑 > 2). In this context, the principal
part of the differential operator G (0)𝑥 − G (0)𝑦 has 𝑑 terms 𝜕2

𝜕𝑥2
𝑗

with positive coefficient and 𝑑 terms 𝜕2

𝜕𝑦2
𝑗

with negative coefficient. Such partial differential operators are often said to be of ultrahyperbolic
type (cf. e.g. [140, §I.5] and [151, Definition 2.6]). According to the results of [39] and [38, §VI.17],
the solution for the boundary value problem (5.10) is, in general, not unique. The existing theory
on well-posedness of ultrahyperbolic boundary value problems is, in many other respects, rather
incomplete; in particular, as far as we know, no maximum principles have been determined for
such problems. Adapting the integral equation technique which was used in Chapter 4 to problems
determined by Feller semigroups on multidimensional spaces is, therefore, a highly nontrivial problem.

5.2 Nonexistence of convolutions: diffusion processes on bounded do-
mains

The results of the previous section show that the existence of an FLTC for a given Feller process
depends on two conditions — the common maximizer property and the positivity of an ultrahyperbolic
boundary value problem — for which there are no reasons to hope that they can be established other
than in special cases. In particular, the common maximizer property becomes less natural when we
move from one-dimensional diffusions to multidimensional diffusions: while in the first case it is
natural that the properties of a differential operator enforce one of the endpoints of the interval to
be a common maximizer, this is no longer the case on a bounded domain of R𝑑 with differentiable
boundary because one no longer expects that one of the points of the boundary will play a special role.

In fact, under certain conditions, one can prove that (reflected) Brownian motions on bounded
domains of R𝑑 or on compact Riemannian manifolds do not satisfy the common maximizer property
and, therefore, it is not possible to construct an associated FLTC. We start by reviewing some special
cases where the eigenfunctions are known in closed form.

Example 5.10 (Neumann eigenfunctions of a 𝑑-dimensional rectangle). Consider the 𝑑-dimensional
rectangle 𝐸 = [0, 𝛽1] × . . . × [0, 𝛽𝑑] ⊂ R𝑑 . The (nonnormalized) eigenfunctions of the Neumann
Laplacian on 𝐸 and the associated eigenvalues are given by

𝜑 𝑗1,..., 𝑗𝑑 (𝑥1, . . . , 𝑥𝑑) =
𝑑∏
ℓ=1

cos
(
𝜋 𝑗ℓ

𝑥ℓ

𝛽ℓ

)
, _ 𝑗1,..., 𝑗𝑑 = 𝜋2

𝑑∑
ℓ=1

𝑗2
ℓ

𝛽2
ℓ

( 𝑗1, . . . , 𝑗𝑑 ∈ N0).

These eigenfunctions constitute an orthogonal basis of 𝐿2(𝐸, 𝑑𝑥). The point (0, . . . , 0) is, obviously,
a maximizer of all the functions 𝜑 𝑗1,..., 𝑗𝑑 , thus the common maximizer property holds. Moreover, we
can trivially construct an FLTC for the (reflected Brownian) semigroup generated by the Neumann
Laplacian: indeed, it is easy to check that the product of the hypergroups ( [0, 𝛽1], }

𝛽1
), . . . , ( [0, 𝛽𝑑], }

𝛽𝑑
)

satisfies all the requirements of Definition 5.1. (The product of the hypergroups is taken as in Section
2.3; recall also that ( [0, 𝛽ℓ], }

𝛽ℓ
) is the Sturm-Liouville hypergroup of compact type associated with

the operator 𝑑2

𝑑𝑥2
ℓ

on [0, 𝛽ℓ], cf. Remark 4.4.)
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Example 5.11 (Neumann eigenfunctions of disks and balls). Let 𝐸 ⊂ R2 be the closed disk of radius
𝑅. It is well-known that the eigenfunctions of the Neumann Laplacian on 𝐸 are given, in polar
coordinates, by

𝜑0,𝑘 (𝑟, \) = 𝐽0( 𝑗 ′0,𝑘 𝑟𝑅 )
𝜑𝑚,𝑘,1(𝑟, \) = 𝐽𝑚( 𝑗 ′𝑚,𝑘 𝑟𝑅 ) cos(𝑚\)
𝜑𝑚,𝑘,2(𝑟, \) = 𝐽𝑚( 𝑗 ′𝑚,𝑘 𝑟𝑅 ) sin(𝑚\)

where 𝑚, 𝑘 ∈ N and 𝑗 ′
𝑚,𝑘

stands for the 𝑘-th (simple) zero of the derivative of the Bessel function of
the first kind 𝐽𝑚(·) (see [97, Section 7.2] and [78, Proposition 2.3]). The corresponding eigenvalues
are _0,𝑘 = ( 𝑗 ′0,𝑘/𝑅)

2 (with multiplicity 1) and _𝑚,𝑘 = ( 𝑗 ′
𝑚,𝑘
/𝑅)2 (with multiplicity 2). It is known

from [187, pp. 485, 488] that for 𝑚 ≥ 1 we have |𝐽𝑚( 𝑗 ′𝑚,𝑘) | > |𝐽𝑚(𝑥) | for all 𝑥 > 𝑗 ′
𝑚,𝑘

, hence the

eigenfunctions 𝜑𝑚,𝑘,1 and 𝜑𝑚,𝑘,2 (𝑚 ≥ 1) attain their global maximum on the circle
{
𝑟 =

𝑗′
𝑚,1
𝑗′
𝑚,𝑘

𝑅
}
.

This shows, in particular, that no orthogonal basis of 𝐿2(𝐸, 𝑑𝑥) composed of Neumann eigenfunctions
can satisfy the common maximizer property.

More generally, if 𝐸 ⊂ R𝑑 is a closed 𝑑-ball with radius 𝑅, then the eigenfunctions of the Neumann
Laplacian on 𝐸 are

𝜑𝑚,𝑘 (𝑟, \) = 𝑟1− 𝑑
2 𝐽𝑚−1+ 𝑑

2
(𝑐𝑚,𝑘 𝑟𝑅 ) 𝐻𝑚(\)

where (𝑟, \) are hyperspherical coordinates, 𝑚 ∈ N0, 𝑘 ∈ N, 𝐻𝑚 is a spherical harmonic of order
𝑚 (see [97]) and 𝑐𝑚,𝑘 is the 𝑘-th zero of the function b ↦→ (1 − 𝑑

2 )𝐽𝑚−1+ 𝑑
2
(b) + b𝐽 ′

𝑚−1+ 𝑑
2
(b). The

corresponding eigenvalues are _𝑚,𝑘 = 𝑐2
𝑚,𝑘

, whose multiplicity is equal to the dimension of the space
of spherical harmonics of order 𝑚. By similar arguments we conclude that the common maximizer
property does not hold.

Example 5.12 (Neumann eigenfunctions of a circular sector). Let 𝐸 ⊂ R2 be the sector of angle 𝜋
𝑞

,
𝐸 = {(𝑟 cos \, 𝑟 sin \) | 0 ≤ 𝑟 ≤ 1, 0 ≤ \ ≤ 𝜋

𝑞
}, where 𝑞 ∈ N. The eigenfunctions of the Neumann

Laplacian on 𝐸 and the associated eigenvalues (which have multiplicity 1, cf. [17]) are given by

𝜑𝑚,𝑘 (𝑟, \) = cos(𝑞𝑚\)𝐽𝑞𝑚( 𝑗 ′𝑞𝑚,𝑘 𝑟𝑅 ), _𝑚,𝑘 = ( 𝑗 ′𝑞𝑚,𝑘/𝑅)
2.

As in the previous example it follows that the global maximizer of 𝜑𝑚,𝑘 lies in the arc
{
𝑟 =

𝑗′
𝑞𝑚,1
𝑗′
𝑞𝑚,𝑘

𝑅
}
,

so that the common maximizer property does not hold.

Example 5.13 (Neumann eigenfunctions of a circular annulus). If 𝐸 ⊂ R2 is the annulus {(𝑟, \) |
𝑟0 ≤ 𝑟 ≤ 𝑅, 0 ≤ \ < 2𝜋}, where 0 < 𝑟0 < 𝑅 < ∞, then the Neumann eigenfunctions on 𝐸 are

𝜑0,𝑘 (𝑟, \) = 𝐽0(𝑐0,𝑘
𝑟
𝑅
)𝑌 ′0 (𝑐0,𝑘) − 𝐽 ′0(𝑐0,𝑘)𝑌0(𝑐0,𝑘

𝑟
𝑅
)

𝜑𝑚,𝑘,1(𝑟, \) =
(
𝐽𝑚(𝑐𝑚,𝑘 𝑟𝑅 )𝑌

′
𝑚(𝑐𝑚,𝑘) − 𝐽 ′𝑚(𝑐𝑚,𝑘)𝑌𝑚(𝑐𝑚,𝑘 𝑟𝑅 )

)
cos(𝑚\)

𝜑𝑚,𝑘,2(𝑟, \) =
(
𝐽𝑚(𝑐𝑚,𝑘 𝑟𝑅 )𝑌

′
𝑚(𝑐𝑚,𝑘) − 𝐽 ′𝑚(𝑐𝑚,𝑘)𝑌𝑚(𝑐𝑚,𝑘 𝑟𝑅 )

)
sin(𝑚\)

(5.11)

where 𝑚, 𝑘 = 1, 2, . . ., 𝑌𝑚(·) is the Bessel function of the second kind [135, §10.2] and 𝑐𝑚,𝑘 is
the 𝑘-th zero of the function b ↦→ 𝐽 ′𝑚(

𝑟0
𝑅
b)𝑌 ′𝑚(b) − 𝐽 ′𝑚(b)𝑌 ′𝑚(

𝑟0
𝑅
b). The associated eigenvalues are

_𝑚,𝑘 = (𝑐2
𝑚,𝑘
/𝑅2). Figure 5.1 presents the contour plots of some of the Neumann eigenfunctions,



154 5. Convolution-like structures on multidimensional spaces

(a) Closed form expressions

(b) Numerical approximation

Fig. 5.1 Contour plots of the Neumann eigenfunctions of a circular annulus with inner radius 𝑟0 = 0.3
and outer radius 𝑅 = 1. In panel (b), the notation 𝜔𝑘 refers to the orthogonal eigenfunction associated
with the 𝑘-th largest eigenvalue _𝑘 . In both panels the eigenfunctions were normalized so that their 𝐿2

norm equals 1. Similar results were obtained for other values of 𝑟0
𝑅

.

obtained in two different ways: in panel (a) using the explicit representations (5.11), where the constants
𝑐𝑚,𝑘 are computed numerically with the help of the NSolve function of Wolfram Mathematica; and in
panel (b) using a numerical approximation of the eigenvalues and eigenfunctions which was computed
via the NDEigensystem routine of Wolfram Mathematica. Since the eigenvalues _𝑚,𝑘 with 𝑚 ≥ 1
have multiplicity 2, the plots obtained by these two approaches differ by a rotation. The results indicate
that some of the eigenfunctions (those associated with the first zero 𝑐𝑚,1) attain their maximum at the
outer circle {𝑟 = 𝑅}, while other eigenfunctions (those associated with the higher zeros 𝑐𝑚,𝑘 , 𝑘 ≥ 2)
attain their maximum either at the inner circle {𝑟 = 𝑟0} or at the interior of the annulus. It is therefore
clear that the Neumann eigenfunctions do not satisfy the common maximizer property.

There are few other examples of domains of R𝑑 for which the Neumann eigenfunctions can be
computed in closed form. However, in the general case of an arbitrary domain 𝐸 ⊂ R2 it is still
possible to assess whether the common maximizer property holds by analysing the contour plots of
the eigenfunctions; these can be computed, for a given bounded domain of R2, by the same procedure
which was used to produce the plots in panel (b) of Figure 5.1.

This is illustrated in Figures 5.2 and 5.3, which present the contour plots of the first eigenfunctions
of two non-symmetric bounded regions ofR2 with smooth boundary. As we can see, the eigenfunctions
attain their maximum values at different points which lie either on the boundary or at the interior of
the domain. Note also that the associated eigenvalues are simple, which is unsurprising since the
domain has no symmetries (cf. comment after Corollary 5.8).

Remark 5.14 (Connection with the hot spots conjecture). All the examples presented above have the
property that if 𝜑2 is an eigenfunction associated with the smallest nonzero Neumann eigenvalue _2,
then the maximum and minimum of 𝜑2 are attained at the boundary 𝜕𝐸 . This is the so-called hot
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Fig. 5.2 Contour plots of some eigenfunctions of a region obtained by a non-symmetric deformation
of an ellipse. (As above, we denote by 𝜔𝑘 the Neumann eigenfunction associated with the 𝑘-th
largest eigenvalue _𝑘 , and the plots were produced using the NDEigensystem function of Wolfram
Mathematica.)

Fig. 5.3 Contour plots of the Neumann eigenfunctions of a region obtained by a non-symmetric
deformation of a pentagon with smoothed corners.

spots conjecture of J. Rauch, which asserts that this property should hold on any bounded domain
of R𝑑 . The physical intuition behind this conjecture is that, for large times, the hottest point on an
insulated body with a given initial distribution should converge towards the boundary of the body.

The hot spots conjecture has been extensively studied in the last two decades: it has been shown
that the conjecture holds on convex planar domains with a line of symmetry [3, 138], on convex
domains 𝐸 ⊂ R2 with diam(𝐸)2

Area(𝐸) < 1.378 [132] and on any Euclidean triangle [89] (for further positive
results see [89] and references therein). On the other hand, some counterexamples have also been
found, namely certain domains with holes [25].

The common maximizer property can be interpreted as an extended hot spots conjecture: instead
of requiring that the maximum of (the absolute value of) the second Neumann eigenfunction is attained
at the boundary, one requires that the maximum of all the eigenfunctions is attained at a common point
of the boundary. The negative result of Corollary 5.16 below shows that the location of the hottest
point in the limiting distribution (as time goes to infinity) of the temperature of an insulated body
depends on the initial temperature distribution.

The common maximizer property and the hot spots conjecture are subtopics of the more general
problem of understanding the topological and geometrical structure of Laplacian eigenfunctions,
which is the subject of a huge amount of literature. We refer to [71, 87] for a survey of known facts,
applications and related references.

Moving on to a more general discussion of the common maximizer property for reflected Brownian
motions on bounded convex domains of R𝑑 (Example 5.2(c)), we begin with two crucial observations.
The first is quite obvious: if 𝑎 is a common maximizer for the eigenfunctions {𝜑 𝑗} 𝑗∈N, then it is a
common critical point, i.e. we have (∇𝜑 𝑗) (𝑎) = 0 for all 𝑗 . The second observation is that the usual
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eigenfunction expansion

𝑓 =

∞∑
𝑗=1

1
∥𝜑 𝑗 ∥22

⟨ 𝑓 , 𝜑 𝑗⟩ 𝜑 𝑗 (5.12)

suggests that the point 𝑎 will also be a critical point of any function 𝑓 which is sufficiently regular
so that the expansion (5.12) is convergent in the pointwise sense and can be differentiated term by
term. Thus if we prove that such pointwise convergence and differentiation is admissible for a class of
functions whose derivatives are not restricted to vanish at any given point, then the common maximizer
property cannot hold. The next proposition and corollary make this rigorous.

Proposition 5.15. Let 𝐸 ⊂ R𝑑 be the closure of a bounded convex domain. Let {𝑋𝑡 } be the
reflected Brownian motion on 𝐸 , let {𝜔 𝑗} 𝑗∈N be an orthonormal basis of 𝐿2(𝐸) ≡ 𝐿2(𝐸, 𝑑𝑥)
consisting of eigenfunctions of the Neumann Laplacian −G (2) ≡ −Δ𝑁 : D(Δ𝑁 ) −→ 𝐿2(𝐸) and let
0 ≤ _1 ≤ _2 ≤ _3 ≤ . . . be the associated eigenvalues. Let 𝑚 ∈ N, 𝑚 > 𝑑

2 + 1 and let ℎ ∈ 𝐻𝑚(𝐸) be
a function such that Δ𝑘ℎ ∈ D(Δ𝑁 ) for 𝑘 = 0, 1, . . . , 𝑚 − 1. Then

ℎ(𝑥) =
∞∑
𝑗=0
⟨ℎ, 𝜔 𝑗⟩𝜔 𝑗 (𝑥) and (∇ℎ) (𝑥) =

∞∑
𝑗=0
⟨ℎ, 𝜔 𝑗⟩(∇𝜔 𝑗) (𝑥) for all 𝑥 ∈ 𝐸, (5.13)

where both series converge absolutely and uniformly on 𝐸 .

Proof. Let {𝑇 (2)𝑡 }𝑡≥0 and {R (2)[ }[>0 be, respectively, the strongly continuous semigroup and resolvent
on 𝐿2(𝐸) generated by the Neumann Laplacian and let 𝑝𝑡 (𝑥, 𝑦) be the Neumann heat kernel, i.e. the
transition density of the semigroup {𝑇 (2)𝑡 }. Using the Sobolev embedding theorem [190, Corollary
6.1], one can prove (cf. [41, proof of Theorem 5.2.1]) that the heat kernel is C∞ jointly in the variables
(𝑡, 𝑥, 𝑦) ∈ (0,∞) ×𝐸 ×𝐸 . Denote by 𝜕®𝑣,𝑥 the directional derivative with respect to the variable 𝑥 ∈ R𝑑

in a given direction ®𝑣 ∈ R𝑑 \ {0}. Then there are constants 𝑐 𝑗 such that the following estimates hold:

𝑝𝑡 (𝑥, 𝑦) ≤ 𝑐1𝑡
−𝑑/2 exp

(
− |𝑥 − 𝑦 |

2

𝑐2𝑡

)
(5.14)

|𝜕®𝑣,𝑦 𝑝𝑡 (𝑥, 𝑦) | ≤ 𝑐3𝑡
−(𝑑+1)/2 exp

(
− |𝑥 − 𝑦 |

2

𝑐4𝑡

)
. (5.15)

(The first of these estimates is a basic property of the Neumann heat kernel, see [7, Theorem 3.1]. The
second estimate was established in [186, Lemma 3.1].) Using the basic semigroup identity for the heat
kernel, we obtain

|𝜕®𝑣,𝑥𝜕®𝑣,𝑦 𝑝𝑡 (𝑥, 𝑦) | ≤
∫
𝐸

|𝜕®𝑣,𝑥 𝑝𝑡/2(𝑥, b) 𝜕®𝑣,𝑦 𝑝𝑡/2(b, 𝑦) |𝑑b ≤ 𝑐5𝑡
−(𝑑+1) exp

(
− |𝑥 − 𝑦 |

2

2𝑐4𝑡

)
. (5.16)

Next we recall that [40, Problem 2.9]

(R (2)𝛼 )𝑘ℎ ≡ (𝛼 − Δ𝑁 )−𝑘ℎ =
1

(𝑘 − 1)!

∫ ∞

0
𝑒−𝛼𝑡 𝑡𝑘−1 𝑇

(2)
𝑡 ℎ 𝑑𝑡 (ℎ ∈ 𝐿2(𝐸), 𝛼 > 0, 𝑘 = 1, 2, . . .)
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and therefore the 𝑘-th power (R (2)𝛼 )𝑘 of the resolvent is an integral operator with kernel

𝐺𝛼,𝑘 (𝑥, 𝑦) =
1

(𝑘 − 1)!

∫ ∞

0
𝑒−𝛼𝑡 𝑡𝑘−1𝑝𝑡 (𝑥, 𝑦) 𝑑𝑡. (5.17)

If 𝑘 = 2𝑚 > 𝑑+1, then using the estimate (5.14) we see that𝐺𝛼,2𝑚(𝑥, 𝑥) < ∞ and, furthermore,𝐺𝛼,2𝑚
is a continuous function of (𝑥, 𝑦) ∈ 𝐸 × 𝐸 . Since 𝐸 is compact and (R (2)𝛼 )2𝑚 : 𝐿2(𝐸) −→ 𝐿2(𝐸) is
nonnegative and has a continuous kernel, an application of Mercer’s theorem [161, Theorem 3.11.9]
yields that the kernel 𝐺𝛼,2𝑚 can be represented by the spectral expansion

𝐺𝛼,2𝑚(𝑥, 𝑦) =
∞∑
𝑗=1

𝜔 𝑗 (𝑥)𝜔 𝑗 (𝑦)
(𝛼 + _ 𝑗)2𝑚

(5.18)

where the series converges absolutely and uniformly in (𝑥, 𝑦) ∈ 𝐸 × 𝐸 . (Note that
(
(𝛼 + _ 𝑗)−2𝑚, 𝜔 𝑗

)
are the eigenvalue-eigenfunction pairs for R (2)𝛼 .) In addition, it follows from (5.17) and the estimates
(5.15)–(5.16) that

𝜕®𝑣,𝑥𝜕®𝑣,𝑦𝐺𝛼,2𝑚(𝑥, 𝑦) =
1

(2𝑚 − 1)!

∫ ∞

0
𝑒−𝛼𝑡 𝑡2𝑚−1𝜕®𝑣,𝑥𝜕®𝑣,𝑦 𝑝𝑡 (𝑥, 𝑦) 𝑑𝑡

where the integral converges absolutely and uniformly and defines a continuous function of (𝑥, 𝑦) ∈
𝐸 × 𝐸 . (The function 𝜕®𝑣,𝑦𝐺𝛼,2𝑚 is also continuous on 𝐸 × 𝐸 .) Using standard arguments (cf. [134,
§21.2, proof of Corollary 3]), one can then deduce from (5.18) that

𝜕®𝑣,𝑥𝜕®𝑣,𝑦𝐺
(2𝑚)
𝛼 (𝑥, 𝑦) =

∞∑
𝑗=1

(𝜕®𝑣𝜔 𝑗) (𝑥) (𝜕®𝑣𝜔 𝑗) (𝑦)
(𝛼 + _ 𝑗)2𝑚

(5.19)

again with absolute and uniform convergence in (𝑥, 𝑦) ∈ 𝐸 × 𝐸 .

Let ℎ ∈ 𝐻𝑚(𝐸) be such that Δ𝑘ℎ ∈ D(Δ𝑁 ) for 𝑘 = 0, 1, . . . , 𝑚 − 1, and write ℎ = R𝑚𝛼𝑔 where
𝑔 := (𝛼 −Δ𝑁 )𝑚ℎ ∈ 𝐿2(𝐸). Since 𝑚 > 𝑑

2 + 1, we have ℎ ∈ C1(𝐸) by the Sobolev embedding theorem.
We thus have

∞∑
𝑗=0

��⟨ℎ, 𝜔 𝑗⟩𝜔 𝑗 (𝑥)�� = ∞∑
𝑗=0

|⟨𝑔, 𝜔 𝑗⟩|
(𝛼 + _ 𝑗)𝑚

|𝜔 𝑗 (𝑥) |

≤
( ∞∑
𝑗=0
|⟨𝑔, 𝜔 𝑗⟩|2

)1
2

·
( ∞∑
𝑗=0

|𝜔 𝑗 (𝑥) |2

(𝛼 + _ 𝑗)2𝑚

)1
2

= ∥𝑔∥ ·
(
𝐺
(2𝑚)
𝛼 (𝑥, 𝑥)

)1/2
< ∞

and similarly
∞∑
𝑗=0

��⟨ℎ, 𝜔 𝑗⟩(𝜕®𝑣𝜔 𝑗) (𝑥)�� ≤ ∥𝑔∥ · ��𝜕®𝑣,𝑥𝜕®𝑣,𝑦𝐺 (2𝑚)𝛼 (𝑥, 𝑥)
��1/2 < ∞.

This shows that the series in the right-hand sides of (5.13) converge absolutely and uniformly in 𝑥 ∈ 𝐸 ,
and the result immediately follows. �
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Corollary 5.16 (Nonexistence of common critical points). Let 𝑚 ∈ N, 𝑚 > 𝑑
2 + 1 and let 𝐸 ⊂ R𝑑

(𝑑 ≥ 2) be the closure of a bounded convex domain with C2𝑚+2 boundary 𝜕𝐸 . Let {𝜔 𝑗} 𝑗∈N be an
orthonormal basis of 𝐿2(𝐸) consisting of eigenfunctions of −Δ𝑁 . Then for each 𝑥0 ∈ 𝐸 there exists
𝑗 ∈ N such that (∇𝜔 𝑗) (𝑥0) ≠ 0.

Proof. If 𝑥0 ∈ �̊� , it is clearly possible to choose ℎ ∈ C∞c (𝐸) ⊂ {𝑢 ∈ 𝐻𝑚(𝐸) | 𝑢,Δ𝑢, . . . ,Δ𝑚−1𝑢 ∈
D(Δ𝑁 )} such that (∇ℎ) (𝑥0) ≠ 0. If 𝑥0 belongs to 𝜕𝐸 , let ®𝑣 ∈ 𝑇𝜕𝐸 (𝑥0) \ {0} and choose 𝜑 ∈ C∞(𝜕𝐸)
such that 𝑑𝜑𝑥0 (®𝑣) ≠ 0. Combining the inverse trace theorem for Sobolev spaces [190, Theorem 8.8]
with the Sobolev embedding theorem, we find that that there exists ℎ ∈ 𝐻2𝑚(𝐸) ⊂ C1(𝐸) such that

ℎ|𝜕𝐸 = 𝜑 and Tr𝜕𝐸
(𝜕 𝑗ℎ
𝜕𝑛 𝑗

)
= 0, 𝑗 = 1, 2, . . . , 2𝑚 − 1

where 𝑛 denotes the unit outer normal vector orthogonal to 𝜕𝐸 . Consequently, ℎ is such that (∇ℎ) (𝑥0) ≠
0 and ℎ,Δℎ, . . . ,Δ𝑚−1ℎ ∈ D(Δ𝑁 ) =

{
𝑢 ∈ 𝐻2(𝐸)

�� Tr𝜕𝐸
(
𝜕ℎ
𝜕𝑛

)
= 0

}
. (This characterization ofD(Δ𝑁 )

is well-known, see [158, Section 10.6.2].) Therefore, given any 𝑥0 ∈ 𝐸 we can apply Proposition 5.15
to the function ℎ defined above to conclude that

∞∑
𝑗=0
⟨ℎ, 𝜔 𝑗⟩(∇𝜔 𝑗) (𝑥0) = (∇ℎ) (𝑥0) ≠ 0,

which implies that (∇𝜔 𝑗) (𝑥0) ≠ 0 for at least one 𝑗 . �

The conclusions of Proposition 5.15 and Corollary 5.16 are also valid for the eigenfunctions of the
Laplace-Beltrami operator on a compact Riemannian manifold (Example 5.2(a)):

Proposition 5.17 (Nonexistence of common critical points on compact Riemannian manifolds).
Let (𝐸, 𝑔) be a compact Riemannian manifold (without boundary) of dimension 𝑑 and {𝜔 𝑗} 𝑗∈N
an orthonormal basis of 𝐿2(𝐸,m) consisting of eigenfunctions of the Laplace-Beltrami operator
on (𝐸, 𝑔). Then (5.13) holds for all functions ℎ ∈ 𝐻2𝑚(𝐸) := {𝑢 | 𝑢,Δ𝑢, . . . ,Δ𝑚𝑢 ∈ 𝐿2(𝐸,m)}
(𝑚 ∈ N, 𝑚 > 𝑑

4 +
1
2 ), with the series converging absolutely and uniformly. Furthermore, for each

𝑥0 ∈ 𝐸 there exists 𝑗 ∈ N such that (∇𝜔 𝑗) (𝑥0) ≠ 0.

Proof. We know from [41, Theorem 5.2.1] that the heat kernel 𝑝𝑡 (𝑥, 𝑦) for the Laplace-Beltrami
operator is C∞ jointly in the variables (𝑡, 𝑥, 𝑦) ∈ (0,∞) × 𝐸 × 𝐸 . In addition, the heat kernel 𝑝𝑡 (𝑥, 𝑦)
and its gradient satisfy, for 0 < 𝑡 ≤ 1 and 𝑥, 𝑦 ∈ 𝐸 , the upper bounds

𝑝𝑡 (𝑥, 𝑦) ≤ 𝑐1𝑡
−𝑑/2 exp

(
−d(𝑥, 𝑦)2

𝑐2𝑡

)
, |∇𝑦 𝑝𝑡 (𝑥, 𝑦) | ≤ 𝑐3𝑡

−(𝑑+1)/2 exp
(
−d(𝑥, 𝑦)2

𝑐4𝑡

)
where d is the Riemannian distance function. (For the proof see [85] and [72, Corollary 15.17].) Let
𝑈 ⊂ 𝐸 be a coordinate neighbourhood. Arguing as in the proof of Proposition 5.15, we find that
for 𝑥, 𝑦 ∈ 𝑈 the kernel of the 2𝑚-th power of the resolvent admits the spectral representation (5.18)
and can be differentiated term by term as in (5.19). (The directional derivatives are defined in local
coordinates.) We know that for 𝑚 > 𝑑

4 +
1
2 the Sobolev embedding 𝐻2𝑚(𝐸) ⊂ C1(𝐸) holds on the

Riemannian manifold 𝐸 [72, Theorem 7.1]; therefore, the estimation carried out above yields that the
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expansions (5.13) hold. We have 𝜕𝐸 = ∅, thus for each 𝑥0 ∈ 𝐸 we can choose ℎ ∈ C∞(𝐸) such that
(∇ℎ) (𝑥0) ≠ 0. As in the proof of Corollary 5.16 it follows that (∇𝜔 𝑗) (𝑥0) ≠ 0 for at least one 𝑗 . �

As noted above, the existence of a common critical point is a necessary condition for the common
maximizer property to hold; in turn, this is (under the assumption that the spectrum is simple,
cf. Corollary 5.8) a necessary condition for the existence of an FLTC. Therefore, the following
nonexistence theorem is a direct consequence of the preceding results.

Theorem 5.18. Let {𝑇𝑡 }𝑡≥0 be either the Feller semigroup on a bounded domain 𝐸 ⊂ R𝑑 with C2𝑚+2

boundary (𝑚 > 𝑑
2 + 1) associated with the reflected Brownian motion on 𝐸 or the Feller semigroup

associated with the Brownian motion on a compact Riemannian manifold. Assume that the operator
𝑇
(2)

1 has simple spectrum. Then there exists no FLTC for the semigroup {𝑇𝑡 }.

This theorem is not applicable to regular polygons and other domains which are invariant under
reflection or rotation (i.e. under the natural action of a dihedral group), as this invariance enforces
the presence of eigenvalues with multiplicity greater than 1. On the other hand, we know that the
eigenspaces on such symmetric domains can be associated to the different symmetry subspaces of
the irreducible representations of the dihedral group [77]. In most cases, the multiplicity of all the
eigenspaces corresponding to the one-dimensional irreducible representations is equal to 1 [126];
therefore, an adaptation of the proofs presented above should allow us to establish the nonexistence of
common critical points among the eigenfunctions associated to the one-dimensional eigenspaces.

The nonexistence theorem established above strongly depends on the discreteness of the spectrum
of the generator of the Feller process. Extending Theorem 5.18 to Brownian motions on unbounded
domains on R𝑑 or on noncompact Riemannian manifolds is a challenging problem, as these diffusions
generally have a nonempty continuous spectrum. We leave this topic for future research.

5.3 Nonexistence of convolutions: one-dimensional diffusions

As we saw in the previous sections, the construction of an FLTC is a difficult problem for which
there is little hope of finding a solution unless the generator can be decomposed into a product of
one-dimensional operators. Motivated by this, we now return to the one-dimensional setting in order
to demonstrate that the necessary conditions for the existence of an FLTC determined in Section 5.1
also give rise to nonexistence theorems for a class of one-dimensional diffusion processes.

The following result shows that a necessary and sufficient condition for existence of an FLTC
similar to that of Corollary 5.8 holds for Sturm-Liouville operators whose spectrum is not necessarily
discrete:

Proposition 5.19. Consider a Sturm-Liouville operator ℓ of the form (4.1) whose coefficients are
such that 𝑝(𝑥), 𝑟 (𝑥) > 0 for all 𝑥 ∈ (𝑎, 𝑏), 𝑝, 𝑝′, 𝑟, 𝑟 ′ ∈ ACloc(𝑎, 𝑏) and

∫ 𝑐
𝑎

∫ 𝑐
𝑦

𝑑𝑥
𝑝 (𝑥) 𝑟 (𝑦)𝑑𝑦 < ∞.

Let 𝑤_(·) (_ ∈ C) be the unique solution of (2.18), 𝜌L the spectral measure of Theorem 2.30,
Λ = supp(𝜌L), and {𝑇𝑡 }𝑡≥0 the Feller semigroup generated by the realization of ℓ defined in (2.40).
Assume that the endpoint 𝑏 is not exit and that 𝑒−𝑡 ··· ∈ 𝐿2(Λ; 𝜌L) for all 𝑡 > 0. Set 𝐼 = [𝑎, 𝑏) if 𝑏 is
natural and 𝐼 = [𝑎, 𝑏] if 𝑏 is regular or entrance. Then the following are equivalent:
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(i) There exists an FLTC for {𝑇𝑡 }𝑡≥0 with trivializing family Θ = {𝑤_}_∈Λ.

(ii) We have 𝑤_ ∈ Cb(𝐼) for all _ ∈ Λ, and the function

𝑞𝑡 (𝑥, 𝑦, b) :=
∫
Λ

𝑒−𝑡_𝑤_(𝑥) 𝑤_(𝑦) 𝑤_(b) 𝜌L (𝑑_)
(
𝑡 > 0, 𝑥, 𝑦, b ∈ (𝑎, 𝑏)

)
(5.20)

is well-defined as an absolutely convergent integral; moreover, the measures defined as
a𝑡 ,𝑥,𝑦 (𝑑b) = 𝑞𝑡 (𝑥, 𝑦, b) 𝑟 (b)𝑑b are such that {a𝑡 ,𝑥,𝑦}0<𝑡≤1, 𝑥,𝑦∈(𝑎,𝛽 ] is, for each 𝛽 < 𝑏, a tight
family of probability measures on 𝐼.

Proof. (i) =⇒ (ii): Let � be an FLTC for {𝑇𝑡 }𝑡≥0 and 𝑝𝑡 ,𝑥 = `𝑡 � 𝛿𝑥 the transition kernel of
{𝑇𝑡 }𝑡≥0. Since the 𝑤_ are multiplicative linear functionals on the Banach algebra (MC(𝐼),�), we have
∥𝑤_∥∞ = 1 for all _ ∈ Λ, hence the right-hand side of (5.20) is absolutely convergent. Moreover,

(`𝑡 � 𝛿𝑥 � 𝛿𝑦) (𝑤_) = 𝑒−𝑡_𝑤_(𝑥) 𝑤_(𝑦) = F [𝑞𝑡 (𝑥, 𝑦, ·)] (_)
(
𝑡 > 0, 𝑥, 𝑦 ∈ (𝑎, 𝑏)

)
and it follows that for 𝑔 ∈ Cc(𝐼)∫

𝐼

𝑔(b) (`𝑡 � 𝛿𝑥 � 𝛿𝑦) (𝑑b) = lim
𝑠↓0

∫
𝐼

(𝑇𝑠𝑔) (b) (`𝑡 � 𝛿𝑥 � 𝛿𝑦) (𝑑b)

= lim
𝑠↓0

∫
Λ

(F 𝑔) (_) 𝑒−(𝑡+𝑠)_𝑤_(𝑥) 𝑤_(𝑦) 𝜌(𝑑_)

=

∫
𝐼

𝑔(b) 𝑞𝑡 (𝑥, 𝑦, b) 𝑟 (b)𝑑b

where we used Fubini’s theorem, Proposition 2.36 and the isometric property of F . Since 𝑔 is
arbitrary, this shows that the measures (`𝑡 �𝛿𝑥 �𝛿𝑦) (𝑑b) and a𝑡 ,𝑥,𝑦 (𝑑b) := 𝑞𝑡 (𝑥, 𝑦, b) 𝑟 (b)𝑑b coincide.
Consequently, a𝑡 ,𝑥,𝑦 ∈ P(𝐼) for all 𝑡 > 0 and 𝑥, 𝑦 ∈ (𝑎, 𝑏). Since {𝑇𝑡 }𝑡≥0 is a Feller process, the
mapping (𝑡, 𝑥) ↦→ 𝑝𝑡 ,𝑥 = `𝑡 �𝛿𝑥 is continuous onR+0 × 𝐼 with respect to the weak topology of measures,
and therefore the family {a𝑡 ,𝑥,𝑦}0<𝑡≤1, 𝑥,𝑦∈(𝑎,𝛽 ] is relatively compact, hence tight.

(ii)=⇒ (i): In the case where 𝑏 is regular or entrance, this implication follows from Proposition
5.7. Assume that (ii) holds and that 𝑏 is natural. By Theorem 2.30

𝑒−𝑡_ 𝑤_(𝑥) 𝑤_(𝑦) =
∫
𝐼

𝑤_(b) a𝑡 ,𝑥,𝑦 (𝑑b)
(
𝑡 > 0, 𝑥, 𝑦 ∈ (𝑎, 𝑏), _ ∈ Λ

)
(5.21)

where the integral converges absolutely. Since {a𝑡 ,𝑥,𝑦}0<𝑡≤1, 𝑥,𝑦∈(𝑎,𝛽 ] is tight, given 𝑥, 𝑦 ∈ 𝐼 there
exists a sequence {(𝑡𝑛, 𝑥𝑛, 𝑦𝑛)}𝑛∈N ⊂ R+ × (𝑎, 𝑏) × (𝑎, 𝑏) such that (𝑡𝑛, 𝑥𝑛, 𝑦𝑛) → (0, 𝑥, 𝑦) and the
measures a𝑡𝑛 ,𝑥𝑛 ,𝑦𝑛 converge weakly to a measure a𝑥,𝑦 ∈ P(𝐼) as 𝑛→∞. Moreover, if (𝑥, 𝑦) ≠ (𝑎, 𝑎)
and a1

𝑥,𝑦 , a
2
𝑥,𝑦 denote two such limits, then arguing as in the proof of Theorem 4.23 we find that∫

𝐼

𝑔(b) a1
𝑥,𝑦 (𝑑b) =

∫
Λ

𝑤_(𝑥) 𝑤_(𝑦) (F 𝑔) (_) 𝜌L (𝑑_) =
∫
𝐼

𝑔(b) a2
𝑥,𝑦 (𝑑b) for all 𝑔 ∈ D (2,0)

so that a1
𝑥,𝑦 = a2

𝑥,𝑦; hence the measures a𝑡 , �̃�, �̃� converge weakly as (𝑡, �̃�, �̃�) → (0, 𝑥, 𝑦) to a unique
limit a𝑥,𝑦 which is characterized by the identity

∫
𝐼
𝑔(b) a𝑥,𝑦 (𝑑b) =

∫
Λ
𝑤_(𝑥) 𝑤_(𝑦) (F 𝑔) (_) 𝜌L (𝑑_)
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(𝑔 ∈ D (2,0) , 𝑥, 𝑦 ∈ 𝐼, (𝑥, 𝑦) ≠ (𝑎, 𝑎)). Using this fact and the reasoning in the proof of Proposition
4.26(ii), we can verify that each measure ` ∈ MC(𝐼) is uniquely determined by the family of integrals
{`(𝑤_)}_∈Λ. From this it follows, by taking limits in both sides of (5.21), that the measure a𝑎,𝑎 = 𝛿𝑎
is the unique weak limit of a𝑡𝑛 ,𝑥𝑛 ,𝑦𝑛 as (𝑡𝑛, 𝑥𝑛, 𝑦𝑛) → (0, 𝑎, 𝑎).

For `, a ∈ MC(𝐼), define (` � a) (𝑑b) :=
∫
𝐼

∫
𝐼
a𝑥,𝑦 (𝑑b) `(𝑑𝑥) a(𝑑𝑦), where a𝑥,𝑦 ∈ P(𝐼) is the

unique weak limit described above. Then (5.21) yields that

𝑤_(𝑥) 𝑤_(𝑦) =
∫
𝐼

𝑤_(b) (𝛿𝑥 � 𝛿𝑦) (𝑑b)
(
𝑥, 𝑦 ∈ 𝐼, _ ∈ Λ

)
(5.22)

and, consequently, condition III of Definition 5.1 holds with Θ = {𝑤_}_∈Λ. It is also clear that
(MC(𝐼),�) is a commutative Banach algebra over C with identity element 𝛿𝑎 and that P(𝐼) � P(𝐼) ⊂
P(𝐼). From the tightness of {a𝑡 ,𝑥,𝑦}0<𝑡≤1, 𝑥,𝑦∈(𝑎,𝛽 ] (𝛽 < 𝑏) it follows that the family of limits
{a𝑥,𝑦}𝑥,𝑦∈(𝑎,𝛽 ] is also tight; it then follows from (5.22) that the map (𝑥, 𝑦) ↦→ a𝑥,𝑦 is continuous
with respect to the weak topology and, consequently, (`, a) ↦→ ` � a is also continuous. Finally, the
same reasoning of the proof of Proposition 3.38 yields that the transition kernel {𝑝𝑡 ,𝑥}𝑡>0,𝑥∈𝐼 satisfies
condition IV of Definition 5.1. �

We note that the assumption that 𝑒−𝑡 ··· ∈ 𝐿2(Λ; 𝜌L) holds for all Sturm-Liouville operators whose
left endpoint 𝑎 is regular, and it also holds for a fairly large class of operators for which the endpoint 𝑎
is entrance [100, 101].

Using the proposition above, one can show that the positivity of the limit limb→∞
𝐴′ ( b )
2𝐴( b ) (cf.

Lemma 4.6) is a crucial condition for the construction of Sturm-Liouville convolutions presented in
Chapter 4:

Proposition 5.20. Consider a Sturm-Liouville operator ℓ of the form (4.1) whose coefficients are
such that 𝑝(𝑥), 𝑟 (𝑥) > 0 for all 𝑥 ∈ (𝑎, 𝑏), 𝑝, 𝑝′, 𝑟, 𝑟 ′ ∈ ACloc(𝑎, 𝑏) and

∫ 𝑐
𝑎

∫ 𝑐
𝑦

𝑑𝑥
𝑝 (𝑥) 𝑟 (𝑦)𝑑𝑦 < ∞.

Suppose that 𝛾(𝑏) =
∫ 𝑏
𝑐

√
𝑟 (𝑦)
𝑝 (𝑦) 𝑑𝑦 = ∞ and the function 𝐴 defined in (4.2) is such that 𝐴

′

𝐴
is of bounded

variation on [𝑐,∞) for some 𝑐 > 𝛾(𝑎) and limb→∞
𝐴′ ( b )
2𝐴( b ) = 𝜎 ∈ (−∞, 0). Then the unique solution

𝑤_(·) of (2.18) is such that

sup
𝑥∈[𝑎,𝑏)

|𝑤_(𝑥) | = ∞ for all _ > 𝜎2.

Consequently, there exists no FLTC for the Feller semigroup {𝑇𝑡 } generated by the realization of ℓ
defined in (2.40).

Proof. The Sturm-Liouville equation − 1
𝐴
(𝐴𝑢′) ′ = _𝑢 is of the form (𝑝𝑢′) ′ − 𝑞𝑢 = 0, where the

coefficients 𝑝 = 𝐴 and 𝑞 = −_𝐴 are such that

(𝑝𝑞) ′
𝑝𝑞

= ^𝑖
√
_(1 + 𝜙) with ^ := −4𝜎𝑖

√
_
, 𝜙 :=

𝐴′

2𝜎𝐴
− 1

so that 𝜙(b) = 𝑜(1) as b → ∞ and 𝜙′ = ( 𝐴′

2𝜎𝐴)
′ is integrable near +∞ (this follows from the

assumption that 𝐴′
𝐴

is of bounded variation, cf. [59, Proposition 3.30]). After applying a result on the
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asymptotic behaviour of solutions of second-order differential equations stated in [49, Theorem 2.6.1],
we conclude that for _ ≠ 𝜎2 the equation − 1

𝐴
(𝐴𝑢′) ′ = _𝑢 has two linearly independent solutions 𝑢+

and 𝑢− such that

𝑢±(b) ∼ [−_𝐴(b)2]−
1
4±

1
4

√
1−_/𝜎2 exp

(
± 𝑖_
√
_ − 𝜎2

∫ b

�̃�

𝐴′(𝑧)
2𝜎𝐴(𝑧)

(
𝐴′(𝑧)

2𝜎𝐴(𝑧) − 1
)
𝑑𝑧

)
The function 𝐴(b)−1/2 = 𝐴(𝑐)−1/2 exp

(
− 1

2

∫ b

�̃�

𝐴′ (𝑧)
𝐴(𝑧) 𝑑𝑧

)
is clearly unbounded as b →∞; therefore, 𝑢+

and 𝑢− are both unbounded for _ > 𝜎2. Since 𝑤_(𝑥) is a real-valued linear combination of 𝑢−(𝛾(𝑥))
and 𝑢+(𝛾(𝑥)), it follows that sup𝑥∈[𝑎,𝑏) |𝑤_(𝑥) | = ∞ for _ > 𝜎2.

Combining the above with Proposition 5.19, we find that {𝑤_}_>𝜎2 cannot belong to any
trivializing family for an FLTC, hence by Corollary 5.5 the trivializing family must be contained in
{𝑤_}_∈[0,𝜎2 ] ∩ Cb [𝑎, 𝑏). On the other hand, it follows from Theorem 2.30 that there exist nonzero
measures ` ∈ MC [𝑎, 𝑏) such that `(𝑤_) = 0 whenever _ ∈ [0, 𝜎2] and 𝑤_ is bounded. (Indeed, we
have (𝜎2,∞) ⊂ Λ by the same argument in the proof of Proposition 4.13; if we let 𝜑 ∈ 𝐿2(Λ; 𝜌L) \{0}
with supp(𝜑) ⊂ (𝜎2,∞), then `(𝑑𝑥) = (F −1𝜑) (𝑥)𝑟 (𝑥)𝑑𝑥 defines a measure ` ∈ MC [𝑎, 𝑏), and we
have `(𝑤_) = 0 for _ ∉ (𝜎2,∞).) Consequently, no family Θ ⊂ {𝑤_}_∈[0,𝜎2 ] ∩ Cb [𝑎, 𝑏) can satisfy
condition III of Definition 5.1. This contradiction shows that there exists no FLTC for {𝑇𝑡 }. �

Example 5.21. Proposition 5.20 shows, in particular, that the following operators do not admit an
associated (positivity-preserving) Sturm-Liouville convolution structure:

(a) ℓ = − 𝑑2

𝑑𝑥2 −
(
𝛼
𝑥
+ 2`

)
𝑑
𝑑𝑥

, with 𝛼 > 0 and ` < 0.

This is the generator of a mean-reverting Bessel process with negative drift (Example 2.40).

(b) ℓ = − 𝑑

𝑑𝑥2 − [(2𝛼 + 1) coth 𝑥 + (2𝛽 + 1) tanh 𝑥] 𝑑
𝑑𝑥

, with 𝛼 > −1 and 𝛼 + 𝛽 + 1 < 0.

This is the Jacobi operator, which is the generator of the hypergeometric diffusion (Example
2.42).

(c) ℓ = −𝑥2 𝑑2

𝑑𝑥2 − (𝑐 + 2(1 − 𝛼)𝑥) 𝑑
𝑑𝑥

, with 𝑐 > 0 and 𝛼 > 1
2 .

This is the Whittaker operator, which is the generator of a nonstandardized Shiryaev process
(Example 2.41 and Remark 3.71).

Sturm-Liouville operators with two natural endpoints were excluded from the discussion in
Chapter 4 because, given the absence of a natural candidate for the identity element, the construction
of generalized convolutions would require a different approach. The ordinary convolution is a
Sturm-Liouville convolution for the operator 𝑑2

𝑑𝑥2 on R; as far as we know, this is the only known
example of a convolution associated with a Sturm-Liouville operator with two natural boundaries.
Let us note some examples in which the nonexistence of an associated FLTC follows from the results
above:

Example 5.22 (Sturm-Liouville operators with two natural endpoints).
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(a) Let \ > 0 and 𝑐 ∈ R. The differential operator

ℓ = − 𝑑
2

𝑑𝑥2 − (𝑐 − \𝑥)
𝑑

𝑑𝑥
, −∞ < 𝑥 < ∞

is the generator of the Ornstein-Uhlenbeck process [2, 114]. Both endpoints 𝑥 = −∞ and 𝑥 = +∞
are natural. It is well-known that the self-adjoint realization of ℓ has a purely discrete spectrum,
with eigenvalues _𝑛 = 𝑛\ and orthogonal eigenfunctions 𝜑𝑛 (𝑥) = 𝐻 (\,𝑐)𝑛 (𝑥) (𝑛 ∈ N0), where
𝐻
(\,𝑐)
𝑛 are the Hermite polynomials defined as

𝐻
(\,𝑐)
𝑛 (𝑥) := 𝑒−𝑐𝑥+

\
2 𝑥

2 𝑑𝑛

𝑑𝑥𝑛

(
\−𝑛𝑒𝑐𝑥−

\
2 𝑥

2 )
.

Since each 𝐻 (\,𝑐)𝑛 is a polynomial of degree 𝑛, it is clear that the 𝐿2-extension of the Feller
semigroup generated by ℓ (and therefore the Feller semigroup itself) has no bounded eigenfunctions
other than 𝜑0 ≡ 1. Consequently, by Corollary 5.5, one cannot construct a Sturm-Liouville
convolution for the transition semigroup of the Ornstein-Uhlenbeck process.

(b) Let ^ > 0 and 𝛼 ∈ R. The differential operator

ℓ = −(1 + 𝑥2) 𝑑
2

𝑑𝑥2 − ^(𝛼 − 𝑥)
𝑑

𝑑𝑥
, −∞ < 𝑥 < ∞

is the generator of the Student diffusion process [2, 114]. Both endpoints 𝑥 = ±∞ are natural,
and the self-adjoint realization of ℓ has a purely absolutely continuous spectrum on the interval(
(^ + 1)2/2,∞

)
, together with a finite set of eigenvalues below (^ + 1)2/2. The operator

ℓ can be transformed, via the change of variables b = arcsinh(𝑥), into the standard form
− 𝑑2

𝑑b 2 − 𝐴′ ( b )
𝐴( b )

𝑑
𝑑b

, where 𝐴′ ( b )
𝐴( b ) =

^𝛼
cosh( b ) − (^ + 1) tanh(𝑥). Since limb→∞

𝐴′ ( b )
𝐴( b ) = −(^ + 1) < 0

and limb→−∞
𝐴′ ( b )
𝐴( b ) = ^+1 > 0, it follows from the proof of Proposition 5.20 that if _ > (^+1)2/2

then the equation ℓ(𝑢) = _𝑢 has no nonzero bounded solutions. Arguing in the same way we
conclude that the transition semigroup of the Student diffusion does not admit an associated
Sturm-Liouville convolution.

The next examples, related with the Laguerre and Jacobi polynomials, show that Sturm-Liouville
operators which do not admit an associated FLTC may, nevertheless, admit a convolution structure
satisfying a weaker set of axioms:

Example 5.23. Let 𝛼, ^ > 0. The Laguerre differential operator

ℓ = −𝑥 𝑑
2

𝑑𝑥2 − ^(𝛼 − 𝑥)
𝑑

𝑑𝑥
, 0 < 𝑥 < ∞

is the generator of the Cox-Ingersoll-Ross (CIR) process [2, 114]. The endpoint 𝑥 = 0 is classified
as regular if ^𝛼 < 1 and entrance if ^𝛼 ≥ 1, while the endpoint 𝑥 = +∞ is natural. The spectrum of
the Neumann realization of ℓ is purely discrete, with the orthogonal eigenfunctions being given by
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𝜑𝑛 (𝑥) = 𝐿 (𝛽)𝑛 (^𝑥) (𝑛 ∈ N0), where 𝛽 = ^𝛼 − 1 and 𝐿 (𝛽)𝑛 are the Laguerre polynomials defined as

𝐿
(𝛽)
𝑛 (𝑥) :=

1
(𝛽 + 1)𝑛

𝑥−𝛽𝑒𝑥
𝑑𝑛

𝑑𝑥𝑛

(
𝑥𝛽+𝑛𝑒−𝑥

)
.

As in Example 5.22(a), the fact that each 𝐿 (𝛽)𝑛 is a polynomial of degree 𝑛 means that the nonconstant
eigenfunctions of the Feller semigroup generated by ℓ (i.e. of the transition semigroup of the CIR
diffusion) are unbounded, and from this it follows that there exists no FLTC for this Feller semigroup.
For 𝛽 ≥ −1

2 , one can also reach the same conclusion by recalling the well-known product formula for
the Laguerre polynomials, which is given by [70, p. 149]

𝐿
(𝛽)
𝑛 (𝑥)𝐿 (𝛽)𝑛 (𝑦) =


∫ ∞

0 𝐿
(𝛽)
𝑛 (b) 𝐾𝛽 (𝑥, 𝑦, b) b𝛽𝑒−b 𝑑b, 𝛽 > − 1

2

1
2

[
𝑒
√
𝑥𝑦𝐿

(−1/2)
𝑛

(
(
√
𝑥 − √𝑦)2

)
+ 𝑒−

√
𝑥𝑦𝐿

(−1/2)
𝑛

(
(
√
𝑥 + √𝑦)2

) ]
+

∫ ∞
0 𝐿

(−1/2)
𝑛 (b) 𝐾−1/2(𝑥, 𝑦, b) b−1/2𝑒−b 𝑑b, 𝛽 = − 1

2

where

𝐾𝛽 (𝑥, 𝑦, b) =


2𝛽−1Γ(𝛽+1)√
2𝜋 (𝑥𝑦 b )𝛽

exp( 𝑥2 +
𝑦

2 +
b

2 ) 𝐽𝛽−1/2(𝑍) 𝑍𝛽−1/2 1[ (
√
𝑥−√𝑦)2, (

√
𝑥+√𝑦)2 ] (b), 𝛽 > − 1

2

− 1
4 (𝑥𝑦b)

1/2 exp( 𝑥2 +
𝑦

2 +
b

2 ) 𝐽1(𝑍) 𝑍−11[ (
√
𝑥−√𝑦)2, (

√
𝑥+√𝑦)2 ] (b), 𝛽 = − 1

2

The kernel of this product formula fails to be nonnegative, so it does not lead to a positivity-preserving
convolution structure.

The normalized Laguerre functions defined as 𝐿 (𝛽)𝑛 (^𝑥) := 𝑒−^𝑥/2𝐿 (𝛽)𝑛 (^𝑥) are the eigenfunctions
of the modified Laguerre operator

ℓ = −𝑥 𝑑
2

𝑑𝑥2 − ^𝛼
𝑑

𝑑𝑥
+ ^

2𝑥

4

It is clear that 𝐿 (𝛽)𝑛 (0) = 1, and by [70, Remark 1.10.88] we have |𝐿 (𝛽)𝑛 (𝑥) | ≤ 1 for all 𝛽 ≥ 0 and
𝑛 ∈ N0. Moreover, the normalized product formula

𝐿
(𝛽)
𝑛 (𝑥) 𝐿 (𝛽)𝑛 (𝑦) =

∫ ∞

0
𝐿
(𝛽)
𝑛 (b) 𝑘𝛽 (𝑥, 𝑦, b) b𝛽𝑑b, 𝑘𝛽 (𝑥, 𝑦, b) := exp(− 𝑥2 −

𝑦

2 −
b

2 ) 𝑘𝛽 (𝑥, 𝑦, b)

is such that
∫ ∞

0 |𝑘𝛽 (𝑥, 𝑦, b) | b
𝛽𝑑b ≤ 1 for all 𝛽 ≥ 0 and 𝑥, 𝑦 ∈ R+, cf. [70, Lemma 1.10.25]. This

property allows us to define the Laguerre convolution of finite complex measures as (` ★ a) (𝑑b) :=∫
R+

∫
R+
(𝛿𝑥 ★ 𝛿𝑦) (𝑑b) `(𝑑𝑥) a(𝑑𝑦), where

(𝛿𝑥 ★ 𝛿𝑦) (𝑑b) := 𝑘𝛽 (𝑥, 𝑦, b) b𝛽𝑑b for 𝑥, 𝑦 > 0, 𝛿𝑥 ★ 𝛿0 = 𝛿0 ★ 𝛿𝑥 = 𝛿𝑥 .

It is clear that 𝛿𝑥 ★ 𝛿𝑦 is, for 𝑥, 𝑦 > 0, a nonpositive signed measure, and therefore this convolution
does not preserve the space P(R+0). But, as noted in [155, Section 2], the Laguerre convolution is a
bilinear operator onMC(R+0) such that:
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(i) The space (MC(R+0), ★), equipped with the total variation norm, is a commutative Banach
algebra over C whose identity element is the Dirac measure 𝛿0;

(ii) The map (`, a) ↦→ ` ★ a is continuous in the vague topology;

(iii) {𝐿 (𝛽)𝑛 }𝑛∈N is a trivializing family for ★, i.e. we have

` = `1 ★ `2 if and only if `(𝐿 (𝛽)𝑛 ) = `1(𝐿 (𝛽)𝑛 ) ·`2(𝐿 (𝛽)𝑛 ) for all 𝑛 ∈ N.

In addition, one can check that 𝑝𝑡 ,𝑥 = 𝑝𝑡 ,0 ★ 𝛿𝑥 , where 𝑝𝑡 ,𝑥 stands for the (nonconservative) Feller
semigroup generated by ℓ.

Example 5.24. For 𝛼, 𝛽 > −1, consider the Jacobi differential operator ℓ = −(1 − 𝑥2) 𝑑2

𝑑𝑥2 − (𝛽 − 𝛼 −
(𝛼 + 𝛽 + 1)𝑥) 𝑑

𝑑𝑥
, cf. Example 2.39. Recall from Remark 4.4 that if 𝛽 ≤ 𝛼 and either 𝛽 ≥ − 1

2 or
𝛼 + 𝛽 ≥ 0, then the product formula (4.4) for the Jacobi polynomials 𝑅 (𝛼,𝛽)𝑛 gives rise to a hypergroup
structure and, therefore, to an FLTC for the transition semigroup generated by the Neumann realization
of ℓ. The stated condition on the parameters is in fact necessary and sufficient for the existence of an
FLTC: this follows from the fact that, by the results of Gasper [67], the product formula (4.4) exists for
all 𝛼, 𝛽 > −1, with the measures a(𝛼,𝛽)𝑥,𝑦 satisfying∫

[−1,1]
𝑑
��a(𝛼,𝛽)𝑥,𝑦

�� ≤ 𝑀 (𝑥, 𝑦 ∈ [−1, 1]) if and only if 𝛽 ≤ 𝛼, 𝛼 + 𝛽 ≥ −1 (5.23)

and such that a(𝛼,𝛽)𝑥,𝑦 is a nonpositive signed measure when 𝛽 < 1
2 and 𝛼 + 𝛽 > 0. If the equivalent

conditions in (5.23) hold, then the Jacobi convolution defined by 𝛿𝑥 ~
𝛼, 𝛽
𝛿𝑦 := a(𝛼,𝛽)𝑥,𝑦 endowsMC [−1, 1]

with a structure of commutative Banach algebra such that the convolution semigroup property
𝑝𝑡 ,𝑥 = 𝑝𝑡 ,0 ~

𝛼, 𝛽
𝛿𝑥 holds for the transition probabilities 𝑝𝑡 ,𝑥 of the diffusion generated by ℓ.

The notion of a signed hypergroup was introduced in [155] as a generalization of hypergroups
where the convolution satisfies a weaker form of axioms H2–H6 of Definition 2.22, and it is no longer
required that probability measures are preserved by the convolution. The Laguerre convolution is an
example of a signed hypergroup, as well as the Jacobi convolution with −1 < 𝛽 ≤ 𝛼 and 𝛼 + 𝛽 ≥ −1.
Example 5.23 demonstrates that such signed hypergroups are also a tool for endowing diffusion
semigroups with the convolution semigroup property, hence it would be desirable to establish sufficient
conditions for the existence of a signed hypergroup associated with a given Sturm-Liouville operator.
However, as far as we are aware, the known examples of non-positivity-preserving signed hypergroups
of Sturm-Liouville type are limited to differential operators whose eigenfunctions can be written in
terms of classical special functions. (See [123] for related work on a class of perturbed Bessel and
Laguerre differential operators.)

Most of the nonexistence theorems presented above are based on the unboundedness of the
solutions of the Sturm-Liouville equation ℓ(𝑢) = _𝑢. We will not address the more difficult problem
of establishing such theorems for Sturm-Liouville operators such that ℓ(𝑢) = _𝑢 admits bounded
solutions (such as those described in Lemma 2.29); however, we stress that this would require an
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investigation of the (non)positivity of the kernel (5.20) and the closely related (non)positivity of the
hyperbolic Cauchy problem (4.22).

5.4 Families of convolutions on Riemannian structures with cone-like
metrics

The discussion in Sections 5.1–5.2 indicates that the construction of convolution structures on
multidimensional spaces only becomes feasible once we are able to decompose the problem into
simpler one-dimensional problems. One should realize that this is, in particular, a key requirement for
the associated ultrahyperbolic PDE (Remark 5.9) to become tractable. It is therefore natural to restrict
the attention to Feller semigroups generated by elliptic operators on two-dimensional manifolds which
admit separation of variables in the sense that the eigenfunctions are of the form 𝜔_(b) = 𝜓_(𝑥) 𝜙_(𝑦)
(b = (𝑥, 𝑦) ∈ 𝑀).

We have already noted (cf. Section 2.3 and Example 5.10) the trivial fact that if 𝑀 = 𝑀1 × 𝑀2 is
a product of Riemannian manifolds endowed with the product metric (so that the Laplace-Beltrami
operator on 𝑀1 ×𝑀2 obviously admits separation of variables) and if there exists a convolution for the
Laplace-Beltrami operator on both 𝑀1 and 𝑀2, then we can define a convolution associated with the
Laplace-Beltrami operator on 𝑀 by taking the product of the convolutions on 𝑀1 and 𝑀2.

In the present section we will introduce a nontrivial generalization of the notion of product
convolution which is suited to manifolds of the form 𝑀 = R+ × 𝑀2 endowed with the so-called
cone-like metric structures. Such cone-like metrics are possibly singular metrics of the form
𝑔 = 𝑑𝑥2 + 𝐴(𝑥)2𝑔𝑀2 ; this is a natural generalization of the metric cone, cf. [28]. The Laplace-Beltrami
operator of (𝑀, 𝑔) is

Δ = 𝜕2
𝑥 +

𝐴′(𝑥)
𝐴(𝑥) 𝜕𝑥 +

1
𝐴(𝑥)2

Δ2

(where Δ2 stands for the Laplace-Beltrami operator of 𝑀2) and admits separation of variables, as its
eigenfunctions can be written as 𝜔𝑘,_(b) = 𝜓𝑘,_(𝑥) 𝜙𝑘,_(𝑦), where 𝜙𝑘,_(𝑦) are the eigenfunctions of
Δ2 and 𝜓𝑘,_(𝑥) are eigenfunctions of the Sturm-Liouville operators Δ1,𝑘 := 𝑑2

𝑑𝑥2 + 𝐴′ (𝑥)
𝐴(𝑥)

𝑑
𝑑𝑥
− [𝑘
𝐴(𝑥)2 ,

where [𝑘 ≥ 0 are separation constants. If the eigenfunctions of Δ2 and of each of the operators Δ1,𝑘

admit a product formula, then this gives rise to a product formula of the form

𝜔𝑘,_(b1) 𝜔𝑘,_(b2) =
∫
𝑀

𝜔𝑘,_ 𝑑𝛾𝑘, b1, b2 .

The distinctive feature of this product formula (in comparison with those of Equations (3.15) and
(4.21)) is that in general the measure in the right-hand side also depends on the multiplicity parameter
𝑘 . This naturally leads to the notion of a family of convolutions associated with a given elliptic operator.
One of our goals is to demonstrate that the convolution semigroup property for the reflected Brownian
motion on the manifold (𝑀, 𝑔), together with other properties of FLTCs, can be extended to the
families of convolutions discussed in this section.
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5.4.1 The eigenfunction expansion of the Laplace-Beltrami operator

In the sequel we consider the (possibly singular) Riemannian manifold (𝑀, 𝑔), where 𝑀 = R+0 × T
(with T = R/Z) and the (C1, possibly non-smooth) Riemannian metric is given by

𝑔 = 𝑑𝑥2 + 𝐴(𝑥)2𝑑\2 (0 ≤ 𝑥 < ∞, \ ∈ T)

where the function 𝐴 is such that

𝐴 ∈ C(R+0) ∩C1(R+), 𝐴(𝑥) > 0 for 𝑥 > 0,
∫ 1

0

𝑑𝑥

𝐴(𝑥) < ∞,
𝐴′

𝐴
is nonnegative and decreasing.

(5.24)
The Riemannian volume form on 𝑀 is 𝑑Ω𝑔 =

√
det 𝑔 𝑑𝑥𝑑\ = 𝐴(𝑥)𝑑𝑥𝑑\. Thus, the Riemannian

gradient of a function 𝑢 : 𝑀 −→ C is

∇𝑢 =

(
𝜕𝑥𝑢,

1
𝐴2 𝜕\𝑢

)
,

and the Laplace-Beltrami operator is

Δ = div ◦ ∇ = 𝜕2
𝑥 +

𝐴′(𝑥)
𝐴(𝑥) 𝜕𝑥 +

1
𝐴(𝑥)2

𝜕2
\ . (5.25)

The closure of Δ with reflecting boundary at 𝑥 = 0 is introduced in the standard way. Consider the
Sobolev space 𝐻1(𝑀) ≡ 𝐻1(𝑀,Ω𝑔) =

{
𝑢 ∈ 𝐿2(𝑀,Ω𝑔) | ∇𝑢 ∈ 𝐿2(𝑀,Ω𝑔)

}
, and the sesquilinear

form E : 𝐻1(𝑀) × 𝐻1(𝑀) −→ C defined as

E(𝑢, 𝑣) = ⟨∇𝑢,∇𝑣⟩𝐿2 (𝑀,Ω𝑔)

=

∫
𝑀

(
𝜕𝑥𝑢 𝜕𝑥𝑣 +

1
𝐴(𝑥)2

𝜕\𝑢 𝜕\ 𝑣

)
𝑑Ω𝑔 .

(5.26)

It is clear from (5.26) that E is a symmetric, nonnegative, closed sesquilinear form. The associated
self-adjoint operator (Δ𝑁 ,D𝑁 ), defined (as in (5.1)) by

D𝑁 =
{
𝑢 ∈ 𝐻1(𝑀)

�� ∃𝑣 ∈ 𝐿2(𝑀,Ω𝑔) such that ⟨∇𝑢,∇𝑧⟩ = −⟨𝑣, 𝑧⟩ for all 𝑧 ∈ 𝐻1(𝑀)
}
, Δ𝑁 𝑢 = 𝑣

is called the Neumann Laplacian on 𝑀 . It is an extension of the Laplace-Beltrami operator defined in
a domain of smooth functions satisfying the reflective boundary condition at 𝑥 = 0

(𝐴𝜕𝑥𝑢) (0, \) = 0 ∀\ ∈ T.

We use the notations 𝐿 𝑝 (𝑀) = 𝐿 𝑝 (𝑀,Ω𝑔), 𝐿 𝑝 (𝐴) = 𝐿 𝑝 (R+, 𝐴(𝑥)𝑑𝑥), and consider the Fourier
decomposition

𝐿2(𝑀) =
⊕
𝑘∈Z

𝐻𝑘 , 𝐻𝑘 =
{
𝑒𝑖2𝑘 𝜋\ 𝑣(𝑥)

�� 𝑣 ∈ 𝐿2(𝐴)
}
, (5.27)

where 𝐻𝑘 are regarded as Hilbert spaces with inner product
〈
𝑒𝑖2𝑘 𝜋\𝑢, 𝑒𝑖2𝑘 𝜋\ 𝑣

〉
𝐻𝑘

= ⟨𝑢, 𝑣⟩𝐿2 (𝐴) . The
direct sum is also regarded as a Hilbert space with inner product ⟨{𝑢𝑘 }, {𝑣𝑘 }⟩⊕𝐻𝑘

=
∑
𝑘∈Z
⟨𝑢𝑘 , 𝑣𝑘⟩𝐻𝑘

,
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such that for 𝑢(𝑥, \) = ∑
𝑘∈Z

𝑒𝑖2𝑘 𝜋\𝑢𝑘 (𝑥), 𝑣(𝑥, \) =
∑
𝑘∈Z

𝑒𝑖2𝑘 𝜋\ 𝑣𝑘 (𝑥), we have

⟨𝑢, 𝑣⟩𝐿2 (𝑀 ) =
∑
𝑘∈Z
⟨𝑢𝑘 , 𝑣𝑘⟩𝐿2 (𝐴)

E(𝑢, 𝑣) =
∑
𝑘∈Z
E𝑘 (𝑢𝑘 , 𝑣𝑘),

where E𝑘 (𝑢𝑘 , 𝑣𝑘) =
∫
R+

(
𝑢′
𝑘
(𝑥)𝑣′

𝑘
(𝑥) + (2𝑘 𝜋)

2

𝐴(𝑥)2 𝑢𝑘 (𝑥)𝑣𝑘 (𝑥)
)
𝐴(𝑥)𝑑𝑥 are sesquilinear forms with domains

D(E𝑘) =
{
𝑢 ∈ 𝐿2(𝐴) ∩ ACloc(R+)

��� 2𝑘𝜋
𝐴
𝑢 ∈ 𝐿2(𝐴), 𝑢′ ∈ 𝐿2(𝐴)

}
.

Thus, we obtain the decomposition, compatible with (5.27):

𝐻1(𝑀) =
⊕
𝑘∈Z
D(E𝑘).

It can be checked that the forms E𝑘 are symmetric, nonnegative, and closed. Therefore, a similar
argument allows us to construct self-adjoint realizations of the Sturm-Liouville operators Δ𝑘𝑢(𝑥) =
𝑢′′(𝑥) + 𝐴′ (𝑥)

𝐴(𝑥) 𝑢
′(𝑥) − (2𝑘 𝜋)

2

𝐴(𝑥)2 𝑢(𝑥), whose domain is

D(Δ𝑘) =
{
𝑢 ∈ 𝐿2(𝐴)

�� 𝑢, 𝑢′ ∈ ACloc(R+), Δ𝑘𝑢 ∈ 𝐿2(𝐴), (𝐴𝑢′) (0) = 0
}
,

for 𝑘 ∈ Z. This provides a decomposition of the Neumann Laplacian:

D𝑁 =
⊕
𝑘∈Z
D(Δ𝑘), Δ𝑁

( ∑
𝑘∈Z

𝑒𝑖2𝑘 𝜋\𝑢𝑘 (𝑥)
)
=

∑
𝑘∈Z

𝑒𝑖2𝑘 𝜋\Δ𝑘𝑢𝑘 (𝑥). (5.28)

The first ingredient for the convolution operators associated with Δ is the following characterization
of the solutions of the eigenfunction equation −Δ𝑢 = _𝑢 with Neumann boundary condition at 𝑥 = 0.

Lemma 5.25. For each (𝑘, _) ∈ Z × C, there exists a unique solution 𝑉𝑘,_ ∈ 𝐻𝑘,∞ :=
{
𝑒𝑖2𝑘 𝜋\𝑤(𝑥)

��
𝑤 ∈ C(R+0)

}
of the boundary value problem

−Δ𝑣 = _𝑣, 𝑣(0, \) = 𝑒𝑖2𝑘 𝜋\ , 𝑣 [1] (0, \) = 0 (5.29)

where 𝑣 [1] (𝑥, \) = 𝐴(𝑥) (𝜕𝑥𝑣) (𝑥, \). Moreover, _ ↦→ 𝑉𝑘,_(𝑥, \) is, for each fixed (𝑥, \) ∈ 𝑀 and
𝑘 ∈ Z, an entire function of exponential type.

Proof. Clearly, any such solution must be of the form 𝑉𝑘,_(𝑥, \) = 𝑒𝑖2𝑘 𝜋\𝑤(𝑥), where 𝑤 is a solution
of

−Δ𝑘𝑤(𝑥) = _𝑤(𝑥), 𝑤(0) = 1, (𝐴𝑤′) (0) = 0. (5.30)

Therefore, Proposition 2.1 yields the result. �
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The unique solution of (5.30) will be denoted by 𝑤𝑘,_(𝑥), so that 𝑉𝑘,_(𝑥, \) = 𝑒𝑖2𝑘 𝜋\𝑤𝑘,_(𝑥).
Throughout the paper we will make frequent use of the change of dependent variable described in the
following elementary lemma (which results from Remark 2.31):

Lemma 5.26. Define 𝑤𝑘,_(𝑥) := 𝑤𝑘,_ (𝑥)
Z𝑘 (𝑥) , where Z𝑘 (𝑥) := cosh

(
2𝑘𝜋

∫ 𝑥
0

𝑑𝑦

𝐴(𝑦)
)
. Then 𝑤𝑘,_(·) is a

solution of
ℓ𝑘 (𝑤) = _𝑤, 𝑤(0) = 1, (𝐵𝑘𝑤′) (0) = 0 (5.31)

where
ℓ𝑘 (𝑔) := − 1

𝐵𝑘
(𝐵𝑘𝑔′) ′, 𝐵𝑘 (𝑥) := 𝐴(𝑥) Z𝑘 (𝑥)2. (5.32)

Moreover, we have 𝐵′
𝑘

𝐵𝑘
= [ + 𝜙, where [(𝑥) = 4𝑘 𝜋

𝐴(𝑥) tanh(2𝑘𝜋
∫ 𝑥

0
𝑑𝑦

𝐴(𝑦) ) ≥ 0 and the functions 𝜙 = 𝐴′

𝐴

and 𝜓 := 1
2[
′ − 1

4[
2 + 𝐵′

𝑘

2𝐵𝑘
[ =

(2𝑘 𝜋)2
𝐴2 are both decreasing and nonnegative.

The final assertion of the above lemma implies, in particular, that Assumption MP of Chapter 4
holds for the coefficients of the Sturm-Liouville operator ℓ𝑘 .

In what follows, to lighten the notation, points of 𝑀 are denoted by b = (𝑥, \), b1 = (𝑥1, \1), etc.

It is well-known that the classical Weyl-Titchmarsh-Kodaira theory of eigenfunction expansions
of Sturm-Liouville operators can be generalized to elliptic partial differential operators on higher-
dimensional spaces, see e.g. [66], [45, Theorem XIV.6.6]. As remarked in [45, p. 1713], the knowledge
about the boundary conditions satisfied by the kernels of the eigenfunction expansion is much smaller
in the (general) multidimensional case, when compared to the one-dimensional setting. However, in
the special case where separation of variables can be applied to the eigenvalue problem for the elliptic
operator and therefore the eigenvalue equation reduces to a system of ordinary differential equations,
further information on the eigenfunction expansion can be obtained from the theory of multiparameter
eigenvalue problems. This connection will be further discussed in Remark 5.56 below.

In particular, the Fourier decomposition (5.28), combined with the eigenfunction expansion of the
Sturm-Liouville operator −Δ𝑘 , gives rise to an eigenfunction expansion of (Δ𝑁 ,D𝑁 ) in terms of the
separable solutions 𝑉𝑘,_ defined in Lemma 5.25:

Proposition 5.27. There exists a sequence of locally finite positive Borel measures 𝜌𝑘 on R+0 such that
the map ℎ ↦→ F ℎ, where

(F ℎ)𝑘 (_) :=
∫
𝑀

ℎ(b)𝑉−𝑘,_(b)Ω𝑔 (𝑑b)
(
𝑘 ∈ Z, _ ≥ 0

)
, (5.33)

is an isometric isomorphism F : 𝐿2(𝑀) −→
⊕

𝑘∈Z 𝐿
2(R+0 , 𝜌𝑘) whose inverse is given by

(F−1{𝜑𝑘 })(b) =
∑
𝑘∈Z

∫
R+0

𝜑𝑘 (_)𝑉𝑘,_(b) 𝜌𝑘 (𝑑_). (5.34)

The convergence of the integral in (5.33) is understood with respect to the norm of 𝐿2(R+0 , 𝜌𝑘), and
the convergence of the inner integrals and the series in (5.34) is understood with respect to the norm
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of 𝐿2(𝑀). Moreover, the operator F is a spectral representation of (Δ𝑁 ,D𝑁 ) in the sense that

D𝑁 =

{
ℎ ∈ 𝐿2(𝑀)

���� ∑
𝑘∈Z

∫
R+0

_2��(F ℎ)𝑘 (_)��2 𝜌𝑘 (𝑑_) < ∞}
(5.35)(

F (−Δ𝑁 ℎ)
)
𝑘
(_) = _ · (F ℎ)𝑘 (_), ℎ ∈ D𝑁 , 𝑘 ∈ Z. (5.36)

Proof. Let ℎ ∈ 𝐿2(𝑀). By Fubini, ℎ(𝑥, ·) ∈ 𝐿2(T) for a.e. 𝑥 ∈ R+. For these points 𝑥 we have

ℎ(𝑥, \) =
∑
𝑘∈Z

ℎ̂𝑘 (𝑥) 𝑒𝑖2𝑘 𝜋\ , where ℎ̂𝑘 (𝑥) :=
∫ 1

0
𝑒−𝑖2𝑘 𝜋𝜗ℎ(𝑥, 𝜗)𝑑𝜗, (5.37)

the series converging in the norm of 𝐿2(T). It is straightforward to check that ℎ̂𝑘 ∈ 𝐿2(𝐴) for all
𝑘 ∈ Z, and therefore the function ℎ̂𝑘 can be represented in terms of the eigenfunction expansion of the
Sturm-Liouville operator Δ𝑘 (Theorem 2.30): denoting the spectral measure of Δ𝑘 by 𝜌𝑘, we have

ℎ̂𝑘 (𝑥) =
∫
R+0

(
FΔ𝑘

ℎ̂𝑘
)
(_) 𝑤𝑘,_(𝑥) 𝜌𝑘 (𝑑_), where

(
FΔ𝑘

ℎ̂𝑘
)
(_) :=

∫
R+
ℎ̂𝑘 (𝑦) 𝑤𝑘,_(𝑦) 𝐴(𝑦)𝑑𝑦

the integrals converging in the norms of 𝐿2(𝐴) and 𝐿2(𝜌𝑘) ≡ 𝐿2(R+0 , 𝜌𝑘) respectively.
By definition of ℎ̂𝑘 , we have

(
FΔ𝑘

ℎ̂𝑘
)
(_) =

∫
𝑀
ℎ(b)𝑉−𝑘,_(b)Ω𝑔 (𝑑b) ≡ (F ℎ)𝑘 (_), with equality

in the 𝐿2(𝜌𝑘)-sense. Furthermore, by a dominated convergence argument it is clear that ℎ̂𝑘 (𝑥)𝑒𝑖2𝑘 𝜋\ =∫
R+0

(
FΔ𝑘

ℎ̂𝑘
)
(_)𝑉𝑘,_(b) 𝜌𝑘 (𝑑_) with equality in the 𝐿2(𝑀)-sense; therefore,

ℎ(𝑥, \) =
∑
𝑘∈Z

∫
R+0

(
FΔ𝑘

ℎ̂𝑘
)
(_)𝑉𝑘,_(b) 𝜌𝑘 (𝑑_)

proving the inversion formula (5.33)–(5.34). Finally, the fact that the integral operator F is isometric
follows from the identities

∥ℎ∥2
𝐿2 (𝑀 ) =

∑
𝑘∈Z

ℎ̂𝑘2
𝐿2 (𝐴) =

∑
𝑘∈Z

FΔ𝑘
ℎ̂𝑘

2
𝐿2 (𝜌𝑘) =

{(F ℎ)𝑘 }2⊕
𝐿2 (𝜌𝑘)

where the first and second steps follow from the isometric properties of the classical Fourier series and
the eigenfunction expansion of Δ𝑘 respectively.

It only remains to justify the identities (5.35)–(5.36). Using (5.28) we obtain(
F (−Δ𝑁 ℎ)

)
𝑘
(_) =

(
FΔ𝑘
(�−Δ𝑁 ℎ)𝑘 ) (_) = (

FΔ𝑘
(−Δ𝑘 ℎ̂𝑘)

)
(_) = _ ·

(
F ℎ

)
𝑘
(_), ℎ ∈ D𝑁

which proves (5.36). Now, if ℎ ∈ 𝐿2(𝑀) is such that
∑
𝑘∈Z

∫
R+0
_2

��(F ℎ)𝑘 (_)��2 𝜌𝑘 (𝑑_) < ∞ then by
(2.29) we have

( ℎ̂𝑘)𝑘∈Z ∈
⊕
𝑘∈Z
D(Δ𝑘) ≡

⊕
𝑘∈Z

{
𝑢 ∈ 𝐿2(𝐴)

���� ∫
R+0

_2 | (FΔ𝑘
𝑢) (_) |2 𝜌𝑘 (𝑑_) < ∞

}
and therefore ℎ =

∑
𝑘∈Z 𝑒

𝑖2𝑘 𝜋\ ℎ̂𝑘 ∈ D𝑁 . Conversely, if ℎ ∈ D𝑁 then by (5.36) we have {_ ·
(F ℎ)𝑘 (_)} ∈

⊕
𝑘∈Z 𝐿

2(𝜌𝑘), and we conclude that (5.35) holds. �
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Since Δ𝑁 is a negative self-adjoint operator, it is the infinitesimal generator of a strongly
continuous semigroup in 𝐿2(𝑀), denoted by {𝑒𝑡Δ𝑁 }𝑡≥0. It is not difficult to check that the sesquilinear
form E is Markovian (in the sense that if 𝑢 ∈ 𝐻1(𝑀) then 𝑣 := max(min(𝑢, 1), 0) ∈ 𝐻1(𝑀) and
E(𝑣, 𝑣) ≤ E(𝑢, 𝑢)); in other words, (E, 𝐻1(𝑀)) is a Dirichlet form. Therefore, as mentioned in
Section 5.1, {𝑒𝑡Δ𝑁 }𝑡≥0 is a sub-Markovian contraction semigroup on 𝐿2(𝑀). Furthermore, for every
𝑝 ∈ [1, +∞] the subspace 𝐿2(𝑀) ∩ 𝐿 𝑝 (𝑀) is invariant under 𝑒𝑡Δ𝑁 for every 𝑡 ≥ 0, and the semigroup{
𝑒𝑡Δ𝑁

}
𝑡≥0 can be extended into a strongly continuous contraction semigroup in 𝐿 𝑝 (𝑀) (see e.g. [41,

Sections 1.3–1.4]). The analogous statement holds for the semigroup
{
𝑒𝑡Δ𝑘

}
𝑡≥0 in 𝐿 𝑝 (𝐴), for every

𝑘 ∈ Z.

Proposition 5.28. Assume that the action of 𝑒𝑡Δ𝑁 on 𝐿2(𝑀) is given by a symmetric heat kernel, i.e.
there exists a measurable function 𝑝 : R+ × 𝑀 × 𝑀 −→ R+0 such that:

I. For all 𝑡, 𝑠 > 0 and b1, b2 ∈ 𝑀 ,

𝑝(𝑡, b1, b2) = 𝑝(𝑡, b2, b1) and 𝑝(𝑡 + 𝑠, b1, b2) =
∫
𝑀

𝑝(𝑡, b1, b3) 𝑝(𝑠, b3, b2)Ω𝑔 (𝑑b3);

II. For 𝑡 > 0, ℎ ∈ 𝐿2(𝑀) and Ω𝑔-a.e. b1 ∈ 𝑀 ,

(𝑒𝑡Δ𝑁 ℎ) (b1) =
∫
𝑀

ℎ(b2) 𝑝(𝑡, b1, b2)Ω𝑔 (𝑑b2).

Then, for 𝑡 > 0 and Ω𝑔-a.e. b1, b2 ∈ 𝑀 , the heat kernel admits the spectral representation

𝑝(𝑡, b1, b2) =
∑
𝑘∈Z

∫
R+0

𝑒−𝑡_𝑉𝑘,_(b1)𝑉−𝑘,_(b2) 𝜌𝑘 (𝑑_) (5.38)

where the integral and the sum are absolutely convergent.

Proof. Fix 𝑡 > 0. It follows from condition I that∫
𝑀

𝑝(𝑡, b1, b2)2 Ω𝑔 (𝑑b2) = 𝑝(2𝑡, b1, b1) < ∞ (b1 ∈ 𝑀),

meaning in particular that 𝑝(𝑡, b1, ·) ∈ 𝐿2(𝑀) for all b1 ∈ 𝑀 . Moreover, by the spectral representation
property (5.35)–(5.36) we have [F (𝑒𝑡Δ𝑁 ℎ)]𝑘 (_) = 𝑒−𝑡_(F ℎ)𝑘 (_) for all ℎ ∈ 𝐿2(𝑀), hence∑

𝑘∈Z

∫
R+0

(F ℎ)𝑘 (_) [F 𝑝(𝑡, b1, ·)]𝑘 (_) 𝜌𝑘 (𝑑_) = (𝑒𝑡Δ𝑁 ℎ) (b1)

= F−1{𝑒−𝑡 ·(F ℎ)𝑘 (·)} (b1) =
∑
𝑘∈Z

∫
R+0

𝑒−𝑡_(F ℎ)𝑘 (_)𝑉𝑘,_(b1) 𝜌𝑘 (𝑑_)
(5.39)
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for Ω𝑔-a.e. b1 ∈ 𝑀. Since ℎ ∈ 𝐿2(𝑀) is arbitrary, from (5.39) we deduce that {𝑒−𝑡_𝑉𝑘,_(b1)} =
{[F 𝑝(𝑡, b1, ·)]𝑘 (_)} ∈

⊕
𝑘∈Z 𝐿

2(𝜌𝑘) for Ω𝑔-a.e. b1 ∈ 𝑀 . Therefore∑
𝑘∈Z

∫
R+0

𝑒−𝑡_ |𝑉𝑘,_(b1) |2 𝜌𝑘 (𝑑_) =
∑
𝑘∈Z

𝑒−𝑡_/2𝑉𝑘,_(b1)
2
𝐿2 (𝜌𝑘) < ∞

and it follows (by the Cauchy-Schwarz inequality) that the right-hand side of (5.38) is absolutely
convergent for Ω𝑔-a.e. b1, b2 ∈ 𝑀 . Moreover, the isometric property of F yields

𝑝(𝑡, b1, b2) =
〈
𝑝(𝑡/2, b1, ·), 𝑝(𝑡/2, b2, ·)

〉
𝐿2 (𝑀 ) =

∑
𝑘∈Z

〈
𝑒−𝑡_/2𝑉𝑘,_(b1), 𝑒−𝑡_/2𝑉𝑘,_(b2)

〉
𝐿2 (𝜌𝑘)

and therefore the identity (5.38) holds for Ω𝑔-a.e. b1, b2 ∈ 𝑀 . �

Corollary 5.29. If the assumptions of Proposition 5.28 are satisfied, then for 𝑡 ≥ 0, 𝑘 ∈ Z, _ ∈ supp(𝜌𝑘)
and Ω𝑔-a.e. b1 ∈ 𝑀 we have

𝑒−𝑡_𝑉𝑘,_(b1) =
∫
𝑀

𝑉𝑘,_(b2) 𝑝(𝑡, b1, b2)Ω𝑔 (𝑑b2).

Proof. Fix 𝑡 ≥ 0 and 𝑘 ∈ Z. Notice that

𝑝(𝑡, b1, b2) =
∑
𝑗∈Z

𝑒𝑖2 𝑗 𝜋 (\1−\2) 𝑝Δ 𝑗
(𝑡, 𝑥1, 𝑥2),

where 𝑝Δ 𝑗
(𝑡, 𝑥1, 𝑥2) =

∫
R+0
𝑒−𝑡_𝑤 𝑗 ,_(𝑥1) 𝑤 𝑗 ,_(𝑥2) 𝜌 𝑗 (𝑑_) is the heat kernel for the semigroup {𝑒𝑡Δ 𝑗 }

on 𝐿2(R+, 𝐴(𝑥)𝑑𝑥) (Proposition 2.36), and the sum converges absolutely. Hence for _ ∈ supp(𝜌𝑘)
and Ω𝑔-a.e. b1 ∈ 𝑀 we can write∫

𝑀

𝑉𝑘,_(b2) 𝑝(𝑡, b1, b2)Ω𝑔 (𝑑b2)

=

∫
𝑀

𝑒𝑖2𝑘 𝜋\2𝑤𝑘,_(𝑥2)
∑
𝑗∈Z

𝑒𝑖2 𝑗 𝜋 (\1−\2) 𝑝Δ 𝑗
(𝑡, 𝑥1, 𝑥2) 𝐴(𝑥2)𝑑𝑥2𝑑\2

=

∫ ∞

0
𝑤𝑘,_(𝑥2)

∑
𝑗∈Z

𝑒𝑖2 𝑗 𝜋 \1

∫ 1

0
𝑒𝑖2(𝑘− 𝑗) 𝜋\2𝑑\2 𝑝Δ 𝑗

(𝑡, 𝑥1, 𝑥2) 𝐴(𝑥2)𝑑𝑥2

= 𝑒𝑖2𝑘 𝜋\1

∫ ∞

0
𝑤𝑘,_(𝑥2) 𝑝Δ𝑘

(𝑡, 𝑥1, 𝑥2) 𝐴(𝑥2)𝑑𝑥2

= 𝑒𝑖2𝑘 𝜋\1Z𝑘 (𝑥1)
∫ ∞

0
𝑤𝑘,_(𝑥2)

∫
R+0

𝑒−𝑡_0 𝑤𝑘,_0 (𝑥1) 𝑤𝑘,_0 (𝑥2) 𝜌𝑘 (𝑑_0) 𝐵𝑘 (𝑥2)𝑑𝑥2

= 𝑒𝑖2𝑘 𝜋\1𝑒−𝑡_𝑤𝑘,_(𝑥1)
= 𝑒−𝑡_𝑉𝑘,_(b1).

The second to last equality follows from the eigenfunction expansion of the Sturm-Liouville
operator ℓ𝑘 defined in Lemma 5.26, considering that the double integral can be recognized as
Fℓ𝑘 [F −1

ℓ𝑘
𝑒−𝑡·𝑤𝑘,·(𝑥1)] (_), where (Fℓ𝑘𝑔) (_) :=

∫
R+
𝑔(𝑦) 𝑤𝑘,_(𝑦) 𝐵𝑘 (𝑦)𝑑𝑦 ≡ (FΔ𝑘

(Z𝑘 · 𝑔)) (_). It



5.4. Families of convolutions on Riemannian structures with cone-like metrics 173

should also be noted that

𝑒−𝑡_ ∈ 𝐿2(𝜌𝑘), F −1
ℓ𝑘
𝑒−𝑡· ∈ 𝐿1(R+, 𝐵𝑘 (𝑥)𝑑𝑥), 𝑤𝑘,_ ∈ Cb(R+0)

(cf. Proposition 2.36 and Lemma 2.29), and therefore the second to last equality, which holds initially
for 𝜌𝑘-a.e. _ ≥ 0, can be extended by continuity to all _ ∈ supp(𝜌𝑘). �

The two results above depend on the assumption that the heat kernel exists. In the general framework
of metric measure spaces, the existence of the heat kernel for the semigroup {𝑒𝑡G (2) } determined by a
given Dirichlet form is equivalent to the ultracontractivity property ∥𝑒𝑡G (2) ℎ∥∞ ≤ 𝛾(𝑡)∥ℎ∥𝐿1 , where
𝛾 is a positive left-continuous function on R+ (see [4, Theorem 3.1]). A discussion of geometric
conditions which ensure the existence of a heat kernel satisfying Gaussian estimates can be found in
[73] and references therein.

In particular, it is known that the Laplace-Beltrami operator with Dirichlet or Neumann boundary
conditions on a domain of a complete Riemannian manifold admits a heat kernel [33, 41]. We can
thus state:

Proposition 5.30. Let �̊� = R+ × T. If 𝐴 belongs to C∞(R+0) and 𝐴(0) > 0, then there exists a heat
kernel 𝑝(𝑡, 𝑥, 𝑦) ∈ C∞(R+ × �̊� × �̊�) satisfying the assumptions of Proposition 5.28.

Proof. Observe that under the stated condition we can regard (𝑀, 𝑔) as a submanifold of the complete
smooth Riemannian manifold (R × T, �̃�), where �̃� = 𝑑𝑥2 + 𝐴(𝑥)2𝑑\2 and 𝐴 ∈ C∞(R) is a positive
extension of the function 𝐴; therefore [33, Theorem 1.1] yields the result. �

5.4.2 Product formulas and convolutions

Taking advantage of the separability of the eigenfunctions and the results of Chapter 4, we derive the
following product formula for the eigenfunctions of the Neumann Laplacian:

Proposition 5.31 (Product formula for 𝑉𝑘,_). For each 𝑘 ∈ N0 and b1, b2 ∈ 𝑀 there exists a positive
measure 𝛾𝑘, b1, b2

on 𝑀 such that the product 𝑉𝑘,_(b1)𝑉𝑘,_(b2) admits the integral representation

𝑉𝑘,_(b1)𝑉𝑘,_(b2) =
∫
𝑀

𝑉𝑘,_(b3) 𝛾𝑘, b1, b2
(𝑑b3), b1, b2 ∈ 𝑀, _ ∈ C. (5.40)

Since 𝑉−𝑘,_ = 𝑉𝑘,_, this result trivially extends to all 𝑘 ∈ Z.

Proof. Fix 𝑘 ∈ N0. Recall that 𝑉𝑘,_(𝑥, \) = 𝑒𝑖2𝑘 𝜋\ Z𝑘 (𝑥) 𝑤𝑘,_(𝑥), where 𝑤𝑘,_ is a solution of (5.31).
We saw in Lemma 5.26 that the operator ℓ𝑘 satisfies Assumption MP, hence we can apply the existence
theorem for Sturm-Liouville type product formulas (Theorem 4.14) and conclude that there exists a
family of measures {𝜋 [𝑘 ]𝑥1,𝑥2}𝑥1,𝑥2∈R+0 ⊂ P(R

+
0) with supp(𝜋 [𝑘 ]𝑥1,𝑥2) ⊂ [|𝑥1 − 𝑥2 |, 𝑥1 + 𝑥2] (cf. Proposition

4.48) and such that

𝑤𝑘,_(𝑥1) 𝑤𝑘,_(𝑥2) =
∫
R+0

𝑤𝑘,_ 𝑑𝜋
[𝑘 ]
𝑥1,𝑥2 (𝑥1, 𝑥2 ∈ R+0 , _ ∈ C).
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Consequently, the product formula (5.40) holds for the positive measures 𝛾𝑘, b1, b2
defined by

𝛾𝑘, b1, b2
(𝑑b3) =

Z𝑘 (𝑥1)Z𝑘 (𝑥2)
Z𝑘 (𝑥3)

a𝑘, b1, b2 (𝑑b3) (5.41)

where a𝑘, b1, b2 := 𝜋 [𝑘 ]𝑥1,𝑥2 ⊗ 𝛿\1+\2 . �

It follows at once from the definition that the measures a𝑘, b1, b2 are probability measures on 𝑀.
The convolution operators determined by these measures are defined in the natural way:

Definition 5.32. Let 𝑘 ∈ Z and `, a ∈ MC(𝑀). The measure

(` ∗
𝑘
a) (·) =

∫
𝑀

∫
𝑀

a𝑘, b1, b2 (·) `(𝑑b1) a(𝑑b2)

is called the Δ𝑘-convolution of the measures ` and a.

In other words, the convolution algebra (𝑀, ∗
𝑘
) is a product of hypergroups, namely the Sturm-

Liouville hypergroup associated with ℓ𝑘 (Theorem 4.50) and the hypergroup determined by the
ordinary convolution on the torus.

The analogue of the trivialization property for the family of Δ𝑘-convolutions is described next.

Definition 5.33. Let ` ∈ MC(𝑀). The Δ-Fourier transform of the measure ` is the function defined
by the integral

(F `) (𝑘, _) =
∫
𝑀

𝑉−𝑘,_(b)
Z𝑘 (𝑥)

`(𝑑b), 𝑘 ∈ Z, _ ≥ 0.

It follows from Lemma 2.29 that ∥ 𝑉−𝑘,_
Z𝑘
∥∞ ≤ 1, hence (F `) (𝑘, _) is well-defined for all

` ∈ MC(𝑀) and (𝑘, _) ∈ Z × R+0 .

Proposition 5.34. Let `, a ∈ MC(𝑀). We have(
F (` ∗

𝑘
a)

)
(𝑘, _) = (F `) (𝑘, _) · (F a) (𝑘, _) for all 𝑘 ∈ Z and _ ≥ 0. (5.42)

Moreover, for fixed 𝑘 ∈ Z we have

(F𝛼) (𝑘, ·) = (F `) (𝑘, ·) · (F a) (𝑘, ·) if and only if �̂�𝑘 = ̂̀𝑘 �
𝑘
â𝑘

where �̂�𝑘 (𝜏 = 𝛼, `, a) is the complex measure on R+0 defined by �̂�𝑘 (𝐽) =
∫
𝑀
𝑒−𝑖2𝑘 𝜋\ 1𝐽 (𝑥) 𝜏(𝑑b), and

�
𝑘

is the convolution defined as ̂̀𝑘 �
𝑘
â𝑘 (·) :=

∫
R+0

∫
R+0
𝜋
[𝑘 ]
𝑥1,𝑥2 (·) ̂̀𝑘 (𝑑𝑥1) â𝑘 (𝑑𝑥2) (here 𝜋 [𝑘 ]𝑥1,𝑥2 ∈ P(R+0)

are the measures from the proof of Proposition 5.31).

Proof. Applying the product formula (5.40), we obtain(
F (` ∗

𝑘
a)

)
(𝑘, _) =

∫
𝑀

𝑉−𝑘,_(b)
Z𝑘 (𝑥)

(` ∗
𝑘
a) (𝑑b)
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=

∫
𝑀

∫
𝑀

∫
𝑀

𝑉−𝑘,_(b3)
Z𝑘 (𝑥3)

(𝛿 b1 ∗
𝑘
𝛿 b2) (𝑑b3) `(𝑑b1)a(𝑑b2)

=

∫
𝑀

∫
𝑀

𝑉−𝑘,_(b1)
Z𝑘 (𝑥1)

𝑉−𝑘,_(b2)
Z𝑘 (𝑥2)

`(𝑑b1)a(𝑑b2) = (F `) (𝑘, _) · (F a) (𝑘, _)

so that (5.42) holds. Since �
𝑘

is the Sturm-Liouville convolution for the operator ℓ𝑘 = − 1
𝐵𝑘

𝑑
𝑑𝑥
(𝐵𝑘 𝑑𝑑𝑥 ),

the second statement is a consequence of Proposition 4.30. �

Proposition 5.35. The Δ-Fourier transform F ` of ` ∈ MC(𝑀) has the following properties:

(i) For each 𝑘 ∈ Z, (F `) (𝑘, ·) is continuous on R+0 . Moreover, if a family of measures {` 𝑗} ⊂
MC(𝑀) is tight and uniformly bounded, then {(F ` 𝑗) (𝑘, ·)} is equicontinuous on R+0 .

(ii) Each measure ` ∈ MC(𝑀) is uniquely determined by F `.

(iii) If {`𝑛} is a sequence of measures belonging toM+(𝑀), ` ∈ M+(𝑀), and `𝑛
𝑤−→ `, then for

each 𝑘 ∈ Z we have

(F `𝑛) (𝑘, ·) −−−−−→
𝑛→∞

(F `) (𝑘, ·) uniformly on compact sets.

(iv) Suppose that lim𝑥→∞ 𝐴(𝑥) = ∞. If {`𝑛} is a sequence of measures belonging toM+(𝑀) whose
Δ-Fourier transforms are such that

(F `𝑛) (𝑘, _) −−−−−→
𝑛→∞

𝑓 (𝑘, _) pointwise in (𝑘, _) ∈ Z × R+0

for some real-valued function 𝑓 such that 𝑓 (0, ·) is continuous at a neighbourhood of zero, then
`𝑛

𝑤−→ ` for some measure ` ∈ M+(𝑀) such that F ` ≡ 𝑓 .

Proof. (i) We have (F `) (𝑘, _) = (Fℓ𝑘 ̂̀𝑘) (_) where Fℓ𝑘 is the Sturm-Liouville transform of measures
determined by ℓ𝑘 (Definition 4.25), thus the result follows from Proposition 4.26(i).

(ii) Let ` ∈ MC(𝑀) be such that (F `) (𝑘, _) = 0 for all 𝑘 ∈ Z and _ ≥ 0. Let 𝑓 ∈ Cc(R+0) and
𝑔 ∈ C1(T). Recalling that the Fourier series 𝑔(\) = ∑

𝑘∈Z⟨𝑔, 𝑒−𝑖2𝑘 𝜋·⟩ 𝑒𝑖2𝑘 𝜋\ converges absolutely
and uniformly [47, Theorem 1.4.2], we get∫

𝑀

𝑓 (𝑥) 𝑔(\) `(𝑑 (𝑥, \)) =
∫
𝑀

𝑓 (𝑥)
∑
𝑘∈Z
⟨𝑔, 𝑒−𝑖2𝑘 𝜋·⟩ 𝑒𝑖2𝑘 𝜋\ `(𝑑 (𝑥, \))

=
∑
𝑘∈Z
⟨𝑔, 𝑒−𝑖2𝑘 𝜋·⟩

∫
R+0

𝑓 (𝑥) ̂̀−𝑘 (𝑑𝑥)
= 0

where the last equality holds because, by Proposition 4.26(ii), (F `) (𝑘, ·) ≡ 0 implies that ̂̀𝑘 = 0. By
the Stone-Weierstrass theorem (see [160, Section 38] and also [95, Corollary 15.3]), this implies that
` is the zero measure.

(iii) This follows directly from Proposition 4.26(iii).
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(iv) By the same argument in the proof of Proposition 3.18(iv), it is enough to show that {`𝑛} is
tight. Fix Y > 0. Given that 𝑓 (0, ·) is continuous near zero, we can choose 𝛿 > 0 such that����1𝛿 ∫ 2𝛿

0

(
𝑓 (0, 0) − 𝑓 (0, _)

)
𝑑_

���� < Y.
Furthermore, we have lim𝑥→∞ 𝑤0,_(𝑥) = 0 for all _ > 0 (Corollary 4.8), and thus we can pick
0 < 𝛽 < ∞ such that ∫ 2𝛿

0

(
1 −𝑉0,_(b)

)
𝑑_ ≥ 𝛿 for all (𝑥, \) ∈ (𝛽,∞) × T.

We now compute

`𝑛
(
[𝛽,∞)×T) ≤ 1

𝛿

∫
[𝛽,∞)×T

∫ 2𝛿

0

(
1−𝑉0,_(b)

)
𝑑_ `𝑛 (𝑑b) ≤

1
𝛿

∫ 2𝛿

0

(
(F `𝑛) (0, 0)− (F `𝑛) (0, _)

)
𝑑_

and from this inequality we obtain

lim sup
𝑛→∞

`𝑛 ( [𝛽,∞) × T) ≤
1
𝛿

lim sup
𝑛→∞

∫ 2𝛿

0

(
(F `𝑛) (0, 0) − (F `𝑛) (0, _)

)
𝑑_

=
1
𝛿

∫ 2𝛿

0

(
𝑓 (0, 0) − 𝑓 (0, _)

)
𝑑_

< Y

where Y is arbitrary, showing that {`𝑛} is tight. �

In the remainder of this section we will always assume that lim𝑥→∞ 𝐴(𝑥) = ∞.

Corollary 5.36. For each 𝑘 ∈ Z, the mapping (`, a) ↦→ ` ∗
𝑘
a is continuous in the weak topology.

Proof. We have
(
F (𝛿 b1 ∗

𝑘
𝛿 b2)

)
( 𝑗 , _) = 𝑒−𝑖2 𝑗 𝜋 (\1+\2) (Fℓ 𝑗 (𝛿𝑥1 �

𝑘
𝛿𝑥2)) (_), and it follows from Propo-

sition 4.31 that the right-hand side is a continuous function of (b1, b2). Using Proposition 5.35(iv)
we conclude that (b1, b2) ↦→ 𝛿 b1 ∗

𝑘
𝛿 b2 is continuous in the weak topology, which readily implies our

claim. �

The operator T `
𝑘

defined by the integral

(T `
𝑘
ℎ) (b) :=

∫
𝑀

ℎ 𝑑 (𝛿 b ∗
𝑘
`)

is said to be the Δ𝑘 -translation by the measure ` ∈ MC(𝑀). The next result summarizes its mapping
properties. For brevity, we write 𝐿 𝑝

𝑘
:= 𝐿 𝑝 (𝑀, 𝐵𝑘 (𝑥)𝑑𝑥𝑑\).

Proposition 5.37.

(a) If ℎ ∈ Cb(𝑀), then T `
𝑘
ℎ ∈ Cb(𝑀) for all ` ∈ MC(𝑀).

(b) If ℎ ∈ C0(𝑀), then T `
𝑘
ℎ ∈ C0(𝑀) for all ` ∈ MC(𝑀).
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(c) Let 1 ≤ 𝑝 ≤ ∞, ` ∈ M+(𝑀) and ℎ ∈ 𝐿 𝑝
𝑘
. The Δ𝑘 -translation (T `

𝑘
ℎ) (𝑥) is a Borel measurable

function of 𝑥 ∈ 𝑀 , and we have

∥T `
𝑘
ℎ∥𝐿𝑝

𝑘
≤ ∥`∥ · ∥ℎ∥𝐿𝑝

𝑘
(5.43)

(d) Let 𝑝1, 𝑝2 ∈ [1,∞] such that 1
𝑝1
+ 1
𝑝2
≥ 1, and write T b

𝑘
:= T 𝛿 b

𝑘
(b ∈ 𝑀). For ℎ ∈ 𝐿 𝑝1

𝑘
and

𝑔 ∈ 𝐿 𝑝2
𝑘

, the Δ𝑘-convolution

(ℎ ∗
𝑘
𝑔) (b) =

∫
𝑀

(T b1
𝑘
ℎ) (b) 𝑔(b1) 𝐵𝑘 (𝑥1)𝑑𝑥1𝑑\1

is well-defined and, for 𝑠 ∈ [1,∞] defined by 1
𝑠
= 1
𝑝1
+ 1
𝑝2
− 1, it satisfies

∥ℎ ∗
𝑘
𝑔∥𝐿𝑠

𝑘
≤ ∥ℎ∥

𝐿
𝑝1
𝑘
∥𝑔∥

𝐿
𝑝2
𝑘

(in particular, ℎ ∗
𝑘
𝑔 ∈ 𝐿𝑠

𝑘
).

Proof. (a) Immediate consequence of Corollary 5.36.

(b) By Proposition 4.32(iv) and a dominated convergence argument we have
(
F (𝛿 b ∗

𝑘
`)

)
( 𝑗 , _) =∫

𝑀
𝑒−𝑖2 𝑗 𝜋 (\+\1) (Fℓ 𝑗 (𝛿𝑥 �

𝑘
𝛿𝑥1)) (_)`(𝑑b1) −→ 0 as 𝑥 →∞. An argument similar to that of the proof

of 4.32(iv) then yields that T `
𝑘
ℎ ∈ C0(𝑀) for all ` ∈ MC(𝑀).

(c) In the case 𝑝 = ∞, the proof is straightforward. Let 1 ≤ 𝑝 < ∞. Suppose first that
ℎ(𝑥, \) = 𝑓 (𝑥)𝑔(\) and observe that

(T (𝑥2, \2)
𝑘

ℎ) (𝑥1, \1) = (T 𝑥2
ℓ𝑘
𝑓 ) (𝑥1) · (T \2

T 𝑔) (\1)

where T 𝑥
ℓ𝑘

is the generalized translation associated with the Sturm-Liouville operator ℓ𝑘 and
(T \2
T 𝑔) (\1) := 𝑔(\1 + \2) is the ordinary translation on the torus. By Proposition 4.32(i) we

have ∥T 𝑥
ℓ𝑘
𝑓 ∥𝐿𝑝 (R+, 𝐵𝑘 (𝑥)𝑑𝑥) ≤ ∥ 𝑓 ∥𝐿𝑝 (R+, 𝐵𝑘 (𝑥)𝑑𝑥) , and therefore

∥T (𝑥2, \2)
𝑘

ℎ∥𝐿𝑝

𝑘
= ∥T 𝑥ℓ𝑘 𝑓 ∥𝐿𝑝 (R+, 𝐵𝑘 (𝑥)𝑑𝑥) ∥T

\2
T 𝑔∥𝐿𝑝 (T)

≤ ∥ 𝑓 ∥𝐿𝑝 (R+, 𝐵𝑘 (𝑥)𝑑𝑥) ∥𝑔∥𝐿𝑝 (T)

= ∥ℎ∥𝐿𝑝

𝑘
.

A continuity argument then yields that ∥T (𝑥, \)
𝑘

ℎ∥𝐿𝑝

𝑘
≤ ∥ℎ∥𝐿𝑝

𝑘
for all ℎ ∈ 𝐿 𝑝

𝑘
and (𝑥, \) ∈ 𝑀 , showing

that (5.43) holds for Dirac measures ` = 𝛿 (𝑥, \) . We can then extend the result to all ` ∈ M+(𝑀) by
using Minkowski’s integral inequality.

(d) Identical to that of Proposition 3.57. �

In the next statement we show that if a heat kernel exists for the heat semigroup {𝑒𝑡Δ𝑁 }, then the
functions 𝑒𝑡Δ𝑁𝑉𝑘,_ = 𝑒

−𝑡_𝑉𝑘,_ also admit a product formula whose measures do not depend on the
spectral parameter _ and, moreover, are absolutely continuous with respect to Ω𝑔.
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Proposition 5.38. Assume that the action of 𝑒𝑡Δ𝑁 on 𝐿2(𝑀) is given by a symmetric heat kernel
satisfying conditions I and II of Proposition 5.28. Let 𝛾𝑡 ,𝑘, b1, b2

be the positive measure defined by

𝛾𝑡 ,𝑘, b1, b2
(𝑑b3) =

∫
𝑀

𝛾𝑘, b4, b2
(𝑑b3) 𝑝(𝑡, b1, b4)Ω𝑔 (𝑑b4).

Then, the product 𝑒−𝑡_𝑉𝑘,_(b1)𝑉𝑘,_(b2) admits the integral representation

𝑒−𝑡_𝑉𝑘,_(b1)𝑉𝑘,_(b2) =
∫
𝑀

𝑉𝑘,_(b3) 𝛾𝑡 ,𝑘, b1, b2
(𝑑b3)

(
𝑡 ≥ 0, b1, b2 ∈ 𝑀, _ ∈ supp(𝜌𝑘)

)
.

Proof. By direct calculation we get∫
𝑀

𝑉𝑘,_(b3) 𝛾𝑡 ,𝑘, b1, b2
(𝑑b3) =

∫
𝑀

∫
𝑀

𝑉𝑘,_(b3)𝛾𝑘, b4, b2
(𝑑b3) 𝑝(𝑡, b1, b4)Ω𝑔 (𝑑b4)

= 𝑒−𝑡_𝑉𝑘,_(b1)𝑉𝑘,_(b2)

where, by Proposition 5.31 and Corollary 5.29, the second equality holds for 𝑡 ≥ 0, _ ∈ supp(𝜌𝑘),
b2 ∈ 𝑀 and Ω𝑔-almost every b1 ∈ 𝑀. Using the symmetry relation

∫
𝑀
𝑉𝑘,_(b3) 𝛾𝑡 ,𝑘, b1, b2

(𝑑b3) =∫
𝑀
𝑉𝑘,_(b3) 𝛾𝑡 ,𝑘, b2, b1

(𝑑b3), the identity extends by continuity to all b1, b2 ∈ 𝑀 . (The given symmetry
can be deduced by noting that, by (4.43) and Propositions 5.27–5.28, we have for 𝑔 ∈ C2

c (R+)∫
𝑀

𝑒𝑖2𝑘 𝜋\3𝑔(𝑥3)𝛾𝑡 ,𝑘, b1, b2
(𝑑b3) =

∫
𝑀

∫
R+0

𝑉𝑘,_(b4)𝑉𝑘,_(b2) (FΔ𝑘
𝑔) (_) 𝜌𝑘 (𝑑_) 𝑝(𝑡, b1, b4)Ω𝑔 (𝑑b4)

=

∫
R+0

𝑒−𝑡_𝑉𝑘,_(b1)𝑉𝑘,_(b2) (FΔ𝑘
𝑔) (_) 𝜌𝑘 (𝑑_)

and, therefore, ( �𝛾𝑡 ,𝑘, b1, b2
)−𝑘 = ( �𝛾𝑡 ,𝑘, b2, b1

)−𝑘 .) �

5.4.3 Infinitely divisible measures and convolution semigroups

The basic notions of divisibility and probabilistic harmonic analysis for the Δ𝑘-convolution can be
defined in the usual way (cf. Sections 3.4 and 4.5):

Definition 5.39.

• The set P𝑘,id of Δ𝑘-infinitely divisible measures is defined by

P𝑘,id =
{
` ∈ P(𝑀)

�� for all 𝑛 ∈ N there exists a𝑛 ∈ P(𝑀) such that ` = (a𝑛)∗𝑘𝑛
}

(5.44)

where (a𝑛)∗𝑘𝑛 denotes the 𝑛-fold Δ𝑘-convolution of the measure a𝑛 with itself.

• The Δ𝑘-Poisson measure associated with a ∈ M+(𝑀) is

e𝑘 (a) := 𝑒−∥a ∥
∞∑
𝑛=0

a∗𝑘𝑛

𝑛!

(the infinite sum converging in the weak topology).
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• A measure ` ∈ P(𝑀) is called a Δ𝑘-Gaussian measure if ` ∈ P𝑘,id and

` = e𝑘 (a) ∗
𝑘
𝜗

(
a ∈ M+(𝑀), 𝜗 ∈ P𝑘,id

)
=⇒ e𝑘 (a) = 𝛿 (0,0) .

It is easy to check that, for a ∈ M+(𝑀),∫
𝑀

𝑒−𝑖2 𝑗 𝜋 \ 𝑤𝑘,_(𝑥) e𝑘 (a) (𝑑b) = exp
(∫
𝑀

[
𝑒−𝑖2 𝑗 𝜋 \ 𝑤𝑘,_(𝑥)−1

]
a(𝑑b)

)
, ( 𝑗 , _) ∈ Z×R+0 . (5.45)

(This is an equivalent characterization of Δ𝑘-Poisson measures, because by [16, Theorem 2.2.4] each
measure ` ∈ MC(𝑀) is characterized by the integrals

∫
𝑀
𝑒−𝑖2 𝑗 𝜋 \ 𝑤𝑘,_(𝑥)`(𝑑b).) More generally,

if the positive measure a is (possibly) unbounded and the equality (5.45) holds for some measure
e𝑘 (a) ∈ P(𝑀), then we will also say that e𝑘 (a) is a Δ𝑘-Poisson measure associated with a.

Definition 5.40. A family {`𝑡 }𝑡≥0 ⊂ P(𝑀) is a Δ𝑘 -convolution semigroup if it satisfies the conditions

`𝑠 ∗
𝑘
`𝑡 = `𝑠+𝑡 for all 𝑠, 𝑡 ≥ 0, `0 = 𝛿 (0,0) and `𝑡

𝑤−→ 𝛿 (0,0) as 𝑡 ↓ 0.

The Δ𝑘-convolution semigroup {`𝑡 }𝑡≥0 is said to be Gaussian if `1 is a Δ𝑘-Gaussian measure.

A measure ` ∈ MC(𝑀) is said to be symmetric if `(𝐵) = `(�̌�) for all Borel subsets 𝐵 ⊂ 𝑀,
where �̌� is the image of 𝐵 under the mapping (𝑥, \) ↦→ (𝑥, 1 − \). One can show that for each
symmetric measure ` ∈ P𝑘,id there exists a unique Δ𝑘-convolution semigroup {`𝑡 }𝑡≥0 such that
`1 = `; consequently, there is a one-to-one correspondence between symmetric Δ𝑘 -infinitely divisible
measures and symmetric Δ𝑘 -convolution semigroups. (The proof is similar to that of the corresponding
result for the ordinary convolution on the torus, see also [16, Theorem 5.3.4].)

Proposition 5.41 (Lévy-Khintchine type representation). Any symmetric measure ` ∈ P𝑘,id can be
represented as

` = 𝛾 ∗
𝑘

e𝑘 (a)

where e𝑘 (a) is theΔ𝑘 -Poisson measure associated with the𝜎-finite positive measure a = lim
𝑡↓0
( 1
𝑡
`𝑡 ) |𝑀\(0,0)

and 𝛾 is a Δ𝑘-Gaussian measure.
The representation is unique, i.e. if ` = �̃� ∗

𝑘
e𝑘 (ã) for a 𝜎-finite positive measure ã and a Gaussian

measure �̃�, then a = ã and 𝛾 = �̃�.

Proof. This is a particular case of a Lévy-Khintchine type theorem on commutative hypergroups
stated in [152, Theorems 4.4 and 4.7]. (Note also that by [183, Theorem 3.1] the definition of Gaussian
measures proposed in [152] is equivalent to the definition of Δ𝑘-Gaussian measures presented
above.) �

Exactly as in the previous chapters (cf. Propositions 3.34 and 4.39), every convolution semigroup
determines a transition semigroup with the expected Feller-type properties:
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Proposition 5.42. If {`𝑡 }𝑡≥0 is a Δ𝑘-convolution semigroup, then the family {𝑇𝑡 }𝑡≥0 defined by

(𝑇𝑡ℎ) (b) := (T `𝑡
𝑘
ℎ) (b) =

∫
𝑀

ℎ 𝑑 (𝛿 b ∗
𝑘
`𝑡 )

is a conservative Feller semigroup such that the identity 𝑇𝑡T a𝑘 𝑓 = T a
𝑘
𝑇𝑡 𝑓 holds for all 𝑡 ≥ 0 and

a ∈ MC(𝑀). The restriction
{
𝑇𝑡 |Cc (𝑀 )

}
can be extended to a strongly continuous contraction

semigroup {𝑇 (𝑝)𝑡 } on the space 𝐿 𝑝 (𝑀) (1 ≤ 𝑝 < ∞). Moreover, the operators 𝑇 (𝑝)𝑡 are given by
𝑇
(𝑝)
𝑡 𝑓 = T `𝑡

𝑘
𝑓 ( 𝑓 ∈ 𝐿 𝑝 (𝑀)).

Our next result shows the heat semigroup generated by the Neumann Laplacian has the convolution
semigroup property, in the sense that its action can be represented in terms of integrals with respect to
Δ𝑘-convolution semigroups:

Proposition 5.43. For 𝑘 ∈ Z, let m0 ∈ MC(𝑀) be an absolutely continuous measure with respect to
Ω𝑔 whose density function 𝑞m0 belongs to 𝐿2(𝑀) ∩ 𝐿1(𝑀, Z𝑘 ·Ω𝑔), and such that (m̂0) 𝑗 = 0 for each
𝑗 ≠ 𝑘 . Then there exists a Gaussian Δ𝑘-convolution semigroup {`𝑘𝑡 }𝑡≥0 such that∫

𝑀

(𝑒𝑡Δ𝑁 ℎ) (b)m0(𝑑b) =
∫
𝑀

ℎ(b)
Z𝑘 (𝑥)

(
`𝑘𝑡 ∗

𝑘
(Z𝑘 ·m0)

)
(𝑑b)

(
ℎ ∈ 𝐿2(𝑀), 𝑡 ≥ 0

)
. (5.46)

Proof. For 𝑡 > 0, let `𝑘𝑡 = 𝛼𝑘𝑡 ⊗𝛿0, where 𝛼𝑘𝑡 (𝑑𝑥) = 𝑝ℓ𝑘 (𝑡, 0, 𝑥)𝐵𝑘 (𝑥)𝑑𝑥 are the transition probabilities
of the diffusion process generated by the Sturm-Liouville operator ℓ𝑘 (cf. Proposition 4.44). We recall
from the proof of Corollary 5.29 that we have 𝑒−𝑡_ ∈ 𝐿2(𝜌𝑘) and 𝛼𝑘𝑡 (𝑑𝑥) = (F −1

ℓ𝑘
𝑒−𝑡·) (𝑥)𝐵𝑘 (𝑥)𝑑𝑥,

where F −1
ℓ𝑘
𝑒−𝑡· ∈ 𝐿1(R+, 𝐵𝑘 (𝑥)𝑑𝑥).

Our first claim is that the measure 1
Z𝑘
(`𝑘𝑡 ∗

𝑘
(Z𝑘 ·m0)) is absolutely continuous with respect to Ω𝑔

and that its density function 𝑞`𝑘𝑡 ,m0
belongs to 𝐿2(𝑀). Note first that, by assumption, (m̂0) 𝑗 = 0 for

𝑗 ≠ 𝑘 , and therefore (e.g. by Proposition 5.35(ii)) m0 = (m̂0)𝑘 ⊗ 𝜘𝑘 , where 𝜘𝑘 is the measure on T
defined by 𝜘𝑘 (𝑑\) = 𝑒𝑖2𝑘 𝜋\𝑑\. We thus have

`𝑘𝑡 ∗
𝑘
(Z𝑘 ·m0) = (𝛼𝑘𝑡 �

𝑘
(Z𝑘 · (m̂0)𝑘)) ⊗ 𝜘𝑘 .

The absolute continuity assumption on m0 implies that (m̂0)𝑘 (𝑑𝑥) = (𝑞m0)𝑘 (𝑥)𝐴(𝑥)𝑑𝑥 with (𝑞m0)𝑘 ∈
𝐿2(𝐴), so we can now use the properties of the convolution �

𝑘
(see Proposition 4.61) to conclude that

1
Z𝑘
(𝛼𝑘𝑡 �

𝑘
(Z𝑘 · (m̂0)𝑘)) is also absolutely continuous with respect to 𝐴(𝑥)𝑑𝑥 with density belonging to

𝐿2(𝐴), and this proves the claim.
Let ℎ ∈ 𝐿2(𝑀). Combining the above with Proposition 5.27, we may now compute∫
𝑀

(𝑒𝑡Δ𝑁 ℎ) (b)m0(𝑑b) =
〈
𝑒𝑡Δ𝑁 ℎ, 𝑞m0

〉
𝐿2 (𝑀 ) =

∑
𝑗∈Z

〈
F (𝑒𝑡Δ𝑁 ℎ) 𝑗 , (F 𝑞m0) 𝑗

〉
𝐿2 (𝜌 𝑗)

=
〈
𝑒−𝑡·(F ℎ)−𝑘 , (F 𝑞m0)−𝑘

〉
𝐿2 (𝜌𝑘) =

〈
(F ℎ)−𝑘 , (F `𝑘𝑡 ) (−𝑘, ·) (F 𝑞m0)−𝑘

〉
𝐿2 (𝜌𝑘)

=
∑
𝑗∈Z

〈
(F ℎ) 𝑗 , (F 𝑞`𝑘𝑡 ,m0

) 𝑗
〉
𝐿2 (𝜌 𝑗) =

〈
ℎ, 𝑞`𝑘𝑡 ,m0

〉
𝐿2 (𝑀 )
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=

∫
𝑀

ℎ(b)
Z𝑘 (𝑥)

(
`𝑘𝑡 ∗

𝑘
(Z𝑘 ·m0)

)
(𝑑b)

so that (5.46) holds. �

One can check that the Dirichlet form (E, 𝐻1(𝑀)) is regular (see [21, 63]). As observed in
Section 5.1, it follows that there exists a Hunt process {𝑊𝑡 }𝑡≥0 with state space 𝑀 whose transition
semigroup {𝑃𝑡 }𝑡≥0 is a quasi-continuous version of {𝑒𝑡Δ𝑁 }. The process {𝑊𝑡 } is called the reflected
Brownian motion on the manifold (𝑀, 𝑔).

The convolution semigroup property (5.46) can be rewritten as

Em0 [ℎ(𝑊𝑡 )] =
∫
𝑀

ℎ 𝑑 ( ˜̀𝑘𝑡 ⋆
𝑘

m0),
(
ℎ ∈ 𝐿2(𝑀), 𝑡 ≥ 0

)
(5.47)

where:

• Em0 is the expectation operator of the reflected Brownian motion with initial distribution
m0 ∈ MC(𝑀) (defined as Em0 [ℎ(𝑊𝑡 )] :=

∫
𝑀
E b [ℎ(𝑊𝑡 )]m0(𝑑b), where E b is the usual

expectation operator for the process started at the point b);

• The convolution ⋆
𝑘

is defined by a1⋆
𝑘
a2 = 1

Z𝑘

(
(Z𝑘·a1) ∗

𝑘
(Z𝑘·a2)

)
or, equivalently, by (a1 ⋆

𝑘
a2) (·) =∫

𝑀

∫
𝑀
𝛾𝑘, b1, b2

(·) a1(𝑑b1) a2(𝑑b2), with 𝛾𝑘, b1, b2
given as in (5.41);

• ˜̀𝑘𝑡 := `𝑘𝑡
Z𝑘

(so that ˜̀𝑘𝑡 satisfies the convolution semigroup property with respect to ⋆
𝑘
).

Corollary 5.44. Let m0 ∈ MC(𝑀) be an absolutely continuous measure with respect to Ω𝑔 whose
density function 𝑞m0 belongs to 𝐿2(𝑀) ∩

(⋂∞
𝑘=0 𝐿

1(𝑀, Z𝑘 ·Ω𝑔)
)
. Then there exist Gaussian Δ𝑘-

convolution semigroups {`𝑘𝑡 }𝑡≥0 such that∫
𝑀

(𝑒𝑡Δ𝑁 ℎ) (b)m0(𝑑b) =
∑
𝑘∈Z

∫
𝑀

𝑒𝑖2𝑘 𝜋\
ℎ̂𝑘 (𝑥)
Z𝑘 (𝑥)

(
`𝑘𝑡 ∗

𝑘
(Z𝑘 ·m0,−𝑘)

)
(𝑑b)

(
ℎ ∈ 𝐿2(𝑀), 𝑡 ≥ 0

)
where m0,𝑘 = (m̂0)𝑘 ⊗ 𝜘𝑘 and ℎ̂𝑘 is given as in (5.37).

Proof. We have∫
𝑀

𝑒𝑡Δ𝑁

(∑
𝑘∈Z

𝑒𝑖2𝑘 𝜋\ ℎ̂𝑘 (𝑥)
)

m0(𝑑b) =
∑
𝑘∈Z

∫
𝑀

𝑒𝑡Δ𝑁
(
𝑒𝑖2𝑘 𝜋\ ℎ̂𝑘 (𝑥)

) (
(m̂0)−𝑘 ⊗ 𝜘−𝑘

)
(𝑑b).

Since each measure (m̂0)−𝑘 ⊗ 𝜘−𝑘 satisfies
(
(m̂0)−𝑘 ⊗ 𝜘−𝑘

)
�̂�
= 0 for 𝑗 ≠ −𝑘 , the corollary follows by

applying Proposition 5.43 to each term in the right-hand side. �

The result of Proposition 5.43 can be extended to other Markovian semigroups whose generators
are functions of the Neumann Laplacian:

Proposition 5.45. For 𝑘 ∈ Z, let m0 ∈ MC(𝑀) be an absolutely continuous measure with respect to
Ω𝑔 whose density function 𝑞m0 belongs to 𝐿2(𝑀) ∩ 𝐿1(𝑀, Z𝑘 ·Ω𝑔), and such that (m̂0) 𝑗 = 0 for each
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𝑗 ≠ 𝑘 . Let 𝜓𝑘 be a function of the form

𝜓𝑘 (_) = 𝑐_ +
∫
R+
(1 − 𝑤𝑘,_(𝑥)) 𝜏(𝑑𝑥) (_ ≥ 0) (5.48)

where 𝑐 ≥ 0 and 𝜏 is a 𝜎-finite measure on R+ which is finite on the complement of any neighbourhood
of 0 and such that

∫
R+
(1 − 𝑤𝑘,_(𝑥)) 𝜏(𝑑𝑥) < ∞ for _ ≥ 0. Assume also that 𝑒−𝑡 𝜓𝑘 (·) ∈ 𝐿2(𝜌𝑘) for all

𝑡 > 0. Then there exists a Δ𝑘-convolution semigroup {`𝜓𝑘

𝑡 }𝑡≥0 such that∫
𝑀

(𝑒−𝑡 𝜓𝑘 (−Δ𝑁 )ℎ) (b)m0(𝑑b) =
∫
𝑀

ℎ(b)
Z𝑘 (𝑥)

(
`
𝜓𝑘

𝑡 ∗
𝑘
(Z𝑘 ·m0)

)
(𝑑b)

(
ℎ ∈ 𝐿2(𝑀), 𝑡 ≥ 0

)
(5.49)

where 𝑒−𝑡 𝜓𝑘 (−Δ𝑁 ) is defined via the usual spectral calculus.

We observe that, since 𝑒−𝑡_ ∈ 𝐿2(𝜌𝑘) for all 𝑡 > 0, the assumption 𝑒−𝑡 𝜓𝑘 (·) ∈ 𝐿2(𝜌𝑘) is
automatically satisfied whenever 𝑐 > 0 in the right hand side of (5.48).

Proof. By Theorem 4.37, there exists a �
𝑘
-convolution semigroup {𝛼𝜓𝑘

𝑡 }𝑡≥0 such that (Fℓ𝑘 𝛼
𝜓𝑘

𝑡 ) (_) =

𝑒−𝑡 𝜓𝑘 (_) . Using Theorem 2.30 and the assumption 𝑒−𝑡 𝜓𝑘 (·) ∈ 𝐿2(𝜌𝑘), we deduce that 𝛼𝜓𝑘

𝑡 (𝑑𝑥) =
(F −1
ℓ𝑘
𝑒−𝑡 𝜓𝑘 (·) ) (𝑥)𝐵𝑘 (𝑥)𝑑𝑥, where F −1

ℓ𝑘
𝑒−𝑡 𝜓𝑘 (·) ∈ 𝐿1(R+, 𝐵𝑘 (𝑥)𝑑𝑥). The result can now be proved

using the same argument as in Proposition 5.43 above. �

The sesquilinear form E𝜓𝑘 associated with the Markovian self-adjoint operator−𝜓𝑘 (−Δ𝑁 ), defined
as

D(E𝜓𝑘 ) = D
(√
𝜓𝑘 (−Δ𝑁 )

)
, E𝜓𝑘 (𝑢, 𝑣) =

〈√
𝜓𝑘 (−Δ𝑁 ) 𝑢,

√
𝜓𝑘 (−Δ𝑁 ) 𝑣

〉
𝐿2 (𝑀 ) ,

is a regular Dirichlet form on 𝐿2(𝑀). (We can prove this claim using Proposition 4.34 and the proof
of Proposition 3.1 of [128].) Accordingly, there exists a Hunt process {𝑋𝑡 }𝑡≥0 with state space 𝑀
such that (𝑒−𝑡 𝜓𝑘 (−Δ𝑁 )ℎ) (b) = E b [ℎ(𝑋𝑡 )], and therefore the convolution semigroup property (5.49)
translates into the Lévy-like representation

Em0 [ℎ(𝑋𝑡 )] =
∫
𝑀

ℎ 𝑑 ( ˜̀𝜓𝑘

𝑡 ⋆
𝑘

m0)
(
ℎ ∈ 𝐿2(𝑀), 𝑡 ≥ 0

)
for the law of the process {𝑋𝑡 }. (Here m0 is any complex measure satisfying the assumptions in
Proposition 5.45.) The representation (5.47) for the law of reflected Brownian motion on (𝑀, 𝑔) is a
particular case of this result.

Remark 5.46. In general we cannot state a counterpart of Corollary 5.44 for semigroups generated
by functions of the Neumann Laplacian. Indeed, in order to derive such a result for the semigroup
{𝑒−𝑡 𝜓 (−Δ𝑁 ) } one would need that the function 𝜓(_) could be written, for each 𝑘 = 0, 1, . . ., as
𝑐𝑘_+

∫
(1− �̃�𝑘,_) 𝑑𝜏𝑘 with 𝑐𝑘 ≥ 0 and 𝜏𝑘 measures satisfying the conditions stated in Proposition 5.45,

but there are no reasons to expect that this is possible other than in the trivial case 𝜓(_) = 𝑐_. (See
[198] for a related investigation on the set of stable infinitely divisible measures for the hypergroup
(R+0 ,�𝑘), which was shown to depend nontrivially on the eigenfunctions of the operator ℓ𝑘 .)
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5.4.4 Special cases

We now present some special cases in which the theory of special functions provides further information
on the eigenfunction expansion of Δ𝑁 and the associated convolution structure. We start with an
example where the solutions 𝑉𝑘,_ can be expressed in terms of the Whittaker function of the second
kind, and the Fourier decomposition gives rise to a family of Sturm-Liouville operators which are
generators of drifted Bessel processes.

Example 5.47. Consider the case 𝐴(𝑥) =
√
𝑥, so that the Riemannian metric on 𝑀 = R+ × T is

𝑔 = 𝑑𝑥2 + 𝑥 𝑑\2, the volume form is 𝑑Ω𝑔 =
√
𝑥 𝑑𝑥𝑑\ and the Laplace-Beltrami operator on (𝑀, 𝑔) is

Δ = 𝜕2
𝑥 + 1

2𝑥 𝜕𝑥 +
1
𝑥
𝜕2
\
.

(i) The unique solution of the boundary value problem (5.29) is given by

𝑉𝑘,_(𝑥, \) = 𝑒𝑖2𝑘 𝜋\ (2𝑖𝑥
√
_)− 1

4 𝑀2(𝑘𝜋)2𝑖√
_

,− 1
4
(2𝑖𝑥
√
_). (5.50)

where 𝑀𝛼,a (𝑧) is the Whittaker function of the first kind.

One can verify this by noting that the Sturm-Liouville equation −Δ𝑘 𝑤 = _𝑤 is equivalent, up to a
change of variables, to 𝔏𝑘𝑣 = _̃𝑣, where 𝔏𝑘 = − 𝑑2

𝑑𝑥2 −
( 1

2𝑥 + (4𝑘𝜋)
2) 𝑑
𝑑𝑥

and _̃ = _ + 4(2𝑘𝜋)4. The
solutions of 𝔏𝑘𝑣 = _̃𝑣 were described in Example 2.40.

(ii) Let𝜎𝑘 (_) := 2−3/2𝜋−2_−1/4 exp
(
−2𝑘2𝜋3
√
_

) ��Γ( 1
4 −

2(𝑘 𝜋)2𝑖√
_

) ��2. The integral operator F : 𝐿2(𝑀) →⊕
𝑘∈Z 𝐿

2(R+, 𝜎𝑘 (_)𝑑_) defined by

(F ℎ)𝑘 (_) :=
∫ ∞

0

∫ 1

0
ℎ(𝑥, \) 𝑒−𝑖2𝑘 𝜋\𝑑\ (2𝑖𝑥

√
_)− 1

4 𝑀2(𝑘𝜋)2𝑖√
_

,− 1
4
(2𝑖𝑥
√
_) 𝑥1/2𝑑𝑥

is a spectral representation of the Laplace-Beltrami operator (cf. Proposition 5.27), and its
inverse is given by

(F−1{𝜑𝑘 })(b) =
∑
𝑘∈Z

∫ ∞

0
𝜑𝑘 (_) 𝑒𝑖2𝑘 𝜋\ (2𝑖𝑥

√
_)− 1

4 𝑀2(𝑘𝜋)2𝑖√
_

,− 1
4
(2𝑖𝑥
√
_) 𝜎𝑘 (_)𝑑_.

To obtain this result we just need to recall from Proposition 5.27 that (F ℎ)𝑘 (_) ≡
(
FΔ𝑘

ℎ̂𝑘
)
(_) and

(F−1{𝜑𝑘 })(b) ≡
∑
𝑘∈Z 𝑒

𝑖2𝑘 𝜋\ (F −1
Δ𝑘
𝜑𝑘

)
(𝑥), and then observe that the eigenfunction expansion of Δ𝑘

can be deduced from that of 𝔏𝑘 (Example 2.40) by elementary changes of variable.

(iii) For each 𝑘 ∈ N0 and b 𝑗 = (𝑥 𝑗 , \ 𝑗) ∈ 𝑀 ( 𝑗 = 1, 2) there exists a positive measure 𝛾𝑘, b1, b2
on

𝑀 such that for all 𝜏 ∈ C the solutions (5.50) satisfy

𝑒𝑖2𝑘 𝜋 (\1+\2) (2𝑖𝜏𝑥1𝑥2)−
1
4 𝑀2(𝑘𝜋)2𝑖

𝜏
,− 1

4
(2𝑖𝑥1𝜏) 𝑀2(𝑘𝜋)2𝑖

𝜏
,− 1

4
(2𝑖𝑥2𝜏)

=

∫
𝑀

𝑒𝑖2𝑘 𝜋\3 𝑥
− 1

4
3 𝑀2(𝑘𝜋)2𝑖

𝜏
,− 1

4
(2𝑖𝑥3𝜏) 𝛾𝑘, b1, b2

(𝑑b3).

The support of measure 𝛾𝑘, b1, b2
is the set [|𝑥1 − 𝑥2 |, 𝑥1 + 𝑥2] × {\1 + \2}.
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This product formula is a particular case of Proposition 5.31. One should notice that 𝛾𝑘, b1, b2
(𝑑b) =

𝑒` (𝑥1+𝑥2−𝑥3) a𝑥1,𝑥2 (𝑑𝑥3) 𝛿\1+\2 (𝑑\3), where a𝑥1,𝑥2 is the measure of the product formula (4.53) (with
parameters 𝛼 = 1

2 and ` = 2(2𝑘𝜋)4).

According to [21], one can formally interpret the manifold (𝑀, 𝑔) as a cone-like surface of revolution
S = {(𝑡, 𝑟 (𝑡) cos \, 𝑟 (𝑡) sin \) | 𝑡 > 0, \ ∈ T} with profile 𝑟 (𝑡) ∼

√
𝑡 as 𝑡 ↓ 0. The properties of self-

adjoint extensions of the Laplace-Beltrami operator (and the corresponding Markovian semigroups)
on such cone-like manifolds have been widely studied, see [21] and references therein. As a particular
case of Corollary 5.44, we obtain the following convolution semigroup property for the heat semigroup
generated by the Neumann realization of the Laplace-Beltrami operator on (𝑀, 𝑔):

(iv) If m0 ∈ MC(𝑀) satisfies the absolute continuity assumption of Corollary 5.44, then the
transition probabilities of the reflected Brownian motion {𝑊𝑡 } on the manifold (𝑀, 𝑔) with
initial distribution m0 can be written as

Em0 [ℎ(𝑊𝑡 )] ≡
∫
𝑀

(𝑒𝑡Δ𝑁 ℎ) (b)m0(𝑑b) =
∑
𝑘∈Z

∫
𝑀

𝑒𝑖2𝑘 𝜋\ ℎ̂𝑘 (𝑥)
(˜̀𝑘𝑡 ⋆

𝑘
m0,−𝑘

)
(𝑑b) (5.51)

where {˜̀𝑘𝑡 }𝑡≥0 is a convolution semigroup with respect to the convolution ⋆
𝑘

defined by

(` ⋆
𝑘
a) (·) =

∫
𝑀

∫
𝑀
𝛾𝑘, b1, b2

(·) `(𝑑b1) a(𝑑b2) and the measures m0,−𝑘 are defined as in

Corollary 5.44.

The convolution semigroups {˜̀𝑘𝑡 } are, by definition, of the form ( 𝛼
𝑘
𝑡

Z𝑘
) ⊗ 𝛿0, where {𝛼𝑘𝑡 } is the law of

the one-dimensional diffusion process (started at 𝑥 = 0) generated by the Sturm-Liouville operator
ℓ𝑘 defined in (5.32). The equations ℓ𝑘𝑢 = _𝑢 and 𝔏𝑘𝑣 = _̃𝑣 are related via a change of variables;
therefore, the identity (5.51) can be intepreted as a decomposition of the law of {𝑊𝑡 } in terms of
transition probabilities of (one-dimensional) drifted Bessel processes.

Finally, we call attention to the following convolution semigroup representation for Markovian
semigroups generated by fractional powers of the Laplace-Beltrami operator:

(v) Let m0 ∈ MC(𝑀) satisfy the assumptions of Proposition 5.45 and (m̂0) 𝑗 = 0 for each 𝑗 ≠ 0.
Let 0 < 𝑞 < 1. Then the Markovian semigroup generated by the operator −(−Δ𝑁 )𝑞 is such that∫

𝑀

(𝑒−𝑡 (−Δ𝑁 )𝑞ℎ) (b)m0(𝑑b) =
∫
𝑀

ℎ(b)
(
a𝑞,𝑡 ⋆

0
m0

)
(𝑑b)

where {a𝑞,𝑡 }𝑡≥0 is a ⋆
0
-convolution semigroup.

This representation can be obtained from Proposition 5.45 after observing that the convolution ⋆
0

is
(modulo the product with the trivial convolution on the torus) the Kingman convolution with parameter
[ = − 1

4 , so that by Theorem 2.20 the function 𝜓0(_) = _𝑞 belongs to the set of admissible functions
of the form (5.48).

Example 5.48. Consider now the more general case 𝐴(𝑥) = 𝑥𝛽 with 0 < 𝛽 < 1. The corresponding
Riemannian metric, 𝑔 = 𝑑𝑥2 + 𝑥2𝛽𝑑\2, endows the space 𝑀 = R+ × T with a metric structure which,
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like in the previous example, can be formally interpreted as that of a surface of revolution with profile
𝑟 (𝑡) ∼ 𝑡𝛽 as 𝑡 ↓ 0.

If 𝛽 ≠ 1
2 , the solution of the boundary value problem (5.29) and the spectral measures 𝜌𝑘

(𝑘 = 1, 2, . . .) can no longer be written in closed form. Notwithstanding, it is clear that the convolution
semigroup property of the Laplace-Beltrami operator Δ = 𝜕2

𝑥 +
𝛽

𝑥
𝜕𝑥 + 1

𝑥2𝛽 𝜕
2
\

on the cone-like manifold
(𝑀, 𝑔), stated in property (iv) of the previous example, continues to hold here. Moreover, the
convolution ⋆

0
is now the Kingman convolution with parameter [ =

𝛽−1
2 , and therefore the convolution

semigroup representation for {𝑒−𝑡 (−Δ𝑁 )𝑞 }𝑡≥0, formulated in property (v) of the previous example,
extends to the present setting without any essential change.

In the latter example, the limiting case 𝛽 = 0 corresponds to the trivial (product) metric on the
cylinder R+ × T, for which the convolutions introduced in the previous subsections have a particularly
simple structure:

Example 5.49. If 𝐴 ≡ 1, the Fourier decomposition (5.28) yields the Sturm-Liouville operators
Δ𝑘 = 𝜕

2
𝑥 − (2𝑘𝜋)2. The eigenfunction expansion (5.33)–(5.34) is simply a composition of a Fourier

series in the variable \ and a cosine Fourier transform in the variable 𝑥,

(F ℎ)𝑘 (_) =
∫ ∞

0

∫ 1

0
ℎ(b)𝑒−𝑖2𝑘 𝜋\𝑑\ cos(𝑥_̃𝑘) 𝑑𝑥 (_̃𝑘 =

√
_ − (2𝑘𝜋)2)

(F−1{𝜑𝑘 })(b) =
1
𝜋

∑
𝑘∈Z

∫ ∞

(2𝑘 𝜋)2
𝜑𝑘 (_)𝑒𝑖2𝑘 𝜋\ cos(𝑥_̃𝑘) _̃−1

𝑘 𝑑_,

and the product formula 𝑉𝑘,_(b1)𝑉𝑘,_(b2) =
∫
𝑀
𝑉𝑘,_ 𝑑𝛾𝑘, b1, b2

(where 𝑉𝑘,_(b1) = 𝑒−𝑖2𝑘 𝜋\ cos(𝑥_̃𝑘))
holds for the measures 𝛾𝑘, b1, b2

= 1
2 (𝛿 |𝑥1−𝑥2 | +𝛿𝑥1+𝑥2) ⊗ 𝛿\1+\2 , which do not depend on 𝑘 . Accordingly,

the convolution ⋆ ≡ ⋆
𝑘

has the product structure

𝛿 b1 ⋆ 𝛿 b2 = (𝛿𝑥1 �sym
𝛿𝑥2) ⊗ (𝛿\1 �

T
𝛿\2)

where �
sym

is the symmetric convolution (Example 4.52(a)) and �
T

is the ordinary convolution on the
torus. In turn, the convolutions ∗

𝑘
of Definition 5.32 are, modulo the product with the convolution on T,

identical to the convolutions of the so-called cosh hypergroups (as defined in [16, Example 3.5.71]).

We proceed with another example where the family of Δ𝑘-convolutions on (𝑀, 𝑔) yields a
generalization of a well-known one-dimensional generalized convolution:

Example 5.50. Consider 𝐴(𝑥) = (sinh 𝑥)2𝛼+1(cosh 𝑥)2𝛽+1, which satisfies condition (5.24) provided
that −1

2 ≤ 𝛽 ≤ 𝛼 < 0 with 𝛼 ≠ − 1
2 . The first component in the Fourier decomposition of the Laplace-

Beltrami operator is the Sturm-Liouville operator Δ0 = 𝜕2
𝑥 + [(2𝛼 + 1) coth(𝑥) + (2𝛽 + 1) tanh(𝑥)]𝜕𝑥 ,

hence the convolution ⋆
0

is the product of the convolution of the Jacobi hypergroup (Example 4.52(e))
with the ordinary convolution on the torus.

The results of the previous subsections show that the Sturm-Liouville solutions determined by
the operators Δ𝑘 = Δ0 − (2𝑘𝜋)2(sinh 𝑥)−4𝛼−2(cosh 𝑥)−4𝛽−2 also admit a product formula, whose
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measures are also supported on [|𝑥1 − 𝑥2 |, 𝑥1 + 𝑥2]. The convolution structure associated with the
Laplace-Beltrami operator (5.25) on (𝑀, 𝑔) is therefore a natural two-dimensional extension of the
Jacobi hypergroup.

In all the examples above, the support of the convolution 𝛿 b1 ∗
𝑘
𝛿 b2 = a𝑘, b1, b2 does not depend on

the parameter 𝑘 . Our final example shows that this is not always the case:

Example 5.51. Let 𝜙 ∈ C∞c (R+0) be a nonnegative decreasing function with supp(𝜙) = [0, 𝑆] and
let 𝐴(𝑥) = exp(

∫ 𝑥
0 𝜙(𝑦)𝑑𝑦). By definition we have 𝛿 b1 ∗

𝑘
𝛿 b2 = 𝜋

[𝑘 ]
𝑥1,𝑥2 ⊗ 𝛿\1+\2 , where 𝜋 [𝑘 ]𝑥1,𝑥2 is the

measure of the product formula for the Sturm-Liouville solutions determined by ℓ𝑘 = − 1
𝐵𝑘

𝑑
𝑑𝑥
(𝐵𝑘 𝑑𝑑𝑥 ).

It follows from Proposition 4.48 that the supports of the measures 𝜋 [𝑘 ]𝑥1,𝑥2 are given by

supp(𝜋 [0]𝑥1,𝑥2) =

[|𝑥1 − 𝑥2 |, 𝑥1 + 𝑥2], min{𝑥1, 𝑥2} ≤ 2𝑆,

[|𝑥1 − 𝑥2 |, 2𝑆 + |𝑥1 − 𝑥2 |] ∪ [𝑥1 + 𝑥2 − 2𝑆, 𝑥1 + 𝑥2], min{𝑥1, 𝑥2} > 2𝑆.

and
supp(𝜋 [𝑘 ]𝑥1,𝑥2) = [|𝑥1 − 𝑥2 |, 𝑥1 + 𝑥2], 𝑘 ≥ 1.

5.4.5 Product formulas and convolutions associated with elliptic operators on subsets
of R2

In this subsection we show that the techniques used above also allow us to construct families of
convolution-like operators for elliptic differential operators on R+ × 𝐼 ⊂ R2 of the general form

G℘ = 𝜕2
𝑥 +

𝐴′(𝑥)
𝐴(𝑥) 𝜕𝑥 +

1
𝐴(𝑥)2

℘𝑧 , (𝑥 ∈ R+, 𝑧 ∈ 𝐼)

where ℘𝑧 = 1
𝔯(𝑧)

(
𝔭(𝑧)𝜕2

𝑧 + 𝔭′(𝑧)𝜕𝑧
)

is a Sturm-Liouville operator which admits an associated
generalized convolution. As in Section 2.4 we assume that the coefficients of ℘ are such that 𝔭, 𝔯 > 0
on (𝑎, 𝑏), 𝔭, 𝔯 are locally absolutely continuous on (𝑎, 𝑏) and

∫ 𝑐
𝑎

∫ 𝑐
𝑦

𝑑𝑧
𝔭(𝑧) 𝔯(𝑦)𝑑𝑦 < ∞. The coefficient

𝐴(𝑥) is assumed to satisfy the conditions (5.24) and lim𝑥→∞ 𝐴(𝑥) = ∞.
Let us fix some notation: set 𝐼 = [𝑎, 𝑏) if 𝑏 is an exit or natural endpoint of ℘ and 𝐼 = [𝑎, 𝑏] if the

endpoint 𝑏 is regular or entrance. We shall write 𝑀 = R+0 × 𝐼 and Ω℘
(
𝑑 (𝑥, 𝑧)

)
= 𝐴(𝑥)𝑑𝑥 𝔯(𝑧)𝑑𝑧. We

denote by 𝜓[ the unique solution of −℘𝑧 (𝑢) = [𝑢, 𝑢(𝑎) = 1, (𝔭𝑢′) (𝑎) = 0 (cf. Lemma 2.26), and the
eigenfunction expansion for the Neumann realization of ℘ (cf. Theorem 2.30) will be denoted as

(J℘𝑔) ([) :=
∫ 𝑏

𝑎

𝑔(𝑧) 𝜓[ (𝑧) 𝔯(𝑧)𝑑𝑧,

(J−1
℘ 𝜑) (𝑧) :=

∫
R+0

𝜑([) 𝜓[ (𝑧) 𝜎(𝑑[).

If the endpoint 𝑏 is regular, entrance or exit, then the inverse transform is written as (J−1
℘ 𝜑) (𝑧) =∑∞

𝑘=1
1

∥𝜓[𝑘
∥2 𝜑([𝑘) 𝜓[𝑘 (𝑧), where the [𝑘 are eigenvalues of ℘ (cf. Proposition 2.32). In these

conditions, an application of the eigenfunction expansion to functions ℎ(𝑥, 𝑧) ∈ 𝐿2(𝑀,Ω℘) yields the
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decomposition

𝐿2(𝑀,Ω℘) =
∞⊕
𝑘=1

𝐻
℘
[𝑘 , 𝐻

℘
[ := {𝜓[ (𝑧)𝑣(𝑥) | 𝑣 ∈ 𝐿2(𝐴)}.

A similar expansion also holds if 𝑏 is natural, with the direct sums replaced by direct integrals [60,
§7.4]. Note also that if 𝑢 ∈ 𝐻℘[ ∩ C∞c (𝑀) then G℘𝑢 = G[𝑘𝑢, where G[ := 𝜕2

𝑥 +
𝐴′ (𝑥)
𝐴(𝑥) 𝜕𝑥 −

[

𝐴(𝑥)2 .

The following result is a counterpart of Proposition 5.27:

Proposition 5.52. For each (_, [) ∈ C × R+0 , there exists a unique solution 𝑉℘
_,[
∈ {𝜓[ (𝑧)𝑤(𝑥) | 𝑤 ∈

C(R+0)} of the boundary value problem

−G℘𝑤 = _𝑤, 𝑤(0, 𝑧) = 𝜓[ (𝑧), 𝑤 [1] (0, 𝑧) = 0.

There exists a locally finite positive Borel measure 𝜌℘ on (R+0)
2 such that the map ℎ ↦→ F℘ℎ, where

(F℘ℎ) (_, [) :=
∫
𝑀

ℎ(𝑥, 𝑧)𝑉℘
_,[
(𝑥, 𝑧)Ω℘(𝑑 (𝑥, 𝑧))

(
_, [ ≥ 0

)
, (5.52)

is an isometric isomorphism F℘ : 𝐿2(𝑀,Ω℘) −→ 𝐿2((R+0)
2, 𝜌℘) whose inverse is given by

(F−1
℘ Φ) (𝑥, 𝑧) =

∫
(R+0 )2

Φ(_, [)𝑉℘
_,[
(𝑥, 𝑧) 𝜌℘(𝑑 (_, [)). (5.53)

The integrals in (5.52) and (5.53) are understood as limits in 𝐿2((R+0)
2, 𝜌℘) and 𝐿2(𝑀,Ω℘) respec-

tively.

If 𝑏 is regular, entrance or exit, then 𝜌℘(Λ1 × Λ2) =
∑
[𝑘 ∈Λ2

1
∥𝜓[𝑘

∥2 𝜌
℘
[𝑘 (Λ1), where 𝜌℘[ is the

spectral measure of (the Neumann realization of) the Sturm-Liouville operator G[ , and the expansion
(5.52)–(5.53) reduces to

F℘ : 𝐿2(𝑀,Ω℘) −→
∞⊕
𝑘=1

𝐿2(R+0 , 𝜌
℘
[𝑘 ), F℘ℎ ≡

(
(F℘ℎ) (·, [1), (F℘ℎ) (·, [2), . . .

)
(F−1

℘ {𝜑𝑘 })(𝑥, 𝑧) =
∞∑
𝑘=1

1
∥𝜓[𝑘 ∥2

∫
R+0

𝜑𝑘 (_)𝑉℘_,[𝑘 (𝑥, 𝑧) 𝜌
℘
[𝑘 (𝑑_).

Proof. The result for 𝑏 regular, entrance or exit can be proved in a direct way using the same method
as in Proposition 5.27.

If 𝑏 is natural, start by considering the operator G℘ on the restricted domain 𝑀𝑁 = [0, 𝑁] × [𝑎, 𝑁],
where max{0, 𝑎} < 𝑁 < ∞. Applying first the eigenfunction expansion of the Sturm-Liouville
operator ℘ on the interval [𝑎, 𝑁] (with boundary condition 𝑢′(𝑁) = 0) and then the eigenfunction
expansion of the Sturm-Liouville operators G[ on [0, 𝑁] (also with 𝑢′(𝑁) = 0), we obtain a discrete
eigenfunction expansion of the form

(F℘,𝑁 ℎ) (_𝑘,𝑁 , [𝑘,𝑁 ) =
∫
𝑀𝑁

ℎ(𝑥, 𝑧)𝑉℘
_𝑘,𝑁 ,[𝑘,𝑁

(𝑥, 𝑧)Ω℘(𝑑 (𝑥, 𝑧))
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(F−1
℘,𝑁 {𝑐𝑘 })(𝑥, 𝑧) =

∞∑
𝑘=1

𝑐𝑘

∥𝑉_𝑘,𝑁 ,[𝑘,𝑁 ∥2
𝑉_𝑘,𝑁 ,[𝑘,𝑁 (𝑥, 𝑧).

Using the techniques of [23], one can show that in the limit 𝑁 →∞ this discrete expansion gives rise
to an eigenfunction expansion of the general form (5.52)–(5.53), where 𝜌℘ is the limiting spectral
measure. �

Proposition 5.53 (Product formula for𝑉℘
_,[

). Suppose that there exists a family {𝜋℘𝑧1,𝑧2}𝑧1,𝑧2∈𝐼 ⊂ P(𝐼)
such that

𝜓[ (𝑧1) 𝜓[ (𝑧2) =
∫
𝐼

𝜓[ 𝑑𝜋
℘
𝑧1,𝑧2

(
𝑧1, 𝑧2 ∈ 𝐼, [ ∈ supp(𝜎)

)
. (5.54)

Then for each [ ∈ supp(𝜎), b1 = (𝑥1, 𝑧1) ∈ 𝑀 and b2 = (𝑥2, 𝑧2) ∈ 𝑀 there exists a positive measure
𝛾
℘

[, b1, b2
on 𝑀 such that the product 𝑉℘

_,[
(b1)𝑉℘_,[ (b2) admits the integral representation

𝑉
℘

_,[
(b1)𝑉℘_,[ (b2) =

∫
𝑀

𝑉
℘

_,[
(b3) 𝛾℘[, b1, b2

(𝑑b3)
(
b1, b2 ∈ 𝑀, _ ∈ C, [ ∈ supp(𝜎)

)
. (5.55)

Notice that the assumption on the existence of the product formula (5.54) obviously holds if ℘
belongs to the family of Sturm-Liouville operators satisfying Assumption MP of Chapter 4. It also
holds for many Sturm-Liouville operators with discrete spectrum defined on compact intervals of R
(sufficient conditions are given in [12, pp. 312–314], [16, pp. 242–245]).

Proof. It is straightforward that 𝑉℘
_,[
(𝑥, 𝑧) = 𝜓[ (𝑧) Z[ (𝑥) 𝑤_,[ (𝑥), where Z[ (𝑥) := cosh

(√
[
∫ 𝑥

0
𝑑𝑦

𝐴(𝑦)
)

and 𝑤_,[ is the solution of

− 1
𝐵[
(𝐵[𝑤′) ′ = _𝑤, 𝑤(0) = 1, (𝐵[𝑤′) (0) = 0

where 𝐵[ (𝑥) = 𝐴(𝑥)Z[ (𝑥)2. Arguing as in the proof of Proposition 5.31, we deduce that the product
formula (5.55) holds for the positive measures

𝛾
℘

[, b1, b2
(𝑑b3) =

Z[ (𝑥1)Z[ (𝑥2)
Z[ (𝑥3)

a
℘

[, b1, b2
(𝑑b3)

where a℘
[, b1, b2

:= 𝜋 [[ ]𝑥1,𝑥2 ⊗ 𝜋
℘
𝑧1,𝑧2 and 𝜋 [[ ]𝑥1,𝑥2 is the measure of the product formula for �̃�_,[ . �

Definition 5.54. Suppose that there exists {𝜋℘𝑧1,𝑧2}𝑧1,𝑧2∈𝐼 ⊂ P(𝐼) such that (5.54) holds, and let
[ ∈ supp(𝜎), _ ≥ 0 and `, a ∈ MC(𝑀). The measure

(` ∗
[, ℘
a) (·) =

∫
𝑀

∫
𝑀

a
℘

[, b1, b2
(·) `(𝑑b1) a(𝑑b2)

is called the G[-convolution of the measures ` and a. The functions

(F℘ `) (_, [) =
∫
𝑀

𝑉
℘

_,[
(b)

Z[ (𝑥)
`(𝑑b) and (T `[,℘ℎ) (b) :=

∫
𝑀

ℎ 𝑑 (𝛿 b ∗
[, ℘

`)
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are, respectively, the G℘-Fourier transform of ` and the G[-translation of a function ℎ by `.

Unsurprisingly, the G[-convolution shares many properties with the Δ𝑘 -convolution studied in the
previous sections, among which the following:

Proposition 5.55. Assume that there exists {𝜋℘𝑧1,𝑧2}𝑧1,𝑧2∈𝐼 ⊂ P(𝐼) such that (5.54) holds. Assume
also that 𝑒−𝑡 ··· ∈ 𝐿2(R+0 , 𝜎) for all 𝑡 > 0.

(a) For each [ ∈ supp(𝜎), the space (MC(𝑀), ∗
[, ℘
), equipped with the total variation norm, is

a commutative Banach algebra over C whose identity element is the Dirac measure 𝛿 (0,𝑎) .
Moreover, the subset P(𝑀) is closed under the G[-convolution.

(b)
(
F℘(` ∗

[, ℘
a)

)
(_, [) = (F℘ `) (_, [) · (F℘ a) (_, [) for all _ ≥ 0 and [ ∈ supp(𝜎).

(c) Each measure ` ∈ MC(𝑀) is uniquely determined by F℘ `.

Set Σ := supp(𝜎) if 𝐼 = [𝑎, 𝑏] and set Σ := R+0 if 𝐼 = [𝑎, 𝑏). In the latter case, assume also that
lim𝑧↑𝑏 𝜓[ (𝑧) = 0 for all [ > 0. Then:

(d) Let {`𝑛} be a sequence of measures belonging toM+(𝑀) whose G℘-Fourier transforms are
such that

(F℘ `𝑛) (_, [) −−−−−→
𝑛→∞

𝑓 (_, [) pointwise in (_, [) ∈ R+0 × Σ

where the function 𝑓 is such that
𝑓 (·, 0) is continuous at a neighbourhood of zero if 𝑏 is regular or entrance

𝑓 is continuous at a neighbourhood of (0, 0) if 𝑏 is exit or natural.

Then `𝑛
𝑤−→ ` for some measure ` ∈ M+(𝑀) such that F℘ ` ≡ 𝑓 .

(e) For each [ ∈ Σ the mapping (`, a) ↦→ ` ∗
[, ℘
a is continuous in the weak topology.

(f) If ℎ ∈ Cb(𝑀) (respectively C0(𝑀)) then T `[,℘ℎ ∈ Cb(𝑀) (resp. C0(𝑀)) for all ` ∈ MC(𝑀).

(g) Let 1 ≤ 𝑝 ≤ ∞, ` ∈ M+(𝑀) and ℎ ∈ 𝐿 𝑝[,℘ := 𝐿 𝑝
(
𝑀, 𝐵[ (𝑥)𝑑𝑥 𝔯(𝑧)𝑑𝑧

)
. The G[-translation

(T `[,℘ℎ) (𝑥) is a Borel measurable function of 𝑥 ∈ 𝑀 , and we have

∥T `[,℘ℎ∥𝐿𝑝
[,℘
≤ ∥`∥ · ∥ℎ∥𝐿𝑝

[,℘
.

We omit the proofs as they contain no new ideas.
Notions such as infinite divisibility and convolution semigroups with respect to the G[-convolution

can also be defined like in the previous subsection, giving rise to a Lévy-Khintchine type representation
and to Feller semigroups on C0(𝑀). The details are left to the reader.

Remark 5.56. The above result on the existence of a family of convolutions associated with the
functions 𝑉℘

_,[
can be interpreted in the context of the theory of multiparameter Sturm-Liouville

spectral problems.
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First we recall some known results. Consider the system of Sturm-Liouville equations

−(𝑝𝑚𝑢′𝑚) ′(𝑥𝑚) + (𝑞𝑚𝑢𝑚) (𝑥𝑚) =
𝑁∑
𝑛=1

_𝑛 (𝑟𝑚𝑛𝑢𝑚) (𝑥𝑚) (𝑚 = 1, . . . , 𝑁) (5.56)

where 𝑁 ∈ N and 𝑎𝑚 ≤ 𝑥𝑚 ≤ 𝑏𝑚, together with boundary conditions at the endpoints 𝑎𝑚 and 𝑏𝑚 of
the form

𝑢𝑚(𝑎𝑚) cos(𝜗𝑚) = 𝑢′𝑚(𝑎𝑚) sin(𝜗𝑚), 𝑢𝑚(𝑏𝑚) cos(𝜗′𝑚) = 𝑢′𝑚(𝑏𝑚) sin(𝜗′𝑚) (𝑚 = 1, . . . , 𝑁).
(5.57)

Let us assume that the intervals 𝐼𝑚 = [𝑎𝑚, 𝑏𝑚] are bounded, the functions 𝑝𝑚, 𝑞𝑚, 𝑟𝑚𝑛 are sufficiently
well-behaved and 𝑟 (𝑥) = det{𝑟𝑚𝑛 (𝑥𝑚)} > 0 for 𝑥 = (𝑥1, . . . , 𝑥𝑁 ) ∈

∏𝑁
𝑚=1 𝐼𝑚. If _ = (_1, . . . , _𝑁 )

is chosen such that for each 𝑚 there exists a nontrivial solution 𝑢𝑚(𝑥𝑚;_) of (5.56)–(5.57), then
the function 𝑢(𝑥;_) = ∏𝑁

𝑖=1 𝑢𝑚(𝑥𝑚;_) is said to be an eigenfunction of the system (5.56)–(5.57)
corresponding to the eigenvalue _.

By the completeness theorem for multiparameter eigenvalue problems [56], the following Fourier-
like expansion holds:

ℎ(𝑥) =
∑
𝑘

(𝐹ℎ) (_ (𝑘) ) 𝑢(𝑥;_ (𝑘) ), where (𝐹ℎ) (_ (𝑘) ) :=
∫ 𝑏

𝑎

ℎ(𝑥) 𝑢(𝑥;_ (𝑘) ) 𝑟 (𝑥)𝑑𝑥, (5.58)

_ (𝑘) are the eigenvalues of (5.56)–(5.57), and
∫ 𝑏
𝑎

=
∫ 𝑏1
𝑎1
. . .

∫ 𝑏𝑁
𝑎𝑁

.

Similar results have been established for (singular) systems where some of the intervals [𝑎𝑚, 𝑏𝑚]
are unbounded; in this case, the sum in (5.58) is, in general, replaced by a Stieltjes integral with respect
to a spectral function [23, 24]. However, compared to one-dimensional Sturm-Liouville operators,
much less is known regarding the spectral properties of such singular systems [1, 162].

A comparison of this general formulation of the multiparameter Sturm-Liouville eigenvalue
problem with the eigenfunction expansion for the operator G℘ shows that the transformation (5.52)–
(5.53) can be reinterpreted as a Fourier-like expansion for the system of differential equations (5.56)
with 𝑁 = 2, 𝑥1 ∈ R+0 , 𝑥2 ∈ [𝑎, 𝑏], _1 = _, _2 = [, 𝑝1 = 𝑟11 = 𝐴, 𝑝2 = 𝑝, 𝑟22 = 𝑟, 𝑟12 = 1

𝐴
and

𝑞1 = 𝑞2 = 𝑟21 = 0.

As we saw in Chapter 4, a crucial requirement in the theory of product formulas and convolutions
associated with one-dimensional Sturm-Liouville equations −(𝑝𝑢′) ′ + 𝑞𝑢 = _𝑟𝑢 is that the measures
of the product formula should not depend on the spectral parameter _. Similarly, the measures of
product formula (5.55) for the generalized eigenfunctions 𝑤℘

_,[
do not depend on one of the spectral

parameters (the measures 𝛾[, b1, b2 are independent of _); this is a fundamental property which (as we
saw above) enables us to develop the theory of G[-convolutions. This suggests that the natural way
to introduce the notion of a product formula for a general Sturm-Liouville system (5.56) (regular or
singular, with suitable boundary conditions) is as follows:
Let 1 ≤ 𝑠 ≤ 𝑁 . The system (5.56) is said to admit a (_1, . . . , _𝑠)-product formula if for each
𝑥 (1) , 𝑥 (2) ∈ 𝐼 :=

∏𝑁
𝑚=1 𝐼𝑚 there exists a positive measure 𝛾_𝑠+1,...,_𝑁

𝑥 (1) ,𝑥 (2)
on 𝐼 such that the product
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𝑢(𝑥 (1) ;_) 𝑢(𝑥 (2) ;_) admits the representation

𝑢(𝑥 (1) ;_) 𝑢(𝑥 (2) ;_) =
∫
𝐼

𝑢(𝑥;_) 𝛾_𝑠+1,...,_𝑁
𝑥 (1) ,𝑥 (2)

(𝑑𝑥), _1, . . . , _𝑁 ≥ 0. (5.59)

As far as we are aware, no general results are available on the existence of such product formulas for
nontrivial Sturm-Liouville systems of the form (5.56). (Here the word ‘nontrivial’ means that 𝑟𝑚𝑛 ≠ 0
for some 𝑚 ≠ 𝑛.) Proposition 5.53 can be interpreted as a first step in this direction. Developing a
general theory of product formulas for nontrivial systems of Sturm-Liouville equations is an interesting
problem which is left open for further investigation.
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[117] J. V. Linnik, I. V. Ostrovskiǐ, Decomposition of Random Variables and Vectors, American
Mathematical Society, Providence RI (1977).

[118] L. L. Littlejohn, A. M. Krall, Orthogonal polynomials and singular Sturm-Liouville systems I,
Rocky Mountain J. Math. 16, no. 3, pp. 435–479 (1986).

http://dx.doi.org/10.1007/s003659900058
http://dx.doi.org/10.1007/s003659900058
http://dx.doi.org/10.1215/kjm/1250523073
http://dx.doi.org/10.1016/S0034-4877(07)80067-X
http://dx.doi.org/10.2307/1990516
http://dx.doi.org/10.1090/trans2/022/07
http://dx.doi.org/10.1090/trans2/022/07
http://dx.doi.org/10.1007/BFb0099433
http://dx.doi.org/10.1090/S0025-5718-1973-0364694-3
http://dx.doi.org/10.1080/07362994.2010.515476
http://dx.doi.org/10.1080/07362994.2010.515476
http://dx.doi.org/10.1142/S0219024904002451
http://dx.doi.org/10.1017/S0021900200014339
http://dx.doi.org/10.1017/S0021900200014339
http://dx.doi.org/10.1287/opre.1040.0113
http://dx.doi.org/10.1216/rmj-1986-16-3-435


References 199

[119] G. L. Litvinov, Hypergroups and hypergroup algebras, J. Soviet Math. 38, no. 2, pp. 1734–1761
(1987).

[120] Y. L. Luke, The special functions and their approximations – Vol. I, Academic Press, New York
and London (1969).

[121] G. W. Mackey, Harmonic analysis as the exploitation of symmetry–a historical survey, Bull.
Amer. Math. Soc. 3, pp. 543–698 (1980).

[122] N. K. Mamadaliev, On representation of a solution to a modified Cauchy problem, Sib. Math. J.
41, no. 5, pp. 889–899 (2000).

[123] C. Markett, Norm estimates for generalized translation operators associated with a singular
differential operator, Indag. Math. 46, pp. 299–313 (1984).

[124] P. Maroni, Une théorie algébrique des polynômes orthogonaux. Application aux polynômes
orthogonaux semi-classiques, in: Orthogonal Polynomials and their Applications, IMACS Ann.
Comput. Appl. Math. 9, Baltzer, Basel, pp. 95–130 (1991).

[125] P. Maroni, Variations around classical orthogonal polynomials. Connected problems, J. Comput.
Appl. Math. 48, no. 1–2, pp. 133-155 (1993).

[126] M. A. M. Marrocos, A. L. Pereira, Eigenvalues of the Neumann Laplacian in symmetric regions,
J. Math. Phys. 56, 111502 (2015).

[127] L. Mattner, Complex differentiation under the integral, Nieuw Arch. Wiskd. (5) 2, no. 1, pp.
32–35 (2001).

[128] I. McGillivray, A recurrence condition for some subordinated strongly local Dirichlet forms,
Forum Math. 9, no. 2, pp. 229–246 (1997).

[129] H. McKean, Elementary solutions for certain parabolic partial differential equations, Trans.
Amer. Math. Soc. 82, pp. 519–548 (1956).

[130] P. Medvegyev, Stochastic Integration Theory, Oxford University Press, Oxford (2007).

[131] J. K. Misiewicz, Generalized convolutions and the Levi-Civita functional equation, Aequat.
Mat. 92, pp. 911–933 (2018).

[132] Y. Miyamoto, The hot spots conjecture for a certain class of planar convex domains, J. Math.
Phys. 50, no. 10, 103530 (2009).

[133] M. Musiela, M. Rutkowski, Martingale Methods in Financial Modelling, Springer, Berlin
(2005).

[134] M. A. Naimark, Linear differential operators. Part II: Linear differential operators in Hilbert
space, Frederick Ungar Publishing Co., New York, 1968.

[135] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark (Eds.), NIST Handbook of Mathematical
Functions, Cambridge University Press, Cambridge (2010).

[136] K. R. Parthasarathy, Probability Measures on Metric Spaces, American Mathematical Society,
Providence RI (1967).

[137] K. R. Parthasarathy, R. Ranga Rao, S. R. S. Varadhan, Probability distributions on locally
compact abelian groups, Illinois J. Math. 7, no. 2, pp. 337–369 (1963).

[138] M. N. Pascu, Scaling coupling of reflecting Brownian motions and the hot spots problem, Trans.
Amer. Math. Soc. 354, no. 11, pp. 4681-4702 (2002).

http://dx.doi.org/10.1007/BF01088201
http://dx.doi.org/10.1016/S0076-5392(08)62632-6
http://dx.doi.org/10.1090/S0273-0979-1980-14783-7
http://dx.doi.org/10.1007/BF02674745
http://dx.doi.org/10.1016/1385-7258(84)90030-1
http://dx.doi.org/10.1016/1385-7258(84)90030-1
http://dx.doi.org/10.1016/0377-0427(93)90319-7
http://dx.doi.org/10.1063/1.4935300
http://dx.doi.org/10.1515/form.1997.9.229
http://dx.doi.org/10.1090/S0002-9947-1956-0087012-3
http://dx.doi.org/10.1007/s00010-018-0578-z
http://dx.doi.org/10.1063/1.3251335
http://dx.doi.org/10.1007/b137866
http://dx.doi.org/10.1090/chel/352
http://dx.doi.org/10.1215/ijm/1255644642
http://dx.doi.org/10.1215/ijm/1255644642
http://dx.doi.org/10.1090/S0002-9947-02-03020-9


200 References

[139] G. Peskir, On the Fundamental Solution of the Kolmogorov–Shiryaev Equation, in: From
stochastic calculus to mathematical finance – The Shiryaev Festschrift, Springer, Berlin, pp.
536–546 (2006).

[140] I. G. Petrovsky, Lectures on Partial Differential Equations, Interscience Publishers (1954).

[141] M. Pivato, Linear Partial Differential Equations and Fourier Theory, Cambridge University
Press, Cambridge (2010).

[142] A. S. Polunchenko, G. Sokolov, An Analytic Expression for the Distribution of the Generalized
Shiryaev–Roberts Diffusion, Methodol. Comput. Appl. Probab. 18, no. 4, pp. 1153–1195 (2016).

[143] A. D. Polyanin, V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations,
CRC Press, Boca Raton (2002).

[144] A. Prasad, U. K. Mandal, Composition of pseudo-differential operators associated with
Kontorovich–Lebedev transform, Integral Transforms Spec. Funct. 27, no. 11, pp. 878–892 (2016)

[145] A. P. Prudnikov, Y. A. Brychkov, O. I. Marichev, Integrals and Series, Vol. I: Elementary
Functions, Gordon and Breach, New York and London (1986).

[146] A. P. Prudnikov, Y. A. Brychkov, O. I. Marichev, Integrals and Series, Vol. II: Special Functions,
Gordon and Breach, New York and London (1986).

[147] A. P. Prudnikov, Y. A. Brychkov, O. I. Marichev, Integrals and Series, Vol. III: More Special
Functions, Gordon and Breach, New York and London (1989).

[148] A. P. Prudnikov, Y. A. Brychkov, O. I. Marichev, Integrals and Series, Vol. V: Inverse Laplace
Transforms, Gordon and Breach, New York and London (1992).

[149] E. V. Radkevich, Equations with nonnegative characteristic form II, J. Math. Sci. 158, pp.
453-604 (2009).

[150] J. Rauch, Partial Differential Equations, Springer, New York (1991).

[151] M. Renardy, R. C. Rogers, An Introduction to Partial Differential Equations, Second Edition,
Springer, Berlin (2004).

[152] C. Rentzsch, A Levy Khintchine type representation of convolution semigroups on commutative
hypergroups, Probab. Math. Statist. 18, no. 1, pp. 185–198 (1998).

[153] C. Rentzsch, M. Voit, Lévy Processes on Commutative Hypergroups, in: Probability on
Algebraic Structures: AMS Special Session on Probability on Algebraic Structures, March 12-13,
1999, Gainesville, Florida, American Mathematical Society, Providence RI, pp. 83–105 (2000).

[154] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer, Berlin (1999).

[155] M. Rösler, Convolution algebras which are not necessarily positivity-preserving, in: Applications
of hypergroups and related measure algebras – A joint summer research conference, July 31-August
6, 1993, Seattle WA, American Mathematical Society, Providence RI, pp. 299–318 (1995).

[156] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press,
Cambridge (1999).

[157] R. L. Schilling, Conservativeness and extensions of Feller semigroups, Positivity 2, no. 3, pp.
239–256 (1998).

[158] K. Schmüdgen, Unbounded Self-adjoint Operators on Hilbert Space, Springer, Dordrecht
(2012).

http://dx.doi.org/10.1007/978-3-540-30788-4_26
http://dx.doi.org/10.1017/CBO9780511810183
http://dx.doi.org/10.1007/s11009-016-9478-7
http://dx.doi.org/10.1007/s11009-016-9478-7
http://dx.doi.org/10.1201/9781420035339
http://dx.doi.org/10.1080/10652469.2016.1227330
http://dx.doi.org/10.1080/10652469.2016.1227330
http://dx.doi.org/10.1007/s10958-009-9395-1
http://dx.doi.org/10.1007/978-1-4612-0953-9
http://dx.doi.org/10.1007/b97427
http://dx.doi.org/10.1090/conm/261/04135
http://dx.doi.org/10.1007/978-3-662-06400-9
http://dx.doi.org/10.1090/conm/183/02068
http://dx.doi.org/10.1023/A:1009748105208
http://dx.doi.org/10.1007/978-94-007-4753-1


References 201

[159] A. N. Shiryaev, The problem of the most rapid detection of a disturbance in a stationary process,
Soviet Math. Dokl. 2, pp. 795–799 (1961).

[160] G. F. Simmons, Introduction to Topology and Modern Analysis, McGraw-Hill, New York
(1963).

[161] B. Simon, Operator Theory – A Comprehensive Course in Analysis, Part 4, American
Mathematical Society, Providence RI (2015).

[162] B. D. Sleeman, Multiparameter spectral theory and separation of variables, J. Phys. A 41, no.
1, 015209 (2008).

[163] R. Sousa, M. Guerra, S. Yakubovich, Lévy processes with respect to the index Whittaker
convolution, Preprint, arXiv:1805.03051 (2018). [Submitted for publication on a peer-reviewed
journal.]

[164] R. Sousa, M. Guerra, S. Yakubovich, Sturm-Liouville hypergroups without the compactness
axiom, Preprint, arXiv:1901.11021 (2019). [Submitted for publication on a peer-reviewed
journal.]

[165] R. Sousa, M. Guerra, S. Yakubovich, On the product formula and convolution associated with
the index Whittaker transform. J. Math. Anal. Appl. 475, no. 1, pp. 939–965 (2019).

[166] R. Sousa, M. Guerra, S. Yakubovich, The hyperbolic maximum principle approach to the
construction of generalized convolutions, in: Special Functions and Analysis of Differential
Equations (P. Agarwal, R. P. Agarwal, M. Ruzhansky, eds.), CRC Press, Boca Raton (2020).

[167] R. Sousa, M. Guerra, S. Yakubovich, Product formulas and convolutions for two-dimensional
Laplace-Beltrami operators: beyond the trivial case, Preprint, arXiv:2006.14522 (2020).
[Submitted for publication on a peer-reviewed journal.]

[168] R. Sousa, S. Yakubovich, The spectral expansion approach to index transforms and connections
with the theory of diffusion processes, Commun. Pure Appl. Anal. 17, no. 6, pp. 2351–2378
(2018).

[169] R. Spector, Aperçu de la théorie des hypergroupes, in: Analyse harmonique sur les groupes de
Lie – Séminaire Nancy-Strasbourg 1973–75, Springer, Berlin, pp. 643–673 (1975).

[170] H. M. Srivastava, V. K. Tuan, The Cherry transform and its relationship with a singular
Sturm-Liouville problem, Q. J. Math. 51, no. 3, pp. 371–383 (2000).

[171] H. M. Srivastava, Y. V. Vasil’ev, S. Yakubovich, A class of index transforms with Whittaker’s
function as the kernel, Q. J. Math. 49, no. 2, pp. 375–394 (1998).

[172] K.-T. Sturm, How to Construct Diffusion Processes on Metric Spaces, Potential Anal. 8, no. 2,
pp. 149–161 (1998).

[173] K.-T. Sturm, Diffusion processes and heat kernels on metric spaces, Ann. Probab. 26, no. 1, pp.
1–55 (1998).

[174] L. Székelyhidi, Functional Equations on Hypergroups, World Scientific, Singapore, 2013.

[175] G. Teschl, Mathematical methods in quantum mechanics. With applications to Schrödinger
operators, Second Edition, American Mathematical Society, Providence RI (2014).

[176] E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equa-
tions, Clarendon, Oxford (1962).

http://dx.doi.org/10.1090/simon/004
http://dx.doi.org/10.1088/1751-8113/41/1/015209
https://arxiv.org/pdf/1805.03051.pdf
https://arxiv.org/pdf/1805.03051.pdf
https://arxiv.org/pdf/1901.11021.pdf
https://arxiv.org/pdf/1901.11021.pdf
http://dx.doi.org/10.1016/j.jmaa.2019.03.009
http://dx.doi.org/10.1016/j.jmaa.2019.03.009
https://arxiv.org/pdf/2006.14522
https://arxiv.org/pdf/2006.14522
http://dx.doi.org/10.3934/cpaa.2018112
http://dx.doi.org/10.3934/cpaa.2018112
http://dx.doi.org/10.1007/BFb0078026
http://dx.doi.org/10.1093/qjmath/51.3.371
http://dx.doi.org/10.1093/qjmath/51.3.371
http://dx.doi.org/10.1093/qmathj/49.3.375
http://dx.doi.org/10.1093/qmathj/49.3.375
http://dx.doi.org/10.1023/A:1008667129215
http://dx.doi.org/10.1214/aop/1022855410
http://dx.doi.org/10.1142/8481
http://dx.doi.org/10.1090/gsm/157
http://dx.doi.org/10.1090/gsm/157


202 References

[177] K. Uhlenbeck, Generic properties of eigenfunctions, Amer. J. Math. 98, no. 4, pp. 1059–1078
(1976).

[178] K. Urbanik, Generalized convolutions, Studia Math. 23, pp. 217–245 (1964).

[179] K. Urbanik, Generalized convolutions II, Studia Math. 45, pp. 57–70 (1973).

[180] K. Urbanik, Generalized convolutions III, Studia Math. 80, pp. 167–189 (1984).

[181] K. Urbanik, Generalized convolutions IV , Studia Math. 83, pp. 57–95 (1986).

[182] K. Urbanik, Analytical Methods in Probability Theory, in: Transactions of the Tenth Prague
Conference on Information Theory, Statistical Decision Functions, Random Processes, Vol. A,
Reidel, Dordrecht, pp. 151–163 (1988).

[183] V. E. Volkovich, Infinitely divisible distributions in algebras with stochastic convolution, J. Sov.
Math. 40, no. 4, pp. 459–467 (1988).

[184] V. E. Volkovich, Quasiregular stochastic convolutions, J. Sov. Math. 47, no. 5, pp. 2685–2699
(1989).

[185] V. E. Volkovich, On symmetric stochastic convolutions, J. Theoret. Probab. 5, no. 3, pp. 417–430
(1992).

[186] F.-Y. Wang, L. Yan, Gradient estimate on convex domains and applications, Proc. Amer. Math.
Soc. 141, no. 3, pp. 1067–1081 (2013).

[187] G. N. Watson, A Treatise on the Theory of Bessel Functions, Second Edition, Cambridge
University Press, Cambridge (1944).

[188] J. Weidmann, Spectral Theory of Ordinary Differential Operators, Springer, Berlin (1987).

[189] J. Wimp, A class of integral transforms, Proc. Edinb. Math. Soc. 14, no. 2, pp. 33–40 (1964).

[190] J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge (1987).

[191] S. Yakubovich, Index Transforms, World Scientific, Singapore (1996).

[192] S. Yakubovich, On the least values of 𝐿𝑝-norms for the Kontorovich–Lebedev transform and its
convolution, J. Approx. Theory 131, no. 2, pp. 231–242 (2004).

[193] S. Yakubovich, On the Plancherel theorem for the Olevskii transform, Acta Math. Vietnam. 31,
no. 3, pp. 249–260 (2006).

[194] S. Yakubovich, Y. F. Luchko, The Hypergeometric Approach to Integral Transforms and
Convolutions, Kluwer Academic Publishers, Dordrecht (1994).

[195] H. Zeuner, Laws of Large Numbers of Hypergroups on R+, Math. Ann. 283, no. 4, pp. 657–678
(1989).

[196] H. Zeuner, One-dimensional hypergroups, Adv. Math. 76, no. 1, pp. 1–18 (1989).

[197] H. Zeuner, Moment functions and laws of large numbers on hypergroups, Math. Z. 211, no. 1,
pp. 369–407 (1992).

[198] H. Zeuner, Domains of attraction with inner norming on Sturm-Liouville hypergroups, J. Appl.
Anal. 1, no. 2, pp. 213–221 (1995).

http://dx.doi.org/10.2307/2374041
http://dx.doi.org/10.4064/sm-23-3-217-245
http://dx.doi.org/10.4064/sm-45-1-57-70
http://dx.doi.org/10.4064/sm-80-2-167-189
http://dx.doi.org/10.4064/sm-83-2-97-104
http://dx.doi.org/10.1007/978-94-009-3859-5_11
http://dx.doi.org/10.1007/BF01083639
http://dx.doi.org/10.1007/BF01095593
http://dx.doi.org/10.1007/BF01060427
http://dx.doi.org/10.1090/S0002-9939-2012-11480-7
http://dx.doi.org/10.1007/BFb0077960
http://dx.doi.org/10.1017/S0013091500011202
http://dx.doi.org/10.1017/CBO9781139171755
http://dx.doi.org/10.1142/9789812831064
http://dx.doi.org/10.1016/j.jat.2004.10.007
http://dx.doi.org/10.1016/j.jat.2004.10.007
http://dx.doi.org/10.1007/978-94-011-1196-6
http://dx.doi.org/10.1007/978-94-011-1196-6
http://dx.doi.org/10.1007/BF01442859
http://dx.doi.org/10.1016/0001-8708(89)90041-8
http://dx.doi.org/10.1007/BF02571436
http://dx.doi.org/10.1515/JAA.1995.213


Appendix A

Some open problems

The following list is a summary of the open problems that arise from the present work, part of which
have already been mentioned in the main text.

(a) Prove or disprove the existence of Whittaker convolution semigroups whose log-Whittaker
transforms are of the form 𝜓(_) = _𝛽 where 0 < 𝛽 < 1 (cf. Remark 3.39).

(b) Establish necessary and sufficient conditions for:

(b1) The measures of the Sturm-Liouville product formula (4.21) to be absolutely continuous
with respect to the Lebesgue measure. (See [197] for known results on Sturm-Liouville
hypergroups satisfying the assumptions of Theorem 4.3.)

(b2) The measures of the product formula to be of the form a𝑥,𝑦 (𝑑b) = 𝑘 (𝑥, 𝑦, b)𝑟 (b)𝑑b, where
𝑘 (𝑥, 𝑦, b) = F −1 [𝑤(·) (𝑥)𝑤(·) (𝑦)] (b). (This is known to hold on some Sturm-Liouville
hypergroups [27], and we saw in (3.49) that it also holds for the Whittaker convolution.)

(c) Let ( [𝑎, 𝑏), ∗) be a Sturm-Liouville convolution constructed as in Chapter 4. Prove or disprove
that the log L-transform of any L-Gaussian measure ` is of the form 𝜓` (_) = 𝑐_ for some
𝑐 > 0. (As noted in Remark 3.31, this result is known to hold on the hypergroups studied by
Zeuner.)

(d) Is it possible to extend the characterization of weak convergence stated in Remark 4.27.I and the
theory of infinite divisibility of Subsections 4.5.1–4.5.3 to Sturm-Liouville convolutions not
satisfying Assumption MP∞?

(e) Generalize the Lévy-type characterization for the associated one-dimensional diffusion (stated in
Remark 4.47) to a larger class of Sturm-Liouville convolutions. In particular, can the Lévy-type
characterization be extended to the drifted Bessel process?

(f) Determine a closed-form expression for the measures of the product formula (4.53) for the
Whittaker function of the first kind. Can this be achieved using techniques similar to those used
in Section 3.1?

(g) Provide examples of Sturm-Liouville convolutions (other than the Whittaker convolution, cf.
Corollary 3.70) for which Theorem 4.67 yields an explicit expression for the solution of integral
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equations with special functions in the kernel. In particular, can we find explicit solutions for
convolution-type integral equations with respect to the convolutions of the Bessel-Kingman and
Jacobi hypergroups?

(h) Prove the existence of probabilistic product formulas for Sturm-Liouville operators with
nondifferentiable coefficients and extend the theory developed in Chapter 4 to the induced
convolution operators. (The reader should note that most of the Sturm-Liouville theory presented
in Section 2.4 extends to differential operators with measure-valued coefficients, cf. [50, 100].)

(i) Do the techniques used in Chapter 4 also allow us to generalize the known results on existence of
Sturm-Liouville hypergroups of compact type to operators for which the associated hyperbolic
Cauchy problem is degenerate? Does this give rise to a notion of degenerate Sturm-Liouville
hypergroups of compact type?

(j) Establish a nonexistence theorem (similar to Theorem 5.18) for convolutions associated with
diffusions on unbounded domains of R𝑑 (𝑑 ≥ 2), Brownian motions on noncompact Riemannian
manifolds, or other multidimensional diffusions whose generator does not have a discrete
spectrum.

(k) Can we take advantage of other known results on the asymptotic behaviour of solutions of
second-order differential equations (cf. [49]) to extend the nonexistence result of Theorem 5.20
to other families of Sturm-Liouville operators? In particular, does the conclusion of Theorem
5.20 also hold if limb→∞

𝐴′ ( b )
2𝐴( b ) = −∞?

(l) Find nontrivial examples of Sturm-Liouville systems (other than those studied in Section 5.4)
whose generalized eigenfunctions admit a product formula of the form (5.59). Study how
such examples could be unified into a general theory of product formulas for multiparameter
Sturm-Liouville spectral problems.
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