
	

SKETCH BASED INTERACTION FOR
PROCEDURAL MODELLING

DIEGO ANTO ́NIO RODRIGUES DE JESUS

TESE DE DOUTORAMENTO APRESENTADA
À FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO EM
ENGENHARIA INFORMÁTICA

D 2018

Sketch Based Interaction for Procedural
Modelling

a dissertation presented
by

Diego António Rodrigues de Jesus
to

The Department of Informatics Engineering

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in the subject of

Informatics Engineering

under the supervision of
Professor António Fernando Vasconcelos Cunha Castro Coelho

and
Professor António Augusto Sousa

Faculdade de Engenharia da Universidade do Porto
Porto, Portugal
September 2018

Sketch Based Interaction for Procedural Modelling

Abstract

The improvements on computer hardware have made the reproduction of larger and

more detailed urban environments possible and the users are demanding the full use of

such capabilities. However, these environments are complex spaces, offering a wide variety

of elements and modelling them, using traditional tools, may take several man-years since

every urban element must be modelled in detail. To cope with such request for greater de-

tail, there has been a shift of focus to procedural modelling systems which, from a small set

of rules and coupled with a controlled level of randomness, are capable of generating geom-

etry and textures in a semi-automatic way, alleviating the user from the burden of manually

producing the models that represent the urban environment.

The typical workflow of a procedural modelling system, however, is not intuitive, lacks

predictability and controllability and requires users to have a certain level of expertise. More-

over, the traditional procedural modelling techniques for urban environments present a

grammar-based approach to create and edit such rules, requiring the user to have knowl-

edge of the underlying procedural techniques. Since the target audience for this type of

systems are, typically, creative professionals, this is an obvious disadvantage.

i

On the other hand, these professionals tend to use paper and pencil in the early stages of

content creation, drawing concept art that will guide them through the process of creating

three-dimensional content. This two-stages process is often seen as a bottleneck, introduc-

ing delays in the creation process, and forces the user to focus on the modelling process,

reducing the creativity. Sketch based interfaces for modelling aim at reducing this barrier

while, at the same time, enhancing their focus on creativity.

The presented approach integrates Procedural Modelling techniques with sketch based

interfaces to minimise the interaction problems of Procedural methods. Letting the user

sketch the intended scene may allow a greater focus on the creation process while masking

the intricate details of procedural techniques. The procedural rules are generated behind

the scenes which can later be used to produce variations of the models easily.

Nonetheless, there are a few setbacks in current procedural modelling methods that dis-

allow a straightforward integration with sketching interfaces. Namely, the over-reliance on

split operations tends to generate rectangular or cuboid shapes which heavily contrasts with

the expressiveness of sketching and the ambiguity of user selections which undermine the

direct control in an interactive procedural modelling tool.

To overcome the first problem, this thesis presents an extension to shape grammars that

allows the user to define layers within planar surfaces of the procedural model where vecto-

rially defined shapes can be created. This provides the sufficient tools to create more com-

ii

plex shapes (such as arched windows) directly in the procedural framework. Results have

demonstrated that this does increase the expressiveness of split based procedural methods.

The second problem is evident as a set of user selected shapes can, in a procedural mod-

elling environment, have many different meanings due to its data amplification nature. Se-

lections, in the presented thesis, are achieved not as a set of shapes but, instead, as semantic

queries which upon being evaluated yield sets of shapes. These queries remain valid as long

as the semantic behind the model remains relatively similar and are, thus, robust to changes.

Manually creating these queries can easily become a burden to the user and, therefore, a se-

lection inference system has been devised to infer queries from a few user selected shapes.

Results have shown that these queries can express complex conditions that would be ex-

tremely complicated to achieve otherwise and that the inference subsystem can generate

queries that are identical to what the user has intended.

Building on top of the previous contributions and relying on the already extensively

studied field of Sketch Based Interfaces for Modelling, this thesis presents a sketch based

procedural modelling system that allows the user to create full models without diverting

into other elements of the user interface. Such system uses the set of available procedural

operations to inform the sketch processing pipeline to infer a 3D representation of the user

strokes and, afterwards, to recognise a set of 3D lines as a procedural operation candidate.

To adjust the operations’ parameters to closely match the user sketch, the system uses a gra-

iii

dient descent algorithm with a distance based function.

The presented system establishes the roots towards a full-fledged sketch based procedu-

ral modelling system oriented at buildings creation. A new set of research questions have

been raised by the development of this work which, in future work, can further increase the

expressiveness, intuitiveness and acceptance of urban procedural modelling methods.

iv

Sketch Based Interaction for Procedural Modelling

Resumo

Os avanços no hardware de computador tornaram possíveis a reprodução de ambientes

urbanos virtuais maiores e com mais detalhe. Por sua vez, os utilizadores finais destes ambi-

entes requerem a utilização de todas as capacidades disponibilizadas por estes avanços. No

entanto, estes ambientes são espaços complexos, oferecendo uma grande variedade de ele-

mentos cuja modelação usando ferramentas tradicionais pode demorar vários pessoa-ano

pois todos os elementos urbanos têm de ser modelados individualmente e em detalhe. Para

satisfazer tal necessidade, foram já propostas várias técnicas de modelação procedimental

que, a partir de um pequeno conjunto de regras e com um nivel de aleatoriedade contro-

lado, são capazes de gerar geometrias e texturas de uma forma semi-automática, aliviando o

utilizador de produzir manualmente os modelos que representam o ambiente urbano.

O fluxo de modelação tipico num sistema de modelação procedimental é, no entanto,

pouco intuitivo, imprevisivel, disponibilizando um baixo nível de controlo sobre os mod-

elos e requerendo que os utilizadores tenham um conhecimento extenso das ferramentas.

Adicionalmente, as técnicas mais comuns de modelação procedimental para ambientes ur-

banos apresentam uma abordagem baseada em gramáticas formais para criar e editar as re-

v

gras, exigindo do utilizador conhecimento avançado destas técnicas. Visto que a audiência

desejada deste tipo de sistemas é, tipicamente, utilizadores com antecendentes creativos (e.g.,

designers), tal é uma desvantagem óbvia.

Por outro lado, estes profissionais usam, nas primeiras etapas da creação de conteúdo,

papel e lápis com o intuito de esboçar conceitos que os irá ajudar durante o processo de cri-

ação de conteúdo tridimensional. A divisão deste processo em duas etapas é visto como

obstáculo introduzindo atrasos no processo criativo e forçando o foco do utilizador no

processo de modelação, reduzindo a criatividade. As interfaces caligráficas (Sketch Based

Interfaces) para a modelação têm como objectivo diminuir esta barreira e, ao mesmo tempo,

aumentar o foco na criatividade.

A proposta apresentada nesta tese integra técnicas de modelação procedimental com in-

terfaces caligráficas para a modeleção procedimental com o objectivo de diminuir os prob-

lemas de interação inerentes. Permitir ao utilizador esboçar a cena desejada pode aumetar

a criatividade do utilizador mascarando, também, os detalhes complexos das técnicas pro-

cedimentais. As regras são, portanto, geradas transparentemente e podem ser utilizades

posteriormente para, facilmente, criar varições dos modelos.

Contudo, há um conjunto de problemas em aberto no domínio da modelação proced-

imental que impedem uma fácil integração com as técnicas de modelação procedimental

urbana. Nomeadamente, a dependência em operações de corte têm tendência a criar geome-

vi

trias rectangulares ou cubóides, contrastando com a expressividade do esboço. Por sua vez,

a ambiguidade da seleção de formas por parte do utilizador debilitam o controlo directo no

contexto de uma ferramenta interactiva de modelação procedimental.

Para superar o primeiro problema, esta tese apresenta uma extensção às shape grammars

que permite ao utilizador definir camadas em superficies planas do modelo procedimental

onde formas vectoriais podem ser definidas. Isto permite a criação de geometrias mais com-

plexas (tais como janelas em arco) diretamente na ferramenta procedimental. Os resultados

alcançados demonstram que tal contribuição aumenta a expressividade em comparação

com métodos baseados em cortes.

O segundo problema torna-se evidente uma vez que um conjunto de geometrias sele-

cionadas pelo utilizador num ambiente interativo de modelação procedimental podem

ter vários significados diferentes devido à natureza amplificadora de dados destes méto-

dos. Nesta tese, as seleções são definidas, não como um conjunto de geometrias, mas sim

como consultas semânticas que, após serem avaliadas, resultam num conjunto de geome-

trias. Estas consultas têm a capacidade de se manter válidas desde que a semântica do mod-

elo procedimental se mantenha relativamente semelhante e apresentam, portanto, robustez

à mudança. Contudo, a criação manual destas consultas pode facilmente tornar-se demasi-

ado complexa para o utilizador e, desta forma, um sistema de inferência foi também desen-

volvido. Este tem como objectivo inferir consultas semânticas a partir de algumas geome-

vii

trias selecionadas pelo utilizador. Os resultados demonstram que estas consultas conseguem

expressar condições que seriam extremamente complexas de alcançar de outra forma e que

o sistema de inferencia pode gerar consultas que são identias àquelas que o utilizador pre-

tendia.

Assentando nestas contribuições e tendo em conta o amplamente estudado domínio

das interfaces caligráficas para a modelação, esta tese apresenta um sistema de modelação

procedimental caligráfico que permite ao utilizador criar modelos completos sem que seja

necessário recorrer a outros elementos da interface. Este sistema usa o conjunto de oper-

ações procedimentais para complementar a sequência de passos necessários ao reconheci-

mento de esboço, permitindo inferir uma representação tridimensional do esboço e, poste-

riormente, inferir qual a operação procedimental desejada. Para ajustar os parâmetros das

operações de forma a que estas produzam geometria semelhante ao esboço, o sistema usa o

método de gradiente descendente com uma função baseada na distância entre as linhas 3D e

as arestas da geometria.

O sistema apresentado aparenta ser um passo promissor na direcção de um sistema com-

pleto de modelação procedimental caligráfica. Um novo conjunto de questões de investi-

gação tornou-se evidente durante o desenvolvimento deste trabalho que, após terem re-

sposta num trabalho futuro, trazem a possibilidade de aumentar a expressividade dos méto-

dos de modelação procedimentais orientados a espaços urbanos, tornando-os mais intu-

viii

itivos e aumentando a sua aceitação por parte dos utilizadores.

ix

x

Contents

1 Introduction 1
1.1 Motivation . 5
1.2 Hypothesis and Research Questions . 6
1.3 Objectives . 8
1.4 Related Publications . 9
1.5 Problems in Sketch Based Procedural Modelling of Buildings 10

1.5.1 Lack of Direct Control . 11
1.5.2 Restrictions of Split-Based Methods 12
1.5.3 Semantic Ambiguity in User Selections 14
1.5.4 Procedural Rule Inference and Parameter Estimation from Sketches 15

1.6 Solution Overview . 17
1.6.1 Layer-Based Procedural Modelling 17
1.6.2 Semantic Selection of Sets of Shapes 19
1.6.3 Procedural Rule Inference . 21

1.7 Document Structure . 23

2 Procedural Modelling 25
2.1 Definition . 26
2.2 Advantages . 27
2.3 Disadvantages . 28
2.4 Procedural Modelling of Virtual Urban Environments 30

2.4.1 Terrain Modelling . 32
2.4.2 Road Network Modelling . 36
2.4.3 Building Modelling . 41
2.4.4 Façade Modelling . 53
2.4.5 Modelling Other Content . 59

2.5 Open Questions . 60
2.6 Summary . 62

3 Sketch Based Interfaces for Modelling 65
3.1 Sketching Pipeline . 67
3.2 Model Creation . 71

xi

Evocative Systems . 72
3.2.1 Constructive Systems . 73

3.3 Modification . 77
3.3.1 Augmentative Systems . 77
3.3.2 Deformation Systems . 78

3.4 Sketch Based Modelling of Urban Entities 79
3.5 Open Questions . 82
3.6 Summary . 84

4 Layered Shape Grammars 85
4.1 Overview . 86
4.2 Layered Shape Grammars . 89

4.2.1 Procedural Items . 89
VolumetricShape . 90
PlanarShapes . 92
Layers . 94
Shape2D . 95

4.2.2 Overloaded Procedural Rules . 97
4.2.3 Procedural Operations . 99

Layer Creation Operation . 99
Segment Operation . 101
Vectorial Shape Operation . 106
Set Property Operation . 108

4.3 Planar Shape Normalisation . 110
4.3.1 Layers Merge . 112
4.3.2 Conversion to Planar Shapes . 115
4.3.3 Deferred Procedural Items . 118

4.4 Derivation Process . 120
4.5 Limitations . 123
4.6 Summary . 124

5 Generalised Selections for Improved Direct Control in Procedural
Modelling 127
5.1 Overview . 129
5.2 Selection Action Paradigm . 133
5.3 Semantic Queries . 134

5.3.1 Selectors . 136
5.3.2 Hierarchical Relations . 141

xii

5.4 Selection Action Tree . 146
5.4.1 Shorthand notation . 148
5.4.2 Procedural Derivation . 151

5.5 User Selection Inference . 155
5.5.1 Semantic Profiles . 159
5.5.2 Initial Population . 160
5.5.3 Evaluation . 161
5.5.4 Mutation . 163
5.5.5 Crossover . 165

5.6 Applications . 166
5.6.1 Layers of procedural content . 166
5.6.2 Generation of level mechanics 170
5.6.3 City Evolution . 172
5.6.4 Weathering . 174
5.6.5 Application to non-procedural buildings 175
5.6.6 Limitations . 175

5.7 Summary . 177

6 Sketch Based Procedural Modelling 179
6.1 Overview . 181
6.2 User Interface and Workflow . 183
6.3 Stroke Filtering and Segmentation . 186
6.4 Converting Strokes to World-Space Lines 194

6.4.1 Line Candidate Generation . 196
6.4.2 Candidate Line Evaluation . 201

6.5 Heuristics for the Inference of Procedural Operations 203
6.5.1 Extrusion Heuristic . 205
6.5.2 Offset Heuristic . 206
6.5.3 Split and Repeat Split Heuristic 207
6.5.4 Component Split Heuristic . 208
6.5.5 Sample Based Generation of Candidate Procedural Operations . . 209

6.6 Parameter Adjustment . 210
6.6.1 Error Function . 211
6.6.2 Gradient Descent Method for Parameter Adjustment 212

6.7 Tools for Precise Sketching of Architecture 217
6.7.1 Analytical Drawing . 217
6.7.2 Guidelines . 219
6.7.3 Support Lines . 220

xiii

6.8 Summary . 222

7 Results and Discussion 227
7.1 Layered Shape Grammars . 228

7.1.1 Simple Façade Example . 228
7.1.2 Expressiveness . 231

Complex Windows . 231
Modelling the Mikimoto Ginza Building 234

7.1.3 Comparison to Split Based Methods 239
7.2 Generalised Selections for Improved Direct Control in Procedural Modelling 243

7.2.1 Modelling Session Example . 244
7.2.2 Usability . 246
7.2.3 Selection Examples . 251
7.2.4 Comparison to existing methods 252
7.2.5 User Selection Inference . 256

7.3 Sketch Based Procedural Modelling . 262
7.3.1 Methodology . 263
7.3.2 User Characterisation . 265
7.3.3 Initial Opinions Regarding the Methodology and Prototype 271
7.3.4 First task: Sketching Interface for Procedural Modelling 278
7.3.5 Second task: Usage of Guidelines and Support Lines 281
7.3.6 Third task: Modelling an Example Building 283
7.3.7 User Opinion After Task Completion 285
7.3.8 Discussion . 295

7.4 Summary . 297

8 Conclusions and Future Work 301
8.1 Research Questions . 302

8.1.1 How can procedural modelling methods be improved to provide enough
expressiveness to be better paired with sketch interfaces? 302

8.1.2 What is required from a procedural modelling method to improve the
amount of direct control a user can have over the generated models? 304

8.1.3 How can semantics present in procedural modelling rules be used in
a sketch based procedural modelling system? 306

8.1.4 How can a sketch based interface for modelling be used in the proce-
dural modelling of buildings? . 307

8.1.5 How can procedural modelling rules and parameters be defined through
sketch based interfaces for modelling? 309

xiv

8.1.6 Can a sketch based interface for modelling improve the workflow of
methods for procedural modelling of buildings? 310

8.1.7 How can a sketch based interface for modelling enhance the expres-
siveness and direct control of procedural methods? 311

8.2 Future Work . 313
8.2.1 Interactive Procedural Modelling with Layers 313
8.2.2 Integration of Layers in the Selection Action Paradigm 319

8.3 Conclusions . 320

Appendix A Semantic Selections in Procedural Modelling 329

Appendix B Sketch Based Interaction for Procedural Modelling: Ini-
tial Questionnaire 337

Appendix C Sketch Based Interaction for Procedural Modelling: Ques-
tionnaire After Prototype Presentation 343

Appendix D Sketch Based Interaction for Procedural Modelling: Task
1 349

Appendix E Sketch Based Interaction for Procedural Modelling: Task2 353

Appendix F Sketch Based Interaction for Procedural Modelling: Task
3 357

Appendix G Sketch Based Interaction for Procedural Modelling: Ques-
tionnaire After Experimenting with the Prototype 359

References 380

xv

xvi

Listing of figures

1.1 Iterative steps in Procedural Modelling Techniques. 6
1.2 From a procedurally generated façade (a) the user selects an architectural ele-

ment (b), drags it to a new position and the model is regenerated (c). 12

2.1 Cost comparison between procedural and traditional techniques [Dan07] . 29
2.2 Midpoint displacement method for terrain generation [Mar96] 33
2.3 Example based terrain generation [Zho+07] 35
2.4 A terrain generation method capable of representing arches and caves [Pey+09]

. 35
2.5 Modeling road networks on a large scale terrain [BN08] 37
2.6 Left: maps with water, elevation and population density. Right: resulting road

network. [PM01] . 38
2.7 Example of execution: for a given node vd in the existing network (middle) the

algorithm searches for a node vs that has similar topology within a radius and
up to a rotation θ. New segments are added by copying segments and snap-
ping to intersections [YS12]. 40

2.8 Application of L-Systems in Building Modelling [PM01]. 41
2.9 Execution of a Split Grammar. START is the axiom and the lower row rep-

resents the results. 43
2.10 Left: the Scope of a Shape. Right: a generated model with three primitives [Mül+06].

. 43
2.11 Applying deformation to a straight façade (a) yields a different number of win-

dows on the side parts (b). [Zmu+13] . 45
2.12 Modelling a porch with the Node-based approach [Sil+13]. 47
2.13 From a simple example (right), complex cities can be generated (left) [MM08].

. 48
2.14 Modelling large environments with procedural extrusions [KW11]. 49
2.15 Real-Time procedural city generation [Gre+03]. 50
2.16 Praça da República in Oporto, Portugal modelled with XL3D [Coe+07]. . 51
2.17 Modelling of the Boavista Roundabout in Oporto, Portugal [Sil10]. 52
2.18 First two steps in the execution. [Mül+07] 54
2.19 Left: a façade image. Right: the generated model [Mül+07]. 55

xvii

2.20 F-Shade resulting buildings [Hae+10]. 56
2.21 Each pixel is evaluated, tracking down split operations until a terminal shape(a

and b). The method either samples from a texture (c) or instantiates a new ge-
ometric entity (d) [KBK13]. 57

2.22 Modelling process proposed by Finkenzeller [Fin08]. 58

3.1 The pipeline of sketch based interfaces for modelling [Ols+09]. 68
3.2 Filtering methods [Ols+09]. 70
3.3 Beautification process of a house-like sketch [Ols+09]. 70
3.4 The approach proposed by Igarashi pushes vertices away from the chordal axis

[IMT99]. 76
3.5 Results of applying surficial augmentation to generate vein-like features on a

hand model [Ols+05]. 78
3.6 From a single user sketch (left) the system extracts the building structure (cen-

tre) and provides a detailed textured result (right) [Che+08b]. 81
3.7 Example of a castle sketch being transformed into a 3D model [Ols+11]. . . 81

4.1 The Mikimoto Ginza building in Tokyo is an example of an irregular façade. 87
4.2 A volumetric shape with its scope. 91
4.3 A planar shape with its scope. 93
4.4 Relations between planar shapes, layers and 2D shapes. 95
4.5 Application of the rule in Listing 4.2 to a planar shape. 101
4.6 Application of the grammar in Listing 4.3 to the two layers defined. 105
4.7 Application of the grammar in Listing 4.4 to create an arched door. 108
4.8 Application of the rule in Listing 4.5 to a 2D shape causing it to be generated. 109
4.9 Clipping tree for the final model in Figure 4.5. 110
4.10 Incorrectly generated windows. 119
4.11 Correctly generated windows. 120
4.12 Priority queue for the procedural derivation. NT represents the normalisation

token. 122

5.1 The user workflow in this system. 130
5.2 The interface presented to the user. 131
5.3 Results of applying the semantic query in Listing 5.3. 140
5.4 Results of applying the semantic query in Listing 5.4. 141
5.5 The descendants operation applied to a given shape in a shape tree. 143
5.6 The children operation applied to a given shape in a shape tree. 144
5.7 The siblings operation applied to a given shape in a shape tree. 145
5.8 An example of a selection action tree and its application sequence. 148

xviii

5.9 The application of a selection-action node is constrained to the shapes created
by the nodes inside the red border. 151

5.10 Selection action tree illustrating the first step in the generation of a small res-
idential house. 153

5.11 Selection action tree illustrating the second step in the generation of a small
residential house. 154

5.12 Selection action tree illustrating the third step in the generation of a small res-
idential house. 155

5.13 Selection action tree illustrating the fourth step in the generation of a small res-
idential house. 156

5.15 Steps in the generation of a simple residential building. 157
5.16 Example of candidate evolution during selection inference. 165
5.17 The several layers that can be conceptualized as layers of procedural content. 167
5.18 Variations of a city block and the selection action trees responsible for such vari-

ation. 169
5.19 Scene layers responsible for creating the variation in Figure 5.18b. 170
5.20 NPC Waypoints evenly distributed in sidewalks and cross-walks (top) and the

layer that created them (bottom). 171
5.21 A city block before (5.21a) destruction, the geometry affected within the destruc-

tion radius (5.21b) and two points during the simulation (5.21c and 5.21d). . . 173
5.22 It is possible to use this system to non procedural building hull (a) and create

variations (b and c) using layers of procedural operations. 176

6.1 The user interface presented to the user. 184
6.2 A few steps in a short modelling session. 186
6.3 A stroke provided by a user where the intention was to draw a rectangle. . . 188
6.4 The speed and curvature metrics for each point in the stroke show in Figure

6.3. The values were scaled to the interval between 0 and 1 for illustration pur-
poses. 190

6.5 Orthogonal distance (black) between points in the original user stroke (red)
and the respective segmentation line (blue). 193

6.6 A line orthogonal to a planar shape may lose such property when projected
onto the scene. 195

6.7 A vertical line on the screen when projected onto existing geometry may lose
such property. 196

6.8 An example of a family of lines for an extrusion operation where the red, blue
and green lines correspond to extrusion values of 1, 2 and 4. 197

6.9 Using guidelines and support lines to precisely split a face in half. 222

xix

7.1 The example façade (Subsection 7.1.1), on the left, and its decomposition into
layers, on the right. 230

7.2 A complex window created with layers. 233
7.3 Variations obtained by toggling on or off some layers in Listing 7.2. 233
7.4 Layers used to place the windows in the Mikimoto Ginza building. 236
7.5 Windows used for the Mikimoto building (Figure 7.6). 238
7.6 An approximation of the Mikimoto Ginza (Figure 4.1) created with layered

shape grammars. 239
7.7 Changing the entrance size using the layered approach, 7.7a, leads to better re-

sults than with the split based approach, 7.7b. 241
7.8 Intentionally misaligned balconies in the example façade. 242
7.9 Detail of the ground windows in the split-based approach. 243
7.10 A modelling session with this system showing several selections (top row) and

the operations applied (bottom row). 244
7.11 The selection-action tree for the example. 245
7.12 Possible user selections in the example in Figure 7.10. User selections are in yel-

low, results of applying one of the suggested queries. 245
7.13 Example of a building created with the selection-action paradigm. 247
7.14 Summary of some answers to the user evaluation questionnaire. Values are in

a Likert scale where higher values mean a more positive user opinion for a pa-
rameter. 249

7.15 Examples of semantic selections over a simple building. 252
7.16 Building used to compare traditional methodologies with the one presented

here. 253
7.17 Comparison between this methodology (a) and the one presented in [Pat12](b)

to generate the model in Figure 7.16. 253
7.18 In the left column, for a given user selection (shown in yellow) the system gen-

erates a query that selects the shapes shown in yellow and green. For each of
the examples, the centre column shows the evolution of the best score and the
right column shows the evolution of the difference metric (δ) between the syn-
thetic and the best candidate queries. 259

7.19 Score variation when 10%, 50% and 100% of the shapes are sampled. 262
7.20 User experience with traditional and procedural modelling tools. 265
7.21 Users’ opinion about procedural modelling tools. 266
7.22 User’s opinions regarding traditional (left) and procedural modelling tools (right) 267
7.23 Tools used in early stages of modelling. 269
7.24 Concept art in the modelling process. 270
7.25 Early opinions about the presented methodology. 272

xx

7.26 Adequacy of the methodology to building modelling 273
7.27 The prototype’s sketching interaction. 274
7.28 Comparison with current procedural modelling tools regarding their capabil-

ities. 275
7.29 User opinion about model creation capabilities of the prototype when com-

pared to other procedural modelling tools. 276
7.30 Opinions regarding the benefits the sketching interface brings for procedural

modelling. 277
7.31 Early opinions about the prototype. 278
7.32 Initial state of the first task presented to the users. 279
7.33 Desired outcome of the first task presented to the users. 280
7.34 Initial state of the second task presented to the users. 281
7.35 Desired outcome of the second task presented to the users. 282
7.36 Desired outcome of the third task presented to the users. 284
7.37 Participants’ opinions about the methodology after task completion. 286
7.38 Participants’ opinions about the sketching interaction after task completion. 287
7.39 Participants’ general opinions about the methodology when compared with

other procedural modelling methods. 288
7.40 Participants’ opinions about the model creation capabilities after task comple-

tion. 289
7.41 Participants’ opinions about the sketching interface after task completion. . 290
7.42 Participants’ opinions about the correctness of the suggested procedural op-

erations and parameters. 291
7.43 Participants’ opinions about the usage of support lines and guidelines. . . . 292
7.44 Participants’ opinions about the prototype after task completion. 293
7.45 Participants’ opinions about the prototype features after task completion. . 294

8.1 An example façade where the door is partially occluding a grid of windows. 315
8.2 Schematic decomposition into layers of the shape grammar in Listing 8.3. . 317

D.1 . 350
D.2 . 350

E.1 . 354
E.2 . 354

F.1 . 358

xxi

xxii

Acknowledgments

Firstly I would like to thank my supervisors Professor António Coelho and Professor An-

tónio Augusto Sousa for all the continuous help, guidance and support from the moment I

started this work until now.

I also send my deep thanks to Professor Gustavo Patow for his contagious enthusiasm

and kind words which have always kept me motivated to improve my work. It has been a

pleasure and I look forward to work again with such extraordinary Professors.

My thanks go to Professor Xavier Pueyo and Professor Gonzalo Besuievsky, everyone

at the Visualization, Virtual Reality and Graphics Interaction research group and theUni-

versitat de Girona for receiving me for two research periods. Their support and help was

incredible and I will always remember dearly how I was welcomed.

This work was partially funded by the Portuguese government by FCT through the PhD

scholarship SFRH/BD/92019/2012.

I pour my hear in gratitude for my family and friends who have always been there for

me and have made me the person I am today. I am one lucky person to have each and every

single one of you in my life.

The most special thanks goes to Raquel who has celebrated with me even the smallest

xxiii

victories and lifted me up when things didn’t look so bright. I would need to write as many

pages as there are in this document to begin a proper thank you.∞

xxiv

1
Introduction

The use of urban environments has found its place in several applications ranging from

computer games, cinema, urban planning or, even, virtual tourism. Users are increasingly

demanding more detailed and convincing scenery. However, modelling such environments

is a complex task that may require several person-years worth of labour to achieve.

Urban environments often show traces of historical, economical and cultural changes

1

over time, which leads to an enormous variety of building styles and, even, different overall

ambience that grants different cities unique feelings. With a quick look at any urban envi-

ronment it is possible to identify several distinct elements, even within the same category,

which must all be modelled correctly to convey credible results.

Nonetheless, there are also patterns in these environments which stem from urban plan-

ning rules and guidelines with which cities are built. City layouts, for instance, are condi-

tioned by roads and it is common to see grid or radial patterns. Buildings also possess re-

peating elements in their structure, such as windows, doors or ornaments laid out according

to some pattern. Without these patterns, city elements would have a chaotic aspect.

Procedural Modelling (PM) techniques exploit such patterns by encoding them into sets

of rules with which the geometry and textures are generated, yielding a compact representa-

tion of their structure. Rules, in turn, can be parametrised with several attributes, changing

the final aspect of the output. One can, for instance, define the number of floors a building

has or, even, based on the date of construction, embed a building with a different architec-

tural style. Coupled with randomness it is possible to generate vast amounts of models and,

thus, easily create entire urban environments.

Typically, procedural rules are defined as a formal grammar, where symbols indicate

which procedural rules are executed on the geometry, starting with an initial shape. The

grammar derivation process, iteratively refines the geometry, adding more detail to the re-

2

sult. However, a great visual representation may only provide a part of such realism. Vi-

sually stunning graphics and highly detailed models only make the urban environments

visually appealing but, unless the virtual world behaves as the real world, it may look uncon-

vincing and break the user’s immersion. To imbue more realism into the generated scenes,

the procedural techniques can make use of semantic information to create urban environ-

ments that make sense.

Despite their immense power, one of the main disadvantages of using grammar based

rules is that they can, typically, be unintuitive and daunting for the end user, despite their

professional background. The most common development process in the procedural ap-

proach is to define the rules, execute the system, analyse the results and modify the rules in

order to obtain a better 3D model. This method is not intuitive, lacks predictability and

controllability, requires an in-depth knowledge of procedural modelling and resembles

programming in an advanced language [Šta+10]. More user-friendly approaches are, thus,

needed.

Node based approaches to procedural modelling [Pat12; Sil+13; Sil+15] of urban scenes

have emerged which provide a more intuitive way of specifying procedural rules. However,

the iterative cycle is still present and there is a disconnection between the definition of rules

and the generated three-dimensional models. Nonetheless, it is a solid starting point on

which to define more intuitive approaches to procedural modelling. In contrast, in shape

3

grammars where related rules can be defined several lines apart, node based approaches pro-

vide the user with a visual representation that bridges the gap between rules.

The expressive power of drawing, on the other hand, is enormous and any person, even

with average drawing skills, can communicate ideas quickly and easily. Moreover, sketch-

ing is often the starting point of any creative work and it is not different in the creation of

urban environments. Environment designers in games, for instance, usually create concept

drawings of the spaces where the game takes place. These, to be used, need to be modelled

in a 3D modelling package, taking time and introducing a bottleneck in the content cre-

ation pipeline.

Sketch Based Interfaces for Modelling (SBIM), which have received a lot of research inter-

est recently, try to close the gap between the concept idea and the final result by providing a

drawing interface and creating the respective 3D models automatically, therefore, minimis-

ing the impact of such bottleneck.

Unfortunately, the most accepted methods for procedural modelling (i.e., shape gram-

mars and node based approaches) of buildings lack the necessary expressiveness to be com-

patible with a sketch based interface for modelling. This is mainly due to their over-reliance

on splitting operations which tend to create rectangular or cuboid shapes. More complex

geometries must be modelled externally and imported to the procedural modelling work-

flow introducing a bottleneck. Increasing the expressiveness of procedural methods to

4

become closer to the one in sketch based interfaces for modelling is also discussed in this

thesis.

It is here hypothesized that a good articulation between procedural modelling systems

and sketch based interfaces for modelling can empower content creators even further by

allowing them to draw urban elements (e.g., buildings) and have procedural rules automati-

cally defined which can, afterwards, be used to model variations.

1.1 Motivation

Procedural Modelling tools have, as target audience, creative professionals whose goals may

be to create content for a number of different applications. A common desire, however, is

to work with a tool that does not interrupt the creative process by forcing the user to dedi-

cate more thought to how the system works than to the creation process.

The iterative nature of these methods (see Figure 1.1), where the user must first define

the rules and parameters, set the parameter values, generate the geometry and analyse the

results until a satisfactory output is achieved can be cumbersome to the artist. Furthermore,

this process lacks visual feedback as it is not clear how a change in the rule base will affect

the generated geometry.

This lack of intuitiveness, immediate feedback, predictability and controllability coupled

with the fact that the user must have background knowledge on procedural modelling to

5

Figure 1.1: Iterative steps in ProceduralModelling Techniques.

be able to use these tools and that they often approach the generation of inherently visual

artefacts in a text-based manner resembling a programming language motivates the develop-

ment of this work.

1.2 Hypothesis and Research Questions

Procedural modelling methods provide, undoubtedly, powerful techniques for the auto-

matic generation of three-dimensional content, requiring only that the user specifies a set

of input rules. These should, preferably, be produced by the same person who envisions

the end result, most typically a designer or artist. Hence, the procedural system should be as

intuitive as possible while also trying not to disrupt the creative process.

This, however, is not necessarily the case as mentioned before. Despite that, recent work

has made the procedural generation more user-friendly which has shown good results but

6

the user must still manually produce the rules in some interactive fashion that steers the

user away from text-based approaches.

Drawing, on the other hand, is a powerful communication and conceptualisation medium

which, if integrated correctly with procedural modelling systems, may provide faster meth-

ods for the content generation of urban environments.

This raises the following set of research questions which this thesis aims to answer.

• How can procedural modelling methods be improved to provide enough expressive-
ness to be better paired with sketch interfaces?

• What is required from a procedural modelling method to improve the amount of
direct control a user can have over the generated models?

• How can semantics present in procedural modelling rules be used in a sketch based
procedural modelling system?

• How can a sketch based interface for modelling be used in the procedural modelling
of buildings?

• How can procedural modelling rules and parameters be defined through sketch
based interfaces for modelling?

• Can a sketch based interface for modelling improve the workflow of methods for
procedural modelling of buildings?

• How can a sketch based interface for modelling enhance the expressiveness and direct
control of procedural methods?

Having this in mind, the two following hypothesis are to be tested in this Thesis:

• Hypothesis 1: The generation of convincing urban models that are similar to their
real-world counterparts can be achieved through the use of semantics explicitly or
implicitly present in procedural models and rules.

7

• Hypothesis 2: It is possible to provide more intuitive interaction to specify or to ob-
tain rules for the procedural modelling of buildings, reducing the iterative cycle of
current procedural modelling methods, by using sketch based interfaces for mod-
elling.

1.3 Objectives

The main objective of this thesis is to develop sketch based procedural modelling method-

ologies to generate buildings interactively, without disrupting the creative process. Conse-

quently, they must be as intuitive as possible and should aim not to divert the user’s atten-

tion to secondary tasks such as searching through the interface for a specific command.

The following, more concrete objectives are to be achieved throughout the remainder of

this work:

• Study the current procedural modelling methodologies.

• Study the available sketch based interfaces for modelling techniques.

• Devise methods to increase the expressiveness of procedural modelling techniques.

• Create a method to improve the amount of direct control procedural modelling
methods allow over generated models.

• Devise a sketch based interface for modelling aimed at the procedural modelling of
buildings.

• Develop a methodology to aid in the interpretation of sketch gestures given the set of
procedural rules.

8

• Analyse how sketch based interfaces for modelling can improve the procedural mod-
elling workflow.

1.4 Related Publications

The work developed throughout this thesis has been documented and subject to the peer-

review process in the publications listed in the remaining of this section.

• Jesus, Diego, António Coelho, and António Augusto Sousa. 2015. ”Towards Inter-
active Procedural Modelling of Buildings.” In Proceedings of the 31st Spring Confer-
ence on Computer Graphics, 173–76. Smolenice.

• Jesus, Diego, António Coelho, and António Augusto Sousa. 2016. ”Layered Shape
Grammars for Procedural Modelling of Buildings.” The Visual Computer 32 (6):
933–43.

• Jesus, Diego, Gustavo Patow, António Coelho, and António Augusto Sousa. 2018.
”Generalized selections for direct control in procedural buildings” Computers &
Graphics 72: 106-121

The first publication ”Towards Interactive Procedural Modelling of Buildings” [JCS15]

presented the early contributions of the idea of using vectorial shapes and layers within

faces of procedural models to increase its expressiveness. This was a short paper in the 31st

Spring Conference on Computer Graphics.

Following the previous publication, the ”Layered Shape Grammars for Procedural Mod-

elling of Buildings” [JCS16] paper presented the more mature and final contributions in the

9

same idea which are also expressed in this thesis. This idea was presented at the Computer

Graphics International 2016 and published on the The Visual Computer journal.

The contributions towards a direct control in procedural modelling of buildings with

user selection inference were presented in the third publication with the ”Generalized selec-

tions for direct control in procedural buildings” [Jes+18]. The contributions in this publica-

tion are also present in this thesis in Chapter 5.

An oral communication was also presented in the Doctoral Consortium at the 37th edi-

tion of Eurographics in 2016. In this communication, the ideas and approaches presented in

this thesis were presented and discussed with members of the Computer Graphics field.

The following sections illustrate the open problems in sketch based procedural mod-

elling of buildings and how the contributions within this thesis aim at their solution.

1.5 Problems in Sketch Based Procedural Modelling of Buildings

Despite the immense capabilities of procedural modelling methodologies there are some

drawbacks. In this section some of these are highlighted, which were chosen as the ones

most relevant for the development of a sketch based procedural modelling system targeted

at buildings.

10

1.5.1 Lack of Direct Control

A severe problem in most procedural modelling systems is the fact that these do not offer

the user the possibility of directly manipulating the created buildings or geometries.

In fact, often the only way users have to change the building’s aspect is to modify the rule

base, by adding or removing rules, or by changing the parameters in such rules. In the best

of scenarios, the rules are encoded in a graph or visual language representation [Pat12; BP12;

Sil+13; Sil+15] but more often than not, the user must modify a text-based shape grammar

[PM01; Won+03; Mül+06; KPK10; SM15; JCS16]. In any case there is a separation between

what the user can modify and manipulate and what is, in fact, generated.

The users are, often, limited to defining rules and tuning the respective parameters, after

which they must regenerate the geometry to analyse the results. This define-generate-analyse

cycle is a currently open problem in procedural modelling and is responsible for the lack of

direct control over the created models (e.g., dragging elements as in Figure 1.2) and provides

very little visual feedback.

This cycle directly affects creativity as the user is often forced to spend more time on

modifying the rules searching for the exact configuration that generates the geometry that

fits the user intention, than on creating new rules that add more detail to the building mod-

els. In other words, more effort is put on tuning the rules and parameters than on improv-

ing the models towards more detailed and realistic results.

11

(a) (b) (c)

Figure 1.2: From a procedurally generated façade (a) the user selects an architectural element (b), drags it to a new

position and themodel is regenerated (c).

1.5.2 Restrictions of Split-Based Methods

The currently most accepted methodologies for procedural modelling (i.e., those based on

shape grammars or graphs) of urban scenes heavily rely on using split operations to refine

the geometry. Split operations consist of splitting a shape one or more times along one or

more planes defined within the shape’s bounding box (also referred to as scope) and orthog-

onal to one of its axis.

Replacement methods, where in each operation a set of shapes is replaced by a new set

of shapes (e.g., shape grammars), are the most notorious example of systems that use this

split based approach and often provide (at least) two types of split operations: the regular

split and the repeat split. The first splits geometry along a bounding box axis given a set of

sizes, generating a new shape for each size. The second repeatedly splits geometries along a

bounding box axis given a single size, generating new shapes of equal dimensions.

In typical scenarios, users chain split operations to create several new partitions that are

12

detailed individually, often alternating the split axis. This, in turn, tends to generate rect-

angular or cuboid shapes, limiting the expressiveness of procedural modelling methods.

Even slightly more complex shapes are nearly impossible to create with split base operations.

For instance, a simple arched window cannot be created with this paradigm and, therefore,

must be externally modelled and imported to the generation. In turn, this consumes more

time and may not be easily integrated with the rest of the model as there may be geometry

misalignment or compatibility issues.

Moreover, forcing users to focus on the exact order of splitting operations can be rather

daunting and may disrupt the creative process by forcing the user to focus on how to de-

scribe a building instead of how a building should look.

As stated by Zhang et al. [Zha+13], users don’t typically perceive buildings through split-

ting lines. Humans, when looking at a building façade, often perceive regular patterns of

similar elements (e.g., a grid of windows) that may be interrupted by other elements (e.g.,

an entrance). A representation that is closer to how users perceive the façade of a building

can lead to improved creativity. Zhang et al. [Zha+13] tackle this issue by decomposing a

façade into layers of elements.

Nonetheless, split-based operations are a powerful way to represent complex patterns in

architectural models and do provide an efficient way to partition and place architectural ele-

ments within façades. Therefore, this flexibility must not be neglected and should, instead,

13

be complemented with other methods that enhance its expressiveness.

1.5.3 Semantic Ambiguity in User Selections

To enable direct control over a procedural model a user must be able to interact with the

generated model. A typical paradigm in 3D modelling is to allow the user to select (via

point and click) the set of geometry elements and then perform an operation on such ele-

ments.

This scheme is simple and intuitive for the end user who must simply select the set of

elements to manipulate. Furthermore, the selection is exact and unambiguous as the user

precisely chooses which elements are included in the selection. Systems often provide means

to add or remove elements from the selection set.

On the other hand, selection in procedural modelling systems is highly ambiguous due

to the data amplification nature of procedural modelling systems. A given selection of

shapes in a procedural model may reflect several possible user intentions. In other words,

the selection set may be a subset of what the user intended to select.

Moreover, this selection is neither exact nor unambiguous. Even if the user selects all

shapes in a given model matching a given criteria, a simple modification in the rule set

might invalidate such selection. For instance, if a user selected all floors in a building, sim-

ply increasing the number of floors is enough to invalidate the intention of the previous

selection. A naive solution is to keep the first few floors selected. However, this does not

14

scale to more complex situations.

Consider a rule that subdivides a façade into its floors. Selecting one of the generated

floor shapes may correspond to the user’s intent of selecting that exact floor or, on the other

hand, selecting all floors. If the user, instead, selects the first and third floor, the intent may,

then, be to select all odd floors.

This brief example only considers a single façade and its floors, but it is already possi-

ble to see that the amount of possible selections and user intents rapidly increases with the

number of shapes.

Considering four façades, each facing a cardinal point, and it is now possible to take the

direction a given floor is facing into account in the user selection ambiguity. In other words,

the user may want to select floors only facing the north direction, odd floors in all directions

among other possible combinations.

A new level of indirection in the user selection in procedural models is required which

should take into account not only the user selection set but also capture the semantics be-

hind the user intention.

1.5.4 Procedural Rule Inference and Parameter Estimation from Sketches

Typical procedural modelling methods rely on the user to define rules and parameters. In a

sketch based procedural modelling system rules must also be obtained, albeit using a differ-

ent user interface paradigm.

15

The purpose of integrating procedural modelling methods with sketch based user in-

terfaces is to allow a more direct control and expressiveness over such systems while, at the

same time, diminishing the interruptions during the creative process. It should also min-

imise the gap between concept drawings and the final 3D models.

However, sketches are extremely ambiguous which makes the recognition process com-

plex. Therefore, a sketch provided by a user could potentially have several meanings. Con-

sidering noise during the capture phase and hand jitters makes the inference even more diffi-

cult.

A sketch based procedural modelling system should be able to infer both the intended

operations and its parameters. Moreover, the inferred operations and parameters must

be converted into rules in the underlying procedural mechanism (i.e., shape grammars or

nodes) and be correctly associated with other rules in the current rule base. In other words,

the new rules should be created with the proper symbols in a shape grammar or linked to

other nodes in a node-based system. Failing to correctly produce the rules and their associa-

tions may lead to an erroneous output or no output at all.

Urban spaces, in general, and buildings in specific contain many patterns such as repe-

titions and symmetries which procedural rules often exploit. As such, a sketch based sys-

tem should provide the means to correctly and easily create these patterns. On the other

hand, such systems can take advantage of a limited set of procedural operations to aid in the

16

sketch recognition process.

1.6 Solution Overview

To overcome the previously mentioned issues three distinct methodologies were developed,

each aiming at solving one or more of such problems. When combined, these provide a

sketch based procedural modelling system.

This section intends to briefly explain each of these contributions, highlighting the ways

in which they help to bridge the gap between procedural modelling and sketch interfaces.

1.6.1 Layer-Based Procedural Modelling

To tackle the limitations in split based methods, especially in façade descriptions, the devel-

oped solution was to define layers in procedural models to which different sets of rules can

be applied, creating different architectural elements. Such layers are then merged into a flat

representation while dealing with geometry conflicts.

This allows for a more structured representation of procedural rules since content gener-

ation can be grouped into semantically meaningful layers. For example the user can group

rules that generate a regular grid of windows into one layer while deferring the generation

of ornaments to another layer. Furthermore, this approach easily provides the generation

of more variations by turning on or off the execution of some layers, reordering the layers

or swapping the rules in one layer with a new set of rules, providing a non-linear modelling

17

workflow. All these changes are contained within a single layer while the structure and re-

sulting architecture of other layers remain equal.

Not only does this provide a more organized way of creating rules but also suits the hu-

man perception of buildings. As noted by Zhang et al. [Zha+13] humans tend to perceive

façade layouts not through split lines but as a collection of regular patterns that may be in-

terrupted by other elements or groups of elements.

Moreover, during the development of this thesis, it was found that the current level of

expressiveness provided by procedural modelling systems was not closely matched to the

expressiveness sketch based systems naturally provide. While it is easy for a user to sketch

arched windows, it is not trivial for split based methods to generate such elements without

importing externally modelled assets.

Layer based procedural modelling also takes a step forward in solving this problem by

allowing the specification of irregular shapes (e.g., arches) within layers. In the proposed

methodology, these are defined vectorially as closed 2D paths forming the outline of the

desired new shape.

Defining several layers within a procedural model inevitably creates geometry conflicts

between shapes in different layers. Shapes contained in front layers may overlap shapes in

background layers. This is, actually, a desired behaviour as it allows users to define groups

of shapes that interrupt regular patterns in other layers, bringing the representation closer

18

to human perception as approached by Zhang et al. [Zha+13].

Nonetheless, merging all layers is required to produce a final output. The solution found

was to use Boolean operations (intersection, difference and union) to combine all shapes

considering their relative depth within the set of layers. Some fine-grained control is also

given to the user who can select if some shapes should be discarded in case of being partially

or totally occluded by other shapes.

1.6.2 Semantic Selection of Sets of Shapes

As previously mentioned, user selections over procedural models can be extremely am-

biguous due to the data amplification nature of such methods. This thesis describes a so-

lution for this problem that shifts selections from a simple set of selected shapes to semantic

queries that describe the user intended selection.

The description is based on simple properties of individual shapes, complex filters and

hierarchical relations between shapes in a shape tree. The internal properties of shapes are

the symbol (in case of shape grammars) and tags, while more complex conditions such as

parity of index or the direction a shape is facing is encoded into filters. Semantic queries can

also take advantage of the fact that shape trees normally provide a hierarchical structure of

a building. Therefore, it is possible to create semantic queries that select shapes that show

some sort of relation (in this system these are the children, descendants or sibling relations)

between one another.

19

Moreover, semantic queries are naturally equipped to handle variations in the rule set

as they are descriptions and not a fixed set of shapes. In the case of selection sets, variations

to the rule set may invalidate part of the selection if some selected shapes cease to exist or

not expand properly to fit new models if new similar shapes are added. On the other hand,

semantic queries reduce this issue by describing how selections should be constructed.

The intention behind user selections can also be captured into one of many semantic

queries. If, for example, the user selects sets of alternate floors it should be possible to con-

struct a semantic query that represents such intention. However, manually creating such

semantic query may be too cumbersome for the user as it would require the specification of

each condition and parameter in the query. A better approach is to allow the user to select

the shapes within an interactive application and place the burden of generating queries in

the system itself.

An approach to achieve such results using genetic algorithms is also described in this the-

sis. From a set of user selected shapes a few candidate semantic queries are generated which

are evaluated according to a fitness function. Mutations and crossing are then applied to

the best candidates and the process is repeated for a given number of iterations. The best

candidate queries generated throughout all iterations are kept and presented to the user

who then selects the one that best matches the intent. The goal is to map the selected shapes

in an interactive application to a given semantic query where the system has the greater bur-

20

den of generating a set of feasible semantic queries and the user has the final decision over

which is more suitable for a given domain.

1.6.3 Procedural Rule Inference

The end goal of this thesis is to provide a methodology that allows users to specify proce-

dural rules by sketching directly over procedural models. Therefore, to generate procedural

rules from user provided strokes these should be interpreted and correctly inserted into the

rule base. A mechanism to infer procedural rules from user strokes has been developed and

is thoroughly explained in this thesis.

However, as previously described, sketch based interfaces for modelling are ripe with am-

biguity and this is also reflected in the developed methodology. Firstly, from a viewpoint,

a set of user strokes can form an infinite number of configurations in 3D space and a map-

ping between the sketch and the correct configuration must be found. In this thesis such

mapping is achieved by using a modified version of the system defined by Schmidt et al.

[Sch+09] as it is a good fit for architectural drawings. This system uses the analytical draw-

ing technique developed and widely used by designers [Sch+09] and relies on previously

specified strokes and constraints to infer new strokes.

However, where their system provides candidate line segments by creating combinations

of starting positions, directions and distance (effectively defining a line segment), the sys-

tem described in this thesis employs knowledge of the available procedural operations (e.g.,

21

extrusions and splits) to generate candidate segments. For example, for an extrusion it gen-

erates candidate lines starting at a shape’s vertices and are orthogonal to the face while, for

a split operation, it generates lines based on the intersection of the face with a split plane.

Each candidate line is projected onto the viewing plane and compared with the user stroke

and the best match is inserted into the configuration. Moreover, this methodology uses

shape edges to serve as a basis for new user strokes.

A second level of ambiguity arises from the fact that a given configuration of lines in a 3D

space can be mapped to different procedural operations. The system defined in this thesis

analyses the set of 3D line segments by running a heuristic for each procedural operation.

The output of such heuristic is a candidate procedural operation with a set of estimated

parameter values. Candidate procedural operations are, then, fed into a gradient descent

method which will modify the parameter values approximating the edges of the resulting

geometries to the set of 3D line segments. The gradient descent uses a distance based func-

tion. All operations are then ranked according to this function and presented to the user

who, having knowledge of the intended result, is better equipped to make the final deci-

sion.

The user first creates a semantic selection (either manually or using the genetic algo-

rithm) specifying the shapes to which subsequent modifications will be applied. From these

selected shapes the user chooses one over which the sketching will be performed and, after

22

the user chooses the adequate procedural operation, the system inserts it into the rule base

such that it is applied to the shapes selected by the semantic query. The geometry is regener-

ated and the user can repeat the process.

This mechanism is tightly coupled with the semantic selection system, as it uses it to

properly insert new rules in the rule base.

1.7 Document Structure

After the thesis Introduction (Chapter 1) where the motivation, research questions, hypoth-

esis and an overall view of the open problems and the proposed solutions, this document

presents the State of the Art on procedural modelling (Chapter 2) and sketch based inter-

faces for modelling (Section 3).

Posteriorly, Chapter 4 presents the contributions that were made towards extending

shape grammars with layers and vectorially defined shapes. This chapter also discusses how

such extension increases the expressiveness of procedural modelling of buildings.

Chapter 5 introduces semantic queries and a selection action paradigm for procedural

modelling of buildings. Such contribution aims at solving the selection problem within

procedural models and shows how queries can be used as flexible way of keeping selections

valid throughout rule changes. This chapter presents the selection inference system that al-

lows queries that capture the user intention to be generated from a few user selected shapes.

23

With the previous contributions explained it is then possible to introduce the contribu-

tions towards a sketch based procedural modelling system. These are discussed in Chapter

6 alongside with how the previous techniques and the already extensively studied contribu-

tions in the SBIM field are assembled together to form a sketch based procedural modelling

system.

The evaluation and results of the entire system are shown in Chapter 7 demonstrating

how the conjunction of systems presented in the previous chapters impacts the procedural

modelling workflow.

Finally, the Conclusions and Future Work chapter (Chapter 8) describes future avenues

of research based on the presented contributions and draws final remarks on the entire

work.

24

2
Procedural Modelling

As in every scientific research, it is important to fully understand what has been done to this

point to gain better insight of the subject of the proposed thesis, analysing the applications,

requirements and open problems on the research field of procedural modelling and sketch

based interfaces for modelling.

This chapter presents the main contributions in procedural modelling approaches, start-

25

ing with a definition of procedural modelling, advantages and disadvantages of their meth-

ods. Then, techniques more specific to the generation of urban spaces will be presented.

Procedural modelling is a term that groups numerous techniques from Computer Graph-

ics that are used in the automatic generation of three-dimensional models or textures, given

a set of rules or procedures. Examples of this are L-Systems and Fractals, since they employ

an algorithm in the content generation.

This subsection presents procedural modelling definitions, according to several authors,

along its advantages and disadvantages.

2.1 Definition

Several definitions for procedural modelling are easily found, some being more strict than

others. This way, procedural contents can be considered as a subset of contents created

by executing an algorithm considering a set of rules and randomness which can result in

a large set of variations, contrasting with fully manually created contents [Sof07]. This

definition, however, categorises the generated elements into two different extremes: the

content is either completely procedural or completely manual.

On the other hand, a different definition chooses to introduce a continuous scale be-

tween these poles. In this case, there is no longer strictly procedural modelling nor strictly

manual modelling. There are, however, values in between. Such definition allows measur-

26

ing how much of an element was created using procedural techniques, i.e., how much did

algorithmic methods contribute for its creation. This categorisation then becomes a func-

tion of the amount of manual input data given to a certain method. Higher amounts mean

less procedural content. At the extremes of such function are the total absence of manual

input (completely procedural methods) and the complete manual definition of the content

(completely manual methods) [Hal08].

Procedural modelling can, thus, be defined as the programmatic generation of content

using a random or pseudo-random process resulting in an unpredictable range of content

[Wik10]. Although associated with randomness, procedural methods can be able to gen-

erate the same results in different executions, since computers can only generate pseudo-

random numbers from a seed. Providing the random generator with the same seed results

in the same output throughout executions.

As in every paradigm, procedural modelling has its advantages and disadvantages, which

will be discussed in the following.

2.2 Advantages

Procedural modelling has, among others, the following benefits:

• Data Compression: Since procedural techniques are capable of generating large
amounts of data (either random or deterministic) from a reduced or, even, empty set
of inputs they allow a large data compression rate. This is advantageous both in the
storage and transmission of data through a network [Hal08]. Several examples can

27

be found, mainly in the game industry, that make use of such property. An example
is the game .kkrieger [the04], which only occupies 100 KB.

• User Generated Content: It is possible that the users of a modelling system lack the
time or skill to produce high quality content. However, if a procedural modelling
system that only requires a small set of intuitive input is available, then it becomes
easy and fast to use [Hal08]. A classic example are the character generators in games.

• Programmer Generated Content: Procedural modelling tools allow teams with a few
artists and designers to produce high quality content, by developing systems capable
of generating an unlimited range of contents from a set of parametrizable or random
input data [Hal08].

• Higher Productivity: A procedural system is based on the idea of automating the
creation process, decreasing the workload of the designers team. This results in the
need of fewer inputs for the same output content, improving productivity [Hal08].

• Cost Reduction: Although procedural modelling systems involve large amounts of
development time and costs, they are able to produce a large amount of contents at
reduced costs, as seen in Figure 2.1. These contents are also of a moreAgile nature
than the ones manually produced. They can, this way, be inserted more easily in an
iterative process allowing faster prototyping [Dan07].

2.3 Disadvantages

Although procedural modelling techniques have several advantages, it is not always feasible

or, even, possible their employment. In the following some disadvantages of such systems

are presented:

• Implementation Complexity: Since these methods present a large algorithmic com-
ponent, their implementation requires a highly qualified development team. On the

28

!

Figure 2.1: Cost comparison between procedural and traditional techniques [Dan07]

other hand, because it is expected that the results have good visual quality it is neces-
sary that the people involved in the content generation have some artistic knowledge
[Dan07; Rem08].

• Lack of expressiveness: Assuming that a system produces more expressive results
when it accepts more input data, it is easy to conclude that a highly procedural sys-
tem (and, thus, one that is lowly parametrizable) generates content with a low level
of expressiveness [Hal08]. Since systems of such nature are, typically, based on rules
the results are often repetitive and little imaginative. On the other hand, drawing is
a highly expressive medium and combining procedural techniques with sketch based
interfaces for modelling may enhance the expressiveness of procedural modelling
methods. This is one of the research questions to be answered in the proposed thesis.

• High waiting times: Procedural modelling systems usually require a more intense
processing. For this reason, using such tools for content creation in run time may
translate into a higher waiting time, specially in less powerful machines, something
the user may not be willing to spend [Sof07].

29

• Loss of direct control: Given that procedural techniques take some advantage of ran-
domness in their execution, some content parts will be generated without human
intervention. Such fact is not necessarily visible until the user wishes to create some
more specific content. The more specific the desired content, the more human inter-
vention will be necessary [You09]. This is also related with the lack of expressiveness
and the integration with sketching based interfaces for modelling may help to in-
crease the direct control in procedural methods.

• Content testing: Procedural methods can generate content in a large scale from a
reduced set of input data and generation rules. However, small changes in the input
may lead to errors that, due to the dimension of the result set may be hard to detect
[Rem08].

2.4 Procedural Modelling of Virtual Urban Environments

Urban environments are large, highly detailed spaces which have a great importance in a

number of applications such as urban planning, virtual tourism, cinema and games. How-

ever, given their level of detail, modelling such environments may require several thousand

of person-years and may involve large costs. On the other hand, cities are man-made spaces

and their construction process often follows some sort of pattern.

Urban procedural modelling techniques exploit such patterns by incorporating them in

the form of rules and algorithms. Their execution can deliver a great number of new mod-

els in a short time when compared to traditional modelling techniques, thus reducing the

associated costs and bringing the previously mentioned advantages to this field. Obviously,

30

the trade-off is that they also bring the disadvantages.

These techniques can be further divided into several categories, which will be discussed

in the following subsections. These categories can be executed in sequence when creating

an entire virtual city as in the seminal work of Parish et al. [PM01]. However, Ridorsa and

Patow [RP10] state that, in practice, this model is insufficient when including a broader city

model that includes other features like parks, landmarks, streets and others. Therefore, they

introduced the skylineEngine that presents a non-linear pipeline using a Directed Acyclic

Graph to define the execution order.

• Terrain Modelling: Terrain serves as a solid foundation for every landscape including
cities. In the context of Urban procedural modelling, it is important that their virtual
representation is as realistic as possible to produce visually appealing spaces.

• Road Network Modelling: Besides providing a means of transportation inside a city,
road networks also divide the space into blocks and lots, which serve as a starting
point in the creation of building’s geometry.

• Building Modelling: This stage employs procedural modelling techniques to create
the geometry of the architecture representing the several buildings. Usually, for a full
city generation, the buildings are placed in lots created by the previous step.

• Façade Modelling: Normally, a building has specific characteristics that allow us to
distinguish it from the rest, such as the layout of elements in their façade. This stage
takes on such responsibility.

• Modelling Other Content: An urban environment is not made up of only streets
and buildings. Several other elements need to be created and correctly placed to cre-
ate a convincing virtual city.

31

2.4.1 Terrain Modelling

Every urban environment requires a solid surface on which to lay its foundations. Such

surface grants a base where objects can be positioned and provides a means where habitants

can move. It is, then, trivial to conclude that, in urban modelling, such surface plays an

important role.

Procedurally creating artificial terrains has already been approached by several authors

and commercial tools [Zho+07; Dis09], obtaining interesting results. Some of the pro-

posed algorithms employ noise generation to produce terrains similar to those found in na-

ture [PJ85], while others simulate natural physical processes such as water and wind erosion

[MKM89; KMN88; Mar+97; Šta+08].

Fractal-based modelling was pioneered in the work of Mandelbrot [Man83] and, from

there, it originated a great number of stochastic subdivision techniques. Fournier et al.

[FFC82] proposed the well-known midpoint displacement technique to create fractal

terrains. Afterwards Miller et al. described several variants [Mil86]. Given a rectangular

grid, the algorithm assigns random height values to its corners. It then proceeds to itera-

tively subdivide the grid and each midpoint’s value is calculated averaging the corners of

the square or diamond that surrounds it plus a random offset (see Figure 2.2). This offset is

decreased in each iteration, based on a parameter defining the intended terrain roughness.

Another example of fractal terrain generation is the work of Ken Perlin [PJ85] which

32

Figure 2.2: Midpoint displacementmethod for terrain generation [Mar96]

generates noise by sampling and interpolating points in a grid of random vectors. It is possi-

ble to add several scaled levels of noise to each point resulting in natural, mountainous-like

structures.

Simulating processes found in nature is another alternative to terrain generation. Ther-

mal erosion reduces the sharp changes in elevation by iteratively transporting materials

from higher to lower terrain points until a certain criterion that measures material stabil-

ity is found. Fluvial erosion, on the other hand, transfers material based on the local slope

of the terrain [Sme+09]. These methods can, typically, be used as a refinement step, af-

ter a coarse height-map has been obtained. Musgrave [MKM89; Mus93] has worked on

both types of erosion and Olsen et al. [Ols04] presented some optimisations that enabled

real-time terrain generation. Benes and Forsbach [BF01] work presented a terrain structure

based on stacked slices of material, each with an associated height and material parameters,

such as density. This structure provided more realistic terrain erosion algorithms.

Although adding much to the realism of the results, these algorithms are also known

for being time-consuming, often having to run for hundreds or thousands of iterations

33

[Sme+09]. Recent work has been put into porting the methods to the GPU, which has

resulted in interactive erosion algorithms [Šta+08; ASA07].

Yet another alternative approach to terrain modelling is using constraint-based tech-

niques, user sketches and sample terrain. These methods tend to be simpler to use than

those presented so far, since the previous ones often rely heavily on using parameters (some-

times unintuitive) and their results are fairly random. Users are, typically, only able to con-

trol the outcome on a global basis.

Stachniak and Stuerzlinger [SS05] propose a method that uses constraints (in the form

of image masks) in the terrain generation process. The algorithm then proceeds to search

for an acceptable set of deformations operations to apply to the terrain to obtain a result

that conforms to the constraints specified. Zhou et al. [Zho+07] described a technique that

takes an example terrain model as input and the user is allowed to sketch desired features

such as mountain ridges. Features are extracted from the example and matched against the

sketch and seamed together to form the final result. An example can be seen in Figure 2.3.

De Carpentier and Bidarra [CB09] introduced the concept of procedural brushes where the

users paint the height-map directly in 3D with simple terrain raising brushes and the GPU

introduces several types of noise generated in real-time.

A known limitation of the height-field based methods is that they embody the altitude as

a function of the x and y coordinates and, as such, can only contain one value for each loca-

34

(a)User sketch (b) Terrain Example (c) Final Result

Figure 2.3: Example based terrain generation [Zho+07]

tion. Caves, arches or overhangs cannot be modelled using these systems. Gamito and Mus-

grave [GK01] proposed a terrain warping system resulting in regular artificial overhangs.

One method that provides interesting results, visible in Figure 2.4 is the one presented by

Peytavie et al. [Pey+09]. Here, a more elaborate structure with support for different layers

of materials is able to model rocks, arches, overhangs and caves.

Figure 2.4: A terrain generationmethod capable of representing arches and caves [Pey+09]

More recently, Santamaria-Ibirika et al. [San+14], proposed a new approach to proce-

dural volumetric terrains, which generates customisable terrains with layered materials

and other features such as mineral veins, underground caves, material mixtures and under-

ground material flow. The method allows the user to specify the terrain’s characteristics by

35

using a set of intuitive parameters.

Despite being able to synthesise interesting terrains, the fact that the methods presented

thus far rely on some amount of randomness does not allow the reproduction of existing

terrains. To overcome this challenge, it is usually preferable to use data from the real world

such as photographs or Geographic Information Systems (GIS) which provide terrain in-

formation in a Digital Elevation Model (DEM). In this case, the surface is represented as

grid of equally sized cells representing terrain areas. The fact that cells are laid out regularly

allows performing spatial queries such as which zones are visible from a given point or the

ones that have sharper slopes.

2.4.2 Road Network Modelling

A city’s road network provides a means of transportation between its different areas and,

also, divides the space into blocks and lots, defining the building’s distribution. It serves

as an organisational entity of the city space and is responsible for the overall aspect of an

urban model. Thus, it is important that the user of a procedural modelling system can have

the most control over this step’s execution.

One of the simplest techniques for procedurally generating a network of streets is to cre-

ate a dense square grid [Gre+03]. To make it less repetitive, some displacement noise can be

added to the vertices. However, the results still lack the realism.

Bruneton and Neyret [BN08] proposed a system enabling detailed road modelling in

36

large environments, integrating information of rivers, roads and bridges with the digital

elevation model of an irregular terrain. Taking into consideration that the method operates

on scenes of large scale the authors implemented the system with a dynamic level of detail

based on the distance of an element to the camera. Figure 2.5 shows an example output of

this work. Although producing interesting and visually appealing results, this method is

not well suited for urban areas.

Figure 2.5: Modeling road networks on a large scale terrain [BN08]

The use of template based modelling as proposed by Sun et al. [Sun+02] provides more

elaborate results. This approach is based on the premise that there are several frequent pat-

terns in real road networks and the authors aimed at their reconstruction. There is one tem-

plate for each pattern: a population-based template (implemented as the Voronoi diagram

of population centres), a raster and radial template, or a mixed template. Firstly, main roads

(highways) are generated using these templates and are, then, curved to avoid large eleva-

tion gradients. Afterwards, the spaces between these roads are filled with smaller, secondary

streets in a grid pattern.

L-Systems [Lin68] have also been used to procedurally create road networks. Parish

37

and Muller [PM01] used extended L-Systems for this purpose. Their implementation was

driven by the goal of connecting areas with high population density while creating roads

following a specified pattern (e.g., raster or radial). The system was extended with genera-

tion rules that tended to connect newly proposed road segments to existing intersections

and to check for road validity with respect to impassable areas (for instance, water) and el-

evation constraints. The inputs are maps with geographical information like those seen in

Figure 2.6. In this work, the authors have also presented the urban procedural modelling

tool CityEngine.

!

Figure 2.6: Left: maps with water, elevation and population density. Right: resulting road network. [PM01]

Kelly and McCabe [KM07] introduced the interactive city editor tool CityGen on which

the user can specify the main street layout by placing nodes in the 3D terrain. The spaces in

between are filled with one of three road patterns: Manhattan-style grids, industrial grown

roads with dead-ends and organic roads.

Chen et al. [Che+08a] propose an interactive road generation tool using tensor fields.

38

Main streets are generated by tracing streamlines starting at seed points along the major

eigenvector direction until some stopping condition is met. Then, some new seed points

are placed along this curve and new, secondary streets are traced in the perpendicular direc-

tion (along the minor eigenvector). Users are allowed to influence the tensor field in order

to produce more plausible results.

This method, however, is fairly restricted in terms of user interaction. Although it is pos-

sible to edit the location of the seed points, the resulting urban layout may not be valid, i.e.,

the road network may contain self intersections or may intersect buildings. Also, whenever

the need to regenerate the tensor field arises, all user editions are lost.

To overcome this challenge, Lipp et al. [Lip+11] proposed a method allowing the user to

perform persistent editions that are in the valid domain. A valid urban layout is one where

all intersection of roads form a valid road junction and building parcels don’t intersect each

other or nearby roads. The authors defined user operations that, together with graph cuts,

maintain such validity.

Example-based methods have also been used to procedurally create roads. In their work

[YS12], Yu and Steed presented a technique to automatically synthesise networks that are

perceptually similar to a given example of road network, starting from an initial node or by

expanding an existing network. For every unfinished node, the algorithm searches for can-

didate matches in the example that have a similar node topology. Furthermore, the method

39

can also blend different styles in an intuitive way. An example of the algorithm’s execution

can be seen in Figure 2.7.

Figure 2.7: Example of execution: for a given node vd in the existing network (middle) the algorithm searches for a

node vs that has similar topology within a radius and up to a rotation θ. New segments are added by copying segments

and snapping to intersections [YS12].

Beneš et al. [BWK14] introduce a method to simulate the development of a city’s road

network taking into account neighbouring cities. The resulting cities are formed by allow-

ing several smaller settlements to grow together and to form a rich road structure. This

method also focus on reducing the amount of user interaction to a minimal well-defined set

of user parameters.

A completely different approach was taken by Lechner et al. [LWW03] where the au-

thors used agents to grow roads. The city is divided into areas like residential, commer-

cial or industrial and special areas like government buildings or squares. They define two

agents: the extender and the connector. The extender searches for unconnected areas close

to the road network and finds the best path to connect both. The connector starts in a ran-

dom location in the network and, randomly, picks another spot within a given radius. It

then calculates the shortest path and, if the travel time is considered to be too long, creates a

40

direct road connection.

2.4.3 Building Modelling

The next step in the procedural modelling of urban spaces is, typically, the generation of

buildings themselves. The blocks encircled by the roads created in the previous stage, are

subdivided into smaller areas making up the building lots. These, in turn, serve as an initial

shape (an axiom) for the processes discussed in this section.

A first approach to this problem was presented in [PM01] where the authors proposed

using L-Systems [Lin68] in the modelling of buildings. The execution of such systems con-

sists in the successive application of transformations on a given axiom until the desired ge-

ometry is achieved. The set of transformations include translations, extrusions or rotations

for instance. Figure 2.8 shows the initial steps of this process.

!

Figure 2.8: Application of L-Systems in BuildingModelling [PM01].

Although capable of generating a wide variety of building models, Wonka and Muller

[Won+03; Mül+06] consider that L-systems are not well suited for such task, since they

are oriented towards modelling growth processes in an open space (i.e., modelling plants).

41

Buildings, however, have stricter spatial restrictions [Won+03; Mül+06].

In his work [Won+03], Wonka introduced a new grammar targeted at solving this prob-

lem, which was called Split Grammar. In this method, the process starts with a simple,

non-terminal shape to which several splits are applied, resulting in smaller shapes until in-

dividual elements (such as windows or other ornaments) are reached. The procedure is

illustrated in Figure 2.9.

A large database of rules is available to this method which are applied in the modelling of

buildings of different architectural styles making the need to develop a set of rules for each

building unnecessary. However, this presents a new problem: in each grammar derivation

step it may be possible to apply a wide number of rules resulting in buildings with a chaotic

aspect [Won+03]. This problem has more impact with a larger database. The authors pro-

posed another grammar (the Control Grammar) with the goal of controlling the elements’

spatial disposition in an orderly manner.

To generate a complex building, this approach would require too many splits which

is a limitation. To overcome this, Muller in [Mül+06] proposed yet another grammar:

CGA Grammar. CGA stands for Computer Generated Architecture and is currently im-

plemented in the CityEngine tool.

This grammar works with the concept of shapes which consist of a symbol (a string of

characters), geometrical attributes and numerical attributes. Shapes are identified by sym-

42

!

Figure 2.9: Execution of a Split Grammar. START is the axiom and the lower row represents the results.

bols which may be terminal or non-terminal, corresponding to terminal or non-terminal

shapes respectively. The geometric attributes contain a position vector, three orthogonal

vectors, making up a coordinate system, and a size vector. These elements form a bounding

volume called the Shape’s Scope. Figure 2.10 illustrates this.

!

Figure 2.10: Left: the Scope of a Shape. Right: a generatedmodel with three primitives [Mül+06].

The generation process starts with a non-terminal shape — the axiom — to which is ap-

plied one of the rules. This generates a new set of shapes (terminal or non-terminal) which

43

are introduced in the result. The process is repeated until there are no more non-terminal

shapes in the set. Each rule has an associated derivation priority so that it occurs with a

growing, but controlled, level of detail. In each step of the derivation the highest priority

rule is chosen.

Two more methods to increase the detail are presented here: the occlusion test and snap

lines. The former indicates whether or not there is partial or total occlusion between several

of the building’s shapes. Such test can include all shapes, shapes with a given symbol or

all shapes except the predecessors, being up to the user to select the criterion. The latter

method allows to slightly change the geometry, snapping edges or faces to coincide with a

nearby plane or line, thus preventing situations that do not occur in real environments (e.g.,

partial intersection between a window and a wall).

The previous methods present one common drawback: they aren’t capable of generating

curved architecture. This stems from the fact that split grammars use split planes to divide

the shapes and the rules only apply to planar surface parts. Round elements can only be

approximated by static pre-modelled assets.

Zmugg et al. [Zmu+13] introduced an extension to current split grammar systems, where

the user can introduce free-form deformations that can be introduced at any level in a gram-

mar. The further subdivisions take these deformations into account by adapting to the new

surface dimensions and repetitions can adjust to more or less space. Figure 2.11 illustrates an

44

example of a building façade modelled with this method. Note that, while there are only

three columns of windows on the side parts of the original façade, the deformed façade con-

tains four to compensate for the larger length of the curved surface. However, the windows’

width remain the same.

(a)Original Façade (b)Deformed Façade

Figure 2.11: Applying deformation to a straight façade (a) yields a different number of windows on the side parts (b).

[Zmu+13]

The previously mentioned works relied on a shape grammar approach, in which rules

were text-based. There are some inherent interaction problems to approaches of this type,

namely the fact that they require the user to write large amounts of rules to achieve detailed

results. Furthermore, understanding rules created by other users is, sometimes, not a trivial

process, as there is a natural disassociation between the rules used and the generated prod-

uct tree [Pat12].

Patow [Pat12] presented a method to procedurally generate buildings using a graph

based approach, allowing users to create rules from scratch without the need to edit text

files. The method also bridges the disassociation between rules, their interrelationships

and their applications. Extending this method, Barroso et al. [BBP13] introduced a visual

45

copy and paste for procedurally modelled buildings with rule set rewriting. Besuievsky and

Patow [BP13] further enhanced this method by allowing the user to customise the level-of-

detail of the generated models based on different user criteria (e.g., distance to viewer or

screen-size projection) through a scripting interface.

Another, recent approach was presented by Silva et al. [Sil+13] who proposed a graph

based visual language for procedural models. The nodes in the graph have one input port

and one or more output ports to which links are connected. Links conduct shapes and pa-

rameters between nodes that, in turn, execute operations on the shapes and output the

results. Several links can be connected to the same port, allowing to of nodes.

There is also the possibility of grouping several nodes into a larger component node.

This also enhances re-usability but, mostly, improves the semantic of the modelling process.

One can create architecturally significant elements such as building parts, façade styles or

windows. Moreover, components define an interface that other nodes can use which helps

specifying how components are intended to be used. Figure 2.12 illustrates this approach to

model a porch, which generates over 200 lines of text grammar rules.

Like in terrain generation and street network modelling, there are, also, methods taking

example buildings as input and procedurally generating new buildings. Merrell [Mer07]

used a three-dimensional grid to partition a small example which automatically defines

that two parts can only be adjacent in the resulting model if they are adjacent in the exam-

46

Figure 2.12: Modelling a porch with the Node-based approach [Sil+13].

ple model. Such approach can be used when modelling symmetric buildings, models that

change overtime or models fitting soft constraints. The results can be quite elaborate de-

spite its grid like structure.

Subsequently, this method was improved [MM08; MM11] by adding several geometric

constraints. A dimensional constraint states that a given object should have a specific size;

algebraic constraints introduce relationships among numeric properties (e.g., the height of

an object should be twice its width); incident constraints allows to manage the incidences

of vertices to faces; connectivity states how objects should be connected to each other;

and large-scale constraints allowing the user to specify general ideas about how the model

should look. These improvements allow a better control of the model synthesis (See Figure

2.13).

More interactive approaches have been presented, where the user directly manipulates

47

Figure 2.13: From a simple example (right), complex cities can be generated (left) [MM08].

the geometry at some level and the system generates procedural rules. Such is the case in

the work presented by Lipp et al. [LWW08] where the authors proposed an interactive

visual method for grammar edition, giving the user direct control over each grammar as-

pect. Given the possibility that a user could desire to change the aspect of a specific façade

element, or even all elements in a façade column or row, the text-based approach would

require the user to manually create more rules in order to precisely state the intent. This is

also addressed in this work with the introduction of the exact and semantic locators con-

cepts. These give the user the possibility of applying changes to a specific element or based

on some semantic attribute (e.g., façade number or floor) respectively, by directly selecting

the element or elements on the visual interface. Nonetheless, the underlying paradigm still

employs grammar rules.

A different approach was introduced by Kelly and Wonka [KW11] who presented a

method to procedurally model building exteriors through procedural extrusions. The tech-

nique started with a building footprint outlined by the user which, afterwards, defines one

48

vertical profile line for each building façade. Applying a sweep algorithm produces complex,

detailed buildings with interesting features such as curved or overhanging roofs, buttresses

or chimneys. In this work, the authors present, also, results integrating floor plans from

GIS databases, allowing modelling larger environments (See Figure 2.14).

Figure 2.14: Modelling large environments with procedural extrusions [KW11].

Procedural modelling can be used to generate immense urban spaces with some ap-

proaches executing in run-time. Greuter et al. [Gre+03] presented a system to generate

pseudo-infinite areas of urban area in run-time. The method proposed obtained results

corresponding to an extremely large city, consisting of 4 ∗ 108 different buildings. This

is achieved by generating new buildings that lie inside the camera’s view frustum. These

buildings are cached in video memory so that their generation is not required in following

frames. Once the camera is sufficiently distant, the buildings are disposed from cache in

order to save memory. To guarantee that the exact same building is generated in the same

position every time it is visible, the whole process is guided by a global seed value and some

additional parameters. Figure 2.15 shows a city output by this method.

Despite the great amount of detail and high visual quality the methods above produce,

49

Figure 2.15: Real-Time procedural city generation [Gre+03].

they target mainly the generation of fictitious urban spaces. To create scenes that closely

resemble real areas, the system needs to incorporate a high level of information in order to

generate enough detail. This means that, using these methods, the user would have to write

a large amount of production rules, thus requiring a high level of human interaction. This

goes against one of the purposes of procedural modelling: automatic generation.

Several authors [DB05; Coe+07; Jes+12; PP13] suggested the integration of such tech-

niques with Geographic Information Systems (GIS) since these contain great quantities

of geo-referenced urban areas which can be automatically extracted. This way, it becomes

possible to generate building models in their correct position, along with several other pa-

rameters such as the height, number of floors or, even, its age allowing the procedural rules

to choose a correct architectural style.

Moreover, the existence of geo-referenced data provides the capability to infer spatial

50

relations between the distinct urban objects, creating the concept of geospatial awareness

[Coe+07]. With this, it is possible to implement a system capable of generating models

according to some basic construction rules. For instance, bus stops must be placed near a

road and oriented towards them.

In [Coe+07] Coelho presented the Geospatial L-Systems, a new extension to parametric

L-Systems, incorporating geospatial awareness. The development sequence in these systems

is supported by a GIS which stores and analyses the geospatial modules. The system is ca-

pable of creating virtual environments with a great level of visual fidelity. Nonetheless, the

obtained realism depends on the quality of the stored data. This system is implemented in

the XL3D Procedural Modelling tool and Figure 2.16 shows an example of an urban area

created with this tool.

!

Figure 2.16: Praça da República in Oporto, Portugal modelled with XL3D [Coe+07].

51

A new grammar, called PG3D grammar, was introduced in [Sil10]. The main character-

istic in this work lies on the fact that it is implemented in a spatial database engine introduc-

ing fast data access, large data manipulation and complex query capabilities. The results of

the grammar execution can, afterwards, be extracted and incorporated into any digital game

or custom modelling tool [Sil10]. Figure 2.17 shows an output scene.

Figure 2.17: Modelling of the Boavista Roundabout in Oporto, Portugal [Sil10].

Robles-Ortega et al. [Rob11; ROF13] used genetic algorithms for the generation of tex-

tured buildings from 2D GIS data using only a small set of images. The authors proposed

two different genetic algorithms, where one is targeted at generating the lower part of a

building and the other generates the upper part. Because the algorithm generating the

lower part takes into account the street slope, the method can be used in cities with both

52

horizontal and steep streets.

However, data present in GIS systems often contains inaccuracies. Pueyo and Patow

[PP13] proposed a system for the robust generation of blocks and building layouts based on

a repairing process applied when the data is not correct.

2.4.4 Façade Modelling

There are several characteristics that distinguish a building from all others. Among these

are the building height, number of floors but, most importantly, the layout of the different

elements in its façade. These are, most certainly the aspects of a building that allow an ob-

server to identify a specific building when taken from its context such as in a photograph or

diagram.

To enhance the level of detail of the produced buildings, giving a higher degree of famil-

iarity to the user, several authors have oriented their work towards more detailed procedu-

ral modelling solutions, focusing on the detailed representation of façades.

To enhance previous work, Muller et al. [Mül+07] presented a system that, from a

façade image creates production rules that generate detailed three-dimensional models of

the given façade. The author describes the process as a sequence of four different stages:

• Façade Structure Detection: Splits the façade image vertically into floors and then
into tiles through the use of mutual information. A tile is an important concept, rep-
resenting an architectural element, such as a window or door, and the surrounding
wall.

53

!

Figure 2.18: First two steps in the execution. [Mül+07]

• Section Refinement: The method further splits the tiles into smaller rectangles using
the division obtained in the first step, where similar tiles are grouped together. This
step derives from split grammars. The first two steps are illustrated in Figure 2.18.

• Element Recognition: A match between the small rectangles and three-dimensional
architectural elements in a database is conducted. Next follows the generation of
three-dimensional textured models together with the semantic structure in a shape
tree.

• Edition and Extraction of rules: The semantic interpretation of façades can reveal
useful in various editing operations, including the extraction of grammar rules from
the shape tree previously built.

As is possible to see in Figure 2.19, the result of executing the proposed method yields

models with a high level similarity between the generated façade and the input image. De-

spite that, this method is very sensitive to noise in the images turning its use difficult in

certain cases.

Extending this work, Musialski et al. [MWW12] introduced a workflow mixing manual

and automatic splitting of façade images. Starting from an orthogonal input image, the

user interactively splits the façade into shapes, with the so called guillotine cut. The system

automatically finds most split lines and symmetries, while the global façade structure is de-

54

!

Figure 2.19: Left: a façade image. Right: the generatedmodel [Mül+07].

termined by the user. The authors also introduce the concept of coherence-based modelling,

where coherence is defined by regions that contain architectural elements (e.g. windows)

that can be separated by a common guillotine cut.

A new grammar, named F-Shade and oriented towards façade modelling, has been pre-

sented by Haegler et al. [Hae+10]. The goal of this work was to present a grammar to com-

pactly represent a façade structure while permitting fast random access to its data given the

coordinates of any point in the surface of the building.

This grammar encodes the structure through the disposition of rectangular regions in a

base polygon. In turn, each region contains information about the texture to be applied, a

depth value and material characteristics.

Another contribution from this work is a renderer prototype to visualise the generated

models from a compact representation of the grammar directly in GPU memory. For this,

55

the system was implemented using a technique known as deferred shading and split into

three phases.

In a first step, the building geometry is drawn to a temporary memory. Afterwards, a

pixel-based evaluation of the grammar rules stored in GPU memory is executed, from

which the texture to apply to the pixel is obtained. The last step presents the resulting

model using a pixel shader and the data obtained in previous steps. The results can be seen

in Figure 2.20.

!

Figure 2.20: F-Shade resulting buildings [Hae+10].

More recently, this work has been extended by Krecklau et al. [KBK13], who introduced

a view-dependent real-time rendering of procedural façades with high geometric detail, by

taking the idea further by introducing 3D geometric detail in addition to flat textures. The

authors introduced a two-pass procedure that first renders a flat procedural surface, much

56

like in [Hae+10]. During the rasterization, the method triggers the generation of a detailed

asset whenever a geometric façade element is potentially visible. The set of generated mod-

els are then rendered in a second pass. Figure 2.21 illustrates this.

Figure 2.21: Each pixel is evaluated, tracking down split operations until a terminal shape(a and b). Themethod either

samples from a texture (c) or instantiates a new geometric entity (d) [KBK13].

An approach capable of generating more complex façade models was proposed by Finken-

zeller [Fin08] (Figure 2.22, c). The system presented in this work can generate frames, bor-

ders and ornaments which can, easily, be found in buildings (Figure 2.22, b). However, the

method needs more user intervention than previous methods, since it requires a coarse

building model to be created. Nonetheless, this is intended to be fairly simple serving as

a way to establish the contours of the building, as well as its purpose and intended styles

(Figure 2.22, a).

The first stage of the process requires the user to create a planar representation of the

ground floor, consisting of one or more convex polygons, called Floor Plan Module (fpm).

The above floors are modelled based on the previous floor by keeping, removing or split-

ting the existing fpm.

57

Afterwards, the system generates a representation of the several façade elements. A wall

is generated for each exterior fpm edge, which is vertically subdivided, given the chosen ar-

chitectural style, creating partitions. Each partition, in turn, contains other architectural

elements and, at most, a door or a window.

The last step generates the roofs taking into account the building structure. The algo-

rithm defines the aspect of the entire roof based on the individual structure of each fpm.

For this, individual roofs are generated for each fpm in the top of the building which are,

afterwards, combined by adapting them in the intersection zones.

It is possible, at any given instant, to modify the parameter of any element and, thus, the

building aspect. This allows the user to change the style of the entire building, a floor or

even windows or doors individually. As a consequence, the system permits the generation

of more complex structures in a shorter amount of time.

!
Figure 2.22: Modelling process proposed by Finkenzeller [Fin08].

58

2.4.5 Modelling Other Content

There are several more elements that build up an urban scene other than roads and build-

ings. Examples of these elements are electrical posts, street lamps, or garden benches which

are called urban furniture. To enhance the realism of the generated virtual cityscapes, it is

also important to model such entities. The introduction of green spaces and trees is also an

important element to include in urban areas [Coe+07].

Usually, there is a low level of diversity inside a category of urban furniture throughout

the city. This is due to the fact that these items are, usually, bought in bulk for economic

and aesthetic reasons which results in a homogeneous aspect throughout the city. This al-

lows one to store the models or the procedures to generate such models in a database and

re-use them whenever necessary.

On the other hand, trees and green spaces present a natural growing process and, thus,

have a larger variety inside one category requiring more dedicated modelling techniques.

The employed methods should, preferably, be procedural and introduce some degree of

randomness in the generation, giving the notion of diversity. This problem has already

been intensively studied, and typically employ the use of L-Systems [MP96; PJM94; PL90].

Although the modelling process of these elements is considered to be trivial, their correct

displacement and orientation around the city constitutes a problem, since in urban environ-

ments some rules need to be followed. For example, trees cannot be placed on driving lanes

59

and bus stops must be oriented towards the street. As a consequence, the placement must

not be purely random but, instead, should be guided by a set of rules.

In the approach followed by Coelho et al. [Coe+07], the authors use geo-referenced in-

formation stored in databases and Geographical Informations Systems. In this work such

data is employed to correctly position the elements in the space, as well as to create relations

between such elements (geospatial contextualisation) allowing to correctly set their orienta-

tion. In the case the existing information is not enough, it is amplified using the Geospatial

L-Systems, proposed by Coelho [Coe+07], through the definition of new rules and the

introduction of randomness.

2.5 Open Questions

The area of procedural modelling of urban environments is in great expansion and several

works have been published by different authors presenting innovative solutions and in-

teresting results. Such approaches have been proving that the employment of procedural

methods in the most different areas is becoming a very viable alternative.

Nonetheless, some issues remain open, leaving space for further research targeted at im-

proving their execution and enhancing the results. Examples are:

• Automatic Extraction of Rules: Since many of the presented approaches rely on for-
mal grammars, there is also the inherent challenge of creating the production rules
leading to the desired models. Muller has already tackled this problem regarding
façades [Mül+07], yet, research is still needed in order to improve this aspect. The

60

automatic extraction of rules or their parameters is an area called inverse procedural
modelling.

• Library of Rules: Since, most often, the production rules are in text form, they are
easily re-utilised. Normally, it is considered easier to change a given rule to corre-
spond to new requirements than it is to analyse a design and redefine it from start.
Creating a library of production rules and making it publicly available may be a great
leverage in creating a new virtual city.

• Defining rules from natural language: Using formal grammars has the consequence
of bringing a strict syntax into the creation of production rules, reducing its intu-
itiveness. For such reason, defining rules in natural language could make procedural
generation more available to all types of audience. Another advantage would be the
possibility of using other types of sources as book and other architectural reports.
Such approach has already begun to be explored in [RCR09].

• Definition of Graphical User Interfaces: The use of text-based production rules in
the generation process of procedural methods has the disadvantage of not being intu-
itive, reducing the acceptance by users of an artistic background (e.g., designers and
architects). To counteract this, the edition process should be performed at a higher,
simpler level. The creation of graphical interfaces may solve this problem. The work
proposed by Lipp et al. [LWW08] presents a system where the edition of rules is
done directly on the generated model and there is no need to write the production
rules. The proposed thesis also aims at creating more intuitive and interactive ways
to define procedural rules, namely through the use of Sketch Based Interfaces for
Modelling. Other approaches employ a node-based approach [Sil+13] providing a
visualisation of the flow of data being processed.

• Integration of methods: Most procedural modelling techniques specialise in one con-
tent or feature and there has been little research attention to the cooperation between
distinct procedural methods [ST14]. To successfully create a virtual world requires
the manual integration of all different features once they have been generated. How-
ever, there is an additional challenge in the fact that there is, most often, interactions

61

between different elements. The Sketchaworld [Sme+11] system is a step further in
the direction of solving this problem.

• Complex Building Shapes: Most complex architectural features, including overhangs,
dormer windows, roof constructions with vertical walls, buttresses, chimneys and
bay windows are not easily modelled by common procedural modelling techniques
based on split or shape grammars. This effectively limits the user’s expressive power
by restricting the features that can be included in an architectural model. Procedural
extrusions [KW11] have been used to overcome this problem but few systems employ
similar approaches.

• Semantic Information: The visual part of an urban environment is not enough to
convey the feeling of realism. If a greatly detailed three-dimensional model behaves
or is structured incorrectly it can, easily, look unreal and break the immersion. A so-
lution is to embed both the modelling and the execution with semantic information,
i.e. what the objects are, how they behave and how they are related to other objects
and the world. Tutenel et al. [Tut+08; Tut+09; Tut+11a; Tut+11b] have extensively
explored this issue.

2.6 Summary

This chapter has presented the current state of the art on the field of procedural modelling

of urban environments. These methods can be grouped by the type of output they pro-

duce (e.g., road networks or buildings). To create complete environments it is, typically,

necessary to generate several of these types of models which is usually done in the order

the methods were presented in Subsection 2.4 (Terrain, Road Networks, Building and

Façades).

62

Since the seminal work of Parish and Muller [PM01] which introduced L-Systems as a

means to procedurally generate road networks and buildings, several methodologies for

procedural modelling of urban areas have emerged. The most recent is the node-based ap-

proach [Pat12; Sil+13] which provide a more intuitive interface than text-based approaches.

However, the iterative cycle is still present. The proposed work aims at developing a sketch

based interface for modelling methodology on top of such techniques for procedural mod-

elling.

63

64

3
Sketch Based Interfaces for Modelling

This chapter presents sketch based interfaces for modelling. Among all interaction metaphors,

this one was considered of importance due to the fact that it resembles one of the communi-

cation mediums of choice of artists: drawing.

One common problem of several procedural modelling systems is the low level of user

interaction they provide, often resulting in a lack of expressiveness or direct control over

65

the generated models, as mentioned in Subsection 2.3. Most of the approaches rely on a

grammar-based approach to generate the geometry which, by itself, represents a challenge

to users of artistic background since the systems require an in-depth knowledge of how

it operates. Moreover, this kind of approach has an iterative cycle where the user must

first write the rules, generate the procedural model, evaluate the result and enumerate the

changes or refinements to be made and, finally, rewrite the rules. The editing operations are

greatly disconnected from the visual feedback. This is a challenge to be tackled during the

development of the proposed thesis, using Sketch Based Interfaces for Modelling (SBIM).

User interfaces in modelling have traditionally followed the WIMP (Window, Icon,

Menu, Pointer) paradigm, which can be functional and powerful but also cumbersome and

daunting for a novice user. More accessible and natural user interfaces have emerged, bring-

ing modelling systems more intuitive interaction metaphors. An example, which will be

reviewed here, are the sketch based interfaces for modelling. The goal in these interfaces is

to allow sketches to be used in the modelling process in several levels of detail, ranging from

the rough model creation to the fine detail construction. The user progressively refines a

coarse model until the desired result is achieved. Mapping a 2D sketch to a 3D modelling

operation is a difficult task, rife with ambiguity [Ols+09].

Furthermore, drawing has always been an extremely effective means of communication

and a tool that has always been present in mankind. Sketching is a natural way to commu-

66

nicate ideas quickly, since with a few strokes complex shapes can be evoked in viewers. It

is also the medium where artists, designers and architects work on. Since these are the end

users of a modelling system, whether traditional or procedural, it is important, therefore, to

study how a sketch based interface may help on the task of procedural content generation.

Drawing also constitutes an early phase of prototyping a design before it is manually

translated to a 3D model by a trained 3D artist. Because of this, model creation is a major

bottleneck in a production pipeline, requiring human effort to create the complex and

diverse shapes and intricate relationships [Ols+09]. The goal with SBIM is to merge the

complex, traditional modelling systems with the natural interaction of sketching allowing

users to construct and edit models in a progressive way from an initial high level concept to

a more detailed and accurate end-model.

3.1 Sketching Pipeline

Typically, sketch based interface for modelling systems have a three stages pipeline trans-

forming the user input strokes into complete three-dimensional models as suggested by

Olsen et al. [Ols+09]. The first stage is responsible for acquiring the raw user sketch, which

is subsequently filtered in a following step in order to facilitate the processing. The last

stage is to interpret the sketch in the context of the specific application. This pipeline is il-

lustrated in Figure 3.1.

67

Figure 3.1: The pipeline of sketch based interfaces for modelling [Ols+09].

The most basic operation in any sketch based interface is the acquisition which is typi-

cally conducted with a freehand input device. However, devices that mimic the drawing on

paper process are better able to exploit a user’s ability to draw (e.g., a tablet display). After

collecting user input, a SBIM system must store the sketches in some sort of representa-

tion format. At the bare minimum, the hardware provides the 2D coordinate system of the

strokes.

The strokes are comprised of samples which are spaced irregularly, depending on the

drawing speed. Therefore, they tend to be closer near curves, where the user is more careful

with the drawing [Ols+09], which can be exploited to identify ”important” parts [SSD06].

Also, the samples can be augmented with more information such as time samples, pressure

or pen orientation, depending on the target application and available hardware [Ols+09].

68

The large body of work in image processing has had an impact in the decision of the rep-

resentation format of samples, which turned to the use of an image-based stroke representa-

tion, in which the stroke is approximated with a pixel-grid. This representation has the ad-

vantage of fixed memory usage as well as automatic blending of multiple strokes [Ols+09].

However, any other information besides the sample positions is lost.

However, both the input medium and the user may introduce errors in the intended

sketch and, as such, before interpreting a sketch it must be filtered. Poor drawing skills or

slight hand jitters have an impact on the drawing of both straight lines and curves. Also,

sometimes traditional digitising tables may have resolutions as low as 4-5 dots per inch op-

posed to the 1200-1400 dots per inch of scanned drawings. This is because sometimes users

draw so fast that even with high sampling rates such as 100 Hz only a few points per inch

can be sampled [SSD06].

The filtering process can be done by discarding any sample within a threshold and by

interpolating between samples separated by more than a threshold [Ols+09]. Another ap-

proach is polyline or polygon approximation, reducing the complexity of a stroke to just a

few samples [IMT99]. It can also be done by fitting the strokes to a parametric curve such

as Bézier [Pie87] or B-Splines [BC90]. It is also possible to combine the polyline approach

with the curve fitting yielding a segmented approach. Figure 3.2 shows examples of these

methods.

69

Figure 3.2: Filteringmethods [Ols+09].

The Beautification process [Iga+97] is a technique for inferring geometric constraints

between strokes at a high level, such as linearity, co-location, parallelism, perpendicularity

and symmetry. Figure 3.3 shows an example of this.

Figure 3.3: Beautification process of a house-like sketch [Ols+09].

After the introduced sketch is sufficiently filtered, it must be interpreted in order to be

given a meaning in the application context, i.e. mapped to a modelling operation. The

main problem of Sketch Based Interfaces resides in the interpretation of user sketches. In

other words, the system must infer what the user intended to draw, and how can it be

mapped into a modelling operation. Olsen et. al [Ols+09] proposed a categorisation of

SBIM into three primary methods: to create a 3D model, to add details to an existing model

and to deform and manipulate a model. Although the authors define the previous cate-

gories, a complete SBIM system should contain methods from all these categories in order

70

to allow total control of the modelling process.

3.2 Model Creation

A model creation system tries to reconstruct a 3D model from the 2D sketched input. Olsen

et al. [Ols+09] divide this further into two categories. One includes evocative systems

(Schmidt et al. also name this suggestive systems [Sch+06]) where user sketches are used

to instantiate a built-in model similar to the input. Here, the systems can also fetch models

from a database and use a metric to compare such models to the user input and choose the

best candidate [YSP05; Fun+03; SI07]. These methods usually use expectation lists which

allow the user to resolve ambiguous situations. Such is the case in SKETCH [ZHH96],

Chateau [IH01] and GiDES++ [Per+03].

On the other hand there are constructive systems (Schmidt et al. refer to these as literal

systems [Sch+06]) that attempt to map the user strokes directly to the output model. A

fundamental operation in these systems is inflationwhere user-sketched closed 2D con-

tours become the 3D silhouettes of round shapes [Sch+06]. A pioneering example is Teddy

[IMT99] where the user can easily create rotund shapes such as stuffed animals.

This categorisation neatly aligns with the classical distinction between reconstruction

and recognition [Ols+09].

71

Evocative Systems

Olsen et al. [Ols+09] further subdivide evocative systems into iconic and template retrieval

systems. Iconic systems infer a final 3D shape from a set of simple iconic strokes. The SKETCH

system [ZHH96] is one example where simple groups of strokes are used to define a prim-

itive 3D object. Three stroke lines meeting at a point are used to instantiate a cuboid shape

whose dimensions are taken from each of the strokes. The GIDeS system [Per+03] also

follows a similar design providing a larger rage of primitives.

Template retrieval systems, on the other hand, fetch models from a database of template

objects, evaluating their similarity with the user sketch. The objects are typically more com-

plex than the simple primitives instantiated in iconic systems and, as such, both the user

sketch and the algorithms needed to infer the user intentions are more complex. The simi-

larity evaluation is typically done in 2D space since such evaluation in 3D would require the

reconstruction of the 2D sketch, which is the problem to be solved.

Funkhouser et al. [Fun+03] use the projected contour from 13 viewpoints defining a

shape descriptor of an object. By applying image-based transformations to each contour,

it is possible to extract a fixed-length, rotation-invariant feature which is then compared to

the user sketch after applying the same transformation.

Shin and Igarashi’s Magic Canvas [SI07] extends this concept by using 16 contours from

each template object but, also, use a Fourier-based method for sketch matching. This sys-

72

tem enables the user to sketch an entire 3D scene and, so, besides instantiating template

objects, Magic Canvas must also place them correctly in the 3D scene. This is accomplished

by scaling and rotating the objects to match the input sketch.

Yang et al. [YSP05] use procedurally described models rather than mesh template objects.

These models describe how to make a specific model (e.g., a mug) instead of having a static

mug mesh. This has the added benefit of allowing the template to be deformed to conform

to the user’s sketch. However, adding new templates to this system requires more labour.

Instead of instantiating a complete model at once, the approach suggested by Lee and

Funkhouser [LF08], allows composing models out of template parts. The system provides

a set of templates for object parts which the user can instantiate separately and iteratively

compose a larger object. For example, the user would, in a first moment, draw the body of

an aeroplane, then the wings, engines, missiles and so on. The system automatically places

the parts relatively to other elements. This allows a broader range of variations in any given

class of objects.

3.2.1 Constructive Systems

While the previous methods used some sort of knowledge in the interpretation of user

sketches, diminishing the domain of possible interpretations, constructive systems must

rely solely on rules. This represents a greater challenge which has received a great deal of

attention, yielding several interesting approaches.

73

These systems can be, according to Olsen et al. [Ols+09], grouped into three different

categories: engineering design systems, free-form design systems andmulti-view systems.

Engineering objects are, often, characterised by being mostly planar and hard-edged and

systems aiming at constructing this type of objects can use this domain knowledge to cut

down the number of possible interpretations.

Lipson and Shpitalni [LS07] presented an optimisation-based approach for reconstruct-

ing geometry from user sketches performed in parallel projection. Each stroke in the draw-

ing corresponds to an edge in the 3D model and each endpoint to a vertex. The system de-

tects relationships, such as corners, perpendicularities and so on, between the strokes and

then performs an optimisation on a linear equation where the depths of the vertices are the

unknowns. This system is an example where the user first sketches the entire model and

then the system computes its 3D geometry.

Interactive systems have been proposed where the user can iteratively sketch parts of the

object and the system automatically reconstructs them. This gives the user the opportu-

nity to correct or refine the results more quickly. The system also benefits from iterative ap-

proaches since it can use simpler reconstruction techniques. The most common approach is

extrusion [Sch+06; SC04; Per+00] which is well-suited to creating models with hard edges

such as cubes and cylinders [Ols+09].

Inspired in analytical drawing where artists use image space scaffolding, defining the

74

objects’ coarse structure, to incorporate details into the sketched elements, Schmidt et al.

[Sch+09] proposed an approach to inferring 3D lines and curves from perspective draw-

ings in an interactive design tool. The system creates 3D lines and curves based on a pure-

inference sketch interface [Sch+09] that generates sets of candidate curves and compares

them to the original user stroke. There are also useful interactive drawing aids that allow

the user to sketch 3D curves with precision.

In free-form design, in contrast to engineering objects, models tend to be smoother and,

as such, the approach must be different. Typically, systems that are contained in this cate-

gory, let the user sketch the contour of the objects and then use the contour skeleton (the

line from which the closest contour points are equidistant) to infer a surface. The contours

are, simply, the lines that separate surface parts that face the viewer from those that don’t.

This contains the silhouette and other interior features. The simplest case, where the skele-

ton is a straight line and is the contour’s symmetry axis, creates a surface of revolution by re-

volving the contour around the skeleton, such as in Schmidt’s ShapeShop system [Sch+06].

For more complex, non intersecting contours a typical approach is inflation. The Teddy

system [IMT99] pushes vertices away from the skeleton by the distance to the contour (Fig-

ure 3.4). Alexe et al. [AGB04] use an implicit surface representation and place spherical

implicit primitives at the skeleton vertices. The spheres are blended together and the gener-

ated geometry matches the given contour.

75

Figure 3.4: The approach proposed by Igarashi pushes vertices away from the chordal axis [IMT99].

Intersecting contours are indicative of surfaces and other contour lines that face the

viewer but, due to occlusions, are invisible. To infer such hidden contour lines, Williams

[WH94] presented a method that has been, subsequently, used by several approaches on

3D reconstruction from sketches [KH06; CS07]. Karpenko and Hughes [KH06] obtain

a smooth shape by creating a ”topological embedding” and constructing a mass-spring sys-

tem and finding a smooth equilibrium state. However, this approach requires a careful

parameter tuning.

The ShapeShop system [Sch+06] also inflates 2D contours into rounded 3D objects.

Since Hierarchical Implicit Volume Model is the underlying shape representation in this

system, nearby primitives naturally blend together to form more complex shapes.

Schmidt and Singh [SS08] extended the previous work with a connection between

sketch based interfaces for modelling and procedural surface modelling. Surfaces are gen-

erated by traversing a tree whose internal nodes are operations on surfaces, while leaf nodes

can be surfaces that have been sketched previously. This way, altering an internal node has

repercussions on the sub-tree rooted at that node.

Lastly,multi-view systems are those that allow the user to elaborate sketches from several

76

drawing planes. As an example, Karpenko et al. [KHR04] presented an interactive system

that used epipolar lines to fix the depth component of each stroke vertex. After drawing a

stroke, the user can rotate the view and see lines extending along the depth direction of the

previous viewing point. When the user draws another stroke, it is projected onto such lines

which defines the depth of each vertex. The authors, however, state that this method is not

very intuitive.

3.3 Modification

In order to be fully useful, sketch based interfaces for modelling must, also, allow the modi-

fication of the created 3D models. This can be done through the addition of more detail or

by deforming what has already been modelled. In turn, these can be grouped into Augmen-

tative or Deformation Systems respectively.

3.3.1 Augmentative Systems

Augmentative systems are those that add detail or new parts to an already existing model.

Creating more elaborate detail on an existing model is an easier task, since the model serves

as a 3D reference for mapping strokes into 3D [Ols+09]. The same authors further classify

these systems as surficial or additive. Surficial augmentation allows users to embed fine-

grained details into the surface of the model, normally displacing the surface along its nor-

mal wherever the stroke intersects the surface. This is ideal to create sharp creases on the

77

surface as visible in Figure 3.5.

Figure 3.5: Results of applying surficial augmentation to generate vein-like features on a handmodel [Ols+05].

Additive augmentation constructs new parts of a model, such as a limb or outcropping,

from the user sketches, attaching them to the model in a location also specified by the user.

As an example the extrusion operator in Teddy [IMT99] uses a circular stroke to initiate

operation and define the connection zone. The next sketch defines the contour of the new

part, which is inflated and attached to the original model in the connection zone.

In the ShapeShop system, Schmidt et al. [Sch+06] used implicit surfaces that provide

blending capabilities in neighbouring surfaces to implement additive augmentation. The

user sketches a new surface in the proximity of the existing model and the implicit surface

representation naturally blends both together.

3.3.2 Deformation Systems

Lastly, deformation systems are those that support operations such as cutting, bending,

twisting, creating holes through the model, segmentation, free-form deformation and affine

transformation.

78

Most complex deformations are based on the idea of oversketching, where the user draws

over an existing stroke with the intention of refining or deforming it. Bending and twisting

can be achieved by matching a reference stroke to a target stroke and deforming the model

in a similar fashion. An example is the system proposed by Cherlin et al. [Che+05] where

the user can generate variations of existing models using orthogonal deformation strokes,

that take as reference a previously drawn stroke. A different oversketching approach uses

contour lines extracted from the model as reference [Nea+05].

The FiberMesh system presented by Nealen et al. [Nea+07] allows the user to elastically

manipulate 3D curves that deform the model by changing the constraints in the optimisa-

tion algorithm that generates the surface.

Free-form deformation, where a lattice is created surrounding the model and modifica-

tions to lattice points are translated to the model, has also been used. Draper and Egbert

[DE03] have proposed a sketch based interface for manipulating these lattices. This is an

extension to the functionalities of Teddy [IMT99], allowing bending, twisting and stretch-

ing.

3.4 Sketch Based Modelling of Urban Entities

Sketch based interfaces for modelling have also been applied to the field of architectural

model generation. The Stretch-A-Sketch system [Gro94] allowed the user to sketch build-

79

ing plans by identifying and maintaining spatial relations in hand drawn diagrams while the

user moves and resizes the elements. The system is aimed at bridging the conceptual design

phase to the more precise CAD-like drawing and editing.

Juchmes and Leclercq [JLA04] introduced an agent-based approach to the interpreta-

tion of architectural sketches of floor plans, where each agent is aims at recognising a differ-

ent kind of element from the user strokes. Different agents, however, can claim that one

stroke is part of a different element, resulting in a conflict. To resolve this, agents communi-

cate and reach an agreement based on recognition probability rates.

Chen et al. [Che+08b] presented a system to generate 2.5D models of buildings from a

single user drawn sketch. Not only can the user sketch the overall building structure, but

is also able to introduce detailed geometry and textures in the final result. This is achieved

by using strokes to fetch these elements from a database. However, the system assumes that

the building consists of three groups of edges that are mutually perpendicular in 3D space.

Another drawback is that the results are only 2.5D and do not constitute a complete model.

Nonetheless, the system is capable of generating very detailed and aesthetically pleasing

models as seen in Figure 3.6.

Olsen et al. [Ols+11] conducted a user study to learn how inexperienced users draw sev-

eral types of buildings and, based on the results, proposed an algorithm which analyses the

sketch input, extracts shape and detail information, predicts the building type, creates 3D

80

Figure 3.6: From a single user sketch (left) the system extracts the building structure (centre) and provides a detailed

textured result (right) [Che+08b].

models using three different reconstruction techniques, and adds building details with a

displacement texture. However, the results appear quite simplistic as can be seen in Figure

3.7.

Figure 3.7: Example of a castle sketch being transformed into a 3Dmodel [Ols+11].

More recently, the main contribution has been the work by Nishida et al. [Nis+16]. The

presented system uses convolutional neural networks to recognise a user sketch and esti-

mate the respective parameters in order to translate the user intention into a CGA rule. As

any neural network requires training before being able to recognise any given input, the

system is only able to translate sketches for which it has been trained.

81

3.5 Open Questions

Although research has shown several interesting results, sketch based interfaces for mod-

elling still have several open questions which need further research. They are still far from

being a total replacement of current modelling systems despite the fact that the underlying

metaphor (i.e. paper and pencil) has a great level of expressive power and accessibility. The

main problem lies in the amount of ambiguity a given sketch has. To one level, we have the

depth ambiguity which is also a recurring problem in 3D reconstruction from images. In

another, there is also ambiguity in inferring the user intention from the drawn strokes. This

subsection enumerates some open questions in the SBIM paradigm.

Sketch based interfaces for modelling, obviously, originate from the paper and pencil

medium. However, while on the traditional medium the user can freely draw strokes in

any arbitrary order, most current interfaces require the user to draw in a specific manner,

reducing the immersion and ease of use [Ols+09].

Also, sketch based interfaces for modelling often rely on guessing and inferring the user

intentions and, when the system fails to acknowledge the correct operation, it can cause

frustration in the user. Implementing interfaces that provide stable and predictable interac-

tions is still a large challenge [Ols+09]. Usually, current systems provide expectation lists to

help the user in the resolution of this kind of problems.

Lack of self-disclosure is another problem in sketching interfaces. While in WIMP inter-

82

faces the user can explore the interface to discover what the several menus and buttons do,

SBIM systems often present only a white canvas, not disclosing any clues about how to use

it. Also, these interfaces typically need the user to recall, from memory, how to execute an

operation. In contrast, by navigating a WIMP interface the user can recognise the operation

he wishes to perform.

Contrasting with traditional modelling systems, where the user can accurately define the

positioning and orientation of 3D surfaces, SBIM systems may lack some precision. How-

ever, precision can be introduced if the user can specify geometric constraints such as par-

allelism, perpendicularity or line congruency. This is the case in most systems dedicated to

engineering design systems while, on the other hand, free-form design systems precision is

sacrificed in favour of simplicity [Ols+09].

Despite the several works presented here, there has been, so far, no connection between

the procedural modelling techniques for urban spaces reviewed previously and sketch based

interfaces for modelling. Given that some disadvantages (namely the lack of expressiveness

and direct control) that procedural techniques have are characteristics in which SBIM excel,

merging both concepts may prove to be an interesting research path.

83

3.6 Summary

Sketch based interfaces for modelling are based on a, much appreciated by artists, pen and

paper metaphor which can enhance the creative process by alleviating the bottleneck be-

tween concept art sketches and the final three-dimensional model. However, the interpreta-

tion of the 2D sketches performed by users is a difficult task with a high level of ambiguity.

Buildings, on the other hand, have strict geometric constructive rules which coupled

with the semantic information present in procedural rules can be used to better interpret

the user sketches by reducing the number of possible interpretations.

This way, the interaction problems present in current procedural modelling techniques

can be alleviated with the use of sketch based interfaces for modelling. Nonetheless, only a

few works have mixed these concepts (e.g., [SS08; Lon+12]) and the connection between

both worlds remains largely unexplored. An urban modelling system where procedural

modelling rules can be specified with a sketch based interface for modelling can be seen as

an improvement in the procedural modelling workflow. The proposed thesis aims to bring

closer these methodologies, leveraging their advantages, in order to facilitate the expeditious

modelling of urban environments.

84

4
Layered Shape Grammars

One of the identified problems with procedural modelling of buildings is their level of ex-

pressiveness which is mismatched with the level of expressiveness of sketch based interfaces

for modelling. While in the latter there is a tendency to provide free-form modifications

to a given model the former typically only provides modifications based on split lines and

planes, limiting the user creativity.

85

This chapter describes a solution to shorten the expressiveness gap between procedu-

ral modelling and sketch based interfaces for modelling by introducing two extensions to

shape grammars: description of layers within planar surfaces (e.g., façades) and the possibil-

ity to vectorially define shapes within these layers allowing, for example, arched elements.

By doing so, the methodology is capable of generating non-trivial layouts, going beyond the

regular grid structure, and seamlessly integrate more complex architectural elements such as

arched doors and windows.

4.1 Overview

Procedural modelling of buildings is often achieved with shape grammars ([PM01; Won+03;

Mül+06; KPK10]) or with graph based approaches ([Pat12; Sil+13; Sil+15]). In both cases,

procedural methods encode the building generation in rules which are iteratively applied

and replace one shape with a new set of shapes, incrementally adding detail to the models.

The paradigm, however, is based on splitting operations that divide the geometry into parts

that will be detailed separately.

Split-based approaches, therefore, impose too strict limitations on the geometry that

can be procedurally generated. For example generation through split planes constrains the

created shapes to be mostly rectangular and typically enforce a grid like structure. Some

façades, however, don’t possess such a trivial structure and, therefore, become quite difficult

86

to encode with this paradigm without importing externally modelled assets. An example of

this sort of façades is the Mikimoto Ginza building in Tokyo as seen in Figure 4.1.

Figure 4.1: TheMikimoto Ginza building in Tokyo is an example of an irregular façade.

Introducing layers in planar surfaces allows more complex layouts and more compact

and natural representations of façades. ([Zha+13]). Also, layers are common concepts in

many 2D or 3D content generation tools, with which most users have some degree of famil-

iarity. Moreover, the ability of reordering layers or toggling the visibility of their contents

can lead to different results and a non-linear creative workflow allowing the exploration of

87

greater variations of procedural models.

In split-based methods, moreover, complex geometry can often only be imported as ex-

ternally modelled assets which are, sometimes, not easily integrated with the rest of the

model. Allowing the vectorial definition of two-dimensional shapes within a model’s pla-

nar surfaces has the capability of improving the expressiveness of procedural modelling

methods. The paradigm is now capable of providing a means to specify more complex ge-

ometry within the shape grammar instead of requiring it to be imported. Also, it has the

potential to form the basis of a more interactive procedural modelling system as the user

can draw more complex shapes in the planar surfaces and the system can infer its vectorial

representation (by means of, e.g., least squares minimization).

The system is based on shape grammars, similar to [Mül+06] and [KPK10], which were

extended to introduce support for the creation of layers and the vectorial definition of

shapes within layers. This allows the creation of more complex shapes within façades, and

more variations with less modelling effort.

Firstly, the system achieves this by considering several types of procedural items: volu-

metric shapes, planar shapes, layers and 2D shapes (Subsection 4.2.1). Planar shapes contain

two-dimensional scenes where 2D shapes can be organised in layers and ordered by depth.

In this system, the procedural operations are overloaded, meaning that their execution and

output depends on the type of the input procedural items (Subsection 4.2.2).

88

Unlike described by Müller et al. [Mül+06], where the procedural rule execution schedul-

ing is controlled by user defined priorities, this system first executes all rules that add two-

dimensional detail to planar shapes, using the operations described in Subsection 4.2.3.

Once all 2D shapes have been created, the system merges all layers and 2D shapes in the

planar shapes, taking into account occlusions between 2D shapes, creating a set of disjoint

shapes, which are then converted into new planar shapes in three-dimensional space. This

process is called planar shape normalisation and is described in Section 4.3.

Operations that lead to volumetric shapes can, then, be executed, which add 3D detail to

the façades. This process is repeated until there are only terminal shapes.

4.2 Layered Shape Grammars

This section describes the extensions to shape grammars that allow the specification of lay-

ers and the vectorial definition of shapes. Specifically, it describes the available procedural

item types, how rules in the system are overloaded and the introduced operations.

4.2.1 Procedural Items

Procedural rules in this technique operate on Procedural Items (PI) which are identified

by a symbol and, as in other procedural modelling systems ([Sil+15; KPK10]), our method-

ology supports several types of procedural items. The set of all available procedural item

types is named τ and is defined as in Equation 4.1.

89

τ = {VolumetricShape,PlanarShape, Shape2D,Layer} (4.1)

The remainder of this subsection defines each of these types in great detail.

VolumetricShape

Volumetric shapes represent shapes in three-dimensional space whose bounding box has a

volume superior to zero. In other words, these are 3D shapes that may or may not represent

a closed volume.

Each volumetric shape has its own frame of coordinates and size, which is named scope,

similarly to the one defined by [Mül+06]. The scope is used to define sizes and axes which

are used in the execution of procedural operations. Figure 4.2 illustrates a volumetric shape

with its scope.

A volumetric shape V is, thus, defined by the tuple V as in Equation 4.2.

V = ⟨G,M,P,R, S⟩ (4.2)

Where G represents its geometry and M its material properties (e.g., color, texture, etc.).

The scope’s position is given by P = (px, py, pz) defining a point in 3D space, its size along

90

Figure 4.2: A volumetric shapewith its scope.

each of its axis is represented by S = (sx, sy, sz) and the direction of each axis is defined

by the R matrix in Equation 4.3. In this matrix,X = (Xx,Xy,Xz), Y = (Yx,Yy,Yz),

Z = (Zx,Zy,Zz), represent respectively, the direction of the scope’s x, y and z axis.

R =


Xx Yx Zx

Xy Yy Zy

Xz Yz Zz

 (4.3)

The matrix R defines a rotation from the world’s frame of coordinates to the scope’s

frame of coordinates. Therefore, the matrix T, defined in Equation 4.4 is used to transform

a point in the world space to a point in scope space:

91

T =



Xx Yx Zx 0

Xy Yy Zy 0

Xz Yz Zz 0

0 0 0 1


·



1 0 0 px

0 1 0 py

0 0 1 pz

0 0 0 1


=



Xx Yx Zx px

Xy Yy Zy py

Xz Yz Zz pz

0 0 0 1


(4.4)

The scope transform matrix (T) will be used to convert 2D shapes to planar shapes in the

normalisation phase (see Subsection 4.3.2).

Volumetric shapes are used to define volumes in procedural modules, such as the build-

ing volume, columns, roofs and other shapes that cannot be contained in a plane. Volu-

metric shapes are often created by extruding a planar shape or 2D shape or by inserting pre-

modelled assets. Splitting a volumetric shape also yields a set of volumetric shapes. This

type of shapes can also be decomposed into planar shapes corresponding to each of its faces

by using the component split operation, allowing each face to be further detailed.

PlanarShapes

In contrast, planar shapes, are shapes that have a single face contained in an arbitrary plane.

As with volumetric shapes, planar shapes also have an associated scope. However, its size

along the z axis is zero and its xy-plane is coplanar with the shape. Figure 4.3 illustrates a

planar shape and its scope.

92

Figure 4.3: A planar shapewith its scope.

Planar shapes are defined by the tuple

P = ⟨G,M,P,R, S, Scene⟩ (4.5)

Where G, M, P and R are similar to the volumetric shape definition and S = (sx, sy, 0).

There is a 2D scene Scene associated with each planar shape, whose x and y axes are mapped

to the scope’s x and y axes.

This scene consists of a stack of layers, initially containing one layer with a 2D shape (the

background shape), created by mapping the planar shape’s 3D geometry into the 2D scene.

More formally, scene is defined by

93

scene = ⟨L0,L1, ...,Ln⟩ (4.6)

Where Li, i ∈ [0, n] represents a layer in the scene and depth(Lj) > depth(Lj+1), j ∈

[0, n[. In other words, layers within the scene are sorted by decreasing order of their depth.

Layers

Layers, as mentioned, are stacked by their depth within a 2D scene, where the bottom-

most layer represents the deepest layer in a 2D scene. Each layer contains a list of 2D shapes

sorted by depth. Figure 4.4 illustrates the relations between planar shapes, layers and 2D

shapes.

Similarl to planar shapes, a layer is defined by a stack of 2D shapes sorted by decreasing

order of depth:

layer = ⟨S0, S1, ..., Sn⟩ (4.7)

Where Si, i ∈ [0, n] is a Shape2D and depth(Sj) > depth(Sj+1), j ∈ [0, n[.

Layers are considered procedural items since they are created and manipulated by proce-

dural rules.

94

Figure 4.4: Relations between planar shapes, layers and 2D shapes.

Shape2D

Finally, a 2D shape is a bidimensional shape contained in a layer of a 2D scene. All shapes

are clipped inside another shape (except for the background shape), which must be of a

higher depth, and are possibly occluded by shapes of lower depth. The clipping and occlu-

sion process is described in Section 4.3.

These procedural items have two boolean attributes that can be set independently. These

are placeholder and the fixed geometry flags.

More formally, a 2D shape is defined by the tuple:

shape = ⟨G, placeholder, fixed, clip⟩ (4.8)

95

WhereG is the shape’s geometry (simply given by an ordered list of points), placeholder

and fixed are the previously mentioned flags and clip is a list of 2D shapes that are to be

clipped by a given shape, defining the clipping tree. Moreover, for a shape s and each shape

sc ∈ s.clip, depth(sc) < depth(s).

All 2D shapes are created as placeholder shapes, which means that they are derived nor-

mally but they will not be transformed into planar shapes during the planar shape normali-

sation (Section 4.3). Before the normalisation process, 2D shapes are automatically marked

as non-placeholders if their derivation requires a planar shape.

For example, if the next operation to be applied to a 2D shape is an extrusion, then the

shape is marked as non-placeholder. The shape is, consequently, converted into a planar

shape which can be correctly extruded.

Placeholder shapes are used to take advantage of shape grammar’s flexibility in represent-

ing complex architectural patterns by dividing, partitioning and positioning architectural

elements in façades and other planar surfaces while, at the same time, not enforcing hard

splits in the geometry. This has been identified as an opportunity to improve procedural

modelling’s expressiveness in Subsection 1.5.2.

The fixed geometry flag is used to control how the occlusion process affects each shape.

During occlusion calculations (Subsection 4.3.1) if a planar shape with fixed geometry is oc-

cluded, then its geometry is discarded. If the flag is not set, the final geometry is calculated

96

by subtracting the occluding geometry from its original geometry.

4.2.2 Overloaded Procedural Rules

The rules in the system are similar to those in regular shape grammars in the sense that they

define the replacement of a predecessor shape with a set of successor shapes through the se-

quential execution of a list of shape operations, RuleOps. A rule R in this system is defined

by

R = ⟨Symbol,RuleOps⟩ (4.9)

where Symbol is the rule’s predecessor symbol and RuleOps is the list of procedural opera-

tions applied to each input shape.

However, because the system supports several types of procedural items, the operations

are overloaded. This means that the same operation can have a different execution and can

output procedural items of different types, depending on the type of input, while maintain-

ing the operation semantics. Furthermore, it can restrict the application of an operation to

some types.

The split operation, for example, can be applied to volumetric and planar shapes, out-

putting volumetric or planar shapes respectively. The extrude operation always outputs

97

volumetric shapes, although it only accepts volumetric and planar shapes. The create layers

operation (Subsection 4.2.3) only accepts planar shapes and outputs layers.

More formally, an operationO is a function

O : tin → tout∗

tin, tout ∈ τ
(4.10)

that acts on procedural items of type tin and outputs zero or more procedural items of

type tout. Each operation has an associated type mapping ωO : τ 7→ τ that describes the

type transformations the operation performs. The output type of an operation for a given

input procedural item with type t is given by ωO(t). If t is not in the domain of ωO, then

ωO(t) = ∅. Likewise, ωO(∅) = ∅.

The output type of a procedural rule R given an input procedural item of type t is, then,

given by the operator out_type(R, t) defined by the algorithm depicted in Listing 4.1.

1 function out_type(rule, item_type):
2 current_type ← item_type
3 for op in rule.RuleOps:
4 current_type = ωO
5 return current_type

Listing 4.1: Algorithm to calculate the procedural item type of a rule given a procedural item

98

Before applying a rule to a procedural item, the system runs the above algorithm and

checks its result. A return value different from∅ indicates that the rule can be executed

with the given procedural item, since each operation opi+1 ∈ RuleOps is able to manipulate

the results of the operation executed before (opi ∈ RuleOps). Otherwise, an error is raised

and the execution is halted.

4.2.3 Procedural Operations

In addition to the operators introduced by Müller et al. [Mül+06] , a new set of operations

that act on procedural items have been defined. The following sub sections describe their

operation and define their syntax, loosely following the syntax presented by Müller et al.

[Mül+06].

Layer Creation Operation

To create layers within planar shapes, the layer creation operation has been defined. Such

operation accepts a series of successor rule symbols, creating a new layer for each symbol in

decreasing order of depth. Successor rules can, afterwards, add further detail to each layer

separately. The layer operation only accepts planar shapes as its input type and only out-

puts layers and, therefore, its mapping function ωlayers is given by the following:

99

ωlayers(t) =


layer if t = planarshape

∅ if otherwise
(4.11)

For example, given a planar shape with the Facade symbol and representing a building

façade, the following example shows the creation of two layers: one that will contain the

façade’s floors description and another defining the entrance.

1 Facade → layers("floors","door"){Floors | Door}

Listing 4.2: Rule to create two layers in a planar shape.

The nth parameter of this operation defines the name of the nth layer to be created in the

planar shape. For each layer, a rule name must be given between the { and } delimiters, sep-

arated by a | character. Although it seems redundant, having a layer name and a rule name

adds a level of semantics to this operation. The user can, for example, swap the rule for the

door layer with another one (e.g.,GothicDoors), while the semantics is still retained. Fur-

thermore, it allows to externally turn on or off the generation of the layer via its composite

name: Facade.door, increasing the variation of results without modifying the rule base.

Figure 4.5 illustrates the application of the previous rule to a planar shape with Facade

symbol. It is possible to see the decomposition of the Facade planar shape (on the left) into

100

Figure 4.5: Application of the rule in Listing 4.2 to a planar shape.

theDoor and Floors layers (on the right). As the layers are empty, there is no actual change

of the geometry and the final result is similar.

Segment Operation

The segment operation is used to partition a planar shape, 2D shape or layer into 2D shapes

along one of its axis (x or y), placing the resulting shapes into one of the 2D scene’s layers

and defining its depth within the 2D scene. Therefore, its type mapping function ωsegment is

given by the following:

ωsegment(t) =


Shape2D if t ∈ PlanarShape, Shape2D,Layer

∅ if otherwise
(4.12)

This operation is similar to the split operation introduced by Müller et al. [Mül+06].

However, the segment operation does not force a split in the geometry at the moment of its

101

execution. Instead, it creates placeholder 2D shapes partitioning the given procedural item

while the modifications to the final geometry are deferred to the planar shape normalisation

phase (see Section 4.3).

Intuitively, this operation allows the same flexibility in architectural elements placement

without incurring in an excessive number of splits and, therefore, semantically meaning-

less shapes. Moreover, keeping the geometry intact until a later moment allows the shapes

contained in different layers to be correctly merged.

The segment operation defines each created 2D shape’s depth within the scene as d =

depthpred − 1 where depthpred is the predecessor procedural item’s depth, effectively creating

2D shapes that are in a less deep level than their predecessor procedural items.

As this operation accepts procedural items of three different types (PlanarShape, Shape2D,

Layer), there are also three different execution types and the resulting shapes may be in-

serted into different layers and at different depths depending on the type of the predecessor

procedural item.

If the predecessor is a 2D shape, then depthpred is that shape’s depth, and the resulting

shapes are placed within the same layer. This effectively creates 2D shapes above (i.e., at

lower depth) than the predecessor.

Whenever the predecessor is a planar shape, depthpred is the 2D scene’s background shape’s

depth and the shapes are inserted in the deepest layer. This situation represents the case

102

when a planar shape is being segmented directly and, as a result, all shapes are directly above

the background shape. Moreover, since the planar shape will be consumed from the list of

non-terminals when the given rule is applied, this case also implies that the planar shape

will have a single layer (the default layer) where shapes will be inserted.

If, however, the predecessor is a layer, then the shapes are included in that layer and

depthpred takes the value of the minimum depth of the 2D shapes in the layer underneath

or, if the predecessor is the bottommost layer, the background shape’s depth. Intuitively,

this case calculates the 2D shape’s depth depending on the layer’s position within the 2D

scene.

This operation is also responsible for creating a clipping tree of a 2D scene’s shapes, where

nodes represent the 2D shapes and edges represent a clipping relation such that the geome-

try of children shapes must be contained inside the parent shape. In other words, geometry

that lies outside the parent’s shape will be clipped and discarded.

The clipping tree root node is the 2D scene background shape, which is guaranteed to

exist for every 2D scene. When executing the segment operation, if the predecessor pro-

cedural item is a planar shape or a layer, then the 2D shapes output by the segment opera-

tion become children of the background shape. On the other hand, if the predecessor is a

2D shape, then the created shapes become children of the predecessor shape and are, thus,

clipped within its geometry. The clipping tree will be used in the planar shape normalisa-

103

tion step (Section 4.3) to calculate the final geometry of each 2D shape and, as consequence,

the planar shapes generated.

By default, this operation creates only placeholder shapes, meaning that they will not

be converted into planar shapes unless their derivation leads to a procedural item of a type

other than Shape2D. In other words, if next rule to be applied to a given 2D shape only pro-

duces results within the bidimensional domain then the shape is kept as a placeholder. In

contrast, it will be marked as non-placeholder if the next rule creates a volumetric or planar

shape, and the shape will be converted into a planar shape in the shape normalisation phase.

This keeps the background geometry intact for as long as possible allowing the correct

and seamless integration of complex geometry into planar shapes and 2D shape occlusion

during the planar shape normalisation step (Section 4.3).

As with the operations described by Müller et al. [Mül+06] , there is also a repeat seg-

ment operation. This is indicated by appending an asterisk character to the operation body

(after the last } character). Moreover, segment sizes can also be defined as relative to the

predecessor size (by prepending the value with a ’ character) or as a float size (by using a ~

before the value) proportionally distributing the remaining size by all float segments. This

is also present in the CGA grammar [Mül+06].

1 Floors → segment("Y", 3,2,2)
2 { ε | Floor | ε }
3 Floor → segment("X", 3,2,3)

104

Figure 4.6: Application of the grammar in Listing 4.3 to the two layers defined.

4 { ε | Balcony | ε }
5 Balcony → extrude(0.1)
6 Door → segment("X", 3,2,3)
7 { ε | DoorVSegment} | ε }
8 DoorVSegment → segment("Y", 3.5, 3.5)
9 { DoorExtrusion | ε }

Listing 4.3: Creates several segments in each layer.

Consider the Layered Shape Grammar present in Listing 4.3 that further details the pre-

vious example. This results in a façade with a single square extrusion centred in the middle

floor. Note that the segment operation syntax is similar to the split operation described

before and ε is the empty shape. No practical consequences result from including empty

shapes since only non-empty, non-placeholder 2D shapes have influence on the final geom-

etry (the reader is referred to Section 4.3 for more details). The results are illustrated in the

right image in Figure 4.6 where the image in the left corresponds to the previous derivation

state (right image in Figure 4.5).

105

As it is possible to see, the Floors layer has been vertically segmented into three different

zones where the middle has been given the Floor symbol and the remaining were created as

empty shapes. The Floor shape was then segmented horizontally three times and, similarly,

the first and last segments are empty shapes whereas the middle shape has the Balcony sym-

bol. TheDoor layer was segmented horizontally three times, where the second segment (the

DoorVSegment shape) was again segmented into theDoorExtrusion shape and an empty

shape.

In this scenario, only the Balcony shape results in modifications to the final model since

its derivation leads to a volumetric shape via the extrude operation and the remaining empty

shapes are used as padding to correctly place the balcony.

Vectorial Shape Operation

The vectorial shape operation is used to create complex 2D shapes within other shapes, tak-

ing as input the definition of a vectorial shape representing a closed path, allowing specifing

complex architectural elements such as arched windows or doors. In this implementation

the Scalable Vector Graphics (SVG) was chosen . The SVG specification creates a series of

control points which are then interpreted either as vectorial curves (e.g., quadratic or cubic

curves) or as straight lines connecting two control points.

Afterwards, the vectorial definition is sampled down to a polygon P using an user speci-

fied sampling factor s, allowing to control the level of detail. The sampled points pi(x, y) ∈

106

P, where x, y ∈ [0, 1] and i ∈ [0, s[are used to create a polygonal 2D shape by interpolat-

ing them inside the predecessor shape’s bounding rectangle, thus the same vectorial shape

definition aligns with any predecessor shape’s bounding box.

The vectorial shape operation, like the segment operation, takes as input procedural

items of type planar shape, layer and shape 2D and, therefore, its type mapping ωvectorial is

defined as

ωvectorial(t) =


shape2D if t ∈ {PlanarShape, Shape2D,Layer}

∅ if otherwise
(4.13)

The layered shape grammar in Listing 4.4 illustrates the creation of an arched door in the

previous examples. The first argument to the vectorial operation is the SVG path specifica-

tion and a second, optional, argument is the sampling factor indicating how many points

are to be sampled from the path.

As depicted in the right image in Figure 4.7, the extrusion is no longer generated since,

by default all 2D shapes are created having fixed geometry meaning that in case of being

occluded by a shape with a smaller depth they are discarded. Because the door is generated

in a less deep layer, it takes precedence. Note, however, that the respective 2D shape is still

generated in the Floors layer.

107

Figure 4.7: Application of the grammar in Listing 4.4 to create an arched door.

1 Door → segment("X", 3,2,3)
2 { ε | DoorTile | ε }
3 DoorTile → segment("Y", 4,~1)
4 { ArchedDoor | ε }
5 ArchedDoor →
6 vectorial("M0,0 L0,0.5 C0,1 1,1 1,0.5 L1,0Z", 50)
7 extrude(-0.1)

Listing 4.4: Demonstration of the vectorial operation use.

Set Property Operation

Similar to other procedural modelling frameworks, layered shape grammars provide an

operation to set properties on procedural items. This is especially useful, in the context

of layered shape grammars, to give the user the possibility to define 2D shapes with non

fixed geometry. Thus, the user gains control over which shapes are to be discarded in case of

being occluded by another shape and those that are to be modified to accommodate to the

occlusion.

108

Figure 4.8: Application of the rule in Listing 4.5 to a 2D shape causing it to be generated.

Regardless of the input procedural item’s type, this operation always outputs the same

type and, therefore, its type mapping ωset_property is the identity mapping as given by:

ωset_property(t) = t (4.14)

The layered shape grammar extract in Listing 4.5 sets the fixed_geometry property to false

in the Balcony rule before the extrusion operation is applied, causing the balcony’s geometry

to be modified adapting to the arched door (see right image in Figure 4.8).

1 Balcony → set_property("fixed_geometry", false)
2 extrude(0.1)

Listing 4.5: Rule to set the fixed geometry flag in a 2D Shape.

The generated clipping tree for the final model in Figure 4.5 is given in Figure 4.9. As

109

it is possible to see, the depth of the arched door (ArchedDoor) is lower than the balcony

shape (Balcony). Therefore, and since the balcony’s fixed geometry flag has been unset, the

balcony adapts to the arched door’s geometry.

Figure 4.9: Clipping tree for the final model in Figure 4.5.

4.3 Planar Shape Normalisation

The normalisation of a planar shape is a process that has the goal of converting the 2D scene

associated with each planar shape to a new set of planar shapes which will, afterwards, be

available to further derivation. In the process, each 2D shape that is non-empty and non-

placeholder is also transformed into a planar shape. This way the procedural derivation can

continue to add volumetric detail, as the shapes that were solely within the bi-dimensional

domain now have a tridimensional representation. Operations such as extrusion or splits

require procedural items which have a 3D geometry (i.e., planar shapes and volumetric

shapes).

110

In this methodology, the normalisation process is triggered whenever the derivation pro-

cess encounters a special non-terminal procedural item whose type isNormalisationToken.

By carefully scheduling the execution of non-terminals (as described in Section 4.4), this

token separates the processing of 2D shapes from the remaining procedural items.

This procedural item is automatically created as soon as a 2D shape is created within any

planar shape and the system guarantees that there is at most one present at a time, which is

discarded after the normalisation process. The system creates as many 2D shapes as possible

before normalising the planar shapes (see Section 4.4). Afterwards, the derivation of the

remaining procedural items may lead to new 2D shapes and the process is repeated.

The process consists of two stages for each planar shape. The first is to merge all layers

in the 2D scene, calculating occlusions between shapes. This process can, usually, be found

in 2D graphics software. The second stage is to convert these 2D shapes to planar shapes in

three-dimensional space.

More formally, the normalisation process is a function such that:

normalise : PlanarShape→ ⟨Bgshape, Frontshapes⟩ (4.15)

which takes a PlanarShape p, along with its 2D scene and shapes, and transforms it into a

disjoint set of shapes such that p ≡ Bgshape∪Frontshapes. The Bgshape represents the converted

111

background shape in the 2D scene while Frontshapes is a set containing the remaining planar

shapes.

After the normalisation process the background shape is marked as a terminal shape

while the remaining shapes are considered non-terminals. The reasoning being that back-

ground shape represents the original planar shape which has already been derived. On the

other hand, the remaining shapes were created afterwards and still require further deriva-

tion (i.e., the goal of the normalisation process).

4.3.1 Layers Merge

The first step in the process of merging all layers is to sort all 2D shapes by increasing order

of depth, taking into account the shape’s depth within a layer and the relative position of

such layer. This results in a list Lwhere the last element is the background shape:

L = (s0, s1, ..., sn), n ∈ [0, |shapes|]

depth(sj) < depth(sj+1), j ∈ [0, |shapes|[
(4.16)

All non-terminal 2D shapes are set as non-placeholder shapes if the rule that will imme-

diately derive it produces a procedural item other than Shape2D, guaranteeing that only

shapes that will be derived further into procedural items with a volumetric geometry are

112

converted into planar shapes. In other words, given the FutureType function of a procedu-

ral item (defined in Listing 4.6) then sj.placeholder = false if, and only if, FutureType(sj) ̸=

Shape2D.

1 function FutureType(PI):
2 rule ← rule whose symbol matches PI.symbol
3 type ← PI.type
4 return out_type(rule, type)

Listing 4.6: Pseudo-code for the FutureTypefunction.

The clipping tree is traversed in depth first order, starting with the Bgshape and the 2D

shape of each node is clipped inside its parent shape. Enforcing shapes to be contained

within its parent shape is a requirement since some operations may allow the creation of

geometry outside this boundary. Most notoriously, the vectorial operationcan easily create

such situations and, while a solution could be to constrain all control points to be within

the boundaries (i.e., enforcing all ci(x, y), where x, y ∈ [0, 1] and ci is a control point), this

would severely limit the geometries that could be defined. The employed solution was,

therefore, to clip the geometry after it has been defined. The clipped geometry g′ for each

shape s is, then, given by:

113

g′ = geometry(s) ∩ geometry(parent(s))

s ̸= Bgshape
(4.17)

The final 2D geometry of each shape is, then, calculated by iterating L, performing occlu-

sion calculations with a mask shapeM, while considering the placeholder and fixed geom-

etry flags. The final shape is calculated as s′′ = occlude(s′,M), where occlude is a function

defined in Equation 4.18.

occlude(s,M) =



∅ if placeholder(s)

geometry(s) if geometry(s) ∩M = ∅

∅ if fixed_geometry(s) ∧ geometry(s) ∩M ̸= ∅

geometry(s) \M if ¬fixed_geometry(s) ∧ geometry(s) ∩M ̸= ∅
(4.18)

The mask shape is constructed by accumulating the occlusion results such that, for each

si ∈ L, the resulting normalisation mask is given byMi+1 = Mi ∪ occlude(si,Mi).

Since placeholder shapes do not have any impact on the final model their geometry can

114

be safely discarded. If the shape does not intersect the mask then there is no occlusion and

the shape’s geometry is not modified. If there is an occlusion the geometry is discarded

if the shape is marked as fixed geometry. On the other hand, the geometry of shapes not

marked as fixed geometry is calculated by subtracting the mask from its original geometry.

The clipping and occlusion process can, eventually, lead to shapes being split into two or

more shapes. In these situations, the resulting shapes are considered separate shapes, and

will lead to different planar shapes with the same symbol.

4.3.2 Conversion to Planar Shapes

The conversion of a 2D scene associated with a planar shape P into a set of new planar

shapes, is achieved by noting that the scene is actually embedded in the plane defined by

theX and Y axis of P’s scope.

There is, thus, a trivial mapping φP : R2 7→ R3 that transforms points in a 2D scene in a

planar shape P into points in the 3D scene. Given a 2D point within the planar shape’s asso-

ciated 2D scene p(x, y) ∈ scene2D(P), its world position is calculated with the φP function

in Equation 4.19, whereX, Y and Z are the scope´s axis as defined in Equation 4.3.

115

φP(p) =



Xx Yx Zx Px

Xy Yy Zy Py

Xz Yz Zz Pz

0 0 0 1


·



px

py

0

1


=



Xx · px + Yx · py + Px

Xy · px + Yy · py + Py

Xz · px + Yz · py + Pz

1


(4.19)

For each 2D shape s in a planar shape P that is suitable to be converted into a new planar

shape (i.e., non-empty, non-placeholder), the system converts its 2D polygon (i.e., P2D =

polygon(s)) into a 3D polygon P3D by using φP as defined in Equation 4.19. Having a 3D

polygon it is then possible to create a new planar shape P′ such that geometry(P′) = P3D.

P3D = ⟨φP(pi)|pi ∈ P2D⟩

i ∈ [0, |P2D|[
(4.20)

For each new planar shape a new scope must also be created. This is achieved by taking

a copy of the original planar shape’s scope such that scope′ = scope(P). This scope is then

translated to the point that is nearest to its origin using vector t⃗ as given in Equation 4.21.

116

t⃗ = argmin
P

length(position(scope′)− pi), pi ∈ P3D

position(scope′)← position(scope′) + t⃗
(4.21)

The size of the new scope must also be adjusted to tightly fit the new planar shape’s ge-

ometry. Therefore, the sizes along the x and y axis are defined by measuring the distance to

the farthest point in each direction. As, by definition, the planar shape is contained within

a plane orthogonal to its scope z axis, the size along such direction is always zero. The size

for each axis is defined in Equation 4.22.

sizei = argmax
p

(position(scope)i − pi), i ∈ x, y

sizez = 0

size(scope′)← (sizex, sizey, sizez)

(4.22)

As a final step, the 2D shape’s symbol is copied to the new planar shape. The planar

shape can now be further detailed through the normal derivation process.

117

4.3.3 Deferred Procedural Items

Having the system being responsible for automatically deciding when is the best moment

to normalise planar shapes frees the user of the burden of crafting the shape grammar such

that all 2D shapes are created before the generation of volumetric procedural items takes

place. However, this comes at the expense of some loss of control over the generation pro-

cess.

To achieve a greater control of when the normalisation process takes place, it is possible

to circumvent the normal rule execution scheduling (see Section 4.4) and defer the deriva-

tion of a procedural item until after a normalisation has occurred. These items are, thus,

called deferred procedural items.

This can be encoded in the grammar by prepending the@ character before a successor

symbol. After the normalisation process occurs, all deferred items are unmarked as such and

their derivation can continue as normal. Deferring a procedural item is particularly useful

when segment operation sizes must consider the final size of a planar shape instead of its

size before normalisation.

Consider, for example, the case of a simple façade being decomposed into two layers

(as described in Listing 4.7). The deepest layer (ruleWindows) generates the windows in

such way that their layout corresponds to a regular grid. However, the top-most layer (rule

Frames) generates the façade frames which partially overlap the first and last column of win-

118

dows. A single floor in this façade is illustrated in Figure 4.10 which shows the leftmost and

rightmost windows incorrectly generated.

1 Start → layers("windows", "frames")
2 { Windows | Frames }
3 Frames → segment(x,1,~1,1)
4 { extrude(0.1) | ε | extrude(0.1) }
5 Windows → segment(x,0.5,2,0.5)
6 { ε | RepeatV | ε }*
7 RepeatV → segment(y,~1,2,~1)
8 { ε | extrude(-0.1) | ε }

Listing 4.7: Layered Shape Grammar demonstrating the use of deferred procedural items.

Figure 4.10: Incorrectly generatedwindows.

By simply inserting a@ character before theWindows successor rule in the Start rule

(Listing 4.8) delays the derivation of theWindows rule to after the normalisation process.

Therefore, the procedural item passed as input to this rule is no longer a 2D shape (as in the

previous scenario) but is a planar shape which has been occluded by the frames. Thus, this

shape’s size correctly corresponds to the part of the façade where windows should be placed.

119

As can be seen in Figure 4.11, the windows are now generated taking into account the size of

the planar shape, avoiding the undesirable intersections.

1 Start → layers("windows", "frames")
2 { @Windows | Frames }

Listing 4.8: Layered Shape Grammar demonstrating the use of deferred procedural items.

Figure 4.11: Correctly generatedwindows.

4.4 Derivation Process

As with other shape grammars, the derivation process starts with an arbitrary configuration

of procedural items. The shapes present in such configuration are, necessarily, planar or vol-

umetric shapes, since they have a three-dimensional representation. Most often, however,

they are planar shapes representing the building outlines.

The main scheduling of the derivation of non-terminal procedural items is based on

a priority queue which sorts the items based on the characteristics of each non-terminal.

120

Intuitively, the priority queue gives more priority to procedural items whose derivation

yields a 2D shape.

The procedural items on the initial configuration are, then, inserted into such priority

queue Q of non-terminals, which sorts the items in decreasing order of their priority as

given by the priority function (defined in Equation 4.23), where FutureType indicates the

type of the resulting items after item has been derived.

priority(item) =



3 if FutureType(item) = Shape2D

2 if item.type = NormalisationToken

1 if item.deferred

0 if otherwise

(4.23)

Therefore, procedural items whose FutureType equals Shape2D have a higher priority,

followed by the normalisation token, the deferred shapes and finally the remaining procedu-

ral items. Figure 4.12 illustrates this queue. Therefore, the system creates all 2D shapes possi-

ble, ensuring that 2D scenes are fully detailed and the normalisation process has all available

clipping and occlusion data to generate correct results. The generation of geometry evolves

naturally from less detailed to more detailed models.

The derivation algorithm is detailed in Listing 4.9 which defines the derivation function.

In the listing, the third line retrieves and removes the next non-terminal procedural item

121

Figure 4.12: Priority queue for the procedural derivation. NT represents the normalisation token.

S from the priority queueNT and, afterwards the procedural rule that matches the item’s

symbol is fetched (line 4). Lines 5 and 6 check if the rule can be executed with the given

item type, in which case, the rule is executed resulting in a new list of items (line 7). This

list is iterated and the algorithm checks if each item is a terminal or not, by querying the

rule base for a matching symbol on the left side of a rule. If an item is non-terminal, it is

inserted into Q for further processing (line 10). A normalisation token is created as soon as

a procedural item whose type is Shape2D is generated and there is no normalisation token

present in Q (lines 11 and 12).

1 function derivation(Q):
2 while(Q not empty)
3 S ← Q.pop()
4 rule ← fetch_rule(S.symbol)
5 if(out_type(rule,S.type) = ∅)
6 error_and_exit()
7 newItems ← rule.execute(S)
8 for(item in newItems)
9 if(non_terminal(item))
10 Q.push(item)
11 if(¬ has_normalisation_token(Q) and type(item) is Shape2D)
12 Q.push(new normalisationToken)

122

Listing 4.9: Derivation process algorithm.

Including the normalisation token as a non-terminal procedural item, guarantees that

the planar shape normalisation process occurs in the right moment, while keeping the

derivation process simple and similar to other approaches (e.g., [Mül+06]). The main dif-

ference between the derivation scheduling in layered shape grammars and regular shape

grammars lies in the fact that, for example in the CGA grammar [Mül+06], the user assigns

a priority to each rule, whereas in this system the priorities are inferred from the characteris-

tics of the procedural items.

4.5 Limitations

Although layered shape grammars allow a greater flexibility in placing geometry within

planar shapes, this system currently does not offer any explicit way to constrain alignments

between elements in different layers. The current solution is to parametrise the rules to

encode these alignments. However, the normalisation process provides a synchronization

point during the procedural derivation where 2D shapes can be modified (e.g., translated or

resized). This would allow the system to perform alignments with procedural items already

created.

The manual input of a SVG path to vectorially define shapes is an error prone task. How-

123

ever, this can be alleviated in a number of ways. One is to externally define and import

these paths, resembling an asset import operation. A more elaborate solution is to provide

the designer with tools to sketch the shapes over the models in an interactive procedural

modelling application. As the end goal of this thesis is to provide an integration between

the procedural modelling of buildings and sketch based interfaces for modelling this rep-

resents the connection between layered shape grammars and the sketch based interface de-

fined in Chapter 6.

As with any shape grammar approach to the procedural modelling of buildings, this

methodology suffers from the same drawbacks. For instance, these are text-based which

is impractical for artists [Pat12] and have limitations in its readability and manageability

[Sil+15]. The grammar could be translated to a visual language as presented by Patow et al.

[Pat12] or by Silva et al. [Sil+13].

4.6 Summary

In the procedural modelling of buildings, most current methodologies rely on a split-based

paradigm, imposing too strict limitations in the generation of geometry such as mostly rect-

angular shapes and grid-like façades. To model more realistic and more interesting build-

ings, the current split-based methods may require several more rules and attention in their

definition as modifications in one part of the rule base may have repercussions on unrelated

124

areas of the model.

Therefore, this chapter presented an extension to shape grammars that allows the spec-

ification of layers within planar surfaces of buildings. Splitting the definition of rules into

different layers helps minimise this problem as each layer is self contained and layer merge

process produces well expected results.

Moreover, the layered shape grammar approach permits more complex layouts that go

beyond regular grid structures. Meanwhile, this concept can, easily, provide a non-linear de-

sign workflow and produce more variations with less effort. Such workflow can be achieved

by toggling on or off the execution of specific layers or reordering them within the planar

shape.

In most procedural modelling methods, complex geometry must be imported as a pre-

modelled assets. Layered shape grammars take a step further in procedural expressiveness

by allowing the vectorial definition of 2D shapes within layers. Such vectorially defined

shapes can be used to create non-rectangular structures within a bounding rectangle and

can easily adapt to the geometry produced by less deep shapes.

125

126

5
Generalised Selections for Improved Direct

Control in Procedural Modelling

As seen, procedural modelling techniques reduce the effort of creating virtual models of

urban spaces but, as highlighted in Subsection 1.5.3, current methodologies are not prone

to applications with direct user control over the generated models. Direct control in this

127

scenario implies that a user should be able to directly perform operations on the resulting

model, as in traditional modelling tools (e.g., Blender, Maya, 3D Studio Max). To achieve

this, being able to select shapes and geometries is, more often than not, required.

However, in procedural modelling techniques establishing selections of shapes in the

resulting models becomes rather difficult due to the problem of semantic ambiguity of user

selections. Due to the data amplification nature of procedural modelling techniques, several

configurations of shapes can be achieved given the same rule base by varying its parameters.

This implies that given two configurations of shapes, a set of user selected shapes in one

configuration may not be easily achieved in the other configuration.

Specification of user selections must, then, be defined based on the semantics behind

the user intention instead of being a simple set of shapes. To achieve this end, this chapter

describes a selection mechanism based on semantic queries over shape trees which can be

applied to several shape configurations resulting in semantically coherent selections. This

chapter also shows how it is possible, based on an initial shape tree, to iteratively apply a

semantic queries and procedural operations interleaved to create procedural models. Such a

procedural modelling paradigm is named selection action throughout this thesis.

However, the specification of such semantic queries is not always trivial (and is currently

text based resembling a query language) and poses a subset of the problems this thesis aims

to solve (e.g., achieve more interactive procedural modelling techniques). Therefore, a

128

mechanism to infer semantic queries from user selections over a given procedural model

is also presented in this chapter. Such mechanism uses genetic algorithms to drive a popula-

tion of semantic queries towards what may be the user intention.

5.1 Overview

The main idea behind the selection-action paradigm is to help users select specific parts of

the shape tree (and therefore buildings), and operate on them as input for procedural op-

erations. Selections are defined by semantic queries (i.e., the selections), which result in sets

of selected shapes to which procedural operations are applied (i.e., the actions). The system

allows users to define rules which apply this process iteratively, starting with an initial con-

figuration of shapes, and incrementally improving the detail of the created models.

Users are offered a quite simple interaction metaphor which is illustrated in Figure 5.1.

First, users simply have to select a subset of the shapes to modify. The system, then, presents

several possible selection sets (i.e., a set of queries that result in selections that contain the

one provided by the users) generated from the initial user selection with the genetic algo-

rithm. From these sets, users choose the one that bests suits the present needs. Having se-

lected a query, users have to apply an action on the selected geometry by choosing a proce-

dural operation to perform, effectively creating a selection-action pair. Finally, users can

change operation parameters to adjust the output’s form and appearance. All this is done in

129

an iterative process, where the users interact with the system until the building is finished.

Figure 5.1: The user workflow in this system.

The user is presented with the interface shown in Figure 5.2, which contains an interac-

tive view of the current model allowing selecting multiple shapes (a). It is also possible to

manually create or refine semantic queries (b). The selection-action tree is shown in the bot-

tom left (c) while the query and parameters for the selected node can be edited in the top

right (d and e, respectively). The available procedural operations and templates are shown

in the bottom right (f). The interface also features a suggestive interface (g) allowing the

user to select candidate queries based on the selected shapes.

The basic semantic queries, here called selectors, are combinations of atomic query con-

ditions capable of selecting shapes based on a set of given criteria. Different selectors can

also be combined to exploit a building’s hierarchical structure. These queries represent

semantic selections over the shape tree, selecting shapes based on the type of procedural

operation that resulted in its generation, their symbols, tags or more complex conditions

(named filters) such as their facing direction or whether they are inside a given geometry or

130

Figure 5.2: The interface presented to the user.

not. Moreover, the user can express conditions based on the hierarchical structure of the

shape tree. Semantic selections allow the user to express complex selections such as selecting

all windows in the north façade, the windows that are in even floors, or those that are inside

a given geometry.

The selection-action system, therefore, makes extensive use of shape trees. This concept

is often present in procedural modelling methodologies based on shape grammars and rep-

resents the derivation tree of a given grammar. Shape trees also encode a hierarchical struc-

131

ture of buildings as, for example, it is possible to discern the windows in a given floor by

identifying the desired floor shape and collecting all window shapes in that sub-tree. Typi-

cally, shapes in shape trees only carry an identifying symbol, its geometry, material informa-

tion and a scope (i.e., an oriented bounding box). In this system they are extended with tags

and a reference to the procedural operation that created it.

In a given configuration of shapes, however, different semantic queries may result in the

same set of selected shapes, leading to another level of ambiguity. Moreover, the creation

of these semantic queries may not always be the easiest task as queries are defined in a text

based manner which resembles a query language. To cope with these problems the system

also incorporates a genetic algorithm to infer the semantic query that best matches the user

intention based on a set of user selected shapes in an interactive application. This helps

users interactively find the most suitable semantic query for the intended goal.

The shape tree is traversed to generate the initial population with a genotype composed

by the selectors. Crossover and mutation operations are applied iteratively and the popu-

lation evolves based on a fitness function that selects the semantic queries that are simpler

and result in sets of selected shapes that match the user selected shapes as closely as possible.

Genetic algorithms also have the added benefit of producing a great number of candidates

exploring well the ambiguity of user selections.

Once the semantic query is selected, the user instantiates a procedural operation (or

132

a template) to add further detail to the previously selected shapes (i.e., apply the action).

Templates are predefined sets of procedural operations which can be parametrized. Selection-

action pairs are organized in a tree structure which is traversed in a depth first order, result-

ing in the final procedural model.

5.2 Selection Action Paradigm

In shape grammars, or in general for node-based approaches, each geometric shape is tied,

since its creation, to a specific procedural rule via symbols or connections between nodes.

In contrast, the proposed selection-action paradigm achieves a separation between the ge-

ometry and the rules that are used in its generation. The shape tree becomes merely an

artefact of the procedural generation and each existing, individual shape can be selected

or referenced at any point in the derivation process. The selections are achieved by means of

queries that exploit explicit user defined semantics, via symbols and tags; or semantics that

are implicitly defined within the resulting shape tree, via filters and hierarchical relations.

This allows for a semantic layer over procedural models, which can be further used to

add detail to specific parts of the geometry by applying actions on selected shapes. As a re-

sult, it is now possible to define selections that propagate and remain valid even if a model

changes (within a reasonable range).

These conditions contribute to a system that is capable of inferring selections given a

133

small set of user selected shapes. As the goal is to allow the user to select an arbitrary set of

shapes to modify, having the geometry too tightly coupled with the rules would involve too

many complicated modifications to the rules used. In the proposed system, adding a single

rule that selects and acts on a subset of shapes is sufficient. Therefore, the pairing of a query

and an action is at the core of this paradigm.

In this system, semantics are assigned to geometries by parametrising the procedural rule

that generates them. Discovering or learning the semantics of architectural models is ex-

tremely dependent on the user’s intentions and the specific building being modelled. As

such, manually inserting this data is, at this moment, required. Automatic tag assignment is

left as an avenue for future work.

As mentioned, this system is (theoretically) agnostic to the underlying procedural frame-

work used as long as it exposes the concept of shape tree. Nonetheless, shape trees should

possess symbols and tags to take full advantage of queries. However, if a shape tree lacks

any of these concepts, geometric queries should still be able to produce interesting results.

5.3 Semantic Queries

The selection action paradigm relies heavily on the capability of selecting shapes from a

shape tree. Shapes, in the implementation of this system, already integrate semantics by as-

sociating tags, as each shape is associated to a specific concept in the designer’s taxonomy.

134

As these tags are integrated in the hierarchical process description and associated with the

topological and geometric properties of the objects, this creates a semantic layer that sup-

ports the overarching concept of semantic queries.

This means that shape trees express the semantic structure of a building. For example, a

set of shapes with the Floor symbol whose parent is a shape with the Facade symbol repre-

sent the building’s floors within such façade. By explicitly selecting shapes using semantic

information, it is possible to apply different derivation paths which result in distinct geome-

try.

To this end, the concept of semantic queries over a shape tree has been defined. Semantic

queries provide, with a concise notation, a multitude of conditions on shape trees. The hier-

archical nature present in these trees is also exploited allowing the user to perform selections

even based on hierarchical relations between shapes.

Moreover, simple extensions to the semantic query system also provide the capability of

performing geometric queries. For example, it is possible to select shapes that are inside or

intersect a given volume or perform selections based on the orientation of the shapes.

The user specifies the semantic queries as a list of conditions encoded in a string. A query

qmatches a shape s if the shape verifies all conditions expressed in the query which is ex-

pressed asmatchq(s). The productq(ST) of a semantic query q over a shape tree ST is an

operation that returns all shapes that match the query and is defined in Equation 5.1

135

productq(ST) = {s : s ∈ ST ∧matchq(s))} (5.1)

The semantic selection system relies on two components: selectors and hierarchical

queries. Selectors express a set of semantic conditions that allow the selection of sets of

shapes. Hierarchical queries, on the other hand, restrict the selection to shapes that match

the hierarchical relations between two or more selectors.

The selectors and hierarchical relations are defined in a syntax to represent semantic selec-

tions which will be explained in the following sections.

5.3.1 Selectors

Selectors provide a way of selecting shapes given their intrinsic properties based on a com-

bination of several atomic query components. A selector is defined as a tuple ⟨sym, o,T, F⟩

of atomic components where o is a type of procedural operation (e.g., subdivision, repeat,

split), sym is a symbol for a shape, T is a set of tags and F is a set of filters.

For every component the system also defines a null component that always evaluates to

true which symbolizes its absence from the selector. Every atomic component is optional, as

long as the query is not empty (i.e., at least one of its components is not null).

Selectors are encoded in a string where the different types of components are specified

136

with a well-defined order and syntax defined in the grammar in Listing 5.1.

1 <query> ::= <selector>(<hierarchy_op><selector>)*
2 <selector> ::= <op_name><symbol><tag>*<filter>*
3 <op_name> ::= <identifier>
4 <symbol> ::= "'.'"<identifier>
5 <tag> ::= "'\#'"<identifier>
6 <hierarchy_op> ::= "'>'" | "'/'" | "'~'"
7 <filter> ::= "':'"<identifier><args>
8 <args> ::= "'('"<arg_list>"')'"
9 <arg_list> ::= <arg> ("','" <arg>)*
10 <arg> ::= "'{'" <expression> "'}'"

Listing 5.1: Grammar for the selectors in the selection action paradigm

More concisely, a selector can be defined as shown in Listing 5.2.

1 operation.symbol#tag_n:filter_n(...)

Listing 5.2: Concise example of a selector.

Here, the operation type component expresses the condition that a shape must have

been created by a specific procedural operation type. When present, this condition must be

at the beginning of the selector string. This query component can be defined as in Equation

5.2. As seen, for a given selector q = o and a shape s,matchq(s) is true if, and only if, the

type of the procedural that generated the shape is o.

Since a shape can only be generated by a single procedural operation, there can only be at

137

most one operation type query component in a given selector.

matcho(s) ⇐⇒ type(operation(s)) ≡ o (5.2)

The symbol query component, preceded by a ’.’ character, indicates that a shape must

possess a given symbol to be selected. Note that, although it is here assumed that shapes in

a shape tree contain symbols, this is not the case for some procedural modelling methods

(e.g., some graph based approaches [Sil+15]). In such cases, the rule symbol condition can

be omitted from the system altogether. Similar to the operation type component, there can

only be one symbol component in a selector.

The symbol query component can be formally defined as in Equation 5.3 which, as in the

operation type component definition, states that a shape can only be matched by this type

of query component if the shape’s symbol is the same as defined in the query.

match.sym(s) ⇐⇒ symbol(s) ≡ sym (5.3)

In contrast, a selector can have multiple tag and filter conditions. Tag selections are possi-

ble by representing each with a preceding ’#’ character. For a shape to match the tag query

138

component it must have such tag within its set of tags as defined in Equation 5.4.

match#tag(s) ⇐⇒ tag ∈ tags(s) (5.4)

Finally, filters allow the specification of more complex queries. Note that filters may or

may not have parameters. Filters are the entry point for any extension to this system that

provides new types of conditions. For example, filters can encode conditions such as the

direction a given shape is facing, if it is in an even or odd position relative to its shape tree

siblings or even if a shape is inside a given geometry.

Therefore, a filter is a function that takes a shape and zero or more arguments and re-

turns a Boolean value indicating whether a shape matches its internal condition. This is

defined in Equation 5.5.

match:filter(arg0,··· ,argn(s) ⇐⇒ filter(s, argo, · · · , argn) (5.5)

The example in Listing 5.3 selects all shapes created with an Insert operation that have

theWindow symbol and small tag and that are facing the north direction. The results of

applying this query over an example building can be seen in Figure 5.3.

139

1 Insert.Window#small:north

Listing 5.3: Example of a selector that selects shapes generated by an Insert operation having theWindow symbol, the

small tag and are facing north

Figure 5.3: Results of applying the semantic query in Listing 5.3.

The next example in Listing 5.4 allows to select all shapes tagged as wall that are inside

the sphere with radius 5 and centred at (3, 1, 5).

1 #wall:inside(sphere(3,1,5,5))

Listing 5.4: Example of a selector matching shapes with the wall tag within the volume of a sphere of radius 5, centred

at (3,1,5).

140

Figure 5.4: Results of applying the semantic query in Listing 5.4.

5.3.2 Hierarchical Relations

Although selectors by themselves can encode numerous conditions, they do not provide a

way to express hierarchical relations between shapes within the shape tree. Therefore, this

section introduces three operations that chain selectors to provide semantic queries with

the capability of expressing selections based on hierarchical relations between sets of shapes.

The operations are the descendants, children and siblings. Chaining is achieved by introduc-

ing a relation between two selectors as given by Equation 5.6.

selector1 relation1 selector2 (...) (5.6)

141

The descendants hierarchical relation (expressed by the> symbol) constrains the shapes

matched by a selector sel2 to those shapes that belong to the sub-trees rooted at the shapes

matched by sel1. For this, the descendants(S) operation has been defined which returns the

set of all shapes that are in the sub-trees rooted at each shape s ∈ S. More formally, the de-

scendants operation for a shape s is defined as in Equation 5.7 and it is illustrated in Figure

5.5.

descendants(S) = {s : ∃sa ∈ S, sa ∈ ancestors(s)} (5.7)

The results of chaining two selectors with the descendants hierarchical operation is de-

fined in Equation 5.8, using the descendants operation as defined above.

product(sel1 > sel2) = descendants(product(sel1)) ∩ product(sel2) (5.8)

Similarly, the children relation (/ symbol in this notation) constrains the shapes matched

by a selector s2 to the shapes that are children of the ones matched by s1. As in the previous

case, the children(S) operation is defined, returning the set of all children shapes of each

142

Figure 5.5: The descendants operation applied to a given shape in a shape tree.

si ∈ S. Equation 5.9 defines the children operation for a given shape S belonging to a shape

tree, which is illustrated in Figure 5.6.

children(S) = {s : ∃sp∈S, sp = parent(s)} (5.9)

Equation 5.10 defines the results of using this relation to chain two selectors which, simi-

larly to the previous case, uses the children operation.

product(s1/s2) = children(product(s1)) ∩ product(s2) (5.10)

Finally, the siblings relation (represented by∼) constrains the shapes matched by sel2

143

Figure 5.6: The children operation applied to a given shape in a shape tree.

to the shapes that are siblings of shapes matched by sel1. The siblings(S) operation returns

the list of all shapes that share the same parent with a shape si ∈ S but are not in list S.

Figure 5.7 illustrates the results of applying this operating to a shape. The siblings relation is

defined as in Equation 5.11.

siblings(S) = {s : ∃ss∈S, parent(s) = parent(ss) ∧ s/∈S} (5.11)

The product of applying a query chaining two selectors with this relation relies on the

use of the siblings operation and is defined in Equation 5.12.

product(sel1 ∼ sel2) = siblings(product(sel1)) ∩ product(sel2) (5.12)

144

Figure 5.7: The siblings operation applied to a given shape in a shape tree.

It is possible to chain several hierarchical relations, resulting in complex semantic queries

that take advantage of the tree structure created by many procedural modelling method-

ologies. The final result of several chained selectors is defined as in Equation 5.13, where

opi, i ∈ [0, n] is one of the hierarchical relations defined above.

product(sel1, op1, · · · , opn, seln) = op(product(sel1, op1, · · · , opn−1, seln−1)) ∩ product(seln)

(5.13)

This flexibility allows users to express complex queries that can be rather difficult with

current procedural modelling methodologies. The following semantic query, for example,

145

selects the windows on even floors in the façade that is facing north.

1 .Facade:north / .Floor:even > #Window

Listing 5.5: Selects windows on even floors in façades facing north

There is, usually, a multitude of semantic queries that select the same set of shapes, which

are named query sets in this document. In the previous example, it should be possible to

remove the first selector and append the north filter to the second selector:

1 .Floor:even:north > #Window

Listing 5.6: Alternative query similar to the one found in Listing 5.5

It is up to the user to choose the best semantic query taking into account criteria such as

readability or conciseness.

5.4 Selection Action Tree

To use the semantic queries in the generation of procedural models procedural operations

must be applied to the product of such queries in a systematic way. In this system this is

achieved by structuring the rules in a tree form such that each node contains a semantic

query (the selection) and a procedural operation (the action).

146

Therefore, upon specifying a semantic query, the selection action system allows the user

to directly apply operations to the selected shapes. The semantic query and operation are

encoded into a tuple ⟨Q,O,C⟩, where Q is the semantic query,O is the operation to per-

form on the product of Q (its selection set) and C = ⟨c1, · · · , cn⟩ is the ordered list of the

node’s children. This pair is referred to as a selection-action node.

The selection action system adds detail to the geometry by allowing the iterative appli-

cation of a sequence of selection-action nodes, which will be referred to as application se-

quence. The application of these nodes is not commutative, since the selected shapes de-

pend on the current shape tree configuration. Intuitively, it would not be possible to use a

semantic query to select shapes that have not yet been created.

Selection-action nodes are organized in a tree structure which is called selection-action tree.

The application sequence is defined as the depth-first traversal of such tree and the semantic

selection Qi at a given selection-action node i is only applied to the sub shape trees whose

root is contained in its parent’s selection set, Sp. The selection set of the root selection action

node Sroot is given by its own semantic query Qroot. The selection set Si for a node i is defined

as in Equation 5.14.

Si = descendants(Sp) ∩ product(Qi)

Sroot = product(Qroot)

(5.14)

147

Figure 5.8 illustrates a simple selection action tree with its application sequence. Within

a given selection action node children nodes are ordered from top to bottom and are, there-

fore, visited in such order when being traversed in depth first order. Note that, for example

and without altering the end result, node 6 could become a child of node 5 instead of its

sibling as the application sequence would still be the same. This illustrates the decoupling

between procedural rule structure and the application of procedural operations and serves

as a basis for layers of procedural content (Section 5.6.1), which can be used to separate, e.g.,

building structure from its appearance.

Figure 5.8: An example of a selection action tree and its application sequence.

5.4.1 Shorthand notation

Considering a sequence ofN selection-action nodes representing the path p = (n0, ..., nN)

from the root node n0 to a given node nN, where nj = parent(nj+1), 0 ≤ j < N, we can

apply Equation 5.14 recursively to find the selection set Sj for the selection action node nj.

Equation 5.15 demonstrates this.

148

Sj = descendants(Sj−1) ∩ product(Qj), j ∈ [1..N]

S0 = Sroot = product(Qroot)

(5.15)

Using Equation 5.13 it is possible to demonstrate that the resulting selection set for the

node QN is, in fact, equivalent to the semantic query obtained by placing a descendants

operation (>) between every query Qj (i.e., Q0 > · · · > QN−1) in the path between the root

node and QN.

By definition, the selection set S0 of the root node Q0 is the set of shapes that match its

query, i.e., product(Q0) as defined in Equation 5.15. It is possible to apply the definition in

Equation 5.13 to the Q0 > Q1 semantic query. The resulting selected shapes of such seman-

tic query are, in fact, equivalent to the selection set S1 for the second selection action node

Q1 as can be demonstrated by Equation 5.16.

product(Q0 > Q1) = descendants(product)(Q0) ∩ product(Q1)

= descendants(S0) ∩ product(Q1)

= S1

(5.16)

Extending the previous to the remaining selection action nodes Sj ∈ p by induction we

arrive at the conclusion that the selection set for each node SN is equivalent to the product

149

of the Q0 > · · · > QN semantic query as we wanted to demonstrate. This is illustrated in

Equation 5.17.

product(Q0 > · · · > QN) = descendants(product(Q0 > · · · > QN−1)) ∩ product(QN)

= descendants(SN−1) ∩ product(QN)

= SN
(5.17)

Intuitively, this means that edges in the selection action tree are a shorthand notation

for the descendant hierarchical relation, while root nodes provide context-free selection

over the entire shape tree. Moreover, the results of the application of a node are limited

to the shapes generated, so far, by the sub-tree rooted at its parent due to the application

sequence being defined as a depth first traversal of such tree. Figure 5.9 illustrates the scope

of application for a given selection-action node.

Note that is possible to convert any selection-action tree to a flat list of selection action

nodes, without affecting the end result. However, the required semantic queries would

require, in turn, a corresponding conversion, becoming rather long as they do not benefit

from the hierarchical composition any more. It is, then, up to the user to select the best

representation.

150

Figure 5.9: The application of a selection-action node is constrained to the shapes created by the nodes inside the red

border.

5.4.2 Procedural Derivation

In order to generate procedural models with this paradigm the semantic queries need to be

applied interleaved with the procedural operations. In other words, the system uses a se-

mantic query to select shapes from an existing shape tree configuration and, then, executes

a procedural operation on these shapes. The newly generated shapes are inserted into the

shape tree as children of the shape to which the operation was applied. This procedure is

similar to what is performed in other urban procedural modelling approaches (e.g., shape

grammars).

As previously mentioned, the application sequence for a given selection action tree is

given by the depth first traversal of such tree. Therefore, for each node ni = ⟨qi, oi,Ci⟩

visited during the traversal, the respective query Qi considering the shorthand notation is

151

applied to the current shape tree configuration yielding the selection set Si for this node.

Afterwards, the system applies the procedural operation oi to each of the selected shapes

sj ∈ Si and appends the set of resulting shapes to the list of children of shapes sj. The

pseudo-code in Listing 5.7 shows the algorithm for the procedural derivation in the selec-

tion action paradigm.

1 function ProceduralDerivation(shapeTree, selTree):
2 let stack ← [root(selTree)]
3 while stack is not empty:
4 n ← stack.pop()
5 Q ← fullQuery(n.query())
6 op ← n.operation()
7 S ← productshapeTree(q)
8 for s in S:
9 newShapes ← op(s)
10 s.children ← s.children + newShapes
11 for c in n.children:
12 stack.push(c)

Listing 5.7: Procedural derivation for the selection action paradigm

Note that the algorithm requires any given configuration of a shape tree. This implies

that it is possible to apply selection action trees to a single initial shape (i.e., an axiom) or

a completely or partially generated shape tree. Although it is possible to achieve the same

functionality with shape grammars, the semantic queries’ added flexibility in specifying to

which shapes procedural operations are to be applied grants this paradigm an easier way

to aggregate procedural rules based on their functionality. It is, therefore, trivial to define

152

several selection action trees that generate different coarse building structures, another set

which applies architectural elements of distinct styles and, yet, another set for different or-

naments and decorations. This functionality is called layers of procedural contents and is

detailed in Section 5.6.1.

As an application example of a selection action tree, let us consider a simple residential

building. This example will illustrate the sequential application of several selection action

trees, starting from an initial building lot. The first tree constructs the coarse building vol-

ume as can be seen in Figure 5.14a.

Such coarse building structure was obtained simply by extruding the shape correspond-

ing to the building outline which was, posteriorly, decomposed into the several shapes that

corresponded to its faces. Each façade, identified by the Facade symbol was subdivided into

floors with the RepeatSplit node. To the top shape the Roof node was applied which gen-

erates (as the name implies) the building’s roof. This selection action tree can be seen in

Figure 5.10.

Figure 5.10: Selection action tree illustrating the first step in the generation of a small residential house.

153

The next step, detailed in Figure 5.11, details the side façade. Firstly, the Repeat-Split node

divides all floors facing north, by using the .Floor:north query, into shapes with the Floor-

Tile symbol. A floor tile is, then, processed differently based on whether it is the first or

last position (defined with the .FloorTile:ends query) or if it is one of the middle floor tiles

(described with the .FloorTile:middle). This partitions the floor tiles differently, creating

different spaces where windows will be placed in following steps.

Figure 5.11: Selection action tree illustrating the second step in the generation of a small residential house.

Similarl to the second step, the third step (which is illustrated in Figure 5.12) also uses a

direction filter, in this case in the .Floor:east query, to split the east facing façade. However,

this time each floor is split into a smaller, centred shape and two, equally large shapes on

each side. The centred shapes are also subdivided differently depending on whether it is on

the ground (specified with the .Floor:east:first > .FloorCenter query) or the last floor (us-

ing the .Floor:east:last > .FloorCenter). In the first case, the shape is split vertically, creating

the shape that will be derived into a door in later steps. On the latter case, the shape is also

divided vertically resulting in a shape that will result in a window and a shape that is, after-

154

wards, extruded. The shapes on each side are also processed differently. While the shape to

the left is kept unmodified, the shape to the right is subdivided several times resulting in a

shape that will also yield a window. To achieve the different derivation paths, the example

used the .FloorFrontSide:last query.

Figure 5.12: Selection action tree illustrating the third step in the generation of a small residential house.

The fourth and last step is responsible to add more detailed assets to the windows and

doors generated previously. To this end, four different tags (LargeWindow,MediumWin-

dow, SmallWindow and Entrance) were associated to different shapes throughout the build-

ing generation to this point, each reflecting a different type of window or door. The differ-

ent nodes in Figure 5.13 illustrates that to each tag, a different asset was applied. This last

step is illustrated in Figure 5.13.

5.5 User Selection Inference

Semantic selections provide a flexible way to select shapes in procedural models based on

the implicit semantics in a shape tree and on their geometric properties. As previously seen,

155

Figure 5.13: Selection action tree illustrating the fourth step in the generation of a small residential house.

(a) Step 1 as detailed in Figure 5.10. (b) Step 2 as detailed in Figure 5.11.

this is required to provide an extra level of indirection such that the intention behind user

selections via point and click is kept even if the procedural model is modified.

Semantic queries can express complex conditions which are used to select shapes. Nonethe-

less, the multitude of possible queries in a shape tree poses a burden to the user who must

have the knowledge of the structure and semantic features of the present shape tree. More-

over, given a user selection, there are several different expressions that would result in the

same selection for a particular building. Therefore, the process of finding a selection expres-

156

(a) Step 3 as detailed in Figure 5.12. (b) Step 4 as detailed in Figure 5.13.

Figure 5.15: Steps in the generation of a simple residential building.

sion that matches the user needs is, at least, highly ambiguous. Thus, a visual mechanism

that is able to generate several suggestions for the users, who are ultimately responsible for

the final selection is required as they are the ones who have in mind the desired final out-

come.

To alleviate this, the system makes use of a genetic algorithm to generate and rank a set

of candidate queries based on a few user selections in an interactive application. Genetic al-

gorithms are ideal for this purpose as they work on populations that are evolved to find the

most suitable individuals for a given goal. Thus, they are a suitable match as an optimiza-

tion tool for the semantic queries. It is possible to consider the mutations and population

growth as a motivation for decomposing queries into selectors and hierarchical relation-

ships.

The selection inference starts as soon as the user has selected at least n shapes (n = 2 in

the implementation). In a first step, the genetic algorithm creates an initial population of

semantic queries which is then mutated and crossed in order to obtain a population that

157

closely matches a fitness function by iterating overM iterations (in the implementation

M = 100). Then, the algorithm outputs the best distinct individuals that were generated

throughout the entire process (20 in the system).

These semantic queries are grouped into query sets such that each query in the query set

produces the same set of selected shapes. Each query set is given a score that is calculated

based on the average score of the queries and the sets are presented to the user in decreasing

order of its score within a suggestive interface. The user can, then, navigate the interface

and choose the semantic query that better matches the intention.

This is an optimization problem where the system tries to find semantic queries that best

match a fitness function. Genetic algorithms were chosen as they naturally create and ex-

plore large numbers of candidates. It is an intrinsically exploratory algorithm that searches

the solution space for the best candidates without knowing a priori a general direction of

search. It is also possible to consider the mutations and population growth as the moti-

vation for decomposing semantic queries in the selectors and hierarchical relationships as

these semantic query components are the genetic material that will be evolved with the pre-

sented methodology.

The probability values presented in the following sections are the ones that showed the

best results in preliminary tests.

158

5.5.1 Semantic Profiles

Both the generation of an initial population and the evaluation components of the selec-

tion inference subsystem rely on the concept of semantic profiles. Each of these merely is a

histogram of the number of shapes in a set that match a query composed of a single compo-

nent (i.e., an operation, symbol, tag or filter) which, here, will be named as a feature.

As a first step, the shape tree is traversed to collect all symbol and tag features as these

are created by the user. Operation types and filters are built into the system and are auto-

matically included as a feature. To limit the search space to a discrete space, filters that take

parameters are not considered. This step results in a listF = [f0, · · · , fn] of features.

Considering a set of selected shapes (defined either by point and click selection by the

user or by a query), three types of semantic profiles are introduced. The horizontal profile

aims to give a semantic description of the set. The vertical profile describes the hierarchical

structure of the set, i.e., the profile is constructed given the paths of shapes from the shape

tree root to each of the selected shapes. Finally, the siblings profile gives a description of the

shapes that are siblings of each of the selected shapes, exploiting locality within the shape

tree. A profile p is identified byPp and the number of shapes that present feature fi in such

profile is given byP i
p.

An example of such profiles for several sets of shapes selected by the presented queries

can be seen in Table 5.1. These queries were issued on the model shown in the third step of

159

Figure 7.10.

Query

.F
ac
ad
e

.F
loo

r

.W
in
do
wT

ile

:ev
en

:od
d

Ge
ner

ate
d Q

uer
ies

.WindowTile:even
Horizontal 0 0 50 50 0 :even, .WindowTile
Vertical 4 20 0 14 12 .Floor, :even
Siblings 0 0 70 0 70 :odd, .WindowTile
.Floor:even > .WindowTile:even
Horizontal 0 0 30 30 0 .WindowTile, :even
Vertical 4 12 0 14 4 :even, .Floor
Siblings 0 0 42 0 42 .WindowTile, :odd

Table 5.1: Semantic profiles for two shape selections.

5.5.2 Initial Population

Any genetic algorithm starts with a given initial population, making up the initial genetic

pool, which will be evolved as the algorithm progresses. Each individual in the population

will be mutated and crossed for several iterations selecting the best candidates with a fitness

function which drives the population towards the goal.

Therefore, as a first step in the generation of the initial population, the horizontal profile

Ph of the user selection is computed. This is then used to generate a set ofN candidates (in

this implementationN = 20) by iteratively sampling a feature from the profile with prob-

ability P(sample) = P i
h/

∑
Pn

h . Features that have a higher representation in the profile

also have a higher probability of being selected. Features are, posteriorly, converted into

160

queries composed of a single component. This results in a genotype of queries that tries to

match, as closely as possible, the selection profile. Furthermore, since it was derived from

features that are already present in the selection, it is assured that all candidate queries pro-

duce a valid selection. In Table 5.1 theGenerated Queries column represents some queries

generated from the features. An example of initial candidates can be seen in Figure 5.16.

5.5.3 Evaluation

Most likely, the most important component in a genetic algorithm is the evaluation func-

tion. This function has to be designed such that it drives the evolution towards the goal. It

should also encode the logic of what constitutes an ideal solution. There are three criteria to

evaluate the candidate queries.

The evaluation of candidate queries is achieved by finding a normalized ratio between

the profiles of the user selected shapes and the set of shapes selected by candidate queries.

Given a semantic profilePsel (horizontal, vertical or siblings) of the user selection and of

the candidate queryPcand, the system calculates the Semantic Feature Ratio (SFR) between

feature fi in both sets as defined Equation 5.18.

SFRi(Psel,Pcand) =
min(P i

sel,P i
cand)

max(P i
sel,P i

cand)
,P i

sel ̸= 0 ∧ P i
cand ̸= 0 (5.18)

A value of zero for feature fi means that such feature is present in either the candidate pro-

161

file or the selection profile but not in both. On the other hand, a value of one means that

exact same amount of shapes with such feature are present in both profiles. Other values

measure how much the sets of shapes differ for the specific feature fi.

Having the semantic feature ratio for each feature, the system proceeds to find a match-

ing score between the two profiles. This score is, again, obtained as a ratio by computing

the profile scorePS(sel, cand) between the two profiles. This is defined in the following

equation, where |Psel| is the number of features in sel that have a value greater than zero and

|Pcand| =
∑

SFRn(sel, cand) is the sum of the SFR of each feature.

PS(sel, cand) = min(|Psel|, |Pcand|)
max(|Psel|, |Pcand|)

, |Psel| ̸= 0 ∧ |Pcand| ̸= 0

Based on the above, the system calculates the candidate’s final score by finding the profile

score between the horizontal, vertical and siblings profile of both the user selected shapes

as well as of the shapes selected by the candidate query. These, respectively, yield theH =

PS(selh, candh), V = PS(selv, candv) and S = PS(sels, cands) scores.

Furthermore, based on the fact that the user will always select leaf shapes, there is an ad-

ditional constraint on the queries, which guides the genetic algorithm into producing can-

didates that select only leaf shapes. This is modelled by introducing another scoreL, such

thatL = 0 if a given candidate selects an internal shape andL = 1 otherwise.

162

The final score for a query is then given by the following equation:

score = L · H + V + S
3

(5.19)

5.5.4 Mutation

In genetic algorithms evolution occurs, in part, through mutations in the genetic material

in the offspring of two individuals.

As described earlier, queries in the initial population do not possess any hierarchical re-

lation which would limit the type of queries generated by the selection inference system.

Therefore, to counteract this and generate candidate queries with hierarchical relations, one

of the mutations defined in the system is to prepend a selector to a query.

This mutation is performed in an individual a in the current population. Firstly, the sys-

tem starts by generating a selector b by randomly sampling one feature from the feature ta-

ble. It then constructs a query such that b op a, where op ∈ {/,>,#} is a hierarchical rela-

tion sampled from the ones defined. If, for example, an individual represents the #Window

query, the system might perform a mutation by prepending a .Floor selector with a children

relation yielding the .Floor / #Window query. This example is shown in Figure 5.16 in the

first two images. This mutation is performed with probability P(add_sel) = 0.2|selectors|,

where |selectors| is the number of selectors in the candidate query, effectively avoiding

163

queries that are too long.

The system also mutates (with probability Pmut_hier = 0.1) an individual by switching

one of the hierarchical relations to a different one. In the previous example, a possible mu-

tation would be to switch the children relation to a descendants relation resulting in the

.Floor > #Window semantic query. This example is shown in Figure 5.16 in images 2 and 3.

This allows the system to explore different combinations of the hierarchical relation with-

out requiring a new candidate to be generated with the previous mutation.

Another mutation is to add or remove components to the selectors. Therefore, this mu-

tation adds or removes an operation type, symbol, tag or filter to the query with probability

P(add_comp) = 0.1|comps|, where |comps| is the number of query components in the can-

didate. Continuing with the previous example, a possible query would be .Floor:south >

#Window:last.

The system mutates each of the selectors (with probability P(mut_sel) = 0.5) in an

individual by modifying one of its query components. This mutation replaces one of the

components with another of the same type. Based on the previous query, it is possible to

generate the .Floor:north > #Window:even query as can be seen in Figure 5.16 in images 3

and 4.

By making the probabilities of adding a selector or a component dependent on the size

of the query and larger values for the remaining probabilities, the genetic algorithm gener-

164

ates larger queries at a more controlled pace while exploring more solutions within the same

size.

Each type of mutation happens independently of each other, meaning each candidate

may be subject to zero, one or more mutations. Thus, their probabilities do not need to

add up to 1.

Figure 5.16: Example of candidate evolution during selection inference.

5.5.5 Crossover

The other mechanism to evolve the population in genetic algorithms is to cross the genetic

material of two individuals in order to generate two new distinct individuals.

The system, therefore, crosses two individual queries by swapping the lastm = random(0, lmin)

selectors of each query, where lmin is the number of selectors present in the smaller query.

The crossing process happens with a probability of P(cross) = 0.3.

For example, from the #Floor:north > #Window:even and .GroundFloor / #Frame queries,

the system can generate the #Floor:north / #Frame and .GroundFloor > #Window:even.

165

Note that the hierarchical relation is kept with the selector to its right. This example can be

seen in Figure 5.16 between images 4 and 5.

5.6 Applications

The following subsections demonstrate some applications of this methodology. Observe

that these applications have not been implemented, but their implementations should be

rather straightforward as a consequence of the proposed selection action methodology, as

preliminary tests demonstrate.

On the other hand, the presented methodology, although currently only implemented

as a tool, can be executed in runtime within a game (albeit requiring some optimization)

to create entire urban levels and their mechanics from scratch or to modify such scenes as

game levels evolve.

5.6.1 Layers of procedural content

Since this methodology is based on selecting shapes based on its semantics, it contrasts with

most current procedural modelling methodologies where there is an implicit flow of geom-

etry from one rule to the next. In shape grammars, for example, every non-terminal shape

has an associated symbol which already defines the next rule to be applied. Similarly, in

graph-based approaches, the rules to be applied to a shape are defined by the connections

between nodes.

166

In this methodology any shape can be selected by a semantic query and, thus, trans-

formed at any point in the application process, resulting in a separation between the created

models and the rules. Therefore, this methodology naturally supports the concept of layers

which can be described as the successive application of different selection-action trees.

As an application of layers of procedural content, it is possible to conceptually define

three types of layers in this methodology, which guide the procedural modelling steps from

an empty scene to the generation of an entire urban level and possible variations. Note that

the only difference between the types of layers is to which shape trees the selection-action

trees are applied. At their core, each layer is an individual selection-action tree. Figure 5.17

illustrates these types of layers.

Figure 5.17: The several layers that can be conceptualized as layers of procedural content.

The first type of layer is the urban layout layer. This is executed in the first stage of the

pipeline, and is responsible for creating the layout for the urban environment and axiom

shapes, which will serve as the starting geometry for buildings, roads and other urban ele-

ments. Axioms are created by spawning a new shape tree and associating it with a sequence

167

of layers of the following types.

The geometry for each axiom shape is created in the second stage of the pipeline where,

to each axiom, a sequence of selection action trees are applied. Each of these trees can be

thought of a different, interchangeable layer. Therefore, the second type of layer is the in-

axiom layer.

Finally, the scene level layer is represented by selection-action trees that are applied in

sequence to the entire scene in the third stage of the pipeline. These are mainly responsible

for creating variations of the geometry created in previous layers.

Using layers of procedural content, it is rather straightforward to create a base urban

model and apply variations depicting different states or ambiances of a city. The user could,

for example, create a city by defining several urban layout and in-axiom layers. Afterwards,

the user could create sets of scene level layers to create a festive ambiance in the city or apply

some damage and destruction to represent a post-war scenario.

As a simple example, Figure 5.18a shows a base city block and Figure 5.18b shows the same

block after some ornaments were applied on the windows and urban furniture was placed

on the sidewalk. In Figure 5.19 it is possible to see the three layers that created the variations.

The first layer simply creates a vase in every shape with theWindow symbol. The second

and third layers are rather similar and create and position the lamps and bins respectively

in the sidewalks (selected with the .Sidewalk query). TheMeta Info nodes add meta infor-

168

mation to the created shapes which, in this case, allows both the lamps and bins to have a

dynamic body during the physics simulation.

(a) The base city block. (b)Ornaments and urban furniture.

(c)Closer view on themodifica-

tions.

Figure 5.18: Variations of a city block and the selection action trees responsible for such variation.

Using interchangeable layers promotes a non-linear workflow of procedural content

generation allowing re-usability of procedural assets and to easily create variations simply by

interchanging layers while guaranteeing consistency throughout all procedurally generated

levels.

169

Figure 5.19: Scene layers responsible for creating the variation in Figure 5.18b.

5.6.2 Generation of level mechanics

Game mechanics in an urban environment are largely related to the surrounding architec-

ture. Furthermore, limiting the use of procedural modelling methodologies to only gener-

ate the geometry seems to be wasting the potential of such methods. A methodology such

as the one presented in this chapter allows users to define some level mechanics, especially

those related with the environment. Moreover, the runtime generation of levels requires

some form of level mechanics to be generated accordingly.

As an example, consider an urban level populated with Non-Playable Characters (NPCs).

To present the player with a plausible environment, the NPCs should be able to roam the

city according to rules guided by common sense: they should walk in side-walks and cross-

walks. Thus, some waypoints must be generated within these spaces to guide the NPCs. To

achieve this with this system, the level designer could apply a scene level layer within which

all shapes where NPCs could walk would be selected (e.g., #NPCWalkable) and distribute

170

waypoints uniformly. Figure 5.20 illustrates waypoints distributed uniformly along the

sidewalks and cross-walks (Figure 5.20a and the selection action layer that created such way-

points (Figure 5.20b).

(a)Waypoints generatedwith this methodology.

(b) Selection action tree responsible for creating the waypoints.

Figure 5.20: NPCWaypoints evenly distributed in sidewalks and cross-walks (top) and the layer that created them

(bottom).

Creating NPCs spawning areas is just as simple. For example, the level designer can use

a semantic query to select all doors (e.g., .Door) and replace the selected shapes with an ani-

171

mated game object from which characters can enter or exit the building.

Far more examples could be thought up such as placing special objects (e.g., roadblocks,

barrels of explosives near destructible objects) or zones triggering events that play a role in

the player progression through the level.

This system can also be used to generate or modify geometry in runtime. For instance, it

is possible to hook the selection action system to a game events module and modify the en-

vironment in multiple ways. For example, when a rocket hits a building façade the system

can select all shapes within the explosion radius, generate debris geometry and create dy-

namic game objects managed by the physics engine. In this process, different types shapes

(e.g., walls, windows or traffic signs) can suffer different transformation processes.

Figure 5.21 shows an urban level pre- and post-destruction. Note how the façades of sev-

eral buildings were affected, creating debris which are, then, managed by a physics engine to

compute their final position. Similarly, lamp posts and bins throughout the scene were af-

fected by the (hypothetical) explosion. Note that the realistic building destruction method-

ology is beyond this chapter’s scope and the results merely demonstrate that the application

of destruction is possible.

5.6.3 City Evolution

Any urban environment evolves over time with the activities of its population or by ex-

ternal factors, which can range from natural phenomena (e.g., tornadoes or earthquakes)

172

(a)Original city block. (b)Geometry affected by destruction.

(c)Mid simulation geometry. (d)After destruction.

Figure 5.21: A city block before (5.21a) destruction, the geometry affected within the destruction radius (5.21b) and

two points during the simulation (5.21c and 5.21d).

to human-related activities (e.g., closing of an important company, war, a sudden popula-

tion expansion). Quite often, modelling such evolution, for instance for a strategy game,

requires manual modification of the existing assets to achieve the new look.

The selection-action paradigm would enable this kind of large changes at the urban level,

and even at the landscape level, thus considerably reducing development costs and enabling

artists to focus only on those landmarks that would require a special treatment due to sto-

rytelling reasons. For this, a new destruction set of rules that are hooked to all existing, orig-

inal models, could be added as a sort of destruction layer on top of existing geometry. Ba-

173

sically, users would apply a selection of buildings according to their location in the map,

and then would apply a destruction set of rules that would affect each building differently,

from partial destruction (e.g., the roof) up to a whole structural demolition.

5.6.4 Weathering

Weathering at an urban level is an open topic of research [Muñ+16] that represents multi-

ple challenges at different simulation levels, ranging from wind simulation up to pollution

diffusion and interaction with the materials in the city. Such realistic simulations often

need highly specialized algorithms to achieve the intended results.

However, for more simplistic weathering simulation needs (e.g., video-game) the re-

quirements are different from the ones driven by more realistic simulations. In the case

of video-games its main concern is the credibility of the game environment instead of an

ultra-detailed simulation of reality. Thus, weathering in video-games can be considered as

a purely art-related task. From this point of view, the techniques described in this chapter

could serve as practical tools for the generation of different weathering effects, from sim-

ple stains resulting from urban fluxes, up to more complex deep weathering effects where

the walls of a building are broken because of both the effect of the interaction with natural

phenomena and the lack of maintenance.

Here, this framework would be used to select the surfaces (e.g., windows, doors or cor-

nices) to apply the weathering effects to. Once these surfaces are selected, the applied action

174

consists of a variety of weathering effects, including texture changes [DPH96; Bos+11], re-

placement of 3D models by other weathered ones, and even degradation of whole façade

areas.

5.6.5 Application to non-procedural buildings

It is possible to apply this technique even for non-procedural models. Considering that a

user starts with an initial, manually modelled building hull, such as the one in Figure 5.22a.

It is, then, possible to apply strictly geometric queries to select shapes of interest and use a

labelling operation to assign a symbol or tags to each one. From that moment on, the user is

able to use regular semantic queries to detail each of the components.

This is specially interesting if interchangeable layers of procedural operations are consid-

ered. A first layer would label all interesting shapes for a given input building hull, while

subsequent layers would create the rest of the geometry. As a result, it is possible to create

variations (Figures 5.22b and 5.22c) from the same initial hull, simply by exchanging one or

more layers.

5.6.6 Limitations

Currently the user selection inference does not account for filters with arguments as it

would transform the search space from a discrete into a continuous one. Moreover, there

could be some inconsistency in the queries generated for the same user selection through-

175

(a) (b) (c)

Figure 5.22: It is possible to use this system to non procedural building hull (a) and create variations (b and c) using

layers of procedural operations.

out different runs. This could force the user to, sometimes, retry selections in order to ob-

tain an acceptable candidate query set.

The geometric queries presented in this chapter are absolute in the sense that they are

defined for a particular model instance and do not generalize well for model variations.

However, note that making filters that accept queries as parameters is a direction for fur-

ther development. In this case, it would be possible to create queries that depend on already

existing shapes such as #Window:facing(#Road):within(#Door, 5) selecting all windows that

are facing a road and are within 5 meters of a door. This would obviously create synchro-

nization issues as a required shape might have not been created by the time a query that

requires it is executed. Further research must be put towards this end.

Note that the user selection inference goal is to aid users in using the selection action

paradigm and its current implementation (as genetic algorithms) can be swapped by an-

other one without any loss in expressiveness in this methodology. Further research must be

conducted as to solve both these problems.

176

Although semantic queries embody a great amount of expressiveness, the fact that they

are defined in a text based way is a drawback, also requiring users to know what symbols,

tags and filters are available to use. Nonetheless, it is mostly a matter of user interface as it is

easy to imagine a system with a user interface able to offer aids to construct such queries eas-

ily. In the simplest case, it is possible to have an auto-complete system that would take into

account the partially written query to suggest new query components. It is also possible to

present an interface to create queries from scratch without using the text based approach.

Nonetheless, for experienced users, writing the full query might be faster than using an in-

terface and so both approaches should be available.

5.7 Summary

This chapter presented a selection action paradigm for procedural modelling of buildings.

The selection is achieved through the use of semantic queries that exploit semantic infor-

mation and hierarchical relations present in shape trees in order to select shapes. Once this

process is complete, actions, which are procedural operations, are applied to sets of selected

shapes. These semantic queries and procedural operations are paired in selection action

nodes and are organized in a tree structure, constraining the scope of the selections. Build-

ings are generated by traversing this tree in a depth first order while applying the actions to

the shapes selected by the queries.

177

To alleviate the user from the burden of manually constructing semantic queries, the sys-

tem infers, ranks and presents a set of candidate queries based on a few user selected shapes.

The user selection inference is achieved with the use of genetic algorithms, but it is possible

to use other machine learning algorithms without loss of expressiveness in this paradigm.

As future work, these functionalities should be implemented and new usability studies

should be performed. As a new research avenue it could be desirable to investigate further

other algorithms to infer semantic queries from user selections, leading to even better re-

sults. Machine learning algorithms could prove to be useful to solve this issue.

This chapter also presented some possible applications of the selection-action paradigm

for procedural modelling of urban environments within the context of video game devel-

opment. Selection-action trees naturally support the concept of layers which can be used,

for example, to separate structure from aspect, to produce variations on a base model or

environment or to create level mechanics in a video game.

The presented paradigm is suited, not only for the offline generation of urban levels, but

can also be used in runtime to model the evolution of such space or even as a consequence

of specific dynamic events (e.g., apply destruction in a video-game when a rocket hits a

façade). This chapter only scratched the surface of a few selected applications and there is

still ample space for research into each one.

178

6
Sketch Based Procedural Modelling

The main purpose of this thesis is to devise, implement and evaluate a sketch based inter-

face for the procedural modelling of buildings. The previous chapters have described some

necessary steps that had to be taken back in order to provide a tighter bridge between both

ends in terms of interactiveness and expressiveness. This chapter however, details how the

link between sketching and procedural modelling has been achieved, building upon the

179

contributions previously described.

This connection has not received much focus. However, this is a research avenue that

has the potential to improve the content creation times for applications which require ur-

ban environments (e.g., games, cinema and urban planning). On the one hand, procedural

modelling can generate vast amounts of models in a fraction of time as it would be required

if the content was to be manually modelled. Nonetheless, it comes with its own problems

of lack of direct control and expressiveness as previously described. On the other hand,

sketch based interfaces provide a highly expressive tool to create 3D models but the sketch

recognition and interpretation process is extremely ambiguous. For modelling man-made

objects such recognition often relies on some sort of rules to translate the user sketch into a

3D object. The system presented in this chapter relies on heuristics retrieved from procedu-

ral operations themselves to infer the intent behind a set of user provide sketched lines and

a gradient descent algorithm to estimate the parameters of such procedural operation.

In this field the main contribution has been the work by Nishida et al. [Nis+16]. This

contribution relies on convolutional neural networks to both recognise a user sketch and

translate it into a CGA rule and estimate its parameters. Therefore, as neural networks re-

quire training beforehand to be able to correctly process a given input, the presented system

only works for a given set of pre-trained family of sketches. In contrast, the solution pre-

sented here tries to be as generic as possible and allows to any procedural operation to be

180

recognised in any situation.

6.1 Overview

To overcome the gap between the sketch based interface and procedural modelling of build-

ings, this chapter presents a set of methods that create a pipeline that converts a user sketch

into procedural rules that match the user’s intention as closely as possible. Each of these

methods has the purpose of either filtering and segmenting the sketch, help the user through

the creation of more precise lines or translate the sketches into procedural rules that can,

posteriorly, be modified to produce better results.

The methodology presented here lays its grounds on the contributions presented in pre-

vious chapters, with a higher incidence in the selection action paradigm described in Chap-

ter 5. By using the semantic queries and selection inference mechanisms, the user is able

to precisely select and define which shapes a given sketch should modify. This effectively

tackles the user selection ambiguity in an interactive application for procedural modelling

while, at the same time, allowing well-defined points where the procedural rule base can be

extended.

The first stage in the sketch recognition pipeline is to filter and segment the user stroke.

Firstly, this compensates for minor acquisition errors (e.g., user hand jitters) and, secondly,

allows the user to create multiple line segments in a single stroke. This is achieved by analysing

181

stroke speed and curvature.

So far, the user provided sketch is only placed in a bi-dimensional domain (i.e., the screen

space). Therefore, once the individual line segments are obtained, the system converts them

into line segments in the world space. This is achieved by sampling the parameter space

of each type of procedural operation (e.g., extrusion or splits) and applying such opera-

tion to the selected shape which results in a new set of geometries from which the edges

are extracted and projected to screen space. Each user provided 2D line segment is, then,

compared with each projected edge according to a fitness function. The edge whose pro-

jection has the best score is inserted into the world space and stored in a configuration of

line segments. The user is free to continue sketching which adds more line segments to this

configuration.

Although, at this point, the user sketched lines have already been converted into 3D

line segments, there still is the need to infer a procedural rule from a configuration of lines

which should afterwards be inserted into the rule base. Whenever the system adds a set of

new lines to the configuration the procedural inference system is started. This analyses the

configuration and proposes a set of parametrised procedural rules which are ranked and

presented to the user who is the final responsible for selecting the one that best fits the un-

derlying intention.

The system has a set of heuristics that analyse and try to infer a procedural operation

182

and estimate its parameters from the line configuration. Posteriorly, the system adjusts the

parameters of these operations with a gradient descent method and a fitness function so

that the geometry generated by the operation match the user provided lines as closely as

possible.

It is possible to, yet again, sample the parameter space of each type of procedural oper-

ation and perform the parameter adjustment with the gradient descent method starting

with the operation that produced the best results. However, the heuristics provide a more

efficient way to achieve the same results as there are fewer candidates to process.

After the procedural operation has been inferred, it is inserted into the rule base as a selec-

tion action node such that all the shapes selected by the semantic query are affected by the

operation.

6.2 User Interface and Workflow

To better understand the terms and concepts explained throughout the remainder of this

chapter, let us first describe the user interface and workflow.

The user is presented with an interface similar to the one in the previous chapter (Figure

6.1). However, the sketching capabilities are enabled within the interactive scene viewer

and there are some sketching specific options the user is allowed to select. There is also an

expectation list interface exposing the procedural candidates inferred by the system. The

183

user must choose one of these in order to insert it into the rule base.

Figure 6.1: The user interface presented to the user.

The user is, at first, presented with an initial configuration of shapes which can represent,

e.g., a building lot as in Figure 6.1. As with the selection action paradigm, the user then pro-

vides the semantic query (either directly or by using the selection inference system) that

select the shapes to be modified.

Once the selection has been made, the user is free to sketch over one of the selected shapes.

For every stroke the user inserts through the sketching interface, the system runs all the dif-

ferent stages in the procedural operation inference pipeline. This yields a set of procedural

operation candidates which are displayed in an expectation list by decreasing order of its

184

fitness value. In other words, procedural operations whose result is more similar to the user

sketch appear first in the list.

The user can explore the various suggestions presented to preview a wireframe represen-

tation of the resulting geometry if a given option was to be selected. Once the user selects

the desired candidate, the system creates a selection action node with the user provided

semantic query and the selected procedural operation and its parameters. This node is in-

serted in the rule base guaranteeing that all selected shapes are affected by the execution of

the selection action node. At this point, executing the inserted node generates the desired

geometry which is then inserted into the shape tree and the scene view is updated. The user

can now repeat the process with the newly generated shapes to further add detail to the

model.

Figure 6.2 illustrates some steps of a modelling session. In the first image, the user, start-

ing with the building lot, sketches a vertical line (in blue) starting in one of the vertices. The

system generates a candidate extrusion procedural operation which is inserted into the rule

base and generates the building volume in the second image.

The user, in the third image, then repositions the viewpoint to have a better perspective

with which to draw on the building’s roof and sketches a rectangle inside the roof which is

recognised as an offset operation. Then, the user selects the interior rectangle and draws a

vertical line which is recognised as an extrusion operation.

185

Figure 6.2: A few steps in a short modelling session.

6.3 Stroke Filtering and Segmentation

The first step in the sketch recognition and interpretation pipeline is the filtering and seg-

mentation of the user input strokes. This is a process that is present in many sketch based

interfaces for modelling and is a crucial one. It serves the purpose of minimising stroke ac-

quisition issues and facilitate the recognition process. In this methodology, the segmen-

tation algorithm proposed by Sezgin et al. [SSD06] was used. However, curves were not

186

considered as the current methodology does not yet support curves.

A stroke in this system is a collection of screen space points annotated with a timestamp

of the instant in which they were captured. Therefore, a point p is a tuple as defined in

Equation 6.1.

p = ⟨x, y, t⟩ (6.1)

A stroke is merely a list of points sorted by the timestamp as defined in Equation 6.2

where ti is the timestamp of point pi. By this definition a stroke is, in fact, approximating

the user original stroke with several line segments.

s = [pi, · · · , pn], ti < ti+1 (6.2)

While the user is performing a stroke, the system acquires many points, potentially with

a pixel resolution, depending on the acquisition rate and the velocity at which the user is

sketching. Not all of these points convey required information for the recognition process

(e.g., when the user tries to create a straight line) and some may even be result of some sort

of error (e.g., hand jitters). Considering all acquired points may unnecessarily induce the

187

procedural inference system into wrongfully producing undesired results. As such, some

points can be safely discarded while the intention behind the user stroke is kept.

Consider the stroke performed by the user in Figure 6.3 which will be used throughout

the section as an example. Most likely, the user wanted to draw a rectangle and, as such,

many of the points can be discarded.

Figure 6.3: A stroke provided by a user where the intention was to draw a rectangle.

To achieve this, the system uses a combination of the velocity and curvature at each

point in the stroke to segment the user stroke. This idea is typically used in several sketch

based interfaces for modelling ([SSD06],) and operates under the assumption that the user

sketches with a lower velocity around corner points and that, by definition, the curvature in

these points is higher.

The speed metric at each point is derived from the position and timestamps of itself and

neighbouring points while the curvature metric is derived from the position of a point and

188

neighbouring points. In an initial step the system must, therefore, calculate the speed and

curvature metrics for each point.

The speed of a given stroke point (speed(pi)) is, thus, given by dividing the distance be-

tween two consecutive points by the time difference between the acquisition of each point

and is properly defined in Equation 6.3.

speed(pi) =
|(xi+1, yi+1)− (xi, yi)|

ti+1 − ti
(6.3)

The curvature at each point in a stroke is given by theMenger curvature which is the re-

ciprocal of the radius of the circle that passes through the given point pi and its neighbour-

ing points pi−1 and pi+1. The curvature is then defined as given by Equation 6.4 where the

denominator is the distance between pi−1 and pi+1 and the numerator is twice the sine of the

angle between the two consecutive line segments and that intersect at pi.

curv(pi) =


2sin(∠(xi−1,yi−1)(xi,yy)(xi+1,yy+1))

|(xi−1,yi−1)−(xi+1,yi+1)| if |(xi−1, yi−1)− (xi+1, yi+1)| > 0

0 if otherwise
(6.4)

Considering the stroke given as input in Figure 6.3, the images in Figure 6.4a and 6.4b

189

(a) The speedmetric for each point. (b) The curvaturemetric for each point.

Figure 6.4: The speed and curvaturemetrics for each point in the stroke show in Figure 6.3. The values were scaled to

the interval between 0 and 1 for illustration purposes.

show the stroke speed and curvature for each point. As the images demonstrate, the user

sketching speed decreases while the curvature increases around the rectangle’s vertices. As

closed lines are not considered, the first and last vertices (bottom left in both images) don’t

have a curvature value.

The next step is to calculate the average of the speed and curvature metrics for a given

stroke s. This provides baseline values for the user stroke which can be used to detect places

where the stroke should be segmented (i.e., high curvature and low speed points). There-

fore, the average speed and curvature are given in Equation 6.5.

speed(s) = 1
|s|

n∑
i=0

speed(pi)

curv(s) = 1
|s|

n∑
i=0

curv(pi)
(6.5)

190

Posteriorly, the system collects all ranges of points whose speed is below a given thresh-

old and whose curvature is above a given threshold defined as 1.1 ∗ speed(s) and 1.1 ∗ curv(s)

metrics respectively. These values were obtained empirically as they provided good results

during preliminary tests. A range is defined as a section of consecutive points in a given

stroke.

At this point, the system possibly has several ranges within the user stroke which are

highly likely to contain a point where the user finished a line segment and started a new

one. To find such point, the system calculates, for each point within the range, a ranking

metric which is a combination of a speed metric and a curvature metric.

The speed metric is based on the speed of a given point speed(pi) and the maximum

speed throughout the entire stroke. The purpose of this metric is to favour points which

have a lower speed compared to other points. This metric is given in Equation 6.6.

speed_metric(pi) = 1− speed(pi)
max_speed (6.6)

The curvature metric favours points within a range that maximise the curvature in rela-

tion to a set neighbouring points. Therefore, the curvature metric is defined as in Equation

6.7 where curve_length(pa, pb) is the sum of the length of all consecutive line segments de-

fined between points pa and pb.

191

curvature_metric(pi, n) =
||curv(pi−n)− curv(pi+n)||
curve_length(pi−n, pi+n)

(6.7)

The final ranking for each point in the range is given by multiplying the speed and cur-

vature metrics (Equation 6.8) which effectively favours points with low speed and high

curvature. A neighbouring region of three points was chosen as it produced good results in

preliminary experiments.

rank(pi) = speed_metric(pi) ∗ curvature_metric(pi, 3) (6.8)

For each range, the highest ranked point is considered a candidate point for segmenting

the user stroke. However, using all candidate points for this purpose could lead to bad re-

sults as the stroke could easily be over segmented. Likewise, using too few of these points

could lead to a segmentation that does not closely fit the original user stroke. Therefore,

each candidate segmentation combination is evaluated regarding its fitness to the original

user stroke using a distance measure between the segmentation candidate and the original

stroke.

Effectively, the fitness of a segmentation is an error function ε given by the average of the

192

squared orthogonal distance of every point in the original stroke to the corresponding line

segment in the segmentation. The orthogonal distance between points in the original user

stroke and the segmentation lines is shown in Figure 6.5. This implies that segmentations

with lower values of this fitness function match more closely the original user stroke. Equa-

tion 6.9, where dist(p, l) is the orthogonal squared distance between point p and its corre-

sponding line segment l, defines this error function in terms of the candidate segmentation

C and the original stroke S.

Figure 6.5: Orthogonal distance (black) between points in the original user stroke (red) and the respective segmenta-

tion line (blue).

ε(C, S) = 1
|S|

n∑
i=0

dist(pi, li) (6.9)

As the segmentation uses points taken from the original stroke, applying only this func-

tion to the candidates would, invariably, lead to the candidates that contained more points.

Therefore, the candidate with fewer points which has the error value below a given thresh-

old is considered the best segmentation which is used as the final one to be passed along the

193

sketch recognition pipeline.

6.4 Converting Strokes to World-Space Lines

Upon completing the segmentation of the original user stroke, the system now has a set

of bidimensional line segments on screen space. It is now necessary to convert them into

lines within the world space and correctly insert them into the scene. This allows the user to

perform a set of sketches from one viewpoint and, then, continue sketching from another

viewpoint, while the existing lines are kept in the correct place.

Moreover, it allows the procedural inference subsystem (described in the next section)

to infer which operations best match the user intention. As this subsystem performs the

matching in world space, converting the lines from screen space to world space is, indeed,

required.

As there is an infinite number of 3D lines that can be projected onto the same screen

space line due to depth ambiguity, finding the line in world space that best matches one of

the lines produced by the user stroke is a highly ambiguous problem. The naive approach

of projecting the line onto existing geometry while trying to find the best match in world

space, although partially solving the depth ambiguity, comes with several issues of its own.

First, geometry is not always available. When a user starts creating a 3D model of a build-

ing the only geometry that is present is, usually, the building lot. This geometry is, by na-

194

ture, contained within a plane. While it is possible to envision some operations to be recog-

nised by sketching on a planar surface (e.g., split and repeat split), there is a recurrent need

to add volumetric geometry to the building being modelled. It is trivial to imagine that,

if a user tried to sketch a line orthogonal to a given planar shape (e.g., indicating that an

extrusion should be applied), the line projected onto the scene could potentially intersect

neighbouring geometry or no geometry at all as seen in Figure 6.6.

Figure 6.6: A line orthogonal to a planar shapemay lose such property when projected onto the scene.

This leads to a second problem where lines projected onto the scene don’t always corre-

spond to the user intended topology and shape. Given the same example as before, a 2D

line whose screen projection appears to be orthogonal to a planar shape may not retain such

property after being projected onto the world geometry. As the 2D line could be projected

onto several shapes, it is also possible that the projection results in several, non collinear

lines. These situations are illustrated in Figure 6.7.

195

Figure 6.7: A vertical line on the screenwhen projected onto existing geometrymay lose such property.

6.4.1 Line Candidate Generation

As seen, searching in world space for an ideal candidate 3D line that matches a given user

stroke is not feasible. However, reversing the approach can be a more successful solution.

In other words, generating candidate lines in 3D space which are, then, projected and com-

pared to the original line in screen space reduces both the search space and the problem

complexity.

For one, the number of world lines whose projection results in the same screen space line

is reduced to the number of candidate lines that are coplanar within themselves and the

user’s viewpoint. In practice this number is rather low as for such situations to happen the

user would have to place the system’s viewpoint in very specific configurations.

Secondly, since the main purpose of the sketch based system described in this chapter is

196

to create procedural models, it is possible to exploit the available procedural operations to

inform the generation of candidate lines to be matched to the screen space line. This also

reduces the search space for this problem as it is known beforehand the families of lines that

can be conceived with the system.

A family of lines, in this case, is a set of lines that were extracted from the geometry gener-

ated by applying a procedural operation to a given shape while varying its parameters. For

example, applying the extrusion operation to a given shape while varying its extrusion value

results in the family of lines in Figure 6.8.

Figure 6.8: An example of a family of lines for an extrusion operation where the red, blue and green lines correspond to

extrusion values of 1, 2 and 4.

Therefore, the system operates by applying all available procedural operations, varying

its parameters, to the shape on which the user is currently sketching. The generated geome-

tries are, obviously, not inserted into the scene but are analysed and their edges are extracted

197

and inserted into a set of candidate lines.

With the exception of the procedural operation parameters, we have all the information

necessary to generate candidate lines. Noting that a procedural operation has a set of pa-

rameters ⟨p0, · · · , pn⟩where each parameter has its own domain defined by its type (e.g.,

numeric parameters have a domain inR), a solution is to sample from an interval within

each parameter’s domain.

Non numerical parameters, which usually represent procedural operation behaviour

modifiers (e.g., on which axis should a shape be split), have a finite and discrete domain

(e.g., x, y or z for split operations) and the system simply considers all possible combina-

tions. For numeric parameters, as they usually represent continuous values such as extru-

sion amounts and split sizes, the sampling interval is defined based on the distance d be-

tween the shape and the system’s current viewpoint position. This is to allow the sampling

to properly scale based on the potential size of candidate line. For example, if the user’s in-

tention is to extrude a building lot in order to create the building volume, the amount to

extrude would possibly be in the range of several meters. On the other hand, if the user is

adding finer detail, such as creating the window frames, the range would be in the range of

centimetres.

In the first scenario the system’s viewpoint would have to be farther away from the shape

(the building lot) in such a way that the user would be able to sketch an entire extrusion

198

line corresponding to the desired extrusion amount. In the latter case, however, the view-

point would need to be closer to the shape (the window). In both cases the user should be

allowed to sketch small lines and, therefore, the system should be able to generate sample

values near zero and, as such, the sampling interval is defined as δ = [0, σ].

To calculate the interval’s maximum value let us first consider a right circular cone whose

vertex is placed at the system’s viewpoint position, the axis is oriented towards the visible

part of the scene and the base is at the same distance as the shape being considered. The

angle Θ between its axis and the generatrix is given by the system’s maximum field of view

(either the vertical or horizontal) which is a value that is commonly available in any render-

ing system and takes part in the projection matrix. The maximum value σ of the interval is

thus defined as the radius of the cone’s base circle. Therefore, σ is calculated as in Equation

6.10.

σ = tan(Θ) · d (6.10)

Within the σ interval for a given parameter, the system uniformly samplesN values,

whereN is calculated based on the screen space length of the user sketched line and is given

by Equation 6.11 where |s| is the screen space length, in pixels, of the sketched line and α is a

configurable parameter which, intuitively, specifies the distance in pixels between samples.

199

In the implementation this value was set to 10.

N(s) = |s|α (6.11)

Therefore, given the shape on which the user is sketching, the set of generated candidate

lines is given with the algorithm in Listing 6.1.

1 function LineCandidates(S):
2 let candidates ← {}
3 for op in set of procedural operations:
4 for sp in sample(op.parameters):
5 let geo ← apply_operation(S, op, sp)
6 candidates ← candidates + extract_edges(geo)
7 return candidates

Listing 6.1: Algorithm to generate candidate lines for a given shape.

Each parameter pi in a given procedural operation is then sampled based on whether it is

a discrete or continuous parameter. In Listing 6.1 the sample function returns a set of tuples

where each element corresponds to a different combination of parameter values as given

by the sampling criteria explained above. Function apply_operation returns the geometry

generated by applying the current operation op and sampled parameters sp to the input

shape S. The geometry edges are, afterwards, extracted and inserted into the set of candidate

200

lines.

6.4.2 Candidate Line Evaluation

Having generated the full set of candidate lines, the system then has to find which is the

best match to the current screen space line. As this is done in screen space, the first step is

to project each candidate line to screen. Since every property of a line segment (e.g., length

and direction) is implicitly defined by its endpoints the candidate line evaluation is done by

comparing the endpoints of the projected candidate line and the original screen space line.

Both candidate line points are then projected onto the screen.

For each candidate line li the system projects its endpoints to screen space resulting in the

projected points pl0 and pl1. These points are then compared against the endpoints P0 and

P1 of the original screen space line to find a fitness value between both lines which is com-

puted based on the distance between each pair of endpoints belonging to different lines.

Let us first define a good evaluation function between a pair of points. Such function

should favour points that are closer and, ideally, eliminate situations where the distance

between them is far too great to be considered a viable candidate. The chosen function,

given that its properties exactly match the aforementioned requirements, was theGaussian

function. Therefore, the fitness value between two endpoints pi and pj is given by δ Equa-

tion 6.12, where length(pi, pj) represents the euclidean distance between both points. The r

parameter controls the distance value after which this function yields a value of zero. Intu-

201

itively, one can think of this value as defining a circle of radius r around one of the points

wherein the other point should lie in order to be considered a viable candidate.

δ(pi, pj) = e−
length(pi−pj)2

r2 (6.12)

We are now in place to properly define the fitness function that compares the projected

candidate line and the original screen space line, which is defined in Equation 6.13.

line_fitness(P0,P1, p′0, p′1) = max(δ(P0, p′0) ∗ δ(P1, p′1), δ(P0, p′1) ∗ δ(P1, p′0)) (6.13)

It is not desirable to force the user to sketch in a given direction for the stroke to be cor-

rectly converted into a world space line. The user should be free to produce a line in any

of the two possible ways. For example, in case of a vertical line the user should be able to

sketch downwards or upwards. Therefore, the system must take into account such situa-

tions and this is reflected in the evaluation function by considering both combinations of

endpoints and taking the higher value as the effective fitness value.

The candidate line whose projected points present the best fitness to the original screen

202

space line is then inserted into a configuration of world space lines. Every line in the config-

uration is rendered and shown to the user even if there is a change in the viewpoint, allow-

ing the user to freely navigate the scene and arrange the best point of view that would allow

the user a better drawing perspective.

6.5 Heuristics for the Inference of Procedural Operations

At this point, the system has knowledge of a configuration of world space lines that have

been extracted from the segmented strokes using the method presented in the previous sec-

tion. It is now possible to start the process of inferring the intended procedural operation

from such lines which is achieved in two phases. The first stage analyses the configuration

of shapes with a set of heuristics which try to infer specific uses of procedural operations

(e.g., extrusion or splits) and roughly estimate the parameter values of such operations. The

second stage is responsible to adjust the parameters of such procedural operations, using a

gradient descent method, such that the generated geometry matches as closely as possible

the current configuration of world space lines. This second stage will be discussed in the

next section (Section 6.6).

Each inferred candidate procedural operation is sorted by its fitness value and presented

to the user in an expectation list. The user is then responsible to choose which of the pre-

sented procedural operation is to be inserted into the rule base.

203

As previously mentioned, it is possible to produce (or reuse) sampled parameter values

for each procedural operation and compare the generated geometry to the configuration

of lines and, posteriorly, adjust the parameter values on the operation that results on the

best fit. By using heuristics, however, the system can considerably reduce the number of

candidate operations to test.

When the heuristics don’t produce a good fit for the current configuration of lines, the

system resorts to using the sampling approach as a fall-back, guaranteeing that a set of in-

ferred procedural operations is available for the user to choose from.

As heuristics are intended to analyse configurations of lines and infer what procedural

operation the user intended to apply to a given set of shapes while reducing the number of

candidates to generate and compare, it is first necessary to explain what constitutes a good

heuristic.

As this system employs heuristics to reduce the set of candidates to analyse further down

the pipeline, it is important that a heuristic does not produce candidates that are not feasi-

ble, given a current configuration of lines. For example, if a configuration of lines has a line

orthogonal to a planar shape, then it is highly unlikely that the user intended operation was

a split or repeat split operation.

A heuristic should also produce a candidate procedural operation whose parameters are

already close to the final solution. This accelerates the process of adjusting the parameters

204

to better match the current configuration of lines as the gradient descent method requires

fewer iterations to converge to a solution. Furthermore, it should also try to find relations,

whenever possible, between the parameters that might be implicit in the configuration of

lines. This is, for example, especially important in the split operation where often several of

the split sizes must be equal. The heuristic, in this case, must inform the gradient descent

method that such parameters must be kept equal throughout the process.

In order to take the maximum advantage of using heuristics for this purpose, the sys-

tem must possess a heuristic for, at least, the most common procedural operations used.

Empirically, these were considered to be the extrusion, split, repeat split and the component

split operations. With this set of operations, it is already possible to create a large variety of

buildings. Moreover, these were the original operations defined in the work of Müller et al.

[Mül+06]. Therefore, the set of heuristics defined in the current section include heuristics

for the mentioned operations and a heuristic for the offset operation. More heuristics can

be implemented for other types of procedural operations and this is left for future work.

6.5.1 Extrusion Heuristic

The extrusion heuristic is a rather simple one. It analyses a configuration of lines searching

for lines that start at one of the vertices of the current shape’s geometry and are orthogonal

to the shape or lines that are parallel to the edges of the current geometry. All lines in the

configuration must follow this criterion as otherwise means that an extrusion is an infeasi-

205

ble operation to perform given the configuration of lines.

If, otherwise, all lines present such property this heuristic constructs an extrusion proce-

dural operation whose extrusion value is set to the average of maximum distance between

the shape and the given line. In other words, the maximum distance is either the distance

between the shape and the line, in case it is parallel to one of the edges, or it is the opposite

endpoint in case it is a line orthogonal to the shape.

6.5.2 Offset Heuristic

The offset heuristic searches in a configuration of lines for lines that are either collinear with

the bissectrix between two adjacent edges in the geometry or lines parallel to a geometry

edge whose endpoints are placed in the bissectrix between such edge and both of its adja-

cent edges. As previously, if a line is found not possessing such properties the offset oper-

ation is considered to be infeasible and the offset heuristic doesn’t generate any candidate

operation.

On the other hand, if all lines match the criteria this heuristic generates an offset proce-

dural operation. The offset parameter value is, similarly to the extrusion heuristic, set to the

average of the maximum distance between the lines and the corresponding geometry edge.

206

6.5.3 Split and Repeat Split Heuristic

The split and repeat split operations, due to their similarities, have their heuristics merged

into a single one. As in the previous cases, this heuristic searches for lines that match given

criteria and check for the feasibility of the line configuration to represent a split or repeat

split operation.

The heuristic starts by checking along which axis the split is performed. It, therefore,

checks that all lines are orthogonal to the same split axis, which by definition of the split

operations must be one of the scope axis. Whenever there is at least one line that does not

match this criterion this heuristic does not produce any candidate split operation.

As the split and repeat split operations are able to divide volumetric shapes, some lines

may be in different faces of the shape. Each line in the configuration is, therefore, consid-

ered as being part of a split plane orthogonal to the split axis. Lines are clustered into split

planes by finding lines that are within a threshold distance of one another. A split plane is

created based on the average distance to the scope position of each clustered line. A split

size is here defined as the distance between two consecutive split planes. Moreover, there are

two implicit split planes which are placed at a distance of zero from the scope position and

at a distance equal to the scope size along the respective axis.

This heuristic also has the responsibility of detecting split sizes that the user might con-

sider as being equal. This is achieved by finding groups of split sizes that have similar values.

207

A split size group is constructed by collecting all split sizes whose split values do not differ

by more than a given threshold from one another.

This threshold is given in order to accommodate for imprecisions while sketching and is

relative to the scope size along the split axis which implicitly takes into account the distance

between the system’s viewpoint and the current shape. In other words, there is an implicit

assumption that, for the user to have been able to sketch all split lines across the shape the

system viewpoint must have been at a sufficient distance such that the entire shape is visible.

Therefore, the larger a scope is, the farther away the viewpoint is from the shape and the

sketching precision decreases. This threshold was empirically determined as five percent of

the scope size along the axis.

At this moment, the heuristic already has sufficient information to produce a candidate

split operation, setting its scope axis and split sizes as previously described. However, an

extra step is required to produce a repeat split operation. The heuristic further analyses

the split sizes and if the standard deviation between the split size values is less than 0.5 the

heuristic generates a repeat split operation with the split size value equal to the average of

the split sizes. This value was also determined empirically during preliminary tests.

6.5.4 Component Split Heuristic

The component split heuristic is, yet again, a rather simple one. As the output geometry

of a component split operation consists of the individual faces of the input geometry, it is

208

visually similar to the input geometry. Therefore, the extracted edges are the equal to the

input edges.

Based on this, the component split heuristic analyses all lines in the current configuration

of lines and if at least one of the lines is not coincident with one of the extracted edges it

does not create a candidate component split operation. Otherwise, it creates a single com-

ponent split candidate. However, the heuristic is not able to differentiate the faces with

different selectors (e.g., top or side faces) as this depends on future operation that might

operate on the faces differently. Therefore, the heuristic sets a singe selector on the created

operation to select all faces.

The user is responsible, at this point, to modify the operation and set different selectors

if required. Note that, by using the semantic queries, it is still possible to detail different

faces using filters (e.g., :up for up faces or :north for north faces).

6.5.5 Sample Based Generation of Candidate Procedural Operations

To guarantee that the system generates procedural operation candidates to the subsequent

stage in the pipeline, the system falls-back into sampling the parameter space of all available

procedural operations. The generated candidates are then passed along to the next stage.

This approach is only used whenever the heuristics fail to generate valid candidates and

is particularly useful for compound procedural operations (i.e., groups of user-defined and

reusable procedural operations). It is impossible to conceive heuristics for such cases as the

209

combinations of operations is unknown. Furthermore, the use of sampled based genera-

tion of candidate procedural operations serves the purpose of completeness in the system.

In practice, and to increase efficiency, the procedural operations generated in the line

candidate generation phase (Section 6.4.1) are reused.

6.6 Parameter Adjustment

Once the candidate procedural operations have been obtained, either through the use of

heuristics or by sampling the parameter space of procedural operations, the system must

now find the set of parameters that match as closely as possible the configuration of lines.

This is achieved by using a gradient descent method that converges the candidate opera-

tions to minimise an error function. Such error function is, in itself, a measure of distance

between the user created configuration of lines and the edges extracted from the geometry

obtained by applying the procedural operation and the sampled parameters to the shape

the user is currently sketching on.

The candidate operations that have the smaller error value when compared to the con-

figuration of lines are presented to the user in a decreasing order of its error value. The user

must then select which candidate operation best fits the user intention.

210

6.6.1 Error Function

In the scenario of procedural operation parameter adjustment the system must try to find

the combination of procedural operation parameter values that result in the set of lines that

best match the user created configuration of lines. It is, therefore, a similarity metric in the

sense that a lower error metric indicates that the two sets of lines are more similar.

Let us first define what are the goals of this error function while comparing two single

line segments. It is important to note that the error function should be monotonic in all its

domain to guarantee that the gradient descent method converges to the optimal solution

and is not trapped in local optima. Therefore, it would be impossible to use functions such

as the Gaussian as described in the candidate line evaluation (Section 6.4.1).

As a line segment is fully defined by both of its endpoints it is reasonable that a distance

metric over line segments relies on the coordinates of such points. Therefore, to compute

the distance value between two lines the system first encodes the coordinates of both lines

in a vector inR6, here called line descriptor, such that descab = (xa, ya, za, xb, yb, zb)which

describes a line segment abwhere a = (xa, ya, za) and b = (xb, yb, zb) are its endpoints.

The error metric ε between two lines l1 and l2 can now be defined as the squared distance

between its descriptors desc1 and desc2. This definition is given in Equation 6.14.

211

ε(l1, l2) =
5∑

i=0

(descl1[i]− descl2[i])2 (6.14)

The error metric between the user created configuration of lines and the lines extracted

from the generated geometry is defined as the sum of the ε value between each line l ∈ L

in the configuration of lines and the extracted line e ∈ E that minimises the ε value. In

other words, the system finds the set of tuples ⟨l, e⟩ such that ε(l, e) contributes the least to

the overall error metric. The error metric between this two sets of lines is then defined as in

Equation 6.15.

ε(L,E) =
∑
i=0

min
e∈E

(ε(li, e)) (6.15)

This error metric is the used to guide the gradient descent method such that it converges

towards the procedural operation parameters that result in the geometry that best matches

the user sketch.

6.6.2 Gradient Descent Method for Parameter Adjustment

To adjust the parameter values of a procedural operation in a way that the output geom-

etry is similar to the user sketched lines the system uses a gradient descent method which

212

is explained in this subsection. The gradient descent method is an iterative optimization

algorithm whose aim is to find the minimum of a function. Therefore, it is important to

formulate the current problem as a function.

As the goal is to adjust the parameter values such that it minimises the error function

described before, this function should have the parameter as its independent variables and

the value of the error function for such parameter values should be output. As such, the

function to optimize is the one given in Equation 6.16. In this function, op represents the

procedural operation, S is the shape on which the user is sketching and L is the current con-

figuration of lines.

Fop,S,L(p0, · · · , pn) = ε(L, edges(op(p0, · · · , pn, S))) (6.16)

This function first generates the output geometry for the given procedural operation, pa-

rameter values and shape (by treating op as a function) whose edges are posteriorly extracted

with the edges function. The error function between the extracted edges and the configura-

tion of lines is then calculated.

Starting with a given combination of parameter values, the system must find the direc-

tion which provides a faster path to minimise the error function. Preferably, the values pro-

duced by the heuristics described above should be used as these are already a good estimate

213

of the final value. However, given that the error function as described has a single global

minimum the process can start with any combination and is guaranteed that the result will

converge to the minimum.

To find the direction (which can be thought of as a vector inRn space) with the steepest

descent towards the minimum, knowing the function gradient∇F(po, · · · , pn) is required.

This is computed by finding the function value at the immediate neighbourhood of the

point (p0, · · · , pn). Therefore, the system varies each parameter pi, i ∈ [0..n[by a small

amount δ such that p′i = pi + δ and p′′i = pi − δ and calculates the function with both

values. Similarly, F′pi and F′′pi represents the value Fop,S,L returns when the ith parameter takes

the value of p′i and p′′i respectively while the remaining parameters are kept unmodified.

The system approximates the partial derivative of each parameter pi by finding the varia-

tion observed in the function Fwhen the parameter is perturbed by+δ and−δ respectively

and averaging the signed difference between both values by 2δ. For small values of δ this

represents a good approximation to the rate by which the function varies according to pi.

The gradient∇Fop,S,L is then computed as in Equation 6.17 which effectively defines a vec-

tor inRn.

∇Fop,S,L(p0, · · · , pn) =
(
· · · ,

F′pi − F′′pi
2δ , · · ·

)
(6.17)

214

Having defined the function and its gradient, it is now possible to explain how the gra-

dient descent method operates in order to obtain the parameters that can generate the ge-

ometry that best matches the user sketch. As mentioned, the gradient descent method is

an iterative approach that, starting at a given point in the parameter space, seeks to find the

minimum of a function.

On each iteration the method finds the function value vi = Fop,S,L(Pi) and gradient at

point Pi and moves to a new point Pi+1 in the parameter space by adding a fraction of the

gradient such that Pi+1 = Pi + α∇F, where α is the step size. It then repeats the process

until a predetermined number of iterations have passed or the variation in the function

value is neglegible (i.e., when |vi − vi+1| ≈ 0). To avoid excessive oscillations when the

gradient descent is close to the minimum the step size is reduced by a fraction of its current

value. The algorithm is depicted in Listing 6.2.

1 function GradientDescent(P_0, op, S, L, numIterations, stepSize,
factor):

2 let P_i ← P_0
3 let v ← []
4 for i in [0..numIterations]:
5 let v[i] ← Fop,S,L(P_i)
6 P_i ← P_i + stepSize * ∇ F(P_i)
7 stepSize ← factor*stepSize
8 if |v[i]-v[i-1]| ≈ 0:
9 break
10 return P_i

Listing 6.2: The gradient descent method.

215

In the previous listing P0 is the initial combination of parameter values, op, S and L rep-

resent the candidate procedural operation, the shape on which the user is sketching and L

is the current configuration of lines respectively. The number of iteration the gradient de-

scent method should execute is given by numIterations, the step size is given by stepSize and

the fraction by which the step size should be reduced after each iteration is given by factor.

Note that each time Fop,S,L is computed for any combination of parameter values (includ-

ing for pi + δ and pi − δ), a procedural operation is performed and the edges of its geometry

are extracted. This is a potentially expensive operation and is why the heuristics described

before play a fundamental role in accelerating the process.

Once the system has produced a set of candidate procedural operations whose parame-

ters have been adjusted to fit the user configuration of lines as closely as possible, they are

sorted by increasing value of their error function ε and presented to the user. At this mo-

ment, the user is free to choose the candidate that best matches the intentions.

The system will then create a procedural rule with the query the user specified to indicate

to which shapes the operation should be applied and the inferred procedural operation

and parameters. Finally, this rule is inserted as a free node in the selection action tree that

generates the current model.

216

6.7 Tools for Precise Sketching of Architecture

Although the presented contributions towards sketch based procedural modelling already

allow creating procedural operations based on user sketches, the techniques presented do

not accommodate well for more precise ways of drawing architecture. For example, it is ex-

tremely difficult to split a given shape in two shapes with the exact same size without modi-

fying the parameters in the resulting procedural operation.

Therefore, a set of techniques to allow the user to create architectural models more pre-

cisely is required. Even though traditional WIMP based interfaces provide the utmost accu-

rate way of defining measures as the user can specify the desired measure with the widgets

provided (e.g., a text box), it forces the user to switch the attention to other parts of the in-

terface, possibly disrupting the creative flow. It is desirable, then, to provide tools that do

not steer the user away from the sketch based interface.

6.7.1 Analytical Drawing

Inspired in the drawing techniques that exist in the field of analytical drawing, Schmidt et

al. [Sch+09] proposed a system that allows users to define support lines that help the user

to precisely create lines in 3D space. As the authors noted, this set of tools are ideally suited

to architectural drawing which is the ultimate goal of this thesis.

The logic behind these techniques and, as such, in this system is to allow the users to

217

sketch temporary lines which take advantage of known geometrical properties which, in

turn, will aid the user in the creation of the final geometry. Analytical drawing consists of

drawing sets of regulating lines which express 3D relationships in the drawing. These lines

will provide context and constraints with which the user can, more accurately, specify the

lines that make the final geometry with enhanced precision.

In geometric perspective drawing, artists rely on points and directions with well-known

characteristics to define new points and lines incrementally. Starting with an empty sheet

or canvas, the artist usually starts by defining the horizon line, often referred to as eye level.

Objects below this line are below the eye level and, otherwise, are above the eye level. The

artist can then define vanishing points on the horizon line to which parallel lines in the

scene being drawn converge. From the vanishing points, perspective lines can be drawn

which can serve as a basis on which the artist can start sketching the scene.

To further enhance the user’s capability of creating precise geometry only using the

sketching interface, a subset of the techniques defined in the work of Schmidt et al. [Sch+09]

were implemented in the prototype. Namely, the guidelines that allow users to create a line

extending to a vanishing point starting from a given vertex in the geometry, and support

lines which allow users to create lines that will not be taken into account in the procedu-

ral operation inference but can be useful to create the final procedural lines that will trig-

ger such system. The inference of these type of lines is achieved in the same manner as de-

218

scribed in Schmidt et al. [Sch+09].

Although the authors kept the bi-dimensional representation of a sketch, in this imple-

mentation this is discarded as the lines are automatically converted into 3D space. More-

over, as the present system generates new geometry keeping both representations would

easily become desynchronised and could lead to image clutter and confuse the user.

6.7.2 Guidelines

While drawing, artists often rely on vanishing points to correctly create the illusion of per-

spective. In a drawing under geometric perspective, a vanishing line represents a 3D direc-

tion through a given point which intersects the horizon at a vanishing point. Parallel 3D

directions always converge into the same vanishing point. In this system, vanishing lines are

referred to as guidelines.

Vanishing lines are, then, instrumental in architectural drawings as these subjects, being

man-made, often possess large quantities of parallel and orthogonal lines. Given a set of

points in a drawing, the artist can create lines that resemble parallelism under geometric

perspective simply by connecting each given point to the same vanishing point. Likewise,

to create the illusion of intersecting orthogonal lines, the artist connects the intersection

point to the vanishing points associated with orthogonal directions.

Guidelines are defined by a point P0 and a direction d⃗ such that P0 ∈ {scene vertices}

and d⃗ ∈ {scene edge directions}. Therefore, a guideline can only be constructed from al-

219

ready existing geometry as it requires a scene vertex and the direction of a scene edge. Scene

vertices can be defined as any vertex that belongs to the existing model geometry, or any sort

of intersection between guidelines, support lines or geometry edges.

To create a guideline the user, after selecting the guideline sketching mode (by clicking in

theGuidelines button in the top bar shown in Figure 6.1), starts sketching from an existing

vertex towards the direction of a vanishing point. Once the user starts sketching a line in

such mode, the system presents visual cues that show the potential guidelines that can be

created from the chosen point. The guideline is created as soon as the user finishes the cur-

rent stroke and if the endpoint is sufficiently close to one of the given potential guidelines.

Guidelines can then be used to construct other guidelines or support lines as they are

well-defined geometric constructs that specifically represent the user’s intention. For exam-

ple, it is possible to take the intersection of two guidelines to create a third guideline in the

direction of another vanishing point.

6.7.3 Support Lines

While guidelines are lines that extend infinitely, starting a specific vertex, to both direc-

tions of a vanishing point, support lines are line segments that rely on existing geometric

constructs to be defined. Therefore, a support line is defined as the line segment between

points Pi and Pj as long as these points belong to a precisely defined geometric construct. In

other words, they must be coincident with a scene vertex, guideline or support line.

220

To create a support line the user first selects the support line sketching mode (by clicking

in the Support Line button in the top bar shown in Figure 6.1) and sketching a line from

an existing geometric construct (e.g., a vertex or guideline) to another one. Once the user

finishes the stroke the system creates the support line that best matches the line provided by

the user.

The support lines alone will not trigger the procedural operation inference mechanism

as they have, as the name indicates, merely a support function. It is possible to promote a

support line to a procedural line by double sketching over an existing support line. Once a

given line is promoted, the inference system starts and a new set of procedural operations

are presented as described in Section 6.6.2.

With the use of guidelines and support lines, the user is capable of defining procedural

operations that have more precise parameters that match the user intention. For example, it

becomes trivial to create split operations that exactly divide a face in half by first finding the

centre of the face using two diagonal support lines (Figure 6.9a) and then define a guideline

starting from such point and extends to the horizontal vanishing point (Figure 6.9b). This

guideline will intersect the face edges at (at least) two other points which can be used to cre-

ate another support line (Figure 6.9c). By promoting this support line to a procedural line,

the system will infer the split operation with two exactly equal split values (Figure 6.9d).

221

(a) (b)

(c) (d)

Figure 6.9: Using guidelines and support lines to precisely split a face in half.

6.8 Summary

This chapter presented the contributions towards a sketch based procedural modelling

system oriented at creating architectural models. Building on top of the selection action

paradigm (Chapter 5), which allows a precise and robust way of specifying which shapes in

a procedural model will be affected by a given user sketch, this chapter demonstrates how

the end goal of this thesis was achieved.

The field of Sketch Based Interfaces for Modelling has been extensively studied through-

222

out the last decades and this chapter demonstrates how it is possible to reuse some of the

previous contributions in the field to develop a sketch based procedural modelling system.

This is the case of the stroke filtering and segmentation algorithm proposed by Sezgin et al.

[SSD06] and the system based on analytical drawing proposed by Schmidt et al. [Sch+09]

from which this work drew inspiration for the candidate line evaluation sub-system.

Given the user provided stroke, the system first proceeds to its filtering and segmentation

which yields a clean set of screen-space lines. Posteriorly, and given the shape on which the

user is sketching, the system generates a set of candidate world-space lines based on the avail-

able procedural operations by sampling their parameter space. These lines are projected

onto screen-space and compared to the original, user-provided lines with a Gaussian-based

evaluation function. The best match is inserted into a configuration of world-space lines.

Afterwards, the system runs a set of heuristics which propose candidate procedural op-

erations given the current configuration of world-space lines. These heuristics fill the oper-

ation parameters with estimated values based on the current set of lines. The purpose is to

have a pre-evaluation of the user intention and provide a reduced set of candidates to the

following stage in the pipeline which adjusts the parameter values to create geometry that

better matches the user-provided lines. This is achieved with a gradient descent method

that, for each iteration compares the edges of the candidate geometry to the configuration

of lines with an error function based on the distance between pairs of lines. The candidate

223

procedural operations are presented, ranked by their evaluation score, to the user who must

then choose the one that best fits the present intention. The operation is inserted in the

rule base as a selection-action node with the user-defined query and in a place within the

selection-action tree that will affect all the desired shapes.

Although the system allows the user to completely create buildings with a sketch inter-

face with minor deviations to other parts of the user interface, there are some desirable

features that are yet to be explored. The system currently only supports creation of rules

and the user must resort to the selection-action tree and node parameters to perform mod-

ifications to the rule base. Changes to parameter values could be overcome by using over-

sketching on the geometry to symbolise an alteration to a given parameter. Other modifi-

cations would, potentially, require more complex sketching gestures that would symbolise

replacement operations in the rule base.

Also, there is currently no integration with layers and vectorial shapes (as presented in

Chapter 4) which would further increase the expressiveness of this system. Furthermore,

these are features akin to ones found in many diagram and image editing packages which

are familiar to many users of artistic background and, more specifically, 3D modellers which

are the main intended audience of this system. Both these developments are left for future

work.

Finally, the creation and insertion of procedural rules is done in a simple way by insert-

224

ing the created rule as a free node in the end of the selection action tree. Although this ap-

proach works since the query is effectively applied to all existing geometry, this creates a list

of nodes with no hierarchy whatsoever and can easily become unmanageable. Further work

should put towards solving this issue.

Nonetheless, this approach seems to be a solid starting point from which many more

usages could be conceived.

225

226

7
Results and Discussion

Evaluation is a crucial part of any research as it allows conclusions regarding the work un-

dertaken to be drawn and understanding what is the impact of the contributions. There-

fore, this chapter shows the evaluation results, alongside the corresponding discussion, of

each of the contributions presented in this thesis.

It is also in this chapter that the research questions are explicitly answered and the hy-

227

pothesis confirmed.

7.1 Layered Shape Grammars

To evaluate layered shape grammars, a set of examples exposing the capabilities of such

paradigm were conceived and described. Such examples showcase the decomposition of

planar shapes into layers and the vectorial definition of shapes and its advantages in the pro-

cedural modelling of buildings.

This section also compares the layered shape grammars to other shape grammars (e.g.,

the CGA grammar [Mül+06]) demonstrating some limitations that can be solved by using

layered shape grammars.

Since the greatest contributions of layered shape grammars are related to planar shapes,

most of the examples are focused around façades and the increase in expressiveness this ex-

tension provides.

7.1.1 Simple Façade Example

The layered shape grammar in Listing 7.1 shows a simple façade containing several layers

as well as shapes created with a vectorial definition. Note that the model is completely gen-

erated with layered shape grammars and does not include any pre-modelled asset. This is

a limitation that often shows in regular shape grammars and, therefore, this represents an

improvement in shape grammar expressiveness.

228

The Facade rule creates two layers. As implicit, the Floors layer will contain the ground

and top floors definition, while the Entrance layer will contain the arched door. The separa-

tion into two layers, allows the door to span several floors while the normalisation process

guarantees that there are no geometry conflicts with the windows. Also, the door place-

ment is completely independent of the floors and windows, enabling more variations by

simply adjusting a few parameters.

TheGroundFloor rule also creates two layers: one for the horizontal stripes and one for

the arched windows. Note the seamless integration of the arched shapes with the stripes,

resulting in more complex shapes.

1 Facade → layers("Floors","Entrance")
2 { FloorsSplit | Entrance2 };
3 FloorsSplit → segment(y,2,~1)
4 { GroundFloor | TopFloors };
5 TopFloors → segment(y,2)
6 { Floor }*;
7 Floor → segment(x,1.5)
8 { TileSegment }*;
9 TileSegment → segment(x,'0.1,~1,'0.1)
10 { ε | TileV | ε };
11 TileV → segment(y,'0.1,~1,'0.1)
12 { ε | WindowTile | ε };
13 GroundFloor → layers("stripes","windows")
14 { Stripes | GroundWindows };
15 GroundWindows → segment(x,0.9,1,0.9)
16 { ε | GroundWindowTile | ε }*;
17 GroundWindowTile → segment(y,0.35,0.1,~1,0.1)
18 { ε | extrude(0.35) | ArchedWindow| ε };
19 ArchedWindow →
20 vectorial("M0,0 L0,0.5 C0,1 1,1 1,0.5 L1,0Z")

229

21 extrude(-0.3);
22 Entrance → segment(x,~1,3,~1)
23 { ε | EntranceTile | ε };
24 EntranceTile → segment(y,3.5,~1)
25 { ArchedDoor | ε };
26 ArchedDoor →
27 vectorial("M0,0 L0,0.5 C0,1 1,1 1,0.5 L1,0Z")
28 extrude(-0.5);
29 Stripes → segment(y,'0.2,'0.2')
30 { extrude(0.1) | extrude(0.2) }*;

Listing 7.1: Layered shape grammar example.

Some rules were ommitted for brevity. The resulting façade can be seen in Fig 7.1a and

its decomposition into layers can be seen in Fig 7.1b. Note that, although the vectorial def-

inition for the door and the windows is the same, the generated shapes are of different size

since the polygon is interpolated inside the predecessor’s procedural item bounding rectan-

gle.

(a) (b)

Figure 7.1: The example façade (Subsection 7.1.1), on the left, and its decomposition into layers, on the right.

As a side note, the use of interactive layers (as described in Section 8.2.1) would allow

the user to specify both the position, size and alignments of each layer interactively and

230

completely independent of each other.

7.1.2 Expressiveness

The use of layers and vectorially defined shapes within planar shapes grants a new set of pos-

sibilities allowing for a greater range of procedural models to be created. Such improvement

in expressiveness is evaluated in this subsection by demonstrating some examples that can

be quite difficult to achieve using current procedural modelling techniques.

Complex Windows

Layers and the planar shape normalisation algorithm allow the creation of more complex

configuration of shapes by allowing several shapes to be overlapping. In Listing 7.2 it is

possible to see a layered shape grammar that creates a window made up of several similar

structures.

1 MultiComponentWindow → layers("Bottom", "Middle", "Top")
2 { WindowBottom | WindowMiddle | WindowTop }
3 WindowBottom → segment(x,~1,5,~1)
4 { ε | WindowBottomVSegment | ε }
5 WindowBottomVSegment → segment(y,~1,5,~1)
6 { ε | WindowComponent | ε }
7 WindowMiddle → segment(x,~5,3,~1)
8 { ε | WindowMiddleVSegment | ε }
9 WindowMiddleVSegment → segment(y,~10,2,~1)
10 { ε | WindowComponent | ε }
11 WindowTop → segment(x,~1,3,~1)
12 { ε | WindowTopVSegment | ε }

231

13 WindowTopVSegment → segment(y,~1,2~10)
14 { ε | WindowComponent | ε }
15 WindowComponent → . . .

Listing 7.2: Layered shape grammar that uses layers to create complex windows.

This layered shape grammar creates three layers on a planar shape with theMultiCompo-

nentWindow rule. Each layer, in turn, positions the window component within the layer by

using vertical and horizontal segments with different dimensions. The bottom-most layer,

defined byWindowBottom creates the largest central window component, the middle layer

(WindowMiddle rule) creates the top right component and, finally, theWindowTop rule

creates the bottom window component. TheWindowComponent rule is responsible for

creating each component of the window, including the window frames, by using more seg-

ment operations and extrusions. The fixed geometry property of the window frames was

set to false causing the frames of a deeper window component to adapt to the ones above it.

The results of this layered shape grammar can be seen in Figure 7.2.

The layered approach also has the advantage of easily toggling on or off the execution of

a layer allowing for a greater variability of generated models. Figure 7.3 shows the results

obtained by switching off the execution of one or more layers in Listing 7.2. As such, Fig-

ure 7.3a shows the case where layerMultiComponentWindow.Middle has been switched

off, Figure 7.3b represents the execution without the generation of theMultiComponen-

tWindow.Top results and, finally, 7.3c does not have the bottom-most window component

232

Figure 7.2: A complex window created with layers.

obtained by turning the execution ofMultiComponentWindow.Bottom layer off.

As a side note, it is possible to see that each layer is defined with a rule structure similar to

that defined in Section 8.2.1. Therefore, each layer could be turned into an interactive layer

where users could perform the interactive operations defined in Section 8.2.1.

(a) (b) (c)

Figure 7.3: Variations obtained by toggling on or off some layers in Listing 7.2.

233

Modelling the Mikimoto Ginza Building

To further demonstrate the improvements in expressiveness layered shape grammars pro-

vide over split based methods, this section aims at showcasing an approximation to the

modelling of the Mikimoto Ginza building (Figure 4.1). This building was selected for its

irregular façade shapes and structure which gives it a random look.

As the main features to be highlighted in this model are within its façades, this section

will describe in great detail the approach taken in its generation focusing on the façades.

The combination of rules to achieve the building coarse volume from its axiom and its fur-

ther separation into façades is a simple extrusion followed by a component split as can be

seen in Listing 7.3.

1 Mikimoto → extrude(50) Mass
2 Mass → comp(face, side){ Facade }

Listing 7.3: Rules to generate themass volume and each façade of theMikimoto Building

The main idea this example aims to demonstrate is that placement of shapes can occur

outside regular grid-like structures. For this, windows were placed such that there is no split

line (either vertical or horizontal) across the facade that can effectively be able to partition

it. Although this is not the case in the original Mikimoto building, it serves to illustrate the

improvements over split based methods.

234

In this example this is achieved by conceiving two overlapping layers that subdivide the

façades into regular grids using the segment operation, creating cells of similar sizes. How-

ever by offsetting one of the layers slightly upwards and to the right allows the placement

of shapes (in this case, the windows) over the other layer’s segment lines which can be seen

in the Figure 7.4. There is an additional layer that generates the horizontal stripe in the top

area of each façade. Listing 7.4 shows the creation of layers and the rule that generates the

horizontal stripe.

1 Facade → layers("Windows1", "Windows2", "Stripe")
2 {Windows1, Windows2, Stripe}
3 Stripe → extrude(0.5)

Listing 7.4: Rule that generate the layers for each façade.

The bottom-most layer (Figure 7.4a) is generated with the layered shape grammar ex-

tract in Listing 7.5 where it is possible to see the creation of a segment for the entrance (rule

Windows1) and the generation of a regular grid with rules TopFloorWindows1, Floors1 and

Floors2.

1 Windows1 → segment(y, 2, ~1)
2 { Entrance, TopFloorsWindows1 }
3 TopFloorsWindows1 → segment(y, 5, 5)
4 { Floors1, Floors2 }*
5 Floors1 → segment(x,5,5)
6 { Window1, ε }*

235

(a) (b) (c)

Figure 7.4: Layers used to place the windows in theMikimoto Ginza building.

7 Floors2 -> segment(x, 5, 5)
8 { ε, Window2 }*

Listing 7.5: Layered shape grammar to generate the bottom layer for theMikimoto Building

Similarly, the second layer of windows is achieved by partitioning the façade into a regu-

lar grid with cells, albeit slightly offset from the previous layer. This can be seen in Listing

7.6. The empty shape in rulesWindows2 andWindows2HPadding represents the vertical

and horizontal offset this regular grid has in relation to the previous layer.

1 Windows2 → segment(y, 3.125, ~1)
2 { ε, Windows2HPadding }

236

3 Windows2HPadding → segment(x, 2.5, ~1)
4 { ε, TopFloorsWindows2 }
5 TopFloorsWindows2 → segment(y, 5, 5)
6 { Floors3, Floors4 }*
7 Floors3 → segment(x, 5, 5)
8 { ε, Window4 }*
9 Floors4 → segment(x, 5, 5)
10 { Window3, ε }

Listing 7.6: Layered shape grammar to generate the second layer of windows.

Each of the cells is then further detailed with an irregularly shaped window by using the

vectorial operation. In this example, four different windows were used and can be seen in

Figure 7.5.

1 VecWindow1 → vectorial("M0,0 L1,0.3 L0.3,1 L0.1,0.8 Z", 30)
WindowExtr;

2 VecWindow2 → vectorial("M0.5,0 L0.9,0.3 L0.8,1 L0.1,0.8 Z", 30)
WindowExtr;

3 VecWindow3 → vectorial("M0,0.1 L0.5,0 L1,0.1 L0.8,1Z", 30)
WindowExtr;

4 VecWindow4 → vectorial("M0,0 L0.8,0.1 L1,0.5 L0.9,1 L0.1,1Z", 30)
WindowExtr;

5 WindowExtr → extrude(-0.5);

Listing 7.7: Vectorial definition of each of the windows in theMikimoto Ginza building.

The planar shape normalisation process guarantees that the correct and intended geome-

try is generated, resulting in the model presented in Figure 7.6.

Note how the horizontal stripe in the higher part of the building is overlapping and oc-

237

(a) (b)

(c) (d)

Figure 7.5: Windows used for theMikimoto building (Figure 7.6).

cluding some windows. This feature is also present in the original Mikimoto Ginza build-

ing and cannot be modelled solely with the use of split based methods hence proving a

greater level of expressiveness.

Apart from being possible to conceive a line that partitions the Mikimoto building

façades, another difference with respect to the presented model is that the latter only has

four distinct shapes for windows whereas each window of the original building has a differ-

ent shape. This is due to the nature of procedural modelling being based on patterns and

repetitions which is, in fact, one of the greatest drawbacks in procedural modelling. More-

over, the current layered shape grammar implementation does not implement stochastic,

238

Figure 7.6: An approximation of theMikimoto Ginza (Figure 4.1) created with layered shape grammars.

conditional or random rules and operations, making the generation of a façade with an ap-

parent randomness impossible.

7.1.3 Comparison to Split Based Methods

To generate the simple façade example (Section 7.1.1) using split based methods only, several

modifications were introduced and are present in Listing 7.8.

1 Facade → split(y,4,~1)
2 { GroundFloor | TopFloors }
3 TopFloors → split(y, 2)
4 { Floor }*
5 Floor → split(x,1.5)
6 { 1.5: Tile }*
7 Tile → split(x,'0.1,~1,'0.1)

239

8 { ε | TileV | ε }
9 TileV → split(y,'0.1,~1,'0.1)
10 { ε | WindowTile | ε }
11 GroundFloor → split(x,4.5,4.5,4.5)
12 { MFSide | EntranceTile | MFSide }
13 MFSide → split(y,2,2)
14 { GroundFloorSide | TopFloors }
15 GroundFloorSide → split(x,~1,~1,~1)
16 { Stripes | GroundWindowTile | Stripes }*
17 GroundWindowTile → segment(y,0.35,~1,0.1)
18 { Stripe1 | WindowAsset | Stripe1 }
19 EntranceTile → split(x,~1,3,~1)
20 { EStripes | DoorAsset | EStripes }
21 EStripes → split(y,2,~1)
22 { Stripes | ε }

Listing 7.8: Comparison to regular shape grammars.

Split operations now have to, simultaneously, account for the entrance, floors and hori-

zontal stripes. Layers, on the other hand, treat these elements separately, which provides a

greater amount of variability with fewer modifications to the rule base, while still providing

correct results.

For example in the layered shape grammars system, modifying the entrance height in the

façade can be achieved by tuning the segment operation parameters in the EntranceTile rule

in the previous example. In the split based method, this height is, already, implicitly defined

in the Facade rule. Modifying the split parameters leads to unwanted repercussions in other

parts of the façade. This is illustrated in Figure 7.7, where the images show an increasing en-

trance height and, while this methodology (Figure 7.7a) keeps the windows with a constant

240

size, the split-based method deforms two of the façade floors (Figure 7.7b).

Furthermore, interactive operations as hypothesised in Section 8.2.1 in regular shape

grammars are rather complex to implement as procedural operations and the generated pro-

cedural items are not sufficiently isolated from one another. As a consequence, modifying

one parameter would have consequences on other parts of the procedural model.

(a)

(b)

Figure 7.7: Changing the entrance size using the layered approach, 7.7a, leads to better results thanwith the split

based approach, 7.7b.

Another consequence of the layered approach, is that shape placement is not constrained

by split lines and, as such, intentional misalignments of shapes are easily achieved. In Figure

7.8 we see the same façade further detailed with a two-storey balcony in an additional layer

241

which is not aligned with the regular grid of windows. This example also shows that com-

plex modifications can be introduced with new layers. On the other hand, with traditional

shape grammars several procedural rules would have to be rewritten.

Figure 7.8: Intentionally misaligned balconies in the example façade.

Moreover, in split-based methods, the arched elements have to be imported as pre-modelled

assets and, as seen in the ground floor windows (Figure 7.9), can be difficult to integrate. By

using a vectorial definition, the planar shape normalisation process allows the seamless com-

position of these windows and the horizontal stripes.

242

Figure 7.9: Detail of the groundwindows in the split-based approach.

7.2 Generalised Selections for Improved Direct Control in Procedural Mod-

elling

To evaluate the proposed selection action paradigm for procedural modelling of urban envi-

ronments, along with the user interaction and user selection inference, this section presents

a set of examples exposing the capabilities of such paradigm. This section presents several

different evaluations that were performed with this evaluation.

Firstly, a short modelling session explaining how the user would interact with the paradigm

is presented which is, then, followed by an evaluation of the system usability. This is fol-

lowed by some examples of semantic queries over a building model showcasing the expres-

243

siveness of semantic queries and a comparison between the selection action paradigm and

other procedural modelling methodologies. Finally, the user selection inference is evaluated

with an experiment using synthetic data.

7.2.1 Modelling Session Example

Figure 7.10: Amodelling session with this system showing several selections (top row) and the operations applied

(bottom row).

To illustrate this system, consider the example modelling session on Figure 7.10.

The selection-action tree used in the modelling session is presented in Figure 7.11 where

each number corresponds to a step in the modelling session.

The user starts with a building volume already decomposed into its several façades. The

244

Figure 7.11: The selection-action tree for the example.

Figure 7.12: Possible user selections in the example in Figure 7.10. User selections are in yellow, results of applying

one of the suggested queries.

user selects a single façade (illustrated in Figure 7.10a in yellow) to which the system sug-

gests the .Facade query, selecting all façades (show in green). With this query the user in-

stantiates a repeat split node dividing all façades into floors. Upon selecting two of the

floors the system proposes the .Floor:middle query which the user selects (Figure 7.10b).

Yet again, the user instantiates a repeat split node to divide all middle floors into tiles.

Next, the user selects three of the odd indexed tiles (Figure 7.10c) to which the system

245

proposes the .WindowTile:odd query. After selecting such query, the user creates an offset

node creating a shape for the window. Similarly, the user selects two of the even indexed

tiles, selects the .WindowTile:even proposed query and creates another offset node to create

a smaller window (Figure 7.10d). After selecting a few windows, the system suggests the

.Window query which is selected by the user (Figure 7.10e). A new offset node creates the

glass and window frames. After selecting two of the window frames the system proposes

the #WindowFrame which the user selects to, posteriorly, create an extrusion node (Figure

7.10f). A rendering of the building modelled up to this point is presented in Figure 7.13.

Some other examples of selections that the user could have performed during the mod-

elling session are presented in Figure 7.12.

Note that the user is always able to select and operate on shapes regardless of what op-

eration was responsible for its generation, decoupling the geometry from the procedural

rules.

7.2.2 Usability

To evaluate the usability of this method, seven users (three of which expert users in proce-

dural modelling) were introduced to the prototype. These users, all with a computer sci-

ence background, have used procedural modelling in industry and research settings. In a

first step, the users watched a video introducing the methodology and explaining the inter-

action with the prototype, followed by a short discussion where they were allowed to clarify

246

Figure 7.13: Example of a building created with the selection-action paradigm.

any doubts. They were then asked to use the prototype. For this, the users had to follow

a small script detailing the operations they had to take and, as a final step, were allowed to

experiment freely with the prototype.

Posteriorly, they filled a short questionnaire (Appendix A) on their impressions regard-

ing the methodology and the prototype, followed by a short discussion. This consisted in a

series of questions in a Likert scale ranging from 1 (a mostly negative opinion) to 7 (mostly

247

positive opinion). In Figure 7.14a we show the results for the questions aimed at evaluating

the concept of semantic queries, the queries generated by the inference system, the impact

such system has in the procedural modelling process and how the methodology impacted

the whole creation process.

Figure 7.14a shows how the users evaluated the concept of semantic query regarding its

interest, usefulness and whether they think it allows original models to be created within a

procedural modelling framework.

The users were also asked to rank the generated queries in terms of their adequacy within

the modelling context (i.e., if they matched the user’s intention) and usefulness (i.e., if they

were useful during the specific task). The questionnaire also measured if the generated

queries were easy to understand. This is shown in Figure 7.14b.

Regarding the value of having a selection inference system within a procedural modelling

framework, the users were asked to provide their opinion on whether they think such sys-

tem allowed a faster, simpler and more intuitive creation of models. These results can be

seen in Figure 7.14c.

Finally, the users were also asked about how they felt about the proposed methodology

for procedural modelling in general and if it allows the creation of models more expressively

and more creatively. Knowing if the users felt that this methodology required a greater level

of mental effort was also considered an interesting question. These results are illustrated in

248

(a) (b)

(c) (d)

Figure 7.14: Summary of some answers to the user evaluation questionnaire. Values are in a Likert scale where higher

values mean amore positive user opinion for a parameter.

Figure 7.14d.

As can be seen, the users evaluated the methodology with a neutral or positive value (i.e.,

having an average value equal or above 4) in almost all the parameters. The single exception

is the mental effort parameter which has an average value of 3.57. This means that the users

were required a higher mental effort to use the methodology. Nonetheless, it is also possible

for the mental effort to be reduced after being exposed to this methodology for a longer

time. More research into understanding whether this is the case and improving this issue is

required.

249

During the informal discussion most of the users mentioned that the queries were very

powerful and allowed to express selections (and, therefore, perform actions upon them)

that were extremely difficult using current procedural modelling methodologies. Moreover,

some users stated that they felt the methodology made procedural modelling more accessi-

ble and easier, especially for users that are not experienced with this type of modelling.

On the other hand, users commented on the lack of visual cues to help on the creation

of the queries. Therefore, the users tended to express that they had to make a great mental

effort in order to understand the structure of the shape tree and know which symbols, tags

and filters were available. Some users noted and suggested that an auto-complete system

could help the user refine the queries by issuing partial queries and limiting the next query

components. Another suggestion was to implement a shape inspector, which would help

visualize the symbols and tags of a given set of selected shapes.

One of the users expressed concerns over the volatility of hierarchical relations when

new rules are created which can, potentially, break queries in existing rules. It is possible,

however, to argue that this is an issue that is innate to many types of systems (not only in

computer graphics but in other fields) and that some systems are more robust than others.

Shape grammars, for example, present a similar drawback whereas node-based systems, due

to the explicit links between nodes, are less volatile to changes. This is, indeed, a point that

requires further research.

250

7.2.3 Selection Examples

To showcase the expressiveness of the semantic selections Figure 7.15 shows some examples

on a simple building (top left).

The second image on the top row illustrates how even (or odd) floors can be selected

within this building with a simple query (#Floor:even), combining the Floor tag and even

filter. The use of tags allows an extra layer of semantic information as different façades may

have different symbols for the floors.

The following image shows the same principles being applied to columns of windows

in all façades by using the .WindowTile:odd query. Note that the middle column of win-

dows is not selected as it doesn’t have theWindowTile symbol. The fourth image chains

these two queries using a children hierarchical relation, resulting in the selection of all odd

windows in all even floors.

The first image in the second row illustrates the selection of all windows in the façade

facing east with the .Facade:east > #Window query. In this case, the descendants hierarchical

relation was used. In contrast to a previous example, theWindow tag was used to select all

types of windows (ground floor, middle column and remaining windows).

Next it is shown how all frames are selected using the Frame tag and the final two images

select the frames surrounding all windows (#Window ∼ #Frame) and the door (#Door ∼

#Frame) respectively. To achieve this the siblings hierarchical relation was used.

251

Figure 7.15: Examples of semantic selections over a simple building.

7.2.4 Comparison to existing methods

To evaluate the selection-action paradigm it was also compared with other procedural mod-

elling methodologies, more specifically with the one used by CityEngine [Esr14] and also

presented by Patow [Pat12]. Therefore, to achieve the building in Figure 7.16 both method-

ologies were used and the total number of atomic operations and the time an experienced

user took to obtain such result were retrieved.

By using this methodology the user created the selection-action tree represented in Fig-

ure 7.17a, accounting for a total of 20 atomic operations. Using the presented system the

user took 18 minutes. Using the visual shape-grammar language the user created the graph

represented in Figure 7.17b, which has 25 atomic operations. This approach took roughly 25

minutes of user modelling time.

252

Figure 7.16: Building used to compare traditional methodologies with the one presented here.

(a) (b)

Figure 7.17: Comparison between this methodology (a) and the one presented in [Pat12](b) to generate themodel in

Figure 7.16.

253

In the graph representation (as well as in shape grammars) the user is sometimes forced

to create different rules that create similar structures to account for different derivation

paths. For example, both Subdiv_Facades and Subdiv_Front_Facade rules in Figure 7.17b

produce the division of a façade into ground floor, middle floors and top floor. However,

since the user wants to model the front façade differently, only the latter rule is further de-

tailed.

On the other hand, the selection-action paradigm only requires a single operation to

create this division. In this case, the Split operation with the #Facade query. Actually, it is

possible to detail the front façade separately with the queries starting with .FrontFacade.

This difference in operation is the main responsible for the reduction in number of atomic

operations.

Moreover, shape grammars do not easily accommodate for changes introduced based

on a query. Although it is possible to run a selection inference algorithm in any shape tree,

grammars do not possess enough flexibility to directly allow the creation of rules with the

result of the inference. Indeed, it would be necessary to visit each rule that generates any of

the selected shapes and modify it to reflect the user intention.

Consider, for example a shape grammar rule that creates floors in a façade as shown in

the following listing.

1 Facade → split(y) { 1 : Floor }*

254

At this point, if the user selected even floors to detail differently, the inference system

might generate the .Floor:even query. To reflect the results of such selection in the grammar,

the Facade rule would have to be changed as shown in the following extract.

1 Facade → split(y) {
2 1 : EvenFloor |
3 1 : OddFloor
4 }*

Considering hierarchical queries implies more complex changes in the rule base. For ex-

ample, the .Facade:north > .Floor:evenwould have to modify, not only the rules responsi-

ble for generating the Floor shape, but also those that generate the Facade shapes.

1 BuildingVolume → comp(faces){
2 north : NorthFacade |
3 all : Facade
4 }

These are simple examples but it is trivial to imagine that, as the model evolves and more

queries are applied, the complexity of the rules can become unmanageable, creating un-

necessary difficulties in modifying existing rules. The solution is the selection-action tree,

255

where operations are directly applied to the selected shapes.

This way, the number of rules is kept to manageable level and are executed in a specific

order that the user understands and can inspect visually.

7.2.5 User Selection Inference

To evaluate the inference system synthetic user selections were obtained from sampling

some shapes selected by pre-defined queries. It is assumed that these queries represent the

user’s final intention and that the sampled shapes represent a possible user selection. The

queries generated by the system were compared to the original query, retrieving statistics

related to the scores and a difference metric.

The difference metric δ(q1, q2) is given by the Levenshtein distance [Lev66] between the

original query and a query generated by the inference system. The purpose of this metric is

to evaluate how close to the original query the candidates become by calculating the string

editing distance between two queries. Although the system may consider queries differ-

ent from the original it is still possible that it generates a query that selects the same set of

shapes as the original. This metric allows to detect these situations.

Therefore, the evaluation starts by issuing a query, representing the user intention, over

exemplar shape trees. Fifty percent of the resulting selected shapes are sampled (represent-

ing the user selection) which are passed onto the selection inference process. For each itera-

tion of the genetic algorithm, we collect a set of the 20 queries that have the best score.

256

Six metrics are calculated based on this set: the minimum, maximum and average score

and the minimum, maximum and average difference towards the original query. For each

example this process was repeated three times averaging the metrics.

Results are demonstrated with two common scenarios: the first is the case of selecting

even façade tiles in each even floor in a very simplistic model (given by the .Floor:even >

.WindowTile:even query), while the second selects all windows in the first floor in a more

complex model (given by the .FriezedFloor:first > .Window query).

In the first example, Figure 7.18a shows the synthetic user selection in yellow and the

resulting selection of the best query generated by the system (in yellow and green). It is

possible to see that from four selected shapes, the system was capable of generating a query

that matched the intention.

Figure 7.18b shows the evolution of the minimum, maximum and average scores of the

20 best candidates as the genetic algorithm progresses through 100 iterations. Similarly, Fig-

ure 7.18c shows how the minimum, maximum and average difference value (δ) for the same

candidates evolve. Note that, from the first iteration there are already candidate queries that

select some user shapes.

In this case, the best query at the first iteration was the .WindowTile with a score of 0.41.

There is also a decrease in the difference metric throughout the iterations, showing that

the selection inference tends to produce candidates closer to the simulated user intention.

257

In fact, the difference metric reaches a value of zero (meaning that the .Floor:even > .Win-

dowTile:evenwas found) at the 32nd iteration, although the system reports the best query to

be :first > .Floor:even > :evenwith a score of 0.77. This is explained by the fact that differ-

ent queries might result in the same selected shapes. The third row in Table 7.1 shows that

the resulting best candidate for this example was .Floor:even > .Tile:even:middle.

Having a large discrepancy between the maximum and minimum difference values while

the maximum score value is high is a good indicator that the system was able to find several

queries that closely match the user selection.

Likewise, the bottom row of Figure 7.18 shows the score and difference metrics of the sec-

ond example. Although it is a more complex model which has a larger shape tree, it is pos-

sible to see that the selection inference was capable of generating a query that corresponds

exactly to the user intention (as seen on the sixth row in Table 7.1). Figure 7.18d shows the

user selection in yellow and the results of applying the best query in yellow and green.

Table 7.1 summarizes some results of the user selection inference system. TheOriginal

row refers to the query used to simulate the user intention, Best refers to the best candidate

found through all iterations,Avg. Time refers to the average time per iteration, theMax

Score andMin Difference correspond to the best score and minimum difference between a

candidate query and the original query. TheAvg. Time,Max Score andMin Difference are

averaged by the number of times the process was run (i.e., three).

258

(a) (b) (c)

(d) (e) (f)

Figure 7.18: In the left column, for a given user selection (shown in yellow) the system generates a query that selects

the shapes shown in yellow and green. For each of the examples, the centre column shows the evolution of the best

score and the right column shows the evolution of the differencemetric (δ) between the synthetic and the best candi-
date queries.

Although the selection inference system takes some time to run through each iteration

(up to 6 seconds), making it less suitable for an interactive application, note that in most

cases the system produces good results in a fraction of these iterations. Reasons for such a

long delay include the fact that finding the set of shapes that match a query requires travers-

ing (possibly several times) most of the shape tree. In general, the processing time of queries

varies in proportion to the number of selectors as it requires more traversals of the shape

tree. As the inference system generates queries that are more adapted to the user selection,

they tend to rely more on hierarchical relations and, therefore, the time to run an iteration

tends to increase during the inference run. Nonetheless, caching hierarchical results should

259

Av
g.

T
im

e(
s/
ite

r)

M
ax

sc
or

e

M
in

D
iff

er
en

ce

Original .WindowTile 0.35 0.77 0Best .WindowTile
Original .Floor:even > .WindowTile:even 0.64 0.774 0Best .Floor:even / :even
Original .WindowTile:even 2.4 0.74 0Best .WindowTile:even
Original .WindowTile:middle:north 0.22 0.66 9.00Best .Facade / :north > .WindowTile:middle
Original .Floor:even > .WindowTile:north:odd 0.32 0.63 14.33Best :north > .Floor:even > .WindowTile
Original .FriezedFloor:first > #Glass 5.61 0.69 6.67Best .MiddleFloors > :first > #Glass

Table 7.1: Results of the user selection inferencemechanism for some queries.

largely optimize this process.

It is important to mention that genetic algorithms always have the possibility of gener-

ating better candidates given enough time. The implemented solution is to run the infer-

ence process on the background and incrementally present new results until the user either

selects a candidate or cancels the process, thus reducing the need of an early termination

criterion because this process does not block the user from continuing the creation once a

suitable candidate is found.

The selection inference score function (Equation 5.19) is also sensitive to the number of

shapes the user has selected for a given intention. If the user selects more shapes that are

260

matched by a particular query, the system produces good candidates in a shorter amount of

time.

The score for the same query also varies as a function of the number of user selected

shapes as the score function is designed to penalize queries that select shapes other than

those selected by the user. This is a side effect of trying to solve a problem with incomplete

information.

Figure 7.19 shows the evolution of the maximum score for different sampling factors

of the shapes selected by the .Floor:even > .WindowTile:north:odd query. Although all

the best queries generated select exactly the same set of shapes, they are given different

scores. The best query generated when only ten percent of the shapes were sampled was

:even:north / .WindowTile:odd with a score of 0.45. When fifty percent of shapes were

selected the system generated the :north / .Floor:even > :odd query with a score of 0.68. Fi-

nally, when all the shapes are selected, the system presented the .BuildingVolume > :even:north

/ .WindowTile:odd as the best query with a score of 1.

These results demonstrate the flexibility of the selection inference mechanism and present

an avenue of research to improve the interactiveness of procedural modelling systems by al-

lowing more direct control.

261

Figure 7.19: Score variation when 10%, 50% and 100% of the shapes are sampled.

7.3 Sketch Based Procedural Modelling

It is utterly important to evaluate the overall contribution of this thesis in an overall way.

This is reflected on the sketch based procedural modelling methodology as it relies on the

previous contribution of generalized selections and user selection inference.

Being an interactive system, its evaluation calls for an user evaluation as it was done in

the previous section. Such evaluation aims at understanding the advantages or disadvan-

tages of integrating procedural modelling with sketch based interfaces for modelling and

unfold new avenues for future work.

262

7.3.1 Methodology

To perform this user evaluation, a set of 8 users were asked to participate in a user evalu-

ation study. This study consisted of three stages: an initial questionnaire for user char-

acterisation; a video describing the methodology and associated prototype with a second

questionnaire to collect the users’ initial opinions on the methodology; finally, users exper-

imented with the prototype followed by a third questionnaire on the final opinions on the

methodology.

In the first stage, users were asked to fill a short questionnaire which aimed to charac-

terise each user regarding their professional background and their experience with tradi-

tional modelling and procedural modelling. The users were also asked to provide their

opinions on the procedural modelling tools they had previously used. Furthermore, this

questionnaire also aimed at understanding what was typically the workflow during the early

stages of modelling, i.e., if the users usually created some sort of concept art that guided

them through the rest of the modelling process and what sort of tools were used in this pro-

cess.

After watching a brief video explaining the sketch based methodology, the selection-

action paradigm and the selection inference in some detail, the users were asked to fill a sec-

ond questionnaire. This time, the goal of the questionnaire was to collect the user’s opinion

about the presented methodology in terms of its perceived usefulness and perceived com-

263

parison with other procedural modelling tools. Because some users didn’t have previous

experience with procedural modelling methodologies, some questions were optional as it

would be impossible for the users to provide any sort of accurate answer.

The third stage in the user evaluation started by having the users perform three mod-

elling tasks with the prototype. Users were provided a script which guided them through to

the completion of the first two tasks, whereas in the third task they were asked to freely use

the prototype to model an example building model.

During the tasks execution some evaluation metrics were retrieved which can be cate-

gorised whether as user-dependant or system-dependant. The former groups metrics such

as the number of times the user didn’t understand a given concept or made some sort of

mistake, while the latter contains metrics relating to the number of times the system did not

perform as intended.

Users were, then, asked to fill a third and final questionnaire that aimed at collecting the

user’s opinions about the prototype and the implemented methodology. This question-

naire contained a subset of the previous one which allows to compare the perceived versus

effective usefulness of this methodology. Moreover, by asking the same questions before

and after the user had a chance to experiment with the prototype also helped minimise the

impact of possible implementation issues in the results. Similar to the previous question-

naire, some questions were optional for users with no procedural modelling background.

264

7.3.2 User Characterisation

As previously mentioned, eight users participated in the user evaluation for this prototype.

In this set of users, five had a software engineering background while the remaining 3 were

designers. The questionnaire used can be found in Appendix B. It is also important to men-

tion the fact that three of the users reported not having any sort of previous procedural

modelling experience. Figure 7.20 illustrates the answers given by users with regards to their

traditional and procedural modelling experience. Therefore, in this analysis the users were

divided into two groups. Group PM for users with procedural modelling experience and

groupNPM for users with no procedural modelling experience.

Figure 7.20: User experience with traditional and procedural modelling tools.

265

To obtain a better understanding of how the users felt regarding procedural modelling

tools, the ones with previous experience in such methods were asked about their opinion

about the features, interaction and expressiveness of such tools. These results are shown in

Figure 7.21 in a scale ranging between a value of 1 (Horrible) and 7 (Great). Regarding the

provided features and the general opinion, the users tended to answer either 4 or 5 denoting

a slightly positive opinion. The users’ opinion was more divided with respect to the means

of interaction and the expressiveness current procedural modelling tools offer.

Figure 7.21: Users’ opinion about procedural modelling tools.

A single user answered that such tools offered a high level of expressiveness (answering

with a value of 6). To be noted, this user reported a high level of experience in procedural

266

(a) (b)

Figure 7.22: User’s opinions regarding traditional (left) and procedural modelling tools (right)

modelling (with a value of 6). On the other hand, the single user that replied that such tools

offer a low level of expressiveness also reported a general lack of experience with procedural

modelling (answering with a value of 2). This can be an indication that procedural mod-

elling tools have a steep learning curve.

The users were also asked about their opinion regarding the capabilities of both tradi-

tional and procedural modelling methods in terms of whether such techniques are accessi-

ble to the user (i.e., easy to use), allow users to easily create concept art, rapidly explore new

ideas, whether they are able to create detailed geometry and if they are expressive enough to

convey the user’s ideas. Figure 7.22a shows the results for traditional tools for all the users.

Regarding the users opinions about procedural modelling tools the results in Figure

7.22b show the answers provided by users with experience in such methods as these were

the only ones capable of responding.

From the results, it is possible to observe that users reported that procedural modelling

267

tools are less accessible to the end user than traditional tools. This is expected as current

procedural methodologies often require more knowledge of the underlying paradigm and

require that users think about a sequence of rules to apply to the geometry. Regarding cre-

ating concept art, users reported that the capabilities of both traditional and procedural

tools were similar with a value of 3.6 for the former and 3.4 for the latter.

On the capability of exploring new ideas users reported that traditional tools were better

equipped (with an average value of 4.1) than procedural tools (with an average value of 3.8).

This comes as unexpected since procedural modelling can create more variations by simply

changing the parameters. This should present as an advantage over traditional tools as cre-

ating variations of a model using such tools requires more complex manipulations over the

model.

Unsurprisingly, users reported that traditional tools allowed to create more detailed ge-

ometry than procedural tools and, on the other hand, that the former allowed for a greater

level of expressiveness when comparing with the latter. This demonstrates one of the well-

known drawbacks of procedural modelling which tends to create more repetitive models.

It was also deemed important to understand what tools users tend to employ in the early

stages of modelling. Therefore, the initial questionnaire presented a question to clarify

whether the users employed the modelling program itself, pencil and paper or any sort

of drawing program to obtain digital versions of drawn concept art. These results are pre-

268

sented in Figure 7.23 which shows the averages for all users, for users of a software engineer-

ing background and those reported as designers.

Figure 7.23: Tools used in early stages of modelling.

The results clearly show a discrepancy between the usage of paper and pencil and draw-

ing programs between software engineers and designers where the former tended to use

such tools more rarely and the latter more often.

Users were also asked about their opinion on the purpose of concept art in the early

stages of modelling with regards on whether they used concept art to gain a better under-

standing of the scene being modelled and whether it allowed users to rapidly explore new

ideas. Regarding the conversion from concept art to final models, users were asked if they

269

believed that this was a straightforward process and whether it represented a bottleneck in

the modelling workflow. Figure 7.24 shows the average results for these questions for users

with and without procedural modelling experience.

Figure 7.24: Concept art in themodelling process.

Both types of users generally agreed that concept art in the early stages of modelling is

rather useful for understanding the scene to be modelled and that it allowed a quick explo-

ration of new ideas. The opinions differed with respect to the process of converting con-

cept art into final 3D models. Users with no procedural modelling experience generally felt

that it was a more straightforward process with a low bottleneck in the modelling workflow

than users with procedural modelling experience. This is rather surprising as the conver-

270

sion between concept drawings and final 3D models has been described as a bottleneck, for

which sketch based interfaces for modelling presented a solution [Ols+09].

7.3.3 Initial Opinions Regarding the Methodology and Prototype

After being presented with a short video describing the entire methodology and the proto-

type interaction, users were asked to fill a second questionnaire (found in Appendix C) that

aimed at collecting the perceived interest and usefulness regarding the methodology as well

as an early comparison with traditional and procedural modelling tools.

The second questionnaire asked the participants their opinion regarding the presented

methodology interest, originality and usefulness towards procedural modelling of build-

ings. The results for these three questions are presented in Figure 7.25 for both users with

and without procedural modelling experience.

Although the results were positive in this regard, there is clear distinction between both

types of users where the ones with procedural modelling experience seem to favour the pre-

sented approach. More specifically, users with no prior experience in procedural modelling

felt that the methodology was not as useful as users with experience in such techniques. A

possible explanation for this discrepancy is the fact that users in the PM group have a more

clear understanding of the drawbacks in procedural modelling and could more easily accept

the approach presented in this thesis as an improvement. On the other hand, users in the

NPM group are used to modelling capabilities in traditional modelling tools which offer

271

Figure 7.25: Early opinions about the presentedmethodology.

an enormous amount of expressiveness which procedural modelling tools cannot offer and

regarded this as a drawback in the methodology.

To understand how the users felt about the prototype adequacy to building modelling,

the users were asked their opinion about whether the presented methodology was familiar,

adequate and sufficient to effectively create 3D models of buildings. The results for these

questions are presented in Firgure 7.26.

Yet again, there is a clear discrepancy between the PM andNPM groups, especially in

how the users felt regarding the familiarity of the methodology. Whereas users in the PM

group reported a high score (an average value of 5.8) in this parameter, users in theNPM

272

Figure 7.26: Adequacy of themethodology to buildingmodelling

group reported an average negative value of 3.3. This can, trivially, be explained by the fact

users in theNPM group do not possess enough knowledge about procedural modelling

methodologies and prefer to use traditional modelling tools.

Before being allowed to experiment with the prototype, the users were asked their opin-

ion about the presented sketching interaction regarding their perception about its ease of

use, intuitiveness and completion. These results are summarised in Figure 7.27.

To this end, it is possible to observe that users in the PM group believed that the sketch-

ing interface was easier to used and more complete than users in theNPM group. The

inverse applies to the intuitiveness of the sketching interface. In general, the users reported

273

Figure 7.27: The prototype’s sketching interaction.

a neutral or negative score for the intuitiveness and completion of the sketching interface.

This indicates that more research should be put towards improving these aspects.

The participants in the PM group were asked to compare (based on the video) several

aspects of the presented methodology with current procedural modelling tools. The first set

of questions aimed at gathering the general opinion about the capabilities of both method-

ologies. Users were asked if they felt the presented methodology was easier to understand,

more adequate, more intuitive than current procedural modelling methods. They were also

asked if they believe the presented methodology improves the general modelling workflow

and if such workflow is more pleasant. These results are shown in Figure 7.28.

274

Figure 7.28: Comparison with current procedural modelling tools regarding their capabilities.

Results show slightly positive scores for the first three questions with average values of

4.2, 4.8 and 4.6 respectively. On the other hand, results for the last two questions had a bet-

ter average score (5.6 and 5.8 respectively) showing that users felt that the presented method-

ology improves the modelling workflow and provides a more pleasant modelling experience

than other procedural modelling tools.

The second set of questions aimed at gathering data on how the users felt regarding the

capabilities of the prototype when it comes to the expressiveness, mental effort and creativ-

ity of the prototype compared with other procedural modelling tools. The results for the

users in the PM group are shown in Figure 7.29.

275

Figure 7.29: User opinion about model creation capabilities of the prototype when compared to other procedural

modelling tools.

Results show that these users perceived a slight improvement on the expressiveness and

creativity over other procedural modelling tools with average scores of 5.0 in both cases.

With an average score of 4.4, the users also reported that the mental effort was slightly less

when using the prototype when compared to other tools.

The participants with procedural modelling experience were also asked about their per-

ception on what advantages the sketching interface would bring to the procedural mod-

elling workflow in terms of whether it allowed users to be more creative, required less knowl-

edge of procedural modelling methodologies and if it allowed a greater focus on the cre-

ative workflow instead of having to think about the set of rules that would generate a given

276

building. The results for this set of answers are presented in Figure 7.30.

Figure 7.30: Opinions regarding the benefits the sketching interface brings for procedural modelling.

With average values of 5.0, 5.6 and 5.0 for each of these questions respectively, the users

reported an increase in all aspects, especially when it comes to reducing the knowledge

about procedural methodologies required from users. This represents a greatly desired ad-

vantage as it could help the broader acceptance of procedural methodologies by any kind of

users.

Finally, all participating users were asked about their general opinion regarding the pre-

sented prototype based solely on the video. These questions aimed at understanding if the

users perceived the prototype as easy to use, if it was stimulating or frustrating to use and if

277

it was flexible enough for the task of procedural modelling of buildings. These results are

shown in Figure 7.31.

Figure 7.31: Early opinions about the prototype.

The perceived opinion was only slightly positive with average scores of 4.2, 4.8 and 4.4

for users in the PM group and 4.6, 4.3 and 4.0 for users in theNPM group. Again, users

in the PM group seem to have a better acceptance towards the presented methodology.

7.3.4 First task: Sketching Interface for Procedural Modelling

After filling the second questionnaire the users were asked to perform several tasks with

the prototype that implemented this methodology. In the first task users had a script (Ap-

278

pendix D) that guided them through the various steps that lead from the initial state as seen

in Figure 7.32 to the desired outcome as can be seen in Figure 7.33.

The purpose of this task was to assess the sketching interface and the suggested procedu-

ral operations and inferred parameters.

Figure 7.32: Initial state of the first task presented to the users.

All users were able to successfully complete this task with an average time of 12 minutes

and 23 seconds. There were no major differences in the average time taken by users in the

PM andNPM groups.

Within the user-dependant category, the metric where users performed worse was the

number of times users sketched with an incorrect selection with an average value of 1.0.

This would happen whenever the user started a sketch without any shape selected or with

279

Figure 7.33: Desired outcome of the first task presented to the users.

more than one shape selected for drawing. As it stands, the methodology requires the user

to specify a single shape to which sketches will be associated with. This value clearly repre-

sents a drawback of the current methodology. Ideally, the system should be able to infer to

which shape a given sketch is related.

The second most frequent user dependant metric was related with not understanding

or misunderstanding the presented semantic queries with an average value of 0.875. This

metric records how many times the user expressly commented that he or she wasn’t able to

understand the queries or selected a query that wasn’t fit for the present intention.

On the system-dependant metrics, the system didn’t infer the procedural operation pa-

rameters with an average of 1.0 across all participants. This would mostly happen for the

280

offset operation prior to creating the extrusion in the roof where the system would either

create an operation with an offset value that clearly was too big or too small when com-

pared to the user sketch.

7.3.5 Second task: Usage of Guidelines and Support Lines

In this second task, users were also provided with a script (Appendix E) that led them through

to the successful completion of this task, starting with the state shown in Figure 7.34 and re-

sulting in the desired model as shown in Figure 7.35. This task was targeted at evaluating

the support lines and guidelines as an aid in the precise sketching of procedural lines that

would trigger the procedural inference.

Figure 7.34: Initial state of the second task presented to the users.

281

Figure 7.35: Desired outcome of the second task presented to the users.

Once again, all users were able to successfully complete the task with an average time of

12 minutes and 17 seconds without any major differences between both groups of partici-

pants.

In this scenario, the user-dependant metric with the worse performance was the fact that

users had a tendency to double sketch not over a support line (with an average of 0.625

across all users) but over one of the guidelines. This points to the fact that requiring the

user to create a support line from a guideline and posteriorly requiring a double sketch to

promote it to a procedural line may be too cumbersome and repetitive. A solution would

be to allow the double sketch to be performed the guideline directly which would promote

a part of it (e.g., the line segment between two points) to a procedural line to trigger the

procedural inference.

Users also tried to sketch with the wrong sketching mode with an average of 0.375. This

would happen in situations when, for example, the user was supposed to sketch a guideline

282

but the support line mode was active. The lack of visual cues indicating which was the ac-

tive mode may have contributed to this. Ideally, however, the system should be able to infer

these modes from the user sketch itself without requiring any mode switch. Moreover, this

would be more akin to the paper and pencil metaphor.

Finally, the system failed to recognise double sketches (with an average value of 4.375)

and guidelines (with an average value of 3.0). These situations would seem to happen at

random points which seems to point to implementation issues. Apart from being, obvi-

ously, undesirable these situations may have increased the user frustration.

7.3.6 Third task: Modelling an Example Building

The final task was conceived as a stress test in order to have the users freely use the proto-

type and all available tools to reach a final, desired model illustrated in Figure 7.36 starting

from a simple initial building volume. For this task, users did not have access to a script but

merely a text explaining what they were supposed to do (Appendix F).

In this task, the users were also able to accomplish the intended results within an accept-

able range of variation. The average time to complete across all users was 10 minutes and 58

seconds and, once again, no major differences between both types of users.

Within this task the user-dependant metric that showed the worst performance and by

a large margin was, as in the first task, the sketching with the wrong selection with an aver-

age of 2.75. This increase is justified by the lack of a script that would remind the users to

283

Figure 7.36: Desired outcome of the third task presented to the users.

perform the correct selection.

The second worst performant user-dependant metric was not understanding the pre-

sented queries or selecting a wrong query for the current intention with an average of 0.875

across all users. Again, this points to the fact that the semantic queries, albeit enhancing

the procedural modelling expressiveness, seem to be too cumbersome and impose a high

cognitive effort in users.

Also related to the semantic queries, the system failed to provide a valid query for the

current user intention with an average value of 1.125. This would cause the user to repeat

284

the selection multiple times until a valid query was shown.

The second most frequent cause of error in the system-dependant metrics was failing

to provide a valid operation for the given sketch with an average value of 0.875. Again this

meant the user would have to repeat the sketch in hopes of obtaining a valid operation.

7.3.7 User Opinion After Task Completion

After completing all three tasks, the participants were asked to fill a third and final question-

naire (Appendix G) that aimed at gathering the participants final opinions on the method-

ology. This questionnaire also had the purpose of understanding the variation in opinions

after the users had contact with the prototype, minimising potential implementation issues.

The first set of questions in the third questionnaire aimed at providing data regarding

the methodology’s adequacy to building modelling and is in all similar to the one presented

in Figure 7.26. The users were once again asked about the familiarity, adequacy and suf-

ficiency of the methodology for the building modelling tasks. These results are shown in

Figure 7.37.

As it is possible to observe, there has been a significant increase in the reported opinions

in the familiarity and adequacy within theNPM group as the average score for these ques-

tions increased from 3.3 and 5.0 to 4.6 and 5.6 respectively. On the other hand, users in the

PM group reported a reduction in these same parameters with a decrease in these average

scores of 5.8 and 5.6 to 4.8 and 4.8 respectively. Both groups reported a reduction in the

285

Figure 7.37: Participants’ opinions about themethodology after task completion.

sufficient parameter having its average score reduced from 5.0 and 4.3 to 4.4 and 4.0 for the

users in the PM andNPM groups respectively.

The second set of questions was aimed at comparing the users’ opinions regarding the

sketching interaction after having contact with the prototype. As in the previous set, these

questions are identical to the ones presented in Figure 7.27 and asked the users about how

easy, intuitive and complete the sketching interface was in their opinion. The results can be

seen in Figure 7.38.

Users in theNPM group reported an increase in all three parameters with the average

score being increased from 4.6, 4.6 and 3.6 to 5.0, 5.3 and 4.0 in each question respectively.

286

Figure 7.38: Participants’ opinions about the sketching interaction after task completion.

Users in the PM group reported a significant reduction in the Easy to Use parameter with

the average score decreasing from 5.4 to 4.0. On the other hand, these users reported only a

slight increase in the Intuitive parameter with the average score seeing an increase from 4.2

to 4.8 while the Complete parameter saw no variation (average score of 4.4).

The results from the two previous sets of questions show that the contact with the pro-

totype has surpassed the expectations of users without prior contact with procedural mod-

elling tools but, on the other hand, users with such experience might still prefer the current

procedural modelling methodologies.

As in the previous questionnaire, users in the PM group were also asked to compare

287

the presented methodology with current procedural modelling tools within the same set of

parameters. Similarly, the users were asked about the general opinion about the capabilities

of both methodologies. More specifically users were asked about the opinions regarding if

the presented methodology was easier to understand, more adequate and intuitive, whether

it improved the modelling workflow and if the modelling process was more pleasant. As

in previous cases, these questions were only answered by users with procedural modelling

experience. The results of these questions are presented in Figure 7.39.

Figure 7.39: Participants’ general opinions about themethodology when comparedwith other procedural modelling

methods.

As seen in the results, the participants reported an increase in the first two parameters

(Easy to Understand andAdequate) with an increase in average score from 4.2 and 4.8 re-

288

spectively to 5.0 in both cases. The Intuitive and Pleasant parameters saw a decrease from

4.6 and 5.8 to 4.4 and 5.6 respectively. Finally, theModelling Workflow parameter was left

unchanged with an average score of 5.6.

The participants’ opinion on the model creation capabilities of the methodology com-

pared with other procedural modelling methods was also evaluated again in respect to its

expressiveness, mental effort and creativity. These results are shown in Figure 7.40.

Figure 7.40: Participants’ opinions about themodel creation capabilities after task completion.

The results demonstrate a small decrease in Expressiveness and Creativity parameters with

the respective average scores decreasing from 5.0 in both cases to 4.6 and 4.8. TheMental

Effort parameter saw no variation having an average score of 4.4.

289

Regarding the sketching interface and the advantage they bring to procedural modelling

methodologies when compared with other techniques, participants were, again, asked

whether they felt it allowed to be more creative, required less knowledge of the underlying

methodology and if it allowed users to have a greater focus on the creative workflow. The

results for this set of answers are presented in Figure 7.41.

Figure 7.41: Participants’ opinions about the sketching interface after task completion.

In this instance, the participants reported a reduction in all parameters as the results

show a decrease in average scores from 5.0, 5.6 and 5.0 to 4.8, 4.8 and 4.6 for each parame-

ter respectively.

The questionnaire asked the participants to express their opinions regarding the ade-

290

quacy, usefulness and correctness of both the procedural operations the system suggested

after the completion of each user stroke. The same parameters were evaluated for the in-

ferred parameters after the user selected one of the suggested procedural operations. These

results are shown in Figure 7.42.

Figure 7.42: Participants’ opinions about the correctness of the suggested procedural operations and parameters.

These results show overall positive responses in each parameter without any average

score value being below 5.0. The average score values for the suggested procedural opera-

tions are 5.9, 5.9 and 6.1 for theOp - Adequate,Op - Useful andOp - Correct parameters.

Likewise, for the Par - Adequate, Par - Useful and Par - Correct parameters the partici-

pants reported an average score of 5.4, 5.6 and 5.0 respectively.

291

The participants’ opinion regarding the helpfulness, adequacy and ease of use of both

support lines and guidelines has been asked in the third questionnaire. The results are

shown for both the PM andNPM group in Figure 7.43.

Figure 7.43: Participants’ opinions about the usage of support lines and guidelines.

As it is possible to observe, the results indicate a generally positive opinion regarding

these two interaction aids with the exception of the SL - Easy to Use parameter which had

an average score of 4.2 among the PM group and 4.6 among theNPM group. It may be

possible to explain the lower average value for this parameter with the fact that many users

didn’t like the double sketching interaction to promote a support line to a procedural line.

Similar to the second questionnaire (Figure 7.31), users were again asked their general

292

opinion regarding the prototype’s ease of use, whether it was stimulating or frustrating

to use and if it had a desirable level of flexibility. The results for these parameters are illus-

trated in Figure 7.44.

Figure 7.44: Participants’ opinions about the prototype after task completion.

The results show a decrease in all of these parameters with the exception of the Stimulat-

ing for theNPM group which remained at an average score of 4.3. The Easy to use, Stimu-

lating and Flexible parameters for the PM group showed a decrease from an average score

of 4.2, 4.8 and 4.4 to 3.8, 4.2 and 4.0 respectively. Likewise, for theNPM group, the Easy

to use and the Flexible parameters saw a reduction from 4.6 and 4.0 to 4.3 and 2.6 respec-

tively.

293

Finally, the last set of questions in the third questionnaire aimed at gathering data re-

garding the prototype features with respect to its completion, suitability for the procedural

modelling of buildings, whether the proposed interaction was intuitive and if it was easy to

understand overall. These results are summarised in Figure 7.45.

Figure 7.45: Participants’ opinions about the prototype features after task completion.

As it is possible to observe, the participants found the prototype to be suitable for the

task at hand (with an average score of 5.1) and easy to understand (with an average score of

5.0). On the other hand, the participants reported that the prototype did not feel complete

(with an average value of 3.5) and evaluated its intuitiveness with an overall neutral average

score of 4.1.

294

7.3.8 Discussion

After an analysis of all three questionnaires and the tasks participants were asked to per-

form, it is now possible to provide a discussion on the results obtained and draw some con-

clusions.

For all three tasks the average time to complete was similar throughout both the group

of users with procedural modelling experience (PM group) and those without such experi-

ence (NPM group). This is an obvious sign that the presented methodology has extended

the acceptance of procedural modelling methods to users without prior knowledge of

such systems. Although it is possible to argue that the tasks had a script to guide the users

throughout the process, this is not true for the last task where the users were free to use

the prototype’s functionalities as they saw fit. Thus, it is possible to conclude that a sketch

based procedural modelling tool can indeed reduce the (somewhat steep) learning curve of

procedural modelling by shielding away some underlying constructs and techniques.

Users in the PM group also reported that the methodology improves the procedural

modelling workflow, making it more pleasant than with other procedural modelling tools.

The third questionnaire results show that these users believe that the system is also easier to

understand than other procedural systems.

Nonetheless, there are a few drawbacks in the methodology that require more research

and improvement. The over-reliance on semantic queries seems to be posing a burden to

295

users who had difficulties in understanding their meaning and usefulness. The textual rep-

resentation of queries seems to be overly complex for users to successfully make use of it.

Moreover, the selection inference system did not always provide a good enough set of

candidate queries forcing users to retry several selections until the results were satisfactory.

This is consequence of using a non-deterministic algorithm (i.e., genetic algorithms) to

create candidate queries.

The sketching interface also had some drawbacks that may have resulted in increased user

frustration. Requiring the user to perform multiple selections to obtain a query and forcing

the user to select a single shape from the query-selected shapes caused some confusion. The

methodology should be able to infer what shape a given sketch is related to.

In some occasions the procedural operation and parameter inference system failed to

provide adequate suggestions. This is clearly a point to improve in the system, although

users reported a high level of adequacy, usefulness and correctness in the related questions

in the questionnaires.

In architectural settings, guidelines and support lines are useful and adequate as reported

by the participants in the user study. However, there are still improvements to be made in

order to make these tools easier to use, especially the support lines. The main reason for this

is the fact that users tended to double sketch directly over a guideline whereas the methodol-

ogy only accepts such interaction on support lines.

296

Despite all the mentioned drawbacks, the presented methodology seems to be a good

starting point for further research that will be left for future work.

7.4 Summary

This chapter was dedicated to providing an evaluation and discussion of the results of all

contribution in presented in this thesis.

Following the same outline as the rest of this document, this chapter first presented the

evaluation of layered shape grammars. As seen, this contribution improves the expressive-

ness of shape grammars by allowing layers to be defined within planar surfaces which, after

being merged, can create more complex geometry. Furthermore, layers provide a non-linear

workflow by rearranging or conditionally executing only a subset of the layers. This allows

more variations to be produced with less effort. Vectorially defined shapes also allow the

user to create complex geometry that could only be modelled externally and imported into

the modelling workflow as a static asset. Combining both of these contributions allows to

procedurally model buildings with complex layouts such as the Mikimoto Ginza building.

The chapter then presented the evaluation of the selection-action and selection infer-

ence contributions. The usability of such system was evaluated with a user study where

the participants were presented with a video describing the methodology and were asked

to perform a modelling task by following a script. Finally, they had to answer a short ques-

297

tionnaire with their opinions about the methodology. The results showed that this contri-

bution enhanced the procedural modelling workflow and expressiveness but, on the other

hand, queries were not easy to understand and the methodology required a higher level of

mental effort.

The devised user selection inference system was also evaluated. In this case, synthetic

queries simulating possible user intentions were issued over exemplar models and the gen-

erated candidates throughout several iterations were evaluated based on the score and dif-

ference towards the original query. Results have shown that the inference mechanism is

able to infer complex queries based on a few user-selected shapes. In an interactive applica-

tion where several candidate queries are presented to the user, the ideal situation is to have a

high average score and a large variation between the minimum and maximum difference in

queries. This means that the system presents a large range of different queries where most

queries presented will be suitable for the given user intention. Nonetheless, the system cur-

rently takes too long to be useful in an interactive application.

Finally, this chapter presented the user evaluation of the sketch based interface for pro-

cedural modelling which is the main contribution in this thesis. This evaluation was per-

formed as a user study where participants were required to perform three tasks and fill sev-

eral questionnaires. Users were divided into two groups depending on their experience

with procedural modelling. After analysing the results it was observed that participants in

298

both groups were able to finish all tasks within a similar average time despite their prior

experience with procedural modelling methods. Therefore, it is possible to say that sketch-

ing interfaces can increase the acceptance of procedural tools by users with no knowledge

of these techniques since it seems to have reduced the learning curve. Results have also

shown that the sketching interface improves the procedural modelling workflow and makes

it more pleasant.

Nonetheless, the sketching interface still requires more research to be conducted as there

were a number of drawbacks. Usage of queries seems to be a culprit in the user frustration

with the system as several users reported not understanding or choosing the wrong query

for the given intention. The procedural operation and parameter inference system some-

times failed to provide good candidates for a given sketch requiring the user to repeat the

sketch entirely. Finally, some improvements in the sketching workflow should be explored

to make the system more intuitive and easier to use. This is the case of requiring the user to

perform multiple types of selection before starting to sketch and requiring the existence of

support lines before performing a double sketch to trigger the procedural operation infer-

ence system.

299

300

8
Conclusions and Future Work

This chapter presents, in a first instance, future avenues of research as well as ideas consid-

ered as worth of being given more exploration in the area of sketch based procedural mod-

elling of buildings. These have as basis the contributions presented in this thesis. Such is

the case of, among others, using layers to enable an interactive procedural modelling of

buildings, the integration of layers within the selection action paradigm presented in Chap-

301

ter 5 and using user drawn lines to define vectorial shapes within layers to enhance the ex-

pressiveness of procedural modelling methods.

The chapter ends with the conclusions of the document, noting the most important con-

tributions and results obtained during this work alongside some final remarks and notes.

8.1 Research Questions

This section aims at answering the research questions posed in the beginning of this doc-

ument in Section 1.2 based on the results demonstrated in this chapter. It is a fundamen-

tal step as it allows drawing conclusions about the proposed contributions in any research

work.

Each subsection aims at answering each research question separately.

8.1.1 How can procedural modelling methods be improved to provide enough

expressiveness to be better paired with sketch interfaces?

As seen in Section 1.5.2, one of the problems in the currently most accepted procedural

modelling methods is that they often only provide geometric operations that are based on

split lines and planes. This causes the resulting geometry to be mainly rectangular or cuboid

and shape configurations that resemble a grid pattern. On the other hand, sketch based in-

terfaces provide an interface that allows users to create geometry that is almost free-form.

This, evidently, is a mismatch in terms of expressiveness between procedural modelling and

302

sketch based interfaces for modelling.

To elevate the expressiveness of procedural modelling methods to be more comparable to

that of sketching interfaces, this thesis proposed extending shape grammars with layers and

shapes that are vectorially defined. One of the advantages being that it allows the creation

of more complex shapes that weren’t created via a split operation directly within the proce-

dural modelling tool, whereas current methods would require such shapes to be externally

modelled and imported.

The other advantage present in layered shape grammars is that layers follow a represen-

tation that is more akin to how humans perceive façades [Zha+13]. In the context of sketch

based procedural modelling of buildings this can be considered an advantage as users will

typically start with the broad building structure and patterns and, posteriorly, add more

detail on top of the geometry that is already present.

This is reflected on the fact that users can define patterns for, e.g., a façade such as the

layout for its windows and then create new structures that break such pattern such as a bal-

cony or ornament that spans multiple floors. The rules that define these two sets of geom-

etry can be inserted into different independent layers which are merged to create the final

geometry. In turn, the final merged shapes can have complex geometries as they are pro-

duced with boolean operations between multiple shapes. Layers also provide a non-linear

workflow allowing the users to explore more variations by toggling the generation of the

303

geometry for a given layer on or off, or setting its parameters independently.

Although the vectorially defined operations haven’t been implemented in the proposed

sketching interface, it is trivial to consider it as a possibility as there are methods that can

convert an arbitrary user sketch to a vectorial form. This can then be inserted into the

procedural modelling rule to allow the user to create more complex shapes. Layers can

also be implemented in the sketch based procedural modelling system by reusing the layer

paradigm usually found in many 2D editing software. The user would start by creating a

layer within a planar shape similarly to how layers are created in canvases in image editing

programs. Procedural rules would be created on the layer that is currently selected. These

two contributions have been left for future work, but it is assumed that devising a method-

ology for their integration is rather straightforward.

8.1.2 What is required from a procedural modelling method to improve the

amount of direct control a user can have over the generated models?

One of the issues with current procedural modelling methods is the lack of direct control

as identified in Subsection 1.5.1. Often, the only way users have to define the final look of

a building is to modify the rule base, adding, removing or parametrising rules which is

achieved in an area in the user interface that is distinct from where the model is displayed.

Hence, lacking any sort of direct control as there is a visual disconnection between what the

user can manipulate and the resulting geometry.

304

An issue that contributes to this problem is the user selection ambiguity as described

in 1.5.3. One of the main components that allow a greater direct control is the ability to

select exactly the geometries that are to be modified. In procedural modelling this is not a

trivial problem to solve since, on the one hand, the same set of user selected shapes can have

multiple meanings and, on the other hand, it is required that the operations performed on

such shapes are persisted even if some procedural rules and parameters or its parameters

change.

The work presented in this thesis tries to condense most of the interaction necessary to

model a building into the user interface element where the generated building is indeed vi-

sualized and, therefore, users must be able to select what shapes are to be modified. To this

end, semantic queries were presented in Chapter 5 which allow for a user selection inference

system to be created. The user must simply select a subset of shapes that express the inten-

tion and the system will infer the query that provides the best match to the intention. The

only interaction that is disconnected from the building model is in choosing the query that

best fits the user intention.

A solution to increase the amount of direct control a user can have over generated mod-

els is, thus, to provide a query based approach to procedural modelling. This can be com-

bined with a more interactive way to specify procedural rules which, in this case, are sketch

based interfaces for modelling.

305

Such interfaces also have the added benefit of increasing the direct control in procedu-

ral modelling methods in two distinct ways. First, they allow specifying the operation to

be performed directly in the building model by sketching the intended final result and, sec-

ondly, they also implicitly provide the parameters for such operation. For example, the

extrusion operation can be specified by drawing orthogonal lines from a shape’s vertex and

the extrusion amount is implicitly defined as the average length of such lines. Once again,

the only interaction that is not performed directly on the building model is in selecting one

of the procedural operations suggested by the system.

8.1.3 How can semantics present in procedural modelling rules be used in a

sketch based procedural modelling system?

This research question is deeply tied to the previous as the answer to both relies on the se-

mantic queries presented in Chapter 5.

One of the by-products of procedural modelling, especially in shape grammars, is the

concept of a shape tree where shapes that are output by a procedural operation are inserted

as children of the shape that was given as input to such operation. Moreover, shapes in

shape trees can carry semantic information explicitly under the form of symbols and tags

and implicitly as hierarchical relations. Such semantic information has barely been explored

in the context of procedural modelling.

The contributions presented in Chapter 5 are fundamental to allow the sketch based

306

procedural modelling system as detailed in Chapter 6. In a sketch based system, as in many

other interactive modelling approaches, specifying the geometry that is to be modified is

crucial. However, while in traditional modelling tools this is easily achieved by means of

selecting geometries (e.g., via point and click) the same is not true for procedural modelling.

The data amplification in procedural modelling methodologies allows the generation of

vast amounts of geometries from a small set of rules. This, however, also implies that a set

of selected shapes may not be valid if any of the parameters in the procedural rules change

and, therefore, defining the geometries to be modified becomes highly ambiguous.

As seen, the semantic queries presented in Chapter 5 can be used to overcome this prob-

lem which is a necessary step to provide the direct control required in a sketch based proce-

dural modelling system.

Other usages can be envisioned such as using the implicitly and explicitly defined seman-

tics in a procedural model to predict what sort of elements (e.g., windows, ornaments) a

user may be intending to draw given the currently selected shapes. This is, however, left for

future work.

8.1.4 How can a sketch based interface for modelling be used in the proce-

dural modelling of buildings?

The answer to this research question lies heavily in Chapter 6 where this thesis presented

the contributions towards a sketch based procedural modelling system for buildings.

307

As seen, and as in every other sketch based modelling approaches it is extremely impor-

tant to allow the user to directly select the geometries or shapes which are to be manipu-

lated. This is usually the first step in an interactive system which, however, does not have a

trivial solution in the context of procedural modelling. To this end, the chosen solution was

to rely on the contributions of Chapter 5 to allow the user to specify the shapes to be mod-

ified. Nonetheless, any other approach that is able to unambiguously be used to the same

end could be employed instead.

In a procedural modelling system, once the user is capable of defining unambiguously

the set of shapes to be modified, it is then possible for the user to specify the operations to

perform, which in a sketch based interface is achieved by sketching. As seen in Chapter 3

some sketch based modelling systems provide iconic sketches to be performed which are

posteriorly translated to actions.

While it would be possible to define a similar paradigm for procedural modelling sys-

tems since there is only a well-defined set of atomic operations that can be performed at

any given moment, it would require the user to memorise the iconic sketch representation

for every operation. It was deemed as a better approach to provide a means for the user to

sketch the intended final geometry for a given procedural operation on the geometry. It is

the system’s responsibility to take the user’s sketches and transform them into procedural

operations and parameters that closely match the user’s intention and insert such rules into

308

the rule base.

Moreover, using formal drawing techniques such as analytical drawing has as great im-

pact in the way sketch based interfaces can be used in the procedural modelling of buildings.

Being tailored for man-made objects these techniques allow a precise definition of rules

and parameters that exactly match the intention behind the user sketch, with the benefit of

avoiding the need of resorting to other parts of the user interface. The user is, thus, able to

define all the required rules within the sketching interface.

8.1.5 How can procedural modelling rules and parameters be defined through

sketch based interfaces for modelling?

As seen in Chapter 6, it is possible to use sketch based interfaces to define rules and parame-

ters for the procedural modelling of buildings. The approach presented in this thesis relies

on a multi-stage pipeline that processes the user’s sketch from the initial screen space stroke

to the generation of a parametrised procedural modelling rule.

The first stage in such pipeline is to segment a screen space stroke into multiple line seg-

ments by using speed and curvature metrics. Each line segment is individually processed to

find its final position and characteristics within the 3D scene. For a given selected shape, the

system generates a family of lines for each type of available procedural operation and com-

pares each line projected to screen coordinates with the user line segment. The most similar

line becomes the final 3D space line and is inserted into the scene.

309

Once all user line segments are converted to 3D lines, the procedural operation inference

system is triggered. The system resorts to a set of heuristics that filter off some impossible

procedural operations for the current configuration of lines and produces a set of candidate

operations with estimated parameter values. Each candidate is then passed onto the gradi-

ent descent method which will adjust the parameters to closely match the user provided

lines. Finally, the candidates are presented to the user who will select the best match for the

current needs.

8.1.6 Can a sketch based interface for modelling improve the workflow of

methods for procedural modelling of buildings?

As the results have shown, the participants in the sketch based procedural modelling user

evaluation (Section 7.3) that had experience with procedural modelling tools reported an in-

crease in the modelling workflow when compared with other similar tools (Figure 7.28 and

Figure 7.39). The same set of users also reported an increase of creativity, expressiveness and

focus on the creative process when compared with other procedural modelling tools (Figure

7.40 and Figure 7.41). On the other hand, the participants in the user study reported that

the prototype was not easy to use, not flexible enough and not stimulating enough (Figure

7.44).

It is then possible to conclude that sketch based interfaces for modelling can improve

the workflow of procedural modelling methods but that the presented approach is still

310

not enough to achieve this. One of the identified main reasons is that the semantic queries

to achieve the actionable shape selection is too cumbersome for some users, requiring too

much mental effort to keep in mind the shape tree configuration. Moreover, the repetitive

cycle of selecting shapes, choosing a useful candidate query from the presented ones and se-

lecting a single shape on which to sketch seems to be a source of confusion and frustration

when using the methodology. Implementation issues that caused sketches to be wrongly in-

terpreted (either for procedural operations or guidelines and support lines) may have biased

these results negatively.

Therefore, there is still a great amount of work to be done prior to considering the pre-

sented methodology completely useful as a full sketch based procedural modelling system.

Nonetheless, it seems to be a solid starting point.

8.1.7 How can a sketch based interface for modelling enhance the expressive-

ness and direct control of procedural methods?

In the presented methodology, users are able to directly select the shapes that they wish to

modify. The system is responsible for extrapolating the selection into a semantic definition

that is adaptable to variations of the base model. This has been an open problem in proce-

dural modelling of buildings that has prevented more interactive methods to be devised to

which this thesis has presented a possible solution.

Moreover, by being able to partially sketch the aspect of the intended final geometry

311

directly within existing geometry, the amount of times the user has to divert the attention

to other parts of the user interface is reduced. Both these contributions have increased the

amount of direct control the user has over the procedural modelling process.

On the other hand, the selection-action approach as described in Chapter 5 (and neces-

sary in the sketch based methodology) also has the side effect of increasing the expressive-

ness of procedural methods by allowing the user to specify complex selections that are not

only based on symbols and geometry flow but through implicit and explicit semantics. It

becomes possible to easily detail different parts of the geometry given their hierarchical, geo-

metrical and semantic attributes in a way that is not coupled with the execution of previous

procedural rules, which is something that is observable in shape grammars and node-based

approaches.

Another factor that increases the expressiveness of this type of systems is the (hypothe-

sised) integration of the sketch based interfaces with a layered and vectorial based approach

to procedural modelling of buildings such as presented in Chapter 4. Layers allow a greater

number of variations to be created with a small effort while vectorially defined shapes

within the layers can be used to produce more complex shapes that are not easy to achieve

with current procedural methods alone. This brings the expressiveness level of procedural

methods closer to the ones observable in sketch based interfaces for modelling.

312

8.2 Future Work

It is often desirable that any research work raises new questions which, in turn, open new

lines of exploration within or outside its own field. During the development of this thesis

several new avenues were identified and this section intends to briefly explain some of the

possible future contributions.

Some of the items described here represent future work that directly stem from the work

that was undertaken, while others are merely integrations between the presented contribu-

tions that have the potential to further enhance the flexibility of a sketch based methodol-

ogy for procedural modelling of buildings.

8.2.1 Interactive Procedural Modelling with Layers

A consequence of extending shape grammars to include layers and vectorially defined shapes

is that it is possible to construct shape grammars in a way that allows some level of interac-

tive procedural modelling through drag-and-drop operations. This section presents a the-

oretical framework that exploits layered shape grammars for the purpose of increasing the

interactivity of procedural modelling of buildings.

The main idea lies in the usage of a given pattern of rules and the manipulation of their

parameters to simulate an architectural element which is able to being dragged within a

planar shape. Therefore, this pattern makes use of the layers and segment operations as seen

313

in Listing 8.1.

1 Planar → layers("Layer1", "Layer2", ..., "LayerN")
2 {Layer1, Layer2, ..., LayerN}
3 LayerN → segment("x", left, width, ~1)
4 {ε, VTileN, ε}
5 VTileN → segment("y", bottom, height, ~1)
6 {ε, PayloadN, ε}

Listing 8.1: Layered shape grammar for interactive procedural modelling

This listing defines a Planar rule which represents the planar shape to which interac-

tive architectural elements are added. As seen, this procedural item is decomposed in layers

(Layer1 through LayerN) which are further segmented horizontally and then vertically

as given by the rules LayerN and VTileN. The PayloadN represents the architectural ele-

ment to be inserted into the planar shape.

This pattern acts as a wrapper for a set of rules that generate architectural elements which

can be placed and sized within the planar shape interactively, taking into account the re-

maining elements present. This is similar to the use of the layers in image editing tools.

Consider, for example, the façade in Figure 8.1, where a door is partially occluding a reg-

ular grid of windows. Using layered shape grammars, such façade could easily be decom-

posed into three distinct layers. The bottom-most layer would include the background

shape and lateral frames, the middle layer would define the regular grid of windows and,

314

Figure 8.1: An example façadewhere the door is partially occluding a grid of windows.

finally, the top-most layer would generate the door. The derivation algorithm would cor-

rectly handle the occlusions. The layered shape grammar that would generate such façade is

given in Listing 8.2.1.

1 Facade → layers("Background", "Windows", "Door")
2 {Background, Windows, Door}
3 Background → . . .
4 Windows → segment("x", windowsleft, windowswidth, ~1)
5 {ε, WindowsVTile, ε}
6 WindowsVTile → segment("y", windowsbottom, windowsheight, ~1)
7 {ε, WindowsGrid, ε}
8 Door → segment("x", doorleft, doorwidth, ~1)
9 {ε, DoorVTileN, ε}
10 DoorVTileN → segment("y", doorbottom, doorheight, ~1)
11 {ε, DoorElement, ε}

315

It is easily visible that theWindows andDoor sub-grammars follow the same pattern as

the one in Listing 8.1 and, therefore, it is possible to define the InteractiveLayer template

that is expanded into the pattern in Listing 8.2.

1 InteractiveLayer(Name, Payload, bottom, left, width, height):
2 Name → segment("x", left, width, ~1)
3 {ε, Name+"VTile", ε}
4 Name+"VTile" → segment("y", bottom, height, ~1)
5 {ε, Payload, ε}

Listing 8.2: Template replacement

The shape grammar in Listing 8.2.1 can then be defined as in Listing 8.3 and its decompo-

sition into layers can be seen in Figure 8.2. It is possible to observe that the placement of the

payload architectural elements within a 2D scene is given by four parameters: bottom, left,

width and height, all present in the InteractiveLayer template. In this image, theWindows

Position is defined as (windowsleft,windowsbottom) andDoor Position as (doorleft, doorbottom).

1 Facade → layers("Background", "Windows", "Door")
2 {Background, Windows, Door}
3 InteractiveLayer(Windows, WindowsGrid, windowsbottom, windowsleft,

windowswidth, windowsheight)
4 InteractiveLayer(Door, DoorElement, doorbottom, doorleft, doorwidth, doorheight)
5 Background → . . .

Listing 8.3: Decomposition into layers using the InteractiveLayer template.

316

Figure 8.2: Schematic decomposition into layers of the shape grammar in Listing 8.3.

As such, it becomes simple to define interactive operations that make use of the tem-

plate to modify the layered shape grammars to reflect the user intention by simply manip-

ulating these four parameters. Such operations can be defined as a function that takes an

InteractiveLayerl and output a modified InteractiveLayerl′ as defined in Equation 8.1.

InteractiveOperation : InteractiveLayer→ InteractiveLayer

l′ = InteractiveOperation(l)
(8.1)

For example, it is possible to define the drag operation to translate a given payload by a

given amount as defined in Equation 8.2.

317

drag(l, δb, δl) = InteractiveLayer(l.Name, l.Payload, l.bottom+δb, l.left+δl, l.width, l.height)

(8.2)

Similarly, the resize operation could be defined as in Equation 8.3.

drag(l, δw, δh) = InteractiveLayer(l.Name, l.Payload, l.bottom, l.left, l.width+δw, l.height+δh)

(8.3)

Several more operations could be defined that would perform more complex operations

with interactive layers such as those in the following list.

• same_size: Given two InteractiveLayerl1 and l2 set the size of l2 to be equal to l1’s size.

• align: Given two InteractiveLayerl1, l2 and an edge parameter (top, bottom, left,
right) align the respective edge of l2 to l1’s edge.

• center: Given two InteractiveLayerl1, l2 and a axis parameter (vertical, horizontal)
center l2 vertically or horizontally to l1.

These operations can be found in most diagram and image editing software and are,

therefore, proven to be helpful in interactive scenarios. It could also further enhance the

318

user creativity within a sketch based procedural modelling system as it would allow achiev-

ing more variations with less effort.

A hypothetical interactive system could then expose these operations to the user directly

within the resulting 3D model in such a way that the user could have direct control over

the positioning and size of such InteractiveLayerand their payloads. A similar approach

has been presented by Jesus et al. [JCS15] but to a smaller extent. An example of the drag

operation has already been seen in Figure 1.2.

Since this is currently a theoretical framework, it is not possible to extrapolate the useful-

ness of such operations into the domain of procedural modelling of buildings. Future work

should be put into developing such methodology and further evaluate whether interactive

procedural modelling would benefit from it.

8.2.2 Integration of Layers in the Selection Action Paradigm

As it currently stands, there is no integration between the sketching interface with the lay-

ered shape grammars approach as described in Chapter 4. The main issue that prevented

such integration is that it is not clearly evident when the normalisation step would take

place in the selection action paradigm and how the system would infer it from user sketches.

Ideally, the normalisation should happen automatically instead of requiring the user to

create a normalisation procedural operation, relieving the user from such burden.

Given that the scheduling policy of procedural operations in the selection-action paradigm

319

is a depth first traversal of the tree which contrasts with the procedural derivation mecha-

nism of layered shape grammars which is based on a priority queue, some sort of hybrid

mechanism could be the solution to this issue. This is, therefore, a problem closely related

with the scheduling of procedural operations.

Once such integration is achieved, layers (and potentially the drag-and-drop mechanism

described in Section 8.2.1) would be available to the sketch interface to make use of. This,

however, raises the problem of how layers could be handled by the sketching interface

alone, without resorting to use other parts of the interface. Nonetheless, it is a concept that

most users are familiar with from image editing software.

The sketching interaction would, additionally, benefit from such integration since it

would allow the user to sketch complex shapes that would be defined vectorially and seam-

lessly merged with other geometries, further increasing the expressiveness of such system.

8.3 Conclusions

Procedural modelling has acquired a place of great importance in Computer Graphics ap-

plications. It allows the creation of vast amounts of content with only a fraction of effort

that would, otherwise, be required with traditional modelling tools where every element re-

quires individual hand modelling. The impacts are, thus, extremely significative when there

is a need to create a large number of 3D models.

320

This is the case of urban environments which typically have a lot of distinct elements

(e.g., buildings, roads, urban furniture). In turn, each of such elements has its own individ-

ual characteristics packed with fine detail that further increase its uniqueness. Even though

two buildings are designed by an architect to be exactly alike, in practice there will always

be subtle differences, stemming from differences in construction, weathering or even im-

proper use, that will give each building a unique look.

Modelling every single different urban element manually involves a great amount of

effort and, thus, content creators have shifted, whenever possible, to tools that allow the

rapid creation of models. Here, enters procedural modelling, which generates models from

a set of parametrised rules. Varying such parameters yields slightly different models and, if

we consider randomness, it is possible to create a (possibly) infinite number of distinct mod-

els. Modelling the slight differences between the two buildings described above has become

somewhat simpler.

However, the content creator still has to create the rules to generate the models which,

unfortunately, is not always simple. The currently most accepted forms of urban proce-

dural modelling are the shape grammars and node based approaches which require an in-

depth knowledge of procedural modelling methods. In the case of shape grammars this is

further aggravated by the fact that the user must define the rules in a text based form that

resembles a programming language.

321

Both shape grammars and node based approaches have the issue of incurring in a define-

generate-analyse cycle which breaks the creative process, reduces the direct control over the

models and gives the user only a small amount of visual feedback of what has changed be-

tween generations. Moreover, the definition of rules is not coupled with the visual repre-

sentation of the models themselves. The user has to create the rules using auxiliary inter-

faces and visualize the results in the model viewer.

On the other hand, the content creator is, likely, of an artistic background (e.g., designer

or architect) and this type of users are, most likely, proficient in drawing. The natural pro-

cess in these situations is, usually, to first create concept drawings to obtain a clearer idea of

how the final result should look and, then, to actually create the model (or procedural rules)

in a modelling software. This clearly introduces a bottleneck. Bridging the gap between

concept works and the final 3D model has always been one of the main purposes of sketch

based interfaces for modelling. This thesis aimed at achieving the same results within the

realm of procedural modelling of buildings.

Nonetheless, it was evident that the current, most accepted techniques for this purpose

were not expressive enough. On the one hand, sketching allows to conceive all possible (and

even impossible) shapes. On the other hand, procedural modelling which is currently over-

reliant on split operations tend to restrict the generated shapes to rectangles or cuboids.

More complex shapes need to be created elsewhere and imported as an asset into the mod-

322

elling workflow.

Therefore, the first contribution within this thesis tried to enhance the expressiveness of

shape grammars by allowing vectorially defined, arbitrary 2D shapes to be defined within

faces of procedural models. This can be used to create arched windows, doors or more elab-

orate ornaments within façades for example. Such shapes are defined in layers within the

faces which are posteriorly merged to create the final 3D geometry, taking into considera-

tion and solving possible geometry conflicts between the vectorial shapes.

A sketching based interface is a deeply interactive metaphor where the user is constantly

modifying the present model. To be able to precisely specify to which architectural ele-

ments a given change is to be applied, the user must somehow select parts of the model.

While on traditional and sketch based modelling software the selection is exact and unam-

biguous (i.e., the selection is precisely what the user specified), in a procedural modelling

methodology a selection can have multiple meanings. Due to the data amplification nature

of these methods, a few selected floors can reflect the user intention of selecting the exact

set of floors, all floors or some other superset of the selection. Moreover, the selection must

remain valid throughout changes to the rule base.

Therefore, the second contribution in this thesis introduces a selection mechanism for

procedural modelling of buildings that relies on semantic queries. This creates an interme-

diary level between the user intention and the final selection that adapts to rule changes

323

(as long as the semantics remain the same) and allow the user to describe to what shapes

modifications should be applied. However, manually creating the queries can easily be-

come a burden to which this thesis presents a selection inference system based on genetic

algorithms. The user must simply select a subset of shapes he or she wants to select and the

system presents several candidate queries that try to match the intention.

With the capability of specifying which shapes will be affected by an operation, the user

can then sketch on the selected shapes and have the procedural rules created by the system.

This brings us to the third contribution in this thesis. Laying its foundations on the previ-

ous contributions and the already extensive and highly studied field of Sketch Based Inter-

faces for Modelling, this thesis presents a procedural modelling sketching system.

Here, the user sketches are compared in screen space to candidate lines obtained directly

from existing procedural operations. The candidate line that best matches the user sketch

is introduced in the 3D scene, allowing the user to continue sketching from another view

point. On each new line, the system runs a set of heuristics that produce candidate proce-

dural operations, estimating its parameters based on the current set of 3D lines. Each can-

didate is then fed to a parameter adjustment step which, with a gradient descent algorithm,

will minimise the difference between the edges of the candidate generated geometry and the

current set of 3D lines. The candidates with the lower difference are presented from which

the user can choose.

324

Upon evaluating all the above contributions, results have shown that the possibility of

defining layers in faces of procedural models which may contain vectorially defined 2D

shapes increases the expressiveness of procedural modelling methods that rely on split op-

erations. This has been demonstrated by constructing buildings with arched elements, and

windows that overlap split lines showing the capability of creating irregular patterns that do

not follow grid pattern. Comparing with regular shape grammars it’s evident that this is an

improvement. This, however also comes with the limitation that elements can too easily be-

come unaligned, something that is much harder to happen using split methods alone. On

the other hand, if the designer intends to create misalignments in the architecture this can

be achieved easily.

The selection action paradigm has also demonstrated improvements over current archi-

tectural procedural modelling techniques when describing to which elements the proce-

dural operations should be applied. The queries provide a mechanism with which users

can precisely specify combinations of shapes that would be extremely difficult with, e.g.,

shape grammars. The selection inference subsystem has also proven to correctly infer the

user intention given a small number of user selected shapes. Nonetheless, given its imple-

mentation under a genetic algorithm, it can produce different sets of candidate queries be-

tween different runs and requires some time to produce reasonable candidates. More effort

should be put towards researching alternative implementations for the same goal. Machine

325

learning and artificial intelligence methods should prove to be useful.

The sketching interface for procedural modelling of buildings has been evaluated with a

set of eight users. The participants were grouped into two distinct groups based on whether

they had previous contact with procedural modelling methodologies. They were asked to

complete three tasks, two of which had a script guiding them to the completion while in

the last they were allowed to freely use the prototype to model an exemplar building, and

fill three questionnaires reporting their opinion about the methodology. Results show

that participants in both groups were able to complete the tasks with a similar average time,

which leads to the conclusion that the sketch based interface is able to reduce the learning

curve of procedural modelling of buildings.

Participants with prior procedural modelling experience also reported an improvement

in the modelling workflow when compared with regular procedural modelling techniques

and that the sketching interface made the modelling process more pleasant. Nonetheless,

there are a few drawbacks in the sketching interface which are tied with the over-reliance on

the semantic queries as users reported that these were too cumbersome and complex to be

easily usable. Moreover, users were required to perform repetitive actions that contributed

to the user frustration. Examples of these are the multiple selections to obtain a valid se-

mantic query and, posteriorly, selecting a single shape on which to sketch.

The integration of procedural modelling methods for urban environments with a sketch

326

based interface appears to enhance the intuitiveness of the former while aiming to minimise

the disruption to the creative process. Nonetheless, procedural methods require an im-

provement over its expressive power in order to be better paired with sketching interfaces.

This thesis aimed to create such a bridge and, although more work is required in order to

have a complete sketch based procedural modelling system, the results seem to confirm that

this can be a solid starting point.

327

328

A
Semantic Selections in Procedural

Modelling

1. Expertise with 3D Modelling

1 2 3 4 5 6 7
None 2 2 2 2 2 2 2 Expert

329

2. Which 3D modelling tools have you used?

3. Expertise with Procedural Modelling

1 2 3 4 5 6 7
None 2 2 2 2 2 2 2 Expert

4. Which Procedural Modelling tool have you used?

Semantic Queries

5. I found the ideas behind the semantic queries

6.

330

1 2 3 4 5 6 7
Uninteresting 2 2 2 2 2 2 2 Very Interesting

7.

1 2 3 4 5 6 7
Common 2 2 2 2 2 2 2 Original

8.

1 2 3 4 5 6 7
Not Useful 2 2 2 2 2 2 2 Very Useful

9. I found the node tree

10.
1 2 3 4 5 6 7

Difficult to under-

stand

2 2 2 2 2 2 2 Easy to under-

stand

11.

1 2 3 4 5 6 7
Not intuitive 2 2 2 2 2 2 2 Intuitive

12.

1 2 3 4 5 6 7
Not Useful 2 2 2 2 2 2 2 Very Useful

13. I found the procedural rule application order

331

14.

1 2 3 4 5 6 7
Not Intuitive 2 2 2 2 2 2 2 Intuitive

15.

1 2 3 4 5 6 7
Not Useful 2 2 2 2 2 2 2 Useful

Comparison to other procedural modelling tools

16. I found the prototype to be

17.
1 2 3 4 5 6 7

More difficult to

understand

2 2 2 2 2 2 2 Easier to under-

stand

18.

1 2 3 4 5 6 7
Less adequate 2 2 2 2 2 2 2 More adequate

19. I found that the prototype allowed me to create models

20.

1 2 3 4 5 6 7
Less expressively 2 2 2 2 2 2 2 More expressively

332

21.
1 2 3 4 5 6 7

With less thought 2 2 2 2 2 2 2 Had to think

more

22.

1 2 3 4 5 6 7
Less creatively 2 2 2 2 2 2 2 More creatively

The Semantic Query Inference

23. The generated queries were

24.

1 2 3 4 5 6 7
Inadequate 2 2 2 2 2 2 2 Adequate

25.
1 2 3 4 5 6 7

Difficult to under-

stand

2 2 2 2 2 2 2 Easy to under-

stand

26.

1 2 3 4 5 6 7
Not useful 2 2 2 2 2 2 2 Useful

27. The ordering in which the queries were presented was

333

28.

1 2 3 4 5 6 7
Not useful 2 2 2 2 2 2 2 Useful

29.

1 2 3 4 5 6 7
Not as expected 2 2 2 2 2 2 2 As expected

30.

1 2 3 4 5 6 7
Not helpful 2 2 2 2 2 2 2 Helpful

31. The selection inference, in general, made the procedural modelling process

32.

1 2 3 4 5 6 7
Slower 2 2 2 2 2 2 2 Faster

33.

1 2 3 4 5 6 7
More complex 2 2 2 2 2 2 2 Simpler

34.

1 2 3 4 5 6 7
Less intuitive 2 2 2 2 2 2 2 More intuitive

334

The Prototype

35. The prototype in general was

36.

1 2 3 4 5 6 7
Not easy to use 2 2 2 2 2 2 2 Easy to use

37.

1 2 3 4 5 6 7
Frustrating 2 2 2 2 2 2 2 Stimulating

38.

1 2 3 4 5 6 7
Rigid 2 2 2 2 2 2 2 Flexible

39. Regarding the prototype features

40.

1 2 3 4 5 6 7
Incomplete 2 2 2 2 2 2 2 Complete

41.

1 2 3 4 5 6 7
Not suitable 2 2 2 2 2 2 2 Suitable

42.

335

1 2 3 4 5 6 7
Not intuitive 2 2 2 2 2 2 2 Intuitive

43.
1 2 3 4 5 6 7

Hard to Under-

stand

2 2 2 2 2 2 2 Easy to Under-

stand

Suggestions and Critics

44. Please leave any suggestions or critics here

336

B
Sketch Based Interaction for Procedural

Modelling: Initial Questionnaire

User Characterisation

1. User ID

337

2. Professional Area

3. Expertise with 3D Modelling
1 2 3 4 5 6 7

None 2 2 2 2 2 2 2 Expert

4. Which 3D modelling tools have you used?

5. Expertise with Procedural Modelling
1 2 3 4 5 6 7

None 2 2 2 2 2 2 2 Expert

6. Which Procedural Modelling tools have you used?

What is your opinion regarding the procedural modelling tools you have used

7. Features

338

1 2 3 4 5 6 7
Horrible 2 2 2 2 2 2 2 Great

8. Interaction
1 2 3 4 5 6 7

Horrible 2 2 2 2 2 2 2 Great

9. Expressiveness
1 2 3 4 5 6 7

Horrible 2 2 2 2 2 2 2 Great

10. General Opinion
1 2 3 4 5 6 7

Horrible 2 2 2 2 2 2 2 Great

Early Stages of Modelling

In the early stages of modelling I use

11. The modelling program itself
1 2 3 4 5 6 7

Never 2 2 2 2 2 2 2 Always

12. Paper and Pencil
1 2 3 4 5 6 7

Never 2 2 2 2 2 2 2 Always

13. Drawing Programs
1 2 3 4 5 6 7

Never 2 2 2 2 2 2 2 Always

339

I believe concept drawings are useful for

14. Having a better understanding of the final scene
1 2 3 4 5 6 7

Strongly Disagree 2 2 2 2 2 2 2 Strongly Agree

15. Rapidly exploring new ideas
1 2 3 4 5 6 7

Strongly Disagree 2 2 2 2 2 2 2 Strongly Agree

I believe creating a 3D model from concept drawings

16. Is very straight forward
1 2 3 4 5 6 7

Strongly Disagree 2 2 2 2 2 2 2 Strongly Agree

17. Is a bottleneck on the modelling process
1 2 3 4 5 6 7

Strongly Disagree 2 2 2 2 2 2 2 Strongly Agree

I believe traditional modelling tools

18. Are, in general
1 2 3 4 5 6 7

Extremely hard to

use

2 2 2 2 2 2 2 Extremely easy to

use

19. Are easy to use in the creation of concept art
1 2 3 4 5 6 7

Strongly Disagree 2 2 2 2 2 2 2 Strongly Agree

340

20. Allow me to easily explore new ideas
1 2 3 4 5 6 7

Strongly Disagree 2 2 2 2 2 2 2 Strongly Agree

21. Allow me to create detailed geometry
1 2 3 4 5 6 7

Strongly Disagree 2 2 2 2 2 2 2 Strongly Agree

22. Are expressive enough to convey my ideas
1 2 3 4 5 6 7

Strongly Disagree 2 2 2 2 2 2 2 Strongly Agree

I believe procedural modelling tools

23. Are, in general
1 2 3 4 5 6 7

Extremely hard to

use

2 2 2 2 2 2 2 Extremely easy to

use

24. Are easy to use in the creation of concept art
1 2 3 4 5 6 7

Strongly Disagree 2 2 2 2 2 2 2 Strongly Agree

25. Allow me to easily explore new ideas
1 2 3 4 5 6 7

Strongly Disagree 2 2 2 2 2 2 2 Strongly Agree

26. Allow me to create detailed geometry
1 2 3 4 5 6 7

Strongly Disagree 2 2 2 2 2 2 2 Strongly Agree

341

27. Are expressive enough to convey my ideas
1 2 3 4 5 6 7

Strongly Disagree 2 2 2 2 2 2 2 Strongly Agree

342

C
Sketch Based Interaction for Procedural

Modelling: Questionnaire After Prototype

Presentation

1. User ID

343

Regarding the methodology

I found the ideas behind the methodology

2.
1 2 3 4 5 6 7

Uninteresting 2 2 2 2 2 2 2 Very Interesting

3.
1 2 3 4 5 6 7

Ordinary 2 2 2 2 2 2 2 Original

4.
1 2 3 4 5 6 7

Useless 2 2 2 2 2 2 2 Useful

With respect to building modelling, I found the methodology to be

5.
1 2 3 4 5 6 7

Unfamiliar 2 2 2 2 2 2 2 Familiar

6.
1 2 3 4 5 6 7

Inadequate 2 2 2 2 2 2 2 Adequate

7.
1 2 3 4 5 6 7

Insufficient 2 2 2 2 2 2 2 Sufficient

344

I found that the sketching interaction seemed

8.
1 2 3 4 5 6 7

Hard to use 2 2 2 2 2 2 2 Easy to use

9.
1 2 3 4 5 6 7

Unintuitive 2 2 2 2 2 2 2 Intuitive

10.
1 2 3 4 5 6 7

Incomplete 2 2 2 2 2 2 2 Complete

Comparing with regular procedural modelling methods

I believe the prototype to be

11.
1 2 3 4 5 6 7

More difficult to

understand

2 2 2 2 2 2 2 Easier to under-

stand

12.
1 2 3 4 5 6 7

Less adequate 2 2 2 2 2 2 2 More adequate

13.
1 2 3 4 5 6 7

Less intuitive 2 2 2 2 2 2 2 More intuitive

345

I believe that the prototype allows to create models

14.
1 2 3 4 5 6 7

Less Expressively 2 2 2 2 2 2 2 More Expressively

15.
1 2 3 4 5 6 7

With more

thought

2 2 2 2 2 2 2 With less thought

16.
1 2 3 4 5 6 7

Less Creatively 2 2 2 2 2 2 2 More Creatively

I believe the sketching interface allows to

17. Be more creative
1 2 3 4 5 6 7

Strongly Disagree 2 2 2 2 2 2 2 Strongly Agree

18. Think less about the procedural modelling rules
1 2 3 4 5 6 7

Strongly Disagree 2 2 2 2 2 2 2 Strongly Agree

19. Focus on the creative process
1 2 3 4 5 6 7

Strongly Agree 2 2 2 2 2 2 2 Strongly Disagree

346

In general, I believe the methodology

20. Improves the procedural modelling workflow.
1 2 3 4 5 6 7

Strongly Disagree 2 2 2 2 2 2 2 Strongly Agree

21. Makes the modelling process more pleasant.
1 2 3 4 5 6 7

Strongly Disagree 2 2 2 2 2 2 2 Strongly Agree

The prototype

The prototype in general seems

22.
1 2 3 4 5 6 7

Hard to use 2 2 2 2 2 2 2 Easy to use

23.
1 2 3 4 5 6 7

Frustrating 2 2 2 2 2 2 2 Stimulating

24.
1 2 3 4 5 6 7

Rigid 2 2 2 2 2 2 2 Flexible

347

348

D
Sketch Based Interaction for Procedural

Modelling: Task 1

In this first task you will model a simple building with a grid façade similar to the one in Fig-

ure D.1. To do this you will use the selection inference the sketching interface as described

in the video. This script will guide you through the steps required. You are free to ”think

aloud” through the process and ask questions as you go.

Steps

When the task starts you will see the prototype in a state similar to the one in Figure E.2.

349

Figure D.1

Figure D.2

1.Select both visible façades.

2.In the menu that appears, select the .Facade or a similar query and press enter.

3.Select one of the façades.

350

4.In the selected façade draw two lines for the first and last floors.

5.In the menu that appears, select the Split along Y option and press enter.

6.In the node parameters set the symbol for the middle split to CenterFloors.

7.Press generate.

8.Select the shape corresponding to the middle floors.

9.In the menu that appears select the .CenterFloors query.

10.Draw a consecutive series of equally spaced horizontal lines to represent the middle

floors.

11.In the menu that appears select the Repeat split along Y.

12.In the node parameters set the floors symbol to Floor.

13.Press generate.

14.Select a few floors.

15.In the menu that appears select the .Floor or similar query.

16.In one of the selected floors draw a consecutive series of equally spaced vertical lines to

represent blocks of windows.

17.In the menu that appears select the Repeat split along X.

18.In the node parameters set the window block symbol toWindowBlock.

19.Press generate.

20.Select the roof shape.

21.In the menu that appears select the .Roof query.

22.Draw another concentric rectangle in the roof shape.

23.In the menu that appears select theOffset option and press enter.

24.In the node parameters set the inner shape symbol to RoofInner.

351

25.Select the roof inner shape.

26.In the menu that appears select the .RoofInner or similar query and press enter.

27.Draw a vertical line upwards from one of the selected shape’s inner vertices.

28.In the menu that appears select the Extrude by option and press enter.

352

E
Sketch Based Interaction for Procedural

Modelling: Task2

In the second task you will use the guidelines and scaffolding lines to help define more pre-

cise sizes. The final result should be similar to the one in Figure E.1. You are free to ”think

aloud” through the process and ask questions as you go.

Steps

When the task starts you will see the prototype in a state similar to the one in Figure E.2.

1.Select the roof shape.

353

Figure E.1

Figure E.2

2.In the menu that appears, select the .Roof or a similar query and press enter.

3.Click on theGuidelines button on the top.

4.From one of the vertices of a split line on one of the façades draw a line through the roof

shape to create a guideline.

5.Do the same for the other split line in the same façade.

6.Click on the Scaffold button on the top.

354

7.Use the guidelines to create two split lines in the roof.

8.Double sketch over each of the split lines.

9.In the menu that appears select the Split along ... option and press enter.

10.In the node parameters set the symbol for the middle split to Split1.

11.Press generate.

12.Select the Split1 shape.

13.In the menu that appears select the .Split1 query.

14.Click on theGuidelines button on the top.

15.Similar to the first façade, create a guideline for each split line in the other façade.

16.Click on the Scaffold button on the top.

17.Use the guidelines to create two split lines in the roof.

18.Double sketch over each of the split lines.

19.In the menu that appears select the Split along... option and press enter.

20.In the node parameters set the symbol for the middle split to Split2.

21.Select the Split2 shape.

22.In the menu that appears select the Split2 query.

23.Draw a vertical line upwards from one of the vertices of the Split2 shape.

24.In the menu that appears select the Extrude by option and press enter.

355

356

F
Sketch Based Interaction for Procedural

Modelling: Task 3

In the third and task you will freely use the prototype in order to create a building similar to

the one in F.1. Again, you are free to ”think aloud” through the process and ask questions

as you go. As a side note, the initial building volume with which you will be presented is a

36 units wide, 25 units deep and 15 units tall.

357

Figure F.1

358

G
Sketch Based Interaction for Procedural

Modelling: Questionnaire After

Experimenting with the Prototype

1. User ID

359

Regarding the methodology

With respect to building modelling, I found the methodology to be

2.
1 2 3 4 5 6 7

Unfamiliar 2 2 2 2 2 2 2 Familiar

3.
1 2 3 4 5 6 7

Inadequate 2 2 2 2 2 2 2 Adequate

4.
1 2 3 4 5 6 7

Insufficient 2 2 2 2 2 2 2 Sufficient

The Sketching Interface

I found that the sketching interaction was

5.
1 2 3 4 5 6 7

Hard to use 2 2 2 2 2 2 2 Easy to use

6.
1 2 3 4 5 6 7

Unintuitive 2 2 2 2 2 2 2 Intuitive

7.

360

1 2 3 4 5 6 7
Incomplete 2 2 2 2 2 2 2 Complete

I found that the support lines were

8.
1 2 3 4 5 6 7

Not helpful 2 2 2 2 2 2 2 Helpful

9.
1 2 3 4 5 6 7

Inadequate 2 2 2 2 2 2 2 Adequate

10.
1 2 3 4 5 6 7

Hard to use 2 2 2 2 2 2 2 Easy to use

I found that the guidelines were

11.
1 2 3 4 5 6 7

Not helpful 2 2 2 2 2 2 2 Helpful

12.
1 2 3 4 5 6 7

Inadequate 2 2 2 2 2 2 2 Adequate

13.
1 2 3 4 5 6 7

Hard to use 2 2 2 2 2 2 2 Easy to use

361

I found that the procedural operations the system suggested were

14.
1 2 3 4 5 6 7

Not Adequate 2 2 2 2 2 2 2 Adequate

15.
1 2 3 4 5 6 7

Not useful 2 2 2 2 2 2 2 Useful

16.
1 2 3 4 5 6 7

Incorrect 2 2 2 2 2 2 2 Correct

I found that the inferred parameters in the procedural operations were

17.
1 2 3 4 5 6 7

Not Adequate 2 2 2 2 2 2 2 Adequate

18.
1 2 3 4 5 6 7

Not useful 2 2 2 2 2 2 2 Useful

19.
1 2 3 4 5 6 7

Incorrect 2 2 2 2 2 2 2 Correct

362

Comparing with regular procedural modelling methods

I found the prototype to be

20.
1 2 3 4 5 6 7

More difficult to

understand

2 2 2 2 2 2 2 Easier to under-

stand

21.
1 2 3 4 5 6 7

Less adequate 2 2 2 2 2 2 2 More adequate

22.
1 2 3 4 5 6 7

Less intuitive 2 2 2 2 2 2 2 More intuitive

23.
1 2 3 4 5 6 7

More frustrating 2 2 2 2 2 2 2 Less frustrating

I found that the prototype allowed me to create models

24.
1 2 3 4 5 6 7

Less Expressively 2 2 2 2 2 2 2 More Expressively

25.
1 2 3 4 5 6 7

With more

thought

2 2 2 2 2 2 2 With less thought

363

26.
1 2 3 4 5 6 7

Less Creatively 2 2 2 2 2 2 2 More Creatively

The sketching interface allowed me to

27. Be more creative
1 2 3 4 5 6 7

Strongly Disagree 2 2 2 2 2 2 2 Strongly Agree

28. Think less about the procedural modelling rules
1 2 3 4 5 6 7

Strongly Disagree 2 2 2 2 2 2 2 Strongly Agree

29. Focus on the creative process
1 2 3 4 5 6 7

Strongly Disagree 2 2 2 2 2 2 2 Strongly Agree

In general, I believe the methodology

30. Improves the procedural modelling workflow.
1 2 3 4 5 6 7

Strongly Disagree 2 2 2 2 2 2 2 Strongly Agree

31. Makes the modelling process more pleasant.
1 2 3 4 5 6 7

Strongly Disagree 2 2 2 2 2 2 2 Strongly Agree

364

The prototype

The prototype in general was

32.
1 2 3 4 5 6 7

Hard to use 2 2 2 2 2 2 2 Easy to use

33.
1 2 3 4 5 6 7

Frustrating 2 2 2 2 2 2 2 Stimulating

34.
1 2 3 4 5 6 7

Rigid 2 2 2 2 2 2 2 Flexible

I found the prototype features to be

35.
1 2 3 4 5 6 7

Incomplete 2 2 2 2 2 2 2 Complete

36.
1 2 3 4 5 6 7

Not Suitable 2 2 2 2 2 2 2 Suitable

37.
1 2 3 4 5 6 7

Not Intuitive 2 2 2 2 2 2 2 Intuitive

365

38.
1 2 3 4 5 6 7

Hard to Under-

stand

2 2 2 2 2 2 2 Easy to Under-

stand

Suggestions and Critics

39. Please leave any suggestions or critics here

366

Bibliography

[AGB04] Ileana Anca Alexe, Véronique Gaildrat, and Loïc Barthe. “Interactive mod-
elling from sketches using spherical implicit functions”. In: Proceedings of the
3rd international conference on Computer graphics, virtual reality, visualisa-
tion and interaction in Africa. AFRIGRAPH ’04. ACM, 2004, pp. 25–34.
doi: 10.1145/1029949.1029953.

[ASA07] Nguyen Hoang Anh, Alexei Sourin, and Parimal Aswani. “Physically based
hydraulic erosion simulation on graphics processing unit”. In: Proceedings of
the 5th international conference on Computer graphics and interactive tech-
niques in Australia and Southeast Asia. GRAPHITE ’07. 2007, pp. 257–264.
doi: 10.1145/1321261.1321308.

[BBP13] Santiago Barroso, Gonzalo Besuievsky, and Gustavo Patow. “Visual copy &
paste for procedurally modeled buildings by ruleset rewriting”. In: Computers
&Graphics 37.4 (2013), pp. 238–246. doi: 10.1016/j.cag.2013.01.003.

[BC90] Michael J Banks and Elaine Cohen. “Real time spline curves from interac-
tively sketched data”. In: SIGGRAPH Computer Graphics 24.2 (1990), pp. 99–
107. doi: 10.1145/91394.91425.

[BF01] Bedrich Beneš and Rafael Forsbach. “Layered Data Representation for Visual
Simulation of Terrain Erosion”. In: Proceedings of the 17th Spring Conference
on Computer Graphics. SCCG ’01. 2001, pp. 80–86.

[BN08] Eric Bruneton and Fabrice Neyret. “Real-time rendering and editing of vector-
based terrains”. In: Computer Graphics Forum 27.2 (2008), pp. 311–320. doi:
10.1111/j.1467-8659.2008.01128.x.

[Bos+11] Carles Bosch et al. “Image-guided Weathering: A New Approach Applied to
Flow Phenomena”. In:ACM Transactions on Graphics 30.3 (2011), 20:1–20:13.
doi: 10.1145/1966394.1966399.

367

http://dx.doi.org/10.1145/1029949.1029953
http://dx.doi.org/10.1145/1321261.1321308
http://dx.doi.org/10.1016/j.cag.2013.01.003
http://dx.doi.org/10.1145/91394.91425
http://dx.doi.org/10.1111/j.1467-8659.2008.01128.x
http://dx.doi.org/10.1145/1966394.1966399

[BP12] Santiago Barroso and Gustavo Patow. “Visual Language Generalization for
Procedural Modeling of Buildings”. In: Spanish Computer Graphics Confer-
ence. 2012, pp. 57–66. doi: 10.2312/LocalChapterEvents/CEIG/CEIG12/
057-066.

[BP13] Gonzalo Besuievsky and Gustavo Patow. “Customizable Lod For Procedural
Architecture”. In: Computer Graphics Forum 32.8 (2013), pp. 26–34. doi:
10.1111/Cgf.12141.

[BWK14] Jan Beneš, Alexander Wilkie, and Jaroslav Křivánek. “Procedural Modelling
of Urban Road Networks”. In: Computer Graphics Forum 33.6 (2014), pp. 132–
142. doi: 10.1111/cgf.12283.

[CB09] Giliam J. P. de Carpentier and Rafael Bidarra. “Interactive GPU-based pro-
cedural heightfield brushes”. In: Proceedings of the 4th International Con-
ference on Foundations of Digital Games. FDG ’09. 2009, pp. 55–62. doi:
10.1145/1536513.1536532.

[Che+05] Joseph Jacob Cherlin et al. “Sketch-based modeling with few strokes”. In:
Proceedings of the 21st Spring Conference on Computer graphics - SCCG ’05.
ACM, 2005, p. 137. doi: 10.1145/1090122.1090145.

[Che+08a] Guoning Chen et al. “Interactive procedural street modeling”. In:ACM
Transaction on Graphics. SIGGRAPH ’08 27.3 (2008), 103:1–103:10. doi: 10.
1145/1399504.1360702.

[Che+08b] Xuejin Chen et al. “Sketching reality: Realistic interpretation of architectural
designs”. In:ACM Transaction on Graphics 27.2 (2008), 11:1–11:15. doi: 10.
1145/1356682.1356684.

[Coe+07] António Coelho et al. “Expeditious Modelling of Virtual Urban Environ-
ments with Geospatial L-systems”. In: Computer Graphics Forum 26.4 (2007),
pp. 769–782.

[CS07] Frederic Cordier and Hyewon Seo. “Free-Form Sketching of Self-Occluding
Objects”. In: IEEE Computer Graphics and Applications 27.1 (2007), pp. 50–
59. doi: 10.1109/MCG.2007.8.

368

http://dx.doi.org/10.2312/LocalChapterEvents/CEIG/CEIG12/057-066
http://dx.doi.org/10.2312/LocalChapterEvents/CEIG/CEIG12/057-066
http://dx.doi.org/10.1111/Cgf.12141
http://dx.doi.org/10.1111/cgf.12283
http://dx.doi.org/10.1145/1536513.1536532
http://dx.doi.org/10.1145/1090122.1090145
http://dx.doi.org/10.1145/1399504.1360702
http://dx.doi.org/10.1145/1399504.1360702
http://dx.doi.org/10.1145/1356682.1356684
http://dx.doi.org/10.1145/1356682.1356684
http://dx.doi.org/10.1109/MCG.2007.8

[Dan07] Danc. Lost Garden: Content is Bad. http://lostgarden.com/2007/02/content-
is-bad.html. 2007.

[DB05] Jürgen Döllner and Henrik Buchholz. “Continuous level-of-detail modeling
of buildings in 3D city models”. In: Proceedings of the 13th Annual ACM
International Workshop on Geographic Information Systems. GIS ’05. 2005,
pp. 173–181. doi: 10.1145/1097064.1097089.

[DE03] Geoffrey M. Draper and Parris K. Egbert. “A Gestural Interface to Free-Form
Deformation”. In: Proceedings of the Graphics Interface 2003 Conference.
2003, pp. 113–120. doi: 10.20380/GI2003.14.

[Dis09] B Discoe.Artificial Terrain Generation. http://www.vterrain.org/elevation/artificial.
2009.

[DPH96] Julie Dorsey, Hans Køhling Pedersen, and Pat Hanrahan. “Flow and changes
in appearance”. In: Proceedings of the 23rd Annual Conference on Computer
Graphics and Interactive Techniques. 1996, pp. 411–420. doi: 10.1145/237170.
237280.

[Esr14] Esri. CityEngine. http://www.esri.com/software/cityengine. 2014.

[FFC82] Alain Fournier, Don Fussell, and Loren Carpenter. “Computer rendering of
stochastic models”. In: Communications of the ACM 25.6 (1982), pp. 371–384.
doi: 10.1145/358523.358553.

[Fin08] Dieter Finkenzeller. “Detailed Building Facades”. In: IEEE Computer Graph-
ics and Applications 28.3 (2008), pp. 58–66. doi: 0.1109/MCG.2008.50.

[Fun+03] Thomas Funkhouser et al. “A Search Engine for 3D Models”. In:ACM
Transactions on Graphics 22.1 (2003), pp. 83–105. doi: 10 . 1145 / 588272 .
588279.

[GK01] Manuel Gamito and F Kenton Musgrave. “Procedural Landscapes with Over-
hangs”. In: 10th Portuguese Computer Graphics Meeting. 2001, pp. 33–42.

369

http://dx.doi.org/10.1145/1097064.1097089
http://dx.doi.org/10.20380/GI2003.14
http://dx.doi.org/10.1145/237170.237280
http://dx.doi.org/10.1145/237170.237280
http://dx.doi.org/10.1145/358523.358553
http://dx.doi.org/0.1109/MCG.2008.50
http://dx.doi.org/10.1145/588272.588279
http://dx.doi.org/10.1145/588272.588279

[Gre+03] Stefan Greuter et al. “Real-time Procedural Generation of ‘Pseudo Infinite’
Cities”. In: Proceedings of the 1st nternational Conference on Computer Graph-
ics and Interactive Techniques in Australasia and South East Asia. GRAPHITE
’03. ACM, 2003, pp. 87–94. doi: 10.1145/604471.604490.

[Gro94] Markus Gross. “The fat pencil, the cocktail napkin, and the slide library”. In:
In Proceedings of ACADIA94 National Conference. 1994, pp. 103–113.

[Hae+10] Simon Haegler et al. “Grammar-based Encoding of Facades”. In: Proceedings
of the 21st Eurographics Conference on Rendering. 2010, pp. 1479–1487. doi:
10.1111/j.1467-8659.2010.01745.x.

[Hal08] L Halliwell. Procedural content generation. http://lukealiiwell.wordpress.com/2008/08/05/procedural-
content-generation/. 2008.

[Iga+97] Takeo Igarashi et al. “Interactive beautification: a technique for rapid geo-
metric design”. In: Proceedings of the 10th annual ACM symposium on User
interface software and technology. ACM, 1997, pp. 105–114. doi: 10. 1145/
263407.263525.

[IH01] Takeo Igarashi and John F Hughes. “A suggestive interface for 3D drawing”.
In: Proceedings of the 14th annual ACM symposium on User interface soft-
ware and technology. ACM, 2001, pp. 173–181. doi: 10.1145/502348.502379.

[IMT99] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. “Teddy: a sketch-
ing interface for 3D freeform design”. In:ACM SIGGRAPH 2007 courses.
SIGGRAPH ’07. 1999, pp. 409–416. doi: 10.1145/1281500.1281532.

[JCS15] Diego Jesus, António Coelho, and António Augusto Sousa. “Towards Inter-
active Procedural Modelling of Buildings”. In: Proceedings of the 31st Spring
Conference on Computer Graphics. 2015, pp. 109–112. doi: 10.1145/2788539.
2788554.

[JCS16] Diego Jesus, António Coelho, and António Augusto Sousa. “Layered shape
grammars for procedural modelling of buildings”. In: The Visual Computer
32.6 (2016), pp. 933–943. doi: 10.1007/s00371-016-1254-8.

370

http://dx.doi.org/10.1145/604471.604490
http://dx.doi.org/10.1111/j.1467-8659.2010.01745.x
http://dx.doi.org/10.1145/263407.263525
http://dx.doi.org/10.1145/263407.263525
http://dx.doi.org/10.1145/502348.502379
http://dx.doi.org/10.1145/1281500.1281532
http://dx.doi.org/10.1145/2788539.2788554
http://dx.doi.org/10.1145/2788539.2788554
http://dx.doi.org/10.1007/s00371-016-1254-8

[Jes+12] Diego Jesus et al. “Modeling Urban Environments from Geospatial Data A
Pipeline for Procedural Modeling”. In: Proceedings of PCG 2012 - Workshop
on Procedural Content Generation for Games, co-located with the Foundations
of Digital Games 2012. 2012, 5:1–5:8. doi: 10.1145/2538528.2538533.

[Jes+18] Diego Jesus et al. “Generalized selections for direct control in procedural
buildings”. In: Computers & Graphics 72 (2018), pp. 106–121. doi: 10.1016/j.
cag.2018.02.003.

[JLA04] Roland Juchmes, Pierre Leclercq, and Sleiman Azar. “A Multi-Agent Sys-
tem for the Interpretation of Architectural Sketches”. In: Proceedings of the
First Eurographics Conference on Sketch-Based Interfaces and Modeling. Eu-
rographics Association, 2004, pp. 53–61. doi: 10.2312/SBM/SBM04/053-061.

[KBK13] Lars Krecklau, Janis Born, and Leif Kobbelt. “View-Dependent Realtime
Rendering of Procedural Facades with High Geometric Detail”. In: Com-
puter Graphics Forum 32.2 (2013), pp. 479–488. doi: 10.1111/cgf.12068.

[KH06] Olga A Karpenko and John F Hughes. “SmoothSketch: 3D free-form shapes
from complex sketches”. In:ACM Transaction on Graphics 25.3 (2006),
pp. 589–598. doi: 10.1145/1141911.1141928.

[KHR04] Olga Karpenko, John F Hughes, and Ramesh Raskar. “Epipolar methods for
multi-view sketching”. In: Proceedings of the First Eurographics conference on
Sketch-Based Interfaces and Modeling. SBM’04. Eurographics Association,
2004, pp. 167–173. doi: 10.2312/SBM/SBM04/167-173.

[KM07] George Kelly and Hugh McCabe. “Citygen: An Interactive System for Proce-
dural City Generation”. In: Proceedings of GDTW 2007: The Fifth Annual
International Conference in Computer Game Design and Technology. 2007,
pp. 8–16.

[KMN88] Alex D Kelley, Michael C Malin, and Gregory M Nielson. “Terrain simula-
tion using a model of stream erosion”. In: SIGGRAPH Comput. Graph. 22.4
(1988), pp. 263–268. doi: 10.1145/378456.378519.

371

http://dx.doi.org/10.1145/2538528.2538533
http://dx.doi.org/10.1016/j.cag.2018.02.003
http://dx.doi.org/10.1016/j.cag.2018.02.003
http://dx.doi.org/10.2312/SBM/SBM04/053-061
http://dx.doi.org/10.1111/cgf.12068
http://dx.doi.org/10.1145/1141911.1141928
http://dx.doi.org/10.2312/SBM/SBM04/167-173
http://dx.doi.org/10.1145/378456.378519

[KPK10] Lars Krecklau, Darko Pavic, and Leif Kobbelt. “Generalized Use of Non-
Terminal Symbols for Procedural Modeling”. In: Computer Graphics Forum
29.8 (2010), pp. 2291–2303. doi: 10.1111/j.1467-8659.2010.01714.x.

[KW11] Tom Kelly and Peter Wonka. “Interactive architectural modeling with proce-
dural extrusions”. In:ACM Transactions on Graphics 30.2 (2011), 14:1–14:15.
doi: 10.1145/1944846.1944854.

[Lev66] Vladimir Iosifovich Levenshtein. “Binary codes capable of correcting dele-
tions, insertions and reversals”. In: Soviet Physics Doklady 10.8 (1966), pp. 707–
710.

[LF08] Jeehyung Lee and Thomas Funkhouser. “Sketch-based Search and Composi-
tion of 3D Models”. In: Proceedings of the Fifth Eurographics Conference on
Sketch-Based Interfaces and Modeling. SBM’08. Eurographics Association,
2008, pp. 97–104. doi: 10.2312/SBM/SBM08/097-104.

[Lin68] Aristid Lindenmayer. “Mathematical models for cellular interactions in de-
velopment I. Filaments with one-sided inputs”. In: Journal of Theoretical
Biology 18.3 (1968), pp. 280–299. doi: https://doi.org/10.1016/0022-
5193(68)90079-9.

[Lip+11] M Lipp et al. “Interactive Modeling of City Layouts using Layers of Proce-
dural Content”. In: Computer Graphics Forum 30.2 (2011), pp. 345–354. doi:
10.1111/j.1467-8659.2011.01865.x.

[Lon+12] Steven Longay et al. “TreeSketch: Interactive Procedural Modeling of Trees
on a Tablet”. In: Proceedings of the International Symposium on Sketch-Based
Interfaces and Modeling. SBIM ’12. 2012, pp. 107–120. doi: 10.2312/SBM/
SBM12/107-120.

[LS07] H Lipson and M Shpitalni. “Optimization-based reconstruction of a 3D
object from a single freehand line drawing”. In:ACM SIGGRAPH 2007
courses. SIGGRAPH ’07. 2007. doi: 10.1145/1281500.1281556.

[LWW03] Thomas Lechner, Ben Watson, and Uri Wilensky. “Procedural city model-
ing”. In: 1st Midwestern Graphics Conference. 2003.

372

http://dx.doi.org/10.1111/j.1467-8659.2010.01714.x
http://dx.doi.org/10.1145/1944846.1944854
http://dx.doi.org/10.2312/SBM/SBM08/097-104
http://dx.doi.org/https://doi.org/10.1016/0022-5193(68)90079-9
http://dx.doi.org/https://doi.org/10.1016/0022-5193(68)90079-9
http://dx.doi.org/10.1111/j.1467-8659.2011.01865.x
http://dx.doi.org/10.2312/SBM/SBM12/107-120
http://dx.doi.org/10.2312/SBM/SBM12/107-120
http://dx.doi.org/10.1145/1281500.1281556

[LWW08] Markus Lipp, Peter Wonka, and Michael Wimmer. “Interactive visual editing
of grammars for procedural architecture”. In:ACM Transactions on Graphics
27.3 (2008), 102:1–102:10. doi: 10.1145/1360612.1360701.

[Man83] Benoit B Mandelbrot. The Fractal Geometry of Nature. W. H. Freedman and
Co., 1983. isbn: 0-7167-1186-9.

[Mar+97] I Marák et al. “Terrain Erosion Model Based on Rewriting of Matrices”. In:
Proceedings of WSCG’97. 1997, pp. 341–351.

[Mar96] Paul Martz.Generating Random Fractal Terrain. http://www.gameprogrammer.com/fractal.html.
July 1996.

[Mer07] Paul Merrell. “Example-based model synthesis”. In: Proceedings of the 2007
symposium on Interactive 3D graphics and games - I3D ’07. ACM Press, 2007,
pp. 105–112. doi: 10.1145/1230100.1230119.

[Mil86] Gavin S P Miller. “The definition and rendering of terrain maps”. In: SIG-
GRAPH Computer Graphics 20.4 (1986), pp. 39–48. doi: 10. 1145/ 15886.
15890.

[MKM89] F. Kenton Musgrave, Craig E. Kolb, and Robert S. Mace. “The synthesis and
rendering of eroded fractal terrains”. In: SIGGRAPH Computer Graphics
23.3 (1989), pp. 41–50. doi: 10.1145/74334.74337.

[MM08] Paul Merrell and Dinesh Manocha. “Continuous model synthesis”. In:ACM
Transactions on Graphics 27.5 (2008), 158:1–158:7. doi: 10. 1145/ 1409060.
1409111.

[MM11] Paul Merrel and Dinesh Manocha. “Model Synthesis: A General Procedural
Modeling Algorithm”. In: IEEE Transactions on Visualization and Com-
puter Graphics 17.6 (2011), pp. 715–728. doi: 10.1109/TVCG.2010.112.

[MP96] Radomír Měch and Przemyslaw Prusinkiewicz. “Visual models of plants in-
teracting with their environment”. In: Proceedings of the 23rd annual confer-
ence on Computer graphics and interactive techniques. SIGGRAPH ’96. 1996,
pp. 397–410. doi: 10.1145/237170.237279.

373

http://dx.doi.org/10.1145/1360612.1360701
http://dx.doi.org/10.1145/1230100.1230119
http://dx.doi.org/10.1145/15886.15890
http://dx.doi.org/10.1145/15886.15890
http://dx.doi.org/10.1145/74334.74337
http://dx.doi.org/10.1145/1409060.1409111
http://dx.doi.org/10.1145/1409060.1409111
http://dx.doi.org/10.1109/TVCG.2010.112
http://dx.doi.org/10.1145/237170.237279

[Mül+06] Pascal Müller et al. “Procedural modeling of buildings”. In:ACM Transac-
tions on Graphics 25.3 (2006), pp. 614–623. doi: 10.1145/1141911.1141931.

[Mül+07] Pascal Müller et al. “Image-based procedural modeling of facades”. In:ACM
Transactions on Graphics 26.3 (2007), p. 85. doi: 10.1145/1275808.1276484.

[Muñ+16] I. Muñoz-Pandiella et al. “Weathering of Urban Scenes: Challenges and Pos-
sible Solutions”. In:Workshop on Material Appearance Modeling. 2016. doi:
10.2312/mam.20161248.

[Mus93] Forest Kenton Musgrave. “Methods for realistic landscape imaging”. PhD
thesis. Yale University, 1993.

[MWW12] Przemyslaw Musialski, Michael Wimmer, and Peter Wonka. “Interactive
Coherence-Based Facade Modeling”. In: Computer Graphics Forum 31.2pt3
(2012), pp. 661–670. doi: 10.1111/j.1467-8659.2012.03045.x.

[Nea+05] Andrew Nealen et al. “A sketch-based interface for detail-preserving mesh
editing”. In:ACM Transactions on Graphics 24.3 (2005), p. 1142. doi: 10.
1145/1073204.1073324.

[Nea+07] Andrew Nealen et al. “FiberMesh: Designing Freeform Surfaces with 3D
Curves”. In:ACM Transaction on Graphics 26.3 (2007). doi: 10 . 1145 /
1276377.1276429.

[Nis+16] Gen Nishida et al. “Interactive Sketching of Urban Procedural Models”.
In:ACM Transactions on Graphics 35.4 (2016), 130:1–130:11. doi: 10. 1145/
2897824.2925951.

[Ols+05] L. Olsen et al. “Sketch-based mesh augmentation”. In: 2nd Eurographics
workshop on sketch-based interfaces and modeling (SBIM). The Eurograph-
ics Association, 2005. doi: 10.2312/SBM/SBM05/043-052.

[Ols+09] Luke Olsen et al. “Sketch-based modeling: A survey”. In: Computers & Graph-
ics 33.1 (2009), pp. 85–103. doi: 10.1016/j.cag.2008.09.013.

[Ols+11] DJ Olsen et al. “Sketch-based building modelling”. In:GRAPP 2011 - Pro-
ceedings of the International Conference on Computer Graphics Theory and
Applications. 2011, pp. 119–124.

374

http://dx.doi.org/10.1145/1141911.1141931
http://dx.doi.org/10.1145/1275808.1276484
http://dx.doi.org/10.2312/mam.20161248
http://dx.doi.org/10.1111/j.1467-8659.2012.03045.x
http://dx.doi.org/10.1145/1073204.1073324
http://dx.doi.org/10.1145/1073204.1073324
http://dx.doi.org/10.1145/1276377.1276429
http://dx.doi.org/10.1145/1276377.1276429
http://dx.doi.org/10.1145/2897824.2925951
http://dx.doi.org/10.1145/2897824.2925951
http://dx.doi.org/10.2312/SBM/SBM05/043-052
http://dx.doi.org/10.1016/j.cag.2008.09.013

[Ols04] Jacob Olsen. “Realtime procedural terrain generation”. In:University of
Southern Denmark (2004), p. 20.

[Pat12] Gustavo Patow. “User-Friendly Graph Editing for Procedural Modeling
of Buildings”. In: IEEE Computer Graphics and Applications 32 (2 2012),
pp. 66–75. doi: 10.1109/MCG.2010.104.

[Per+00] João Paulo Pereira et al. “Towards Calligraphic Interfaces: Sketching 3D
Scenes with Gestures and Context Icons”. In: The 8-th International Confer-
ence in Central Europe on Computer Graphics, Visualization and Computer
Vision’2000, WSCG 2000, University of West Bohemia, Campus Bory, Plzen-
Bory, Czech Republic, February 7-11, 2000. 2000.

[Per+03] João P. Pereira et al. “Calligraphic interfaces: Mixed metaphors for design”.
In: Interactive Systems. Design, Specification, and Verification. Springer Berlin
Heidelberg, 2003, pp. 154–170. isbn: 978-3-540-39929-2.

[Pey+09] A. Peytavie et al. “Arches: a Framework for Modeling Complex Terrains”. In:
Computer Graphics Forum 28.2 (2009), pp. 457–467. doi: 10.1111/j.1467-
8659.2009.01385.x.

[Pie87] L Piegl. “Interactive Data Interpolation by Rational Bezier Curves”. In: IEEE
Computer Graphics Applications 7.4 (1987), pp. 45–58. doi: 10. 1109/MCG.
1987.276871.

[PJ85] Ken Perlin and S A N Francisco July. “An image synthesizer”. In: SIGGRAPH
Computer Graphics 19.3 (1985), pp. 287–296. doi: 10.1145/325165.325247.

[PJM94] Przemyslaw Prusinkiewicz, Mark James, and Radomír Měch. “Synthetic top-
iary”. In: Proceedings of the 21st annual conference on Computer graphics and
interactive techniques. SIGGRAPH ’94. 1994, pp. 351–358. doi: 10. 1145/
192161.192254.

[PL90] P Prusinkiewicz and Aristid Lindenmayer. The algorithmic beauty of plants.
Springer-Verlag New York, Inc., 1990. isbn: 0-387-97297-8.

375

http://dx.doi.org/10.1109/MCG.2010.104
http://dx.doi.org/10.1111/j.1467-8659.2009.01385.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01385.x
http://dx.doi.org/10.1109/MCG.1987.276871
http://dx.doi.org/10.1109/MCG.1987.276871
http://dx.doi.org/10.1145/325165.325247
http://dx.doi.org/10.1145/192161.192254
http://dx.doi.org/10.1145/192161.192254

[PM01] Yoav I H Parish and Pascal Müller. “Procedural modeling of cities”. In: Pro-
ceedings of the 28th Annual Conference on Computer Graphics and Interac-
tive Techniques. SIGGRAPH ’01. 2001, pp. 301–308. doi: 10. 1145/383259.
383292.

[PP13] Oriol Pueyo and Gustavo Patow. “Structuring urban data”. In: The Visual
Computer: International Journal of Computer Graphics 30.2 (2013), pp. 159–
172. doi: 10.1007/s00371-013-0791-7.

[RCR09] Roberto Rodrigues, António Coelho, and Luís Reis. “Modelação expedita de
edifícios monumentais a partir de descrições textuais”. In: Encontro Português
de Computação Gráfica. 2009, pp. 35–43.

[Rem08] C Remo.MIGS: Far Cry 2’s Guay On The Importance of Procedural Con-
tent. http://www.gamasutra.com/php-bin/news%5Findex.php?story=21165.
2008.

[Rob11] María Dolores Robles-Ortega. “Navegacion e interaccion en entornos ur-
banos reales”. PhD thesis. Universidad de Jaén, 2011.

[ROF13] María Dolores Robles-Ortega, Lidia Ortega, and Francisco R Feito. “A new
approach to create textured urban models through genetic algorithms”. In:
Information Sciences 243 (2013), pp. 1–19. doi: 10.1016/j.ins.2013.03.053.

[RP10] Remei Ridorsa and Gustavo Patow. “The skylineEngine System”. In:XX
Congresso Espanõl de Informática Gráfica. 2010, pp. 207–216.

[San+14] Aitor Santamaría-Ibirika et al. “Procedural approach to volumetric terrain
generation”. In: The Visual Computer: International Journal of Computer
Graphics 30.9 (2014), pp. 997–1007. doi: 10.1007/s00371-013-0909-y.

[SC04] Amit Shesh and Baoquan Chen. “SMARTPAPER: An Interactive and User
Friendly Sketching System”. In: Computer Graphics Forum 23.3 (2004), pp. 301–
310. doi: 10.1111/j.1467-8659.2004.00761.x.

[Sch+06] R Schmidt et al. “ShapeShop: sketch-based solid modeling with BlobTrees”.
In:ACM SIGGRAPH 2006 Courses. SIGGRAPH ’06. ACM, 2006. doi:
10.1145/1185657.1185775.

376

http://dx.doi.org/10.1145/383259.383292
http://dx.doi.org/10.1145/383259.383292
http://dx.doi.org/10.1007/s00371-013-0791-7
http://dx.doi.org/10.1016/j.ins.2013.03.053
http://dx.doi.org/10.1007/s00371-013-0909-y
http://dx.doi.org/10.1111/j.1467-8659.2004.00761.x
http://dx.doi.org/10.1145/1185657.1185775

[Sch+09] Ryan Schmidt et al. “Analytic Drawing of 3D Scaffolds”. In:ACM Transac-
tions on Graphics 28.5 (2009), 149:1–149:10. doi: 10.1145/1661412.1618495.

[SI07] HyoJong Shin and Takeo Igarashi. “Magic canvas: interactive design of a 3-D
scene prototype from freehand sketches”. In: Proceedings of Graphics Inter-
face 2007. GI ’07. 2007, pp. 63–70. doi: 10.1145/1268517.1268530.

[Sil+13] Pedro Brandão Silva et al. “Node-Based Shape Grammar Representation
and Editing”. In: Proceedings of PCG 2013 - Workshop on Procedural Content
Generation for Games, co-located with the Eighth International Conference on
the Foundations of Digital Games. 2013.

[Sil+15] Pedro Brandão Silva et al. “Procedural Content Graphs for Urban Model-
ing”. In: International Journal of Computer Games Technology 2015 (2015),
pp. 1–15. doi: 10.1155/2015/808904.

[Sil10] Pedro Brandão Silva. “Modelação Procedimental para Desenvolvimento de
Jogos de Computador”. MA thesis. Faculdade de Engenharia da Universidade
do Porto, 2010.

[SM15] Michael Schwarz and Pascal Müller. “Advanced procedural modeling of ar-
chitecture”. In:ACM Transactions on Graphics 34.4 (2015), 107:1–107:12. doi:
10.1145/2766956.

[Sme+09] Ruben M. Smelik et al. “A Survey of Procedural Methods for Terrain Mod-
elling”. In: Proceedings of the CASA Workshop on 3D Advanced Media In
Gaming And Simulation. 2009.

[Sme+11] Ruben M. Smelik et al. “A declarative approach to procedural modeling of
virtual worlds”. In: Computers & Graphics 35.2 (2011), pp. 352–363. doi: 10.
1016/j.cag.2010.11.011.

[Sof07] Introversion Software. Procedural Content Generation. http://www.gamecareerguide.com/features/336/procedural%5Fcontent%5F.php.
2007.

[SS05] S Stachniak and W Stuerzlinger. “An Algorithm for Automated Fractal Ter-
rain Deformation”. In: In Proceedings of Computer Graphics and Artificial
Intelligence. 2005, pp. 64–76.

377

http://dx.doi.org/10.1145/1661412.1618495
http://dx.doi.org/10.1145/1268517.1268530
http://dx.doi.org/10.1155/2015/808904
http://dx.doi.org/10.1145/2766956
http://dx.doi.org/10.1016/j.cag.2010.11.011
http://dx.doi.org/10.1016/j.cag.2010.11.011

[SS08] Ryan Schmidt and Karan Singh. “Sketch-Based Procedural Surface Modeling
and Compositing Using Surface Trees”. In: Computer Graphics Forum 27.2
(2008), pp. 321–330. doi: 10.1111/j.1467-8659.2008.01129.x.

[SSD06] Tevfik Metin Sezgin, Thomas Stahovich, and Randall Davis. “Sketch based
interfaces: early processing for sketch understanding”. In:ACM SIGGRAPH
2006 Courses. 2006, pp. 1–8. doi: 10.1145/971478.971487.

[ST14] Ruben M. Smelik and Tim Tutenel. “A Survey on Procedural Modelling for
Virtual Worlds”. In: Computer Graphics Forum 33.6 (2014), pp. 31–50. doi:
10.1111/cgf.12276.

[Šta+08] Ondrej Št’ava et al. “Interactive terrain modeling using hydraulic erosion”.
In: Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation. SCA ’08. 2008, pp. 201–210.

[Šta+10] O. Št’ava et al. “Inverse Procedural Modeling by Automatic Generation of
L-systems”. In: Computer Graphics Forum 29.2 (2010), pp. 665–674. doi:
10.1111/j.1467-8659.2009.01636.x.

[Sun+02] Jing Sun et al. “Template-based generation of road networks for virtual city
modeling”. In: Proceedings of the ACM symposium on Virtual reality soft-
ware and technology. VRST ’02. 2002, pp. 33–40. doi: 10. 1145/ 585740.
585747.

[the04] .theprodukkt.Kkrieger. http://www.theprodukkt.com/kkrieger. 2004.

[Tut+08] Tim Tutenel et al. “The role of semantics in games and simulations”. In:
Computers in Entertainment 6.4 (2008), 57:1–57:35. doi: 10.1145/1461999.
1462009.

[Tut+09] Tim Tutenel et al. “Using Semantics to Improve the Design of Game Worlds”.
In:AIIDE - 5th Conference on Artificial Intelligence and Interactive Digital
Entertainment. 2009, pp. 100–105.

[Tut+11a] Tim Tutenel et al. “Generating Consistent Buildings: A Semantic Approach
for Integrating Procedural Techniques”. In: IEEE Transactions on Computa-
tional Intelligence and AI in Games 3.3 (2011), pp. 274–288. doi: 10. 1109/
TCIAIG.2011.2162842.

378

http://dx.doi.org/10.1111/j.1467-8659.2008.01129.x
http://dx.doi.org/10.1145/971478.971487
http://dx.doi.org/10.1111/cgf.12276
http://dx.doi.org/10.1111/j.1467-8659.2009.01636.x
http://dx.doi.org/10.1145/585740.585747
http://dx.doi.org/10.1145/585740.585747
http://dx.doi.org/10.1145/1461999.1462009
http://dx.doi.org/10.1145/1461999.1462009
http://dx.doi.org/10.1109/TCIAIG.2011.2162842
http://dx.doi.org/10.1109/TCIAIG.2011.2162842

[Tut+11b] Tim Tutenel et al. “Procedural filters for customization of virtual worlds”.
In: Proceedings of the 2nd International Workshop on Procedural Content
Generation in Games. PCGames ’11. 2011, 5:1–5:8. doi: 10. 1145/ 2000919.
2000924.

[WH94] L R Williams and A R Hanson. “Perceptual completion of occluded sur-
faces”. In: 1994 Proceedings of IEEE Conference on Computer Vision and Pat-
tern Recognition. 1994, pp. 104–112. doi: 10.1109/CVPR.1994.323803.

[Wik10] Procedural Content Generation Wiki.What PCG Is. http://www.pcg.wikidot.com/what-
pcg-is. 2010.

[Won+03] Peter Wonka et al. “Instant architecture”. In:ACM Transactions on Graphics.
SIGGRAPH ’03 22.3 (2003), pp. 669–677. doi: 10.1145/882262.882324.

[You09] Shamus Young. Fuel: Defining Procedural. http://www.shamusyoung.com/twentysidedtale/?p=5134.
2009.

[YS12] Qizhi Yu and Anthony Steed. “Example-based Road Network Synthesis”. In:
Eurographics - Short Papers. 2012, pp. 53–56. doi: 10.2312/conf/EG2012/
short/053-056.

[YSP05] Chen Yang, Dana Sharon, and Michiel van de Panne. “Sketch-based model-
ing of parameterized objects”. In:ACM SIGGRAPH 2005 Sketches. SIG-
GRAPH ’05. 2005, p. 89. doi: 10.1145/1187112.1187219.

[Zha+13] Hao Zhang et al. “Layered analysis of irregular facades via symmetry maxi-
mization”. In:ACM Transactions on Graphics 32.4 (2013), p. 1. doi: 10.1145/
2461912.2461923.

[ZHH96] Robert C Zeleznik, Kenneth P Herndon, and John F Hughes. “SKETCH:
an interface for sketching 3D scenes”. In:ACM SIGGRAPH 2006 Courses.
SIGGRAPH ’06. 1996, pp. 163–170. doi: 10.1145/1185657.1185770.

[Zho+07] Howard Zhou et al. “Terrain Synthesis from Digital Elevation Models”. In:
IEEE Transactions on Visualization and Computer Graphics 13.4 (2007),
pp. 834–848. doi: 10.1109/TVCG.2007.1027.

379

http://dx.doi.org/10.1145/2000919.2000924
http://dx.doi.org/10.1145/2000919.2000924
http://dx.doi.org/10.1109/CVPR.1994.323803
http://dx.doi.org/10.1145/882262.882324
http://dx.doi.org/10.2312/conf/EG2012/short/053-056
http://dx.doi.org/10.2312/conf/EG2012/short/053-056
http://dx.doi.org/10.1145/1187112.1187219
http://dx.doi.org/10.1145/2461912.2461923
http://dx.doi.org/10.1145/2461912.2461923
http://dx.doi.org/10.1145/1185657.1185770
http://dx.doi.org/10.1109/TVCG.2007.1027

[Zmu+13] Rene Zmugg et al. “Deformation-Aware Split Grammars for Architectural
Models”. In: 2013 International Conference on Cyberworlds. IEEE, 2013, pp. 4–
11. doi: 10.1109/CW.2013.11.

380

http://dx.doi.org/10.1109/CW.2013.11

381

	Abstract
	Resumo
	Contents
	Introduction
	Motivation
	Hypothesis and Research Questions
	Objectives
	Related Publications
	Problems in Sketch Based Procedural Modelling of Buildings
	Lack of Direct Control
	Restrictions of Split-Based Methods
	Semantic Ambiguity in User Selections
	Procedural Rule Inference and Parameter Estimation from Sketches

	Solution Overview
	Layer-Based Procedural Modelling
	Semantic Selection of Sets of Shapes
	Procedural Rule Inference

	Document Structure

	Procedural Modelling
	Definition
	Advantages
	Disadvantages
	Procedural Modelling of Virtual Urban Environments
	Terrain Modelling
	Road Network Modelling
	Building Modelling
	Façade Modelling
	Modelling Other Content

	Open Questions
	Summary

	Sketch Based Interfaces for Modelling
	Sketching Pipeline
	Model Creation
	Evocative Systems
	Constructive Systems

	Modification
	Augmentative Systems
	Deformation Systems

	Sketch Based Modelling of Urban Entities
	Open Questions
	Summary

	Layered Shape Grammars
	Overview
	Layered Shape Grammars
	Procedural Items
	VolumetricShape
	PlanarShapes
	Layers
	Shape2D

	Overloaded Procedural Rules
	Procedural Operations
	Layer Creation Operation
	Segment Operation
	Vectorial Shape Operation
	Set Property Operation

	Planar Shape Normalisation
	Layers Merge
	Conversion to Planar Shapes
	Deferred Procedural Items

	Derivation Process
	Limitations
	Summary

	Generalised Selections for Improved Direct Control in Procedural Modelling
	Overview
	Selection Action Paradigm
	Semantic Queries
	Selectors
	Hierarchical Relations

	Selection Action Tree
	Shorthand notation
	Procedural Derivation

	User Selection Inference
	Semantic Profiles
	Initial Population
	Evaluation
	Mutation
	Crossover

	Applications
	Layers of procedural content
	Generation of level mechanics
	City Evolution
	Weathering
	Application to non-procedural buildings
	Limitations

	Summary

	Sketch Based Procedural Modelling
	Overview
	User Interface and Workflow
	Stroke Filtering and Segmentation
	Converting Strokes to World-Space Lines
	Line Candidate Generation
	Candidate Line Evaluation

	Heuristics for the Inference of Procedural Operations
	Extrusion Heuristic
	Offset Heuristic
	Split and Repeat Split Heuristic
	Component Split Heuristic
	Sample Based Generation of Candidate Procedural Operations

	Parameter Adjustment
	Error Function
	Gradient Descent Method for Parameter Adjustment

	Tools for Precise Sketching of Architecture
	Analytical Drawing
	Guidelines
	Support Lines

	Summary

	Results and Discussion
	Layered Shape Grammars
	Simple Façade Example
	Expressiveness
	Complex Windows
	Modelling the Mikimoto Ginza Building

	Comparison to Split Based Methods

	Generalised Selections for Improved Direct Control in Procedural Modelling
	Modelling Session Example
	Usability
	Selection Examples
	Comparison to existing methods
	User Selection Inference

	Sketch Based Procedural Modelling
	Methodology
	User Characterisation
	Initial Opinions Regarding the Methodology and Prototype
	First task: Sketching Interface for Procedural Modelling
	Second task: Usage of Guidelines and Support Lines
	Third task: Modelling an Example Building
	User Opinion After Task Completion
	Discussion

	Summary

	Conclusions and Future Work
	Research Questions
	How can procedural modelling methods be improved to provide enough expressiveness to be better paired with sketch interfaces?
	What is required from a procedural modelling method to improve the amount of direct control a user can have over the generated models?
	How can semantics present in procedural modelling rules be used in a sketch based procedural modelling system?
	How can a sketch based interface for modelling be used in the procedural modelling of buildings?
	How can procedural modelling rules and parameters be defined through sketch based interfaces for modelling?
	Can a sketch based interface for modelling improve the workflow of methods for procedural modelling of buildings?
	How can a sketch based interface for modelling enhance the expressiveness and direct control of procedural methods?

	Future Work
	Interactive Procedural Modelling with Layers
	Integration of Layers in the Selection Action Paradigm

	Conclusions

	Appendix Semantic Selections in Procedural Modelling
	Appendix Sketch Based Interaction for Procedural Modelling: Initial Questionnaire
	Appendix Sketch Based Interaction for Procedural Modelling: Questionnaire After Prototype Presentation
	Appendix Sketch Based Interaction for Procedural Modelling: Task 1
	Appendix Sketch Based Interaction for Procedural Modelling: Task2
	Appendix Sketch Based Interaction for Procedural Modelling: Task 3
	Appendix Sketch Based Interaction for Procedural Modelling: Questionnaire After Experimenting with the Prototype
	References

