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Resumo

As regras de despacho (DRs) tém sido usadas em vdrias aplicagdes nos sistemas de producdo.
Elas podem ser expressdes matemdticas que t€ém como parametros varias carateristicas dos traba-
lhos a serem escalonados, e atribuem uma prioridade a esses trabalhos. Esta atribuicdo permite
escolher qual o préximo trabalho a ser executado. Como criar uma boa regra de despacho € um tra-
balho complexo, a programacdo genética (GP) tem sido usada para o fazer. Na GP, varias DRs sdo
desenvolvidas simultaneamente e, através de processos inspirados na natureza (como mutagdes e
crossovers), melhoram a sua performance. No entanto, na literatura poucos trabalhos tentaram
alcancar DRs interpretdveis, sendo muitas vezes os seus tamanhos ignorados. Normalmente as
DRs tendem a ser muito longas com cem ou mais termos. O problema concreto que serd abordado
¢ a versdo dinamica do job shop scheduling problem (DJSS).

Este trabalho utilizou algoritmos baseados em context-free grammars (CFG), nomeadamente
CFG-GP e grammar evolution (GE), para atingir DRs dimensional aware (DA), o que restringe a
syntaxe das DRs. Por exemplo, numa DR que é dimensional aware a adi¢do s6 pode ser feita entre
operandos com as mesmas unidades. Ambos os algoritmos foram testados por terem carateristicas
distintas e nunca terem sido usados para resolver este problema.

O objetivo foi que, ao forgar a sintaxe das DRs a estar correta, seja possivel gerar DRs menores
e mais interpretdveis, de preferéncia sem perda de performance.

Além disso, foi feito um enumerador que, ao enumerar todas as DRs encontrou as melhores
para os tamanhos em que as conseguimos enumerar. Os resultados do enumerador servirdo para
saber se os algoritmos evolutivos conseguem explorar as pequenas DRs de uma forma 6tima ou
ndo, mais ainda, se a resposta for negativa, encontrard melhores DRs do que os algoritmos e trard
garantias de otimalidade.

Os resultados mostram uma melhoria significativa de desempenho ao usar métodos do tipo di-
mensional aware genetic programming (DAGP) face a GP normal para este problema. Além disso
GP/GE e CFG-GP conseguiram explorar de forma 6tima ou quase 0s espagos que enumeramos,
encontrando as melhores DRs.

Concluimos que as DRs geradas pelos métodos DA, em particular CFG-GP, t€m uma perfor-
mance significativamente melhores que as produzidas por GP normal.

Palavras-chave: Regras de despacho, Programacao genética, dimensionalmente consistente
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Abstract

Dispatching Rules (DRs) have been used in several applications in manufacturing systems.
They can be expressions that assign priority to jobs in a machine queue, choosing the next one to
be executed. As they are challenging to design, genetic programming (GP) is being used to find
better performative DRs. In GP, several different DRs are evolved, and due to some operations and
selection processes inspired in nature, the DRs tend to improve. However, little research has been
done in trying to reach small and interpretable DRs. Usually, these generated expressions tend to
become extremely large, with a couple hundred terms or more.

This work will use context-free grammar (CFG) algorithms, particularly CFG-GP and gram-
mar evolution (GE), for reaching DRs which are dimensionally aware (DA), restricting the syntax
of the DRs (e.g. additions can only be made between operands with the same units). These algo-
rithms will be used to solve the dynamic job shop scheduling problem (DJJS), which were never
used to solve it.

The objective is that by forcing the syntax of the DRs to be correct, it will be possible to reach
smaller and more interpretable DRs without performance loss.

Furthermore, an enumerator was made that found the best possible small DRs, which will
serve as a baseline to evaluate how well the different algorithms can explore these spaces and
give the best possible DRs for the sizes we could enumerate. Moreover, as the enumerator passes
through all DA dispatching rules, it will give optimality guarantees.

The results show a significant performance improvement in using DA methods for this pro-
blem. Moreover, GP/GE and CFG-GP can explore the small DRs optimally or close to optimally,
managing to find the best small DRs.

We conclude that the DRs generated with DA methods, particularly CFG-GP, had significantly
better performance than standard GP for DJJS.

keywords: Dispatching Rules, Genetic Programming, Dimensionally Aware
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Capitulo 1

Introduction

Artificial Intelligence has a growing impact on society, having diverse applications from re-
commendation systems to speech recognition, self-driving cars, to mention a few. However, due
to the performance of black-box models, such as neural networks or tree ensembles, a central as-
pect of the models is neglected: how can a human trust the model outputs if he cannot understand
them. One way to make humans understand Al is to use explainable by design models rather
than black-box models. Simpler models exist with these characteristics, such as linear models or
decision trees, which are simple enough to be understood by their audience. Nonetheless, these
simple models come with a significant loss of performance. To change this paradigm and create

high-performing and explainable models, Genetic Programming (GP) is a promising tool.

GP is based on natural selection. It maintains a population throughout generations, and in each
generation, ranks its expressions (relative to some fitness metric) and selects the best ones (using
some selection procedure). Afterwards, GP generates the next population by applying genetic
operators to them (e.g. mutations and crossover). This process is repeated until the termination

condition is meet (e.g. the maximum number of generations was reached).

However, GP has its problems. The solution space is quite vast as GP has to learn the structure
of the expressions and their constituents. This complexity significantly reduces the number of
inputs that these algorithms can successfully manage. Also, an effort must be made to keep the
solutions small enough to be understandable. No one can understand formulas with hundreds of
terms, and they tend to be prone to overfitting. Furthermore, these expressions can have dimensi-
onal inconsistencies (e.g. standard GP can evolve an expression that adds meters with time, which

is hard to interpret).

One method that tries to diminish the solution space of GP, improving its interpretability, is
Dimensionally Aware Genetic Programming (DAGP). In DAGP, the expressions are dimensio-
nally consistent, which means that the expressions take an equivalent form in all systems of units
(e.g. in a dimensionally consistent expression, addition is more restricted, only being allowed
between operands with the same units). These additional restrictions reduce the number of valid
expressions reducing the solution space, and as dimension inconsistencies do not appear, it gives

extra interpretability. However, a possible downside of this approach is that if the best possible
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expression is not dimensionally aware, it will never find it, and its performance can be worse than
standard GP.

Furthermore, DAGP can be implemented in several different ways using soft or hard cons-
traints. Soft constraints interpret the original problem as a dual optimisation problem between
performance and dimensionality consistency. Here a non-dimensionally consistent expression
may exist and is penalised. In contrast, hard constraints make it impossible for non-dimensionally
consistent expressions to exist. Therefore, it is only by using hard constraints that the solution
space is diminished.

Additionally, even hard constraints have alternative implementations. One option is restric-
ting the operand types a GP node admits, called Strongly-Typed Genetic Programming (STGP).
Another is using Grammar-based Genetic Programming (GGGP), which can use a grammar to
enforce dimensionally consistent expressions.

A classic optimisation problem that has gained much interest in the GP community in the
last couple of decades, with several authors using GP to solve it, is the Job Shop Scheduling
Problem (JSS). In JSS, jobs with a predetermined route have to be scheduled to be processed in
several machines. Dispatching Rules (DRs) are used as heuristics to solve the dynamic version of
the problem (i.e. where part of the input data is unknown) and are applied locally. A DR takes as
input characteristics of the job (for instances, its processing time) and the shop itself (for instances,
the mean shop utilisation) and attributes a priority to the job, the job in the machine queue that
gets the lower value (the highest priority) will be processed next by the machine. In GP, DRs are

individuals whose expression is evolved during the generations.

1.1 Motivation

This thesis aims to increase the DRs interpretability and potentially reducing their size by
using Dimensionally Aware Genetic Programming (DAGP) enforced by Grammar-Guided Genetic
Programming (GGGP) in the JJS problem.

The motivation for approaching JSS with GGGP is that, as many studies have shown, GP can
evolve heuristics that outperform manually designed rules [1]. They have improved interpretabi-
lity compared to Black-Box models and can be integrated into real-time production systems with
real-time constraints. After a GP program has evolved and reached a DR, using it only requires
computing its score, which is computationally inexpensive especially comparing to other iterative
optimisation algorithms.

GGGP appears as a solid line of research because it restricts the standard GP solution space,
which rapidly can become too big to search efficiently. Furthermore, some particular grammars
can lead to DRs that make more sense a priori (dimensionally aware).

Moreover, in the literature survey provided by [1], only three papers have duelled with this
type of algorithms in these problems: In [2], the authors compare three grammars: one compo-
sed of standard operations and terminals, other of common heuristics such as (FIFO, LIFO, and

others) and another that mixes the previous two. The mixed grammar performed the best and was
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comparable with the rules COVERT and ATC. In [3] the author uses dimensionally aware genetic
programming (DAGP) [4] enforced with strong type genetic programming (STGP) and compares
it with standard GP and other algorithms. There were not significant divergences between the two
methods in regards to performance. However, as dimensionally aware (DA) dispatching rules are
semantically correct, they can be more interpretable. Finally, In [5], one grammar was used to en-
force DAGP also using STGP; the standard GP results were better than DAGP, but the dispatching
rules less interpretable.

Using complete GGGP methods for this problem fills a lacuna in the literature. The only three
papers that applied grammars for the JSS used STGP. The major downside in this approach, which
was one of the concerns in [5], is that a simple STGP dimensionally aware implementation only
allows dispatching rules of dimension O or 1 in all its units (e.g. in [5] an expression that multiplied
time with time was invalid). However, if instead of STGP, we use complete grammar methods, like
Grammatical evolution (GE) and Context-free grammar-based genetic programming (CFG-GP),
and use a grammar that supports expressions with more dimensions (e.g. from -2 to 2), we do
not restrict as much the solution space. Hopefully, this can lead to a performance improvement if

expressions with those dimensions perform well.

1.2 Objectives and Methodology

This thesis aims to explore and improve GP methods to generate dispatching rules for the job
shop scheduling problem that are effective while being interpretable and generalisable.

This work will use DA enforced by GGGP methods. Mainly Grammatical Evolution (GE) and
Context-Free-Grammar based Genetic programming (CFG-GP), standard and recognised GGGP
methods never used in JSS. Furthermore, our focus is to reach highly interpretable DRs. As small
DRs are interpretable, an Enumerator was created to enumerate all possible DRs and evaluate
them, allowing to check if GP and GGGP methods explore the small DRs optimally.

Specifically, this thesis will answer three research questions:

* (RQ1) What is the trade-off between performance and interpretability when introducing

dimensional awareness?

* (RQ2) Can genetic programming algorithms find (near-)optimal Dispatching Rules (of a
given size) for the Job Shop Scheduling problem?

* (RQ3) How performative and explainable are the best Dispatching Rules found?

1.2.1 RQl

The first objective will be accomplished using a dimensionally aware (DA) grammar in several
GGGP algorithms, namely CFG-GP and GE. Thus, dimensionally aware genetic programming
(DAGP) is obtained. By comparing their generated DRs to the ones generated by standard GP, we

will answer the research question.
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Several different variants of all algorithms will be tested. All those are described in Chapter
5. CFG-GP was chosen due to its similarities with GP and proven performance and GE’s because
it is prevalent in the community and easy to implement. The performance of the algorithms will
be compared by comparing its best obtained DRs in each run. A unilateral Mann-Whitney U
test will be used to see if the performance differences are significant, allowing us to see which
one generated better DRs. If the DAGP algorithms have a significative better performance than
standard GP, there would not be a performance drop.

In this question, interpretability is related to the DRs size (for the last one, where we will in-
dividually analyse every DR, our interpretation will differ). Other works in the literature also tend
to approximate interpretability with size [S]. Thus, if an algorithm generates significantly smaller
DRs with better performance than another, it will be more interpretable. However, when the two
criteria (size and performance) diverge, plots with both fitness and size of the DRs will be dis-
played. Here, if the DRs found by an algorithm for all sizes always have better performance than

the DRs found by another algorithm for the same sizes, the first algorithm is more interpretable.

1.2.2 RQ2

The second objective will be accomplished by creating an Enumerator of all possible dimen-
sionally aware DRs of a given fixed small size. This total enumeration will allow us to discover
the best possible DRs for tiny sizes, allowing us to see if GP and GGGP manage to find optimum
or near optimum DRs for those sizes and function/terminal sets.

The enumeration had to restrict itself to the DA dispatching rules because the number of ex-
pressions would have been too big to be evaluated without that restriction. The way a DR was
classified as unique is further elaborated in Chapter 4. The enumerated DRs were all evaluated in
the JSS simulator. By analysing if the algorithms can find the enumerated best DRs will answer
the research question. If they did, they explored optimally; if not, they do not explore optimally.
Furthermore, if the answer is negative, it will be possible to know the rank of the best-found DR

for that algorithm.

1.2.3 RQ3

The last objective will be accomplished by statistically comparing the performance of the best-
found DRs in a wide range of job shop instances. This comparison will allow us to see in which
scenarios they perform well and validate whether they can generalise to different settings. Further-
more, we will interpret the best DRs by comparing them to several DRs found in the literature.

The third research objective can be divided into two subparts. RQ3.1: How we test a DRs
performance? RQ3.2: How we test is interpretability?

A global performance metric is used to answer RQ3.1. This metric was also used in [6], and it
was chosen in order for us to have comparable results with this paper. Moreover, statistical tests to
compare the DRs performance will be implemented. All these tests and metrics will be described

in Chapter 3.
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Answering RQ3.2 is a lot more challenging. As interpretability is related to size, we will
evaluate it. However, this leaves behind much meaning. We will say that a DR is interpretable
if an expert can, just by looking at the DR, make predictions on its behaviour for some shop
scenarios. In these two ways, interpretability will be explored, comparing the DR’s size and
seeing if comparing with other rules (presented in the literature) insights on the rule performance
in different scenarios can be made.

Moreover, a statistical analysis on the global metric parameter will be made. This analysis will

allow us to see if our chosen metric is robust.

1.3 Structure of the thesis

The organisation of the thesis is the following: chapter 2 does the literature review. It starts
with an overview of Production Scheduling, stating related problems and characterising the Job
Shop Scheduling problem. Afterwards, it briefly explores the methods used to solve this problem
(from proactive approaches to reactive). Then, it explains the origin and behaviour of some DRs,
emphasising the DRs we use as a benchmark. Next, it introduces GP and discusses its limitations,
hinting at GGGP as a method to culminate one of them (enormous search space). Subsequen-
tly, GGGP is introduced, and an expositive section where grammars / and the most used GGGP
methods (CFG-GP and GE) are described. Close to the end, it explores Dimensionnaly Aware
Genetic programming, where it shows an iterative procedure to generate a DA grammar. Next, it
has a small section giving context to expression counting. Finally, the last section binds GP and
DRs, exploring what works made DRs using GP, particularising the ones that applied grammar
methods.

Chapter 3 details everything related to the problem being solved and the general experimental
design. It starts by defining our implemented Job Shop Simulator detailing how we set the jobs
due dates and their arrival times. Then, it presents the parameters used for the training and test
instances. Afterwards, it explores our fitness metric and how we compare DRs. Finally, it ends
with a small section dedicated to studying the variability of our fitness metric.

Chapter 4 describes the Enumerator. Here the mathematical derivation of the total amount
of possible expressions is presented for Binary and Unary operators. Afterwards, an algorithm
capable of enumerating all these expressions and selecting only the dimensionally aware ones
without duplicates is described. Furthermore, this chapter indicates the terminal sets used and
the required modifications to enumerate sizes 9 and 11. Finally, the expected performance of a
random search on dimensionally aware expressions is defined, which serves in Appendix B as a
baseline for comparing the convergence speed of the algorithms.

Chapter 5 describes all the specificities and parameters of the GP algorithms. It starts by briefly
defining all algorithms tested and their respective variants. Then it details the experimental setup
and enumerates the parameter configurations used in the pre-test phase, ending by choosing the
best parameters for each algorithm variant. Finally, it explores the grammars used, the initialisation

procedures, and some specific parameters (for example, max tree depth) of all algorithm variants.
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Chapter 6 presents the results and the discussion, answering the three research questions. First
plots comparing the performance and size of the best DRs are presented, allowing us to answer the
first research question: What is the trade-off between performance and interpretability when intro-
ducing dimensional awareness? Next, the enumerator results are compared to the best small DRs
found by all GP algorithms, answering the second research question: Can genetic programming
algorithms find (near-)optimal Dispatching Rules (of a given size) for the Job Shop Scheduling
problem? Finally, the best DRs overall, the ones that represent the Pareto frontier in size and
performance, are studied. Here their performance is compared in every instance, and they are in-
terpreted. This allows us to answer the third research question: How performative and explainable
are the best Dispatching Rules found?

Finally, the last chapter is the conclusion 7. Here is presented a brief resume of the findings
and possibilities of further work.

The thesis is complemented with three appendices. Appendix A tests a way to trim down a
given terminal/operator set using the Enumerator. Appendix B presents the algorithms training

performance during the evolution. Finally, Appendix C shows all the grammars used in the thesis.



Capitulo 2

Literature Review

2.1 Production Scheduling

This section explores and classifies a variety of scheduling problems and variants, as well as
some solution approaches, in order to provide the necessary context to our JSS.

Production scheduling [1] is a major topic in operations management. It is required to de-
termine when a job should be processed and in what machine to process. The production setting
might be subject to different uncertainties, such as dynamic arrivals of jobs, variations in executing
time and machine failures. The objective is to schedule the jobs as optimal as possible concerning
some fitness metric.

Our primary problem will be the Job Shop Scheduling Problem (JSS) with dynamic job arri-
vals, i.e., the release dates are not known a priory.

2.1.1 Related Production Scheduling Problems

[7, p. 13-14] describes a scheduling problem by the triplet {a, B ¥}, o is the machine environ-
ment, 3 are the process characteristics, and ¥ is the objective to be optimized. The objective is to
schedule a job and allocate a machine to optimize ¥, given that all constraints 8 are satisfied.

The machines enviroments represented by o can be:

* Single machine: it is the case of a single machine. It is the simplest case.

* Identical machines in parallel (Pm): there are M identical parallel machines. A job j

requires a single operation and may be processed on any machine or a given subset.

* Machines in parallel with different speeds (QOm): there are m machines in parallel with
different speeds. Machines i speed is denoted by v;. So the speed only depends on the

machine.

* Unrelated machines in parallel (Rm): there are m different machines in parallel. The

machine i can process job j at speed v;;. The speed depends on the machine and the job.
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* Flow shop (¥m): there are m machines in series. A job has to be processed on each ma-
chine. All jobs must follow a given route. A job goes to the next machine queue after its

completion on the machine it was.

The previous environments serve as building blocks for our main problems of interest.

2.1.2 JSS Problem Characterization and Definition

Also, in [7, p. 13], the author defines our main environment of interest.

* Job shop (/m): is a job shop with m machines. Each job j has its set of operations O; to
perform, which are made in a predetermined order. Furthermore, each operation must be
processed in a predetermined machine and has a specific processing time p;;. The B can
distinguish between job shops where a job can only visit a machine once, or it can visit
it multiple times. In the latter case, B has the recirculating parameter rcrc. Moreover, a

machine can only process a job at a time.

The problem’s objective is to make a scheduler that optimizes a given objective function ¥ for
each of the previous machine environments.

[8] lists some common objective functions in production scheduling :

* Makespan: completion time of the last job that leaves the system.

* Maximum flowtime: maximum flowtime achieved by any of the jobs.

* Maximum tardiness: is the maximum tardiness achieved by any of the jobs.

* Total weighted completion time: denotes the weighted sum of all completion times.
* Total weighted tardiness: is the weighted sum of tardiness values of all jobs.

* Mean tardiness: is the mean of the tardiness of all jobs

* Total flowtime: is the sum of flow times of all jobs.

* Weighted number of tardy jobs: is the weighted sum of all tardy jobs.

* Weighted earliness, and weighted tardiness: is the sum of the total weighted tardiness

and the total weighted earliness.

¢ Machine utilization: the difference between the maximum utilization and minimum utili-

zation of all machines.

This thesis’s problems will focus on the environments (Jm), without recirculation, using a

variant of the mean tardiness metric as an objective to be optimized.
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2.1.3 JSS Problem Approaches

Scheduling is a major topic in several domains. From operation research, CPU tasks assign-
ments, hospital shift assignments, among others. As it is so important several well-structured
variants of scheduling are studied. One of them is the classical optimization problem Job Shop
Scheduling Problem (JSS). The problem can be stated as follows: Let M define a set of machines
and J a set of jobs that must be processed. Each job (j € J) has multiple operations (set O;) that
must be processed in a specific machine. Moreover each operation (i € O;) has a specific pro-
cessing time p;; [7]. Also, we assume that a machine cannot be preempted, and the setup time is
included in the processing time. The production setting might be subject to different uncertainties
in the dynamic variant, such as dynamic arrivals of jobs, variations in executing time and machine
failures. We will not consider variation in processing times but will considerer dynamic arrivals
of jobs (i.e. the jobs arrival time are unknown in advance).

Several ways of tackling this problem were used. Proactive approaches produce an offline
schedule robust to the variance of executing time events [9]. So, at execution time, the activities
(jobs) will be dispatched according to the offline scheduler’s defined sequence. However, its per-
formance is highly dependent on the information obtained when producing the offline scheduler.
There is hybrid predictive-reactive scheduling, where some component of the production system
is continuously adapted during operations. Furthermore, there are reactive approaches that do not
take any decision in advance. Instead, when a job in real-time comes, a local decision is made.
Usually, this uses simple and constructive heuristics such as Dispatching Rules (DRs) to prioritize
jobs. The job with the highest priority is the job that is scheduled next [10].

2.1.4 Dispatching Rules

There are many applications of DRs in manufacturing systems. However, their use can over-
simplify and be myopic [11]. A lot has been made in comparing the proactive and reactive appro-
aches, and each strategy has its benefits. More precisely, in [12], it is shown that DRs perform as
well as more advanced dynamic heuristics in environments with much uncertainty.

The principal aspects of a DR are: they require low computational resources, their implemen-
tation is simple, and they can react in real-time. Furthermore, if the DRs are small enough, they
tend to be easily explainable.

DRs have different characteristics. For instance, rule SPT (chooses the job with shortest pro-
cessing time PT ) is an excellent match to optimize Total Flowtime (but can be myotic, can lead
to the generation of long queues). Thus, a good DR has to consider the future. This information
can be inserted in the DRs using diverse parameters, such as WINQ, the next machine’s workload,
and NPT, the jobs’ next operations’ processing time. In this way, in the literature, rules have been
evolving, passing from PT, a myotic rule, to PT+WINQ [13] to 2PT+WINQ+NPT [14] which is
very good in optimizing mean flowtime. There are two distinct ways to compute WinQ. One of
them adds all the processing time of the jobs of the next queue (which is not used in this thesis

but appears in appendix A as WQ). Moreover, the other proposed by [13] is an improved version
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that only sums the processing times of operations that would be assigned a better score than the

current operation in this next machines’ queue (it is this way of computing that we will use).

In the survey [8], many DRs are compared to the unrelated JSS problem. Although some of
them perform well, none outperformed the others in all scenarios. Thus, it is challenging to have a
single rule to be highly performative in all shop scenarios as rules have distinct characteristics. For
example, processing-time-based rules are good in tight loads, and due-date-based rules are good

when the shop-load levels are low [15].

Other authors [16] utilize U, the mean machine utilization, to reach a more sophisticated for-

mula that changes the behaviour depending on the machine’s utilization. PTe" 4 PT Igllf‘T e "+

WINQ, which, although presenting good performance, is worse than 2PT + WINQ + NPT in

tight loads. This more sophisticated rule is called RR rule (rule by Raghu and Rajendran). Here
RPT represents the remaining processing time of all the job processes, NPT is the processing
time of the next process of a job, and S is the slack of a job which is the difference between the
job allowance (due date minus current time) and the job remaining processing time. If the slack
is inferior to zero, the job is delayed. A common variant of this terminal is its positive version
ST = max(0,S), which will be used.

Finally, there is another family of rules that is worth considering. CR+PT and S/RPT+PT were
proposed in [17] and introduce a new terminal, the critical ratio (CR). CR is the allowance of a job
divided by its remaining processing time (CR = A/RPT). The allowance of a job is the difference
between its due date and the current time (it represents the available time to finish the job without
delays). Therefore, a CR superior to one means that the job is not delayed and an inferior to one
means a delay, furthermore CR=1 means the job is on time. Some useful variants are their positive
variants AT = max(A,0) and CR™ = max(CR,0).

During the thesis, our metric of interest is a relative metric that uses the DRs in [14] and
[18] as benchmark rules. Specifically, we evaluate the score obtained by each DR presented in
those two papers for every shop instance. After that, we define the benchmark Mean Tardiness
for each instance as the lowest mean Tardiness obtained by any of those rules. Having the fitness
comparison integrated into the fitness metric will allow us to interpret easier the performance of a
rule. If a rule has a performance inferior to one, it is better in general than every rule presented in
those papers. Further details on the objective function to be optimized are described in chapter 3.
Here follow the rules presented in those works that serve as a benchmark to our performance

metric and some nomenclature on Table 2.1.

* FIFO (First in First Out): first in first out. The job that enters the queue sooner is schedu-
led first.

* AT (Arrival time): The job with the earliest arrival time is scheduled first.

Zi=T; 2.1
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Tabela 2.1: Symbols used to calculate priorities of common dispatching rules

Sym Meaning

t Time of the dispatching decision

tij Processing time of operation j of job i
o(i)  Number of operation left of job i

D; Due-date of job i

W; Next queue of job i total work content
T;

Job arrival Time
Priority value assigned to the job at time t

N5

* EDD (Earliest Due Date): The job with the earliest due date is scheduled first.

Z:=D; (2.2)

* S/OPN (Slack over Remaining Operations): The job with least slack over remaining of

operations is scheduled first.

Zi— si/(lo(i)—j+1) ifs;>0 ' 23)
six(o(i)—j+1) ifsi<O

where s; can be calculated as.

()
si=Di—t—Y 1y (2.4)
q=J

* COVERT (Cost Over Time): Each job i is atributes a priority index Z; = ¢;/t;; being t;; is
processing time on the machine j and WT; the expected waiting time of the job uncompleted
operations. Here the job with the highest Z; is scheduled first in oposition to the rest of the

rules. The computation for the penality c; is the following:

(WT; —s5;)/WT; if0<s; <WT;
¢i=10 ifsi>WT; : (2.5)
1 ifsi<0

* RR (rule by Raghu and Rajendran): The job priority index is determined by the following
equation. Where u in the shop utilization, W, is the work of the next queue and RPT; is the

remaining processing time of a job.

Z; = s; X t;j x exp(—u) /RPT; +t;j X exp(u) + Wy (2.6)

* SPT (Shortest Process Time): The job with the shortest processing time is scheduled next.

Z;, = tij 2.7)



12 Literature Review

* PT+WINQ (Processing Time plus Work-In-Next-Queue): The priority index in obtain
by:
Z=t;j+W, (2.8)

The following rule were also used as benchmark: (PT +WINQ + AT), (PT + WINQ + SL),
((PT+WINQ)/TIS), (PT/TIS), (AT — RPT), ((2PT +WinQ + NPT)), (PT + WINQ + NPT +
SL). Where TIS represents time in shop, AT arrival time and SL is the negative slack (SL =
min(0, Slack)).

Designing a DR is a complex process. Therefore, Machine Learning is being used to automate
this process and find better performative DRs. It follows an overview of machine learning applied

to this problem.

2.2 Machine Learning for Production Scheduling

What makes JSS challenging to solve with traditional optimizers is that it is an NP-hard pro-
blem [19], this causes optimizers to fail to reach an optimum solution in a viable time [20]. The-
refore, scheduling policies are used instead of full optimizers.

Due to this, DRs have gained much interest, as previously shown, but they are tough to design
manually. Obtaining a highly performative rule is difficult because DRs tend to be myotic [21].

Therefore, Machine Learning is being used to reach these DRs, overcoming the difficulties in
manually designing one. In ML, the learning methods can be divided into supervised learning,
unsupervised learning, and reinforcement learning.

In supervised learning, annotated training data exist [22]. In which for each training example,
there is associated a result. The objective is to induce a model that maps the training data to its
associate results which can be used to classify unlabeled data. Supervised learning is being used
for JSS to extract rules from the optimization results [21]. Several supervised algorithms have
been used to this problem ranging from logistic regression [23], decision trees [24] and neural
networks [25].

Furthermore, GP can also be used in some problems in a supervised way, such as in Symbolic
Regression, where you know the result for each data input.

However, using supervised learning for production scheduling is not very practical as it re-
quires a previous model to generate labelled data. For instance, in [25] the author uses Genetic
algorithms to make a scheduler to train the network. So before training, a previous good scheduler
is required.

In unsupervised learning, the data does not have a label, and there is no need to consider the
sample size. Instead, these models try to separate the data in the groups that best describe them
[26]. These techniques are not commonly used in Production Scheduling.

In Reinforcement Learning (RL), an agent learns by trial-an error how to interact with a dy-
namic environment [27], optimizing a given reward function in the process (learning a mapping

from states to actions). In [28] the authors trained, in a highly dynamic environment, an RL agent
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that optimizes DRs in a complex JJS system. Also, another research line is, instead of generating
single dispatching rules, to make an algorithm capable of choosing from a range of rules which
dispatching rule to use depending on the job conditions. This automated combination of rules
was used in [29] where a reinforcement learning agent choose, depending on the state of the job
shop and the machine, which dispatching rule to use. The agent was better than all the individual
dispatching rules that it could choose. We will not explore these methods as we focus on interpre-
tability. Adding another RL agent introduces another layer of complexity, making it more difficult
to understand the local choices made in each machine, being less interpretable than a single rule.

Finally, there is also Evolutionary Computation (EC). EC represents a family of algorithms
inspired by biological evolution that solve optimization problems. There are several proposed EC
algorithms. From genetic algorithms to evolution strategies, evolutionary programming, and ge-
netic programming (GP) [30] stating some. These algorithms simulate the evolution of data struc-
tures (known as individuals) and, through computational operations based on nature’s evolution,
improve the individuals’ quality (performance). This thesis will focus more on GP as it is used
as the primary research line for generating DRs. For more information on the other algorithms,
[31] gives a good overview. The most common operations are mutation, crossovers, and elitism,
defined by their probability of occurrence between other parameters. Usually, the algorithms are
susceptible to these parameters values, and care must be taken to choose them. In [32] the author
addresses these problems by creating another meta-agent that tunes these parameters, making the
original algorithm adaptative. In order to not use bad parameters, we have made pre-tests with
several parameter configurations in this thesis.

The GP individuals have a tree representation and directly represent mathematical expressions.
In this thesis, the term DRs will refer to the GP individuals in the context of scheduling problems

and the term expressions when not.

2.3 Standard Genetic Programming - GP

In GP, unlike supervised methods, there is no need to have a priori a good scheduler. Instead,
at first, a set of random DRs are generated, and for each one, a score (known as fitness) is calcu-
lated. This fitness results from simulating the expressions and computing how well the specified
objective (e.g. makespan) is optimized. To the next generation, pass the ones that perform the
best. After that, through crossovers and mutations[33], new DRs are made from the surviving
ones, and they tend to become increasingly better. In this way, the better performative DRs sur-
vive for the following generation. It is similar to the survival of the fittest in Biology. Figure 2.1
represents in a simplified way how does GP work. In generation X are three DRs (WinQ, PT, and
WinQ+PT) with WinQ and PT as terminals. After that, the simulator attributes a fitness to them
(1 to WinQ+PT, 2 to WinQ and 3 to PT). Next, through a selection process, some are selected.
Afterwards, genetic operators are applied to create new ones that are used for the next generation.
Finally, the algorithm ends when the termination condition is met (which can be, for example,

reaching a predefined maximum number of generations).
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Figura 2.1: GP behaviour Diagram. In the top right, square 1, 2, 3 represent the obtained fitness
for each expression.

In GP, the user does not need to know the solution structure in advance. [34] state that "GP is an
asystematic, domain-independent method for getting computers to solve problems automatically

starting from a high-level statement of what needs to be done."

Still, GP has its limitations: it has a vast domain space and is affected by bloat. Bloat is a point
in the evolution of a GP program in which the expressions stop improving due to the population

becoming too uniform (redundant) and each expression being too complex.

Several authors tried to cope with those problems in different ways. [35] used dimensional
Aware GP (DAGP), enforced with one grammar, to trim down the domain space’s size. [36] used
an online way to simplify GP training expressions to reduce the redundancies and the sizes of the
evolved expressions. Both methods had promising results: DAGP performance was comparable
with GP and the expressions smaller; the online simplifier created smaller expressions with simi-
lar performance. Both authors applied these methods to a broad range of problems. However,

production scheduling was not one of them.

The most common genetic operators are mutation and crossover. In GP, both of them are
simple. The simplicity comes from the closure property of GP, which allows any node to be
the input and output of the function set [37]. Unfortunately, this characteristic is not present in
grammar guided GP (c.f. the next section).

In a mutation, a mutation point is chosen in a GP individual. A random tree replaces the
subtree below and the node itself. In the crossover, two parents are chosen, and two random
crossover points are chosen, and then the subtrees are swapped between the parents given origin

to two new trees. Figures 2.2 and 2.3 represent a GP crossover and a GP mutation respectively.
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Figura 2.3: Mutation in GP. The circle represent the mutation point.

2.4 Grammar-Guided Genetic Programming - GGGP

One subfield of GP that manages to tackle the first GP limitation is grammar guided GP
(GGGP). Grammars are used to represent restrictions on domains; they limit the expressions that
can be used. In this way, experts can trim their search spaces like in [35].

Some terminology is needed for the understanding of GGGP. For example, [38], defines
that, "genotype refers to the structure operated on by genetic operators such as crossover and
mutation”, "phenotype refers to the structure that is directly executed to produce the behaviour of
an individual"and "the grammar defines the interpretation of the genotype space".

Firstly, the most used Grammar type in GGGP is a context free grammar. A context free
grammar can be defined by a four-tuple {N,Y., P,S}, where N is the nonterminal alphabet, ) is
the terminal alphabet, S is the start symbol, and P is set of production. The productions P are of
the form x — y where x € N and y € {Y UN}*. Assume a simple example: N = {op, sym,exp} ,
Y ={a,b,c,+, x} and the production set P can be:

S —exp
exp — op sym sym | op sym exp
(2.9)
op — +|x
sym — alb|c
The symbol | represents an "Or". This simple grammar can define the expression in prefix

notation {xa + bc} that translates in the usual notation in: (b+ ¢) x a. The derivation of this
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expression from the grammar is rather simple. First, all expressions start with the initial symbol
S. S is translated in exp in the first rule. After that, we have to translate exp. We have two options:
translate exp in (op sym sym) or in (op sym exp). In this case (op sym exp) was chosen. Next,
we have to choose op between + or x, we have chosen x, and for sym, we can choose between
(a,b,c) we have chosen a. In this state, we have the expression { xaexp}, as exp is not a terminal
symbol, we continue the decoding process. In this case, exp is substituted by (op sym sym) the op
by + the first symbol by b and the last by ¢, and we have the final expression { xa + bc}.

Having introduced the bases of GGGP, some variants of GGGP can be determined. Firstly [38]
in the survey classifies the GGGP methods in terms of their representation. Ones can have tree
representations (like CFG-GP) of their solutions, and others can have a linear representation, like
in Genetic Evolution (GE) [39]. Both these methods will be further explored in the following sec-
tions. The other division is between the type of grammars used: Context-Free Grammars, Context-
Sensitive Grammars, and Tree-Adjoining-Grammar (TAG, like in the algorithm TAG3P). Finally,
the subsequent separation is between the type of search algorithm used. The most relevant types
are probabilistic model-building algorithms, evolutionary developmental systems, meta-evolution,
and others. Table 2.2 represents some notorious GGGP algorithms classifying them in terms of

representation and search algorithms used.

Tabela 2.2: Grammar-based genetic programming algorithms classification. Divided in genotype
representation and search method.

Search algorithms

Genotype Probabilistic Combinatorial .
. Tournment search . .. Meta-evolution
Representation model building optimization
Linear GE, SGE, HGE TAG3P Any linear Meta-GE
Tree CFG-GP SG-GP, Ant-TAG none PEEL, DTAG3P

Some reference papers that compare GGGP methods are [40] in which TAG3P outperformed
standard GP and CFG-GP in symbolic Regression, and [41] that compares GE and its variant
SGE with CFG-GP. The conclusion reached is that GE performed poorly, but SGE and CFG-GP
had very similar performances (one was superior to the other only in a set of problems). One
particular aspect of this field is that many researchers create their variations of main algorithms,
for example, [42] with BGBGP-HL, or [43] with HGE. Due to this, keeping up to date with the
most recent algorithms is a challenge. A single paper that compares many GGGP algorithms was
not found in the thesis research until the date. The comparisons are only made in groups of around
four algorithms per paper. Being the papers referenced in this paragraph examples of that.

A choice had to be made in what algorithms to use, and CFG-GP [44] due to its high perfor-
mance and GE [39] due to its simplicity will be implemented in this thesis to achieve dimensional
awareness for the JSS problem. Methods that were not applied yet to this problem in this way.

Although the individuals created in GGGP are more complex than with just GP, it is easy to
impose restrictions to the allowed operations, only changing the grammar. For instance, we can

quickly write a grammar that only allows us to add the terminals B and C, and the A can be used
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only in multiplications. Doing this in regular GP requires significant changes to the code itself.
This simplicity in making restrictions to the structure of the expressions is crucial in GGGP. A
more detailed explanation on how to design grammars to specific problems can be found in [45].

Another relevant difference between these methods is the initialization process. In GGGP, an
expression can end with a non-terminal still left to expand if we use a random initiation process
(that generates many invalid expressions). So ways of complete non-terminated expressions can
be used. In [46] several initiations algorithms are compared, being PTC2 that performs the best.
So both random initiation and PTC2 [47] will be tested for grammar methods.

It follows next an overview of CFG-GP and GE.

2.4.1 Context Free Grammar Genetic Programming CFG-GP

[44] used a tree representation and Context-Free Grammar to solve the 6-bit parity problem. In
this representation, each evolved solution is represented by a derivation tree (the genotype because
it is where the operators operate), which is translated into a "conventionally"GP tree (that is, its
phenotype). This method is named CFG-GP.

This derivation process can be represented in a tree form, which is directly evolved in CFG-
GP. The CFG-GP tree contrasts with a normal GP tree that performs the same operation as can be

seen in Figure 2.4 and 2.5. The CFG-GP is representing an individual of the grammar 2.9.

<S>
l X
<exp>
<op> <sym> <exp>
X a <op> <sym> <sym> a b

Lo ¢
+ b C

Figura 2.4: Tree in GGGP. Figura 2.5: Tree in GP.

2.4.1.1 Mutation and Crossover in CFG-GP

Both mutation and crossover have some differences in relationship with GP. Firstly as all
terminals have at least one non-terminal above them, the crossover points and the mutation point
are located only on non-terminals.

The second one is that CFG-GP is not closed under its operations, so to ensure valid offsprings,
care must be taken.

The same non-terminal must be expanded at each crossover site to ensure that the crossover

creates a valid solution. First, a non-terminal is chosen in the parent, and if the second parent has
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the same non-terminal, the subtrees are swapped. If it does not, the first step is repeated until a
non-terminal shared by the two parents is found. The worst-case is to swap the entire tree if the

non-terminal at the root is the only one in common. Figure 2.6 represents a CFG-GP crossover.

<> Crossover 5> <S>
<e£p> <e£p> </J#l»w\
<S> _Sexp> 0
T <op> <sym>{_<exp> > <op>  <sym>(_<exp> >
C<exp> > 1 l 7—\\ l l <op> <sym> <sym>
<0,3>/<*5:/'rm>\<e‘xp> * b <°lp> <5Vlm> <5\1m> * <pr> <Sylm> <;X|:<‘£\‘ a a
X i <0[;< sym\><5‘ym> + a a x a <op> <sym> <sym>
£ %) £ Jlr b c

Figura 2.6: Crossover in CFG-GP. The circle represent the crossover points.

If some operation creates an offspring that exceeds the max tree depth, that process is repeated
until an offspring respects the maximum depth.

For mutations, a mutation point (a non-terminal) is chosen. The bottom part of the subtree
is erased, and a new tree is created by resampling the grammar respecting the maximum depth.

Figure 2.7 represents a CFG-GP mutation.

<5> <f>
|
" <eXp>
<exp> Mutation
<o|:‘l>/<s\}m>’___<__e’;p_>_i> — <op> <5\1m> C_<exp>
+ i <op> <sym> <sym> + a <olp> <Sylm> <Sylm>
-ll- b c X C a

Figura 2.7: Mutation in CFG-GP. The circle represent the mutation point.

2.4.2 Grammatical Evolution - GE

GE, in opposition to GP and GGGP, uses a linear representation. The principal difference
between GE and CFG-GP is that its crossover mutation operators are performed in the linear
encoded element (genotype), which has to be interpreted back (mapped) to an expression in a
phenotype to be run. As in GGGP, it follows an example using the grammar 2.9.

Having a individual in a linear format (genotype) x = [1,5,3,9,4,6,1,2] the first step to run it
is translated to its phenotype. Table 2.3 explains detailed the steps required , they will be detailed
in text only for the first 3 derivations.

Every individual begins with the initial symbol. Then the first codon 1 is interpreted. It

represents which one of the possible expansions of S will replace S. The operation 1%1 = 0
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chooses the expansion number O (S is substituted by exp). Now it is necessary to expand exp
using the second codon 5. It has two expansion possibilities, so 5%2 = 1 chooses the expansion
number 1 (exp is substituted by op sym exp). Now each phenotype is expanded, beginning from
the one on the left. So we expand now op, op has two possibilities, 3%2 = 1 so it is substituted by
% (at this moment, the phenotype to expand is X sym exp). This process continues until the end:

or every non-terminal is expanded, or we reach the end of the codons (i.e. the integer vector).

Tabela 2.3: GE mapping from genotype to phenotype.

I phenotype codon used Rule compute chose
1 S 1 S—exp 1%1=0 expansion 0
exp

_ expansion 1
2 exp 5 ex p— op sym sym | op symexp 5%2=1 op sym exp
3 op sym exp 3 op —+Ix 39%2=1 ixpansmn 1
4 X sym exp 9 sym —alblc 9%3=0 ZXpanS“’n 0

_ expansion 0
5 X a exp 4 exp — op sym sym | op symexp 4%?2=0 op sym sym
6 xaopsymsym 6 0o p —+Ix 6%2=0 ixpansmn 0
7 Xa+symsym 1 sym—alblc 1%3=1 gxpansmn 1
8 x a+bsym 2 sym—alblc 206322 expansion 2

C

Final xa+bc

Mutations and crossovers in GE work directly in the encoded number string. The mutation
erases a part of the string and is substituted by a randomly generated string. The crossover chooses
two crossover points and interchanges the parts on the right of the parent strings between the two
forming the child.

The problem in GE is that the mutation and crossovers can create invalid individuals [46], so
completion techniques can be used to avoid this problem. Another is that as the mutation and
crossover operate at the genotype level, small local changes in the genotype can endorse conside-
rable changes in the phenotype, which can be detrimental to evolution [48]. This is known as the
locality problem of GE. Figures 2.8 and 2.9 represent a GE crossover and mutation respectively.

The main advantage is that it is versatile with its genotype-phenotype mapping and has a

simple implementation.

2.4.2.1 Explosive an unbalanced grammars

A problem that affects GE in a more relevant way than CFG-GP is that some grammars can
be explosive [49]. An explosive grammar is one where if there is a choice between non-terminals
and terminals, a non-terminal expansion is more likely to be chosen. In these grammars, random
initiation processes have a probability close to zero to generate long individuals. In contrast with

CFG-GP crossover, GE crossover can generate an invalid individual. If the grammar is explosive,
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Genotype Genotype Crossover Genotype Genotype
[1539[4,6,12] [0,0,0,072] m—) [1,53,9|2] [0,0,0,0,4,6,1,2]
Equivalent Phenotype Equivalent Phenotype Equivalent Phenotype Equivalent Phenotype
<S> <f> <5> <S>
i <ex l

p> J
<exp> / l\ <exp> <exp>
/ N\ <op> <sym> <sym> //\_ / |
(o] sym
<op> <sym> <exp> | ' | <Op> <sym> <exp> <o[:)> <sy&m> <e)§p>
I/, ¢ [ A S b
X a <op> <5\1m> <syim> < a <op> <sym> <sym>
Jlr b c

Figura 2.8: Crossover in GE. A bar represents the crossover points. Here one of the individuals is
incomplete (it is invalid). The other is valid but has redundant codons that were not used (marked
with a circle).
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| ' |
+ a c X a ¢

Figura 2.9: Mutation in GE. The circle represent the mutation point.
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this generated individual will have a low probability of being complete. So GE will be best applied
with not explosive grammars or will have to use ways of complete invalid individuals.

Therefore, other methods of initialization have to be used in these types of grammars. In [50]
the author uses an adaptation of PTC2 [47] as an initiation method in GE and shows that PTC2
grants significant improvements face to a random initiation for this type of grammars. So PTC2
will also be used in this thesis.

In PTC2, the user chooses the individual’s size probability distribution and the terminals and
non-terminals probability distributions. Furthermore, the individual can be slightly bigger than the

required size. Due to this, PTC2 only approximates the user-provided tree size distribution.

2.4.3 Dimensionally Aware GP

A particular way to impose restrictions on GP is by enforcing dimensional awareness. GP
with this characteristic is called Dimensionally Aware GP (DAGP). In science, the dimensions of
the variables act as syntactic constrain on the valid formulas. We cannot sum apples and oranges
and expect the result to have a meaning. In contrast, in standard GP, any operation between the
terminals is allowed, making the solution space of DAGP smaller than standard GP. Which is a
good indicator that DAGP can have a better search efficiency. Several methods to use DAGP have
been proposed, from transforming the problem to a dual objective one (the second one is the good-
ness of fit [4]), or by using a grammar [45]. Both ways have very distinct characteristics. In dual
objective, candidates with dimensional inconsistencies may appear but are penalized, contrasting
with the grammar method that makes it impossible for them to appear. The downside is that the
crossover and mutation operators performed in GGGP are more complex than in GP, which can
cause some complexity overhead. In both these papers, GGGP and GP’s results were similar,
being that GGGP involved smaller expressions in general but could be easier stuck in its evolution
procedure.

In DAGP, each variable, v; belonging to the terminal set, is associated with one dimension
vector. Each position represents the exponent of that dimension for that variable. The vector size
is equal to the total number of different dimensions in the problem. For instances, if a problem had
one variable that measured time, one variable that measures meters, and one variable that measures
temperature, the dimension vector would have size three and could be written as [xx, yx,zx]. For
the variable representing time the vector is [1,0,0], for the one measuring distance is [0, 1,0],
for an adimensional constant is [0,0,0], and for an acceleration (m/s®) is [~2,1,0]. In DAGP,
it is only possible to add or subtract terms with equal dimension vectors. Trigonometric and
power operations can only be performed on adimensional terms. Furthermore, when multiplying

or dividing, the dimension vectors are added or subtracted, respectively.

2.4.4 Dimensionally Aware grammar

In order to make a context-free grammar that guarantees dimensional consistency, some res-

trictions have to be made. The set of possible units has to be finite. Furthermore, besides being
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finite, the dimensions are always integers.

In the thesis, the terminals were dimensionless (a ratio) or represented time. So the units of
each variable are represented only with one variable u. For example, the processing time (PT) has
dimension 1, and 1/PT has dimension —1. In the grammar, N, represents the production rules
referring to expressions with that dimension. We considerer u to have values between [-2 and 2].
As this grammar can become extensive, an automatic procedure (algorithm 1) to generate it similar
to [51] was implemented.

For simplicity for each production rule, instead of writing A := A|X, the second A was omitted.
This omission conforms with the writing conventions of the ECJ (Java evolutionary computation
toolkit used to implement the genetic algorithms) grammar parser. Doing that this set of rules:
A:=X and A :=Y is equivalent to A := X|Y

Due to multiplication being commutative, the number of multiplications used was reduced.

The complete grammars used can be seen in appendix C.

Algorithm 1 Automatic Generation of Production Rules

1: procedure AUTOMATIC GENERATION OF PRODUCTION RULES

2 u=4{-2,-1,0,1,2}

3 # innit production set P

4 P={}

5: for dimension in u do

6 P = PU{< start >:=< Ngimension > }

7 for din u do

8 #add addition and subtraction rules

9: P=PU{<Ng;>=(+<Ng><Ng>)}
10: P=PU{<N;>=(— <Ny ><N;>)}
11: #multiplication derivations
12: for each v,p such that v+p=d,v<p do

13: P=PU{<N;>=(x <N, ><N, >)}
14: if d is multiple of two then
15: a= d/2

16: P=PU{<N;>=(x <Ny, ><N,>)}
17: #divisions derivations

18: for each v,p such that v-p=d do

19: P=PU{<N;>=(/<N,><N,>)}
20: #terminals derivations
21: for each terminal T with dimension d do
22: P=PU{<N; >=(T)}

return P

2.5 Expression Enumeration

This small section entails what has been done for enumerating expressions. Many papers

explore a way to reduce the space dimensionality in GP. However, none states what was the impact
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of the changes analytically on the solution space. They only show it empirically.

Nevertheless, some research has been done trying to count words of a given grammar. Moreo-
ver, as a grammar can define the usual GP expressions, methods used to count words in grammars
can count GP expressions. For an unambiguous, (i.e. there does not exist a string that can have
more than one leftmost derivation or parse tree) context-free grammar, the Chomsky—Schiitzenberger
enumeration theorem can be used to estimate asymptotic bounds to the total number of words in
a grammar [52]. Unfortunately, our used DA grammars are ambiguous, so we cannot use this the-
orem. Nevertheless, it is possible to know if the number of words has exponential or polynomial
growing [53].

However, as counting all possible mathematical expressions with binary operations is a par-
ticular problem, these theorems related to all grammars are unnecessary to apply to reach the
intended result. In fact, in [54] it is calculated the number of full binary trees with b+1 leaves
and proven that this number is equal to all possible expressions created of size 2b+1 that only use
binary operators. Figure 2.10 shows the relationship between full binary trees and GP expressions

with binary operators (OP is an operation and Ter is a terminal).

Figura 2.10: GP expression compared with a full binary tree. In the left, the full binary tree in the
middle a GP tree with one terminal (TER) and one operator (OP) on the right a GP tree with the
same structure representing expression (E-F)*C+A.

2.6 Genetic Programming uses in Job Shop Scheduling

Now that the GP algorithms were presented, this last section briefly reviews the literature that
applies them to the job shop scheduling problem.
Making DRs with GP is being heavily studied, and it can, in some instances, outperform
manually designed rules. A comprehensive summary can be found in [1].
[55] was probably the first to use GP to evolve dispatching rules for the Job Shop Scheduling
problem. In this paper, the obtained rules were effective. In the following years, from 2005 to
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2009, researchers got more interest in improving the GP performance on more production schedu-
ling problems. New genetic operators and representations were used in particular problems [56]
and studies compared different GP methods [57].

In these lines of research, many things can be evolved with GP. From Dispatching Rules (the
most common approach) to Routing Rules [58] or even Due date assignment rules [59] between
others.

Other representation of GP were also explored, from Strongly Typed GP [60], Cartesian
GP [61], Linear GP [62], and Grammar-Based GP [38].

Also, to speed up training, much research has been done in creating surrogate models. These
simpler models substitute the complete simulator in some training instances, allowing to discard
bad rules without much computational burden [63].

Finally, multi-objective methods were also used in the literature. In [64] the author aimed to
tackle three objectives. The objectives were combined in a single function in a weighted sum.
Although this simple approach can give unsatisfactory results, combining multi-objective as a
sum is an exciting approach that can, for instance, penalize too big expressions [6] or penalize not
dimensional aware expressions [4] without a lot of added complexity.

A fundamental fault in this literature revision is that most works do not compare their results
with state-of-the-art methods. Another is that the sizes of the expressions tend to be disregarded.
In [65] simplification techniques were used on the expressions, but they still become too big and
complex to interpret.

Specifically for GGGP, in the literature survey provided by [1], only three papers have duelled
with this type of algorithms in JSS:

[2] created three grammars, one composed of normal operations and standard terminals, other
of common heuristics such as (FIFO, LIFO, and others) and another that mixes the both. In this
paper, the author compares the results of the three grammars. The combination of both grammars
performed the best and was comparable with the rules COVERT and ATC. This use of grammars
is distinct from our utilization, as we will try to achieve DA expressions.

In [3] the author uses dimensional aware GP (DAGP) and compares it with GP and other
algorithms. There were not significant divergences between the two methods in regards to per-
formance. Therefore, these results indicate that DAGP can be used to generate semantically re-
asonable solutions without performance loss. Here the author did not use grammars to impose
semantical restrictions; instead, restrictions are added to the accepted types of the GP nodes ope-
rands, and the output type is also defined (this method is called Strongly Typed GP (STGP)). Thus,
for example, this method can define that time cannot be added to an adimensional number and that
the product of time and an adimensional number gives time.

In [5], one grammar was used to enforce a specific Dimensional aware GP (DAGP); the stan-
dard GP performance was better than DAGP, but the expressions less interpretable (i.e. seman-
tically more challenging to interpret and bigger). Here the author also used STGP to implement
dimensional awareness. The most significant difference between using a full DA Grammar and

this STGP implementation is that some semantically correct operations were not allowed in the
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STGP implementation. For example, the multiplication of time with time is not allowed, but it
would be allowed if instead was used a full DA grammar. In fact, in our automatic production
of grammar rules described in algorithm 1 if our allowed dimensions were u = [0,1], the genera-
ted grammar will represent the same restrains as the ones of the STGP implementation (for our
terminals). As we use u = [ -2,-1,0,1,2] we restrict less the valid expressions.

This thesis adds to these works in particular [3] and [5] by using DAGP methods to evolve
heuristics to the JJIS problem entirely based on a full DA Grammar. The main advantage is that
our solution space is less restricted than using STGP (we allow higher-order interactions between
the terms). The disadvantage is that it is a lot more challenging to implement. Nevertheless, we
will use two common GGGP methods to solve this problem using a full DA grammar (CFG-GP
and GE).
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Capitulo 3

Problem definition and Experimental
Design

This chapter explores all the relevant details of our implementation of the problem. Further-
more, it explores our chosen fitness metrics and methods to compare Dispatching Rules (DRs).
This includes the simulation model for the job shop, its parameters, how its output is used to

compute the expressions’ fitness, and the statistical comparison of those expressions.

All the genetic programming algorithms and solution space analysis provided in this thesis are
applied to one of the most classical optimization problems: the (dynamic) job shop scheduling.
The problem can be stated as follows: Let M define a set of machines and J a set of jobs that
must be processed. Each job (j € J) has multiple operations (set O;) that must be processed in a
specific machine. Moreover each operation (i € O;) has a specific processing time p;; [7]. Also,
we assume that a machine cannot be preempted, and the setup time is included in the processing
time. The production setting might be subject to different uncertainties in the dynamic variant,
such as dynamic arrivals of jobs, variations in executing time and machine failures. We will not
consider variation in processing times but will considerer dynamic arrivals of jobs (i.e. the jobs

arrival time are unknown in advance).

3.1 Simulation model

The simulation model used follows common literature assumptions [13]. The number of ma-
chines is a parameter |M|. The number of operations of each job is sampled from a discrete uniform
distribution with limits depending on |M|. Thus, machines are randomly assigned operations via a
uniform distribution. Furthermore, re-circulation is allowed (i.e. a job can have different processes
to be executed in the same machine).

The simulation starts without any jobs (empty), and a warm-up time is considered. The fitness
is only computed after the warm-up time has passed. After that, the system is assumed to be in a

steady-state.
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As is common, jobs are numbered in increasing order upon arrival, and the mean tardiness is
calculated for the jobs from 501 to 2500 (the first 500 correspond to the warm-up period). The
arrival of jobs follows a Poisson distribution with rate A. This rate depends on the utilization level
of the shop (u), the mean number of operations of a job (7, in this work 77 = 8), the mean processing

time of operations (5) and the number of machines (|M|). A is calculated by equation 3.1.

_u><|M]
AXp

A 3.1

The arrival time and release time of each job are the same. When an operation finishes, the job
moves to the next machine queue. When a machine is available, the DR assigns a score to each
job. The job with the best score (lowest value of the fitness metric) is selected to be processed.
Due dates d; are calculated via the Total Work Content (TWC) [66] depending on the allowance
factor (a). It is calculated by equation 3.2.

di=ri+axy pij (3.2)

iEOj

3.2 [Experiments design and parameters

An instance can be defined by the tuple < |M|, p,a,u >. The performance of the DRs highly
depends on the load conditions, defined by machine utilization (x) and allowance factor (a). In
most cases u varies from 85% to 95% and a from 3 to 8 [67], [13]. The training set is used in the
algorithm’s evolution, and the test set is used to evaluate the best expressions in other instances.

Table 3.1 presents all the parameters used for the training set and the test set.

Parameter Description Training Test

|M| Number of machines 10 10

p Mean processing time of operations 50,100 50, 100, 200

a Due dates allowance factor 2,3,4 2,3,4,6,8
e 0.80, 0.85, 0.90

u Shop utilization level 0.85, 0.90, 0.95 0.95.0.97

Tabela 3.1: Training and test instances.

Several studies have shown that shop size does not affect the performance of the rules relative
to the others [68]. Also, it is usual to consider ten machines in the simulations. So both in training

and test, only ten machines will be used.

The test set is composed of five values fora =2,3,4,6,8, five for u =0.8,0.85,0.90,0.95,0.97
and three for p = 50,100, 200. In this way the performance of a rule in a vast range of shops with
different characteristics can be evaluated. More specifically a rule is evaluated in 5 x5 x 3 =75

different conditions in the test set.
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The training set is composed of three values for a = 2,3,4 three for u = 0.85,0.90,0.95 and
two for p = 50,100. More specifically a rule is evaluated in 3 x 3 x 2 = 18 different conditions in

the training set.

Furthermore, to provide reliable results in the training set for each tuple (each instance), 10
different independent runs are generated, and for the test set, 100 (usually this value is around 30
in the literature, but for the test set we increase it). Each repetition is called a replica and K; is the

set of all replicas (k € K;) belonging to instance i.

The simulator was coded in Java which, through the capabilities of ECJ [69] can handle the
main evolutionary logic of the algorithms, allowing GP and GE. However, ECJ limits the use of
grammars, only allowing GE. Due to that, CFG-GP had to be externally implemented in python.

Further considerations on this point will be talked about in the further chapters.

3.3 Algorithms baseline and fitness metric

For the problem JSS, the hole population at generation g, P, is evaluated at a time. The most
expensive part of the algorithm is the fitness computation. Each simulation returns the mean
tardiness of instance i in replication k when applied the rule A (Tuir). These Ty are subsequently

grouped in a unique fitness metric.

It is challenging to have a single metric grouping the behavior of all instances in a fair and

interpretable way. In this subsection will be detailed the chosen metric.

For starters, in each run (each replication k of instance i), a metric must be chosen. The chosen
metric is mean tardiness. The tardiness of a job is given by max(0,c;—d;), being c; the completion
time and d; the due date. It measures how much a job was delayed if any. The mean tardiness T

of a set of jobs J is calculated as in Equation 3.3.

Y jeymax(0,c; —d;)
#J

Thix = (3.3)
The mean tardiness of an instance is computed as the mean of the mean tardiness of all replicas
K; of the instance i. As the number of replicas is the same for all instances, #K; will be written as

#K. Equation 3.4 presents the calculation.

= ek, Taik

Thi 4
A 4K (3.4)

The problem with T}; is that it is not easy to interpret/compare. Only by comparing this value
with other rules can we know if one rule performed well or not. So we introduced a rule B;, a
benchmark rule. For each instance, one rule B; was chosen to perform this relative adjustment.
In this way, it is easy to see how many times a rule is better or worse than other. The benchmark

rules B; are the rules used in [14] and [18]. The Tj; is then the minor value of mean Tardiness that
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all the benchmark rules obtained for that instance i (see Subsection 2.1.4 for an overview of the
benchmark rules). So the relative mean Tardiness of an instance is computed as in equation 3.5.
g Tai

Fri= = 3.5
Ai TBi ( )

The problem lies in how to group this metric associated with several different instances that
can have severe disparities in magnitude. For example, if instance x has mean relative tardiness
of 100 and instance v has a mean relative tardiness of 1.01, the instance v instance will be almost
ignored when grouping the two. As the geometric mean handles better magnitude disparities than
the arithmetic mean, we chose it. Furthermore, the geometric mean allows us to rewrite the final
fitness equation in a way that allows us to separate the fitness computation of rule A from the
benchmark rules, which is not possible with the arithmetic mean. So the fitness associated with

rule A can be computed as in equation 3.6.
_ = Ve Tai
Fa= wf[]Fai= T (3.6)
iel VI ic1 TBi

3.4 Statistically significance when comparing two rules

The algorithms are evaluated based on the fitness presented in the previous section. However,
one important question is to know if the rules generated at the end are statistically different. This

section presents the procedure that was followed in order to evaluate that.

3.4.1 Significance for one instance

When comparing two rules A and B in an instance, we have the mean Tardiness off all replicas
on that instance for each rule. As the distribution seeds are equal, the same jobs appear for rules
A and B for each replica k; on instance i. Also, their difference represents the exact performance
difference in the same job conditions. With these differences, a T-student test can be applied to

see the statistical significance of the results.

So our variable of interest Z; with samples {Z;1,Z;,...Zk, } is the variable where we want to

apply the statistical test. Being Z characterized as in equation 3.7

Zix = Taix — Tpir, Vk € K; 3.7

We want to refute the null hypothesis Hy: Z; has mean 0. The alternative hypothesis Hj: is
Z; has mean superior to 0. So a one side T-test has to be performed. After the test, a p-value is

obtained.
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With this p-value, it is easy to extrapolate the value of the test in the other direction. If instead,
our variable was Z;k = Tgir — Taix the sample mean of Z;k is the symmetric of Z; (equation 3.8).

Furthermore, it is easy to see that the sample variance would be the same (equation 3.9).

/ 1 - . 1 - .
mean(Zy) = K. kZI:( Tpixk — Thix = TIEK kZI:( Taix — Tpi = —mean(Zi) (3.8)
ek; €K
/ 1 - - / 1 - -
var(Zig) = Y (Tsic — Taic — mean(Zy))* = iK Y (=1)(Ta — Toix — mean(Zi))* = var(Zy)
i kek; i kek;

(3.9
With this in mind, the p-value associated with the inverse direction can be associated with the

one obtained in the direct direction.

!

p =Pr(Z > mean(Z) | HO) = Pr(—Z > —mean(Z) | HO) =
Pr(Z <mean(Z) | HO) =1 —Pr(Z > mean(Z)) =1—p

(3.10)

In the rest of the thesis, only the test in one direction will be presented and its respective p-
value. A p-value between 0 and 0.5 will be represented in graphs with green (stating rule B is
better than A with that significance level) and from 0.5 to 1 with red (stating rule A is better than

C with a 1-p significance level).

For instance, if the p-value is 0.03 and our significance level is 0.05, we reject the null hy-
pothesis, and so the mean of Ty; — Ty is significantly greater than 0, so rule C is better than rule
A (has lower mean tardiness). If the value is 0.98, this is equivalent to the p-value in the reverse
direction being 0.02, so it is significant the opposite, and in this case, rule A is better than rule C

in that instance.

3.4.2 Extending to all the instances

Assigning a single value representing the test significance between two rules is difficult, es-
pecially considering a score that aggregates several instances in a single metric. So two ways of
comparing will be presented. One of them is a bar plot representing how many instances a rule is
significantly better than the other in function of the desired confidence level, allowing to see if a
rule is dominated by the other. The other is an alteration to the previous method that uses another

test variable X with samples {X;1,X12...X14k, ..., X#rsk,, } that will be discussed here.

A naive approach to group the tardiness of all replicas of all instances in a single variable X
could be: ignoring that the replicas are associated with the instance and simply considering the

values of all the replicas independently of the instance.

Xik:TAik—TCik,ViEI,VkEKi 3.11)
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The problem with this approach is that an instance with big mean tardiness will have a lot more
weight than an instance that does not have big mean tardiness. The instances with mean tardiness
close to zero would be almost completely ignored from the analyses, especially comparing to a

bigger one.

Due to that, a relative factor that takes the mean tardiness into account has to be considered.
A good metric will guarantee that: if rule A performs 5 times better than rule B in instances 1
and 2, they will have the same relevance in the overall metric despite the differences in the mean

tardiness of rule 1 and rule 2.

A way to do this is by dividing the previous variable Xj; by the mean tardiness of the replicas
of the rule A and B, for that instance. So the new variable X;; will represent how much a rule is

better than the other in that replica with respect to the mean tardiness, for that instance.

Thix — Tcik

X = = — Viel,VkeK; (3.12)
T 1/(2#K) X (Luex; Tai + Luex, Tein) l
The same test explained in the previous section is performed with this new variable, giving a

single p-value indicating if rule C is better than A.

3.4.3 Variance of the fitness metric

In addition to comparing the performance of two expressions, it is important to understand
the confidence around our fitness indicator, i.e., how much would the fitness metric change when
repeating the experiments with different seeds? This question is essential to understand if it is
clear that one DR with fitness x is better than the another with fitness x+e without the need to do
a specific test. Standard genetic algorithms only compare fitness values. We should also consider
how variability discrepancies between instances impact global fitness and how can we prevent
that.

As we are using the geometric mean to compute our score we need two describe to things: The
effect that multiplying random variables has in the result and the effect of subsequently taking the

root.

Due to the fitness indicator around some scenarios being with confidence close to zero any log
transformation to the data did not work. This log transformation could allow us to transform the

geometric mean in a arithmetic which is easier to analyse.

Furthermore the method to compute the mean and variance of the product independent random
variables did work to do that, but given that E(x'/") # E(x)"/" and its variance is to high, the
second order approximation of E (xl/ ") was not restricted enough and did not represent the reality
of the data. In fact, being x the product of the Fy; (for all 1), being A; and GL-Z the mean and variance
of each Fy;, E(x) = A and Var(x) = 6. These two moments can be easily computed by the
folowing formulas (3.13, 3.14) which are easy to demonstrate (as the scores of the instances are
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independent):

2 =TT (3.13)

i

o’ =T](c? +27) - []A (3.14)
i i

Defining a new variable d as the deviation of x in respect to its mean (d = x — A) we have
that E(d) = 0 and E (d?) = 62 which allow us to aproximate E(x'/"), our main score metric by its

second order taylor series around A. Also by calling our aproximation 4, we get:

B = B((A+a)) A4 AV B @) 4 2 (- DA E@) ()
E(xl/n)%kl/n‘f‘ll(l_l)l(l/n)7262:7t' (3.16)
2n'n b

Suppose that the second term of the approximation is negligible (6> << A), then the first-order
approximation (which is the one we use when computing the score) is an excellent approximation
to the expected score. An interesting observation is that our estimate for Fy is always superior to

the expected value of F4 (we are using the first-order approximation).

If the second-order approximation is good enough, and A, is close enough to the actual value

we can aproximate the estimator variance:

Var(x'/") m E((x'/" = 1,)%) = E(¥") 22 =AY g;L<2/">—1E(d) + %g(g — 1AM 2E(d?) A}
n nn
(3.17)
12,2 A2m=2g2 1 (1—n)?
Uny g a2/n 2202 2m)-252_ 92 7~ % AN 422
Var(x'/™) = 4 +2n(n A o -4, " 1 R A7%c°] (3.18)

Unfortunately, if this condition does not hold, and worse, the other terms of the series are not
negligible using this method to compute the variance of E (xl/ ") by just using first and second-
order moments do not work (it underestimates the interval). Unfortunately, this was the case in
our results. The second-order approximation for the confidence intervals of the indicator was two
times smaller than the actual intervals (for some of our DRs). Therefore, the distribution of the
global fitness score was computed directly from the definition as the other methods did not provide

good enough approximations.
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It is assumed that each F); (mean tardiness of an instance) can be modeled by a Truncated
Gaussian distribution. Truncated Gaussian represents the maximum entropy probability distribu-
tion for variables with fixed means and variances, constrained to be in the interval [a,b]. In our
case, the mean tardiness is constrained to be non-negative, i.e, in the interval [0, 4-o].

The distribution of C4 = []; F4; was computed directly by the definition of the distribution of
the product of random variables. If Z = XY,X and Y are always greater or equal to 0,the CDF of
Y is Fy,the PDF of X is fx then the CDF of z (¥7) can be computed as follows:

RQ=Pe<2)= [ hlAE/xds

X

This expression allows us to generate the next CDF used for the next product. Finally having
the variable z = C4 it only remains to characterize Fy =y = C/i/ " As x!/" is monotonically incre-
asing, we have that: P(z < Z) = P(y < Z'/"). This simple relationship allows to get the CDF of
F4 and with that, getting confidence intervals is straighforward (the mean was also computed after
calculating the PDF).

With the confidence intervals around a fitness, we can now just look at the fitness to know
what rules are statistically better than the others. Furthermore, we can see which scenarios are

undermining the score and how.



Capitulo 4

Expressions Enumerator

This chapter describes all the work done to create the expression enumerator. It is subdivided
into three main parts: i) Expression Counting, where the mathematical derivations that allow us
to compute the total number of possible expressions of a given size are shown; ii) Expression
Enumeration, which explains how the DA enumerator was created; iii): Random Enumeration
Analysys, where a simple approach to estimate the expected computational time evolution of the
Enumerator is presented. This derivation is what is used in appendix B to generate the time
performance graphs of the random Enumerator for comparison purposes. The Enumerator will
reveal if GP and GGGP methods explore optimally small size expressions. If they do not, the

Enumerator will also find better expressions.

4.1 Expression Counting

4.1.1 Problem definition

Let EX Py, equals to every expression of length n using the terminals of set T and operations
of set O, where O is subdivided in operators types, unitary operators O1, binary operators O, etc.
(0 ={01,0,,03}). For example let O = {0,{+,—,*,/},0/} and T = {a,b,3}, an expression of
the set EX P]5~0 can be in prefix notation [-c+ab] that translates in c- (a+b). The first question would
be: what is the dimension of EX Py, (#EXP},)?

4.1.2 Analysis
4.1.2.1 Upper bound

It follows here the calculation analysis of these spaces. Let S, the set containing N symbols in
which any sequence of operation and symbols would be valid (all strings are valid in this case):
for instance, the [—+-a] (this is an example with N=5) is valid in this first analysis. We know that
for each of the N symbols to choose, the number of different values that can be there is equal to
the number of terminals plus the number of operators. In conclusion, we know that the number of

strings with this form is (this will be an upper bound to all of our subsequent analysis):

35
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#S = (#O| +#0, +#03 +#T)V 4.1)

4.1.2.2 Analysis for O,

From [54] it is shown that the number of full binary trees with b+1 leaves is the Catalan number
Cp. Furthermore, a full binary can represent the applications of successive binary operators. A
binary tree is the standard representation of GP (with only binary operators); each leave is a
terminal, and the nodes are the binary operators. Moreover, b+1 leaves require b nodes for the
tree to be completed, so the total size of the tree is n = 2b+1 (total size of the expression). After
attributing a terminal to the b+1 terminals and an operator to the b operators of each tree, we can
reach a complete formula for the number of expressions. There are #T°*! = #T("+1/2 = ways
of attributing terminals to b+1 terminals. And there are #012’ = #0&"_1)/ : ways of attributing a
operators to b+1 operators. This analysis allows to reach the following formulas for n odd, for n

even there are 0 expressions:

1 -
HEX P, = Car("T)#T("“W#Og b/ (4.2)
2

Asymptotically using Stirling approximation:

HEX P}, = %#rwwz#og"—w 2 (4.4)

Exploring the expression, going from n to n+2 causes a 4#7T#0, increase in the total number
of expressions.

The product (#T#0;) is essential to keep the solution space manageable. A more in-depth
analysis can be performed and making #7 +#0, = K (a constant), the values that give the biggest
number of possible solutions is when #7' = #0, + 1, this can be seen by differentiating the first
expression in regards to #0, (substituting first #7 by K —#0;) and finding when the derivate is 0.
This is an exciting result that says that if the number of possible terminals and possible operations
to choose is close to each other, the solution space is bigger than when they are very different. It
follows a numeric example:

Considering the first example: O, = {+,—,/, x,max,min} , T = {a,b}. And the second
example: O, = {+,—,/,x}, T ={a,b,c,d} ,0, ={+,—,/, %X,a,b,c,d}. Figure 4.1 compares
the sizes of the two examples in a log scale and their relative size. Interestingly the space for n=20
of the second example is 25 times larger than the first one. So, keeping the number of operators as

different as possible than the number of terminals can be useful.
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Figura 4.1: Comparison of the solution space for the #0, case. The left graph first represents
the total number of expressions using 6 operators and 2 terminals, and second the total number
of expressions using 4 operators and 4 terminals. On the right is presented the division of second
over first.

4.1.2.3 Analysis for O, and O,

To help us counting this space, we will base our explanation in Figure 4.2. In this example,
expressions of length 7 are being generated from expressions only with binary operators with di-
mension 5 and 3. One important consideration is that the last element of a valid expression cannot
ever be a unitary operator. In the first example, we can also see that we have to choose 2 places out
of 6 to put the unitary operators and in the second one 4 out of six. Generally being i the length

of the originator expression only with binary operators we see than the number of possibilities to
n—1

i +1) = ("_1). These considerations allow us to

choose the positions of the unitary operators is ( i1

write the final expression 4.6.

i=5
+ sin - a cos b C
7
. 5 1 J I B | Esa
cos sin + - a b C ]
1 | 5§ J J N | Esa
Possibilities: (ngl) fori=>5 [ =3

+ sin a sin €95 cos b
- . ! 1 I N | Esy

sihn cos =+ cos @ cos b
- ¢ T I 11 r =B EZ,

Possibilities: (", ") fori = 3

Figura 4.2: Counting expressions with unitary operators.
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é : n—1 ,
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It is not clear if there are fewer or more expressions when using unitary operators than with
only binary operators. Numerical examples and charts can show that there is an inversion in the
behavior of the expression.

Here are some concrete examples that demonstrate this inversion and behavior. Observing
Figure 4.3 is clear that for expression lengths inferior to 25, there are fewer expressions with
7 unitary operators and 13 binary operators than with 20 binary operators. With bigger lengths,
the opposite conclusion can be drawn. There is an inversion. Figure 4.4 uses only 4 operators.

The number of expressions with only binary operators is superior to the one with unitary in all

instances.
110 1 —#~ O1 times bigger than 02 10 1% —e~ 01 times bigger than 02
09
105 08
o 100 507
Toss E 06
0.90 05
085 04
0.80 03
T T v 02 T T T T T T
0 B 10 = 20 &= 3 0 5 10 15 20 %5 0
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Figura 4.3: Comparison of the number of Figura 4.4: Comparison of the number of
expressions for 20 operators. Test O2 has expressions for 4 operators. Test O2 has
only binary operators (20 binary operators), only binary operators (4 binary operators),
Test O1 has binary and unary operators (13 Test Ol has binary and unary operators (2
binary operators and 7 unitary). binary operators and 2 unitary).

4.2 Expression Enumeration

4.2.1 Enumeration algorithm

The algorithm was developed in python, and to check if it was working correctly, the num-
ber of expressions it enumerated had to be equal to the previous analytical analysis. The initial
enumeration was made in the following way: from the previous section, the following equation
can be subdivided into three main terms, Cat(%) referring to the possible basic structures of one
expression (for size five, there are only two basic structures [Op Op Ter Ter Ter] or [Op Ter Op
Ter Ter]). The term #7 "*1)/2 represents how many ways the terminals can be inserted in a basic



4.2 Expression Enumeration 39

structure. Furthermore, the term #0&"_1)/ 2 represents how many ways the operand can be inserted

in a basic structure.
—1 _
HEX P}, = Cat(nT)#T("“)/z#Ogﬂ /2 @.7)

First, to perform the enumeration, a recursive procedure (algorithm 2) that generates all the

basic structures was created.

Algorithm 2 Enumeratic Basic Structure length n

1: expressionList < []

2: expression < []

3: sizeToadd < n

4: procedure RECURSIVEENUMERATION(sizeToadd,expressionList )
5: if sizeToadd = 1 then

6: newExpressions < []

7: for all exp in expressionList do

8

newExpressions.append (exp.append(Ter))
return newExpressions

9: if sizeToadd! = 1 then
10: newExpressions < []
11: for all exp in expressionList do
12: exp.append(Op)
13: for i = 1;i < sizeToadd;i+ =2 do
14: FirsExpParts = RecursiveEnumeration(i,expressionList)
15: CompleteExpPart = RecursiveEnumeration(sizeToadd —i — 1, FirsExpParts)
16: newExpressions.append(CompleteExpPart)

return newExpressions

The algorithm is recursive, and, at each point of expansion, it has a list of the previously
completed part of all expressions and a sizeToadd (the size to add of terminals and operators) for
instances assume that during the algorithm, the expression list is empty [[]] and the sizeToadd
is 5. The algorithm begins by inserting as the first element an operand [[Op]]. Now there are
two possibilities, or the first operand has length 1 and the second operand length 3, or the first
operand has length 3 and the second operand length 1. RecursiveEnumeration is called two times
for each possibility, the first to give all possible structures for the first operand and the second
to complete the expression. So for the first case (the first operand has length 1 and the second
operand length 3), the algorithm would return FirsExpParts = [ [op ter]], and then the second call
would complete with the only possible variation of size 3. CompleteExpPart = [[Op Ter Op Ter
Ter]]. To the second variation, the opposite would occur, and the final expression would be [Op
Op Ter Ter Ter]. Adding these two together gives the final result: newExpressions = [[Op Op Ter
Ter Ter],[Op Ter Op Ter Ter] ]. This algorithm produces expressions in the prefix notation format.

With the enumeration of the basic structures, it is now necessary to complete the enumeration
with a given set of terminals and operators. For this, a simple procedure was developed. Having

one of the basic structures, for instance [Op Ter Op Ter Ter]. We know that we can substitute Ter
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in #7(1)/2 (n=15) ways and Op in #o(n—1)/2 (n=15) ways. So two numbers are sufficient to
characterize any expression of a basic structure. 7; referring to the chosen combination for all the
Ter (there are #7 ("*1)/2 possibilities), and O; referring to the chosen combination of Op (there are
#0("~1D/2 possibilities). Now it is necessary to map these numbers to expressions. One possible
mapping is the following (algorithm 3), which is equivalent to how to represent a number in a

given base.

Algorithm 3 Mapping

1: procedure MAPPING(lenght,terminals,operands,Ti,01 )
2 chosenOpList < []

3 chosenTerList < []

4 numOp < length(chosenOp)

5: numTer <— length(chosenler)

6 for i = 0;i < (lenght —1)/2;i++ do

7 id = (Oi = (numOp')) mod numOp

8 chosenOp = operands|id|

9 chosenOpList.append(chosenOp)

10: for i =0;i < (lenght +1)/2;i++ do

11: id = (Ti+ (numTer')) mod numTer
12: chosenTer = terminals|id|
13: chosenTerList.append(chosenTer)

return [chosenOpList,chosenTerList]

For example suppose that terminals = [P,U|, numTer=2 and operands = [+, —, /|, numOp=3
and we want to find the expression of lenght 5 refering to 7i = 3 and Oi = 5. So if it has lenght
5 there are 3 Terminals to chose, the first is the less signficant and can be calculated as 3%2 = 1
so it is chosen U as the first terminal( ferminals[1] = U) , the second terminal id is computed
as: (3/2)%2 =1 so it is chosen U as well, and finnaly the final terminal id is (3/22)%2 =0, so
it is referred to P. so the Terminals chosen are [U,U,P]. Simmilary for the operands we have to
choose two operands, the first id is 5%3 = 2 refering to the operator ( operators[2] = /) , and the
second one is 5/3%3 = 1 refering to the operator ( operators[1] = —). So the procedure returns
[UUPL[/-]).

Finally, the procedure to merge a basic structure to the terminals chosen and operators for that
expression is immediate. It is only necessary to transverse the expression and substitute for the
chosen terminals and operators. For example, assume that the basic structure is [Op Ter Op Ter
Ter]. Merging with the previous example’s chosen elements gives [/U — UP]. The first ter was
substituted by the first chosen terminal of the terminal list, the second ter by the second terminal

until every ter is substituted. Repeating this also for the op will complete the merge.

So the Complete algorithm to return all the expressions is algorithm 4:
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Algorithm 4 CompleteAlgoEnum

1: procedure ENUMERATION(n,terminals,operands)
2 numOp < length(chosenOp)

3 numTer <— length(chosenTer)

4 maxTi = numTer"1)/2

5: maxOi = numOp"~1/2

6 BasicStructures = RecursiveEnumeration(n,|])
7 ChosenExpressions < []

8 for all struct in BasicStructures do

9 for Ti = 0;Ti < maxTi;Ti+ + do

10 for Oi = 0; 0i < max0i; 0i+ + do

11: chosenElements <— Mapping(n,terminals,operands, Ti,Oi)

12: exp < Merge(chosenElements, struct)

13: if We wanna keep this expression then ChosenExpressions.append(exp)

return ChosenExpressions

4.2.2 Filtering out expressions

This section aims to find all expressions, dimensionally aware expressions, unique expressions,
and unique and dimensionally aware expressions. All these different behaviors can be represented

by adding logic to line 13 of algorithm 4.

Firstly, by not restricting any expression by making line 13 equal to if (1), all expressions are

saved and returned.

The following method was used to trim down which expressions were Dimensional Aware.
First, a dimensional vector was attributed to each terminal. For example: if T = {Tim,D} and
if Tim is a variable that represents time and D a variable that represents the distance, a possible
dimensional vector for Tim can be [ 1, 0] and for D can be [0,1], if there were a terminal that is a
velocity its dimensional vector is [ -1, 1]. The dimensional vector’s length is equal to the number
of different dimensions considered (in this case, we had only 2: distance and time). In evaluating
an expression, if the operation performed was a multiplication, the operands’ dimensional vectors
were added. If it was a division, they were subtracted. If the operation was a sum or a subtraction,
the operation was performed if the dimension vectors were equal. If not, the expression is not

Dimensional Aware, and O is returned.

The following method was used to find which expressions were unique. Each expression was
evaluated for 1 set of distinct float inputs, and if the result is not on the hash table, the result is
added to it. The inputs were chosen to be extremely difficult for two non-equivalent expressions to
give the same result when evaluated. After Computing the result of an expression with the inputs,

this result is rounded up at the eighth decimal place, and two things can occur:

* The hash table already contains an entry with that result. In that case, the table already

contains a saved equivalent expression, so this one is discarded. Furthermore, O is returned.



42 Expressions Enumerator

* The hash table does not contain an entry with that result. In that case, no expression on the
table is equivalent to this one. Furthermore, we save that expression in that hash entry, and

1 is returned.

This method does not guarantee to have found every different expression. However, it is
improbable for two different expressions to give the same result with the same inputs up to the
eighth decimal place. What happens more often is two equivalent expressions to give different
results due to rounding errors (this is why the hash entry is rounded to the eighth decimal place
to decrease this error). However, this error is not very important because it is essential to test all /
almost all expressions. If the same expression is several times evaluated is not detrimental to the

results.

This method’s advantage is that the complexity of checking if an expression is unique is O(1)
and can be made in a single inexpensive hash table access. This simplicity is essential when

analyzing millions of expressions.

4.2.3 Terminals and operators selection

The number of terminals and operators can be large in GP. Due to that, it is necessary to
trim them down if we want to use an enumerator. We will base out chosen terminal/operator set
on the terminals/operators chosen in [6]. The operators were the common addition, subtraction,

multiplication and protected division [+,-,*,/], and the terminals will be developed next.

In this thesis, only atomic terminals will be considered, except for the critical ratio if positive
(CR"). An atomic terminal is a fundamental terminal, i.e., not a composition of other atomic
terminals. This exception was made because for tiny expressions (length 5-7), the Terminal CR™
appears to add the necessary expression complexity to learn good rules. Almost all the best rules
have a CR™ in them in those ranges, as we will further see. The CR' can be obtained by the

division between the Allowance if positive (A™) and the remaining processing time (RPT).

Table 4.1 presents all the atomic terminals considerer in [6] as well as their abbreviation used
in these work when needed. However, as eight terminals are still too much, further pruning was
performed. As the best subset of terminals used in Table 4.1 did not use NPT and U as terminals,

they were removed from our analysis.

When the expressions’ length became too large to be computationally viable to do the enu-
meration with those parameters, some terminals and even operators were removed. The removal
criterion was if they seem to not appear in the best solutions. The parameters used in the enume-

rations for all expression sizes can be seen in Table 4.2.

Also, in Annex A, a method is tested that uses the enumerator to trim down systematically
bigger sets of initial terminals. The advantage of using one instead of GP is that, unlike GP, the

enumerator explores better and more uniformly and does not repeat expressions.
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Tabela 4.1: List of atomic terminals and their used abbreviation.

Terminal Abbreviation Description Units

PT P Processing time of current operation time

WINQ w Work in the next queue time

NPT N Processing time of next operation time

U U Shop utilisation adimensional
St S Slack if positive time

AT A Allowance if positive time

CR* C Critical ratio if positive adimensional
RPT R Remaining processing time time

Tabela 4.2: Terminals and operators used in the enumeration

Terminals | Expression Sizes | Operators | Expression Sizes |
1 3 5 7 9 11| 1 3 5 7 9 11

PT X X X X X X + X X X X X X
WinQ X X X X X X * X X X X X X
ST X X X X X X / X X X X X X
RPT X X X X X X - X X X X

CR* X X X X X

AT X X X X

4.2.4 Defining feasible sizes

For the small sizes, 1-7, all six terminals, and four operators were used (c.f Table 4.2). It fol-
lows in Table 4.3 the total number of expressions for each size and each expression characteristic.
There is much redundancy in the total expression number. It is evident by the difference in rela-
tion to ALLEXP and UNIQUE. Interestingly, there is a big difference for the expression length 9 of
considering the intersection between the UNIQUE and DIM AWARE expressions and only con-
sidering the UNIQUE ones. The number of expressions to evaluate goes from 1.5 million to 264
thousand. So considering expressions both UNIQUE and DIMAWARE is a lot less expensive than
considering UNIQUE expressions. This indicates that dimensional awareness can help to decrease
search spaces. Another intake is that the growth rates from one size to the next are exponential
even with the restrictions, and the growth rate of Unique and Dimensional Aware expressions is a
lot smaller than the global rate. Therefore, for big expression lengths, the enumeration algorithm
will be slow. As we have to transverse all expressions, the time complexity is on the order of AL-
LEXP and not of UNIQUE and DIMAWARE expressions. So the enumeration will eventually, for
big enough expressions, be slower than the actual simulator. It was not the case as the bottleneck
was the simulator that took around 6 minutes to evaluate an expression on the test instances.

Unfortunately, evaluating 260 thousand expressions is still too expensive. So further pruning
was performed for size 9. Seeing the best expressions for the enumeration of sizes 7 in the test set

(Table 4.8 and Table 4.7) it becomes clear that the operator - rarely appears in the best expressions.
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Tabela 4.3: Number of expressions (N) and grow rate (GR) for the smallest expressions sizes. M
stand for millions, m for thousands.

| EXP Length 9 7 5 3 1
Type N GR| N GR| N GR | N GR [N GR
All 27.8M 672 | 414m 60 |69Im 48 | 144 24 |6 -
Unique 1.50M 2587 | 57.8m 24.90 | 232m 2233 | 104 17.33 | 6 -
Dim Aware | 9.32M 48,40 | 192m 43.83 | 439m 3542 | 124 2067 | 6 -
Cnique 264m 1504 | 17.7m 1445 | 123m 1382 | 89 1483 | 6 -
Dim Aware

Further analyses were made, and in Table 4.4 is presented which symbols the y% better expressi-
ons used. From this Table, it is clear that the number of minuses appearing in the top 1%,10% is
inferior to the other operands. Due to that, this operator was removed from the operator set for the
bigger sizes. Further pruning was performed, and A™ was removed from the terminal set because
it was the terminal that appeared fewer times in the best ten expressions. It also appeared to have
similar behavior with . Very similar formulas that only changed S per A* have a close score,

so the amount of information lost is not too significant.

Tabela 4.4: Number of symbols on the top x% best expressions of size 7 in the the test set.

Size 7 Symbols ‘
+ * / - P w R S C A

1% 202 224 87 21 259 108 60 86 123 76
5% 1079 856 503 229 813 648 409 550 650 486
10% 2020 1531 1217 566 1178 1114 1007 1207 1371 1235
20% 3485 3100 2632 1448 | 2116 2314 1973 2564 2502 2751
50% 6807 6541 8699 4611 | 5607 6243 5341 6180 5616 6557
100% | 10857 11416 17469 13568 | 11933 11928 11883 11833 10624 12879

With this parameters for size 9 the number of expressions are presented in Table 4.5:

Tabela 4.5: Number of expressions of length 9.

Size 9
All 3543750
Dup Aware 24891
Unique

Further pruning is required for size 11 (because even with the last parameters, there would
be around 300 thousand expressions). CR™ was removed due to being a compound terminal, and
length 11 begins to be long enough to reach the necessary complexity without requiring a CR™ as

terminal. Furthermore, the best two expressions do not use it.

With this parameters for size 11 the number of expressions are presented in Table 4.6:
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Tabela 4.6: Number of expressions length 11.

Size 11
All 41803776
DlItIl Aware 60020
Unique

4.2.5 Best Expressions found

It follows the best-obtained expressions on the test and training sets for each expression length.
The terminal will be substitute with their smaller abbreviatures in the following Tables. In Tables
(4.7, 4.8 and 4.9) the best expression of the enumerative method can be seen. Also the histograms
with the fitness distributions for all sizes can be seen in Figures (4.5, 4.6, 4.7, 4.8, 4.9, 4.10).

Size 1 is not sufficient to create good rules.

Size 3 has one rule that is a lot better than the others (C*P). However, CR™ is a compound
terminal, so size 3 is insufficient to learn good rules. The number of expressions is still insufficient
to understand the behavior of the histogram.

Size 5 has one rule that is better than the others (C*P + W). Here the terminal CR™ seems
crucial as it appears in almost all best expressions. The histogram is bimodal, with a mode in 4.4
and the other in 18. The mean fitness increased in relationship with the previous case.

For Size 7, the best rule is (C*P+W+P). Here the terminal CR™ seems crucial as it appears in
almost all best expressions. The histogram is bimodal, with a mode in 4.2 and the other in 19. The
mean fitness increased in relationship with the previous case. As we will see when dropping the -,
the histogram ceases to be bimodal.

For Size 9, the best rule is ((S+R)*(W+P)/R). Here the terminal CR™ seems to lose relevance
as many expressions in the top 10 do not use it. The histogram now has only one mode, mean
fitness 5.95 (decreasing in relationship with the other). So removing the - as operator increase the
mean performance of the expressions.

For Size 11, the best rule is (S+R)(W+P)/(R+W). The mean increased concerning the other
case. Interestingly, having WinQ + something tends to be the most usual expression format from
the best ones. However, the best one does not follow this pattern. In chapter 5, when evaluating and
comparing, and explaining the best expressions found by the different methods, these expressions
will be further analyzed.

Furthermore, there were expressions in the ten best expressions of the test set for all sizes
on the training set. Moreover, in particular, for sizes 5 and 7, the best expression is the same.
This means that an evolutionary algorithm exploring the training set optimally would also give the
optimal results on the test set for these sizes. Furthermore, the best expression in the training set
for all sizes also appears in the top 10 in the test set, and the score in the test set will represent the
cap that an algorithm learning optimally on the training could reach in the test set. For example,
the best expression of size 11 in the training set appears in position 10 on the test set, so exploring
the training set optimally would discover that expression in the best exploratory scenario and its
score would be 0.8168.
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Tabela 4.7: Top 10 expressions for sizes 1, 3, 5 in the training and test sets
that belong to the top 10 both in the test and training sets

. In bold expressions

Test Training Test Training Test Training
Set Set Set Set Set Set
Best . Best . Best . Best . Best . Best
Exp Fit Exp Fit Exp Fit Exp Fit Exp Fit Exp
C 2.86 W 1.63|| C*P 147 | P+W 1.20 C*P+W  0.928 C*P+W  0.924
w287 C 2.60(|S+W 235 | P*W  1.60 C*P+P 1.102 C*P+P 1.130
S 3.70 P 281 ||P+W 236 | R*W  1.62 C*(P+W) 1.276 | P+W+W  1.194
A 3.82 A 327|| S*P 246 | W*W  1.63 P*A/R 1.474 P+P+W 1.209
P 6.03 S 333|| A*P 252 | W+W  1.63 C*P+P) 1474 | P*(P+W) 1.299
R 7.96 R 4.01|| S+P  2.61 C*P  1.67 C*C*P 1.554 P+C*W 1.304
A+W 275 | S+W  2.07 C*p*p 1.607 | C*(P+W) 1.401
R*W 286 | W/P 2.3 S*P/R 1.622 | R*(P+W) 1.461
C*C  2.86 S+P  2.15 P*(S+P) 1.663 | P*(S+R) 1.522
C+C 286 | C*W 223 P*(S+W) 1.674 W+P/C 1.534

Tabela 4.8: Top 10 expressions for sizes 7,9 in the training and test sets. In bold expressions that
belong to the top 10 both in the test and training sets.

Test Training Test Training
Set Set Set Set
Best . Best . Best . Best .
Exp Fit Exp Fit Exp Fit Exp Fit
C*P+W+P 0.850 C*P+W+P 0.785 (S+R)*(W+P)/R  0.810 C*P+W+P+P 0.778
C*P+W+W  0.903 C*P+W+W  0.866 W+P+S*P/R 0.816 | (W+P)*(P+C*P) 0.780
P*(C+W/P)  0.925 P*A/R+W 0.927 C*P+W+W+P  0.833 P*(C+P/P)+W 0.786
P*A/R+W 0.927 P*(C+W/P) 0.933 C*(W+P)+W+P 0.844 C*P+W+W+P 0.786
C*(W+P)+W  0.951 C*(W+P)+P  0.943 P*(C+P/P)+W  0.852 W+P+S*P/R 0.789
P*S/R+W 0.961 P*(C*P+W)  0.944 C*P+W+P+P 0.864 | (S+R)*(W+P)/R  0.790
C*(W+P)+P  0.968 | C*(W+P)+W  0.949 P*(C+P/R)+W  0.872 | C*(W+P)+W+P 0.791
C*(P+P)+W  0.984 P*S/R+W 0.968 P*(S+P)/R+W 0.893 P*(C+P/R)+W 0.832
P*(C*P+ W) 1.045 | C*P+P)+W  1.039 C*(P+P)+P+W  0.901 | (W+P)*(W+C*P)  0.840
P+P*S/R 1.074 | (S+R)*(W+P) 1.041 P*(C+W/P)+W 0911 P*(S+P)/R+W 0.847

Tabela 4.9: Top 10 expressions for sizes 11 in the training and test sets. In bold expressions that
belong to the top 10 both in the test and training sets.

Test Training
Set Set
Best . Best .
Exp Fit Exp Fit
(S+R)*(W+P)/(R+W)  0.7920 W+P+S*P/(R+R) 0.7615
P*(S+R)/(R+R)+W 0.8079 | (S+R)*(W+P)/(R+W) 0.7628
S*P/R+W+W+P 0.8089 S*P/R+W+W+P 0.7648
S*(W+T)/R+W+P 0.8100 P*(S+R)/(R+R)+W 0.7660
W+P*(S+R+W)/R 0.8101 (S+R)*(W+P)/R+P 0.7682
(S+R)*(W+P)/(R+R)  0.8104 W+P*(S+R+W)/R 0.7719
(S+R)*(W+P+P)/R 0.8105 P*(S+R)*(W+P)/R 0.7722
W+P*(S/R+P/P) 0.8130 W+P+P+S*P/R 0.7778
(W+P)*(S+S+R)/R 0.8150 W+(S+R)*(W+P)/R 0.7809
W+P+S*P/(R+R) 0.8168 W+P+S*(W+P)/R 0.7828
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4.3 Random Enumeration Analysis

The analysis would only considerer the expressions with length 11 enumerated previously.

The main reasons is that this is the test with more expressions (60021), which achieved the best

results.

With the fitness list for all expressions of size 11, a cumulative distribution will be created

Fx(fit), which allows creating the cumulative fitness distribution of the best expressions for a

given number of expressions n, Fx (fit,n).

With this information, it is possible to get for each value of n the confidence interval for the

fitness of the best expression. By plotting these intervals in function of n (number of evaluated ex-

pressions until the moment), we get a chart representing the expected score of the best expressions

during the evolution.

This analysis is done entirely on the enumeration of the training dataset because we want to

study how the evolution speed varies between the different algorithms. Furthermore, this will be

used as a benchmark for the rest of the algorithms.

4.3.1 Cumulative fitness distribution of the best expressions

Fx (fit,n) will depend on our sample technic. We will considerer the simplest case, in which

we can re-chose previously picked expressions (sample with replacement).
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F, is the fitness of the n’th expression evaluated, and it is a random variable with cumulative
function distribution Fx (fir). The main objective is study the behaviout the expression with best
fit (the minor fit). So the variable of interest is study M, ~ Fy(fit,i) and M,, = min(F\,F,.....F,).
The question is now what is Fy,(fit,i).

Fy(fit,i) can be easily related with Fx(fir), assuming independence between draws (no re-
placement) in the following way.

Fu(fit,n) =P(M < fit) =1—P(M > fit) =1 —P(Fy > fitNF > fit..NF, > fit) =1—
P(F, > fit)"=1—(1—P(F, < fit))" =1 — (1 — Fx(fit))".

With the cumulative distribution getting the 5% and 95% confidence intervals around the ex-

pected best fitness is straightforward.

4.3.2 Algorithms convergence

In Figure 4.11 the cumulative distribution for the best fitness is plotted for a different number
of chosen expressions. Note that for n = 1, this is equivalent to the actual cumulative distribution
of the fitness for one expression. In Table 4.10 and 4.11, the expected value of the best fitness and
the probability of the best fitness is inferior to one is also presented for the training and test set,
respectively.

As we can see by sampling 200 expressions, it is expected that the best found expression
to have a fitness inferior to one with 33% of probability. With 10000 sampled expressions, this
probability is almost one. In Figure 4.12 we can see 90% confidence intervals for the expected

evolution of the fitness of the best expressions.
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Figura 4.11: Cumulative distribution of the fitness depending on the number of evaluated expres-
sions (n). On the left only shows until fitness 1 on the right until 4.

Tabela 4.10: Some metrics of the random enumerator in function of the number of evaluated
expressions in the test set

number of evaluated expressions
1 50 100 200 1000 2000 4000 10000
Expected Value | 7.090 1.577 1.328 1.147 0.926 0.875 0,839 0,813

Probability Best | 1 <o 7099 15350 2835% 81.11% 9643% 99.87% 99.99%
Fitness <1
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Tabela 4.11: Some metrics of the random enumerator in function of the number of evaluated
expressions in the training set

number of expressions
1 50 100 200 1000 2000 4000 10000
Expected Value | 3.929 1.2741 1.1572 1.0624 0.8947 0.8418 0.8025 0.7753

Probability Best | 00 g 670, 1841% 33.43% $6.92% 98.29% 99.97%  99.99%
Fitness <1
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Figura 4.12: Expected Fitness for the random enumerator through the number of evaluations in
the test set.

This graph representing the confidence interval for the score in the function of the number of

expressions tested will be used as a comparison baseline.

4.4 Chapter summary

Close formulas to the number of expressions were reached to unary and binary operators.
The worst case is when the number of terminals is one plus the number of operators, increasing
4#T#0,. Another key intake is that adding a unary operator has (for some cases) more or less the
same impact as a binary one.

These intakes can be further used to help selecting the set of terminals and operators to use.
Although an analysis for O is presented, only O, operators were used in this work. This reduction
was simpler than considerating only Oy, and it was the limit of what could be enumerated.

The enumeration applied to a small set of terminals and operators can find good, explainable,
and simple solutions for this problem. The best expressions found in the test set will be used to
compare the best expressions found in the test set with GP. Furthermore, the way GP evolves will
be compared to the behavior of the enumerator in the training set. In this way, we will see if GP

searches optimally tiny expressions.
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It is expected that a suitable evolution method will have to find optimal solutions for these
small sizes. If it does not, it would be better to enumerate all possible expressions as we did for

this case to get the most explainable and most performative solutions.
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Capitulo 5
Genetic Programming

This section will describe all the parameters and implementations used for each of the different
algorithms tested. Furthermore, it will tell all the characteristics of the experimental setup. On a

further note, all the grammars used are presented in appendix C.

Several different algorithms with different variants were tried. We implemented two different
GP variants, GP-CR were the same terminals as the other algorithms were used and GP-AT where
all except the CR™ terminal were used. For CFG-GP, we implemented two different variants: CFG-
GP-PTC2, which uses the PTC2 algorithm to build the initial population, and CFG-GP-RND,
which uses a more straightforward random procedure to build the initial population. For GE, we
implemented two very distinct methods: GE-BIG and GE-PURE. GE-BIG is a method that uses
a non-recursive-grammar fixing the size of the expressions. We implemented two variants: GE-
BIG-19, which allows expressions between sizes 9-19, and GE-BIG-33, which allows expressions
between sizes 9-33. These two variants can appear with a more compact name (GE-19 and GE-33,
respectively). GE-PURE is a method that tries two types of grammars: GE-PURE-BAL, which
uses a balanced grammar, and GE-PURE-NBAL, which uses the usual DA grammar. These two
variants can appear with a more compact name (GE-BAL and GE-NBAL, respectively).

A summary of all the algorithm configurations tested can be seen in Table 5.1.

Tabela 5.1: Implemented algorithms summary.

GP | CFG-GP | GE-BIG | GE-PURE
CR AT | PTC2 RND | 19 33 [ BAL NBAL

5.1 Experimental Setup

As seen previously, GP/GE and CFG-GP evolve a population of computer programs (expres-
sions) that solves a particular problem. The objective is to find the best individual (with the best

fitness score) in the space delimited by its terminals/operands and size. Both algorithms are highly

53
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flexible, learning both the structure of the solution and the individual parameters. In every gene-
ration, all individuals are evaluated, getting a score. Afterwards, a new generation is created by
combining the best ones from the previous generation.

Three different pipelines were created for all the algorithms: an elitism pipeline, a mutation
pipeline, and a crossover pipeline. Note that both mutation and crossover used tournament se-
lection for picking its parents. A tournament of size t first picks t individuals from the global
population at random, and it returns the best one of them. Keep in mind that there exist differences
in mutations/crossovers between these algorithms as previously developed.

In all the algorithms that use trees GP and CFG-GP, a max tree depth is specified as 6; this
depth is usually used when the focus is interpretability [5]. For the GE methods, the limit was not
depth but expression length. It was imposed as 127 (27 — 1) for the GE, which allows it to represent
all the expressions with depth 6 that the previous methods could represent. We are considering the
first node to be at a depth of 0. For GP and CFG being comparable, CFG-GP depth limitation was
not imposed in its genotype tree but rather in its equivalent GP tree.

Three options of parameters were tried for each algorithm, being five runs for each option
made. The objective was not to choose the best statistically better parameters but rather to avoid
choosing parameters that would halt the evolution. This small pre-test phase was needed because
we did not have enough resources to do many runs for each parameter configuration in all algo-
rithms, so compromises were made.

Three parameter configurations were tested. The first was one used in [5]. (mutation 0.1,
crossover 0.85 and elitism 0.05, and tournament size of 7). As in [70], the author uses a higher
mutation rate of 0.5; we tried one case with a similar mutation rate (the author did not use elitism,
so a small adaptation was made). The tournament size was also decreased to give more randomness
to the chosen operations (mutation 0.475, crossover 0.475, elitism 0.05, and tournament size of 4,
in pre-tests, this seems a good alteration). Finally, the extreme opposite of the first parameters was

tested (mutation 0.85, crossover 0.1, elitism 0.05, and tournament size of 2).

Tabela 5.2: Configurations tested in pre-tests phase.

Config1 Config2 Config3

Mutation rate 0,10 0,475 0,85
Crossover rate 0,85 0,475 0,10
Elitism rate 0,05 0,05 0,05
Tournament size | 7 4 2

For every algorithm, there are four operators {4, —, X, /} and six terminals { PT, WinQ, RPT,
AT, 8%, CR" } except for GP-AT were CR™ was not used.

Each algorithm was run for each parameter configuration with population sizes of 200 during
50 generations, and five independent runs were made. The objective is to choose some suitable al-
gorithm parameters for each configuration as the behaviour of the algorithms can be very different
when changing parameters. It is not to find the optimal parameters for running (so five runs see-

med enough). For each algorithm, the parameter configuration that generated the best expressions
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overall (F,;; minimum fitness) and had the best expressions in average (F,,, average fitness of the
best expression per run) was chosen for the final runs. If these two criteria did not agree with each
other further considerations, applied when needed, were made. Furthermore, the mean size of the
generated best expressions will also be displayed. The summary of the three testing configurations

can be seen in Table 5.2.

The results for the different configurations can be seen in Table 5.3. The parameters chosen
to do the 20 runs were Par 1 for GP-AT GE-PURE-BAL and GE-PURE-NBAL, Par 2 for GP-CR
CFG-GP-PTC2, CFG-GP-RND, GE-BIG-19, and GE-BIG-33. The explanation for every choice

is given below.

After having chosen the parameters for each algorithm, 15 independent runs are made for each
one. The best DRs generated for each run (in total, 5(pre runs)+15(final runs)= 20 runs) are saved

and evaluated in the testing set.

Tabela 5.3: Configurations result for the pre-test phase. Several names are compacted: CFG-R
stands for CFG-GP-RND, CFG-P for CFG-GP-PTC2, GE-B for GE-BAL, GE-NB for GE-NBAL,
GE-19 for GE-BIG-19 and GE-33 for GE-BIG-33.

Algs Config 1 Config 2 Config 3 BEST
Foin Favg DRsize Fnin Favg DRsize Fnin Favg DRsize
GP-AT | 0,71 0,74 26 0,78 0,84 25 0,74 0,75 21 Config 1
GP-CR | 0,73 0,77 21 0,72 0,73 30 0,73 0,76 19 Config 2
CFG-P | 0,71 0,73 27 0,69 0,70 28 0,71 0,73 22 Config 2
CFG-R | 0,71 0,73 26 0,69 0,70 28 0,71 0,73 23 Config 2
GE-B 0,71 0,72 24 0,72 0,74 16 0,74 0,75 12 Config 1
GE-NB | 0,69 0,72 22 0,72 0,73 18 0,76 0,82 18 Config 1
GE-19 | 0,77 0,82 12 0,78 0,80 11 0,78 0,86 12 Config 2
GE-33 | 0,76 0,81 20 0,71 0,89 20 0,77 091 17 Config 2

5.1.1 Chosen running configurations

Configuration 1 was chosen for the GP-AT variant because it had the minimum overall fitness
and the minimum mean best fitness. By the same explanation, configuration 2 was chosen for the
GP-CR variant.

For both the CFG-GP-PTC2 and the CFG-GP-RND variants, configuration 2 was chosen. The
reason is that it has the minimum overall fitness and the minimum mean best fitness.

For the GE-BIG-19 variant, configuration 2 was chosen. The reasoning is that even though
Par 1 had the best min fitness, a difference of 0.2 in the mean is more significant than 0.2 in the
min fitness. We only consider this because looking for all the five values for each run, there was
no clear outlier that significantly worsens the mean results of a run. For the GE-BIG-33 variant,
configuration 2 was chosen. The reasoning is that it has by far the best min fitness of the other
configurations, and the bad performance in the mean parameter is explained due to an outlier. The
entire five runs for configuration 2 gave: [0.7058, 0.8768, 0.7824, 0.8514, 1.2539], 1.2539 is a
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clear outlier, and removing that one gives a mean 0.8041 what is close to the one for configuration
1.

For both the GE-PURE-BAL and GE-PURE-NBAL variants, configuration 1 was chosen. The

reason is that it has the minimum overall fitness and the minimum mean best fitness.

5.2 Specific parameters for each algorithm

5.2.1 GP variants

For GP, the probability of selecting a terminal was set to 0.1, and to select a non-terminal to
0.9. For initiation, the Ramped Half-and-Half algorithm was used with a minimum tree depth of

two and a maximum of 6. The maximum tree depth in the evolution process was set to 6.

5.2.2 CFG-GP variants

For CFG-GP, the max equivalent GP tree depth was also set to 6. The grammar used is the
grammar exposed in the literature review (section 2.4.4) in appendix C. The mutations and crosso-
vers are applied to the CFG-GP tree structure. The algorithm used to generate the CFG-GP initial
population of the variant CFG-GP-RND will be described next.

5.2.2.1 Initialization Procedures

We chose to implement the same process used in [35]. This process guarantees a valid indivi-

dual with a bounded tree max depth D,y

Each non-terminal (<NT>) symbol in a grammar is paired with a integer d(<NT>) such that
this symbol represent the depth of the smallest tree required to expand <NT> into a valid individual
(only terminals). The depth of each terminal symbol is 1. d(<NT>) are recursively computed in

the same way as in [35]:

d(< Op ><NTa><NTb>)=1+max(d(<NTa >),d(<NTbh >)
d(< NTi>) = minj{d(deriv;)} for < NTi >= derivi|deriv;....deriv,

With this, when creating a tree, if we are at a depth D, we only sample the non-terminals with
d(NTi) equal or inferior to Dy, — D. This initiation we called RND because it has less control
on the depth of the individuals than PTC2. In this regard, it is random. However, a complete real
random initiation did not work well with this grammar being incapable of evolving individuals of

size 5 or bigger.
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5.2.3 GE-BIG variants

The GE-Big variants use a grammar without recursive parts, which guarantees that any suffi-
cient long vector will be mapped to a valid solution solving our problem of having invalid indivi-
duals.

For this method, PTC2 was not used because the PTC2 guarantees uniformity in tree structure
initiation, but this grammar does that by definition. The chosen initiation method is a uniform
random integer sequence generator. Moreover, to represent all derivation rules, the min value and
the max value of the generation procedure were set distant enough. Furthermore, the length of the
vector was set long enough to represent the longest individual of this grammar.

We only evolve expressions longer than size 9 because when we allow inferior sizes, the vast
majority of the runs ended with expressions of size 1,3, never exploring bigger sizes.

All the operations of crossover/mutation are applied directly in the encoded integer vector of

the GE representation. The grammar used for this algorithm will be described next.

5.2.3.1 Non recursive Grammars

It is not difficult to write a grammar that only generates expressions of a given size, a simple
procedure to generate a grammar that only produces expressions of size N can be seen in Algorithm
5. The feeling behind this approach is relatively simple. For example, an expression of size 9
(<exp9>) can be computed with operations between an expression of size 7 (<exp7>) and size 1
(<expl>), one of size 5 (<exp5>) and size 3 (<exp3>), one of size 3 and size 5 and finally one of
size 1 and size 7. A small example is presented in Table 5.4 where a small grammar for expressions
of size 5 is displayed (CR™ was classified as size one because it is represented by only one symbol,

we could instead have classified CR* with size three considering it is a compound terminal).

Algorithm 5 Automatic Generation of Production Rules of a fixed size.

1: procedure AUTOMATIC GENERATION OF PRODUCTION RULES OF A FIXED SIZE(size)
2 # innit production set P

3 P={}

4: for s=1 to s=size do

5: P=PU{< start >:=< exps >}

6 for s=1 to s=size s+=2 do

7 # size to create production rules s

8 for p=1 to p=s-2 p+=2 do

9: P=PU{<exps >= (X <exp, >< exps_p—1 >)}
10: P=PU{<exps>=(/ <exp,><exps_p_1>)}
11: P=PU{<exp; >= (+ < exp, >< exps_p—1 >)}
12: P=PU{<exps>=(—<exp, ><exps_,—1>)}
13: for each terminal T of size u do
14: P=PU{<exp,>=(T)}

return P
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Tabela 5.4: Fixed grammar of size 5.

Production Rules

<start>::= <ex1> <ex5>:= (+ <exl><ex3>) | <ex5>:= (/<ex3><ex1>)
<start>::= <ex3 <ex5>:= (- <exl><ex3>) | <exl>i=(A")
<start>::= <ex5> <ex5>:= (¥ <exI><ex3>) | <ex1>::=(PT)

<ex3>:= (+ <exl><ex1>) | <ex5>::=(/<exI><ex3>) | <exI>:=(WinQ)
<ex3>:=( - <exl><ex1>) | <ex5>:=(+ <ex3><ex1>) | <ex1>:=(RPT)
<ex3>:= (¥ <exl><ex1>) | <ex5>i= (- <ex3><ex1>) | <ex1>u=(S")
<ex3>u= (/ <exl><ex1>) | <ex5>:= (* <ex3><ex1>) | <ex1>:=(CR")

The idea is now merging this grammar to the one that enforces dimensional awareness. That
is not difficult for instances if we want to merge the rule (< exp7 >:= + < exp5 >< expl >)
with the dimensionally aware grammar, we have to see where does the + operation appear on the
dimensionally aware grammar and for each one of the production rules merges them. If the +
operator appeared only in the rules : < N1 >:=4 < N1 >< NI > and < NO >:=+ < N0 ><
NO > we could merge it giving as results rules: < exp7N1 >:= + < exp5N1 >< expIN1 > and
< expTNQO >:=+ < expSNO >< exp1NO >. The meaning of the last rule is: an expression of size
7 dimension O can be made by the addition between one expression of size 5 and dimension 0 and
one of size 1 and dimension 0. Doing this for all rules would transform the grammar into a not
recursive one.

However, we still need to remove some invalid rules from the grammar to avoid the generation
of invalid expressions. For instance, if all our terminals have dimension time, it is impossible
to have the following factor < exp1N2 > there is no terminal with dimension 2 with size 1. So
after the first grammar creation, an iterative approach has to be taken that starting with size 1 and
going to the top checks if every production rule can be made. Every production rule that needs
< explN2 > in our previous example will be removed from the grammar set. If a non-terminal
has all its production rules removed, this non-terminal is removed from the grammar. A small

example of the final dimensionally aware grammar can be seen for size 3 in Table 5.5.

Tabela 5.5: Fixes grammar of size 3 merged with a dimensionally aware grammar.

Production Rules

<start>::= <ex3N2> <ex3N1>:= ( * <exIN1><exINO>) | <start>::= <exINO>
<start>::= <ex3N1> <ex3N1>:= (- <exIN1><exIN1>) | <exINI>:=(St)
<start>::= <ex3N0> <ex3N1>:= (+ <exINI><exINI1>) | <exIN1>::=(RPT )
<start>::= <ex3Nnl> <ex3N0>::= (/ <exINl><exIN1>) | <exIN1>:=(WinQ)
<start>::= <ex1N1> <ex3NO0>::= (/ <exINO><exINO>) | <exIN1>::=(PT)

<ex3Nnl>::= (/ <exINO><exIN1>) | <ex3NO0>::= ( * <exINO><exINO>) | <exINI>:=(A")
<ex3N2>::= ( * <exIN1><exIN1>) | <ex3NO0>::= (- <exINO><exIN0>) | <exINO>:=( CR")
<ex3N1>::= (/ <exIN1><ex1NO>) <ex3NO0>::= (+ <exINO><ex INO>)

This approach has some benefits as it can use simpler algorithms: it does not have invalid
individuals and does not need advanced initiation methods. However, this approach pays the price

by only exploring a subset of the expression sizes and having an extensive grammar.
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5.2.4 GE-PURE variants

For GE-PURE, several things will be further explored. First, we used PTC2 as initializing
method. PTC2 was chosen because [49] shows PTC2 to be the best initiation procedure from the
several he tried. The depth of the PTC?2 initialization was set between 2 and 6 for the equivalent
GP trees. After initiation, the individual is translated to the GE representation (integer vector), and
after that, all crossovers/mutations are only applied to this vector. Moreover, we complete invalid
individuals. In this way, it is fairer as all algorithms evaluate the same number of expressions.
Furthermore, two different grammars were tested the standard DA grammar for variant GE-PURE-
NBAL and the balanced grammar for variant GE-PURE-BAL. Finally, the max expression size

was set to 127, representing all expressions that a tree of depth 6 can represent (27 — 1).

5.2.4.1 Non-explosive and balanced grammars:

[49] exposes in this paper the terms explosive grammar and balanced grammar. In an explosive
grammar derivation, it is more likely to choose a non-terminal than a terminal. Therefore, after a
certain number of expanded non-terminals, the probability of the phenotype termination tends to
Zero.

Using the same example in [49]. Assume the following grammar 5.1. In this grammar, the non-
terminal v has four possible expansions out of five that transform v in two v’s, and one terminates
the expansion. So the expansion factor when in node vis: 2 x4/5+0x 1/5=133%. So if we
are assuming a random choice, every v will be, on average, replaced by 1.33v, which will bring the

probability of a valid individual being generated before the codons interpretation ends very low.

<8§>—o<v>
V>4 <v><Y> | — <v><y> [ X <v><v> |/ <v><v> (5.1)

<V>—=X

The impacts can be seen if we generate the initial population randomly, have mutations that
change the genome at a certain point, and use crossovers that can cause codons to be reinterpreted
for each one of these scenarios in an explosive grammar any operation as a high probability of
rendering the individual invalid.

A grammar is balanced [49] if, for every non-terminal X, it is more likely that they expand for
others non-terminals than for itself (X), and there is at least one non-terminal in every parse of the
grammar.

So the challenge is now in turning the initial DA grammar into a non-explosive one that is
balanced, with an expansion factor close to one or inferior. For each non-terminal expansion, an
expansion rule with only terminals is added, or by repeating terminal rules or adding new rules. In
this way, in each derivation, the expansion factor will be 1. As our DA grammar only uses binary

operators, this method guarantees the grammar to be also balanced.



60 Genetic Programming

As the terminals with dimensions -1 and -2 seldomly were being used, they were removed
from this grammar (in this way, fewer complex terminals rules had to be added). Furthermore,
it is still possible to reach complex terms as PT x« WinQ/RPT, which can be made by the rule
<N1>:=(/<N2><NI1>).

The exact steps of balancing were:

* Balance the operands, all operators should appear as often as the other operators

* Adding Terminal rules in a way that the number of terminal rules is the same as the number

of non-terminal in each derivation

* Small changes are made to balance the two previous restrictions and add some prior kno-

wledge.

The derivation procedure of expanding non-terminal N1 can be seen in Figure 5.1. Note that
*X indicates that the rule was repeated X times.

In the middle grammar, the rules with "+", -"and "*"operators were repeated to have the same
number as rules as the rules with "/". In the third grammar, terminal rules were added to be almost
equal in number to the non-terminal rules. After that, there were two non-terminals rules lesser
than terminal rules, so two were added (one multiplication (* N1 NO) and one division (/ N2
N1). We chose them because they were the most performative non-terminals rules to repeat by
analyzing previous good expressions. With that, the operators become a little bit unbalanced but

not in a critical way.

<N1>:u=(A") <N1>:u=(4") <N1>u=(A1)x2

<N1>:=(PT) <N1>:u=(PT) <N1>:u=(PT)%2

< N1 > = (WinQ) < N1 > = (WinQ) < N1> = (WinQ)x2

<N1>: _(R T) <N1>.._(RPT) <Nl1>: f(RP)

<N1>:u=(S1) 5.2) <N1>:u=(S") (5.3) <N1>u=(ST)x2 5.4)
<N1>:u=(+<N1><NI>) <N1I>:iu=(+<NI><NIl>)%2 <N1>:u=(+<NI><NI>)%2
<N1>:u=(—<N1I><NI>) <NI>:u=(—<NI><NI>)%2 <N1>:u=(—<N1I><NIl>)%2
<N1>:u=(x<NlI><NO>) <N1>:u=(x<Nl><NO>)x2 <NI>u=(x<Nl><NO>)%3
<N1>:u=(/<NI><NO>) <N1>:u=(/<N1><NO>) <N1>:u=(/<NlI><NO>)
<N1>:u=(/<N2><NI>) <N1>:u=(/<N2><NI1>) <N1>:u=(/<N2><NI>)x2

Figura 5.1: Balance N1 derivation in the balanced DA grammar. On the left is the original gramm-
mar, in the middle is the balanced grammar on operators on the right is the final balanced grammar

The greatest difficulty was doing the same for <N2>. As it does not have a single terminal
rule, we have to create and add some. In Figure 5.2 we can see the derivation procedure.

In the middle grammar, the operators were balanced, and rules with "+",-", and "/"were repea-
ted, totalizing 8 non-terminal rules. The most interesting operation that forms the N2 non-terminal
that can be computed only using terminals are products of N1 per N1. So, we added 10 (5 choose 2
) of these rules using all the combinations between terminal symbols. Finally, 2 non-terminal rules
have to be added to make the number of terminal rules being equal to the number of non-terminal

rules, and (/ <N2> <NO> ) and ( * <N1> <N1> ) were chosen.
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The balancing for <NO> is similar to <N1>, so it will no be developed here. The complete

grammar can be seen in Appendix C.

<N2>:u=(+<N2><N2>) <N2>:u=(+<N2>IN2>)%2 <N2>:u=(+<N2>IN2>)%2
<N2>:u=(—<N2><N2>) <N2>:u=(—<N2>IN2>)%2 <N2>:u=(—<N2><N2>)%2
<N2>:u=(x<NI><NI>) <N2>:u=(*<Nl><NIL>) <N2>:u=(x<NI><N1>)%2
<N2>:u=(x<N2><NO>) <N2>:u=(x<N2><NO>) <N2>:u=(x<N2><NO>)
<N2>:u=(/<N2><NO>) <N2> = (/<N2><NO>)*2 <N2>:u=(/<N2><NO>)x3
<N2>:u=(*PT A1) %0 <N2>: f(*PTAJ’)*O <N2>u=(*PTA")*1

< N2> = (xPT WinQ) %0 < N2 > = (xPT WinQ) %0 < N2 > = (xPT WinQ) = 1

< N2> = (+PT RPT) %0 (5.5) <N2>u=(+PT RPT)*0 (5.6) <N2>u=(+PT RPT)x1 .7
< N2> :u=(*PT ST) %0 < N2> u= (+PT ST)*0 <N2>u=(xPT ST)*1

< N2> = (xAT WinQ) 0 < N2> = (*AT WinQ) %0 < N2> = (xAT WinQ) * 1
<N2>: 7(*A+RPT)*0 <N2>: —(*A*RPT)*O <N2>: 7(*A+RPT)*1
<N2>:u=(xAT $T)*0 <N2>u=(xAT 57) %0 <N2>u=(xAT ST)x1

< N2> = (+WinQ RPT) %0 < N2> = (+WinQ RPT) %0 < N2> = (+WinQ RPT) x |

< N2> = (xWinQ ST) %0 < N2> = (*WinQ ST) %0 < N2> u= (xWinQ ST)* 1

< N2> :u= («RPT ST) %0 <N2>: —(*RPTS*)*O < N2> = (+RPT ST)* 1

Figura 5.2: Balance N2 derivation in the balanced DA grammar. On the left is the original gramm-
mar, in the middle is the balanced grammar on operators on the right is the final balanced grammar

5.2.4.2 Completion methods of invalid individuals GE

When a mutation or crossover causes the child to be invalid, the following procedure was done
to complete the individual. The required individual length is chosen: for mutations, it was chosen
to be equal to the parent size; for crossovers, it was the average parent size +1.

After that, the following is made. The full integer vector (of size S) is placed, and the first u
integers are interpreted starting from u = 1 until u = S. For each of these S integer vectors (one
for each value of u), its minimum valid individual is computed. The u integers are mapped to a
phenotype, and each <NT> is completed.

The completion is simmilar to the initiation in CFG-GP but with one difference, as in GE the
length and not the depth of the individual is what matters it is the length of the minimum expansion
of the <NT> that is recorder. So a integer f(<NT>) is assossiated with every NT representing the
minimum expression length required to finish that non-terminal. The f(<NT>) are computed in

the following way:
f(<Op><NTa><NTh>)=1+f(<NTa>)+ f(<NTb>)

f(KNTi>) =mini{f(deriv;)} for < NTi>= derivi|deriv,....deriv,

So a <NT> is expanded only with the rules that will give it the minimum expansion size. The
rules that give length f(<NT>). This expansion is translated into integers, and all are appended
to u vector of integers. Therefore, S new integer vectors S’ all mapping to valid individuals are

created. Finally, it is chosen from S’, the integer vector that maps the individual with a size closer
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to the required. If a tie happens, a random one that is tied is picked. Also, the child is always a

valid individual, and its size is correlated to its parent’s size.



Capitulo 6

Results and Discussion

This section will answer all research questions. It is subdivided into three parts, each dedicated
to answering one of them. Also, a small section is dedicated to studying the variability of our

fitness metric in the end.

The first subsection gives the relevant information to answer the first research question (RQ1).
What is the trade-off between performance and interpretability when introducing dimensional awa-
reness? In this subsection, the results obtained by the different algorithms will be compared. Spe-
cifically, the distributions of the performance and sizes of the best expressions are compared. To
these distributions, we then applied a Mann-Whitney U Test (n1=n2=20, P<0.05, one-tailed) to
see the existence of significative differences between them. We will see if there is a performance
drop in the DAGP methods. Furthermore, comparing the sizes gives insights into the expressions’
interpretability.

Also, a random search procedure was implemented (called in the graphs Live). It is similar to
the enumerator algorithm. The first part of the enumerator algorithm generates the basic structures.
After that, two numbers, 7;, O; (see Section 4.2), and one of the basic structures, are picked, which
defines an expression. If that expression is dimensionally aware and unique (checked precisely as
in the main algorithm), it is evaluated in the simulator. If not, another one is chosen. The allowed
size of the expressions were 11, 13, 15, 17, 19, 21, 23, 29. These sizes were chosen because
they are bigger than the enumerated sizes and are at the limit of what can be easily interpreted.
This random search will serve as a performance baseline for the algorithms. All algorithms are
expected to be better than it.

The second subsection answers the second research question (RQ2): Can GP find (near-
Joptimal Dispatching Rules (of a given size) for the Job Shop Scheduling problem? In this sub-
section, the algorithms’ best expressions are compared to the best expressions overall (found by
the Enumerator). By comparing them, we can answer the question.

Finally, the third subsection gives the relevant information to answer the third research ques-
tion (RQ3). How performative and explainable are the best Dispatching Rules found? In this
subsection, we compare the best expressions overall. We will see if the differences are significant
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