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Resumo

Emoções são processos complexos, que envolvem sentimentos, movimento corporal e até mesmo
reações cognitivas ou pensamentos. Através das emoções, o ser humano comunica para além das
palavras, avaliando pontos-chave como as expressões faciais, a entoação do discurso e a linguagem
corporal. Embora esta avaliação seja feita de uma forma quase inconsciente, torna-se interessante
pensar na possibilidade de sistemas tecnológicos também serem capazes de distinguir estados
afetivos e reconhecer as emoções do seu utilizador.

A Computação Afetiva estuda e desenvolve algoritmos que têm a capacidade de reconhecer e
processar emoções. Tais sistemas podem revolucionar as interações humano-computador, desen-
volvendo tecnologia mais inteligente e humanizada, e conseguindo assim uma intercomunicação
eficiente e avançada.

Para obter este tipo de dispositivos, é necessário utilizar indicadores ou modalidades que sejam
sensíveis às variações de emoção, tais como expressões faciais, fala ou mesmo sinais fisiológicos.
Desta forma, esta dissertação visa realizar uma revisão completa dos conceitos fundamentais e dos
métodos de estado-da-arte sobre o reconhecimento das emoções utilizando o electrocardiograma,
com o objectivo final de desenvolver uma arquitectura fiável de deep learning, para além de avaliar
algumas limitações relacionadas com o uso de dados pessoais, tais como a subject dependency.
Posto isto, esta dissertação aborda diferentes métodos do estado da arte e explora a sua utilização
de modo a desenvolver a arquitectura final a ser apresentada. Além disso, são consideradas difer-
entes divisões comparando o desempenho obtido quando utilizadas divisões mais realistas em vez
de aleatórias entre os sets de treino e teste.

Embora tenham havido evidentes desafios durante as replicações dos métodos presentes na
literatura, uma abordagem de self-supervised learning foi replicada com sucesso e utilizada como
base para a arquitectura de deep learning desenvolvida. Foram ainda aplicadas melhorias, tais
como a implementação de um pré-treino mais robusto e a adição de algumas arquitecturas de
aprendizagem, tais como MLPs e LSTMs, de modo a explorar a informação temporal do sinal
de ECG. Assim, esta abordagem baseada no método de self-supervised learning foi desenvolvida,
e melhorada através da aplicação de técnicas MIL que levaram a precisões de reconhecimento
de emoções de cerca de 78%, 82% e 86%, dependendo do método de agregação aplicado. No
entanto, no que diz respeito à utilização de signal e subject-independent settings, bem como a
experiências de cross-database, os resultados diminuíram acentuadamente, obtendo precisões em
torno dos 50% e 60%. Estes desempenhos revelam uma elevada dependência da arquitetura em
relação aos dados utilizados, que resulta da utilização bases de dados reduzidas e limitadas.

Em conclusão, através da utilização de divisões aleatórias dos dados, foi possível obter re-
sultados de elevada precisão, tais como os reportados nos métodos da literatura. No entanto,
considerando divisões e condições mais realistas, tornou-se claro que a área do reconhecimento
das emoções ainda não se encontra tão desenvolvida quanto se poderia pensar, havendo bastante
espaço para melhoria, assim que se verifique o aumento da quantidade de dados adquiridos e
utilizados para treinar arquitecturas de deep learning.
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Abstract

Emotions are complex processes, involving feelings, body movement and even cognitive reactions
or thoughts. Through emotions, humans communicate beyond words, by assessing key points
such as facial expressions, speech intonation, and body language. Although this deep assessment
is done in an almost unconscious way, it becomes interesting to think about the possibility of
machines also being able to distinguish affective states and recognize their user’s emotions.

Affective Computing studies and develops algorithms that can recognize and process human
affects. Such systems may revolutionize human-computer interactions, by developing more intel-
ligent and human-like technology and thus, achieving efficient and advanced intercommunication.

In order to obtain this type of devices, there’s the need to use emotion-sensitive indicators such
as facial expressions, speech or even physiological signals. In this way, this dissertation aimed to
perform a complete overview of the fundamentals and prior art methods on emotion recognition
using the electrocardiogram, with the final goal of developing a reliable deep learning architecture
able to recognize emotions and assessing some limitations related to personal data such as sub-
ject dependency. Having this said, this dissertation addresses different prior art approaches and
explores their use and application so as to build the final architecture. Furthermore, different data
divisions were considered so as to compare the performance obtained when more realistic settings
were used instead of random data divisions between train and test sets.

Although there were some evident challenges during the literature approaches’ replications,
a self-supervised learning approach was successfully followed and used as the basis for the deep
learning architecture developed during this dissertation. Improvements were further developed,
such as the implementation of a stronger and more robust pre-training and the addition of some
deep learning architectures such as MLPs and LSTMs, so as to explore the temporal information
of the ECG signal. Thus, this self-supervised learning-based approach was developed and im-
proved through the application of MIL techniques that led to emotion recognition accuracies of
around 78%, 82% and 86%, depending on the aggregation method applied. However, concerning
signal and subject-independent settings, as well as cross-database experiments, results decreased
considerably, obtaining accuracies of about 50% and 60%. These performances reveal a high data
dependency that results from the use of small and limited datasets.

In conclusion, through the use of random splits, it was possible to obtain high accuracy results,
such as the ones present in the literature. However, through the assessment of more realistic
conditions, concerning data divisions, it became clear that the emotion recognition field is still
less developed than one could firstly notice, and there is still a lot of room for improvement once
larger amount of data is acquired and used to train deep learning architectures.
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Chapter 1

Introduction

1.1 Emotion Recognition

Affective computing is a growing field, involving disciplines like engineering, psychology, cogni-

tive science and even sociology, that explores how the use of technology enables the recognition

and interpretation of human emotions or affects. Emotions are considered the way to communicate

beyond words. In this way, the automatic recognition of emotions may be an exciting opportunity

for human-computer interaction or even the gaming industry. The exponential increase of smart

technologies in society brings the desire to make them even more custom-made, by assessing the

needs of their owner and choosing the most appropriate solution. In this way, machines with the

capability of assessing human emotions may revolutionize the human-robot interaction [1].

However, other areas besides robotics [2; 3] may be interested in this automated emotion eval-

uation such as marketing, education or even the entertainment industry, as already mentioned. In

marketing, advertisement can become more effective by taking into account the emotional state of

customers [4]. As far as education is concerned, learning processes may be improved by analyz-

ing emotional responses from students [5; 6]. Finally, regarding the entertainment industries, like

gaming, more appropriate entertainment can be proposed by assessing the audience’s response to

the ones already available in the market [7].

Another example is call centres that could largely benefit from their customers’ emotion recog-

nition, allowing them to detect problems and maximise customer satisfaction. [8]. However, the

design of such robust algorithms for automated recognition of human emotions is still a major

challenge [9].

Emotions are complex processes, including feelings, body language, cognitive reactions and

behaviour or thoughts [10]. Different models have been proposed for automatically recognise

emotions, taking into account the way all of these processes may interact with each other. How-

ever, there’s still no universally accepted formulation to model emotions. Nevertheless, to use

engineering principles to the recognition of such a personal and non-exact parameter as the hu-

man emotion, affects need to be conceptualized in a clear and strict way. There are mainly two

categories regarding the way emotional models are conceived: The first one considers Discrete

1
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Emotional Models (DEM), focusing on the six most basic emotions (happiness, sadness, anger,

fear, surprise and disgust). This method considers that, regardless the situation or culture, humans

perceive the environment and react to it in a similar way and with a distinguishable emotion. In

this way, the main goal is to identify and label standard emotional states. On the other hand, Af-

fective Dimensional Models (ADM) characterize an emotion as a set of parameters, forming an

n-dimensional emotional space, and with arousal, valence, and dominance being the most com-

monly used dimensions [9] [11].

Arousal can be described as the measure of emotional stimulation (activation level) and it can

vary from low/calmness to high/excitement. Valence is a measure of pleasure, defined by a po-

larity of positive or negative feelings. Finally, dominance is related to the subject’s feeling of

control, indicating if the human feels without control or empowered (dominant vs. submissive)

[12]. For example, fear has a high level of arousal, negative valence and is a submissive emotion

[13]. Having this said, pattern recognition approaches must be applied for affect recognition, re-

lying on the acquisition of data with different affective states from subjects experiencing a given

situation. Different modalities have been used to collect this data, from facial expressions, periph-

erical physiological signals or even speech intonation. Regarding the emotional stimuli, it may

include media, like video, audio or even music clips, as well as the creation of different kinds of

environments (relaxed, stressful, among others) [14–18].

Nowadays, most experiments developed in order to recognize emotion focus on behavioural

(visible or audible) modalities [19]. Human communication is composed of verbal and non-verbal

components, that are able to carry emotional information. Daily, humans rely on their own in-

terpretation of facial and speech tone to infer the emotional states of other people. Thus, this

recognition relies on the techniques used by humans to understand each other [8; 20–22]. Al-

though emotion recognition from facial expressions or voice tone has been improved, there’s still

some uncertainty in the use of those kinds of evaluation parameters, since they might be purposely

faked and altered. Individuals can consciously regulate their own emotions or naturally suppress

them, without even acknowledging there are doing it [23; 24].

On the other hand, physiological signals are acquired in a more unconscious mode, allowing

for a more trustworthy data collection. Physiological signals should provide relevant insights

on emotion, since they’re associated with the autonomic nervous system’s responses [25; 26].

Emotion is both a psychological and a physiological expression, associated with mood, personality

and all the cognitive processes involved. Besides, these signals are recorded in a continuous way,

which enables detecting emotion variations through time [27]. Different physiological signals

have been used in order to efficiently detect emotions, like electroencephalogram (EEG) [28],

electrocardiogram (ECG) [29; 30], galvanic skin response (GSR) [26], electromyogram (EMG)

[31], among others. The electrocardiogram (ECG) is a powerful signal, being considered one of

the most used diagnostic tools in medicine. Recent researches have proven to be a prospective

technique for emotion recognition, allowing to measure signals that can be affected by changing

emotional states.
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1.2 Emotion Recognition Using Physiological Signals: Challenges
and Opportunities

As already mentioned, one of the main benefits of detecting emotions using physiological signals

is that they are involuntary and uncontrollable reactions of the body, and thus, difficult to hide or

mask [32].

The human heart is known to be affected by what people feel. In a non-scientific way, people

refer to the heart as what aches when something bad happens, or even what they give to someone

they love. Expressions like “heartbreak”, “big heart”, “heart of stone” or “heavy heart” are just

some examples of different ways of expressing a variety of emotions. However, in a more logical

view, the heart is also associated with what humans feel. When people are nervous, the heart beats

faster, when they’re relaxed, the pulsation goes down. So it becomes reasonable to think about the

possibility of detecting variations in emotions and affect through the heart’s changing behaviour

[23].

The electrocardiogram is a physiological signal obtained by the cyclic contraction and recov-

ery of the heart[33]. In this way, the electrocardiogram can be seen as a code, conveying all the

changes correlated to the humans’ emotional states, especially by variations in the heart rate and

other indicators. Various studies show that the use of ECG signal provides relevant information

that can be correlated with emotion [34].

However, there are still several drawbacks regarding the use of physiological signals and

specifically the electrocardiogram. Although it is accepted that physiological signals are affected

by emotions, the effects on the waveform patterns are still unknown and not well defined. For this

reason, many researchers are still trying to find the most emotion-related features, that can provide

clearer information.

Besides, the experimental protocols are far more complex than those from behavioural emo-

tion research. This problem is related to the need of obtaining high-quality physiological data,

which is difficult, and the requirement of obtaining genuine emotions, which depends largely on

the emotion elicitation material. The signal acquisition is also a challenge, since it is a more inva-

sive process, with the sensors in contact with the human body during the recording session. Thus,

proper methods and equipment should be chosen, having into account all the challenges men-

tioned, and trying to diminish these problems. Nonetheless, all the limitations mentioned above

lead to commonly small and restrained databases, with a reduced amount of data, which can be

highly problematic for deep learning approaches to be developed.

Another drawback is related to the labelling process, since physiological signals are subjective

and it is difficult to establish their ground truth [23; 32]. Moreover, most databases and experimen-

tal protocols don’t have a large number of subjects nor a relevant number of signals per subject.

Due to this limited amount of data, the performance of the classifiers applied is compromised. To

solve this problem, more subjects can be included in the experimental protocols, which should

also become longer so that the number of data increases, or more samples can be used (for exam-

ple, by considering multiple segments of the same physiological signal). The use of segments is
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highly recurrent in order to obtain a "fake" data enlargement, however, this multiple segmentation

of the same signal implies that the same label is considered to all segments, which can sometimes

be misleading. Furthermore, since random splits are usually applied, segments from the same sig-

nal are found in train and test sets, which can result in misleading performances presented in the

literature, that must be evaluated under more controlled and realistic settings.

Having this said, signal and subject-independent settings can be one of the main problems

regarding physiological signals, mainly due to the lack of large amount of data. Furthermore,

concerning the ECG signal that, in normal conditions, presents the same behaviour and deflections

for all subjects, it is considered to have a high degree of variability. This variability can be intra-

subject, consisting of variations within the consecutive heartbeats of the same subject, or inter-

subject, corresponding to variation between heartbeats of different subjects [33].

Especially the inter-subject variations can become a problem when the major goal is to detect

specific and equal patterns to equal states of emotion. Having this said, the major problem nowa-

days is associated with this pattern detection when data shows a wide range of behaviour to the

same affect felt by different people. When in biometric research, these inter-subject features can

be highly positive, allowing for a more efficient recognition of each individual. However, when

working to correlate an emotion to a given pattern, it can be challenging.

1.3 Disseration Goals and Contributions

As it can be understood, there is a variety of opportunities and challenges in using physiological

signals, more specifically ECG, for emotion recognition. The work done during this dissertation

aimed to explore the use of ECG and all of its good features to allow emotion recognition, trying

to minimize the challenges presented. Nonetheless, more strict data settings, such as signal and

subject-independent were evaluated to conclude about the extent of dependency associated with

the approaches available nowadays.

Having into account the problem recurrently found in the use of ECG signals to emotion recog-

nition, it becomes important to develop techniques that may be able to overtake this kind of issues,

such as considering the enlargement of the databases available for emotion recognition. Thereby,

the main goal of this work has been the development of robust deep learning methodologies for

emotion recognition using ECG, assessing its behavior and performance in more demanding set-

tings such as signal and subject-independent ones.

With the work developed in this dissertation, we contributed to the field of ECG-based emo-

tion recognition by identifying the limitations of the state-of-the-art, especially regarding the data

availability, diversity, and the realism of evaluation setups. Moreover, we build upon a promising

literature methodology to surpass these limitations, bringing the field closer to real applications of

ECG-based emotion recognition.
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1.4 Dissertation Outline

To enable achieving the aforementioned goals, this dissertation includes, beyond this introduction,

a review of the fundamentals, concerning both the electrocardiographic signal and the emotion

recognition theory and principles, in Chapter 2. Regarding the electrocardiographic signal, its

variability and main acquisition methodologies are analysed and discussed. As far as emotion

recognition is concerned, the existing emotion models are presented and detailed, as well as the

different modalities used for emotion recognition.

In Chapter 3, a review of the most relevant databases available is done, describing and com-

paring them. After that, Chapter 4 presents a state of the art analysis, where some of the most

relevant approaches used in emotion recognition nowadays, through machine and deep learning

techniques, are described and further discussed.

In Chapter 5, the replicated approaches are presented, being thoroughly described. In addition,

the results obtained are illustrated and discussed, to take some important conclusions.

Chapter 6, focus on the improvement of the self-supervised learning approach, previously pre-

sented in Chapter 5. Furthermore, different data settings, such as signal and subject-independent

are considered and used to evaluate the model developed.

In Chapter 7, other deep learning structures are taken into account and further added to the

network in development, to obtain the final deep learning architecture of this dissertation. Once

more, after presenting the results of these additions and improvements, different data divisions are

considered, analysing their impact on the model performance.

Finally, in Chapter 8, final remarks are considered, such as an overall discussion and analysis

of this dissertation’s work and the current position of the emotion recognition field, analysing the

achievements and its evolution state, as well as pointing out its limitations. In this way, future

work is also discussed, indicating some paths to be explored in further investigations.





Chapter 2

Fundamental Concepts

2.1 Affective Computing and Emotion Recognition

Emotion can be described as a “strong feeling deriving from one’s circumstances, mood, or rela-

tionships with others” or even as an “instinctive or intuitive feeling as distinguished from reasoning

or knowledge” [35]. It is common sense that emotions affect both human physiological and psy-

chological status, playing an important role in a person’s daily life and how someone may deal

with his own happiness, victories, or even losses or disappointments. However, it is also true that

emotions are still believed to be inherently non-scientific sensations, far from rational thought or

common logic, being marginalized from science.

However, this public perception is not completely correct. Although emotions arise from a

human’s ability to feel and process what happens around him, they also have a large impact as far

as essential cognitive processes are concerned. Lisetti [36] highlights results from neurological

literature indicating how emotions are not only associated with human creativity and intelligence,

but also with basic rational thinking and decision making.

Furthermore, Lin Shu et al. [32] defines emotion as a “mental state, that arises spontaneously

rather than through conscious effort and is often accompanied by physical and physiological

changes that are relevant to the human organs and tissues such as the brain, heart, blood flow,

muscle, facial expressions, voice, etc”, pointing out the close link between emotions and rather

scientific parameters like physiological signals and basic biology functioning.

With the exponential growth of human-computer interactions (HCI), it becomes reasonable

to consider that the interpretation of emotions is an important and fundamental asset to enable

accurate and efficient intercommunication [34; 36]. From this need, Affective Computing (AC)

emerges as a new and exciting field that can enable smarter and more humane technology.

AC tries to assign to computers the ability to perceive, observe and even generate affect re-

sponses, increasing human-computer communication quality. This field is currently one of the

most emerging and active topics in research, due to its large and promising spectrum of appli-

cations, in different areas. Affective Computing involves multidisciplinary knowledge like psy-

chology, physiology and computer sciences [37]. Its great potential translates into a wide range

7



8 Fundamental Concepts

of applications in several environments, like robotics, marketing or even education. The devel-

opment of recommendation systems also becomes possible since Affective Computing will allow

understanding customers preferences and opinions.

Within Affective Computing, two distinct research areas can be identified: sentimental analy-

sis and emotion recognition [38]. While Sentiment Analysis consists of a simple classification task

between a positive/neutral/negative state, emotion detection involves a more detailed and thorough

methodology that aims to distinguish between a set of emotions. In this way, product reviewers

can use Sentiment Analysis to assess how the product was perceived by its customers (liked or

not). On the other hand, Emotion Recognition is able to differentiate if someone is angry, sad or

bored. As it can be understood, these two areas can overlap, since a happy customer translates

into a positive reaction. However, Emotion Recognition is a finer discrimination and assessment

of a general reaction to a given stimulus. This scientific analysis of emotions and the capability

of recognizing them depends on a correct emotion modelling, followed by proper data collection

and the application of specific methodologies, which will be further explained in the following

sections.

2.1.1 Emotion Modelling

Emotions have been studied for centuries and philosophical studies around them can date back to

the ancient Greeks and Romans. The desire of defining emotions as quantitative parameters, in

order to evaluate and assess them in a more scientific and logical way is as old as it can be, and

started with Cicero, when he tried to organized emotions into four basic categories: metus (fear),

aegritudo (pain), libido (lust) and laetitia (pleasure). In the late 19th century even Darwin focused

some of his attention on emotions, developing a theory that stated that emotions evolved via nat-

ural selection [39]. However, since emotions are complex processes, involving body language,

cognitive reactions, feelings and thoughts, modelling them is a very challenging task. Besides

these first attempts, psychologists have been trying to develop a logical and universally accepted

emotion model for decades, however, this goal hasn’t yet been completely achieved. Nevertheless,

the main scientific models developed and used in Emotion Recognition are the Discrete Emotional

Models (DEM) and the Affective Dimensional Models (ADM).

2.1.1.1 Discrete Emotional Models

In the early 1970s, Ekman [40] conceived emotions as discrete and measurable categories, being

psychological states that fit specific criteria. Six basic emotions were defined: happiness, sad-

ness, anger, fear, surprise and disgust. All other emotions were considered to be combinations or

reactions to these.

Discrete models suggest that affective states are universal among people, regardless of their

differences in gender, origin, or even moral beliefs. Also, when in a similar situation, people

would react in the same way, showing analogous physiological expressions and patterns [11].
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However, in 1980, Plutchnik [41] extended this basic emotions list, by considering eight emo-

tions of joy, trust, fear, surprise, sadness, disgust, anger and anticipation. Figure 2.1 presents

the wheel model proposed by Plutchik, which describes emotions ranked by intensity, with the

stronger ones in the centre and the weaker positioned at the flower blooms. The colour use repre-

sents that basic emotions can be combined to form complex emotions.

Figure 2.1: Plutchik’s Wheel of Emotions, from [42].

Finally, Izard [43] defined ten basic emotions: joy, surprise, sadness, fear, shyness, guilt, anger,

disgust and contempt. He hypothesized that these emotions were formed during human evolution,

being a simple brain circuit.

Although these simplistic models would allow an easier view of emotions, they become unsat-

isfactory and limited when analysing complex emotions, which cannot be described with a discrete

label and need a more quantitative evaluation [32].

2.1.1.2 Affective Dimensional Models

In 1989, the first dimensional model was proposed by Russel et al. [44], showing that there

would have to exist some evaluation parameters that could describe emotions, like intensity or

positiveness. These models suggest that emotions are not discrete but continuous, and, according

to Lang et al. [45] , they can be projected into a two-dimensional space model, by valence and

arousal. Valence is a measure of pleasure, ranging from negative/unpleasant to positive/pleasant.

On the other hand, arousal describes the level of activation and intensity concerning emotional

stimulation, varying from low/calmness to high/excitement, or even passive and active. In this

way, as shown in Figure 2.2, different emotions can be plotted, having a correspondent value of

arousal and valence. For example, sad has a negative valence, indicating that it is not a pleasant
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emotion, and a passive arousal, proving a low activation level. On the other hand, angry is also a

negative valence emotion but it presents a high level of activation and excitement, thus having an

active arousal.

Figure 2.2: Two-Dimensional Space Model of Emotions, from [32].

This dimensional grid became highly attractive due to its higher flexibility in describing an

emotion besides using just words, and the possibility of considering emotional variations over

time. Other metrics emerged through time like dominance, as it can be seen in Figure 2.3 [46].

Dominance corresponds to someone’s level of control, varying from submissive to dominant. Hav-

ing into account other measurements to characterize emotions like this one, it becomes possible to

obtain a more complete discrimination between emotions. For example, while fear and anger both

have negative valence and active arousal, dominance allows to divide them into the submissive

and dominant axis, respectively [32].

Figure 2.3: Three-Dimensional Space Model of Emotions, from [47].
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This <arousal, valence, dominance> set is also known in the literature by different terminolo-

gies, like <evaluation, activation, power> or <pleasure, arousal, dominance> [48]. Furthermore,

there are already research studies concerning a fourth dimension. Fontaine et al. reports consistent

results using a set of four dimensions, <valence, potency, arousal, unpredictability> [49].

In addition, another affective categorization model appeared, inspired by Plutchik’s studies on

human emotions. The Hourglass Model [50] reinterprets Plutchick’s model and organizes primary

emotions around four independent dimensions, which present different levels of activation that

allow to translate and have into account the entire scope of affective states. This model has an

hourglass shape and is presented in Figure 2.4.

Figure 2.4: The 3D model and the net of the Hourglass of Emotions, from [50].

This 3D model represents emotions and affective states according to their strength, where the

vertical dimension consists of emotional intensity and the radial dimension relates to the activa-

tion of different emotional configurations. In this way, this model attempts to reproduce the full

range of emotions by considering Pleasantness, Attention, Sensitivity and Aptitude, being able to

consider situations where up to four emotions are expressed and felt at the same time.

However, new and interesting models are being proposed and developed and we can only hope

for more interesting and effective ways of differentiating and characterize these complex feelings

to which we call emotions.

2.1.1.3 Discrete vs Dimensional Models

Concerning Discrete and Dimensional models, it is important to understand that both have advan-

tages and disadvantages in their attempt to distinguish between emotions. Regarding the Discrete

Emotional Models, as it can be easily understood, there are a variety of factors that can play an

important role on someone’s behavior or emotional response, which means that it is wrong to
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consider that all people would act in the same way when exposed to the same environment or

situation.

Furthermore, emotions are also complex processes, related to both physiological and neural

activities, and, for this reason, it is limiting to consider a small list of basic emotions. On the other

hand, even the Affective Dimensional Models are not enough to translate the emotional com-

plexity already described. Besides assuming independence between axis, eliminating all possible

relations between dimensions, which can also be a little uncertain and incorrect, these models do

not consider the possibility of two or more emotions being felt at the same time. However, some

new dimensional models are emerging, such as the Hourglass Model, trying to reproduce the en-

tire range of emotions and considering situations where more than one emotion is being felt at the

same time.

2.1.2 Emotion Recognition Modalities

Concerning Emotion Recognition and Affective states differentiation, it is essential to find a way

of measuring the subject’s emotional variations over time. As already mentioned, emotions are

expressed by people in their daily life, through their bodily reactions, facial alterations or even

the changes that can be detected in someone’s voice or intonation. Yet, emotions are also closely

related to neural activity and the body’s physical and physiological states. In this way, different

modalities can work as emotion indicators and be used to detect affective variations. Having

this said, emotion recognition methods can be classified into two main categories. One is by

using physical and more visible signals such as facial expressions, speech alterations, gestures

or posture. The other has into account physiological signals, including EEG [28; 29; 51], ECG

[24; 29; 30; 52], GSR [26; 53; 54], EMG [31; 55], HRV [37; 56], among others. The present

section focuses on the current modalities used for emotion recognition, analyzing the advantages

and disadvantages of each.

2.1.2.1 Facial Emotion Recognition

In everyday life, humans rely on their own perception of emotions through the analysis of people’s

facial expressions and body movement. Especially the latter plays an important role as the main

non-verbal communication channel. The face conveys diverse information regarding someone’s

age, sex, identity, background or even what they are feeling. In this way, it is not surprising

that various behavioral scientists showed interest in how facial expressions could indicate a large

amount of information from someone [57].

At the beginning of 1970, computer scientists started to use the face as a biometric modality,

since it is the main natural method to recognize a given person. Later, the idea was to analyze and

synthesize facial expressions. Ekman and Friesen developed one of the leading methods in facial

expression recognition, the Facial Action Coding System (FACS) [58]. This system describes

facial expressions by considering individual muscle movements, denominated Action Units (AUs)

- the smallest movements that can be distinguished - that allow detecting micro-expressions.
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Ekman’s work inspired many researchers to study facial expressions using both images and

videos. With time, image processing techniques started to be used and applied in facial emotion

detection. Nowadays, Facial Emotion Recognition (FER) techniques are normally composed of

three major steps: preprocessing, feature extraction, and classification.

Preprocessing consists of a preliminary process that can be used to improve FER performance.

It is normally done before the feature extraction process, facilitating both extraction and further

classification. Regarding images, most common preprocessing methods include image clarity,

contract adjustments, scaling and other possible enhancements [59]. After that, some features are

extracted and fed into a classification system. Finally, the output consists of one of the pre-selected

emotion categories or labels.

However, it is possible to divide FER techniques into two groups, considering if features

are handmade or automatically produced through a deep neural network. As far as handcrafted

features are concerned, they can be further discriminated in “feature-based” and “region-based”.

“Feature-based” consists of detecting specific facial structures like the eyes or the corners of the

mouth. On the other hand, “region-based” focuses on specific regions of the face to detect expres-

sion variations. For example, this analysis can be done by taking into account the eye/eyebrow and

mouth regions, discarding the rest of the face. Figure 2.5 presents the three main steps in conven-

tional FER approaches: facial structures detection, feature extraction and expression classification

[60].

Figure 2.5: Procedure used in conventional FER approaches, from [60].

However, Deep Learning approaches present themselves as interesting techniques, in which

features are automatically extracted, with no previous work or even knowledge regarding the ex-

traction of specific and relevant features. In the literature, different techniques are presented using

convolutional neural networks (CNN) [61], deep 3D convolution networks (3DCNN) [62] or even

recurrent neural networks (RNNs) [63; 64].

Having this said, Deep Learning methods are able to reduce the dependence on correct pre-

processing and feature extraction to obtain positive results. However, these methods ask for ex-

tensive datasets or methods like data augmentation, high computing power and are more time-

consuming. To summarize, facial expressions are still one of the most chosen and used modalities
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Figure 2.6: Example of a CNN-based FER approach, from [60]

for emotion recognition. It seems like a natural and practical way of analysing how someone is

feeling, since humans commonly use it as such in their daily lives. However, as it is known, peo-

ple are capable of faking reactions and emotions, by altering facial expressions [65]. This fact

translates into a more untrustworthy modality as far as emotion recognition is concerned.

2.1.2.2 Speech Emotion Recognition

Speech is the most natural way of communication and interaction between humans. In addition,

there is a lot of information regarding how people are feeling through their way of talking, not only

by what someone says but also having into account the speech intonation, trembling or firmness.

When people are nervous, their voice can become more shaking, however, when in an excited state

of happiness, people tend to talk louder and wider.

These facts motivated different researchers to study speech alterations and relate them with

possible emotion variations. Since the 1950s, different research has been developed on speech

recognition, by converting human speech into words. However, when it comes to speech emotion

recognition, research and achievements are still few [66].

Speech emotion recognition consists of extracting the emotional state of a given person by

analyzing his or her speech. This goal can be achieved by using audio or transcriptions into text

processing. However, it is not an easy task due to the variability introduced by different speakers,

speaking styles and speaking rates [67].

Similarly to Facial Emotion Recognition and other classification problems, the initial step to be

done, after possible preprocessing, is feature extraction, by identifying suitable features that may

efficiently characterize emotions. These features can be local, by dividing the signal into small

segments and analysing them in a stationary way, or global. Features like pitch and energy can

then be extracted from each frame and further used to detect emotion variations. Global features

are calculated as statistics of all speech features. Although there is some disagreement on which

type of feature is better, most researchers consider that global features are more effective in terms

of classification time and accuracy [68].

Speech features can also be grouped into four categories: continuous, qualitative, spectral and

TEO-based features (Teager energy operator). In Figure 2.7, different examples of each category
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are presented. However, most approaches combine features belonging to different categories.

Figure 2.7: Five categories of speech features, from [68].

After having a front-end unit responsible for feature extraction, there’s the need for a suitable

classifier to perform the proper emotion recognition from each input considered. In this way,

Figure 2.8 represents a possible method of speech recognition. Deep learning methods are also

used for speech emotion recognition, avoid the need for manual feature extraction.

Some of the most commons classifiers used are Support Machine Vectors (SVM) and Artificial

Neural Networks (ANN). However, HMM (Hidden Markov Model) is the most used classifier in

speech emotion classification and recognition [69; 70].

Figure 2.8: Conventional Architecture of Speech Emotion Recognition System, from [71]

Although some good results have already been achieved, this field is still attractive and full of

opportunities to be improved, by tackling problems like speaker-dependent classification. How-

ever, speech emotion recognition is not always completely trustworthy. Although it cannot be so

easily manipulated and altered as facial expressions, it is possible to control parameters such as

rhythm or intensity, in order to mask some emotional states.
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2.1.2.3 Body Gestures and Posture

Comparing with affect analysis from speech and facial expression variations, body gestures and

posture are regularly overlooked and diminished as strong emotion indicators. However, the power

of body language has been gaining more and more attention, and it is already common sense

that body gestures can provide information regarding if someone is, for example, comfortable or

nervous. According to Mehrabian’s 7-38-55 principle, the percentage distribution of a message is

7% verbal signals and words, 38% strength, height and rhythm and 55% facial expressions and

body posture [72].

According to [73], body language includes a variety of non-verbal indicators, from facial

expressions to body posture, eye movement, or the use of personal space. The hands are also

a great source of body language information [74], and nowadays, it is starting to receive some

attention, being used by politicians during their speeches or debates. In the same way, details like

the head positioning or chin lifting angle can also be a source of information, conveying emotions

and intents [75].

More importantly, body gestures and posture are generally natural and unintentional, unlike

facial expression or speech intonation, which can be purposely masked or faked. Thus, increased

interest in using body language to emotion recognition started to grow and be further researched.

As far as body analysis is concerned, human modelling is an important preparation step, that

may influence all the subsequent phases. The most common ways of modelling the human body

are either as an ensemble of body parts as a kinematic model (see Figure 2.9). In the first way,

different body parts are independently detected and some restrictions can be applied to refine the

detection. On the other hand, the kinematic model consists of a collection of interconnected joints

with predefined degrees of freedom identical to the human skeleton [76].

Figure 2.9: Two most common ways of modelling the human body: model based on ensemble
body parts (left) and kinematic model (right), from [76]
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Both human modelling and body posture detection are done by using a variety of possible

methods, like the use of histogram of oriented gradient (HOG) features for object detection [77]

or the use of support vector machines (SVM). One of the most known methods is the Deformable

Part Models (DPM) [78], which consists of a set of parts and connections of a given geometry

that are separately processed, instead of considering the totality of the body. More recently, deep

neural networks started to be widely used, showing a rise in performance in pattern recognition.

Since the human body can be in movement and not static, there’s also the need to model the

temporal dimension and track the body. Probabilistic directed graphs like Hidden Markov Models

(HMM) are highly used in body gesture recognition and activity analysis [79; 80], as well as

dynamic Bayesian Networks [81].

The final step of Emotion Body Gesture Recognition is representation learning, by building

a relevant representation that can be used to learn a mapping to the corresponding targets [76].

Finally, a classifier can use these body representations to extract meaningful information and per-

form emotion recognition (see Figure 2.10).

Figure 2.10: General overview of an Emotion Body Gesture Recognition system, from [76]

Gunes and Piccardi [82] decided to use Naïve representation from the upper-body to classify

body gestures into 6 emotions. On the other hand, Saha et al.[83] used different methods, like

compared binary decision tree (BDT), ensemble tree (ET), k-nearest neighbour (kNN) and SVM,

in order to distinguish between 5 basic human emotional states. Kosti et al. [84] used a CNN for

extracting features from the body and background and using them to recognize among 26 different

emotions.

Besides the ones mentioned, other classifiers and methods were already used and further inves-

tigated. However, there’s a high tendency of using body gesture and postures in combination with

other emotion recognition modalities, like face or speech, in order to obtain more complete infor-

mation and a better classification method [85; 86], since body gestures are not always complete

and enough to interpret emotional states.

2.1.2.4 Physiological Signals

The nervous system is composed of two distinct parts: the central and the peripherical nervous sys-

tems (CNS and PNS). Considering the PNS, it is divided into the autonomic and somatic nervous
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systems (ANS and SNS). The ANS is associated with the sensory and motor neurons, allowing the

connection and communication between the CNS and all internal organs. In this way, physiolog-

ical signals respond to both the CNS and the ANS, which implies their natural and unconscious

nature. Nowadays, the autonomic nervous system (ANS) activity is viewed as a determinant com-

ponent of the emotional response in a variety of recent theories concerning emotion [87]. Although

there’s still some disagreement regarding the degree of specificity of ANS activation in emotion, it

can be inferred that emotions have an impact on ANS, which, in its turn, influences physiological

signals.

Psychophysiology is the branch of psychology that correlates psychological states with phys-

iological variations and measurements. Although someone can choose not to externally show

his/her emotion, there’s an inevitable change in physiological signals that cannot be hidden or

avoided, since the ANS sympathetic nerves are activated whenever a person is positively or neg-

atively stimulated [88]. This sympathetic activation leads to heart, respiratory and blood pressure

rate variations, considered some of the most common reactions of the human body to a given

emotion [89].

In 1983, Izard and Fridlund were responsible for one of the earliest works considering emotion

recognition and physiological signals. They used Linear Discriminant Analysis on facial EMG ac-

tivity, which became a landmark research since it was able to prove the existence of a correlation

between physiological data and emotional states [90]. After that, a great number of studies regard-

ing emotion recognition using physiological signals have been conducted, which can be found in

the literature. However, it is still uncertain how emotion variations translate into actual pattern

alterations in each physiological signal.

It is highly relevant to have an efficient and successful data collection when developing an

emotion recognition system based on physiological data. Unlike facial or speech variations, phys-

iological signals are harder to collect since they are highly prone to noise and ask for more complex

setups. On the other hand, image and video can be easily acquired even by non-specialists [91].

Since the ANS controls physiological signals, there’s the need to naturally induce a given emo-

tion. For this, different emotion elicitation techniques can be used, like pictures [92], videos [12]

or even music [27].

Regarding the specific methodology of emotion recognition using physiological data, it can be

divided into two major categories, being the first the usage of more traditional machine learning

methods, and the other using deep learning methods.

Like it was already mentioned in other modalities, automated classification tasks normally

rely on these two options (see Figure 2.11). The first one implies handcrafted feature extraction

and optimization, while deep learning methods learn from data that was practically unaltered. Es-

pecially when considering end-to-end approaches, preprocessing is almost non-existent since the

network should be able to deal with the raw signals and extract all important patterns to recognize

emotions. In this way, using raw signals makes the network more robust in its detection [19; 93].

In model-specific methods, in which feature extraction is done, there’s the need to explore

emotion-specific characteristics concerning each different physiological signal, in order to focus
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on relevant features that may improve the model performance. On the other hand, deep learning

approaches don’t ask for such specific knowledge or challenging feature selection.

Figure 2.11: General overview of an Emotion Recognition process using physiological signals
under target emotion stimulation, from [32]

Nevertheless, feature extraction still plays an important role in emotion recognition models

found in the literature. Some of the most common feature extraction methods used are Wavelet

Transforms (WT), Empirical Mode Decomposition (EMD) or even Fast Fourier Transform (FFT),

among others. FFT can be applied to signals, for example, EEG, in order to calculate the spec-

trogram of each EGG channel [94]. On the other hand, WT is also highly used, since it provides

a moving and non-fixed ‘time-frequency’ window, able to analyse the signal locally. EMD is

another powerful tool, being able to decompose a signal according to its time characteristics.

After feature extraction, some features might be irrelevant or redundant and should be deleted

to save some time and effort in training the model. Besides, these “repeated” features can also be

one of the causes of overfitting. In this way, it becomes interesting to use some feature optimization

methods available, guarantying a more effective training and performance of the model. [32].

Finally, regarding classification, there’s a variety of classification models suitable for emotion

recognition. In Figure 2.12 it is possible to find the main 7 classification models used.

Besides k-Nearest-Neighbour (kNN) and Support Vector Machines (SVM) [88], Linear Dis-

criminant Analysis (LDA) [95] and Random Forest (RF) [96], other classifiers like Bayesian Net-

works [97] and Canonical Correlation Analysis (CCA) [98] are also used by researchers for clas-

sifying emotions.

In this way, although there’s a variety of problems that need to be addressed, such as subject-

dependency and the difficulties in experimental protocols and data collection procedures, physio-

logical signals prove to be a strong modality as far as emotion recognition is concerned, since they

are trustworthy and unconscious signals. Furthermore, there is scientific proof of their correlation

with emotional states through ANS mediation. In particular, ECG is a promising signal, since it

can be easily acquired in comparison with other physiological signals, such as EEG. In addition,

it conveys a high amount of information that can be correlated with emotional states, and it is

already a highly used and developed technique in the medical field.
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Figure 2.12: Most used classification models in Emotion Recognition methods using Physiological
Data, from [32].

2.2 Electrocardiographic Signal

2.2.1 Anatomy and Physiology

The human heart is located in the mediastinum, a place within the thoracic cavity and between the

lungs, slightly to the left of the sternum. This muscular organ is essential to human life since it

works as a pump, by contracting and forcing the blood through the blood vessels of the body.

The heart has three major functions: (1) generating blood pressure, (2) routing blood, which

allows for the separation between the pulmonary and the systemic circulation, and (3) regulating

blood supply, in which the heart rate and its force contraction change in accordance to the human

metabolic needs [99; 100].

Regarding its anatomy, the heart is enclosed in the pericardial membranes, composed of three

layers. The more external is the fibrous pericardium, made of a dense fibrous connective tissue

that protects the heart and anchors it to the surrounding structures. In the middle, the serous

pericardium, a thin serous membrane, is folded into two layers: parietal and visceral. The latter

is the one in contact with the surface of the heart, also known as epicardium, which means “upon

the heart”. The epicardium is considered to be the most inner layer of the heart wall, followed by

the myocardium (middle layer), and the endocardium (outer layer). The myocardium is mainly

composed of cardiac muscle, forming the bulk of the heart and the walls of the four chambers.

The endocardium covers both the valves and chambers, preventing abnormal clotting [101].

The heart is formed by four chambers. The two upper ones are the right and left atria, which

are separated by the interatrial septum. The lower chambers are the right and left ventricles,

presenting thicker and stronger walls, and being separated by the interventricular septum. Caval

veins carry blood from the body to the right atrium. From this atrium, the blood is then led to the

right ventricle upon atrial contraction, passing through the right atrioventricular (AV) valve, also
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called tricuspid. In the ventricle, the blood is pumped to the lungs, carried by the pulmonary artery.

On the other hand, the left atrium receives blood from four pulmonary veins, that flows to the left

ventricle. The valve separating these two chambers is the mitral or bicuspid, and after arriving at

the ventricle, the blood is finally pumped to the body through the aorta, the largest human artery

[102].

This sequence of events occurs in a cyclic way with each heartbeat, and it is dominated as the

cardiac cycle. The electrical activity of the myocardium regulates this cycle, which is stimulated

to contract without any external stimulation [103], and the electrical impulse follows a specific

order and route, throughout the myocardium [99; 104] (see Figure 2.13):

1. Atrial depolarisation - The sinoatrial node (SA), considered the natural pacemaker of the

heart, generates the impulse and is the fastest structure in the myocardium to depolarize.

The electrical impulse follows its path, reaching both atria and the AV node;

2. Atrial depolarisation complete - After its depolarization, the atria contraction begins. Con-

duction through the AV node is ten times slower than through the surrounding heart tissue,

delaying the impulse for 0.1s. This allows the atria to finish its contraction before the im-

pulse gets into the ventricles and it also protects the ventricles from high atrial rates during

possible atrial arrhythmias. The electrical conduction occurs through the AV node to the

bundle of His, that divides into left and right bundle branches, carrying the electrical im-

pulse into the left and right ventricles, respectively;

3. Ventricular depolarisation – Upon reaching the apex, the impulse spreads onto the my-

ocardium cells through the Purkinje fibers, beginning the ventricular depolarization. Simul-

taneously, the atria begin to repolarise;

4. Ventricular depolarisation complete – the ventricles depolarise completely, and their con-

traction start immediately after the depolarisation;

5. Ventricular repolarisation – The ventricles start to repolarise;

6. Ventricular repolarisation complete – the ventricles repolarise completely and the cardiac

cycle starts again.

The cardiac cycle is a quick process, taking a total time of approximately 0.22 s (220 ms)

and, as it can be perceived, it consists of an electrical current that is generated and conducted

through the heart. This electrical activity may be detected and recorded by an electrocardiograph,

obtaining a graphic record of the heart activity: the electrocardiogram (ECG) [101].

A typical ECG is composed of three distinct waves: the P wave, the QRS complex and the

T wave. The P wave results from the depolarisation of the atria, whereas the QRS is associated

with the depolarisation of the ventricles and the simultaneous repolarisation of the atria. Finally,

T-wave translates the ventricular repolarisation. The PQ or PR interval is the time between the

beginning of the P wave and the QRS complex, during which the atria contracts and begins to

relax. After the PQ interval, ventricles begin to depolarize.
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Figure 2.13: The cardiac conduction system. (1) The sinoatrial (SA) node and the conduction
system are at rest. (2) The SA node generates the impulse, which spreads across the atria. (3) After
reaching the atrioventricular node (AV), there is a delay of approximately 0.1s, allowing the atria
to complete pumping blood before the impulse is transmitted to the atrioventricular bundle. (4)
The impulse then travels through the atrioventricular bundle and bundle branches to the Purkinje
fibers. (5) The impulse spreads to the contractile fibers of the ventricle. (6) Ventricular contraction
occurs and the cycle is ready to start again, from [105]

The QT interval, which goes from the beginning of the QRS complex until the end of the T

wave, represents the time needed for ventricular depolarization and repolarization. Within this in-

terval, the S-T segment represents the time between the moment in which ventricles are completely

depolarised until their repolarisation [100; 101].

All these waveforms are registered in a repeating rhythm, the sinus rhythm, originated by

the SA node. Furthermore, in some people, generally with slower heart rates, a fourth waveform

known as U-wave may appear. Some researchers believe that it represents late stages of ventricular

repolarisation or even a post-repolarisation phenomenon [104].

2.2.2 Variability

Although in normal conditions the ECG presents the same major deflections and waves through

each heartbeat for all subjects, there’s a high degree of variability considering this physiological

signal. There are two different kinds of variability in the ECG: intrasubject, which occurs when

variations are detected between heartbeats of the same person, and intersubject, consisting of

variations between heartbeats of different people [99]. According to J. R. Pinto et al. [33], these

types of variability can be associated with different aspects being the most relevant:
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Figure 2.14: Electrocardiogram The main waves and intervals in a heartbeat of an electrocardio-
gram, from [106]

1. Heart Geometry - The geometry of the heart depends on its size, shape and positioning.

All these features highly influence the electrical current path during the heartbeat, the heart

and muscle cells to be recruited and depolarised, and the average amount of time of a single

heartbeat [107; 108];

2. Physical Exercise and Meditation - Athletes with high levels of physical training generally

have larger hearts and thicker myocardium, indicating how physical exercise can influence

the general heart and ECG characteristics. In addition, both exercise and meditation affect

the heart rate, which translates into variations especially visible on the interval between the

QRS complex and the T wave [109];

3. Individual Characteristics - Overall features like age, weight, height and pregnancy can

affect the heart orientation and position. These shifts change the orientation of the electrical

current conduction vectors, which alters the ECG waveforms [110];

4. Cardiac Conditions - Heart diseases or other medical conditions are also visible in the ECG

waveform, since they may interfere in the general electrical conduction dynamics [111];

5. Position and Shape of the Organ - The body positioning like standing or laying down lead

to significant variations in the position and shape pf the organ. Altering the position of the

heart in the thorax will also change its reference position with the electrode placement. In

this way, different body positions result on different ECG signals collected [110];

6. Emotions and Fatigue - Physiological and psychological states highly influence the au-

tonomous nervous system, which translates into variations in heart rate considering different

states of fatigue or emotion, from excitement to calmness [23];
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7. Electrode characteristics and placement - The ECG acquisition methods and general

specifics like the type, size and number of electrodes, as well as their positions on the chest

and limbs, have an influence on the quality of the signal collected. The mispositioning

of electrodes is also a source of variability, since it can change the general overview and

perspective of the electrocardiographic signal [108; 110].

All the factors presented result in visible differences in the ECG data collected. Regarding

the first three mentioned (Heart Geometry, Physical Exercise and Meditation and Individual Char-

acteristics), they highly contribute to inter-subject variability, which is potentially positive to the

development of biometric systems based on the ECG. However, concerning emotion recognition,

subject-dependent settings are one of the most difficult problems that affect the already developed

systems, since this can result in different ECG signals and patterns corresponding to the same

emotion felt by different subjects.

On the other hand, as mentioned, emotions are one of the factors that can also produce vari-

ability. However, this variability is mainly intra-subject and depends on the emotional state, which

allows for the detection of different emotions through time. The nerve-endings of the Autonomic

Nervous System (ANS) within the cardiac muscle have a major effect on the cardiac response,

namely on the heart rate. The sympathetic system has fibers that run along the atria and the ventri-

cles. When activated, they stimulate the myocardium to increase the heart rate. On the other hand,

this rate and general cardiac workload are reduced by the parasympathetic system [23].

Concerning a stressful state, the sympathetic system overtakes the parasympathetic and differ-

ent effects occur like the increase of the conduction rate, the dilation of coronary blood vessels,

and the increase in perceptiveness to internal and external stimuli [112]. All these effects result

in specific patterns and variations that can be detected in the ECG, thus, identifying emotional

changes.

Nevertheless, the physiology and anatomy behind these biological processes also differ con-

sidering the subject, translating into distinct ECG patterns for the same emotion depending on the

subject, which can be one reason for the subject-dependency problems found in a large scale of

emotion recognition algorithms [23].

Furthermore, other factors may negatively influence emotional detection. For example, body

posture during data acquisition may influence HR measurements, consisting of one of the most

common features to detect arousal. Thus, all these variability aspects have to be considered since

they can either ease or hamper the task at hands.

2.2.3 Acquisition and Experimental Setups

The ECG signal can be used for a variety of different applications, like medical diagnostic, biomet-

ric recognition or, in this case, emotion recognition. These purposes are highly distinct and imply

completely different experiments and requirements. In this way, they differ in the most generally

used techniques for ECG measurement and collection. In this section, the most common ECG
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acquisition methods are presented, first for medical diagnostic purposes and finally concerning

emotion recognition tasks.

2.2.3.1 Medical Diagnostic Acquisition Settings

For medical diagnostic purposes, there are some previously defined electrode configurations, that

allow for standardized techniques to be applied, ensuring effectiveness and collection quality as

well as comparable and reproducible results. Having this said, the two most common methods are

the standard 12-lead configuration and the corrected orthogonal ECG configuration.

Standard 12-lead configuration

A 12-lead-electrocardiogram is the most standard lead system used in clinical practice, nowadays.

A lead is an indication of the electrical activity of the heart from a given angle. This system uses a

total of 12 leads to acquire the ECG signal, showing 12 perspectives of the heart’s activity through

two electrical planes – vertical and horizontal - by using a total of 10 electrodes [113; 114].

These 12 leads are generally divided into three categories: three bipolar limb leads, three

monopolar limb leads and six monopolar precordial leads. The limb leads give information re-

garding the vertical plane whereas the precordial provide information in the horizontal plane.

The bipolar limb leads are part of Willem Einthoven’s legacy, winner of the 1926 Nobel Prize

for his advances in electrocardiography. Using an equilateral triangle (Einthoven’s triangle) co-

ordinate system (see Figure 2.15), the idea is to capture the projection of the cardiac dipole. The

vertices are the left arm (LA) and the right arm (RA) writs and the left leg (LL), where each

electrode is positioned. The right leg (RL) works as a point zero, where the electrical current is

measured. Because of this, RL is considered as a grounding electrode that helps minimize ECG ar-

tifacts and it is not considered as a lead in the 12-lead system, since it doesn’t come up in the ECG

readings [114]. In this configuration, the signals are obtained by measuring the electric potentials

between RA and LA (Lead I), RA and LL (Lead II) and between LA and LL (Lead III).

These same three electrodes are also used to capture the monopolar limb leads, also known as

augmented limb leads, that correspond to the measurement of the cardiac dipole in the direction

of each limb electrode. In this way, in the direction of LA, it is obtained the aVL lead, for RA it’s

obtained the aVR and finally the for LL we have the aVF lead [99].

The six monopolar precordial leads, or transverse leads (V1 to V6), are positioned of the

chest and provide information about the heart’s horizontal plane. Like the unipolar limb leads,

the precordial are also unipolar and require only a positive electrode. The negative pole of these

6 leads is found at the center of the heart. Figure 2.16 presents the complete standard 12-lead

configuration.

Corrected Orthogonal Configuration (Frank Leads)

The Frank electrode system captures the three-dimensional extent of the heart dipole, using three

different channels and each one corresponding to an orthogonal direction: x, y, z. In this way,
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Figure 2.15: Einthoven’s triangle: bipolar (I, II, III) and monopolar (aVR, aVL, aVF) limb leads,
from [114].

potential differences are measured not only in the frontal plane, through the limb leads, but also

along the antero-posterior axis of the body [115][116].

The Frank Leads system uses seven different electrodes: I, E, C, A, M, F, H. Five of them

are located on the same axial plane (A, E, M, C). I and A are positioned below the right and left

axillae, E and M are on the intersection of the sagittal and axial plane, being E positioned anterior

and M posterior to the subject, and C is located halfway between A and E. Finally, H is on the

back of the neck and F is on the left ankle [99]. Through the electrical circuit presented on Figure

2.17, three outputs are obtained: Vx, Vy and Vz, being proportional to the dipole components px, py

and pz, respectively [116].

2.2.3.2 Emotion Recognition Acquisition Settings

Regarding the ECG acquisition for emotion recognition experiments, only signals analogous to the

bipolar limb leads are normally used, which indicates a lesser complex collection than the medical

standard acquisitions. This lead choice can be because limb leads are generally more comfortable

for the user, especially Lead I. In this way, they are the more relevant and generally applied in

real emotion recognition applications. In [16], three sensors were attached to the participant, two

electrodes were placed on the wrist and a reference in the ulna bone (in the arm), working as a

ground electrode. This type of setup allows an accurate measurement of the heart rate (HR) and

consequently of the heart rate variability (HRV), highly used and correlated with emotional states.

In [9], the ECG was recorded using a SHIMMERTM [117], a wireless sensor able to obtain

Lead II (RA to LL) and Lead III (LA to LL) vectors, although they only used Lead II for further

development. Regarding [14], the ECG was recorded using a SHIMMER 2R, and three electrodes.

Two of them were placed at the right and left arm and the third at the ankle, working as a reference.

This set up provided a precise identification of HR and the full QRS complex.
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Figure 2.16: Standard 12-lead configuration, from [114]

In other cases, instead of placing the electrodes on the wrists or arms, some experiments also

place them below the collar-bone [15; 18].

However, when in emotion recognition research, experimental setups also need to consider the

emotion elicitation, since the ECG signal should reflect some emotion variation.

In emotion recognition, two types of induction experiments can be considered: passive or

active. In a passive experiment, subjects are passively exposed to some emotion stimuli, while

in active experiments, subjects participate actively during the experiment [11]. Concerning the

emotion annotation, it can be a self/explicit assessment (internal annotation), in which the subject

describes the emotion he/she is feeling, or an implicit assessment (external annotation), where

the affective state is externally evaluated by close observation of the subject’s behaviour or phys-

iological signals. However, these two methods both show some uncertainty since it depends on

the person observing or evaluating. In some research works, there’s the combination of both tech-

niques to ensure correct labelling of the data [14].

For emotion elicitation, passive experiments can use videos, pictures or even music records as

external stimulus for emotion elicitation. One example widely used is The International Affective

Picture System (IAPS), a picture set that provides rates of affect for a large set of emotional states

(see Figure 2.18) [11; 92]. The volunteers are generally asked to sit conveniently while the stimuli

are presented and the emotion assessment is performed during the stimuli or after.

Concerning the active experiments, the stimulus dynamically interacts with the volunteers. In

[11], a commercial video game was used, increasing the difficulty and gradually absorbing the

player in the game. After getting acquainted with it, the ECG starts to be measured as well as

a facial expression recording. In the end, the volunteers should watch the video with their facial

expressions while playing the game, and continuously report the emotions they felt at each time.

Concerning this specific experiment, the subjects reported the level of arousal, as can be seen in

Figure 2.19. However, these active experiments are rather new in the Emotion Recognition field,

and most researchers opt to use passive experiments with pictures, videos or music as elicitation

techniques.
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Figure 2.17: Corrected Orthogonal Configuration: Leads and electrode placement. Left:
electrode placement; right: lead measurement computation), from [115].

2.3 Conclusion

The electrocardiogram is a cyclic signal that represents the electrical activity of the heart. As

mentioned earlier, because the heart is directly connected to the ANS (parasympathetic and sym-

pathetic nervous systems), it is possible to correlate emotional states with changes in the ECG

signal.

Although the electrocardiogram is prone to high variability, which may have its origin in var-

ious factors and lead to false emotional interpretations, techniques should be applied to reduce

these problems, especially regarding subject dependence.

In terms of acquisition methods, traditional emotion recognition experiments use simpler and

less complex ECG measurement techniques than those used in the field of medical diagnostics.

Wireless sensors are widely used, as well as a reduced number of electrodes, allowing a more

comfortable and relaxed setup for the subjects, who can move more freely.

After presenting and analysing some available ECG databases in chapter 3, some of the most

commonly used approaches and techniques in the literature for Emotion Recognition using ECG

are presented in chapter 4.
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Figure 2.18: Passive Experiment. Every picture of the IAPS photo-set labelled, showing emotion
variations through time, from [11].

Figure 2.19: Active Experiment Game and face expression recording, used for self-assessment
of arousal, from [11].





Chapter 3

ECG Signal Databases

3.1 Introduction

A database is an organized collection of significant data that can be used for a given purpose. In all

machine or deep learning problems, databases are an essential part of the system’s development

process, giving significant examples to train a given model correctly.

Having a well-structured signal collection is fundamental for the development of an accurate

system, that may work in general real-life applications. In order to achieve a good database,

Pinto et al. [99] identified a list of factors to take into account, like the electrode number and the

electrode positioning, the sampling frequency and the subjects health.

The electrode number can have a direct impact on the system’s performance as well as the

electrode positioning. Zhang and Wei [118] concluded that the further away the electrodes were

placed from the heart, the worse the results would be. Sampling Frequency proves to be impor-

tant, as well, since lower sampling frequencies translate into a lower loss of information in the

conversion of the analogical heart signal to digital.

Regarding the volunteers, a lot of factors have to be taken into consideration, like the subjects

health, since heart conditions are one of the causes of ECG variability, and the number of subjects.

A signal collection with the presence of a high number of subjects guarantees subject diversity as

well as a high amount of data, both important factors concerning a machine or a deep learning

problem. Regarding emotion recognition, a high number of subjects will allow to divide different

subjects into training and testing sets tackling the subject-dependency issue, by having a test set

of subjects "unseen" by the algorithm.

In emotion recognition tasks, the label reliability is also an important matter, since the algo-

rithm’s performance depends on how well it is trained. However, emotional states are sometimes

difficult to evaluate in a quantitative way. Thus, as already explored in Chapter 2, Section 2.2.3.2,

there are two main methods of labelling emotions and their combination is highly used to ensure

a higher level of trust in the labelling process.

The number of records is also a parameter to consider in a well-structured database. Machine

learning and especially deep learning algorithms need to have a high amount of data available.
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With a low number of records or subjects, overfitting is prone to happen, since there is not a rep-

resentative amount of data of each class to allow quality learning. Furthermore, small databases,

with reduced data amount and signals’ variety, can also lead to other problems such as signal and

subject dependency. Finally, aspects like the acquisition settings are also relevant and should be

in accordance with the purpose of the research, as already seen in Chapter 2, Subsection 2.2.3. In

emotion recognition, the type of sensor and the electrodes used are important aspects. Wearable

sensors and a low number of electrodes that guarantees a quality signal collection allow an easier

and more comfortable data acquisition for the subjects involved.

3.2 Available databases

Concerning emotion recognition using physiological signals, there are some available databases

(see Table 3.1) that are further presented and analysed. However, due to the difficulty of experi-

mental setups and other limitations such as setups costs, the databases presented are not consid-

erably large. However, emotion recognition is still a recent field, which indicates that, with time,

more databases will become available for different investigations to be conducted.

AMIGOS

AMIGOS - A dataset for Multimodal research of affect, personality traits and mood on Individuals

and GrOupS, was collected by Miranda et al. [14], with the purpose of creating a database for

personality research based on neurological and physiological signals that studies participants in

individual and group settings, exposing the differences between emotional reactions when alone

or part of an audience.

The experimental scenarios involved two distinct settings. In the first one, 40 healthy volun-

teers watched 16 short emotional videos and, in the second, 37 participants watched 4 long videos,

17 alone and the other 20 in a group (5 groups of 4 people). This experiment allowed a signifi-

cant number of data and the participation of a variety of volunteers. Simultaneously, five different

modalities were recorded: audio, visual (body and face), EEG, ECG and GSR.

Regarding the emotion assessment, an internal annotation was performed, in which the volun-

teers self-assessed their own affective states in terms of arousal, valence, control, familiarity, liking

and basic emotions, and an external annotation, by evaluating the emotion each subject was ex-

periencing. The combination of labelling methods also ensures proper labelling for the AMIGOS

database.

The ECG signal was recorded with the wearable sensor Shimmer 2R5 extended with an ECG

module board, using a sampling frequency of 256Hz and a 12-bit resolution. Three electrodes

were used, two of them on the right and left arm and the third in the internal part of the left ankle.
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ASCERTAIN

ASCERTAIN - A multimodal databASe for impliCit pERsonaliTy and Affect recognition [14],

is a database that intends to connect personality traits and emotional states through physiological

responses. In this way, ASCERTAIN contains five personality scales (Extraversion, Neuroticism,

Agreeableness, Conscientiousness and Openness) and emotional self-ratings (Arousal, Valence,

Engagement, Liking and Familiarity).

58 healthy volunteers watched 18 affective videos while their EEG, ECG, GSR and facial

activity were recorded using off-the-shelf sensors, during a 90-minute session. Thus, this database

contains a high number of healthy subjects and long record sessions, making ASCERTAIN useful

for machine and deep learning applications. After viewing each clip, the subjects made a self-

assessment of their emotional state using the affective ratings, evaluating, using only a type of

data labelling.

For the ECG measurement, two electrodes were placed at each arm crook, and the reference

and third electrode was positioned at the left foot.

DECAF

DECAF - A multimodal database for DECoding user physiological responses to AFFective mul-

timedia content was recorded by [17].

Thirty volunteers listen to 40 one-minute music records and watched 36 movie clips and after

each session, the participants did their self-assessment ratings, for arousal, valence and dominance,

from 1 (low) to 9 (high). In addition, an implicit assessment was also developed, allowing a thor-

ough data labelling. Although it doesn’t present a number of subjects as high as other databases, it

contains two distinct experimental sessions (music and movie clips), which increases the number

of data available.

The modalities considered were the near-infra-red (NIR) facial videos, horizontal Electroocu-

logram (hEOG), ECG, trapezius-Electromyogram (tEMG), EEG and magnetoencephalogram

(MEG), which also acquires brain signals. In this way, DECAF enables comparisons between

the EEG and MEG modalities, as well as movie and music stimuli for emotion recognition.

The ECG signal was recorded at a sampling rate of 1KHz, subsequently downsampled to

256Hz. The set up was simple by placing three sensors in the subject’s body, two electrodes on

the wrist and the reference on a bone part of the arm (ulna bone).

DREAMER

DREAMER is a multimodal database that consists of EEG and ECG signals recorded during

emotion elicitation experiments [9].

This database has records from 23 participants while they were presented with audio-visual

stimuli, consisting of 18 videos. In this way, in terms of subject and records number, it is a small

database that can show some limitations.
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After each stimulus, subjects self-assessed their affective state in terms of arousal, valence and

dominance, by evaluating them from 1 (low) to 5 (high), only considering an explicit assessment.

Both EEG and ECG were recorded with portable wearable and wireless equipment, indicat-

ing the possibility of applying affective computing methods in everyday technology. ECG was

recorded at a 256 Hz sampling rate, using a SHIMMERT M sensor, that is able to produce Lead II

and Lead III vectors.

WESAD

WESAD - a database for WEarable Stress and Affect Detection is a multimodal database, using

both physiological signals and motion data, recorded from a device in the wrist and chest, which

allowed performing measurements on the subjects’ daily basis. The goal of the database was to

elicit three affective states - neutral, stress and amusement.

A small set of subjects, 15 in total, experienced three different scenarios: sitting while reading

a magazine, watching 11 funny videos and going through a Trier Social Stress Test (TSST), corre-

sponding to the neutral, amusement and emotional stress elicitation, respectively. Simultaneously,

ECG, face, body, heart rate variability and skin conductance were measured.

Considering the small number of subjects and the not so common emotional states tackled,

this database use is a little bit more limited, since most research groups use the traditional affective

dimensional parameters, like arousal, valence, dominance, among other.

For emotion assessment, questionnaires were developed and presented to each subject, in order

to obtain a detailed description of the emotion felt. In this way, although an implicit assessment

wasn’t also conducted, the self-assessment developed was more detailed and thorough.

For data collection, as already mentioned, chest and wrist-worn devices were used: RespiBAN

Professional and Empatica, respectively. The ECG signal was recorded at a sampling rate of 700

Hz, using three standard points.

SWELL-KW

The SWELL Knowledge Work (SWELL-KW) is a dataset developed for stress and user modelling

research [18].

Twenty-five volunteers performed typical knowledge work, like writing reports, reading e-

mails, searching for information about a given topic or making an oral presentation. Meanwhile,

the working environment was altered with different stressors such as email interruptions, generally

increasing the work pressure.

In this way, three states were considered: neutral (working with no external alterations and

no limitations in terms of time), the stressor time pressure (reducing the time deadline to 30 min-

utes) and the stressor interruptions (sending a variety of eight emails, some important and others

irrelevant).

Concerning the subject ratings, different questionnaires were applied to evaluate mental ef-

fort and demand, physical and temporal demand and the level of stress. Considering emotion
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evaluation, the subjects reported their affective states in terms of valence, arousal and dominance,

evaluating them from 1 (low) to 9 (high). This kind of labelling is complete, offering evaluation

regarding different parameters like stress and demand. However, concerning emotions, there’s

some uncertainty since only the subjects’ own evaluations were considered.

During the experiment, facial expressions, body posture, ECG and skin conductance were

measure. The ECG measurement was done at a sampling frequency of 2048HZ and using a Mobi

device (TSMI) with self-adhesive electrodes, positioned across the heart. One of them was placed

bellow the right collar-bone and the other bellow the chest, with the grounding electrode below

the left collar-bone. SWELL provides both raw and preprocessed ECG data, calculating the heart

rate and heart rate variability, which can be useful in some researches where this type of processed

data is needed.

MAHNOB-HCI

MAHNOB-HCI is a multimodal database for affect recognition and implicit tagging [15]. 30

healthy volunteers participated in the development of this database, however 3 of them didn’t

conduct all the experiments. In this way, 27 subjects from both genders and different cultural

origins, participated in two distinct experiments.

The first one consisted of watching 20 emotional videos while self-reporting their own emo-

tions, using arousal, valence, dominance and predictability as emotion parameters, and emotional

keywords (discrete emotions: disgust, amusement, joy, fear, sadness and neutral). On the other

hand, the second experiment used short videos and images without any tag and, after, with correct

or incorrect tags. The participants were instructed to analyse each tagging and agree or disagree

with it.

In this way, self-assessment is used regarding the first experiment. In the second, the subjects

also perform an evaluation on a given image or video tagging. Although the first videos are

evaluated through an internal assessment, the second experiment works as an implicit/external

annotation. The subjects evaluate the label given to each image and understand possible variations

from their opinion to the real image/video annotation. Thus, this database can also be useful to

understand how subjects opinion and emotional states may differ and how reliable their assessment

is.

Regarding the number of recordings, MAHNOB presents a wide range of data available, even

with only 27 volunteers, since each one is presented with 20 emotional videos, 28 images and 14

short-videos.

During each experiment, EEG, eye gaze, audio, visual (face and body), and different physio-

logical signals (ECG, GSR, skin temperature, RA) were collected. The ECG was acquired using

three sensors attached to the subjects’ body. Two of the electrodes were placed on the right and

left corners of the chest, below the clavicle bone and the third on the abdomen, below the last rib.

This type of setup provides a precise identification of the heartbeats and it is also simple and easy

for the subjects to wear.
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3.3 Conclusion

In this section, various and important factors for selecting a good and well-structured database

have been analysed. Aspects such as the number and positioning of electrodes, the reliability of

labels and the number of data and subjects are important as they determine how well a particular

database is suited for a specific research purpose.

During this dissertation, different databases are used, namely DREAMER, AMIGOS and

MAHNOB-HCI, since all of them respect the basic factors that were analysed, such as a wide

range of available data and correct acquisition settings. They also provide different experiments

with relevant information from which different hypotheses can be tested and conclusions can be

drawn. For example, concerning AMIGOS, as mentioned, there is access to both external and

internal annotations, which can be interesting for further experiments. Moreover, both AMIGOS

and MAHNOB-HCI use two types of emotion assessment, discrete (disgust, amusement, joy, fear,

sadness and neutral) and dimensional models (arousal, valence, dominance and predictability). All

of these aforementioned features make them complete databases suitable for a variety of research

purposes. However, as already referred, none of these databases is extremely large, specially

DREAMER, since it presents a reduced number of subjects and experiments per subjects. This

fact can turn out to be problematic in some situations and lead to the limitations above mentioned.

Nonetheless, these databases are used in most deep learning approaches found in the literature, and

using the same databases is an important factor when trying to reproduce a given methodology.



3.3
C

onclusion
37

Table 3.1: Summary of the most commonly used ECG Signal databases for Emotion Recognition (N.S. - number of subjects; N.E. - number of
electrodes).

Database Author/year N.S. Sampling Rate (Hz) N.E. Electrode
Placement

Stimuli Emotion Assessment

AMIGOS J. A. Miranda-Correa et al. [14]
Queen Mary University of London,
University of Trento, Italy
2017

40 256 3 Arms
Left Ankle

16 short emotional videos
4 long videos

Self/Explicit Assessment (arousal,
valence, control, familiarity, liking,
emotional keywords)
Implicit Assessment (arousal and
valence)

ASCERTAIN Ramanathan Subramanian et al.
[119]
2016

58 – 3 Arms
Left Foot

18 affective videos
90-minute sessions

Self/Explicit Assessment (arousal,
valence, engagement, liking,
familiarity)

DECAF Abadi et al. [16]
University of Trento, FBK, ADSC,
Semantics Inovation Lab, Telecom
Italia
2015

30 1000
downsampled:
256Hz

3 Wrists
Arm (boney part)

40 1-minute music records
36 movie clips

Self/Explicit Assessment (arousal,
valence)
Implicit Assessment (arousal,
valence)

DREAMER Stamos Katsigiannis and Naeem
Ramzan [9]
University of the West of Scotland
2015

23 256 3 Lead I and Lead II
vectors

18 affective videos Self/Explicit Assessment (arousal,
valence,dominance)

WESAD Schmidt et al. [120]
Corporate Research, University of
Siegen, Germany
2018

15 700 3 Chest neutral
amusement
stress: TSST

Self/Explicit Assessment
(questionnaries)

SWELL-KW S. Koldijk et al. [18]
Radbound University, Delft
University of Technology
2014

25 2048 3 Chest neutral
stressor time pressure
stressor interruptions

Self/Explicit Assessment (arousal,
valence,dominance)

MAHNOB-
HCI

Soleymani et al. [15]
Imperial Colllege London,
Intelligent Behavior Understanding
Group
2012

27 1024
downsampled: 256

3 Chest 20 emotional videos
Image Tagging

Self/Explicit Assessment (arousal,
valence,dominance, predictability,
emotional keywords)
Implicit Assessment





Chapter 4

Prior Art

4.1 Introduction

For more than a century, since the appearance of the first electrocardiogram, this electrical signal

has been developed and constantly improved to obtain more reliable results and measurements.

Nowadays, the main application of ECG remains in the field of medical diagnosis.

On the other hand, Emotion Recognition to human-computer interaction first gained attention

in the 1980s. Although most research in this area uses facial expressions [121], emotions are

known to strongly influence the Autonomous Nervous System (ANS) activity, which is respon-

sible for regulating a variety of body parameters. In this way, physiological signals began to be

considered as possible indicators of emotional fluctuations.

Thus, the use of ECG for emotion detection is still quite recent compared to other modalities

such as face or voice. However, as a physiological signal, ECG patterns can translate changes in

emotion, mainly through heart rate and heart rate variability [32].

The most common methods using ECG for emotion recognition have well-established steps:

(1) ECG data collection, (2) Preprocessing, (3) Feature Extraction and (4) Classification. How-

ever, as already approached in Chapter 2, Section 2.1.2.4, in the literature, the methods can be

divided into two main groups, considering feature extraction. On the one hand, the researcher

manually engineers handcrafted features, computing and extracting them, before feeding them to

the classifier. On the other hand, deep learned features are automatically obtained from a given

algorithm.

In this Chapter, the most common handcrafted and non-handcrafted methods are described and

analysed, considering their advantages and limitations to Emotion Recognition tasks. Before this,

a brief overview of preprocessing methods is offered in Section 4.2.

4.2 Preprocessing

The ECG is commonly contaminated with artifacts that may difficult its use and application to dif-

ferent tasks. The powerline interference (50-60Hz), the electrode contact noise, surrounding mus-
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cles contraction, external electronic devices interference and motion artifacts are some examples

of unwanted noise. In this way, in both handcrafted and non-handcrafted features, pre-processing

can be applied to clear the ECG signal.

According to [122], the bandpass able to maximise the QRS energy is between 5-15 Hz. In

this way, the signal is generally filtered to remove the effects of noise and baseline wander. [123]

used a 3rd order Butterworth filter with 0.002 Hz and 100Hz cut-off frequencies, whereas in [124]

the signal crosstalk removal was performed by applying a notch filter. Considering [125], a high

pass filter was adopted to eliminate baseline wander, with a 4Hz cut-off frequency. Other possible

alternatives to filtering are transforms that may also cancel the ECG noise. The Discrete Wavelet

Transform (DWT) decomposes the signal into different sets, capturing both frequency and location

information was used in [126].

In [127], three different denoising techniques were tried and compared: Independent compo-

nent analysis (ICA), Principal Component Analysis (PCA) and Multiscale Principal Component

Analysis (MSPCA). PCA is a statistical linear technique that uses an orthogonal transformation to

obtain a dataset with no correlated variables, only keeping the principal components (PCs). On the

other hand, ICA is a non-linear technique that can be considered an extension of PCA, and finds

linear transformations of multivariate random signals into additive and independent subcompo-

nents. Regarding MSPCA, it extracts relations between different variables and decorrelates them

in case they are related.

According to the type of signal, the acquisition settings and the characteristics of both time and

frequency domain, different preprocessing methods can be applied (filtering, DWT, ICA, among

others). Especifically for filters, different low pass filters like elliptic, adaptive and Butterworth

are also highly applied to ECG signals. In addition, some artifact components can be removed

through visual detection, requiring more expertise and knowledge [32]. However, it is important

to be careful when preprocessing ECG signals, in order to retain the useful information for the

task at hand.

4.3 Handcrafted Methods

Feature extraction is able to transform the ECG signal into a list of important and relevant features

for the following classification. These features can be further categorized according to the domain

they are extracted as frequency or time [128]. Furthermore, features can also be distinguished as

linear or non-linear, fiducial or non-fiducial. Statistical features have into account measurements

like the mean, variance and other computations that can consider the whole signal or be only

computed between fiducial points. Fiducial-based approaches use specific points such as P Q R

S or T, measuring their interval, amplitude, time, among others. On the other hand, non-fiducial

approaches consider the signal as a whole, or segments of it, in order to extract features related

to the waveform morphology [99]. Fiducial features are generally computed in the time domain;

however, there are some examples of frequency-fiducial approaches. On the other hand, non-

fiducial are widely computed in both the time and frequency domain.
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In this section, approaches are divided concerning the extracted features domain (time or fre-

quency) and further analysed the fiducial and non-fiducial approaches in each. In Table 4.3.3,

a literature review is presented and the following subsections analyse and describe some of the

researches taken into account.

After evaluating the different features that can be considered, a description and analysis of the

most common machine learning classifiers are also provided.

4.3.1 Time-domain Analysis

As already mentioned, heart rate and heart rate variability are the main changes visible on the ECG

signal associated with changes in emotion. Therefore, time-domain features are usually associated

with heart rate variability (HRV), using different methods to detect and extract information from

it. Some examples of this kind of features are the heart rate [123], R-R intervals and R peak

value [129], the standard deviation of NN intervals (SDNN) [95], root mean square for standard

deviation (RMSSD) [12], among others.

4.3.1.1 Fiducial Features

Fiducial Features are associated with specific markers and points of a given signal. Regarding

the ECG, there are different fiducial-based approaches in order to extract emotion information, by

using the features mentioned above, besides considering other relevant points such as the P and T

waves.

When the cardiac rhythm is constant, the heart rate can be determined by the interval between

two successive QRS complexes. Thus, different approaches choose to detect the QRS to acquire

time domain HRV information, like the R peaks and R-R intervals [129–133] . The R wave can be

easily detected, since it presents the higher amplitude in the signal [134]. To detect the R peaks,

different algorithms can be applied, like the Pan and Tompkin’s algorithm [122]. Hamiton’s [135],

Slope Sum Function [136] and Christov [137]. However, although the QRS complex defines the

activation of the heart to human emotional states, there are some difficulties in emotion recognition

since this indicator is common to a wide range of emotions. Nevertheless, it still represents the

most used time-domain, fiducial features for emotion recognition purposes.

In [138], three methods were applied to analyse the HRV, including time and frequency do-

main analysis, as well as statistical methods. Concerning the time domain, features like the mean,

STD and the coefficient of variation of the RR intervals were considered. In the same way, Sri-

ramprakash et al. [139] used a total of 13 features related to HR and HRV, being 10 of them in

the time-domain. Regarding HR, the mean, median, mean absolute deviation (MAD HR) and the

standard deviation of Heart Rate (STD HR) were computed, whereas the HRV statistical features

considered were the RMSSD, the average of NN intervals (AVNN), the NN50, among others,

presented in Table 4.3.3.

In [140], the R-R intervals are calculated and further filtered with a median filter, that removes

the R-R intervals out of a given range. The intervals are further used to calculate time-domain
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HRV features, such as meanHR, meanRR, SDNN, SDSD, RMSSD, pNN20, pNN50, etc. In

addition, [141] decomposed the ECG signal and detected the P-QRS-T wave. After identifying

R peaks, Q and S are the left and right minimum of R, respectively. The P and T waves were

located by looking for peaks between consecutive QRS complexes. With the accurate detection

of the P-QRS-T wave detected, different fiducial features were extracted, such as the R wave

mean, median, maximum, range and amplitude, and analogous characteristics concerning the QS

interval, as well as the median amplitude value of P wave.

Finally, in [142], different fiducial features were considered and extracted, like the PQ, QS and

ST intervals, the R-mean, median, standard deviation (STD), minimum and maximum value and

the same features concerning the PQ interval.

Although the majority of studies focus on the analysis of the QRS amplitudes, R-R inter-

vals and the duration between consecutive QRS complexes, some research also pays attention to

QT/QTc dispersion, and [143] provides information that allows correlating this interval with levels

of anxiety and anger.

More methods using time-domain and fiducial features are presented in Table 4.3.3.

4.3.1.2 Non-Fiducial Features

Non-fiducial features consider the totality of a signal or segments of it. By not being limited to

specific fiducial points, this kind of approach offers various methods and can be applied in both

time and frequency domain. In the time domain, some examples are the computation of statistical

features from ECG segments or the totality of the signal such as the mean, median or variance.

Furthermore, specific methods like EMD and BEMD also allow obtaining time-domain features.

Considering the method applied in [24], both local binary pattern (LBP) and local ternary

pattern (LTP) in the time-domain were used to extract directions and patterns from the ECG signal.

Although these are techniques most commonly applied to images and emotion recognition from

facial expressions recognition, it was adapted to ECG, by dividing the signal into different frames

and detecting possible patterns and information conveyed in each segment, with high accuracy.

Agrafioti et al. [23] approach consisted of extracting information about oscillation activity

of a signal. For this, it was used a feature extraction based on Empirical Mode Decomposition

(EMD). EMD performs a signal decomposition, obtaining Intrinsic Mode Functions (IMFs) and

the oscillatory activity conveyed in these time-domain signals is extracted, by applying a local

oscillation computation. Furthermore, in this research the oscillatory activity was also extracted

in the frequency domain, by applying a different technique, further described in Subsection 4.3.2.

Considering [144], both time and frequency domain features were extracted. Taking into ac-

count the non-fiducial time-domain features, statistical measurements were computed, such as

the mean, standard deviation, first and second difference and the maximum and minimum of the

ECG signal. In addition, [145] also extracted time-domain features, such as amplitude, frequency,

linearity and variability.
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4.3.2 Frequency-Domain Analysis

In order to extract features from the frequency domain, signals need to be transformed from their

natural time-domain to this one. Although some features in the frequency domain can be extracted

by taking into account some specific points in the ECG signal, the most common features in this

domain are non-fiducial. Some of the most used techniques are the Fast Fourier Transforms (FFT),

Continuous Wavelet Transform (CWT), Discrete Wavelet Transform (DWT), the Hilbert transform

and the Power Spectral Density (PSD) [132; 146].

In [147], a total of 13 frequency-domain HRV related features were calculated. The power

spectral density (PSD) was computed by applying a fast Fourier transform (FFT) to the R-R

intervals. The PSD analysis allowed to compute the power of specific frequency ranges (very-

low-frequency range (VLF), low-frequency range (LF) and high-frequency range (HF)) and peak

frequencies. These features are highly used, as well as the LF/HF ratio, being present in a variety

or researches [12; 138; 142; 148–150]. In [151], the features extracted are Fourier coefficients,

obtained by applying a FFT to the ECG signal.

On the other hand, in [123], Discrete wavelet transform (DWT) was applied to extract features

by using four wavelet functions: Daubechies6, Daubechies7, Symmlet8 and Coiflet5. [26] also

applies DWT, namely db4 and coiflet5, and Discrete Cosine Transform for feature extraction.

Continuous wavelet transforms may also be used [152].

Concerning the already discussed method of [23], oscillation activity was also calculated by

applying a Hilbert Transform after the EMD. Regarding [153], EMD in combination with Hilbert

transform was also used, as well as EMD combined with Discrete Fourier Transform (DFT), com-

paring the results when using these different feature extraction methods.

4.3.3 Non-Linear Analysis

Besides the feature extraction techniques already mentioned and analysed, concerning both fre-

quency and time domain, there are other possible methods for extracting features.

The Poincaré Plot of RR intervals measures the quantitative beat-to-beat correlation between

adjacent RR intervals and it is a metric used to evaluate HRV. The point cloud obtained in this

plot is generally characterized by its length through the line of identity (SD2), which represents

the standard deviation of the continuous long-term beat-to-beat RR interval variability, and its

breadth along this line (SD1), indicating the standard deviation of the instantaneous beat-to-beat

RR internal variability. The ratio between SD1 and SD2 is also a valuable measure and these

parameters can be computed by the following formulas [138]:

SD2
1 =

1
2

SDSD2 (4.1)

SD2
2 = 2SRR2 − 1

2
SDSD2 (4.2)
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SD12 =
SD1

SD2
(4.3)

These features are extracted in different approaches [132; 138; 140; 147] In the latter, [147],

there are also autocorrelation-related features, namely the maximum autocorrelation coefficient

(ACFcoef ) and the reciprocal of the lag time (ACFfreq) autocorrelation. Furthermore, two ECG-

derived respiration (EDR) parameters are also computed: respiratory rate (RSPrate) and Coher-

ence between final EDR and RR intervals (Coherence).

Concerning [150], SD1 and SD2 were also nonlinear features extracted. However, other meth-

ods were applied in order to obtain other features such as the Sample Entropy (SampEn) and the

Approximate Entropy (ApEn), which consist of two entropy measures of the HRV. ApEn detects

the changes in underlying behaviour that was not translated and reflected in the peak appearance

and amplitude. On the other hand, the SampEn provides a good evaluation of the signal regularity

and dynamics. DFA correlations, another nonlinear method, considers two, short and long term,

fluctuations in α1 and α2 features, respectively. Finally, the Correlation Dimension measures the

complexity of the time series, as well as its strangeness, by the D2 feature.

Concerning statistical methods, the Kurtosis coefficient and the Skewness value are also used

[129; 138; 154] and enable the evaluation of distribution probabilities of HRV. The Kurtosis allows

evaluating the shapes of the probability, whereas the Skewness provides information regarding the

probability distribution. Entropy is also a statistical parameter that can characterize the random-

ness of the dataset.

Kurto(X) =
∑(X −µ)4

σ4 (4.4)

Skew(X) =
∑(X −µ)3

σ3 (4.5)

Entropy(X) =−sum(px log2(p)) (4.6)

Selvaraj et al. [155] considered a skewness-based Hurst and kurtosis-based Hurst features. The

Hurst parameter analyses the smoothness of a time series, by having into account self-similarity

and correlation properties, as well as its long-range dependence [155]. This parameter can be

obtained by the already mentioned methods, such as the EMD and the WT; however, this research

uses the already mentioned High Order Statistics (HOS) features, extracted from the QRS complex

using two methods: Rescaled Range Statistics (RRS) and Finite Variance Scaling (FVS).
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Table 4.1: Summary of the feature extraction and features selection methods used on the surveyed approaches

Feature Extraction

Paper Year Database Time-domain Frequency-domain Non-Linear Feature Selection
Hjortskov et al. [148] 2004 Private – LF, HF, LF/HF – –
Kim et al. [91] 2004 Private menaHRV, SD HRV LF, HF – –
Kappeler-Setz [133] 2007 Private RR-peak, RR-interval,

HR, SDNN, RMSSD,
pNN50, triangular index

LF, HF, LF/HF, Wilcoxon signed rank
test
Krushkal-Walls test /
–

Kim and Andre [95] 2008 Private HRV, SDNN, NN50,
PNN50

PSD, LF, HL,LF/HF SD1 , SD2, SD12 pLDA

Schubert et al. [156] 2009 Private HR, HRV, RSA HF, LF, LF/HF D2 –
Xu and Liu [141] 2009 Private P-QRS-T features

(meanR, max R, STD
QS...)

– – Hybrid Particle
Swarm Optimization
(HPSO)

Boonnithi and
Phongsuphap [149]

2011 Private mRR, mHR, SDRR,
CVRR, RMSSD, pRR20,
pRR50

VLF, LF, HF, nVLF, nLF,
nHF, dLFHF, SMI, VMI,
SVI

– –

Guo [52] 2011 Private (Augsburg) - WT, eigenvectors (max,
STD wavelet coefficients)

– –

Taelman et al. [152] 2011 Private – LF, HF – –
Bong et al. [131] 2012 Private HR, MRAmp, mRRI – – –
Agrafioti et al. [23] 2012 Private Local Oscillation (EMD,

BEMD)
HHT – SFFS, FP

Murugappan et al.
[123]

2013 Private – LH (STD, power),
HF (STD, power),
HF/LF, LF+HF

– –

Selvaraj et al. [155] 2013 Private – – Hurst, Hurstskewness,
Hurstkurtosis

–

Xun and Zheng [142] 2013 Private (Augsburg) PQRST waves, PQ, QS,
ST (max, min, mean,
median, STD, range)
SDNN, pNN50

PSD, HF – ANOVA, SFS, SBS
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Table 4.1: Summary of the feature extraction and features selection methods used on the surveyed approaches

Feature Extraction

Paper Year Database Time-domain Frequency-domain Non-Linear Feature Selection
Mikuckas et al. [132] 2014 Private HR, SDNN, SDANN,

RMSSD, SDNNindex,
SDSD, NN50, pNN50%

Total power, VLF, LF, LF
n.u, HF, HF n.u, LF/HF

SD1, SD2 Manual

Valenza et al. [92] 2014 Private RRmean, RRSTD instantaneous spectrum
and bispectrum, HF, LF,
LF/HF

dominant Lyapunov
exponent

–

Walter et al. [145] 2014 Private meanRR, RMSSD,
slopeRR

– – Forward selection
Backward selection

M et al. [153] 2014 Private EMD DFT, HHT - -
Godin et al. [12] 2015 DEAP

MAHNHOB-HCI
avHR, avRR, SDT HR,
RMSSD, SDSD

VLF, LF, HF – Correlation, Fisher
score, Bayes
classification

Ménard et al. [151] 2015 Private – fourier coefficients – –
Ferdinando et al. [30] 2016 MAHNOB-HCI BEMD dominant features – forward-floating

search
Ping Gong [144] 2016 Private (Augsburg) mean, median, STD,

1st dif, 2nd dif, max, min,
max ratio, min ratio

HF, LF, LF/HF Lyapunov exponent,
ApEn, SampEn,
Correlation
Dimension,
Complexity

C4.5 decision tree

Guo et al. [138] 2016 Private meanRR, CVRR, SDRR,
SDSD

LF, HF, LF/HF kurtosis, skewness,
SD1, SD2, SD12

PCA

Tivatansakul and
Ohkura [24]

2016 Private (Augsburg) LBP, LTP - - —

Ferdinando et al.
[154]

2017 MAHNOB-HCI BEMD Spectrogram analysis,
dominant features

kurtosis, skweness LDA, NCA MCLM

Gjoreski et al. [140] 2017 MAHNOB-HCI ,
DEAP,
DECAF,
ASCERTAIN
Cognitive Load
Driving Worload

meanHR, meanRR,
SDNN, SDSD, RMSSD,
pNN20, pNN50

LF, HF, LF/HF SD1, SD2, SD12 —
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Table 4.1: Summary of the feature extraction and features selection methods used on the surveyed approaches

Feature Extraction

Paper Year Database Time-domain Frequency-domain Non-Linear Feature Selection
Goshvarpour et al.
[26]

2017 Private – DCT, db4, coiflet5, DWT,
MP coefficients

– PCA, LDA, Kernel
PCA

Hsu et al. [147] Private SDNN, RMSSD,
NN50, pNN50,
SDSD, HR

VLF, LF, HL, LF/HL (and
others based)

EDR, SD1, SD2, SD12,
ACFcoe f , ACF f req

SFFS-KBCS-based,
GDA

Minhad et al. [129] 2017 Private R-peak and RR interval
measurements, HR

– kurtosis, skewness Manual

Sriramprakash et al.
[139]

2017 SWELL-KW HR (mean, median, MAD,
STD), HRV (RMSSD,
AVNN, SDANN, SDNN,
NN50, pNN50

LF, HF, LF/HF - Manual

Marín-Morales et al.
[150]

2017 Private meanRR, STQ RR,
RMSSD, pNN50, RR
triangular index, TINN

VLF, LF, HF (peak,
power), Total Power

SD1, SD2,
ApEn, SampEn, DFA
α1, α2, D2

PCA

Wei et al. [146] 2018 MAHNOB-HCI mean, standard of
amplitude of P,R,T, HRV,
RA

PSD (max, mean,STD) of
HRV, RA

– –

Xiefeng et al. [157] 2019 Private HRV – SD12 GA
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4.3.4 Dimensionality Reduction and Feature Selection

Dimensionality Reduction and Feature Selection are two methods used for reducing the number

of features extracted, since too many features result in high computational costs, the risk of curse

of dimensionality and low classification accuracies [26]. However, these two methods are slightly

different, since feature selection consists of simply selecting and excluding some features, without

changing them. On the other hand, dimensionality reduction transforms features into a lower

dimension.

Some of the most common and traditional techniques are PCA and LDA. PCA constructs a

linear transformation by considering the principal components (principal eigenvectors) of the data,

without any loss of information [158]. In this way, only some Eigenvalues are significantly high

and the others are considered very small, not contributing to the data variations and, thus, the

latter are the features to be removed. This technique is applied in a variety of researches involving

emotion recognition [26; 52; 150].

On the other hand, LDA is a supervised technique that looks to find a linear mapping M of

the data that can maximize the linear class differentiation in a low-dimensional space [159]. This

technique is also highly present in the literature [26; 154]. In addition to these two methods, others

can be applied, such as the Kernel PCA (K-PCA), a reformulation of the traditional PCA, in which

a kernel function is used, resulting in a nonlinear mapping [160]. [26] used all three techniques,

PCA, LDA and K-PCA, comparing their effectiveness and obtained the best recognition rate when

using PCA. In addition, PCA also showed to be computationally less expensive when compared

to other methods, such as K-PCA.

In [138], PCA also proved to be a good technique for feature selection. When using 13 HRV

features to classify two and five emotion states, an accuracy of 70.4% and 52% was achieved,

respectively. However, with five features selected, these accuracy levels increased to 71.4% and

56.9%.

Ferdinando et al. [154] developed research to explore different supervised dimensionality

reduction. For this, three different techniques were considered, namely LDA, NCA (Neighbour-

hood Component Analysis) and MCML (Maximally Collapsing Metric Learning). NCA is a non-

parametric method with the final goal of finding a transformation matrix that will determine the

dimension of the transformed features. Considering MCML, a simple geometric hypothesis is

used, by considering that all points belonging to the same class are mapped to a single location

in the feature space, whereas all the other points are mapped to other locations [154; 161]. Con-

sidering this research, the results showed that the supervised Dimensionality Reduction based on

NCA increased the accuracy from 55.8% to 64.1% and 59.7% to 66.1 % for a 3-class problem in

valence and arousal, respectively. In this way, NCA showed to be superior when compared with

the other two methods.

Concerning [23], two techniques were combined, the SFFS (Sequential Floating Forward

Search) algorithm and the FP (Fisher Projection), while in [144] a C.45 decision tree was used

for feature selection and the results were compared with not using a feature selection method. As
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a result, the small set of selected features lead to more precise and accurate detection than a larger

feature set.

Furthermore, [12] made use of 3 feature selection methods: correlation, fisher score and Bayes

classification. The first evaluates the correlation between features, which indicates if they are linear

dependent, and provides information regarding the features to remove. Fisher Score evaluates the

ratio between inter-class and intra-class variability. The features to be chosen are the ones with

higher inter-class and lower intra-class variability, i.e, the ones with a higher score. Finally, in

Bayes Classification the features are selected using a selective forward search with Bayes classifier,

by combining features and evaluating which set results in the highest classification accuracy.

Finally, in [162], different sets of features and classifiers are used for emotion recognition,

presenting, for each case, the results obtained with and without feature selection. For all of the

cases taken into account, feature selection improved the results obtained, showing to be a useful

technique that may ensure more accurate emotion recognition systems.

4.3.5 Decision Methods

After the features are extracted and further selected, a decision method or classifier is needed, in

order to do the proper recognition. As already presented in Section 2.1.2.4, Figure 2.12, some

of the most common classifiers for emotion recognition based on physiological signals are SVM,

KNN, LDA and RF. Considering specifically the ECG, SVM and kNN seem to be the two most

present methods of decision [123; 129; 146; 154].

k-Nearest Neighbours (k-NN) is a non-parametric algorithm, which means that it avoids as-

sumptions about the shape of the class boundary and thus it easily adapts to nonlinear boundaries

[163]. This algorithm estimates how likely a feature vector is to be a member of a class or other,

depending on its distance. Thus, this method attributes a feature vector to the most verified class

among the k closest stored templates.

On the other hand, Support Vector Machines (SVM) are non-probabilistic binary linear clas-

sifiers. Given a labelled training set, SVM computes an optimal classification boundary that max-

imises the width of the gap between the two categories [163; 164]. However, other decision

methods are used in the literature and will be further presented.

Furthermore, in a classification task the number and type of classes are also important aspects

to take into account. Regarding emotion recognition, as explained in Section 2.1.1, there are

discrete and dimensional models, resulting in discrete emotion classes (such as joy, anger, sadness)

or parametric classes (such as arousal, valence, dimension). In this way, this section will evaluate

different methods concerning both emotion models.

4.3.5.1 Discrete Emotion Classes

Although it is considered a rather limited mode of evaluating a person’s emotional state, there is a

lot of literature available using discrete emotion classes, since these simple models allow an easier

and more direct way of assessing specific and concrete emotions. Furthermore, in parallel with
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Emotion Recognition, there is also Stress Detection research using ECG, since stress is deeply

connected with HRV, which leads to the use of identical features and methods. In Table 4.4.1,

different studies are presented in this field [132; 139; 148]. Concerning [131], it tried to distinguish

between 3 levels of stress (Negative, Neutral and Positive) by using time-domain fiducial features

and both SVM and kNN classifiers. By investigating three different training and testing feature

vectors, the best results were obtained for HR, MRAmp and mRRI, with a maximum classification

accuracy of 61.7% for three classes and 69.6% for two. Another example is a pain intensity

recognition algorithm, developed in [145]. In this way, it can be understood that ECG can have

different applications concerning human physiological and psychological states.

However, concerning specifically the use of ECG to Emotion Recognition, in 2011, Guo et

al. [52] used ECG recordings conveying four types of emotions: joy, anger, sadness and pleasure,

collected while a subject was listening to music by the Augsburg University in Germany. After

extracting the maximum value and standard deviation of wavelet coefficients, both RBF and BP

neural network classifiers were used and compared. Although those are deep learning methods,

there was a previous feature extraction in order to enhance the network performance. In this way,

Guo was able to obtain 87.5% and 91.67% classification rates for BP and RBF neural networks,

respectively, concluding the superiority of the RBF method. Nonetheless, it is important to men-

tion that all the data used during this experiment belonged to a single subject, which could lead to a

high subject-dependency methodology, not performing well when other people may be concerned.

Later, in 2016, Guo et al. [138] decided to develop a machine learning methodology based on

2 and 5 discrete emotion states. By using PCA as the feature selection method and SVM for the

classification task, it was obtained a 71.4% accuracy for two classes and 56.9% for five classes.

This result not only indicates a higher precision by deep learning methods, further developed

and analysed in Section 4.4.2, but also the discrepancy between the accuracy obtained when the

number of classes was reduced. This result is expected, having into account that more classes

require a more powerful method, able of finer distinction between emotional states.

In [147], three different classification tasks were considered: valence (negative/positive),

arousal (high/low) and discrete emotion tagging. By considering a total of four emotions in the

last set mentioned, the classification rate was 61.52%, significantly low when compared with the

82.78% for valence and the 72.91% for arousal. Concerning the difference that exists between the

arousal and valence level detection, it can be related to the fact that some emotions present similar

levels of arousal while being completely different emotional states, which may be responsible for

poor learning and predicting levels. Finally, Kim et al. [91] also observed a similar result, by us-

ing 3 and 4 emotional states and obtaining 78% accuracy for the first and only 62% for the latter.

However, it is important to mention that, unlike the previous research [138], this system shows

a recognition ratio considerably higher than the chance probability (33.3% and 25% for 3 and 4

emotion categories) for both classes. One of the reasons for this is the fact that Kim et al. uses a

multimodal approach, which translates into a more complete data and the possibility of extracting

more efficient patterns between different modalities. Nonetheless, Kim et al. [91] considers a

signal division into segments, and further randomly splits them into train and test data, without
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considering more challenging data divisons.

As already mentioned, different factors play an important role in algorithm performance, from

the features extracted and the method of extraction to the classifier or the training and testing set-

tings. In [155], a total of 4 classifiers were applied, namely Regression Tree, Bayesian Classifier,

kNN and FkNN (Fuzzy k-Nearest Neighbours). Besides, this study also used two different meth-

ods of computing the Hurst parameter feature (HOS and traditional Hurst methods), as seen in

Section 4.3.3. As a result, Selvaraj et al. noted that the best results were obtained by using a com-

bination of FVS and HOS methods in a random setting with FkNN classifier (92.87%), followed

by kNN (87.72%). Random Tree obtained results similar to kNN, however Bayesian Classifier

performed poorly in almost all the classes and experiments (with varying features and settings),

indicating that the independent probabilistic assumptions done by the classifier were not a good fit

and do not suit the classification of emotional states.

Furthermore, the feature extraction methods used were also an important factor analysed in

this research. When compared with all the results obtained by isolating different methods, it can

be concluded that combining both non-linear analysis and HOS leads to finer emotional recogni-

tion. Finally, two different settings were considered: random and subject independent. As was

expected, the best result for the random setting (92.87%) was significantly higher than for the

subject independent, by achieving a maximum accuracy of 76.45%. This problem is present in

all emotion recognition research, and other classification problems, due to subject-dependent fac-

tors, already mentioned in Section 2.2.2 and continues to be one of the major challenges to be

mitigated in the AI field. In [153], a subject-independent emotion recognition system was devel-

oped, obtaining an accuracy of 52% for the recognition of 6 emotional states. Although better

classification rates could be achieved using subject-dependent settings, these systems are unable

to perform well with unseen data, which makes subject-independent approaches more reliable. In

addition, signal-independent settings should also be considered when using segments as inputs, so

as to understand if there is also signal dependency.

Another important aspect that can have an influence on the global performance achieved is the

emotion elicitation technique. In [129], different emotion elicitation methods were used and com-

pared, such as digital images, audio visual and audio stimuli. In ECG signals, it was understood

that the use of digital images produced the lowest emotion classification rate (60.34%), followed

by audio elicitation. On the other hand, the selected clips for the video and audio-video stimuli

were the most effective on evoking emotion, with an accuracy rate higher than 68%, using SVM

as the classifier. This research used a limited set of data, which can even lead to believe that, by

augmenting the ECG data, the accuracy rate can even increase.

Finally, although kNN and SVM were the most used classifiers, other research showed good

results by applying different decision methods. By defining only two discrete emotion states (joy

and sadness), [141] used a Fisher Classifier and obtained 88.43 % accuracy. The success found in

this research can be somehow associated with the high volume of data available and its variability,

since 391 subjects were part of the experiment. However, in [123], both kNN and LDA were used,

obtaining an average classification of 69.75% and 67.81%, respectively. Besides the difference
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concerning the features extracted, time-domain fiducial for the first, and frequency-domain non-

fiducial for the other, [123] used five different emotional states, which increases the recognition

difficulty, and only a 20 subject experiment was carried.

In [142], the comparison made was between three different feature selection methods

(ANOVA, SBS, SFS) and three classifiers (SVM, LDA, Fisher), reinforcing the knowledge that

these methods can influence the overall algorithm capacity to detect emotions. The best results

were obtained by combining SBS and SVM, for a classification rate of 88%. However, when

combining all feature selection methods with SVM classifier, an accuracy of 92% was achieved.

On the other hand, it was perceived that joy was always more easily (or equally) detected than

pleasure, which can have a variety of reasons, namely the type of features obtained.

Finally, comparing the type of features mentioned in Section 4.3, one cannot specify that

frequency or time-domain features are more accurate or prone to obtain better results, since the

performance is also dependent on all the other factors already mentioned.

4.3.5.2 Dimensional Emotion Classes

Although dimensional emotion models are still more recent than discrete emotion characterization,

there are already scientific studies that choose to describe an emotion as a continuous parameter, by

defining it through different emotion-related parameters such as valence and arousal. In [147], as

already mentioned in the previous section, both dimensional and discrete classes were considered,

using a LS-SVM classifier and obtaining considerably high accuracies for a 2-class valence (pos-

itive/negative) and arousal (low/high) (82.78% and 72.91%, respectively), when compared with

other methodologies such as [9], where 3 different binary classification schemes were defined for

arousal (low/high), valence (unpleasant/pleasant) and dominance (control/empowered) and obtain-

ing a mean average classification of 62% for the three parameters. However, these worse results

can be due to the small database used, with only 23 subjects and low levels of variability. Further-

more, a 10-fold cross-validation was used in order to validate the user-independent classification

performance, meaning that, the eighteen samples for each participant were randomly divided into

ten groups, using 1 group for testing and the others for training. This implies that train and test

sets consider signals from the same person, not having into account subject-independent settings.

Although the same signal is not in both train and test sets, there is no subject independence in these

data division scenarios. Nevertheless, DREAMER can be a good database to be used, since it also

considers the dominance metric, which can provide better emotion recognition performance, and

the small database problem can be reduced with some possible data augmentation techniques.

Soleymani et al. [15] considered three states of arousal (calm/medium/excited) and valence

(negative/neutral/positive), obtaining a classification rate of 46.2% and 45.50% by using ANOVA

as a feature selection method and SVM for the classification task. Nonetheless, when a feature

fusion was considered (EEG and Gaze), results improved more than 30%, indicating the potential

of a multimodal emotion recognition system.

However, features play an important role since they convey the information that may enable

to distinguish between different classes. These three pieces of research had into account typical
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and traditional features, concerning time-domain fiducial features based on specific ECG points

and frequency-domain such as spectral power in VLF, LF, HF and LF/HF, as well as total power.

However, other features less direct may also offer good results. In 2016, Ferdinando et al. [30]

proposed a new set of features not yet tried, based on the statistical distribution of dominant fre-

quencies, and using kNN to classify a 3-class problem in valence and arousal (low-medium-high).

In the research, Ferdinando compared the results with similar algorithms using features from stan-

dard Heart Rate Variability analysis. As a result, the accuracies for valence and arousal increased

13% and 12%, respectively by using the statistical distribution of dominant frequencies. Further-

more, the proposed features also showed better performance when compared with features based

on the statistical distribution of instantaneous frequency, calculated using Hilbert transform of

IMFs, after applying EMD and BEMD.

In 2017, Ferdinando et al. [154] focused on proving the importance of the feature selection

method, by using LDA, NCA and MCML in a set of features based on the statistical distribution

of dominant frequencies after applying BEMD. The combination of a feature selection method

(NCA presenting the best results) and a different feature extraction resulted in an improvement in

both arousal and valence detection. However, in both approaches, Ferdinando et al. considered

5-second ECG segments as inputs, randomly divided into train/test sets, which can lead to higher

results than when considering more realistic data splits.

Nonetheless, these approaches indicate that features should be suited to the purpose of the

research. Kim and André [95] tried to identify the significant features for each classification prob-

lem, investigating the class-relevant feature domain for a given emotion. For arousal, the feature

obtained from the time/frequency analysis of the HRV time series seems to be decisive, while fea-

tures from the MSE domain of ECG signals are fundamental for a correct valence detection. This

fact can put in perspective the results found in different researches that maybe didn’t adjust the

features to each metric. By taking into account the relevant features for each task, it was possible

to achieve an average recognition accuracy of 98% for arousal, 91% for valence and 87% for 4

emotion classes, using pLDA as the classifier.

In addition, Kim and Andre [95] also developed a EMDC scheme, testing it in subject-

dependent and subject-independent settings. For the first, a classification rate of 95% was

achieved, whereas for the subject-independent setting the accuracy was 70%. The authors be-

lieve that the main reason for this can be associated with the non-emotional individual contexts

of each subject, rather than possible ANS differences among emotions. By identifying the user

prior to starting the emotion recognition process, an accuracy of 99% was obtained, proving how

emotions are intrinsically associated with their subject and reinforcing the subject-dependency

problem for the development of robust and subject-independent recognition systems. On the other

hand, Goshvarpour et al. [26] were able to achieve satisfying results for both subject-independent

and subject-dependent settings. By using PCA and PNN, with a sigma of 0.01, a recognition rate

of 100% was achieved in all classification schemes. Although the overall results were still better

in subject-independent settings considering other schemes, [26] illustrated that it is possible to use

feature extraction and selection methods that enable high accuracy rates for unseen data.
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Furthermore, emotion elicitation is also relevant. For the first time in 2012, by using dimen-

sional models, Agrafioti et al. [23] differentiated between active and passive arousal experiments,

concluding that there are higher chances of ECG reactivity to emotion when the induction method

is active. This type of discoveries shows that it is possible to fit the method used to the character-

istics of the classes to be distinguished, which can potentially allow for more accurate and precise

hand-crafted methods.

Concerning the dimensional and discrete emotion classes, both allow obtaining good results,

as it was already reviewed. However, dimensional models will be able to evolve as the recognition

methods also evolve, allowing for the detection of more complex and similar emotions, and even

the overlapping of emotion in the same moment.

4.4 Deep Learning Methods

4.4.1 Introduction

Deep Learning is a subset of machine learning and consists of neural networks with the ability

to learn the input data and its increasingly abstract representations. In this way, there isn’t the

need for performing feature extraction since the network is able to detect and recognize the pat-

terns conveyed in the data as it goes deeper into the network. Deep learning normally outperforms

traditional machine learning, when it comes to large datasets, which adds a requirement to the

deep learning method. However, easy steps such as windowing and the extraction of overlapping

segments of the data, or even data augmentation can enlarge the dataset and ensure good perfor-

mance. However, on the other hand, deep learning is more computationally challenging, since

a large number of parameters is being trained. Nonetheless, it still presents itself as a ground-

breaking field, with highly promising results and possible applications to Emotion Recognition

systems.

There are different types of neural networks, such as Convolutional Neural Networks (CNNs),

Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), among others.

Convolutional Neural Networks are one of the most used and widespread deep neural network

models, consisting of a special class of feedforward neural networks, that eliminates manual fea-

ture extraction. A given input image or signal goes through a set of filters in the convolutional

layer, followed by a pooling layer. At each convolutional layer, feature maps are obtained through

successive convolutions between the input and the weight vectors (filters). Normally, in the end,

fully connected layers work as final learning phases, where the features are mapped into the pre-

dicted outputs. On the other hand, Recurrent Neural Networks are a type of architecture mainly

used to deal with sequential data, forming a unidirectional cycle between units. RNNs are able to

accumulate past information, since it includes "memory" [165]. With the development of RNN

models and the increase of complexity, some authors considered that RNN architectures were un-

able to identify and learn long-term dependencies in the sequence data. To overcome this problem,

a widely used type of RNN appeared, called Long Short-Term Memory Networks (LSTMs) [166].
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Table 4.2: Summary of the handcrafted methods used on the surveyed approaches (ordered by year and alphabetically by the surname of the first author).
Legend: V - Valence; A - Arousal; D - Dominance; L - Liking; Em - emotions.

Paper Year Database Subjects Modalities Emotion
Elicitation

Emotion Classes
(Dimensional/
Discrete)

Classes Classifier Results

Kim et al. [91] 2004 Private 50 ECG, SKT, EDA Audio, Visual,
Cognitive

Discrete 3
4

SVM 3 Em: 78.4%
4 Em: 61.8%

Kim and Andre [95] 2008 Private 3 ECG, EMG,
RSP, SC

Music Dimensional 4 EMDC 95%
70% (subj. independent)

Xu and Liu [141] 2009 Private 391 ECG Movie clips Discrete 2 Fisher 88.43%
Guo [52] 2011 Private

(Augsburg)
1 ECG Music Discrete 4 BP NN

RBF NN
87.5%
91.67%

Agrafioti et al. [23] 2012 Private 44 ECG IAPS (passive)
Video game
(active)

Dimensional 2 LDA 89%**

Bong et al. [131] 2012 Private 5 ECG Movie clips Discrete 3 kNN
SVM

61.65%
61%

Soleymani et al. [15] 2012 MAHNOB-HCI 27 ECG, GSR, RPS,
SC

videos, images Dimensional 3 SVM A: 46.20%
V: 45.50%

Murugappan et al. [123] 2013 Private 20 ECG Movie clips Discrete 5 LDA
kNN

67.81%
69.75%

Selvaraj et al. [155] 2013 Private 60 ECG Movie clips Discrete 6 Regression tree
Bayesian
kNN
FkNN

85.71%
65.82%
87.72%
92.87%

Xun and Zheng [142] 2013 Private
(Augsburg)

80 ECG Movie clips Discrete 2 SVM 92%

Valenza et al. [92] 2014 Private 60 EEG, ECG IAPS Dimensional 2 SVM A: 71.21%
V: 75%

M et al. [153] 2014 Private 30 ECG Movie clips Discrete 6 kNN
LDA

52% (kNN + DFT)

Godin et al. [12] 2015 DEAP
MAHNHOB-
HCI

32
27

GSR, ECG
PPG, RA, SKT,
EMG, EOG

short videos Dimensional 2 Naive Bayes varies with no. features
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Paper Year Database Subjects Modalities Emotion

Elicitation
Emotion Classes
(Dimensional/
Discrete)

Classes Classifier Results

Ménard et al. [151] 2015 Private 35 EEG, EMG,
ECG

visual, dynamic Dimensional 6 SVM 89.58%

Katsigiannis and Ramzan
[9]

2015 DREAMER 23 ECG video clips Dimensional 2 SVM (+ RBF
kernel)

A: 62.33%
V: 61.84%
D: 61.84%

Ferdinando et al. [30] 2016 MAHNOB-HCI 27 ECG video clips,
images

Dimensional 3 kNN A: 59.7%
V: 55.8%

Ping Gong [144] 2016 Private
(Augsburg)

1 ECG, EMG,
RSP, SC

Music Discrete 4 C4.5 Decision
Tree

95%

Guo et al. [138] 2016 Private 25 ECG video clips Discrete 2
5

SVM 2 Em: 71.4%
5 Em: 56.9%

Tivatansakul and Ohkura
[24]

2016 Private
(Augsburg)

1 ECG Music Discrete 3 LBP
LTP

84.17%
87.92%

Ferdinando et al. [154] 2017 MAHNOB-HCI 27 ECG video clips
images

Dimensional 3 kNN A: 66.1%
V: 64.1%

Gjoreski et al. [140] 2017 MAHNOB-HCI ,
DEAP,
DECAF,
ASCERTAIN
Cognitive Load
Driving Worload

181
(total)

ECG, BVP, PPG
(R-R)

video clips,
images

Dimensional 2 AdaBoosting
GB
RF
SVM

57%
58%
58.5%
65%
67%

Goshvarpour et al. [26] 2017 Private 11 ECG Music Discrete
Dimensional

5
3

PNN 100%

Hsu et al. [147] 2017 Private 61 ECG Music Discrete
Dimensional

2
4

LS-SVM A: 72.91%
V: 82.78%
4 Em: 61.52%

Miranda et al. [14] 2017 AMIGOS 40 ECG video-clips Dimensional 2 NB A: 55.1%*
V: 54.5%*

Minhad et al. [129] 2017 Private 19 ECG digital images
audio visual
audio

Discrete 5 SVM 60.34%
71.92%
68.36%

Sriramprakash et al. [139] 2017 SWELL-KW 25 ECG, GSR Different tasks
(for stress)

Dimensional 2 SVM (+ RBF
kernel)

92.75%
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Paper Year Database Subjects Modalities Emotion
Elicitation

Emotion Classes
(Dimensional/
Discrete)

Classes Classifier Results

Marín-Morales et al. [150] 2017 Private 60 ECG virtual
environments

Dimensional 2 SVM A: 75%
V: 71.21%

Wei et al. [146] 2018 MAHNOB-HCI 27 ECG videos, images Discrete 5 SVM 68.75%
Xiefeng et al. [157] 2019 Private 16 ECG IAPS, IADS Dimensional 4 SVM V dimension: 96.86%

A dimension: 88.54%
A-V synthesis: 81.25%

Hsu et al. [27] 2020 Private 61 ECG Music Dimensional 2
4

LS-SVM A: 72.91%
V: 82.78%
4 Em: 61.57%

*F1 Score **Best in V axis
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Based on the literature reviewed, it can be understood that ECG is less explored when com-

pared to EEG. However, some researches using ECG alone or in a multi-modal approach were

analysed. For these, different methodologies were applied mainly based on the architectures

previously mentioned (RNNs, CNNs), although other approaches were also found, such as self-

supervised methods.

4.4.2 Deep Learning Approaches

As previously mentioned, the absence of very large-scale datasets with physiological signals is a

limitation as far as deep learning applications are concerned. Such datasets are available consid-

ering other modalities such as face and audio, since they are more easily acquired. In this way,

different works used various databases publicly available to increase the amount of data. Concern-

ing [140], 7 different databases were used: AMIGOS, DEAP, DECAF, MAHNOB-HCI, Driving

Workload dataset, Cognitive Load Dataset and ASCERTAIN, both isolated and combined, in order

to obtain emotion recognition from R-R intervals. Besides, as seen in Section 4.3.5.2, classical

machine learning methods were also used and compared. For each database alone, the DNN pro-

posed in this research was able to outperform different ML classifiers, namely AdaBoost, GB,

RF and SVM. Furthermore, by a pre-processing where the 7 databases were merged into com-

mon spectro-temporal space, an overall accuracy of 75% was also obtained, which indicates the

superiority of deep learning methods in all experiments.

Furthermore, the same superiority was found in [167]. Santamaria-Granados et al., developed

an interesting method using the AMIGOS database by considering a convolutional neural network

for automatic feature extraction and fully connected network layers for emotion prediction. In

addition, other techniques were also applied, such as dropout, in order to reduce the probability of

overfitting. Finally, this study also compared results obtained with other classical ML algorithms

and methods, such as the one used by the authors of the database [14]. The DCNN applied was

able to achieve an accuracy and F1 score of 81% and 76%, respectively, for arousal and 71% and

68% for valence, overperforming all other methods concerned. In addition, this research used

the preprocessing of the peaks as the input vector for CNN, making possible the identification of

morphological features that showed to be suitable for emotion recognition. Nonetheless, the data

split chosen by Santamaria-Granados et al. was also not the most realistic and the reported results

correspond to random data splits, which may indicate that for more challenging settings, the model

performance would decrease.

Furthermore, still concerning the lack of sufficient data for well-performed deep learning

methods, [29] also used 4 databases (AMIGOS, DEAP, MAHNOB-HCI and DREAMER), in a

multimodal approach, considering ECG, EEG, GSR and face expressions. Initially, the signals

went through a simple pre-processing involving filtering and artifact removal, and after that, ELM

was used as the classifier. For facial and EEG modalities, LSTM was also applied in order to

learn temporal dynamics of the features extracted. Concerning the evaluating, each signal was

considered separately to classify emotion in 4 different metrics: valence, arousal, liking and emo-

tion categories. After that, the same metrics were evaluated in multimodal approaches, obtaining a
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mean accuracy of 79.09%, 79.03%, 79.70% and 55.43% for arousal, valence, liking and emotional

states, respectively, using combining EEG, ECG/PPG and GSR signals. Considering the improve-

ment in accuracy performance compared with single modalities, these results also translate the

power of multimodal approaches for emotion recognition.

On the other hand, another limitation considering the currently available databases has to do

with the labelling process, since sometimes there is a reduced amount of data annotated or the

process of labelling is not very trustworthy, as seen in Chapter 3. Self-supervised Learning is a

kind of unsupervised learning where the data provides its own supervision, which means that the

network uses automatically generated labels instead of human-annotated ones. By pre-training a

model on unlabelled data and then fine-tune it on a smaller labelled set, interesting results can

come to light. In [168] and [169], Sarkar et al. used self-supervised methods, obtaining positive

results. Concerning [168], the proposed architecture consists of a multi-task CNN trained with

automatically generated annotations. Then, the weights go to the emotion recognition network,

where fully connected layers do the classification task. This proposed method obtained an ac-

curacy of 84% and 85.8% for valence and arousal classification, respectively, in the AMIGOS

database. Concerning SWELL, even higher classification rates were obtained for stress, arousal

and valence classes. These results were compared with other ML and DL methods, such as the

ones already mentioned [167]. Furthermore, the method was also applied with full supervised

learning, obtaining lower results and proving the self-supervised potential.

Similarly, [169] also performed well in all of the four different databases used, obtaining

accuracies higher than 85% for all, when considering two or three arousal/valence classes. Fur-

thermore, the method distinguished between 9 levels of arousal and valence for AMIGOS and

SWELL, and 5 levels concerning DREAMER, obtaining average accuracies of 79%, 93% and

76%, respectively. However, as stated by the author, there are also some limitations concerning

this method, such as its poor performance for subject-independent settings, which [169] considers

it could be related to some need of more specific and hand-crafted features that can be subject-

invariant. In addition, 10-second segments are considered during the entire methodology, with

random 90%-10% train/test split, which indicates that the sets used are not signal-independent.

However, in order to combat the need for more specific features, there are some other ap-

proaches available. End-to-end learning is a deep learning process in which all of the parameters

are obtained and learned inside of the deep learning network. Common methods, either from

ML or even pre-processed data fed into a deep learning architecture, rely on hand-crafted fea-

tures that may not provide the performance necessary for real-life applications. With End-to-end

approaches, raw signals are directly fed into the network, that is able to learn an intermediate rep-

resentation of the raw input in a way that better suits the task [25]. This fact mitigates the need

for a high knowledge concerning the most specific and relevant features for each classification

problem.

Keren et al. developed the first study on End-to-End learning of emotion from physiological

signals, which proved to yield large improvements compared with hand-crafted methods on the

RECOLA database. In [93], both DREAMER and AMIGOS were used, achieving a peak accuracy
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of 90%. In this approach, the input IBI time series data segments are fed to 1D convolutional

layers and a bi-directional LSTM. Then, the output of both these streams is concatenated before

entering a final dense layer, where the prediction is made. Furthermore, a Bayesian framework

is used for modelling the uncertainty in valence predictions. These types of probabilistic neural

networks may have a high applicability in environments where confidence plays an important role

in decision-making, enhancing the value of such approaches.

Dar et al. [170] proposed a different approach, using a combination of LSTM and CNN archi-

tectures to improve the recognition of four emotional classes (HVHA, HVLA, LVHA and LVHA).

This approach presents an accuracy of 99.0% for AMIGOS database and 90.8% for DREAMER.

Furthermore, an average accuracy of 98.73% is achieved with ECG right-channel modality. On the

other hand, 1-second segments are considered in this approach, for both AMIGOS and DREAMER

databases, which are then randomly divided into 70% train and 30% test sets. Having this said,

Dar et al. [170] presents an interesting approach through the combination of CNN and LSTMs

networks. However, this model should also be tested under more realistic data splits so as to fully

analyse this methodology’s robustness.

In this way, having into account the state-of-the-art presented, deep learning proves to be an

innovative field with promising results for more accurate and automatic emotion recognition meth-

ods, that can someday be used in real-life contexts. However, for this to happen, some method-

ologies should be first analysed under more strict data divisions, since performance usually drops

in these cases. Furthermore, specific techniques can be then applied to improve the overall perfor-

mance for these realistic settings.

4.5 Summary and Conclusions

In this chapter, various studies on the state of the art have been analysed, allowing some con-

clusions to be drawn. Regarding the handcrafted methods, several approaches have already been

developed, showing that good results can be obtained by considering different features. However,

nonlinear features can be explored more as some studies have shown their promising applica-

tion. Similarly, it is shown that feature selection is a useful method by removing unnecessary or

irrelevant features and enabling high performance of the developed algorithms.

Hand-crafted methods are much more explored and present in the literature, and most re-

searchers have chosen to use discrete emotion classes. On the other hand, if we consider deep

learning approaches, dimensional metrics have always been the first option to describe and rec-

ognize different emotional states. Although deep-learning methods for emotion recognition using

physiological signals have not yet been widely explored, existing studies have yielded promising

results that illustrate the potential of these powerful methods to lead to increasingly automatic

ways of emotion recognition. Nonetheless, most of these approaches consider more flexible and

random data division scenarios, which can emphasize some performances, obtaining higher re-

sults than it would be obtained if signal and subject independence were ensured. However, as
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Table 4.3: Summary of the deep learning methods used on the surveyed approaches (ordered by year and alphabetically by the surname of the first
author). Legend: V - Valence; A - Arousal; D - Dominance; L - Liking; Em - emotions.

Paper Year Database Subjects Modalities Emotion
Elicitation

Emotion Classes
(Dimensional/Discrete)

Classes Classifier Results

Chao et al. [171] 2015 RECOLA 46 ECG, speech,
face, EDA

video clips Dimensional 2 LSTMs-RNNs A:71.6 %*
V:61.8&*

Kächele et al. [172] 2015 RECOLA 46 ECG video clips Dimensional 2 CCC-NN + RF A: 0.546**
V: 0.479**

Chen and Jin [173] 2015 RECOLA 46 ECG video clips Dimensional 2 RNNs-BLSTMs A:73.9%*
V:56.7%*

Gjoreski et al. [140] 2017 MAHNOB-HCI ,
DEAP,
DECAF,
ASCERTAIN
Cognitive Load
Driving
Workload

181
(total)

ECG, BVP, PPG
(R-R)

video clips,
images

Dimensional 2 fully connected
DNN

75%

Keren et al. [25] 2017 RECOLA 46 ECG, HR, EDA,
SCL, SCR

video clips Dimensional 2 CNNs + RNNs A: 0.430**
V:0.407**

Lin et al. [174] 2019 WESAD 15 ECG, EDA,
EMG, RESP,
SKT chest, ACC,
BVP

different tasks Discrete 3 MMSF (RF) 85%

Yin et al. [54] 2017 DEAP 32 EEG,
physiological
signals, Face

music video Dimensional 2 MESAE A: 77.19
V:76.17

Gjoreski [175] 2018 ASCERTAIN
DEAP
Driving
Workload
Cognitive Load
MAHNOB-HCI
AMIGOS

191 GSR, ECG, BVP video clips,
images

Dimensional 2 DNN 70.3%

Kawde and Verma [176] 2018 DEAP 32 EEG,
physiological
signals, Face

music video Dimensional 2 SAE + DNN A: 73.08%
V:78.84%
D: 65.38%



62
PriorA

rt
Paper Year Database Subjects Modalities Emotion

Elicitation
Emotion Classes
(Dimensional/Discrete)

Classes Classifier Results

Siddharth et al. [177] 2018 AMIGOS 40 ECG video clips Dimensional 2
4
8

ELM A: 57.94
V: 58.73%
D: 55.56%
L: 69.05%
4 Em: 28.57%
8 Em: 28.57%

Santamaria-Granados
et al. [167]

2019 AMIGOS 40 ECG, GSR video clips Dimensional 2 DNN-FCN A: 81%
V: 71%

Siddharth et al. [29] 2019 AMIGOS
DEAP
MAHNOB-HCI
DREAMER

40
32
27
23

EEG, ECG, GSR video clips Dimensional undefined LSTMs A: 79.09
V: 79.3%
L: 79.70
Em: 55.43%

Dar et al. [170] 2020 AMIGOS
DREAMER

40
23

ECG, EEG, GSR video clips Dimensional 4 CNN-LSTM 99.0%
90.8%

Harper and Southern [93] 2020 AMIGOS
DREAMER

40
23

IBI video clips Dimensional 2 CNN + LSTM +
Bayes

90%
86%

Chao et al. [178] 2020 AMIGOS 40 EEG, ECG, GSR video clips Dimensional 2 BLSTM +
Attention + DNN

67.8%

Sarkar and Etemad [168] 2020 SWELL
AMIGOS

25
40

ECG video clips Dimensional 2 Self-Supervised
CNN

96.15%***
84.9%***

Sarkar and Etemad [169] 2020 AMIGOS
DREAMER
WESAD
SWELL

40
23
15
25

ECG video clips Dimensional 2
2
3
2

Self-Supervised
CNN

88.2%***
85.45%***
96.6%***
95.77%***

Oh et al. [179] 2020 Private 53 HRV, RSP video clips Discrete 6 CNN 94.02%

*F1 Score **CCC
***A, V mean
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mentioned, some approaches also evaluated their methodologies in these settings, showing con-

siderable performance decrease, as seen in [155].

Having this said, this dissertation pretends to focus on the development of deep learning archi-

tectures, building robust networks that can handle noisy signals and still recognize all the important

patterns for the task at hand. For this, it is possible to use different deep learning architectures,

such as RNNs so as to highlight the temporal information conveyed in the ECG signal, which

can be useful for emotion recognition. Furthermore, although deep learning has shown promising

results that outperform hand-crafted methods, it becomes important to understand if the literature

reported results are as promising when realistic data divisions are concerned and what is the true

impact of applying these settings to a model that can achieve high performances for random data

splits. In conclusion, this dissertation will focus on the development of a robust and accurate deep

learning architecture, analysing its performance for increasingly realistic data splits.





Chapter 5

Comprehensive Comparison of Prior
Art Approaches

5.1 Introduction

After analysing the most common methods applied for emotion recognition using ECG signals

in Chapter 4, the initial work developed focused on replicating some of those methods. As

mentioned, this dissertation main goal is to develop a deep learning architecture able to obtain

high emotion recognition performances by considering dimensional classes, namely valence and

arousal. In this way, having the already available techniques presented in the literature in consid-

eration, it is possible to use them as a basis to build the following work.

In addition, motivated by the limitations already mentioned throughout this dissertation, es-

pecially in Chapter 4, which consist of the recurrent use of signal segments and random splits of

train and test sets, using exclusively these setups for model evaluation, a more thorough analysis

should be done, considering other settings to assess model performance concerning more strict

and realistic scenarios.

Furthermore, besides replicating some approaches, some possible alterations were taken into

account, which will also be described in this chapter. Taking into account the promising results

obtained when considering temporal information or other forms of aggregation, techniques such

as LSTMs and MLPs were also explored, based on some literature methodologies.

5.2 Methodologies

5.2.1 Santamaria-Granados et al.’s Deep Convolutional Neural Network

In addition to the overview of the fundamentals and prior art methods on emotion recognition, sev-

eral preliminary tasks were also conducted, allowing us to get acquainted with Pytorch working

mode, the available databases, and some possible techniques and approaches for emotion recogni-

tion.

65
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In this way, the first replicated approach was developed by Santamaria-Granados et al. [167].

It consisted of a simple neural network with a convolutional and fully-connected layers so as to

recognize the levels of arousal and valence.

5.2.1.1 Methodology

Although this first approach had into account an already developed technique, there were some

differences regarding the methods used. First, Santamaria-Granados et al. [167] considered both

the ECG and the GSR signals, while in this work only the ECG signal was used. Furthermore,

some initial preprocessing was also applied in the published work, whereas in this methodology

the signal was only normalized before being fed to the deep learning network.

Furthermore, while Santamaria-Granados et al. [167] used 2-minute ECG segments as input,

in this initial replication smaller segments were considered, since 2 minutes is an extended period

of time in which more than one emotion could be felt, which would hinder the emotion recogni-

tion task. In addition, all the recordings in MAHNOB-HCI contain 30 seconds before and after

the emotion elicitation. Thus, the first 30 seconds of each ECG signal were discarded. On the

other hand, concerning the final 30 seconds, with the end of emotion elicitation, the emotional

state can still be felt and prolonged, so this segment was considered. In Santamaria-Granados et

al., the database used was AMIGOS, which explains why this procedure was not considered. It

is important to mention that the database used was not the same since it was not already available

when this methodology was replicated. Furthermore, as the first network developed, some varia-

tions were tried, in order to test and to understand what could work better in emotion recognition

considering further and future implementations. Since these were the first experiments tested, dif-

ferent experiments were conducted and analysed, to find the most appropriate kind of setups for

emotion recognition tasks.

After the normalization, the DCNN proposed by Santamaria-Granados et al. [167] involved a

sequence of Convolutional Neural Network (CNN) layers and pooling layers, used to extract the

relevant features of the ECG signal automatically. The output of this sequence is then fed to a total

of 3 fully connected layers (FCN), to predict the affective state, as presented in Figure 5.1.

As already mentioned, different experiments were conducted, considering variations in the

number of classes for both valence and arousal, as well as the train and test settings. In the follow-

ing sections, each experiment is described, and the results are further presented and discussed.

5.2.1.2 Experimental Settings

A variety of experiments was conducted, and they can be distinguished by the ECG segment size

considered, the presence or absence of overlap, the number of classes for arousal and valence

recognition, and the training and testing sets considered. Furthermore, other alterations were also

applied, to determine how they may influence the final classification, such as the optimizer and

loss function used.
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Figure 5.1: Scheme of the deep Learning architecture implemented for emotion recognition.

Experiment 1 - Impact of Model’s Complexity and 30-second Segment Overlapping

In the first experiment, the size of the filters used in the CNN layers was 5, while the number

of filters differed in each layer. The first experiment used 16, 16, 32 and 32 filters in each one

of the 4 CNN layers. Considering the FCN, 3 layers were firstly applied, considering 150, 100

and 50 neurons, respectively. As a regularization technique to decrease the overfitting, a dropout

of 0.5 was added in the fully connected layers. Furthermore, during the supervised training, a

Cross-Entropy loss was minimized with the Root Mean Square Propagation (RMSProp) optimizer

and the initial learning rate was set to 0.001. The cross-entropy loss function was obtained by

considering an individual loss for each task (arousal and valence classification) and then computing

the sum between them.

Finally, an 80%-20% division was done for the training and testing sets, and a 90%-10% for

the training and validation sets. It was done a division by videos, i. e., this first setting guaranteed

that the videos present in the training set were not in the testing set.

Using 30-second segments with no overlap and 9 classes for both arousal and valence, it was

obtained a high level of overfitting, presented in Section 5.3.1.1. Due to these unsatisfactory

results, we tried to decrease the model’s complexity by reducing the number of filters in the CNN

layers and the number of FCNs layers. Furthermore, dropout was also increased to 0.8. However,

all these changes didn’t lead to the results expected.

In this way, in order to increase the amount of data, 30-second segments with 15 seconds of

overlap were used, which doubled the number of segments available. However, the results re-

mained unsatisfactory and 5-second overlaps were then considered. Furthermore, other changes

were also applied to this last approach, such as batch normalization, Adam optimizer instead
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of RMSProp, and two separate loss functions for arousal and valence, allowing to define dis-

tinguished class weights, to avoid imbalanced classes. In addition, the ReduceLROnPlateau()

function from PyTorch was also applied, to reduce the learning rate if the model didn’t show any

improvement after a given number of epochs.

Experiment 2 - Impact of the decrease in the number of classes and segments sizes

For the 2nd experiment, the classes considered for each task were reduced from 9 to 3 and 2.

Since the ECG signals in MAHNOB-HCI were labelled from 1 (low) to 9 (high), both valence and

arousal were evaluated as negative (1,2,3), neutral (4,5,6) or positive (7,8,9) for the 3-class prob-

lem, and as negative (1,2,3,4) or positive (5,6,7,8,9), for the binary classification. This approach

was conducted using 3 different segment sizes: 30, 15, and 10 seconds, in order to study the effect

of the input segment size.

Furthermore, the changes regarding the loss function and optimizer were also applied as well

as a 5-second overlap for each one of the 3-sized segments. Each CNN layer was composed of 16

filters of size 5, and only 1 FCN layer was applied, receiving the CNN output and predicting the

affective states.

In this experiment, 2 different settings were considered. The first was equal to the one used

in Experiment 1, dividing the sets in videos, while the second considered a subject-independent

approach, by forming a test set with "unseen" subjects. This division was applied to identify a

possible subject-dependency problem and evaluate the differences in performance between the

two settings.

Experiment 3 - Impact of random data division and no overlapping

Finally, the last experiment was closer to the method developed in [167], by considering a random

90%-10% train-test and train-validation split. However, besides this random setting, a 2nd setting

was also used, considering a subject-independent division. In this way, 10-second ECG segments

were extracted from each recording, without any overlap between segments, and the model’s spec-

ifications concerning the CNN and FCN layers were kept the same. Finally, also two different tasks

were considered for both valence and arousal, consisting of three-class and two-class problems,

and the results are further analysed in 5.3.1.3.

5.2.2 Dar et al.’s CNN and LSTM-Based Emotion Charting

Considering the unsatisfactory results obtained with the replication of the work of Santamaria-

Granados et al., it became logical to consider different architectures that could be able to perform

better in recognizing emotions.

Having this said, Dar et al. [170] developed an interesting technique by combining CNNs

and LSTMs in order to recognize emotions. Different physiological signals were used, namely

ECG, EEG and GSR. Since all of them are continuous-time signals with high memory content,

LSTMs present themselves as promising neural networks, able to exploit relevant features. LSTMs
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have the power of selectively remembering patterns for a long time, which becomes interesting to

extract important features from physiological signals.

Dar et al. [170] exploited both multi and unimodal approaches, by considering the signals

individually and combined. During this replication, the only signal used and compared was the

electrocardiogram.

The proposed algorithm consists of three main steps: pre-processing, classification and multi-

modal fusion, which was not tested, as already mentioned. Before entering the neural network,

all physiological signals needed to be pre-processed. Since EEG is significantly different from

the other peripherical signals and was not used, only the processes applied to the ECG signal are

further described and analysed.

The pre-process applied to the data is divided into basic and specific pre-process techniques.

First, all signals are downsampled, loss-pass filtered and segmented into 1-second segments. After

that, considering the specific pre-processing, the baseline is removed from all of these segments,

and, finally, a z-score normalisation is applied.

5.2.2.1 Datasets Preparation and Pre-processing

The method presented in [170] uses two publicly available datasets, already described in Chapter

3: DREAMER and AMIGOS. The AMIGOS dataset presents both raw and pre-processed data.

The pre-processed one is firstly downsampled from 256Hz to 128Hz and subsequently filtered with

a loss-pass filter of 60Hz, in order to remove the high-frequency noise components. In this way, the

approach uses the already pre-processed data of AMIGOS, and applies the same pre-processing

steps to the DREAMER dataset, which only offers raw ECG data.

According to Dar et al. [170], DREAMER presents signals with high length variation, since

it uses recordings with significant duration differences. Thus, the authors consider that there are

some trials much larger in length to be significant for specific emotions. For that reason, consid-

ering this dataset, only the last 60 seconds of each trial are used, unlike AMIGOS where the total

number of instances is exploited. Having this said, after filtering the ECG signal and considering

only 64 seconds of each trial, 2 seconds from the start and the end of the signal are removed to

counter the effect of the filter at the edges, and thus obtaining 60 seconds in total (7680 samples).

Since DREAMER has data from 23 different subjects while watching 18 different videos and col-

lecting 2 ECG channels, the total size of ECG data after this basic pre-processing is given by 7680

x 23 x 18 x 2.

After the basic pre-processing, there is the need to remove the baseline. Both DREAMER and

AMIGOS datasets have baseline signals, where there is no emotional stimulus provided. In this

way, it works as a subject-specific emotional ground-truth, since each person presents a different

resting emotional state. Thus, removing this neutral baseline activity from all ECG signals is a

specific pre-processing step that can have benefits for emotion recognition.

AMIGOS has a 5-second baseline segment, recorded at the beginning of each trial, while

DREAMER has an independent baseline recording of 57 seconds before each experiment. For
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this purpose, each baseline signal was divided into 1-second segments, followed by the mean

computation of all the segments in order to obtain the mean baseline activity of each signal.

meanBL =
1
S
(

S

∑
s=1

BLs) (5.1)

The 60-second signals obtained by the basic pre-processing are then divided into 60 segments

of 1 second each. After that, each segment of emotional activity is subtracted from their corre-

sponding mean segment of baseline activity, so as to remove the neutral emotional effect.

blrSigs = Sigs −meanBL (5.2)

For the DREAMER dataset, the baseline was computed from the mean of the 57 segments of

baseline activity. Finally, the last pre-processing step was to normalize the ECG signal using Z-

score normalization. Figure 5.2 present a given ECG segment after its basic pre-processing steps,

as well as 5 different baseline segments, its removal and, finally, the Z-score normalization of the

baseline removed signal. Normalization allows signals do be converted to a common scale, by

having a unity standard deviation and zero mean.

(a) Basic pre-processing (b) Baseline segmentation and mean

(c) Baseline removal (d) User-specific normalization

Figure 5.2: Pre-processing ECG steps for data preparation, starting with basic pre-processing
5.2a, baseline mean computation 5.2b, its subtraction to the ECG signal 5.2c and user-specific
normalization 5.2d.

Furthermore, contrary to most of the affective computing literature based on physiological

signals, which classify valence (high/low) and arousal (high/low) as separate binary classification

tasks, the approach defined four classes of emotions, having into account the levels of arousal and
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valence combined: High Valence High Arousal (HVHA), High Valence Low Arousal (HVLA),

Low Valence High Arousal (LVHA) and Low Valence Low Arousal (LVLA). Since AMIGOS and

DREAMER present a different number of classes, they used different thresholds to distinguish

from high and low levels. For AMIGOS, which has nine classes, low valence and low arousal

consisted of labels equal to 5 or lower, while above 5 it is considered to be a high level of valence

or arousal. Considering DREAMER and its five classes, low levels of arousal or valence consisted

of labels equal or inferior to 3, while high levels corresponded to 4 or 5 annotations.

5.2.2.2 DNN Architecture

The architecture developed by Dar et al. [170] focuses upon the combination of LSTM and 1D con-

volutional layers, since LSTM is expected to fully exploit all the potential of time-series data. Fig-

ure 5.3 presents the architecture considered, where one-second signals are captured as sequences,

and go through two 1D-convolutional layers, followed by ReLU activation and max-pooling lay-

ers, in order to extract temporal features from the time-series data. The first convolutional layer

contains 16 filters, with a kernel size of 3 and the second has 32 filters of the same size. Concern-

ing the max-pooling layers, it presents a size of 2 with a stride of 1. Then, these extracted features

are flattened for the LSTM layer, with 128 hidden nodes. This layer learns the dependence be-

tween extracted temporal features that, afterwards, go through three dense layers, which provide

the learning of prediction probabilities from extracted features. The first dense layer contains 256

hidden nodes, followed by 128 and 4, in the last one. Between each fully-connected layer, a

dropout of 50% is applied, discarding 50% of random features and avoiding overfitting. Finally,

a softmax layer is applied for the classification of HVHA, HVLA, LVHA and LVLA classes of

emotion.

Figure 5.3: Deep neural network (1D-CNN + LSTM) design

Experimental Setup

Furthermore, in order to obtain the results, pre-processed data is then randomly split into 70%

training data and 30% test data. The training parameters used by Dar et al. [170] were also
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considered, such as a minimum batch size of 240, an initial learning rate of 0.001 with ADAM

optimizer and a gradient squared decay factor of 0.99. However, different parameters of this

approach were not available, such as the number of segments to consider for the LSTM layer.

Since Dar et al. [170] refers that only the last 60 seconds of each signal from DREAMER database

is used, in the replication it was considered 60 segments of 1-second at each time in the network.

Thus, after pre-processed as 1-second signals, they were reset as 60-second signals again, received

by the network and finally divided into 60 1-second segments before entering the convolutional

layers. In the LSTM layer, all these segments belonging to the same signal were then aggregated.

For this reason, the batch size used was 4, since each signal corresponded to 60 segments (60x4 =

240). Furthermore, other parameters remained not defined by Dar et al. [170], such as the padding

used in each layer. All these factors make it more difficult to replicate a given approach, which

can result in a discrepancy of results.

5.2.3 Sarkar and Etemad’s Self-supervised ECG Representation Learning for
Emotion Recognition

After the previously described methods were replicated, the idea was to focus on a different paper,

with promising and reliable results, a distinctive methodology and a clear presentation of the data

used, its processing, and all the relevant training parameters, such as batch size and learning rate,

but also the number, size and stride of each layer. Thus, the choice was to replicate the approach

used by Sarkar and Etemad [169].

As already analysed in Chapter 4, the majority of machine and deep learning techniques for

ECG-based emotion recognition use fully-supervised learning methods, which means that the

model is trained from scratch for every classification task. Furthermore, these models are often

extremely specific for the task at hands, which leads them not to generalize well for other possible

tasks. In addition, fully-supervised learning requires large datasets, with human-annotated labels,

since small datasets often results in poor model performances with deep learning networks. [169].

In order to tackle all these problems, Sarkar and Etemad [169] present a self-supervised learn-

ing approach, inspired by the success obtained using multi-task self-supervised learning in other

fields [180].

In self-supervised learning, the network is trained using automatically generated labels instead

of human-annotated ones, resulting in more generalized features than task-specific ones. Because

of this, this kind of models can then be reused for other tasks, improving the performance and

decreasing the computation time, compared to fully supervised learning. Finnally, since labels

are automatically generated, it is possible to use smaller datasets and also obtaining good results,

since this approach will work as a type of data-augmentation. Different techniques can be used

to obtain these automatic labels. For example, in [181], high-level spatiotemporal features were

learned from unlabelled videos and the network was trained using rotated video clips to predict

rotation. After that, the trained model was fine-tuned on the action recognition datasets [169].

Their research improved more than 15% compared to the fully-supervised approach. Furthermore,

both [180; 182] also present self-supervised learning methodologies, obtaining promising results,
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which points out the advantages of using self-supervised learning in other domains. Sarkar and

Etemad [169] were the first to apply and propose its use for ECG representation learning, first in

[168] and then further improved with some adjustments and alterations in [169].

Sarkar and Etemad [169] implemented the proposed architecture using Tensorflow, and shared

the implementation in Gitlab [183], which provides a high level of confidence and helps in the

replication to Pytorch, in this thesis. In the next subsections, the methodology will be described,

presenting the main differences between the replication and the actual approach.

The proposed methodology can be divided into two stages of learning: first, learning ECG

representations and, finally, using the previously trained network, capable of extracting ECG rep-

resentations, to learn another network to recognize emotions. Thus, two sets of tasks were defined,

referred to as Tp and Td , where Tp represents the set of signal transformation recognition tasks

and Td learns to recognize emotions. Tp learns robust and generalized features from unlabelled

ECG through recognition of signal transformations. After that, in the second phase, the original

ECG signal and the human-annotated emotion labels are used, and Td is learned. In this final

stage, the network uses the frozen convolution layers of the self-supervised network in order to

learn emotional classes upon supervised learning of the fully-connected layers at the end of the

network [168].

Figure 5.4 presents an overview of the proposed and replicated self-supervised solution. This

approach uses four publicly available datasets for the self-supervised learning: AMIGOS [14],

DREAMER [9], WESAD [120] and SWELL [18]. By combining 4 different datasets, Sarkar and

Etemad [169] use a high amount of data, which results in good performances of both the self-

supervised learning and the emotion recognition tasks. However, during this replication, there

were only used DREAMER and AMIGOS, since the quality of the self-supervised learning does

not sharply decrease by using fewer datasets since the amount of data is already considerably high.

In the following subsections, the method’s architecture is further described, presenting the

details of each learning stage and the hyperparameters considered in the network.

Figure 5.4: Overview of of the proposed framework for self-supervised emotion recognition, from
[169]

5.2.3.1 Self-Supervised Learning

Sarkar and Etemad [169] propose a self-supervised deep multi-task CNN, that should be able to

recognize different signal transformations applied to the original ECG. Six transformations are
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applied to the input signal, resulting in seven different recognition tasks, including the original

signal recognition.

Transformation Dataset

Sarkar and Etemad [169] used each of the four already mentioned datasets individually to per-

form the self-supervised task, and then combined them all. However, during the replication, only

DREAMER and AMIGOS were used for the signal transformation recognition, which consisted

of the optimization of convolutional weights for the emotion recognition network.

Nonetheless, it is important to mention that, since the code is available in [183], it was possible

to extract features from the frozen convolutional layers directly. Thus, during this replication,

both methodologies (using the extracted features directly into the emotion recognition network

and replicate the entire process, including the self-learning tasks) were applied and their results

shall be presented and discussed, afterwards.

In this way, there is the need to create a dataset composed by original signals and their trans-

formations for the self-supervised task. These six transformations are noise addition, scaling,

negation, temporal inversion, permutation and time-warping:

• Noise addition: Random noise from a Gaussian distribution, N(t), is added to the original

signal. N(t) has mean 0 and the standard deviation of
√

ENavg , where ENavg is the average

power of N(t). The noise-added signal is generated as S(t) + N(t) and the noise amount

used was fixed at 15;

• Scaling: The original magnitude of the signal is altered through the multiplication of an

integer, β . This scaling factor is manually assigned and value 1.1 was used in the self-

supervised learning tasks;

• Negation: The amplitude of the ECG signal is multiplied by −1, which causes a spatial

inversion of the time-series data amplitude;

• Temporal Inversion: The original ECG is a temporal signal, where t = 1,2, ...,N, and N

is the length of the signal. Temporal Inversion consists of inverting the time-series data,

obtaining a signal where t = N,N −1, ...,1;

• Permutation: The ECG signal is divided into m segments and shuffled, which alters the

temporal location of each segment. The value of m was set to 20;

• Time-warping: Randomly selected segments of the ECG signal are stretched or squeezed,

along the time axis. For the self-learning task, it was used 9 time-warping segments, a

stretching factor of 1.05 and a squeeze factor of 1/1.05.

Each of these transformations is applied to the original signals, as seen in Figure 5.5, and each

one has a specific purpose. For example, permutation creates signal discontinuities by altering the

natural order of the segments. The model becomes capable of ignoring this kind of discontinuities,
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(a) Original

(b) Gaussian Noise (c) Scaling

(d) Negation (e) Temporal Inversion

(f) Permutation (g) Time Warping

Figure 5.5: Signal Transformation for Self-Supervised Learning with six different signal trans-
formations.
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becoming more robust. On the other hand, negation, for example, inverts the signal waves, while

gaussian noise uses the addition of high-frequency noise. All of these transformations that could

difficult the signal analysis are learnt by the model, which is then able to ignore these types of

noise and alterations, focusing on the important patterns of the ECG signal. The outcome is then

stacked, resulting in the input matrix X , while the labels are 0,1,....6, according to the transforma-

tion applied, and being 0 the original and unchanged ECG data. Data and labels are then shuffled

and re-ordered in a random way.

Self-Supervised Learning Architecture

The proposed network for the ECG representations learning, using the created dataset described

in 5.2.3.1, consists of 3 convolutional blocks (conv-blocks) and 7 task-specific layers (one for

each transformation, encompassing the original signal), composed of 2 dense layers. The conv-

blocks are formed by 2 1D convolution layers, followed by a ReLU activation function and a

max-pooling layer of size 8. The number of filters used in these 3 conv-blocks increase from 32

to 64 and, finally, 128. In turn, the kernel size decreases from 32 to 16 and 8, respectively. After

the 3 convolutional blocks, a global max-pooling is applied.

Before the fully connected layers, the extracted features are flattened and then fed to 2 fully

connected layers with 128 hidden nodes and ReLU activation functions, each. Furthermore, a

dropout of 60% is also used, in order to prevent overfitting.

Finally, the output of each one of the 7 task-specific layers goes through a sigmoid layer, since

it is a binary classification (is or not transformed with transformation x). Table 5.1 presents the

general architecture structure and the hyperparameters already mentioned.

During the model training, it was used 10-fold cross-validation and a random division of

90%-10% of the data into training and testing sets, respectively. However, in replication, cross-

validation was not applied. Furthermore, ADAM optimizer was used with a learning rate of 0.001

and a batch size of 128. This network was trained for 100 epochs.

Table 5.1: Signal transformation recognition network architecture and hyperparameters, from
Sarkar and Etemad [169].
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5.2.3.2 Emotion Recognition

Considering the second stage of learning (Td), the model uses the original ECG signals and the

emotion labels yi for the classification. The weights of the convolutional blocks obtained in the

self-supervised learning task optimization are frozen and used in this emotion recognition network,

since the latter contains convolutional layers similar to those used in the network for learning ECG

representation.

Data Pre-processing

Since Sarkar and Etemad [169] make use of four different datasets, which were collected in dif-

ferent environments and using different hardware, there was the need to minimize the effects of

these variations, which was done through the use of three pre-processing steps. Firstly, SWELL

and WESAD were downsampled to 256Hz, which, in this replication was not done. After that,

the baseline wander was removed from all the datasets, by applying a high-pass IIR filter, with a

pass-band frequency of 0.8Hz. Finally, it was performed a user-specific z-score normalization.

After the preprocessing is done, every signal is segmented into 10 seconds and stacked into

an array. This segmentation step has no overlap, so as to avoid potential leakage of equal small

segments of data between the training and testing sets.

Emotion Recognition Architecture

The proposed network for emotion classification is also made of 3 convolutional blocks, like the

self-supervised learning network. Following the conv-blocks, there are fully connected layers

with 512 hidden nodes. The weights of the shared convolutional layers of the signal transforma-

tion recognition network are frozen and then transferred to the emotion recognition network. On

the other hand, the fully connected layers are not received from the transformation recognition

network and, thus, are trained in a fully supervised manner, using the labelled dataset, shown in

Figure 5.6.

In this way, these fully-connected layers are fine-tuned according to the dataset used. Sarkar

and Etemad [169], used three dense layers for SWELL and WESAD, while 4 dense layers with

L2 regularization (0.001) were applied for AMIGOS and DREAMER. Furthermore, concerning

DREAMER, a dropout of 20% was used while in AMIGOS the dropout rate was 40%. For the

emotion recognition task, only DREAMER dataset was considered during the replication. The

final output was then taken from a sigmoid (binary classification) or softmax (multi-class classifi-

cation) layer, having into account the number of classes considered.

Finally, similar to the signal transformation recognition network, it was also used a 10-fold

cross-validation and a 90%-10% division of data in training and testing sets. Furthermore, Adam

optimizer was used, with a learning rate of 0.001 and the same batch size of 128. The emotion

recognition network was trained for 200 epochs, when using the frozen convolutional layers. In

addition, it was also tested fully-supervised learning, without transferring the weights from the
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Figure 5.6: Self-supervised Learning Architecture, from [169]. First, a multi-task CNN is trained
using automatically generated labels to learn ECG representations. The optimized weights are
then transferred to the emotion recognition network, where the fully connected layers are trained.

self-supervised learning task, in which the network was trained for 250 epochs. However, in this

replication, fully supervised was only tested to confirm if the methodology was being correctly

implemented and its results will not be further analysed.

5.3 Results

5.3.1 Santamaria-Granados et al.’s Deep Convolutional Neural Network

5.3.1.1 Experiment 1 - Impact of Model’s Complexity and 30-second Segment Overlapping

As already mentioned in the experimental settings, the first experiment conducted did not have

satisfactory results, obtaining a training accuracy of 98.58% and 98.21% for arousal and valence,

respectively, and only a testing accuracy of 8.05% and 17.98%, as presented in Table 5.2. This

considerable overfit could be due to the model complexity, since four different convolution layers

with a high number of filters were used, in addition to the 3 FCN layers, also with a great number

of neurons. For this reason, the alterations described in Section 5.2.1.2 were performed, in order

to decrease this complexity. However, occasional changes in the dropout value or the number of

layers did not improve the results, still obtaining similar accuracies.

On the other hand, other changes were done, applying batch normalization, using Adam Op-

timizer and considering two separate Loss Functions. With these alterations and 30-second seg-

ments with 5-second overlaps, an accuracy of 41.59% and 36.82% for arousal and valence, respec-

tively, was obtained, indicating that the model may need more data to adequately learn the task

and avoid overfitting.
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Table 5.2: Classification rates (%) for the first approach of Experiment 1

Valence Arousal

No Overlap
train 98.21 98.58
valid 12.42 11.81
test 17.98 8.05

Overlap 5sec
train 71.99 70.09
valid 54.42 53.79
test 36.82 41.59

5.3.1.2 Experiment 2 - Impact of the decrease in number of classes and segments sizes

By reducing the number of classes from nine to three or two, it was expected that results could

be improved. However, that improvement was not verified for any of the settings considered, as

presented in Table 5.3 and Table 5.4.

Using 30-second segments, for the first setting, a classification rate of 41.59% and 36.82% for

arousal and valence was obtained for the 3-class problem. Considering 2 classes, an accuracy of

55.43% for arousal and 46.58% for valence was achieved. These results are only slightly above

random guess results (33.3% and 50% for 3 and 2 emotion categories, respectively), which proves

that the model is not recognizing the relevant ECG patterns and learning to distinguish between

emotions.

It was expected that the results would be worse for the second setting due to the subject-

independent division. For three classes, it was obtained a classification rate of 37.89% for arousal

and 32.88% for valence, whereas in the two-class task, accuracies of 62.22% and 52.70% were

achieved. Furthermore, there was noticeable overfitting in both settings, since the training accu-

racy was around 70% for the 3-class problem and 80% when two classes were considered. In this

way, it can be concluded that the model was unable to learn in both settings.

Although the model complexity was reduced, other reasons can lead to the overfit present in

both settings, like noisy signals with a lot of irrelevant information, and the small amount of data

available. Furthermore, excessively long segments can lead to overfitting, since larger amount of

input information can make it more difficult for the model to identify small patterns needed for

the task at hand . In this way, it was considered and tested small segments of 15 and 10 seconds,

as already mentioned.

For 15-second segments, the results were similar, as it can be seen in Table 5.3. In the 3-class

problem, classification rates were slightly above 33% , whereas for two classes, accuracies were

around 50%. The same happened for the 10-second segments, obtaining an accuracy of 37.35%

and 38.53% for arousal and valence, in the 3-class problem and 47.92% and 53.63% for two

classes. Concerning the second setting, results were also identical for both segments considered

(see Table 5.4).



80 Comprehensive Comparison of Prior Art Approaches

Table 5.3: Classification rates (%) for the 1st Setting of Experiment 2.

Classes
2 3

Segment size Valence Arousal Valence Arousal

10 sec
train 66.72 74.04 58.90 62.12
valid 58.39 62.64 45.69 47.76
test 49.14 57.03 38.53 37.35

15 sec
train 72.34 78.46 62.67 64.20
valid 55.43 61.22 50.31 48.03
test: 55.31 51.67 37.19 36.44

30 sec
train 80.87 84.75 71.99 70.09
valid 63.15 69.76 54.42 53.79
test: 46.58 55.43 36.82 41.59

Table 5.4: Classification rates (%) for the 2nd Setting of Experiment 2.

Classes
2 3

Segment size Valence Arousal Valence Arousal

10 sec
train 69.65 77.28 58.27 61.87
valid 59.07 67.69 45.18 48.81
test 53.63 47.92 37.90 35.54

15 sec
train 71.36 77.41 61.00 62.95
valid 54.59 64.87 34.78 36.68
test: 54.21 52.67 34.78 36.68

30 sec
train 79.15 83.63 66.82 68.95
valid 61.49 66.24 53.72 50.87
test: 52.70 62.22 32.88 37.89

5.3.1.3 Experiment 3 - Impact of random data division and no overlapping

By developing a less thorough division of the data, the idea was to achieve a better recogni-

tion performance, similar to the results obtained on the published work [167]; however, the re-

sults were identical to the previous ones. The difference in the results obtained can be associ-

ated with the databases used, since MAHNOB-HCI was used in this preliminary work, while

Santamaria-Granados et al. [167] chose to use AMIGOS. The latter presents a total of 40 subjects,

whereas MAHNOB-HCI only contains recordings from 27 subjects. Thus, AMIGOS presents a

high amount of data, which is an important factor concerning deep learning tasks, as discussed in

Section 5.2.1.1. Furthermore, this database also includes an experiment with long videos, which

means that higher segments can be considered to train the network accurately.

Nevertheless, some results were slightly better. Considering the 3-class task for the first set-

ting, a 41.95% accuracy was obtained for the valence recognition. On the other hand, for the

2-class problem, an accuracy of 61.47% was obtained considering the first setting, as it can be

seen in Table 5.5. For the second setting, similar results were also achieved (see Table5.6).
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However, as it can be understood, the same problems encountered in the previous experiments

were also present in this one. Although the overfit is somewhat more reduced, it is still present.

Table 5.5: Classification rates (%) for the 1st Setting of Experiment 3.

Classes
2 3

Segment size Valence Arousal Valence Arousal

10 sec
train 70.97 75.69 60.86 63.39
valid 54.92 59.28 40.45 43.10
test 52.40 61.47 41.95 37.84

Table 5.6: Classification rates (%) for the 2nd Setting of Experiment 3.

Classes
2 3

Segment size Valence Arousal Valence Arousal

10 sec
train 72.84 76.44 61.17 68.91
valid 51.43 60.99 43.87 42.53
test 56.43 60.62 40.31 31.01

Concerning the general results obtained in this first replication, it can be understood that the

implemented methods did not reach the desired levels of performance, which can have different

causes, such as the overfit. Overfit is present in every experiment, especially in the first one.

By reducing the model complexity, this overfit also decreased, proving that high levels of model

complexity are sometimes the cause of worse results. However, overfit was still present in the

rest of the experiments, which can be due to the use of noisy ECG signals since no preprocessing

was done before feeding them to the network. These irrelevant artifacts can impair the detection

of essential patterns for emotion recognition. The small amount of data can also be an important

factor, taking into account that deep networks require a high amount of data available to achieve

good performances. In this way, larger databases are often in need for the network to be well

trained and perform accordingly.

Furthermore, regularization techniques were also applied, such as L2 regularization, in order

to automatically regulate the learning rate throughout the model training. However, neither this

technique nor dropout was able to eliminate overfit.

Having this said, the difference in the results obtained, compared with the ones reported

by Santamaria-Granados et al. [167], can be due to the differences in the replication, since the

methodology applied was only based and not completely similar, having differences in the length

of the segments considered and even the database used. However, it is also important to underline

the lack of clarity in the approach presented since many relevant details were not well specified

and had to be externally decided or empirically tested.
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5.3.2 Dar et al.’s CNN and LSTM-Based Emotion Charting Using Physiological
Signals

As already mentioned, the work was replicated using only the ECG signal. For this, two random

splits of each lead were considered for both the replication and Dar et al. [170] approach. Table

5.7 presents the results obtained in both cases. Although both DREAMER and AMIGOS were

equally prepared and tried out, the results for this second database are not presented since Dar

et al. [170] mentions that the totality of each signal is used, which difficults the choice of the

number of segments to consider in the LSTM layer.

Table 5.7: Summary results for DREAMER database, compared with the original results reported
by Dar et al. [170].

Accuracy (%)
Approach Lead 1st Random Split 2nd Random Split Average

Dar et al. [170] ECGl 90.46 88.31 89.39
ECGr 90.03 90.96 90.50

Our Results ECGl 32.80 38.92 35.86
ECGr 43.72 41.60 42.66

As one can understand by the results presented, the work’s results were not successfully repli-

cated, obtaining accuracies considerably lower. However, every detail explained in the methodol-

ogy was carefully followed and verified. For this reason, the poor results can be due to the already

mentioned lack of information regarding a variety of parameters such as padding values and, most

importantly, the number of segments aggregated at each epoch by the LSTM layer. This informa-

tion becomes crucial and can have a high impact on the results obtained, since the model receives

and processes data at a different pace. Furthermore, the temporal relations and patterns extracted

by this Long Short-Term Memory layer depend on the number of segments aggregated at each

moment.

It is also relevant to mention the poor data division, with completely random 70%-30% splits

of segments that may belong to the same signal. This kind of division does not ensure that there

is no leakage of data between training and testing sets, which means that the model is probably

trained with segments belonging to the same signal as other segments present in the test set. Thus,

although the results are considerably high in Dar et al. [170] approach, it may not hold up when it

comes to a real-life application, where new and unseen data would be tried out.

In summary, the lack of clarity in all of the steps performed during this approach, as well as

the unreal data division with no concerns with real conditions, led to the conclusion that this paper,

while achieving high accuracy levels for the four emotion classes considered, is not replicable nor

fit to be implemented and used in everyday life.
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5.3.3 Sarkar and Etemad’s Self-supervised ECG Representation Learning for
Emotion Recognition

As mentioned, the replication of this paper has some changes when compared with the original,

mainly in the datasets considered for both tasks and the fact that cross-validation was not used.

Furthermore, besides fully replicating this TensorFlow approach into PyTorch, the code available

in Gitlab [183] made it possible to first try this approach by directly obtaining the extracted features

from a given dataset when it went through the frozen convolutional network of the self-supervised

approach. However, as it can be understood, fully replicating both the pre-training and the emotion

recognition network allows a higher level of control over the methodology and opens opportunities

for further additions or alterations to it.

Having this said, the following Section will present the results firstly obtained by using the

features directly and secondly by replicating both the self-supervised learning and the emotion

recognition networks in PyTorch. For each experiment, three random splits were considered,

concerning both ECG leads, and their average and standard deviation results are further presented.

5.3.3.1 Feature-based results

By using the code available in Gitlab [183], it is possible to extract the features from the frozen

convolutional layers, using the optimal weights from Sarkar and Etemad [169]. From this point

on, the features are already prepared to enter the fully connected layers. Concerning this method-

ology, DREAMER was prepared and tested using two classes for high/low classification of both

arousal and valence. Furthermore, as mentioned, both leads were tested with three random splits,

computing the mean afterwards. Considering the approach replicated, the results are presented

without defining the lead used and using only one random split of data.

As it can be seen in Table 5.8, the results were fairly similar to the ones presented in the

literature, showing a small decrease of 6% when it comes to arousal recognition. Concerning

valence, the mean accuracies obtained for both leads were around 8% lower than the one reported

by Sarkar and Etemad [169]. However, it is not clear the reasons why there is this difference, since

every step of data pre-processing was carefully followed. Nonetheless, the paper only describes the

filter used, not mentioning, for example, its order. Other aspects concerning the data preparation

could be considered since some details were unspecified, such as if the complete signals are used,

or only small and sectioned fractions of them. Furthermore, since the fully-connected layers had

to be trained from scratch, their initialization was probably different from the one of Sarkar and

Etemad [169], which could also justify the difference in the results obtained. However, it can be

considered that the results are close enough to conclude that the replication was successful when

extracting the features and then use them to train the fully connected layers to recognize emotion.

5.3.3.2 Signal Transformation Recognition

In order to have a quality pre-training for the emotion recognition task, the signal transformation

recognition was performed, following the methodology described in Section 5.2.3.1. However,
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Table 5.8: Summary results for DREAMER database considering high/low arousal and high/low
valence, using the extracted features directly, compared with the original results reported by Sarkar
and Etemad [169].

Accuracy (%)
Arousal Valence

Approach Lead Average Standard Deviation Average Standard Deviation
cite n.d 85.9 - 85.0 -

Our results
ECGr 80.55 0.99 77.49 1.23
ECGl 79.63 0.84 77.05 1.07

as mentioned, the datasets used for this pretraining were DREAMER and AMIGOS, excluding

WESAD and SWELL. This choice is based on the fact that the chosen datasets were already avail-

able and ready to be used due to their applications in other approaches, such as [167] and [170].

Furthermore, according to Sarkar and Etemad [169] the performance is not strongly affected by

the reduction of datasets used, considering that each available signal suffers 6 different transfor-

mations, which in the end leads to a six-fold dataset increase. In addition, Sarkar and Etemad

[169] performed this transformation recognition task using each dataset individually and all of

them combined, which proved not to exist relevant accuracy differences.

In Table 5.9 the accuracy results for the recognition of each transformation are presented and

compared with the paper replicated, demonstrating that the pretraining was successful.

Furthermore, in Figure 5.7 it is possible to analyse the train and validation loss curves through

epochs, indicating a good training that resulted in high accuracies analysed in Table 5.9.

Table 5.9: Summary of the results for the Signal Transformation Recognition task, using
DREAMER and AMIGOS datasets, compared with the results obtained by Sarkar and Etemad
[169] when combining all four datasets.

Transformation Accuracy (%)
All datasets combined in Sarkar and Etemad [169] DREAMER + AMIGOS (our results)

Original 98.00 97.73
Noise Addition 99.50 99.53

Scaling 98.20 98.03
Temporal Inversion 99.80 99.87

Negation 99.80 99.73
Permutation 99.80 99.86

Time-warping 99.70 99.93
Average 99.20 99.24

5.3.3.3 Emotion Recognition

Using the weights of the convolutional layers obtained in the signal transformation recognition

task, only the fully connected layers of the emotion recognition network had to be trained. In

Figure 5.8, the results obtained are compared to the ones by Sarkar and Etemad [169], presenting

a decrease in performance of nearly 14% concerning arousal and 17% for valence classification.
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Furthermore, when comparing with the results obtained when using the extracted features directly,

the results were also inferior, presenting a decrease close to 5% for arousal and 8% for valence.

Figure 5.7: Train and validation loss curve during pretraining.

Figure 5.8: Emotion Recognition results considering the ones presented by Sarkar and Etemad
[169] and the two methodologies used. For those methodologies, the accuracy considered is from
lead ECGr.

The possible reasons for the accuracy decrease verified between the use of extracted features

and the ones reported by Sarkar and Etemad [169] were already discussed in Section 5.3.3.1 and

are also valid to justify some of the variance between the results from Sarkar and Etemad [169] and

the ones obtained with the replication. Although the pre-training results were highly satisfactory,

as analyzed in Section 5.3.3.2, the convolutional weights obtained might not be exactly equal to

the ones from Sarkar and Etemad [169], since this training is randomly initialized and may result
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in different optimal weights. This idea is supported considering that the results obtained with

the directly extracted features, using Sarkar and Etemad [169] convolutional weights, were higher

than the ones obtained with the full pre-training replication in PyTorch.

Furthermore, taking into account that there were used two different deep learning libraries,

TensorFlow and PyTorch, respectively, there are some intern and specific differences of processing

and work mode that could also play an important role in the distinct results obtained.

In addition, as mentioned, the data pre-processing developed by Sarkar and Etemad [169]

was not completely clear, namely in aspects such as filtering and signals used to train the model.

Sarkar and Etemad [169] state that every DREAMER ECG signal has 60 seconds which does not

correspond to the dataset reality, since each signal has a different length considering the emotion

elicitation video used. Thus, there is some doubt if Sarkar and Etemad [169] pre-processed or

previously selected the signals to use. Furthermore, taking into account the incomplete code pre-

sented in Gitlab [183], the code to access signals from the different datasets does not seem to agree

with the way datasets are saved, which also indicates some previous organization and possible se-

lection of the data to use. However, during this replication, each signal was used in its totality and

there were no alterations applied to the datasets in question.

5.4 Summary and Conclusions

This chapter focused on presenting and analysing the state-of-the-art approaches that were repli-

cated, serving as a basis for further work. As it can be concluded, emotion recognition literature

is not as clear as it could be expected. Although the prior art results are high enough to indi-

cate potential and important developments in this field, a more thorough analysis proves that the

proposed methodologies are not completely clear or reproducible, since a variety of details are

kept unexplained, even when code is made available. Furthermore, the data settings used are also

not completely fair or in conformity with the real conditions that would be encountered if those

methodologies would have a real-life application.

In most of these approaches, namely the three replicated, data is divided into smaller segments

and randomly split into train/test sets. This division method not only allows for signals from the

same subjects to be in both sets but also segments from the same signal as well. Although the

segments are not exactly the same, they convey identical patterns and characteristics that can be

seen as a contamination of training and testing sets. In fact, in Chapter 6, this methodology is used

by considering both different signals and subjects for training and testing sets, proving the impact

that this fairer division has on results, and cross-database experiments. In conclusion, state-of-

the-art shows most approaches are not yet ready to be applied on a daily basis in a functional and

robust way.

Due to all of the reasons mentioned above, the replications presented were not always success-

ful. However, concerning the last approach, from Sarkar and Etemad [169], the results obtained

were more consistent and closer to the ones reported by the authors. Although there are some

parameters and methods still poorly defined and data division is also biased, Sarkar and Etemad
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[169] presented a more detailed description of the work developed, in addition to providing the

code in [183]. Furthermore, Sarkar and Etemad [169] methodology uses a pre-training of the

convolutional layers, with large amount of data, by considering signal transformations and their

recognition. In addition, this approach trained the convolutional and fully-connected blocks of

its network separately, which allowed for a more controlled training, highly benefiting emotion

recognition. Thus, this approach was more reliable, presented a promising methodology and its

results were in accordance with the quality of the method.

Furthermore, although the replications developed tried to be the most similar as possible to

the methods proposed, there were some differences concerning libraries or programs used, since,

for example, Sarkar and Etemad [169] developed the approach in TensorFlow and Dar et al. [170]

even used Matlab instead of Python. These language differences may also have some impact on

results, as previously mentioned.

In summary, the results obtained during these replications were able to identify some common

and recurrent problems in the literature, understanding in a more complete and detailed manner

what already exists and what is lacking in the approaches developed so far. Thus, after these

replications, in Chapters 6 and 7, more trustworthy data division settings were considered as well

as other deep learning architectures that could result in better and more reliable results.





Chapter 6

Self Supervised Learning Improvement
for Emotion Recognition

6.1 Introduction

Considering the replicated work of Sarkar and Etemad [169], presented and analysed in Chapter

5, a self-supervised learning technique was developed. However, as it was discussed, the results

obtained were not quite high as the ones presented in the literature, which could be due to the

already mentioned difficulty of replicating some papers and the fact that the original methodology

is developed in TensorFlow and then replicated to PyTorch.

However, this self-supervised technique presented itself as a good starting point for the final

architecture proposed in this thesis, since it offered room for improvement. Thus, the idea was to

come up with a stronger self-supervised task that could result in more robust convolutional layers

for the emotion recognition problem. Some possibilities were considered, such as increasing the

number of signal transformation tasks or even mix them, which means, allowing for the same sig-

nal to suffer more than one transformation and, thus, having more than one label (for example, an

inverted and permuted signal). Although these alterations would, eventually, increase the difficulty

of the problem and probably result in less high performances in signal transformation recognition,

it would also improve the robustness of the network and, thus, the performance of the emotion

recognition task.

In this way, the following sections present the alterations done to the self-supervised learning

proposed by Sarkar and Etemad [169], as well as the results obtained. From all of the changes tried,

the one that obtained better results was then selected for further improvements and additions, ex-

plained in Chapter 7. Furthermore, other validation tests were performed, such as cross-database,

signal-independent and subject-independent settings, to understand how well the network would

perform in these cases.

No other modifications were done regarding data pre-processing or network architectures, in

both signal transformation recognition and emotion recognition tasks, keeping the same methods

proposed by Sarkar and Etemad [169] and fully explained in Chapter 5.

89
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6.2 Methodology

6.2.1 Signal Transformation Recognition

As explained in Chapter 5, the signal transformation recognition task was performed in order to

optimize the convolutional weights, then used in emotion recognition. However, each original

signal suffered 6 isolated transformations, resulting in 6 different signals. The same signal only

had a label from 0 to 6, and never more than one transformation applied. Nonetheless, the addition

of different transformations to the same signal could increase the network’s ability to distinguish

transformations from more complex signals.

Having this in mind, two main alterations were considered, namely applying more than one

transformation at once and adding new and different signal transformations to the six already used.

6.2.1.1 Mixing different transformations

Since each signal only had one single transformation, the first addition considered was to apply

one more transformation (signals with exactly two transformations, excluding the original signals

which had none). Furthermore, to increase the unpredictability, signals could also have up to two

transformations, which means that signals could have one or two transformations.

The same technique was used for three transformations, imposing that all of the signals that

were not original would have three different transformations applied and, after that, up to three

transformations (1, 2 or 3 transformations per signal). This choice was completely randomized,

making the set more unpredictable and, thus, more difficult to generalize.

In addition, it was tested up to four and five transformations, however the results obtained

seemed to indicate that more than three stopped to be beneficial in terms of emotion recognition

performance, which led to the belief that imposing four or five transformations per signal would

be too confusing for the model or it would result in a train too specific for signal transformation

recognition, leading to less relevant convolutional weights for the emotion recognition task.

6.2.1.2 Addition of new transformations

Besides applying more than one transformation per signal, it became relevant to test other trans-

formations that could also be important for the network to recognize relevant ECG patterns. In

this way, two other transformations were considered, having into account the ones pointed out as

relevant by Ribeiro Pinto et al. [184]:

• Baseline Wander: Simulates a periodic undulation on the signal, through the addition of a

sinusoidal wave with frequency near 1 Hz. In this specific situation, it was used a sine wave

with an amplitude of 1.
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• Magnitude Warping: Rescales the signal in a non-uniform way, using a sinusoidal wave

instead of a fixed factor, in such a way that some parts of the signal have their amplitude ex-

panded and others shrunk. The sinusoidal wave used was the same for the Baseline Wander

transformation, with an offset of 1.

These transformations were applied to the original signal, resulting in the signals seen in Figure

6.1. In Chapter 5, Figure 5.5, the other 6 transformations are also presented, giving a visual idea

of the variations each one caused in the original ECG signal.

(a) Baseline Wander (b) Magnitude Warping

Figure 6.1: Addition of two signal transformations ((a) and (b)) for improving the pre-training.

Initially, these eight transformations were used similarly to the first six, by applying only one

transformation per signal. Furthermore, these eight transformations were also combined with other

pretraining changes presented in Section 6.2.1.1, namely the one that led to the best pretraining

results by mixing more than one transformation per signal, which was the methodology of adding

a maximum of three transformations per signal in a random way.

6.2.2 Emotion Recognition

In order to understand if the alterations done in the pretraining step were useful, the obtained

convolutional weights were also frozen and transferred to the emotion recognition network. Thus,

for each self-supervised learning modification previously described, it was tested its impact on

emotion recognition, since this was the task to optimize.

As mentioned, data pre-processing, network architecture and all the hyperparameters were

kept the same, which means that data was segmented into 10-second segments and randomly di-

vided into train and test sets, in a 90%-10% proportion, respectively, considering, as usual, three

random splits per lead to obtain more stable and reliable results. Although there is no overlap

between segments, to avoid data leakage between the two settings, it is interesting to consider

more challenging and real data divisions. In this way, using the optimized self-supervised pre-

training, emotion recognition was also evaluated using signal and subject-independent settings,

which forces training and testing sets to have signals from different subjects. Furthermore, cross-

database was also applied, ensuring that a different database was used for testing, which resulted
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in different signal acquisition and subjects for the test set. It is important that a method can gener-

alize well in both settings, ensuring its application on a daily basis with possible different signals

and subjects.

6.2.2.1 Signal-Independent Settings

Taking into account the approaches available in the literature, it can be understood that, usually,

signal segments are used as inputs. In addition, those segments are randomly shuffled before being

divided into train and test segments which results in information of the same signal to be present in

both sets. In this way, it became relevant to test a division that would assure a more strict train/test

split, with different signals in each set. This experiment proves to be relevant to understand if the

network developed is signal-dependent or if it is able to predict emotion for completely unknown

and unseen signals.

For this, data was prepared considering three signal-independent splits for each ECG lead,

with the already used division of 90%-10% for train and tests sets. In this way, signals were firstly

assigned to their set and then spliced into 10-second segments, avoiding signal leakage between

sets. Each segment was pre-processed following the pre-processing steps already described in

Chapter 5, Section 5.2.3.2.

6.2.2.2 Subject-Independent Settings

Subject-independence remains a challenge in most machine and deep learning problems using

personal data. Although, in literature, there are a lot of approaches that do not even consider these

type of more demanding sets, as seen in Chapter 4, this failure can have a high impact when it

comes to real applications of these methods. In this way, subject-independent sets were prepared in

order to test emotion recognition using the convolutional weights of the best pretraining obtained

(up to 3 transformations), so as to understand the impact of more demanding and fair data division

on the methodology developed. For this, considering 23 subjects from DREAMER database,

10% (corresponding, approximately, to 3 subjects) were randomly selected for the test set and the

other 90% (20 subjects) for training. Concerning train/validation division, the validation set was

randomly obtained from the train set, corresponding to 10% of training data, with no concern with

subjects. For each ECG lead, as usual during this thesis, there were considered three different

random splits.

6.2.2.3 Cross-Database Experiments

Cross-database consists of a technique in which a given database is used to train a model and

a different one is used for testing, to evaluate how well a given model can generalize not only

between different subjects but also between signals with different acquisition settings. Real-life

applications need to be robust and perform well in most of the scenarios, thus, in this study,

both MAHNOB-HCI and AMIGOS were used in different test settings. These cross-database

experiments were developed using the optimized trained model and the two datasets were equally
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prepared, following the pre-processing already explained in Chapter 5. In this case, instead of

using only a percentage of the datasets, they were fully considered in the test set, using both ECG

leads.

6.3 Results

6.3.1 Signal Transformation Recognition

As already mentioned, different techniques were used in order to improve the signal transformation

recognition task. The possibility of obtaining even more optimized convolutional weights, able to

extract relevant ECG features could result in improved performances for the emotion recognition

task, when compared with the ones presented in Section 5.3.3.3. For this, two main variations

were tried, namely (1) applying more than one transformation per signal and (2) adding signal

transformations. This Section presents the results concerning the variations applied to the pre-

training task.

6.3.1.1 Mixing different transformations

Concerning the addition of more than one transformation per signal, different methods were tried

and explained in Section 6.2.1.1. The mean accuracy of all the transformations is presented in

Table 6.1.

Table 6.1: Summary of the average accuracy results for the Signal Transformation Recognition
task, when varying the number of transformations per signal.

Accuracy (%)
Nr Transformations per Signal Average Standard Deviation

Sarkar and Etemad [169] 99.26 0.74
Exact 2 98.77 0.77
Up to 2 98.52 2.13
Exact 3 98.44 1.14
Up to 3 97.29 4.38
Up to 4 97.05 4.40
Up to 5 92.07 9.65

As expected, the performance of the model decreases with the addition of simultaneous trans-

formations per same signal. Furthermore, when all signals have the same amount of transforma-

tions, the network is able to perform better than when the number of transformations is random and

changes from signal to signal, since the unpredictability of the data fed to the network increases

in the second scenario. In this way, by analysing the results obtained, it can be concluded that the

transformations done to the proposed pre-training by Sarkar and Etemad [169], difficult the sig-

nal transformation recognition, which could translate into more robust and optimal convolutional

weights, able to extract features even more relevant for emotion recognition, thus improving this

task.
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6.3.1.2 Addition of new transformations

Besides adding more than one transformation to each signal, considering other signal transfor-

mations beyond the 6 proposed by Sarkar and Etemad [169] can also be interesting and highlight

other specific features or patterns of the ECG signal. Thus, as explained in Section 6.2.1.2, baseline

wander and magnitude warping transformations were applied to original ECG signals, increasing

the number of transformations per signal and the overall size of the transformation dataset used in

the signal transformation task.

Firstly, the pretraining was done following the same method of Sarkar and Etemad [169], with

the two additional transformations applied to every original signal. Having into account that the

higher performance for emotion recognition was obtained by adding up to three simultaneous

transformations per signal, these two transformations were also considered. Table 6.2 presents the

results of Signal Transformation Recognition for both methods mentioned, showing an average

accuracy of 96.38 % for the recognition of nine types of signal (original and eight transformations)

and 96.49% with the addition of up to three transformations per signal.

As expected, the increase in the number of different signal transformations, combined with the

fact that each signal could have up to three distinct transformations, led to one of the lowest accu-

racies obtained, when compared with the results presented in Table 6.1. However, it can be noticed

that considering up to five transformations per signal resulted in an even lower performance due

to the demanding task of recognizing such a high number of transformations applied to the same

signal.

Although other combinations could be tried using eight transformations, the results would

probably be alike and not significantly alter the performance of the emotion recognition task. In

this way, no other transformations were applied to the pretraining.

Table 6.2: Signal Transformation Recognition results considering 8 signal transformations.

Transformation
Accuracy (%)

8 transformations 8 transformations + up 3
Original 98.03 97.95

Noise Addition 97.99 98.16
Scaling 85.01 84.68

Temporal Inversion 93.92 94.09
Negation 94.81 95.49

Permutation 99.55 99.59
Time-warping 98.38 98.65

Baseline Wander 99.78 99.86
Magnitude-warping 99.95 99.96

Average 96.38 96.49
Std. Dev 4.26 4.58

Thus, considering all the different alterations done into the pretraining, concerning the num-

ber of transformations used and applied to the same signal, it becomes important to understand
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the impact that on emotion recognition. Having this said, the following section presents the emo-

tion classification accuracies for two classes of arousal and valence, for each alteration done and

described in the pretraining data.

6.3.2 Emotion Recognition

As already mentioned, the variations done during the self-supervised learning task lead to different

convolutional weights that could be more or less suited for emotion recognition. Thus, in order

to validate and understand what alterations in the pretraining were, in fact, beneficial for emotion

recognition, the correspondent convolutional weights of each pretraining were frozen and trans-

ferred into the emotion recognition network. Results for the right lead are presented in Figure 6.2

and for the left lead in Figure 6.3.

Figure 6.2: Emotion Recognition results for ECG right lead corresponding to each pre-training
developed.

Through the analysis of Figure 6.2, it can be concluded that the best pre-training obtained

was by randomly applying a maximum of three different transformations per signal, obtaining an

average accuracy of 79.79% for arousal recognition and 75.81% concerning valence. Regarding

left lead (Figure 6.3), the highest performance was also obtained by this pretraining, with similar

accuracies of 78.05% for arousal and 75.19% for valence.

Furthermore, the pre-training that resulted only from the addition of two transformations, did

not show any improvement when compared with the results obtained with six transformations,
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Figure 6.3: Emotion Recognition results for ECG left lead corresponding to each pre-training
developed.

presented in Figure 5.8, which shows that the simultaneous application of more than one transfor-

mation per signal is more effective than adding the number of transformations while keeping only

one transformation per signal.

Furthermore, the results obtained for each lead allow us to conclude that ensuring the same

number of transformations per signal in the pre-training, namely two and three, led to poorly and

less robust convolutional weights due to a lower signal variety, which results in lower emotion

recognition performances. However, the pretraining with more random data, made of signals with

a different number of transformations, showed to be more effective. The maximum usage of four

and five transformations also resulted in higher accuracies compared with methodologies with a

fixed number of transformations per signal. In this way, considering the results presented in Table

6.1, it is possible to establish a relationship between signal transformation recognition accuracies

and emotion recognition ones, since the pre-training that achieved the higher performances in

transformation recognition were also the ones that resulted in less relevant convolutional weights

for emotion recognition, which demonstrates that increasing the difficulty of this self-supervised

learning resulted into better and more efficient pretrainings for emotion classification. Finally,

regarding the addition of two transformations, the results decreased in comparison with the best

pretraining, although, in regard to the ECG left lead results, valence performed slightly better.

This can indicate that this pretraining was also successful, however, signals probably became a

little too demanding and led to a more specific training for signal transformation recognition,
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translating into lesser appropriate weights for emotion recognition tasks.

By using up to three transformations per signal as the pre-training method, it was possible

to achieve the results reported when using the features directly extracted from Sarkar and Etemad

[169] convolutional layers and optimized weights (see Figure 5.8), which showed that the methods

applied to improve pre-training were, in fact, successful.

Concerning this pretraining, the third random split for the right ECG lead was the one able

to achieve the highest results, with an accuracy of 80.79% for arousal and 76.25% for valence.

Thus, it is considered the optimized model and its convolutional and fully-connected weights are

then further used in different experiments in Chapter 7 and in Section 6.3.2.3, for cross-database

results. Nonetheless, the slightly higher performance of this random split can also be related to a

possible easier test set, filled with cleaner or less challenged segments that allowed a better model

performance.

6.3.2.1 Signal-Independent Settings

Considering more strict data division experiments, train and test sets were prepared in a signal-

independent way, meaning that there were no segments belonging to the same signal in both test

and train sets. As already explained, three signal-independent settings were prepared for both

ECG leads and the average and standard deviation results are available in Table 6.3.

Table 6.3: Emotion Recognition results ( %) for signal-independent settings.

Lead
ECGr ECGl

Acc (%) Std. Dev Acc (%) Std. Dev
Arousal 54.89 4.32 55.83 2.98
Valence 58.32 4.13 50.47 1.39

The model performance for signal-independent settings highly decreased, proving its signal

dependency, for both leads. Although for the right ECG lead, valence presented a mean accuracy

4% higher than arousal and, for the left lead, arousal was 5% more accurately predicted, all of the

results obtained were low and these differences can just be due to the data division used. Since

only three divisions were considered and the network has proved to be highly dependent on data

splits, it can be concluded that results are overall low and emotion is equally badly recognized for

both leads and levels of arousal and valence.

As it can be understood, this problem is mainly associated with the small emotion databases

available, which do not allow for the model to be properly trained, by providing a high amount

and variety of data. Due to this low variability, signals are not well generalized and the network

learns too signal-specific information, performing badly when there are no segments of a given

signal in the training set. In this way, there is the need for larger databases to be built so that the

amount of data available for this kind of research increases, since no approaches can be real-life

applied without assuring model robustness as well as signal and subject independence.
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6.3.2.2 Subject-Independent Settings

As explained in Section 6.2.2.2, three subject-independent sets were prepared for each lead and

then used for emotion recognition. In Table 6.4 the results obtained are presented, considering the

average accuracy and the standard deviation obtained for each lead.

Table 6.4: Emotion Recognition results ( %) for subject-independent settings.

Lead
ECGr ECGl

Accuracy Std. Dev. Accuracy Std. Dev.
Arousal 54.24 2.48 56.72 2.42
Valence 54.33 6.13 56.33 0.75

The average results for both leads are quite similar between arousal and valence, around 54%

for ECG right lead and 56% for the left lead. The model performance with these settings is con-

siderably lower when compared with random segment divisions, using the same convolutional

weights from the best pre-training. In Section 6.3.2, emotion recognition is around 79/80% accu-

rate concerning arousal levels and 75/76% for valence classification, which proves the difficulty

of dealing with subject-independent settings.

When the model has not yet known any signal from a given subject, it becomes highly difficult

to recognize emotions, pointing the already mentioned subject dependence related with emotion

and ECG signals, analyzed in detail in the Chapter 2, Section 2.2.2.

This problem, present in almost all machine and deep learning tasks, is still a major barrier for

this kind of approaches to be feasible and usable in real conditions. For that reason, most state-

of-the-art results are not completely trustworthy and only present more positive and somewhat

misleading results regarding the performance and robustness of the developed methodologies.

In this way, it becomes highly important the development of specific techniques or methods to

reduce subject dependence and obtain more robust approaches. However, this problem is empha-

sized and even more difficult to solve due to the small databases available, with scarce data to train

a robust model able to correctly generalize for unknown subjects or different types of signals, as

already mentioned.

6.3.2.3 Cross-Database Experiments

Finally, after considering signal and subject independence in the sets developed, cross-database

experiments were conducted, ensuring that even the acquisition settings of signal collection were

different. For a model to perform well in cross-database experiments, it has to be extremely

robust and well trained, which usually depends on a high amount of data so that the architecture

is prepared to deal with a large variety of signals. However, having into account the already

presented results for signal and subject independence, which were considerably lower and showed

a bad model performance, one could expect that these cross-database experiments should not lead

to high performances, due to the increased difficulty of the sets when compared with the other two
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previously mentioned. Using a different database will simultaneously ensure different signals,

subjects, and acquisition settings. Table 6.5, presents the results for these experiments for both

AMIGOS and MAHNOB-HCI, proving how demanding this task is.

Table 6.5: Cross-Database results for AMIGOS and MAHNOB-HCI using the optimized trained
model.

Accuracy (%)
Database Lead Arousal Valence

MAHNOB - HCI
ECGr 55.51 56.9
ECGl 61.47 59.1

AMIGOS
ECGr 46.39 53.63
ECGl 48.63 53.21

As it can be understood, both MAHNOB-HCI and AMIGOS obtained low accuracy results

for both leads. However, using ECG signals from AMIGOS, the results were lower than with

MAHNOB-HCI, which could indicate that AMIGOS may have more difficult or noisy signals for

the optimized network to recognize emotions from.

In conclusion, the results show that the model is not sufficiently robust to perform well in

completely different databases, indicating that more improvements are needed to achieve robust

approaches that may generalize well for unseen data. For this to be achieved, larger datasets are

needed, and specific techniques to prevent both signal and subject dependency, as mentioned in

Sections 6.3.2.1 and 6.3.2.2.

6.4 Summary and Conclusions

During this chapter, the main goal was to improve self-supervised learning to obtain more robust

convolutional weights for the emotion recognition network that could, subsequently, improve its

performance. In this way, it can be considered that the goal was completely achieved, resulting in

higher accuracies of both arousal and valence recognition, although never reaching the accuracies

reported by Sarkar and Etemad [169].

Furthermore, this chapter also focused on experimenting and analysing more demanding data

divisions, since these are not usually considered or evaluated in the literature approaches anal-

ysed in Chapter 4. Thus, three different sets were tested, namely signal-independent, subject-

independent and cross-database. Having into account the results presented for these data divi-

sions, the network proved to be not only subject but also signal-dependent. This problem may

be due to the development of shallow networks, that could be in need of more complex architec-

tures, however, the main reason is associated with the lack of signals and signal diversity, since

the available databases are reduced. Thus, besides these databases having a reduced number of

subjects, which contributes to subject-dependency, the number of signals per subject also seems

insufficient to learn robust representations of emotion, which leads to poor performances when

signals not present in the train set are afterwards used in test sets. Since the network is unable



100 Self Supervised Learning Improvement for Emotion Recognition

to perform well in signal and subject-independent settings, it becomes clear that cross-database

could also not achieve high accuracy results, since it is even more demanding.

Having this said, it can be concluded that there is still a long way to go when it comes to emo-

tion recognition using artificial intelligence techniques, indicating that it remains a rather new and

unadvanced field, with room for improvement. Therefore, a first important step towards improv-

ing it and develop better methodologies would be developing larger and more complete databases,

where these types of more realistic data division can be performed and still assuring sufficient

training data for robust learning.

Nonetheless, in Chapter 7, different aggregation techniques were added to the already devel-

oped network, to improve the currently satisfying results already achieved with the improvement

of the self-supervised learning approach. The main goal was to predict emotion levels per sig-

nal and not for each segment individually, aggregating the segments belonging to the same signal

through architectures such as MLPs and LSTMs, to extract more relevant signal features and ob-

taining better emotion recognition performances. Furthermore, the same demanding data divisions

were further tested so as to understand if the methods added could lead to some improvement in

these settings.



Chapter 7

Multiple Instance Learning

7.1 Introduction

Some of the most commonly used and available datasets for emotion recognition, analysed in

Chapter 3, are only sparsely labelled, either by external raters or through self-reporting. Although

subjects usually have a more clear idea of the emotion felt, it is not possible to continuously

interrupt people to self-assess their emotion. In this way, emotion is not continuously labelled and

self-assessment is usually done at the end of the emotion elicitation.

Having this in mind, although each ECG signal is divided into 10-second segments in the

approach presented in Chapters 5 and 6, the emotion labels available in all the datasets used corre-

spond to the self-assessment of each subject in relation to the entire ECG signal, since modelling

and predicting emotions over time and obtaining continuous data labelling is quite costly and not

always possible. Thus, each signal has only one correspondent emotion annotation and by using

segments of 10 seconds, the same label is considered for all of the segments of a specific sig-

nal. This label generalization can, sometimes, hinder the performance and success of emotion

recognition since the label is related to the entire signal and its variations, and not the segments

considered. Labels represent the emotion felt in a given time window, being unable to consider

continuous subtle affective changes that may occur over time and during the same emotion elicita-

tion experiment. For example, if a subject is watching a video that is supposed to elicit happiness

and that feeling is only felt at the beginning or in the end, the rest of the signal may not always

convey this emotion. Furthermore, a subject can also be distracted during his/her elicitation, which

can result in some useless signal segments collected during the experiment.

In this way, it became interesting to consider different aggregation techniques that would allow

to predict a label for the entire signal and not for every 10-second segments.

Multiple Instance Learning (MIL) offers an improved solution for learning weakly supervised

settings, considering the temporal ambiguity of the affective states. In these types of settings, each

label only specifies the presence or absence of a specific affective state within a given period, not

specifying or localising the exact part where it is expressed in the signal. Current MIL methods

101
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have been used in different fields such as bioinformatics [185], medical image analysis [186], text

processing [187] and emotion recognition [188].

MIL consists of a specific type of supervised learning where different segments or instances

are grouped into sets, called bags, and labels are only used at the bag level, and not for each

individual instance [189]. Usually, MIL has been used for binary classification problems, where if

there is at least one positive instance in a bag, it is labelled positive and if it contains only negative

instances it will have a negative label.

In this specific case, the idea is to group all the 10-second segments of a given signal in

the same bag, obtain only one prediction per signal and compare it to the self-reported label in

the dataset, instead of replicating the same label for each segment. The way these segments are

grouped together in a bag can vary a lot and some of them were tried out, such as more simple and

heuristic methods like mean, median and maximum, and others more complex, namely Multilayer

Perceptrons and Long Short-Term Memory.

7.2 Methodology

Following the already developed and discussed method in Chapter 6, the aggregation techniques

were explored in order to group the segments belonging to the same signal after the fully-

connected layers. Thus, maintaining the architecture already developed, the best weights of both

convolutional and fully-connected blocks, from the optimized model obtained in Chapter 6, were

transferred and directly used, only training the aggregation segment of the network. For this rea-

son, all signals used during this Chapter are right ECG lead signals since the best weights were

obtained with data from the same lead. Nonetheless, after applying these optimized weights and

developing experiments with different aggregation techniques, other types of data division were

considered, such as signal and subject-independent settings, where only the pre-training convolu-

tional weights were frozen and directly applied, meaning that both the fully-connected and aggre-

gation structures were trained considering each data division. For this, the segments corresponding

to the signals of each set were previously used to train the fully connected layers instead of always

using the optimized weights. This setup assured that, for every fold, fully-connected layers had

been trained with the correspondent train data, instead of using the same fully-connected weights

for all folds. For these cases, only the two best aggregation methods were tested using these dif-

ferent data divisions, to analyse if the aggregation methods could somehow improve the model

performances when more realistic data divisions were applied, contrasting with the low results

obtained in Chapter 6 concerning the same data splits.

7.2.1 Data Preparation and Pre-processing

In order to correctly group the segments, only considering the ones belonging to the same signal,

data preparation suffered some changes. Instead of immediately splitting the signals into segments,

those were only pre-processed following the same steps of Sarkar and Etemad [169], namely: high

IIR filter to remove baseline wander and user-specific z-score normalisation.
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Thus, signals were entirely received by the network and split into 10-second segments before

entering the convolutional layers. For this reason, batch size was equal to 1, wherefore the network

received each signal at a time. However, since each signal has a different size, considering the

video seen when it was recorded, the number of segments per signal also differed. There are

significant differences, considering that the duration of the videos used in DREAMER varied from

65 seconds (resulting in 6 segments) to 393 seconds (resulting in 39 segments) [9] . Nonetheless,

although MIL techniques can be used with a different number of instances per a small number

could mean not enough relevant data for the prediction to be accurate and too many segments

could be too confusing for the network.

Having this said, it was fixed a number of 60 segments per signal, assuring a significant amount

of data per bag. For this, signals were segmented with the needed strides to result in 60 equally

spaced instances. After going through the network developed in Chapter 6, with the optimum

weights presented in Section 6.3.2, different aggregation forms were tested and are further de-

scribed.

7.2.2 Aggregation Methods

7.2.2.1 Heuristic Methods

Since the output of the fully-connected layers are logits, which correspond to raw scores output by

the last layer of a neural network before activation takes place, they already convey information of

the probability of belonging to a given class. Logits are then fed to a softmax which outputs prob-

abilities of belonging to each class, then converted to the predicted class of each segment input.

In this way, simple methods of aggregation can be used and logically result in good predictions,

considering that each instance is usually well predicted by the model presented in Chapter 6 (see

Figure 7.1).

Figure 7.1: Emotion Recognition architecture using heuristic aggregation methods.

Thus, the first heuristic method tried was mean, calculating the mean of all logits of each bag.

After, median was tried and, finally, the maximum was also applied. The maximum aggregation

method chose the instance that offered a higher level of certainty about the class to which it be-

longed, as opposed to the mean which calculated the bag’s average logit value and the median,

which computed the median value for the same bag.

These heuristic methods were the first to be tried since they were simple and gave an initial

idea concerning the possible performance of applying Multiple Instance Learning to the already
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developed method. However, more complex ways of aggregating these instances could be able

to ignore some of the segments and give more attention to others, with a higher relevance for the

emotion recognition task. Unlike mean or median, instances are learnt in a more intelligent way,

and not all instances have the same weight on decision-making for the final result. Having this

said, the following sections present other aggregation techniques with more layers and complexity.

7.2.2.2 Multilayer Perceptron Methods

A Multilayer Perceptron (MLP) is a class of feedforward neural network, consisting of at least

three layers of nodes: input layer, hidden layer and output layer. Each node, besides the input,

uses a nonlinear activation function and MLP can have more than one layer of artificial neurons,

between the input and the output. The data flows in the forward direction and the neurons are

trained with the backpropagation learning. MLPs usually approximate any continuous function,

solving problems that are not linearly separable. The general scheme of the architecture used can

be seen in Figure 7.2.

Figure 7.2: Emotion Recognition architecture using MLP aggregation methods.

In this way, MLPs with different parameters were empirically tested in order to obtain an

optimized emotion recognition network. During the experiments, MLPs with 1 and 2 hidden

layers were tested, using 100, 150, 200 and 512 hidden neurons. Furthermore, other parameters

were changed, such as the dropout value in the configuration with 512 hidden nodes, using a

dropout of 20% and 40%. In Section 7.3.1.1 the detailed hyperparameters used are described

concerning all the architectures used.

7.2.2.3 Long Short-Term Memory and Bidirectional Long Short-Term Memory Methods

The Electrocardiogram is a time-series signal, from which temporal relations can be extracted

and be useful for different machine and deep learning tasks, such as emotion recognition. Long

short-term memory recurrent neural networks consist of an improvement over the regular recur-

rent neural networks, since these have a long-term dependency problem, as explained in Chapter

4, Section 4.4.1. Through the incorporation of gating functions into their functioning, LSTMs

prevent this problem and maintain a hidden vector h and a memory vector m that control state

updates and outputs [190].

In this way, LSTMs use three gates for input and output of the memory space: input gate, for-

get gate and output gate. These three gates determine how much of the input is reflected, forgotten
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and whether or not to display that calculation up to the present [191]. Thus, the LSTM network

implements temporal memory through the switch of the gates to prevent gate vanishing. Figure

7.3 represents a basic LSTM unit, where the external inputs are its previous cell state c(t−1), the

previous hidden state h(t−1) and the current input vector x(t) [192]. Furthermore, different activa-

tion functions are used concerning the three gates and are also displayed in the Figure, presenting

both sigmoid and tanh activation functions.

Figure 7.3: Structure of the LSTM unit, from [192].

In this way, LSTMs are useful for learning sequential temporal information, which may be of

relevance concerning ECG data. Furthermore, as already discussed, emotion levels are continuous

measures that may alter and suffer some changes through time. For this reason, the application

of Long Short-Term Memory networks can be an asset in detecting these emotion variations. In

addition, literature reported good results on emotion recognition with the application of these

structures [29; 170], besides already trying to use them in Chapter 5, Section 5.3.2.

LSTMs also have their bidirectional variants, in which the data is fed to the algorithm from

the beginning to the end, coming back to the beginning. In some cases, this kind of architectures

are able to outperform feedforward neural networks and, thus, it is a structure that may also be

applied for emotion recognition [93; 193].

Having this said, after the fully-connected layers, as aggregation structures, there were applied

both an LSTM layer and a BiLSTM layer that received all segments from a given signal, predicting

the emotion levels of arousal and valence for that specific signal, as it is presented in Figure 7.4

The results obtained with these structures are further analysed in Section 7.4.1.3

Figure 7.4: Emotion Recognition architecture using LSTM aggregation methods.
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7.2.2.4 LSTMs and MLPs combination Methods

Both LSTM and BiLSTM layers were tried out in the previous section, predicting arousal and

valence levels after receiving the signal’s segments. However, in order to consider more complex

aggregation methods, with a high number of hidden nodes in the LSTM or BiLSTM layer, it is

possible to add a multilayer perceptron, that would receive the temporal information from the latter

structures, further process it and finally obtain the desired emotion predictions, as it is described

in Figure 7.5.

Figure 7.5: Emotion Recognition architecture using combined LSTM and MLP aggregation meth-
ods.

In this way, a method identical to the one described in Section 7.3.1.1 was followed, consid-

ering different LSTMs and MLPs combinations to be further tested. Both LSTMs and BiLSTMs

were applied with a varying number of hidden nodes, combined with MLPs with different struc-

tures, such as 1 or 2 layers, varying hidden neurons and dropouts from 0% to 60%. The more

detailed information regarding the hyperparameters used for each experiment are further described

in Section 7.3.1.2.

7.3 Experimental Setup

7.3.1 Aggregation Hyperparameters

7.3.1.1 Multilayer Perceptron

In Table 7.1 it is possible to understand all the experiments developed for multilayer perceptron

aggregation methods. Initially, some configurations were tried out with a random split in order to

get an initial idea about the configurations that would be worth exploring. For this, after the fully-

connected layers, it was added MLPs with only one hidden layer and 100, 150 and 200 neurons

with no dropout applied. After that, a dropout of 20% was considered to the previously mentioned

configurations, also considering 512 hidden neurons.

From these configurations, MLP with 200 neurons and no dropout, and MLPs with both 150

and 512 neurons with a dropout of 20% were the ones with better performances and selected to

a more thorough testing. Thus, 10-fold cross-testing was considered, in which data was divided

into 10 folds of train/test, assuring that all data would be, at some point, used in the test set using

a 90%-10% division. Besides the configurations selected, others were considered, such as MLPs

with 3 layers, 2 of them with 512 hidden neurons and a dropout of 20%, 40% and 60%. In addition,
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a similar configuration was also tried, using a dropout of 20% in the MLP layers but changing the

dropout of the fully connected layers from 20% to 40%. Finally, the last configuration applied a

different number of hidden neurons considering arousal and valence. For arousal, an MLP with 2

layers, 200 hidden neurons and a dropout of 20% was considered, while, for valence, the number

of hidden neurons was 512.

Finally, having into account all the architectures tried and the mean accuracy obtained by the

10 folds tested for each, three MLP configurations were selected as the most promising and further

used for other experiments considering more demanding data division, namely, (1) the multilayer

perceptron with 200 hidden nodes and no dropout, (2) the fully-connected layers with a dropout

of 40% followed by an MLP with 2 hidden layers, 512 nodes and a dropout of 20% and, lastly, (3)

a multilayer perceptron with 2 layers, a dropout of 40%, 200 hidden nodes for arousal and 512 for

valence.

Table 7.1: Scheme of the Multilayer Perceptron experiments. The 3 chosen structures as the
most promising, are marked in bold and underlined.

*No. Layers Hidden Neurons Dropout

Random Split tested 2
100 0% 20% -
150 0% 20% -
200 0% 20% -

3 512 20%

10-fold tested

chosen from random split
2 200 0%

2
150 20%
512 20%

others
2 **512 V/200 A 20%

3 512 20% 40% 60%
512 20% 40% (FCN)

*Concerns both hidden and classification layers **V - valence A - arousal

7.3.1.2 LSTMs and MLPs combination Methods

Concerning the combined LSTMs and MLPs aggregation techniques, Table 7.2 presents all the

structures developed and tested. Initially, it was considered some configurations that were tested

with a random data division, so as to indicate the most promising aggregation methods. In this

way, an LSTM layer was applied with 64 and 128 hidden nodes, varying the MLP. Concerning this

addition, it was used an MLP with 128 hidden nodes, with 1 classification layer, that received the

information from LSTM and predicted emotion levels. In addition, other structures were taken into

account, such as MLPs with 2 layers, 128 hidden nodes and dropouts of 20% and 40%. BiLSTMs

with 128 nodes were also considered, adding an MLP with 1 layer, predicting arousal and valence

levels after receiving the last BiLSTM layer, and MLPs with 2 layers, 128 hidden nodes and a

varying dropout of 20%, 40% and 60%.
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Table 7.2: Scheme of the combined LSTM and MLP experiments.. The 3 chosen structures as
the most promising, are marked in bold and underlined.

(Bi)LSTM MLP
Architecture Hidden Nodes *No. layers Hidden Neurons Dropout

Random Split tested
LSTM

64
1 -

-
128 -
128 2 128 20% 40% -

BiLSTM 128
1 - -
2 128 20% 40% 60%

10-fold tested
chosen from random split LSTM 128 1 - -

128 2 128 20%
BiLSTM 128 2 128 40% 60% -

others LSTM 256 2 512 50%
BiLSTM 64 2 128 20%

*Concerns both hidden and classification layers

From the results of these initial tests, some of the configurations were further used applying a

10-fold cross-testing, such as LSTM structures with 128 hidden layers followed by MLPs with one

and two layers, 128 hidden nodes and 20% dropout. A BiLSTM architecture was also selected for

10-fold cross-testing, with an MLP of 2 layers, 128 hidden nodes and a dropout of 40% and 60%.

Furthermore, one more LSTM and BiLSTM structures were considered, as shown in Table 7.2,

using 256 and 64 hidden nodes respectively, and MLPs with 2 layers. For the LSTM architecture,

the added MLP had 512 hidden nodes and a dropout of 50% was applied. Concerning BiLSTM,

the MLP consisted of 128 hidden nodes with a dropout of 20%.

It becomes important to mention that all of these configurations were tried out and empirically

tested, not following any other paper or approach to choose the hyperparameters used.

Finally, considering the performances obtained by all of the configurations evaluated, three

of them were selected as the best LSTM and MLP combinations achieved and were also used in

further experiments with other data divisions. The three configurations chosen were (1) LSTM

layer with 128 hidden nodes followed by the MLP with one layer, the same number of hidden

nodes and a dropout of 20%, (2) the LSTM layer with 256 hidden nodes followed by an MLP with

2 layers, 512 hidden nodes and a dropout of 50% and (3) BiLSTM layer and MLP with 2 layers

and dropout of 40%, both with 128 hidden nodes.

7.3.2 Signal-Independent Settings

Similarly to Chapter 6, more real and demanding data division was considered. As mentioned

in Section 7.2, the optimized model was used for every aggregation method tried, which means

that only the aggregation architecture was trained considering the 10 cross-testing folds. How-

ever, the optimized fully-connected weights were obtained using segments of signals that were

probably present in every test fold, since it resulted from a random segment split, which leads to

considerably higher and not completely trustworthy results.

In order to assure that the fully-connected weights resulted from training with only the training

data of each fold, each signal of the 10 folds was divided into 10-second segments and further used

to train the fully-connected layers. This method, highly alike the one used in Chapter 6, Section
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6.2.2.1, assured that the segments belonging to training and testing sets belonged to different

signals and that the data used to train the aggregation structure was the same involved in the

training of the fully-connected layers.

As mentioned, only the two best aggregation methods were tested using these signal-

independent settings.

7.3.3 Subject-Independent Settings

After the signal-independent settings, subject-independent train/test sets were also developed and

tested concerning the two best aggregation methods. For this, the data pre-processing described

in Section 7.2.1 was followed, only changing the data division. Instead of considering 10 folds,

3 data divisions per lead were considered, assuring subject-independence between the sets and

following the usual 90%-10% train/test split, which resulted in signals of 3 subjects to belong

to the test set and the others to the train set. Like in signal-independent settings, the signals

belonging to each set were segmented into 10-second segments to train the fully-connected layers

and then the weights obtained were used in the correspondent data split for the subject-independent

experiments considered.

7.3.4 Cross-Database Experiments

As the last data division modification, cross-database experiments were also conducted, consid-

ering all the signals from both AMIGOS and MAHNOB-HCI database as testing sets and these

signals were pre-processed as explained in Section 7.2.1. Since each aggregation method was

trained using 10-fold cross-testing, the training model used for these cross-database experiments

was the one that resulted in a higher emotion recognition rate for the two most promising aggre-

gation methods.

7.4 Results

In this section, the results from the methods previously explained are presented and analysed.

However, having into account the high number of architectures tested, there are only going to

be presented the three best methodologies concerning the use of MLPs and the combination of

LSTMs and MLPs. Concerning the other methodologies, Appendix A can be accessed, presenting

all the results obtained for the structures tested with the 10-fold cross-testing. As already men-

tioned, for the more demanding data division experiments, only the best method of each was used

so as to evaluate the impact of data division on the ability of the network to perform emotion

recognition.

Furthermore, since this Chapter is focused on applying aggregation methodologies, it is im-

portant to directly compare them with the results that would have been obtained for that given

data division without the aggregation. Having this said, for all the MIL techniques experimented,

the emotion recognition performances are evaluated considering the prediction obtained by the
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segments, exactly after the fully-connected layers and before entering the aggregation block, and

the previsions obtained when the entire signal is considered, i. e. after the aggregation method.

7.4.1 Aggregation Methods

7.4.1.1 Heuristic Methods

Concerning the heuristic methods, namely mean, median and maximum, the results obtained were

considerably high, as it can be seen in Table 7.3. The maximum aggregation technique was the one

that showed the lowest performance when compared with the other two methods, although it still

obtained around 80% accuracy for both valence and arousal. Both mean and median were able to

achieve a mean accuracy of 86%, outperforming the results reported by Sarkar and Etemad [169],

which indicates that using Multiple Instance Learning methods can be beneficial to improve the

performance of emotion recognition networks. However, the standard deviation associated with

each method was also high, indicating that results vary significantly according to the data fold

considered, which is, once more, an indication of the high dependence of emotion recognition to

the data division, an inherent behaviour to the usage of small databases.

Table 7.3: Emotion Recognition results concerning heuristic aggregation methods.

Arousal Valence
Accuracy (%) Accuracy (%)

Heuristic Method Average Acc. Std Deviation Average Acc. Std Deviation
Mean 86.74 6.85 85.72 4.62

Maximum 80.53 5.27 79.49 3.66
Median 86.23 6.90 86.03 5.17

Furthermore, as mentioned, emotion recognition results without the aggregation methods are

also considered, calculating the mean performance of the segments without applying any aggrega-

tion method. In Figure 7.6 the accuracy of these four methods is compared in terms of valence and

arousal, proving that an individual emotion prediction level per signal can result in higher model

performances than predicting emotion for every 10-second segments. Nonetheless, as mentioned,

the maximum aggregation method was the one that performed poorly, obtaining similar results to

the ones reported when no aggregation is performed. Concerning valence, the maximum was able

to outperform the use of instances by 2%, however, for arousal, the results obtained were lower

than with segments.

On the other hand, both mean and median improved the accuracy results in around 6% for

arousal and 8% and 9% for valence, respectively.

These initial results were promising and highly motivating for more complex aggregation

methods to be tried, in order to further improve emotion classification.
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Figure 7.6: Emotion Recognition results for heuristic aggregation methods compared with the
performance obtained when no aggregation technique is used.

7.4.1.2 Multilayer perceptron Methods

After the use of more simplistic and direct segment-aggregation techniques, more complex struc-

tures were developed. Concerning multilayer perceptrons, as explained in Section 7.2.2.2, differ-

ent architectures were considered until choosing the three most promising for emotion recognition.

In this way, Figure 7.7 presents the emotion recognition performances of these three architec-

tures, concerning both arousal and valence levels. By applying an MLP with 200 hidden nodes

and a dropout of 20%, it was possible to achieve the better general performance, obtaining 82.88%

accuracy for arousal recognition and 82.33% in terms of valence classification.

Furthermore, the architecture developed where the dropout of the fully-connected layers was

increased to 40%, followed by an MLP with 2 layers, 512 hidden nodes and a dropout of 20%,

achieved the highest performance concerning arousal recognition, with an accuracy of 83.83%.

Concerning valence, there was a slight decrease to 81.37%. Nonetheless, it can be considered a

promising architecture with high performances in emotion recognition.

Finally, the highest performance in terms of valence classification was obtained by applying

a 2-layer MLP with 512 hidden neurons for valence and 200 for arousal and a dropout of 20%.

With this architecture, accuracies of 83.28% and 81.96% were obtained for valence and arousal,

respectively.

Furthermore, the accuracy comparison when using segment-prediction, without applying any

aggregation techniques was also considered. Although one would expect these accuracies to re-

main constant for all architectures, since they go through the same model structures (convolutional

and fully-connected blocks), with predefined and frozen weights, there must be some randomness

in the data, which lead to slight accuracy variations for the prevision obtained after the fully con-

nected layers for each one of the architectures considered.

Having this into account, Figure 7.8 presents the comparison for arousal and valence between
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Figure 7.7: Emotion Recognition results for MLP aggregation methods. (a) MLP, 2 layers,
200 hidden neurons, dropout 20% - best general results for valence and arousal.; (b) FCN dropout
40% + MLP, 2 layers, 512 hidden neurons, dropout 20% - best arousal results.; (c) MLP, 2 layers,
512 (valence) and 200 (arousal) hidden neurons, dropout 20% - best valence results.

(a) (b) (c)

Figure 7.8: Emotion Recognition results comparing MLP aggregation methods with no ag-
gregation techniques. (a) MLP, 2 layers, 200 hidden neurons, dropout 20%.; (b) FCN dropout
40% + MLP, 2 layers, 512 hidden neurons, dropout 20% ; (c) MLP, 2 layers, 512 (valence) and
200 (arousal) hidden neurons, dropout 20%.

the three best methodologies and the correspondent performances when the prediction was done

after the fully-connected layers, avoiding the aggregation methods.

As it is presented in this Figure, the results obtained using signal segments, without any ag-

gregation, are lower than when the same segments are aggregated per signal, which illustrates that

Multiple Instance Learning can be beneficial by forcing emotions to be predicted per signal and not

for every segment. Both MLP aggregation and no aggregation results are quite similar concerning

the three methodologies, since the accuracies obtained by segments is around 75% and 78% for

valence and arousal, respectively, while for the MLP aggregation methods, both arousal and va-

lence are recognized with an accuracy of about 82%. This fact may indicate that the improvement

concerning valence recognition is slightly higher when aggregation techniques are used. The most

significant valence improvement is obtained with the last architecture presented (c), MLP with
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2 layers, 512 (valence) and 200 (arousal) hidden neurons and a dropout 20%, presenting a 6%

increase. Taking arousal into account, the performance improvement is mildly lower, however for

the (b) architecture, there is an accuracy increase of 5%.

7.4.1.3 Long Short-Term Memory Methods

Considering the use of both LSTM and BiLSTM layers as aggregation methods, the results ob-

tained were not considerably higher, for which they were not further tested using the 10-fold cross

testing. Table 7.4 presents the mean accuracy results obtained for both LSTM and BiLSTM when

using two random splits.

Table 7.4: Emotion recognition results for LSTM and BiLSTM architectures.

LSTM BiLSTM
Acc (%) Std. Dev Acc (%) Std. Dev

Arousal 86.51 3.58 84.53 5.96
Valence 80.95 2.38 73.81 2.38

Although the accuracies presented are considerably high, in comparison with the other archi-

tectures tested with these same random splits, LSTM and BiLSTM showed lower performances,

which made them less promising techniques to be further tested using the 10-fold cross-testing.

Furthermore, these random splits seemed to have test sets with easily learned signals which led to

usually significant higher accuracy results than with most of the folds further used and their mean.

In this way, no more tests were performed considering only an LSTM or BiLSTM layer as the

aggregation method.

7.4.1.4 LSTMs and MLPs combination Methods

In addition to the separate use of MLPs and LSTMs as aggregation techniques, both were com-

bined, offering an even more complex methodology for the aggregation of every signal segment.

In this way, as mentioned, different architectures were tested so as to evaluate the results that

could be obtained with this type of approach. In Figure 7.9, the results of the three best methods

from the combination of LSTM and MLP layers are illustrated.

The overall best results obtained were around 78.5% for both valence and arousal, using an

LSTM layer with 128 hidden nodes followed by an MLP with 1 layer and no hidden layers,

receiving the data from LSTM and predicting valence and arousal levels.

Concerning arousal, applying an LSTM with 256 hidden nodes followed by an MLP with 1

layer, 512 hidden neurons and a dropout of 50% assured its best recognition, obtaining an accuracy

of 78.82%. However, the other two methods also reported an arousal accuracy of around 78%.

The last architecture considered was the one with the second overall better results, consisting

of a BiLSTM layer with 128 nodes, and an MLP layer with 128 hidden neurons and a dropout of

40%. For both these two last approaches, valence recognition achieved accuracies around 77%.
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Figure 7.9: Emotion Recognition results for LSTM and MLP combined aggregation methods.
(a) LSTM layer, 128 hidden nodes + MLP, 1 layer - best overall results; (b) LSTM layer, 256
hidden nodes + MLP, 2 layers, 512 hidden neurons, dropout 50 - best arousal ; (c) BiLSTM, 128
hidden nodes + MLP, 2 layers, 128 hidden neurons, dropout 20% - best 2nd overall results.

In this way, as it can be concluded, the results for the three architectures presented in this

section are quite similar, although the methodologies are not that alike, which may indicate a

stabilization on the maximum results that can be obtained by combining these two methodologies.

On the other hand, Figure 7.10 provides information regarding the instance-based approach

and the accuracies obtained without each aggregation method. As it also happened for both heuris-

tic and MLP methods, all the aggregation techniques based on the combination of LSTM and MLP

structures were able to outperform the results obtained without segment aggregation.

(a) (b) (c)

Figure 7.10: Emotion Recognition results comparing LSTM+MLP aggregation methods and
no aggregation techniques. (a) LSTM layer, 128 hidden nodes + MLP, 1 layer; (b) LSTM layer,
256 hidden nodes + MLP, 2 layers, 512 hidden neurons, dropout 50% ; (c) BiLSTM, 128 hidden
nodes + MLP, 2 layers, 128 hidden neurons, dropout 20%.

Like the other aggregation techniques used, the combination of LSTM and MLP also assured

an increase of the model performance when compared with the emotion recognition obtained

after the fully connected layers and with no aggregation network segment considered. The most
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significant accuracy increase reported in Figure 7.10 was for valence, when using with the overall

better methodology, consisting of an LSTM layer of 128 hidden nodes followed by an MLP that

received the LSTM information and predicted emotion levels. For this, valence accuracy was 6%

higher.

Concerning arousal, the improvement of applying aggregation was not so notorious, illustrat-

ing a maximum increase of 4% when applying the BiLSTM layer in combination with a 2-layer

MLP. However, having into account the results analysed, aggregation techniques show to be effi-

cient, outperforming the methodology of predicting emotion for each segment.

7.4.2 Signal-Independent Settings

As explained in Section 7.3.2, signal-independent settings were considered, to evaluate if the net-

work was also signal-dependent, as it was verified in Chapter 6, Section 6.3.2.1 or if the Multiple

Instance Learning techniques applied could, somehow, reduce this problem.

In this way, fully connected weights were trained with the same training data of each fold, not

using the optimized weights. In Figure 7.11 the results are presented for the best MLP method

and compared with the results obtained using instances and their emotion prediction right after the

fully-connected layers.

Figure 7.11: Emotion Recognition results for the best MLP method for signal-independent settings

As one can conclude, results are significantly lower than the ones obtained when using the

optimized weights, which indicates that the network is unable to perform well under signal-

independent settings. Although signal-independent folds are considered to train every aggregation

method during this Chapter, since the optimized fully-connected weights that are used were pre-

viously trained using a random split of segments, the emotion predictions that result from these

layers are not obtained under signal-independent settings and use segments from a lot of differ-

ent signals. In this way, since the results obtained are higher with this methodology, aggregation

methods can then improve them, as seen in Section 7.4.1. However, when fully-connected layers
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are trained using this type of more strict data division, with no data leakage between train and test

sets, the results suffer a significant decrease, since the network has never "seen" segments from

the signals to classify.

In Figure 7.11, the results obtained are quite similar, with or without aggregation methods,

proving that, if the initial prediction is not correctly done, aggregation is unable to improve the

overall classification. In this particular case, the aggregation methods resulted in slightly lower

results and arousal presents a 3% higher accuracy than valence.

Considering Figure 7.12, arousal also presents better results when compared with valence.

However, both of these emotion parameters are poorly recognized, obtaining accuracies mildly

above 50%, which is random, concerning the binary classification used for these parameters.

Figure 7.12: Emotion Recognition results for the best LSTM+MLP method for signal-independent
settings

Having this said, although there are slight differences between the results obtained for these

two methods, the conclusions to be taken are similar, pointing out the lack of ability to obtain good

performances using these signal-independent settings. The reasons for this to occur were already

discussed in Chapter 6 and do not differ when aggregation methods are added to the network. In

this way, it is expected that identical low results are obtained for both subject-independent settings

and cross-database experiments, indicating the need for better databases, with a high variety of

signals so that the emotion recognition field can develop more robust and complete methodologies.

7.4.3 Subject-Independent Settings

As mentioned in Section 7.3.3, three random data splits were considered for each ECG lead. Fur-

thermore, in Figure 7.13 and 7.14 instance results are also presented and compared with the ones

resulting from the best aggregation technique for MLP and LSTM+MLP methods, respectively.

As it can be seen, considering subject-independent settings, the results highly decrease in

comparison with the ones presented in Figure 7.7 and obtained with random signal divisions. In
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(a) (b)

Figure 7.13: Emotion Recognition results comparing MLP aggregation and no aggregation tech-
niques for subjects independent settings using (a) right and (b) left ECG leads.

this way, as it was already concluded in Chapter 6, the architecture and methodology developed

is highly subject-dependent. This problem, as mentioned, is strongly associated with the small

databases available that don’t allow a robust model training to perform well in both signal and

subject-independent settings.

Similarly to what is concluded in Section 7.4.2, it is expected that the addition of aggregation

methods will not be sufficient to improve the results in this kind of data divisions. Figure 7.13

demonstrates that the accuracy results are already low concerning the emotion prediction after

the fully connected layers. Having this into account, since the segments were not correctly rec-

ognized, with relevant patterns detected and important features extracted, the signal information

that is fed to the aggregation method is inappropriate for a correct emotion recognition. Thus, it

becomes irrelevant how complex or well developed the aggregation network structure might be, if

the segments are beforehand poorly predicted.

Concerning both leads of Figure 7.13, it is notorious that the signals from the left lead were

better recognized, specially concerning arousal. However, since these results are obtained with

only three random splits and standard deviations, in particular for the arousal recognition rates,

are quite high, such difference between valence and arousal can be due to the data randomness

associated with this type of division, since it was already concluded how data-dependent this

methodology is.

Furthermore, concerning Figure 7.14 the results presented lead to similar conclusions. The

emotion recognition accuracies concerning segments are, upfront, poor, which could only result

in low performances concerning aggregation methodologies.

In addition, the results obtained are quite alike between both leads. Nonetheless, it can be also

noticed that valence recognition outperforms arousal for both leads. Nonetheless, as mentioned,

due to the small number of different sets considered and the high values of standard deviation

associated with some accuracies, one can only conclude that the model is unable to perform well in

subject-independent settings, and not infer other conclusions or dependencies between the results
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and the impact of the lead or the emotion parameter concerned.

(a) (b)

Figure 7.14: Emotion Recognition results comparing combined LSTM and MLP aggregation and
no aggregation techniques for subjects independent settings using (a) right and (b) left ECG leads.

7.4.4 Cross-Database Experiments

The last experiments conducted using aggregation methods were cross-database tests using

MAHNOB-HCI and AMIGOS. For these, it was only considered the best approach obtained with

MLP and LSTM + MLP aggregation techniques.

For each one of these methods, it was used the model trained by the fold that resulted in accura-

cies closer to the average results for the 10-fold cross-testing. Table 7.5 presents the performances

obtained for both MAHNOB-HCI and AMIGOS databases for the best MLP method, while Table

7.6 illustrates the results obtained for the best LSTM+MLP method.

Table 7.5: Cross-Database results for AMIGOS and MAHNOB-HCI concerning the best MLP
method.

Accuracy (%)
Database Lead Arousal Valence

MAHNOB-HCI
ECGr 61.93 63.84
ECGl 59.55 63.72

AMIGOS
ECGr 44.51 52.51
ECGl 45.47 50.95

As it can be understood, as expected, the model does not perform well when using different

databases as test sets, since the signals considered were not already seen, were acquired in a

different environment and belong to unknown subjects, which increases the difficulty of the model

to correctly recognize emotions in these settings. However, results were not worse than the ones

obtained for signal and subject-independent settings, which indicates that the network dependency

starts at the signal level, and, due to this, it will never be able to perform well when other conditions

are also altered, besides the signals, such as the subjects or acquisition settings.
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Table 7.6: Cross-Database results for AMIGOS and MAHNOB-HCI concerning the best
LSTM+MLP method.

Accuracy (%)
Database Lead Arousal Valence

MAHNOB-HCI
ECGr 53.46 40.81
ECGl 60.02 41.53

AMIGOS
ECGr 50.60 50.84
ECGl 48.81 46.66

Having this said, as it happened in Chapter 6, Section 6.3.2.3, better results were ob-

tained using MAHNOB-HCI, which is more notorious concerning the MLP method, where with

MAHNOB-HCI results were around 60%, while the average accuracies obtained with AMIGOS

were lower than 50%. Nonetheless, for the LSTM+MLP architecture, both MAHNOB-HCI and

AMIGOS presented similar low results. Concerning MAHNOB-HCI, although, for left lead, a

60.02% accuracy was obtained for arousal recognition, valence accuracies were around 41%.

Having this said, as it was already understood by signal and subject-independent settings re-

sults, aggregation is not able to improve the model performances when compared with the use of

segments and emotion prediction after the fully connected layers when more demanding data divi-

sion is considered. The ways of solving this problem consist of better databases, which can further

allow for more complex and optimized networks to be developed, increasing emotion recognition

quality and reliability.

7.5 Summary and Conclusions

The present Chapter focused on the application of Multiple Instance Learning techniques to the

already improved methodology presented in Chapter 6, motivated by other approaches, already

mentioned, where this technique was applied and led to more consistent and promising results.

Multiple Instance Learning (MIL) consists of an improved technique to be applied in weakly

supervised settings, which is the case, concerning the emotion databases available in literature and

described in Chapter 3. Emotions are continuous states, which indicates the need of a continuous

labelling method. However, modeling and predicting emotion through time for a continuous data

labeling is not usually possible or done. For that reason, the datasets available not only have a

reduced number of signals but also one unique label per signal, indicating the emotion felt during

a given emotion elicitation technique, such as an emotional video.

As it is known, most approaches use emotion segments instead of the entire signal, which

forces them to consider the same label for all the segments. Having this said, there as a high

motivation for developing MIL techniques and apply them to the already developed network, ag-

gregating segments that belong to the same signal and predicting emotions per signal and not for

every segment.

As explained, different MIL structures were considered, such as simple heuristic methods,

such as mean, maximum and median, and more complex architectures, namely MLPs, LSTMs
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and the combination of both. Having into account the results obtained for all the MIL approaches

tested, it was concluded that aggregation methods may indeed improve emotion recognition. Hav-

ing this said, this addition to the network was successful and led to higher accuracy levels to be

achieved.

Nonetheless, it would be expected that more complex aggregation methods would be able to

obtain higher accuracies than the heuristic ways of aggregation. Applying mean, maximum and

median to the segments requires no other addition to the network nor the training of some network

architecture. Thus, other methodologies such as MLPs and LSTMs, that would be trained, could

become more robust and selectively ignore or highlight some segments over others.

However, the results did not corroborate this theory and the higher performances obtained

were through the application of mean and median. These results can be due to the fact that signal-

independent folds are used to train the aggregation structures, which becomes more demanding for

the model, obtaining lower accuracies. Furthermore, it is possible that MLP and LSTM structures

may not be focusing on the most correct patterns for emotion recognition, thus worsening the

results when compared to a simple mean or median computation. Furthermore, concerning LSTM,

only the last layer is further used and passed on to the following structures. Although that layer

already presents information from all the others, it can also not be the most correct information to

be used concerning emotion recognition. All these facts and others can be possible reasons of why

heuristic and more simple ways of aggregation lead to higher emotion recognition performances.

In addition, as mentioned, it would also not be expected that the accuracy obtained without

using any aggregation method would change concerning the MIL technique applied, since those

results are obtained with the data that only go through the convolutional and fully-connected lay-

ers, which had their weights frozen. However, some data randomness can be associated or layers

might not be completely well frozen, which leads to their weights to be altered during the ag-

gregation model training. Although it is considered that this layer freezing was well applied,

these suppositions are mentioned, since it remains unknown the reason for this segment accuracy

changing with the aggregation method applied.

Finally, the already identified weaknesses of this network and most approaches available in

the literature, were not mitigated or diminished through the application of MIL techniques. Thus,

signal and subject-dependence continued to be verified and to highly decrease the model’s perfor-

mance.

As mentioned during both this and Chapter 6, such problems may be reduced by the use of

larger datasets, since ensuring a greater variety and amount of signals brings the opportunity to

strongly train models and prepare them for different signals. In this way, models would be more

prepared to correctly identify emotions for unknown signals or even subjects.

Having this said, the present Chapter demonstrates to be relevant since it allowed for other

techniques to be applied and successfully improve results. Furthermore, it also highlighted this

field’s already detected problem of inadequate evaluation.
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Conclusion and Future Work

The main goal of this dissertation was to develop a deep learning architecture for emotion recog-

nition using ECG signals, having into account more realistic data division scenarios and assess-

ing signal and subject-dependence problems. To achieve this, there was the need to explore the

fundamentals behind the electrocardiogram and emotions, as well as understanding their natural

functioning and behaviour. Furthermore, after getting acquainted with the basic theoretical in-

formation regarding these aspects, several prior art approaches and techniques were explored and

analysed, so as to understand the state-of-the-art already developed, and the scientific evolution

that had already happened in this field, as opposed to what could still be lacking.

Having this said, interesting approaches were analysed, with promising and motivating results,

that indicated the potential of applying both machine and deep learning techniques for the devel-

opment of emotion recognition methodologies. In addition, although deep learning approaches

were considerably less explored in literature than hand-crafted methods, the existing studies us-

ing deep learning architectures reported results able to outperform machine learning approaches,

which demonstrated the potential of applying deep neural networks in this field.

However, some limitations were encountered, namely concerning data division methods, pre-

senting random train/test splits. In addition, most deep learning approaches used ECG segments

instead of the entire signals, leading to train and test sets with segments belonging to the same

signal. This unrealistic way of evaluating model performances translate into some misleading re-

sults, since it considers sets with data belonging to the same subject and from the same signals. In

this way, it became relevant to replicate some approaches, so as to find a strong baseline for the

work developed in this dissertation, as well as testing these promising methods with more strict

and demanding data settings.

Having this said, different approaches were explored and replicated, having into account dif-

ferent methodologies or deep learning architectures. However, the lack of important information

and the absence of clarity concerning all the steps of the proposed methodologies resulted in low

emotion recognition performances obtained during the replications. Considering the mentioned

drawbacks and limitations unveiled by the replication stage, the self-learning method proposed by

Sarkar and Etemad [169] revealed itself to be the most promising, and was used as baseline for the
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rest of the work conducted.

Thus, different improvements were applied to this approach, starting with the self-supervised

learning task. The techniques applied for its improvement were successful, which led to an in-

crease in both arousal and valence recognition accuracies, although never reaching the results

reported by Sarkar and Etemad [169]. Furthermore, different data divisions were applied to this

improved emotion recognition network, resulting in considerably lower performances than when

applying random data splits, which indicated both signal and subject-dependency.

Nonetheless, so as to further improve the network developed, Multiple Instance Learning tech-

niques were considered, with the main goal of overcoming some limitations regarding the sparsely

labelled datasets available. By applying different aggregation methodologies through the use of

Multilayer Perceptron and Long Short-Term Memory structures, emotion was predicted per anno-

tated signal, instead of predicting arousal and valence levels for all the segments belonging to the

same signal. With these methods, results considerably improved when compared with the emotion

predictions per segment. Furthermore, so as to obtain more reliable results, 10-fold cross-testing

was used for signal-independent settings, in order to train these aggregation structures. Having this

said, MIL showed to be efficient and to surpass some problems that result from small databases,

with scarce annotations. However, these aggregation methods were not sufficient to reduce the sig-

nal and subject-dependence problems already previously encountered. For all the realistic settings

considered, such as signal and subject-independent settings and cross-database experiments, the

model performance suffered a sharp decline, proving the remaining limitations in methodologies

that are developed and improved using random data divisions.

These results put in perspective the overall approaches that reported promising model per-

formances with random data splits, since this dependency prevents them from truly have an ap-

plication into the real world. Thus, besides trying to find a promising methodology for emotion

recognition, this thesis focused on understanding the current problems and systematic mistakes

that are being done in literature, which falsely demonstrate a more evolved state of the art by not

actually considering realistic data divisions.

However, the mentioned dependencies can be easily justified not by the use of shallow net-

works or the application of incomplete methodologies, but due to the databases available, which

are considerably small. Not having sufficient subjects nor sufficient data per subject, results in

models that are not well trained, and are unable to successfully recognize emotions for unseen

data, even with complex architectures that would probably allow for accurate results to be ob-

tained. As it is known, deep learning approaches require a large amount of data and, at this point,

there are no databases available with physiological signals for emotion recognition that may ensure

the amount of data needed to obtain robust models and with real application potential.

In this way, besides reporting these systematic and recurrent problems, this dissertation still

improved an available literature approach, considering, as it was intended, different deep learning

architectures, such as Long Short-Term Memory layers and Multilayer Perceptrons. Nonetheless,

other methods could also be considered, such as hand-crafted methodologies or even multimodal

approaches. However, due to the short time to develop the present dissertation, there is a lot of
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future work that can be done so as to improve and scientifically evolve this field.

Concerning the limitations encountered, there’s the need to develop larger databases and, if

possible, with stronger supervised methodologies, presenting a variety of signals per subject and

a high number of subjects. Only with sufficient data and signal variety, it will be possible to

develop techniques that are robust enough to recognize emotions without any signal, subject or

database dependency. Furthermore, along with databases enlargement, different techniques may

be considered and used to reduce some of the limitations of low data availability, such as unsu-

pervised learning, one-shot learning, weakly-supervised learning and, as used in this dissertation,

self-supervised learning methodologies. All of these approaches are suitable and often bring im-

provements in situations with little data available, as it was seen in this dissertation.

Furthermore, other future improvements may focus on the development of subject-independent

techniques since it was one of the goals of this dissertation due to the reduced number of these

methodologies in this field. However, since the problem is still at the signal level, there’s the

need to first solve this signal dependency and then focus on specific techniques to ensure good

performances with subject-independent settings.

Having this said, it can be considered that the dissertation goals were achieved and, hopefully,

it may be a scientific work with interesting discussions and future work suggestions concerning

the emotion recognition and affective computing field.





Appendix A

Aggregation Methods

Table A.1: Emotion Recognition results for the other different MLP aggregation methods tested
using 10-fold cross testing.

Method Arousal Valence
No. Layers Hidden neurons Dropout Acc (%) Std. Dev. Acc (%) Std. Dev.

2 150 20% 81.68 6.85 79.69 3.73
2 512 20% 82.82 6.83 82.10 4.44
3 512 20% 82.9 7.00 82.10 3.88
3 512 40% 82.70 6.91 81.88 2.70
3 512 60% 82.66 6.78 83.06 3.88

Table A.2: Emotion Recognition results for the other different MLP + LSTM aggregation methods
tested using 10-fold cross testing.

Method
(Bi)LSTM MLP Arousal Valence

Architecture Hidden Nodes No. Layers Hidden neurons Dropout Acc (%) Std. Dev. Acc (%) Std. Dev.
LSTM 128 2 128 20% 76.67 7.99 75.14 2.11

BiLSTM 128 2 128 60% 78.15 7.60 76.54 4.49
BiLSTM 64 2 128 20% 74.69 7.37 74.81 5.89
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