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Abstract

In the last few years, the application of algorithms based on Artificial Intelligence and Machine
Learning (ML) has grown significantly in many areas, including autonomous driving. Autonomous
driving has attracted the interest of the automotive industry, and of many researchers within the
scientific community. This is reflected in the emergence of numerous events around the world
promoting research and development in this area in the form of competitions. One of those com-
petitions is the Autonomous Driving Competition (ADC) of the Portuguese Robotics Open (PRO).
This competition presents a set of challenges for autonomous mobile robots on a track very similar
to a conventional road.

The project Major Alvega consists of a realistic simulation environment of the competition
scenario and an Ackermann steering robot. This robot participated in the 2019 edition of the ADC
and it uses computer vision, control theory, and odometry based methods to control its navigation.
These methods are complex to process and integrate. To make the robot control system simpler
and obtain better performance, ML methods based on Artificial Neural Networks (ANNs) and
Supervised Learning algorithms were applied. It was intended, with those algorithms, to provide
the robot the capacity of predicting a steering angle that would keep it within the track in and
end-to-end manner, using only images captured by a camera. For this purpose, two state-of-the-
art ANNs for autonomous driving were used: PilotNet and JNet. To build the training dataset,
previous data of the robot driving on the track in a real competition environment was employed.
In cases where this data was insufficient, the simulation environment from Major Alvega’s project
was used to generate more data.

Experiments performed on the track in a simulation environment have shown that the robot
was able to successfully travel along the different possible routes at different speeds, while staying
within the lanes and with low deflections from the ideal trajectory. It was also observed a more
steady and smoother steering in comparison with the previous navigation system. Moreover, with
the integration of this new controller in Major Alvega’s previous architecture, the robot was also
able to circumvent obstacles. The results of these experiments revealed that it is possible to effec-
tively control the robot’s navigation using an end-to-end learning framework, while significantly
reducing the number of intermediate processing steps.
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Resumo

Nos últimos anos, tem-se assistido à aplicação de algoritmos baseados em Inteligência Artificial
e Aprendizagem Automática em inúmeras áreas, entre as quais a condução autónoma. Esta área
tem cativado o interesse da indústria automóvel e de muitos investigadores dentro da comunidade
científica. Tal reflete-se na criação de inúmeros eventos a nível mundial que promovem a inves-
tigação e o desenvolvimento nesta área sob o formato de competições. Uma dessas competições
é a competição de Condução Autónoma do Festival Nacional de Robótica. Esta competição apre-
senta um conjunto de desafios para robôs autónomos numa pista muito semelhante a uma estrada
convencional.

O projeto Major Alvega consiste num ambiente de simulação realista do cenário da competição
e num robô de locomoção Ackermann que participou na edição de 2019 da Competição de Con-
dução Autónoma. Este robot utiliza técnicas baseadas em visão computacional, teoria do controlo
e odometria para o controlo da sua navegação. Estes métodos são bastante complexos e difíceis de
integrar. De forma a tornar o sistema de controlo de navegação do robot mais simples e obter um
melhor desempenho, foram aplicados métodos de aprendizagem automática baseados em algorit-
mos de redes neuronais e aprendizagem supervisionada. Utilizando estes algoritmos, pretendeu-se
que o robot aprendesse de modo end-to-end a determinar um ângulo de volante que o mantivesse
dentro da pista, recorrendo apenas a imagens captadas por uma camera. Para o efeito, foram uti-
lizadas duas redes neuronais estado-da-arte para condução autónoma: a PilotNet e a JNet. Para
formar os dados para treinar estas redes, utilizaram-se dados prévios do robot a conduzir na pista
em ambiente real da competição. Em situações que estes dados eram insuficientes, foi utilizado
ambiente de simulação do projecto do Major Alvega para criar mais dados.

Avaliações feitas na pista em ambiente de simulação, demonstraram que o robot, utilizando
o controlador proposto, foi capaz de percorrer com sucesso os diferentes percursos possíveis e a
diferentes velocidades, mantendo-se dentro das faixas e com baixos desvios relativamente à tra-
jetória ideal. Foi também observado uma condução mais estável e suave em comparação com o
sistema de navegação anterior. Além disso, com a integração deste novo controlador na arquitetura
do Major Alvega, o robot também foi capaz de contornar obstáculos. Os resultados destas avali-
ações revelaram que é possível controlar eficazmente a navegação do robot usando aprendizagem
end-to-end, reduzindo-se significativamente o número de passos intermédios de processamento.

iii



iv



Agradecimentos

Antes de mais, quero agradecer aos meus orientadores, Armando Sousa e Valter Costa, por todo
o apoio e orientação constante que me deram ao longo desta dissertação e por terem confiado em
mim para fazer parte do seu projecto.
Não podia também deixar de agradecer à minha família. Aos meus pais, por toda a educação que
me deram ao longo destes anos. Estiveram sempre lá nos bons e nos maus momentos da minha
vida e apoiaram-me sempre. São, sem sombra de dúvidas, as pessoas que mais me ajudaram
a acreditar em mim e a ensinar-me o que se leva desta vida. Também quero agraceder ao meu
irmão, que tanto adoro e que tanto me apoiou, e à minha avó, a minha maior fã. Este trabalho é
dedicado a eles.
Aos meus amigos, não só por me terem acompanhado este tempo todo na biblioteca da FEUP,
mas também por me terem proporcionado os melhores momentos da minha vida. Agradeço toda
a paciência que tiveram comigo e por me ajudarem nos momentos mais difíceis.

Gonçalo Martins

v



vi



“I don’t know where I’m going,
but I’m on my way.”

Carl Sagan
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Chapter 1

Introduction

1.1 Context

Over the last few years there has been an increase in the application of algorithms based on Arti-

ficial Intelligence (AI) and Machine Learning (ML) in many areas. This is a result of the growth

in both the processing power of computers and the data availability. These algorithms are able

to learn to perform several tasks automatically using only data provided by humans. In the last

decade, there are examples of cars that make use of deep learning based technologies, such as

Tesla1 and Waymo2. The application of ML proves to be the most promising to guarantee a max-

imum level of autonomy in cars, and ultimately resolve the driving paradigm. This would lead

to greater mobility for both the elderly and disabled people, less traffic congestion with less air

pollution associated, reduced energy consumption, less material damages and, more importantly,

fewer human deaths on the road. The area of autonomous driving has also captured the interest

of researchers within the scientific community. This is denoted by the organization of numerous

events around the world that promoting research and development in this area. These events are

usually in the form of competitions. Examples of such competitions include: the DARPA Grand

Challenge [1] and the Autonomous Driving Competition (ADC) [2] of the Portuguese Robotics

Open (PRO) [3]. The latter occurs annually in Portugal and presents a set of challenges for au-

tonomous mobile robots on a track very similar to a conventional road. The Major Alvega [4]

project consists of a small steering Ackermann robot that participated in the 2019 edition of this

same competition. This project also included the creation of a realistic simulation environment [5]

of the competition scenario.

1https://www.tesla.com/. [Last accessed: 22/06/2021]
2https://waymo.com/. [Last accessed: 22/06/2021]
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2 Introduction

1.2 Objectives

One of the Major Alvega’s most important system is the one that controls its navigation. This sys-

tem uses computer vision, control theory, and odometry localization based techniques to determine

the steering angle. In the current system of the Major Alvega, these methods are hard-coded, com-

plex and difficult to optimise. To overcome this, and following the trend of the recent autonomous

cars driving algorithms, the main goal of this dissertation is to implement ML algorithms for the

robot driving controller to make it simpler and to achieve better performance. It is pretended that

this new controller is able to calculate a steering angle that keeps the robot within the track in the

respective lanes. For the development of the algorithms and further tests, the capabilities of the

simulation environment developed within Major Alvega’s project will be used. In summary, the

main objectives of this dissertation are the following:

• To study ML-based algorithms to develop a new controller for the system of the Major

Alvega robot;

• The new ML-based controller should be able to predict, in an end-to-end manner, the ap-

propriate steering angle that keeps the robot within the track and its respective lanes based

on images captured from a front-facing camera;

• To integrate the new ML-based controller into Major Alvega’s system to perform the differ-

ent ADC challenges;

• To conduct a comparative analysis of Major Alvega’s performance with the new and the old

navigation systems.

1.3 Document Structure

This document is structured as follows: Chapter 2 introduces Major Alvega’s project and the ADC,

the competition in which this project participates. It also describes the simulation environment and

the previous architecture of Major Alvega that was used when the robot participated in the 2019

edition of the ADC. Chapter 3 includes the literature review and a state-of-the-art survey regarding

deep learning and its application in autonomous driving. Chapter 4 contains the description of the

proposed ML-based controller and the methodologies followed. Chapter 5 presents the results of

the proposed controller in driving the robot on the simulation environment track, including also a

section of discussion. Finally, Chapter 6 draws the main conclusions and points out future work.



Chapter 2

Major Alvega Project and ADC

This chapter introduces the project of Major Alvega that participated in the Autonomous Driving

Competition (ADC) of the Portuguese Robotics Open (PRO) of 2019. In Section 2.1 the ADC

competition is introduced, as well as the 3 different challenges that compose it. The simulation

environment used for the development of this dissertation is presented in Section 2.2, such as

the tools used for that purpose: the Robotic Operating System (ROS) (Section 2.2.1) and the

Gazebo simulator (Section 2.2.2). Finally, in Section 2.3, a brief description of the ROS system

architecture implemented in the robot Major Alvega is given.

2.1 Autonomous Driving Competition of the Portuguese Robotics Open

The PRO is an event promoted by the Portuguese Robotics Society (SPR – Sociedade Portuguesa

de Robótica) that aims to promote science and technology among youngsters, teachers, researchers

and the general public, through autonomous robot competitions [3]. One of these competitions

is the ADC that presents a variety of challenges for fully autonomous mobile robots that must

traverse a route along a closed track with strong similarities to a conventional road. Some of

these challenges, defined in the rules of the competition [6], try to replicate the real challenges of

self driving cars, such as driving alongside the track, detecting traffic lights and signs, avoiding

obstacles, performing different parking situations and circumventing work zones defined by small

traffic cones.

The competition track (Figure 2.1) has a total size of 16.7× 6.95 m2, it is surrounded by

two parallel continuous side lines and contains two lanes separated by one single broken line.

Moreover, it is composed of two circular curvatures and one straight leg including a zebra crossing

placed in its center. In addition, it contains two parking areas: one parallel parking band, located

at the right of the lane after the zebra crossing and one bay parking zone, with two parking spots,

highlighted with the letter “P” and placed outside of the driving track. At the zebra crossing area

3
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Figure 2.1: Competition track of the ADC’s 2019 edition.

it is mounted a signalling panel (Figure 2.2) responsible for indicating orders and directions that

the robot must obey (Table 2.1).

Figure 2.2: Signaling panel [6].

Table 2.1: Signaling panels of the ADC. Adapted from: [6].

Action Signal

Follow to the left

Follow to the right

Follow straight ahead

Stop

End of trial

Follow to parking area

According to the rules from the 2019 edition [6], there are 3 types of challenges: The driving

challenge, the parking challenge and the vertical traffic sign detection challenge.
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2.1.1 Driving Challenge

The unanimous goal of the driving challenges is to complete two laps around the circuit, starting

from the departure/arrival zone next to the zebra crossing and returning to the same area. This

has to be made in the shortest amount of time and with the fewest penalties possible. The four

different driving challenges with an incremental level of difficulty are:

• Driving at pure speed challenge (D1): The signalling panel is only used to trigger the

robot departure;

• Driving with signs challenge (D2): The robot must drive along the track following the

indications given by the signaling panel;

• Driving with signs and obstacles challenge (D3): Same as the D2 challenge with the

addition of having to dodge two obstacles placed in the second half of the track. These

obstacles are represented always by a green box with 60 cm2 base and 20 cm as minimum

height;

• Driving with all challenge (D4): Same as challenge D3 with the addition of a working zone

traced by orange and white traffic cones.

2.1.2 Parking Challenge

The unanimous goal of the parking challenges is to park the robot in the respective parking areas

triggered by the ”Follow to parking area” signal indicated by the signaling panel. As mentioned

before, there are two different parking areas, the parallel and the bay parking. Concerning the

challenges, they are divided in the following way:

• Parallel parking without obstacles (P1): After the parking signal, the robot must stop in

the parking band, after the zebra crosswalk, parallel to the driving lane .

• Parallel parking with obstacles (P2): Same as above, but two obstacles are placed in the

parking band without a specific position. However, the distance between them must not be

less than twice the length of the performing robot.

• Bay parking without obstacles (B1): After the parking signal, the robot must stop in one

of the two spots in the bay parking zone.

• Bay parking with obstacles (B2): Same as above, but one obstacle box is placed in one of

the parking spots, forcing the robot to park in the other spot.

2.1.3 Vertical Traffic Signs Detection Challenge

The goal of the vertical signs detection challenge (V1) is to identify and detect the traffic signs

shown in the Figure 2.3 while driving on the track. Six of them (two per type) are placed next to

the circuit.
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01 02 03

P
Figure 3.9: The twelve traffic signs selected to the 2019 edition of the competition.

Two possible display methods are presented here, but others can be allowed if previously
accepted by the local organization:

• The robot can be equipped with three leds, of colors GREEN, RED and BLUE
(alternatively a single three color led can be used). These leds are intended to show
that the robot has detected and identified a traffic sign. The red led must be used to
identify a warning sign, the blue led to identify a mandatory sign and the green led
to identify an information sign. These leds must be turned ON once, for 1 second,
to identify traffic signal 1, twice (1 second ON, 1 second OFF, and 1 second ON
again) to identify traffic signal 2, and following the same sequential approach for
traffic signals 3 and 4. Leds must be bright enough to be clearly visible from a 5
meter distance.

• Robots using a laptop (or possessing a display) can use the display to show the
identified sign. The display should be used to either show an image of the detected
sign or a color spot functioning like the leds referred in the previous point.

10

Figure 2.3: Vertical traffic signs used in challenge V1 [6].

The details about the scores and the penalties as well as more detailed information can be

found in the rules of the ADC’s 2019 Edition [6].

2.2 Simulation Environment

A simulator plays an important role in the development of applications in robotics. Through a

simulator it is possible to develop virtual models of physical systems and their entire surrounding

environment, allowing a reproduction of real situations in a virtual environment with a satisfactory

degree of similarity. Hence, it is possible to easily perform a large number of tests with different

initial conditions and/or in different scenarios. In addition, there are other advantages in using a

simulated environment, such as prototyping a robot, testing different algorithms without concern

for damages at the hardware level, ease of debugging, creation of datasets and portability. The last

one is one of the most valuable advantages, since replicating the conditions in which a robot is

inserted or even carrying it to a certain position can be unfeasible, costly and time-consuming.

In this context, previous works of [7, 8, 4, 5] consisted of the creation of a PRO ADC simulator.

The simulator results had a maximum relative error of 4.65% in the odometry tests and led to an

accuracy of 99.37% with the dataset used for traffic signals recognition tests [8]. All this leads to

the conclusion that the developed simulator is extremely realistic with only a small gap between

simulation and reality.

The simulator was developed using ROS and Gazebo and represents two robot models that

participated in previous editions of the competition: Conde [7, 8], a differential locomotion robot

and Major Alvega [4], an Ackermann locomotion robot. Moreover, it also supports every challenge

of the competition mentioned before in Section 2.1. The simulator is open source and is available

for download in [5].
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2.2.1 Robotic Operating System

The Robotic Operating System (ROS)1 [9] is an open-source framework for developing applica-

tions in robotics widely used in this field. It provides several features, such as hardware abstraction,

low-level device control, message-passing between different processes as well as package man-

agement. In addition, it offers several libraries, tools and standardized messages with solutions to

frequent problems in robotic applications. The main languages of code development are Python

and C++.

The communication between the different processes, denominated by ROS nodes, is done

through topics following the publisher-subscriber topology. In ROS, nodes publish messages on

topics and the other nodes can subscribe to them and read the stored messages. ROS also allows

communication between nodes through services according to the client/server topology. A service

is a specific task performed by a node dedicated exclusively to that task. Therefore, the interaction

between client and server works by exchanging two messages: one with the request and one with

the reply.

These two types of communication are different in the number of nodes that can communicate

with each other. While topics allow many-to-many communication, services only allow one-to-one

communication. Both types of communication are managed by the ROS Master. The ROS Master

provides naming and registration services to the nodes in the ROS system. It tracks not only the

publishers and subscribers to the topics but also to the services. One of its main responsibilities is

to locate the ROS nodes and establish communication channels between them through a protocol.

Figure 2.4 depicts, in a holistic view, the simplified architecture of a ROS system as well as

the two types of existing communications.

ROS Master

/topicPublisher Node Subsciber Node

ROS Node

 
Service Server

Request ROS Node

 
Client Server

RegistrationRegistration

Reply

Published
message

Subscribed
message

Figure 2.4: ROS example of the client/service and the publisher/subscriber topologies.

The ROS environment also possesses visualization tools and other tools that help in testing

and debugging the system. These include system graph visualization tools (rqt_graph), 3D

visualization (rviz), logging tools (rqt_console), recording and (rosbag and rqt_bag) and

a set of command-line tools for testing and debugging various parts of the system such as, nodes

1https://www.ros.org/. [Last accessed in 21/05/2021]

https://www.ros.org/
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(rosnode), topics and their messages (rostopic), services (rosservice), system parameters

(rosparam), among others.

Among these tools, one should highlight the rqt_graph that allows the visualization of the

architecture of the system that is being executed, i.e., the connection between the nodes and the

topics and the information in the messages being sent. Also, the rosbag allows the recording and

then playback of messages on certain topics and still handles the data collected for other purposes,

such as creating datasets. The rqt_bag not only allows the recording and playback of messages,

but it also makes it possible to visualize them. Finally, the various command-line tools enable the

user to see the elements of the system, their type, the messages transmitted and the information

about them.

In this manner the ROS presents a distributed and modular architecture that has the great

advantage of being able to distribute the nodes between different computers or robots.

2.2.2 Gazebo

The Gazebo2 is an open source 3D simulator used for robotic applications and is the default sim-

ulator of ROS. It is capable of simulating object models, including robots, present in its environ-

ment. Objects are treated as a set of rigid links interconnected by joints. Sensors can also be

associated with each link.

The Gazebo system is divided into two parts, the server, gzserver, and the client, gzclient.

On the one hand, the server is responsible for calculating the physics, the rendering of the objects

and the information captured by the sensors. On the other hand, the client is responsible for provid-

ing a Graphical User Interface (GUI) that allows visualization and interaction with the simulation

environment.

The physics default engine is the Open Dynamics Engine (ODE)3. However, it is important to

note its capability of using others, such as the Bullet4, the Simbody5 and the Dynamic Animation

and Robotics Toolkit (DART)6. The physics engine is responsible for simulating the dynamics and

kinematics of objects belonging to the simulation environment. The characteristics provided by

this engine are collision detection, types of movement made by the joints, mass and inertia.

When it comes to graphics, the Gazebo simulator uses an existing open-source graphics en-

gine, the Object-Oriented Graphics Rendering Engine (OGRE)7. This engine is used to render the

simulated 3D scenarios. These scenarios allow the user to present a GUI with the state of the

world. Rendering includes simulation of lighting, textures and the sky.

Gazebo provides a library with several categories of sensors such as altimeters, cameras, con-

tact sensors, depth, GPS, sonar, among others. Furthermore, it is also possible to create new

2http://gazebosim.org/. [Last accessed in 21/05/2021]
3http://www.ode.org/. [Last accessed in 21/05/2021]
4https://pybullet.org/wordpress/. [Last accessed in 21/05/2021]
5https://simtk.org/projects/simbody/. [Last accessed in 21/05/2021]
6https://dartsim.github.io/. [Last accessed in 21/05/2021]
7https://www.ogre3d.org/. [Last accessed in 21/05/2021]

http://gazebosim.org/
http://www.ode.org/
https://pybullet.org/wordpress/
https://simtk.org/projects/simbody/
https://dartsim.github.io/
https://www.ogre3d.org/
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sensors using plugins. It is by the information given by these sensors that the robot model per-

ceives the virtual environment, making the extraction of information even more realistic in the

simulator by adding noise to the sensors.

The objects present in the simulation environment are represented in Simulation Description

Format (SDF) format, an Extensible Markup Language (XML) dialect, which describes the shape

and textures of its links, joints, sensors and model plugins. The representation of the object’s links

includes attributes such as shape, textures, luminosity and collision and inertia models. The joints

are represented with properties like the joint’s type, the links it connects, the degrees of freedom

and movement restrictions. The world, on the other hand, can be seen as an object containing

other objects, lighting elements, world plugins and global properties.

It is also worth mentioning that Gazebo allows extending its functionalities through the addi-

tion of plugins. These plugins can refer to the world, the model or its visual part, the sensors, the

graphical interface and even the Gazebo system itself.

Finally, the GUI of the Gazebo (Figure 2.5) is an interface that allows the user not only to

visualize the simulation environment and the behavior of the models but also their manipulation.

The spectrum of manipulations ranges from adding and removing objects to translate and to rotate

them, changing the lighting and the simulation speed.

Figure 2.5: Gazebo GUI.

2.2.2.1 Design of the Robot World

The modeling of the track corresponds to the definition of a texture that represents the track and its

application as a visual representation of a model. The model is treated as a static element with the

visual representation and the collision model defined as a plane with the appropriate dimensions.

The application of the texture to the plane must take into account the resolution of the image and

the actual dimensions of the track. The design is made through a SDF configuration file, where

the various parameters relating to the components of a material are specified.

In a first approach, the texture of the robot world floor was applied using a Portable Network

Graphics (PNG) file that resulted from an extraction of the image of the track present in the ADC
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rules document [6]. However, it was later noticed that some dimensions of the track were not

exactly accomplished in the simulator due to the occurrence of distortion phenomena. To eliminate

these phenomena, in a second approach, the ADC track used as texture was designed in Scalable

Vector Graphics (SVG) format using the Inkscape8 software. This way, it was ensured that the

track used for further tests had the exact dimensions according to the competition rules and that

there were no distortion phenomena when exporting the image to the PNG format and using it as

a floor texture. The bay parking area was designed in a similar way, both being designed in flat

ground and well-defined light conditions. Nevertheless, the Gazebo simulator offers the possibility

of adding spotlights or changing lighting parameters as well as a model with uneven ground.

In the zebra crosswalk zone, two monitors were added, consisting of two respective links

in order to display the semaphores. These semaphores use another plugin from ROS called

libgazebo_ros_video and an additional node was made to control the displays on the simu-

lator [7]. This node has a menu which allows the user to select the semaphore to be displayed on

both monitors according to Table 2.1.

For challenge V1 (Section 2.1.3), similar to the signalling panel, 12 monitors were added,

consisting of 12 links along the track. With the aid of the same plugin it is possible to display the

12 traffic signs of the competition according to the Figure 2.3. For the challenges with obstacles,

the boxes used as obstacles were modeled by a green parallelepiped with no texture. The working

area consists of 9 traffic cones that can be arranged on the track by the user.

One can conclude that the developed simulator is capable of covering all challenges of ADC’s

PRO and Figure 2.6 depicts, in a holistic view, the capabilities of the simulator discussed in this

subsection.

Figure 2.6: Simulation world of the ADC [4].

8https://inkscape.org/. [Last accessed in 21/05/2021]

https://inkscape.org/
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2.2.2.2 Design of the Robot Model

As mentioned previously, the simulator is capable of representing two robot models: Major

Alvega, the robot that participated in the 2019 edition of ADC, and the Conde, which partici-

pated in the 2018 and 2017 editions. In the scope of this dissertation, only the Major Alvega robot

was used, therefore the focus will be directed to this robot.

The Major Alvega (Figure 2.7) is a 30×50 cm2 size driving robot that uses an Ackermann

steering mechanism, the same as a standard real-life car. In addition, the robot is equipped with a

vision system composed of 2 cameras: one pointing upwards to detect signaling panels and traffic

signs and another pointing downwards to detect the track and the lines that comprise it. These

cameras have fisheye lenses in order to increase their field of view, making it possible to view both

lanes. Figure 2.7 shows the real robot and its representation in the virtual environment.

(a) Major Alvega real robot (b) Major Alvega simulated model

Figure 2.7: Major Alvega Robot in reality and in simulation environment [4].

Hence, Major Alvega is composed of 3 parts (wheels, chassis, cameras) that were designed

using a CAD software and exported to a Unified Robot Description Format (URDF) file, which is

an XML file for representing robot models. Then, this URDF file was converted to Xacro, an XML

macro language, which allows more modularity and code reuse when defining a URDF model.

The first part that was designed was the chassis. This step was done by measuring the actual

dimensions of the real robot and applying them to the Xacro configuration file. The chassis was

made of two parallelepipeds, an upper and a lower one that were both connected through a bar,

thus composing Major Alvega’s base link.

The next step was the design of the locomotion system formed by the wheels. The ackermann

locomotion robot consists of two front directional wheels and two rear wheels with a motor that is

responsible for moving the robot. All these elements were connected and linked to the chassis.

Finally, the last step was the integration of the 2 cameras. Both cameras were added to the

robot model by using a sensor tag of type wideanglecamera. In order to connect the cameras

to ROS libgazebo_ros_camera was used. Using this plugin it is possible to define camera

frame rate, resolution, intrinsic camera parameters, and the topic on which the camera will publish

the captured image. Then the cameras were also linked to the chassis to complete the design of

Major Alvega.
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2.3 ROS Architecture

Major Alvega’s control system was divided into several subsystems where each one is a node im-

plemented in ROS. Figure 2.8 demonstrates the simplified ROS architecture of the robot, where

the nodes are represented by the red oval blocks and the topics are represented by the blue rect-

angular blocks. Major Alvega participated in the 2019 edition of the ADC using this architecture

and the respective developed software.

/major_top_camera/image_raw

/major_tracking_camera/image_raw

/odom_ground_truth

/major_traffic_sign

/major_signalling_panel

/major_tracking

/major_object

/major_crosswalk

/tracking_msg

/object_msg

/crosswalk_msg

/traffic_sign_msg

/signalling_panel_msg

/major_decision

/major_msg

/major_control/ackermann_cmd

gazebo

/ackermann_controller

Figure 2.8: Major Alvega ROS architecture system.

The topics /major_tracking_camera/image_raw and /major_top_camera/image_raw

are where the images are published, these being obtained from the camera pointing downwards

(tracking camera) and the camera pointing upwards (top camera), respectively. The information

regarding the odometry of the robot is published in the topic /odom_ground_truth, more

precisely the robot pose in the simulation environment on Gazebo. Based on the information pub-

lished in these topics, the other nodes integrating the Major Alvega system have the following

functions:

• major_signaling_panel node: This node is responsible for detecting and identifying

the indicating signals in Table 2.1 displayed on the signaling panels. The identification of

the detected signals is published in the topic /signalling_panel_msg.

• major_traffic_sign node: This node is responsible for detecting and identifying the

vertical traffic signs in Figure 2.3. The identification of the detected traffic sign is published

in the topic /traffic_sign_msg.

• major_object node: This node is responsible for detecting objects used as obstacles. The

information that an obstacle has been detected is published in the topic /object_msg.
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• major_crosswalk node: This node is responsible for detecting the zebra crosswalk. The

information that the zebra crosswalk was detected is published in the topic /crosswalk_msg.

• major_tracking node: This node is responsible for tracking the lines of the lane and cal-

culate the distance and angle of the robot’s referencial in relation to them. That information

is then published in the /tracking_msg topic.

• major_decision node: This node owns the robot’s intelligence. It is responsible for

gathering the information from the cameras processed by the other nodes and the odometry

information and for publishing distance, angle and speed references to be used by the control

node. These references are published in the topic /major_msg.

• major_control node: This node is responsible for calculating and updating Major Alvega’s

velocity and steering angle using the references published in the topic /major_msg and

applying a PID controller. This information is published in the /ackermann_cmd topic,

which updates the robot simulation in the Gazebo world via /ackermann_controller.

The algorithms for the tracking node and for the detection of signaling panels are described in

[10, 11] at the time applied to the Conde robot and later also applied in the Major Alvega.
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Chapter 3

Literature Review and State of the Art

In this chapter, Section 3.1 reviews the literature, presenting the fundamental knowledge and back-

ground required for this dissertation. Moreover, in Section 3.2 several state of the art architectures

with related works associated are also mentioned.

3.1 Fundamentals

3.1.1 Machine Learning

Machine Learning (ML) is considered a subfield of Artificial Intelligence (AI) that studies models

capable of learning without being explicitly programmed to do so. Instead, the models rely on

the learnt data and its patterns, so the end result is a model capable of making predictions. The

adaptability of ML models makes them a great choice in scenarios where the data or the tasks are

constantly changing, or when programming a conventional algorithm would be unfeasible. Inside

of ML, there are three main approaches that depend on the nature of the supplied data: Supervised

Learning (SL), Unsupervised Learning (UL) and Reinforcement Learning (RL).

• SL uses a labelled dataset to teach models to yield the desired output. This labelled dataset

includes the inputs and the correct outputs, also known as ground truth. This dataset is

provided to the model aiming that it learns the function that best maps the inputs and outputs,

in order to make correct predictions on new and unseen data. This type of learning is mainly

used for regression and classification problems.

• UL uses an unlabelled dataset. In this type of learning, the models have to find hidden

patterns and trends in the data. This approach is mainly used for association and clustering

problems.

• RL does not use a dataset. In RL, the model acts as an agent that learns by interacting

with its environment. The agent receives rewards by performing correctly and penalties for

performing incorrectly. The agent learns without intervention from a human by maximizing

its reward and minimizing its penalty. Therefore, the models are built from the experience

obtained by trying to solve the problem.

15
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3.1.2 Artificial Neural Networks

Artificial Neural Networks (ANNs), first introduced by McCulloch and Pitts [12], are a mathemat-

ical model inspired by the biological neural networks and the way they process information. They

are generally used to map non-linear input and output relationships, being extremely well-suited

to solve problems in which the data is complex and noisy.

An ANN is organized into multiple layers of neurons that are interconnected with each other,

analogously to the synaptic connections of the brain. These layers are usually divided into input

layer, hidden layers and output layers. In cases where the network is composed of more than one

hidden layer, they are generally labeled as Deep Neural Networks (DNNs).

(a) Artificial Neural Network (b) Deep Neural Network

Figure 3.1: Typical neural network architectures and difference between ANN and DNN conven-
tion [13].

3.1.2.1 Artificial Neuron

The core processing units of the ANNs are the neurons, also known as nodes, units or perceptrons

(Figure 3.2). It receives as inputs the outputs from other neurons and computes an output itself.

This output results in the application of one activation function in the weighted sum of the inputs

and a bias (Equation 3.1).

Activation
Function Output

bias

weights

Inputs weighted
sum

Figure 3.2: Artificial Neuron.



3.1 Fundamentals 17

zl
j = ∑

k
wl

jkal−1
k +bl

j

al
j = f (zl

j)

(3.1)

For each neuron, the following notation is used:

• wl
jk : weight for neuron j in layer l for incoming node k

• bl
j : bias for neuron j in layer l

• zl
j : the weighted sum of input for node j in layer l

• al
j : output for node j in layer l

• f : activation function

With this notation, the equation for the forward propagation can be rewritten in the vectorized

form for each layer:

al = f (wlal−1 +bl) (3.2)

3.1.2.2 Activation Functions

The activation function determines the output of the neuron respectively to its inputs, deciding if

the neuron should be activated or not. One of the reasons why non-linear functions are preferable

over linear is due to the fact that non-linear functions have a non-zero derivative that makes the

backpropagation algorithm [14] computationally efficient. Moreover, the addition of nonlinearities

allows the network to learn complex data with high levels of accuracy. Also, they are used to

normalize the output for a given range.

Figure 3.3 shows some of the commonly used functions and their respective equations. First,

it can be seen that sigmoid normalizes the output between 0 and 1, whereas the hyperbolic tangent

function is centered at zero and normalizes between -1 and 1. However, both of these functions

are subject to the problem of vanishing gradient, i.e., when the network refuses to learn further,

becoming too slow to make an accurate prediction. As such, Rectified Linear Unit (ReLU) [15]

and one of its variants, Leaky ReLU [16], emerged to fix this problem. The latter avoids the dying

ReLUs problem by providing a slope (α) in the negative part of the function. In addition, Clevert

et al. [17] introduced the Exponential Linear Unit (ELU) which speeds up the learning process in

deep neural networks and leads to higher classification accuracies compared to the ReLU and its

variants. Last but not least, there is the softmax activation function, typically used in the output

layer in classification problems. This function normalizes the outputs for each class between 0

and 1, and divides them by their sum, giving the probabilities of each input value belonging to a

specific class.
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(a) f (z) = 1
1+ez (b) f (z) = tanh(z) (c) Equation 3.3

(d) f (z) = max(0,z) (e) f (z) = max(αz,z)

Figure 3.3: Typically used activation functions.

f (z) =

α(ez−1) if z < 0

z if z≥ 0
(3.3)

3.1.2.3 Loss Functions

In ML, the loss function (also known as cost or error function) are used to evaluate how poorly

models are performing. Simply, it is a measurement of how wrong the model is in terms of its

ability to estimate the relationship between the inputs and outputs. This is typically expressed as

a difference or distance between the predicted value by the ANN and the ground truth. Given a

dataset {D = (xn,yn),n = 1, ...,N}, the lost function can be estimated by iteratively running the

model to compare the estimated predictions ŷ with the ground truth y, when the network is fed

with the input vector x.

The two most commonly used functions are the Mean Squared Error (MSE) (Equation 3.4)

and the Cross-Entropy (Equation 3.5) for regression and classification problems, respectively.

C(θ) =
1
N

N

∑
n=1

(ŷ(xn)− yn)
2 (3.4)

C(θ) =− 1
N

N

∑
n=1

yn · log(ŷ(xn))+(1− yn) · log(1− ŷ(xn)) (3.5)

These functions are used not only for performance evaluation of ML models, but also in the

training process to find the set of weights wl
jk and biases bl

j (collectively denoted as θ 1) that mini-

mizes the prediction’s error.
1θ is often used in the literature as a notation for the ANN parameters
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3.1.2.4 Training

Given a training dataset D, an ANN learns how to correctly map inputs to outputs through the

training process. This process involves adjusting the weights and biases of the network that min-

imize the loss function. This is achieved by the backpropagation algorithm, that calculates the

gradient of the lost function respectively to each parameter of the network. Then, the calculation

proceeds backwards through the network propagating the error to the previous layers. This en-

ables every parameter of the network to be updated individually, leading to a gradual reduction

in the loss function at each training epoch. This process performs with the aid of one iterative

optimization algorithm, as is the gradient descent.

In this section it will be reviewed some important concepts regarding ANN training, more

precisely the backpropagation and gradient descent algorithms and the regularization methods to

avoid the so-called overfitting.

Backpropagation

The most frequently method to train an ANN is the backpropagation algorithm [14]. It is usually

used along with the gradient descent optimization algorithm, which is one the most popular and

used. There are three variants of gradient descendent depending on the number of training samples

[18]:

1. Batch Gradient Descent (BGD)

This approach is the standard gradient descent. It computes the gradient of the loss function

with respect to the parameters θ :

θ = θ −η ·∇θC(θ) (3.6)

Where η is the learning rate, used to control the learning speed.

In this algorithm the gradient is computed to the entire dataset before performing one update.

This can be rather slow for bigger datasets or even unfeasible to perform when the datasets

do no fit in memory.

2. Stochastic Gradient Descent (SGD)

With stochastic gradient descent, rather than passing through the entire training set for a

single update like in BGD, it performs a parameter update for each training sample x(i) and

respective label y(i).

θ = θ −η ·∇θC(θ ;x(i);y(i)) (3.7)
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This method solves the problem when the dataset is too large to fit in memory and, apart

from that, it has faster convergence, as this prevents similar values from being computed

on each parameter update. Nevertheless, it has some fluctuations in the minimization of the

loss function. This allows it to reach new and possibly better local minima, though it can

hinder the convergence to a global minimum, as it will keep overshooting.

3. Mini-Batch Gradient Descent (MBGD)

In between, there is MBGD that takes the best of the other two variants. Instead of updating

the parameters for every training sample, the updates are performed for every mini-batch of

n training examples:

θ = θ −η ·∇θC(θ ;x(i:i+n);y(i:i+n)) (3.8)

With this approach the variance of the parameters update are reduced, leading to a more

stable convergence. Also, by using batches, the gradient calculation is computationally

more efficient than in SGD. This is the most popular gradient descent variant used in deep

learning with the term SGD being often employed when batches are used.

As it can be seen, all the respective equations for each gradient descent variant have the vari-

able η multiplied with the gradient of the loss function. This hyperparameter, called learning rate,

is one of the most important when it comes to the ANNs training [19], as it controls the step size

by which the parameters of the network are updated at each iteration. The parameters vector is

moved in the negative direction of the gradient in order to reduce the lost function. There is always

a trade off in the choice of this hyperparameter because low learning rates usually require more

training epochs, due to the smaller changes made to the weights at each update, whereas high

learning rates lead to rapid changes and require fewer training epochs. Moreover, lower learning

rates also might never converge or may hold the process in an undesired local minimum, while

higher learning rates can lead to fluctuations around a minimum or even divergence. Therefore,

tuning the learning rate is a difficult process and has a great influence on accelerating the learning

process. However in the recent years some approaches that dynamically change the learning rate

during training have been developed to circumvent this problem. These approaches include learn-

ing rate schedules [20], cyclical learning rates [21], or adaptive learning rates, as is the case with

the most common optimizers Adam [22], Adagrad [23], AdaDelta [24] and RMSProp [25].

In summary, it is through the optimization algorithms of gradient descent that the network

parameters’ values that minimize the loss function are found. However, it is through the back-

propagation algorithm that the gradient of the loss function is propagated, from the output layer to

the input layer, and the weights and biases of the network are adjusted.

Adapted from the book [26], the backpropagation algorithm using MBGD, in particular for a

batch with m training examples, can be described by the following steps:
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1. Input a set of training examples

2. For each training example x : Set the corresponding activation ax,1 for the input layer and

perform the following steps:

(a) Feedforward : For each l = 2,3, ...,L compute zl = wlal−1 +bl and al = f (zl).

(b) Output Error δ x,L: Compute the vector δ x,L = ∇aCx� f ′(zx,L).

(c) Backpropagate the error: For each l =L−1,L−2, ...,2 compute δ l =((wl+1)T δ l+1)�
f ′(zL).

(d) Gradient: The gradient of the cost function is given by ∂C
∂wx,l

jk
= ax,l−1

k δ
x,l
j and ∂C

∂bx,l
j
=

δ
x,l
j .

3. Gradient descent: For each l = L,L− 1, ...,2 update the weights according to the rule

wl → wl− η

m ∑x δ x,l(ax,l−1)T , and the biases according to the rule bl → bl− η

m ∑x δ x,l .

Regularization

One of the main problems that occur during the training process is overfitting. This phenomenon

is described when the model has good performance on the training data but poor performance

on new unseen data, meaning that the model failed to generalize. Frequently, the more complex

the model, for example, by adding more intermediate layers or neurons, the more prone it will

be to overfitting. On the contrary, an increase in training samples can be beneficial to reduce

overfitting which can be done through Data Augmentation. This technique involves expanding

the existing dataset by performing transformations, such as flipping, cropping or rotating on the

training instances for artificially creating more samples. Other examples of regularization methods

often used in deep learning to avoid overfitting are:

• Dropout: This regularization technique was introduced by Srivastava et al. [27] and is

illustrated in Figure 3.4. By using Dropout, some of the neurons are “turned off” or omitted

randomly with a probability p (dropout rate) at each training step. This prevents the neurons

from co-adapting too much on the neighbours, forcing the network to learn different paths

to each output. This way it allows the model to generalize better. At the end of the training

process, all the nodes become active again.

(a) Standard Neural Network (b) After applying dropout

Figure 3.4: Example of dropout application. Left: A standard neural network with 2 hidden layers.
Right: An example of dropout application on the network on the left [27].
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• Early stopping: With this technique, the performance of the model is frequently monitored

on the validation set (e.g. at every 5 training epochs) and the training is stopped as soon as

the performance starts to decrease. This avoids the network from training too much to the

point of starting to overfit the training dataset.

• Batch normalization: This technique was first introduced by Ioffe and Szegedy [28] with

the goal of reducing the internal covariate shift 2. This not only affects the learning process

by highly reducing the number of training epochs required to train deep neural networks, but

also provides regularization, avoiding overfitting. Besides, it also allows the use of higher

learning rates without the exploding or vanishing gradients problem. With this regulariza-

tion method, the mean and the variances of the layer’s input are adaptively normalized at

each mini-batch in the training process. The algorithm of this regularization technique is

described in Algorithm 1.

Algorithm 1 Batch Normalizing Transform, applied to activation x over a mini-batch [28]

Input: Values of x over a mini-batch: B = {x1...m}; Parameters to be learned: γ,β
Output:

{
yi = BNγ,β (xi)

}
µB← 1

m ∑
m
i=1 xi // mini-batch mean

σ2
B← 1

m ∑
m
i=1(xi−µB)

2 // mini-batch variance
x̂i← xi−µB√

σ2
B+ε

// normalize

yi← γ x̂i +β ≡ BNγ,β (xi) // scale and shift

3.1.3 Convolutional Neural Networks

The Convolutional Neural Network (CNN), introduced by Lecun et al. [29], is a deep learning

architecture popularly used for image classification and object detection. Their ability to recognize

patterns and features from images eliminates the need for manual feature extraction by traditional

computer vision algorithms, making them very powerful and useful for several image and video

applications, such as medical image analysis or self driving cars [30]. Although, they can also be

effective for classifying non-image data such as audio [31] or time series.

A CNN can be split into two parts: The first is the feature extractor part composed of convolu-

tional and pooling layers, and the second being the classification part composed of fully connected

layers as a typical ANN. The Figure 3.5 depicts a typical CNN architecture with 2 convolutional

and 2 pooling layers, followed by a fully connected layer and typically ending with a softmax

layer as the output layer, whether it is a classification problem.

2The authors [28] refer to the internal covariate shift as the change in the distribution of network activations due to
the change of its parameters during the training process. When the input distribution changes, hidden layers try to learn
to adapt to the new distribution, slowing down the training process.
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Figure 3.5: Typical CNN architecture. [32].

3.1.3.1 Layers

1. Convolutional Layers

The convolutional layer is the main building block of a CNN and is responsible for the

feature extraction. This is achieved through the convolution operation which is the main

operation of these types of layers. Usually, a CNN is composed of several of these layers

where the early ones extract low-level features and pass them to the later ones that extract

high-level ones. Plus, these layers are generally followed by activation layers (typically

ReLU) and pooling layers.

The core units of these layers are the kernels (or filters) which are matrices with learnable

parameters just like the weights in a typical ANN. These kernels perform the convolution

operation by sliding over the input image performing the dot product at every patch of the

image and storing the results in an output matrix called feature map or activation map.

Figure 3.6 illustrates the convolution operation on a 2D input matrix.
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Figure 3.6: Convolution between a 5x5 input image and a 2x2 kernel with stride 1. The result is a
4x4 feature map.

Therefore, a convolutional layer generally takes as input an image of dimensions I× I×C,

where I is the height and width of the image and C is the number of channels (for example,

in an RGB image the number of channels is 3). Furthermore, the convolutional layer is

composed of K kernels of dimensions F ×F , where F is smaller than the dimensions of

the input image (F < I). Each of these kernels has different weights and is used to detect
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different characteristics in the image, i.e., one of the kernels may be used to detect corners

whereas other may be used to detect edges. The K features maps resulting from the con-

volution of the kernels with the input image are aggregated and form the output volume of

the convolutional layer, which is passed to the following layers. The depth of the output

volume is equal to the number of filters K. At the same time, the height and width (O) of

the feature maps depend not only on the size of the filter (F) mentioned above, but also on

2 other hyperparameters: Stride (S) and Padding (P). On one hand, the Stride indicates the

number of pixels to the right and down by which the kernel moves after each operation. On

the other hand, Padding refers to the number of pixel borders added to the input image when

it is being processed by the kernel. The most common padding operation is usually the zero

padding. The zero padding works by extending the area of the image, adding zero value

pixel borders and giving more space for the kernel to cover the image and thus, allowing

a more accurate extraction of the features. Finally, the height and width (O) of the feature

map are given by the following equation:

O =
I−F +2P

S
+1 (3.9)

2. Pooling Layers

These layers are usually present after a chain of convolutional layers and are responsible

for reducing spatial dimensions, thus reducing the amount of computational power needed.

They are useful for extracting dominant features and causing less overfitting and training

time. The most used operations are the max pooling and the average pooling, which take

the maximum value and the average value of each window of the feature map. Figure 3.7

illustrates both of these pooling operations.
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Figure 3.7: Max and Average pooling operations with 2x2 filter and stride 2.

3. Fully Connected Layers

This layer behaves similarly to a typical ANN described earlier in Section 3.1.2 . These

layers are usually found at the end of a CNN architecture, taking as input the results of

the previous convolutional and pooling layers and assigning a probability of belonging to

a particular label or a single value, whether it is a classification or regression problem,
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respectively. To this end, the output volumes are flattened into a single vector of values and

then fed into the fully connected layer. After passing through this layer, the final layer uses

the softmax function to get probabilities of the input being in a particular class, or another

function (e.g. TanH, sigmoid or linear) to output a crisp value.

3.1.4 Recurrent Neural Networks

The Recurrent Neural Networks (RNNs) are a class of neural networks suited for processing time-

series data or sequential data. They differ from feedforward neural networks, by having feedback

connections to themselves (loops) which allow previous outputs to be used as inputs, while having

hidden states. So, in this case, the inputs are related to each other and not independent and their

internal memory capacity makes them very useful to solve temporal problems, such as speech

recognition [33] and language translation.

Figure 3.8a illustrates the loop representation of an RNN cell where in a certain time step t,

takes some input xt and an internal state from a previous time step ht−1 and then it computes an

output ht . In addition, this output is used as an internal state update passed to the cell in the next

time step. In a similar way, by unrolling the loop through time, the RNN can be seen as a direct

cyclic graph with multiple cell copies passing a message to a descendent from one timestep to the

next (Figure 3.8b).

(a) RNN (b) RNN unrolled through time

Figure 3.8: An RNN loop representation and its unrolled through time equivalent. Adapted from:
[34].

The training process of RNNs usually uses a variant of backpropagation, called backpropa-

gation through time [35]. The algorithm is similar to the backpropagation mentioned earlier in

Section 3.1.2.4, but here it takes into account the unrolling of the network through time. In this

case, errors are calculated and accumulated for each timestep and then they are backpropagated

from the last time step to the first one. This means that an increase in the number of timesteps tends

to be computationally and memory expensive. Moreover, this can expose the gradient vanishing

problems which makes the memory of these networks retain only short-term dependencies. This

results from the low-value gradients preventing the error to spread over time. As a consequence,

the network does not learn further and forgets the long-term-dependencies between present and

past information.
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3.1.5 Long Short Term Memory

The Long Short Term Memory (LSTM) is an RNN architecture first introduced by Hochreiter

and Schmidhuber [36] in 1997. Currently, is the most effective and used architecture to process

sequences of data or time-series and were designed to overcome the vanishing and exploding

gradient problems of the RNNs.

The architecture of an LSTM unit is depicted in the Figure 3.9. The main concept of these

units is the cell state that works as a memory element. The flow of information in the unit is

regulated by 3 gates:

• Forget gate: it decides what information from prior states should be kept in the cell state.

It takes the prior hidden state ht−1 and the current input xt and applies the sigmoid function.

The value ft is then between 0 and 1, where a value closer to 1 means to retain while closer

to 0 means to forget.

• Input gate: it decides which values from the current step are relevant to be stored into the

cell state. Same as the forget gate, it takes ht−1 and xt and applies the sigmoid function,

but this time 0 means irrelevant while 1 means relevant. Then, ht−1 and xt are also passed

through a TanH function creating a vector of candidate values C̃t used to help regulate the

network.

• Cell state: based on the information from both forget gate and input gate, it selectively

updates the values into the new cell state Ct . First, the prior cell state Ct−1 is multiplied

by the forget vector. This decides whether the previous values get dropped in the cell state

when multiplied by values closer to 0. Then the output from the input gate is taken and the

addition operation updates the cell state to new relevant values Ct .

• Output gate: The output gate determines the value of the next hidden state ht . First, the

ht−1 and xt are once again passed through a sigmoid function giving ot . Then, the new cell

state Ct is passed through a TanH function. The results of both operations are multiplied and

compose the information that should be carried by the hidden state ht .

This description of the process in each of the gates and in the cell state is supported by the

equations for a forward pass in an LSTM unit:

ft = σ(Wf xt +U f ht−1 +b f )

it = σ(Wixt +Uiht−1 +bi)

ot = σ(Woxt +Uoht−1 +bo)

C̃t = tanh(Wcxt +Ucht−1 +bc)

Ct = ft �Ct−1 + it �C̃t

ht = ot � tanh(C̃t)

(3.10)
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Figure 3.9: LSTM unit. The rectangles represent the neural network layers with their respective
activation functions, while the circles denote pointwise operations (�). The vectors
are represented by the lines, with vector concatenation and copying corresponding to
line merging and forking, respectively [37].

In these equations, � represents the Hadamard product, xt the input vector and ht the hidden

state vector or output vector. Besides, Wx represents the matrix of weights associated with the

input pairs xt , Ux the matrix of weights associated with the prior hidden state ht−1 and bx the bias

vector, where x represents the respective gate between the forget ft , input it and output ot gates

and the candidate hidden state C̃t . These weights and biases need to be learned during training.

The Figure 3.9 and the Equations 3.10 represent the most frequently implemented LSTM vari-

ant that uses a forget gate [38]. However, some other variants have emerged throughout the years.

Namely, the introduction of peephole connections [39] and, more recently, of the Gated Recur-

rent Units (GRUs) [40]. Although simpler than a typical LSTM, they have been quite popular,

revealing better performance in smaller training datasets.

3.1.6 End-to-End Learning

End-to-end learning is the process in which a complex system is represented only by a single

learning algorithm that learns all the intermediate steps from the initial phase of the input to the

final phase of the output. Generally, in this learning mode, the complex system is replaced by

a single DNN that is responsible for learning the entire control pipeline directly from the input

sensory data. This is efficiently made by tuning the parameters of the entire model based on the

correctional signal from the output. In this approach, all the intermediate steps of the system are

trained simultaneously and not sequentially. In a short manner, an end-to-end system maps the

raw input directly to the outputs, bypassing the intermediate stages usually present in a traditional

pipeline.

However, some authors [41, 42] point out some drawbacks of this type of approach. Firstly, as

in end-to-end learning prior knowledge is not integrated, they mention the need to provide a large

and diverse training dataset to allow the acquisition of this knowledge. Secondly, they also reveal
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that with an increase of system’s complexity, learning in an end-to-end manner can become inef-

ficient or even fail. As such, Shalev-Shwartz et al. [42] support a “Divide and conquer” approach

considering that the training of complex learning machines should proceed in a structured manner,

training simple modules first and independent of the rest of the network [41].

In any case, this approach has been used with great success in several fields of application. For

example, speech recognition applications [33, 31], robotics [43] and self driving cars, as shown

in Figure 3.10 and also as will be described later in Section 3.2 by showing some state-of-the-art

architectures for this last purpose.

Figure 3.10: Traditional and end-to-end pipelines for self driving cars. The traditional pipeline
for autonomous driving consists of many interconnected modules, while end-to-end
approach treats the entire pipeline as one learnable machine learning task [44].
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3.2 State of the Art

In this section, it will be presented the state of the art regarding deep learning and also some of its

applications in the field of autonomous driving.

3.2.1 CNN architectures

As mentioned before in Section 3.1.3, a typical CNN architecture comprises a couple of convo-

lutional layers followed by ReLU and pooling layers, ending with fully-connected (dense) layers

and output layer.

The way these layers are organized within the network, as well as the size and number of

kernels and the hyperparameters to select, are targets of great interest and research by the sci-

entific community. This growth in interest led to the conception of the ImageNet Large Scale

Visual Recognition Challenge (ILSVRC)3, an annual competition that promotes the development

of object detection and image classification algorithms using a subset of the ImageNet database4.

This database contains about 14 million images and about 21 thousand classes and, together with

ILSVRC, led to the development of the most traditionally used CNN architectures such as AlexNet

[45], VGG-16 [46], GoogeLeNet [47], and ResNet [48]. All these state-of-the-art architectures

arose after LeNet-5 [29] by Yann LeCun in 1998, widely used for written digits recognition

(MNIST5).

The research in [49] overviews the state-of-the-art deep learning architectures, including those

mentioned in the last paragraph and points out the differences between them. These differences

are summarized in Table 3.1.

Table 3.1: Comparison between the different state-of-the-art CNN architectures. The top-5 error
stands for the metric classification taken in the ILSVRC on the ImageNet and MAC for
Multiply-Accumulate operations. Adapted from [49].

Methods LeNet-5 AlexNet VGG-16 GoogleLeNet ResNet50

Top-5 errors n/a 16.4 7.4 6.7 5.3

Input size 28 x 28 227 x 227 224 x 224 224 x 224 224 x 224

Nº of Conv Layers 2 5 16 21 50

Filter Size 5 3,5,11 3 1,2,5,7 1,3,7

Nº of Feature Maps 1,6 3-256 3-512 3-1024 3-1024

Stride 1 1,4 1 1,2 1,2

Nº of Fully Connected layers 2 3 3 1 1

Total Weights 431 k 61 M 138 M 7 M 25.5M

Total MACs 2.3 M 724 M 15.5 G 1.43 G 3.9G

3http://www.image-net.org/challenges/LSVRC/. [Last accessed in 16/06/2021]
4http://www.image-net.org/. [Last accessed in 16/06/2021]
5http://yann.lecun.com/exdb/mnist/. [Last accessed in 16/06/2021]

http://www.image-net.org/challenges/LSVRC/
http://www.image-net.org/
http://yann.lecun.com/exdb/mnist/
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3.2.2 PilotNet

The ALVINN project [50] was one of the the first attempts to use an ANN for autonomous nav-

igation. It used a 3-layer network that took images from a camera and a laser range finder as

inputs. The network produced the direction the vehicle should travel to follow the road as output.

Although it was a simple approach, its success suggested the potential use of neural networks for

autonomous navigation.

Inspired in this work done with ALVINN, Bojarski et al. [30] from Nvidia proposed a deeper

CNN to map raw pixels from a single front-facing camera directly to steering commands. The

motivation was to eliminate the need for hand-coding rules and instead create a system that learns

by observing [51] and correctly accomplish the lane following task. The proposed network archi-

tecture, called PilotNet, is shown in Figure 3.11.

Figure 3.11: PilotNet architecture [30].

The network consists of 9 layers, including a normalization layer, 5 convolutional layers and

3 fully connected layers, which results in 27 million connections and 250 thousand parameters.

This architecture is similar to AlexNet [45] which also uses 5 convolutional layers and 3 fully

connected layers. However, AlexNet uses a much larger filter size in the first layer and makes

heavy use of pooling layers.

Before being fed to the first convolutional layer, the 66x200x3 images in the YUV color format

are adjusted to have a zero mean and unit standard deviation. This is done by the normalization

layer, which has the function of performing image normalization and enable a more stable and
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faster training process of the network [52]. It should be noted that this architecture does not use

pooling layers as is common in CNNs. Instead, PilotNet performs feature map reduction along the

network by a stride greater than one on the convolution layers. While these convolutional layers

perform the feature extraction of the road, the following fully connected layers are responsible for

output a steering angle. Both of these layers are adjusted during the learning process, except the

normalization layer.

Respectively to the training process, the dataset was composed of pairs of steering commands

and images collected from 3 cameras in driving scenarios with a wide variety of lighting, weather

conditions and road types. Finally, both simulation and on road tests revealed very successful with

a high level of autonomy, concluding that PilotNet perception is similar to human drivers.

Not only the project DeepPiCar from Bechtel et al. [53] but also the project ROTA from Ro-

drigues [54] are successful applications of this CNN architecture. The former is a small scale

robot that proved to drive itself in real-time using a web camera and a Raspberry Pi 3. While the

latter is a small robotic vehicle that participated in the PRO 2018 edition having won the 3rd place

of the ADC. The trained network showed good performance both in a simulation environment and

in the real track.

3.2.3 J-Net

Kocić et al. [55] proposed a CNN architecture for autonomous driving that was lighter and more

suitable to run on embedded platforms. The motivation was to keep the same performance as

other state-of-the-art architectures but with a smaller number of parameters, in order to reduce the

computational load and consequently enable its implementation in cheaper and smaller hardware

with less processing power.

The proposed architecture, called J-Net, is depicted in Figure 3.12. It has 3 convolutional

layers, each followed by a pooling layer, 1 flattened layer and 2 fully connected layers. The

network takes an RGB image as input, which is normalized and cropped to eliminate unnecessary

information besides the road.

Figure 3.12: J-Net Architecture [55].

The network was compared with PilotNet [30, 51], and AlexNet [45] regarding the compu-

tational complexity and performance evaluation. Firstly, J-Net was 4 times smaller than PilotNet
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and 250 smaller than AlexNet which led to an improvement in the real-time performance by com-

parison. Secondly, AlexNet had the best performance in general with smoother steering, better

performance at the curves, and closer to the lane center most of the time. Although, this was jus-

tified by the fact of AlexNet having a deeper architecture than the other two. The 3 architectures

successfully performed the task of autonomous driving, with J-Net having the smaller deviation

from the center of the track on the curves.

3.2.4 Convolutional Long Short-Term Memory Network

Despite the positive results of the CNN based end-to-end approaches, including the PilotNet [30,

51], J-Net [55] and [56], in all of these algorithms temporal dependencies are not being considered.

This means the steering angles are being predicted in each individual video frame, ignoring their

temporal relationship.

A solution to circumvent this problem was proposed by Eraqi et al. [57], which consisted in

a Convolutional Long Short-Term Memory Recurrent Neural Network (C-LSTM). This network

is end-to-end trainable, to learn both visual and dynamic temporal dependencies of driving. The

system architecture of the training process is shown in Figure 3.13.

Figure 3.13: Training process of the C-LSTM model [57].

It is a compound neural network consisting of a CNN and an LSTM network that estimates the

steering wheel angle based on the front-facing RGB camera as input. Camera images are processed

frame by frame by the CNN. The resulting features are then processed within the LSTM network

to learn temporal dependencies. The steering angle prediction is calculated by the classification

layer after the LSTM layers. For full deployment, the steering angle prediction is transmitted to ap-

propriate actuators by a steer-by-wire system. The author made a comparison between this model

and the one proposed by Bojarski et al. [30] through training and validating both models with the

publicly available dataset released by comma.ai 6[58]. The results revealed an improvement of the

steering root mean square error by 35% and led to more stable steering by 87%.

The work of Fu et al. [59] revealed excellent results of this network architecture for steering

a mobile robot. Although the input is a LIDAR and not an image, the authors concluded that this

6http://research.comma.ai/. [Last accessed in 16/06/2021]

http://research.comma.ai/
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method outperforms several existing deep learning methods by comparing their performance, re-

vealing that this architecture is better at adapting to a new environment, better at imitation learning

and lead to less overfitting.
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Chapter 4

Proposed Approach for the Machine
Learning Controller

In this chapter, a detailed description of the methodology for the navigation control system based

on ML algorithms is presented. Firstly, the datasets preparation details are mentioned, secondly

a description of PilotNet and JNet architectures is established, then, details about the training

of these models, as well as the ones regarding the software and hardware utilized are described.

Finally, the modifications made to the previous ROS architecture are described.

4.1 Overview

As seen in the Chapter 2, the Major Alvega robot driving control system is based on traditional

computer vision, odometry and control theory methods, namely a PID controller. This system

won the 2019 edition of the PRO’s ADC held in Gondomar, Portugal. From this point forward this

system will be referred to as Previously Developed System (PDS).

Despite the robot’s good performance in the competition, the goal of this dissertation is to

reimplement this control system with a more modern and advanced approache. Therefore, ML

techniques, such as ANN and SL, will be used to control the robot steering.

Since the ANN will have, as input, an image captured by the tracking camera and also consid-

ering that it will have to predict a real number for the steering angle to be applied to the robot, the

most suitable architecture for this regression problem is a CNN. Figure 4.1 depicts, in a simplified

overview, the proposed controller that relies on a CNN that will have to learn how to control the

robot in an end-to-end manner by using SL.

35
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Figure 4.1: The proposed ML controller to the Major Alvega robot

To use SL, the training datasets must consist of a tracking camera frames (samples) and the

respective steering angles that keep the robot inside the lane (labels). For this purpose, previous

logs (ROS bags) of the robot driving in the real track were used to build these datasets (Section

4.2). In the situations where the available data was insufficient, the developed simulator was used

to generate more data and thus enrich the dataset. To perform the D1, D2 and D3 challenges of

the driving category, 4 distinct datasets were created to train 4 models: one running the track on

the outer lane (Section 4.2.3), another in the inner lane (Section 4.2.4), and two in those lanes

but in the opposite direction (Section 4.2.5). The raw steering angles went through a filtering

process (Section 4.2.1) in order to remove the noise. To filter the relevant information to be fed to

the networks, the images also underwent trough a pre-processing step (4.2.2). Furthermore, two

different CNN architectures were tested: the PilotNet (Section 4.3.1) and the JNet (Section 4.3.2).

These networks were trained on the datasets created (Section 4.4) and implemented as described

in Section 4.5. Finally, the trained models were integrated into the ROS architecture of the PDS

as explained in Section 4.6.

4.2 Dataset Preparation

As mentioned before, ROS bags were used to build the dataset. These bags included both rel-

evant and not relevant situations for the network to learn how to drive properly along the track.

These situations included crashes, idle moments, lane deviations, driving in reverse and obstacle

deviation performance. To select only the data where the robot drives correctly, a visualization

tool called webviz1 was used. This web-based application allows the visualization and playback

of ROS bag files. One of its main advantages is having a GUI that allows the user to select and

organize the topics recorded in the bag file. This enables the user to get immediate visual insight

into the recorded data. This monitoring includes plotting the content of the topics, visualizing the

camera images, 3D point clouds, among others.

Thus, webviz and the command line tool rosbag filter were used to filter the relevant

data, removing the irrelevant scenarios for the training data mentioned above. Figure 4.2 demon-

strates the webviz GUI and its layout for viewing and selecting the relevant data to compose the

dataset.

1https://webviz.io/app/. [Last accessed in 25/05/2021]

https://webviz.io/app/
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In this work, the images were recorded at 30 frames per second and with the robot driving at a

constant velocity. These images were saved as JPEG in separate folders for each bag file, including

a CSV file associating the image-steering angle pairs. This association was made through inter-

polation between the timestamps of the camera frames and the steering commands. The dataset

is composed of a directory containing all these folders per bag and includes its own CSV file that

concatenates all the information regarding the bags inside of it. This way, the association and

representation of the whole dataset becomes simpler and easier to load.

Figure 4.2: Webviz GUI used for ROS bags visualizing.

When designing a neural network, one of the most relevant concerns that must be answered

is what form both the input and output should take. Therefore, before performing the models’

training process, the steering angle outputs underwent a filtering process (Section 4.2.1), and the

input images passed through a pre-processing step (Section 4.2.2).

4.2.1 Steering Angles Filtering

The steering angles are the output of the network and the labels in the training process. In this

work, the steering angles are represented in radians where a negative value represents a left turn

while a positive value represents a right turn.

In the ROS bags, these angle measurements contained some noise due to some glitches or state

transitions. Training the network directly with this noisy ground truth would be prejudicial to the

learning process of the network. This is due to the fact that training a network with noisy labels

tends to memorize information about the noise, which degrades the generalization performance

[60].

To face these discrepancies and to improve the network’s learning, the steering angles of the

original system were filtered by a Low Pass Filter (LPF) in order to smoothen the raw steering

angles signal. In this way, the network learns to infer a steering angle that keeps the robot within

the lane instead of learning about the noise included in the signal. Without this noise, it is also

expected that the robot learn to steer more smoothly than the PDS. Figure 4.3 shows the effect of
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the LPF on the ground truth. The blue line represents the steering angles recorded in an example

ROS bag where Major Alvega drove two laps on the outer lane in the real track. The orange line

denotes the smoothed steering angles after applying the LPF, which constitute the new ground

truth of the datasets.
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Figure 4.3: LPF effect on the ground truth.

In the situations where the robot travels on the inner lane, the original system performed the

initial and final turns using open loop control. This would generate a high frequency step signal

that would be completely filtered out by the LPF. To overcome this problem, the bags including

the robot data traversing the inner lane were divided into two distinct situations: situations where

the robot drives using closed-loop control and situations where the robot drives using open-loop

control. The Figure 4.4 illustrates the zones where the system runs in open-loop and in closed-

loop.

Figure 4.4: The green region has the robot driving using open loop control, whilst the red region
has the robot driving using closed loop control. The blue X depicts the starting point.

In situations where the robot drives in closed-loop the LPF was applied as shown in Figure

4.3. In situations where the robot drives in open-loop, a median filter was applied. This way,

the essential steering angles values in the turning maneuvers are kept, but the noise peaks are

removed. Figure 4.5 demonstrates the application of the median filter on an example bag where

Major Alvega was performing a final left turn on the second half of the track.
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Figure 4.5: Median filter effect on the ground truth.

4.2.2 Images Pre-processing

When designing neural networks one must take into account the shape of the input vector. Fur-

thermore, for an effective learning process it is important that the neural network is able to learn

relevant features and also be capable of disregard the noise or unnecessary information that could

be present.

The image captured by the tracking camera has a resolution of 640 x 480 pixels in the RGB

color space. However, the image is resized by a scaling factor of 1/4 to decrease the number of

pixels. Hence, the image used for processing has a final resolution of 160 x 120 pixels. The camera

uses a fisheye lens, which has the advantage of increasing the field of view in such a way that both

lanes can be observed simultaneously. However, it has the disadvantage of adding distortion to the

image. Figure 4.6 shows an example of an image taken by the camera on the real track and in the

simulation environment.

(a) In the real track (b) In the simulation environment

Figure 4.6: Images captured by the tracking camera.

Before performing the training process or inference, the image captured by the camera goes

through a pre-processing step according to the following transformations:

1. Format conversion
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The image is received in the ROS Image2 message format. To be processed, it is required to

be converted to the image format used by the OpenCV library, using the cv_bridge3 module.

2. Fisheye distortion removal

In this step, the distortion created by the fisheye lens is removed as depicted in Figure 4.7.

In this manner one obtains images that are less circular and more rectangular and regular

but with the disadvantage of reducing the field of view [61]. This is achieved by calibrating

the camera and obtaining its intrinsic parameters.

(a) In the real track (b) In the simulation environment

Figure 4.7: Images without fisheye distortion.

3. Cropping

In this step, the parts of the image that are not essential for the driving task are discarded,

in particular the area visible above the road. The removal of these parts reduces the noise,

streamlines training by focusing on the most relevant details, and highlights the relevant

information content of the input pixels [61]. The track pixels, several meters ahead of the

current position are also not relevant for the network’s angle prediction at that instant. Tak-

ing this into account, the region of interest of the image that is cropped has a size of 65x160

and is depicted inside a red rectangle in Figure 4.8.

(a) In the real track (b) In the simulation environment

Figure 4.8: Region of interest that is cropped.

2https://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/Image.html. [Last accessed in
27/05/2021]

3http://wiki.ros.org/cv_bridge. [Last accessed in 27/05/2021]

https://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/Image.html
http://wiki.ros.org/cv_bridge


4.2 Dataset Preparation 41

4. Grayscale conversion

The track is mostly made of black and white colors. Therefore, the information from the

three RGB channels does not bring much information to the network. Due to this, the image

is converted to grayscale thus reduced to just one channel.

5. Thresholding

To use the CNN models in both real and simulated environments, the image is thresholded.

Since colors in a real environment are not ideal, in contrast to what happens in a simulated

environment, this operation aims to reduce the difference between both environments. Ad-

ditionally, the complexity of the input is reduced since there are only two colors: white for

the lines and black for the rest.

Figure 4.9 shows the final result after the pre-processing step on four example images.

Figure 4.9: Four examples of images after the pre-processing step

In brief, the input image provided to the network is then a binary image of size 65x120x1,

containing only the relevant features for the network to learn how to drive the robot by predicting

the proper steering commands. These images and their corresponding steering angles are then

used to build the different datasets.

4.2.3 Outer Lane Dataset

To train the model to drive on the Outer Lane (OL) of the track, only the image-angle pairs trav-

eling along this lane were used. This leads to the robot going straight ahead in the first half of the

track and turning right in the second half, as shown in Figure 4.10. Since in this case the amount

of data recorded on the real track was quite satisfactory, there was no need to record more data

using the simulator.
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Figure 4.10: Outer Lane path used for the OL dataset. The blue X depicts the starting point.

The ROS bags used for this dataset were recorded with the robot driving at three different

velocities. Table 4.1 shows the number of samples for each velocity, while Figure 4.11 represents

the histogram of the steering angles’ distribution used in this dataset.

Table 4.1: Number of samples per velocity on the OL dataset.

Velocities (m/s) 0.7 0.85 1.2 Total
Number of samples 1771 8656 10528 20955
Percentage (%) 8.5 41.3 50.1 100

In summary, the OL Dataset comprised approximately 12 minutes of driving data which re-

sulted in a total of 20955 samples.
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Figure 4.11: Histogram of steering angles distribution in the OL dataset.

4.2.4 Inner Lane Dataset

According to the challenge D2, the robot has to complete two laps around the track following the

indications on the signaling panel. For this purpose, in addition to the dataset created to train a

model to cover the OL, a second dataset was created to train a new model to drive on the Inner

Lane (IL). This path, depicted in Figure 4.12, differs from the first in that the robot will have to
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make a left turn at the intersection in the first half of the track and drive the curve through the

inside lane with smaller radius. Besides this, in the second half of the track, the robot must be

able to move forward on the straight leg, drive again the curve trough the inside lane with smaller

radius, and make a left turn that returns it to the initial starting position, which is present in the

OL.

Figure 4.12: Inner Lane path used for IL Dataset. The blue X depicts the starting point.

For this path, the ROS bags recorded on the real track were not considered sufficient for

training the robot to travel on the IL when compared to the OL Dataset. Therefore, the simulation

environment and the PDS were used to create more data of the robot driving in this lane. The

proportion of data recorded in the real track and in the simulation environment are given in Table

4.2.

Table 4.2: Number of samples in the IL Dataset recorded in the real track and in the simulation
environment.

Track Real Simulated Total
Number of samples 5534 12545 18079
Percentage (%) 30.6 69.4 100

Unlike the ROS bags used in the OL dataset, the ROS bags for this lane were all recorded with

the robot driving at a velocity of 0.85 m/s, both on the real track and in the simulated environment.

The dataset for the IL performance was composed of approximately 10 minutes of driving data

resulting in a total of 18079 samples. Figure 4.13 represents the histogram of the distribution of

steering angles used in this dataset.



44 Proposed Approach for the Machine Learning Controller

0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Steering angles (rad)

0

500

1000

1500

2000

2500

3000

Co
un

ts

Figure 4.13: Histogram of steering angles distribution in the IL dataset.

4.2.5 Opposite Direction Dataset

According to the challenge D3, the robot must drive in the presence of obstacles in the second half

of the track. Training a model able to circumvent obstacles would require colecting a dataset with

the robot circumventing obstacles in different positions on the track. This solution would be time

consuming and could probably require the use of a different neural network architecture dedicated

to obstacle avoidance, as in [62].

Alternatively, it was taken advantage of the fact that the second half of the track is symmetrical,

which allows to invert part of the data from the previous datasets, and enable the robot to drive

in the opposite direction in both lanes. This inversion consists precisely in flipping horizontally

the images and multiplying the steering angles by -1 as depicted in Figure 4.14. Therefore, this

ultimately leads to the creation of two extra datasets: OL−1 dataset for driving the robot on the OL

in opposite direction and IL−1 dataset for driving the robot on the IL also in the opposite direction.

Steering Angle = 0.2113

(a) Original image

Steering Angle = -0.2113

(b) Horizontal flipped image

Figure 4.14: Horizontal flipping and symetric steering angle for driving in the opposite direction.

In this way, the architectures dedicated to driving were reused and to the system was given four

different models trained with the respective datasets. In this manner, the four driving models are

used to perform the obstacle challenge according to the simplified state machine shown in Figure

4.15.
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Driving in the
Actual Lane

Model →OL / IL

Steer. Angle → Predicted Angle

Change to
Opposite Lane

Model → IL-1 / OL-1 

Steer. Angle → Predicted Angle + offset

Change back to
Actual Lane

Model → OL / IL

Steer. Angle → Predicted Angle + offset

Driving in the
Opposite Lane 

Model → IL-1 / OL-1 

Steer. Angle → Predicted Angle

Obstacle Detected Distance ≥ 75 cm

Distance ≥ 60cm + 150cm
(Obstacle overcome)Distance ≥ 75 cm

Figure 4.15: State machine employed for the obstacle avoindance.

When an obstacle is detected, a switch is performed between the model that drives in the

current lane and the model that drives in the opposite lane. To perform the lane change maneuver,

the speed is slowed down and an offset value is added to the steering angle value predicted by that

model. This offset value forces the lane change, while the CNN output value gradually corrects the

vehicle’s orientation in the opposite lane. Based on the odometry data, the lane change maneuver

is ended when a threshold distance of 75cm is reached. After that, the model driving in the

opposite direction is maintained until a distance has been travelled which ensures with safety that

the obstacle has been overcome. This distance is defined as a threshold value of 60 cm (length

of the obstacle squared base) + 150 cm. Above this value, the driving model in the current lane

is again reactivated. Similar to the first changing maneuver, the speed is reduced and an offset is

added to the steering angle for the robot retake the initial lane and resume the planned trajectory

until a new obstacle is detected or the crosswalk area is reached. These offset values were obtained

empirically so that Major Alvega would be able to perform obstacle avoidance in most parts of the

second half of the track.

Hence, from the previous OL and IL datasets, only the scenarios where the robot travels along

the track in the area where the obstacles are placed were reused, as shown in Figure 4.16. By

inverting both the images and the angles and training two different models for each of the lanes, it

is expected that the robot will be able to traverse the track in the opposite direction.

Finally, the number of samples for each of the two datasets is represented in Table 4.3 while

the distribution of the steering angles is presented in Figure 4.17.

Table 4.3: Number of samples for OL−1 and IL−1 datasets for driving in opposite direction.

Dataset OL−1 Dataset IL−1 Dataset
Number of samples 9195 9632
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Figure 4.16: The red path represents the data from OL Dataset used to build OL−1 Dataset, in
order to drive the OL in the opposite direction. The green path represents the data
from IL Dataset used to build the IL−1 Dataset, in order to drive the IL in the opposite
direction.
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(a) OL−1 Dataset
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(b) IL−1 Dataset

Figure 4.17: Histograms of steering angles distribution in opposite direction dataset.

4.3 Model Architectures

Since images are being used to determine the robot’s driving commands, the ANN architectures

employed are CNNs. In order to test different architectures and to train various models for the driv-

ing performance of Major Alvega, two state-of-the-art architectures of CNNs used in autonomous

driving were implemented: the PilotNet (Section 4.3.1) and the JNet (Section 4.3.2).

4.3.1 Pilot Net

One of the architectures implemented to infer the steering angle was based on the Pilot Net archi-

tecture. Whilst in the original paper [30] three cameras were used to train the network and only

the central camera was used to infer the angle, in this project only the tracking camera was used

for both situations.

To reduce the size of the feature maps there are usually two options. The first is to use a stride

greater than 1 in the convolutional layers while the second is to use max pooling layers after the

convolutional layers. In the original paper [30] the architecture uses a stride greater than 1 in the
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first 3 convolutional layers. However, in this project max pooling layers were used with a 2x2 size

filter after the first 3 convolutional layers. At an early stage, the first option was implemented, but

better results were obtained using the max pooling layers option. Also the authors do not refer in

the paper to any regularization method they used during the training. In this case, dropout layers

were added after all fully connected layers with a dropout rate of 20% for the purpose of reducing

the overfit. As with the original architecture, the normalization layer was kept as the first layer of

the network, and in this case it is used to normalize the image between 0 and 1. This ensures the

same range of values for each of the inputs, which leads to a stable convergence of weights and

biases. This layer was employed using Lambda layer4 in Keras.

Since the steering angle is a real value in radians that can be either negative or positive, in the

output layer the linear function was used as the activation function.

The architecture of the network employed is illustrated in Figure 4.18, and the specification of

the layers is shown in Table 4.4. The network has a total of 545419 trainable parameters.
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Figure 4.18: Visual representation of the PilotNet architecture.

4.3.2 J Net

The J Net architecture [55] was also tested for driving the Major Alvega robot. This network

is different from the former by being less deep. This is due to the fact that this architecture is

composed of only 3 convolutional layers, 3 max pooling layers and only 1 fully connected layer.

Similar to the PilotNet architecture implementation described in the previous section, this

architecture also includes a normalization layer used to normalize the input image between 0 and

1. On top of that, dropout layers, with a dropout rate of 20%, were also used in this architecture

after the flatten layer and the fully connected layer. Finally, the linear function was also used as

the activation function of the output layer.

As explained next, this architecture was only employed for driving on the OL and trained only

with OL Dataset. The network has a total of 105493 trainable parameters, which is approximately

20% of the size of PilotNet. This size difference did not allow the JNet to effectively train on the

remaining datasets.

The architecture of the network employed is illustrated in Figure 4.19, and the specification of

the layers is shown in Table 4.5.

4https://keras.io/api/layers/core_layers/lambda/. [Last accessed in 03/06/2021]

https://keras.io/api/layers/core_layers/lambda/
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Figure 4.19: Visual representation of the JNet architecture.

Table 4.4: Parameters of PilotNet CNN architecture

Layer Name Layer Type Nº of Nodes Nº of Filters Filter Size Stride Padding Activation Function
Norm Lambda 65 x 160 1 65x160 1x1 No -

Conv1 Convolutional 65 x 160 24 5x5 1x1 Zero ReLU

MaxPool1 Max Pooling 32 x 80 24 2x2 1x1 No -

Conv2 Convolutional 32 x 80 36 5x5 1x1 Zero ReLU

MaxPool2 Max Pooling 16 x 40 36 2x2 1x1 No -

Conv3 Convolutional 16 x 40 48 5x5 1x1 Zero ReLU

MaxPool3 Max Pooling 8 x 20 48 2x2 1x1 No -

Conv4 Convolutional 6 x 18 64 3x3 1x1 No ReLU

Conv5 Convolutional 4 x 16 64 3x3 1x1 No ReLU

Flatten Flatten 4096 - - - - -

FC1 Fully Connected 100 - - - - ReLU

FC2 Fully Connected 50 - - - - ReLU

FC3 Fully Connected 10 - - - - ReLU

Output Fully Connected 1 - - - - Linear

Table 4.5: Parameters of JNet CNN architecture.

Layer Name Layer Type Nº of Nodes Nº of Filters Filter Size Stride Padding Activation Function
Norm Lambda 65 x 160 1 65x160 1x1 No -

Conv1 Convolutional 61 x 156 16 5x5 1x1 No ReLU

MaxPool1 Max Pooling 30 x 78 16 2x2 1x1 No -

Conv2 Convolutional 26 x 74 32 5x5 1x1 No ReLU

MaxPool2 Max Pooling 13 x 37 32 2x2 1x1 No -

Conv3 Convolutional 9 x 33 64 5x5 1x1 No ReLU

MaxPool3 Max Pooling 4 x 16 64 2x2 1x1 No -

Flatten Flatten 4096 - - - - -

FC1 Fully Connected 10 - - - - ReLU

Output Fully Connected 1 - - - - Linear
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4.4 Model Training

To train the four models using each of the four datasets formed, they were divided into two parts.

The first part, composed of 70% of the dataset, forms the training set, and the second part, com-

posed of the remaining 30% of the dataset, forms the validation set. Table 4.6 gives the number of

samples from the training set and the validation set for each of the datasets.

Table 4.6: Number of samples of the training and validation sets for each dataset.

Dataset Nº of Samples
Training Set Validation Set

OL 14668 6287
IL 12655 5424

OL−1 6436 2759
IL−1 6742 2890

The images from both sets, before being fed to the networks for training, are pre-processed

with the operations described in Section 4.2.2. In addition, the image-angle pairs are shuffled to

remove correlations between consecutive samples. In all training performed, the networks were

trained over 25 epochs with a batch size of 32. As a loss function, the MSE was used (Equation

3.4) and to reduce the value of this function the Adam optimizer [22] was utilized with a learning

rate of 1× 10−4. Early stopping was used as the regularization method. If after 7 epochs the

validation loss does not decrease, the training is finished. At the end of each training, only the

model with the set of weights that resulted in the lowest validation loss is saved and employed.

4.4.1 Training Results

The plots in Figures 4.20a, 4.20b, 4.20c, 4.20d represent the training learning curves by showing

the values of the loss functions of both the validation and training sets for each of the datasets

built.

First, in all cases it is possible to observe that the functions decreased over the training epochs,

which means that the models converged to the solution. This is also highlighted by the fact that in

none of the cases Early Stopping was activated, which indicates that the validation loss was, most

of the time, decreasing.

Secondly, at the end of 25 epochs both the validation loss and the training loss start to plateau

and consequently the MSE starts to decrease with a very low rate, indicating that the models do

not learn much more after that point.

In the situation in Figure 4.20a, where the two different architectures were trained, it is possible

to observe a similar behavior in the learning curves of both architectures.

Finally, the training loss is always greater than the validation loss, which suggests that the

models have not suffered from overfitting. This can be explained by the use of dropout layers.
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(a) PilotNet and JNet on OL Dataset.
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(b) PilotNet on IL Dataset.
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(c) PilotNet on OL−1 Dataset.

0 5 10 15 20 25
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

 F
un

ct
io

n

1e 2
PilotNet Training loss
PilotNet Validation loss

(d) PilotNet on IL−1 Dataset.

Figure 4.20: Training loss functions for each dataset.

4.5 Implementation details

This project was deployed on a PC equipped with Intel HD Graphics 4400 and AMD Hainan

GPUs and a quad core Intel Core i7-4510U@2.00GHz CPU. Ubuntu 20.04.2 LTS was used as the

operating system. Regarding software development, the programming languages used were C++

and Python.

For the implementation of the ML algorithms, the libraries Tensorflow5(TF), Keras6 and scikit-

learn7 were used. As for the image processing, the OpenCV8 library was used.

For training the models, the Google Collaboratory (Colab)9 cloud service was used. This

Jupyter Notebook environment allows free access to Google’s computational resources. These

resources include GPU and TPU, often used in ML due to the computational power they offer for

training ANNs. In addition, Google Colaboratory has the libraries mentioned above pre-installed

and allows access to Google Drive, where the datasets were uploaded.

5https://www.tensorflow.org/. [Last accessed in 03/06/2021]
6https://keras.io/. [Last accessed in 03/06/2021]
7https://scikit-learn.org/. [Last accessed in 03/06/2021]
8https://opencv.org/. [Last accessed in 03/06/2021]
9https://colab.research.google.com/. [Last accessed in 03/06/2021]

https://www.tensorflow.org/
https://keras.io/
https://scikit-learn.org/
https://opencv.org/
https://colab.research.google.com/
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For inference, Coral USB Accelerator10 was used. This adds an EdgeTPU coprocessor to the

PC by connecting to an USB port, providing high performance ML inferencing. However, this

hardware only runs TF Lite11 models that are fully 8 bit quantized. Therefore, the pre-trained

models developed under Keras had to be converted to TF Lite using post training quantization

with a representative dataset, which was also the one used for training. After this process, these

models were compiled to run on the EdgeTPU using the EdgeTPU compiler. At the time of

the implementation, these models were tested in the simulation environment in Gazebo and were

included in the /major_tracking node of the ROS Architecture of the PDS, as explained in the

next Section 4.6. Finally, for running the inference of the models deployed in the Coral Accelerator

hardware, the TF Lite API and the EdgeTPU runtime were used.

4.6 Updated ROS Architecture

After training the models that drive the OL (OL Model), the IL (IL Model), the OL in opposite

direction (OL−1 Model) and the IL in opposite direction (IL−1 Model), it remains to be seen where

these are integrated into the ROS architecture of the previously PDS described in 2.3.

Since the CNNs receive as input the images from the tracking camera, the several trained

models were integrated in the /major_tracking node. In this node, the images are pre-

processed according to the operations described in Section 4.2.2 and then fed to the network,

which infers the steering angle to be applied to the robot at that time instant and publishes it in the

/tracking_msg topic. This is a modification relative to the PDS, since it no longer calculates

the angle and distance references to be applied to the PID controller, but sends the steering angle

directly.

Another modification in the system took place in the /major_decision node. This node

continues to carry the intelligence of Major Alvega and gather the information coming from the

other nodes of the system to make decisions. For this reason, the ability for this node to choose

which of the 4 models it wants to run on the /major_tracking node was added. This was done

by publishing the message of the desired model in the /model_msg topic that is subscribed by

the /major_tracking node. In addition, this node adds to the steering angle message, posted in

/tracking_msg, the velocity value to apply to the robot and publishes both in the /major_msg

topic.

Finally, in this new control system there is no longer a PID controller which uses distance and

angle references to the sidelines of the lane to calculate the angle to apply to the robot. This makes

the /major_control node obsolete, so its only function is to take the steering angle and velocity

values and translate them into ackermann steering commands published in the /ackermann_cmd

topic.

Figure 4.21 depicts in red the changes made to nodes and topics in the ROS architecture of the

PDS revealed earlier in Figure 2.8.

10https://coral.ai/products/accelerator/. [Last accessed in 03/06/2021]
11https://www.tensorflow.org/lite. [Last accessed in 03/06/2021]

https://coral.ai/products/accelerator/
https://www.tensorflow.org/lite
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Figure 4.21: Major Alvega updated ROS architecture system.



Chapter 5

Experimental Results and Discussion

This chapter introduces, in Section 5.1, the experimental procedures taken to evaluate the proposed

solution. The results of those experimental procedures are presented in Section 5.2 and discussed

in Section 5.3.

5.1 Experimental procedures

To measure the effectiveness and quality of the proposed solution and in order to compare it

with the PDS, an evaluation of the robots’ driving performance in the simulation environment

was undertaken. The metrics used for this evaluation are detailed in the next Section 5.1.1. As

explained in Section 2.2.2.1, the track used for all tests was designed in SVG format, to ensure

that the track effectively has a size of 16.7×6.95m and exactly fits all the dimensions stipulated in

the ADC rules [6], including the width 0.75 meters for each lane.

The evaluations made in Sections 5.2.1 and 5.2.2 were performed with Major Alvega running a

full lap along the track, using the OL and IL driving models, respectively. The same evaluation was

done for the PDS in order to make a comparison between the two types of the robot controllers.

Four different velocities ranging from 0.5 m/s to 2 m/s were tested, thereby covering the velocities

at which the datasets were recorded, as well as testing the behaviour of the models with velocities

above and below of those included in the datasets.

Furthermore, an evaluation was made in Section 5.2.3 for the cases where the robot performs

the D2 challenge and needs to switch models in runtime at the middle of the route, according

to the information given by the signalling panels. In this evaluation, it was tested if the robot’s

performance is affected by this model swapping.

Finally, in Section 5.2.4 the proposed algorithm that uses the four trained models (Figure 4.15)

was tested on the performance of the obstacle avoidance D3 challenge. To do so, obstacles were

placed in different positions in the second half of the track and the path taken by the robot was

evaluated.

53



54 Experimental Results and Discussion

5.1.1 Evaluation Metrics

To evaluate the robot’s driving performance in the simulation environment, three types of errors

were measured. The first was the lateral error, which was given by the distance of the robot’s

rotation axis to the centre of the lane where it is located. The second was the orientation error,

which was given by the relative angle between the robot orientation and the lane center. These

errors are represented in Figure 5.1 as Elateral and Eorient , respectively. Even though in this figure,

the reference point for the error calculations is depicted in the geometrical central of the robot, in

this work the front wheels rotation axis was considered as the reference point.

Figure 5.1: Lateral error (Elateral) and orientation error (Eorient) representation. Adapted from [63].

For the sign of the lateral error, the following was assumed:

• If the rotation axis of the robot is distant from the lane centre in the direction of the contin-

uous line, the sign is positive.

• If the rotation axis of the robot is distant from the lane centre in the direction of the broken

line, the sign is negative.

Also, each lane of the track has a width of 75cm, whereas the robot has a width of 30cm.

Therefore, one of the sidelines is crossed by the vehicle when an absolute error of 22.5cm1 is

reached. This value is therefore taken as a reference for the lateral error. In addition, the maximum

and minimum error values are also taken to determine respectively whether the continuous line and

or broken line have been transposed if above this reference value.

In order to quantify both of these errors over one full lap, the MSE, the Root Mean Squared

Error (RMSE) and the Mean Absolute Value (MAE) were used as metrics:

MSE =
1
N

N

∑
i=1

e2
i (5.1)

1Half of the lane width (37.5 cm) − Half of the robot width (15 cm)
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RMSE =

√
1
N

N

∑
i=1

e2
i (5.2)

MAE =
1
N

N

∑
i=1
|ei| (5.3)

where N is the number of samples collected over the entire path, and ei is the error of the ith

sample.

The MAE and RMSE are expressed in the same units as the measurement, whereas MSE

expresses these units squared.

In the cases where the robot failed to perform a full lap, the errors were quantified only for the

performance on the first half lap.

The third and last error was based on the steering angles predicted by the models and applied

to the robot. For such, the Mean Continuity Error (MCE) metric purposed by Chen et al. [64] was

used:

MCE =

√
1

N−1

N−1

∑
i=1

(ai+1−ai)2 (5.4)

where N is the number of frames, and ai and ai+1 are the steering angles in radians applied to the

robot for frame i and i+1, respectively.

This metric measures the fluctuations of steering angles, where a high MCE value indicates a

large jumps between consecutive steering angle values or predictions, which leads to less stable

and smooth driving.

5.2 Results

5.2.1 Outer Lane models evaluation

In this section, a comparison was established between the PDS and the proposed controller on the

OL driving. For this purpose, an evaluation of both methods was made during the driving of one

full lap, testing their performances for different test velocities. It should be remembered that for

this lane, two different CNN architectures were implemented: the PilotNet and the JNet.

Figures 5.2a, 5.2b, 5.2c, 5.2d display the trajectories performed by the robot for those same

velocities when using the PilotNet and JNet models and when using the PDS. These trajectories

were compared with the lane centre, as the reference trajectory would be the one where the robot

drives on the lane always at the same distance from both sidelines and orientated with them. As

can be seen in Figure 5.2d, at the speed of 2m/s, the model using the JNet architecture was not

able to perform a full lap at this speed because it deviated from the original path.

Based on these trajectories, the steering angle, lateral error and orientation error results were

obtained and are presented in the following sections.
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Figure 5.2: Robot trajectories in the OL for the test velocities, using the PDS and the models
trained with the OL Dataset.
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5.2.1.1 Steering Angle results

Figures 5.3a, 5.3b, 5.3c, 5.3d display the plots of the steering angles applied to the robot in relation

to the distance travelled on the OL of the track for each velocity. Furthermore, the data in Table

5.1 measures the MCE of the different models/systems and speeds during the whole route.
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Figure 5.3: Steering angles applied during the performance of a full lap in the OL for the different
test velocities.

Table 5.1: Evaluation comparison of the MCE of the steering angle in the OL performance.

Velocities
(m/s) Model MCE

(rad)

0.5
– PDS 0.013– PilotNet 0.005– JNet 0.007

1
– PDS 0.019– PilotNet 0.008– JNet 0.009

1.5
– PDS 0.025– PilotNet 0.009– JNet 0.010

2
– PDS 0.025– PilotNet 0.011– JNet * 0.0171

* Robot left the lane
1 Measure on the 1st half of the track
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These results reveal that the MCE was lower using any of the ML controller models compared

to the PID controller of the PDS.

5.2.1.2 Lateral error results

Figures 5.4a, 5.4b, 5.4c, 5.4d presents the lateral error plots obtained over the distance travelled

on the track by the OL for each velocity. Moreover, Table 5.2 complements the information in the

plots, presenting the statistical evaluation of the lateral error for the different models/systems and

speeds.
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Figure 5.4: Lateral error plots of a full lap driving in the OL for the different test velocities.
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Table 5.2: Evaluation comparison of the lateral error in the OL performance.

Velocities
(m/s) Model MAE

(cm)
RMSE
(cm)

Max
(cm)

Min
(cm)

MSE
(cm²)

0.5
– PDS 3.346 4.437 15.087 -7.250 19.684– PilotNet 5.496 6.642 13.505 -12.162 44.117– JNet 6.247 7.743 20.025 -12.458 59.954

1
– PDS 3.948 5.103 15.006 -6.101 26.039– PilotNet 5.481 6.467 13.176 -12.138 41.820– JNet 6.622 8.023 20.241 -11.196 64.371

1.5
– PDS 4.725 5.960 15.414 -9.718 35.525– PilotNet 6.243 7.597 15.064 -14.295 57.721– JNet 8.524 10.571 16.732 -22.262 111.740

2
– PDS 5.336 6.393 17.133 -9.571 40.875– PilotNet 7.790 9.428 19.524 -19.008 88.890– JNet * 5.8731 7.9931 4.1541 -29.3311 63.8811

* Robot left the lane
1 Measure on the 1st half of the track

Based on these results, it can be observed that the PDS presented the lowest MAE, the lowest

RMSE and the lowest MSE for all velocities. However, for velocities below 2 m/s, the PilotNet

presented the lowest maximal error. Furthermore, with the exception of JNet for the 2m/s test, in

no case were the sidelines transposed as it is shown by the minimum and maximum error values

below 22.5cm.

5.2.1.3 Orientation error results

Similarly to the lateral error, Figures 5.5a, 5.5b, 5.5c, 5.5d presents the plots of the orientation

error obtained along the distance travelled on the track by the OL for each velocity. In addition,

Table 5.3 completes the plots information, presenting the statistical evaluation of the orientation

error for the different models/systems and speeds.
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Figure 5.5: Orientation error plots of a full lap driving in the OL for the different test velocities.

Table 5.3: Evaluation comparison of the orientation error in the OL performance.

Velocities
(m/s) Model MAE

(º)
RMSE

(º)
Max
(º)

Min
(º)

MSE
(º²)

0.5
– PDS 1.609 2.249 7.537 -7.490 5.060– PilotNet 1.511 2.236 7.536 -7.319 5.001– JNet 1.923 2.656 6.678 -9.741 7.054

1
– PDS 1.775 2.395 6.041 -9.235 5.737– PilotNet 1.731 2.412 7.301 -8.711 5.816– JNet 1.649 2.253 8.208 -6.587 5.078

1.5
– PDS 1.801 2.443 8.256 -7.024 5.970– PilotNet 1.850 2.536 9.994 -5.833 6.432– JNet 1.932 2.629 8.436 -5.909 6.914

2
– PDS 1.693 2.280 7.325 -5.235 5.199– PilotNet 2.257 3.258 12.799 -6.665 10.613– JNet * 1.9091 2.9541 6.7651 -12.2361 8.7251

* Robot left the lane
1 Measure on the 1st half of the track

5.2.2 Inner Lane models evaluation

Similarly to the evaluation done in Section 5.2.1 for the OL driving, this section makes the same

comparison between the PDS and the proposed controller, but here the robot drives in the IL.

In this case, only the PilotNet architecture was trained with the IL dataset and employed in the
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controller to drive in this lane. Figure 5.6a, 5.6b, 5.6c, 5.6d displays the trajectories performed

by the robot when it uses PilotNet and PDS for the four test speeds. These trajectories are again

compared with the center of the lane as a reference. For the cases depicted in Figures 5.6c and

5.6d, it can be seen that the PDS was unable to perform a full lap around the test track for the

velocities of 1.5 m/s and 2m/s. In contrast, PilotNet performed a successful full lap in all the

velocities undertaken. Based on these trajectories, the steering angle, lateral error and orientation

error results were obtained and are presented in the following sections.
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Figure 5.6: Robot trajectories in the IL for the different test velocities, using the PDS and the
models trained with the IL Dataset.
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5.2.2.1 Steering angle results

Figures 5.7a, 5.7b, 5.7c, 5.7d plot the steering angles applied to the robot in relation to the distance

travelled on the IL of the track for each velocity. Furthermore, the results in Table 5.4 evaluate the

MCE of the different models/systems and velocities during the whole route in the IL.
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Figure 5.7: Steering angles applied during the performance of a full lap in the IL for the different
test velocities.

Table 5.4: Evaluation comparison of the MCE of the steering angle in the IL performance.

Velocities
(m/s) Model MCE

(rad)

0.5
– PDS 0.032– PilotNet 0.015

1
– PDS 0.046– PilotNet 0.012

1.5
– PDS * 0.0731

– PilotNet 0.017

2
– PDS * 0.0801

– PilotNet 0.021
* Robot left the lane
1 Measure on the 1st half of the track

Based on the obtained results, a lower MCE value of the proposed ML controller, compared

to the previous controller, is once again verified on driving in the IL.
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5.2.2.2 Lateral error results

Figure 5.8a, 5.8b, 5.8c, 5.8d presents the lateral error plots obtained over the distance travelled

on the track by the IL for each velocity. Moreover, Table 5.5 complements the information in the

plots, presenting the statistical evaluation of the lateral error for the PilotNet model and the PDS

for the different test velocities.
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0 5 10 15 20 25 30 35
Travelled distance (m)

40

30

20

10

0

10

20

30

40

La
te

ra
l e

rro
r (

cm
)

PDS (Half Lap)
PilotNet

(d) Velocity = 2 m/s

Figure 5.8: Lateral error plots of a full lap driving in the IL for the different test velocities.

As noted in most of the plots, the maximum drift from the lane center occurs during the lane

change maneuver that brings the robot back to the starting position in the second half of the track.

This occurs near the 35 m of travelled distance. Although this value is above the reference value,

no continuous line is crossed as this happens at the intersection. This deviation is nonetheless

expected and the reason is explored in the discussion Section 5.3.2.
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Table 5.5: Evaluation comparison of the lateral error in the IL performance.

Velocities
(m/s) Model MAE

(cm)
RMSE
(cm)

Max
(cm)

Min
(cm)

MSE
(cm²)

0.5
– PDS 9.360 11.935 27.716 -40.152 142.451– PilotNet 9.677 11.461 19.137 -24.776 131.345

1.0
– PDS 9.353 12.175 37.852 -29.506 148.232– PilotNet 5.394 7.777 30.719 -5.264 60.479

1.5
– PDS * 11.4151 15.8861 27.1031 -50.3041 252.3791

– PilotNet 9.123 10.977 34.449 -11.476 120.487

2.0
– PDS * 10.9021 13.8141 28.6871 -34.6261 190.8201

– PilotNet 10.730 12.891 36.774 -19.502 166.166
* Robot left the lane
1 Measure on the 1st half of the track

5.2.2.3 Orientation error results

Lastly, Figures 5.9a, 5.9b, 5.9c, 5.9d presents the plots of the orientation error obtained along the

distance travelled on the track in the IL. Moreover, Table 5.6 complements the information in the

plots, presenting the statistical evaluation of the orientation error for the PilotNet model and the

PDS for the different test velocities.
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(c) Velocity = 1.5 m/s
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(d) Velocity = 2 m/s

Figure 5.9: Orientation error plots of a full lap driving in the IL for the different test velocities.
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Table 5.6: Evaluation comparison of the orientation error in the IL performance.

Velocities
(m/s) Model MAE

(º)
RMSE

(º)
Max
(º)

Min
(º)

MSE
(º²)

0.5
– PDS 4.188 6.919 25.135 -24.308 47.879– PilotNet 3.206 4.352 9.982 -13.746 18.941

1.0
– PDS 4.147 6.454 24.972 -19.657 41.658– PilotNet 2.398 3.999 18.030 -14.959 15.988

1.5
– PDS * 6.5011 10.2151 30.0991 -28.7841 104.3521

– PilotNet 3.218 4.757 13.633 -19.681 22.631

2.0
– PDS * 5.6501 7.7491 15.6541 -21.5451 60.0471

– PilotNet 4.244 5.870 11.872 -22.781 34.454
* Robot left the lane
1 Measure on the 1st half of the track

5.2.3 D2 Challenge evaluation

In this section the results are presented for the tests of the two specific cases of challenge D2, where

a switch between the OL and IL models has to be performed. This exchange has to be conducted

in runtime and at the middle of the route after detecting the signal displayed on the signalling

panels. Since the system response speed is a crucial factor in this evaluation, the highest speed of

all tests (2m/s) was used.

On the one hand, Figure 5.10a depicts the trajectory of a full lap of the robot when the "Follow

straight ahead" indication was displayed on the two passages of the robot under the signalling

panel. This triggered the activation of the OL model and the IL model in the first and second

halves of the track, respectively. On the other hand, Figure 5.10b depicts the trajectory of a full

lap of the robot when it was given "Follow to the Left" indication in the starting zone and "Follow

to the Right" in the second passage under the signalling panel. This led to the opposite situation

of the first one, where the IL model was activated in the first half of the track and the OL model in

the other half. In both cases, the orange dot marks the point at which the two models switched in

the controller.

Also, Figures 5.11a, 5.11b present the plots of the steering angles applied to the robot along the

distance travelled in both cases. In this graphs, the moment when the models switched is marked

by a vertical dashed line.
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(b) IL Model→ OL Model

Figure 5.10: Robot trajectories for the two cases of the D2 challenge where model switching oc-
curs.
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Figure 5.11: Steering angles applied to the robot for the two cases of the D2 challenge where
model switching occurs.
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5.2.4 D3 Challenge evaluation

In this section the results of the tests performed for the obstacle avoidance challenge are presented.

With these tests, it was intended to study the performance of the algorithm implemented for this

challenge, when the obstacles are placed at different positions in the second half of the track. The

algorithm was tested with the robot driving at a velocity of 1m/s on the lanes and performing the

lane change maneuvers at a velocity of 0.5 m/s.

For this purpose, four different scenarios were tested with the placement of the two obstacles

in positions similar to the ones that would occur in the ADC environment. In two of the scenarios,

the obstacles were placed in the OL and in the other two, the obstacles were placed in the IL.

These test scenarios are represented in Figures 5.12a, 5.12b, 5.12c,5.12d, as well as the trajectories

performed by the robot.

Obs1

Obs2

(a) OL test scenario 1

Obs1

Obs2

(b) IL test scenario 1

Ob
s1

Obs2

(c) OL test scenario 2

Obs1

Obs2

(d) IL test scenario 2

Figure 5.12: Obstacle avoidance challenge performance.

During the execution of the tests, some corner cases depicted in Figure 5.13 were identified.

In these cases, the algorithm led the robot to leave the track, not being able to perform success-

fully a full lap. In the case depicted in Figure 5.13a, the obstacle was placed on the OL and the

algorithm failed to change to the opposite lane after detecting the obstacle. For the case depicted
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in Figure 5.13b, the obstacle was placed in the IL and, though the robot successfully circumvents

the obstacle, it ultimately fails the maneuver of returning to the original lane.

Obs1

(a) OL failure

Obs1

(b) IL failure

Figure 5.13: Corner cases where the obstacle avoidance algorithm has failed.

5.3 Discussion

5.3.1 Outer lane models evaluation

Firstly, by analysing the trajectories and steering angles (Figure 5.2 and 5.3, respectively), it can

be confirmed that both CNN models have effectively learned the data from the OL dataset, as

previously revealed by the training results for this dataset in Figure 4.20a. This is due to the fact

that these models proved to be able to drive on the OL of the test track with a close approximation

to the PDS for most speeds. The one exception was the case of JNet at the velocity of 2 m/s (Figure

5.2a and 5.3a). When performing the right turn near the zebra crosswalk, the network predicted a

wrong angle around the 18 meter distance and, because of its high speed driving, the network was

unable to correct its action afterwards, leading to the deviation of the robot from the lane. Relating

this occurrence to the graphs of lateral error (Figure 5.4) and orientation error (Figure 5.5), it is

easily observable that this zone of the zebra crosswalk, in the middle of the track, constitutes the

most unstable zone of all the controllers, since the maximum values of both errors are reached

here. This is mainly because this curve represents the sharpest curve in the OL, because the robot

has to go from a left turn to a right turn in a relatively short distance. For higher speeds, the peak

errors were even more significant, with the robot having to perform this same turn in a short time

as well.

In addition to the steering angle plots in Figure 5.3, the results in Table 5.1 reveal an improve-

ment in the smoothness of driving with the proposed controller compared to the previous PDS

controller. This is evidenced due to the lower MCE for the PilotNet and JNet models compared

to the PDS in all the tests performed, which led to the suppression of peaks and fluctuations in

the steering angle signal. This effect was most noticeable during the first 6 meters travelled by the

robot.
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Based on the lateral error values in Table 5.2 and taking the reference values of 22.5cm, it can

be concluded that the calculated errors for both systems are comparatively low and tolerable. This

is because in no case did the trained models transpose any of the sidelines, with the exception of

the JNet case for 2m/s. Regarding the orientation errors in Figure 5.5 and Table 5.3, low errors

and low differences between the different models and velocities are also observed.

Overall, it can be concluded that the PDS continued to perform better than the trained models

at driving on the OL. However, the difference in the performance is very negligible. By comparing

the two implemented CNN architectures, PilotNet performed better than JNet since it performed

a full lap at all speeds, with lower errors, smoother predictions and no failures.

Finally, it is worth reminding that this dataset contained only image-angle pairs in the real

track, but it still performed well when tested in simulation environment. With this, it is possible to

draw the same conclusions as [8], confirming that the simulator is quite realistic with only a small

simulation-to-reality gap.

5.3.2 Inner lane model evaluation

By analysing the trajectories in Figure 5.6, it can be seen right from the start that PilotNet per-

formed considerably better at driving in the IL when compared with the PDS.

Firstly, since this IL path has the particularities of left turns at the intersections in the first and

second half of the track, a first analysis of these cases will be conducted. For the left turn in the

first half of the track, the robot using PilotNet performed the maneuver as intended and close to

the reference trajectory. However, by using the PDS, this maneuver was performed displaced from

the reference trajectory and transversing the broken line. This difference in the performance of the

maneuver is well evidenced in the graphs of lateral error (Figure 5.8) and orientation error (Figure

5.9), with the PDS reaching the maximum absolute error in these situations.

Regarding the left turn in the second half of the track, the robot has to perform such a maneuver

that, after the circular curve, it returns to the starting position near the crosswalk in the OL. As is

noted from the trajectory of both controllers, the robot always performs this maneuver displaced

and disoriented from the lane centre. However, this behavior is intentional because it is desired

that the robot returns to the OL and remains oriented parallel to it, as soon as possible and still

with some distance behind the crosswalk. This distance allows the robot to have enough time to

detect the signs from the signaling panels through the camera pointed upwards. For this reason,

data from the robot performing this turn was intentionally included in the IL dataset and PilotNet

learned to perform this turn as intended. This maneuver is again well evidenced in the graphs of

lateral error (Figure 5.8) and orientation error (Figure 5.9). This time, it can be observed that, for

most of the tests performed with PilotNet, the maximum error was reached during this maneuver.

Based on the steering angle plots in Figure 5.7, several observations are raised. The first

one is once again related to left turns in the first and second half of the track. With the PDS,

these maneuvers were performed using open-loop control by applying fixed steering angle values

and in the transitions between the open loop and closed loop control severe overshooting was

observed. With the PilotNet, although there were also some oscillations between predictions, this
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overshoot was exponentially reduced and the steering was considerably smoother in comparison

to the PDS. This fact is reflected in Table 5.4, which shows a lower MCE value for all the speed

tests performed..

The second observation in this steering angle plot is related to the driving performance of

the robot on the straight line. This line has the length of 10.6m and starts approximately at the

distance travelled of 14m by the robot. In both cases, oscillations around the value 0 are verified,

which caused some deviations from the centre of the lane when driving the robot on this part of

the track. In the PDS case, these oscillations even led the robot to deviate from the lane for the

velocities of 1.5 m/s and 2 m/s. The presence of these oscillations also in the PilotNet case may

suggest that the network has learned this noise and has not generalized enough trained with PDS

data. However the results for lateral error (Table 5.5) and orientation error (Table 5.9) revealed

that these oscillations were not critical and that the proposed ML controller outperformed the PDS

in driving performance in this lane.

Finally, it is important to recall that the IL dataset included data in both simulated and real

environments. Furthermore, this dataset only included data with the Major Alvega driving only at

a velocity of 0.85 m/s. The results of the lateral error and the orientation error demonstrate that

the best performance of PilotNet on this lane occurs when a speed of 1 m/s is used. Being this test

speed the closest to the one used in the datasets, the best performance in terms of lower lateral and

orientation error is obviously given for this case.

5.3.3 D2 challenge evaluation

Based on the trajectories shown in Figure 5.10, it can be observed that no problem occurs in the

driving performance of the robot when the switch between the two models is made. The plots in

Figure 5.11 also confirms that no overshoot occurs in the steering angles applied to the robot at the

transition point between the models. Only some oscillations of the IL model are observed which

were already observable and aforementioned in the previous section.

The results of this evaluation and the previous individual evaluations of the OL and IL models,

reveal that the proposed controller meets all the requirements of the D2 challenge of ADC, when

implemented together with the major_signalling_panel and major_crosswalk nodes of

the PDS.

5.3.4 D3 challenge evaluation

From the results in Figure 5.12, it can be seen that the obstacle avoidance algorithm (Figure 4.15)

successfully performed challenge D3 for different test scenarios. These scenarios included in-

stances where obstacles were placed in areas with different orientations in the second half of the

track, namely the straight line and the circular curve areas.

Nevertheless, the results in Figure 5.13 reveal that there are some specific cases in which

failed to perform as expected. In the case of Figure 5.13a, the failure occurs during the change

maneuver to the opposite lane. The steering angle offset values were obtained empirically to cover
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mostly the scenarios where obstacles are placed on the straight line and the regions in the circular

curve where left turns occur. As this situation corresponded to a right turn, the offset value was

overly high, positioning the robot transversely oriented to the lane. Consequently, the model of the

opposite lane was unable to correct this orientation error and the robot deviated from the expected

trajectory. Regarding the case of Figure 5.13b, although the robot has successfully performed the

obstacle avoidance, the robot failed at the step of returning to the original lane. This was because

this maneuver occurred near the region of the intersection, where the robot should have performed

the left turn and not trying to return to the original lane. This step of the algorithm could then have

been bypassed by switching directly to the IL model that would be capable of performing the left

turn maneuver at the intersection.

It should be mentioned that obstacle placement such as in these two scenarios is unlikely to

happen in the competition environment. However, these corner cases point out that the algorithm

could be further improved by applying offset values adapted to the different orientations of the

curves in the second half of the track.

Lastly, this algorithm revealed an alternative solution to perform challenge D3. For that, only

the models trained exclusively for driving, the distance traveled based on odometry and the ob-

stacle detection algorithm of the /major_object node of the PDS were used. Furthermore, to

transfer the good behavior of the OL and IL models to the driving on the opposite direction lanes,

it was only necessary to invert part of the OL and IL datasets, saving time implementing software

to make the robot driving the lanes in the opposite direction. So, with this solution it was not

necessary to build any exclusive dataset for obstacle avoidance.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

The primary objective of this dissertation was to apply ML algorithms to control the navigation of

the Major Alvega’s robot that participates in the ADC.

The objective was accomplished, with the proposed ML controller being able to successfully

perform a full lap around the track in both routes and while using different velocities. In addition,

satisfactory results were observed regarding the deviation from the lane centre and the orientation

error. In relation to the steering angle predictions by the models, low jumps between consecutive

predictions were noted, which led to a smoother driving along the track, including in the turning

maneuvers.

While integrating the proposed controller in the ROS architecture of the PDS, it was also pos-

sible to perform other challenges of the ADC competition. The first example was the performance

of the D2 challenge, in which there were switches between the OL and IL models and the robot

driving performance was not compromised. The second example was an extra feature of this dis-

sertation and was related with the performance of the obstacle avoidance challenge. To perform

this task it was only necessary to invert part of the data from the OL and IL datasets, train two

more models with those inverted data and use the distance information obtained by odometry and

the major_object from the PDS.

It is also possible to conclude that, by using the proposed controller, Major Alvega’s navigation

control system became significantly simpler by using end-to-end control. Firstly, the distance

travelled obtained by odometry and the PID controller were no longer required for keeping the

robot within the lane, since the models infer directly the correct steering angle. Secondly, the

volume of image processing at the major_tracking node was also significantly reduced. This

has occurred because the image processing steps for calculating the distance and angle between the

robot’s referential to the sidelines has been removed, and only a small amount of pre-processing

was performed before feeding the images to the network.

73
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The construction of the ADC real track is susceptible to human error, so its dimensions may not

be exactly the ones defined by the rules. Tests in a simulation environment with the track distorted

and with its dimensions both reduced and increased by 5% were also performed, to simulate this

human error. In all tests, the proposed controller had a similar performance to the one that was

manifested in the results, which led to the conclusion that the trained models are able to operate

not only in the track with the exact dimensions, but also on a track where minor errors can happen.

It is important to mention that the hardware utilized for the inference of the models was the

EdgeTPU in alternative to GPU. While utilizing this hardware, the models had to be quantized

and therefore lightweighted. However, this device was still able to give real time inference on

the control of the robot’s navigation by predicting the proper steering angle with low latency and

without degrading the model’s effectiveness. Therefore, it was possible to implement these models

and reach real time ML inferring in the control of the robot’s navigation, using only a low cost

hardware, suitable for embedded platforms and that offers low power consumption as well.

Finally, this project provided a successful case of applying ML to the navigation control of a

robot with a steering mechanism identical to a real car and which is inserted in an environment

very similar to a conventional human road. Indicating that these algorithms could be also effective

in the future when incorporated into real self-driving cars.

6.2 Further Work

Despite the good performance of the controller in the navigation of the robot using the track in the

simulation environment, it would also be interesting to observe how it would perform in the real

track and robot.

Moreover, the current mode of operation of the controller discards temporal issues, since the

models predict the steering angle simply by using the single image captured by the camera at that

particular instant. However, driving is a continuous process in which past driving actions influence

the steering angle at the current moment. Two possible approaches to consider time information

would be: 1) use a stack of consecutive images as input, instead of just a single one; 2) use a

LSTM module in the network architectures, in a similar way to the C-LSTM described in Section

3.2.4.

The obstacle avoidance algorithm was an attempt to perform the D3 challenge only by using

the driving models. Its effectiveness is far from being perfect since it was unable to work on some

areas of the track where obstacles were placed, because the offset was a fixed value, independent

of the location on the track. As such, this algorithm still has room for improvement. A possible

approach could be to implement RL methods for obstacle avoidance.

Finally, the application of ML-based algorithms proved to be very effective for controlling

the robot’s steering. These methods have the potential to be applied in other modules of Major

Alvega, such as the detection of obstacles, signals from the signalling panels, traffic signs and the

crosswalk.
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