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Abstract

Driving is a very dangerous activity, both for the people inside and outside vehicles. This is be-
cause humans are fallible. For this reason, the analysis of the driving risk is an important matter,
both for the driver and for public safety in general. The goal of this project was to develop a
framework to analyse the risk of a person’s driving style using Machine Learning techniques so
that the application would improve its accuracy and use cases range over time. The analysis was
done using the inertial sensors of a smartphone and the On-Board Diagnosis, OBD, to get param-
eters about the car’s real-time state like speed, motor’s RPM and engine load. Using this data, it is
possible to detect features of the driving which can then be used to classify the user’s driving style
in one of 3 classes: low, medium and high risk. One of the challenges in this project is the fact
that there are no datasets available with all these features and no pre-trained model for this kind
of data. This means that all the data that was used had to be gathered and partially labelled by me
and one volunteer. Such conditions resulted in a small and unbalanced dataset which crippled the
results. It was, however possible to do a proof of concept of risky behaviours/features’ detection.
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Chapter 1

Introduction

1.1 Problem Statement and Motivation

Driving has, for long, been the most dangerous transportation mean of all. In 2016, there was only

one general aviation accident involving aircraft with a MTOM (maximum take-off mass) above

2250 kg and in 2013, a specially bad year for aviation accidents [3] (from 2006 to 2013, there had

never been more than 5 fatalities per year), air transportation had a total of 11 fatalities [3] while

road transportation recorded a mind-boggling number of 25401 fatalities [4], all in the EU-28

territory.

This is mainly due to human errors and the variety of choices the driver can take (when com-

pared to rail transportation, for example, in which, practically, the only action that a driver can

commit that can endanger the lives of the passengers is speeding and there are fewer train drivers,

which leads to a finer selection and greater control over them). Hence, the analysis of a driver’s

DS, specifically its risk, is a very pertinent matter.

Over the last few years, there has been some research on detecting some mid-level features

of a DS, like Rui Araujo, Angela Igreja and Ricardo de Castro’s Driving coach: A smartphone

application to evaluate driving efficient patterns [5] which is specified in analysing the fuel con-

sumption of a driver and giving hints on how to improve the DS in order to increase the energetic

efficiency, but none has yet been made, to the best of my knowledge, that uses an neural network

approach (related work will be discussed in section 2.5).

In this context, this dissertation’s theme was chosen because it is a groundbreaker in the usage

of neural networks for DS risk analysis.

The possibilities of usages for this application are plenty and range from Usage-Based Insur-

ance (UBI) to the analysis of a driver’s DS after a revoked license due to past transgressions in

order to ensure the driver’s new DS is safe enough to acquire a permanent license again.

1



2 Introduction

1.2 Objectives

The objectives of this project are to research the use of NNs (Neural Networks) in the analysis of

driving data. This means analysing the applicability of NNs in:

1. detecting mid-level features (MLF) from low-level inputs/features (LLF)

2. detecting high-level features (HLF):

(a) using Deep Neural Networks (inputting LLF directly into it and getting HLF in the

output)

(b) inputting LLF along with MLF into a NN to get the HLF

The deep neural network approach requires a big dataset which is why the alternative (a), from

here on out called the mixed approach, is the only feasible one in the context of this dissertation

due to the the lack of data.

Low-Level Features are the data acquired directly from the smartphone application, like ac-

celerometer and engine’s RPM.

Mid-Level Features are features in the driving conditions that are derived from the LLF. These

can be classes like accelerating, slowing down, on a turn or on a straight road section.

High-Level Features, in this context, are the classes that represent different risk levels.

1.3 Research questions

This dissertation aims to answer the following research questions:

• Is it possible to collect, analyse and classify vehicle driving data in real-time using a smart-

phone?

• Is it possible to tell dangerous situations apart from normal driving style using such a sys-

tem?

In section 4.3 there is a discussion over these questions.

1.4 Project Overview

Detecting the DS risk from a set of raw sensorial and OBD data requires several steps of data

pre-treatment, detecting features, labelling, clustering and training the model (not necessarily all

or in that order).

The diagram that represents the overall process is represented in the image 1.1. It follows a

simplified version of the CRISP-DM methodology, which will be explained in section 2.3.

First, the developed Android App acquires data and sends it raw into the remote DB after each

session. Then, when there is enough data in the DB to work with, new data is inferred from the raw
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Data gathering

OBD

GPS
Accelerometer

Gyroscope Database
Generate inferreble

data from the dataset

Prepare data

Cluster the data

Update the model

Train the model with
the clustered data

Figure 1.1: System overview

data like the standard deviation of the measurements in each time frame, as well as the average

of the gyroscope and accelerometer data in a time frame to remove the noise. Next, clustering

algorithms will be used to cluster the data and the one with the best performance will be used in

the mixed approach 1.

After being clustered, the data will be used to train the model until it reaches a maximum in

the fitness function. Then, the new model will be uploaded to the App so that it contains the most

recent version.

The lack of data and the small variation in it, which creates a big challenge in clustering the

data into meaningful clusters, was the biggest problem in this project. If the data is scarce, the

clusters will be biased. If the data is not diversified enough, the clusters will aggregate noise

instead of actual meaningful clusters.

Because there was only one functional OBD device 2 during most of the 5 months of this

project, the gathered data is extremely biased and in small quantity, which means that the data

analysis part of this thesis was negatively affected by factors over which I had little control.

Another fundamental problem is the subjectivity of the definition of risk without enormous

collective datasets (on Google scale) so a correlation could be made between the DS and accidents,

making it possible to actually predict the probability of an accident (quantitative risk) of a DS in

real time.

To simplify this conundrum, an assumption was made: the risk is to be evaluated as belong-
ing to one of three qualitative (instead of quantitative) classes, high, medium and low risk,
depending on the dangerous mid-level features the DS is classified as in each time-frame.

1see section 1.2
2the other OBD devices only arrived 6 days from the delivery date of this thesis report
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1.5 Contributions

The biggest contribution of this dissertation was the designing of the model, which, along with the

App, can be later reused by researchers who intend to deepen the study on DS risk analysis.

Another contribution is assessing the effectiveness of clustering algorithms for non-visual data,

more specifically, driving data.

1.6 Document Structure

First of all, I’ll clarify that the language used in this dissertation is British English, not American

English.

Chapter 2 describes some important concepts and processes that are relevant or fundamental

in this project. It also mentions some of the related work that was previously done about this topic.

Chapter 3 contains the implementation details of the project.

Chapter 4 contains the results of the project.

Chapter 5 contains the conclusions and future work.



Chapter 2

Concepts and Related Work

2.1 Data gathering

Gathering the data was one of the biggest tasks in this thesis because there was no dataset available

with the fields that were required to analyse the driving risk. For this reason, there was the need to

build a way to gather the data and centralise it.

An Android App was firstly developed that only gathered data from the inertial sensors (ac-

celerometer and gyroscope), the On-Board Diagnostics EML327 [6] device and the location. The

App saves the data in a local database and then uploads it to a back-end server as soon as it’s

possible to do so.

2.1.1 On-Board Diagnostics

On-Board Diagnostics v2 is protocol defined in ISO9141 [7, 8], SAE J1962 [9], SAE J1978 [10],

SAE J1979 [2] and SAE J2012 [11] and is the standardised way to collect data from the vehicle

about errors, vehicle information and live data on the vehicle’s operation like engine’s rotations

per minute, vehicle speed and throttle position. The only OBD mode used by the App is Mode 1

(live data mode).

An ELM371 [6] Bluetooth adapter was used to communicate with the vehicle’s OBD port.

ELM371 works as a middle-ware layer between the low-level commands of the OBD port and the

RS232, a common serial communication standard. The Bluetooth adapter wraps the RS232 inter-

face in the Bluetooth Serial Port Profile (Bluetooth SPP) which is based on Bluetooth RFCOMM,

which, in turn, is based on the ETSI 07.10 [12] protocol. The App then connects to this device

via a Bluetooth SPP socket. There is a library that can be used to collect the OBD data: OpenXC.

However, this library wasn’t used because the command interface of the ELM327 is very easy to

use and the library would be overkill. Simply using a Bluetooth Socket for sending and receiving

data to and from the device was enough. Besides, as the library’s website even says,

Although Ford does implement the largest subset of the OBD-II standard, the typical

vehicle only supports 20 - 40 sensors and is limited to emissions powertrain.

5



6 Concepts and Related Work

This situation is not unique to Ford - the majority of OBD-II PIDs are non-standard.

supporting the experimental conclusion1 that there is a huge variance in the supported PIDs

throughout the different cars. This means that the data that can be used in the project is only the

data that is common in all cars. The most common PIDs are very easily to gather with ELM327

alone and don’t require the time for learning how to use an API.

The PIDs used by the App are represented in table 2.1.

Table 2.1: Required Mode 1 OBD PIDs [2]

PID Description Unit Mandatory
0x00 Get supported PIDs from 0x01 to 0x1F Yes

0x04 % calculated engine load % Yes

0x05 Engine coolant temperature °C Yes

0x0C Engine RPM rpm Yes

0x0D Vehicle speed km/h Yes

0x11 Throttle position % Yes2

0x20 Get supported PIDs from 0x21 to 0x3F Yes

0x40 Get supported PIDs from 0x41 to 0x5F Yes

0x45 Relative throttle position % No

0x51 Fuel type (see table 2.2) No

0x5E Engine fuel rate L/h No

0x60 Get supported PIDs from 0x61 to 0x7F Yes

0x61 Driver’s demand engine percent torque % No

0x62 Actual engine percent torque % No

0x63 Engine reference torque N ·m No

The fuel type PID is an enumerated type (see table 2.2).

The non-mandatory PIDs are not used in the model because they are less likely to be available

in all vehicles, which makes their use unpractical. They are recorded and saved for the purpose of

data the gathering system’s expandability only, meaning they are kept so they can later be used in

future work in case a work-around to this is found.

2.1.2 Inertial Sensors

Android’s SensorEvent API [1] was used for the inertial sensors measurements. It defines the axis

as represented in figure 2.1.

1In the 3 cars that I tested this in, the supported PIDs sets were all different
2Not used because one of the cars used to gather data doesn’t report this PID correctly
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Table 2.2: Fuel type codes [2]

0 Not available
1 Gasoline
2 Methanol
3 Ethanol
4 Diesel
5 LPG
6 CNG
7 Propane
8 Electric
9 Bifuel running Gasoline
10 Bifuel running Methanol
11 Bifuel running Ethanol
12 Bifuel running LPG
13 Bifuel running CNG
14 Bifuel running Propane
15 Bifuel running Electricity
16 Bifuel running electric and combustion engine
17 Hybrid gasoline
18 Hybrid Ethanol
19 Hybrid Diesel
20 Hybrid Electric
21 Hybrid running electric and combustion engine
22 Hybrid Regenerative
23 Bifuel running diesel

Figure 2.1: Axis as defined in SensorEvent API [1]

Two Sensors were used: the accelerometer and the gyroscope. The gyroscope is essential

for noticing curves and rotation of the axes. The accelerometer was used instead of the linear

acceleration because the gravity’s constant influence in this sensor can be computed into the slope

of the road and the low frequency part of it, the linear acceleration, can be used to detect when the

driver is in turns, speeding up and slowing down.
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The x,y,z variables in the accelerometer are the accelerations in the directions of each axis in

m · s−2. Those variables in the gyroscope represent the angular speed around each axis in rad · s−1

(angular speed vector has the same direction and sense as the axis’; see figure 2.2).

Figure 2.2: Angular Velocity

To reduce the noise and ease the data treatment, the phone should be placed static in an hori-

zontal position (screen facing upwards) and the top of the phone facing the front of the car, like in

figure 2.3.

Figure 2.3: Recommended phone placement

2.1.3 Location

Android’s FusedLocationProviderClient [13] was used to poll the device’s location because of

its superior accuracy when compared to using only the GPS. This is due to the fact that Fus-

edLocationProviderClient combines the GPS results with the GSM or Wi-Fi (whenever they are

available) to get the best performance/accuracy and battery consumption balance, according to the

programmer’s demands. In the DC App, accuracy was prioritised.

The Location is used in this App so it is possible to manually validate some results by, for

example, looking at a map and checking if the driver was indeed in a turn or somewhere where

there may have been a dangerous situation (like driving too fast in a road with too many turns).
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There was also an attempt to use a web-service to acquire the speed limit of a road by its

coordinates but it wasn’t possible because Google’s API for speed limits is the only one that has

reliable values and is not available for free3. Some e-mails were exchanged with Google and I was

even contacted on the phone by an employee but my request for an exception on the grounds of

educational use was rejected.

2.2 CRISP-DM

As mentioned in section 1.4, this project follows the CRISP-DM (Cross-industry standard process

for data mining) methodology because it is a well described architecture for tackling data mining

problems and fits perfectly with the system’s needs. The overall work cycle is represented in figure

2.4.

Figure 2.4: CRISP-DM Process Diagram

(source: Wikipedia)

CRISP-DM was formally published in 2000 [14] by Shearer C.. It defines 6 major phases.

Such phases and subtasks are represented in table 2.3 [15].

3The fees start at $50k
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Table 2.3: CRISP-DM’s phases and subtasks

Business
Under-

standing

Data Under-
standing

Data
Preparation

Modelling Evaluation Deployment

Determine

Business

Objectives

Collect

Initial Data

Data

cleaning

Select

Modelling

Technique

Evaluate

Results

Plan

Deployment

Assess

Situation

Describe

Data

Data

Integration

Generate

Test Design

Review

Process

Plan

Monitoring

&

Maintenance

Determine

Data Mining

Goals

Explore Data
Data Trans-

formation
Build Model

Determine

Next Steps

Produce

Final Report

Produce

Project Plan

Verify Data

Quality

Data

reduction

Assess

Model

Review

Project

Data Reduction

The implementation of the CRISP-DM in this project is detailed in section 3.4.

2.3 Data Preparation

Datasets are obtained by measuring real-life systems, which are extremely prone to noise. Besides

that, the data may be in different scales and may also have offsets or be scattered in different

amounts among the classes (asymmetrical datasets). Therefore, preparing the dataset is one of the

most important parts of a Machine Learning project because the irregularities in the data cripple the

models ability to learn and produce accurate results. Some algorithms are more and some are less

sensitive to said irregularities in the data but all benefit from good, clean data. Data Preparation is

also one of the main phases of the CRISP-DM methodology (see section 2.2).

The advantages of preparing the data are the following:

• information content will be better exposed

• errors in the predictions will be lower or, at most, the same

• acquaints the data miner with the data and, by doing so, increases the miners performance

in producing better models, faster

• prevents GIGO (Garbage In, Garbage Out) which is a common concept in data science and

also very self explanatory: if the data used to train the model isn’t good, the predictions

won’t be either
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• clean the real-world obtained data

According to professors João Mendes Moreira and José Luís Borges’ subject Knowledge Ex-

traction and Machine Learning’s lesson on Data Preparation at my faculty [15], the five major

tasks/steps in data preparation are the ones represented on table 2.4.

Table 2.4: Data Preparation Steps

Task Description
Data cleaning Make the data more uniform
Data integration Merge the data from the several sources
Data transformation Normalise and aggregate the data

Data reduction
Reduce the volume of the data in such a way that it produces
similar analytic results

Data discretisation4 Divide the range of a continuous attribute into intervals

2.4 Data Mining and Analysis

Data mining is the process of inferring new data from big entropy-prone data by analysing it from

different angles and summarising it into data that can be useful in some context.

Data mining algorithms and methods can be separated into the following categories [16]:

• Anomaly detection

• Association rule learning

• Classification

• Regression

• Clustering

• Dimensionality reduction

• Evaluation

• Summarisation

In the context of this project, the relevant categories are classification and clustering.

2.4.1 Classification

Classification is a data mining function that assigns items in a collection to target categories or

classes. The goal of classification is to accurately predict the target class for each case in the

4also known as binning
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data. For example, a classification model could be used to identify a DS’s risk as low, medium, or

high [17].

A loss function is defined that represents how close the classifier is to the truth. In such

functions, the closer the value is to zero, then better.

A classification task begins with a data set in which the class assignments are known. The

model is then trained with that data in such a way that the loss function is minimised.

The classification method relevant in this project is Neural Network (NN), more specifically,

Fully Connected Convolutional Neural Networks (FC-CNN).

FC-CNNs, from here on out simply called CNNs, are feed-forward neural networks which

have a set of neurons connected to each other. Neurons are organised in layers and each neuron

in a layer connects (sends its output) to all neurons in the next layer (hence the Fully Connected

classifier). A layer only sends its output to the next layer and there can’t be loops in the directional

graph that is the Neural Network.

Each neuron i has a set of numbers (one for each input x j it takes), Wi(array containing all

these numbers for the neuron i), by which it multiplies the k inputs and then sums the products

along with another number, bi. This sum is then passed through an activation function, σ to return

the output of that neuron, yi (see equation (2.1)).

yi = σ

(
k−1

∑
j=0

(x j ·Wi, j)+bi

)
= σ


[
Wi,0 Wi,1 · · · Wi,k−1

]
·


x0

x1
...

xk−1

+bi

= σ (Wi · x+bi)

(2.1)

This process can be grouped by layers by using matrix multiplication. Let W be the n by k

matrix in which each row is the Wi, having i as the neuron’s index (see equation (2.2)), let b be

the column array of size n (number of neurons in the layer) that contains all the biases from each

neuron of the layer (see equation (2.3)) and let x be the column array of size k contain all layer’s

inputs (the previous layer’s outputs - see equation (2.4)). Then let y be the column array of size n

containing all the outputs of each neuron in the layer. y is then expressed in equation (2.5).

W|n×k =
[
W T

0 W T
1 · · · W T

n−1

]T
(2.2)

b|n×1 =
[
b0 b1 · · · bn−1

]T
(2.3)

x|k×1 =
[
x0 x1 · · · xk−1

]T
(2.4)

y|n×1 =
[
y0 y1 · · · yn−1

]T
= σ

(
W|n×k · x|k×1 +b|n×1

)
(2.5)
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The layers’ properties, the values that define a layer, are their W matrices, b vectors and

activation functions.

2.4.1.1 Training

Training is the process of tuning the weights and biases of each layer in such a way that the loss

function is reduced. There are several methods for this. Some of the most common are the Genetic

Algorithm, Gradient Descent and Adam. Adam [18] combines (and improves) the advantages of

several other optimisation methods:

• Adaptive Gradient Algorithm (AdaGrad) - maintaining a per-parameter learning rate which

improves performance on problems with sparse gradients

• Root Mean Square Propagation (RMSProp) - also maintains per-parameter learning rates

but these are adapted based on the average of recent magnitudes of the gradients for the

weight, meaning it has an improved performance with noisy training data.

The comparison of the loss function’s evolution when training a model with different optimis-

ers is represented in figure 2.5.

Figure 2.5: Optimisers performance comparison

The Adam optimiser was the chosen one for this project due its superior performance and

speed.

2.4.1.2 Validation

Validation is the last step in the training process. It asserts the accuracy of the model by classifying

data that wasn’t used for training ("new data").
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Over-fitting can be detected in the validation and happens when the model has a very high

accuracy during training but a low accuracy in the validation data. This means that the model

learned how to interpret the training data but didn’t generalise it, and, therefore, can’t later cor-

rectly classify new data.

2.4.2 Clustering

Clustering is used in this project to train the risk analysis model with unsupervised data by aggre-

gating it into 3 clusters. Each risk class (high, medium and low risks) would be represented by the

data in one of the 3 clusters.

Clustering is among the most basic human activities. Since we were children, we’ve always

had the ability to classify objects and abstract ideas. It’s what makes us be able to answer IQ-

test questions like the one in figure 2.6 (taken from https://brilliant.org/problems/

what-the-next-pattern-1/).

Figure 2.6: Data structure

Clustering is, then, the ability to group data without any previous knowledge over it.

There are several clustering algorithms. Two of them are the Bag-of-Features and the K-means

algorithms.

Bag-of-features is an algorithm that is usually used for image classification but can be adapted

to this problem by detecting mid-level features (risky behaviours) in the data and then using these

to cluster the data over the risk level.

The K-means is another clustering algorithm but, unlike the bag-of-features algorithm, isn’t

guided in any way by the user. While the bag-of-features algorithm works with the provided

features, which can be chosen according to their relevance in the meaning of the intended clusters

(in this case, choosing risky events as features for the clustering of data over clusters that represent

the driving risk) and assumes that all of them are relevant in the clustering process, K-means takes

all the data and tries to find centroids in it. K-means could cluster the raw data into clusters that

https://brilliant.org/problems/what-the-next-pattern-1/
https://brilliant.org/problems/what-the-next-pattern-1/
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represent, for example, whether the driver is going up or down a ramp or in a plane instead of the

driving risk. K-means finds a pattern in the data which may or may not be the pattern the user is

looking for. Because the driving risk is such a subjective and high-level feature, trying to cluster

the raw data with K-means would be impractical.

2.5 Related work

This section is intended to be a brief summary of related work in the detection of driving risk and

driving features.

1. Rui Araújo; Ângela Igreja; Ricardo de Castro; Rui Esteves Araújo, Driving coach: A smart-

phone application to evaluate driving efficient patterns", Intelligent Vehicles Symposium

(IV), 2012 IEEE

Link: http://ieeexplore.ieee.org/abstract/document/6232304/

This paper was written by a former university professor of mine and some fellow students

of my course and presents an application for smart phone created by them to help the users

reduce the fuel consumption in their cars by helping the user adopt a better driving style.

It uses fuzzy logic to implement the heuristics when analysing the sensors’ data. This is a

basic approach because the algorithm doesn’t learn anything from the data. It just analyses

it in order to give a qualitative evaluation of the driver’s driving style based on heuristics.

2. Johannes Paefgen; Flavius Kehr; Yudan Zhai; Florian Michahelles, “Driving behavior anal-

ysis with smartphones: insights from a controlled field study”, MUM ’12 Proceedings of the

11th International Conference on Mobile and Ubiquitous Multimedia Article No. 36

Link: http://dl.acm.org/citation.cfm?id=2406412

This paper describes the creation of a smart phone application which is rather similar to mine

except that this one disregards the plethora of measurements that can be taken from the car’s

sensors network via OBD. They had to tackle the problem of the noise in the sensors and

they did so by combining several measurements before using their values. This approach

will also be used in this project. The road condition is one of the things which is disregarded

in most state-of-the-art solutions.

This paper helped me think about a way to efficiently remove the sensors’ noise.

3. T. Imkamon ; P. Saensom ; P. Tangamchit ; P. Pongpaibool, “Detection of hazardous driving

behavior using fuzzy logic”, Electrical Engineering/Electronics, Computer, Telecommuni-

cations and Information Technology, 2008. ECTI-CON 2008. 5th International Conference

Link: http://ieeexplore.ieee.org/abstract/document/4600519/

This paper’s solution uses, like in the first one’s, fuzzy logic to evaluate the sensors’ stimuli

and produce a qualitative evaluation of the driving style and one of its sensors is, like in the

http://ieeexplore.ieee.org/abstract/document/6232304/
http://dl.acm.org/citation.cfm?id=2406412
http://ieeexplore.ieee.org/abstract/document/4600519/
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first and second papers, a 3-axis accelerometer. Unlike the first and second papers, this uses

the data from the engine and computer vision (a camera) as well. The data was labelled by

questioning the passengers about each trip.

The difference from this project to mine is that the classification is done per trip instead of

real-time.

4. Germaine L. Odenheimer; Marie Beaudet; Alan M. Jette; Marilyn S. Albert; Laura Grande;

Kenneth L. Minaker, “Performance-Based Driving Evaluation of the Elderly Driver: Safety,

Reliability, and Validity”, Journal of Gerontology, Volume 49, Issue 4, 1 July 1994, Pages

M153–M159

Link: https://academic.oup.com/geronj/article-abstract/49/4/M153/565904

This is the most interesting paper I read for the preparation of this dissertation albeit not as

relevant to it as the other ones. There was a significantly bigger and more accurate dataset

than in the others (30 different drivers, 2 independent evaluators seating in the back seat

during each test drive and the drivers were subjected to cognitive tests). This study used

human insight to correlate the age and cognitive functions with several driving behaviours,

rather than a more technological approach like the one intended in this dissertation.

This paper made me think about how I should do the risk classification. To present a quan-

titative value for the risk would require a lot of data, extensive statistical analysis over it and

experts to validate the results. Besides, this data had to come from a big and reliable source

like an insurance company (who holds a lot of data about driving accidents and the condi-

tions that lead to said accidents) because the amount of data and accuracy needed to do a

quantitative evaluation of the risk would be massive. This is why a qualitative classification

of the risk was chosen: high, medium and low risk.

5. Tim Horberry; Janet Anderson; Michael A.Regan; Thomas J.Triggs; John Brown, “Driver

distraction: The effects of concurrent in-vehicle tasks, road environment complexity and

age on driving performance”, Accident Analysis & Prevention, Volume 38, Issue 1, January

2006, Pages 185-191

Link: http://www.sciencedirect.com/science/article/pii/S0001457505001521

Unlike any one of the previous papers, there were no driving tests done but instead driving

simulations to gather the data. It measures the performance of the driver in different driving

conditions, operating or not the car’s entertainment system and talking or not on the phone

hands-free. It disregarded the discrepancies in drivers’ cognitive functions, reaction times

and other aspects that may affect a user’s ability to drive under such circumstances. This is

not necessarily a bad thing. It just means that this study focused solely on correlating the

driving conditions and distractions with the performance of a specific driver, which in theory,

should be correlatable with the performance of other drivers based on their characteristics.

https://academic.oup.com/geronj/article-abstract/49/4/M153/565904
http://www.sciencedirect.com/science/article/pii/S0001457505001521
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6. Chalermpol Saiprasert; Thunyasit Pholprasit; Suttipong Thajchayapong, “Detection of Driv-

ing Events using Sensory Data on Smartphone”, International Journal of Intelligent Trans-

portation Systems Research, January 2017, Volume 15, Issue 1, pages 17–28

Link: http://doi.org/10.1007/s13177-015-0116-5

This paper is about three algorithms for detecting risky behaviours in the driving style.

Unlike in this project, this paper doesn’t try to get an abstract classification of the overall

risk but rather the detection of risky situations. This is a work that I had to do to detect

the mid-level features in the driving style in this project. The mid-level features are very

important for the approach suggested in chapter 3 and for clustering the data using the bag-

of-features clustering algorithm.

The OBD data wasn’t used in this project, only the smartphone’s sensor data.

http://doi.org/10.1007/s13177-015-0116-5
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Chapter 3

Proposed System

3.1 Introduction

The whole system, its design and implementation will be detailed in this chapter.

As described in section 2.1, an Android Application was designed and implemented in order

to obtain the data because there were no available datasets online due to this project’s need for the

combination of inertial sensors and OBD data. For this reason, the App was primarily designed to

only gather data and send it to the back-end server. It can, however, be extended to include real-

time analysis of the data after a proper model is defined, trained and uploaded into it (deployment).

The back-end server’s purpose is to receive and keep all the data safe and centralised.

The designed model and its implementation of CRISP-DM is also discussed in this chapter.

3.2 The Data Gathering Application

As mentioned in 2.1, an Android application was developed to gather the data. This section will

go into details about the App’s functionality.

3.2.1 The flow - Service

This application follows a Finite State Machine (FSM) to control its state and states transitions.

Such FSM is represented (simplified) in the figure 3.1. There are also events defined which trigger

transitions if and only if they are legal in the current state.

Upon launching, the application checks if all of its requirements are met. Such requirements

are:

1. the runtime permissions (coarse and fine location)

2. the login (explained in section 3.3)

3. the Bluetooth’s state (which must be enabled)

4. whether or not a Bluetooth device was selected

19
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Figure 3.1: Application flow
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Each requirement missing has its own error state. At any time of the execution, if an event

that symbolises a lack of one of the requirements is fired, the FSM will jump into one of these

states, according to whichever requirement is missing first (in the order in which they were listed

above). These lacking-requirements states always cascade between themselves to guarantee that

the Application will never go into an idle state with a requirement still missing (the code to check

if a certain requirement is met is run upon entering the state and, if it is, the FSM jumps to the

next lacking-requirement state or the Okay idle state). Lacking permissions, user not logged in

and Bluetooth disabled result in pop-ups in the Activity to request the user to grant permissions,

login and activate the Bluetooth, respectively.
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If all requirements are met, the App will go into the Idle state, only then allowing the user to

start recording a session.

Upon starting a session, the App attempts to connect to the selected Bluetooth device (referred

to as Bluetooth adapter in 2.1). If it fails, the OBD error event will trigger resulting in the App

jumping into an idle state that represents an said error. If it succeeds, it will poll the supported

PIDs and check if all the mandatory PIDs (as defined in table 2.1) are supported (if they are not all

supported, the same OBD error event as before is triggered). After this, the OBD is ready to start

serving data.

Then, the accelerometer, gyroscope and location will be activated. If any of these fail to

activate, the App’s FSM will go into an idle state that represents a Sensor error and the OBD

will be disconnected. If not, the application starts receiving periodic accelerometer, gyroscope,

location and OBD data, storing them in a local SQLite database.

If, at any time during the recording period, there is an error in the sensors or in the OBD, the

application will stop and go into the corresponding idle error state.

When the user requests the App to stop recording or when the App is idle and the user requests

a manual upload, the application starts sending all the unsent and valid 1 sessions to the back-end

server. Each successfully sent session is marked in the local database as such so it won’t be sent

again. After all sessions are sent or failed, the App will go to an idle state, either the Okay idle

state if all sessions were sent successfully or an idle error state that represents an upload error if

any of the sessions failed to do so.

3.2.2 The User Interface

The user interface is simplistic and intuitive (figure 3.2). It is hollow, meaning that there is no

business logic in it and it’s just a puppet of the service.

The main components are the status bar, the start and stop buttons which activate, deactivate

and change colours according to the service’s FSM state, the selector for picking a paired Blue-

tooth Device and a scrollview with all the real-time data being shown and it’s being recorded (see

figure 3.2c).

There is also a notification that can be used to control the service and to check the service’s

state without opening the Activity (see figure 3.2d). That notification contains the same status as

the status bar in the Activity and may be used to kill the service when the application is not running

(recording or uploading).

1A valid session is one that wasn’t forcefully interrupted and that contains data of all types (accelerometer, gyro-
scope, location and OBD)
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(a) Requesting Bluetooth (b) Device not Selected

(c) App ready (d) The notification

Figure 3.2: User Interface
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3.3 The Back-end

The back-end is also rather simple. It’s a PHP web application that receives POST requests con-

taining the data, checks for the authentication token and, if everything is okay, adds the payload to

the database.

The communication is RESTful [19]. This architectural model for the communication is ad-

equate because it’s a client-server application, it’s stateless (each package includes the authenti-

cation and no cookies or sessions are used) and uses a uniform JSON interface, as represented in

figure 3.3.

Fields with gray background are optional

email

idToken

data
session

accelerometer [ ]

startEpoch
startTime
stopTime
userClassification

time_stamp
x
y
z

gyroscope [ ]
time_stamp
x
y
z

gps [ ]
time_stamp
lat
lon
alt
acc

obd [ ]

time_stamp
PID0x04
PID0x05
PID0x0C
PID0x0D
PID0x11
PID0x45
PID0x51
PID0x5E
PID0x61
PID0x62
PID0x63

Note:

Figure 3.3: Data structure

The authentication is done using Google’s OAuth2.0 API [20]. The user is prompted to login

in the Activity, the API responds with a token-id that is sent along with the payload to the server.

It is later used to authenticate him in the server by sending an API request to Google querying if

the token-id is valid and the smartphone that is trying to send data is indeed the one who logged

in.

The relational database engine used was PostgreSQL because it is extremely versatile, robust,

fast and open-source. The DB script to create the schema is in appendix A.
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3.4 CRISP-DM implementation

As mentioned in section 1.4, this project uses the CRISP-DM methodology which is briefly intro-

duced in 2.2. It’s important to note that only one cycle was done (there wasn’t a restructure of the

code following the evaluation phase) because the data was only available less than one and a half

week before the delivery date due to the delay in receiving the OBD devices that were ordered in

the internet and so there was not time to do more iterations nor to do a very deep analysis of the

data.

The CRISP-DM implementation in this project is as follows (see table 2.3 for the enumeration

of the phases and subtasks):

3.4.1 Business Understanding

In this phase, the problem should be analysed and the goals should be defined. The subtasks are:

1. Determine Business Objectives: The objective of the project is to mine driving data for

information, specifically the driving risk;

2. Assess the Situation: There is neither a dataset available nor a pre-trained model nor any

standard model for analysing driving data;

3. Determine Data Mining Goals: To be able to at least recognise some mid-level features

(as defined in section 1.2) in the data;

4. Produce Project Plan: Find the best way to prepare the data, define time-frames for data

to be analysed in, define a model for detecting MLF;

3.4.2 Data Understanding

In this phase, the miner should get acquainted with the data and know precisely what each field

represents. The subtasks are:

1. Collect Initial Data: An initial sample was collected to get a sense of the values range, their

progression over time and to test the data gathering App;

2. Describe Data: Already described in section 2.1;

3. Explore Data: The data was explored by looking at it in real-time. This was made by look-

ing at the phone while performing actions to test each field (tilting the phone, pressing the

car’s throttle pedal, comparing the OBD values with the car’s dashboard gauges information,

...);

4. Verify Data Quality2: The accelerometer proximately shows the standard value of gravity

in the direction of the axis perpendicular to the floor while being held so I’ve considered it

2The verification was done in my own car and not in the candidates’ cars; An assumption was made that the data in
the candidates’ cars is being correctly reported by the OBD, with exception to the throttle position in one of them.
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to have a small, neglectable, error. The gyroscope was tested in the vinyl record player’s

spinner and it also reported accurate values (error of±0.45%, taking the spinner as a ground-

truth by considering that it spins at the designated speed, which it should because the vinyl

records play at the correct speed in the same spinner). Only mandatory PIDs of the OBD

data were verified: % calculated engine load couldn’t be verified because there was no way

of actually measuring the engine’s torque; Engine coolant temperature, Engine RPM and

Vehicle speed were verified by comparing them with the values displayed on the dashboard,

which also suggested a good accuracy with exception to the speed value which was slightly

(~3km/h) lower on the OBD read than in the dashboard gauge.

3.4.3 Data Preparation

This is one of the most important parts in the CRISP-DM because it prevents the GIGO problem.

The subtasks were implemented as follows.

3.4.3.1 Data Cleaning

Data rows with empty fields were discarded. This wasn’t all that common because the data is

already sanitised by the App before being sent to the back-end server.

3.4.3.2 Data Integration

The data is merged from the local databases into the server database either manually or at the end

of each trip, which means that the data is already collected in one place, the server. This was

described in section 3.3.

The integration of the data from each session (joining the database tables) was done with SQL.

3.4.3.3 Data Reduction/Selection

Only the most common PIDs were selected and made mandatory (see table 2.1). An exception was

made and a mandatory PID, the Throttle Position, excluded from the data analysis because one

of the candidate’s car didn’t report its value correctly. Because this candidate, the dissertation’s

supervisor from Fraunhofer, was one of the biggest contributors in the data gathering process, his

data couldn’t be excluded or else there would be even less data available.

The selected data is the following:

• Accelerometer’s vector

• Gyroscope’s vector

• % calculated engine load

• Engine coolant temperature

• Engine RPM
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• Vehicle speed

The % calculated engine load field was selected because it can be associated with how long

the user has been driving for. Besides, if this OBD PID turns out not to be relevant, the Neural

Network will eventually learn it during the training and set its weights to zero in order to discard

it.

3.4.3.4 Data Discretisation

Because the different data sources are independent from each other and have different yielding

frequencies, the data needs to be aggregated into time intervals. This process is also called binning,

more specifically equal-width binning because the data was divided in intervals of the same width,

5 seconds, regardless of the number of samples inside that same interval. This is preferable over

the equal-depth binning because the whole objective of this subtask is to normalise the frequency

of all data sources.

Let us now consider the practical case in which the driver is in a straight road segment, enters

a turn and then another straight segment, like represented in 3.4a. Now let the time-frame be

such that it ends in the middle of the turn as in figure 3.4b. Those intervals’ classifications would

be ambiguous because they cut the turn in half. This can be solved by training the model using

overlapped time-frames like in figure 3.4c.

(a) The turn (b) Time-frames (c) Overlapped time-frames

Figure 3.4: Time-frames example

Considering one of the data-frames as the reference, the other three are offset by 1.25, 2.5 and

3.75 seconds but all are 5 seconds long.

In each interval, each field will produce two: the arithmetic average and the standard deviation.

The reason for the average is so that the time-frame has the middle value of the measurements in

it. The standard deviation is very important to detect variations in the data. If this wasn’t done,

information of event comprised completely inside a time-frame would be lost. For example, if a

user did a turn to the right followed by a turn to the left and this whole episode was inside a single

interval, this wouldn’t be noticed because the average of the inertial sensors would be close to zero

due to the opposite actions.

This whole process of grouping by offset time-frames is done by a big SQL query that’s pre-

sented in appendix B.

3.4.4 Modelling

In this phase, the model is defined and trained. The implementation will be detailed later in section

3.5. The subtasks are:
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1. Select Modelling Technique: The Modelling Technique selected for this project is a Con-

volutional Neural Network (CNN). It is assumed that the data is input while collected in

time-frames (arithmetic average and standard deviation);

2. Generate Test Design: The Tests made are using holdout data, which is data that is removed

from the dataset, and validating the model with it after training;

3. Build the Model: Parameters and Model’s Description are in subsection 3.5.1;

4. Assess Model: Model’s technical review is also in the subsection 3.5.1.

3.4.5 Evaluation

In this phase, the model is evaluated, reviewed and improvements defined. The subtasks are:

1. Evaluate Results: Results in chapter 4;

2. Review Process: Reviewing issues in the process will be in chapter 4.1;

3. Determine Next Steps: The next steps will be defined in the Future Work section (5).

3.4.6 Deployment

This is the phase with the least amount of practical work done because most of it never got out of

the planning phase. The model was never actually deployed due to the fact that, by the end of this

dissertation, there was not a final version that detected the DS risk. It was just impossible to do

everything in one week. However, the deployment phase was still planned and is described in the

following subtasks:

1. Plan Deployment: The project wasn’t deployed but the plan for the deployment was made,

nonetheless. The planned tool for deploying the model is Google Firebase’s Machine Learn-

ing which features some interesting things like the developer being able to upload a model

into the platform and have the model be deployed in every phone updated without the need

to update the App, dynamic definition of a TensorFlow Lite Model both in structure and

in the values (weights, biases and other parameters), among others. The App should be

deployed when a working version of the model is created;

2. Plan Monitoring and Maintenance: After being deployed, the model need to be monitored

so we can see if there is a drop in performance. This is actually a feature of the API that was

going to be used to deploy the model, Google Firebase’s Machine Learning.

3. Produce Final Report: CRISP-DM fits so well into this project that even the creation of

this very document was proposed by it. The final report must answer all the questions and

provide the results of all the subtasks in the cycle iteration, which is precisely the purpose

of section 3.4.
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4. Review Project: Project’s revision and final considerations will be made in sections 4.1 and

5.

3.5 The Model

Following the logic proposed in the project’s objectives (section 1.2), there should be an attempt to

create a model to detect Mid-Level Features (MLF) from Low-Level Features (LLF)3 and another

one for detecting High-Level Features (HLF) from a combination of MLF and LLF4.

3.5.1 Building the MLF detection model

The MLFs that were initially planned to be implemented are represented in the table 3.1. But

because there was no time to design, analyse and train a Model for each MLF in that table, a proof

of concept was build for the first one in the table: turn detection.

The features and the raw inputs from which they will be calculated are in table 3.1

Table 3.1: Data Features and respective inputs

Feature Inputs
Turn Accelerometer; Gyroscope
Acceleration Accelerometer; Gyroscope; PID 0x04 0x0C 0x0D 0x11;
Brake Accelerometer; Gyroscope; PID 0x04 0x0C 0x0D 0x11;
Overtaking Accelerometer; Gyroscope; PID 0x04 0x0C 0x0D 0x011;

This model takes only the accelerometer and gyroscope data as inputs because they are the

only relevant data fields (which are available in the dataset5) for telling a turn apart from a straight

road segment.

Assumptions:

1. all models were trained with a learning rate of 0.01 and 200 epochs so the accuracies were

comparable;

2. the activation functions in the hidden layers are all ReLU

3. the activation function in the output layer is the Sigmoid function

4. weights are randomly initialized6

5. biases are initialized to zero

3objective 1.
4objective 2.(b)
5Steering angle would have been nice to have but it isn’t a standard OBD PID but rather a manufacturer-specific

PID
6The random seed is set to 7 in the beginning of the Python script so it becomes deterministic, though
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3.5.1.1 Creating the dataset files

The files were obtained with the PostgreSQL COPY instruction to extract the results of the queries

into .csv files.

Files:

• dataset.csv is the file containing the inputs and their respective expected outputs. This file’s

data will be used to train the model. The header is: avg(acc_x), stddev(acc_x), avg(acc_y),

stddev(acc_y), avg(acc_z), stddev(acc_z), avg(gyr_x), stddev(gyr_x), avg(gyr_y), stddev(gyr_y),

avg(gyr_z), stddev(gyr_z), turn, straight. Columns turn and straight are the expected out-

puts for each input, which means they are always either 1 or 0 to symbolise whether the

input belongs to the class or not respectively;

• validation.csv is the file containing the validation data. Its structure is the same as the

previous one but this has less data rows;

• model.h5 is the file where the compiled and trained model will be saved so it can later be

loaded again;

• sess_xx_test ("xx" is the decimal id number of the session) is the file where the data to be

predicted is saved. The structure is avg(acc_x), stddev(acc_x), avg(acc_y), stddev(acc_y),

avg(acc_z), stddev(acc_z), avg(gyr_x), stddev(gyr_x), avg(gyr_y), stddev(gyr_y), avg(gyr_z),

stddev(gyr_z);

• sess_xx_test_preds ("xx" is the decimal id number of the session) is the file where the

predictions of the model will be saved for every input in the previous file. The structure is

just two columns with the prediction values for both turn and straight classes.

The dataset was created for training the turn-detection MLF CNN by manually looking at

maps like the one on figure 3.5 and recording in a spreadsheet some location intervals in which

each class happened. After having a list of turns and straight segments, the location pins were

then correlated with the time-frames in which they occurred. Then the big query in the appendix

B was run with the adequate WHERE clause to only show the data in the time-frames that were

labelled. These values were then shuffled by rows and the last 20 cut and pasted into another file

for validation. This resulted in 273 rows of data that were distributed like so: 169 rows of turns

and 104 rows of straight road segments.
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Figure 3.5: The map as it was used to analyse the sessions and label the data

3.5.1.2 Design and train the model

In order to define how many layers and neurons per layer should be used, a cycle of tests was

performed for all of those configurations.
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A very simple model of a single-layered (1 input layer, 1 hidden layer and 1 output layer) CNN

was defined and trained. This was able to prove that if a model is too simple, it can’t learn because

after some epochs, it would forget the previous training. In this specific CNN the accuracy stayed

at a low 65%, which is almost a random uniform distribution (50%). This allowed for a minimum

complexity to be defined.

Now, in order to bind the problem between two complexity limits, finding an upper bound in

the complexity would help the process of finding a more appropriate model for this data.

The more layers there are, the better the model can learn non-linear behaviours in the data. A

model with only one layer would have a poor performance in learning non-linear behaviours. So,

in order to get the upper bound mentioned in the previous paragraph, a model with three hidden

layers started to be trained. After getting that upper bound, the model should have its complexity

decreased for as long as there is overfitting in the training. To reduce the complexity, the number

of neurons and layers can be decreased but always keeping the number of neurons descendent over

the depth of the network to make the data be more and more dense ("dense" as in "meaning being

closer to the output, albeit still abstract") the closer it is to the output layer.

The first attempt was a 10:8:7 CNN. Upon being trained, there was an improvement over the

previous one-layered model with an accuracy of 70% using the validation data and a 1.2 ·10−4 in

the training loss function. This is a clear case of overfitting because the loss function’s value was

very low but the validation accuracy was only 70%. This means that the model learned how to

recognise the training data itself instead of learning its meaning ("turns"/"straight road segments")

so it performed poorly on new data.

There are many ways to reduce overfitting, one of them being to insert a dropout layer in

between the convolutional layers. Dropout layers randomly force values to zero during the training

(one of the layer’s parameters is the probability of it forcing a zero). Figure 3.6 denotes the

(exaggerated) effect of a dropout layer in a CNN. An important thing to keep in mind when using

dropout layers in that the droupout-rate shouldn’t be too high in the first layers because data lost in

the beginning will be lost in the rest of the network as well, which means that greater dropout-rates

in the beginning of the network have a greater impact than if they were closer to the end.

The number of neurons per layer was then decreased by 4, turning it into a 6:4:3 CNN. An

accuracy of 75% in validation data and 96% in the training process was obtained. There was a

reduction in the overfitting but it still happened: the validation accuracy was still low while the

system was being really good at learning the test data. So now, to reduce the complexity, a layer

was removed.

The new CNN was a 10:5. Upon training, an acceptable balance was reached: training accu-

racy was 98.72% and a validation accuracy of 82.5% (see figure 3.7). The validation data was still

not resulting a very good accuracy but, upon plotting the results on a map, another reason became

evident as to why the data wasn’t generating more accurate results.

The analysis of this model’s results is done in section 4.2.

Regarding the other MLFs in table 3.1, it would be much harder to get data to train them

because they can’t be recognised just by looking at a map like what was done to create the turns
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Figure 3.6: Dropout effect on a CNN

(source: https://goo.gl/p2RSyB)

and straight segments’ dataset. They would require someone to actually go and drive a car on

purpose just to recreate said MLFs. That wouldn’t be feasible with one week to analyse the freshly

collected data and write the rest of the thesis, which was on hold until the data was available. It

wouldn’t also be practical even if the OBD devices had arrived sooner. This is the problem of not

having a dataset already prepared: one is completely bound to whatever data is available whenever

it is available!

3.5.2 Building the HLF detection model

To train this model to detect risk, data should be clustered into three clusters, each representing a

risk class: low risk, medium risk and high risk.

Mid-Level Features can be extracted from the data (Low-Level Features) and input into the

HLF detection NN (instead of just inputting the raw data) to create a higher-level, less abstract

input to the model. For example, a value in the range [0;1] can be added to each window of data

representing the probability of it belonging to the "on a turn" or "sudden break" classes. This could

theoretically improve the clustering algorithm’s effectiveness by giving the dataset something that

is more closely related to the driving risk than raw data. The problem with some completely

unsupervised clustering algorithms like K-means is that they don’t cluster the data with a specific

target in mind. In the case of K-means, it clusters by finding patters, whatever they may be. As

an extreme example, it could cluster by whether the used phone’s manufacturer is A or B if such

information could be statistically correlated with the measurements. This is where the mixed

approach, where higher-level data is added to the dataset, comes into play. It improves the chance

of the clustering algorithm finding a pattern that is relevant, in this case the driving risk classes.

With this said, the model that was planned to be used consists of a CNN per each MLF to

pre-classify each time-frame before inputting it to the clustering algorithm and, later, to the HLF

detection model.

https://goo.gl/p2RSyB
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Because the results were good in the proof of concept, I believe this would be possible to do

as well if there was more time.
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Figure 3.7: Jupyther Notebook screenshot of the 10:5 CNN training



Chapter 4

Results

4.1 The System’s final review

The system’s framework (App and back-end) is functional and works as expected. It can definitely

still be improved and modularly scaled so it can be used to create new datasets for the later con-

tinuation of this project. The code is structured to improve the readability. There is some JavaDoc

throughout the Android project and comments in the PHP back-end, easing the task of whoever is

going to pick the project up and improve/scale it.

4.2 Results of the Mid-Level Features Detection proof of concept

After training the turns-detection CNN, the model is saved (see figure 4.1) and then used to predict

the classes of a whole trip (see figure 4.2). The predictions are then saved in a csv file which,

opened with LibreOffice Calc, can be easily mapped to the coordinates where each time-frame

was recorded. This program is also used to normalise the data so that the sum of the predictions

are all exactly 1 (this is the intended behaviour because the classes are mutually exclusive). The

file can then be uploaded into My Google Maps (https://www.google.com/mymaps) to plot

the trip and label it with the prediction value of being in a turn. Such map is represented (zoomed

out) in figure 4.3. Most places are predicted correctly (example in figure 4.4) but some aren’t, as

one can see in figure 4.5 where a big turn wasn’t classified as one and in figure 4.6 where two turns

in the direction of north-east (car is going from south to north) are classified correctly but a turn

in the direction of north-west isn’t.

Figure 4.1: Jupyther Notebook saving the model

It’s noticeable that, even in figure 4.4, the model is biased to accepting turns to the right but

not to the left. This is due to the turns dataset’s unbalanced nature. One of the sessions with the

35
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Figure 4.2: Jupyther Notebook creating a prediction

most turns used to gather the data was in Espinho, Portugal, which is a city with a block-like city

planning (orthogonal streets). This is why there were a lot of turns in that session. The problem is

that most of them were to the right so the model got biased to right turns.
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Figure 4.3: Predictions map
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Figure 4.4: Correct predictions map excerpt example
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Figure 4.5: Wrong predictions map excerpt example no. 1
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Figure 4.6: Wrong prediction map excerpt example no. 2
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4.3 Answering the Research Questions

In this section, the questions asked in 1.3 will be answered.

4.3.1 Is it possible to collect, analyse and classify vehicle driving data in real-time
using a smartphone?

The only problem while trying to classify data in real-time with a phone would be the deployment

to it but, because there is an API for that already, as discussed in subsection 3.4.6 of the CRISP-

DM implementation section, that problem is nullified. The only limitation is that the model must

be compatible with the Lite version of Tensorflow. And because the models proposed in this

dissertation are all CNNs, they are indeed compatible with the Lite version.

This way, because the detection of MLF is quite easily feasible, given a dataset with the other

features labelled, it is possible to detect the MLF in real-time on the phone.

Nevertheless, the experience that was made proves that care must be taken when creating the

dataset because the model behaves well even when trained with little data but suffers a lot with

unbalanced datasets.

4.3.2 Is it possible to tell dangerous situations apart from normal driving style us-
ing such a system?

This question can’t be answered objectively or backed by empirical evidence because the detection

of HLF wasn’t accomplished due to lack of time and data.

If I were to give an educated guess on the matter, though, I believe that it is, indeed, quite

possible to tell dangerous situations apart from driving style with a system with this architecture

because the models are very easily trained and are quite versatile (the model was trained with

mostly tight turns to the right but still was able to detect wide turns to the right - see figure 4.4’s

wide turn and figure 4.6’s north-most detected, yellow, turn).

If the MLF are so easily detectable, detecting HLF based on another CNN that receives raw

data along with MLF data is very plausibly a possible endeavour.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This work aimed to study and evaluate the viability of Machine Learning’s use in the detection of

driving risk. This couldn’t be accomplished because there was no dataset available and the data

that was recorded was very few and completely unlabelled. For this reason, the only solution that

was trained was the turn detection because it is the only mid-level feature I thought of that could

be labelled just by looking at the location plots and annotating the timestamp intervals. Other

MLF would require recreating risky behaviours while driving a car and recording the data (several

times), which is mostly neither legal nor practical.

The detected MLF (turns detection) which was used as proof of concept of the detection of

MLFs using Neural Networks proves that it is possible to indeed detect MLFs from raw data,

provided there is enough labelled data.

In regards of the project’s quality, it could have been better if the OBD adapters had come

sooner and there was a bigger dataset with more diversity in regards to driving risk conditions

(most of the driving sessions are of safe driving styles).

One of the contributions of this thesis was the data gathering framework which can continue

being used by some Fraunhofer’s employees to gather more data so someone else can later pick up

the project and train the models with more data. Another contribution of this thesis is the assertion

of the possibility of detecting driving features from the chosen dataset using convolutional neural

networks.

Overall, I feel that this work was too complex to begin with, that it had a very unstable and,

frankly, unreachable goal (the driving risk) in this dissertation’s time-frame because it is subjective

and requires experts’ opinions (for example insurance experts) for it to be validated. Also, I think

the obtained results are what was expected with the kind of data and restrictions present in this

project.

43
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5.2 Future Work

There is a lot of future work that can be done in the scope of this project now that the data gathering

part is much more advanced then it was in the beginning.

Some of it is:

• Gather labelled data on the other Mid-Level Features that were not yet explored in this

project using the system that was developed during this dissertation;

• Adapt the model that was created for detecting turns to those other MLFs;

• Implement more sophisticated clustering algorithms that better take advantage of the MLFs;

• Train a the proposed HLF detection model with the clustered data;

• Try another non-CNN approach to the problem;

• Create a more objective, quantitative scale for the risk measurement;

• Gather data with more interference to make the model more robust to noise and dirtier data

(for example, gather data with the phone in different positions);

• Implement the deployment module in the App. This is an easy task that can be easily

accomplished but isn’t useful until the others are completed. Especially the one to gather

more data on and model the other MLFs
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DB Schema Script

1 CREATE TABLE IF NOT EXISTS s e s s i o n (
2 i d BIGSERIAL PRIMARY KEY,
3 u s e r E m a i l VARCHAR( 2 0 0 ) NOT NULL CHECK ( u s e r E m a i l ~ ’ ^ [ a−z_ \−.0−9]+@[ a−z0

− 9 ] + ( \ . [ a−z0−9]+) * \ . [ a−z ] { 2 , } $ ’ ) ,
4 s t a r t E p o c h BIGINT NOT NULL CHECK ( s t a r t E p o c h >0) ,
5 s t a r t T i m e BIGINT NOT NULL CHECK ( s t a r t T i m e >0) ,
6 s topTime BIGINT CHECK ( stopTime >0) ,
7 u s e r c l a s s i f i c a t i o n INTEGER CHECK( u s e r c l a s s i f i c a t i o n IS NULL OR (

u s e r c l a s s i f i c a t i o n >=0 AND u s e r c l a s s i f i c a t i o n <=2) ) ,
8 UNIQUE ( use rEmai l , s t a r t E p o c h )
9 ) ;

10

11 CREATE SEQUENCE IF NOT EXISTS d a t a _ i d _ s e q ;
12 SELECT s e t v a l ( ’ d a t a _ i d _ s e q ’ , 1 , f a l s e ) ;
13

14 CREATE TABLE IF NOT EXISTS a c c e l e r o m e t e r _ d a t a (
15 s e s s i o n _ i d BIGINT NOT NULL REFERENCES s e s s i o n ( i d ) ON UPDATE CASCADE ON DELETE

CASCADE,
16 i d BIGINT NOT NULL DEFAULT n e x t v a l ( ’ d a t a _ i d _ s e q ’ ) ,
17 t ime_s t amp BIGINT NOT NULL CHECK ( t ime_s tamp >0) ,
18 x REAL NOT NULL,
19 y REAL NOT NULL,
20 z REAL NOT NULL,
21 PRIMARY KEY ( s e s s i o n _ i d , i d )
22 ) ;
23

24 CREATE TABLE IF NOT EXISTS g y r o s c o p e _ d a t a (
25 s e s s i o n _ i d BIGINT NOT NULL REFERENCES s e s s i o n ( i d ) ON UPDATE CASCADE ON DELETE

CASCADE,
26 i d BIGINT NOT NULL DEFAULT n e x t v a l ( ’ d a t a _ i d _ s e q ’ ) ,
27 t ime_s t amp BIGINT NOT NULL CHECK ( t ime_s tamp >0) ,
28 x REAL NOT NULL,
29 y REAL NOT NULL,
30 z REAL NOT NULL,
31 PRIMARY KEY ( s e s s i o n _ i d , i d )
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32 ) ;
33

34 CREATE TABLE IF NOT EXISTS g p s _ d a t a (
35 s e s s i o n _ i d BIGINT NOT NULL REFERENCES s e s s i o n ( i d ) ON UPDATE CASCADE ON DELETE

CASCADE,
36 i d BIGINT NOT NULL DEFAULT n e x t v a l ( ’ d a t a _ i d _ s e q ’ ) ,
37 t ime_s t amp BIGINT NOT NULL CHECK ( t ime_s tamp >0) ,
38 l a t REAL NOT NULL,
39 l o n REAL NOT NULL,
40 a l t REAL NOT NULL,
41 acc REAL,
42 PRIMARY KEY ( s e s s i o n _ i d , i d )
43 ) ;
44

45 CREATE TABLE IF NOT EXISTS o b d _ d a t a (
46 s e s s i o n _ i d BIGINT NOT NULL REFERENCES s e s s i o n ( i d ) ON UPDATE CASCADE ON DELETE

CASCADE,
47 i d BIGINT NOT NULL DEFAULT n e x t v a l ( ’ d a t a _ i d _ s e q ’ ) ,
48 t ime_s t amp BIGINT NOT NULL CHECK ( t ime_s tamp >0) ,
49 PID0x04 REAL NOT NULL,
50 PID0x05 REAL NOT NULL,
51 PID0x0C REAL NOT NULL,
52 PID0x0D REAL NOT NULL,
53 PID0x11 REAL NOT NULL,
54 PID0x45 REAL DEFAULT NULL,
55 PID0x51 REAL DEFAULT NULL,
56 PID0x5E REAL DEFAULT NULL,
57 PID0x61 REAL DEFAULT NULL,
58 PID0x62 REAL DEFAULT NULL,
59 PID0x63 REAL DEFAULT NULL,
60 PRIMARY KEY ( s e s s i o n _ i d , i d )
61 ) ;
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Query to collect data with overlapped
time-frames

1 SELECT
2 *
3 FROM
4 −−r e g i o n a c c e l e r o m e t e r
5 (
6 (
7 SELECT
8 s e s s i o n _ i d ,
9 t r u n c ( t ime_s t amp / 5 ) *5 " wind " ,

10 avg ( x ) " avg ( acc_x ) " , COALESCE( s tddev_samp ( x ) , 0 ) " s t d d e v ( acc_x ) " ,
11 avg ( y ) " avg ( acc_y ) " , COALESCE( s tddev_samp ( y ) , 0 ) " s t d d e v ( acc_y ) " ,
12 avg ( z ) " avg ( acc_z ) " , COALESCE( s tddev_samp ( z ) , 0 ) " s t d d e v ( acc_z ) "
13 FROM
14 (
15 SELECT
16 s e s s i o n _ i d ,
17 ( t ime_s tamp−mi n_ t s ) / 1 e9 t ime_s tamp ,
18 x ,
19 y ,
20 z
21 FROM
22 a c c e l e r o m e t e r _ d a t a JOIN
23 (
24 SELECT i d s e s s i o n _ i d , s t a r t t i m e *1 e6 mi n_ t s
25 FROM s e s s i o n
26 ) m i n _ c a l c USING ( s e s s i o n _ i d )
27 ) AS a
28 GROUP BY s e s s i o n _ i d , wind
29 )
30 UNION
31 (
32 SELECT

47
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33 s e s s i o n _ i d ,
34 t r u n c ( ( t ime_s t amp + 1 . 2 5 ) / 5 ) *5−1.25 wind ,
35 avg ( x ) " avg ( acc_x ) " , COALESCE( s tddev_samp ( x ) , 0 ) " s t d d e v ( acc_x ) " ,
36 avg ( y ) " avg ( acc_y ) " , COALESCE( s tddev_samp ( y ) , 0 ) " s t d d e v ( acc_y ) " ,
37 avg ( z ) " avg ( acc_z ) " , COALESCE( s tddev_samp ( z ) , 0 ) " s t d d e v ( acc_z ) "
38 FROM
39 (
40 SELECT
41 s e s s i o n _ i d ,
42 −− t r u n c ( ( ( t ime_s tamp−mi n_ t s ) / 1 e9 + 1 . 2 5 ) / 5 ) *5−1.25 ,
43 ( t ime_s tamp−mi n_ t s ) / 1 e9 t ime_s tamp ,
44 x ,
45 y ,
46 z
47 FROM
48 a c c e l e r o m e t e r _ d a t a JOIN
49 (
50 SELECT i d s e s s i o n _ i d , s t a r t t i m e *1 e6 mi n_ t s
51 FROM s e s s i o n
52 ) m i n _ c a l c USING ( s e s s i o n _ i d )
53 ) AS a
54 WHERE t r u n c ( ( t ime_s t amp + 1 . 2 5 ) / 5 ) *5−1.25 >=0
55 GROUP BY s e s s i o n _ i d , wind
56 )
57 UNION
58 (
59 SELECT
60 s e s s i o n _ i d ,
61 t r u n c ( ( t ime_s t amp + 3 . 7 5 ) / 5 ) *5−3.75 wind ,
62 avg ( x ) " avg ( acc_x ) " , COALESCE( s tddev_samp ( x ) , 0 ) " s t d d e v ( acc_x ) " ,
63 avg ( y ) " avg ( acc_y ) " , COALESCE( s tddev_samp ( y ) , 0 ) " s t d d e v ( acc_y ) " ,
64 avg ( z ) " avg ( acc_z ) " , COALESCE( s tddev_samp ( z ) , 0 ) " s t d d e v ( acc_z ) "
65 FROM
66 (
67 SELECT
68 s e s s i o n _ i d ,
69 −− t r u n c ( ( ( t ime_s tamp−mi n_ t s ) / 1 e9 + 3 . 7 5 ) / 5 ) *5−3.75 ,
70 ( t ime_s tamp−mi n_ t s ) / 1 e9 t ime_s tamp ,
71 x ,
72 y ,
73 z
74 FROM
75 a c c e l e r o m e t e r _ d a t a JOIN
76 (
77 SELECT i d s e s s i o n _ i d , s t a r t t i m e *1 e6 mi n_ t s
78 FROM s e s s i o n
79 ) m i n _ c a l c USING ( s e s s i o n _ i d )
80 ) AS a
81 WHERE t r u n c ( ( t ime_s t amp + 3 . 7 5 ) / 5 ) *5−3.75 >=0
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82 GROUP BY s e s s i o n _ i d , wind
83 )
84 UNION
85 (
86 SELECT
87 s e s s i o n _ i d ,
88 ( t ime_s t amp / 5 ) : : INTEGER*5−2.5 wind ,
89 avg ( x ) " avg ( acc_x ) " , COALESCE( s tddev_samp ( x ) , 0 ) " s t d d e v ( acc_x ) " ,
90 avg ( y ) " avg ( acc_y ) " , COALESCE( s tddev_samp ( y ) , 0 ) " s t d d e v ( acc_y ) " ,
91 avg ( z ) " avg ( acc_z ) " , COALESCE( s tddev_samp ( z ) , 0 ) " s t d d e v ( acc_z ) "
92 FROM
93 (
94 SELECT
95 s e s s i o n _ i d ,
96 ( t ime_s t amp − mi n_ t s ) / 1 e9 t ime_s tamp ,
97 x ,
98 y ,
99 z

100 FROM
101 a c c e l e r o m e t e r _ d a t a
102 JOIN
103 (
104 SELECT i d s e s s i o n _ i d , s t a r t t i m e *1 e6 mi n_ t s
105 FROM s e s s i o n
106 ) m i n _ c a l c USING ( s e s s i o n _ i d )
107 ) AS a
108 WHERE ( t ime_s t amp / 5 ) : : INTEGER*5−2.5>=0
109 GROUP BY s e s s i o n _ i d , wind
110 )
111 ) acc JOIN
112 −−e n d r e g i o n
113 −−r e g i o n g y r o s c o p e
114 (
115 (
116 SELECT
117 s e s s i o n _ i d ,
118 t r u n c ( t ime_s t amp / 5 ) *5 " wind " ,
119 avg ( x ) " avg ( gyr_x ) " , COALESCE( s tddev_samp ( x ) , 0 ) " s t d d e v ( gyr_x ) " ,
120 avg ( y ) " avg ( gyr_y ) " , COALESCE( s tddev_samp ( y ) , 0 ) " s t d d e v ( gyr_y ) " ,
121 avg ( z ) " avg ( gyr_z ) " , COALESCE( s tddev_samp ( z ) , 0 ) " s t d d e v ( gyr_z ) "
122 FROM
123 (
124 SELECT
125 s e s s i o n _ i d ,
126 ( t ime_s tamp−mi n_ t s ) / 1 e9 t ime_s tamp ,
127 x ,
128 y ,
129 z
130 FROM
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131 g y r o s c o p e _ d a t a JOIN
132 (
133 SELECT i d s e s s i o n _ i d , s t a r t t i m e *1 e6 min _ t s
134 FROM s e s s i o n
135 ) m i n _ c a l c USING ( s e s s i o n _ i d )
136 ) AS a
137 GROUP BY s e s s i o n _ i d , wind
138 )
139 UNION
140 (
141 SELECT
142 s e s s i o n _ i d ,
143 t r u n c ( ( t ime_s t amp + 1 . 2 5 ) / 5 ) *5−1.25 wind ,
144 avg ( x ) " avg ( gyr_x ) " , COALESCE( s tddev_samp ( x ) , 0 ) " s t d d e v ( gyr_x ) " ,
145 avg ( y ) " avg ( gyr_y ) " , COALESCE( s tddev_samp ( y ) , 0 ) " s t d d e v ( gyr_y ) " ,
146 avg ( z ) " avg ( gyr_z ) " , COALESCE( s tddev_samp ( z ) , 0 ) " s t d d e v ( gyr_z ) "
147 FROM
148 (
149 SELECT
150 s e s s i o n _ i d ,
151 −− t r u n c ( ( ( t ime_s tamp−mi n_ t s ) / 1 e9 + 1 . 2 5 ) / 5 ) *5−1.25 ,
152 ( t ime_s tamp−mi n_ t s ) / 1 e9 t ime_s tamp ,
153 x ,
154 y ,
155 z
156 FROM
157 g y r o s c o p e _ d a t a JOIN
158 (
159 SELECT i d s e s s i o n _ i d , s t a r t t i m e *1 e6 mi n_ t s
160 FROM s e s s i o n
161 ) m i n _ c a l c USING ( s e s s i o n _ i d )
162 ) AS a
163 WHERE t r u n c ( ( t ime_s t amp + 1 . 2 5 ) / 5 ) *5−1.25 >=0
164 GROUP BY s e s s i o n _ i d , wind
165 )
166 UNION
167 (
168 SELECT
169 s e s s i o n _ i d ,
170 t r u n c ( ( t ime_s t amp + 3 . 7 5 ) / 5 ) *5−3.75 wind ,
171 avg ( x ) " avg ( gyr_x ) " , COALESCE( s tddev_samp ( x ) , 0 ) " s t d d e v ( gyr_x ) " ,
172 avg ( y ) " avg ( gyr_y ) " , COALESCE( s tddev_samp ( y ) , 0 ) " s t d d e v ( gyr_y ) " ,
173 avg ( z ) " avg ( gyr_z ) " , COALESCE( s tddev_samp ( z ) , 0 ) " s t d d e v ( gyr_z ) "
174 FROM
175 (
176 SELECT
177 s e s s i o n _ i d ,
178 −− t r u n c ( ( ( t ime_s tamp−mi n_ t s ) / 1 e9 + 3 . 7 5 ) / 5 ) *5−3.75 ,
179 ( t ime_s tamp−mi n_ t s ) / 1 e9 t ime_s tamp ,
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180 x ,
181 y ,
182 z
183 FROM
184 g y r o s c o p e _ d a t a JOIN
185 (
186 SELECT i d s e s s i o n _ i d , s t a r t t i m e *1 e6 mi n_ t s
187 FROM s e s s i o n
188 ) m i n _ c a l c USING ( s e s s i o n _ i d )
189 ) AS a
190 WHERE t r u n c ( ( t ime_s t amp + 3 . 7 5 ) / 5 ) *5−3.75 >=0
191 GROUP BY s e s s i o n _ i d , wind
192 )
193 UNION
194 (
195 SELECT
196 s e s s i o n _ i d ,
197 ( t ime_s t amp / 5 ) : : INTEGER*5−2.5 wind ,
198 avg ( x ) " avg ( gyr_x ) " , COALESCE( s tddev_samp ( x ) , 0 ) " s t d d e v ( gyr_x ) " ,
199 avg ( y ) " avg ( gyr_y ) " , COALESCE( s tddev_samp ( y ) , 0 ) " s t d d e v ( gyr_y ) " ,
200 avg ( z ) " avg ( gyr_z ) " , COALESCE( s tddev_samp ( z ) , 0 ) " s t d d e v ( gyr_z ) "
201 FROM
202 (
203 SELECT
204 s e s s i o n _ i d ,
205 ( t ime_s t amp − mi n_ t s ) / 1 e9 t ime_s tamp ,
206 x ,
207 y ,
208 z
209 FROM
210 g y r o s c o p e _ d a t a
211 JOIN
212 (
213 SELECT i d s e s s i o n _ i d , s t a r t t i m e *1 e6 mi n_ t s
214 FROM s e s s i o n
215 ) m i n _ c a l c USING ( s e s s i o n _ i d )
216 ) AS a
217 WHERE ( t ime_s t amp / 5 ) : : INTEGER*5−2.5>=0
218 GROUP BY s e s s i o n _ i d , wind
219 )
220 ) gyr USING ( s e s s i o n _ i d , wind ) JOIN
221 −−e n d r e g i o n
222 −−r e g i o n obd
223 (
224 (
225 SELECT
226 s e s s i o n _ i d ,
227 t r u n c ( t ime_s t amp / 5 ) * 5 " wind " ,
228 avg ( p id0x04 ) " avg ( p id0x04 ) " ,



52 Query to collect data with overlapped time-frames

229 COALESCE( s tddev_samp ( p id0x04 ) , 0 ) " s t d d e v ( p id0x04 ) " ,
230 avg ( p id0x05 ) " avg ( p id0x05 ) " ,
231 COALESCE( s tddev_samp ( p id0x05 ) , 0 ) " s t d d e v ( p id0x05 ) " ,
232 avg ( pid0x0C ) " avg ( pid0x0C ) " ,
233 COALESCE( s tddev_samp ( pid0x0C ) , 0 ) " s t d d e v ( pid0x0C ) " ,
234 avg ( pid0x0D ) " avg ( pid0x0D ) " ,
235 COALESCE( s tddev_samp ( pid0x0D ) , 0 ) " s t d d e v ( pid0x0D ) " ,
236 avg ( p id0x11 ) " avg ( p id0x11 ) " ,
237 COALESCE( s tddev_samp ( p id0x11 ) , 0 ) " s t d d e v ( p id0x11 ) "
238 FROM
239 (
240 SELECT
241 s e s s i o n _ i d ,
242 ( t ime_s t amp − mi n_ t s ) / 1 e9 t ime_s tamp ,
243 pid0x04 ,
244 pid0x05 ,
245 pid0x0C ,
246 pid0x0D ,
247 pid0x11
248 FROM
249 o b d _ d a t a
250 JOIN
251 (
252 SELECT
253 i d s e s s i o n _ i d ,
254 s t a r t t i m e * 1 e6 m in_ t s
255 FROM s e s s i o n
256 ) m i n _ c a l c USING ( s e s s i o n _ i d )
257 ) AS a
258 GROUP BY s e s s i o n _ i d , wind
259 )
260 UNION
261 (
262 SELECT
263 s e s s i o n _ i d ,
264 ( t ime_s t amp / 5 ) : : INTEGER*5−2.5 wind ,
265 avg ( p id0x04 ) " avg ( p id0x04 ) " ,COALESCE( s tddev_samp ( p id0x04 ) , 0 ) " s t d d e v (

p id0x04 ) " ,
266 avg ( p id0x05 ) " avg ( p id0x05 ) " ,COALESCE( s tddev_samp ( p id0x05 ) , 0 ) " s t d d e v (

p id0x05 ) " ,
267 avg ( pid0x0C ) " avg ( pid0x0C ) " ,COALESCE( s tddev_samp ( pid0x0C ) , 0 ) " s t d d e v (

pid0x0C ) " ,
268 avg ( pid0x0D ) " avg ( pid0x0D ) " ,COALESCE( s tddev_samp ( pid0x0D ) , 0 ) " s t d d e v (

pid0x0D ) " ,
269 avg ( p id0x11 ) " avg ( p id0x11 ) " ,COALESCE( s tddev_samp ( p id0x11 ) , 0 ) " s t d d e v (

p id0x11 ) "
270 FROM
271 (
272 SELECT
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273 s e s s i o n _ i d ,
274 ( t ime_s tamp−mi n_ t s ) / 1 e9 t ime_s tamp ,
275 pid0x04 ,
276 pid0x05 ,
277 pid0x0C ,
278 pid0x0D ,
279 pid0x11
280 FROM
281 o b d _ d a t a JOIN
282 (
283 SELECT i d s e s s i o n _ i d , s t a r t t i m e *1 e6 mi n_ t s
284 FROM s e s s i o n
285 ) m i n _ c a l c USING ( s e s s i o n _ i d )
286 ) AS a
287 WHERE ( t ime_s t amp / 5 ) : : INTEGER*5−2.5>=0
288 GROUP BY s e s s i o n _ i d , wind
289 )
290 UNION
291 (
292 SELECT
293 s e s s i o n _ i d ,
294 t r u n c ( ( t ime_s t amp + 1 . 2 5 ) / 5 ) *5−1.25 wind ,
295 avg ( p id0x04 ) " avg ( p id0x04 ) " ,COALESCE( s tddev_samp ( p id0x04 ) , 0 ) " s t d d e v (

p id0x04 ) " ,
296 avg ( p id0x05 ) " avg ( p id0x05 ) " ,COALESCE( s tddev_samp ( p id0x05 ) , 0 ) " s t d d e v (

p id0x05 ) " ,
297 avg ( pid0x0C ) " avg ( pid0x0C ) " ,COALESCE( s tddev_samp ( pid0x0C ) , 0 ) " s t d d e v (

pid0x0C ) " ,
298 avg ( pid0x0D ) " avg ( pid0x0D ) " ,COALESCE( s tddev_samp ( pid0x0D ) , 0 ) " s t d d e v (

pid0x0D ) " ,
299 avg ( p id0x11 ) " avg ( p id0x11 ) " ,COALESCE( s tddev_samp ( p id0x11 ) , 0 ) " s t d d e v (

p id0x11 ) "
300 FROM
301 (
302 SELECT
303 s e s s i o n _ i d ,
304 ( t ime_s tamp−mi n_ t s ) / 1 e9 t ime_s tamp ,
305 pid0x04 ,
306 pid0x05 ,
307 pid0x0C ,
308 pid0x0D ,
309 pid0x11
310 FROM
311 o b d _ d a t a JOIN
312 (
313 SELECT i d s e s s i o n _ i d , s t a r t t i m e *1 e6 mi n_ t s
314 FROM s e s s i o n
315 ) m i n _ c a l c USING ( s e s s i o n _ i d )
316 ) AS a
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317 WHERE t r u n c ( ( t ime_s t amp + 1 . 2 5 ) / 5 ) *5−1.25 >=0
318 GROUP BY s e s s i o n _ i d , wind
319 )
320 UNION
321 (
322 SELECT
323 s e s s i o n _ i d ,
324 t r u n c ( ( t ime_s t amp + 3 . 7 5 ) / 5 ) *5−3.75 wind ,
325 avg ( p id0x04 ) " avg ( p id0x04 ) " ,COALESCE( s tddev_samp ( p id0x04 ) , 0 ) " s t d d e v (

p id0x04 ) " ,
326 avg ( p id0x05 ) " avg ( p id0x05 ) " ,COALESCE( s tddev_samp ( p id0x05 ) , 0 ) " s t d d e v (

p id0x05 ) " ,
327 avg ( pid0x0C ) " avg ( pid0x0C ) " ,COALESCE( s tddev_samp ( pid0x0C ) , 0 ) " s t d d e v (

pid0x0C ) " ,
328 avg ( pid0x0D ) " avg ( pid0x0D ) " ,COALESCE( s tddev_samp ( pid0x0D ) , 0 ) " s t d d e v (

pid0x0D ) " ,
329 avg ( p id0x11 ) " avg ( p id0x11 ) " ,COALESCE( s tddev_samp ( p id0x11 ) , 0 ) " s t d d e v (

p id0x11 ) "
330 FROM
331 (
332 SELECT
333 s e s s i o n _ i d ,
334 ( t ime_s tamp−mi n_ t s ) / 1 e9 t ime_s tamp ,
335 pid0x04 ,
336 pid0x05 ,
337 pid0x0C ,
338 pid0x0D ,
339 pid0x11
340 FROM
341 o b d _ d a t a JOIN
342 (
343 SELECT i d s e s s i o n _ i d , s t a r t t i m e *1 e6 mi n_ t s
344 FROM s e s s i o n
345 ) m i n _ c a l c USING ( s e s s i o n _ i d )
346 ) AS a
347 WHERE t r u n c ( ( t ime_s t amp + 3 . 7 5 ) / 5 ) *5−3.75 >=0
348 GROUP BY s e s s i o n _ i d , wind
349 )
350 ) obd USING ( s e s s i o n _ i d , wind ) LEFT JOIN
351 −−e n d r e g i o n
352 −−r e g i o n l o c a t i o n
353 (
354 (
355 SELECT
356 s e s s i o n _ i d ,
357 t r u n c ( t ime_s t amp / 5 ) * 5 " wind " ,
358 avg ( l a t ) " avg ( l a t ) " , COALESCE( s tddev_samp ( l a t ) , 0 )

" s t d d e v ( l a t ) " ,
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359 avg ( l o n ) " avg ( l o n ) " , COALESCE( s tddev_samp ( l o n ) , 0 )
" s t d d e v ( l o n ) " ,

360 avg ( a l t ) " avg ( a l t ) " , s tddev_samp ( a l t )
" s t d d e v ( a l t ) "

361 FROM
362 (
363 SELECT
364 s e s s i o n _ i d ,
365 ( t ime_s t amp − mi n_ t s ) / 1 e9 t ime_s tamp , −−t o s e c o n d s s i n c e s e s s i o n

s t a r t
366 l a t ,
367 lon ,
368 a l t
369 FROM
370 g p s _ d a t a
371 JOIN
372 (
373 SELECT
374 i d s e s s i o n _ i d ,
375 s t a r t t i m e * 1 e6 m in_ t s
376 FROM s e s s i o n
377 ) m i n _ c a l c USING ( s e s s i o n _ i d )
378 ) AS a
379 GROUP BY s e s s i o n _ i d , wind
380 HAVING stddev_samp ( a l t ) IS NOT NULL −−d i s c a r d d a t a w i t h o u t h e i g h t
381 )
382 UNION
383 (
384 SELECT
385 s e s s i o n _ i d ,
386 ( t ime_s t amp / 5 ) : : INTEGER*5−2.5 wind ,
387 avg ( l a t ) " avg ( l a t ) " , COALESCE( s tddev_samp ( l a t ) , 0 )

" s t d d e v ( l a t ) " ,
388 avg ( l o n ) " avg ( l o n ) " , COALESCE( s tddev_samp ( l o n ) , 0 )

" s t d d e v ( l o n ) " ,
389 avg ( a l t ) " avg ( a l t ) " , s tddev_samp ( a l t )

" s t d d e v ( a l t ) "
390 FROM
391 (
392 SELECT
393 s e s s i o n _ i d ,
394 ( t ime_s t amp − mi n_ t s ) / 1 e9 t ime_s tamp , −−t o s e c o n d s s i n c e s e s s i o n

s t a r t
395 l a t ,
396 lon ,
397 a l t
398 FROM
399 g p s _ d a t a
400 JOIN
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401 (
402 SELECT
403 i d s e s s i o n _ i d ,
404 s t a r t t i m e * 1 e6 m in_ t s
405 FROM s e s s i o n
406 ) m i n _ c a l c USING ( s e s s i o n _ i d )
407 ) AS a
408 WHERE ( t ime_s t amp / 5 ) : : INTEGER*5−2.5>=0
409 GROUP BY s e s s i o n _ i d , wind
410 HAVING stddev_samp ( a l t ) IS NOT NULL −−d i s c a r d d a t a w i t h o u t h e i g h t
411 )
412 UNION
413 (
414 SELECT
415 s e s s i o n _ i d ,
416 t r u n c ( ( t ime_s t amp + 1 . 2 5 ) / 5 ) *5−1.25 wind ,
417 avg ( l a t ) " avg ( l a t ) " , COALESCE( s tddev_samp ( l a t ) , 0 )

" s t d d e v ( l a t ) " ,
418 avg ( l o n ) " avg ( l o n ) " , COALESCE( s tddev_samp ( l o n ) , 0 )

" s t d d e v ( l o n ) " ,
419 avg ( a l t ) " avg ( a l t ) " , s tddev_samp ( a l t )

" s t d d e v ( a l t ) "
420 FROM
421 (
422 SELECT
423 s e s s i o n _ i d ,
424 ( t ime_s t amp − mi n_ t s ) / 1 e9 t ime_s tamp , −−t o s e c o n d s s i n c e s e s s i o n

s t a r t
425 l a t ,
426 lon ,
427 a l t
428 FROM
429 g p s _ d a t a
430 JOIN
431 (
432 SELECT
433 i d s e s s i o n _ i d ,
434 s t a r t t i m e * 1 e6 m in_ t s
435 FROM s e s s i o n
436 ) m i n _ c a l c USING ( s e s s i o n _ i d )
437 ) AS a
438 WHERE t r u n c ( ( t ime_s t amp + 1 . 2 5 ) / 5 ) *5−1.25 >=0
439 GROUP BY s e s s i o n _ i d , wind
440 HAVING stddev_samp ( a l t ) IS NOT NULL −−d i s c a r d d a t a w i t h o u t h e i g h t
441 )
442 UNION
443 (
444 SELECT
445 s e s s i o n _ i d ,
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446 t r u n c ( ( t ime_s t amp + 3 . 7 5 ) / 5 ) *5−3.75 wind ,
447 avg ( l a t ) " avg ( l a t ) " , COALESCE( s tddev_samp ( l a t ) , 0 )

" s t d d e v ( l a t ) " ,
448 avg ( l o n ) " avg ( l o n ) " , COALESCE( s tddev_samp ( l o n ) , 0 )

" s t d d e v ( l o n ) " ,
449 avg ( a l t ) " avg ( a l t ) " , s tddev_samp ( a l t )

" s t d d e v ( a l t ) "
450 FROM
451 (
452 SELECT
453 s e s s i o n _ i d ,
454 ( t ime_s t amp − mi n_ t s ) / 1 e9 t ime_s tamp , −−t o s e c o n d s s i n c e s e s s i o n

s t a r t
455 l a t ,
456 lon ,
457 a l t
458 FROM
459 g p s _ d a t a
460 JOIN
461 (
462 SELECT
463 i d s e s s i o n _ i d ,
464 s t a r t t i m e * 1 e6 m in_ t s
465 FROM s e s s i o n
466 ) m i n _ c a l c USING ( s e s s i o n _ i d )
467 ) AS a
468 WHERE t r u n c ( ( t ime_s t amp + 3 . 7 5 ) / 5 ) *5−3.75 >=0
469 GROUP BY s e s s i o n _ i d , wind
470 HAVING stddev_samp ( a l t ) IS NOT NULL −−d i s c a r d d a t a w i t h o u t h e i g h t
471 )
472 ) gps USING ( s e s s i o n _ i d , wind )
473 −−e n d r e g i o n
474 WHERE s e s s i o n _ i d = 57 −−change t o t h e i n t e n d e d s e s s i o n o r keep l i k e t h i s
475 ORDER BY s e s s i o n _ i d , wind ;
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