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Abstract

Nowadays, companies that manufacture products, regardless of the product, have shown an in-
creased interest in resolving one of their problems: manufacturing products with nonconformities.
A nonconformity occurs when there is at least one product parameter that does not meet the in-
tended specifications predetermined by the client. It can be classified as minor, major, and critical
with the increase in negative effects on the product. The causes for the occurrence of nonconformi-
ties can range from the characteristics of the material to the conditions of the machines. However,
they can also be related to the poor execution of the production process or changes in the product’s
characteristics.

The main purpose of this dissertation is the development of machine learning models capable
of predicting whether a batch of manufactured products in a production line will be fabricated with
or without nonconformities, considering the possible causes addressed before. The development
of successful models can help companies reduce the production of defective products, leading to
a decrease in material and energy waste and a reduction in the environmental impact.

A standard CRISP-DM methodology was followed. In an initial phase, the data was collected,
preprocessed, and analyzed. Afterward, a phase of new features creation occurred and, henceforth,
the dataset was prepared to be used in the training of the machine learning models by making
use of several techniques and methods. Finally, parameter tuning was performed to improve the
models’ performances, resulting in a balanced accuracy average of was 84%. However, the mean
precision and recall was of 37% and 70%, respectively. When comparing the AUC metric, the
Artificial Neural Network classifier scored 0,91, Logistic Regression scored 0,97 and Random
Forest scored 0,99.

Keywords: Industry, Nonconformity, Product Quality, SPC, Data Mining, Machine Learning,
Supervised Learning, Prediction, Classification
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Resumo

Hoje em dia, as empresas que fabricam produtos, quaisquer que sejam estes, têm demonstrado
um crescente interesse na resolução de um dos seus problemas: manufaturar produtos com não-
conformidades. Uma não-conformidade ocorre quando existe pelo menos um parâmetro do pro-
duto que não vai de encontro à especificação pretendida e pré-determinada pelo cliente. A não-
conformidade pode ser classificada como secundária, principal ou crítica, de acordo com o au-
mento do efeito negativo no produto. As causas para a ocorrência de não-conformidades podem
ir desde as caraterísticas da matéria-prima até às condições das máquinas. No entanto, podem
também estar relacionadas com uma execução defeituosa do processo de produção ou com uma
mudança nas caraterísticas do próprio produto.

O principal objetivo desta dissertação é o desenvolvimento de modelos de machine learning
que sejam capazes de prever se um lote de produtos manufaturados numa linha de produção serão
fabricados com ou sem não-conformidades, tendo em conta as causas referidas anteriormente.
O desenvolvimento de modelos bem-sucedidos pode contribuir para a redução da produção de
productos com não-conformidades, levando a uma diminuição no gasto de matérias-primas e de
energia, bem como a um impacto ambiental mais reduzido.

Foi seguida uma metodologia CRISP-DM. Numa fase inicial, os dados foram colecionados,
pré-processados e analisados. De seguida, ocorreu uma fase de criação de novos atributos e,
daí em diante, o conjunto de dados foi preparado, através de um conjunto de várias técnicas e
métodos, para ser usado no treino dos modelos preditivos. Finalmente, efetuou-se uma otimização
dos parâmetros dos modelos de forma a melhorar o desempenho destes, resultando numa exatidão
média de 84%. No entanto, a média da precision e do recall for de 37% e de 70%, respetivamente.
Na comparação da métrica AUC, o classificador Artificial Neural Network obteve um valor de
0,91, Logistic Regression obteve 0,97 e, por fim, Random Forest obteve 0,99.

Keywords: Indústria, Não-Conformidade, Qualidade do Produto, SPC, Data Mining, Machine
Learning, Aprendizagem Supervisionada, Previsão, Classificação
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“We could change the world forever
We should turn it into something better

Than good.”

Mac Miller
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Chapter 1

Introduction

In this initial chapter, firstly, the context of this dissertation is presented in Section 1.1. This section

aims at contextualizing the reader on the topics covered by this work. Secondly, the motivation,

Section 1.2, explains why this dissertation is relevant, and the established final objectives are then

explained in Section 1.3. Finally, in the brief Section 1.4, the document structure is presented,

summarizing the contents of each following chapter.

1.1 Context

We are living in a world which is getting more and more competitive. So nowadays, compa-

nies, regardless of their type of business (services, merchandising, manufacturing, and others), are

forced to focus on small details that can help them thrive amongst all their competitors.

When it comes to a company related to the manufacturing sector, its product’s quality is one of

the main distinguishing factors of this company in relation to others in the same industry. There-

fore, the consumer decision is highly affected by whether the person considers, or not, the product

as having the characteristics desired.

There is no objective definition of what a product needs to have in order to be considered better

than a similar product. However, Garvin (1987) has provided eight dimensions of a product that

may be evaluated and taken into account when comparing it to another:

• Performance — Efficiency fulfilling the job;

• Reliability — Frequency of failures;

• Durability — Product’s lifetime;

• Serviceability — Quickness and time/financial effort regarding repairs;

• Aesthetics — Visual aspect;

1



2 Introduction

• Features — Differentiating characteristics;

• Perceived Quality — Reputation of both the company and the product itself;

• Conformance of Standards — Precision to meet the standards.

Looking at these dimensions, we understand that quality is a problem that is related and
has to be solved during the manufacturing process.

Variability is present everywhere since no two objects are exactly the same, even though they

may seem very similar. In the manufacturing business, the increase of variability in its products

represents a decrease in quality. Variability is related to several slight differences that occur in,

for example, raw materials, in the performance of operators, equipment, and machines. When in

the presence of high variability, some products may be manufactured with nonconformities —

a specific type of failure when a product fails to meet at least one specification. Once again, we

understand that the variability and its associated problems not only may but should be solved
during the problem manufacture [33].

1.2 Motivation

Manufacturing is a complex process in which the raw material goes through hundreds of dif-

ferent steps and is operated by several different machines and tools before becoming the final

product. Although steel manufacturing in specific is a very advanced industry, mainly due to the

ever-increasing global demand for steel over the past few years, nonconformities in this sector’s

products are still reasonably common, taking into account the precision needed to operate this

material. As a result, this industry is susceptible to their products and slight deviations in the

process’ conditions like pressure, temperature, or cooling flow rate that can very easily lead to

nonconformities [16, 46].

Besides the complexity addressed in the previous paragraph, the costs associated with the

manufacture of steel products and, in particular, the costs related to the reduction of product quality

are in the order of millions of dollars. This type of production is very energy-intensive. Thus,

optimizing the process is the key to keep a company competitive by reducing the final output

cost. Right now, companies are trying to reduce their production costs by attempting to predict

which products are worth going through the process until the end or not. Taking into account all

the existent variables, prediction is a difficult task to be carried out. However, the sooner flaws

are detected, the more money can be saved from the material in production that does not need to

undergo the rest of the production stages because it has already been detected as a probable final

product with nonconformities [20, 46]. The advantages of early detection of nonconformities are:

• Improvement in manufacturing efficiency;

• Yield improvement;

• Early detection of weak overall outcomes.
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Data Mining, a process used in the extraction of information from large datasets, when applied

to a domain like industry, is usually associated with quality control and anomaly detection [46].

Nowadays, industry processes contain many measurement techniques using, for example, soft

sensors [3], enabling the storage of vast amounts of data that benefit Data Mining [20]. The

dimensions of the datasets not only rule out the possibility that experts perform the prevention and

fault detection but also make it a perfect situation for DM and ML techniques to make use of its

potential.

It must also be referred that, even though companies can reduce the cost of quality (costs

related to the production, identification, avoidance, and even repair of products with nonconfor-

mances), it can never be zero. To reach such performance, the costs related to process-control

techniques and to the system that collects and analyzes the data would be greater than the actual

resulting reduction in the cost of quality. Nevertheless, decreasing the variability can lead to reduc-

tions in quality costs by 50% or 60% in organizations where this effort has not yet been made [33].

Last but not least, in addition to the obvious financial benefit of reducing material and energy
waste, companies can also reduce their environmental impact.

1.3 Objectives

Data Mining and Machine Learning techniques may help QC and anomaly detection experts, as

was mentioned in Section 1.2. Once the relevant variables in the production process have been

identified, the relationships between those can be determined. These variables are related to the

condition of the machines and the characteristics of the product material.

This dissertation proposes the combination of statistical methods and DM and ML tech-
niques to create predictive models that are able to predict the outcome of a batch regarding
its conformance in a production line environment. By doing this, there is the possibility of
exploring the conditions or ordered sequence of events that led to a nonconforming product.
The prediction is based on the variables mentioned in the previous paragraph and will be applied

to a steel manufacturing plant. The final goal of this work is to minimize the material and energy

waste and, by doing so, also minimizing the environmental impact of manufacturing companies.

1.4 Document Structure

This dissertation is constituted by six chapters, each with a self-explanatory name, as it follows:

• Introduction — Chapter 1 introduces the reader to the scope of the work. Includes the

context, motivation, objectives, and this document structure;

• Background — Chapter 2 describes the contemporaneous state of the art on the subjects

related to quality control and machining;

• Data Mining and Machine Learning — Chapter 3 contains the discussion about DM and

ML methodologies, techniques, methods, and algorithms;
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• Experimental Setup — Chapter 4 has the explanation about how the work was performed

from data collection to model training;

• Results — Chapter 5 presents the obtained results of each predictive model that was trained;

• Discussion and Conclusions — Chapter 6 concludes the dissertation by briefly reviewing

the developed work, interpreting the results, and suggesting the next steps in the develop-

ment of this work.



Chapter 2

Background

Before developing the predictive models that were briefly explained in Section 1.3, it is of great

importance to, first of all, carry out the study of some topics that this work involves since good

work requires a solid knowledge base in the topics addressed by it. Taking that into account, an

overview of those is performed in this chapter.

2.1 Quality Control

In the industry sector, the quality of companies’ products is, if not the most, one of the most

decisive factors for the success of that company. If it is able to incorporate in its products the

characteristics referred in Section 1.1, there is a high likelihood that the company can prosper

in the market segments where it is represented. However, it is understandable that achieving such

success is not easy or, otherwise, every company would have manufacturing processes that allowed

them to have top tier products in terms of quality.

Variability is the degree to which a distribution of, in this case, product measures is stretched

or squeezed. Variability among products that should be equal is impossible to completely remove

from a production system. Two products are never exactly the same in any aspect. Nevertheless,
companies attempt to minimize the variability in their products since the decrease in it leads
to an increase in quality. It can only be described in statistical terms [33].

There are two broad categories of methods related to Quality Control. These methods can be

included in one of the following:

• Acceptance Sampling

• Statistical Process Control

5
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2.1.1 Acceptance Sampling

Acceptance Sampling consists of retrieving a sample from a batch of objects in order to verify

the amount of the nonconforming ones. It is commonly used in the conformity verification of two

situations. It can be used to examine raw material or components before the production process

starts or the final product after it finishes manufacture. The ratio between objects with noncon-

formities and objects that meet the specifications is then compared to pre-established standards.

The approval of the objects lot depends on whether the ratio is below the standards or not. The

quality levels should define the sample size and the maximum number of items with nonconfor-

mities so that the batch can be accepted. The larger the sample and the smaller the quantity of

nonconforming items, the stricter the Acceptance Sampling is [19].

Several problems related to this method have been found:

• First of all, this method verifies the objects after they have already concluded their produc-

tion process. This means that the resources have already been used and, in case a batch is

rejected, not much is possible to be done afterward, leading to financial costs;

• Acceptance Sampling also creates an environment where a certain amount of products with

nonconformities is considered normal. This is not a good production practice since it almost

encourages the operatives to have a mindset in which products with nonconformities is not

completely bad, but that problems like these happen and may be ignored;

• Finally, when the evaluation of a whole batch is performed using only a sample, there is

always the risk that the sample does not contemplate the whole population’s characteristics.

This being said, there is a possibility that the whole batch of products is discarded due to the

fact that the sample contained most of the few objects with nonconformities or a possibility

that the lot is approved because the sample contained very few or none of the way too many

nonconformant products.

2.1.2 Statistical Process Control

Statistical Process Control, better known as SPC, is a robust combination of statistical methods

used to stabilize a process by minimizing the variability among manufactured products. By doing

so, SPC can increase production capacity without additional financial investment in equipment,

workforce, or overhead. It differs from the Acceptance Sampling method because the verification
of product conformity is partially done during the production process, rather than at the
beginning or the end. This allows preventive actions to be taken before the product goes through

all the manufacturing processes. Therefore, SPC is a method with a preventive nature. When

applied, patterns and significant variations are identified by comparing the current process results

with the required standards. Consequently, deviations can be eliminated before the product is

manufactured beyond the quality limits. However, SPC does not solve the problems existent in
the process, but it does detect them so that a solution can then be applied [33, 19].
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In a simple overview of this method, we can identify several benefits of SPC implementation

in a manufacturing process. The main ones are summarized here [11]:

• Processes can be kept in control by the feedback provided;

• As soon as a problem occurs, SPC is triggered;

• Allows the differentiation between two types of problems — the ones that can be corrected

and the ones that are due to chance;

• Companies can reduce the products inspection procedures;

• Gives insight knowledge during the production.

2.1.2.1 Variability Causes

There are countless reasons why variability is present in every manufacturing process. Those

causes can range from defects in the operating machines to the mood of the employees. There

have already been identified some of the most common and influential causes [19]:

• The raw material used in a process is also the final product from another one, which means

that it also contains variability as one of its characteristics. Thus, we can not expect products

to be concluded without variability from a process that already begins with it;

• Environmental factors, such as temperature and humidity, can affect the whole procedure;

• Differences between machines’ settings and calibrations can very easily lead to variations.

Besides this, it is known in the industry that, after periodic adjustments, variability tends

to increase;

• Although it can happen in any process, when machines and tools are dealing with harder

materials such as steel, they are more prone to have faster natural wear;

• Finally, the human intervention also plays its part in variability. The natural ability, learn-
ing curves, and operatives experience can increase or decrease the variation between prod-

ucts. Besides this, when shifts change, the quality usually also changes, since different

people are assuming the tasks.

Despite covering a lot of the cases in which variability increases, there are a lot more possible

causes for the increase than these previously mentioned. SPC is a method that can identify patterns

in the manufacturing process and divide the causes of variability in two categories — assignable
causes and chance causes. The main differences between these causes can be observed in Ta-

ble 2.1, and the way SPC detects them will be explained in the next Subsection.
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Table 2.1: Main differences between SPC’s 2 types of variability causes.

Cause Category Chance/Common Assignable/Special
Variation Random Non-random
Pattern None May have one
Nature Inherent to the process Possible to explain and control
Process adjustment Increases variation Decreases variation

2.1.2.2 Control Charts

As it was said in the beginning of this section, SPC is a combination of techniques that are used to

achieve stability in the manufacturing process. The tools used by SPC are called "The Magnificent
7" [33]:

• Histogram or Steam-and-Leaf plot

• Check sheet

• Pareto chart

• Cause-and-Effect diagram

• Defect concentration diagram

• Scatter diagram

• Control chart

From all these tools, control charts are SPC’s main technique and stand out for their
complexity and for their overall better performance at stabilizing a process, which improves

the quality [9]. In this chapter, the only tool that will be explored is the control charts. I recom-

mend the reader to see Montgomery’s Introduction to Statistical Quality Control [33] for a good

comprehension of the other tools. Control charts allow to graphically display the average of a

measured quality characteristic in samples by plotting it versus process time or process sample

number. Thus, companies can use them to monitor and surveil the process. An example of a

control chart is shown in Figure 2.1 and it contains:

• Center Line (CL) — Where the product characteristic being analyzed should fall;

• Upper Control Line (UCL) — The upper boundary up to where the product characteristic

may fall;

• Lower Control Line (LCL) — The lower boundary up to where the product characteristic

may fall;

A process is considered to be in a state of in-control if the points are plotted within the control

lines. Although processes can operate in this state for a long time, there will be assignable causes
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Figure 2.1: An example of a control chart presented by Montgomery [33].

that lead to losses of control sooner or later. The more out-of-control a process is, the more

products will fall outside the limits. If the points start to plot outside the ranges, there is evidence

that the process is in this state and should be corrected. Despite this, even if all the points are

being plotted inside the limits, but a pattern can be identified, it does not necessarily mean that the

process is controlled.

When analyzing control charts and the presence of patterns in those, it is important to know

what runs are. A run occurs when some consecutive points are always ascending, run up, or

descending, run down, in magnitude. Besides runs up and down, we can also identify a run when

several points are all either above or below the CL. Any quite long run is an indicator that the

process might be out-of-control. Therefore, we can say that control charts deal with the problem

of pattern identification, regardless of the type of these [33].

Western Electric, an American company with connections to the industry sector, has proposed

in 1956 some of the rules used in control charts to indicate nonrandom patterns. Later in 1984,

Lloyd S. Nelson, based on Western Electic’s rules, proposed some more. The rules are listed here:

1. At least 1 point is plotted outside the control lines;

2. At least 2 out of 3 consecutive points are plotted inside the last third of the control limits;

3. At least 4 out of 5 consecutive points are plotted inside the middle and last third of the

control limits;



10 Background

4. A run of at least 8 points on one of the sides of the CL;

5. A run up or run down of at least 6 points;

6. At least 15 consecutive points are plotted in the first third of the control limits;

7. At least 14 points in a row alternating between increasing and decreasing;

8. At least 8 consecutive points plotted outside both first thirds of the control limits;

9. Any other pattern that looks unusual;

10. Points plotted very close to the control limits.

After looking at these rules, it is understandable that there are quite a few that can be used to

decide whether a process is in an out-of-control state. It is also important to point out that control

charts can be classified into two different groups, depending on the quality characteristic’s nature.

A Variable Control Chart is used when dealing with quality characteristics that are expressed

by numeric values. In these cases, it is important to monitor the mean value, using an x control
chart, and the variability of the quality characteristic, using either an s control chart (standard

deviation) or an R control chart (range). The interpretation of one of the charts must always

be accompanied by the other, and, additionally, the x chart should not be analyzed if the R chart

reveals that the process is not in-control. When interpreting these, some common patterns appear:

• Cyclic — As the pattern name indicates, the points appear in a cycle. This is usually due

to other cyclic changes that can range from environmental changes to periodic changes

machine or workforce related;

• Mixture — Occur when the majority of plotted points fall close to the control limits;

• Shift — A shift in the mean value followed by a stabilization in it. It may be caused by new

workers, processes, or tools;

• Trend — A steady progress of the mean value in one direction explained by, for example,

degradation on the condition of the tools;

• Stratification — When points tend to gather around the CL. Many times this is due to errors

in the control limits values.

When interpreting variable control charts, it must always be taken into account if there is any

correlation between x and R. If this happens, according to Montgomery, "the underlying distribu-

tion is skewed", meaning that there may be an error in the data analysis.

An Attribute Control Chart is used when dealing with quality characteristics that can not be

expressed numerically and are expressed as attributes, such as product with nonconformities or

product without nonconformities. This type of chart does not provide as much information as the

previous one since numeric values are able to represent things that attributes can not. There are

three different types of charts used to represent attributes:
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• Control chart for Fraction Nonconforming — Represents the proportion between non-

conforming products and the total amount of products in a population. It is also called p
chart;

• Control chart for Fraction Nonconforming — Can be named as c chart and shows the

number of nonconforming products instead of their ratio;

• Control chart for Nonconforming per Unit — Employed when it is more convenient to

study the average number of nonconforming products per unit manufactured. It is known as

u chart.

2.1.2.3 OCAP

We have already seen in this section that SPC is a method with a preventive nature. This implies

that, by using SPC’s capabilities, companies are able to detect the existing problems in their pro-

duction processes. However, the problems are not solved by this method. To eradicate the root
causes of the problems, OCAP can be used. Out of Control Action Plan or OCAP explains

the chain of actions that should be performed when one problem and its cause are detected. This

plan can either be a detailed text description or a schema for an easier interpretation and to take

corrective actions faster [33]. An OCAP consists in:

• Checkpoints — The different possible problem causes;

• Terminators — The actions that, when taken, will solve the associated problem.

This type of plan can and should be adjusted and improved as the knowledge about the process

grows. Control charts should be followed by an OCAP so that preventive and corrective
actions can be conducted. An example of an OCAP is shown in Figure 2.2.

2.2 Machining Operations

Machining is the controlled process in which cutting tools are used to mechanically cut material

in order to obtain the chosen geometrical parts. This procedure is usually related to metal shaping.

Due to the required precision, accuracy, and efficiency in the production of a vast diversity of

geometries, it is considered by many as one of the most adaptable and skilled manufacturing

processes [15].

The machine tool or cutting tool is a powerful instrument used to manufacture components

by removing material from the workpart. Machine tools are usually composed of four elements

that are essential in the manufacturing process [34]:

• An energy source;

• A part that ensures the process is carried out with safety;
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Figure 2.2: A generic OCAP.

• A segment that orients the machine and makes sure it is secured;

• A component that supervises the previous elements.

Machining operations usually involve generating and forming the necessary geometries.

Whereas in the first one the new geometry of the workpart — the material to be machined —

is shaped by the trajectory of the cutting tool, in the second one it is controlled by the shape of the

instrument. Several operations can be performed using these two factors:

• Turning

• Drilling

• Milling

• Shaping

• Planing

• Broaching

• Sawing

In this dissertation, there is a particular interest in the turning and milling operations, since those

are the ones that are present in the later provided database. Based on this, only those two will be

described in more detail.
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2.2.1 Turning

Turning is one of the most common operations. In this process, the workpart is cut while rotating,

creating axially symmetrical shapes with respect to the rotation axis. The produced parts may

present characteristics such as different diameter steps, holes, and grooves.

2.2.1.1 Turning Operations

There are various variations in the turning process itself. The most usual variations are [27, 28]:

• Face Turning — Also known as Facing, it is a turning operation in which a cut perpen-

dicular to its rotation axis reduces the length of the workpart. It produces a smooth and flat

surface;

• Outer Diameter Turning — It is an external operation that occurs on the outer surface

of the workpart, machining the outside diameter of it. Due to the fact that it is the most

commonly used type of turning, it is also the one that produces its output with the highest

quality;

• Inner Diameter Turning — Also known as Boring, it is an internal turning operation that

machines the profile on the inside diameter of the workpart. Although it can only be used to

enlarge an already existing hole, it produces precise holes;

• Grooving — In this process, the diameter of the workpart is reduced over a narrow surface,

which means that the machining occurs between two edges of the piece. This process can

be used both in the inside and outside of the workpart;

• Threading — This is the operation applied when the objective is creating threads in a

workpart. These are generated by feeding a pointed tool across the surface of a rotating

workpart. If the threads are made on the outside surface, it is called an external threading,

otherwise it is called an internal threading.

2.2.1.2 Turning Tool

In the modern industry, there are various cutting tools, each designed specifically for fulfilling a

particular job. In order to obtain knowledge from the process, there is the need to get familiar with

different tools and the way these are applied to everyday turning operations.

In the case of turning processes, the tool used is a lathe (Figure 2.3). It shapes the workpart by

rotating it while a tool (sharp single cutting point) is pressed against the workpiece. Several parts

form lathes [42]:

• Headstock — A fixed support that holds the machine so that the vibrations caused by the

rotation do not affect the manufacture;

• Tailstock — Piece that supports the rotational axis of the workpiece. An operator can move

the tailstock so that the workpart can fit in the machine;
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Figure 2.3: A lathe (left) and a milling machine (right) diagrams retrieved from Mikell Groover’s
Fundamentals of Modern Manufacturing book [15].

• Bed — As the name suggests, this element is a robust base in which headstock, tailstock,

and other components are held. It absorbs all the vibrations caused by the cutting and is

particularly important when the workpiece is not balanced;

• Carriage — Its function is to provide cross and longitudinal movement so that the sharp

cutting tool can be placed in the right position along the bed;

• Feed Mechanism — This part is the one that allows the operator to control and adjust the

feed rate through the spindle speed. The feed is the distance that the tool proceeds into the

workpiece in each rotation.

2.2.2 Milling

Milling is an operation in which the workpart goes through a rotating tool that removes the un-

necessary material. It is an interrupted operation since the cutting points are not always touching

the workpart. Generally, milling is used to obtain planar surfaces and not axially symmetric, but it

can be used to obtain other types of surfaces.

2.2.2.1 Milling Operations

There are various variations in the milling process itself. The most usual variations are [26, 25]:

• Side Milling — Also known as Contouring, it is an operation applied to the outside edges

of the workpart. Side milling is used when the objective is the production of a flat surface.

The machine can control the depth of the cut;

• Face Milling — Face milling is similar to side milling since both aim at obtaining a flat

surface. However, the first is applied to the edges of the workpart, whereas the second is
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performed so that it cuts the top face of the part. The tool is placed perpendicular to the

workpart allowing it to cut the material;

• Slot Milling — This operation is used when the operator intends to make a slot or a groove

in the workpiece. Besides this, the machining is performed between two edge surfaces.

Since slots can be deep or shallow, wide or narrow, closed or open, the tool machining the

piece must be conforming to the slot. Using slot milling with enough depth in the workpiece

allows to cut it in two;

• Plunge Milling — While usually the tool cuts with its periphery, the cutting occurs at the

end of it in this operation. This modification changes the direction of the cutting forces from

radial to axial, which is beneficial to the process. It is a robust process when dealing with

complex shapes or deep and closed slots;

• Ramping — This operation is the most complex one since it requires the cutting tool to

move along the X, Y, and Z-axis simultaneously. This technique can be used to make angular

paths such as pockets, cavities, and engravings. N

2.2.2.2 Milling Tool

Just like in turning operations, there is also a specific tool that can be used to deal with milling pro-

cesses. The tool used is a milling machine (Figure 2.3). Milling machines are versatile tools used

to remove metal from a workpiece. They do so by using a milling cutter, a rotating cutting tool,

that moves along the fed piece. This movement allows the tool to obtain the desired workpiece

shape on flat, rough, and irregular surfaces.

There are some variations on this machine so that it can successfully perform the various

existing milling operations:

• Horizontal Milling Machine

• Vertical Milling Machine

• Knee-Type Milling Machine

• Ram-Type Milling Machine

• Bed-Type Milling Machine

• Planer-Type Milling Machine

Regardless of the variation, all the milling machines have in common the parts that compose

them [30, 31]:

• Base and Column — These two parts are, together, the milling machine’s foundation since

they are able to absorb the vibrations caused by the milling and keep it stiff. The rest of the

parts are attached to them. It is also in these parts that the oil and coolant are stored;
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• Knee — The knee is a moving part that moves vertically, either mechanically or hydrauli-

cally. By sliding it up and down, the operator can bring the tool and the workpart closer

or farther. Its function is to, besides holding all the gearing mechanism, support both the

saddle and table;

• Saddle — This part is also a moving one. Located between the knee and table, it supports

the last one and can move transversely to fulfill its primary function of granting motion to

the workpiece. Just like the knee, by sliding it in and out, the operator is able to adjust the

position of the workpart in relation to the tool;

• Table — The table is a rectangular casting part that is located above the knee and saddle.

Its main purpose is to hold the piece tightly while it is machined and, in order to do this, it

contains several T-slots. By moving both the knee and the saddle, the operator can place the

table and, with it, the workpiece, wherever he needs;

• Spindle — A rotating part that drives the tool. It contains a slot at its front end where

the cutting tool can be placed. Depending on the type of milling machine, it can be in a

horizontal or vertical position.

2.2.3 Machining Centers

Machining centers are a computerized machine tool that is able to perform multiple operations

almost without human interaction. As opposed to the general procedure in which a worker needs

to swap tools, machining centers are capable of doing it themselves, reducing effort and time in

the production line. These machines can work with at least 3 and up to 5 different axes [15].

2.3 Ishikawa Diagram

Created in the 1940s by a Japanese Professor and improved until its popularization in the 1960s,

the Ishikawa Diagram, also known as fishbone diagram, is a simple and yet effective cause-and-

effect diagram used in quality control. An example of a fishbone diagram is shown in Figure 2.4.

In the manufacturing sector, this diagram helps to understand the causes that lead to reductions in

product quality by relating all the possible causes to the problem. In it, the causes are divided and

grouped according to the field where they fall [48, 24].

When this type of diagram is applied to situations regarding the manufacturing of products,

the causes identified are usually the ones called Ishikawa’s 6 Ms. These causes can be described

as follows [18]:

• Machine — Failures and wrong calibration in the machines that are being operated can

very easily result in failures in production. A frequent maintenance is able to solve many of

machine related problems;

• Method — The method applied in the process of manufacture;



2.4 Summary 17

Figure 2.4: An example of an Ishikawa diagram retrieved from Montgomery’s Statistical Quality
Control [33].

• Material — Raw material issues can lead to issues with the final product;

• Workforce — Labor with insufficient skill to work in a certain process can cause noncon-

formities;

• Measurement — This cause is related to the inspection part of the process. The flaws on

the process associated with this cause are usually either incorrect measurements or incorrect

product specifications;

• Mother Nature — The environment is able to influence the whole production process

through changes in some measures such as temperature, pressure, and humidity.

This diagram was found to be relevant in order to conduct data collection and to filter features

with the purpose of obtaining relevant data.

2.4 Summary

This chapter is divided into three sections. Section 2.1 introduces the two quality control methods

used nowadays in the industry. Initially, Acceptance Sampling is explained, and its issues are

explored. The SPC subsection defines SPC, resumes the two different variability causes, and

explains in detail control charts and their variations. The Out of Control Action Plan is also

discussed.
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Section 2.2 contains a brief analysis of machining operations, with a particular attention to the

operations encompassed by this work, turning (Subsection 2.2.1) and milling (Subsection 2.2.2).

Section 2.3 describes the Ishikawa diagram that assists in the identification of possible causes

for poor manufacturing performances.
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Data Mining and Machine Learning

Data Mining and Machine Learning are both subfields of Data Science. The two concepts are

similar since they are applied to solve complex problems making use of data. Using both, a

developer is able to extract relevant information from large datasets. This information is usually

retrieved in the form of a pattern that allows humans to acquire knowledge that, otherwise, would

not be possible to obtain due to the data’s dimension. By making use of this information, the

developer can apply an algorithm that generates a model capable of making either predictions or

decisions based on the provided data.

3.1 Data Analytics

Nowadays, although technology has improved, data analysts deal with increasingly large amounts

of data and more complex databases. This means that despite the current computers are able to

retrieve data from those databases reasonably easily, the task of analyzing it has become more

complicated [45]. This increase in complexity makes it necessary that are experts handling the

data. Besides this, due to the modern manufacturing market competitiveness, companies need to

have implemented a system that can systematically help it take decisions. The decisions can be

related to several aspects of the company, such as its manufacturing process [22]. The system

referred is therefore a system that implements data analytics.

Data analytics is the process in which a company makes use of its extensive data resources and

analyzes them. It is an interdisciplinary field that puts together powerful tools such as statistics,

data mining, machine learning, artificial intelligence and others. The correct application of data

analytics allows a company to support its decisions. According to Thomas A. Runkler, there are

four phases in a data analysis project that are shown in Figure 3.1.
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Figure 3.1: Data analysis phases retrieved from Thomas A. Runkle [40].

3.2 CRISP-DM Methodology

Cross-Industry Standard Process for Data Mining or CRISP-DM is a methodology that aims at

improving the overall process of retrieving information from datasets. CRISP-DM is a properly

structured and yet flexible process that determines that, in order to successfully datamine, one

should follow a cycle of six stages. These stages are shown in Figure 3.2 and are also described

next [35, 47]:

1. Business Understanding — In this stage, the project’s objectives and requirements are

defined so that the problem can be formulated as a DM problem. The work plan is also

determined;

2. Data Understanding — Initially, the data is collected and analyzed. As the familiarization

with data increases, the existing issues related to it are identified. Data Understanding and

Business Understanding phases are interlinked since a good problem formulation must take

into account the characteristics of the data;

3. Data Preparation — This phase encompasses several actions that, after being performed,

result in the final dataset. Here, the relevant variables are selected, missing and erroneous

data is determined, new derived features can be added, the formats are defined, and data

from various sources can be integrated;

4. Modeling — This is the phase in which the data mining tools are run. After a careful

selection of the modeling techniques, these are selected and can be applied. Using their

results, the parameters can be recalculated until the best values are discovered. Once again,

there is an interlink between this phase and the previous one;

5. Evaluation — As the name implies, the evaluation of the model’s results is performed in

this stage. By reviewing them, it is possible to understand whether the business objectives

have been met or not. This stage looks both at the past and the future of the process. The

previous actions are assessed, and the next ones are determined;
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Figure 3.2: The CRISP-DM phases retrieved from Chapman et al [8].

6. Deployment — In this final phase of the DM process, the final model or models are put into

practice. The knowledge obtained by these is organized so that it can be presented to the

client.

Other methodologies can be used in DM projects, such as SEMMA and KDD, but CRISP-DM

is usually the preferred method in organizations worldwide. The reason for this choice is related

to its completeness [2].

3.3 Feature Selection

Feature selection, also known as variable selection, is the process in which the number of vari-

ables handled by a predictive model is reduced. This selection of the subset of features that

will be used in the ML problem is essential since removing certain variables allows to reduce the

computational cost and training time of a model. Besides these, it also decreases the number of

irrelevant, possibly misleading, attributes.

During the feature selection process, the correlation between each input and output variables

is computed. A subset of variables is then defined, and only those with strong correlations are

included in it. The higher the correlation, the more an input variable affects the final value
of the output one [23].
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There are several methods to perform the feature selection but, taking into account the scope of

this work, only the supervised methods are eligible. In supervised learning, the model is initially

trained knowing the value of both input and output variables [29]. The supervised methods can be

divided into three types of methods:

• Wrapper — These methods base the subset’s choice with the most relevant attributes in

the creation of a large number of models in which different subsets of input variables are

tested, and the ones with higher accuracy are then selected. The main disadvantage of these

techniques is their computational cost due to the way the search is performed;

• Filter — The filter methods are statistical methods in which the feature selection is indepen-

dent of the model. The correlation between the input and the target variables is computed

and, taking those scores into account, the attributes are then selected. Although these pro-

cesses do not have high computational costs and are powerful tools against overfitting, they

are prone to select redundant variables since the correlation between input attributes is not

considered;

• Intrinsic — Also known as Embedded, these methods are characterized by being the ones

that are built-in in the model. Thereby, the feature selection process is executed during the

training phase.

Despite its high computational cost, the wrapper methods are usually the preferred ones when

that is not a problem because they are not model-independent [5]. The primary method among the

ones included in the wrapper ones is Recursive Feature Elimination, more commonly known as

RFE.

3.3.1 Recursive Feature Elimination

As it was mentioned earlier, RFE is a wrapper method. Initially, this technique creates a model

that uses the complete set of variables. These variables are then ranked by importance using a

relevance score. The attribute with the lowest score is removed, the model fully rebuilt, and the

scores computed once again. As this iterative process proceeds, the subset of variables being

used by the model becomes more and more restricted, and only high-scoring features are taken

into consideration. This method also requires that a hyperparameter representing the final number

of variables included in the subset is defined. When the process ends, the resulting subset is

considered as the optimal one, and the one that should be used to train the predictive model [50].

Several studies on RFE have been performed, and, in these, it is used alongside different

algorithms. Darst et al., 2017, have shown that, when dealing with high-dimensional data and

numerous highly correlated features, RFE in association with Random Forests tend to not be ap-

propriate [7]. In the work of Granitto et al., 2006, a comparison between the use of RFE with

Support Vector Machine (SVM-RFE) and RFE with Random Forests (RF-RFE) was made. This
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comparison took as evaluation metrics the algorithm’s capacity to find subsets with high capabil-

ity of discrimination and its capacity in finding the minimum possible selection error. RF-RFE

outperformed SVM-RFE [14].

3.4 Supervised Binary Classification Algorithms

ML problems have many possible approaches but these can be classified and divided by its avail-

able feedback into three categories [32]:

• Supervised Learning — The model receives from a teacher a training dataset with exam-

ples of inputs and the expected result. Using those examples the model attempts to learn the

function that maps the inputs to the outputs;

• Reinforcement Learning — In this type of learning the model receives less feedback than

Supervised Learning. This one is related to models that need to perform certain actions and

their objective is the maximization of the rewards;

• Unsupervised Learning — There is no teacher and, therefore, there is no possible evalua-

tion that the model can receive.

Taking into account the characteristics of this work, it will be included in the Supervised
Learning approach. The methods included in this category can, once again, be classified and

divided into two types:

• Regression — This type of algorithms focuses on problems in which the dependent variable

is a quantitative value;

• Classification — Algorithms of this type focus on problems in a discrete dependent variable

is supposed to be grouped into a class.

Once again, if the characteristics of the work that is to be developed in this dissertation are

considered, we understand that it is included in the Classification type. More specifically, this is a

Binary Classification problem. Binary Classification is the subfield that refers to the prediction

of one between two classes. When dealing with this type of problems, there are several algorithms

that can be used [6]:

• Logistic Regression

• k-Nearest Neighbors

• Decision Trees

• Support Vector Machine

• Naive Bayes
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• Artificial Neural Networks

Each algorithm will now be described in its own subsection. Besides its description, there is

also an overview of some works on Machine Learning where these algorithms were applied so

that a better comprehension of their use can be obtained.

3.4.1 Logistic Regression

Logistic regression algorithms are statistical algorithms that fit a logistic function into the dataset

when applied to classification problem. This algorithm in specific is commonly used in binary

classification because, in those cases, the output variable is dichotomous, meaning that the two

possible output values are mutually exclusive [43]. Using logistic regression, the model is able to

output the probability of the dependent variable belonging to a particular class. The fact that the

model returns a probability also means that the limits between which each class is contained can

easily be modified if needed. Besides this, these models can, without difficulties, update them-

selves when new data is inserted since they infer neither features’ distributions nor relationships

between dependent and independent variables [36]. However, for this method to be successful,

the features with strong correlations should be removed during the feature selection process, and

large samples should be supplied to the model [41].

Stephan Dreiseitl and Lucila Ohno-Machado, 2002, performed a review on some models ap-

plied to classification tasks in the medical field. They claim that this algorithm is relatively popular

due to the ease of developing the model in comparison to other algorithms. Besides this, the hy-

perparameters required can easily be interpreted and defined [12].

In another work, Abdulhamit Subasi and Ergun Erçelebi, 2005, examined and used classifica-

tion techniques to analyze the brain’s electrical activity. According to them, the major issue when

developing a logistic regression model is that, although the hyperparameters can be clearly under-

stood, there is no previously acquired knowledge regarding the combination of those that produce

the optimal model. Finally, as stated before, the authors also mention that this algorithm struggles

when dealing with high-dimensional data and outliers, just as the majority of methods that rely on

statistics [44].

3.4.2 k-Nearest Neighbors

k-Nearest Neighbor, more known as kNN, is a non-parametric algorithm. Its common use is in

cases in which the model searches for the most related class [43]. It is also considered a lazy

learning algorithm and, despite its ease of implementation, it is not very efficient and largely

depends on the value assigned to k. The principle behind this method is the assignment of a

class to an yet unlabeled point taking into consideration the k nearest points and their own class.

Bearing this in mind, it is understandable that this algorithm is particularly susceptible to noise

and outliers [4]. Finally, kNN’s performance is very affected by data size [17].

When looking at previous works where kNN is applied to data with high dimensions, one can

understand that they focus on reducing the search time without affecting the accuracy of the model.
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For example, Zhenyun Deng et al., 2016, proposes a kNN model in which the data is clustered

into several m parts. Afterward, the classification is performed normally with the difference of

each yet unlabeled point being clustered into an already existing cluster (part) and not to other

already classified points. According to the authors, their model was more efficient without having

a significant reduction in accuracy [10].

Adeniyi et al., 2014, apply the kNN classification method to a recommendation system on a

website. This system considers the sequence of links that the website’s visitor follows, click path,

and suggests other links. The authors chose the kNN algorithm due to the fact that this is a real-

time situation in which the quickness of the classification is relevant. They note that the quality of

the recommendation is around 70%, which is acceptable in this case. However, they also mention

that other classification techniques could easily outperform kNN if the computational time were

not such a relevant factor [1].

3.4.3 Decision Trees

A decision tree is an algorithm that is used to explicitly represent decisions and the way these

are forked taking into account some input variables in a tree structure. By walking through the

created decision tree the model can go through decision nodes, the ones with input variables and

that are further expanded, and leaf nodes, the final ones where the value of the output variable is

obtained [43].

Decision trees are frequently used due to the plenty of advantages they contain. Models apply-

ing this algorithm are almost not affected by outliers, strong correlated data, missing values, and

redundant features. They can also deal with several types of data. Nonetheless, DT has some diffi-

culties when facing datasets with many dimensions. Since small errors propagate through the tree,

as the number of dimensions increases, the propagation of errors becomes a bigger problem [49].

Tree prunning is usually necessary in those cases or overfitting will highly likely occur [4].

There are quite a few variations of this algorithm such as ID3, C4.5, C5.0, and CART.

Joanna Ronowicz et al., 2015, studied the cause-effect relationships in composition differences

in pellet production. Decision trees were used to discover these hidden correlations in the large

datasets. According to the authors, this technique’s use was successful since it increased their

knowledge of the process. Due to the fact that decision trees are not black box models, it is possible

to obtain the rules that guided the algorithm while it was solving the classification problem. These

rules can now be used to support rational decision-making in the pellet manufacturing process [39].

In another work focusing on decision trees, Wenjing Zhao et al., 2019, proposed a classifi-

cation method for power quality disturbance. In order to be able to compare, besides applying

decision trees, the authors also use Support Vector Machines (SVM) and kNN. As stated in their

results, decision trees outperformed the other two methods in accuracy and time to perform the

classification. However, the authors also refer that, if the feature selection had been specifically

performed to attend SVM’s or kNN’s needs, the accuracy results could have differed [51].
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3.4.4 Support Vector Machine

Support Vector Machine or SVM is a complex, but highly accurate, algorithm that is applied

in both regression and classification problems. When dealing with this method it is important

to understand the concept of hyperplanes. An hyperplane is how the input variables are split.

SVM attempts to maximize the minimum distance between a hyperplane and its nearest sample

point [43]. The larger the distance, the more optimal the hyperplane and the less the expected

generalization error [4].

Viviana Fernandez, 2006, performs a comparison between Autoregressive Integrated Moving

Average (ARIMA), Unobserved Components, Wavelet-based and SVM. This work focuses in the

accuracy of the prediction in U.S. metal shipments data and in the manufacturing industry. Fernan-

dez notes that SVM has a higher forecast accuracy than the other prediction methods. Moreover,

the comparison showed that SVM is also the most robust method, since it was the one that better

performed in more circumstances. Finally, it was verified that SVM is a method that can easily be

used to predict time series [13].

3.4.5 Naive Bayes

Naive Bayes or NB is a simple to implement algorithm that is based in the application of the Bayes’

theorem. This method simplifies the learning process by making the assumption that attributes are

independent from each other, which invokes the Class Conditional Independence theory [17, 37].

By making this assumption, NB requires less time in training. Just like logistic regression methods,

NB models deal with probabilities. It is also of interest to refer that this algorithm does not require

any hyperparameters, but that it does not deal in an effective way with high-dimensional data [49].

In Mehdi Salehi’s dissertation, 2018, the Bayes inference was applied as the predictive mod-

eling approach in several different methods. These models were created to predict machining

performance metrics. NB algorithm is considered to perform well in this environment where there

are relatively high uncertainties in the manufacturing process. Furthermore, Salehi considers NB

the right algorithm to be used due to its ability to incorporate prior knowledge. This allows the

measures performed during the machining process to be updated [37].

In another work, I. Rish, 2001, proposes a study in which NB’s performance is analyzed in

several different scenarios. Rish shows that NB is usually successful in the prediction task, even

when the probabilities are not accurately calculated. The author also demonstrates NB’s good

performance when dealing with independent features and functionally dependent ones [38].

3.4.6 Artificial Neural Networks

The final algorithm that is reviewed in this section is the Artificial Neural Network or ANN. This

network is based on the neural network that constitutes the brain and is composed by simple, but

adaptable, input and output units, called neurons, connected to each other. Each connection has

a certain weight associated that changes throughout the learning process [4]. An ANN can be
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defined by its network topology, the characteristics of its neurons, and, finally, by its training and

learning rules.

Artificial Neural Networks are applicable to many real-life situations where both input and

output values are continuous, and the relationships between them can be not only non-linear, but

also fairly dynamic. Although the learning process in ANN is accelerated by its parallel strategy, it

still involves a quite long learning time. Lastly, this algorithm has the disadvantage of representing

the knowledge acquired in the form of a network, which makes it harder to interpret, and the fact

that it requires tuning of certain parameters such as the number of layers, number of neurons in

each layer and also the network structure [43, 32].

Javed Khan et al., 2002, developed a classification model using ANN. This model is used

to diagnose human cancers and label them according to their gene expression signatures. PCA,

Principal Component Analysis, was used to reduce the total number of evaluated features. The

results show that the generated model was able to correctly classify all of the 63 different types

of cancer and did not reveal signs of overfitting. However, the authors pointed out that this ANN-

based model is not appropriate to discover the cause-effect relationships that lead to cancer [21].

3.5 Summary

This chapter is divided into four sections. Section 3.1 introduces the topic of Data Analytics,

explaining what it is, why this field was created, and which stages its process comprises.

Section 3.2 contains the explanation of the CRISP-DM methodology and a detailed description

of each of the phases that incorporate it.

Section 3.3 describes the procedure of choosing the subset of features that are more relevant

to the project domain. It also describes the different types of methods with a particular emphasis

on RFE.

Section 3.4 narrows the initial problem to a supervised binary classification problem and con-

tains a comprehensive explanation of the logistic regression, kNN, decision trees, SVM, Naive

Bayes, and ANN classifiers.
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Chapter 4

Experimental Setup

The experimental setup is the stage of the project in which the development occurs. In this dis-

sertation, the experimental setup consists of a sequence of steps in which each step deals with a

particular problem by making use of some of the methods and techniques described in Chapter 3.

The initial phases are related to data collection, preprocessing, and analysis. Afterward, some pro-

cedures of new feature creation are described. Finally, the training of models and the operations

that precede it to prepare the dataset are explained.

As the previously mentioned phases can indicate, a CRISP-DM methodology was applied in

this project. However, the processes and methods described in this chapter are already the final

ones, despite not all of them being present since the beginning.

4.1 Dataset

Regardless of the machine learning project and its subject, it is always of great importance that

the data is analyzed and studied. The interpretation of the dataset allows the Data Mining and

Machine Learning experts to drive effective decision-making in what concerns the resolution of

the data problems and how to explore it in a meaningful way. If, on the one hand, data itself is

just numbers and words, on the other hand, well presented and structured data becomes relevant

information.

4.1.1 Database Description

The dataset used in the prediction task results from several joins between five of the seven different

tables retrieved from the provided database. The data used in this work had already been directly

fetched from the database and was already delivered inside csv files. The diagram that represents

it is shown in Figure 4.1, and the tables it comprises are explained more in detail in the following

subsections.

29
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Figure 4.1: UML for the provided database.

4.1.1.1 Medicoes or Measurements

This table contains the information related to the measurements performed in the manufactured

products, and each item represents a single measurement. The attributes of this table can be

described as follows:

• Counter_Medida — Primary key for Medicoes table;

• Counter_Reg — Foreign key for Registos table;

• Prod — Foreign key for PIE table;
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• Operacao — Foreign key for PIE table;

• Counter_PIE — Foreign key for PIE table;

• Cota — Foreign key for PIE table;

• LIR — Lower Rejection Limit;

• LIS — Lower Safety Limit;

• LSS — Upper Safety Limit;

• LSR — Upper Rejection Limit;

• Valor_Introduzido — Measurement value;

• Result — An attribute that can be either 0, 1, or 2. These values stand respectively for an

accepted product, an accepted one but outside the safety limits, or a rejected one. This is the

target variable in the binary classification problem. In a later stage, values equal to 2 will be

replaced by 1 values as both represent a nonconformity;

• Utiliz — Identifier of the worker in charge of the measurement;

• DtHora — Date and time of the measurement.

4.1.1.2 Registos or Records

This table contains information related to the production orders (PO). Each item represents a PO,

which is the directive that describes the products that must be manufactured and their respective

quantities. The attributes of this table can be described as follows:

• Counter_Reg — Primary key for Registos table;

• OPR — Foreign key for Estruturas table;

• Maquina — Identifier of the machine where the product is manufactured;

• Quant — Amount of products manufactured;

• Tipo_Reg — Value that indicates whether the products were accepted or not during the

measurements;

• DataRegisto — Date and time of the products’ manufacture;

• Utilizador — Identifier of the worker in charge of the manufacture;

• Nome — Name of the worker in charge of the manufacture;

• Rejeicao_Cod — Identifier of the rejection reason;
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• Motivo_Rejeicao_Desc — Description of the rejection reason;

• Observacao — Any particular note on the products;

• CountLote — Foreign key for Lotes table.

4.1.1.3 Estruturas or Structures

This table contains information related to the structure of the production orders, and each item

represents the structure of a single PO. The attributes of this table can be described as follows:

• OP — PO code;

• DtEntrega — Foreseen delivery date of the products;

• Estado — State of the PO;

• Codigo — Reference code;

• Nome — Reference name;

• OPR_Counter — Primary key for Estruturas table;

• Operacao — Performed operation;

• Nivel — Sequence number of the PO;

• Maquina — Machine in which the production is performed;

• QtBatch — Maximum quantity of control sampling;

• FolgaBatch — Tolerance for the QtBatch attribute.

4.1.1.4 PIE

This table contains information related to the inspection and testing plans (PIE), and each item

represents a single PIE. The attributes of this table can be described as follows:

• Counter_PIE — One of the columns that constitute the primary key for Estruturas table;

• PIE — Name of the PIE;

• Desenho — Drawing of the product for control purposes;

• Prod — One of the columns that constitute the primary key for Estruturas table;

• Operacao — One of the columns that constitute the primary key for Estruturas table;

• Metodo — Measurement instrument or method;
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• Cota — One of the columns that constitute the primary key for Estruturas table;

• Cota_Descricao — Description of the part of the piece that should be measured;

• LIR — Lower Rejection Limit;

• LIS — Lower Safety Limit;

• LSS — Upper Safety Limit;

• LSR — Upper Rejection Limit.

4.1.1.5 Colaboradores or Workers

This table contains information related to the company’s workers, and each item represents a single

worker. The attributes of this table can be described as follows:

• Utilizador — Primary key for Colaboradores table and the identifier of a worker;

• Nome — Name of the worker;

• Estado — State of worker, regarding if he/she either active or not;

• Competencias — Skills of the worker.

4.1.1.6 Lotes or Batches and Consumos or Tool use

These two tables contain information related to both the batches of manufactured products and the

tools to manufacture those. There is no need to detail these tables since they are not part of the

dataset used in the prediction task. The reason for this is later explained in Subsection 4.1.3.

4.1.2 Data Preprocessing

Data preprocessing is the process in which the data is modified so that its quality issues are found

and fixed. These issues can be of several types, including wrong, duplicate, and missing values.

The inconsistencies in data are relatively frequent and may often result either from the fact that data

is extracted from more than one source or problems concerning the procedure of data gathering.

In this project, data was corrected table by table.

The programming language used to handle the data the way it is going to be described was

Python. Python is a simple yet efficient language that contains a vast amount of frameworks

and libraries. One of these, pandas, a frequently used data manipulation library, was employed

throughout the whole project.
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4.1.2.1 Medicoes

In the Medicoes table, the focus was on correcting values related to the limits (LIR, LIS, LSS, LSR),

measurement value (Valor_Introduzido), and measurement result value (Result).

Initially, rows with negative values in the first five mentioned attributes were removed. After-

ward, rows with invalid limits were dropped, and the Result attribute was corrected when wrong.

Limits were considered to be invalid when they were not according to the following list of rules:

• If at least three of LIR, LIS, LSS, and LSR are null;

• If LIR or LSR is null:

– If LIS is greater than LSS.

• If LIS or LSS is null:

– If LIR is greater than LSR.

• If LIR, LIS, LSS and LSR are all present:

– If LIR is greater than LIS;

– If LIS is greater than LSS;

– If LSS is greater than LSR.

The next step was to replace the remaining missing values in the limits columns. Rows with

only one or two missing values out of the four limit variables were imputed. On the confirmation

that there are no inadequate limits and that all rows are complete, the Result value was confirmed

in line with the following list of rules:

• If Valor_Introduzido is between LIS and LSS, then Result must be 0;

• If Valor_Introduzido is between LIR and LSR but not between LIS and LSS, then Result must

be 1;

• If Valor_Introduzido is outside the range of LIR and LSR, then Result must be 2.

Finally, outliers were identified and removed. Outliers are atypical and, usually, extreme val-

ues. It is essential to remove these anomalies since they increase variability significantly, which

may result in more unsatisfactory predictive algorithm performance. The outlier rows were iden-

tified and dropped using standard deviation. If a value from the Valor_Introduzido or any limits

columns fell outside a certain number of standard deviations then, the row was dropped.

The obtained table was MedicoesCorr.
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4.1.2.2 Registos

In the Registos table, the actions taken were as follows:

• Replace in CountLote ’None’ for 0;

• Drops rows containing values in Maquina that had no correspondence to values in Maquina

of the Estruturas table as it makes no sense to have references to machines that have no

record in the database;

• Remove impossible values such as negative values in the Quant column.

The obtained table was RegistosCorr.

4.1.2.3 Estruturas

Regarding the Estruturas table, the following steps were taken:

• Drop rows with values in Estado that are not valid;

• Drop rows with values that do not follow the date and time format in DtEntrega;

• Clean the values in the QtBatch column and fill the missing values with the most frequent

class.

The obtained table was EstruturasCorr.

4.1.2.4 PIE

The course of action for the PIE table was:

• In the four limits columns, blank spaces inside the numbers were removed, numbers with

’..’ instead of ’.’ as a notation to represent decimals were corrected, and ’None’ strings were

converted to actual Nan values;

• Clean Cota_Descricao values as each class was represented in several different ways;

• Rows with invalid limits were dropped. The rules for this removal are the same as the ones

described in Subsection 4.1.2.1.

The obtained table was PIECorr.

4.1.2.5 Colaboradores

In the Colaboradores table, there was no need to carry out data processing operations.
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4.1.3 Join Tables

After understanding how the data is structured and divided into several tables and data being

cleaned, the following procedure is to fuse them into a single dataset containing all the data. Even

though all the features distributed across the different tables might be useful in the prediction task,

some are seemingly more relevant than others. For example, based on Ishikawa’s 6 Ms, features re-

lated to the machine, method, workforce, and measurement are considered more important. These

features can be found in Medicoes, Registos, Estruturas, and Colaboradores tables. However, data

from other tables can also increase the knowledge in the production process. The procedures that

are going to be described were performed using Python’s library, pandas.

Initially, an inner join between Medicoes and Registos was performed, resulting in the MedReg

table. Afterward, another inner join between MedReg and Estruturas was used to produce the

MedRegEst table.

The next step was supposed to be joining the so far obtained table, the PIE, and Lotes table.

Nevertheless, when attempting to execute the inner joins between these tables, the number of

rows in the dataset decreased excessively. After a more careful inspection of the database, it was

found that there probably was missing data, which meant that an inner join would result in loss

of information. This being said, it was decided to use left joins to include data from PIE and

Lotes. Once again, a problem was found since the Lotes table had almost no correspondence to

MedRegEst. It was then determined that the Lotes table would drop and not be included in the

final dataset. The table attained at the end of this step was called MedRegEstPIE.

Finally, only Colaboradores and Consumos tables were missing in the dataset. The first one

was successfully added through a left join, and it was found that the latter had the same problem as

the Lotes table. The approach to solving this issue was the exact same as to the one in the similar

complication. The resulting table was MedRegEstPIECol, and some final cleaning operations were

performed on this table. The most relevant ones were:

• Replacement of the diverse classes of Medicoes Operacao that referred to turning and

milling operations into the simple strings "Tornear" and "Fresar";

• Replacement of the value ’2’ in the Medicoes Result variable by ’1’ since both values already

represent a nonconformity. By doing this, the variable that is to be predicted becomes a

binary one;

• Drop certain columns that were either redundant, represented primary or foreign keys in the

database, their values were already a consequence of the nonconformity, or that were not

part of the production process itself.

After concluding all these operations, the MedRegEstPIECol table contained twenty-two fea-

tures and over one million and four hundred thousand rows.

It should be noted that when adding data from the Colaboradores table, both the name and

state of the worker were removed due to privacy and data protection reasons.
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4.1.4 Variable Analysis

At this point, the table named MedRegEstPIECol had the complete dataset, which included over

one million and four hundred rows of data and twenty-two features. Considering its dimension, it

is understandable that it is rather hard to retrieve any information on the data by just observing it

without analysis tools. With this in mind, the data was graphically visualized using different types

of charts, according to the adequate representation for each variable. Pie, scatter, and box plots,

histograms, and bar charts were used. Besides these, reports with some data properties were also

created.

Both plots and reports are shown in Appendix A.

4.1.5 Dataset Selection

In a manufacturing process, it is highly likely that the operation and the machine on which the

operation is being performed are the two most important factors when obtaining nonconformities.

Also, according to the Pareto principle, around eighty percent of the consequences come from

twenty percent of the causes. Therefore, two Pareto diagrams were created in order to understand

the distribution of operations and machines in rows that corresponded to nonconformities. They

can be seen in Figure 4.2 and in Figure 4.3.

Figure 4.2: Pareto diagram for Operacao variable.
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Figure 4.3: Pareto diagram for Maquina variable.

At this time, it was thought that attempting to create predictive models that could work for all

the machines would be counterproductive. This is because models would have to be extremely

generic to predict for different machines and operations effectively. Considering this, it was de-

cided to restrict the dataset to a subset of itself that contained only the data about one machine. In

order to decide which machine to use, a table of tuples was created. Each tuple was formed by

an operation, a machine, and the number of occurrences of that operation in that machine. Once

again, a Pareto diagram for the tuples was created (Figure 4.4).

Figure 4.4: Pareto diagram for the tuples that consist in the combination of Maquina and Operacao
variables.

From this diagram, we understood that the tuple with the highest number of occurrences con-

sisted of machine 5 with operation Forjar_2. However, this work is focused on predicting noncon-

formities in two specific operations:
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• Turning — Operations that are named Tornear

• Milling — Operations that are named Fresar

Considering this, the relevant tuple with the highest number of occurrences contained opera-

tion Tornear Face in machine 21. With this information, we were able to restrict the whole dataset

to one that contained only information about a single machine, Maquina 21. After obtaining this

new subdataset, the rows were ordered by the DtHora variable. By doing so, we were able to

obtain the sequence of events that may or may not have led to nonconformities. This sequence is

called a series.

4.2 Feature Engineering

Feature engineering is a common task in machine learning projects, which consists of creating

new features that may or may not assist the algorithms in their prediction duty. Although it is not

a necessary task, doing feature engineer may allow for more accurate predictions. Moreover, even

if they are not relevant or are even harmful to the predictive models, feature selection can ensure

that features stay or are discarded.

4.2.1 Created Variables

As mentioned in Section 2.3, when the process that is being dealt with is a manufacturing process,

some characteristics are usually related to nonconformities in products. Bearing this in mind, ten

features were added to the dataset. Once again, the library used in this process was Python’s

pandas. Each one of the new features is explained in the following subsections.

4.2.1.1 SeriesDuration

SeriesDuration is one of the created variables. Its value was calculated using DtHora variable,

date and time, and represents the duration of the series. As an assumption, nonconformities might

be caused by series either too long or too short in terms of duration.

4.2.1.2 SeriesOpChange

SeriesOpChange is a new attribute that was computed using operations, Operacao values, within

the series. It contains the number of different operations performed in that machine during the

series. According to Ishikawa, the method applied in manufacturing is essential. Therefore, a

higher number of different operations in a series may translate into a higher chance of obtaining

nonconformities.

4.2.1.3 ProductCotas

ProductCotas represents the number of different Cotas, dimensions, a product has. Each differ-

ent value in Cotas for the same product is one different dimension of the product that has to be
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measured. The more dimensions a product has, the more complex it is and the more prone to

nonconformities it might be.

4.2.1.4 ProductOps

ProductOps holds the number of different Operacao, operations, that can be performed on a man-

ufactured item. It is similar to ProductCotas in the sense that the more operations conducted in an

item, the more complex it is.

4.2.1.5 UtilizadorOps

UtilizadorOps is the number of different Operacao, operations, one Utilizador, worker, can per-

form. According to Ishikawa, the skill of the workforce when working in certain processes is

relevant. This new variable attempted to represent the specialization of the workers in the several

possible operations.

4.2.1.6 UtilizadorExperience

UtilizadorExperience contains the time, in days, since that Utilizador’s first record. With this

information, it is possible to know how long the worker has been working in this production line.

More inexperienced workers may lead to higher chances of getting nonconformities.

4.2.1.7 SeriesUtiliz

SeriesUtiliz is another variable created based on the series. It has the number of different Uti-

lizador, workers, operating in the series. The more changes occur in a short duration of time, the

more vulnerable the process might be to manufacture products with nonconformities.

4.2.1.8 UtilizadorDailyOps

UtilizadorDailyOps contains the number of different Operation, operations, an Utilizador, worker,

performed earlier during the day. A tired or a still too fresh worker can mean higher chances of

getting nonconformities.

4.2.1.9 SeriesMeanVI

SeriesMeanVI is the mean of the Valor_Introduzido in the series. Obtaining the mean of numeric

values is a common practice in feature engineering as it is able to represent its series slightly.

4.2.1.10 SeriesNonConformities

Finally, SeriesNonConformities contains the number of rows containing nonconformities in the

series. Using this value, the model can understand whether the presence of nonconformities in the

recent operations can affect or not the appearance of new ones.
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4.2.1.11 Final Operations

After creating the variables described in the previous subsections, the following columns were

dropped since they no longer had use:

• Medicoes Valor_Introduzido was convenient during the verification of the Result variable

and, besides that, its value is already a consequence of the production or not of nonconfor-

mities. Nonetheless, its value was used in the generation of the SeriesMeanVI variable;

• Medicoes DtHora was used to sort the dataset by the date of product manufacture and was

also used in the creation of the new features Series Duration, UtilizadorExperience, and

UtilizadorDailyOps;

• Registos Maquina no longer had use since the whole dataset refers to the same machine;

• PIE Cota was employed in the creation of the ProductCotas feature.

4.2.2 Created Variable Analysis

As explained in Subsection 4.1.4, graphically displaying data is indispensable to understand how

it is distributed. Identical to that previous analysis, the created variables were also studied at this

point. The plots and reports on this data are shown in Appendix B.

4.3 Model Training

In machine learning, model training is a process in which data is fed as input to an ML algorithm

so that this one can discover patterns on the dataset. Then, when receiving data it has never

encountered, a trained model is able to predict, with some degree of accuracy, the outcome of the

new data.

In this section, both the model training itself and some preparations methods and techniques

towards it are described. The programming language was Python, and the two most relevant

libraries were pandas for data manipulation and sklearn for ML support.

4.3.1 Encoding

At this point, the dataset consisted of over sixty thousand rows, each with twenty-seven columns,

each representing a variable. Before advancing to model training, some almost mandatory oper-

ations need to be performed in the dataset so that it becomes suitable to be used by the different

classifiers.

One of the preparations needed is the encoding of data. Encoding is a technique used to trans-

form categorical data or other types of characters sequence into a useful format in its context. In

this case, the encoding was performed by transforming some data into numbers and was achieved

by making use of two different methods. The pros and cons of each of them will be evaluated in

the following two subsections.
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4.3.1.1 Label Encoding

Label encoding consists of replacing each categorical value in a column with a numeric one so that

the same unique numeric value replaces all the same categorical ones. This is a simple method

that benefits from the fact that it does not create new variables, maintaining the dataset’s dimen-

sionality. Nevertheless, this technique suffers from the fact that numbers have an order and the

ordinal relationship may not make sense when looking at what each number represents. This is a

major issue when dealing with classifiers such as Logistic Regression, SVM, or Artificial Neural

Networks that can not deal with this type of encoding. However, since Random Forest classifiers

can deal with it, a dataset with this encoding was produced for this classifier training. The number

of columns contained by this dataset did not suffer changes, staying at twenty-seven.

4.3.1.2 One Hot Encoding

As an alternative for the label encoding technique, one hot encoding was also used. In this method,

for each unique categorical value, a binary, usually called dummy, variable is created containing

only 0 and 1. This practice does solve the problem related to the ordinal relationship addressed

in Subsection 4.3.1.1 at the cost of drastically increasing the dataset’s dimensionality. A dataset

created with the help of this type of encoding was created for the use of Logistic Regression and

ANN classifiers. It contains a total of 2726 features.

4.3.2 Scaling Data

One of the big issues with data is the fact that the range of values can differ hugely between

variables. An often-used example is that one can think of the height and weight of a person as

variables. A single unit of measure difference in both affects more the first feature since its range

is smaller. This means that, for the classifiers that use distance measures, the variables with wider

ranges are dominant over other variables regarding the objective function. As a result, data scaling

or data normalization is required. This method normalizes data so that all features are around the

same range of values.

Scaled data is quite simple to obtain when using the sklearn library. It contains a module

developed specifically for scaling, and, in this case, the programming method StandardScaler was

used. It normalizes data by reducing the mean to a value of zero and scaling to unit variance.

4.3.3 Feature Selection

As mentioned in Section 3.3, feature selection is a process that can reduce the set of features that

serve as input for the predictive model. The eliminated features are the ones that are considered

to be harmful to the model since they decreased its predictive capability. In this project, both RFE

and PCA were used to decrease the dataset dimensionality. Both methods were applied with the

help of the sklearn library.
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4.3.3.1 RFE

Initially, Recursive Feature Elimination was used as the primary feature selection technique. As

explained in Section 3.3.1, RFE is an iterative method that wraps the machine learning algorithms.

In order to find the subset of variables that get the best ML algorithms’ performance out of all

features in the training dataset, RFE has to build and rebuild several different models. The more

existent features in the entire dataset, the more computationally expensive this technique becomes.

Although it was possible to use this method for the dataset obtained through the label encoding

and explained in Subsection 4.3.1.1, when dealing with higher dimensionalities, its capabilities

become more and more reduced.

4.3.3.2 PCA

The second feature selection technique used was Principal Component Analysis. PCA is a statisti-

cal and classifier-independent technique that reduces the dimensionality of the dataset without the

cost of decreasing the accuracy of the model significantly. It determines the principal components,

which are created as linear combinations of the features initially present in the training dataset.

PCA is exceptionally efficient when dealing with datasets that contain correlated variables. After

using PCA, the features or principal components obtained are the ones that are able to explain

most of the variability in the data.

As has been said before in Subsection 4.3.1.2, the training dataset obtained through one hot

encoding has high dimensionality. Due to this, PCA was preferred over RFE since the time con-

sumed by the latter to perform a single run was excessive.

4.3.3.3 PCA with RFE

As mentioned in Subsection 4.3.1.2, the dataset obtained through one hot encoding contained 2726

features. Although it was also mentioned in Subsection 4.3.3.2 that PCA was preferred over RFE,

the large number of features forced the use of the combination of the two previous methods to

reduce the number of dataset’s attributes to lower values.

4.3.4 Splitting Data

The split of data into training and test is a crucial task to be performed in any machine learning

project. Since test data is not used in the training phase, when testing the model with it, it is

possible to understand whether the algorithm has actually been able to learn the patterns hidden in

the dataset or not.

In this project, the value chosen to be the split percentage was 25%, meaning that 75% of the

whole dataset was used for training and 25% for testing purposes. Once again, Python’s library

sklearn was used to complete this operation.
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4.3.5 Dealing with Imbalance Problem

An imbalanced dataset is an issue in a classification problem. This occurs when the class distribu-

tion of the feature that is supposed to be predicted is skewed. Bearing in mind that most classifiers

assume that the data is balanced and that, in most cases, the minority class is the focus of the

machine learning problem, there is the need to balance the data. The imbalance in the dataset that

is being manipulated in this project is shown in Figure A.5.

In order to balance the data, one can use:

• Oversampling — Duplicate random examples of the minority class

• Undersampling — Delete random examples of the majority class

On the one hand, oversampling can help to balance the distribution, but on the other hand, the

duplication of examples does not add information to the process. Regarding undersampling, the

elimination of random examples leads to the loss of information on the process.

With the intention of neither losing information nor adding redundancy to the dataset, SMOTE
or Synthetic Minority Oversampling Technique was used. This is an oversampling technique

that, instead of simply duplicating random examples, synthesizes new ones. SMOTE generates

examples that are close to already existing ones of the minority class.

For this stage of the work, a library called imblearn was used to balance the data. It is a com-

plement library of sklearn that provides methods for the use of SMOTE. Towards an acceptable

balance of the data, while still attempting not to change the class distribution drastically, it was

decided to oversample the data using SMOTE so that the ratio of samples of the minority class

over the majority one would be one to four after the oversampling. Finally, it should also be noted

that this operation was only performed in the training dataset and not in the test one so that the

original values suffer no changes.

4.3.6 Classifiers

A classifier is a machine learning algorithm that is able to learn the hidden relationships between

the several features that constitute the dataset and the label attribute, the one that is predicted.

As it was mentioned in Section 3.4, taking into account the specifications of this project, several

different classifiers can be used to deal with this supervised binary classification problem, such as:

• Logistic Regression

• k-Nearest Neighbors

• Decision Trees

• Support Vector Machine

• Naive Bayes

• Artificial Neural Networks
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From these, kNN and Naive Bayes were excluded right from the beginning of the model training

due to their lack of efficiency when dealing with high-dimensional data. SVM also has the same

issue and does not deal well with overlapped classes. Besides this, it was also decided to use

Random Forests instead of Decision Trees.

The four remaining classifiers were applied using the sklearn library.

4.3.6.1 Metrics

It is fundamental to evaluate any model’s performance to understand if it can be used in the predic-

tion task or not. Therefore, with the intention of assessing the performance of the model, several

metrics can be used, including:

• Precision — Relates the number of samples that were correctly labeled as one of the target

classes and the ones that were also labeled as that class but belong to the other. For example,

the formula used to compute the precision for the positive class is:

Precision =
TruePositives

TruePositives+FalsePositives

• Recall or Sensitivity — Relates the number of samples that were correctly labeled as one

of the target classes and the ones that were labeled as the other despite belonging to the first

one. The formula for, for example, the positive class would be:

Recall =
TruePositives

TruePositives+FalseNegatives

• F1 score — It is the weighted average of the precision and recall, in which the contribution

of both is the same.

F1 = 2
Precision∗Recall
Precision+Recall

=
2TruePositives

2TruePositives+FalsePositives+FalseNegatives

• ROC AUC — Area Under the Receiver Operating Characteristic Curve is probably the most

complex metric. It represents the probability of the classifier in use to predict a higher value

for a positive random sample than for a negative random one;

• Accuracy — The most easily understandable metric, and it represents the ratio of correct

predictions. The formula used to calculate the model’s accuracy is as follows:

Accuracy =
TruePositives+TrueNegatives

ActualPositives+ActualNegatives

• Balanced Accuracy — Similar to the above metric, but it is used when dealing with im-

balanced datasets. The accuracy is computed taking into account the number of samples of
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each class. The formula is:

BalancedAccuracy =
1
2
(

TruePositives
ActualPositives

+
TrueNegatives

ActualNegatives
)

These metrics were used to evaluate the models’ performances as they were being developed and

improved.

4.3.6.2 Parameter Tuning

Each classifier contains several parameters that differ from classifier to classifier. The classifiers

use these parameters to change and influence the learning procedure and, since they can not be

learned, they need to be passed as arguments. Hence, to discover the best values for at least some

of the parameters, there is the need to make parameter tuning. This is the process in which the set

of optimal parameters is attempted to be found.

Regarding the programming approach, GridSearchCV and Optuna were used. While Grid-

SearchCV is a function that is included in a sklearn module, Optuna is a parameter optimization

framework for Python that was chosen due to its lightweight, efficiency, and easy integration with

this library. Both methods receive as an input certain ranges of values and test combinations of

these, measuring the accuracy of the models when using those parameters. The obtained optimal

values are available in Chapter 5.

4.4 Summary

This chapter is divided into three sections. Section 4.1 introduces the process behind obtaining the

dataset. It starts with the description of the database, addresses the preprocessing of data, the join

of the multiple database tables, the analysis of the features, and, finally, the selection of the data

that will be part of the training dataset.

Section 4.2 contains the explanation of the variables that were built from the existing attributes.

It also contains the analysis of these new features.

Section 4.3 describes the processes that lead to the training of the models. More specifically, it

addresses data encoding, scaling, splitting, and oversampling. It is also considered the classifiers

used in training, the metrics that can evaluate them, and how the parameter tuning was performed.
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Results

In this chapter, the obtained experimental setup results are first grouped by the used classifier and

then provided and evaluated. Considering that this project was related to a predictive classification

problem, it makes sense to evaluate the different models using metrics such as overall accuracy,

balanced accuracy, precision, recall, f1-score, and ROC AUC.

The presented results are the final ones. During the development of this work, the pipeline of

the processes responsible for both the obtainment of the dataset and the training using that dataset

was rearranged and improved to upgrade the final results.

5.1 Logistic Regression

In order to acquire the results for the Logistic Regression classifier, the following tasks were

performed:

1. The dataset obtained through one hot encoding was used;

2. Data was scaled;

3. PCA was used to reduce some of the dataset dimensionality and remove correlated variables;

4. Data was split into training and test dataset;

5. Oversampling the training dataset by using SMOTE;

6. RFE was applied to lower the number of features to fifty;

7. Optuna framework helped to find the best values for the parameters:

• C — Inverse of regularization strength;

• max_iter — Maximum number of iterations until the solver converges;

8. Training the model with the optimal parameters and testing it with the test dataset.

47
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Using 18.683 as the optimal value for parameter C and 158 for max_iter, the obtained confu-

sion matrix of the model is shown in Table 5.1 and the different metrics are shown in Table 5.2.

Predicted Values
0 1

Actual Values
0 14661 462
1 29 114

Table 5.1: Confusion Matrix for the Logistic Regression classifier.

Target Class Precision Recall F1-Score Accuracy Bal. Accuracy
0 1.00 0.97 0.98

0.968 0.8831 0.20 0.80 0.32
Table 5.2: Results using the Logistic Regression classifier.

5.2 Random Forest

For the use of the Random Forest classifier, the following operations were executed:

1. The dataset obtained through label encoding was used;

2. Data was split into training and test dataset;

3. Oversampling the training dataset by using SMOTE;

4. Optuna framework helped to find the best values for the parameters:

• n_estimators — Forest’s number of trees;

• max_depth — Maximum depth of each tree;

5. Training the model with the optimal parameters and testing it with the test dataset.

Since the Random Forest algorithm has only one single dataset for the many decision trees it

comprises, each tree only receives a random sample of the whole data. Due to this randomness,

each time the model is trained, the trees are created differently, resulting in non-identical outcomes.

Considering this and with the intention of securing the best possible results, each of the five best

results was trained five times, and the average of the metrics was then computed. The best average

obtained confusion matrix of the model is shown in Table 5.3, and its different metrics are shown

in Table 5.4. These tables were achieved by using, as parameters, 82 for n_estimators and 17 for

max_depth.

Predicted Values
0 1

Actual Values
0 15022 108
1 42 94

Table 5.3: Confusion Matrix for the Random Forest classifier.
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Target Class Precision Recall F1-Score Accuracy Bal. Accuracy
0 1.00 0.99 1.00

0.990 0.8421 0.47 0.69 0.56
Table 5.4: Results using the Random Forest classifier.

5.3 Artificial Neural Network

So that the ANN classifier could be applied, the following actions were taken:

1. The dataset obtained through one hot encoding was used;

2. Data was scaled;

3. PCA was used to reduce some of the dataset dimensionality and remove correlated variables;

4. Data was split into training and test dataset;

5. Oversampling the training dataset by using SMOTE;

6. RFE was applied to lower the number of features to fifty;

7. GridSearchCV helped to find the best values for the parameters:

• hidden_layer_sizes — Number of hidden layers and number of neurons in each;

• activation — Activation function for the hidden layer;

• solver — Solver for weight optimization;

• alpha — Regularization term;

• learning_rate — Learning rate schedule for weight updates;

8. Training the model with the optimal parameters and testing it with the test dataset.

Like the Random Forest classifier, ANN can also produce different values even when trained

with the exact same parameters and dataset. In this case, the randomness is mainly due to the

random assignment of initial weights. Once again, much like the process described in Section 5.1,

each of the five best results was trained five times, and the average of the metrics was then com-

puted. The best average obtained confusion matrix of the model is shown in Table 5.5, and its

different metrics are shown in Table 5.6. The values used for these results were the rectified linear

unit function for the activation parameter, 0.0001 for alpha, a constant learning_rate, the Adam

method for stochastic optimization in the solver, and, finally, one hidden layer with a total of forty

neurons for the topology of the ANN, hidden_layer_sizes.

Predicted Values
0 1

Actual Values
0 15036 99
1 53 78

Table 5.5: Confusion Matrix for the Artificial Neural Network classifier.
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Target Class Precision Recall F1-Score Accuracy Bal. Accuracy
0 1.00 0.99 0.99

0.990 0.7941 0.44 0.60 0.51
Table 5.6: Results using the Artificial Neural Network classifier.

5.4 ROC Curves Comparison

In Sections 5.1, 5.2, and 5.3, the three models in which the experiments were performed were

analyzed, considering the precision, recall, f1-score, accuracy, and balanced accuracy. Therefore,

the only metric from Subsection 4.3.6.1 that was still not being assessed was ROC AUC. ROC

is a probability curve representing the trade-off between recall, sensitivity, or TPR (True Positive

Rate) and specificity or TNR (True Negative Rate).

T PR =
TruePositives

ActualPositives+FalseNegatives

T NR =
TrueNegatives

TrueNegatives+FalsePositives

and AUC is calculated from the area under that curve.

AUC or Area Under the Curve is computed from the ROC curve and represents the area under

it. The better the model, the further the curve is from a forty-five-degree diagonal, and the closer

the AUC is from 1,0. The ROC curves and their respective AUCs are shown in Figure 5.1.

Figure 5.1: Comparison of ROC curves and respective AUCs for Logistic Regression, Random
Forest, and Artificial Neural Network classifiers.
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5.5 Summary

This chapter is divided into three sections. Section 5.1 describes all the actions performed to train

the Logistic Regression classifier and presents the obtained confusion matrix and metrics for the

optimal parameters of its model.

Section 5.2 describes all the actions performed to train the Random Forest classifier and

presents the obtained confusion matrix and metrics for the optimal parameters of its model.

Section 5.3 describes all the actions performed to train the Artificial Neural Network classifier

and presents the obtained confusion matrix and metrics for the optimal parameters of its model.

Section 5.4 contains the comparison of the ROC curves and their respective AUCs between

each of the classifiers mentioned in the previous sections.
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Chapter 6

Discussion and Conclusions

This final chapter comprises the summary of this dissertation, the discussion of the obtained re-

sults, and, finally, the possible future improvements to this work that were considered to be relevant

in this context.

6.1 Overview of Developed Work

The purpose of this dissertation consisted of investigating the possibility of making use of machine

learning models to predict the creation of nonconformities in a production line of precision parts.

In order to perform the previous task, the initial focus was on exploring the state-of-the-art,

which was addressed in Chapters 2 and 3. As a result, these chapters included the already exist-

ing information on machining and manufacturing and the current methodologies, techniques, and

algorithms that are being applied in the fields of Data Mining and Machine Learning.

After studying and understanding the concepts behind the modern methods related to the scope

of this dissertation, it was time to start developing the machine learning project described in Chap-

ter 4. In an initial stage, data was transformed with the aim of correcting and cleaning it, the

data’s different sources were fused, the obtained dataset was analyzed, and some features were

created based on the current ones, as was reported in Sections 4.1 and 4.2. The next step was to

prepare the dataset so that the different machine learning classifiers that were to be used according

to the initial plan could handle it, Section 4.3. This process encompassed various techniques such

as data encoding, scaling, balancing, splitting, and variable selection. Finally, as a result of this

project following a CRISP-DM methodology which has an iterative approach, the whole process

was repeated a few times so that the results could be improved incrementally.
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6.2 Results Discussion

When evaluating the results of a prediction problem, it is essential to understand which metrics

should be used to assess how accurate each model is and how it performs. Looking at only one or

two metrics may be misleading due to some of the dataset’s characteristics. For example, in the

case of this dissertation, the provided dataset was very imbalanced. As a result, all the classifiers

got an overall accuracy of over 95%. As a matter of fact, if a model only classified the data

presented to it as a conforming product, due to the skew in the distribution, the model would also

get an accuracy of over 95%. Taking this into account, several metrics were used. For each of the

classifiers, their confusion matrix, precision, recall, and f1-score of each target class, as well as

the overall accuracy and balanced accuracy were measured.

Looking at the tables of Chapter 5 that contain the information about each metric, it is possible

to see that, for all the classifiers, the precision, recall, and f1-score for the target class 0 was always

almost 1,00. However, this is quite normal taking into account the distribution of the target classes.

In prediction problems involving imbalanced datasets, it is natural to give more relevance to the

minority class, 1, as, usually, the error in its classification is more significant.

One thing that was common to all of the classifiers was that, during the improvement of each

one, an increase in balanced accuracy, which contemplates the total number of samples of each

target class, resulted in the decrease of overall accuracy. In general, when attempting to increase

the number of true positives (positive samples labeled correctly as positive), the number of false

positives (negative samples mislabeled as positive) was also growing. This effect was especially

evident in the Logistic Regression classifier, which ended up resulting in a remarkable decrease

in precision (Table 5.2). Nonetheless, this was also the classifier with the lowest number of in-

correctly predicted nonconformities (Table 5.1), leading to the highest recall value out of all the

predictive models. In addition, Logistic Regression also exhibited the highest balanced accuracy

score.

Regarding the Random Forest results (Section 5.2), one can observe that it was the classifier

with the most balanced performance across most of the presented metrics (Table 5.4). It detected

more than two-thirds of the nonconformities, which is slightly below the Logistic Regression

model results. However, it was able to significantly increase the precision of the model since not

so many conforming products were classified as nonconforming. It was also observed during the

experimentation stage that the use of PCA or data scaling in RF did not increase the model’s per-

formance. This is understandable as RF can handle both correlated and unscaled data. Although

both the feature selection and the data preprocessing techniques were initially used before training

the classifier, they were eventually dropped considering performance benefits did not outweigh the

computational and time cost of performing those operations.

Artificial Neural Networks performed slightly worse than Random Forests. The reason for this

is believed to be the larger number of parameters to tune and the complexity of these. While other

classifiers were being optimized on two parameters, ANNs had five parameters for tuning, some of

which have drastic effects on the classifier’s performance. Furthermore, such a number of variables
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creates a model containing too many degrees of freedom. For example, hidden_layer_sizes is the

variable related to the topology of the neural network, and discovering the optimal value is a

complex task as there are no rules to it.

Regarding the comparison of the ROC curves in Section 5.4, all the three classifiers obtained

values of AUC above 0,90. Suppose one were to look only at these numbers by themselves. That

person would probably think that the classifiers possess a near-perfect measure of separability,

meaning that the models were able to almost always discern between the positive and the negative

class. Nevertheless, the precision and recall metrics show that this is not precisely the case. The

problem with AUC is the fact that it is not imbalance-insensitive.

Lastly, in order to better understand the general final results in a prediction problem, it is also

necessary to evaluate the whole process that led to the model training and to the outcomes of it:

• A machine learning algorithm can only predict based on the data that it received during the

training phase. In cases where the input data does not reflect, at least, most of the cases

in the domain, the models may struggle when presented with new instances, especially

when dealing with such particular situations as the manufacture of nonconformities in a

production line;

• Nowadays, there is an overwhelming number of machine learning algorithms. Choosing

and implementing them is a puzzling task that involves several variables. An inappropriate

choice may lead to mediocre results since the chosen model might not be optimal for a

particular dataset or domain;

• Every method or technique has its advantages and downsides. Some of the procedures

performed during this work, although having increased the overall performance of the clas-

sifiers, may have also contributed to their limitations. For example, SMOTE, which is a

commonly used technique to increase the total number of samples in the minority class,

does not contemplate the majority one. This may lead to an intense overlap of the classes,

which in turn, may generate ambiguous samples;

• Data preprocessing is one of the key and most time-consuming tasks during the development

of a machine learning project considering that data quality has a massive impact on the

performance of every classification model. Looking back at how this step in specific was

conducted during this dissertation, it is now easy to understand that it should have been

a more cautious and lengthy one. As the development went forward, it was required to

take a step back several times to correct missing values, incorrect data, or inconsistent data

formats. This led to delays in the project, and the time consumed could easily have been

used in, for example, increasing models’ performances.
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6.3 Future Work

In a machine learning project, there is always room to improve. In this particular dissertation, some

experiments and details were not carried out mainly due to the lack of time. Although the time

management may not have been the optimal one, the fact that this was the first time performing

a Data Science project also helped to some extent to the delay when accomplishing certain tasks.

Besides this, the feature selection algorithm RFE or the hyperparameter optimization searches, for

instance, required days to finish a single run when dealing with the complete dataset. Nevertheless,

it feels like part of the future work can be identified. The list of experiments that may come after

this work is as follows:

• New features may be created based on the current ones. As an example, workers’ skills are

one of the original attributes of the dataset. Although that was included in the final dataset,

the relationship between the skills and the operations being performed by that worker was

not analyzed. Definitively, a new binary variable could be generated so that the models

could understand whether the worker officially has the skills to perform that operation or

not. Another similar example could be a feature containing, for example, the number of

times a certain worker has already performed a certain operation representing its experience

doing it;

• One of the most obvious experiments that are still to be done is using other classifiers be-

sides the ones already being used. Classifiers such as Naive Bayes, despite its relatively

poor performance handling large datasets, and SVM could turn out to be quite successful

when predicting in this domain. Likewise, AdaBoost and Gradient boosting are also two

techniques that could be implemented;

• Hyperparameter optimization is an almost never-ending process. Continuing to adjust these

values can help to improve the classification model’s performances;

• Taking into account the limited data samples, cross-validation is an imperative procedure.

Although it is being performed in the model training, a simple 5-fold cross-validation is

being used. Initially, a repeated stratified 5-fold cross validator was applied, but this was too

expensive in terms of time and computational resources;

• The last possibility and the one that presents the greatest challenge would be the exploration

of online machine learning in this context. The work developed so far already accounts

for the sequence of events ordered by time, series, but the models are only being trained

with the entire dataset. With online methods, the algorithms would be able to adapt to new

patterns in case these change from time to time.
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6.4 Summary

This chapter is divided into three sections. Section 6.1 reviews the primary goal of this dissertation,

explains what was done both in terms of domain study and in the experimental part.

Section 6.2 contains the discussion of the obtained results. It analyzes the models’ scores,

evaluating which one performed better regarding each metric, and examines the process that led

to the results, describing some of the obstacles found along the way.

Section 6.3 lists some of the possible future improvements to the work developed during the

dissertation.

Classifier Target Class Precision Recall F1-Score Accuracy Bal. Accuracy

LR
0 1.00 0.97 0.98

0.968 0.8831 0.20 0.80 0.32

RF
0 1.00 0.99 1.00

0.990 0.8421 0.47 0.69 0.56

ANN
0 1.00 0.99 0.99

0.990 0.7941 0.44 0.60 0.51
Table 6.1: Results using the Logistic Regression classifier.

Target Class Precision Recall F1-Score Accuracy Bal. Accuracy
0 1.00 0.99 1.00

0.990 0.8421 0.47 0.69 0.56
Table 6.2: Results using the Random Forest classifier.

Target Class Precision Recall F1-Score Accuracy Bal. Accuracy
0 1.00 0.99 0.99

0.990 0.7941 0.44 0.60 0.51
Table 6.3: Results using the Artificial Neural Network classifier.
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Appendix A

Variable Analysis

This appendix provides the charts and reports mentioned in Subsection 4.1.4.

A.1 Plots

A.1.1 Medicoes Operacao

Figure A.1: A bar chart representing the distribuition of the 50 most frequent Operacao variable
classes of the Medicoes table.
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A.1.2 Medicoes Operacao

Figure A.2: A pie chart referring to the Operacao variable of the Medicoes table showing the
distribution of the two most important operations as well as the rest of them grouped.

A.1.3 Medicoes Cota

Figure A.3: An histogram representing the distribuition of Cota variable of the Medicoes table.
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A.1.4 Medicoes LIR, LIS, LSS, LSR and Valor_Introduzido

Figure A.4: A box chart graphically depicting LIR, LIS, LSS, LSR, Valor_Introduzido of the Medi-
coes table.
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A.1.5 Medicoes Result

Figure A.5: A pie chart showing the distribution of the Result variable in the Medicoes table.

A.1.6 Medicoes Utilizador

Figure A.6: An histogram representing the distribuition of Utilizador variable of the Medicoes
table.
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A.1.7 Registos Quant

Figure A.7: A scatter plot representing the distribution of the Quant variable of Registos table
across the dataset.

A.1.8 Registos Maquina

Figure A.8: A bar chart representing the distribuition of the 50 most frequent Utilizador variable
classes of the Registos table.
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A.1.9 Estruturas QtBatch

Figure A.9: A bar chart representing the distribuition of the QtBatch variable of the Estruturas
table.

A.1.10 Colaboradores Competencias

Figure A.10: A bar chart representing the distribuition of the Competencias variable of the Colab-
oradores table.
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A.2 Reports

A.2.1 Numeric Variables

Figure A.11: A report on the numerical variables present in the complete dataset.

A.2.2 Categorical Variables

Figure A.12: A report on the categorical variables present in the complete dataset.

A.2.3 Date Variables

Figure A.13: A report on the date variables present in the complete dataset.
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Appendix B

Created Variable Analysis

This appendix provides the charts and reports mentioned in Subsection 4.2.2.

B.1 Plots

B.1.1 SeriesDuration

Figure B.1: A scatter plot representing the distribution of SeriesDuration across the dataset.
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B.1.2 SeriesOpChange

Figure B.2: An histogram showing the amount of times each value in SeriesOpChange feature is
present in the dataset.

B.1.3 ProductCotas

Figure B.3: An histogram showing the amount of times each value in ProductCotas feature is
present in the dataset.
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B.1.4 ProductOps

Figure B.4: An histogram showing the amount of times each value in ProductOps feature is present
in the dataset.

B.1.5 UtilizadorOps

Figure B.5: An histogram showing the amount of times each value in UtilizadorOps feature is
present in the dataset.
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B.1.6 SeriesUtiliz

Figure B.6: An histogram showing the amount of times each value in SeriesUtiliz feature is present
in the dataset.

B.1.7 UtilizadorDailyOps

Figure B.7: A bar chart representing the distribution of UtilizadorDailyOps variable the dataset.
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B.1.8 SeriesMeanVI

Figure B.8: A scatter plot representing the distribution of the SeriesMeanVI variable in the dataset.

B.1.9 SeriesNonConformities

Figure B.9: A scatter plot representing the distribution of the SeriesNonConformities variable in
the dataset.



72 Created Variable Analysis

B.2 Reports

B.2.1 Created Variables

Figure B.10: A report on the variables created during feature engineering.
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