
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

SMART: Static and Dynamic Analysis
to Reverse Engineer Android

Applications

Francisco Miguel Gouveia Serrão

Mestrado em Engenharia de Software

Supervisor: Nuno Honório Rodrigues Flores

Co-Supervisor: Ana Cristina Ramada Paiva

September 7, 2021





SMART: Static and Dynamic Analysis to Reverse
Engineer Android Applications

Francisco Miguel Gouveia Serrão

Mestrado em Engenharia de Software

September 7, 2021





Abstract

Mobile applications are constantly evolving and becoming a major need for most businesses’
success. Moreover, android is one of the existing mobile operating systems, playing a big role in
the world of mobile applications due to its popularity, mainly for being open-source.

However, due to nowadays existing exponential growth in technologies, software maintenance
is one of the biggest appearances when it comes to companies’ costs and effort from new developer
joining the teams. Artifacts need to be constantly updated and generated, usually manually. Thus,
automating this process could be beneficial for the research area.

The present dissertation provides an overview of the main android components and intents
objects, related work regarding reverse engineering of applications in order to exploit the main
gaps that may exist regarding artifact generation, as well as the main advantages of the different
reverse engineering techniques and methodologies used in these related works.

Moreover, it is presented a discussion of the problems addressed in previously done related
work, as well as, open issues in the research field. It is then describe in detail a tool proposed as
a solution to help reduce the constant need for companies to support huge costs to generate and
update artifacts.

The dissertation’s development is driven by the mentioned problems regarding companies’
costs and developers’ effort. The goals were to firstly analyse developed research work identifying
the main gaps in the field, as well as, methods used to reverse engineer applications in these
related works. From the identified gaps and methods, the objective was to design and propose a
methodology which could extract information from the apps to further build documentation that
can help developers reduce their effort to understand applications.

The proposed tool is able to reverse engineer applications in a first instance through static
analysis of the application’s java files and extract key information regarding intents and class de-
pendencies. Moreover, source code is transformed in a way which allows understanding activities
and fragments life-cycles in real time through a desktop app.

From here, the solution was validated through a case study involving apps from GitHub. Re-
sults were analysed in order to understand limitations which are provided and discussed right after.

Finally, conclusions are presented, future work is discussed based on found limitations and
contributions are described.

Keywords: Android studio, reverse-engineering, static analysis, dynamic analysis, mobile, appli-
cations, source code, program understanding, program comprehension

i



ii



Resumo

As aplicações móveis estão em constante evolução e a tornar-se numa importante necessidade
para o sucesso da maior parte das empresas. Além disso, o android é um dos sistemas operativos
móveis existentes, desempenhando um grande papel no mundo das aplicações móveis devido à
sua popularidade, principalmente por ser de código aberto.

Porém, devido ao atual crescimento exponencial das tecnologias, a manutenção de software
é uma das maiores preocupações quando se trata de custos das empresas e do esforço de novos
programadores que ingressam nas equipas de desenvolvimento. Os artefatos precisam de ser con-
stantemente atualizados e criados, geralmente manualmente. Assim, automatizar esse processo
pode ser benéfico para a área de pesquisa.

A presente dissertação oferece uma visão geral dos principais componentes bem como de obje-
tos de comunicação "Intent" do android, trabalhos relacionados à engenharia reversa de aplicações
com o objetivo de explorar as principais lacunas que possam existir na geração de artefatos, bem
como as principais vantagens das diferentes técnicas e metodologias de engenharia reversa. usado
nesses trabalhos relacionados.

Além disso, é apresentada uma discussão dos problemas abordados em trabalhos relacionados
anteriormente realizados, bem como, questões em aberto no campo da pesquisa. Em seguida,
descreve-se em detalhe uma ferramenta que foi proposta como solução, de forma a facilitar e
reduzir a necessidade constante de as empresas arcarem com os elevados custos de geração e
atualização de artefatos.

O desenvolvimento da dissertação é impulsionado pelos problemas mencionados em relação
aos custos das empresas e ao esforço dos programadores. Pretendeu-se, em primeiro lugar, anal-
isar os trabalhos de investigação desenvolvidos identificando as principais lacunas existentes na
área, bem como os métodos de aplicação da engenharia reversa nestes trabalhos relacionados. A
partir das lacunas e métodos identificados, o objetivo foi projetar e propor uma metodologia que
pudesse extrair informações das aplicações para criar documentação adicional que possa ajudar os
programadores a reduzir seu esforço para entender as aplicações.

A ferramenta proposta é capaz de realizar a engenharia reversa de aplicações em uma primeira
instância por meio da análise estática dos ficheiros java da aplicação e extrair informações im-
portantes sobre intents e dependências de classes. Além disso, o código-fonte é transformado de
forma a permitir a compreensão dos ciclos de vida das atividades e fragmentos em tempo real por
meio de uma aplicação desktop.

A partir daqui, a solução foi validada por meio de um estudo de caso envolvendo aplicações
android do GitHub. Os resultados foram analisados a fim de compreender as limitações que a
ferramenta contém e discuti-las em seguida propondo a sua solução em trabalho futuro.

Keywords: Android studio, reverse-engineering, static analysis, dynamic analysis, mobile, appli-
cations, source code, program understanding, program comprehension

iii



iv



Acknowledgements

Developing the present document and completing my. academic degree was only possible due to
numerous factors and people around me.

First of all I would like to thank my supervisor Professor Nuno Flores and co-supervisor Pro-
fessor Ana Paiva, whose availability, collaboration and guidance were perpetual and unfaltering.
It was a great experience to have the opportunity to develop this project with you.

Secondly, I would also like to thank Professor João Bispo for his continuous collaboration.
Without him, it wouldn’t had been possible to complete an indispensable component of this dis-
sertation.

Furthermore, I’m beyond grateful to my family. Their love and constant support was crucial
throughout my academic path. To all of you, I don’t think I can thank you enough, from the bottom
of my heart.

Finally, I would like to thank all my friends and colleagues for being part of my personal,
academic and professional journey, for their friendship, conversations, contagious joy, trust and
advises. I believe relations created will last for life.

Francisco

v



vi



“Until I began to learn to draw,
I was never much interested in looking at art.”

Richard P. Feynman

vii



viii



Contents

1 Introduction 1
1.1 Extracting knowledge from Android Apps . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Document structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Reverse Engineering of Android Applications 5
2.1 Android . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Intents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Fragments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Reverse Engineering Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Static Analysis Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Abstract Syntax Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Call and Dependency Graphs . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 APK File Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.4 Optical Character Recognition . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Dynamic Analysis Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.1 ReIMPaCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.2 GUI Reverse Engineering . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Mixed Analysis Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.1 Testing and Event Logging . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.2 Execution tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Research Challenges 27
3.1 Open issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Solution Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 SMART 33
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Kadabra Java Weaver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Lara File Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Desktop Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

ix



x CONTENTS

5 Case Study 41
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Criteria Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Case Study Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3.1 Is SMART able to extract the Intents and Intent Filters’ Information? . . 43
5.3.2 Is SMART able to extract the script related to the dependency graph? . . 43
5.3.3 Is SMART able to transform the source code correctly? . . . . . . . . . . 44

5.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5 Results and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Conclusions 49
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

References 51

A Appendix 55
A.1 Health Application - Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.2 Business Application - Case Study . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.3 Educational Application - Case Study . . . . . . . . . . . . . . . . . . . . . . . 55
A.4 Utility Application - Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . 56



List of Figures

2.1 Implicit intent being delivered to the correct activity [15] . . . . . . . . . . . . . 6
2.2 Activities’ life-cycle [16] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Fragment’s life-cycle and fragment view’s life-cycle [6] . . . . . . . . . . . . . . 10
2.4 Example representation of the RE process using ASTs [37] . . . . . . . . . . . . 13
2.5 OSAIFU [34] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Reverse engineering process [50] . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Reverse Engineering Tool [43] . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.8 Reverse Engineering Tool [32] . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.9 Reverse engineering approach [23] . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 SMART Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Kadabra Java Weaver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Socket connection architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Intent File example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Dependency Graph example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 SMART - Activities’ Life cycle transition example . . . . . . . . . . . . . . . . 46

A.1 Utility Application’s Intent File . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
A.2 Utility Application’s Dependency Graph File Script . . . . . . . . . . . . . . . . 56
A.3 Utility Application’s Dependency Graph Visualisation . . . . . . . . . . . . . . 57
A.4 Utility Application: Desktop App Displayed Method 1 . . . . . . . . . . . . . . 57
A.5 Utility Application: Desktop App Displayed Method 2 . . . . . . . . . . . . . . 58
A.6 Utility Application: Desktop App Displayed Method 3 . . . . . . . . . . . . . . 58
A.7 Utility Application: Desktop App Displayed Method 4 . . . . . . . . . . . . . . 59
A.8 Utility Application: Desktop App Displayed Method 5 . . . . . . . . . . . . . . 59
A.9 Utility Application: Desktop App Displayed Method 6 . . . . . . . . . . . . . . 60
A.10 Utility Application: Desktop App Displayed Method 7 . . . . . . . . . . . . . . 60
A.11 Utility Application: Desktop App Displayed Method 8 . . . . . . . . . . . . . . 61
A.12 Business Application’s Intent File . . . . . . . . . . . . . . . . . . . . . . . . . 61
A.13 Business Application’s Dependency Graph File Script 1 . . . . . . . . . . . . . . 61
A.14 Business Application’s Dependency Graph File Script 2 . . . . . . . . . . . . . . 62
A.15 Business Application’s Visual Dependency Graph 1 . . . . . . . . . . . . . . . . 62
A.16 Business Application’s Visual Dependency Graph 2 . . . . . . . . . . . . . . . . 63
A.17 Business Application’s Visual Dependency Graph 3 . . . . . . . . . . . . . . . . 63
A.18 Business Application’s Visual Dependency Graph 4 . . . . . . . . . . . . . . . . 64
A.19 Business Application: Desktop App Displayed Method 1 . . . . . . . . . . . . . 64
A.20 Business Application: Desktop App Displayed Method 2 . . . . . . . . . . . . . 65
A.21 Business Application: Desktop App Displayed Method 3 . . . . . . . . . . . . . 65

xi



xii LIST OF FIGURES

A.22 Business Application: Desktop App Displayed Method 4 . . . . . . . . . . . . . 66
A.23 Business Application: Desktop App Displayed Method 5 . . . . . . . . . . . . . 66
A.24 Business Application: Desktop App Displayed Method 6 . . . . . . . . . . . . . 67
A.25 Business Application: Desktop App Displayed Method 7 . . . . . . . . . . . . . 67
A.26 Educational Application’s Intent File . . . . . . . . . . . . . . . . . . . . . . . . 68
A.27 Educational Application’s Dependency Graph File Script . . . . . . . . . . . . . 68
A.28 Educational Application’s Dependency Graph Visualisation . . . . . . . . . . . . 69
A.29 Health Application’s Intent File . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.30 Health Application’s Dependency Graph File Script . . . . . . . . . . . . . . . . 69
A.31 Health Application’s Dependency Graph Visualisation . . . . . . . . . . . . . . 69
A.32 Health Application’s : Desktop App Displayed Method 1 . . . . . . . . . . . . . 70
A.33 Health Application’s : Desktop App Displayed Method 2 . . . . . . . . . . . . . 70
A.34 Health Application’s : Desktop App Displayed Method 3 . . . . . . . . . . . . . 71
A.35 Health Application’s : Desktop App Displayed Method 4 . . . . . . . . . . . . . 71
A.36 Health Application’s : Desktop App Displayed Method 5 . . . . . . . . . . . . . 72
A.37 Health Application’s : Desktop App Displayed Method 6 . . . . . . . . . . . . . 72
A.38 Health Application’s : Desktop App Displayed Method 7 . . . . . . . . . . . . . 73
A.39 Health Application’s : Desktop App Displayed Method 8 . . . . . . . . . . . . . 73



List of Tables

3.1 Related work content matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

xiii



xiv LIST OF TABLES



Abbreviations

APK Android Package Kit
AST Abstract Syntax Tree
CG Call Graph
DG Dependency Graph
ET Execution Tracing
LC Life Cycle
MIME Multipurpose Internet Mail Extensions
OCR Optical Character Recognition
OS Operating System
RE Reverse Engineering
UI User Interface
UML Unified Modelling Language
URI Uniform Resource Identifier
US User Story
TAE Transformed Application Exploration
TL Transformation Language
XML Extensible Markup Language

xv





Chapter 1

Introduction

Reverse engineering of mobile applications is getting more and more traction due to its various

applications. With this in mind, it was the research area chosen to be addressed in the context of

the present dissertation.

Android Studio is the official framework used to write code for these applications. Moreover,

android is the most commonly used mobile operating system due to being open source and having

a huge and active community. Specifically, it was mainly developed by Google and has been

dominating mobile application’s market since 2011 [1], composing at the moment, a total of 72.5%

of the total market shares according to [12].

With android’s dominance and high demand regarding its number of active users, emerges the

need from developers to understand the great variety of elements android has to offer (e.g. intents,

broadcast receivers, services, etc).

Reverse engineering is the process of performing a detailed analysis to a product to empower

the acquisition of vital information regarding that specific product. In particular, applying the

reverse engineering process to a mobile app allows information extraction to, for example, build

artifacts or port an application to other platforms. For a detailed explanation regarding RE and its

various analysis techniques, please refer to chapter 2.

1.1 Extracting knowledge from Android Apps

Mobile applications developed for android require effort from new comers due to android’s steep

learning curve associated with the wide variety of components that it has to offer. Also, complexity

for the mentioned group of individuals is increased due to the fact that these components may

contain life-cycles (e.g., activities/fragments).

Moreover, in a world where apps are constantly changing and evolving, there has to be a com-

mitment to keep artifacts updated so that new developers can be easily integrated in a companies’

team. Although documenting software may be time-consuming, this is crucial in a world where

many software engineers shift companies on average every 3 to 4 years [9] and artifact mainte-

nance / generation composes a considerable part of companies’ costs.

1



2 Introduction

Furthermore, software maintenance is a difficult task for itself and it is usual for companies

to give less importance to the documentation. However, lack of documentation composes an even

greater challenge when developers are maintaining a software, since without any documentation

or artifacts, there is no clear representation or description detailing the software’s architecture and

workflow.

The reverse engineering process can help tackling this problem by extracting knowledge, i.e,

structure and behaviour, from a software and transforming it into information that can be used by

new coming developers to better understand the software. However, very few tools exist that may

help new developers to understand the android elements.

1.2 Objectives

Motivated by the identified gaps from the initial analysis, which was performed to the research

area of reverse engineering of android mobile applications, and taking into consideration which

method of extraction best suited this dissertation’s context, the objective was to propose a possible

solution which could tackle the issues contained in the gap.

The SMART (Static dynaMic Analysis andRoid applicaTions) solution’s objective involved

proposing a tool which enabled knowledge extraction from android applications. The knowledge

was composed of information related to the main android components, such fragments and activ-

ities, as well as, intent objects. Additionally, another objective was to find and use a tool which

raised the possibility to analyse and transform source code.

Expected results from the development of the present dissertation firstly involved the success-

ful analysis of reverse engineering related work, identifying and describing their main limitations,

as well as, gaps.

From the research work performed to the state-of-the-art, it was expected to propose a solution

that could fit the existing gaps in the research field, also diminishing the identified open issues.

The proposed solution, SMART, was expected to successfully reverse engineer android appli-

cations, regardless of their category, extracting artifacts, that could contribute to the mentioned

research area and tackle identified issues.

Artifacts that were extracted will be discussed through the following chapters and these in-

cluded intents objects and intent filters, classes’ dependencies among them, as well as, a real-time

visualisation of active activities and fragments while handling a mobile application.

SMART was to be validated through a case study which involved experiments with apps from

different categories to verify its versatility. Results from the experiments, shown in the appendix,

were expected to be used to answer the pre-defined validation questions.

It was expected that the tool was valid, meaning that it was indeed able to generate the artifacts.

Note that questions were constructed so that these were expected to have an affirmative or negative

answer, meaning it was able to perform the extraction when answered with a "yes".



1.3 Document structure 3

SMART is a tool that relies on a mixed analysis reverse engineering (RE) technique to reverse

engineer mobile applications and extract defined artifacts. Since it is a mixed analysis technique it

is divided into two components them being static and dynamic.

Regarding the static analysis component, it analyses the code in search of key information

regarding components that compose the extracted artifacts.

After completion of the analysis, it transforms the source code in a way so that the mobile

application communicates with a desktop application.

SMART’s main contributions are the fact that it empowers the possibility for new developers

to analyse in real-time which activity/fragment is being invoked and at which state it is, as well as,

the possibility to view intents’ information of the application under analysis.

SMART can be also used in an educational context in order to help learn how the android

life-cycle methods work. However, SMART can not be considered a serious game because it does

not have all the required features such as the ones presented in [45] and [27].

1.3 Document structure

The complete document structure which is presented in the dissertation is organised as follows:

introduction’s chapter firstly provides a context regarding the research area which was mitigated,

the main goals of the dissertation’s development, the expected results and an high level view of

the tool that will be proposed.

Chapter 2 presents not only some key concepts related to android and reverse engineering, but

also a deep analysis regarding previous published related work.

Chapter 3 presents the existing open issues in the field, a discussion related to all published

work analysed in the State-of-The-Art and a solution that could tackle the open issues.

Chapter4 refers to a detailed description of the tool which was developed as a solution to

existing gaps in the research field along with its architecture.

In chapter 5 it is presented the case study which was performed with applications from GitHub

[8], along with its results in order to validate the previously mentioned solution and limitations that

were found in the solution.

Chapter 6 contains the conclusions, future work, as well as, the main contributions from the

implemented solution to the research field.



4 Introduction



Chapter 2

Reverse Engineering of Android
Applications

The present chapter is intended to 1) provide an overview of android and its components in section

2.1; 2) explain the reverse engineering techniques in section 2.2; 3) present the different methods

used for the process of reverse engineering of mobile applications with a more in dept definition

and explanation, in sections 2.3, 2.4 and 2.5.

2.1 Android

Android is a Linux-based operating system, with its structure for the different layers written in

C. Furthermore, it was mainly developed by Google [1] and it is the most used mobile operating

system with a world dominance regarding the number of its users [12].

Android applications can be written using the Android SDK or Kotlin language (created to

replace Java). The SDK is where a debugger, resources and packages that are used by the applica-

tions are stored.

Since the android operating system is open-source, there are a vast of applications developed

by third party companies that have their APKs available in the Google Store for users to download

them. This can lead to security leaks, for example, due to permissions that these applications

request in the background [1].

To reduce security problems, ensuring software quality is crucial. In order to do so, anal-

ysis of the various elements of android can provide developers with information related to the

application’s architecture and workflow to detect failures or weaknesses. The main examples of

these elements are fragments and activities, responsible for displaying UIs (user interfaces) to the

user in the android system, as well as, intent objects that enable messaging mechanisms between

components.

5



6 Reverse Engineering of Android Applications

2.1.1 Intents

Intents objects and all their features are made available using the android intent resolver, which is

best suited for sending data to other applications as part of a well-defined task flow [15]. More-

over, intents in android are seen as messaging objects that can be used to request actions from

other components inside the app or even other applications. The android documentation describes

intents has having three main use cases, namely:

• starting activities by passing the intent to the method startActivity().

• starting services using a JobScheduler. [13]

• delivering broadcasts using the sendBroadcast() or sendOrderedBroadcast() methods. [4]

These messaging objects have a structure that contains information, such as the name of the

component to be started, the action that should be performed on that specific component, the URI

object that references the data to be acted upon and some other information regarding the category

of the component, a pair of key-value that carry information needed to complete the request done

and a flag, that can be seen as "metadata" about that intent "instructing when to launch an activity

and how to treat it after it’s launched" [15].

Additionally, intents may either be explicit when demanding to launch a specific application

component by providing the component name, or implicit when there isn’t a specification of the

app that is to be launched. In the second case, the system performs an analysis to determine which

of the installed apps support that intent, through comparing the information of the intent with the

intent filter and further displaying them to the user. An example of this process for selecting the

correct activity to receive the implicit intent is shown in Figure 2.1.

Figure 2.1: Implicit intent being delivered to the correct activity [15]

Moreover, intent filters are expressions contained in the application’s manifest file. Also,

intent filters define the type of intents that that applications’ components can accept by using the

intent-filter element [15]. The definition is based on the intent’s:



2.1 Android 7

• data - specifies the accepted data through attributes of the data URI and MIME type.

• category - specifies the name of the category of intents that is accepted.

• action - specifies the name of the intent actions that are accepted by the intent.

Furthermore, intent-filters can contain more than one type of actions, data or category. How-

ever, for each intent there should be a different intent-filter.

2.1.2 Activities

Activities are considered to be classes designed specifically to help create the user paths which

will take part of the application’s workflow of UIs [16]. With this in mind, it is possible that for

different applications there might be distinct user interaction’s beginnings with the use of activities.

Usually, each activity implements a screen and these are totally decoupled from each other.

Thus, each of them contains their own independent life-cycle.

An activity can iterate throughout numerous states in which each state has a callback provided

by android and some of these callbacks are mandatory to implement. These callback methods will

be referred as life-cycle methods throughout the document.

Every activity has to have the onCreate() callback which is fired once an activity is created by

the system and this method contains information related to the startup logic of the activity.

Once the process of starting the logic is completed, onStart() method is called. This callback

is the method that prepares the activity before being displayed and prepared for interaction with

the user [16].

Subsequently, the callback onResume() is invoked once the activity enters the Resume state.

Moreover, as long as there isn’t an action that makes another activity to come to foreground, this

is the state that stays active and where interaction with the user takes place.

Eventually, the activity enters the pause state and calls the onPause() method stopping func-

tionalities that are not essential to be running while the activity is on background. Additionally,

this is the state where it will defined whether the activity will be used by the user, returning to

Resumed state and calling its corresponding callback method, or if it should be stopped, either

due to lack of memory or if the activity isn’t visible anymore.

As a consequence of the second option, onStop() method is invoked and all heavy function-

alities and some resources related to that activity are stopped, even though the state and activity

object are kept in memory.

From stopped state, the activity is either restarted using the callback onRestart(), or destroyed

using onDestroy() [16]. In such circumstances, all remaining resources are killed and so is the

activity.

Figure 2.2 illustrates a more clear view of the transition between these states.



8 Reverse Engineering of Android Applications

Figure 2.2: Activities’ life-cycle [16]

2.1.3 Fragments

Fragments are perceived as reusable portions of applications’ user interface. Although fragments

are independent from each other, meaning that they have their own life-cycle (just as activities),

events and layout, fragments are necessary to be contained inside another fragment or an activity

(using FragmentActivity class).

Furthermore, the class FragmentManager is in charge of performing actions on fragments,

as well as, managing the fragment’s back stack. These actions should be done inside a transaction

scope, committing the changes to utilized fragment with the FragmentTransaction class, in order

to avoid data losses and fragment’s states. [7]

Android provides a life-cycle object that can be accessed by the getLifecycle() method. In

addition, the possible states throughout a fragment’s life cycle are designed as follows:

1. Initialized

2. Created

3. Started

4. Resumed

5. Paused



2.1 Android 9

6. Destroyed

Note that fragments cannot be in a certain state without before iterating through previous

states. For example, a fragment cannot be paused if it hasn’t been previously created, started and

resumed.

Also, fragments have a life-cycle independent from their view’s life-cycle. Fragment’s life-

cycle may be inspected by an observer or by using callback methods, which are similar to call-

backs from activities with the addition of two extra callbacks, namely onAttach() and onDettach().
These are used upon fragments being added or removed from a FragmentManager respectively.

[7]

Regarding the relation between the view’s life-cycle and the fragment’s life-cycle, to start

and to be able to interact with the fragment, the process starts with the fragment reaching the

created state. At this point, the fragment has already became a part of the FragmentManager
and the creation of the fragment requests the onCreate() callback. From this point, the view is

created only if the fragment provides a non-null view and this view can be returned with getView()
method.

Also, in this stage the initial state of the view is defined and the observation of LiveData
instances that have callbacks that update the fragment’s view are started.

After the creation of the view, both the fragment and its view are started. At this point, if the

fragment’s view isn’t null, the fragment is passed to Started state right after the fragment is also

started. Once the fragment is prepared for interaction with the user, all events and elements have

been finished and the onResume() method is called. [6]

On the other hand, when the user is leaving the interaction with the fragment, firstly the frag-

ment’s view life-cycle is sent to observers followed by the fragment’s life-cycle. As for the first

state, the fragment is still visible to the user. Moreover, both the view and its fragment "owner"

are sent back to Started state and emit the ON_PAUSE event.

Afterwards, the fragment becomes invisible, the fragment and the view are moved to Created
state and send the ON_STOP event to observers.

The following step is to exit all animations and transitions so that the fragment’s view is

totally removed from the window and the view’s life-cycle is pushed to Destroyed state, handling

the ON_DESTROY event to its observers and calling the onDestroyView() callback method.

Finally the fragment reaches the Destroyed state, also emits the ON_DESTROY event to ob-

servers of the fragment and onDestroy() method is called ending the fragment’s life-cycle. The

following figure 2.3, provides a clear view of this process both for fragment’s life-cycle and their

views life-cycle. [6]



10 Reverse Engineering of Android Applications

Figure 2.3: Fragment’s life-cycle and fragment view’s life-cycle [6]

2.2 Reverse Engineering Techniques

Reverse engineering, also known as RE, is the process of extracting knowledge or useful infor-

mation from any product regardless of its business category [53]. Particularly, in the context of

software engineering, the RE process can be anything from extracting knowledge through a sim-

ple source code line-by-line analysis, to creating UML class diagrams from source code through

analysis, or even searching for faults in the applications by triggering events throughout the appli-

cation’s flow.

Furthermore, knowledge extraction can be done through static analysis ([14]), dynamic analy-

sis ([49]) or using a mixed analysis ([48]) technique that takes advantage of a combination of both

techniques.

Static analysis doesn’t require the execution of code. It instead analyses code itself identi-

fying methods, events or any other element that can be advantageous for the creation of artifacts

depending on the problem being tackled and project’s context.

Opposed to static analysis, a dynamic approach extracts the fundamental knowledge to create

artifacts, by executing the application and its different flows/events, capturing, in most of the

developed related work, event triggers or component dependencies.

Finally, a mixed technique usually relies on static analysis, on a first stage, in order to find

code failures regarding events or workflows of the application, to then complete these paths and

further analyse the application using a dynamic tool (e.g., AMOGA [18]).



2.3 Static Analysis Techniques 11

Each of these techniques present advantages and disadvantages depending on the project’s

context, as well as, what information is available for analysis. In particular, static analysis of

mobile applications may become fairly challenging since these applications are event-driven [31],

so dynamic analysis could be considered the best solution to reverse engineer applications.

However, since most of the times applications have failures and may lack correct paths through-

out its execution flow, for example missing states in android activities, dynamically analysing

applications can lead to incorrect or incomplete results / artifacts.

Thus, usually the best suited approach that developers rely on is the combination of a static

analysis to complete missing paths/code using, for example, invoked activities’ life-cycle method,

followed by a dynamic analysis using tools to extract applications’ workflow along with other

application’s properties.

Relying on the defined research area, reverse engineering of android mobile apps, the first

performed step was to find related work already developed in the mentioned research area. From

the investigation performed, an analysis of the papers was done in order to identify possible gap-

s/improvements that could be explored and developed as possible solution tools as a contribution

for the present dissertation.

In the following sections papers are presented accorsing to their RE technique along with a

description of the phases taken in a specific paper and results / conclusions obtained with the goal

of understanding the possible solution tools/methodologies that could be implemented in order to

improve the research area’s State-of-The-Art.

2.3 Static Analysis Techniques

[30] defines static analysis as "the analysis of computer software which is performed without the

actual execution of the programs built from that software". Since there isn’t an actual execution

of the code, the analysis is considerably limited, not being able to extract the response of, for

example, event triggers under certain conditions.

Although static analysis techniques usually involves using simpler methods for knowledge

extraction, it can be greatly convenient for smaller applications or analysis. Some examples of

these methods are the usage of Abstract Syntax Trees and Call Graphs discussed in the following

sections.

2.3.1 Abstract Syntax Trees

Abstract Syntax Trees (ASTs), are identified as tree-like hierarchical structures, which are gener-

ated from the source code and composed of nodes where each node represents an if-then condition

that should declare the order of executable statements related to the source code.

ASTs are very useful since they allow the abstraction of some details incorporated in the

source code such as parenthesis and punctuation. Moreover, these structures can further be used

to generate specific artifacts (e.g., Kadabra Java Weaver, Clava, etc [11], [21]).



12 Reverse Engineering of Android Applications

However, ASTs require the developer to specify the full collection of conditions that empower

the creation of such tree hierarchical structure, with a properly defined granularity. This definition

may require some effort. A real world example is when a developer needs to reverse engineer

multiple mobile applications or even complex and large apps.

As done in [25], when depending on the usage of ASTs to RE apps, for the most part, there

are at least three main stages regularly taken into consideration, namely:

• extraction - at this moment the source code is extracted to be subsequently used by a tool

that empowers the generation of the AST;

• abstraction - this stage consists of a source code analysis, followed by the construction of

the AST structure by the previously mentioned tool;

• presentation - at this point, the structure is analysed in order to generate the artifacts that

are desired for the work being developed.

Another example that was built with the usage of Abstract Syntax Trees is proposed in [37].

The authors present a model driven reverse engineering approach for mobile applications with the

goal of transforming the native source code from a certain language/platform to native source code

of a different language/platform, relying on the usage of abstract syntax trees and graphs models

(discussed in 2.3.2).

Regarding [37] in particular, the process involved the main stages of ASTs mentioned in 2.3.1,

with the addition of the discovery phase which consists of the creation of these call graphs from

ASTs. After the creation process of the call graphs is completed, these are converted to other

graphs that "mirror" them to the the target platform native language using a meta-model. The new

call graphs are then converted to the target platform source code.

The authors in [37] concluded that, with the increasing need of extracting native source code

from mobile applications to convert it to different platforms, it is required a good degree of compe-

tence from the developer, in both source and target platforms in order to perform this methodology.

The implementation of this approach can also be useful for generating artifacts related to

android components, to reduce time and effort from developers when companies need native ap-

plications for multiple platforms and lack artifacts or knowledge about both platforms.

For a better understanding of the process involved, a representation can be seen in Figure 2.4.



2.3 Static Analysis Techniques 13

Figure 2.4: Example representation of the RE process using ASTs [37]

Another use of ASTs is presented in [35] where the authors proposed the implementation of

a reverse engineering static analysis approach in order to map and transform mobile applications’

UIs between platforms, taking advantage of the Appium tool [3].

Appium is another tool apart from the ones mentioned in section 2.3.3 (e.g., Apktool), that can

be used to de-compile the source code with the goal of extracting relations of UIs and creating the

AST hierarchical structure.

After the creation of the AST, the authors created modules related to functions and controllers,

saving these modules between platforms (iOS and Android) in a database. Moreover, through the

combination of this data with previously generated modules from a storyboard file (that contains

relations from iOS controllers of the source application), [35] obtained the production of Android

attributes to after generate the UI elements.

This project comes to show that the use of ASTs can create accurate abstractions of controllers

even though the encoding of "Android GUI or Swift are difficult", because it requires the same

compiler and process for both platforms.

2.3.2 Call and Dependency Graphs

Using the source code, there is the possibility to create specific types of graphs, namely Call

Graphs and Dependency Graphs.

Call graphs are the most common types of graphs and empower knowledge extraction for

creating artifacts through static source code analysis. These graphs contain relevant information

about all method calls within the method bodies that are being analysed. Nevertheless, native code

calls are abstracted from those graphs.

Although having a similar structure to abstract syntax trees, each of the call graphs nodes

represent methods with all its variables and information.



14 Reverse Engineering of Android Applications

The authors of the dissertation that is presented in [42] proposed and developed the implemen-

tation of a component that is capable of creating method call graphs and subsequently artifacts to

help developers better understand applications, relying on a number of different stages, namely:

• extract classes that have methods which are related to each other, mentioned as the "being-

used together classes";

• separate the classes through the creation of a method call graph containing all methods that

exist in the application;

• remove method chains "that do no use more than one class from the method call graph"

[42];

• extract the domain model classes and their multiplicity relations (the tool proposed pre-

serves only classes that have at least 1 field and getter and setter methods);

• analyse these fields to reverse engineer multiplicity relations;

• rank the domain model classes reusing the previously mentioned call graph output in 2.3.2,

adding the spectrum of domain classes used by that method;

The other pertinent type of graphs for this dissertation are data dependency graphs which are

used with the goal of extracting data dependencies (e.g., classes), so that the tool analysing the

source code is able to extract knowledge to create artifacts or even refactor code.

In particular, the paper in [34], is firstly distinguished from other related work due to the fact

that it is the only solution which is implemented as an Android Studio plugin and relies on data

dependency graphs, OSAIFU. An illustration of the complete methodology is presented in Figure

2.5 followed by a brief clarification and advantages of the approach applied.

Figure 2.5: OSAIFU [34]

The main goal of this paper was to support program understanding and reverse engineering of

android mobile applications. The source code was provided as input to the plugin and the graphs

were created.



2.3 Static Analysis Techniques 15

Furthermore, the "Statement Sets Extractor" creates groups of statements that are related. With

these groups OSAIFU extracts features of analysed mobile applications.

A key point is the fact that the tool uses the Java Parser library to be able to generate the

dependency graphs in the process.

2.3.3 APK File Analysis

From the vast variety of methods to perform static analysis, one of the most popular techniques

in the context of android mobile applications, is to analyse android APK files. These APK files

(Android Application Kit) are the files’ format that android uses to install and distribute apps.

Furthermore, these contain the elements that a specific app demands to install correctly.

A simple example of this technique is [53] where the authors present a paper in which, taking

advantage of android manifests, extract properties related to key listening functions and associated

to tracing program intrusions such as properties analogous to applications changing devices con-

figurations, installing shortcuts, recording audio, "performing NFC I/O operations" and changing

the Wi-Fi state of the device.

This process was done by de-compiling the APK file using Apktools and the android SDK,

creating Dalvik code which was then disassembled to Smali byte-code ("similar to Java byte-

code").

Apktool is a tool used to extract source code from the application’s APK file through reverse

engineering. The usage of such tools is deeply common in the context of RE of mobile apps since

it allows the analysis and transformation of the source code of the application in an automated

form.

From here it generates Smali byte-code and it also possible to rebuild the code to re-generate

the APK file.

The authors concluded that over the years, reverse engineering took a shift from only being

applied to hardware, to also being applied to software, reporting to be very useful to software

quality improvement, as well as a great improvement in security level of android applications

[53].

Tools such as Apktools [2], will be mentioned throughout the present dissertation as trans-

formation languages, since these, as the name suggests, allows transformation of source code

according to developers’ needs.

Since these files extracted from the APK, in particular manifests, contain critical information

related to permissions, there are several exploits that can be used for malicious behaviours.

The authors in [50] conducted a study relying on static analysis reverse engineering tools to

analyse permissions. For the study, the authors used the APK files and de-compiling tools to

complete the source code analysis.

Moreover, a permission analysis was performed based on manual mechanisms after converting

the source code to detect and remove malicious activities in mobile applications through unneces-

sary permissions such as GPS and Location access.



16 Reverse Engineering of Android Applications

The authors were able to detect several applications that had unnecessary permissions leading

to security leaks and in order to improve the work developed, they proposed the creation of an

automated mechanism for checking failures [50].

An illustration of the entire reverse engineering process and analysis developed in this paper

is visible in Figure 2.6.

The APK analysis approach is best suited for analysing security associated properties, al-

though it could be also applied for improving software quality, as well as artifacts extraction

through analysis of other properties of the application, taking developers to need less effort to

understand systems.

Figure 2.6: Reverse engineering process [50]

As already specified, Transformation language (TLs) are used to create design structures of

the input into a specific output that satisfies some condition. Apart from previously mentioned

related work that takes advantage of these TLs such as [50] and Apktool [2] in [53], which is the

most popular tool for program understanding/reverse engineering, other tools were analysed in

[20], namely: dex2jar [5]; Scoot. These perform the transformation of the executable source into

Jasmin and Jimple intermediate languages respectively. Dex2jar then converts Jasmin code into

class/jar files.

The content of [20], provides a general overview of all these tools, as well as a comparison

between them.

The authors concluded that Apktool [2] "performs the most accurate transformation of the

Android apps executable since the apps, which are assembled from Smali, most closely pre-serve

their original behaviours" [20].

The usage of TLs can be useful when needing to create artifacts since it is possible to specify

the output needed to generate these artifacts.



2.3 Static Analysis Techniques 17

Another example of a paper where the generation of the artifacts is done relying on de-

compiling tools, is the work presented in [24]. The authors proposed a tool that relies on these TL

tools for artifact generation (UML class diagrams), in order to reverse engineer mobile applica-

tions, through static analysis. The main goal was to analyse apps in search for anti-patterns and to

create "semantic integration".

The complete process involved three different parts and these were:

1. the formatting of the mobile application apk file to Java source code format;

2. the process itself of reverse engineering the application to produce the "UML class dia-

grams", with the analysis of the android apks that were later used to analyse anti-patterns;

3. anti-pattern search in order to achieve an increase in software quality by "analysing rela-

tions between object-oriented anti-patterns". Also, at this stage of the process, solutions for

anti-pattern’s semantics are provided by the tool developed, consequently regenerating "the

Java code of mobile applications";

The main goal of the work developed in [24] was to improve, as some other already mentioned

related work, the software quality of mobile applications, which comes to show that reverse engi-

neering can be seen as an useful tool that companies can rely on to reduce costs and effort from

developers. In this case, the usefulness relies on the fact that the tool was proven to be able to de-

tect many anti-patters in the applications utilized in the case study, taking the responsibility of that

task from the developer. It also creates UML class diagrams that can be generated for knowledge

extraction from new developers.

Still in the context of TL tools, using a static analysis approach, the authors in [19] propose

an automation of this process using a toolkit to identify malicious components in applications that

could corrupt security for user dealing with those apps.

To execute the reverse engineering process of applications, [19] obtained the APK file of

the application and using TLs, they de-compiled the Java byte-code and analysed information

contained in the APK file, acquiring key information regarding it, such as source code, manifest

files and used resources by the apps, rebuilding the source code after.

The following steps in the process were to analyse permissions and check if there are any

vulnerabilities in the APK, through "comparing it to a list of known ones".

Moreover, the authors tested the tool in a real world scenario (for a full case study process

inspect [19], sect. 4), and concluded that although a static analysis tool is already helpful, a step

further would be to develop a dynamic analysis tool.

This paper is referred to empower a justification for the fact that TLs enrich the process of re-

verse engineering since it is possible and simple to retrieve key information of mobile applications

to then build artifacts.



18 Reverse Engineering of Android Applications

2.3.4 Optical Character Recognition

Optical Character Recognition is a technique that can take any type of image or printed text and

convert it into the needed components. In particular, regarding mobile applications, as in [43] it is

possible to take screenshots from an application and using a tool, reverse engineer them to create a

structure of the user interface. From here, it is possible to export the structure to obtain the source

code or packages used by the application in another platform’s language.

[43] depends on a static analysis reverse engineering technique where the first stage proposed

was to detect "off-the-shelf OCR" words from the screenshot provided and use heuristics to remove

"false-positives" from this exploration.

From the exploration, a computer vision exploration was done in order to extract a possible

view hierarchy of the application. These two explorations were merged, creating a screen with

some duplicate elements that were removed by the tool.

The final output was exported containing all packages and source code suited for creating the

intended UI, which were later complied generating the mirrored application.

An illustration of the main steps is visible in Figure 2.7 and the authors concluded that au-

tomation of this process empowers, not only the tansformation of UIs between platforms using a

generic tool REMAUI[43], that can take images independently of the OS that the image was taken

in, but also the process of reverse engineering when source code is not immediately available for

knowledge extraction.

Figure 2.7: Reverse Engineering Tool [43]

The authors concluded that automation of the process empowers, not only the tansformation

of UIs between platforms using a generic tool, such as REMAUI[43], that can take images inde-

pendently of the OS that the image was taken in. Automation also facilitates the process of reverse

engineering when source code is not immediately available for knowledge extraction.



2.4 Dynamic Analysis Techniques 19

2.4 Dynamic Analysis Techniques

As mentioned in 2.2, dynamic analysis takes advantage of the actual execution of the application /

program being analysed. This execution allows to capture information that may not be possible to

acquire simply by using static analysis, depending on the situation. The information usually refers

to events triggers and component dependencies.

However, in order to run applications, as well as, to acquire correct and complete knowledge

about them, it is essential to ensure that event execution paths are complete. Furthermore, all

inputs needed for the analysis must be provided to the tool which will perform it.

Note that all the analysed dynamic related work relied on a testing and logging techniques

although with different goals.

2.4.1 ReIMPaCT

ReIMPaCT [31] is a tool that uses black-box testing and relies on a fully dynamic approach to

reverse engineer apps. The authors used this technique to extract hierarchical state machines

divided in three different levels, namely "navigation" through activities, "states of activities" and

"screens used in this navigation".

The primary advantage that should be taken into consideration is the fact that it does not

need to access the source code to reverse engineer applications because it applies Google APIs

to "interact with the device" and "to read and extract information from the screen of the device",

namely UI Automator and UI Automation.

The tool was submitted to a case study using apps from the Google Store and since there

weren’t any faults found, the authors intend to inject errors to understand if the tool can help

developers to find these faults more easily when being applied to real world scenarios.

In [40] and [26], the authors presented a methodology which used the iMPAcT tool to reverse

engineering apps dynamically. It then tested recurring behaviour in these applications. Dynamic

explorations were performed to the applications to check whether the UI Patterns were correctly

implemented.

The tool was shown to be useful because, although "it was applied on a small sample of mobile

applications, it already showed that the iMPAcT tool is able to detect errors in the implementation,

such as in the case of a change in orientation"[40].

2.4.2 GUI Reverse Engineering

The authors in [[32], [39]] present a "reverse engineering approach" with the goal of reducing

developers’ effort to create models according to the user interfaces. The knowledge extraction

in the mentioned work is done through a dynamic analysis which executes the UIs to extract its

behaviour and architecture.

For illustration purposes, Figure 2.8 represents the complete process developed in [32].



20 Reverse Engineering of Android Applications

Figure 2.8: Reverse Engineering Tool [32]

Through the methodology, the authors were able to reverse engineer applications and auto-

matically generate XML models that can be further tested. The authors concluded that reverse

engineering UIs empower testing which can further improve software quality, and reverse engi-

neering apps to automate artifact generation (GUI models in this case) can diminish effort from

developers.

Other related work regarding GUI reverse engineering and testing are presented in [44] and

[47]. The first work presents a GUI testing tool through reverse engineering similar to [32]. How-

ever, in the second work, the tool was applied to web applications and not mobile.

In addition, the paper in [41] also uses a dynamic analysis technique to reverse engineer GUIs.

However, in this case the authors relied on a dynamic exploration through the application so that,

using machine learning to solve ambiguous conditions, they could "generate state-machine model

of the GUI, including guard conditions to remove ambiguity in transitions." [41].

2.5 Mixed Analysis Techniques

Mixed analysis techniques are usually the most complete and involve two main stages relying on

both static and dynamic analysis.

The first stage is usually composed of a static analysis which is performed to capture informa-

tion missing that will be later used as input for a crawler algorithm. The second stage is precisely

the dynamic analysis of applications by the crawler algorithm that will capture event triggers or

other output specified in the process.



2.5 Mixed Analysis Techniques 21

2.5.1 Testing and Event Logging

Testing and event logging is a technique that most of the times relies on a mixed analysis technique

just as proposed in [29]. Testing and Event logging technique supports developers in understanding

how do applications behave, how they are structured, and in detecting faults such as data losses

due to insufficient implementation of activities’ life-cycle states. It can likewise help to create

models for deriving life-cycle models to other platforms.

The methodology in [29] firstly involved a developer statically adding any missing life-cycle

states of activities. The following steps were to create logs for all methods and, through black-

box testing, getting a catalog of triggers related to the application so that derivation of life-cycle

models could be created.

Furthermore, the authors conducted a study with android apps and concluded that not only

often emulators behave differently than real devices, but also the representation of life-cycles for

the different platforms diverge a lot.

Dexteroid [36] presents a paper where a framework was developed which, through static anal-

ysis, takes the APK of the android application to check activities’ life-cycles and creates composite

sequential states (states that are related through their transitions), in search of malicious behaviours

in these components.

Similarly to previously mentioned works, this paper also depends on logging to detect states

of activities. Nevertheless, it differs from others due to the fact that it relies on a static analysis

approach and that it has the goal of exploiting applications in search of activities’ states sequences

that can trigger malicious events such as information leakage and SMS-sending malware attacks.

The dynamic part of the work done is justified because by running applications, it empowers

the extraction of these event triggers.

The problem with this approach is the fact that it requires some effort when applications are

complex or events require large sequences of states to trigger a malicious event [36].

Although firstly developed to be applied to iOS, the paper in [23] was considered to be inside

the topic of this dissertation by cause of the authors citing that they have already "developed an

instrumentor for Java", which facilitates the analysis of Android applications.

The work in question presented a mixed reverse engineering technique where firstly the source

code was de-compiled and instrumented, through a TL (discussed in 2.3.3) developed by the au-

thors. From here, an AST was built, related to the source code so that the extra events that needed

to be created in order to execute the app as a whole using the dynamic crawler could be added.

The conclusions show that there is a down side in using this approach which is mainly because

the methodology is based on business relevant use-cases, i.e. whole scenarios from the perspec-

tive of the user, "and not on the execution of some arbitrary function"[23]. Thus, it allowed the

authors to "make hypothesis regarding the business semantics of the observed patterns of classes’

execution" and since they admit not to be sure to "recover all the relevant alternative paths in each

of the scenarios" the analysis will be incomplete.



22 Reverse Engineering of Android Applications

However, the importance of this paper is related with the amount of possible artifacts that it

is possible to acquire from state machines, to UML Class Diagrams and even the monitoring of

execution of UI classes in the applications.

For a better understanding, an illustration of the reverse engineering methodology that apps

are submitted in [23], is visible in Figure 2.9.

Figure 2.9: Reverse engineering approach [23]

Still in the context of event testing, in [18] there is the presentation of a mixed approach

where, statically and, as a first stage, the byte-code is extracted using TLs along with events that

the application being reverse engineered contains.

From the extraction process, it is further conducted the byte-code’s analysis. Also at this stage,

events are analysed by an event tracking algorithm so that it is possible to create groups of events

which are supported by the UI of the app.

From here, the events are used as input for dynamic analysis by a crawler algorithm that aims

on firing these events in order to generate the model of the application.

With the models, the developed tool generates a state machine where each of the nodes repre-

sents the reference to each of the UIs also containing its relations, serving as a tool for generating

artifacts that can help understand the paths and events that apps have.

[18] is also referring to this project with a deeper analysis of the entire process, as well as a

real implementation of the tool AMOGA.

Reverse engineering of mobile applications through mixed approaches for the extraction/gen-

eration of artifacts is the most popular RE technique at the moment of writing from the perspective

of related work, and work in [52] is another example of this process. Just as in other examples,



2.5 Mixed Analysis Techniques 23

[52] exploits GUI elements searching for its events (actions), using a dynamic crawler algorithm

designed by the authors "on top of the Robotium Android test framework" [52].

To achieve the initial input that was later processed and used as input for the dynamic crawler

the authors used WALA, a static analysis framework that searches for callback methods and gen-

erates a call-graph. ORBIT then used this call graph to map methods that have "intent sending"

mechanisms.

Since this was a static, analysis the authors were "unable to infer" some of the "intent-passing

mechanisms like intent broadcasting whose behavior is affected by the run-time state of Android",

so they used an inferring algorithm to create "action mapping", which finally became the input of

the dynamic crawler mentioned before generating a state model of the application.

Once again, the usage of a mixed reverse engineering approach allowed the authors in [52] to

achieve better results having complete state models for their case study without any missing paths

in their models.

To improve software quality and security in mobile applications [38] presents a paper where

a search for anti reverse-engineering techniques is done. This paper, although applied to iOS

(authors expect to extend to Android in a near future), is notably relevant because it comes to

show an example of refactoring of the app’s source code through a reverse engineering process

that relied on a mixed analysis technique.

The proposed methodology, in a first part, involves the code instrumentation using a decom-

piler (e.g. for Android dex2jar mentioned in 2.3.3), extracting byte code of the application as well

as the "libraries and framework addresses" contained in the app. The second phase, is composed

of a dynamic analysis / instrumentation that relies on a trace logging to be able to save events and

interactions in the application.

From the traces, the tool analyses the app identifying similar functions enabling refactor of

source code without much effort from developers. The authors concluded that the tool was suc-

cessfully able to identify similar functions with the correct granularity. [38]

2.5.2 Execution tracing

This reverse engineering technique is mainly used when a mixed approach is being applied, since

it requires a code instrumentation before execution of this code to trace the execution flow of the

application using an helper tool.

The paper in [51] demonstrates the Execution Tracing technique and depends on a tool devel-

oped by the authors, FeatureFinder. The approach presented was composed of three main steps,

briefly explained as follows:

1. use FeatureFinder to instrument the code and get some execution elements, namely the

"call stack at each method call" to identify the methods and their depth , application’s pack-

ages containing activities and fragments traversed, along with user events. Leaning on the

data collected, the tool creates a "trace that captures the execution properties observed"[51]

through a dynamic analysis;



24 Reverse Engineering of Android Applications

2. split the trace through a bottom-up approach, to be able to perform feature extraction, and

joining the events in clusters. When an event is called, all its consequent events are also

joined to the cluster;

3. label clusters of features in order for humans to understand the knowledge that was extracted

(in this case, application’s features). The final output is a group of terms to that cluster as a

label;

The authors also highlighted the importance of getting these elements in particular, defend-

ing that these have key information related to "a user execution" and "the features it exercises"

[51]. The analysis performed was of great success showing that execution tracing is an applicable

technique for reverse engineering of mobile applications, also supported by the fact that Android

applications’ workflows are event-driven.

Still in the context of Execution tracing, the paper presented in [33] relies on a static analysis

of the APK file (2.3.3), followed by a dynamic analysis of the tool in order to trace and create as

output a report with logs regarding application properties for complex and large systems.

In order for the static analysis phase to happen, the user has to provide "two pieces of infor-

mation", these being the byte code that is to be analysed as well as a "PUMAScript", which is a

file containing "all information needed for the dynamic analysis"[33].

Further, the script is interpreted by an "interpreter component", which divides the components

contained in the script into: "monkey-specified directives and app-specified directives". Then an

"instrumenter" performs the static analysis mentioned before, transforming the source code to a

version that will be executed in the next phase [33].

The dynamic analysis step takes as input the already instrumented script and executes the ap-

plication creating logs with events or other key information defined by the user in the PUMAScript

that can be traced with this execution.

This paper concluded that the automation of the reverse engineering process of mobile appli-

cations can significantly improve effort from companies since the tool is able to take "large-scale"

and complex mobile apps, reverse engineer them. From here, it also creates key artifacts for

knowledge extraction through a later static analysis by the developers.

2.6 Summary

To summarize, there are numerous contributions from related work regarding tools to reverse

engineer mobile android applications. These tools use methods to extract the artifacts, from the

simpler AST analysis and testing with logging, all the way to OCR and complex dynamic analysis.

Although the existing related work already extracts numerous artifacts, for instance, event trig-

ger logs, source code’s AST and UI information, which empowers the possibility for companies

to reduce maintenance costs, there is a lack of tools which are able to reverse engineer android



2.6 Summary 25

elements including intent messaging objects. These objects contain information regarding appli-

cation’s communication between components and its extraction may represent a considerable part

of understanding an application.

Furthermore, related work focuses on mostly building UML diagrams. Even though, activities’

analysis is presented in some works, there is still a huge potential for improvement regarding these,

as well as, fragments. This is because since activities and fragments contain life-cycles, a real time

analysis would enable understanding not only how android iterates through their states, but also

the application’s workflow.

Additionally, user interface portability is also exploited by a considerable portion of related

work. These focus mostly on UI portability, reverse engineering apps, for example, from android

to iOS. Reverse engineering UIs can be useful to understand how applications are structured, as

well as, their workflow. However, the process itself is much more complex since it has to reverse

engineer an image instead of code.

The developed research work scan and mitigation was driven by the goal of analysing the

state-of-the-art methodologies regarding reverse engineering of android applications in search of

its main gaps. It also aims at exposing the main techniques and methods which are used in the

related work, as well as, the produced artifacts in each of them.

The following chapter (3) will present the open issues identified in the context of reverse en-

gineering of android applications. Moreover, a discussion regarding all related work is presented

with the goal of identifying the most suitable reverse engineering approach to develop a tool which

can tackle the mentioned open issues. Finally, a solution is proposed along with its main contribu-

tions, expected results and development tool.



26 Reverse Engineering of Android Applications



Chapter 3

Research Challenges

The current chapter is organised as follows: 1) explanation of open issues behind the context

of this dissertation is presented in section 3.1; 2) analysis to already developed related work is

described in section 3.2; 3) a solution is proposed with the goal of tackling the mentioned open

issues by reverse engineering applications in section 3.3.

3.1 Open issues

Open issues were the main motivations behind the development of the solution tool discussed

bellow. These issues focused on three main problems, including:

• Android’s steep learning curve - Mobile applications developed in android require much

effort from new comers due to android’s steep learning curve associated with the wide vari-

ety of components that it has to offer.

Moreover, complexity for the mentioned group of individuals is increased due to the fact

that these components may contain life-cycles (e.g., activities/fragments).

• Companies costs and developers wasted time - In a modern era where mobile applica-

tions are continuously being evolved and maintained, keeping all the artifacts updated and

accordingly to applications’ workflows, represents huge costs for companies (e.g. need to

contract even more developers to be able to maintain the application).

With the goal of reducing the great amount of time "wasted" to understand applications, one

can ensure that the documentation is always totally correct, complete and updated so that

developers fully understands the application and its workflow. However, for this to happen,

developers need to dedicate extra time to create and maintain the documentation, time which

could be used to produce new features or resolve bugs in the applications.

• New developers integrated into existing teams - Also related to automation of artifact ex-

traction, new developers joining a team need to scan through all the documentation related to

an application in order to understand its architecture. This process can be tedious, confusing

and even misleading if the artifacts are not matching the real application’s workflow.

27



28 Research Challenges

- APK File Analysis ASTs Test and Log CG/DG ET OCR
Static [53], [50], [36], [24], [19] [25], [37], [35] X [34], [42] X [43]

Dynamic X X [29], [31], [23] X X X
Mixed X X [38], [52], [18] X [51], [33] X

Table 3.1: Related work content matrix

In order to minimize the effort necessary from new developers to understand applications, one

can extract knowledge from android applications through reverse engineering them, and creating

artifacts with the knowledge acquired with the help of tools. By automating this process, it is

possible to keep artifacts updated all the time since this creation is faster and effortlessly.

Reverse engineering these applications could help automatize artifact extraction which pro-

vides the necessary tools for developers to, not only keep up with application’s components and

workflow, but also to learn how android life-cycle components iterate through their states.

3.2 Discussion

From the perspective presented in Table 3.1, there is a clear cluster of related work which takes

advantage not only of APK files (static analysis technique) to perform their reverse engineering

process, as well as testing and logging for the same process. When it comes to these two tech-

niques, APK file analysis comes as the top most used technique due to the fact that there are

multiple tools that empower the extraction and analysis of Java byte code, which contains funda-

mental aspects that describe the application being analysed.

On the other hand, Testing and Event Logging (2.5.1) enables reverse engineering complex

and/or large applications. Although frequently requiring log specification of event triggers, which

is carried out through a static analysis of the source code, it allows posterior usage of these logs

to perform a dynamical analysis throughout the application execution. Application’s execution

further allows to capture information about these events.

The existing related works that handle Abstract Syntax Trees (2.3.1 all rely on the usage of

static analysis techniques by cause of these trees only requiring specification of the rules that

should be followed to create the hierarchical tree. Thus, only needing static analysis of the source

code to build this tree according to the rules defined by the developer.

Simple to create and work with, ASTs take a great part when it comes to extracting artifacts

from applications, even though there may be some issues raised when apps reveal to be complex

and/or large such as, unreadable artifacts.

Similar to these, Call and Dependency graphs are straightforward ways to extract knowledge

through graph modelling of methods or classes when reverse engineering applications relying on

a static analysis approach, despite the fact that these are hard to be applied to complex systems

and there are numerous element categories (e.g. method conditions) that define the hierarchical

structure of the graph.



3.3 Solution Approach 29

Also related to complex systems, even if the developer is able to create all the rules without

much effort, there is a chance for the graph to be hard to read and not being of much convenience.

Execution tracing technique is similar to 2.5.1 since it depends on tracing the execution flow

of the application through logs. Although Execution tracing also adopts a dynamic approach for

analysing the application, the difference relies on the fact that in this methodology, in particular,

the already developed related work, relies on the usage of a language that defines the structure and

conditions for the output report. It then interprets and transforms the code to a syntax correspond-

ing to the tool component that will do the dynamic analysis and extract the final artifact, which is

a report with logs that should be statically analysed by developers to extract knowledge.

Finally, the last column visualized in the table is technique that relies on the usage of OCRs.

The OCR technique is one of the least adopted techniques because it requires great knowledge

about the subject and can become greatly complex to design and develop.

Although there’s very few works developed from my knowledge, at the moment of writing, this

section is of great importance because it proposes a solution for the issue that complex and large

applications are hard to reverse engineer. In particular, transforming UIs between native source

code of platforms in an automated manner that can decrease the effort needed from developers for

this conversion.

Taking into consideration other research works and the description of Table 3.1, there was a

clear chance for improvement regarding reverse engineering tools for android. Although there

were a vast variety of related work that tackle various problems, interaction between applications

(also mentioned in [18]), as well as, the extraction of fragment’s life-cycles are still to be explored.

To combine the extraction of intents and at the same time to be able to visualise in real time

fragments and activities, a mixed technique had to be used to empower a source code transfor-

mation before a dynamic analysis to these life-cycles. The intent object extraction, for example,

happened during the static analysis stage.

Furthermore, in regard to the methodologies mentioned in the related work and Table 3.1, the

one of biggest interest in the context of the present dissertation was the use of APK file analysis,

which empowers extraction of information related to intents regarding communication with other

applications. These rely on a static analysis technique to reverse engineer applications analysing

the file without running the code.

Another use of static analysis that presented much interest for the present’s dissertation con-

text, was the usage of ASTs which enables the creation of structures containing knowledge related

to apps since these are easy to use and empower code transformation based on the structure using

a tool like Kadabra [11].

3.3 Solution Approach

A solution (SMART) was proposed to shorten the gap identified through the open issues.

Although there was a wide variety of reverse engineering tools for android mobile applications,

which can help mitigate the open issue regarding the huge costs supported by companies, due to



30 Research Challenges

lack of automated artifact extraction, there were still some major gaps regarding some of the main

android components, such as intents, fragments and activities.

The proposed solution approach consisted of a tool that is able to execute the reverse engineer-

ing process extracting knowledge to further build artifacts regarding the intent messaging objects

contained in an application, as well as, dependencies classes may have between each other. This

way, SMART can possibly tackle the companies’ cost open issue by extracting artifacts that were

not extracted in an automated manner in other related work. The present gap is also highlighted in

one of the analysed papers ([18]).

Moreover, SMART tackled the open issue regarding new coming developers’ excessive effort

to learn, by providing a learn-as-you-go dynamic tool. Developers are able to interact with the

application and, in real time, visualise which activity or fragment’s life-cycle method was called.

Finally, by extracting intent’s knowledge and classes’ dependencies, as well as, empowering

life-cycle method’s analysis, new recruited developers can easily be integrated into existing teams,

since these can use the documentation produced by SMART in order to understand application’s

workflow.

3.3.1 Methodology

With the goal of tackling the defined open issues, the tool which was developed had to be able to

not only extract information from source code, but also transform that code in order to empower

the real time analysis, thus needing the usage of a mixed analysis RE technique.

In order to proceed with the analysis and code transformation, a third party tool had to be used

to ease the process of parsing code. With this in mind, to start the SMART’s process, the tool

(Kadabra [11]) had to acquire the app’s source code as an input to further analyse and transform

it.

From the analysis performed by the tool, intent object’s artifacts were to be produced, as well

as, a class dependency graph. Furthermore, as part of the tool, a desktop application was developed

using JFrame [10], so that it is possible to create the real time visual representation of fragments

and activities life-cycles while the user is exploring the application mentioned above.

A key note is the fact that the source code had to be transformed in a way so that it would be

possible to send data about a life-cycle method when it was called to the desktop app.

From the analysis of the produced artifacts, as well as, the real time life cycle method invoca-

tion, it was possible to acquire key information related to how a specific application’s workflow

was designed and understand how android handled its components life-cycles states.

Development wise, agile was the chosen methodology composed by weekly sprints. All re-

quirements were specified, user stories created along with punctuation. From here, USs (User

Stories) ranked with least points were developed first, followed by bigger ones. The source code

related to SMART can be found in [28].



3.3 Solution Approach 31

3.3.2 Validation

In order to validate the tool and its produced artifacts, a case study was developed involving

application from GitHub [8]. The applications were selected through a criteria, which ensured

that apps included the android components analysed by the tool, as well as, these weren’t outdated

or archived.

Furthermore, a question set was defined, and a series of tests were performed. The question

set were created so that each and every of the artifacts that should be generated by SMART were

tested.

Through analysing test results along with answering the pre-defined validations questions,

it was determined whether or not the main expected goals, as well as, features were properly

designed and implemented.

SMART was expected to be successfully validated meaning that it was able to generate the

artifacts (intents’ information file and dependency graph script)for all applications used in the

case study.

Regarding the dynamic analysis, it was expected to visualise all fragments and activities’ life-

cycle methods that are called upon during an interaction with a user. It shall not miss any of

the methods or display an incorrect order of the life-cycle (e.g., onStart() being called before

onCreate()).

The following chapter presents a complete detailed description of the SMART tool along with

its key components and algorithms.



32 Research Challenges



Chapter 4

SMART

SMART (Static dynaMic Analysis andRoid applicaTions) was the tool developed as a solution for

the existing gap in the field of reverse engineering of android applications.

The sections contained in the current chapter are organized as follows: 1) an high level

overview of the full tool in section 4.1; 2) a full explanation of the Kadabra Java Weaver’s [22] is

provided in section 4.2; 3) the algorithms regarding SMART’s logic is shown in section 4.3; 4) the

desktop app’s architecture is presented in section 4.4.

4.1 Overview

SMART can be considered a learn-as-you-go tool since it allows the developer to reverse engineer

applications and interact with these extracting activities’ life cycles, fragments, intents and depen-

dency graphs. Thus, the tool empowers the possibility for developers to acquire key information

of application without needing to spend long periods of time going through documentation.

Given the fact that SMART is composed of a mixed reverse engineering technique it involves

two different analysis, firstly a static analysis responsible for generating artifacts and transforming

the source code of the mobile application. The second stage is the dynamic analysis, where the

transformed code is used along with a JFrame Desktop Application.

An illustration of the entire tool is visible in Figure 4.1 followed by a brief overview of each

component.

The static analysis component of SMART uses the Kadabra Java Weaver [11] as a third party

tool for analysing the source code. Kadabra works as a layer on top of Spoon [46], facilitating

its usage to generate ASTs and analyse/transform code. The inputs required to be provided to the

mentioned tool are the java folder of the application containing all of its code and the r folder,

which is a build folder containing information related to the application’s elements.

After providing the inputs and configuring Kadabra, the Lara script (fully described in section

4.3) should be ran so that it can analyse the code and create the outputs defined in the context of

the tool. These outputs are the intents / intent filters’ information and a script inside a ".txt" file

that enables the visual representation of a dependency graph.

33



34 SMART

Figure 4.1: SMART Tool

Also, while the Lara script is running, it searches for the launcher activity class to insert a script

related to creating the socket that is used in the dynamic analysis, as well as, finding activities and

fragments in order to add the code needed to send data related to their life cycle methods. Since

not all methods are mandatory to be implemented, if any of these are not implemented in an app,

Kadabra adds the code related to them.

As already mentioned, the dynamic analysis part of the tool takes advantage of a JFrame Desk-

top Application. The application’s purpose was to enable the possibility to visualise, in real time,

which activity/fragment’s life cycle methods were being called. It relies on a socket connection to

the mobile app in order to receive the data to each life cycle method call.

Upon receiving data, the app analyses it and displays an image related to the method being

called and the name of the activity or fragment.

A more detailed description concerning the architecture of the Desktop app is presented in 4.4.

For full details related to the required configuration by Kadabra and installation refer to the

manuals in the SMART’s repository [28].

4.2 Kadabra Java Weaver

In order to understand the Kadabra Java Weaver, some concepts are required to be firstly intro-

duced.

LARA [22] is a language that relies on a styles’ combination. The first used style is the

declarative style responsible for querying source code and the other style is the imperative one,

which "applies actions to each code element (e.g., add monitoring code before the code element)"

[21].

Kadabra Java Weaver is one of the compilers that LARA relies on, namely for Java language.

Another example of compiler, applied to C/C++ languages is Clava ([21]).



4.3 Lara File Script 35

The complete Kadabra Java Weaver’s architecture is illustrated in Figure 4.2. Furthermore, it

can be considered as consisting in three main components, namely: Java Frontend, Kadabra Java

Weaver and the LARA Engine.

The Java Frontend component is characterized by the Kadabra AST Dumper and the Kadabra

AST Loader. Its main purpose is to transform the source code provided by the user and abstract

it into the Kadabra’s Abstract Syntax Tree to empower further manipulation based on the referred

source code, as well as, transformation back to its original form by the Kadabra Java Weaver.

The Kadabra AST Dumper is a Java app that utilizes a version of Spoon, which is a library

that parses source files to further "analyze, rewrite, transform and transpile" [46] code.

From parsing performed by Kadabra AST Dumper, a structure containing syntactic and se-

mantic information linked to the code is passed to Kadabra’s AST Loader which is responsible for

creating a Kadabra’s AST instance that matches the source code. Although similar to the AST gen-

erated by Spoon, using a Kadabra’s AST allows generating source code from the abstract syntax

tree and transforming code also based on the AST. This capability is one of the main reasons for

using Kadabra Java Weaver to perform a static analysis since it allows to perform some functions

that would be infeasible using Spoon.

Kadabra Java Weaver Engine is the component in charge of granting information around Java.

The same component is also responsible for retaining an internal representation of the application’s

code, according to LARA strategies. Finally, the Kadabra Java Weaver empowers the connection

between the Java source code folder and LARA code execution.

LARA Framework [22], is centralized on the belief that source code regarding the definition

of functionalities about an app should be described independently tasks such as adaptive behavior.

The LARA Engine is contained in the LARA Framework, thus being responsible for executing the

Lara Script (described in 4.3). The script contains tasks which are enforced to source code while

compiling.

Figure 4.2: Kadabra Java Weaver

4.3 Lara File Script

The Lara File Script refers to a file containing Lara code responsible for performing the entire

static analysis process. It is divided into two main moments, these being: 1) artifacts extraction 2)



36 SMART

source code transformation. The artifacts extraction moment is when not only intent’s information

is extracted, but also the dependency graph script is generated.

In order to acquire the artifacts, classes are analysed one at a time and for each of them, local

variables are to be scanned in search of the ones that are of the types "Intent" and "Intent Filter".

On the condition that an intent exists, the algorithm saves relevant information about it into an

array and proceed to the next variable in that class.

Once all variables of all the classes are analysed, Kadabra generates a folder named "Static

Analysis" and in it places a text file and adds the information acquired from intents and intent

filters. The mentioned information is composed of the following:

• Name of the intent;

• Type of intent (Intent or Intent Filter);

• Line of code, as well as, the code itself;

• File name of the class where the intent is declared;

Regarding the script that concedes the generation of the dependency graph, Kadabra firstly

adds some configurations related to the size and direction of the graph, as well as, the shape

associated with classes. It then scans the classes in order to save their names to an array.

A second scan is performed in search for local variables whose type matches one of the strings

in the array of class names. When a match is accomplished, Kadabra adds a line to the dependency

graph file of the type with the following form:

α -> β [label = "γ"]

Where α is the dependent class, β is the class which has a class dependent on it and γ refers

to the file also the line where the dependency is declared.

Once the script is fully generated, it can be copied to the WebGraphviz tool [17], since it is the

tool that matches the syntax created by the Lara script, in order to visualise the full dependency

graph. For a better understanding related to the logic behind intents and dependency graph’s

extraction refer to Algorithms 1 and 2 correspondingly.



4.3 Lara File Script 37

Algorithm 1 Intent Search and File generation
1: var array = []

2: for classes do
3: for variables of classes do
4: var type = variables.type

5: if type === "Intent" || type === "IntentFilter" then
6: Save to intentVar the intended structure for each intent

7: array.push(intentVar)

8: end if
9: end for

10: end for
11: if !array.length then
12: Write to file informing no existing intents (Io.writeFile())

13: else
14: Write array to intended file

15: end if

Algorithm 2 Dependency Graph Script Generation
1: Add initial configurations to file (size, direction, shape...)

2: var classesArray = []

3: Save classes’ names to array classesArray

4: for classes do
5: for variables from classes do
6: Save variable type to var type

7: if classesArray.includes(type) then
8: Create configuration regarding dependency

9: classes name -> type [label=variables information]

10: Append line to dependencyGraph.txt file

11: end if
12: end for
13: end for

When it comes to the transformation of the source code to enable interaction with the Desktop

app, the Lara script is composed of three different stages namely: socket creation, activities’ life

cycle methods search and fragments’ life cycle methods search.

The socket creation involves scanning through the source code of the app searching for its

launcher activity. In the context of SMART, and throughout the present dissertation, "MainActiv-

ity" was considered to be the name of the launcher activity class. When the mentioned class is

found, and since this class is already an activity, Kadabra adds imports related to the socket library



38 SMART

along with the code snippet that will create the socket using the IP of the local machine where it

is running, as well as, a defined port.

The snippet also contains a PrintWriter that is responsible for sending the life cycle methods

data via socket to the desktop app. From here, it checks for implemented life cycle methods on the

MainActivity to further add the messages to be sent to the Desktop app. As already mentioned,

and for the next discussed code transformations, if a method is not implemented, Kadabra adds

the code referring to that method.

The pseudo-code related to the socket creation is presented in Algorithm 3.

Algorithm 3 Main Activity Analysis

1: for classes do
2: if classes=”MainActivity” then
3: Insert imports to be used in Background class (socket class)

4: Insert code regarding the Background class

5: Instantiate Background class

6: for var li f ecyclemethods in classes do
7: if li f ecycle exists then
8: Add Background.execute(li f ecycle) to existing li f ecycle

9: else
10: Create li f ecycle method + add Background.execute(li f ecycle)

11: end if
12: end for
13: end if
14: end for

Once the socket creation is completed, activities are analysed next by Kadabra. For this, the

script analysis all classes in search for the ones that inherit the android class AppCompatActivity

(base class for activities that allows the implementation of newer features). When a class that

satisfies the mentioned condition is found, Kadabra transforms the code to contain the snippet

related to sending life cycle methods’ data.

When comparing the analysis performed in regard to activities and the fragment analysis which

is to be performed next in the process, these are very similar with the main differences being the

fact that fragments must inherit "Fragment" android class instead of the "AppCompatActivity"

class, and the life cycle method snippets are also different.

Both algorithms behind the implementation of Activities and Fragments’ life cycle methods

are presented in 4 and 5 as pseudo-code respectively.



4.4 Desktop Application 39

Algorithm 4 Remaining Activities’ Analysis

1: for classes do
2: if classes !== "MainActivity" && classes.superClass === "AppCompatActivity" then
3: Instantiate Background class

4: for li f ecyclemethods in classes do
5: if li f ecycle exists then
6: Add Background.execute(li f ecycle) to existing li f ecycle

7: else
8: Create li f ecycle method + add Background.execute(li f ecycle)

9: end if
10: end for
11: end if
12: end for

Algorithm 5 Fragments’ Analysis

1: for classes do
2: if classes.superClass == "Fragment" then
3: Instantiate Background class

4: for li f ecyclemethods in classes do
5: if li f ecycle exists then
6: Add Background.execute(li f ecycle) to existing li f ecycle

7: else
8: Create Fragment’s li f ecycle method + add Background.execute(li f ecycle)

9: end if
10: end for
11: end if
12: end for

At the present moment in the process, the static analysis performed by the Lara Script file

is completed. The artifacts are already generated in the Static Analysis folder, empowering the

ability to extract knowledge from the app by analysing these. Also, the code of the mobile app is

already transformed to be further used along with the desktop application as described in section

4.4. For visualisation example of these artifacts please refer to Figures 5.1 and 5.2.

4.4 Desktop Application

Desktop application refers to the JFrame developed app, designed to receive data from the mobile

application to later handle it and display the graph state according life cycle method. Its main goal

was to enable knowledge extraction in regard to activities and fragments’ life cycle methods.



40 SMART

To achieve the method’s data display in real time, the communication between desktop and

mobile apps was performed relying on a TCP/IP Protocol Socket. Transformed source code by

Kadabra already specifies both the IPv4 related to the user of the tool and the port to which the

desktop app should connect so that the communication acts as intended.

Although a pipe line would work as a solution for SMART since the desktop app does not

send any type of data back to the mobile app, socket communication was selected enabling future

work to implement sending any type of data back to the mobile application without much effort in

code refactoring.

When the connection is established, an exploration should be carried out in order to trigger

life cycle method’s data to be sent from the mobile app. Once a method is triggered, the mobile

app uses the socket class to forward the data.

The desktop app receives data and analysis it, firstly checking if it is either a fragment or

activity to later verify which of the methods was called. Desktop app displays both the state of the

life cycles’ graphics and the name of the element containing the method.

To facilitate understanding of the socket architecture in SMART Figure 4.3 represents the

described communication between applications.

Figure 4.3: Socket connection architecture

Note that although port 5500 is defined as the communication port, the user still needs to verify

its IPv4 and place it in the Lara Script’s socketCreation() function.

4.5 Summary

To conclude, SMART provides a number of different features, from intent’s information and class

dependency graphs, to real-time analysis of android activities and fragments. Companies can ben-

efit from all the extracted knowledge to provide documentation to new developers being introduced

in teams and reduce their effort to understand the software.

Moreover, new android developers can benefit from using SMART by exploiting applications

in a learn-as-you-go approach to understand how android activities and fragments’ life-cycles

operate and iterate through their states.

The following chapter will present the case study process to which the SMART tool was put

through in order to be validated.



Chapter 5

Case Study

The present chapter aims to provide a description of the complete case study to which the SMART

tool had to go through in order to be validated.

The sections are organised as follows: 1) section 5.1 presents a brief overview related to each

phase; 2) section 5.2 describes the selection criteria for apps used in the case study; 3) section 5.3

introduces all questions that had to be validated; 4) section 5.4 has the goal of describing the testing

process of SMART; 5) section 5.5 demonstrates acquired results, conclusions and limitations of

SMART.

5.1 Overview

As already mentioned, SMART tool is applicable to mobile apps namely android applications.

However, since there are numerous existing apps, a selection had to be made according to certain

pre-established constraints. In order to do so, firstly a criteria was defined. It was composed of

constraints for selecting the applications that were to be later used in the case study.

Constraints were not only used to ensure that applications contained the components that were

to be analysed by SMART, so that all components of the tool could be validated, but also to ensure

that applications were from a range of different categories (described in 5.2), so that it could be

proven that SMART can analyse different types of android applications.

Following the criteria definition and using the GitHub platform [8] for the selection of apps,

filtering was carried out, and four applications were selected 5.2 to later validate SMART. Each of

these was adopted as input in Kadabra [11] to not only generate the transformed code that would

be later applied as a way of validating the desktop application, but also to generate the Class

Dependency Graph and the Intent/IntentFilter.txt file.

After all the artifacts were extracted, results were analysed (discussed in 5.5) in order to verify

the consistency, integrity and behaviour in different environments of the tool developed in the con-

text of the present dissertation. Since SMART relies on a mixed analysis technique, the analysis

of results from the case study was composed of two different phases.

41



42 Case Study

For the results of the static analysis part, files related to the dependency graphs were tested

against the third party tool WebGraphwiz [17] (black-box testing) and the intent files were manu-

ally analysed to check for errors or uncaught cases.

Regarding result analysis of the dynamic part of the tool, applications were explored while

being connected to the desktop application via a socket where the main goal was to validate if

all activities and fragments’ life-cycle states were shown correctly, meaning that the code was

transformed correctly.

A detailed description of each of the case study phases of the process is presented in the

following sections.

5.2 Criteria Definition

Initially, as already mentioned, a collection of constraints for filtering applications that would be

used in the case study had to be defined. The definition ensured that the case study involved apps

from different categories and that these contained the components that are to be analysed and

extracted.

The criteria used in the case study was composed of the following constraints:

1. Applications had to be fully developed in Java language since Kadabra Java Weaver would

not capture code developed in Kotlin files;

2. Selected applications had to be from at most 2016;

3. Selected applications had to have commits from at most four years ago;

4. Selected application had to have at least 2 contributors;

5. The pool of applications in the case study had to have activities / fragments / intents / intent

filters;

6. There had to be 1 application for each of the 4 different categories and these included:

• Utility Application - SimpleAlarms

• Health Applications - FitnessMonitor

• Business Applications - AppTycoon

• Educational Applications - Juda

7. Selected applications had to have at least 5 stars;

8. Preferably applications were licensed and had forks;

From the initial 183,672 repositories captured in GitHub [8] related to android mobile appli-

cations that were fully developed in Java, only 6,186 of these were considered once we filtered the



5.3 Case Study Questions 43

ones developed before 2016 and with commits from at least 2017. Moreover, after applying filters

for stars and licensing, only 704 repositories were left.

At this point, the category filter was applied to reduce the pool of apps even further. The

most common category was the gaming category mostly composed by quizzes and the least used

category was the business category.

In order to select apps which had fragments, activities and intents, a manual search had to be

done through the final collection of projects and for each of the categories one was selected. Also,

this manual search of the final pool of apps was justified by the fact that some applications did

not generate the R folder, a folder containing build information which was imperative to transform

code in Kadabra.

5.3 Case Study Questions

The Case Study Questions, as the name suggests, involved the selection and creation of the ques-

tions that had to be answered in order for the SMART tool could be validated. To formulate these

questions, the goal outputs of SMART were analysed. On a high level, these were:

1. The ability to extract specific artifacts from applications through source code analysis (de-

pendency graph code snippet and intents’ information);

2. The ability to transform the source code to be used along with the desktop application;

From analysing the intended outputs of the tool, the set of questions was created. The follow-

ing subsections present the questions set along with a description for each of the questions, where

each of these aims to validate an output of SMART.

5.3.1 Is SMART able to extract the Intents and Intent Filters’ Information?

As previously mentioned, the first step performed in the SMART tool is to analyse an application’s

source code using Kadabra and the Lara script, to produce artifacts through static analysis, the first

one being intents.

In order for SMART to pass the question, it must correctly perform an analysis through the

source code. Furthermore, it must generate a file in the Kadabra folder (named "Static Analysis")

named "Intents&IntentFilters.txt" and containing for all intents in the application: 1) the name of

the intent; 2) its type (Intent or Intent Filter); 3) file name and line referring where it was created;

4) the code of the intent declaration.

5.3.2 Is SMART able to extract the script related to the dependency graph?

Another part of the static analysis involves the generation of a script that, when copied to a third

party tool, creates a visualisation of the dependency graph related to the analysed application.



44 Case Study

This question aims at validating whether the tool is able to successfully generate the depen-

dency graph script. SMART is validated assuming that all dependencies are generated and there

are no existing faults or "extra" dependencies.

5.3.3 Is SMART able to transform the source code correctly?

The main goal of the present question is to validate whether or not SMART is able to successfully

generate all the required transformed code of the application. In particular, the socket that will be

responsible to create the communication between the Android and Desktop applications.

It will also be in charge of validating the transformed code which sends information about

existing activities and fragments’ life cycle methods, as well as, added life cycle methods that

were missing to these.

If the state methods are displayed for all activities / fragments on the desktop application, it

means that the code was correctly transformed to perform the analysis.

5.4 Experiment

After having the four applications to validate SMART along with the "to-be-answered" case study

questions, a black-box testing technique was performed, which is a technique that involves pro-

viding an input to the software and checking its result output.

Testing was done by providing the source code that was to be analysed to Kadabra, as well as

the "r" folder (discussed in 4) along with the packages that the application uses. From here, and

after running Kadabra to generate the intended outputs, the intent files were manually analysed in

order to check for faults or any missing intent declarations.

Moreover, the script contained in the "dependencyGraph.txt" file was placed in the tool We-

bGraphviz [17] to generate the graphs and verify if these were correct. The graph visualisation

allowed understanding how classes were related on the apps through their dependencies.

A manual analysis for comparing dependencies shown in the visual graph and the ones on

the source code was performed by scanning lines presented in the visual version of the graph and

verifying if the dependency created in the source code corresponds to its visual representation.

Furthermore, the transformed code was placed in the application’s source folder and permis-

sions were added to the manifest file. The desktop application was initialized thus enabling appli-

cations’ exploration.

The exploration served as a way of validating if transformed code by the Lara script was done

correctly and if all fragments and activities’ life cycles methods were added.

5.5 Results and Limitations

The results showed that the case study was of much success. This was regarding the static analysis,

SMART was able to produce the correct artifacts for all applications related to intents and class



5.5 Results and Limitations 45

dependency graphs. For illustration purposes, a simple example from the case study applications

of the intent file and dependency graph are shown in Figures 5.1 and 5.2.

For example, the first element in Figure 5.1 shows that an intent was detected in the source

code, named "launchEditAlarmIntent", found at line 62 of the type Intent. It also displays the code

for that intent and the name of the file, in this case "AlarmsAdapter.java". If there were no intents

in the analysed application, a warning message would be displayed instead. The rest of the case

study results for intents can be found in Appendix.

Figure 5.1: Intent File example

As for the visual dependency graph example in Figure 5.2, the interpretation can be the fact

that the class "MainFragment" has a dependency to class "EmptyRecyclerView" on line 48 of the

file "MainFragment.java" and the class "AlarmReceiver" has 2 dependencies to the class "Alarm",

in lines 46 and 106 located on the file "AlarmReceiver.java".

Figure 5.2: Dependency Graph example

Moreover, SMART was able to transform the source code from applications to be used in the

dynamic analysis. In order to validate the results of this phase of the tool, an exploration of the

case study apps was performed and results presented in the desktop app were compared with the



46 Case Study

life cycles in the source code of the application confirming that all fragments and activity life cycle

methods were implemented.

An illustration of the "MainActivity" life cycle state transitions is showed is Figure 5.3, where

it is visible the call to each method, namely onStart(), onResume() and onPause().

Figure 5.3: SMART - Activities’ Life cycle transition example

On the other hand, some limitations emerge with SMART regarding the dynamic analysis

and some of the results presented exemplify these limitations. As mentioned in chapter 4 when

performing the analysis, Kadabra verifies the name of the superClass of each class. This is due to

the fact that in order to transform the source code, it needs to know whether the class is an activity,

fragment, etc.

Taking this fact into consideration, if a fragment does not inherit a class named "Fragment"

(Android fragment class), the script will not be able to find that fragment and add missing life

cycle methods. When Kadabra analyses the source code it needs to add full name of elements,

thus searching for the "android.support.v4.app.Fragment" class.

The same limitation applies to activities although these have to inherit "AppCompatActivity"

(Android activity class). An example of the described limitations for activities and fragments are

found in the business application used in the case study A.2. In the referred app, a base fragment

and activity were developed, thus having some of the remaining fragments/activities to inherit

these base classes.

Due to the inheritance from these fragments/activities, Kadabra was not able to catch them

through a static analysis, to further transform their code and send information to the desktop app.

Still regarding activities, and in particular the launcher activity of the analysed applications,

another limitation of SMART is the fact that the mentioned activity is obliged to be named "Main-

Activity". This is due to the fact that Kadabra searches for a launcher activity where the code re-



5.6 Summary 47

lated to the socket script, which is responsible for connecting to the desktop application, has to be

placed. In this case, Kadabra will search for class "android.support.v7.app.AppCompactActivity".

Regarding launcher activity’s limitation naming by SMART, it is exposed in the educational

app A.3. In the case of the present application, it was not possible to perform the dynamic analysis

component of SMART as a result of the launcher activity being named "HomeActivity".

5.6 Summary

A case study was performed composed of some android applications from different categories

picked from GitHub. Experiments were performed in order to validate whether SMART was able

to reverse engineer applications. Regarding the static analysis stage, check if SMART was able

to extract intent information (code, class, file, etc.), dependency graph scripts. The second stage

of the experiments involved an exploration through the applications’ UIs verifying if SMART

transformed the source code correctly, by looking at the active activities and/or fragments at a

given moment.

The results showed that SMART can in fact reverse engineer applications and product the

mentioned artifacts, although there are some limitations regarding the launcher activity.

The next chapter will present conclusion regarding the tool and the case study, as well as,

contributions from the development of SMART and future work which will focus on tackling the

existing SMART limitations.



48 Case Study



Chapter 6

Conclusions

Nowadays, where complex/ large applications are always being evolved and maintained, compa-

nies have to support enormous costs to be able to maintain apps most of the times due to the lack

of correct and updated artifacts. Additionally, companies continuously add new members to their

teams. Thus, correct artifacts are essential to ease the effort required from these developers in

order to understand applications and their workflows.

The proposed solution which is presented throughout this dissertation is a mixed analysis

reverse engineering, thus containing two different stages. The static analysis part is responsible

for analysing code searching for elements that are to be extracted as artifacts, these being intents

and a class dependency graph. While the static analysis is being performed, the source code is also

transformed to contain some code snippets in the activities and fragments life-cycle methods. The

static analysis component uses a third party tool, Kadabra Java Weaver to perform these actions.

The second component, the dynamic analysis, relies on a desktop application which was de-

veloped as part of the tool. It is responsible for communicating with the mobile application under

analysis through a socket, handling data received from this communication and displaying the

correct life-cycle method which was invoked at a given moment.

Results were analysed confirming that SMART is valid since the outputs were correctly pro-

duced. Some limitations were raised, as for example, the fact that the launcher activity must be

names "MainActivity".

6.1 Contributions

The development of SMART enrich its research area with various innovations. Firstly, the imple-

mented tool distinguishes it from other related work as being an innovative reverse-engineering

tool that relies on a mixed (static and dynamic code analysis) approach to aid on the understanding

of the source code behind an android mobile app, through generating artifacts containing intent

objects.

Another innovation of SMART’s tool is its ability to raise the awareness on which activity or

fragment is being "called upon" at a given moment in time along with its triggered life-cycle state.

49



50 Conclusions

This feature can be used in an educational context for new comers to understand how does android

work.

6.2 Future Work

Regarding future work, SMART has some limitations that can be improved in future iterations.

Starting with code transformation, SMART’s future work should involve the implementation of a

method to scan for the launcher activity dynamically which would improve SMART’s versatility

to handle applications.

In the case of activities and fragments the implementation of a way to find the classes corre-

spondent to these elements dynamically will also be implemented as future work. Searching for all

fragments’ sub classes (e.g., FragmentActivity, ListFragment ,etc.) will enrich SMART’s quality

widening its use cases to applications that may not use directly the class "Fragment".

Moreover, a nice-to-have requirement that may be implemented is a method that sends infor-

mation from the desktop app back to the mobile app informing that the correct life-cycle method

was already displayed.



References

[1] Android operating system. http://en.wikipedia.org/wiki/Android_
(operating_system), Accessed on 2020-10-18.

[2] Apktool: A tool for reverse engineering 3rd party, closed, binary android apps. https:
//ibotpeaches.github.io/Apktool/, Accessed on 2021-01-03.

[3] Appium: Mobile app automation made awesome. http://appium.io/, Accessed on
2021-01-05.

[4] Broadcasts Overview: Android Developers. https://developer.android.com/
guide/components/broadcasts, Accessed on 2020-10-19.

[5] Dex2jar Tool. https://tools.kali.org/reverse-engineering/dex2jar, Ac-
cessed on 2021-02-15.

[6] Fragment lifecycle: Android developers. https://developer.android.com/
guide/fragments/lifecycle, Accessed on 2020-10-19.

[7] Fragments. https://developer.android.com/guide/fragments, Accessed on
2020-10-19.

[8] GitHub Website. https://github.com/, Accessed on 2021-05-30.

[9] How Long Do Tech Pros Stay in Their Jobs? https://insights.dice.com/2016/
07/08/how-long-do-tech-pros-stay-in-their-jobs/, Accessed on 2021-02-
11.

[10] JFrame - Java Platform SE 7. https://docs.oracle.com/javase/7/docs/api/
javax/swing/JFrame.html, Accessed on 2021-04-24.

[11] Kadabra tool. http://specs.fe.up.pt/tools/kadabra/, Accessed on 2021-03-01.

[12] Mobile Operating System Market Share Worldwide. https://gs.statcounter.com/
os-market-share/mobile/worldwide, Accessed on 2020-10-18.

[13] Services Overview | Android Developers. https://developer.android.com/
guide/components/services, Accessed on 2021-04-23.

[14] Static Program Analysis. https://en.wikipedia.org/w/index.php?title=
Static_program_analysis&oldid=1029248787, Accessed on 2021-04-14.

[15] Understand Intents and Intent Filters: Android Developers. https://developer.
android.com/guide/components/intents-filters, Accessed on 2020-10-19.

51

http://en.wikipedia.org/wiki/Android_(operating_system)
http://en.wikipedia.org/wiki/Android_(operating_system)
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
http://appium.io/
https://developer.android.com/guide/components/broadcasts
https://developer.android.com/guide/components/broadcasts
https://tools.kali.org/reverse-engineering/dex2jar
https://developer.android.com/guide/fragments/lifecycle
https://developer.android.com/guide/fragments/lifecycle
https://developer.android.com/guide/fragments
https://github.com/
https://insights.dice.com/2016/07/08/how-long-do-tech-pros-stay-in-their-jobs/
https://insights.dice.com/2016/07/08/how-long-do-tech-pros-stay-in-their-jobs/
https://docs.oracle.com/javase/7/docs/api/javax/swing/JFrame.html
https://docs.oracle.com/javase/7/docs/api/javax/swing/JFrame.html
http://specs.fe.up.pt/tools/kadabra/
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://developer.android.com/guide/components/services
https://developer.android.com/guide/components/services
https://en.wikipedia.org/w/index.php?title=Static_program_analysis&oldid=1029248787
https://en.wikipedia.org/w/index.php?title=Static_program_analysis&oldid=1029248787
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters


52 REFERENCES

[16] Understand the Activity Lifecycle: Android Developers. https://developer.
android.com/guide/components/activities/activity-lifecycle, Ac-
cessed on 2020-10-19.

[17] WebGraphviz Tool. http://www.webgraphviz.com, Accessed on 2021-05-03.

[18] Salihu Anka, Rosziati Ibrahim, and Aida Mustapha. A Hybrid Approach for Reverse Engi-
neering GUI Model from Android Apps for Automated Testing. Journal of Telecommunica-
tion, Electronic and Computer Engineering (JTEC), 9:45–49, 2017.

[19] A. Armando, G. Chiarelli, Gabriele Costa, Gabriele De Maglie, R. Mammoliti, and A. Merlo.
Mobile App Security Analysis with the MAVeriC Static Analysis Module. J. Wirel. Mob.
Networks Ubiquitous Comput. Dependable Appl., 5:103–119, 2014.

[20] Yauhen Leanidavich Arnatovich, Lipo Wang, Ngoc Minh Ngo, and Charlie Soh. A Com-
parison of Android Reverse Engineering Tools via Program Behaviors Validation Based on
Intermediate Languages Transformation. IEEE Access, 6:12382–12394, 2018.

[21] João Bispo and João M.P. Cardoso. Clava: C/C++ source-to-source compilation using
LARA, 2020.

[22] João M.P. Cardoso, Tiago Carvalho, José G.F. Coutinho, Wayne Luk, Ricardo Nobre, Pedro
Diniz, and Zlatko Petrov. LARA: an aspect-oriented programming language for embedded
systems. In Proceedings of the 11th annual international conference on Aspect-oriented
Software Development - AOSD ’12, page 179, Potsdam, Germany, 2012. ACM Press.

[23] Philippe Dugerdil and Roland Sako. Dynamic Analysis Techniques to Reverse Engineer
Mobile Applications. In Pascal Lorenz, Jorge Cardoso, Leszek A. Maciaszek, and Marten
van Sinderen, editors, Software Technologies, pages 250–268, Cham, 2016. Springer Inter-
national Publishing.

[24] Eman Elsayed, Kamal Eldahshan, Enas El-Sharawy, and Naglaa Ghannam. Reverse engi-
neering approach for improving the quality of mobile applications. PeerJ Computer Science,
5:e212, 2019.

[25] Esa Fauzi, Bayu Hendradjaya, and Wikan Danar Sunindyo. Reverse engineering of source
code to sequence diagram using abstract syntax tree. In 2016 International Conference on
Data and Software Engineering (ICoDSE), pages 1–6, 2016.

[26] Jorge Ferreira and Ana C. R. Paiva. Android Testing Crawler. In Mario Piattini, Paulo
Rupino da Cunha, Ignacio García Rodríguez de Guzmán, and Ricardo Pérez-Castillo, edi-
tors, Quality of Information and Communications Technology, pages 313–326. Springer In-
ternational Publishing, 2019.

[27] Nuno Flores, Ana C. R. Paiva, and Nuno Cruz. Teaching Software Engineering Topics
Through Pedagogical Game Design Patterns: An Empirical Study. Information, 11(3), 2020.

[28] Francisco Serrão. Repository: SMART Methodology, 2021. https://github.com/
franciscoserrao/SMART.

[29] Dominik Franke, Corinna Elsemann, Stefan Kowalewski, and Carsten Weise. Reverse En-
gineering of Mobile Application Lifecycles. In 2011 18th Working Conference on Reverse
Engineering, pages 283–292, 2011.

https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/guide/components/activities/activity-lifecycle
http://www.webgraphviz.com
https://github.com/franciscoserrao/SMART
https://github.com/franciscoserrao/SMART


REFERENCES 53

[30] Ivo Gomes, Tiago Gomes, Pedro Morgado, and Rodrigo Moreira. An overview on the Static
Code Analysis approach in Software. pages 1–15, 2009.

[31] Marco A. Gonçalves and Ana C. R. Paiva. Reverse Engineering of Android Applications:
REiMPAcT. In Martin J. Shepperd, Fernando Brito e Abreu, Alberto Rodrigues da Silva,
and Ricardo Pérez-Castillo, editors, Quality of Information and Communications Technol-
ogy - 13th International Conference, QUATIC 2020, Faro, Portugal, September 9-11, 2020,
Proceedings, volume 1266 of Communications in Computer and Information Science, pages
369–382. Springer, 2020.

[32] André M. P. Grilo, Ana C. R. Paiva, and João Pascoal Faria. Reverse engineering of GUI
models for testing. In 5th Iberian Conference on Information Systems and Technologies,
pages 1–6, 2010.

[33] Shuai Hao, Bin Liu, Suman Nath, William G.J. Halfond, and Ramesh Govindan. PUMA:
Programmable UI-Automation for Large-Scale Dynamic Analysis of Mobile Apps. In Pro-
ceedings of the 12th Annual International Conference on Mobile Systems, Applications, and
Services, page 204–217, New York, NY, USA, 2014. Association for Computing Machinery.

[34] Masahiro Hata, Masashi Nishimoto, Keiji Nishiyama, H. Kawabata, and T. Hironaka. OS-
AIFU: A Source Code Factorizer on Android Studio. 2019 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pages 422–425, 2019.

[35] Ruihua Ji, J. Pei, Wenhua Yang, Juan Zhai, Minxue Pan, and Tian Zhang. Extracting Map-
ping Relations for Mobile User Interface Transformation. Proceedings of the 11th Asia-
Pacific Symposium on Internetware, 2019.

[36] Mohsin Junaid, Donggang Liu, and David Kung. Dexteroid: Detecting malicious behaviors
in Android apps using reverse-engineered life cycle models. Computers & Security, 59:92–
117, 2016.

[37] Khalid Lamhaddab and Khalid Elbaamrani. Model Driven Reverse Engineering: Graph
Modeling for mobiles platforms. In 2015 15th International Conference on Intelligent Sys-
tems Design and Applications (ISDA), pages 392–397, 2015.

[38] Yibin Liao, Ruoyan Cai, Guodong Zhu, Yue Yin, and Kang Li. MobileFindr: Function
Similarity Identification for Reversing Mobile Binaries. In Javier Lopez, Jianying Zhou, and
Miguel Soriano, editors, Computer Security, pages 66–83. Springer International Publishing,
2018.

[39] Inês Coimbra Morgado, A. C. R. Paiva, and J. P. Faria. Dynamic Reverse Engineering of
Graphical User Interfaces. International Journal on Advances in Software, 5(4):224–236,
2012.

[40] Inês Coimbra Morgado and Ana C. R. Paiva. Testing Approach for Mobile Applications
through Reverse Engineering of UI Patterns. In 2015 30th IEEE/ACM International Confer-
ence on Automated Software Engineering Workshop (ASEW), pages 42–49, 2015.

[41] Inês Coimbra Morgado, Ana C. R. Paiva, João Pascoal Faria, and Rui Camacho. GUI Reverse
Engineering with Machine Learning. In 2012 First International Workshop on Realizing AI
Synergies in Software Engineering (RAISE), pages 27–31, 2012.



54 REFERENCES

[42] Tuan Anh Nguyen. Tools For Program Understanding And Reverse-engineering Of Mobile
Applications. PhD thesis, University of Texas, Arlington, 2017.

[43] Tuan Anh Nguyen and Christoph Csallner. Reverse Engineering Mobile Application User
Interfaces with REMAUI. In 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 248–259, 2015.

[44] Ana C. R. Paiva, João C. P. Faria, and Pedro M. C. Mendes. Reverse Engineered Formal
Models for GUI Testing. In Stefan Leue and Pedro Merino, editors, Formal Methods for
Industrial Critical Systems, 12th International Workshop, FMICS 2007, Berlin, Germany,
2007, Revised Selected Papers, volume 4916 of Lecture Notes in Computer Science, pages
218–233. Springer, 2007.

[45] Ana C.R. Paiva, Nuno H. Flores, André G. Barbosa, and Tânia P.B. Ribeiro. ilearntest –
framework for educational games. Procedia - Social and Behavioral Sciences, 228:443–
448, 2016. 2nd International Conference on Higher Education Advances,HEAd’16, 2016,
València, Spain.

[46] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel Sein-
turier. Spoon: A Library for Implementing Analyses and Transformations of Java Source
Code. Software: Practice and Experience, 46:1155–1179, 2015.

[47] Clara Sacramento and Ana C. R. Paiva. Web Application Model Generation through Reverse
Engineering and UI Pattern Inferring. In 9th International Conference on the Quality of
Information and Communications Technology, QUATIC 2014, Guimaraes, Portugal, pages
105–115. IEEE Computer Society, 2014.

[48] Carlos Eduardo Silva and José Creissac Campos. Combining Static and Dynamic Analysis
for the Reverse Engineering of Web Applications. In Peter Forbrig, Pason Dewan, Michael
Harrison, Kris Luyten, Carmen Santoro, and Simone Barbosa, editors, Proceedings of the 5th
Symposium on Engineering Interactive Computing Systems - EICS, pages 107–112, London,
United Kingdom, 2013. ACM, ACM.

[49] Eleni Stroulia and Tarja Sys. Dynamic analysis for reverse engineering and program under-
standing. SIGAPP Applied Computing Review, 1, 2002.

[50] May Thu Kyaw, Yan Naung Soe, and Nang Saing Moon Kham. Security Analysis of Android
Application by Using Reverse Engineering. In 11th International Conference on Future
Computer and Communication - WCSE 2019 Spring, 2019.

[51] Qi Xin, Farnaz Behrang, Mattia Fazzini, and Alessandro Orso. Identifying Features of An-
droid Apps from Execution Traces. In 2019 IEEE/ACM 6th International Conference on
Mobile Software Engineering and Systems (MOBILESoft), pages 35–39, 2019.

[52] Wei Yang, Mukul R. Prasad, and Tao Xie. A Grey-Box Approach for Automated GUI-Model
Generation of Mobile Applications. In Vittorio Cortellessa and Dániel Varró, editors, Fun-
damental Approaches to Software Engineering, pages 250–265, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

[53] Kirill Zhigalov and Viacheslav Ivanov. Reverse engineering of mobile applications. IOP
Conference Series: Materials Science and Engineering, 537:052005, 2019.



Appendix A

Appendix

The present chapter contains all the appendix related to the test experiment results with all four

applications.

A.1 Health Application - Case Study

Regarding the static analysis artifacts, Figures A.29, A.30 and A.31 present the extracted In-

tent’s file, the Dependency Graph script and its visualisation correspondingly. Moreover, Figures

[A.32,A.33, A.34, A.35, A.36, A.37, A.38, A.39] aim at displaying some of the invoked life cycle

methods by android throughout the health application’s exploration. The layout differs from oth-

ers in the 5 with the goal of showing another view of SEMANTIC’s desktop app, which performs

an analysis and only display methods related to activities.

A.2 Business Application - Case Study

Related to the static analysis artifacts in the business app, Figure A.12 show the extracted Intent’s

file. Furthermore, Figures in [A.13, A.14] and [A.15, A.16, A.17, A.18] the Dependency Graph

script and its visualisation correspondingly. Images [A.19 ,A.20, A.21, A.22, A.23, A.24, A.25]

represent some of the life cycle methods invoked by the Android System, thus displayed in the

Desktop app throughout the exploration performed.

A.3 Educational Application - Case Study

Launcher Activity in the educational application was not named "MainActivity", therefore it was

not possible to perform the dynamic analysis. However, as for the static analysis artifacts, Fig-

ures A.26, A.27 and A.28 show the extracted Intent’s file, the Dependency Graph script and its

visualisation correspondingly.

55



56 Appendix

A.4 Utility Application - Case Study

Regarding the static analysis artifacts, Figures A.1, A.2 and A.3 show the extracted Intent’s file,

the Dependency Graph script and its visualisation correspondingly. Images [A.4 ,A.5, A.6, A.7,

A.8, A.9, A.10, A.11] represent some of the life cycle methods invoked by the Android System,

thus displayed in the Desktop app throughout the exploration performed in the utility app from the

case study.

Figure A.1: Utility Application’s Intent File

Figure A.2: Utility Application’s Dependency Graph File Script



A.4 Utility Application - Case Study 57

Figure A.3: Utility Application’s Dependency Graph Visualisation

Figure A.4: Utility Application: Desktop App Displayed Method 1



58 Appendix

Figure A.5: Utility Application: Desktop App Displayed Method 2

Figure A.6: Utility Application: Desktop App Displayed Method 3



A.4 Utility Application - Case Study 59

Figure A.7: Utility Application: Desktop App Displayed Method 4

Figure A.8: Utility Application: Desktop App Displayed Method 5



60 Appendix

Figure A.9: Utility Application: Desktop App Displayed Method 6

Figure A.10: Utility Application: Desktop App Displayed Method 7



A.4 Utility Application - Case Study 61

Figure A.11: Utility Application: Desktop App Displayed Method 8

Figure A.12: Business Application’s Intent File

Figure A.13: Business Application’s Dependency Graph File Script 1



62 Appendix

Figure A.14: Business Application’s Dependency Graph File Script 2

Figure A.15: Business Application’s Visual Dependency Graph 1



A.4 Utility Application - Case Study 63

Figure A.16: Business Application’s Visual Dependency Graph 2

Figure A.17: Business Application’s Visual Dependency Graph 3



64 Appendix

Figure A.18: Business Application’s Visual Dependency Graph 4

Figure A.19: Business Application: Desktop App Displayed Method 1



A.4 Utility Application - Case Study 65

Figure A.20: Business Application: Desktop App Displayed Method 2

Figure A.21: Business Application: Desktop App Displayed Method 3



66 Appendix

Figure A.22: Business Application: Desktop App Displayed Method 4

Figure A.23: Business Application: Desktop App Displayed Method 5



A.4 Utility Application - Case Study 67

Figure A.24: Business Application: Desktop App Displayed Method 6

Figure A.25: Business Application: Desktop App Displayed Method 7



68 Appendix

Figure A.26: Educational Application’s Intent File

Figure A.27: Educational Application’s Dependency Graph File Script



A.4 Utility Application - Case Study 69

Figure A.28: Educational Application’s Dependency Graph Visualisation

Figure A.29: Health Application’s Intent File

Figure A.30: Health Application’s Dependency Graph File Script

Figure A.31: Health Application’s Dependency Graph Visualisation



70 Appendix

Figure A.32: Health Application’s : Desktop App Displayed Method 1

Figure A.33: Health Application’s : Desktop App Displayed Method 2



A.4 Utility Application - Case Study 71

Figure A.34: Health Application’s : Desktop App Displayed Method 3

Figure A.35: Health Application’s : Desktop App Displayed Method 4



72 Appendix

Figure A.36: Health Application’s : Desktop App Displayed Method 5

Figure A.37: Health Application’s : Desktop App Displayed Method 6



A.4 Utility Application - Case Study 73

Figure A.38: Health Application’s : Desktop App Displayed Method 7

Figure A.39: Health Application’s : Desktop App Displayed Method 8


	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Extracting knowledge from Android Apps
	1.2 Objectives
	1.3 Document structure

	2 Reverse Engineering of Android Applications
	2.1 Android
	2.1.1 Intents
	2.1.2 Activities
	2.1.3 Fragments

	2.2 Reverse Engineering Techniques
	2.3 Static Analysis Techniques
	2.3.1 Abstract Syntax Trees
	2.3.2 Call and Dependency Graphs
	2.3.3 APK File Analysis
	2.3.4 Optical Character Recognition

	2.4 Dynamic Analysis Techniques
	2.4.1 ReIMPaCT
	2.4.2 GUI Reverse Engineering

	2.5 Mixed Analysis Techniques
	2.5.1 Testing and Event Logging
	2.5.2 Execution tracing

	2.6 Summary

	3 Research Challenges
	3.1 Open issues
	3.2 Discussion
	3.3 Solution Approach
	3.3.1 Methodology
	3.3.2 Validation


	4 SMART
	4.1 Overview
	4.2 Kadabra Java Weaver
	4.3 Lara File Script
	4.4 Desktop Application
	4.5 Summary

	5 Case Study
	5.1 Overview
	5.2 Criteria Definition
	5.3 Case Study Questions
	5.3.1 Is SMART able to extract the Intents and Intent Filters' Information? 
	5.3.2 Is SMART able to extract the script related to the dependency graph? 
	5.3.3 Is SMART able to transform the source code correctly?

	5.4 Experiment
	5.5 Results and Limitations
	5.6 Summary

	6 Conclusions
	6.1 Contributions
	6.2 Future Work

	References
	A Appendix
	A.1 Health Application - Case Study
	A.2 Business Application - Case Study
	A.3 Educational Application - Case Study
	A.4 Utility Application - Case Study


