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Abstract

We start to investigate the Pomeron in bottom-up models of AdS/QCD where the

conformal symmetry is broken by allowing a non-constant dilaton profile in the dual

theory in the bulk. The pomeron is dual to the graviton Regge trajectory and this one

is obtained by generalising in a phenomenological way the graviton equation of motion.

We extend previous work by considering the addition of data from the longitudinal

structure function of the proton FL and a non-minimal couplings between the higher

spin J fields and the spin 1 gauge field dual to the hadronic current. It is shown

that a non-minimal coupling improves slightly the description of the proton structure

functions F2 and FL. Using the optimal values of the free parameters of the model

we estimate the gluon PDFs and compare them with the PDF sets of NNPDF31

and CT18 obtaining a fairly good agreement. We test the robustness of these fits by

considering global fits that also include the photon structure function F γ
2 and the total

cross-section σ (γγ → X). Next, aiming at extending the above model to processes

with non-null Mandelstam t, we consider a global fit for Deeply Virtual Compton

Scattering (DVCS) total and differential cross-sections. A fit with good quality is

found where the parameters of the Pomeron kernel do not vary much. This opens

the possibility of including DVCS data in a global fit with other processes. Finally,

we consider a bottom-up model of AdS/QCD with non-constant dilaton and tachyon

profiles that depend on the numerical values of parameters that enter in the expressions

of their potentials. These parameters are fixed by considering the known values of the

masses of tensor glueballs and mesons with up and down quark content. After the

background is fixed, we propose phenomenological equations of motion for the spin

J fields in the Pomeron and meson trajectories that allow to reproduce total cross-

sections σ (γγ → X), σ (γp→ X) and σ (pp→ X) data as well the meson spectrum

for J = 2, 3, 4.



1
Introduction

In the second half of the twentieth century the knowledge about the fundamental

constituents of matter increased significantly. The construction of particle colliders

with increasingly higher energies allowed us to discover not only new particles, that

we now know are made of quarks and leptons, but also another interactions, that

we now know to be four in total: gravity, electromagnetic, strong and weak nuclear

forces. Around the same time we developed quantum field theories (QFT), that is,

theoretical frameworks where quantum mechanical and special relativity principles

coexist, for the last three interactions. A quantum field theory of gravity still eludes

us today. The vast amount of data collected from the particle colliders was condensed

in a single theoretical frame work known as the Standard Model. The Standard Model

is a Yang-Mills theory with the gauge group SU(3) × SU(2)L × U(1), where the

electromagnetic, strong and weak forces are unified. A central ingredient of it, the

Higgs boson, responsible for the spontaneous symmetry breaking mechanism that gives

origin to particle masses, was elusive for years until the recent observations of ATLAS

and CMS collaborations at CERN verified its existence. This confirms the validity of

a physical theory to an extent never seen before.

The conventional technique to extract predictions from a QFT is to look at its field

content and interaction terms in order to derive the Feynman rules of the theory.

Then we write all the relevant Feynman diagrams up to a given order in the coupling

constant in order to compute correlation functions. This is a perturbative computation

and it will work as long as it can be expressed in terms of a small parameter. However,

in some cases, the kinematical region of interest does not provide such conditions and

techniques that go beyond the perturbative procedure are needed. One example of

such technique is Regge theory.
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1- Introduction

In the 1960’s there was an effort to explain scattering experiments between strongly

interacting particles, although a quantum field theory of these interactions was not

available at the time. The solution in those days was to guess the analytic structure

of the S-matrix as a function of the Lorentz invariants of the specific process. As an

example, for ab → cd scattering process the Lorentz invariants are the Mandelstam

variables s, t and u. The presence of singularities in the corresponding scattering

amplitude is of particular importance since poles in these variables mean bound states

or resonances; and threshold energies where new virtual particles could be exchanged

correspond to branch points. By looking at the spectrum of the existing particles one

can extract information about scattering amplitudes. After decomposing the scattering

amplitude in its angular momentum components and doing the analytic continuation

to the complex angular momentum plane, Tullio Regge found that poles in this plane

can be equivalent to the interchange of an infinite set of particles with the same

quantum numbers except for the angular momentum. This set of particles is known as

a Regge trajectory. This approach had immediate success by explaining the power law

dependence of total cross-sections with s observed in higher energy experiments at the

Stanford Linear Accelerator (SLAC) in the 60’s. In particular, by using the intercept

of the straight line obtained by fitting a plot of J vs m2 of the meson Regge trajectory,

one could obtain the same exponent observed in the scattering experiments. At SLAC

it was observed that the total cross-sections decayed with s, but in subsequent more

powerful colliders at higher center of mass energies a raise in the total cross-sections

was observed. It became clear that in the context of Regge theory one needed an

additional trajectory with the quantum numbers of the vacuum and with an intercept

around 1.08. This additional trajectory became known as the Pomeron and till today

the particles it is made of have not been detected experimentally. However, since then

the Pomeron has been extremely successful in explaining most of the total cross-section

data at high energies [2].

After it was shown that Quantum Chromodynamics (QCD) exhibited asymptotic free-

dom, researchers started to devote more attention to it. The predictions of QCD were

confirmed with great experimental precision till today, establishing it as the quantum

field theory of strong interactions. QCD and Regge theory must be compatible,

although it is still not clear how to extract in the former the analytic structure of

the complex angular momentum. The most serious attempt in this direction is what

we call the BFKL pomeron [3–5], where the pomeron appears after resummation of an

infinite set of gluon ladder diagrams. One of the deficiencies of this approach is that

it leads to a branch cut in the complex angular momentum plane instead of poles.

This can be fixed by introducing a momentum cut-off that will yield a discrete set

3



1- Introduction

of poles whose predictions are in good agreement with HERA data for x < 0.01 and

Q2 ≤ 100 GeV2 [6]. Another problem is that next-to-leading order (NLO) contribution

to the BFKL kernel is greater then the leading order (LO) one, which demands the

difficult task of computing the next-to-next-to-leading (NNLO) order contribution.

The last problem is that the Pomeron can be an intrinsically non-perturbative object

and then one needs to take into account the Feynman diagrams of all perturbation

orders. If this is the case non-perturbative tools will be needed to study the Pomeron

in the context of QCD.

The AdS/CFT correspondence [7], or gauge / gravity duality, establishes a dictionary

between a quantum field theory in the strong coupling regime with a classical theory of

gravity, and has been used to study QCD in the strongly coupled limit. In particular,

in [8] it was conjectured that the Pomeron is dual the graviton Regge trajectory of

the dual string theory. This fact has been widely explored in the description of QCD

processes where Pomeron exchange dominates [1, 9–49]. These include deep inelas-

tic scattering (DIS) , deeply virtual Compton scattering, vector meson production,

double diffractive Higgs production, central production of mesons and other inclusive

processes. It is now clear that holographic QCD is a valuable tool to model the

physics of gluon rich medium, where standard perturbative techniques like the BFKL

Pomeron [3–5] breakdown.

Besides total cross-sections, one can also apply Regge theory to DIS. In this case

we can compute the total cross-section for the scattering of an off-shell photon with a

proton by taking the imaginary part of the amplitude for γ∗p→ γ∗p at zero momentum

transfer. The total cross-section for single Reggeon exchange is given by σ ∼ sj(0)−1. It

was found that the intercept j (0) is not universal, but that it had a dependency with

Q2, the virtuality of the off-shell photon. In HERA, it was observed that the intercept

rises from 1.1, close to the Pomeron intercept observed in other total cross-section

measurements, to 1.4. This suggests the existence of another trajectory with larger

intercept that dominates for hard probes (large Q2). Because of this, one usually talks

about the soft and hard pomerons, although their nature and relation is an unsolved

problem in QCD. In the BKFL approach the growth of the intercept with Q2 can be

explained after the introduction of a cut-off provided we consider only Q2 > 4 GeV2 [6].

On the other hand, dual models starting from a conformal limit have given better fits to

data after introducing a hard-wall cut in AdS space in order to simulate confinement.

This is done at no expense of a stricter kinematical region [26]. Also, in [1] it was shown

that the soft and hard pomerons are the leading Regge poles of a kernel associated

with the graviton Regge trajectory in a 5-d model inspired by string theory. This

4



1- Introduction

favours strongly the study of pomeron physics using the gauge/gravity duality.

The purpose of this thesis is to extend the bottom-up approach to holographic QCD

of [1,32]. The ultimate goal would be to build the Regge theory of Holographic QCD

that could explain all the processes dominated by Pomeron exchange. This thesis is

organized as follows. In the remaining of this chapter we start by reviewing the basics

of the S-matrix and Regge theory. Then we review QCD, the BFKL approach and its

relation to the pomeron. Then, we introduce the AdS/CFT duality and the BPST

pomeron, as well an overview of the holographic QCD models used in this work. Then

the Witten diagram expansion is reviewed.

Chapter 2, which is based on [33], explores the possibility of having different coupling

tensor structures between the spin 1 gauge field and the higher spin fields. This

work extends the results of [1] by studying the effect of a non-minimal coupling on the

description of the proton structure functions F2 and FL. Chapter 3 studies the validity

of the holographic model presented of chapter 2 in the context of γ∗γ observables

and also includes the total-cross section σ(γp → X) in γ∗p processes. We find that

it can describe in a satisfactory way a large number of experimental points from

different observables. We also explore the qualitative behaviour of the gluon parton

distribution functions extracted from the holographic predictions of this model for the

proton structure functions F2 and FL. The results of this chapter can be found in

the article [34]. Chapter 4 is a first attempt to explore this model in processes with

Mandelstam t < 0. We propose an ansatz for the gravitational couplings as a function

of t based on the results of the O(N) vector model in order to fit both cross-section

and differential cross-section data of DVCS. Although we can successfully describe this

data, to date, we have not found a way of making the model consistent with previous

results. Possible solutions to this issue are also briefly discussed in this chapter. In

chapter 5 we initiate the study of holographic Regge theory in a background where the

backreaction of quarks to the gluon dynamics is included. We will fix the parameters of

the background by performing a fit to the meson spectrum in QCD. We then propose

the dynamics of the higher spin J fields in the graviton Regge trajectory, dual to

the Pomeron trajectory, by using effective field theory inspired by Regge theory of a

5D string theory. This approach will also be applied to the meson trajectory. The

dynamics of these fields depends on two free parameters which will be fixed by the soft

pomeron intercept and by the masses of the mesons with spins J = 2, 3, and4. This

fixes the intercepts of all Regge trajectories relevant for hadronic scattering. We then

check if the resulting holographic intercept is able to describe the experimental data

of the total cross-sections of γγ, γp and pp scattering. Finally we conclude in chapter

5
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6, making a short resume of the results obtained and discussing about possible future

new lines of research.

1.1 Quantum Chromodynamics and the Pomeron

1.1.1 S-matrix theory

In the 1960’s the physics community has not come up with a QFT of strong inter-

actions. To work around this the S-matrix theory was developed. The idea was to

compute scattering amplitudes by assuming plausible postulates. Suppose we have an

initial state |a〉in with n particles with momentum p1, · · · , pn that scatter into a final

state |b〉out with m particles with momentum q1, · · · , qm. The S-matrix element Sab

is the overlap between this two states, i.e. Sab = out〈b|a〉in. The S-matrix has the

following properties:

• it is Lorentz invariant;

• it is unitary ;

• it is an analytic function of Lorentz invariants, with only those singularities

allowed by unitarity.

An example of the first postulate is given by the scattering process 1 + 2 → 3 + 4

(particle i with 4-momentum pi), where we can form the Lorentz invariants s, t and u

defined by

s = (p1 + p2)2 , (1.1)

t = (p1 − p3)2 , (1.2)

u = (p1 − p4)2 , (1.3)

s+ t+ u =
∑
i

m2
i . (1.4)

For this particular process the first postulate says that the scattering amplitude must

be a function of only s and t (or any other pair of s, t and u) i.e. A = A(s, t).

The second postulate is equivalent to conservation of probability. This means that

given an in state the sum of the probabilities of ending in some out state is one. Among

the possible out states one that deserves special attention is the forward scattering case,

6



1- Introduction

i.e. no scattering occurs. The S-matrix elements can then be written in terms of the

scattering amplitude as

Sab = δab + i(2π)4δ4

(∑
a

pa −
∑
b

qb

)
Aab (1.5)

The forward scattering amplitude is central to the optical theorem that we now review.

Due to the unitarity of the S matrix the following relationship holds

δab = 〈a|SS†|b〉 =
∑
c

〈a|S|c〉〈c|S†|b〉 , (1.6)

which after using equation (1.5) implies

(−i)(A∗ba −Aab) = (2π)4
∑
c

δ4(P c − P a)AacA∗bc . (1.7)

For forward scattering the initial and final states are exactly the same and hence

2 ImAaa = (2π)4
∑
c

δ4(P c − P a)|Aac|2 . (1.8)

The sum over c is a sum over final states with different particle number, as well as

different momentum vectors for each particle in the final state. The implication of

equation (1.8) becomes clear when one examines the expression for the cross-section

for the process p1 + p2 → p′1 + ...+ p′n

σ12→n =
1

4|~p1|
√
s

∫ ( n∏
i=1

d3p′i
2Ei(2π)3

)
(2π)4δ4

(
n∑
n=1

p′n − p1 − p2

)
|A2n|2 , (1.9)

with A2n being the amplitude that two particles with 4-momentum p1 and p2 produce

n particles with momentum p′1, p′2, ... and p′n. If we now sum over all the possible n-

particle states and use equation (1.8) the total cross-section for two highly relativistic

particles is

σTot12 =
1

s
ImAaa(s, t = 0) (1.10)

where
√
s is the center-of-mass energy and Aaa(s, t = 0) is the forward scattering

amplitude. This constitutes the optical theorem and it will be used throughout this

thesis to compute the proton structure functions F2 and FL, the photon structure

function F γ
2 , as well the total cross-sections for γγ, γp and pp scattering.

Finally let us discuss the third postulate, which establishes the connection between

the spectrum of a theory and scattering amplitudes in the Regge limit. Analyticity

7



1- Introduction

is a manifestation of the causality principle and each kind of singularity that appears

in the scattering amplitude has a physical interpretation. For the case of two par-

ticle scattering, a bound state between them corresponds to a pole while a physical

thresholds give rise to cuts in the complex plane of the scattering amplitude. As an

example, for a bound state of mass mB =
√
sB there is a pole in the complex s-plane.

On the other hand, the 2→ n process occurs only if the center of mass energy
√
s is

bigger than the sum of the masses of the n particles in the final state. This means

that the total cross-section has a non-analytic behaviour and the optical theorem links

this non-analyticity to the imaginary part of the scattering amplitude. The imaginary

part has to be discontinuous in the real axis, because, if not, according to [50] the

scattering amplitude is real between sB and sTh = (m1 + · · ·mn)2 and since it is an

analytic function, by the Schwarz reflection principle it must satisfy

A(s∗, 0) = (A(s, 0))∗ , (1.11)

i.e. the imaginary part is null on the real axis. Then the scattering amplitude must

have a branch cut on the real axis. This branch cut connects the smaller threshold

value to infinity and it contains all the other possible threshold values.

Before we review scattering amplitudes in the Regge limit let us comment on the im-

plications of crossing symmetry to the analytic structure of the scattering amplitudes.

According to crossing symmetry, provided we reverse the signs of some of the momenta

of the particles, the s-channel Feynman diagram of the process 12→ 34 also describes

the t-channel Feynman diagram of the process 13̄ → 2̄4 and the u-channel Feynman

diagram of the process 14̄ → 32̄. Here bar denotes the corresponding antiparticle.

This implies that the analytic structures of A12→34 (s, t, u) and A13̄→2̄4 (t, s, u) are the

same. In particular poles and branch points in the s plane of the first amplitude are

mapped respectively to poles and branch points in the t plane of second amplitude.

1.1.2 Scattering amplitude in the Regge limit

Now that the S-matrix formalism is introduced we can make some predictions. Con-

sider the process a + b → c + d. Its scattering amplitude in the s-channel can be

decomposed into its constituent angular momentum components as [51]

Aab→cd(s, t) =
+∞∑
J=0

(2J + 1)aJ(t)PJ(1 + 2s/t) , (1.12)

where PJ(x) is a Legendre polynomial of degree J . This sum can be written as a

contour integral in the complex angular momentum plane where the contour is the

8



1- Introduction

Figure 1.1: Illustration of a Sommerfeld-Watson transform. The original contour C

is the red one while the deformed contour is the blue. The points over the real axis

represent the integer values of J in the original sum. The point j(t) is one pole picked

up in the process of deforming C into C’. In general, these poles in general are not

integers and depend on the Mandelstam variable t.

one denominated by C in figure 1.1. This transformation is known as the Sommerfeld-

Watson transform

A(s, t) =
1

2i

∮
C

dJ
2J + 1

sin πJ

∑
η=±1

η + exp−iπJ

2
a(η)(J, t)P (J, 1 + 2s/t) , (1.13)

where P (J, x) is now the analytic continuation of the Legendre polynomials into the

complex plane J . The sum over η inside the integral ensures that this transformation

is unique [51].

We are interested in the form of the scattering amplitude in the Regge limit, i.e. s� t.

We then deform the contour C into the contour C’ in figure 1.1 defined by the set of

complex angular momentum points with the real component equal to −1/2. In order

to do so we must not forget to encircle all the singularities of a(η)(J, t). Considering

that the only possible singularities are simple poles, the Residue Theorem implies that

the scattering amplitude can be written as

A(s, t) =
1

2i

∫ − 1
2

+i∞

− 1
2
−i∞

dJ

[
2J + 1

sin πJ

∑
η=±1

η + exp−iπJ

2
a(η)(J, t)P (J, 1 + 2s/t)

]
+

+
∑
η=±1

∑
nη

η + exp−iπjnη (t)

2

β̃ηnη(t)

sin πjnη(t)
P (jnη(t), 1 + 2s/t) , (1.14)

9



1- Introduction

where jnη(t), known as Regge poles, are the simple poles of a(η)(l, t) and their residue

values are absorbed in β̃nη(t).

In the Regge limit Legendre polynomials are dominated by the term

PJ(1 + 2s/t)
s�|t|−→ Γ(2J + 1)

Γ2(J + 1)

( s
2t

)J
, (1.15)

which implies that the contour integral in equation (1.14) vanishes in the limit s →
+∞. If we use the Γ-function identities

zΓ(z) = Γ(z + 1), Γ(2z) =
Γ(a)Γ(a+ 1

2)

21−2z
√
π

,
π

sin πz
= Γ(1− z)Γ(z) , (1.16)

the expression for the scattering amplitude is

A(s, t) = A+(s, t) +A−(s, t) , (1.17)

where we have defined two scattering amplitudes, one for positive signature A+ and

another for negative signature A−:

A±(s, t) =
∑
n±

β±n±(t)
(
±1 + exp−iπjn± (t)

)
Γ(−jn±(t))(s/s0)jn± (t) . (1.18)

The Γ-function has simple poles at {0,−1,−2,−3, · · · } and hence the Γ(−jn±) factor

in the above scattering amplitudes has poles for values of t such that jn± is a positive

integer. On the other hand the signature factor 1+e−iπjn+ (t) is null when jn+ is an odd

integer and the signature factor −1 + e−iπjn− (t) vanishes when jn− is an even integer.

This means that A+ has poles for values of t such that jn+(t) is even while A− has

poles for values of t such that jn−(t) is odd. In [52] it is shown that the amplitudes

around these poles have a Breit-Wigner with decay width Γ ∝ Im jn± and hence the

poles in the amplitudes A± correspond to the exchange of bound states or resonances

in the t-channel with masses m±R given by

Re jn+(m+ 2
R ) = σ+ ∈ {0, 2, 4, · · · } ,

Re jn−(m− 2
R ) = σ− ∈ {1, 3, 5, · · · } .

Another relevant remark is that for the physical t < 0 values in the s-channel the

positions jn±(t) of the poles and their residues β±n±(t) are real, so the phases of the

scattering amplitudes A± comes from the factors ±1 + e−iπjn± (t) [52].

Of all the Regge poles jnη that contribute to the scattering amplitude the one that

dominates in the limit s→∞ is the one with largest real part:

A(s, t) ∝ sj(t) (1.19)

10
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Equation (1.10) then states that the total cross-section for the scattering of two

particles a and b is given by

σTot. ∝ sj(0)−1 , (1.20)

where the numerical value of j(0) is commonly known as the intercept. To understand

the implication of this result, let us assume that there is only one resonance with spin

J being exchanged. Then only one partial wave in equation (1.12) contributes

A(s, t) = (2J + 1)aJ (t)PJ (1 + 2s/t) ∼ f(t)sJ . (1.21)

Using the optical theorem, we conclude that σTot. ∼ sJ−1 at large s. Thus, for a

scalar particle the total cross-section would decrease as s−1. For the exchange of a

spin-1 meson, such as the ρ meson, the total cross-section is independent of s while

with the exchange of a spin-2 meson, like the f2 tensor meson, the total cross-section

should increase linearly. However, what we observe in figure 1.2 is that for large

enough s the total cross-section starts to decrease as s−0.5 and then it increases much

more slowly as if it were due to f2 exchange. The only way to reconcile the particle

exchange picture is to assume that all the mesons are members of a family of particles

of increasing spin and mass and that all the members of this family are exchanged.

Then their joint contributions reproduce the observed energy dependence of the total

cross-section. Today we call these families of particles Regge trajectories, and what

equation (1.20) means is that the joint contribution of exchange of all the particles

of a Regge trajectory is equivalent to the exchange of a single pseudo-particle called

Reggeon with spin j(0).

1.1.3 The (soft) pomeron

In this subsection we will use the formalism of Regge trajectories introduced above

to make predictions about the s dependence of total cross-sections between hadronic

particles. Later we will introduce the (soft) pomeron as a solution to explain the large

s dependence of the total cross-sections in figure 1.2.

If we use well-established meson states to make a plot of their spin j against the

square of their mass we obtain figure 1.3. This kind of plot is known as a Chew-

Frautschi plot. In it we have displayed four Regge trajectories: {ρ(770), ρ3(1690), · · · },
{ω(780), ω3(1670), · · · }, {f2(1270), f4(2050), · · · } and {a2(1320), a4(2040), · · · }. The

first pair has odd signature while the second has even. Each pair has also a isospin

zero and isospin one trajectories. Striking features are that all these four trajectories

11
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a) b)

Figure 1.2: a) Data for p − p and p − p̄ total cross-sections and b) for π+ − p and

π− − p scattering. Figure extracted from [51].

Figure 1.3: Spins of low lying mesons against square mass. This linear Regge trajectory

is known as the ρ-trajectory. Figure extracted from [51].

are linear to a very good approximation and that they are nearly degenerate. The

straight line j(t) that fits best the points of figure 1.3 is

j(t) = j0 + α′t, j0 = 0.55, α′ = 0.86 . (1.22)

According to the discussion of the last section, in any process where the meson

trajectories are exchanged we expect the total cross-section to decay as sj0−1 = s−0.45.
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As an example, in the process

π− + p→ π0 + n , (1.23)

the mesons of isospin 1 with even parity are exchanged and one can see in figure 1.2 that

for
√
s < 10 GeV the total cross-section diminishes as predicted by Regge theory. We

can also see in the same figure that this behaviour is quite universal for other scattering

processes involving hadrons. The examination of total cross-section data only probes

the assumption of the linearity of Regge trajectories at t = 0. If we extrapolate

equation (1.22) to the t < 0 region, Regge theory predicts that the differential cross-

section for a linear trajectory is given by

dσ

dt
∝ s(2j0+2α′t−2) . (1.24)

By analysing pion charge exchange scattering data, Barnes et. al [53] have shown that

a linear approximation of the meson Regge trajectories gives a very good fit to data

over a wide range of pion energies, as show in figure 1.4.

Figure 1.4: j(t) obtained from π−p → π0n data for pion energies between 20.8 and

199.3 GeV. Figure extracted from [53].

As more energetic particle colliders were built, it was realised that at some point

the total cross-section started to increase slowly with s as observed in figure 1.2.

In the context of Regge theory this can only be explained if another trajectory is

13



1- Introduction

a) b)

Figure 1.5: a) Data for pn and p̄n total cross-sections and b) for K+ − p and K− − p
scattering. Figure extracted from [52].

Figure 1.6: Data for γp total cross-sections. Figure extracted from [52].

being exchanged and this trajectory has to have an intercept slightly greater than

one. Assuming that such trajectory exists, the particles belonging to it must have the

quantum numbers of the vacuum (i.e. isospin zero and even under the operation of

charge conjugation) since, has shown by Foldy and Peirls, exchange of such particles

guarantees that the total cross-section is a non-decreasing function. This additional

trajectory is known today as the (soft) Pomeron in honour of Isaak Pomeranchuk

who proposed its existence. The pomeron intercept and Regge slope are determined

experimentally to be, respectively, 1.08 and 0.25 GeV−2.

In figures 1.2, 1.5 and 1.6 we can see that the formula σ = a s−0.45 + b s0.08, motivated

by Regge theory with Pomeron and meson exchange, can describe successfully a wide

range of scattering processes between strongly interacting particles. The parameters a
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and b are determined by fits to data and their values are related to how the scattering

particles couple to the Pomeron and meson trajectories. Since the particles in the

Pomeron trajectory carry the quantum numbers of the vacuum their coupling with

particles and corresponding anti-particles should be the same. Hence, cross sections

for processes where we exchange the particle for its anti-particle should have the same

value of b and their difference should vanish for s→∞. This seems to be the case for

all the cross-section data in figures 1.2 and 1.5.

Despite the success of the idea of pomeron exchange, until today nobody has found

experimentally particles that are members of this trajectory. This is due to the

fact that particles with the quantum numbers of the vacuum are difficult to detect

experimentally. Theoretically we expect that this trajectory must be composed of

glueballs which should emerge in QCD as bound states of gluons. These particles

have not been directly observed but there are some experimental candidates. For the

pomeron trajectory we expect a spin two particle with mass around 1.9 GeV. In 1994

the WA91 collaboration at CERN announced evidence for a possible glueball with

this mass [54] and vector, pseudo-vector or tensor glueball candidates with a mass of

about 3.02 GeV/c have been found by the BaBar experiment [55]. A discussion about

scalar glueball candidates can be found in [56]. Another problem, is the observation in

DIS data (which we will discuss in more detail in the next section), that the structure

function F2 (x,Q2), related to the total cross-section of γ∗p scattering, rises faster

than x−0.08 as x → 0 for fixed higher values of the photon virtuality Q2. Here the

Mandelstam variable s is related to the Bjorken x and Q2 through

s =
Q2(1− x)

x
. (1.25)

For large Q2 fixed it is found that F2 rises as x−0.4 when x → 0. We will show in

the next section how this is expected in the context of the BFKL pomeron resulting

from the leading contributions from perturbative QCD in the low x regime. How this

BFKL pomeron is related to the pomeron discussed previously continues to be an open

question today.

1.1.4 Quantum Chromodynamics and the Pomeron

In the 1970’s a quantum field theory of strong interactions based on local gauge

symmetry was formulated [57–59]. Each strongly interacting particle (e.g. proton)

is made of six flavours of quarks: up, down, charm, strange, top and bottom. Each

of these quarks can be found in three different colour states that are called Red, Blue

15
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and Green. The local gauge symmetry of this theory is SU(3) and the elements of

this group act only on the colour degrees of freedom. Quarks interact with each other

by exchanging their colour states. This theory of strong interactions is known as

Quantum Chromodynamics (QCD).

The lagrangian of this theory is

LQCD = −1

4
F a
µνF

µνa +
∑
q

q̄(iγµDµ −mq)q . (1.26)

Here q are the six different quark fields with mass mq, γ
µ are the Dirac gamma

matrices, F a
µν the gluon field strength tensor and Dµ is the covariant derivative of the

quarks. The gluon strength tensor can be written in terms of the gluon fields Aaµ, with

a = 1, · · · , 8, as

F a
µν = ∂µA

a
ν − ∂νAaµ − gsfabcAbµAcν , (1.27)

where gs is the strong coupling constant and fabc the structure constants of the Lie

algebra of the Lie group SU(3). The covariant derivative action on the quark fields is

Dµq = ∂µq + igsA
a
µta , (1.28)

where ta are the Gell-Mann matrices and correspond to the fundamental representation

of the infinitesimal generators of SU(3).

From the lagrangian 1.26 we can extract the Feynman Rules for QCD using the path

integral formalism. The propagator of the quarks is the usual Dirac propagator since

each quark has spin 1/2:

δij

/p−m+ iε
. (1.29)

To obtain the gluon propagator one needs to define a gauge because without it one can

not invert the equation of motion of the free gluon in order to compute the propagator

[60]. In order to do that a gauge fixing term

Lfix = − 1

2λ
(∂µAaµ)2 (1.30)

is added to the QCD langrangian. After we invert the modified equation of motion

the gluon propagator in momentum space is

−δab

[
gµν

p2 + iε
− (1− λ)

pµpν
(p2 + iε)2

]
. (1.31)
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If we were working on an Abelian gauge theory the problem of the gluon propagator

would be finished. The field χa = ∂ · Aa is a non-physical degree of freedom since it

represents the longitudinal component of the gluon field and gluons are massless. Its

QCD equation of motion is

∂2χa + gfabcAbµ∂µχ
c = 0 , (1.32)

and it implies mixing between the non-physical with the physical (transverse) degrees

of freedom and hence they contribute to gluon loops. To avoid that, new non-physical

degrees of freedom ηa called ghosts are introduced in order to cancel the contributions

of χa. These new fields, known as Fadeev-Popov ghosts, are complex scalar fields

which obey Fermi-Dirac statistics. Their dynamics is described by the lagrangian

Lghosts = ∂µη
a†(∂µηa + gfabcAb,µηc) . (1.33)

The interactions between quarks and gluons are determined by the three kinds of QCD

vertices : a vertex with two quarks and a gluon, three-gluon vertices and four-gluon

vertices. The first vertex can be obtained from the covariant term, while the last two

come from the term of the gluon strength tensor. The mathematical expression for

each vertex can be obtained by the use of functional derivatives. Their expressions

can be found in many QCD textbooks such as [60,61].

With the Feynman rules of QCD we can now compute a physical observable R in a

perturbation series by summing all the possible diagrams contributing to it

R =
∑
n

cnα
n
S , αS = g2

s/4π . (1.34)

In this perturbation series expansion there are Feynman diagrams with loops that

lead to divergent integrals present in the definition of cn in equation (1.34). This

unphysical behaviour can be solved by absorbing the divergences in redefinitions in

the lagrangian parameters such as αS. By doing this, besides the energy scale Q of

the process involved, one introduces a new scale, the renormalization scale µ. To see

how this works, consider the case of vacuum polarization (e−e+ pairs) in Quantum

Electrodynamics. The relevant Feynman diagrams are shown in figure 1.7. The

diagram with one loop gives rise to a divergent integral. To avoid it, we introduce

a cut-off Λ that when we take to infinity we recover the original integral. That isolates

the divergent behaviour of the integral and allows us to write an effective fine structure

constant as

α(Q2) = α0

[
1 +

α0

3π
log

Q2

Λ2
+

(
α0

3π
log

Q2

Λ2

)2

+ ...

]
=

α0

1− α0

3π
log Q2

Λ2

, (1.35)
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a) b)

Figure 1.7: Feynman diagrams for vacuum polarization in QED.

with α0 = e2
0/4π where e0 is the so called electron bare electric charge. We now

introduce a renormalization scale µ such that

α(µ2) =
α0

1− α0

3π
log µ2

Λ2

(1.36)

whose experimental value is known. This value can be fixed as Λ goes to infinity by

tuning α0. Moreover we can eliminate α0 and Λ from equation 1.35 and we get

α(Q2) =
α(µ2)

1− α(µ2)
3π

log Q2

µ2

. (1.37)

In QCD at NLO αS has a similar expression:

αS(Q2) =
αS(µ2)

1 +
33−2nf

12π
αS(µ2) log(Q2/µ2)

(1.38)

where nf is the number of active quark flavours (number of quarks with mq < Q).

Experimentally we know that there are only 6 quarks. Then, contrary to QED,

one expects that αS decreases as Q increases implying that at high energies quarks

interact weakly. This phenomena is known as asymptotically freedom and explains

why although the quarks are confined inside the proton they can be treated as free

particles in DIS processes between an electron and a proton.

Deep Inelastic Scattering, QCD and the Pomeron

We will know discuss one of the most powerful tests of QCD which is the breaking

of Bjorken scaling (defined below) in DIS lepton-hadron processes. This will allow us

to introduce some kinematic variables used in diffractive processes, as well as explain

how pomeron behaviour is predicted from QCD. We will present the most relevant

ideas, more detailed calculations can be found in [61,62].

In figure 1.8 is shown a deep inelastic e-p scattering process. As an electron with

momentum k approaches the proton with momentum P it emits a virtual photon with
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Figure 1.8: Kinematics of deep inelastic electron scattering in the parton model.

Extracted from [62].

momentum q. The electron is then scattered with momentum k′ while the photon

strikes one of the loosely bound quarks inside the proton with momentum p. The

strucked quark then interacts with the other quarks of the proton producing jets of

hadrons collinear with the direction of the strucked quark.

The averaged amplitude for scattering of unpolarized electrons with a quark q can be

computed in QED:

1

4

∑
spins

|M|2 =
8e4e2

q

t̂2

(
ŝ2 + (ŝ+ t̂)2

4

)
, (1.39)

which gives the differential cross-section

dσ

dt̂
=

2πα2e2
q

ŝ2

(
ŝ2 + (ŝ+ t̂)2

4

)
, (1.40)

where ŝ and t̂ are the Mandelstam variables for the electron-quark process, α is

the fine-structure constant and eq is the quark charge in units of the proton charge.

Experimentally we do not measure ŝ and t̂ because we do not have a way to know the

momentum of the quark before the scattering. The only variables that are controlled

or measured are the initial momentums of the proton and electron and the final

momentum of the electron. t̂ is related to a variable Q2 by

t̂ = −Q2 = q2 = (k − k′)2 , (1.41)
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where q is the momentum carried by the virtual photon. To relate ŝ with other

experimental variables we need to consider the process in the electron-proton center

of mass frame. Because of asymptotic freedom, the quarks interact weakly with each

other and hence their transverse momentum is negligible. Then we can make the

approximation that the strucked quark has a longitudinal fraction x of the proton

momentum, i.e. p = xP . Then

ŝ = (p+ k)2 = p2 + k2 + 2p · k ≈ 2p · k = 2xP · k = xs (1.42)

where it is assumed that the mass of the quark and of the electron are small compared

with the energy scale of the process. After scattering, the momentum of the quark is

p+ q, so

0 ≈ (p+ q)2 ≈ 2p · q + q2 = 2xP · q −Q2 =⇒ x =
Q2

2P · q
(1.43)

where x is the famous Bjorken x and is completely determined by experiment. We

can introduce a function fi(x) for the quark flavour i as the probability that inside

the proton there is a quark q with flavour i with a fraction of the proton momentum

between x and x+ dx. Then the differential cross-section for DIS is

d2σ

dxdQ2
=

2πα2

Q4

[
1 + (1− y)2]∑

i

fi(x)e2
i , y =

Q2

xs
, (1.44)

where fi is called the parton distribution function (PDF) for the quark flavour i and

ei is the charge of the quark with flavour i. Note that if we divide the last equation

by the factor

1 + (1− y)2

Q4
, (1.45)

we obtain a quantity that only depends on x, a phenomena known as Bjorken scaling.

The remaining quantity depends solely on the quark PDFs and hence this result means

that the structure of the proton looks the same to an electromagnetic probe no matter

how hard the proton is hit by it.

To gain further insight, let us compare equation (1.44) with a general formula for

inelastic lepton-hadron scattering. In general the differential cross-section for DIS can

be written as the contraction between a leptonic tensor Lµν with a hadronic tensor

Wµν as

d2σ

dxdQ2
=

2πyα

Q4
LµνWµν . (1.46)
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The expression for Lµν can be obtained after computing the square of the modulus of

the scattering amplitude and summed over all spin states. After such procedure it is

given by

Lµν = 2
(
k′µkν + k′νkµ − gµν

(
k′ · k −m2

))
, (1.47)

where m is the mass of the lepton. The hadronic tensor describes the interaction

between the incoming lepton with the hadron and can be written as

Wµν =
1

4π

∫
dxeiq·x〈P |

[
J†µ (x) , Jν (0)

]
|P 〉 . (1.48)

Lorentz, gauge and time reversal invariance as well parity conservation constraint the

general form of Wµν . For unpolarized lepton beams

Wµν =

(
−ηµν +

qµqν
q2

)
F1

(
x,Q2

)
+

(
pµ −

p · q
q2

qµ

)(
pν −

p · q
q2

qν

)
F2 (x,Q2)

p · q
, (1.49)

where F1(x,Q2) and F2(x,Q2) are the hadron structure functions and they gather all

the information about the interior of the probed hadron. Another useful quantity

is the longitudinal structure function FL = F2 − 2xF1. In terms of F2 and FL the

differential cross-section for DIS can be written as

d2σ

dxdQ2
=

2πα2

xQ4

[(
1 + (1− y)2)F2

(
x,Q2

)
− y2FL

(
x,Q2

)]
. (1.50)

Comparing equation (1.50) with (1.44) one concludes that

F2

(
x,Q2

)
=
∑
i

e2
i fi (x) , FL

(
x,Q2

)
= 0 (1.51)

The above relations mean that Bjorken scaling is equivalent to F2 (x,Q2) being a

function that depends only on x and that the Callan-Gross relationship F2 = 2xF1

is a consequence of the fact that the quarks inside the hadron are particles with

spin− 1
2

[63].

In figure 1.9 we have a plot of F2(x,Q2) as a function of Q2 for different values of

x. For 0.1 . x < 1 it is evident that Bjorken scaling holds but for smaller values

of x F2 increases with Q2 as predicted by NLO QCD. This implies that in fact the

quark PDFs have a Q2 dependence and that the structure of the proton depends on

the resolution scale Q of the probe. Until today no one has been able to derive the

quark PDFs from first principles in QCD. Instead, one assumes an ansatz for these

functions at some scale Q2
0 and evolve them to a scale Q2 where we desire to make

predictions. By comparing these predictions with data one can improve our initial

ansatz. To obtain the set of equations that govern PDF evolution one considers the
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Figure 1.9: Plot of F2(x,Q2) as a function of Q2 for different values of x from the

ZEUS experiment at HERA for electron-proton scattering. For 0.1 . x . 1 one finds

the predicted Bjorken scaling while for very small x one finds scaling violations. These

scaling violations are predicted by NLO QCD after fixing the PDFs at low Q2 and

then applying the DGLAP evolution equations. Figure extracted from [64].
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Figure 1.10: Feynman diagrams for deep inelastic scattering at NLO QCD. The first

diagram in the second modulus squared is responsible for the zeroth-order term in

expansion of F2 as a power series in αS. The diagrams in the first modulus plus the

interference term of the zeroth order diagram with the virtual diagrams contribute for

O(αS) corrections to F2. Figure extracted from [65].

scattering process of the quark with the lepton at NLO in QCD. Consider the Feynman

diagrams presented in figure 1.10. The first diagram of the second modulus squared is

the zeroth order contribution to F2 as a power series expansion in αS. The diagrams

in the first modulus squared, as well as the virtual diagrams in the second modulus

squared, will contribute to corrections of order αS to the structure functions. After

considering the contribution of these diagrams we find that the dependence of the

PDFs of the quarks and gluons inside the proton are given by the following set of

differential equations [65], [61] :

∂

∂ log µ2

(
qi(x, µ

2)

g(x, µ2)

)
=
αS(µ2)

2π

∑
j

∫ 1

x

dζ

ζ
× (1.52)

×

(
Pqiqj(

x
ζ
, αS(µ2)) Pqig(

x
ζ
, αS(µ2))

Pgqj(
x
ζ
, αS(µ2)) Pgg(

x
ζ
, αS(µ2))

)(
qj(ζ, µ

2)

g(ζ, µ2)

)
,

where the functions Pqiqj , Pqig, Pgqi and Pgg are known as splitting functions and can be

computed as a power series in αS using perturbation theory. These coupled equations

are known as the Dokshkitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations.

The dependence of the structure functions on Q2 is analogous to the running cou-

plings constant. The study of the PDFs is an active field of research, with different

collaborations employing different methods in their determination. In chapter 3 we

will use a NLO relation between F2 and FL to extract the gluon PDF from our holo-

graphic computation of these structure functions. Then we compare the qualitative

dependence of our gluon PDFs with x with the PDFs by the CT18 and NNPDF

collaborations. An example of the form of the PDFs can be seen in figure 1.11. As

expected at x ∼ 1 the valence quarks of the proton dominate its parton content, but

for low x the proton is essentially made of a sea of gluons.
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Figure 1.11: Parton distribution functions of the gluon, up, down, strange, charm

quarks as well the corresponding quarks. In the left we have the PDFs atQ2 = 10 GeV2

while on the right we have the PDFs at Q2 = 104 GeV2. These PDFs are described

in [66].

The structure functions are related to the cross-sections σTγ∗p and σLγ∗p of γ∗p scatter-

ing [67] for an incoming off-shell photon with transverse and longitudinal polarizations,

respectively. For low x they are related by

F2 =
Q2

4π2α

(
σTγ∗p + σLγ∗p

)
=

Q2

4π2α
σγ∗p , (1.53)

FL =
Q2

4π2α
σLγ∗p . (1.54)

As we have seen in section 1.1.3, using the concepts of the pomeron and meson Regge

trajectory exchange one is able to describe the energy dependence of hadronic total

cross-sections, including the case of γp scattering. In [2] Donnachie and Landshoff

showed that this same model could be extended to γ∗p scattering by analysing data

of σγ∗p (or equivalently F2) with Q2 ≤ 10 GeV2. Their prediction for F2 is

F2

(
x,Q2

)
= Ax1−αP (0)

(
Q2

Q2 + a

)αP (0)

+Bx1−αR(0)

(
Q2

Q2 + b

)αR(0)

(1.55)

where αP (0) and αR(0) are, respectively, the intercepts of the pomeron and meson

trajectories. The parameters A, a, B and b are related to the numerical values that

appear in figure 1.6 in the limit Q2 → 0. Since αP (0) = 1.08 and αR(0) = 0.55, it
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is clear from this formula that for x → 0 one expects F2 ∼ x−0.08 for any Q2. The

effective power of F2 as a function of Q2 at low x is given in figure 1.12 where the

data points were obtained by H1 and ZEUS collaborations at HERA. The plot shows

Figure 1.12: Effective power of F2 at low x as a function of Q2. Here λ(Q2) = j(0)−1.

Figure extracted from [68].

that for low Q2 the data are compatible with the soft Pomeron observed at hadronic

soft processes with an intercept of 1.08. But that for large values of Q2 the effective

intercept increases up to 0.3 − 0.4 for Q2 ≈ 100 GeV2. This value of the intercept is

precisely what is expected from the BFKL pomeron which we will review later. This

motivated Donnachie and Landshoff to introduce a ’hard’ Pomeron component in their

Regge ansatz for F2

F2

(
x,Q2

)
= f0(Q2)x−ε0 + f1(Q2)x−ε1 + f2(Q2)x−ε2 , (1.56)

f0(Q2) = A0

(
Q2
)1+ε0

(
1 +

Q2

Q2
0

)−1−ε0/2

, (1.57)

fi(Q
2) = Ai

(
Q2
)1+εi

(
1 +

Q2

Q2
i

)−1−εi
, i = 1, 2 . (1.58)

Here ε1 and ε2 are 0.08 and −0.4525 respectively and were fixed by the hadronic total

cross-sections. 1+ε0 is the ’hard’ Pomeron intercept and takes the value of 1.4372 after
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fits to data. In [69, 70] Donnachie and Landshoff showed how this three component

model could account for F2 data with x < 0.07, the charm structure function F c
2 and

σ (γp→ J/ψ p). From their fits to data they have found that the intercept of the hard

pomeron is 1.4372.

BFKL pomeron

Figure 1.13: Representation of the BFKL evolution as a ladder diagram with effective

Lipatov vertices (large solid circles) and ”reggeized” gluons (bold corkscrew lines).

Figure extracted from [71].

One of the drawbacks of Regge theory is that it does not predict key elements such as

the Pomeron intercept. It is still not known how to derive such quantities from QCD.

One seminal attempt to derive Regge behaviour from QCD was made by Balitsky,

Fadin, Kuraev and Lipatov (BFKL). The BFKL approach is a procedure to sum

the contributions of multiple gluon emission at small Bjorken x. In this kinematical

regime, the proton, or any other hadron, becomes a dense medium of gluons. Also, for

hard probes diagrams of order [αs ln(1/x)]n are also important and should be included,

resulting in the leading logarithm approximation.

The BFKL analysis starts by considering the scattering amplitude of two quarks

through colour singlet exchange. The relevant diagrams are of the ladder type (see

figure 1.13) whose vertical lines are ”reggeized” gluons with couplings to gluon rungs

given by the effective Fadin-Lipatov Γ vertex. The reggeized gluon is an effective

particle that the two quarks exchange whose propagator produces the same ampli-

tude as if we were summing all the diagrams of order [αs ln(1/x)]n (while neglecting

diagrams of order αs[αs ln(1/x)]n and above) that involve exchange of several gluons.

This process is shown in figure 1.14. The effective vertex is obtained in an analogous
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Figure 1.14: Reggeized gluon (bold corkscrew line) represented as the sum of all leading

ln 1/x corrections to the single-gluon exchange amplitude for qq → qq scattering.

Figure extracted from [71]

Figure 1.15: The effective real-gluon emission vertex (the Lipatov vertex), defined as

the sum of all gluon emission diagrams. The triple gluon vertex is denoted by the

smaller solid circle while the Lipatov vertex is shown by the larger solid circle. Figure

extracted from [71].

way by considering the gluon emission process qq → qqg, as show in figure 1.15.

BFKL found and solved an integral equation for the reggeized gluon four-point function

which is essentially figure 1.13 without the external quark lines. We will not show

a derivation of such equation, limiting ourselves to just present it and review its

consequences. The BFKL amplitude f
(
ω,~k1, ~k2, ~q

)
satisfies the following equation

for t = 0 [3,4, 72]

ωf
(
ω,~k1, ~k2, ~q

)
= δ2

(
~k1 − ~k2

)
+K0 ⊗ f

(
ω,~k1, ~k2, ~q

)
, (1.59)

where K0 is the leading order (LO) BFKL kernel and its convolution with f is given
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by

K0 ⊗ f
(
ω,~k1, ~k2, ~q

)
=
ᾱs
π

∫
d2k′(

~k1 − ~k′
)2

f (ω, ~k′, ~k2, 0
)
−

~k2
1

~k′
2

+
(
~k1 − ~k′

)2f
(
ω,~k1, ~k2, 0

) , (1.60)

where ᾱs = 3αs/π and in the LO BFKL it is at a fixed scale. The solution of this

equation is found after computing the eigenvalues and eigenfunctions of K0 and is

given by

f
(
ω,~k1, ~k2, 0

)
=
∑
i

φi(~k1)φi(
~k2)

ω − λi
, (1.61)

where

K0 ⊗ φi(~k) = λiφi(~k) . (1.62)

The sum over i in the above equation is in fact a sum over an integer n from zero to

infinity and an integral over a continuous variable ν. The eigenfunctions are given by

φnν =
1

π
√

2

(
k2
)−1/2+iν

einθ . (1.63)

The LO BKFL amplitude takes then the form

f
(
ω,~k1, ~k2, 0

)
=
∞∑
n=0

∫ +∞

−∞

dν

2π2k1k2

(
k2

1

k2
2

)iν
ein(θ1−θ2)

ω − ᾱsχn(ν)
, (1.64)

where

χn(ν) = 2ψ(1)− ψ
(

1 + |n|
2

+ iν

)
− ψ

(
1 + |n|

2
− iν

)
, (1.65)

with ψ(z) defined as the derivative of the logarithm of the Γ-function. Among all the

terms in the sum, the one that dominates is n = 0. Further progress can be made by

rewriting the integral in equation (1.64) in a Mellin integral in γ-space, with γ = 1
2
+iν

f
(
ω,~k1, ~k2, 0

)
=

1

πk2
1

∫ 1
2

+i∞

1
2
−i∞

dγ

2πi

(
k2

1

k2
2

)γ
1

ω − ᾱsχ0 (γ)
. (1.66)

The forward colour singlet quark scattering amplitude can be written in terms of the

BFKL amplitude as

A(s, 0)

s
= 4iα2

sG0

∫
d2k1d

2k2

k2
1k

2
2

F
(
s,~k1, ~k2

)
, (1.67)
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where

F
(
s,~k1, ~k2

)
=

∫
dω

2πi

(
s

~k2

)ω
f
(
ω,~k1, ~k2, 0

)
, (1.68)

and the ω contour is parallel to the imaginary axis and is to the right of all singularities

in the ω plane. We can now deform the ω contour to catch the singularity at

ω = ᾱsχ0(γ). For large values of s, the integrand in the γ plane is dominated by(
s/~k2

)ᾱsχ0(γ)

and is highly peaked at γ = 1/2. Performing a saddle approximation

yields

F
(
s,~k1, ~k2

)
=

1

πk1k2

(s/k2)
ᾱSχ(1/2)√

2πᾱSχ′′(1/2) log(s/k2)
. (1.69)

From this result and equation (1.67) one can see that the total cross-section for quark-

quark scattering rises as ω0 = ᾱsχ(1/2) ≈ 0.32 if one takes αs to be 0.120. For the

case of γ∗p scattering the total cross-section given by BFKL is

σγ∗p(s,Q
2) =

1

(2π)4

∑
λ=T,L

∫
d2k1d

2k2

k2
1k

2
2

Φγ,λ

(
~k1

)
Φp

(
~k2

)
F
(
s,~k1, ~k2

)
, (1.70)

where λ is the polarization state of the off-shell photon and Φγ,λ, Φp are the γ∗ and

proton impact factors that relate these particles to their quark content. The factor

Φγ can be calculated by analysing γ∗ → qq̄, but the associated proton object is non-

perturbative in general. Nevertheless one can see that the BFKL total cross-section

for γ∗p goes like s0.32. This value of the BFKL pomeron intercept is larger than the

value found at hadron-hadron data. However, it is very close to what Donnachie and

Landshoff have found. It is for this reason that the BFKL result received so much

attention by the community.

Despite the above results, the BFKL approach has its forthcomings. One of them is

that since it is a perturbative approach it will fail to understand the non-perturbative

effects related to the Pomeron. In particular, it is still not known how to relate the

BFKL pomeron with the soft pomeron. Another problem with this approach is that

it is assumed that the strong coupling constant αs does not run much with the energy

scales of the process, which is not true for processes like DIS. Also, a very important

issue is that it was shown that the NLO contribution to the scattering amplitude

was larger than the LO contribution. This demands the computation of the NNLO

computation, which is a formidable task, to check if it is possible to use this technique

to make predictions.
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Saturation and the BK equation

The DGLAP gluon PDF is related to equation (1.69) and to the proton factor Φp

through

xg(x,Q2) =
1

π

∫ Q2

0

d2k

k2
Θ(Q2 − ~k2)Fg(x,~k) , (1.71)

Fg(x,~k) =
1

2π3

∫
d2k′

k′2
Φp(~k′)k

2F (x,~k, ~k′) , (1.72)

where we have used the relation x ≈ Q2/s. Although a computation of xg demands

knowledge of the proton factor, we can already see from the above equation that BFKL

predicts that for very low x (or equivalently for high s) xg(x,Q2) ∼ x−ω0/
√

log(1/x).

It is generally believed that at some point the growth of the gluon density must be

tamed in order to satisfy the Froissart bound. The Froissart bound states that the

total cross-section of any hadron-hadron scattering process can not grow faster then
π
m2
π
(log s)2. Although this has not been observed in data, it is believed that it holds

since it is derived assuming that the S matrix is unitary and that the strong interaction

has a finite range of order 1/mπ [73, 74]. This scale is of non-perturbative nature

and hence the Froissart bound includes both the perturbative and non-perturbative

properties of QCD. In order to restore unitarity it is believed that at high energies

gluon recombination occurs although the link between them is not understood. By

adding Feynman diagrams that are responsible for gluon recombination, Gribov, Levin

and Ryskin [72] derived a nonlinear evolution equation for the gluon PDF in the double

leading logarithmic approximation (DLLA log(1/x) logQ2 � 1). Taking into account

both gluon production and recombination the evolution equation for the gluon PDF

is

Q2 ∂2xg(x,Q2)

∂ log(1/x)∂Q2
=
αsNc

π
xg(x,Q2)− 4α2

sNc

3CFR2Q2

[
xg(x,Q2)

]2
. (1.73)

The first term in equation (1.73) is what we get from DGLAP equations in the double

logarithmic approximation, while the second, nonlinear term is accountable for gluon

recombination. Note that the recombination term is inversely proportional to the

hadron area ∼ R2 and the scale Q2 at which the gluon density is probed. This makes

sense since a bigger area means that it takes more gluons to fill up the hadron. On

the other hand the typical gluon size r ∼ 1/Q and hence for bigger Q2 we will need

more gluons for saturation to occur.

In the regime of saturation, the BFKL equation is not valid anymore and one needs to

include the recombination of gluons. Balitsky and Kovchegov [75,76] derived indepen-

dently an integro-differential equation with a quadratic term like (1.73) that encodes
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parton recombination. The BK equation was derived by Balitsky by considering the

operator product expansion for high energy scattering in QCD. With this procedure he

derived a hierarchy of coupled equations for correlators of Wilson lines which reduce

to a single one in the limit of large number of colours Nc. The same equation was

derived by Kovchegov by considering the dipole formulation of high energy scattering.

The dipole formalism works as follows. Consider the process γ∗p in the proton’s rest

frame. The off-shell photon with momentum q, such that Q2 = −q2, can fluctuate into

a qq̄ pair. The quark carries a fraction z of q and the pair will scatter coherently with

the proton through the strong interaction. Throughout this interaction it is assumed

that the transverse size of the pair r remains constant. Also, the interaction time is

assumed to be much smaller then the splitting time of the γ∗ into a qq̄ pair. The

initial scattering process is then reduced to a dipole-proton interaction. On the other

hand, each quark in the dipole can also emit a gluon which in the limit of large Nc

can be represented by a quark-antiquark pair. Thus, in this limit, the emission of

one gluon by the quarks is equivalent to the splitting of the original dipole into two

dipoles. This can be generalised to an arbitrary number of gluons n where one will

have n+ 1 dipoles.

If we consider only the contribution from the single scattering of one dipole on the

target, one obtains a linear evolution equation for the dipole-target amplitude

dN (~b01, ~x01, Y )

dY
= ᾱs

∫
d2x2x

2
01

x2
20x

2
12

[
N (~b01 +

~x12

2
, ~x20, Y ) +N (~b01 −

~x20

2
, ~x12, Y ) (1.74)

−N (~b01, ~x01, Y )
]
,

where Y = log(1/x) is the rapidity, bij = (~xi + ~xj)/2 and xij = ~xi− ~xj. This equation

is the dipole version of BFKL in the transverse coordinate space and has been derived

in [77]. On the other hand, if we consider multiple incoherent dipole scatterings, one

obtains the BK equation

dN (~b01, ~x01, Y )

dY
=ᾱs

∫
d2x2x

2
01

x2
20x

2
12

[
N (~b01 +

~x12

2
, ~x20, Y ) +N (~b01 −

~x20

2
, ~x12, Y ) (1.75)

−N (~b01, ~x01, Y )−N (~b01 +
~x12

2
, ~x20, Y )N (~b01 −

~x20

2
, ~x12, Y )

]
,

which has a nonlinear term for the evolution of the amplitude. The nonlinear term

encodes the gluon recombination and for large Y will lead to saturation.

To solve this equation one needs to provide an initial condition that is a non-perturbative

object and has to be modelled. Despite this, the solutions of the BK equation
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turned out to express geometric scaling phenomena observed in lepton-proton and

lepton-nucleus data [78]. Moreover, its solutions also preserve locally unitarity in the

transverse configuration space. Until today the BK equation is the best established

phenomenological method to include non-linear effects due to the dense gluon medium.

The Colour Glass Condensate

We end our review on the relation between Pomeron physics and QCD by mentioning

briefly another approach to study partonic systems at small x called the Colour Glass

Condensate (CGC) [79]. The CGC is an effective field theory description of saturated

gluons in the Regge limit. In it we have two kinds of degrees of freedom that are

separated into fast frozen colour sources ρa and slow dynamical gauge fields Aµa .

Denoting the separation scale by Λ+, gluons with longitudinal momentum k+ > Λ+

(fast gluons) are frozen by Lorentz time dilatation. This generates a random colour

charge density ρa that changes with each event. The probability of a particular

distribution ρa is given by a gauge invariant distribution WΛ+ [ρ] provided by the CGC.

On the other hand, we have slow gluons with longitudinal momentum k+ < Λ+ which

are described by dynamical gauge fields Aµa in QCD. The independence of the physical

observable with respect to the scale that separates fast and slow degrees of freedom

is secured by the Jalilian-Marian-Iancu-McLerran-Weigert-Leonid-Kovner (JIMWLK)

renormalization group equation. This JIMWLK evolution is the same hierarchy of

coupled evolution equations that Balitsky used to derive the BK equation. In fact,

the BK equation is the mean field approximation of JIMWLK evolution, valid at large

Nc. This JIMWLK formalism also provides a functional equation that describes the

evolution of WΛ+ [ρ] with Λ+

∂WΛ+ [ρ]

∂ log(Λ+)
= −H

[
ρ,

δ

δρ

]
WΛ+ [ρ] , (1.76)

where H is the JIMWLK Hamiltonian.

In figure 1.16 it is shown the qualitative phase diagram of QCD evolution. As show in

it and discussed above, the evolution of the PDFs to higher Q2 values is governed by

the DGLAP equations while the PDF evolution for small x is given by the BFKL. This

BFKL evolution will only be valid up to the point where saturation effects become

important. The point at which these effects are important depends on the scale Q

that we are operating on and for this reason we have the straight line in the figure.

Above this line the hadron is saturated and it is in these conditions that the CGC

formalism is expected to work.
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Figure 1.16: Phase diagram of QCD evolution. The small coloured circles represent

the partons inside the hadrons. Figure extracted from [79].

The CGC and its derived models have provided a successful phenomenological descrip-

tion of hadron-hadron and lepton-hadron collisions at high energy. They have also

provided a semi-quantitative framework that described a large variety of processes at

RHIC and HERA. This approach works better provided that the occupancy number

of gluons n ∼ 1/αs is large. Then high energies are necessary in order to have a small

coupling constant and this why it is believed that the LHC can provide a good test of

this theory. However and understanding of QCD soft processes has not been achieved

in this framework, although there are attempts to map CGC degrees of freedom to

the language of Pomerons.

1.2 Gauge/Gravity duality and the Pomeron

The discovery of the AdS/CFT duality by J. Maldacena [7] gave us a new tool to

study QFTs in the strongly coupled regime. This conjecture states that a theory of

gravity in AdSd+1 is dual to a Conformal Field Theory (CFT) in the boundary of

this space. An important result that pre-dates the AdS/CFT correspondence was

obtained previously by ’t Hooft while studying the relationship between string theory

and the generalization of QCD to any number of colours N , i.e. SU(N) Yang-Mills
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theories. ’t Hooft considered the limit of N → ∞ and showed that the perturbative

expansion in Feynman diagrams in these QFTs resembles the genus expansion in string

theory. An example of this duality was also given by Maldacena by proposing that

type IIB superstring theory on AdS5 × S5 is dual to N = 4 Super Yang-Mills theory

(SYM) on 3 + 1 dimensions. A non-supersymmetric example of this duality was also

proposed by Klebanov and Polyakov [80] by conjecturing that the O(N) vector model

and Vasiliev’s higher spin gauge theories are dual to each other.

Soon after the paper of Maldacena, Gubser, Klebanov, Polyakov [81] and Witten [82]

showed how to relate correlation functions of operators in N = 4 SYM with the

supergravity action, how the conformal dimension of the operators are related to

particle masses in supergravity and how AdS black holes thermodynamics are related

to a phase transition in N = 4 SYM in the large N limit. The duality can be stated

as

ZQFT [J(x)]∂M = Zgravity[φ(X)]M, φ(X → ∂M) = J(x), (1.77)

where ∂M is the boundary of the manifoldM where the theory of gravity is defined.

The quantum field theory lives on ∂M and J(x) is the source of some operator O
of the QFT dual to some field φ(X) in M. Although it is quite remarkable that

two different theories are related to each other, what makes the duality useful is the

fact that it maps a strongly coupled QFT, which we do not know how to solve with

Feynman diagrams, to a weakly coupled theory of gravity, which we do know how to

solve. In the particular example of N = 4 and type IIB strings in AdS5 × S5, the

relation between the gauge theory coupling constant and the string theory coupling

constant is
L4

l4s
= g2

YMN = λ, (1.78)

where λ is the t’Hooft coupling and L is the AdS radius. When the ’t Hooft coupling

is large, L/ls � 1 which means that we are in the limit of weakly coupled gravity.

So far the examples found for the duality involve quantum field theories that are not

like QCD, since it is not supersymmetric or conformal at all energy scales. Although

the gravity dual of QCD is not known, we can still use the AdS/CFT correspon-

dence by studying it in certain limits and learn how to construct a gravity dual

close to QCD. This has allowed to understand how to include flavour degrees of

freedom (quarks), spontaneous chiral symmetry breaking or the understanding of the

quark-gluon plasma. In the next subsections we will give more details about the

gauge/gravity duality and discuss the concept of the Witten diagram. We also quickly

review some bottom-up approaches of Holographic QCD since these will serve as basis

for the work presented in this thesis.

34



1- Introduction

1.2.1 An example of the duality

The AdS/CFT correspondence, or gauge/gravity duality, is a conjectured relationship

between quantum theories of gravity formulated in AdS spaces and conformal field

theories. As mentioned before the most useful feature of this duality is that it is a

strong-weak duality: we can solve field theory strong coupling problems by solving the

corresponding gravitational weak coupling problem on the other side of the duality.

This conjecture is also a realisation of the holographic principle which states that the

information within a volume of space is encoded on the boundary of that region. This

principle emerged after the results of black hole thermodynamics, where it was found

that that the number of degrees of freedom in a volume Vd are given by the area Ad−1

of the boundary ∂Vd of this volume measured in units of the Planck area ld−1
P .

As an example of the correspondence, we describe briefly the case of N = 4 SYM

in 3 + 1 dimensions dual to IIB superstring theory on AdS5 × S5. In this concrete

example, on the CFT side, N = 4 Super Yang-Mills is a gauge theory with gauge

group SU(N) with coupling constant gYM . In the string theory side the string length

is ls =
√
α′, coupling constant gs, the radius of curvature of AdS5 × S5 is L and there

are N units of a 5-form F(5) flux on S5. The relations between the free parameters of

these theories are the following :

g2
YM = 4πgs , 4πgsN = L4/α′2 . (1.79)

Note that in the first equation we have only the coupling constant gYM , while on the

second one has the ’t Hooft coupling constant λ = g2
YMN .

The conjecture follows from the fact that D-branes in string theory and p-brane

solutions from supergravity are the same object. Consider IIB string theory on 9 + 1

dimensional Minkowski spacetime where a closed string is propagating and where we

have N coincident D3-branes. This closed string can interact with these branes by

either letting the loop breaking in two open strings with ends moving on the branes

(open string perspective) or by considering this set of branes as a soliton of the theory

and hence curving the spacetime where the closed string propagates (closed string

perspective).

From the open string perspective the N coincident D3-branes only conserve 16 of the

32 supercharges of IIB superstring theory on the 10-dimensional Minkowski spacetime.

We have open strings propagating on the 4-dimensional branes and closed strings on

the 10-dimensional flat spacetime. Moreover, we will consider only the low energy

scenario where only the massless excitations of the strings are considered. Because the
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N branes are coincident the open strings between different branes are massless and the

states are valued in the adjoint representation of the gauge group U(N). The action

for the string modes is then

S = Sclosed + Sopen + Sint (1.80)

where the last term regulates the interaction between the open and closed modes.

In the low energy limit α′ → 0, the closed string dynamics is given by type IIB

supergravity whose bosonic action is

SIIB =
1

2k2

∫
d10x

{√
−g
[
e−2φ

(
R + 4∂Mφ∂

Mφ− 1

2
|H|2

)
−

− 1

2
|F1|2 −

1

2
|F̃3|2 −

1

4
|F̃5|2

]
− 1

2
A4 ∧H3 ∧ F3

}
(1.81)

with 2k2 = (2π)7α′4g2
s . The above action has the following field content: the spacetime

metric gMN ; the dilaton field φ; the field strength tensor HMNR of the antisymmetric

field BMN ; a scalar A0 with F1 = dA0; a 2-index antisymmetric field AMN with field

strength FMNR = 3∂[MANR]; and a 4-index antisymmetric tensor field AMNRS with

modified field strength F̃5, which is self-dual

F̃µ1···µ5 =
1

5!
εA1···A5

A6···A10F̃A6···A10 . (1.82)

In the action (1.81) F̃3 and F̃5 are given by

F̃3 = F3 − A0 ∧H3 ,

F̃5 = F5 −
1

2
A2 ∧H3 +

1

2
B ∧ F3 . (1.83)

If we now expand the metric as g = η + kh the action becomes

Sclosed = −1

2

∫
d10x∂Mh∂

Mh+O(k) , (1.84)

where the O(k) terms consist of field strength tensors as well fermionic fields. Since k

is proportional to α′, Sclosed reduces to the free supergravity action in 10-dimensional

Minkowski spacetime in the limit α′ → 0.

Since we have N coincident D3-branes we will have six scalar fields φi a and and a

gauge field Aaµ defined on the worldvolume in the adjoint representation a of the

U(N) gauge group. Because the gauge field is massless we have a total of eight on-

shell bosonic degrees of freedom. By supersymmetry we should have eight fermionic

degrees of freedom. Since in 4-dimensional on-shell fermion has two degrees of freedom
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this means that in order to complete the supersymmetric multiplet we need to have 4

fermionic fields ψIa , I = 1, · · · , 4 in the adjoint representation of U(N). Thus the total

field content matches the one of N = 4 SYM in four dimensions. A single D3-brane is

described by a Dirac-Born-Infeld (DBI) plus Wess-Zumino (WZ) action. This action

includes the interaction with the closed string sector. If we take into account that we

have N coincident D3-branes so that we have to take traces over the gauge group to

obtain a gauge invariant action, as well use the corresponding covariant derivatives,

after we expand the DBI term we find that the action around flat space for the bosonic

open string sector is

Sopen = − 1

2πgs

∫
d4xTr

[1

4
FµνF

µν +
1

2

∑
i

Dµφ
iDµφi −

∑
i,j

[φi, φj]2 +O(α′)
]

(1.85)

where Fµν = ∂µAν −∂νAµ + i[Aµ, Aν ], the covariant derivative Dµ = ∂µ ·+i[Aµ, ·] with

φi = φiaTa and Aµ = AaµTa. If we take the limit α′ → 0 and make the identification

4πgs = g2
YM we get precisely the bosonic part of N = 4 SYM. On the other hand, the

interaction term action Sint has terms proportional to α′ and vanishes when α′ → 0.

To sum up, in the open string perspective we have two theories that are completely

decoupled in the low energy limit α′ → 0: N = 4 SYM in the D3-branes and free

supergravity in the bulk.

In the closed string perspective we substitute the D3-branes by the corresponding p-

brane supergravity solution. For N coincident branes the IIB supergravity solution for

the metric is

ds2 =
1√
H(r)

ηµνdx
µdxν +

√
H(r)[dr2 + dΩ2

5] , H(r) = 1 +
L4

r4
, (1.86)

where ηµν is the metric of the four dimensional Minkowski spacetime and

H(r) = 1 +
L4

r4
, L4 = 4πgsNα

′2 . (1.87)

For large values of r relative to L, H(r) ≈ 1 and the metric is reduced to ten

dimensional Minkowski spacetime. On the other hand, in the neighbourhood of r = 0,

H(r) ≈ L4/r4 and by making the change of variables z = L2/r we get the metric of

AdS5 × S5 :

ds2 =
L2

z2
(dz2 + ηµνdx

µdxν) + L2dΩ2
5 , (1.88)

where both spaces have the same radius of curvature. It is then clear that we have

two types of closed strings, one that propagates in flat 10 dimensional spacetime and
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other that propagates near r = 0. When the gauge theory is at strong coupling (i.e.

4πgsN = λ � 1 the size of the string is very small compared with the radius of

curvature and we are working with very low energies. The closed strings near r = 0

are described by type IIB supergravity on AdS5 × S5 and the dynamics of the closed

string on the asymptotic flat spacetime is given again by type IIB supergravity but on

10 dimensional Minkowski spacetime. Moreover from the perspective of an observer

at infinity, these two sectors are also decoupled.

At this point we have two equivalent perspectives each described by two decoupled

effective theories. In both perspectives the theory type IIB supergravity on 10-

dimensional Minkowski spacetime is present. On the other hand in the open string

perspective we have N = 4 SYM theory while on the closed string perspective we have

type IIB supergravity on AdS5×S5, which is a low energy limit of type IIB superstring

theory on AdS5 × S5. By relaxing this low energy limit Maldacena conjectured that

N = 4 SYM on 4 dimensional flat spacetime is equivalent to type IIB string theory

on AdS5 × S5.

With relations 1.79 one can analyze the strong-weak feature of the duality. Consider

the weak coupling regime in the string theory side , i.e. gs � 1 while the ratio L/
√
α′

is kept constant. This means that gYM � 1 while g2
YMN is kept constant which means

that N → +∞. This is the well known ’t Hoof limit. Note that since the ’t Hooft

coupling is fixed λ, then gs ∝ 1
N

suggesting a map between an 1/N expansion in the

field theory side with an expansion in the genus of the string genus on the string theory

side. This situation is known as the strong form of the duality. When the field theory

is strongly coupled, i.e. λ is large, the size of the string compared with the radius of

curvature L is very small and then the string can be approximated by a point particle.

In this limit IIB superstring theory is given by IIB supergravity on AdS5×S5 and the

strongly coupled N = 4 SYM is mapped to the weakly curved AdS5 × S5.

Of course, the above discussion does not constitute a proof that N = 4 SYM is dual

to type IIB superstring theory. However, the discovery of integrability structures of in

both N = 4 SYM and semi-classical type IIB strings in AdS5× S5 allowed to confirm

its validity. A review of these results can be found in [83].

1.2.2 Correlators and Witten diagrams

In this section we will introduce the Witten diagram expansion. We have seen pre-

viously that the gauge/gravity duality states that the partition function of a theory
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of gravity (e.g. string theory) defined in an asymptotically AdS space M is equal to

the partition function of a QFT in the boundary ∂M of this space. Moreover to each

boundary field O there is a bulk field φ in M that satisfies the boundary condition

φ(X → ∂M) = J(x), where J(x) is the source of O.

The duality becomes very useful to study strong coupling physics in the large N limit

of the QFT because in this regime the path integral in the gravity side is dominated

by the classical configuration:

Zgravity ∼ eiSon−shell . (1.89)

The bulk fields can be expressed in terms of the boundary sources J(x) of the QFT

operators. To compute the correlation functions one then needs to take functional

derivatives of 1.89 with respect to the sources J(x). The Witten’s diagram expansion

is a systematic way of computing exp (iSon−shell).

We will illustrate this procedure by considering the case of a scalar operator O of a

CFT in d dimensions with conformal dimension ∆. From the gauge/gravity duality

we know this operator is dual to a bulk scalar field φ(X) in AdSd+1 with bulk mass

m2L2 = ∆(∆− d), where L is the AdS space radius. The action for such a scalar field

is

Sφ = −1

2

∫
dd+1X

√
−g
(
gAB∂Aφ∂Bφ+m2φ2

)
. (1.90)

The Klein-Gordon equation for a scalar field is then(
∇2 −m2

)
φ = 0 . (1.91)

where

∇2φ =
1

L2

(
z2∂2

z − (d− 1)z∂z + z2ηµν∂
µ∂ν
)
φ , (1.92)

for AdS spaces. To make progress it is useful to perform a Fourier decomposition

in the Minkowski coordinates xµ and consider the ansatz φ(z, x) = eik·xφk(z). The

resulting equation for the modes φk(z) is

z2∂2
zφk(z)− (d− 1)z∂zφk(z)− (m2L2 + k2z2)φk(z) = 0 , (1.93)

where p2 = ηµνp
µpν . There are two independent solutions to this equation with

different asymptotics near the boundary, i.e. z → 0,

φk(z) =

z∆+ normalisable ,

z∆− non− normalisable ,
(1.94)
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where ∆± are the roots of ∆(∆− d) = m2L2, i.e.

∆± =
d

2
±
√
d2

4
+m2L2 . (1.95)

Near the boundary the scalar field can be expressed in terms of these solutions as

φ(z, x) ∼ φ(0)(x)z∆− + φ(+)(x)z∆+

+ · · · (1.96)

By dimensional analysis the normalisable mode is identified with the vacuum expec-

tation value of a dual scalar field operator O of dimension ∆ = ∆+, while the non-

normalisable mode φ0 as a source of this operator. The bulk field and the boundary

source are then related through

φ(0)(x) = lim
z→0

φ(z, x)z−∆− . (1.97)

Now that we know the relationship between the bulk field and a boundary source,

we would like to find a solution of equation (1.91) satisfying the boundary condition

φ(z, x) = φ(0)(x)zd−∆ for z → 0. The solution to this problem can be obtained by

considering an integral kernel K, known as bulk-to-boundary propagator, that will

relate the boundary conditions to the bulk field by

φ(z, x) =

∫
∂AdS

ddx̄K(z, x; x̄)φ(0)(x̄) . (1.98)

A related problem is the solution of the Klein-Gordon equation with a source J(x). The

solution to this problem is to determine first the bulk-to-bulk propagator G (z, x; z̄, x̄)

that satisfies the equation(
∇2 −m2

)
G (z, x; z̄, x̄) =

1√
−g

δ(d+1)(X − X̄) , (1.99)

The convolution of G with the source J(x)

φ(X) =

∫
dd+1X̄

√
−ḡ G(X; X̄)J(X̄) , (1.100)

will then satisfy the equation (∇2 −m2)φ(X) = J . The solution to equation (1.99) is

G(z, x; z̄, x̄) =
C∆

2∆(2∆− d)
ζ∆

2F1

(
∆

2
,
∆ + 1

2
; ∆− d

2
+ 1; ζ2

)
, (1.101)

with

C∆ =
Γ(∆)

πd/2Γ(∆− d
2
)
,
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where the quantity ζ is known as chordal distance and can be determined after

computing the AdS geodesics between points (z, x) and (z̄, x̄):

ζ =
2zz̄

z2 + z̄2 + (x− x̄)2
. (1.102)

The bulk-to-boundary propagator is related to the bulk-to-bulk propagator in the

z̄ → 0 limit of the latter. More precisely

K(z, x; x̄) = lim
z̄→0

2∆− d
z̄∆

G(z, x; z̄, x̄) = C∆

(
z

z2 + (x− y)2

)∆

. (1.103)

We wish to compute the on-shell action of the scalar field and express it in terms of

the sources J(x) in order to compute correlation functions. As a first step we can

write the action of the scalar field as

Sφ = −1

2

∫
dd+1X

√
−g φ

(
−∇2 +m2

)
φ+

1

2

∫
dd+1X∂A

(√
−ggABφ∂Bφ

)
, (1.104)

where we have used integration by parts. Since we are looking for the on-shell action

the first term vanishes and we are only left with second term which can be rewritten

as a surface integral

Son−shell =
1

2

∫
M
dd+1X∂A

(√
−ggABφ∂Bφ

)
=

1

2

∫
∂M

ddx
√
γφnA∂Aφ , (1.105)

where nA is a vector normal to ∂M, γ is the induced metric and x the surface

coordinates. In AdS the boundary is located at z = ∞ and z = ε, where ε → 0

was introduced in order to deal with the fact that the metric of AdS diverges for

z = 0. Moreover, assuming an exponential decay for φ at z →∞ we have

Son−shell = −1

2

∫
ddx
√
γε φn

z∂zφ
∣∣∣
z=ε

, (1.106)

where

γε =
L2

ε2
η , nz = − ε

L
. (1.107)

The on-shell action in equation (1.106) diverges as ε → 0. This can be fixed through

holographic renormalization by introducing counter-terms to the action [84]. Then,

the action we will use to take functional derivatives is the renormalised action given

by

Sreg =
Ld−1

2
(d− 2∆)

Γ(∆)

πd/2Γ(∆− d
2
)

∫
ddxddy

φ(0)(x)φ(0)(y)

(x− y)2∆
+ · · · , (1.108)
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where the dots represent terms that are finite when taking ε → 0. Taking functional

derivatives with respect to the sources φ(0)(x) one obtains the two-point function

〈O(x)O(y)〉 = Ld−1(2∆− d)
Γ(∆)

πd/2Γ(∆− d
2
)

1

(x− y)2∆
, (1.109)

which is the result we expect from Conformal Field Theory.

The above discussion considered a free scalar field in AdS. We wish now to consider

a bulk theory with interactions. Consider three bulk fields with cubic couplings with

action S = S0 + Sint where

S0 = −1

2

∫
dd+1X

√
−g(gAB∂Aφi∂Bφi +m2

ijφiφj), mij = miδij , (1.110)

Sint = −
∫
dd+1X

√
−gλijkφiφjφk , (1.111)

where each field φi satisfies the Klein-Gordon equation with source λijkφjφk

(∇2 −m2
i )φi = −λijkφjφk . (1.112)

The solution for the set of equations (1.112) can be found perturbatively in terms of

powers of λijk

φi(z, x) =

∫
ddx1Ki(z, x;x1)φi0(x1) +

∑
j,k

λijk

∫
dd+1X̄Gi(z, x; z̄, x̄)×

×
∫
ddx1d

dx2Kj(z̄, x̄;x1)Kk(z̄, x̄;x2)φ0j(x1)φ0k(x2) + · · · (1.113)

In order to compute correlation functions in this theory one proceeds as in the free

case and writes the action S = S0 + S
int

in terms of on-shell quantities and boundary

sources. In addition to two source terms coming from the free action we will also have

terms with three or more source terms due to the interaction term. From Sint we get

the three source term

S
(3)
int. = λijk

∫
ddx1d

dx2d
dx3

∫
dd+1XKi(z, x;x1)Kj(z, x;x2)Kk(z, x;x3)×

× φ0i(x1)φ0j(x2)φ0k(x3) . (1.114)

From this interaction term it follows that the three point function 〈Oi(x1)Oj(x2)Ok(x3)〉
is proportional to the integral over all the bulk points X. We note that the interaction

part does not contribute to the quadratic term in the sources hence we do not need

to worry about renormalization.

In this bulk theory with cubic couplings the computation of the 2-point and 3-point

functions can be summarised in the two Witten diagrams of figure 1.17. The value of
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(a) (b)

Figure 1.17: Witten diagrams for (a) the 2-point and (b) the 3-point correlation

functions for a scalar theory with cubic couplings. Figure extracted from [85].

the correlation functions mentioned above could be extracted from those diagrams if

we use the following set of rules:

• The circle represents the AdS space and its boundary is the circumference;

• Points on the circle correspond to operator insertions in the field theory;

• Lines departing from the boundary are mapped to bulk-to-boundary propaga-

tors;

• Lines between two bulk points correspond to bulk-to-bulk propagators;

• An interaction point in the bulk X is equivalent to an integral
∫
dd+1X

√
−g.

Later we will have functions of background fields like the dilaton Φ and the

tachyon τ . In this case we insert such function in the vertex.

With this new set of rules we can now compute the 4-point function, or any n-point

function without the need to write the on-shell action in terms of n source terms

through the perturbative expansion (1.113). This is why the Witten diagram expansion

is such a powerful computational technique in holography. Later we will use this

procedure to compute the scattering amplitudes of processes that are dominated by

Pomeron exchange. Before we start to do that we need first to select a holographic

model for our QCD vacuum. In the next section we give a brief overview of the

models available. Finally we will review the BPST pomeron, since it hints how to

model holographically Pomeron exchange.
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1.2.3 Overview of AdS/QCD

A big and rapid progress has been made in understanding the gauge/gravity duality in

the context ofN = 4 SYM and type IIB superstrings on the AdS5×S5 background. As

we have seen in the previous section, these two theories are claimed to be dual to each

other and there are results that support this conjecture. However the gravity dual of

QCD still eludes us. Inspired by the N = 4 SYM case, top-down approaches propose

certain configuration of branes in string theory in order to derive the Yang-Mills theory

that is defined in the world volume of the branes. Perhaps the most famous model

in this approach is the Witten-Sakai-Sugimoto model [86, 87]. This model captures

features of low-energy QCD such as confinement, chiral symmetry breaking, mesons,

glueballs, baryons, and effects from the axial anomaly. A review of this model can be

found in [88].

A more practical approach is the bottom-up one. Here instead of deriving the gravity

dual from some string theory, one assumes that it exits and adds fields to the bulk that

capture experimental and theoretical features of QCD. The dynamics of these fields

can of course be based on principles of effective string field theory. Because QCD is

not a conformal field theory, it is necessary that its bulk dual has elements that break

conformal symmetry in the boundary theory. The simplest way is to introduce a IR

cut-off to the holographic radial variable z and relate it to some QCD scale e.g. the

mass of the ρ meson. The metric of this models is the one of a slice of the AdS metric

ds2 =
1

z2

(
dz2 + ηµνdx

µdxν
)
, 0 < z ≤ zm . (1.115)

This types of models are known as hard-wall models. This simple model predicts a

discrete spectrum for the particles that is linear with the resonance index, i.e. mn ∼ n.

However it is observed, in particular with mesons, that the correct relationship should

be m2
n ∼ n. The desired relationship between mn and n was obtained by Karch, Katz,

Son and Stephanov in [89]. They have considered a string dual of QCD with a dilaton

field and five dimensional metric that are, respectively, dual to the lagrangian and the

energy momentum-tensor. For the QCD vacuum these fields have the form

ds2 = e2A
[
dz2 + ηµνdx

µdxν
]
, Φ = Φ(z) . (1.116)

The authors of such model showed that in the IR, i.e. z →∞, the dilaton Φ and warp

factor A should satisfy Φ−A ∼ z2 in order to get a linear spectrum for the ρ mesons.

By considering the spectrum of higher spin mesons one finds that A can not grow as

z2 if we wish to have linear Regge trajectories in the spin. Plus, if one adds conformal

symmetry in the UV, i.e. z → 0, then Φ− A ∼ log z.
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This result motivates the study of 5D Einstein-Dilaton system whose action in the

Einstein frame is

SEg = M3N2
c

∫
d5x
√
−g
(
R− 4

3
gMN∂MΦ∂NΦ + V (Φ)

)
. (1.117)

Here M is the Planck mass, Nc is the number of colours that we assume is large, g, Φ

and V are the 5D metric, the dilaton field and dilaton potential in the Einstein frame,

respectively. The ’t Hooft coupling of the gauge theory is related to the dilaton, up to

a multiplicative constant by

λ = eΦ . (1.118)

This action can be thought of a two-derivative effective action, including a dilaton

potential, describing the low-lying excitations of some string theory in the bulk.

Using 1.116 as an ansatz the equations of motion of the warp factor A and dilaton

profile Φ read as

Φ̇2 = −9

4

(
Ä− Ȧ2

)
, Φ̈ + 3ȦΦ̇− 3

8
e2A∂ΦV (Φ) = 0 . (1.119)

To solve this system of differential equations there are two common approaches. One

can start to assume the profile of the dilaton and solve equations (1.119) to obtain

the warp factor and the corresponding dilaton potential. For example assuming the

dilaton profile Φ = µ2z2 one gets [90]

A(z) = − log
( z
L

)
− log

(
0F1(5/4,

Φ2

9
)2

)
, (1.120)

V (Φ) = −
12 0F1(1/4, Φ2

9
)2

L2
+

16 0F1(5/4, Φ2

9
)2Φ2

3L2
, (1.121)

where 0F1(a; z) is the hypergeometric function.

On the other hand, one can determine what properties the dilaton potential should

satisfy in order for the resulting geometry and dilaton profile to reproduce known

features of QCD. This is the approach of the Improved Holographic QCD model

proposed in [91,92] and the one we will use as our QCD vacuum in chapters 2, 3 and 4

of this thesis. In this model the dilaton potential is associated to a phenomenological

superpotential W (Φ) through

V (Φ) = e−
4
3

Φ

[
64

27
W (Φ)2 − 4

3

(
dW

dΦ

)2
]
. (1.122)

Among the backgrounds in those works we take the Background I whose superpotential

is

W =
9

4L

(
1 +

2

3
b0λ

) 2
3
[
1 +

(2b2
0 + 3b1) log(1 + λ2)

18a

] 4a
3

, (1.123)
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with the numerical values

b0 = 4.2 ,
b1

b2
0

=
51

121
, a =

3

16
. (1.124)

With this choice of background one gets the following features: (i) the β function of the

Yang-Mills theory; (ii) existence of a metric singularity at some coordinate value z in

order to have confinement as defined by the holographic computation of a rectangular

Wilson loop; (iii) existence of a mass gap in the spectrum of the glueballs 0++ and

2++; (iv) linear Regge trajectories for the glueballs in the radial quantum number.

The value of b0 was fixed in order to match the mass ratio between the first excited

scalar glueball 0++∗ and the lightest scalar glueball 0++ (i.e. R00 = m0++∗/m0++),

which is 1.87 according to the lattice results of [93–95]. With all the parameters of

the model fixed, the predicted the mass ratio between the lightest tensor glueball 2++

and the lowest scalar glueball is 1.40, very close to the reported 1.46.

This model has also been applied to compute QCD quantities at finite temperature

like transport coefficients, bulk viscosity, drag force and jet quenching parameters,

providing a good phenomenological description of the Quark-Gluon Plasma. A good

summary of these results can be found in [96].

Despite its successes, the Improved Holographic QCD model is an incomplete dual

model of QCD since it does not include flavour degrees of freedom. Later we will

consider a specific model from the family of holographic duals of QCD in the Veneziano

limit studied in [97,98]. This class of models is built on top of Improved Holographic

QCD by adding space-time filling D4 − D̄4 ”flavour branes”. This system produces

an open string tachyon T that generates chiral symmetry breaking and gauge fields

AL and AR related to the meson sector. The dynamics of the tachyon and gauge fields

will be encoded in a Dirac-Born-Infeld (DBI) action of the form

SDBI = −x
2
M3

pN
2
c

∫
d5X Str

[
Vf (λ, T

†T )
√
det(gab + k(λ)D(aT †Db)T + w(λ)FL

ab)+

+ Vf (λ, TT
†)
√
det(gab + k(λ)D(aTDb)T † + w(λ)FR

ab)
]
. (1.125)

In chapter 5 we will provide more details about a parameterisation of the potentials Vf ,

k and w. Our background fields will be computed including the tachyon backreaction

and will be fixed by the spectrum of the lowest lying mesons.
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1.2.4 BPST Pomeron

Throughout this thesis we model the Pomeron on the gravity side as the graviton’s

Regge trajectory. In this section we will motivate this statement by summarising the

arguments of Brower, Polchinski, Strassler and Tan (BPST) [8]. This work started

the application of the gauge/gravity duality to the study of scattering processes where

Pomeron exchange dominates. The work by BPST also suggested that the observed

soft and hard pomerons manifest themselves at different values of the ’t Hooft coupling.

In the limit of a very small ’t Hooft coupling g2N with N large, after applying BFKL

methods, a Pomeron object can be extracted from a conformal field theory with kernel

K(p⊥, p
′
⊥, s) ≈

sj0√
4πD log s

e−(log p′⊥−log p⊥)2/4D log s , (1.126)

where

j0 = 1 +
4 log 2

π
αN , D =

7ζ(3)

2π
αN . (1.127)

Here we keep up with the definitions of BPST. The object K can be derived from

equation (1.68) as follows: multiply it by (2π)2sk1k2 and use the definition (1.64) of

the BFKL amplitude. Keep only the dominant n = 0 term, perform the change of

variables ω → j−1 and ν → 2ν and define ĵ(ν) = 1+ ᾱsχ0(ν/2) as the position of the

pole in the j plane. If we expand ĵ quadratically and pick the pole we are left with a

gaussian integral whose evaluation yields equations (1.126) and (1.127).

The Pomeron kernel K is a power of s times a diffusion kernel in the variable log p⊥,

with diffusion time τ ∼ log s. On the other hand, consider a scattering amplitude

in the Regge regime A ∼ sα(t). For small t, the Regge trajectory in flat-space string

theory is linear, with α(t) = α0 + α′t. Consider now the scattering of particles along

the x1 axis with momentum transfer kµ in the x2 − x3 plane, i.e. t = −k2
⊥. If we now

compute the Fourier transform of such scattering amplitude we get∫
dd−2k⊥e

i~k⊥·~x⊥sα(t) = sα0

∫
dd−2k⊥e

i~k⊥·~x⊥e−α
′k2
⊥ log s =

sα0e−x
2
⊥/4α

′ log s

(4πα′ log s)(d−2)/2
. (1.128)

It is quite remarkable the similarity between these two kernels since in one case we

are in a regime far from confinement (as in the BFKL case) while in the other we

are within confinement. This motivated BPST to use the gauge/gravity duality to

understand this relationship, concluding later that the Pomeron of the gauge theory is

dual to the graviton Regge trajectory of the gravity theory. In this section we briefly

review this result that is central for this thesis.
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Their argument starts with considering the 2→ 2 scattering of bosonic string tachyon

states in flat-space string theory. At tree level in string theory, the scattering amplitude

for this process is the Virasoro-Shapiro amplitude

A =

∫
d2w|w|−4−α′t/2|1− w|−4−α′s/2 . (1.129)

The integrand of the above equation has a saddle point for

w =
4 + tα′

8 + sα′ + tα′
. (1.130)

For large s and t with s� t this saddle point is of order s−1, i.e. in the large s limit

the integration region around w = t/(s + t) → 0 in the world-sheet complex plane w

contributes the most to the integral. In this limit

|1− w|−4−α
′

2
s ≈

(
1 +

(
2 +

sα′

4

)
w

)(
1 +

(
2 +

sα′

4

)
w̄

)
≈ e

sα′
4

(w+w̄) (1.131)

and the Virasoro-Shapiro amplitude becomes

A ∼
∫
d2w|w|−4−α′t/2e

sα′
4

(w+w̄) = 2π
Γ(−1− α′

4
t)

Γ(2 + α′

4
t)

(e−iπ/2α′s/4)2+α′t/2 , (1.132)

where the change of variable w = x+iy and Γ-function identities were used to compute

the integral over the whole complex w plane. As we have seen previously in this

chapter, this functional form is expected from Regge theory.

The Shapiro-Virasoro amplitude can be obtained through the four-point function of

the tachyon vertex operators inserted on 4 points of the Riemann sphere. Because of

Mobius symmetry the position of three of these operators are fixed at 0, 1 and ∞ so

that

A(s, t) =

∫
d2w〈eip1·X(w,w̄)eip2·X(0)eip3·X(1)eip4·X(∞)〉 (1.133)

As we have seen above the vertex operators eip1·X(w,w̄) and eip2·X(0) are very close to

each other in the Regge limit. Hence, it is expected that Regge regime can also be

extracted from the Operator Product Expansion (OPE) of these vertex operators.

Because in the Regge limit sw ∼ 1, contractions involving p1 · (w∂ + w̄∂̄)X(0), which

generate a factor of s, also need to be included. The OPE of these operators is then

eip1·X(w,w̄)eip2·X(0) ∼ |w|−4−α
′

2
teik·X(0)+p1·(w∂+w̄∂̄)X(0) + · · · (1.134)

and introducing it in the expectation value above yields

〈eip1·X(w,w̄)eip2·X(0)eip3·X(1)eip4·X(∞)〉 ∼ (1.135)

|w|−4−α
′

2
t〈eik·X(0)+p1·(w∂+w̄∂̄)X(0)eip3·X(1)eip4·X(∞)〉 .
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The expectation value is the exponential term that appears in the integrand of equation

(1.132) and hence we recover the same result.

One can isolate the Pomeron contribution to the scattering amplitude by performing

the integration over the complex w plane before inserting the OPE in the expectation

value,∫
d2w eip1·X(w,w̄)eip2·X(0) ∼ Π(α′t)eik·X(0)

[
p1 · ∂X(0) p1 · ∂̄X(0)

]1+α′t/4
, (1.136)

where the right-hand side is the Pomeron vertex operator. The above integral was

evaluated using the same techniques as in (1.132) after using the OPE (1.134). Insert-

ing the Pomeron vertex operator into the expectation values gives the Regge behaviour

of the amplitude.

To study the general case, BPST consider string states that are grouped into two

arbitrary sets of vertex operators. One set isWR, which consists of lR vertex operators

and their lR− 2 world-sheet integrations, while WL is a set of lL vertex operators and

their lL − 2 world-sheet integrations. The scattering amplitude involving these states

is considered whenWL andWR differ by a large boost in the ± plane, so that thatWR

has a large + component whileWR has a large − component, justifying the subscripts

R and L. As in the tachyonic case the momentum exchanged k is orthogonal to the ±
plane. To write the amplitude in a general way we also need to introduce the worldsheet

evolution operators wL0−2 and w̄L̄0−2 between these sets of operators, where L0 and

L̄0 are the right-moving and left-moving Virasoro operators, respectively. In fact these

operators are already present in the OPE (1.134) since

|w|−4−α
′

2
teik·X(0)+p1·(w∂+w̄∂̄)X(0) = wL0−2w̄L̄0−2eik·X(0)+ip1·(w∂+w̄∂̄)X(0) . (1.137)

The scattering amplitude for these set of states is then

AWLWR
=

∫
d2w

〈
WRw

L0−2w̄L̄0−2WL

〉
. (1.138)

We proceed by inserting a complete set of string states between the operators wL0−2

and w̄L̄0−2 and keep only the dominant ones in the Regge limit, i.e. ws ∼ 1. The

states that survive are those of the form (αn−1ᾱ
m
−1)|0〉 with n,m = 1, 2, · · · , which are

the ones in the graviton Regge trajectory. At this point the scattering amplitude takes

the form

AWLWR
∼

∞∑
m,n=0

∫
d2w

2m+nwm−2−α′t/4w̄n−2−α′t/4

α′m+nm!n!
× (1.139)

×
〈
WRe

ik·X (∂X−)m (∂̄X−)n〉 〈e−ik·X (∂X+
)m (

∂̄X+
)nWL

〉
.
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These states can be reorganised in the arguments of an exponential which after acting

with
∫
d2w|w|−4−α′t/2 yields

AWLWR
∼Π(α′t)(s/s0)2+α′t/2× (1.140)〈
WR0e

ik·X (2∂X−∂̄X−/α′)1+α′t/4
〉〈

e−ik·X
(
2∂X+∂̄X+α′

)1+α′t/4WL0

〉
,

where the states WL/R were boosted back to their rest frames.

The above general scattering amplitude for string states can be understood as the con-

volution of the external string states with the Pomeron propagator Π(α′t)(s/s0)2+α′t/2

times couplings between the string states with the Pomeron vertex operator

V±P =
(
2∂X±∂̄X±/α′

)1+α′t/4
e∓ik·X . (1.141)

As we will see in later chapters, this structure of the scattering amplitude is present in

all the processes dominated by Pomeron exchange that we will consider in this thesis.

Finally let us look at the bosonic string in a curved space-time case with metric

ds2 = e2A(y)ηµνdx
µdxν + ds2

⊥ . (1.142)

In general the string solutions for this background are not known, although they might

be the relevant ones for QCD. In this kind of background the string wavefunctions are of

the form eip·xψ(y). These wavefunctions can be promoted to operators by substituting

x and y by worldsheet fields X and Y , yielding a vertex operator eip·Xψ(Y ). One can

then proceed as in the flat-space case and consider the OPE

eip1X(w,w̄)ψ1(Y (w, w̄))eip2X(0)ψ2(Y (0)) ∼ (1.143)

wL0−2w̄L̄0−2eik·X(0)+ip1·(w∂+w̄∂̄)ψ1(Y (w, w̄))ψ2(Y (0)) .

To include terms of order up to (log s)/
√
λ ∼ | logw|/

√
λ one needs to terms of order

1/
√
λ in the world-sheet dimension L0. The next steps follow the same logic as the flat-

space case and the following formula for the scattering amplitude in the background

(1.142) is derived

A ∼
∫
d6y
√
G⊥e

2A(y)ψ3(y)ψ4(y)Π(α′∆2)(α′s)2+α′∆2/2e2A(y)ψ1(y)ψ2(y) , (1.144)

where ∆2 is an operator that depends on Mandelstam t. The major difference between

the above expression for the amplitude and the flat-space case is the promotion of the

Mandelstam t to this operator. For forward scattering, and for coordinates such that

AdS5 ×W can be written as

ds2 =
r2

0

R2
e2uηµνdx

µdxν +R2du2 + ds2
W , (1.145)
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the ∆2 operator is

α′∆2 =
1√
λ

(∂2
u − 4) + α′∇2

W . (1.146)

For simplicity , consider that the wavefunctions ψ do not depend on W . Then the s

dependence of the amplitude is associated to a diffusion operator through

s2+(∂2
u−4)/2

√
λ (1.147)

The corresponding Schrodinger problem is

[−∂2
u + 4]ψ = Eψ , (1.148)

with eigenvalues E = 4 + ν2 where ν ∈ R. This implies that the operator in the

exponent of s has eigenvalues

j = j0 −Dν2 , (1.149)

with

j0 = 2− 2

λ
, D =

1

2
√
λ
. (1.150)

The implications of this result is that there is a branch cut in the j plane that ends

at j0. This is precisely what happens for the BFKL case using perturbative methods

and j0 can be identified as the BFKL exponent in the strong coupling limit.

Another derivation of the above results was also presented by BPST by considering

the light-cone gauge for a superstring in AdS5 ×W . In this approach the same result

is obtained by a semi-classical computation of the Euclidean Polyakov path integral in

this gauge. The results obtained need to be generalised to theories with confinement

in order to understand QCD. BPST considered the effects of confinement by (i)

considering theories that have conformal symmetry in the UV or (ii) a logarithmic

running coupling. Using string theory they were able to derive model-independent

features of the Pomeron for values of |t| large compared with Λ2, where Λ has the

same order as the confinement scale. In particular, for the hard-wall model Regge

trajectories with bound states poles are found for large t > 0 but for large t < 0 the

trajectories disappear under a cut. If a running coupling is introduced this cut breaks

up into poles that descend slowly as t decreases. However, for t ∼ Λ2 the behaviour

of the Pomeron kernel becomes model dependent. This is the region of interest for

total cross-sections and DIS structure functions. One of the objectives of this thesis

is precisely to study holographic Pomeron physics in this region using dual models of

QCD that describe as many features of this theory as possible.
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2
Non-minimal coupling contribution to DIS at low x

in Holographic QCD

Chapter abstract: We consider the effect of including a nonminimal coupling be-

tween a U(1) vector gauge field and the graviton Regge trajectory in holographic QCD

models. This coupling describes the QCD interaction between the quark bilinear

electromagnetic current and the Pomeron. We test this new coupling against the

proton structure functions F2 and FL data at low Bjorken x and obtain a good fit with

a χ2
dof of 1.4 over a very large kinematical range in the photon virtualityQ2 < 400 GeV2

and for x < 10−2. The scale of the new dimension full coupling, which arises from

integrating higher spin fields, is in the range of 10− 100 GeV.

2.1 Introduction

In this chapter we focus on low x DIS, extending the work of [1]. The basic idea is to

construct the holographic Regge theory for the glueball exchange associated with the

Pomeron trajectory. In DIS the Pomeron couples to the quark bilinear electromagnetic

current Jµ = ψ̄γµψ, which is described holographically by the interaction between

a bulk U(1) vector gauge field and the graviton Regge trajectory. Here we shall

extend the analysis of [1] by (i) allowing for a nonminimal coupling between this

gauge field and the higher spin fields in the graviton Regge trajectory and (ii) adding

the longitudinal proton structure function FL (x,Q2) data. We will consider HERA

measurements of F2 and FL available in [99,100], yielding 249 points in the kinematical

region with x < 10−2 and Q2 ≤ 400 GeV2 for F2

(
x,Q2

)
, and 64 points with x < 10−2

and Q2 ≤ 45 GeV2 for FL
(
x,Q2

)
. As a result, we manage to improve the quality of the
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fit from a chi squared per degree of freedom χ2
dof of 1.70 in [1] to 1.42, without including

the non-minimal coupling. The inclusion of a non-minimal coupling improves slightly

the χ2
dof to 1.40.

The existence of such non-minimal coupling between the bulk U(1) gauge field and

the graviton Regge trajectory is expected. Starting from the UV high energy limit,

the OPE expansion of the two currents, Jµ(x)Jν(y), contains two OPE coefficients for

each spin J symmetric traceless operator associated with the glueballs on the Pomeron

trajectory, OJ ∼ tr(Fµα1Dα2 · · ·DαJ−1
F µ
αJ

). Holographically, and for pure AdS space,

this amounts to precisely the same counting when coupling a vector gauge field to the

graviton, or to the higher spin fields in the gravity Regge trajectory. Thus we shall

consider such non-minimal coupling. In fact, since QCD is not a conformal theory,

there is actually more freedom in the choice of such couplings in holographic QCD

which, as we shall see, are very much model dependent. For concreteness we shall

consider one such coupling, which arises in an effective field theory expansion in the

dual QCD string tension. First we will summarize the expressions for the DIS structure

functions F2(x,Q2) and FL(x,Q2) in generic AdS/QCD models. We then compute the

corresponding non-minimal coupling contribution to these functions. Finally we focus

on the specify holographic QCD model of [91, 92, 96], allowing us to put numbers in

our expressions that are then tested against available low x DIS data.

2.2 Holographic computation of F2 and FL struc-

ture functions

The proton structure functions F2(x,Q2) and FL(x,Q2) are related to the total cross-

sections of the inelastic γ∗p→ X process. As discussed in the standard literature (see

for instance [67]), and reviewed in the introduction in (1.53) and (1.54), defining σT

and σL to be the cross sections for transverse and longitudinal polarizations, we have

F p
2

(
x,Q2

)
=

Q2

4π2α

[
σTγ∗p

(
s,Q2

)
+ σLγ∗p

(
s,Q2

)]
, (2.1)

F p
L

(
x,Q2

)
=

Q2

4π2α
σLγ∗p

(
s,Q2

)
, (2.2)

where α is the fine structure constant. The structure functions depends on the photon

virtuality Q2 and on the Bjorken x � 1, which we take to be small. Through

the optical theorem, these total cross-section can be related to the imaginary part

of the amplitude A for elastic forward scattering γ∗p → γ∗p, with the appropriate
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polarizations. Thus

F2(x,Q2) =
Q2

4π2α

1

s

(
ImA⊥(s, t = 0) + ImA‖(s, t = 0)

)
, (2.3)

FL(x,Q2) =
Q2

4π2α

1

s
ImA‖(s, t = 0) , (2.4)

where s and t are the usual Mandelstam variables (in the low x regime, s = Q2/x) and

A⊥ and A‖ are the scattering amplitudes for the case of a transverse and longitudinal

off-shell photon, respectively. We will compute these amplitude using the AdS/QCD

prescription as described below.

First let us define our kinematical variables. We use light-cone coordinates (+,−,⊥),

with the flat space metric given by ds2 = −dx+dx− + dx2
⊥, where x⊥ ∈ R2 is a vector

in impact parameter space. We take for the large s kinematics of 12→ 34 scattering

the following

k1 =

(√
s,−Q

2

√
s
, 0

)
, k3 = −

(√
s,
q2
⊥ −Q2

√
s

, q⊥

)
, (2.5)

k2 =

(
M2

√
s
,
√
s, 0

)
, k4 = −

(
M2 + q2

⊥√
s

,
√
s,−q⊥

)
.

where k1 and k3 are respectively the incoming and outgoing photon momenta. The

proton target has mass M and incoming and outgoing momenta k2 and k4, respectively.

For the forward scattering considered in the optical theorem we set q⊥ = 0, so that

k1 = −k3, and we take the same polarization for the incoming and outgoing photon.

The possible polarization vectors are

nµ(λ) =

(0, 0, ελ) , λ = 1, 2 ,

(
√
s/Q,Q/

√
s, 0) , λ = 3 ,

(2.6)

where ελ is just the usual transverse polarization vector.

2.2.1 AdS/QCD

We shall compute the above scattering amplitudes using the framework of AdS/QCD.

First we present general formulae and then specify to a particular model. As explained

in the introduction, we are interested in the Regge limit where the amplitudes are

dominated by the exchange of the graviton Regge trajectory, which includes fields of

even spin J . We also need to define our holographic external states. The corresponding

Witten diagram is shown in Fig. 2.1. The upper part of the diagram, is related to the

incoming and outgoing virtual photons, whereas the bottom part to the proton target.
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(a)

Figure 2.1: Tree level Witten diagram representing spin J exchange in 12 → 34

scattering. The n1 label denotes the incoming photon polarization while n3 label

the outgoing photon polarization. For forward scattering n1 = n3. Aa represents

the non-normalizable mode of a U(1) gauge field dual to the source of the conserved

current ψ̄γµψ and Υ is a normalizable mode of a bulk scalar field that represents an

unpolarised proton. X and X̄ represent the bulk points where the external scattering

states couple with the spin J fields.

The holographic dual of QCD will have a dilaton field and a five-dimensional metric,

which in the vacuum will have the form

ds2 = e2A(z)
[
dz2 + ηµνdx

µdxν
]
, Φ = Φ(z) , (2.7)

for some unknown functions A(z) and Φ(z). The dilaton is dual to the Lagrangian

and the metric to the energy-momentum tensor. We shall use greek indices in the

boundary, with flat metric ηµν . We will work with the string frame metric.

In DIS the external photon is a source for the conserved U(1) current ψ̄γµψ, where

the quark field ψ is associated to the open string sector. The five dimensional dual of

this current is a massless U(1) gauge field A. We shall assume that this field is made

out of open strings and that is nonminimally coupled to the metric, with the following

action

SA = −1

4

∫
d5X
√
−g e−Φ

(
FabF

ab + βRabcdF
abF cd

)
, (2.8)

where F = dA and we use the notation Xa = (z, xα) for five-dimensional points. The

corresponding equation of motion can be easily derived to be

∇a

[
e−Φ

(
F ab + βRab

cdF
cd
)]

= 0 . (2.9)

The coupling β has dimensions of length squared. At this order in derivatives of the

fields, we could have other couplings to the Riemann tensor, to derivatives of the

55



2- Non-minimal coupling contribution to DIS at low x in Holographic QCD

dilaton field and also higher derivative terms in the field strength F . As we shall see

bellow, we will be mostly interested in the coupling to the graviton in the linearised

theory, in which case there are only two possible local couplings. Thus, for our purposes

the above action is rather general.

We will fix the gauge of the U(1) bulk field to be DaA
a = 0, which gives Az = 0 and

∂µA
µ = 0. The solution of the equation of motion (2.9) in this gauge is then

Aλµ (X; k, λ) = nµ(λ) fk(z) eik·x , (2.10)

where fk(z) solves the differential equation[
−Q2 + eΦ−A∂z

(
eA−Φ∂z

)
+ β∆β

]
fQ(z) = 0 , (2.11)

with

∆β = −2e−2A
[(
−ȦÄ− Φ̇Ä+

...
A
)
∂z + Ä∂2

z − Ȧ2Q2
]
. (2.12)

Notice that here, and in the remainder of this chapter, we shall denote derivatives with

respect to z with a dot. The momentum k and the polarization vector n(λ) satisfy

k2 = Q2 , nz(λ) = 0 , k · n(λ) = 0 , (2.13)

where the boundary polarization is given by 5.37. We choose as UV boundary con-

dition f(0) = 1 which gives the non-normalizable solution, since the off-shell photon

acts as a source for the quark bilinear current ψ̄γµψ. Finally, let us note that, for the

computation of the Witten diagram in figure 2.1, it is convenient to compute the field

strength of a given mode

Fµν(X; k, λ) = 2ik[µnν](λ)fQ(z)eik·x ,

Fzµ(X; k, λ) = nµ(λ)ḟQ(z)eik·x , (2.14)

where Q2 = k2.

For the proton target we consider a scalar field Υ that represents an unpolarized proton

described by a normalizable mode of the form

Υ(X; p) = υm(z) eip·x , (2.15)

where p is the momentum and m2 = −p2. As explained in detail in [1], the specific

details of the function will not be important because it will appear in an integral that

can be absorbed in the coupling between the Pomeron and the proton.
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2.2.2 Minimal and Non-minimal couplings

To compute the Witten diagram of figure 2.1, we need to consider the interaction

between the external scattering states and the spin J fields in the graviton Regge

trajectory. Thus, the higher spin field comes from the closed string sector while the

external fields come from the open sector.

First we consider the coupling between the U(1) gauge field and the graviton. In

Einstein-Maxwell theory, and for AdS or flat space, it is well known that there are

only two possible cubic couplings between these fields, namely

F acF b
chab , F acF bd∇c∇dhab , (2.16)

where hab is the metric fluctuation. The present case, however, is less restrictive

because we have an additional scalar field and also because space-time is not maximally

symmetric. To understand this better, let us linearize the action (2.8) around the

background metric, that is, we write gab = ḡab + hab. Setting h = haa = 0 we have the

cubic couplings

δS = −1

2

∫
d5X
√
−ḡ e−Φ

(
F abF c

bhac +
β

2
hapR̄

p
bcdF

abF cd− βF acF bd∇̄a∇̄bhcd

)
. (2.17)

To study the graviton Regge trajectory in the background (2.7) we need to decompose

the metric in SO(1, 3) irreducible representations. We will be only interested in the

graviton TT components hαβ, satisfying ∂αhαβ = 0 and hαα = 0, and we set hzα =

0 = hzz. Using that Rαµβν = Ȧ2e2A(ηανηµβ − ηαβηµν) and Rαzβz = −Äe2Aηαβ in the

background (2.7), and computing the covariant derivatives, we obtain

δS = −1

2

∫
d5X
√
−ḡ e−Φ

[
FαµF β

µ

(
1− βe−2AȦ∂z

)
− βFαµF βν∂µ∂ν

− 2βFαzF βν
(
∂z − 2Ȧ

)
∂ν + FαzF β

z

(
1− βe−2A

(
∂2
z − 3Ȧ∂z + 2Ȧ2

)) ]
hαβ . (2.18)

Notice that in the AdS case (A = − log z) these couplings reduce to the two allowed

couplings in (2.16). However, in the present case there are more possibilities. For

example, other contractions with the Riemann tensor will give different functions

multiplying the same tensor structures in the couplings. We may also use derivatives

of the scalar field to contract with the field strength. For simplicity, the approach we

follow in this chapter will be to focus on the coupling given by the action (2.8). Our

aim is to test whether this type of corrections are important in describing DIS using

holographic QCD.

Next we wish to generalize the previous coupling to case of the cubic interaction

between the gauge field and a symmetric, transverse and traceless spin J field, ha1...aJ .
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The Pomeron trajectory includes such higher spin fields of even J . Again there are

several possibilities, but we shall focus on the simplest extension of the two couplings

to the graviton considered above. The first term is the minimal coupling term, which

can be generalized to

κJ

∫
d5X
√
−ḡ e−ΦF a1b∇̄a2 . . . ∇̄aJ−1F aJ

b ha1...aJ . (2.19)

The transverse condition of ha1...aJ guarantees that this term is unique up to dilaton

derivatives. For the nonminimal coupling we will write

βJ

∫
d5X
√
−ḡe−Φ

(
F ca1∇̄a2 . . . ∇̄aJ−1F aJd∇̄c∇̄d +

+
1

2
F a1b∇̄a2 . . . ∇̄aJ−1F cdRaJ

bcd

)
ha1...aJ . (2.20)

We remark that in both expressions (2.19) and (2.20) the way we distribute the

covariant derivatives acting on the field strength is important. After integrating by

parts such a covariant derivative, we are left with an extra term in the derivative of the

background dilaton field. However, these terms will have a component of the higher

spin field along the z direction, which can be dropped in the case of the Pomeron.

Next we need to decompose the spin J fields in SO(1, 3) irreducible representations.

In the Regge limit we are only interested in the TT components of these fields, that

is in hα1...αJ with ∂νhνα2...αJ = 0 and hννα3...αJ
= 0. From now on we will assume these

two conditions. Thus for the minimal coupling (2.19) we obtain simply

κJ

∫
d5X
√
−ḡ e−Φ

(
Fα1µ∂α2 . . . ∂αJ−1FαJ

µ + Fα1z∂α2 . . . ∂αJ−1FαJ
z

)
hα1...αJ . (2.21)

For the nonminimal coupling (2.20) we obtain after a cumbersome computation

βJ

∫
d5X
√
−ḡe−Φ

[
F zα1∂α2 · · · ∂αJ−1FαJ

zDJ‖ + F µα1∂α2 · · · ∂αJ−1FαJν×

×
(
e2ADJ⊥ηµν + ∂µ∂ν

)
+ 2F µα1∂α2 · · · ∂αJ−1FαJz

(
∂z − JȦ

)
∂µ

]
hα1···αJ , (2.22)

where

DJ⊥ = e−2AȦ
(
∂z − (J − 2) Ȧ

)
,

DJ‖ = e−2A
(
∂2
z − (2J − 1) Ȧ∂z − (J − 2) Ä+ J (J − 1) Ȧ2

)
. (2.23)

For J = 2 this coupling reduces to the graviton nonminimal coupling given in (2.18).

For the scalar field Υ we will consider a minimal coupling with spin J closed string

fields

κ̄J

∫
d5X
√
−ḡ e−Φ (Υ∇a1 . . .∇aJΥ) ha1...aJ . (2.24)
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Again, this coupling is unique up to derivatives of the dilaton field that are subleading

in the Regge limit. Focusing on the TT part of the spin J field, we are left with the

single coupling

κ̄J

∫
d5X
√
−ḡ e−Φ (Υ∂α1 . . . ∂αJΥ) hα1...αJ . (2.25)

2.2.3 Witten diagrams in Regge limit

The scattering amplitude will have a contribution from the minimal and the non-

minimal coupling. The contribution of the minimal coupling to the structure functions

F2 and 2xF1 is presented and described in [1]. Here we will just outline the results since

the later calculation of the non-minimal coupling contribution to the DIS structure

functions is similar.

Using the optical theorem the structure functions can be related to the amplitude for

forward Compton scattering

AFC(q, P ) = i(2π)4δ4
(∑

i

ki

)[
n2
T F̃1(x,Q2) +

2x

Q2
(nT · P )2 F̃2(x,Q2)

]
, (2.26)

where q is the momentum of the incoming photon, P is the momentum of the incoming

hadron and nT = nT (q) is the transverse projection of the virtual photon polarization

nµ. The DIS structure functions are extracted from the forward Compton amplitude

through

Fi(x,Q
2) = 2π ImF̃i(x,Q

2), (i = 1, 2) (2.27)

and FL = F2 − 2xF1.

Using the ingredients of the sections 2.2.1 and 2.2.2 the minimal coupling contribution

to the forward Compton scattering amplitude due to spin J exchange can be computed.

Then one sums over the fields with of spin J = 2, 4, . . . in the graviton Regge

trajectory. This sum can be converted into an integral in the complex J-plane through

a Sommerfeld-Watson transform.

1

2

∑
J≥2

(
sJ + (−s)J

)
= −π

2

∫
dJ

2πi

sJ + (−s)J

sinπJ
. (2.28)

From the resulting expression and using (2.27) one obtains for the DIS structure

functions F1 and F2 [1]

xFi(x,Q
2) =4πQ2

∫
dzdz̄ P

(i)
13 (Q2, z)P24(P 2, z̄)Im

[
χ(s, t = 0, z, z̄)

]
, (2.29)
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where

P
(1)
13 (Q2, z) = eA(z)−Φ(z)f 2

Q , (2.30)

P
(2)
13 (Q2, z) = eA(z)−Φ(z)

[
f 2
Q +

1

Q2
(∂zfQ)2

]
, (2.31)

P24(P 2, z̄) = e3A(z̄)−Φ(z̄)Υ2(P 2, z̄) , (2.32)

and

χ(s, t, z, z̄) =
π

4

∫
dJ

2πi

S(z, z̄)J−1
(
1 + (−1)J

)
sin(πJ)

kJ k̄J
2J

GJ(z, z̄, t) , (2.33)

with S(z, z̄) = se−A(z)−A(z̄). The eikonal phase χ(s, t, z, z̄) results from the compo-

nent + · · ·+,− · · ·− of the spin J propagator Πa1...aJ ,b1...bJ

(
X, X̄

)
, which satisfies the

identity∫
dw+dw−d2l⊥

2
e−iq⊥·l⊥ Π+···+,−···−

(
X, X̄

)
= − i

2J

(
eA+Ā

)J−1

GJ (z, z̄, t) , (2.34)

where w = x− x̄ = (w+, w−, l⊥). GJ(z, z̄, t) admits the spectral representation

GJ(z, z̄, t) = eB(z)+B(z̄)
∑
n

ψn(J, z)ψ∗n(J, z̄)

tn(J)− t
, (2.35)

where ψn(J, z) are the normalizable modes associated to the spin J fields, that is they

describe massive spin J glueballs. The function B(z) depends on the differential equa-

tion of the propagator Π, and for the Improved Holographic QCD model considered

here B = Φ− A/2.

The next step is to assume that the J-plane integral can be deformed from the poles at

even J, to the poles J = jn(t) defined by tn(J) = t. The scattering domain of negative

t contains these poles along the real axis for J < 2. After this step the expressions for

F1 and F2 become

2xF1(x,Q2) =
∑
n

Im gnx
1−jn(0)Q2jn(0)P̄

(1,n)
13 (Q2) , (2.36)

F2(x,Q2) =
∑
n

Im gnx
1−jn(0)Q2jn(0)P̄

(2,n)
13 (Q2) , (2.37)

where

P̄
(1,n)
13 =

∫
dz f 2

Q e
(2−jn)A+B−Φψn(jn, z), (2.38)

P̄
(2,n)
13 =

∫
dz

[
f 2
Q +

1

Q2
(∂zfQ)2

]
e(2−jn)A+B−Φψn(jn, z), (2.39)
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with jn evaluated at t = 0. The constants gn, which involve the AdS local couplings

and an integral over the proton wavefunction, will be used as fitting constants of the

model. They are defined by

gn = −π
2

(
i+ cot

πjn
2

)
κjnκ̄jn

2jn
djn
dt

∫
dz̄e−(jn−7/2)Aυ2

m(z̄)ψ∗n(z̄) . (2.40)

To compute the minimal coupling contribution to FL one just needs to use the identity

F2 − 2xF1.

We shall now compute the contribution to F2 of the nonminimal coupling (2.22) to

the exchange of a spin J field, corresponding to the Witten diagram in Fig. 2.1. The

contribution to FL is obtained in an analogous way but without taking into account

the transverse polarization of the off-shell photon. Since this constitutes original work

from the author of this thesis, we will present more details than in the calculation

of the minimal coupling contribution. Using the Regge kinematics (2.5) and taking

as external states F ab
i (X) for i = 1, 3 and Υj(X̄) for j = 2, 4, we obtain for forward

scattering the expression

βJ κ̄J

3∑
λ=1

∫
d5Xd5X̄

√
−g
√
−ḡ e−Φe−Φ̄Υ2

(
∂̄−
)J

Υ4×[
F +z

1

(
∂+
)J−2

F +
3 zDJ‖ + F +µ

1

(
∂+
)J−2

F +
3 µDJ⊥

]
Π+···+,−···−(X, X̄) , (2.41)

where bars denote quantities evaluated at X̄. Notice that the couplings involving

derivatives along the boundary in (2.22) vanish for forward scattering. Using (2.14)

and (2.15) for the external states and performing the sum over polarizations we find

−βJ κ̄JsJ
∫
d5Xd5X̄

√
−g
√
−ḡ e−(Φ+Φ̄)−2J(A+Ā)υ2

m(z̄)×

e−2A

(
f 2
Q(z)DJ⊥ +

ḟ 2
Q(z)

Q2
DJ‖

)
Π+···+,−···− . (2.42)

We remark that the terms with DJ⊥ and with DJ‖ defined in (2.23) are, respectively,

the leading contribution arising from the transverse and longitudinal polarizations,

therefore justifying our notation.

Performing the change of variable w = x− x̄, setting l⊥ = x⊥− x̄⊥, t = −q2
⊥ and using

the identity 2.34 we finally obtain

i
βJ κ̄Js

J

2J
V

∫
dzdz̄e−Φ−Φ̄−2J(A+Ā)+3A+5Āυ2

m(z̄)× (2.43)(
f 2
Q(z)DJ⊥ +

ḟ 2
Q(z)

Q2
DJ‖

)[
e(J−1)(A+Ā)GJ(z, z̄, 0)

]
.
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In this equation the space-time volume V comes from the delta function momentum

conservation that we imposed from the beginning on the external states and of course

GJ has the spectral decomposition of equation (2.35).

In order to get the total amplitude we need to sum over even spin J fields with

J ≥ 2. Again, we assume analytic continuation of the amplitude for spin J exchange

to the complex J-plane and apply a Sommerfeld-Watson transform, followed by a

deformation of the contour from the poles at even J , to the poles to the poles J = jn(t)

defined by tn(J) = t.

A(s, 0) =
∑
n

hns
jn

∫
dz e−ΦeA(−2jn+3)× (2.44)(
f 2
QD

jn(0)
⊥ +

ḟ 2
Q

Q2
Djn(0)
‖

)[
eA(jn(0)−1)eBψn

(
jn(0), z

)]
,

with hn defined as

hn = −π
2

βjnκ̄jn
2jn

(
i+ cot

πjn
2

)
j′n

∫
dz̄ eĀ(4−jn)e−Φ̄eB̄υ2

m(z̄)ψ∗n
(
jn, z̄

)
. (2.45)

Finally, the action of the differential operators on the functions of z allows us to rewrite

the forward scattering amplitude as

A(s, 0) =
∑
n

hns
jn

∫
dz e−(j−2)A+B−Φ

(
f 2
QD̃⊥ +

ḟ 2
Q

Q2
D̃‖

)
ψn
(
jn(0), z

)
, (2.46)

with

D̃⊥ = e−2A
(
Ȧ∂z + Ȧ2 + ȦḂ

)
, (2.47)

D̃‖ = e−2A
(
∂2
z −

(
Ȧ− 2Ḃ

)
∂z + B̈ + Ä+ Ḃ2 − ȦḂ

)
.

2.2.4 F2 and FL structure functions

The DIS structure function can be written in Regge theory in the following form

F2(x,Q2) =
∑
n

(
f 2,MC
n (Q2) + f 2,NMC

n (Q2)
)
x1−jn , (2.48)

FL(x,Q2) =
∑
n

(
fL,MC
n (Q2) + fL,NMC

n (Q2)
)
x1−jn , (2.49)

where we separated the contributions from the minimal and nonminimal couplings

between the graviton trajectory and the U(1) current that arise from the holographic
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computation. From [1], for B = Φ− A/2, and using the identity FL = F2 − 2xF1 we

have

f 2,MC
n (Q2) = gnQ

2jn

∫
dz e−(jn− 3

2)A

(
f 2
Q +

ḟ 2
Q

Q2

)
ψn , (2.50)

fL,MC
n (Q2) = gnQ

2jn

∫
dz e−(jn− 3

2)A ḟ
2
Q

Q2
ψn . (2.51)

Using the definitions (2.2) and (2.3), we may take the imaginary part of the forward

scattering (2.46), to obtain the contribution from the nonminimal coupling

f 2,NMC
n (Q2) = g̃nQ

2jn

∫
dz e−(jn− 3

2)A

(
f 2
QD̃⊥ +

ḟ 2
Q

Q2
D̃‖

)
ψn , (2.52)

fL,NMC
n (Q2) = g̃nQ

2jn

∫
dz e−(jn− 3

2)A ḟ
2
Q

Q2
D̃‖ψn , (2.53)

where g̃n = Im(hn)/(4π2α). Both constants gn and g̃n are used as fitting parameters

in our setup, thus the details of holographic wave function for the proton are not

important in the fit. Notice that the gn and g̃n do not have the same dimensions,

indeed comparing both couplings we see that [g̃n/gn] = L2. Formulas (2.52) and

(2.53) are one of the main results of this chapter.

2.2.5 Improved Holographic QCD

To test the above ideas against experimental data we need to consider a concrete QCD

holographic model. As pointed out before, we shall consider the improved holographic

QCD model introduced in [91,92,96]. This fixes the background fields A(z) and Φ(z),

which give an approximate dual description of the QCD vacuum.

Next we need to consider the equation of motion for the spin J fields that are dual

to the twist two operators, whose exchange gives the dominant contribution in DIS at

low x. This equation is then analytically continue in J , in order to do the Sommerfeld-

Watson transform in Regge theory. This procedure was described in detail in [1], so

we will not repeat it here. In chapter 5 we will do a similar analysis for a model

of holographic QCD that contains a dilaton and a tachyon coupled to gravity with

backreaction effects included. The upshot is that the function B introduced in (2.35)

to define the transverse propagator is given by B = Φ − A/2 and the normalizable

modes of the spin J field ψn(z) solve a Schrödinger problem(
− d2

dz2
+ UJ(z)

)
ψn(z) = tnψn(z) , (2.54)
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where

UJ(z) =
3

2

(
Ä− 2

3
Φ̈

)
+

9

4

(
Ȧ− 2

3
Φ̇

)2

+(J − 2)e−2A

[
2

l2s

(
1 +

d√
λ

)
+
J + 2

λ4/3

+ e2A
(
aΦ̈ + b

(
Ä− Ȧ2

)
+ cΦ̇2

)]
,

where the first two terms represent the potential for the graviton and the remaining

deform the graviton potential. This potential is analytically continued in J in such a

way that the value of the intercept J = jn is obtained when the nth eigenvalue satisfies

tn(J) = 0.

The constants ls, a, b, c and d are used as fitting parameters and will be adjusted such

that the best match with F2(x,Q2) and FL(x,Q2) data is achieved. In particular, from

the low energy effective string theory perspective, ls is related to the string tension; d

is related to the anomalous dimension curve of the twist 2 operators, or it can also be

thought as encoding the information of how the masses of the closed strings excitations

are corrected in a slightly curved background; the constants a, b and c encode the first

order derivative expansion of a presumed string field theory lagrangian; λ = eΦ is the

’t Hooft coupling.

2.3 Data analysis
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Figure 2.2: Structure function F2(Q2, x). Experimental points vs prediction of this

work with a χ2
dof = 1.42. Each line corresponds to a given Q2 (GeV2) as indicated.

With the previously described setup we proceed to find the best values for the potential

parameters ls, a, b, c and d, as well as for the coupling values β, gn and g̃n that better fit
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Figure 2.3: Structure function FL(Q2, x). Experimental points vs prediction of this

work with a χ2
dof = 1.42. Each line corresponds to a given Q2 (GeV2) as indicated.

the data. We look, as usual, for the best set of parameter values such that the sum of

the weighted difference squared between experimental data and model predicted values

is minimum, using as weight the inverse of the experimental uncertainty. Since this is a

highly nontrivial numerical optimization problem in which we do not known explicitly

the gradient of the function to be optimized, we use the Nelder-Mead algorithm, using

C++ language, and try with different starting points in the parameter space. We have

used a Chebyshev algorithm with 1000 Chebyshev points for solving the Schrodinger

problem. We have found that the inclusion of the nonminimal coupling contribution

considerable decreases the convergence ratio of the minimizing routine compared with

the case where only the minimal coupling case is used, consistent with the fact that the

new function to optimize has a much rougher landscape. Our best fit results with only

the contribution of the minimal coupling for F2(x,Q2) and FL(x,Q2) are presented in

figures 2.2 and 2.3. In this fit we considered values of x in the range x < 10−2, and of

the photon virtuality Q2 < 400 GeV2. This gives a total number of 249 data points

for F2 (x,Q2) and 64 points for FL (x,Q2). The χ2
dof for this fit is 1.42. As in [1],

aiming to make a consistent model for the soft Pomeron, we have forced the intercept

of the second trajectory to be around j1 = 1.09. This is achieved penalizing those set
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Figure 2.4: Regge trajectories obtained from our model and their intercepts.

Configurations that give the soft Pomeron intercept j1 = 1.09 were favoured in the

fitting process.

of parameters which give a different second intercept by adding a term of the type

104(j1− 1.09)2 to the function to be optimized. The correspondent Regge trajectories

can be seen in figure 2.4.

The values of the parameters that give the best fit are summarized in Table 2.1. We

also evaluated the contribution of the nonminimal coupling to the description of the

proton structure functions. Using the same data as mentioned above we have obtained

a slightly better χ2
dof around 1.40. The best fit parameters including the nonminimal

coupling contribution are displayed in Table 2.2. We would like to understand the

scale defined by the nonminimal coupling. The best fit fixes the value of this coupling

in the equation of motion (2.9) for the U(1) gauge field to be β = −0.000593 GeV−2.

This numerical value correspond to an energy of 41 GeV and therefore the energy scale

associated with this correction is in the range of 10− 100 GeV. We may also look at

the ratio between the constants gn and g̃n, given by,

g̃n
gn

=
βjn(0)

κjn(0)

, (2.55)

which has dimensions length2. This follows from taking the imaginary part of (2.45)

and from the fact that gn has a similar expression [1]. Looking at Table 2.2 it is simple
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to see that the ratio g̃n/gn, for each n, is also in the energy range of 10− 100 GeV.

2.4 Conclusion

In this chapter we extended the results of [1] by including the proton structure function

FL(x,Q2) and the contribution of a nonminimal coupling between the U(1) gauge

field and the higher spin fields in the graviton Regge trajectory. These nonminimal

couplings are expected to be present and to play an important role in theories with

higher spin fields.

With the inclusion of the FL(x,Q2) data we have improved the χ2
dof of 1.7 from [1]

to 1.42, without changing much the values of the parameters found there. With the

inclusion of the nonminimal coupling we improved this result slightly to a χ2
dof of 1.40.

The energy scale associated with its contribution is in the range of 10− 100GeV while

Table 2.1: Values of the parameters for the best fit found. All parameters are

dimensionless except for [ls] = L. Numerical values are expressed in GeV units.

parameter value couplings value

l−1
s 6.48 g0 0.167

a -4.56 g1 0.108

b 1.41 g2 0.112

c 0.661 g3 -1.48

d -0.110

Table 2.2: Values of the parameters for the best fit found. All parameters are

dimensionless except for [ls] = L, [β] = L2 and [g̃i] = L2. Numerical values are

expressed in GeV units.

parameter value couplings value couplings value

l−1
s 6.47298 g0 0.160194 g̃0 0.000215132

a -4.54429 g1 0.0951361 g̃1 -0.000162181

b 1.50201 g2 0.25418 g̃2 0.00205165

c 0.658871 g3 -1.48431 g̃3 -0.000487255

d -0.112694

β -0.000593076
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the maximum value of Q considered in our data is 20 GeV. This could mean that this

coupling contributions are more important at higher values of Q. However, for higher

values of Q one also needs to take care of the contributions from the Z0 boson to DIS.

On the other hand, it is expected that non-minimal couplings terms are controlled

by the gap between the graviton and the next higher spin field [101]. Our results are

not consistent with this expectation since the scale we obtained for the non-minimal

coupling has an order of magnitude larger than the mass difference between the spin

2 and spin 4 glueballs. This could mean that the effective field theory approach to the

equation of motion of the spin J fields in the graviton’s Regge trajectory favours the

minimal coupling. Given that the non-minimal coupling does not improve much the

results of the fits we will drop it in the upcoming chapters.

Nevertheless, it seems we are getting closer to a very satisfactory holographic de-

scription of low x data. There are two immediate questions that we believe deserve

some further attention. As a working example we have been considering the improved

holographic QCD model of [91, 92, 96]. We take this model as our QCD vacuum, and

then introduce higher spins fields for which we do Regge theory. Clearly we should

study to which extent other models can also be used to reproduce the data here

analysed. Our expectation is that holography is very appropriate to study processes

dominated by Pomeron exchange, so that other models that are close enough to QCD

should give similar results. Another interesting point is to extend this analysis to

other processes. Previous studies of deeply virtual Compton scattering and vector

meson production could now be revisited. For example, in the case of DVCS the cross

section depends on three kinematical quantities, namely x, Q2 and momentum transfer

t. Extending this model to nonvanishing t gives a very non-trivial dependence that

deserves to be looked at. In the next chapters we will consider other processes with

null momentum transfer t and the case of DVCS.
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Chapter abstract: In this chapter we perform joint fits using measurements of the

proton structure functions F2(x,Q2) and FL(x,Q2), of the photon structure function

F γ
2 (x,Q2) and of the total cross-sections σ (γp→ X) and σ (γγ → X). The data

is gathered from several sources including HERA and LEP. The kinematical range

considered is wide with a photon virtuality Q2 ≤ 400 GeV2, Bjorken variable x < 0.01

and
√
s > 4 GeV. This is done by considering a U (1) vector gauge field minimally

coupled to the graviton Regge trajectory in improved holographic QCD. We find good

agreement with the data for a joint fit of F γ
2 and σ (γγ → X) with a χ2

dof = 1.07. For

a joint fit of F2, FL and σ (γp→ X) we find χ2
dof = 1.40. A joint fit of all observables

for both processes γ∗γ and γ∗p gives a χ2
dof = 1.38. The gravitational couplings of the

U (1) vector gauge field and of the proton with the Reggeons of the graviton Regge

trajectory are given as an output of the fitting procedure. An approximate relation

between the structure functions, valid at NLO QCD, is used to estimate the parton

distribution function (PDF) of the gluon inside the proton.

3.1 Introduction

As we have mentioned in the introduction of this thesis, holography has been quite

successful in describing QCD processes dominated by Pomeron exchange. Usually

these studies are related to a process that include the scattering of an off-shell photon

produced by an incoming electron with a target proton (γ∗p scattering). One pro-

cess that has been less explored is γ∗γ∗ scattering, which arises in high-energy e+e−

interactions for which some electrons and positrons are scattered by emitting virtual

photons whose virtualities can be computed by measuring the angles and energies
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of the scattered electrons and positrons. The virtual photons can then fluctuate into

quark-anti-quark pairs and hence generate a hadronic final state X. It is in this context

that we refer to γ∗γ∗ scattering.

The goal of this chapter is to extend the results of the previous chapter by including

another γ∗p observable in our fits, the total cross-section σ (γp→ X), as well a new

class of γ∗γ∗ processes. The latter are a much cleaner application of holography be-

cause an off-shell photon generates a source for the quark bilinear operator Jµ = ψ̄γµψ

which is dual to the non-normalizable mode of a bulk U(1) gauge field. Describing a

proton as an external on-shell state is notoriously more difficult in holography.

As in the previous chapter, we use the Improved holographic QCD model constructed

in [91,92, 96]. We start by fitting the product of the bulk couplings between the bulk

fields dual to Jµ and the proton with the Reggeons of the graviton Regge trajectory as

well as the parameters of the Pomeron kernel. This initial fit has nine parameters which

are fixed by the HERA data of F2 and FL presented in [99, 100] as well σ (γp→ X)

data from [102]. The fit uses 358 data points, covering the very large kinematical

range of x < 10−2 and Q2 ≤ 400 GeV2 for F2(x,Q2) and Q2 ≤ 45 GeV2 for FL(x,Q2)

and
√
s > 4.6 GeV for σ (γp→ X), where Q2 is the photon virtuality. We have found

a χ2
dof of 1.40. We shall then use the fixed Pomeron kernel parameters and the data

for F γ
2 (x,Q2) and σ (γγ → X) to fit the local couplings of the bulk U(1) gauge field

with the Reggeons of the graviton Regge trajectory. For this fit we have found a χ2
dof

of 1.07.

We also consider global fits, including both γ∗p and γ∗γ processes. As we shall see,

allowing all the parameters of the model to vary does not move these parameters

significantly from the values determined before, therefore further extending the range

of Pomeron exchange processes described by holography in a consistent manner.

In this chapter we will also study the qualitative behaviour of the gluon PDF. This

will be done by using our holographic expressions for the structure functions F2 and

FL. This was done in the context of holographic QCD in [103] using the BPST kernel

for pomeron exchange and a hard-wall in AdS5 to add confinement effects. The results

presented in [103] were obtained using a χ2 fit with data for Q2 ≤ 10 GeV2. Since

we have a good description of both F2 and FL in a wider photon virtuality range, we

use the same method to compute the holographic gluon PDF. We compare our results

with the NLO results of the CTEQ and NNPDF PDF sets, finding good agreement

throughout the larger kinematical region.
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3.2 Holographic total cross-section γp→ X

In the previous chapter we have mentioned that the proton structure functions are

related to polarized cross-sections of γ∗p scattering through equations (2.2). In the

limit that the off-shell photon virtuality Q→ 0 the longitudinal cross-section vanishes

since an on-shell photon only has transverse polarization. Hence, the total cross-

section of the process γp → X is related to the proton structure function F p
2 (x,Q2)

through

σ(γp→ X) = 4π2α lim
Q2→0

F p
2

(
x,Q2

)
Q2

. (3.1)

In this chapter the DIS structure functions F2 and FL = F2 − 2xF1 are given by

F p
2 (x,Q2) =

∑
n

Im gn
4π2α

x1−jnf 2
n(Q2) , (3.2)

F p
L(x,Q2) =

∑
n

Im gn
4π2α

x1−jnfLn (Q2) , (3.3)

where f 2
n and fLn have the same expressions as equations (2.50) and (2.51), respectively,

except for the gn factor

f 2
n(Q2) = Q2jn

∫
dz e−(jn− 3

2)A

(
f 2
Q +

ḟ 2
Q

Q2

)
ψn(z) , (3.4)

fLn (Q2) = Q2jn

∫
dz e−(jn− 3

2)A ḟ
2
Q

Q2
ψn(z) . (3.5)

Previously the factor of 4π2α in (3.1) was not relevant for the fits but here it is

important to have it explicitly in order to have consistent holographic expressions for

the proton structure functions and the total cross-section σ(γp → X). The constant

gn is given by equation (2.40). In our holographic setup the non-normalizable modes

of the bulk U (1) gauge field satisfy

lim
Q→0

fQ (z) = 1 , lim
Q→0

ḟQ
Q

= 0 , (3.6)

and after taking the limit (3.1) we obtain the holographic expression for the total

cross-section

σ(γp→ X) =
∑
n

Im gn s
jn−1

∫
dz e−(jn− 3

2)Aψn(z) . (3.7)
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3.3 γ∗γ∗ observables

In this section we describe the observables in γ∗γ∗ scattering and how to compute

them using holography. In this process photons can reveal either their point-like or

hadron-like behaviour. In the point-like case one of the quarks takes part in the

hard interaction while in the hadron-like case the photons fluctuate into hadrons with

the same quantum numbers of the photon (i.e. vector mesons like ρ, ω, φ) and the

interaction is the same as in hadron-hadron scattering. These pictures coexist together

and are dominant in different kinematical regions. For high transverse momentum of

the quarks or high virtuality of one of the photons the point-like nature is dominant.

For lower values of the photon virtuality the interaction is spread over longer times,

giving time for the quarks to form bound states through gluon exchange. This is the

regime we are interested here.

The process e+e− → e+e−X is factorised into three terms: one for the radiation of

the virtual photon from the electron, one for the radiation of the other virtual photon

from the positron and the term that couples the γ∗γ∗ system to the final hadronic

state X. Like in e−p DIS we can define the following variables

y1 =
k1 · p2

p1 · p2

, y2 =
k2 · p1

p1 · p2

, x1 =
Q2

1

2k1 · p2

, x2 =
Q2

2

2k2 · p1

, (3.8)

where p1 and p2 are the incoming leptons momenta, and k1 and k2 the momenta of

the two off-shell photons with virtualities Q2
1 = k2

1 and Q2
2 = k2

2. In terms of these

variables we can write the differential cross-section for e+e− → e+e−X as [52]

d4σ

dy1dy2dQ2
1dQ

2
2

=
( α

2π

)2 [
P T
γ/e−

(
y1, Q

2
1

)
P T
γ/e+

(
y2, Q

2
2

)
σTT

(
Q2

1, Q
2
2,W

2
)
+

+P T
γ/e−

(
y1, Q

2
1

)
PL
γ/e+

(
y2

)
σTL

(
Q2

1, Q
2
2,W

2
)

+ PL
γ/e−

(
y1

)
P T
γ/e+

(
y2, Q

2
2

)
× (3.9)

×σLT
(
Q2

1, Q
2
2,W

2
)

+ PL
γ/e−

(
y1

)
PL
γ/e+

(
y2

)
σLL

(
Q2

1, Q
2
2,W

2
)] 1

Q2
1Q

2
2

,

where W =
√
s and the functions P T

γ/e and PL
γ/e are related to flux factors and are

given by

P T
γ/e

(
y,Q2

)
=

1 + (1− y)2

y
− 2m2

ey

Q2
, (3.10)

PL
γ/e(y) = 2

1− y
y

. (3.11)

The cross sections σij(Q2
1, Q

2
2,W

2), with i, j = T, L, are the total cross sections for

the process γ∗(Q2
1)γ∗(Q2

2) → X where the incoming photons have transverse (T) or
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longitudinal (L) polarization in their centre-of-mass frame. The differential cross-

section expression also results from integrating over the angle between the plane of

the scattered leptons in the center-of-mass frame of the γ∗γ∗ system and does not

include terms that are present for polarized lepton beams.

The observables we want to study can be expressed in terms of the cross-sections

σij(Q2
1, Q

2
2,W

2). Hence we will compute these cross-sections holographically starting

from the general scattering amplitude of γ∗(Q1)γ∗(Q2)→ γ∗(Q3)γ∗(Q4) for arbitrary

polarisation of the incoming and outgoing virtual photons. Later, from this general

amplitude, we specify for the case of the cross-section σ(γγ → X) and of the structure

function F γ
2 (x,Q2). The Witten diagram that is relevant for our calculations is the one

in figure 3.1. The off-shell photons source the quark-bilinear operator current ψ̄γµψ

so the γ∗γ∗ → γ∗γ∗ amplitude can be computed form the 2 → 2 scattering of bulk

photons described by a U(1) gauge field.

Figure 3.1: Tree level Witten diagram representing spin J exchange in a 2 → 2

scattering process between bulk photons. We will consider a kinematical regime

dominated by the exchange of spin J fields in the graviton Regge trajectory.

Finally, we describe the kinematics we will be considering. Using the same light-

cone coordinates as in the previous chapter, the incoming photons have the space-like

momenta

k1 =

(√
s,−Q

2
1√
s
, 0

)
, k2 =

(
−Q

2
2√
s
,
√
s, 0

)
, (3.12)

while for the outgoing photons,

k3 = −
(√

s,
q2
⊥ −Q2

3√
s

, q⊥

)
, k4 = −

(
q2
⊥ −Q2

4√
s

,
√
s,−q⊥

)
, (3.13)

where Q2
i = k2

i > 0 (i = 1, . . . , 4) is the off-shellness. We consider the Regge limit of

large s and fixed t = −q2
⊥. We can now define the photons polarization vectors nλi that

satisfy the condition nλi · ki = 0. The incoming off-shell photons have the following
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polarization vectors

n1 =

(0, 0, ελ) , λ = 1, 2

1
Q1

(√
s,

Q2
1√
s
, 0, 0

)
, λ = 3

, (3.14)

n2 =

(0, 0, ελ) , λ = 1, 2

1
Q2

(
Q2

2√
s
,
√
s, 0, 0

)
, λ = 3

, (3.15)

where ε1 = (1, 0) and ε2 = (0, 1), while for the outgoing photons we have

n3 =


(

0, 2q⊥·ελ√
s
, ελ

)
, λ = 1, 2

1
Q3

(√
s,

Q2
3+q2
⊥√

s
, q⊥

)
, λ = 3

, (3.16)

n4 =


(
−2q⊥·ελ√

s
, 0, ελ

)
, λ = 1, 2

1
Q4

(
Q2

4+q2
⊥√

s
,
√
s,−q⊥

)
, λ = 3

. (3.17)

Notice that the transverse photons (λ = 1, 2) are normalized such that n2 = 1, while

the longitudinal photons (λ = 3) are normalized such that n2 = −1.

3.3.1 Computation of Witten diagram

The amplitude associated to the exchange of a spin J field in the Witten diagram of

figure 3.1 is given by

AJ (ki, λj) = −κ2
J

∫
d5Xd5X̄

√
−g
√
−ḡ e−Φe−Φ̄F

(1)
−a (k1, z)∂

J−2
− F

a (3)
− (k3, z)×

× F (2)
+b (k2, z̄)∂̄J−2

+ F
b (4)
+ (k4, z̄) Π−···−,+···+

(
X, X̄

)
. (3.18)

Using the kinematics introduced above we obtain

AJ (ki, λj) = −κ2
J

(
i

2

√
s

)2J−4 ∫
d5Xd5X̄

e5(A+Ā)

4
e−Φ−Φ̄

(
4e−2(A+Ā)

)J
×

× F (1)
−aF

a (3)
− F

(2)
+b F

b (4)
+ e−iq⊥·(x⊥−x̄⊥)Π+···+,−···−

(
X, X̄

)
. (3.19)

By performing the change of variables w = x− x̄ and using the propagator identity in

equation (2.34) we arrive at the result

AJ (ki, λj) =
iV κ2

J

2J
sJ
∫
dzdz̄ e3(A+Ā)e−Φ−Φ̄×

× e−(1+J)(A+Ā)F (1, 3)F (2, 4)GJ(z, z̄, t) , (3.20)
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where

F (i, j) =

fQifQj , λi = λj = 1, 2

˙fQi
˙fQj/(QiQj) , λi = λj = 3

, (3.21)

and GJ(z, z̄, t) is given by (2.35).

Next we need to sum the above amplitude over the even spin-J fields with J > 2, as we

described in the previous chapter. Such sum can be computed through a Sommerfeld-

Watson transform

1

2

∑
J

sJ + (−s)J → −π
2

∫
dJ

2πi

sJ + (−s)J

sin πJ
. (3.22)

This assumes that an analytic continuation of the amplitude to the complex J-plane

is possible. We now deform the integral from the poles at even J , to the poles J =

jn (t) defined by tn(J) = t. The scattering domain of negative t contains these poles

along the real axis for J < 2. Thus the forward scattering amplitude (t = 0) of

γ∗(Q1)γ∗(Q2)→ γ∗(Q3)γ∗(Q4) is

Aλ1,λ2,λ3,λ4

Q1,Q2,Q3,Q4
(s, t = 0) = −π

2

∑
n

sjn
[
i+ cot

(
πjn
2

)]
κ2
jn

2jn
djn
dt
×

×
∫
dze−(jn−3/2)AF (1, 3)ψn(z)

∫
dz̄e−(jn−3/2)ĀF (2, 4)ψ∗n(z̄) . (3.23)

Finally, we remark that the total cross-sections σij(Q2
1, Q

2
2,W

2), with i, j = T, L, can

now be computed using the optical theorem and appropriate photon polarisations, as

well by setting Q2
3 = Q2

1 and Q2
4 = Q2

2.

3.3.2 Photon structure function F γ
2

We consider first scattering between a virtual and an on-shell photon. In analogy

with deep inelastic e±p scattering, we can think of this process as deep inelastic e±γ

scattering. Just as for e±p scattering, we can define a hadronic tensor W µν and two

structure functions related by

W µν (x,Q2)

8π2α
= −

(
gµν +

qµ1 q
ν
1

Q2

)
F γ

1

(
x,Q2

)
+

+
1

q1 · q2

(
qµ2 + qµ1

q1 · q2

Q2

)(
qν2 + qν1

q1 · q2

Q2

)
F γ

2

(
x,Q2

)
, (3.24)

such that the cross section for the process eγ → eX can be written as

d2σ

dxdy
=

4πα2

xyQ2

[
(1− y)F γ

2 (x,Q2) + xy2F γ
1 (x,Q2)

]
. (3.25)
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The structure functions are related to the total cross-sections of equation (3.9) through

the relations

F γ
2 (x,Q2) =

Q2

4π2α

[
σTT (s,Q2, 0) + σLT (s,Q2, 0)

]
, (3.26)

2xF γ
1 (x,Q2) =

Q2

4π2α
σTT

(
s,Q2, 0

)
. (3.27)

Before continuing with the holographic computation let us discuss in which kinematical

region will it be applicable. The hadronic photon structure function F γ
2 differs from

the proton structure function due to the point-like coupling of the photon to the

quarks. This coupling makes the photon structure function to rise towards large

values of Bjorken x, while in the case of the proton it decreases. Moreover, F γ
2 has

positive scaling violations for all values of x, while F p
2 has positive scaling violations

only at small values of x. Also, the point-like part can be evaluated at all orders in

perturbative QCD and dominates for large values of Q2 and for values of x > 0.1. On

the other hand, the hadronic-like part can not be computed in perturbative QCD. Like

its F p
2 counterpart, only its evolution with Q2 can be determined. As in the case of

the proton, an ansatz for the x dependence at some scale Q2
0 is given as input to QCD

evolution equations. This ansatz can be derived from the Vector Meson Dominance

model, since the photon can fluctuate in a vector meson like the ρ meson. After

that, one assumes that the F ρ
2 structure function is the same as the F π0

2 structure

function which has been measured experimentally. Then this hadron-like component

can be evolved using perturbative QCD and we can compare it with the F γ
2 structure

function that contains both the point-like and hadron-like contributions. The result is

that although the hadron-like component is not important for high values of Q2 and

x > 0.1, it clearly dominates for very small values of x, meaning that we can use the

Pomeron exchange picture to study this process. Hence our holographic expression is

only valid for x < 0.01. Thus we proceed to the holographic computation of F γ
2 in this

kinematical region.

As mentioned, one photon in this process is quasi-real. Let us represent such photon

by the lower part of the Witten diagram. Then the z̄ integral simplifies to∫
dz̄e−(jn−3/2)Aψ∗n

(
jn, z̄

)
. (3.28)

Defining

gn = −π
2

(
i+ cot

πjn
2

)
κ2
jn

2jn
j′n

∫
dz̄e−(jn−3/2)Aψ∗n

(
jn, z̄

)
, (3.29)
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and using the optical theorem, we can write the total cross-sections σTT and σLT as

σTT =
∑
n

Im gns
jn−1

∫
dze−(jn−3/2)Af 2

Q ψn(z) , (3.30)

σLT =
∑
n

Im gns
jn−1

∫
dze−(jn−3/2)A

ḟ 2
Q

Q2
ψn(z) . (3.31)

Using (3.26) and s = Q2/x, the holographic expression for F γ
2 is then

F γ
2

(
x,Q2

)
=
∑
n

Im gn
4π2α

x1−jnfγn (Q2) , (3.32)

where

fγn (Q2) = Q2jn

∫
dze−(jn−3/2)A

(
f 2
Q +

ḟ 2
Q

Q2

)
ψn(z) . (3.33)

3.3.3 Total cross section γγ → X

In this process both photons are considered quasi-real, i.e. Q2
1 ≈ 0 and Q2

2 ≈ 0.

Therefore, using (3.23), (3.6) and the optical theorem, the cross sections σLL(0, 0,W ),

σTL(0, 0,W ) and σLT (0, 0,W ) vanish. This is expected since real photons only have

transverse polarisation and hence cross-sections that involve at least one longitudinal

on-shell photon do not contribute to this process. Thus

σ(γγ → X) = σTT
(
0, 0, s = W 2

)
=
∑
n

Im gns
jn−1

∫
dze−(jn−3/2)Aψn(z) . (3.34)

Like in the case of γ∗p processes the numbers Im gn have the same definition as the

ones in our holographic expression F γ
2 and these observables are related by

σ(γγ → X) = 4π2α lim
Q2→0

F γ
2

Q2
. (3.35)

3.4 Data analysis and results

With the previously described setup we proceed to find the best values for the Pomeron

potential parameters ls, a, b, c and d, as well as for the coupling values Im gn. The Im gn

constants have different definitions for γ∗γ and γ∗p processes, so we will determine a

set of values for each process class. We use the first four Reggeons, which are enough

to reproduce the non-trivial x behaviour of the proton structure functions F p
2 , F p

L and

77



3- γ∗γ and γ∗p scattering in improved holographic QCD

the total cross-section σ (γp→ X). Adding several trajectories explains the so-called

hard-pomeron behaviour for large Q and the soft-pomeron behaviour for smaller Q,

as discussed in [1]. Each Im gn is associated with a Reggeon.

We find the best set of parameter values αi by minimising the χ2 quantity

χ2 =
N∑
n=1

(
Opred.
k (αi)−Oexp.

k

σk

)2

, (3.36)

that is, the sum of the weighted difference squared between experimental data and

model predicted values where the weight is the inverse of the experimental uncertainty.

Usually a fit is deemed of good quality if the quantity χ2
dof ≡ χ2/(N − Npar), where

Npar. is the number of parameters to be fitted, is close to one. Throughout the rest of

this chapter the parameter errors represent the 68 percent confidence interval for the

parameter estimates.

In equation (5.96) Ok represents a generic data point of one or several observables

mentioned in the previous sections. For the proton structure functions σk is simply

the experimental error of each point. For total cross-section data we also need to

take into account that some data points have uncertainties in the values of s (e.g. in

γγ → X that is always the case because it is a measured quantity). To account for

this we compute the total cross-section for s+ ∆s and s−∆s, and compute

σeff = max
(
|σpred (s+ ∆s)− σpred (s) | ,
|σpred (s−∆s)− σpred (s) |

)
. (3.37)

For these cases σk =
√

(σexp)2 + (σeff)2 where σexp is the experimental error.

For σ (γγ → X) and σ (γp→ X) we use the hadronic cross-section data files from the

Particle Data Group [102]. These data sets are a compilation of experimental results

obtained in the last decades from several collaborations. The dataset of σ (γp→ X)

has cross-section values as a function of the laboratory momentum of the incoming

on-shell photon. Hence we computed the respective center of mass energy
√
s before

performing the fits. We also considered only subsets of data with
√
s > 4 GeV for

σ (γγ → X) and σ (γp→ X), yielding 39 and 45 experimental points respectively.

The lower bound cuts result from the fact that our model does not realise the meson

trajectory with an intercept around 0.35−0.55. This trajectory dominates for smaller

values of s and the best our model can do is to reproduce data in the intermediate

range of s through the third and fourth trajectories. For the source of data for the

proton structure functions F2 (x,Q2) and FL (x,Q2) we use the HERA measurements of
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Table 3.1: Values of the parameters for the best joint fit of the proton structure

functions F2 (x,Q2) and FL (x,Q2) and σ (γp→ X) data from PDG with x ≤ 0.01,

Q2 ≤ 400 GeV2 and
√
s > 4.6 GeV. We obtained a χ2

dof of 1.40 with 358 experimental

points.

Kernel parameters couplings intercept

a = −4.70± 0.04 Im g0 = −0.051± 0.001 j0 = 1.165

b = 1.13± 0.05 Im g1 = 0.017± 0.007 j1 = 1.082

c = 0.66± 0.01 Im g2 = −0.07± 0.01 j2 = 0.977

d = −0.098± 0.006 Im g3 = 0.358± 0.007 j3 = 0.918

l−1
s = 6.47± 0.08

Table 3.2: Parameters for the fit with the photon structure functions F γ
2 (x,Q2) and

σ (γγ → X) data from PDG with
√
s > 4 GeV. χ2

dof = 1.07 with 61 experimental

points.

couplings value× 10−4

Im g0 −1.789± 0.065

Im g1 1.94± 0.33

Im g2 −3.19± 1.11

Im g3 13.37± 1.21

these observables available in [99,100]. There are 249 points in the kinematical region

with x < 10−2 and Q2 ≤ 400 GeV2 for F2

(
x,Q2

)
, and 64 points with x < 10−2 and

Q2 ≤ 45 GeV2 for FL
(
x,Q2

)
. For the photon structure function F γ

2

(
x,Q2

)
we consider

the measurements of ALEPH [104,105], L3 [106] and OPAL [107–109] collaborations at

LEP and of the TPC/Two Gamma collaboration [110] at SLAC e+e− storage ring PEP.

These measurements contribute with 22 points with x ≤ 0.0235 and Q2 ≤ 17.8 GeV2.

We now present the results of three fits we have performed. First we included only

the data from observables of γ∗p processes. Using data from the proton structure

functions and of the total cross-section σ(γp→ X) the best fit values for the Pomeron

kernel parameters and constants Im gn defined in (2.40) are present in table 3.1. The

corresponding intercepts of the Reggeons are also displayed in the same table. The

total number of experimental points used in this fit is 358 and a χ2
dof per degree of

freedom of 1.40 was obtained. With those parameter values we compare the predictions

of our model against the experimental data in figures 3.2, 3.3 and 3.4.
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Figure 3.2: Predicted proton structure function F2 (x,Q2) vs experimental points. The

curves were obtained using the values of table 3.1.

For the fit including the photon structure functions F2 and the total cross section of

γγ scattering, we obtained the values present in table 3.2. We emphasize that in this

fit the Pomeron kernel parameters were kept fixed and equal to the values in table

3.1. The number of points used in this fit was 61 and a χ2
dof per degree of freedom

of 1.07 has been obtained. The predictions of our model for these parameters against

the σ (γγ → X) and F γ
2 data are displayed in figures 3.4 and 3.5, respectively.

The good quality of the fits obtained so far and the definitions of Im gn for γ∗γ and of

Im gn for γ∗p processes suggest that a joint fit using all experimental data is possible.

The fitting parameters in this fit are the gravitational couplings κjn between the bulk

U(1) gauge field with the n-th reggeon defined in (2.21), and the product of the

gravitational couplings κ̄jn of the bulk field dual to the proton in (2.25) together with

the corresponding z̄ integral. We have done such a fit making use of the combined 419

experimental points of the different observables. A χ2
dof per degree of freedom of 1.38
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Figure 3.3: Predicted proton structure function FL (x,Q2) vs experimental points.

The curves were obtained using the values of table 3.1.

was obtained with the parameters of table 3.3. For completeness the corresponding

values of Im gn for the γ∗γ and γ∗p processes are also given in table 3.4 and are very

close to those found previously in tables 3.1 and 3.2.

Finally, we have also performed a global fit where the pomeron kernel parameters were

also allowed to vary. We have found a χ2
dof of 1.36 and parameter values close to the

ones of tables 3.1, 3.2 and 3.3 therefore showing the consistency of our results.
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Figure 3.4: (a) Predicted σ (γp→ X) vs experimental points. The curve was obtained

using the values from table 3.1. (b) Predicted σ (γγ → X) vs experimental points.

The curve was obtained using the parameter values in table 3.2.

Table 3.3: Values for the joint fit of γ∗γ and γ∗p processes. There are 419 experimental

points giving a χ2
dof = 1.38.

n κjn κ̄jn × z̄ integral

1 0.05106± 0.00093 −18.040± 0.335

2 0.0631± 0.0055 −5.45269± 0.610

3 0.228± 0.040 10.0± 1.8

4 −0.261± 0.012 −56.1± 2.7

Table 3.4: Values of Im gγ
∗γ
n and Im gγ

∗p
n from the best fit parameters of table 3.3.

n Im gγ
∗γ
n Im gγ

∗p
n

1 −1.78883× 10−4 -0.0510176

2 1.93696× 10−4 0.017369

3 −3.19052× 10−4 −0.0744977

4 13.3664× 10−4 0.357739

3.5 Gluon Parton distribution functions

The structure functions F2 and FL of the proton can be written in terms of the proton’s

PDFs. Their physical meaning is the probability density for finding a parton with a

certain longitudinal momentum fraction x at resolution scale Q2. In the naive quark

parton model F2 =
∑

i e
2
ixqi(x), where the phenomena of Bjorken scaling is predicted,
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Figure 3.5: Predicted F γ
2 (x,Q2) vs experimental points. The curves were obtained

using the values from table 3.2.

i.e. F2 depends only on x and not Q2. The parton model also predicts that

FL
(
x,Q2

)
= F2

(
x,Q2

)
− 2xF1

(
x,Q2

)
= 0 , (3.38)

which is known as the Callan-Gross relationship and is satisfied if the partons inside

the proton have spin-1
2
. These relations follow from considering only the QED diagram

γ∗-parton and assuming that the partons have zero transverse momentum. At NLO

QCD gluon radiation and g → qq̄ processes give rise to lnQ2 scaling violations and to

partons with non-zero transverse momentum. Hence the Callan-Gross relation is no

longer true, and FL can be related to F2 and the gluon PDF g(x,Q2) through [111]

FL
(
x,Q2

)
=
αs(Q

2)

4π

(
16

3
IF + 8ē2IG

)
, (3.39)
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where

IF =

∫ 1

x

dy

y

(
x

y

)2

F2

(
y,Q2

)
, (3.40)

IG =

∫ 1

x

dy

y

(
x

y

)2(
1− x

y

)
G
(
y,Q2

)
, (3.41)

and where G
(
y,Q2

)
= yg(y,Q2), αs is the QCD coupling and ē2 is the sum of the

squares of the electric charges of the active quark flavours. The number of active

flavours nf changes with the scale at which we want to evaluate the PDF. In this work

we will assume that nf = 3 for Q2 ≤ mc, nf = 4 for mc < Q2 ≤ mb and nf = 5

otherwise. mc and mb are the masses of the charm and bottom quarks, respectively.

We wish to express the gluon PDF g(x,Q2) in terms of the structure functions F2 and

FL. This can be done by computing the derivative with respect to x of (3.39) and

using the definition of the integrals IF and IG. A straightforward computation yields

ē2G
(
x,Q2

)
=

(
−2 +

2x

3

∂

∂x

)
F2

(
x,Q2

)
+

π

αs(Q2)

(
3− 2x

∂

∂x
+
x2

2

∂2

∂x2

)
FL
(
x,Q2

)
. (3.42)

We use the NLO result (3.42) to estimate the function G
(
x,Q2

)
at small x from the

holographic values for F2 and FL computed using the best fit parameters in table 3.1.

We shall compare our gluon PDFs with the CT18 and NNPDF collaborations [112,113],

also at NLO. For the coupling constant αs(Q
2) in (3.42) we used the holographic value

(see [32] for a plot of this function).

Since the functions F2 and FL do not reproduce the data in the range 10−2 < x < 1,

and in particular have the wrong asymptotics for x → 1, we do not expect to be

able to reproduce G
(
x,Q2

)
in the transition region x ∼ 10−2 where there are other

contributions to the structure functions from quarks. To match the correct asymptotic

values in this transition region, we added a constant function f(Q2) to G
(
x,Q2

)
such

that we match the value of G
(
x,Q2

)
given by the average of the other collaborations at

the specific value x = 10−2. Our main goal is to assess whether or not we can predict

the correct low x evolution of the gluon PDFs starting from x = 10−2 to lower values

of x. Our results are presented in figure 3.6. It clear that we are able to reproduce

the correct behaviour within the other collaborations allowed regions. Of course these

results should be taken as a simple qualitative indication, since we are using a NLO

expression for the gluon PDFs together with the holographic structure functions and

coupling constant. Also, as mentioned above, the resulting PDF’s do not have the
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correct asymptotics for x→ 1 [114,115], but this is expected since the whole analysis

is only valid in the low x region.

3.6 Conclusion

In this chapter we extended the results of chapter 2 by including the total cross-

section σ(γp → X), the photon structure function F γ
2 and the total cross-section

of γγ scattering. For γ∗p processes the χ2 quality of our fit improved slightly from

χ2
dof = 1.42 to χ2

dof = 1.40. This is due to the fact that, in addition to the 313 data

points from the structure function F2 and FL, we have an extra of 45 data points

from the cross-section σ(γp→ X), which can also be described holographically. These

results are obtained in a very large kinematical window of x < 10−2 andQ2 ≤ 400 GeV2

for F2, Q2 ≤ 45 GeV2 for FL and
√
s > 4.6 GeV for σ(γp→ X).

Then we have shown that the Pomeron kernel found in the fit of the γ∗p processes
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Figure 3.6: Comparison between the holographic gluon PDFs with the ones of

CT18NNLO and NNPDF for Q2 = 5, 10, 20, 100 GeV2.
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could be used to achieve excellent fits of the γ∗γ processes discussed in section 3.3. We

have also checked from a global fit, where we include all the processes and vary all the

parameters, that the fitting parameters do not vary much, showing the consistency of

the model. To our knowledge, this is the first text of the IHQCD pomeron model in

such a vast class of processes in a wide kinematical range.

Using the NLO relation (3.42) we were able to reproduce the low x evolution of gluonic

PDFs using as input the holographic functions F2, FL and αs(Q
2). In the region of

larger Q2 there is more tension in matching to the PDFs of the other collaborations,

as can be seen in the Q2 = 100 GeV2 plot of figure 3.6. According to equation (3.42),

in this region it is essential to have a good description of FL because it is divided

by αs which is small for high values of Q2 due to asymptotic freedom. Since we

are performing a χ2 fit to the data, the fitting process favours a good description of

F2 because the uncertainties are lower than those of FL as compared with the value

measured. The uncertainties of FL are of the same size as the measured value. Thus,

better measurements of FL might help our model give a better description of the gluon

PDFs. Moreover, for high values of Q2 it is important to include heavy quarks in global

QCD fits. Nowadays PDF groups use variable flavour schemes in order to produce high

quality results. To holography this means that the holographic dual must contain

quark flavour degrees of freedom if the model ought to be successful at computing

them. The IHQCD model we used as our QCD vacuum exhibits the properties of

large Nc Yang-Mills, including the running of the coupling constant. Following the

ideas of [97], it would be very interesting to include flavour degrees of freedom in

this holographic QCD model and to test if the quality of our fits generically improve,

mainly for high Q2. Including quarks is actually necessary because it is believed that

the third and fourth dominant Regge trajectory actually come from the mesonic sector,

instead of the glueball sector. We will start to build a holographic Regge theory with

quarks in chapter 5.

Another problem would be to determine holographically the gluonic PDFs, without

making reference to perturbative QCD definitions. Holography may actually be the

right set up for a non-perturbative definition. In fact, gluonic PDFs can be defined

using a Wilson loop operator (see for example [116]). Thus, it would be very interesting

to use the duality between Wilson loops and strings in the dual geometry to explore

this problem.
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4
Deeply Virtual Compton Scattering and the

holographic Pomeron

Chapter abstract: We present our current progress in the computation of scattering

amplitudes as a function of Mandelstam t by considering the Deeply Virtual Compton

Scattering (DVCS) processes. We show that at least it is possible to describe simul-

taneously the differential cross-section and total cross-section of DVCS data with a

single holographic model for the Pomeron. We also discuss future work, namely how

to include consistently the processes analysed in chapter 3. These results have not

been published and in the present form are purely exploratory.

4.1 Holographic Deeply Virtual Compton Scatter-

ing

From the groundbreaking of BPST [8] till today, many research projects [1,9–33,35–48]

have shown how the theoretical ideas of AdS/CFT can be used to model experimental

data where Pomeron exchange dominates. However, these works are not consistent in

the sense that each of them is tailored for a specified process and/or kinematic regimes.

On the other hand, we have shown in chapter 3 that a holographic model with few

free parameters that describes successfully several processes dominated by Pomeron

exchange is indeed possible. The processes analysed were sensitive to the forward

scattering amplitude, i.e. for Mandelstam t = 0. So it remains an open question if

it is possible to extend previous results to processes where amplitudes with non-zero

values of t are necessary. One such example is Deeply Virtual Compton Scattering

(DVCS).
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DVCS is an exclusive Compton scattering process where the incoming photon has high

virtuality. It has been studied thoroughly by the H1 and ZEUS collaborations as well

at JLAB. While DIS allows us to determine the PDFs of a nucleon (e.g. the proton

PDFs), DVCS data helps us to study the Generalized parton distribution functions

(GDP) [117, 118], which are related to the correlation between the transverse and

longitudinal components of the momentum of quarks and gluons inside the nucleons.

Holographic techniques have been already employed to describe DVCS data. In [27] the

conformal and hard wall Pomeron models have been used while in [119] a holographic

description of dipole-dipole scattering has been studied. DIS is connected to the

forward Compton scattering amplitude via the optical theorem. Hence, our analysis

of DVCS in this chapter is close to the one presented in [1]. We will show that in order

to include the description of DVCS data one needs to include extra parameters that are

related to the holographic wave function of the proton and the coupling dependence

with the spin.

4.2 Holographic computation of the amplitudes

We now derive our holographic expressions for the differential cross-section dσ (γ∗p→ γp) /dt

and total cross-section σ (γ∗p→ γp) of the DVCS process. To compute the proton

structure functions F p
2 and F p

L and the total cross-section σ (γp→ X) we have deter-

mined first the forward scattering amplitude of the process γ∗p→ γ∗p. Then, the only

difference between the DIS and the DVCS computation is that the outgoing photon is

on-shell. The associated Witten diagram is show in figure 4.1. Hence we will consider

the general case of γ∗p→ γ∗p where the incoming photon has virtuality Q2
1 while the

outgoing photon has virtuality Q2
3. At the end of the calculation we take Q3 ≡ k2

3 → 0

and use equation (3.6).

We will use the same kinematical definitions as in [1] and chapter 2 so we omit them

here. As usual, the minimal coupling between the spin 1 gauge field and the higher

spin field ha1...aJ is

kJ

∫
d5X
√
−ge−ΦFb1aDb2 . . . DbJ−1

F a
bJ
hb1...bJ , (4.1)

and the coupling of the scalar field is

k̄J

∫
d5X̄
√
−ḡe−Φ̄ῩD̄b1 . . . D̄bJ Ῡh̄b1...bJ . (4.2)
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Figure 4.1: Tree level Witten diagram associated with the computation of the

amplitude Aλ1λ3
J of the DVCS process γ∗p → γp. The bottom lines represent the

proton modelled by a scalar Υ.

The computation of the scattering amplitude follows the same steps as the ones

presented in the last chapters, so we will not repeat it here. The scattering amplitude

for γ∗p→ γp is

Aγ∗p→γp(s, t) =
∑
n

gn (t) sjn(t)

∫
dze−(jn(t)− 3

2
)AfQψn(jn (t)) , (4.3)

where, as in the γ∗p case of chapter 3,

gn(t) = H (jn (t))

[
i+ cot

(
πjn (t)

2

)]
djn
dt

∫
dz̄e(−jn(t)+ 7

2
)Āῡ2ῡ4ψ̄n(jn (t))

∗
, (4.4)

with

H (J) =
π

2

kJ k̄J
2J

. (4.5)

The last amplitude is the one where both photons have transverse polarizations, other

combinations are subleading in s. To obtain this expression we have used equation

(3.6).

To move forward we need to know the proton wavefunction in order to compute the z̄

integral. In AdS/QCD, it is expected that baryons are dual to a configuration where

three open strings are attached to a D-brane [120, 121]. So far it is not known how

to get the baryon’s spectrum from such a configuration. An acceptable holographic

description of the proton would consist of a spectrum that matches the mass of the

proton as well of the other hadrons in the same trajectory. Here we will follow the

phenomenological approach by approximating the combination e3A−Φυ2υ4 by the delta

function δ(z−z∗). The z∗ parameter is related, by dimensional analysis, to the inverse
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of the mass of the proton and we will use it as a fitting parameter. By making this

approximation we are assuming that e3A−Φυ2υ4 is null in the UV and the IR, and that

it has a global maximum. This is expected if the spectrum of the baryons is associated

with a Schrodinger problem whose ground state is the proton. This approach, as an

example, has successfully described DVCS data in [27].

Another issue is the unknown functional form of H(J). In the next section we motivate

a good ansatz for this expression, at least in the range 0.6 . J . 1.3.

4.3 Ansatz for H(J)

To find a good ansatz for H(J) let us first recall that, based on the forward scattering

amplitude for the process γ∗p→ γ∗p, our holographic formula for the proton structure

function F p
2 is given by

F p
2 (x,Q2) =

∑
n

Im gn
4π2α

x1−jnQ2jn

∫
dz e−(jn− 3

2)A

(
f 2
Q +

ḟ 2
Q

Q2

)
ψn(z) , (4.6)

where

Im gn = H(jn(0))j′n (0)

∫
dz̄e(−jn(0)+ 7

2
)Āῡ2ῡ4ψ̄n(jn (0))

∗
. (4.7)

Using equation (4.4) and the approximation e3A−Φυ2υ4 ∼ δ(z − z∗) we can compute

H (J) for any value of jn(t)

H(jn(t)) =
Im gn(t)

e(−jn(t)+ 1
2

)A∗ψ∗n(jn(t))djn(t)
dt

. (4.8)

We can now plot H(J) as a function of J using the values of Im gn, jn and ψn found

in [1] and by choosing z∗ to be around 1, since by dimensional analysis it should

be proportional to the inverse mass of the proton (in GeV units). In a logarithmic

plot, logH(J) can be well approximated by a quadratic curve in J , i.e. logH(J) =

h0 +h1(J−1)+h2(J−1)2. We can then choose z∗ and the hi to get the best quadratic

fit. For the best fit value of z∗ = 0.565 we obtain the result shown in figure 4.2, where

the black dots represent the actual reconstructed values of H(J) for each n.

We can check if the resulting curve has physical meaning by considering the shape of

the κ(J) and κ̄(J) functions with J in the range 0.6 . J . 1.3. According to the

gauge/gravity duality such coupling is related to the coefficient of a spin J operator

in the OPE with two spin 1 operators. In the UV fixed point the coefficient can
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Figure 4.2: Reconstruction of the H(J) function using the best parame-

ters found in [1] and z∗ = 0.565. The solid line represents the function

exp (h0 + h1(J − 1) + h2(J − 1)2) with h0 = 3.70, h1 = −30.3 and h2 = 89.1.

be computed exactly since we would be dealing with a free theory and hence only

Wick contractions contribute. Of course, QCD is not a free theory and perturbative

corrections should be taken into account. Instead of performing such computation

we will consider the O(N) vector model which is a similar theory in the UV fixed

point and whose computation has been done in [122]. In this model we can retrieve

a similar shape of H(J) as the one in figure 4.2 from the three-point bulk vertex

coupling between massless higher spins field of spin s1 = 1, s2 = 1 and s3 = J in type

A minimal higher-spin theory in AdSd+1. The coupling, as a function of s1, s2 and s3

is given by

gs1,s2,s3 =
π
d−3

4 2
3d−1+s1+s2+s3

2

√
NΓ(d+ s1 + s2 + s3 − 3)

√
Γ(s1 + d−1

2
)

Γ(s1 + 1)

Γ(s2 + d−1
2

)

Γ(s2 + 1)

Γ(s3 + d−1
2

)

Γ(s3 + 1)
. (4.9)

Moreover, after approximating the gamma functions in the resulting expression with

the Stirling formula and expanding up to quadratic order around J = 1 we get a H (J)

consistent with our ansatz. Because we are comparing different theories caution should

be taken. However, our point is that the overall function shapes does not change, and

beyond the fixed point, corrections may be well captured in suitable redefinitions of

the hi parameters in our ansatz. In the next section we test our hypothesis agains the

DVCS experimental data.
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4.4 Data analysis and results

Now that we have a reasonable parameterisation of H(J) we proceed to find the best

values for the gluon kernel parameters ls, a, b, c and d, and h0, h1 and h2 in the H(J)

ansatz. The optimal set of parameters is found by minimising the χ2 statistic

χ2
g = χ2

σ + χ2
dσ
dt

, (4.10)

which is the sum of the χ2 of σ (γ∗p→ γp) with the χ2 of σ(γ∗p→γp)
dt

. As in the last

chapters, for a given observable O ∈ {σ (γ∗p→ γp) , σ(γ∗p→γp)
dt

}, the respective χ2

function is defined as

χ2
O ≡

∑
n

(
Opred
n −On

δOn

)2

, (4.11)

with Opred being the predicted theoretical value and δO the experimental uncertainty

and the sum goes over the available experimental points. The total and differential

cross-section data used is the combined one from H1-ZEUS available in [123,124].

The DVCS differential cross-section is given by

dσ

dt
=

1

16πs2

1

2

2∑
λ1,λ3=1

∣∣Aλ1,λ3 (s, t)
∣∣2 =

1

16π2s2
|Aγ∗γ(s, t)|2, (4.12)

where we average over the incoming photon polarization and the scattering amplitude

is given by equation (4.3). The total cross-section is just the integral of the above

σ =

∫ 0

−1

dt
dσ(t)

dt
. (4.13)

The range −1 ≤ t ≤ 0 comes from the data.

The solve the χ2 minimisation problem we developed the HQCDP R package. The

Schrodinger problem associated to the gluon kernel is solved with N = 400 Chebyshev

points. To compute the differential and total cross-sections efficiently we divided the

interval −1 ≤ t ≤ 0 in 20 pieces of length 0.05 and computed the differential cross-

section for each point. From these values we create a spline interpolation function

that can be used to predict the differential cross-section values and the total cross-

section through equation (4.13). We also make use of the REDIS in memory database

to avoid redoing expensive computations. The code also makes use of multiple cores, if

available, in order to compute in parallel the integrals that appear in (4.3) for different

kinematical points. The present results were found using a node in a High Performance

Computing (HPC) cluster with 16 cores.
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The best fit to the data we have found has a χ2
dof ∼ 1.5 with the parameter values

of table 4.1. The individual values of χ2
dof for the total and differential cross-section

experimental data are 1.8 and 1.3 respectively, meaning that the model offers a good

description of both processes. The comparison of the theoretical predictions against

the experimental data can be seen in figures 4.3 and 4.4.

Kernel parameters Extra parameters Intercepts

a = −4.55 h0 = 4.74 j0 = 1.24

b = 0.980 h1 = −35.9 j1 = 1.13

c = 0.809 h2 = 142 j2 = 1.08

d = −0.160 z∗ = 0.296 j3 = 1.05

ls = 0.153 – –

Table 4.1: The 9 parameters for our best fit and the intercept of the first four pomeron

trajectories. All parameters are dimensionless except z∗ and ls which are in GeV−1.
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Figure 4.3: Predicted vs. experimental values of the differential cross-section dσ(t)
dt

for DVCS. Different gray levels correspond to different combinations of Q2 and W as

described in the legends. Here Q2 and t are in GeV2, W in GeV and dσ
dt

is in nb
GeV2 .
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Figure 4.4: Predicted vs. experimental values of the total cross-section σ of DVCS.

Small numbers attached to lines and points of the same grey level indicate the

respective value of Q2 in GeV.

4.5 Conclusions

We have shown that the holographic model presented in the last chapters can be

extended to include a quantitative description of total and differential cross-sections

of DVCS data from H1-ZEUS. If we use the parameter values of table 4.1 we get a

large χ2
dof for the proton structure function F p

2 . By looking at the intercept values of

table 4.1 we can see that they are considerably different from the ones found in table

3.1. Since F p
2 is very sensitive to their values this is expected. The relative differences

of kernel parameters a, b, c, d and l−1
s are respectively 3.19 %, 13.3 %, 22.6 %, 63.3

% and 1 %. This means that a better ansatz for H(J) or actually performing the z̄

integral may lead to a successful joint fit of DVCS with other processes. One should

also include the kernel of the twist 2 fermion operators, as suggested by Donnachie

and Landshoff [125] and study its impact on the results above. A first step towards

the inclusion of the twist 2 fermion operators is done in the next chapter.
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5
Regge theory in a Holographic dual of QCD in the

Veneziano Limit

Chapter abstract: We initiate the study of Regge theory in a bottom-up holographic

model for QCD in the Veneziano limit, where the backreaction of the quarks to the

gluon dynamics is included. We determine the parameters of the model by carrying

out a precise fit to the meson spectrum in QCD. The spectrum for spin-one and

pseudoscalar mesons is well reproduced. We then generalise the model to include

higher spin fields in the bulk trajectories dual to the Pomeron and meson Regge

trajectories at the boundary. With this setting, we fit the masses of the mesons with

spins J = 2, 3, and 4, as well as the experimental data of the total cross-sections

σ(γγ → X), σ(γp → X) and σ(pp → X). For the cross sections we obtain a χ2
dof of

0.74 for a total of 199 experimental points.

5.1 Introduction

In the previous chapters we have presented a holographic model capable of describing

several observables in a kinematical window where QCD is dominated by a gluon rich

medium. In this regime the Bjorken variable x is small, or the Mandelstam variable s

is large, corresponding to high center of mass energies. However, besides gluons QCD

also has quarks. Thus their inclusion in a holographic model is important in order to

achieve a complete model for holographic Regge theory. In this chapter we make a

first attempt to include quark degrees of freedom in a holographic description of Regge

theory.

In order to describe the total cross-section data of hadronic processes in QCD, one
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also includes, besides the Pomeron trajectory, a meson trajectory (e.g. see [52]). This

trajectory can be obtained by a linear fit of the meson spins against the meson squared

masses. With the resulting straight line, one extrapolates from t > 0 to t ≤ 0 in order

to make predictions in the scattering region. In particular, for the total cross-section

we are interested in the value of the trajectory for t = 0, also known as the meson

intercept, and the above linear fit yields an intercept of 0.55. There is no theoretical

justification to assume that the meson trajectory is linear aside from the fact that it has

described successfully scattering data, provided t is not too negative. In this work we

use holography to study this issue by first fitting the meson spectrum for J = 0, 1, 2, 3, 4

and check if the resulting holographic intercept is able to describe the experimental

data of the total cross-sections of γγ, γp and pp scattering. In the previous chapters

and in [1] the dynamics of the higher spin J fields in the graviton Regge trajectory

by generalising the bulk graviton equation of motion has been studied. This was done

using effective field theory inspired by Regge theory of a 5D string theory. In this

work we will not only follow the same procedure for the Pomeron trajectory, but also

apply it to the meson trajectory by generalising to higher spin the equation of motion

of the bulk field dual to the vector mesons.

Before we start such procedure, we need to guarantee that our model is describing

with accuracy the spectrum of the vector mesons. This will be done by considering

the extension of the Improved Holographic QCD model of [91,92], with a backreacted

quark sector [126, 127], as presented in [97]. This model (V-QCD) consists of five-

dimensional dilaton gravity coupled to a tachyon described in terms of a generalised

Sen-like tachyonic Dirac-Born-Infeld (DBI) action [128]. Our numerical solution in-

cludes the full backreaction of the tachyon in the dilaton and metric. The asymptotic

behavior of the model at weak and strong coupling is chosen such that various generic

features of QCD, such as asymptotic freedom and confinement, are reproduced [92,97].

The remaining free parameters of the model will be determined through an extensive

comparison of the spectrum of the quadratic fluctuations against the experimental

meson masses.

This chapter is organized as follows. In section 5.2 we discuss in detail the holographic

model, as well as how to compute the spectrum of the quadratic fluctuations. This

section ends with a fit to the meson spectrum, fixing our background fields for the

remaining of the chapter. In section 5.3 we derive holographic expressions for the total

cross-sections that will be used later to fit data from the Particle Data Group [129]. In

section 5.4 we focus on the holographic duals of the pomeron and meson trajectories,

and in particular in constructing the analytic continuation of the spin J equations
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that govern the dynamics of fields in these trajectories. These equations contain two

parameters that will be fixed by the soft-pomeron intercept and the spin J = 2, 3, 4

meson masses in section 5.5. This fixes the pomeron and meson kernels that are used

in the total cross-section fits. We discuss our results and suggest further work in

section 5.6.

5.2 Holographic model for QCD in the Veneziano

Limit

We consider a slight generalisation of Quantum Chromodynamics which consist of a

gauge field in the adjoint representation of SU(Nc) coupled to Nf fermions (quarks)

in the fundamental representation of SU(Nc). This generalisation has been studied in

great depth in the ’t Hooft large-Nc limit, where Nc → ∞ and λ = g2
YMNc and Nf

are kept fixed. This limit is also known as the quenched limit since nontrivial quark

contributions to observables are suppressed in powers of
Nf
Nc
→ 0. Another interesting

large-Nc limit is the Veneziano limit [130] where

Nc →∞ , Nf →∞ ,
Nf

Nc

= x , λ = g2
YMNc . (5.1)

with x and λ fixed. In this limit the quark contributions are not suppressed, and their

backreaction to the gluon dynamics must be taken into account.

A holographic dual (V-QCD) that reproduces several expected features of QCD in

the Veneziano limit was presented in [97]. It consists of a system of a dilaton and

tachyon coupled to five-dimensional gravity. Let us first discuss the field content and

the action of the model, and then present the precise structure of the various potentials

appearing in the action.

5.2.1 The model

The action in the gravitational sector is the same as in the Improved Holographic QCD

(IHQCD) model [91, 92]. We work at zero temperature so that Poincaré invariance is

intact. The metric Ansatz is therefore

ds2 = gabdx
adxb = e2A(z)

(
ηµνdx

µdxν + dz2
)
, (5.2)

where the warp factor A is identified with the logarithm of the energy scale in the field

theory at the boundary. The exponential of the dilaton field λ = eΦ is dual to the TrF 2
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operator with its background value equal to the ’t Hooft coupling (near the boundary

where the coupling can be unambiguously defined). The action for the metric and

dilaton fields is given by five-dimensional Einstein gravity coupled to a scalar field,

Sg = M3
pN

2
c

∫
d5x
√
− det g

[
R− 4

3

(∂λ)2

λ2
+ Vg(λ)

]
, (5.3)

where Mp is the five-dimensional Planck scale. The dilaton potential Vg(λ) will be

specified below. We choose the potential to be qualitatively similar to that studied

in [131, 132] – see [133, 134] for an alternative approach focused on the fit to QCD

thermodynamics.

To add matter we insert space-filling D4 − D̄4 branes that give rise to a tachyon field

T and the gauge fields AL, AR living on the branes [126,127]. A similar approach has

been considered in the probe limit in [135,136], and also in the Witten-Sakai-Sugimoto

model [137–140]. In the boundary theory the operators with lowest dimension involv-

ing fermions are ψ̄iRψ
j
L with spin 0 and the two spin 1 conserved currents ψ̄iLγ

µψjL and

ψ̄iRγ
µψjR, where i, j are the flavour indices. The spin 0 and spin 1 operators are dual to

bulk complex scalars Tij and two bulk gauge fields AµL, ij and AµR, ij, respectively. The

tachyon transforms as (Nf , N̄f ) of the flavour symmetry U (Nf )R×U (Nf )L, while the

fields AµL,ij and AµR,ij transform in the adjoint representations of U (Nf )L and U (Nf )R,

respectively. In string theory the three bulk fields can be modelled by considering Nf

flavour branes (R) and Nf flavour antibranes (L). In this configuration the complex

scalar fields Tij are the lowest modes of open strings with one end in a D-brane and

another in the anti-D-brane, while the bulk gauge fields are the lowest open string

modes with both ends on a D-brane or on an anti-D-brane. The system obeys a

tachyonic Dirac-Born-Infeld (DBI) action [97,98,127]

SDBI =−
M3

pNc

2

∫
d5xStr

[
Vf
(
λ, T †T

)√
− det

(
gab + κ(λ)D(aT †Db)T + w(λ)FL

ab

)
+Vf

(
λ, TT †

)√
− det

(
gab + κ(λ)D(aTDb)T † + w(λ)FR

ab

)]
, (5.4)

where Str is the symmetric trace over the (hidden) flavour indices and the determinant

is taken with respect to the five dimensional space-time indices a, b (since we are going

to work up to quadratic order we can actually replace the symmetric trace by the usual

trace of matrices for the purposes of this work). The functions Vf (λ), κ(λ), and w(λ)

will be given explicitly below. The normalisation convention for the symmetrisation

of indices is F(aGb) = 1
2
(FaGb + FbGa). The covariant derivative terms are given by

DaT = ∂aT − iTALa + iARa T , DaT
† = ∂aT

† − iALaT † + iT †ARa , (5.5)
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and the field strengths by

FL,R = dAL,R − iAL,R ∧ AL,R . (5.6)

In this work we are assuming that the light quark masses are equal and under this

assumption the tachyon is just T = τ INf . Furthermore, for the QCD vacuum we have

ARa = 0 = ALa . Using these conditions in the action (5.4) we obtain the flavour action

Sf = −xM3
pN

2
c

∫
d5xVf (λ, τ)

√
− det

(
gab + κ(λ)∂aτ∂bτ

)
. (5.7)

The brane action also contains a Wess-Zumino term [127] which we will not need as

it does not contribute to the background solutions or mass spectra considered here.

There is also an additional pseudo-scalar axion field a, which is dual to the operator

TrF ∧F and therefore sources the θ angle in QCD [127]. Its action takes the form [91,

92,98,141]

Sa = −
M3

pN
2
c

2

∫
d5x
√
− det g Z(λ)

[
∂ba− x

(
V (a)(λ, τ)(ÂLb −ÂRb )− ρ ∂bV (a)(λ, τ)

)]2

,

(5.8)

where ÂL,Rb are the singlet fields, ÂL,Rb = TrAL,Rb /Nf , the potential V (a)(λ, τ) will be

specified below, and we allowed the tachyon to have an overall phase ρ, i.e. we took

T = τeiρINf .

5.2.2 Choice of potentials

Let us now discuss the choices for the various potentials (Vg, Vf , κ, w, V (a) and Z). The

generic picture is that the leading IR asymptotics of the various functions is chosen to

agree with known features of QCD (which will be soon specified). The UV asymptotics

is set by rough agreement with perturbative QCD, in particular by the perturbative

UV dimensions of the QCD operators. For intermediate scales the functions need to

be determined by an extensive comparison to experimental and lattice QCD data;

here the functions will be fitted to the meson spectrum in QCD. In this section we

will present the Ansätze for these functions which will obey the asymptotics at small

and large λ determined by qualitative comparison to QCD, and the fit to data will be

carried out in section 5.2.4.

We start with the action for the gluon sector, i.e. the action of improved holographic

QCD. In IHQCD the dynamics of the dilaton is set by its potential Vg(λ), which is

constrained [91,92] in the UV to reproduce the YM β-function and in the IR to yield
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confinement and a “good” singularity in the classification of [142]. In this work we

will take [143,144]

Vg(λ) = 12 + V1 λ+ V2
λ2

1 + αλ λ
λ0

+ 3VIR e
− λ0
αλ λ

λ4/3

4π8/3

√
log

(
1 +

αλ λ

λ0

)
, (5.9)

where

V1 =
44

9π2
, V2 =

4619

3888π4
, λ0 = 8π2 . (5.10)

The values of V1 and V2 are fixed by the gluon sector contribution to the QCD β-

function, while the parameters αλ and VIR will be fitted by the spectrum, in particular

by computing meson mass ratios and comparing them to experimental results, follow-

ing [145]. The spectrum of the theory can be found by analysing the action of the

quadratic fluctuations around the background solution followed by the reduction to the

four-dimensional dynamics. For example, in the case of pure Yang-Mills (i.e. x = 0),

the quadratic fluctuations are dual to glueballs with quantum numbers JPC = 0++, 2++

and with JPC = 0−+ by considering an axion term. For pure Yang-Mills we have

found that αλ ≈ 2.504 and VIR ≈ 3.478 reproduce1 the lattice ratios of 1.46 and 1.87

of m2++/m0++ and m0∗++/m0++ respectively. In the IR, Vg ∼ λ
4
3 (log λ)

1
2 , which gives

linear asymptotic trajectories for glueballs.

The DBI action that we described above is analogous to the flat space Sen action for

the D − D̄ system [128]. Since we are in the presence of a curved space-time and

other non-trivial background fields which fully backreact to the metric, we correct it

by including the general potentials Vf (λ, τ), κ(λ) and w(λ). However these potentials

must satisfy some properties. The tachyon potential Vf is expected to have a regular

series expansion in λ and τ near the boundary (i.e. λ→ 0, τ → 0) [97]

Vf (λ, τ) = V0(λ) + V1(λ)τ 2 +O(τ 4) , (5.11)

and to vanish exponentially in the IR when τ → ∞ [141]. In particular in the flat

space string theory Vs ∼ 1
λ
e−µτ

2
. Our Ansatz for Vf is

Vf (λ, τ) = Vf0(λ)Vτ (τ) , (5.12)

where

Vτ (τ) =
(
1 + a1τ

2
)
e−a2τ2

, (5.13)

Vf0(λ) = W0 +W1λ+W2
λ2

1 + αλ λ
λ0

+
3WIR

16π4
(αλ λ)2e

− λ0
αλ λ

(
1 +

λ0W1

αλ λ

)
,

1We will instead determine these parameters by a global fit to the meson spectrum as we will

explain in section 5.2.4.

100



5- Regge theory in a Holographic dual of QCD in the Veneziano Limit

with

W1 =
24 + (11− 2x)W0

27π2
, W2 =

24(857− 46x) +W0(4619− 1714x+ 92x2)

46656π4
.

(5.14)

This Ansatz is identical to that considered in [144] except for the introduction of the

coefficients ai in Vτ (τ). These are motivated by the observation that the correct mass

gap of the mesons at large quark mass can only be reproduced if the coefficient of τ 2

in the exponent determining the large-τ asymptotics of Vτ (i.e. a2 above) differs from

the second order series coefficient of Vτ at small τ (here a2−a1) [146]. Notice that one

of these coefficients can be eliminated by adjusting the normalisation of the τ field.

As both κ(λ) and w(λ) are coupling functions under the square root of the DBI action

we expect them to have similar qualitative behaviour. On the other hand, in order to

have the correct UV dimension of the q̄q operator we need to impose

κ(0) = 8
a2 − a1

12− xW0

. (5.15)

The IR asymptotics of the potentials κ and w directly affect the meson spectrum. We

are interested in the case where the mesons have an asymptotic linear spectrum and

the meson towers have the same asymptotics. This can be achieved with the following

IR asymptotics κ(λ) ∼ λ−4/3(log λ)1/2 and w(λ) ∼ λ−4/3 log λ [98,147] (see also [148]).

Taking into account these considerations, we adopt the following Ansätze for κ and w,

κ(λ) = 8
a2 − a1

12− xW0

1 +
αλ κ1λ

λ0

+ κ̄0

e−
λ0
ακλ

(
1 + λ0κ̄1

ακλ

)(
ακλ
λ0

)4/3

√
log
(

1 + ακλ
λ0

)

−1

, (5.16)

w(λ) = w0

1 +
αλw1λ

λ0

(
1 + αλλ

λ0

) + w̄0

e−
λ0
αwλ

(
1 + λ0w̄1

αwλ

)(
αwλ
λ0

)4/3

log
(

1 + αwλ
λ0

)

−1

. (5.17)

In order to compute the profiles of the background fields we need to specify the values

of the parameters that appear in the definition of the potentials presented above.

These parameters will be fitted to the ratios between the low-spin meson masses and

the ρ0 meson mass as predicted by the model.

Finally, we need to specify the potentials in the CP-odd action Sa (5.8). In flat-

space tachyon condensation V (a)(λ, τ) is independent of λ and is the same as the

tachyon potential that appears in the DBI action. However in principle it may be

different, so we will take V (a) to be Vf defined above without the V0f term. This form
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guarantees that it becomes a field-independent constant at τ = 0 and that it vanishes

exponentially at τ =∞. The Z(λ) function is defined by

Z(λ) = Za + ca

(
λ

λ0

)4

. (5.18)

The definition is constrained by Yang-Mills theory [92, 141, 149]. In this work the

parameters Za and ca will be determined by fitting the spectrum of singlet axial vector

mesons.

5.2.3 Evaluation of the meson spectrum

The quadratic fluctuations around the background fields can be mapped to the spec-

trum of mesons and glueballs. The normalisable fluctuations of dilaton Φ, QCD

axion a, and the (traceless part of the) metric gab, correspond to glueballs with

JPC = 0++, 0−+, and 2++, respectively2. Here J is the spin, P refers to parity,

and C refers to charge conjugation. The meson sector comes from the normalisable

fluctuations of the tachyon T and of the gauge fields A
L/R
a . They correspond to mesons

with JPC = 0++, 0−+, 1++, and 1−−.

The fluctuations can be further classified according to how they transform under the

vectorial SU(Nf ). They can be grouped in flavour singlet and flavour non-singlet

modes, i.e. mesons transforming in the adjoint of SU(Nf ). The fluctuations that

come from Sf and Sa are only flavour singlet, while the ones coming from Sg include

singlet and non-singlet terms. The singlet terms from Sf will mix with with the singlet

terms coming from Sg and Sa.

The masses of the different glueballs and mesons can be obtained after expanding the

action S = Sg + Sf + Sa to quadratic order of the fluctuations of the background

fields. Due to flavour and rotational covariance the fluctuations decouple in separate

sectors [98], apart from the mixing of the flavor singlet sectors mentioned above. In

summary, there are flavour singlet rank-two tensor fluctuations (JPC = 2++), flavour

singlet and non-singlet vector mesons (JPC = 1−−), flavour singlet and non-singlet

axial vector mesons (JPC = 1++), flavour singlet and non-singlet scalars (JPC = 0++)

and flavour singlet and non-singlet pseudoscalars (JPC = 0−+). These fluctuations

generate towers of 2++ glueballs, singlet and non-singlet vector mesons, singlet and

non-singlet axial vector mesons, non-singlet scalar mesons and mixtures between 0++

2To be precise, it is the diffeomorphism invariant combination of the fluctuations of the dilaton

and the trace of the metric which is dual to the 0++ glueballs.
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glueballs and σ mesons, and non-singlet pseudoscalar mesons and mixtures between

0−+ glueballs and η′ mesons, respectively. These towers of mesons and glueballs

come as solutions of a Schrödinger problem associated with the equation of motion

of the associated fluctuation. The eigenvalues correspond to the square of the mass

of the glueballs or mesons and their holographic wave functions are the associated

eigenfunctions. In this work we will not consider the flavour singlet states of JPC =

0++, 0−+, as they involve mixing of the 0++ glueball with the flavour singlet σ meson

and mixing between the 0−+ glueball with the η′ meson, respectively. Therefore

their analysis is considerably more challenging than that of the flavor nonsinglet

states (see [98, 141, 150]) and would slow down the computer code for the spectrum

significantly. Notice that these states are not central for the Regge analysis which is

the main application of this work.

A detailed derivation of the equations of motion and Schrödinger problems associated

with each fluctuation has been done in [98] and hence we will just summarise the main

results relevant for the present work (see Appendix 5.B for the analysis of the spin 1

fluctuations). The singlet and non-singlet vector mesons have the same equation of

motion

1

Vf (λ, τ)w(λ)2eAG
∂z

(
Vf (λ, τ)w(λ)2eAG−1∂zψV

)
+m2

V ψV = 0 , (5.19)

where ψV = ψV (z) is their wavefunction. By performing the change of variable defined

by
du

dz
= G(z) ≡

√
1 + e−2Aκ(λ)(∂zτ)2 , (5.20)

and rescaling

ψV (z) = α(z)/ΞV , ΞV = w(λ)
√
Vf (λ, τ) eA , (5.21)

one can rewrite the equation of motion in the Schrödinger form

−d
2α

du2
+ VV (u)α = m2

n α , (5.22)

with potential

VV (u) =
1

ΞV (u)

d2ΞV (u)

du2
. (5.23)

The singlet and non-singlet axial vector mesons have Schrödinger potentials differing

by a term coming from the action Sa. The potentials of the non-singlet axial vector
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mesons and of the singlet axial vector mesons are, respectively,

VNSA(u) = VV (u) + 4
τ 2e2A

w(λ)2
κ(λ) , (5.24)

VSA(u) = VNSA(u) + 4 x
e2AZ(λ)V (a)(λ, τ)2

Vf (λ, τ)Gw(λ)2
. (5.25)

The non-singlet scalar mesons have the potential

VS(u) =
1

ΞS(u)

d2ΞS(u)

du2
+HS(u) , (5.26)

with

ΞS(u) =
1

G

√
Vf (λ, τ)κ(λ)e3A , HS(u) = − e2A

κ(λ)

(
(∂τVτ )

2

V 2
τ

− ∂2
τVτ
Vτ

)
, (5.27)

where the expression for HS differs from that of [98] because our Ansatz for Vτ is

different. Finally the equation of motion of the non-singlet pseudoscalar fluctuations

is given by3

Vf (λ, τ) τ 2e3AG−1κ(λ) ∂z

[
1

Vf (λ, τ)τ 2κ(λ)e3AG
∂zψP

]
−

− 4τ 2e2A κ(λ)

w(λ)2
ψP +m2ψP = 0 , (5.28)

with associated Schrödinger potential

VP (u) =
1

ΞP (u)

d2ΞP (u)

du2
+HP (u) , (5.29)

where

ΞP (u) =
1

τ
√
Vf (λ, τ)κ(λ)e3A

, HP (u) =
4τ 2e2Aκ(λ)

w(λ)2
. (5.30)

The numerical determination of the spectrum proceeds by first finding the background

solution (the metric and the scalar fields λ and τ) of the equations of motion defined

by the action S = Sg + Sf . Details of the numerical procedure can be found in

appendix 5.A. We then solve the fluctuation equations on top of the numerical back-

ground. For the cases of singlet and non-singlet vector and axial vector fluctuations,

3Notice that the UV boundary condition for the pseudoscalar fluctuations is nontrivial and also

depends on whether the quark mass is finite or not [98]. A consistent way which leads to UV

finiteness of the fluctuated action in all cases is to require that the factor in square brackets (rather

than the wave function ψP ) in (5.28) vanishes in the UV. For the pseudoscalars we actually solved the

differential equation by using a different method than in the other sectors (i.e. by shooting) because

of the complication with the boundary condition.
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and for non-singlet scalar fluctuations, we compute the Schrödinger potential and use

a pseudospectral method based on Chebyschev polynomials to compute the predicted

masses of this model. The number of Chebyschev points used was 1000 and we checked

the results were stable by computing the masses with a higher number of points. The

reliability of the results was also studied by considering different IR and UV cutoffs

on the background fields used to solve the Schrödinger problems. The masses of

the pseudoscalars were computed using the shooting method. These methods were

implemented in C++ and all results were also cross-checked against the (significantly

slower) Mathematica code used in [98].

5.2.4 Fitting the spectrum

We now proceed to fix the parameters that appear in the potentials by comparing the

predictions of our model with the experimental values of the meson masses quoted by

the Particle Data Group [129].

The overall energy units in the model is also a free parameter. Its effect on the

background and spectrum is trivial due to a scaling symmetry of the holographic

model [97] which reflects the scale independence of the QCD Lagrangian. The scaling

symmetry implies, in particular, that the equations of motion are unchanged under

the transformation

A→ A− log Λ , z → Λz . (5.31)

By applying this transformation to the spectrum we see that all masses are scaled

by the factor Λ. We will in effect choose Λ such that the numerical mass of the ρ

meson matches the experimental result in GeV units. This is equivalent to fitting the

parameters of the to the numerical values of ratios of masses (with respect to the ρ

meson mass) instead of numerical values of masses.

We will only consider mesons made of light up and down quarks. This sets the

x parameter coming from the flavour sector to be 2/3. In table 5.1 we show all

the mesons listed in [129] under light unflavoured mesons with the values of JPC

mentioned before. The exceptions are the flavour singlet scalars and pseudoscalars

and the a0(980). Whether the latter is a quark-antiquark state or a four-quark state is

still debatable, although the literature favours more the four-quark state hypothesis.

For this reason we did not include it in this work. In table 5.2 we have the mesons

listed in [129] under other light unflavoured mesons, which are still not well established.

We also included theses masses in our fit, therefore in case some of these states are
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JPC I Meson Mass Measured (GeV)

1−− 1 ρ 0.7755

1−− 1 ρ(1450) 1.465

1−− 1 ρ(1700) 1.720

1−− 0 ω(782) 0.78265

1−− 0 ω(1420) 1.420

1−− 0 ω(1650) 1.670

1++ 1 a1(1260) 1.230

1++ 0 f1(1285) 1.2819

1++ 0 f1(1420) 1.4264

0++ 1 a0(1450) 1.474

0−+ 1 π0 0.134977

0−+ 1 π0(1300) 1.300

0−+ 1 π0(1800) 1.812

Table 5.1: Light unflavoured mesons from [129] used in the spectrum fit. The quantum

number I = 1 means the meson is a flavour non-singlet state while I = 0 means the

meson is a flavour singlet state.

not confirmed this work should be updated.

As our goal is to include the Regge behavior of vector and axial vector mesons, the

most important criterion for the fit will be the deviation of the vector meson masses of

the model from the experimental results. We have explored different fitting strategies.

We tested fits where the parameters αλ and VIR are fitted either independently to Yang-

Mills data or together with the other parameters to “final” meson mass data. We also

tried including lattice data for glueball masses. The result of these tests was that the

optimal method, which lead to a physically sound solution for the metric and a good

fit of the spin 1 states, was to do a global simultaneous fit of all parameters, excluding

the glueball masses, and also imposing specific constraints to the fit parameters. We

will explain the details below.

The profile of the background fields and the mesons masses (excluding axial vector

singlet states which will be discussed below) are determined by 17 parameters. 16 of

these parameters (αλ, ακ, αw, W0, w0, κ1, w1, VIR, WIR, κ̄0, w̄0, W1, κ̄1, w̄1, a1, and

a2) are parameters of the potentials appearing in the action and τ0 is a parameter that

characterises the IR asymptotics of the tachyon field. In our fits a1 and a2 are fixed by

imposing the following constraints: we choose a2− a1 = 1 by rescaling the τ field, and
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JPC I Meson Mass Measured (GeV)

1−− 1 ρ(2000) 2.000

1−− 1 ρ(2270) 2.265

1−− 0 ω(1960) 1.960

1−− 0 ω(2205) 2.205

1−− 0 ω(2290) 2.290

1−− 0 ω(2330) 2.330

1++ 1 a1(1930) 1.930

1++ 1 a1(2095) 2.095

1++ 1 a1(2270) 2.270

1++ 0 f1(1970) 1.971

1++ 0 f1(2310 2.310

0++ 1 a0(2020) 2.025

0−+ 1 π0(2070) 2.070

0−+ 1 π0(2360) 2.360

Table 5.2: Other light mesons from [129] used in the spectrum fit. The quantum

number I = 1 means the meson is a flavour non-singlet state while I = 0 means the

meson is a flavour singlet state.

set a2 = 2κ(0) in order for the mass gap of the mesons to be correct at large quark

mass [146]. This reduces the number of free parameters to 15.

It turns out that it is useful to set extra constraints for the behavior of the tachyon

which guarantee that the fit parameters remain in the domain of physically reasonable

solutions. The first is related to chiral symmetry breaking. The chirally symmetric

vacuum solution of the model flows to an IR fixed point [97]. We require that there is

an instability towards forming a tachyon condensate in the IR around this fixed point,

which will imply chiral symmetry breaking on the field theory side. The presence of the

instability, and therefore chiral symmetry breaking, is guaranteed if the Breitenlohner-

Freedman (BF) bound [151] of the tachyon is violated at the fixed point. This means

that −m2
τ`

2
∗ > 4, where

−m2
τ`

2
∗ =

24(a2 − a1)

κ(λ∗)Veff(λ∗)
, Veff(λ) = Vg(λ)− Vf (λ, τ = 0) . (5.32)

Here the location of the fixed point is the maximum of the effective potential, V ′eff(λ∗) =

0, and `∗ is the IR AdS radius. Actually, while violation of the BF bound guarantees

tachyon condensation and chiral symmetry breaking, it turns out that, in practice,

values close to the bound are enough to trigger condensation. Therefore we will in
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fact require −m2
τ`

2
∗ & 3.5.

The other condition is to require that the tachyon diverges fast enough in the IR to

set all potential IR boundary terms arising from the flavour action to zero. This is

required, among other things, for the correct implementation of the flavour anoma-

lies [127, 141]. For our choice of potentials the asymptotics of the tachyon in the IR

is

τ ∼ τ0 z
τc , τc =

1

8

(12− xW0) κ̄0a2

VIR(a2 − a1)
, (5.33)

and the flavor action vanishes fast enough in the IR if τc > 1, which is roughly what

we require below.

We then fit these parameters to ratios between the meson masses in tables 5.1 and 5.2

and the ρ mass, by minimising the function

J =
∑
i

|Rpred. i −Robs. i|
Robs. i

+Wτ e
−(4τc/3−1) +Wτ e

−(−m2
τ `

2
∗−3.5), (5.34)

excluding the singlet axial vector mesons. This gives a total of 22 data points. The sum

term is the absolute relative difference between the predictions of our model and the

ones obtained by using experimental data, while the other two terms are the constraints

we want our background to satisfy. We repeated the fit with different values of the

Wτ parameter in order to balance the ability of the model to reproduce the observed

ratios and still be consistent and stable. We have found that Wτ = 0.1 is a good choice

and the results that we present below were obtained with such value. Having fixed the

background, we fit the parameters Za and ca of equation (5.18) against the four mass

ratios between the singlet axial vector mesons and the ρ meson. With this procedure

we have obtained the parameter values presented in table 5.3 and the corresponding

mass ratios of table 5.4. This fit has −m2
τ`

2
∗ ≈ 6.200 and τc ≈ 1.956 which ensure

presence of chiral symmetry breaking and IR decoupling of the tachyon.

Several remarks are in order. Firstly, the fit is stiff: while the number of parameters is

large, the dependence of the results on their values is relatively mild. This is because

the fit parameters appear through only a few functions of λ, the asymptotics at large

and small coupling of which have already been determined by qualitative arguments

and comparison to perturbation theory. Therefore the fit parameters essentially only

affect the functions in the middle, at λ ∼ 1. Also there is limited parameter space

where the functions are simple, monotonic functions, and one can check from the fit

result that it indeed lies within this regime of the parameter space.

Given the stiffness of the fit, the results for the spin-one mesons are really good. There

are a few isolated states for which the deviation is & 10%, but in general the deviations
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Parameter value Parameter value Parameter value

αλ 2.8328 ακ 3.1670 αw 1.6926

W0 2.4289 w0 0.9400 κ1 1.3254

w1 -0.2898 VIR 1.8042 WIR 1.1345

κ̄0 1.7647 w̄0 2.9291 W1 0.2342

κ̄1 -0.3076 w̄1 3.0358 a1 0.5413

a2 1.5413 τ0 0.9232 Za -0.0377

ca 23.307

Table 5.3: Best fit parameters of the background potentials to the mass ratios between

the mesons listed on tables 5.1 and 5.2 and the ρ meson.

are in the ballpark of 1% or even less than that. The masses of the pseudoscalar mesons

are also reproduced at a very good precision. There are, however, significant deviations

in the scalar sector. While the scalar sector is challenging to explain in any model

among other things due to the presence of significant four-quark contribution [129],

the predicted nonsinglet scalar masses are still clearly too low, unlike in the probe

limit study of [135, 136] which used similar flavor action as the current work with

the fixed background of [152]. While exploring different fit procedures, we noticed

that there are parameter values for which the scalar masses are reproduced to a much

better precision, but such parameter values are not favored by the overall fit which

stresses the masses of the spin 1 mesons. Understanding this shortcoming requires

further study. Notice that the scalar states are not needed for the analysis of the

Regge trajectories which is the topic of discussion in the remainder of this thesis.

The fitted value of Za = Z(0) in Table 5.3 is negative. Due to the positive value

of ca, however, the function Z(λ) is mostly positive so that Z(λ) has a node at

small λ. This behavior is unexpected and does not agree with phenomenology, i.e.

the physics of the θ-angle in QCD and in particular the value of the topological

susceptibility [92, 141]. Apparently this issue arises because the singlet axial meson

masses are relatively insensitive to the shape of the function Z(λ), and would be cured

if additional observables (e.g. the topological susceptibility) would be included in the

fit. The precise functional form of Z(λ) is again irrelevant for the Regge analysis of

the following sections.

It is also interesting to compare the fit results to those obtained in the same holo-

graphic model [144] by fitting the potentials independently to lattice data for QCD

thermodynamics. Namely, most of the values are very close to those obtained in

that study, deviations are typically in the ballpark of 10%. In particular, the scale
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Ratio Rpred. Robs. |Rpred. − Robs.|/Robs.

mρ(1450)/mρ 1.662 1.890 0.121

mρ(1700)/mρ 2.141 2.219 0.035

mρ(2000)/mρ 2.559 2.580 0.008

mρ(2270)/mρ 2.940 2.922 0.006

mω(782)/mρ 1 1.010 0.010

mω(1420)/mρ 1.662 1.832 0.093

mω(1650)/mρ 2.141 2.154 0.006

mω(1960)/mρ 2.559 2.528 0.012

mω(2205)/mρ 2.940 2.844 0.034

mω(2290)/mρ 3.289 2.954 0.127

mω(2330)/mρ 3.610 3.005 0.201

ma1(1260)/mρ 1.591 1.587 0.003

ma1(1930)/mρ 2.095 2.489 0.158

ma1(2095)/mρ 2.523 2.702 0.066

ma1(2270)/mρ 2.916 2.928 0.004

mf1(1285)/mρ 1.653 1.654 0.001

mf1(1420)/mρ 2.128 1.840 0.157

mf1(1970)/mρ 2.543 2.542 0.0004

mf1(2310)/mρ 2.930 2.980 0.017

mπ/mρ 0.1740 0.1741 0.0006

mπ(1300)/mρ 1.731 1.677 0.032

mπ(1800/mρ 2.337 2.337 5× 10−5

mπ(2070)/mρ 2.785 2.670 0.043

mπ(2360)/mρ 3.173 3.044 0.042

ma0(1450)/mρ 0.685 1.901 0.640

ma0(2020)/mρ 1.492 2.612 0.429

Table 5.4: Mass ratios obtained with the parameter values of table 5.3 and their

comparison to experimental values.

110



5- Regge theory in a Holographic dual of QCD in the Veneziano Limit

parameters αλ and ακ are close to the value 1 used in this reference, whereas αw is a

bit higher than what was obtained through the fit to thermodynamics (αw equals to

3ws of [144]) but still smaller than the other scale parameters, in agreement with the

earlier fit. We also note that there is rough agreement with [153,154] where the model

was compared to lattice results at finite magnetic field and temperature by using a

slightly different Ansatz for the potentials of the model. The parameter c of these

references, which controls the scale in the λ dependence of the w(λ) function, maps

roughly to the ratios αw/αλ or αw/ακ in this work. For the ratios we obtain numbers

close to 0.5 whereas c ≈ 0.25 was preferred by the thermodynamics at finite magnetic

field. That is, the numerical values are different, but clearly smaller than one in both

cases. Moreover the value of W0 (which was a free parameter in [144]) is determined

by the spectrum fit to be near 2.5. This results is therefore an important constraint

with respect to the earlier fit. The most significant difference between the fits is the

value of w̄0, which here is smaller by a factor of about 5 to 10 with respect to the

various fits of [144]. This is apparently connected to the change in the value of αw.

5.3 γγ, γp and pp total cross-sections in holographic

QCD

In this section we present the necessary ingredients to compute the total cross-sections

of γγ, γp and pp scattering in holographic models of QCD in the Veneziano limit. First

we will discuss the kinematics of each process. Then we will present generic holographic

expressions of the forward scattering amplitude, in the Regge limit, via the exchange

of higher spin J fields. We conclude by deriving the holographic expression of the total

cross-sections by taking the imaginary part of the amplitudes and using the optical

theorem.

5.3.1 Kinematics

For all processes we will use light-cone coordinates (+,−,⊥), with flat space metric

ds2 = −dx+dx− + dx2
⊥, where x⊥ ∈ R2. For the γ∗p→ γ∗p process the incoming and

outgoing off-shell photons are the following

k1 =

(√
s,−Q

2
1√
s
, 0

)
, −k3 =

(√
s,
q2
⊥ −Q2

3√
s

, q⊥

)
, (5.35)
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while the incoming and outgoing protons with mass M have momenta

k2 =

(
M2

√
s
,
√
s, 0

)
, −k4 =

(
q2
⊥ +M2

√
s

,
√
s,−q⊥

)
. (5.36)

The momentum transfer q⊥ is a R2 vector and is related to the Mandelstam variable

t through t = −q2
⊥. We work in the Regge limit of large Mandelstam variable s.

For the forward scattering amplitude the momentum transfer q⊥ = 0 and the photon

virtualities satisfy Q3 = Q1 = Q, since the outgoing off-shell photon has k3 = −k1 and

the outgoing proton k4 = −k2. The incoming and outgoing photon polarizations are

the same. The possible polarization vectors are

n(λ) =


(
0, 0, ελ

)
, λ = 1, 2(√

s/Q,Q/
√
s, 0
)
, λ = 3

, (5.37)

where ελ is just the usual transverse polarization vector.

For the γ∗γ∗ → γ∗γ∗ process the incoming photons have the four momenta

k1 =

(√
s,−Q

2
1√
s
, 0

)
, k2 =

(
−Q

2
2√
s
,
√
s, 0

)
, (5.38)

while the outgoing photons have

k3 = −
(√

s,
q2
⊥ −Q2

3√
s

, q⊥

)
k4 = −

(
q2
⊥ −Q2

4√
s

,
√
s,−q⊥

)
, (5.39)

where Q2
i = k2

i > 0 (i = 1, . . . , 4) are the corresponding virtualities. As in the case of

γ∗p scattering, for the forward scattering amplitude the momentum transfer is null.

The possible polarization vectors are, respectively,

n1,3 =


(
0, 0, ελ

)
, λ = 1, 2

1
Q

(√
s, Q

2
√
s
, 0, 0

)
, λ = 3

(5.40)

n2,4 =


(
0, 0, ελ

)
, λ = 1, 2

1
Q

(
Q2
√
s
,
√
s, 0, 0

)
, λ = 3

, (5.41)

since in the forward amplitude the incoming and outgoing off-shell photons have the

same polarizations. Notice that the transverse photons (λ = 1, 2) are normalized such

that n2 = 1, while for the longitudinal photons (λ = 3) n2 = −1.

Finally, the large s kinematics of pp scattering is given by

k1 =

(√
s,
M2

√
s
, 0

)
, k3 = −

(√
s,
q2
⊥ +M2

√
s

, q⊥

)
, (5.42)

k2 =

(
M2

√
s
,
√
s, 0

)
, k4 = −

(
M2 + q2

⊥√
s

,
√
s,−q⊥

)
,
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(a) (b) (c)

Figure 5.1: Tree level Witten diagram representing spin J exchange in (a) γ∗p→ γ∗p,

(b) γγ → γγ and (c) pp → pp scattering. The n1 and n2 labels denote the incoming

photon polarizations while n3 and n4 label the outgoing photon polarizations. For

forward scattering n1 = n3 and n2 = n4. Aa represents the non-normalizable mode

of a U(1) gauge field dual to the source of the conserved current ψ̄γµψ and Υ is a

normalizable mode of a bulk scalar field that represents an unpolarised proton. x and

x̄ represent the bulk points where the external scattering states couple with the spin

J fields.

where k1 and k2 are the incoming proton momenta and k3 and k4 are the outgoing

proton momenta. As in the other processes we will only compute the forward scattering

amplitude for which q⊥ = 0.

5.3.2 Holographic scattering amplitudes

Before we start the computation of the forward scattering amplitudes we need to define

the external states as well as the interaction between them and the spin J fields that

are exchanged in the Witten diagrams of figure 5.1.

An external photon is a source of the conserved current ψ̄γµψ, where the quark field ψ

comes from the open string sector. According to the gauge/gravity duality this field is

dual to the nonnormalizable mode of a vector field in the bulk. In the context of this

model the natural candidate is the linear combination of the AL and AR gauge fields

Va =
ALa + ARa

2
. (5.43)

In the string frame the action of this field is

S = −1

4
M3NcNf

∫
d5x
√
−gse−

10
3

ΦVf w
2
s GFabg̃

acg̃bdFcd , (5.44)
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where gs is the determinant of the metric in the string frame, g̃ab is the inverse of

g̃ab = gsab + κs(λ)∂aτ∂bτ , κs(λ) = λ4/3κ(λ) and ws(λ) = λ4/3w(λ) and G was defined

in equation (5.20). Working in the gauge Vz = 0 and ∂µV
µ = 0, the vector field

components describing a boundary plane wave solution with polarization nµ take the

form

Vµ (x, z) = nµfQ (z) eik·x , k2 = Q2 , (5.45)

where fQ satisfies the differential equation

1

Vf (λ, τ)w(λ)2eAG
∂z

(
Vf (λ, τ)w(λ)2eAG−1∂zfQ

)
−Q2fQ = 0 , (5.46)

subject to the boundary conditions fQ (0) = 1 and ∂zfQ (z →∞) = 0. For the

computation of the Witten diagrams that have photons as external states, in particular

to compute the bulk interaction vertex, it is convenient to know the field strength of

a given mode

Fµν = 2ik[µnν]fQ(z)eik·x , Fzµ = nµḟQ(z)eik·x , (5.47)

where we use the notation ḟQ = ∂zfQ.

For the proton external state we consider that it is dual to the normalizable mode of

a bulk scalar field Υ (x, z) = eiP ·xυ (z) that represents an unpolarised proton. We will

see that the contribution of the proton wavefunction to the scattering amplitudes is

inside an integral that will be absorbed in the coupling constants and hence the precise

details will not be important.

The last ingredient of our model are the higher spin fields ha1···aJ that will mediate

the interaction between the external states in the considered scattering states. In this

work we will consider bulk spin J fields that are dual to the spin J twist two operators

made of the gluon field, as well as bulk spin J fields dual to the spin J twist two

operators made of the quark bilinears. This extends the previous works [1, 32, 33],

where only bulk fields dual to the gluon operators were considered. As discussed in

appendix 5.B, we will consider a coupling between the U(1) gauge field and these spin

J fields given by

kJ

∫
d5x
√
−gsGe−

10
3

ΦVf (λ, τ)ws(λ)2g̃abF V
ac∇a1 . . .∇aJ−2

F V
bd h

cda1...aJ−2 , (5.48)

while for the scalar field Υ dual to the proton state the coupling is

k̄J

∫
d5x
√
−gs e−Φ (Υ∇b1 . . .∇bJΥ)hb1...bJ . (5.49)
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In equations (5.48) and (5.49) ∇a is the covariant derivative, while kJ and k̄J are the

couplings constants between the the U(1) gauge field and the bulk scalar with the spin

J field, respectively.

The higher spin J field ha1···aJ is totally symmetric, traceless and satisfies the transver-

sality property∇a1ha1···aJ = 0. This implies that, in the Regge limit, it is not important

in which external fields the covariant derivatives in (5.48) and (5.49) act. Below we

assume that the spin J field has a propagator, without specifying its form. In the next

section we focus on the dynamics of this field in detail for the case of pomeron and

meson trajectories.

Now we will show how to compute the forward scattering amplitude for the case of

γp scattering. The calculations for γγ and pp follow the same pattern and bring no

additional difficulty. For those cases we will simply present the results. In the Regge

limit, the amplitude describing the spin J exchange between the incoming gauge field

V
(1)
a ∼ eik1·x and scalar field Υ(2) ∼ eik2·x, and outgoing gauge field V

(3)
a ∼ eik3·x and

scalar field Υ(4) ∼ eik4·x, can be written as

AJ = kJ k̄J

∫
d5x

∫
d5x̄
√
−gs
√
−ḡsGe−

10
3

ΦVf w
2
s e
−Φ̄×

× g̃abF (1)
a− (x)∂J−2

− F
(3)
b− (x) Π−···−,+···+(x, x̄)Υ(2)(x̄)∂J+Υ(4)(x̄) , (5.50)

where bars denote quantities evaluated at x̄ in the Witten diagrams. The tensor

Πa1···aJ ,b1···bJ (x, x̄) is the propagator of the spin J field. Using the kinematics of

equations (5.35), (5.36) and (5.37), the expressions (5.47) and summing over the

photon polarisations, the amplitude takes the form

AJ = kJ k̄Js
J

∫
d5xd5x̄

√
−gs
√
−ḡsGe−

10
3

ΦVf w
2
s e
−Φ̄e−2J(A+Ā)e−2A×

×

(
fQ

2 +
ḟ 2
Q

Q2G2

)
ῡ2e−iq⊥·(x⊥−x̄⊥)Π+···+,−···− (x, x̄) . (5.51)

To make progress we make the change of variable x− x̄ = (w+, w−, l⊥) ≡ w and define

the transverse propagator in transverse space GJ(z, z̄, t) through

∫
d2l⊥e

−iq⊥l⊥
∫
dw+dw−

2
Π+···+,−···−

(
z, z̄, w+, w−, l⊥

)
= − i

2J

(
eA+Ā

)J−1

GJ(z, z̄, t) ,

(5.52)

that is valid both for spin J fields of the graviton Regge and meson trajectories.
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Defining V = (2π)4δ4 (
∑
ki) we obtain

AJ = −iV kJ k̄J
2J

sJ
∫
dzdz̄ e2Ae4ĀGe−

10
3

Φ Vf w
2
s e
−Φ̄e−J(A+Ā)×

×

(
fQ

2 +
ḟ 2
Q

Q2G2

)
ῡ2GJ(z, z̄, t) . (5.53)

In the next section we will propose phenomenological equations of motion for the higher

spin fields ha1···aJ of both trajectories. In particular, it will be shown that the function

GJ(z, z̄, t) for the pomeron and meson trajectories admits a spectral decomposition

associated to a Schrödinger potential that describes spin J glueballs or spin J mesons.

This function can be written in terms of the eigenfunctions ψn(J, z) and eigenvalues

tn(J) of this Schrödinger potential in the following way

GJ(z, z̄, t) = eB+B̄
∑
n

ψn(J, z)ψ∗n(J, z̄)

tn(J)− t
. (5.54)

As already observed in chapter 2, the function B(z) depends on the holographic QCD

model as well on the trajectory that the higher spin field belongs to. We will determine

it them in the next section.

Finally, in order to get the total amplitude we need to sum over the spin J fields with

J ≥ Jmin, where Jmin is the minimal spin in the corresponding Regge trajectory. As

described in previous chapters we can apply a Sommerfeld-Watson transform

1

2

∑
J≥Jmin

(
sJ + (−s)J

) AJ
sJ

= −π
2

∫
dJ

2πi

sJ + (−s)J

sin πJ

AJ
sJ

, (5.55)

which requires analytic continuation of the amplitude for the spin J exchange to the

complex J-plane. The contour on the complex plane consists of circles around simple

poles at integer values of J . Then, we assume that the J-plane integral can be deformed

from the poles at physical values of J to the poles J = jn(t) defined by tn(J) = t. The

scattering domain of negative t contains these poles along the real axis for J < Jmin.

The scattering amplitude for t = 0 is then

A(s, 0) =
∑
n

gγpn s
jn(0)

∫
dz eA(2−jn(0))Ge−

10
3

Φ Vf w
2
s

(
fQ

2 +
ḟ 2
Q

Q2G2

)
eBψn(jn, z) ,

(5.56)

where

gγpn =
π

2

kjn(0)k̄jn(0)

2jn(0)

(
i+ cot

πjn (0)

2

)
djn
dt

∫
dz̄ eĀ(4−jn)e−Φ̄ῡ2eB̄ψ(jn, z̄)∗ . (5.57)
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By analysing (the regular solution to) the equation (5.46) we see that

lim
Q→0

fQ = 1 , lim
Q→0

ḟQ
Q

= 0 . (5.58)

It therefore follows from the optical theorem that

σ(γp→ X) =
∑
n

Im
(
gγpn
)
sjn−1

∫
du e−(jn−2)Ae−

10
3

Φ Vf w
2
s e

Bψn(u) , (5.59)

where we have made the change of variable du = Gdz.

As mentioned before the procedure to compute the holographic total cross-sections for

the other processes is similar to the one just presented. These calculations are done in

appendices 5.C and 5.D. Hence, we finish this section by presenting the final results.

For γγ → X we have

σ(γγ → X) =
∑
n

Im
(
gγγn
)
sjn−1

∫
du e−(jn−2)Ae−

10
3

Φ Vf w
2
s e

Bψn(u) , (5.60)

where

gγγn =
π

2

k2
jn(0)

2jn(0)

(
i+ cot

πjn (0)

2

)
djn
dt

∫
dū e−(jn−2)Āe−

10
3

Φ̄ V̄f w̄
2
s e

B̄ψn(u)∗ . (5.61)

For the pp→ X process the total cross-section is

σ(pp→ X) =
∑
n

Im
(
gppn
)
sjn−1 , (5.62)

where

gppn =
π

2

k̄2
jn(0)

2jn(0)

(
i+ cot

πjn (0)

2

)
djn
dt

∣∣∣∣∫ dz eA(4−jn)e−Φῡ2eBψ(jn, z)

∣∣∣∣2 . (5.63)

5.4 Spin J Dynamics

The Witten diagrams of figure 5.1 allow to compute four-point functions dominated

by exchange of twist 2 operators in the large s limit. We consider spin J operators OJ
of the form

OJ ∼ tr
[
Fβα1Dα2 · · ·DαJ−1

F β
αJ

]
, OJ ∼ ψ̄γα1Dα2 · · ·DαJψ. (5.64)

The first set of operators are gluonic while the second set are quark operators. These

twist 2 operators are dual to bulk spin J fields whose dynamics will be specified below.
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We shall then follow an effective field theory approach, by proposing a general form

of the equations of motion with phenomenological parameters that can be fixed by

data. We will propose two different equations of motion, one that describes the gluon

sector, which includes the energy-momentum tensor Tαβ, and the other the quark

sector, which includes the quark bilinear current Jα. These equations will satisfy two

requirements: i) compatibility with the graviton’s equation of motion for the case

J = 2 for gluonic operators, and compatibility for J = 1 with the equation of motion

of the U(1) current dual to the operator Jα; ii) reduction to the conformal limit case

(pure AdS space and constant dilation and tachyon).

In pure AdS the equation of motion of a spin J field is(
∇2 −M2

)
ha1···aJ = 0 , (LM)2 = ∆ (∆− 4)− J , (5.65)

where L is the AdS length scale and ∆ is the dimension of the dual operator OJ . These

fields are symmetric, traceless and transverse (TT). The independent components are

the ones along the boundary direction (i.e. hα1···αJ ) due to the transversality condition.

Decomposing these into irreducible representations of the Lorentz group SO(1, 3), the

TT components hTT
α1···αJ decouple from the others and they describe the operator OJ

in the dual theory. The UV asymptotics of these fields are

hα1···αJ ∼ z4−∆−JJ + · · ·+ z∆−J〈OJ〉+ · · · , (5.66)

with the free theory value ∆ = J+2, where J is the source of OJ and 〈OJ〉 its vacuum

expectation value.

We will now motivate two equations of motion for spin J , one for the fields in the

Pomeron trajectory and another for the fields in the meson trajectory.

5.4.1 Pomeron in Holographic QCD in the Veneziano limit

The Pomeron is dual to the graviton Regge trajectory [8]. To derive the equation

of motion of the spin J fields in the graviton’s Regge trajectory we follow the same

approach as in [1,32], that is we derive first the equation of motion of the graviton and

then generalize it based on the two requirements mentioned above. Only the gluon

part of the action Sg, contributes to the fluctuations in the spin-2 sector. Therefore

the equation of motion of the TT components of the graviton in this class of models

is, in the Einstein frame, the same as in IHQCD [92]

∇2hTT
µν + 2Ȧ2e−2AhTT

µν = 0 , (5.67)
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which also equals equation (A.108) of [98] for the 2++ glueballs. This equation reduces

to (5.65) for the AdS case since ∆ = 4 and J = 2 for the AdS graviton. The

corresponding equation of motion in the string frame can be obtained by noting that

the warp factor in the Einstein frame is related with the warp factor in the string

frame AS through A = AS − 2Φ/3, and that the expected relationship between the

string frame TT perturbations hTTS
αβ and Einstein frame TT perturbations hTT

αβ is

hαβ = e−4Φ/3hSαβ. Then the equation of motion in the string frame is (dropping the

superscript S in hTTS
αβ )[

∇2 − 2e−2AsΦ̇∇z + 2Ȧ2
se
−2As

]
hTT
αβ = 0 . (5.68)

We propose that the equation of motion of the spin J fields in the graviton’s Regge

trajectory is[
∇2 − 2e−2AsΦ̇∇z −

∆(∆− 4)

L2
+ JȦ2

se
−2As + eg (J − 2) e−2As τ̇ 2

]
hTT
α1...αJ

= 0 , (5.69)

where eg is a constant that will be fixed later by setting the soft pomeron intercept

to 1.08. We note that: i) for J = 2 we get the the graviton’s equation (5.68); ii) for

the conformal case, i.e. A = − log (z/L) and Φ and τ constant, the equation reduces

to (5.65); iii) the second term comes from the tree level coupling of a closed string, as

appropriate for the graviton Regge trajectory in a large N approximation; iv) following

an effective field theory rational we could have included other terms proportional to

derivatives of As and Φ, that is terms proportional to

e−2As
(
Äs − Ȧ2

s

)
, e−2AsΦ̇2 , e−2AsΦ̈ , e−2AsȦsΦ̇ . (5.70)

All these terms, of dimension inverse squared length, are compatible with the con-

straint i) and also with constraint ii) provided they multiply J − 2. Like the term

proportional to τ̇ 2, these terms are all subleading in the UV. However in the IR,

where the wavefunctions of the associated Schrödinger problem are localised, the term

τ̇ 2 dominates and for this reason we will only consider this term. We have also not

included the terms τ̈ , τ̇ Ȧs and τ̇ Φ̇ because the background is symmetric under τ → −τ .

The third term in (5.69) is a mass term obtained by the analytic continuation of the

dimension of the exchanged operators ∆ = ∆ (J). We shall set

∆(∆− 4)

L2
=
J2 − 4

λ4/3
. (5.71)

In the boundary theory the dimension of the operator OJ can be written as ∆ =

2 + J + γJ , where γJ is the anomalous dimension. In free theory γJ = 0. The term we
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added in the right-hand side of (5.71) ensures the correct UV asymptotic behaviour

of (5.69) leading to the free theory result hTT
+···+ ∼ z2. Beyond perturbation theory,

the curve must pass through the point J = 2 and ∆ = 4 as it represents the energy-

momentum tensor which is protected. Equation (5.71) guarantees such properties.

The propagator for the spin J fields in the graviton’s Regge trajectory is the solution

of

(DΠ)a1···aJ ,b1···bJ (x, x̄) = ie2Φga1(b1 · · · g|aJ |bJ )δ5(x, x̄)− traces , (5.72)

where the notation ga1(b1 · · · g|aJ |bJ ) means that symmetrisation is applied only among

the indices bi , i = 1, · · · J . As we have seen in the previous section, in the Regge limit

we are only interested in the component Π+···+,−···−. By using the identity (5.52) one

can show that[
∆3 − e−2As

(
2Φ̇∂z + 2Ȧs

2
+ Äs − 2Ȧ2Φ̇

)
−m2

J(z)
]
GJ (z, z̄, l⊥) = −e2Φδ3(y, ȳ) ,

(5.73)

where l⊥ = x⊥ − x̄⊥ and y = (z, x⊥) and ȳ = (z̄, x̄⊥) are points in the scattering

transverse space with metric ds2
3 = e2As [dz2 + dx2

⊥]. ∆3 is the corresponding Laplacian

and m2(z) is given by

m2
J(z) = (J − 2)

[
J + 2

λ
4
3

+ eg e
−2As τ̇ 2

]
. (5.74)

The homogeneous version of equation (5.73) can be transformed in a Schrödinger

problem through the Ansatz

GJ(z, z̄, t) = eΦ−As
2 ψ(z) , (5.75)

where ψ satisfies the Schrödinger equation[
−∂2

z − t+ VJ(z)
]
ψ(z) = 0 , (5.76)

with t = −q2
⊥ and

VJ(z) =
3

2

(
Äs −

2

3
Φ̈

)
+

9

4

(
Ȧs −

2

3
Φ̇

)2

+ e2Asm2
J(z) . (5.77)

The spectrum for each integer J discretises t = tn(J) and the corresponding eigenfunc-

tions satisfy the identity
∑

n ψn(z)ψ∗n(z̄) = δ(z − z̄). Hence, the solution to equation

(5.73) is given by

GJ(z, z̄, t) = eΦ+Φ̄−As
2
− Ās

2

∑
n

ψn(J, z)ψ∗n(J, z̄)

tn(J)− t
. (5.78)

and the B function in equations (5.59), (5.60), (5.62) is Φ − As/2 when considering

exchange of reggeons in the Pomeron trajectory.
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Figure 5.2: Chew-Frautschi plot of four degenerate meson Regge trajectories. All the

mesons shown are well established experimentally, except ρ5, f6 and a6. The particle

spins are plotted agains their squared masses t. Figure adapted from [52].

5.4.2 Meson Trajectory

Next we discuss how to describe the dynamics of spin J fields in the mesons trajectory.

The Chew-Frautschi plot of figure 5.2 shows two important properties of the mesons

trajectories. The first is linearity which is usually used to extrapolate from the t-

channel physical region to the s-channel scattering region where t < 0. That is, we

find the best line to the points and use it to find j(t) for t < m2
ρ. In particular, for

total cross-sections we are interested in the intercept value at t = 0. Another impor-

tant property is the near degeneracy of the four trajectories {f2(1270), f4(2050), · · · },
{a2(1320), a4(2040), · · · }, {ω(780), ω3(1670), · · · } and {ρ(770), ρ3(1690), · · · }.

Using the fact that the four trajectories are nearly degenerate and that we had a very

good description of the spectrum for non-singlet and singlet vector mesons (ρ and ω)

we will construct the holographic meson trajectory by generalizing the equation of

motion of vector mesons to any spin J field in the same trajectory. We will follow

the same procedure of last section. Later we will validate our approach by showing

how, with just one single parameter, one can simultaneously have a good description

of scattering data, the spectrum of the meson trajectory, and an approximately linear

Regge trajectory for the mesons.

From the action (5.44) for the vector field in the string frame, one gets the equation

of motion

∇a

(
e−

10
3

Φ Vf w
2
s G g̃

acg̃bdFcd

)
= 0 . (5.79)
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In order to simplify the notation, from now on we assume all the warp factors and

effective metrics are in the string frame. As a first step to generalize (5.79) we write

it as

g̃ab∇a∇bAα +

(
∂zṼ

Ṽ G2
+

(
3Ȧ

(
1

G2
− 1

)
− Ġ

G3

))
e−2A

(
∇zAα −∇αAz

)
−

−
(

1− 1

G2

)
∇α∇λA

λ +

(
Ä

G2
+ 3Ȧ2

)
e−2AAα = 0 , (5.80)

where Ṽ = e−
10
3

ΦVfw
2
s . In the conformal limit (pure AdS with constant dilaton and

tachyon) the above equation reduces to(
∇2 −M2

)
Aα = 0 , (5.81)

with (LM)2 = −4, as expected for a bulk field dual to the current operator ψ̄γµψ with

spin J = 1 and protected dimension ∆ = 3.

We now propose an equation of motion for the symmetric, traceless and transverse

spin J field ha1···aJ in the meson Regge trajectory. As in the graviton case, we are

interested in the TT part hTT
α1···αJ which are the propagating degrees of freedom that

decouple from the other components after decomposing the field in SO(1, 3) irreducible

representations. We propose the equation[
g̃ab∇a∇b +

(
∂zṼ

Ṽ G2
+ 3Ȧ

(
1

G2
− 1

)
− Ġ

G3

)
e−2A

(
∂z − (J − 1)Ȧ

)
− (5.82)

(
1− 1

G2

)
∇α1∇λ −

(
∆ (∆− 4) Ȧ2 − J Ä

G2

)
e−2A + em (J − 1) e−2Aτ̇ 2

]
hTT
α1···αJ = 0 .

We note that: i) this equation reduces to the vector meson equation of motion for

J = 1; ii) in the AdS case the second, third and fifth terms vanish, reducing this

equation to the equation of motion of the TT components of spin J fields in AdS; iii)

Following the same logic as for the fields in the Pomeron trajectory we only included

the two-derivative term in τ̇ 2 that is compatible with i) and ii). Also, as in the case of

the Pomeron, the ∆(J) curve follows from the analytic continuation of the dimension

of the exchanged operators and imposing the correct UV asymptotic behaviour of the

spin J fields:

∆ (∆− 4) = −3 +
e2A

Ȧ2

J2 − 1

λ
4
3

. (5.83)
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The last term guarantees the correct UV behaviour of the spin J fields given in (5.66),

while the first one ensures that the curve passes through the protected point ∆ = 3,

J = 1.

Equation (5.82) can be brought to Schrödinger form by first rewriting it in terms of

the u variable defined previously. After that we can write the spin J field as

hTT
α1···αJ = εα1···αJe

iq·x e(J−1)A√
e−

10
3

Φ Vf w2
s e

A

ψ(u), (5.84)

where ψ satisfies the Schrödinger equation

−d
2ψ

du2
+ VJ(u)ψ = t ψ. (5.85)

The Schrödinger potential is given by

VJ(u) = VV (u)+
(
J2 − 1

)
e2A− 4

3
Φ +(J−1)

[
G2Ȧ2 − ȦĠG+G2Ä

G2
− emG2τ̇ 2

]
, (5.86)

where VV is the Schrödinger potential of the vector mesons given in (5.23). Here the

dots mean derivatives with respect to the u variable. We will denote the eigenvalues of

this Schrödinger potential as tn(J) and the corresponding eigenfunctions as ψn(J, u).

The propagator for this spin J field obeys an equation of the type

(DΠ)a1···aJ ,b1···bJ = iga1(b1 · · · g|aJ |bJ )δ5(x, x̄)
G

e−
10
3

ΦVfw2
s

, (5.87)

where D is a differential operator defined by (5.82). In the Regge limit we will be

interested in the components Π+···+,−···− and for this particular case

DΠ+···+,−···− = i

(
−e

2A

2

)J
δ5(x, x̄)

G

e−
10
3

ΦVfw2
s

. (5.88)

Consider now the integral∫
dw+dw−

2
Π+···+,−···− = −i

(
−1

2

)J
e(J−1)(A+Ā)GJ(u, ū, l⊥) , (5.89)

that defines the transverse propagator GJ . Applying the operator D on both sides of

this equation and noting that

D
[
e(J−1)(A+Ā)GJ(u, ū, l⊥)

]
= e(J−1)(A+Ā)D3GJ(u, ū, l⊥) , (5.90)
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where D3 is the differential operator

D3 = e−2A∂2
u + e−2A

(
Ȧ− 10

3
Φ̇ + 2

w′sΦ̇

ws
+
∂uVf
Vf

)
∂u + e−2A∂2

l⊥
+ (5.91)

+ (J − 1) eme
−2AG2τ̇ 2 − J2 − 1

λ4/3
− (J − 1) e−2A

[
G2Ȧ2 − ȦĠG+G2Ä

G2

]
,

we conclude that GJ satisfies

D3GJ(u, ū, l⊥) = −δ3(y, ȳ)
G

e−
10
3

ΦVfw2
s

, (5.92)

where y and ȳ are coordinates in transverse space, as defined after (5.73).

To solve (5.92) we consider its homogeneous version and the following Ansatz

GJ(u, l⊥) =
eiq·l⊥√

e−
10
3

ΦVfw2
se
A

ψ(u) . (5.93)

It follows that ψ is a solution of the Schrödinger problem (5.85). Since the eigenfunc-

tions of the Schrödinger potential satisfy
∑

n ψn(u)ψn(ū)∗ = δ(u− ū), the solution to

(5.92) is

GJ(u, ū, t) =
(
e−

10
3

ΦVfw
2
se
A
)−1/2

∣∣∣∣
u

(
e−

10
3

ΦVfw
2
se
A
)−1/2

∣∣∣∣
ū

∑
n

ψn(u)ψn(ū)

tn(J)− t
. (5.94)

Thus, the implications of this result for (5.59), (5.60) and (5.62) is that

B = −1

2
log
(
e−

10
3

ΦVfw
2
se
A
)
, (5.95)

when considering exchange of reggeons in the meson trajectory.

5.5 Fit of γγ, γp and pp total cross-sections in holo-

graphic model

In this section we will test the presented phenomenological model for γγ, γp and

pp total cross-sections against the hadronic cross-section data files from the Particle

Data Group [129]. These data sets are formed from experimental results obtained by

different groups over the last decades. The datasets of σ(γp → X) and σ(pp → X)

have cross-section values as a function of the laboratory momentum of an incoming
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on-shell photon or proton, respectively. A calculation of the respective center of mass

energy
√
s was performed before starting the fits. We also considered only subsets of

data with
√
s > 4 GeV for σ(γγ → X), σ(γp → X) and σ(pp → X), yielding 39, 45

and 115 experimental points, respectively.

We find the best set of parameter values αi by minimising the χ2 quantity

χ2 =
N∑
n=1

(
Opred
k (αi)−Oexp

k

σk

)2

, (5.96)

that is, the sum of the weighted difference squared between experimental data and

model predicted values where the weight is the inverse of the experimental uncertainty.

In our fits the parameters αi are the couplings k
g/m
jn

and k̄
g/m
jn

defined in equations

(5.57), (5.61) and (5.63), where the superscript refers the coupling to the pomeron

or meson trajectory. Usually a fit is deemed of good quality if the quantity χ2
d.o.f. ≡

χ2/(N −Npar) ∼ 1, where Npar is the number of parameters αi to be fitted. In (5.96)

Ok represents a generic data point of one or several observables mentioned previously

and, usually, σk is the experimental uncertainty associated with the measurement.

Some data points have uncertainties in the values of s (e.g. in γγ → X that is always

the case because it is measured experimentally). To account for this we calculate the

total cross-section for s+ ∆s and s−∆s, and evaluate

σeff. = max
(
|σpred. (s+ ∆s)− σpred. (s) | , |σpred. (s−∆s)− σpred. (s) |

)
. (5.97)

For these cases σk =
√

(σexp.)
2 + (σeff.)

2 where σexp. is the experimental error.

By minimising (5.96) with all the data mentioned above we can find the best values

for the potentials parameters eg and em, as well as for the coupling values kjn and

k̄jn with n = 1, 2, · · · for each trajectory. We will follow another approach. As shown

in [1], the first two trajectories of the gluon kernel can be identified to the hard and

soft pomeron trajectories. Here we will fix eg by demanding that the intercept of the

soft pomeron trajectory is 1.08. We also identify the meson trajectory with the first

trajectory of the meson kernel and we will fix em such that we have agreement with

the meson masses of (f2, a2), (ρ3, ω3) and (f4, a4) for J = 2, 3, 4, respectively. The

numerical values of these parameters were found to be 0.246 and 1.712 for eg and em,

respectively. The intercept values obtained from these parameter values can be found

in table 5.5 and the leading trajectories are shown in figure 5.3. The corresponding

masses of the mesons for J = 2, 3, 4 are present in table 5.6. The intercept of the hard

pomeron is close to 1.17 which was the one found in the IHQCD model [1,33]. We also

note that the intercept of the 4th Pomeron trajectory and of the meson trajectory are

very close to 0.55 found in the hadronic cross-section fits of [52].
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glueballs n = 2
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meson n = 1

Figure 5.3: The first three Regge trajectories of the gluon kernel and the first meson

trajectory of the meson kernel used in the cross section fits. They result from solving

the Schrödinger problems (5.77) and (5.86) for several values of J . The black dots are

the experimental values of the mesons f2, a2, ρ3, ω3, f4 and a4.

Table 5.5: Values of the intercepts of the first four trajectories of the Pomeron kernel

and of the first two trajectories of the meson kernel. These values were obtained with

eg = 0.246 and em = 1.712.

Intercept Intercept value

jg
1 1.22

jg
2 1.08

jg
3 0.862

jg
4 0.574

jm
1 0.625

jm
2 0.246

Table 5.6: Meson masses in GeV for J = 2, 3, 4 obtained for em = 1.712 and the

corresponding experimental values.

meson mass predicted mass

f2(1270) / a2(1320) 1.2755 / 1.3169 1.310

ρ3(1690) / ω3(1670) 1.6888 / 1.667 1.673

f4(2050) / a4(2040) 2.018 / 1.967 2.003
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Table 5.7: Values of the couplings for the joint fit of σ (γγ → X), σ (γp→ X) and

σ (pp→ X) data. There are 199 experimental points giving a χ2
d.o.f. = 0.74.

γ coupling value proton coupling value

kgj1 0.0634496 k̄gj1 2.23798

kgj2 -0.119512 k̄gj2 -15.485

kgj3 0.0180875 k̄gj3 7.11293

kmj1 0.043448 k̄mj1 12.8753

101 102

s (GeV)

0

200

400

600

800

1000

1200

1400

(n
b)

HVQCD
exp. data

Figure 5.4: Fit of σ(γγ → X) vs experimental points. The curve was obtained using

the values from table 5.7.

After fixing the kernel parameters eg and em, we fit the total cross-section data by

minimising (5.96) with respect to the couplings k
g/m
jn

and k̄
g/m
jn

. Considering only the

first three Pomeron trajectories and the first meson trajectory with the intercepts

of table 5.5 we obtain a χ2
d.o.f. of 0.74 for a total of 199 experimental points and 8

parameters. The best fit parameters are present in table 5.7 and the comparison of

the experimental data with the predictions of the model for these parameters is present

in figures 5.4, 5.5 and 5.6. These results show that one does not need to assume a

linear meson trajectory after fixing it at t > 0 in order to describe total cross-section

data, as it is often assumed in the literature, leading to an intercept value of 0.55. The

Regge trajectory is convex line, which yields a slightly higher intercept.
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Figure 5.5: Fit of σ(γp → X) vs experimental points. The curve was obtained using

the values from table 5.7.
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Figure 5.6: Fit of σ(pp → X) vs experimental points. The curve was obtained using

the values from table 5.7.

5.6 Conclusions

In this chapter, we studied Regge theory in a full-fledged holographic model (V-QCD),

which includes backreaction of quark degrees of freedom to the gluon dynamics in

QCD. The main new results can be divided into two categories: Firstly, we made

progress with the comparison of the model with QCD data by carrying out a detailed

fit of the model parameters to the meson spectrum. Secondly, we developed a scheme

to describe higher spin mesons and Regge trajectories in this model, and applied it

to analyse the total QCD cross sections of scattering processes having protons and

photons in the initial state.
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As explained in section 5.2, the holographic model is strongly constrained by the

requirement that it agrees with known features of QCD such as confinement, chiral

symmetry breaking, asymptotic linearity of meson trajectories, qualitatively correct

dependence of the spectrum on the quark mass, correct response to small chemical

potential at small temperatures, and asymptotic freedom with correct dimensions (and

anomalous dimensions) of the most important operators of QCD at weak coupling.

Most of the remaining parameters, which are not determined by such qualitative

considerations, amount to tuning of the various potentials of the V-QCD action at

intermediate values of the coupling. In this work we have chosen to tune these

parameters such that the meson spectrum of the model agrees well with experimental

QCD data. The number of fitted parameters is large, because we want to make sure

that our Ansatz for the potentials covers essentially all of the parameter space left free

by the constraints listed above. However since the effect of all these parameters on

the potentials is relatively small, the dependence of the result for the meson masses

on the parameters is weak. In other words, one obtains a rather good description of

the QCD spectrum for any reasonable values of the parameters, and the task carried

out in this chapter is to tune the masses to agree as well with experimental values as

possible.

Because here we were mostly interested in the Regge physics, we chose a strategy where

we only fitted the meson masses with spins J = 0 and J = 1, but did not consider

other data such as decay constants or thermodynamic potentials. Notice also that we

included radial excitations with high masses and these state were fitted with the same

weight as the “important” low-lying states such as the pions and the ρ-meson. That is,

the fit was tailored for the purpose of studying the Regge physics where reproducing

the correct asymptotics of the trajectories is important. It is anyhow interesting

that the results of the fit are in good agreement with those obtained in [144] where

essentially the same Ansatz was compared to the lattice data for the thermodynamics

of Yang-Mills theory and QCD at finite temperature, and in rough agreement with

the value of the parameter c of [153, 154] as we explained in section 5.2.4. We also

remark that the fit carried out here appears to be more constraining than those carried

out in the earlier references: our fit favors W0 ≈ 2.5 whereas this parameter was left

unconstrained by the comparison to lattice thermodynamics. We obtained a very good

fit for the spin 1 and pseudoscalar meson masses. This fit was more extensive than

that carried out in the probe limit in the closely related model of [135, 136]. It also

compares favourably to work in simpler holographic models and in models inspired by

gauge/gravity duality, such as the hard [155,156] and soft wall models [89], light front

holography [157,158], and the holography inspired stringy hadron model [159,160].
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There are several ways to further develop the holographic model and the fitting

procedure in the future. A simple project would be to redo the fit to meson spectrum

with the aim of producing a model for all purposes, which would mean to weight more

the mesons having low masses and also consider other experimental data relevant

for the zero temperature vacuum such as decay constants, the flavor singlet scalar

and pseudoscalar states, topological susceptibility, the S-parameter and so on. The

potentially challenging issue, which we noticed while doing the fit, is that the scalar

meson masses agree poorly with the experimental values. This issue would need to be

solved. A more ambitious project would be to carry out a simultaneous comparison

of the zero temperature and finite temperature data, i.e. to also include the data for

lattice thermodynamics at finite temperature and potentially also at finite magnetic

field. Good agreement of the model parameters obtained by fitting the zero and finite

temperature data independently suggests that such a project is feasible. As a part

of the project, it might make sense to also generalise the model to include flavor

dependent quark masses and flavor dependent coupling of the magnetic field to the

quarks.

Having fixed the action for the geometry and the actions for scalar and vector mesons

through the fit, we proposed the dynamics for the spin J fields dual to the gluon

and quark twist two operators. This dynamics is controlled by two parameters that

were fixed by making the second Pomeron trajectory intercept to be 1.08 (the known

soft-pomeron intercept) and by reproducing quite accurately the masses of the mesons

with J = 2, 3, 4. We have found that the hard pomeron intercept is close to 1.17

in IHQCD. We also note that the fourth Pomeron trajectory and the leading meson

trajectory that we obtained have intercepts close to the meson intercept value of 0.55

commonly found in the literature. Using the first three pomeron trajectories and the

first meson trajectory we had a very good fit of the total cross-sections of γγ, γp and

pp scattering. We note here that although our meson intercept is close to 0.55, the

corresponding trajectory is non-linear in the t > 0 region (see figure 5.3), as it is often

assumed. This suggests that the linearity of the trajectory might be at best a very

good approximation to obtain an intercept that explains total cross-section data, and

not its true shape in this region.

This work can now be extended to other processes like the proton structure functions

F p
2 and F p

L and the photon structure function F γ
2 , as done in [34]. In this model

their holographic expressions are given respectively by equations (5.158), (5.159) and

(5.155) from the appendix 5.E. From these expressions one can see that: i) the

Bjorken x behaviour depends solely on the value of the intercept; and ii) the Q2
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dependence comes from an integral involving the non-normalizable mode of the U(1)

gauge field fQ, functions of the background fields and the normalisable wave functions

ψn of the pomeron and meson kernels. Having the background fixed, the first two

classes of functions are uniquely determined while the ψn’s might be controlled by

phenomenological parameters (similar to eg and ef ) of the equations of motion of the

spin J fields. In this work, with the values of eg and ef fixed by the spectrum of

higher spin mesons, we may have obtained the correct Bjorken x behaviour, but it is

not guaranteed that the wave functions yield the observed dependence of the structure

functions on Q2. Hence, one needs to consider the neglected terms of equation (5.70)

in order to get good agreement between our model and data. Of course this involves

adding more parameters to these fits, making it harder to find a minimum for the χ2

function that describes satisfactory all the data being considered. If successful, this

would also extend [34] by including also pp total cross-section data in a consistent

holographic Regge analysis.

Since this model reproduces well the masses of the towers of ρ and π mesons, one could

also test this approach against the Vector Meson Production (VMP) data from HERA

with a ρ meson in the final state and to include π0p total cross-section data. This will

introduce extra parameters in this holographic Regge model. In the π0p total cross-

section we could introduce couplings between the pions and the spin J fields of the

different trajectories. On the other hand, the VMP data would promote the coupling

constants kJ to functions of t since in differential cross-section data we work with more

than one value of t. In order to control the amount of parameters to be introduced in

this model, it would be interesting to fix the couplings, or the functional form of kjn(t),

to other observables where these couplings might be important. This could be done

by first using a theoretical well motivated ansatz for kjn(t) with some free parameters.

These free parameters could then be fixed by the experimental values of decay rates.

As an example of this, km
j1(m2

f2
)

and Γ(f2 → γγ) are related through equation (5.48)

for the J = 2 case.

To describe successfully VMP in this holographic setting we need a better approxi-

mation to the proton state than assuming it to be a scalar field. In this work this

is sufficient, since the integrals that involve the proton wavefunction are absorbed

in the fitting parameters. However, in the VMP case the proton state is in an

integrand multiplying wavefunctions of the Pomeron and meson kernel that depend

on t. Moreover, having a good model for the proton state could also allow to extend

this work directly by including available data of pp differential cross-section data.

In holography, baryons are dual to solitons in the bulk and hence the problem is

131



5- Regge theory in a Holographic dual of QCD in the Veneziano Limit

reduced to the calculations of these solutions [161]. Such solitons have been studied

in the literature in the Witten-Sakai-Sugimoto model [162, 163] and in hard-wall

models [164,165]. In the V-QCD model, baryons have so far only been considered by

employing an approximation scheme [148],the construction of these soliton solutions

is an interesting problem. Such a solution could be a good starting point to model the

proton state in holographic Regge theory.

5.A Solving the Equations of Motion

In this appendix we give details on how the equations of motion are solved. It turns out

to be convenient to write the resulting equations in terms of A instead of the radial

coordinate z. This change of coordinates stretches distances close to the boundary

which eases the numerical UV analysis. To implement this one introduces the new

variable

q(A) =
dz

dA
eA , (5.98)

so that the metric reads

ds2 = q2dA2 + e2A ηµνdx
µdxν . (5.99)

From now on all the background fields will be functions of A and the differential

equations we present are all with respect to A being the independent variable.

Yang-Mills Equations of Motion

If we set x = 0 we obtain the action of the IHQCD model and hence we are dealing

with a pure Yang-Mills theory in the large Nc limit. The equations of motion are then

dq

dA
=

1

3

(
12q − q3Vg(Φ)

)
, (5.100)

dΦ

dA
= −
√

3

2

√
12− q2Vg(Φ) . (5.101)

The solution of the pure Yang-Mills background is needed in our method for construct-

ing the full V-QCD solution, as we explain below. We will therefore solve this coupled

set of differential equations by shooting from the IR to the UV. The coordinate A runs

from −∞ to +∞, but naturally we will need to intriduce cutoffs for the numerical

solution. We set AIR = −150 and AUVYM = 50 as the lower and upper bound on A.

In the IR the geometry ends in an IR singularity of the “good” kind according to the
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classification of [142]. At the singularity the warp factor A and the dilaton Φ have the

asymptotic forms [97]

AIR (z) = −z2 +
1

4
log(6z2)− log(VIR)

2
+

23

24
− 173

3456z2
+O

(
1

z4

)
, (5.102)

ΦIR (z) = +
3

2
z2 − 23

16
− log

(
αλ
λ0

)
− 151

2304z2
+O

(
1

z4

)
, (5.103)

as z →∞. This allows us to determine zIRYM such that AIR (zIRYM) = −150 and use

its numerical value to compute Φ (AIR) = ΦIR (zIRYM) and q (AIR) = eAIR/dAIR

dz
and

hence defining boundary conditions to solve equations (5.100) and (5.101). Note that

αλ and VIR determine uniquely both the initial conditions as well as the evolution of

the background fields in pure YM.

After we solve the YM equations we can determine z (A) by using equation (5.98). We

solve this numerically by taking z(AIRYM) = zIRYM as initial condition and at the end

we perform the shift z (A) → z (A) − z (AUVYM) in order to have the UV singularity

at z = 0.

We finish this section by specifying which algorithms we have used to find the numerical

YM background. To compute zIRYM we have used the root finding Van Wijngaarden-

Dekker-Brent method described in [166]. The differential equations (5.100) and (5.101)

were solved using integrate const with a Runge-Kutta-Dormand-Prince stepper from

the Boost C++ library.

Solving the equations of motion in the holographic model

The solution of the equations of motion in V-QCD at zero temperature is done in four

stages. This is because, as it turns out, the equations of motion are stiff in particular

close to the IR singularity. Therefore for the numerical code to be stable, it is better

to divide the range of A into region where different kind of approximations can be

used that reduce the stiffness problem. In the first two regions we are deep in the

IR and the tachyon is decoupled from the other background fields and q (A) so that

Φ (A) obey equations (5.100) and (5.101). In these stages we therefore use the YM

background constructed as explained above for the metric and for the dilaton. In the

third stage the tachyon will couple to the other background fields until it reaches the

UV where it decouples again starting the fourth and last stage of the solution of the

EOMs.

As in the YM case we start by first specifying the IR boundary conditions. We first
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define AIR = −150, AUVYM = 50, AUVc = 100 and AUVf = 1000. Again we compute

zIRYM as in the YM case and we use it to compute q (AIR) and Φ (AIR) as in YM and

τ (AIR) using the tachyon IR asymptotics

τ ∼ τ0 z
τc , τc =

(12− xW0) κ̄0a2

8VIR(a2 − a1)
, (5.104)

where τ0 is a parameter that is going to be fitted to the spectrum. The constants

τcut = 1000 and Vf cut = 10−8 are defined and they mark the end of the first and second

stages of the construction of the numerical background, respectively. The difference

between the first and the second stage is that in the first stage, the tachyon is so large

that nonlinear corrections ∼ 1/τ 2 can be ignored in the tachyon equation of motion.

In the second stage we need to use the full tachyon equation of motion, while the

tachyon remains decoupled (as signalled by the smallness of the tachyon potential,

Vf/Vg < Vf cut).

We start the construction of the background by computing the YM profile of q (A)

and Φ (A) from AIR to AUVYM as explained above. If τIR > τcut the tachyon profile

will be given by the solution of the differential equation (linearized at large τ)

dτ

dA
=

2q2Vf0
dVτ
dτ

Vτ

(
8Vf0κ+ 2κ

dVf0

dΦ
dΦ
dA

+ Vf0
dκ
dΦ

dΦ
dA

) , (5.105)

until τ < τcut, marking the end of the first stage. The value of A such that this

condition is met is called AUV1 The values of q and Φ used are the ones given by YM.

In the second stage we solve the (full) tachyon differential equation

d2τ

dA2
=
q2 Vτ

dτ

Vτ κ
− 4

dτ

dA
+
d log q

dA

dτ

dA
+

Vτ
dτ

Vτ

(
dτ

dA

)2

− 4κ

(
dτ
dA

)3

q2
− (5.106)

− d log Vf0

dΦ

dτ

dA

dΦ

dA
− d log κ

dΦ

dτ

dA

dΦ

dA
− κd log Vf0

dΦ

(
dτ

dA

)3 dΦ
dA

q2
− dκ

dΦ

dΦ

dA

(
dτ
dA

)3

2q2
,

from the value of AUV1 to AUVYM. Using the profiles of q, Φ and τ we compute AUV2

such that AUV1 < AUV2 < AUVYM and Vf (Φ, τ) = Vf0 (Φ)Vτ (τ) = Vf cutVg (Φ) are

satisfied. This condition marks when the tachyon starts to couple with q and Φ from

the IR to the UV.

In the stage where the tachyon is coupled the dynamics of the background fields obeys

dq

dA
=

4

9
q

(
dΦ

dA

)2

+ x qVfκ

(
dτ
dA

)2

6

√
1 + κ

(
dτ
dA

q

)2
, (5.107)
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d2Φ

d2A
= −3

8
q2dVg
dΦ

+
9
dΦ
dA

+
3

4

q2

dΦ
dA

 xVf√
1 + k

( dτdA)
2

q2

− Vg

− (5.108)

− 5
dΦ

dA
+ xVfk

(
dτ
dA

)2 dΦ
dA

6

√
1 + κ

(
dτ
dA

q

)2
+

4

9

(
dΦ

dA

)3

+

+
3

8
xq2

dVf
dΦ√

1 + κ
(

dτ
dA

q

)2
+

3

8
xκ

(
dτ

dA

)2 dVf
dΦ√

1 + κ
(

dτ
dA

q

)2
+

+
3

16
xVf

(
dτ

dA

)2 dκ
dΦ√

1 + κ
(

dτ
dA

q

)2
,

d2τ

dA2
=
q2 dVτ

dτ

Vτ κ
− 4

dτ

dA
+

dVτ
dτ

Vτ

(
dτ

dA

)2

− 4
κ

q2

(
dτ

dA

)3

+ xκVf (Φ, τ)

(
dτ
dA

)3

6

√
1 + κ

(
dτ
dA

q

)2
−

− d log(Vf0)

dA

dΦ

dA

dτ

dA
− κd log Vf0

dA

dΦ

dA

(
dτ
dA

)3

q2
+

4

9

(
dΦ

dA

)2
dτ

dA
− d log(κ)

dΦ

dΦ

dA

dτ

dA
−

(5.109)

− 1

2

dκ

dΦ

dΦ

dA

(
dτ
dA

)3

q2
.

This is a stiff system of differential equations and for this reason we had used the

function integrate adaptive with the rosenbrock4 stepper from the Boost C++ library.

This system is solved from AUV2 to AUVc. The value AUVc = 50 was chosen such that

at this point we are in the UV and the tachyon decouples again from q and Φ: this is

guaranteed as the tachyon is suppressed exponentially in the UV (τ ∼ mqe
−A).

The UV equations of motion are

dq

dA
=

4

9
q

(
dλ
dA

λ

)2

, (5.110)

d2λ

dA2
= −3

8
(qλ)2dVg

dλ
+ 9

λ2

dλ
dA

+
3

4

(qλ)2

dλ
dA

(xVf0 − Vg)− 5
dλ

dA
+ (5.111)

+
d log q

dA

dλ

dA
+

(
dλ
dA

)2

λ
+

3

8
x (qλ)2dVf0

dλ
, (5.112)

d2τn
dA2

= 3τn +
eAq2 Vτ

dτ

Vτκ
+ τn

d log Vf0

dλ

dλ

dA
+ τn

dλ

dA

d log κ

dλ
− d log q

dA
τn−

− 2
dτn
dA
− d log Vf0

dλ

dλ

dA

dτn
dA
− dλ

dA

dτn
dA

d log κ

dλ
+
d log q

dA

dτn
dA

, (5.113)
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where τn = eAτ . This system is solved from AUVc to AUVf . With the profile of τn

and λ in this region we can compute an estimate the quark mass mq through the UV

asymptotic formula

mq est(A) =
1

`UV

τn (A) e−τcorr(λ(A)) , (5.114)

τcorr(λ) =
(−88 + 16x+ 27αλ κ1) log

(
24π2

(11−2x)λ

)
12x− 66

, (5.115)

where `UV is the UV AdS radius. We then obtain the final estimate for the quark mass

by evaluating this estimate at two large values, i.e. at A = AUVf and at A = AUVf−10

and linearly extrapolating the result to the UV (i.e. λ = 0) on the (λ,mq est) -plane.

As in the YM case we can determine z (A) by using equation (5.98) and perform the

shift z (A)→ z (A)− z (AUVYM) in order to have the UV singularity at z = 0.

5.B EOM and couplings of the U(1) gauge field

In this appendix we start deriving the action of the vector meson sector since the non-

normalisable solution of the corresponding equations of motion is dual to the external

photon in the boundary. Then, by linearising the action we find the coupling of the

U(1) gauge field to the graviton of the bulk theory. All of this is made in the Einstein

frame. Since we will be dealing later with calculations on the string frame we will

explain how to translate these results to the string frame. Finally we generalise the

coupling to the graviton to any spin J field in the graviton’s Regge trajectory.

The action of the vector U(1) gauge field

As mentioned previously, for the QCD vacuum we set ARa = 0 = ALa . When we turn

on the gauge fields, the flavour action becomes

Sf = −M
3Nc

2

∫
d5xVf (λ, τ)Tr

[√
−det ((geff)ab + TLab) +

√
−det ((geff)ab + TRab)

]
,

where

(geff)ab = gab + κ (λ) ∂aτ∂bτ ,

TLab = w (λ)FL
ab + κ (λ)D(aτDb)τ − κ (λ) ∂aτ∂bτ , (5.116)

TRab = w (λ)FR
ab + κ (λ)D(aτDb)τ − κ (λ) ∂aτ∂bτ .
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Here we remember that Tr is a trace over the flavour indices while the determinant is

computed with respect to the space-time indices. Writing the determinants inside the

square roots as

det
(
geff + TL/R

)
= det (geff) det

(
1 + g−1

eff T
L/R
)
, (5.117)

defining XL/R = g−1
eff T

L/R and using the identity

ln det
(
1 +XL/R

)
= tr ln

(
1 +XL/R

)
= trXL/R − 1

2
tr
(
XL/R

)2
+ · · · , (5.118)

it follows that √
det (1 +XL/R) = 1 +

1

2
trXL/R − 1

4
tr
(
XL/R

)2
+ · · · , (5.119)

trXL/R =
∑
a,b

(
g−1

eff

)
ab
T
L/R
ab , (5.120)

tr
(
XL/R

)2
=
∑
a,b,c,d

(
g−1

eff

)
ac
T
L/R
cb

(
g−1

eff

)
bd
T
L/R
da . (5.121)

The expressions for the matrix elements of g−1
eff and TL/R are

(
g−1

eff

)
zz

=
e−2A

G2
,
(
g−1

eff

)
µν

= ηµνe−2A , (5.122)(
g−1

eff

)
zµ

=
(
g−1

eff

)
µz

= 0 , (5.123)

TL/Rzz = 0 , (5.124)

TL/Rzµ = −TL/Rµz = w (λ) (±∂zAµ + ∂zVµ) , (5.125)

TL/Rµν = 4κ (λ) τ 2AµAν + w (λ) (±Aµν + Vµν) , (5.126)

where the vector and axial gauge fields Va and Aa are linear combinations of the left

and right gauge fields

Va =
ALa + ARa

2
, Aa =

ALa − ARa
2

, (5.127)

in the gauge Vz = 0 = Az, Vµν = ∂µVν − ∂νVµ and Aµν = ∂µAν − ∂νAµ.

From these identities and after some calculations one gets

Sf = −1

2
M3Nc

∫
d5xVf (λ, τ)

√
−geff Tr

[
2 + 4e−2Aκ (λ) τ 2AµA

µ+ (5.128)

+
w (λ)2e−4A

G2
(∂zAµ∂zA

µ + ∂zVµ∂zV
µ) +

1

2
e−4Aw (λ)2 (VµνV

µν + AµνA
µν)

]
.
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The first term is the background term, while the the two other terms can be packed

into the actions

SV =− 1

2
M3NcTr

∫
d5xVf (λ, τ)w(λ)2G−1eA

(
∂zVµ∂zV

µ +
1

2
G2VµνV

µν

)
, (5.129)

SA =− 1

2
M3NcTr

∫
d5xVf (λ, τ)w(λ)2G−1eA

(
∂zAµ∂zA

µ+

+
1

2
G2AµνA

µν + 4e2Aκ(λ)G2τ 2

w(λ)2 AµA
µ

)
, (5.130)

which are the actions for the Non-singlet Vector and Axial-Vector mesons presented

in [98]. The equation (5.129) can still be rewritten as

S = −1

4
M3NcNf

∫
d5x
√
−g Vf w2GFabF

ab, (5.131)

where here the notation FabF
ab means

FabF
ab =

∑
a,b,c,d

Fab
(
g−1

eff

)
ac

(
g−1

eff

)
bd
Fcd . (5.132)

From Einstein frame to string frame

To compute the action of the U(1) gauge field in the Einstein frame we approximated

the square roots of the determinants present in Sf as√
− det (geff + TL/R) =

√
−geff

[
1 +

1

2
trX − 1

4
trX2 +

1

8
(trX)2 + . . .

]
, (5.133)

with X = g−1
eff T

L/R for some tensor TL/R. The string frame warp factor As is related

to the Einstein frame warp factor A through As = A + 2
3
Φ. From this it follows that

√
−geff = e−10Φ/3

√
−geff s and the matrix X in the previous equation can be written

as X = g−1
s T

L/R
s with T

L/R
s = e4Φ/3T

L/R
E . This implies that√

− det (geff + TL/R) = e−10Φ/3

√
− det

(
geff s + T

L/R
s

)
, (5.134)

i.e. Sf in the string frame is obtained by simply substituting the metric by the

string frame metric gs, substituting κ(λ) and w(λ) by κs(λ) = e4Φ/3κ(λ) and ws(λ) =

e4Φ/3w(λ) and multiplying Vf by the factor e−10Φ/3. The derivation of SV in the string

frame will be formally the same and hence the results equal to the Einstein frame ones

but with ws, κs and e−10Φ/3Vf in place of w, κ and Vf respectively. The action (5.131)

in the string frame takes the form

S = −1

4
M3NcNf

∫
d5x
√
−gse−

10
3

Φ Vf w
2
sGFabF

ab . (5.135)

138



5- Regge theory in a Holographic dual of QCD in the Veneziano Limit

Couplings with the spin J fields

We will now determine the gravitational coupling between the U(1) gauge field and the

spin J fields in the graviton’s Regge trajectory. We first compute the coupling with

the graviton and generalise to any even spin J field. All of this is done in the Einstein

frame. To find the coupling in the string frame we just substitute the functions w, κ

and Vf by ws, κs and e−10Φ/3Vf respectively, as discussed previously.

Again, we start by writing the square roots of the determinants as√
− det geff

[
1 +

1

2
tr
(
g−1

eff T
L/R
)
− 1

4
tr
(
g−1

eff T
L/Rg−1

eff T
L/R
)

+ . . .

]
. (5.136)

The coupling with the graviton is found by linearising equation (5.136) around the

background metric, i.e. gab = ḡab +hab. To study the graviton Regge trajectory in our

background we need to decompose the metric in SO(1, 3) irreducible representations.

We will be only interested in the graviton TT components hαβ, satisfying ∂αhαβ = 0

and hαα = 0, and also set hzα = hαz = hzz = 0.

For our purposes we can ignore the perturbation of
√
− det geff because it involves only

a term proportional to h = haa = 0. We will also neglect the terms involving the axial

vector mesons Aµ since we are only interested in the coupling of Vµ with the graviton

for now. We wish then to compute δtr
(
g−1

eff T
L/R
)

and δtr
(
g−1

eff T
L/Rg−1

eff T
L/R
)
, where

by δ we mean a perturbation relative to the background metric. Using the identity

δgabeff = −gameff g
bn
effhmn one can show that

δtr
(
g−1

eff T
L/R
)

= −gameff g
bn
effhmnT

L/R
ab , (5.137)

δtr
(
g−1

eff T
L/Rg−1

eff T
L/R
)

= −2gameff g
bn
effg

cd
effT

L/R
bc T

L/R
da hmn . (5.138)

Using the expressions for the matrix elements of g−1
eff and TL/R we get

δtr
(
g−1

eff T
L/R
)

= 0 , (5.139)

δtr
(
g−1

eff T
L/Rg−1

eff T
L/R
)

= 2e−6Aw (λ)2hµν
(
Vµση

σρVνρ +
1

G2
∂zVµ∂zVν

)
. (5.140)

Hence the coupling between the vector U(1) gauge field and the graviton is given by

M3NcNf

2

∫
d5x
√
− det geffVf (λ, τ) e−6Aw(λ)2hµν

(
Vµση

σρVνρ +
1

G2
∂zVµ∂zVν

)
,

(5.141)

or simply

M3NcNf

2

∫
d5x
√
−g GVf (λ, τ)w (λ)2gcmgdngabeffF

V
acF

V
bdhmn . (5.142)
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In the string frame this coupling takes the form

M3NcNf

2

∫
d5x
√
−gsGe−

10
3

ΦVf (λ, τ)ws(λ)2gcms gdns g
ab
eff sF

V
acF

V
bdh

s
mn . (5.143)

We now generalise this coupling to the case of an interaction between the gauge field

and a symmetric, transverse and traceless spin J field, ha1···aJ . The pomeron trajectory

includes such higher spin fields of even J . Again there are several possibilities, but we

shall focus on the simplest extension of the graviton coupling considered above. For a

spin J field we take the coupling

kJ

∫
d5x
√
−gsGe−

10
3

ΦVf (λ, τ)ws(λ)2gabeff sF
V
ac∇a1 . . .∇aJ−2

F V
bdh

cda1...aJ−2 . (5.144)

We note that the transverse condition of the spin J field ha1···aJ guarantees that this

term is unique up to dilaton and tachyon derivatives.

We now consider the coupling between the external photon states with the bulk spin

J fields dual to the spin J twist two operators made of quark bilinears. To determine

the coupling to any spin J in this trajectory we could proceed analogously with the

case of the graviton’s Regge trajectory. In the case of the coupling with the meson

trajectory, one could first determine the coupling between the non-normalizable mode

dual to the photon with the the ρ meson states and generalise the result to higher

spin J fields. To do this we attempted to expand the DBI action to cubic order in the

fluctuations and keep only the terms with three vector gauge fields VaVbVc. We start

by writing √
det(geff + TL/R) =

√
detgeff exp

[
1

2
Tr log

(
1 +XL/R

)]
. (5.145)

If we use the power series expansion of the exponential and of the logarithmic function

we get √
−detgeff

[
1− 1

4
Tr
(
XL/R

)2
+

1

6
Tr
(
XL/R

)3
]
, (5.146)

where we have dropped terms involving products of TrXL/R because they contribute

only to axial gauge fields Aa. The quadratic term leads to the action of the quadratic

fluctuations of the vector gauge field and hence the coupling VaVbVc if exists must be

contained on Tr
(
XL/R

)3
. That is, we evaluated the expression

Tr
(
XL/R

)3
=

∑
i,k,j,l,m,n

(
g−1

eff

)
ik

(
g−1

eff

)
ln

(
g−1

eff

)
jm
T
L/R
kj T

L/R
ml T

L/R
ni , (5.147)

which contains no coupling of the form VaVbVc.
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Another approach is to find the coupling between the vector gauge field with the bulk

field dual to the f2 meson and extrapolate to all the other spin J fields in the meson

trajectory. In [167] the tensor meson f2 state is the first Kaluza-Klein mode of a bulk

spin-2 hab field that has the same equation of motion as the graviton in AdS5. The

coupling of f2 to the photon is also the same as the one between a graviton and a bulk

gauge field in AdS5. The geometry is basically AdS5 with a wall whose position is

fixed by the mass of the ρ meson. After this they are able to predict not only the mass

of f2 but also the decay width Γ(f2 → γγ). f2 also has the same quantum numbers of

the tensor glueballs JPC = 2++ which are the normalisable modes associated with the

graviton’s equation of motion. For these reasons, in this work, we will assume that the

coupling of the U(1) gauge field with the f2 meson is the same as the coupling with

the graviton and hence, in general, the coupling of any bulk spin J field in the meson

trajectory is also given by equation (5.144).

5.C pp scattering

In this appendix we will present the computation for the total cross-section of pp

scattering. The steps of the computation are the same as in the case of γp show in

the main text.

The scattering amplitude for spin J exchange between two incoming scalar fields Υ(1) ∼
eik1·x and Υ(2) ∼ eik2·x is

AJ =
(
k̄J
)2
∫
d5xd5x̄

√
−g
√
−ḡ e−Φ−Φ̄

(
Υ1∂

J
−Υ3

)
Π−···−,+···+ (x, x̄)

(
Ῡ2∂̄

J
+Ῡ4

)
,

(5.148)

where it was taken into account that the kinematics (5.42) implies that in the Regge

limit the component Π−,···−,+···+ dominates. Lowering the indices of the spin J propa-

gator, making the change of variable w = x− x̄ and using the identity∫
d2l⊥e

−iq⊥·l⊥
∫
dw+dw−

2
Π+···+,−···− (x, x̄) = − i

(−2)J
e(J−1)(A+Ā)GJ (z, z̄, t) , (5.149)

after some algebra the scattering amplitude can be rewritten as

AJ = −iV k̄2
J

2J
sJ
∫
dzdz̄ e4(A+Ā)e−J(A+Ā)e−Φ−Φ̄|υ1|2|υ2|2GJ(z, z̄, t) . (5.150)

As in the γ∗p case, in order to get the total amplitude we need to sum over the spin

J fields with J ≥ Jmin, where Jmin is the minimal spin in the corresponding Regge
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trajectory. Then we can apply a Sommerfeld-Watson transform

1

2

∑
J≥Jmin

(
sJ + (−s)J

) AJ
sJ

= −π
2

∫
dJ

2πi

sJ + (−s)J

sin πJ

AJ
sJ

, (5.151)

where we are assuming the analytic continuation of the scattering amplitude AJ to the

complex J-plane. Deforming the J-plane integral and catching all the poles J = jn(t)

defined by tn(J) = t we get

A =
π

2

∑
n

k̄2
jn

2jn
sjn
[
i+ cot

(
πjn
2

)]
djn
dt

∣∣∣∣∫ dz e−(jn−4)A|υ1|2e−ΦeBψn(z)

∣∣∣∣2 . (5.152)

In the scattering domain of t < 0 these poles are in the real axis for J < Jmin. This

procedure yields equations (5.62) and (5.63).

5.D γ∗γ processes

In this section we derive the holographic expressions for F γ
2 and σ(γγ → X) in the

context of Holographic QCD in the Veneziano limit. We will consider the photon

structure function F γ
2 and the total cross-section σ(γγ → X). Like in the case of

the proton structure function F p
2 the photon structure function F γ

2 is related to the

transverse and longitudinal total cross-sections of γ∗γ scattering by

F γ
2 =

Q2

4π2α

(
σγ
∗γ
T + σγ

∗γ
L

)
. (5.153)

The calculation of the forward scattering amplitude for γ∗γ is the same as in γ∗p

scattering except that the external state in the Witten diagram of figure 5.1 is an

on-shell photon. This means that the definition of Imγγ
n should be proportional to k2

jn

instead of kjn k̄jn and the integral appearing in it should be∫
dū e−(jn−2)Āe−

10
3

Φ̄ V̄f w̄
2
s e

B̄ψn(ū) . (5.154)

Then, the holographic expressions for F γ
2 is

F γ
2

(
x,Q2

)
=
∑
n

Imgγγn
4π2α

Q2jnx1−jn
∫
du e−(jn−2)Ae−

10
3

Φ Vf w
2
s

(
f 2
Q +

∂ufQ
2

Q2

)
eBψn(u) ,

(5.155)

while the holographic expression for σ (γγ → X) is (5.60) and the definition of gγγn is

given by (5.61).
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5.E Holographic structure functions

The forward scattering amplitude for γ∗p scattering is given by equation (5.56). That

equation was obtained summing the contributions of the transverse and longitudinal

polarisations of the off-shell photon. In particular the term with f 2
Q is the contribution

from transverse polarisations while the term ḟ 2
Q is the contribution for the longitudinal

polarisation.

The proton structure functions F p
2 and F p

L are related to the transverse and longitudinal

total cross-sections of the process γ∗p by

F2

(
x,Q2

)
=

Q2

4π2α

(
σγ
∗p
T + σγ

∗p
L

)
, (5.156)

FL
(
x,Q2

)
=

Q2

4π2α
σγ
∗p
L . (5.157)

Using the optical theorem and the last relations one finds the contribution of the

holographic expressions to the structure functions are

F2

(
x,Q2

)
=
∑
n

Imgγpn
4π2α

Q2jnx1−jn
∫
du e−(jn−2)Ae−

10
3

Φ Vf w
2
s

(
f 2
Q +

∂ufQ
2

Q2

)
eBψn(u) ,

(5.158)

FL
(
x,Q2

)
=
∑
n

Imgγpn
4π2α

Q2jnx1−jn
∫
du e−(jn−2)Ae−

10
3

Φ Vf w
2
s∂ufQ

2Q2 eBψn(u) ,

(5.159)

where the definition of gγpn is the one of equation (5.57). The function B will depend

on whether the spin J fields belong to the pomeron or meson trajectory.

The structure function F p
2 is, as expected, related to the total cross-section σ(γp→ X)

through

σ(γp→ X) = 4π2α lim
Q2→0

F2 (x,Q2)

Q2
. (5.160)
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6
Conclusions

We have reached the final chapter of this thesis. Here I would like to make a summary

of its contents and future work directions.

In this thesis we have explored Pomeron physics in holographic bottom up models of

QCD. In chapters 2, 3 and 4 we have used a model with only gluon degrees of freedom

as our background, while in chapter 5 we considered its generalization with quark

degrees of freedom. In both cases, the starting point is to fix the backgrounds by the

spectrum of known QCD states. Then, we propose equations of motion for the bulk

fields dual to the spin J fields of the Pomeron trajectory by deforming the well known

spin J field equation in AdS. Of course, holographic expressions for the observables

are also computed.

In [1], by studying the proton structure function F2(x,Q2) data, such approach turned

out to be a concrete realization of the idea that the Soft and Hard pomeron are part of

the same object. In chapter 2 we extended those results by including the longitudinal

proton structure function FL(x,Q2) and a different coupling between the spin J fields

of the graviton’s Regge trajectory and the U(1) gauge field dual to the hadronic current

in the boundary. This study was motivated by the fact that in AdS there are only

two possible couplings between such fields, but after conformal symmetry is broken

more complex structures are allowed. We have considered a specific coupling in order

to study the contribution of additional complex structures to DIS data. We showed

that it does not lead to significant improvements in the joint description of F2 and FL

data.

The proton observables F2 and FL are related to polarized cross-sections of γ∗p scat-

tering. In chapter 3 we extended the applicability of the model to γ∗γ scattering

and considered the Q → 0 limit of γ∗p scattering. One of the remarkable results
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of this chapter is that once γ∗p processes fix the kernel of the Pomeron, we can

achieve excellent joint fits of F γ
2 and σ(γγ → X) data. The consistency of this result

was checked by performing a global fit where all the processes are included and all

the parameters vary. In the literature we find a large amount of effort to tune the

parameters of a holographic model using data from a specific observable. But we

never see the cross-validation of that model using data from processes that were not

used to fit it. To the best of our knowledge, this chapter was the first work where

this was first achieved. After fixing the boundary condition at x = 10−2, we have also

managed to reproduce the low x evolution of the gluonic PDFs xg(x,Q2) by using an

approximate NLO QCD expression that relates F2, FL and xg(x,Q2). However, some

tension was found for Q2 = 100 GeV2, signalling that our model is incomplete.

The compute the observables analysed in chapters 2 and 3 we studied the holographic

scattering amplitude for Mandelstam t = 0. We would like to explore the possibility of

extending this model for the scattering region t < 0. With this in mind, in chapter 4 we

have made a global fit with total cross-section and differential cross-section data from

the DVCS process. An essential step towards it was an ansatz for the product of the

relevant t-dependent gravitational couplings with an integral involving the holographic

proton state. Although we reached an excellent fit for the DVCS data alone, we were

not able to achieve a joint fit involving the proton structure function F2 data included.

This means that a better ansatz for the t-dependence of the couplings, or actually

performing the integral involving the proton external state, may lead to the inclusion

of DVCS data in a global fit with the processes considered in chapter 3.

In chapter 5 we studied Regge theory in a background with gluon and quarks degrees

of freedom with backreaction included. The setup consists of a metric coupled to

dilaton and tachyon fields whose dynamics is governed by the Einstein-Dilaton and

DBI actions. These actions contain potentials that are constrained by perturbative

QCD in UV and by known QCD features in the IR. For intermediate scales the

functions the shape of the potentials is determined by a fit to the meson spectrum.

This fit yielded very good results for the spin one and pseudoscalar mesons, with most

deviations around or smaller 1% and some isolated states with & 10%. However, there

is some tension with the scalar meson sector which generally is difficult to reproduce

in holography and has contributions from four quark states. Another interesting result

of this fit is that the parameter values are within 10% from the values one obtains

when fitting the model to data from lattice QCD thermodynamics. This suggests

that in the future it might be possible to do a fit with both the meson spectrum at

zero temperature and the data for lattice thermodynamics at finite temperature and
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potentially also at finite magnetic field. After fixing our background, we proposed

the dynamics for the spin J fields dual to the gluon and quark twist two operators.

The dynamics depends on two parameters that were fixed by the known value of

the soft pomeron intercept and by reproducing very well the masses of the mesons

with J = 2, 3, 4. We have found that the fourth Pomeron trajectory and the first

meson trajectory have intercepts very close to the meson intercept value found in the

literature. In particular, the meson trajectory derived from this holographic model

is non-linear in the t > 0 region. Using the first three Regge trajectories and the

leading meson trajectory we obtain an excellent fit of the total cross-sections of γγ,

γp and pp scattering. What we learn form this is that the assumed linearity of the

meson trajectory is at best a very good approximation to compute an intercept that

describes total cross-section data.

The results of this thesis would be impossible to obtain without computer program-

ming. The code used to derive the results of this thesis is available at:

https://github.com/artur-amorim/gggpScatteringIHQCD

https://github.com/artur-amorim/PomeronHVQCD

https://github.com/rcarcasses/HQCD-P

By releasing our code publicly anyone can contribute to it or spot potential mistakes.

This also makes it easy for anyone to reproduce the contents of this thesis in an age

where reproducibility and testability of scientific results became a widespread problem.

We would like now to discuss a sequence of steps to achieve a more complete holo-

graphic Regge theory of QCD. In chapter 3 we mentioned that including quarks is

important to have a better description of the gluon PDFs at higher values of Q2.

The starting point would be to extend the work in the previous chapter to fit the

proton structure functions F2, FL. As discussed before, one would need to consider

the neglected terms of equation (5.70) in order to have the correct low-x and Q2

behaviour of these structure functions. Because of the additional parameters it gets

harder to find a global minimum for the χ2 statistic but we hope that with better

search algorithms or code optimisation this might become a feasible task. Of course,

the other possibility for the the gluon PDFs would be to use holography to compute

the Wilson loops that appear in their non-perturbative definition. Another issue is

the computation of the gluon PDF uncertainties. In this thesis we have performed χ2

fits which mean that we are assuming that the experimental points follow a normal

distribution and that they are uncorrelated. These experimental correlations change

the computation of the χ2 and should be addressed in the future, since neglecting
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them leads to an underestimation of the gluon PDF uncertainties.

After achieving such milestone one can immediately also include the F γ
2 structure

function reaching the stage of chapter 3 plus the total cross-section data of pp scat-

tering. We have tried to include σ(pp → X), in the fits of that chapter but we

could not find consistent results due to the fixed first four Pomeron intercepts values.

However, in chapter 5 it was possible to include it with the total-cross sections of γγ

and γp scattering due to ”better” intercept values. After this step we have a successful

holographic Regge theory for observables measured at Mandelstam t = 0.

The next step would be to extend the model to observables at t < 0. As discussed in

chapter 4, this would need a better ansatz for the function H(J) discussed there as

well the knowledge of the holographic external state of the proton. With the answers

to these problems one can consider to add DVCS data to the fit. Another processs that

can be added is ρ meson production and σ(πp→ X), since we have a good description

of the towers of ρ and π mesons. The solution of these same issues would also allow to

add the pp differential cross-section data. One could also consider other vector meson

prodution processes (like J/ψ) after one underdstands how to identify them in the

context of this model. All these steps are excinting on its own and having made each

of them would result in far reaching holographic Regge theory of QCD. We hope this

stage can be achieved one day. This thesis ends here.
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