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Abstract

Reinforcement Learning is the paradigm of learning to make good sequences of decisions. Through-
out history, it appeared as a mechanism to maximise an expectation of benefit - reward - that may
come in the future for taking some action at some point in time. More recently, the concept of
fairness has been a consideration for the design of these models. In particular, for the multi-agent
setting, some work attempts in finding a learning architecture that promotes equality in the distri-
bution of rewards of the agents within the system. While there are works that attempt to achieve
this goal in the most efficient way possible, there seems to be a gap in the literature for exploring
the spectrum of behaviours that can be found between fairness and efficiency.

There are two primary motivations for studying this range. On the one hand, while it is natural
to think that fairness and efficiency are not correlated objectives, the result from mixing fair and
efficient policies is indeed still unknown in the multi-agent deep reinforcement learning setting.
On the other hand, from a practical perspective, a user’s intent for a system may be a goal in-
between focusing entirely on efficiency and an as efficient as possible fair system. Indeed, it may
be that the optimal solution for such a user is within the spectrum of these two options.

In this work, we study the performance of the state of the art fairness model - SOTO - in the
fair-efficient spectrum. Moreover, we produce changes in this fairness architecture and evaluate
the impact of each of these changes on the shape of the new spectrum. We change the learning
strategy of this model and propose a different architecture - I-SOTO - that is an extension to the
first by enabling a bidirectional recommendation between the team and self-oriented points of
view during the decision making process.

We tested these approaches in the Matthew Effect and Traffic Light Control environments,
which share in common the existence of dynamics that promote inequality in rewards obtained.
The results show that, with the proposed training strategy changes for SOTO and I-SOTO, it is
possible to find competitive options compared to the original SOTO setting and an independent
baseline. In particular, at least one solution in each environment can outperform the SOTO model
under the same social welfare goal.

Keywords: Multi-Agent Deep Reinforcement Learning, Fair Optimisation, Social Welfare
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Resumo

Aprendizagem por Reforço é o paradigma de aprendizagem que se debruça sobre como fazer boas
sequências de decisões. Ao longo da história, apareceu como um mecanismo para maximizar uma
espectativa de benefício - recompensa - que pode advir no futuro vinda de uma acção tomada num
determinado momento. Mais recentemente, o conceito de justiça tem sido considerado no desenho
destes modelos. Em particular, no contexto multi-agente, alguns trabalhos tentam encontrar uma
arquitetura que promova a equidade na distribuíção de recompensas que os agentes de um sistema
recebem. Embora hajam trabalhos que tentam atingir este objetivo da forma mais eficiente pos-
sível, parece existir uma ausência de exploração na literatura no o expectro de comportamentos
que podem ser encontrados entre estas duas opções.

Existem duas principais motivações para estudar este espectro. Por um lado, apesar de ser
senso comum não ver a equidade e a eficiência como objectivos correlacionados, o resultado da
mistura de políticas equitativas e efficientes é ainda assim desconhecido no âmbito de aprediza-
gem por reforço profunda em sistemas multi-agente. Por outro lado, de um ponto de vista mais
prático, a intenção do utilizador para o sistema pode ser um intermédio entre um foco completo
em efficiência ou um sistema equitativo tão eficiente quanto possível. De facto, pode ser o caso
que a solução ótima para esse utilizador esteja dentro do espectro entre estas duas opções.

Nesta dissertação nós estudamos a performance do modelo estado de arte em equidade - SOTO
- dentro do espectro equidade-eficiência. Para além disso, nós fazemos modificações a esta ar-
quitetura e avaliamos o impacto de cada uma destas alterações na forma do novo espectro. Nós
modificamos a estratégia de aprendizagem do modelo e propomos uma architetura diferente - I-
SOTO - que estende da primeira permitindo recommendação bidirecional entre pontos de vista
equitativos e eficientes na tomada de decisão.

Nós testamos estas abordagens nos ambientes Matthew Effect e Traffic Light Control, que
partilham em comum a existência de dinâmicas que promovem inequidade de reforços obtidos.
Os resultados mostram que, com as mudanças propostas para a estratégia de treino no SOTO e
I-SOTO, é possível encontrar soluções competitivas comparando com o modelo SOTO original
e uma baseline independente. Em particular, existe pelo menos uma solução em cada ambiente
que tem melhor performance tanto em eficiência como equidade comparada com o SOTO para o
mesmo objetivo de bem-estar social.

Keywords: Aprendizagem por Reforço Profunda Multi-Agente, Optimisação Justa, Função de
Bem-Estar Social
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The worst form of inequality is to try to make unequal things equal.
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Notation

Calligraphic letters - X - denote alphabet sets, upper-case letters - X - denote random variables
and constants in some cases, hats denote approximations - X̂ - and lower-case letters - x - denote
realizations.
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= equality true by definition
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X ∼ p random variable X under distribution p(x) .

= Pr{X = x}
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S set of possible s states
A set of possible a actions
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t discrete time step
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st the state at t
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gt the return following time t
e discrete episode
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π policy (decision-making rule)
v(s) value of state s
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In the function approximation context:
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πSWF team-oriented policy
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Chapter 1

Introduction

In this chapter, we introduce the object of study in this dissertation. We start by providing some

context and motivation for the problem in the subject. Then, we present our goals for the work and

questions we aim to answer, followed by a summary of the main contributions achieved. Finally,

the remaining document is outlined in the last section.

1.1 Context and Motivation

Reinforcement Learning (RL) is the paradigm of making good sequences of decisions, provided

the reward of an environment that reflects positive and/or negative impacts of actions. Despite

being around for decades [92], more recently, RL has recently shown very promising results, which

led to increased activity within its research community, particularly in Deep Learning approaches

[82, 90]. Multi-Agent Deep Reinforcement Learning [32] (MADRL) is the problem of having

multiple Deep RL agents within a shared environment. In such settings, additional challenges

arise due to the system’s number of agents, the uncertainty that it brings, and a potential need for

decentralised models.

RL techniques have aimed to optimise the expected sum of rewards an agent gets for acting

under its policy throughout history. More recently, fairness concerns have been brought into the

Machine Learning literature, and a fairness-aware line of algorithms are emerging. In the multi-

agent paradigm, some work attempts to optimise the equality in the distribution of rewards of the

agents in the most efficient manner possible [40, 103]. This literature approaches fairness as a

goal for the agents’ policies within the system and uses architectural adaptations to help the agents

still perform efficiently. The state of the art model in this setting, SOTO [103], includes learning

self- and team-oriented policies with traditionally selfish and fair optimisation goals, respectively,

in which the first provides recommendations to the latter, helping it become efficient apart than

fair. However, there is a lack of work considering fairness and efficiency without a clear aim for

optimising one of them. Indeed, in a real-world setting, such a setting may not be ideal. As a

1



2 Introduction

system designer, one may prefer an in-between solution between the efficient and fair extremes.

Indeed, the designer should be able to opt to sacrifice one of them, to a certain extent, for the other,

and such a decision is not possible with the current literature.

Moreover, there is still no evidence of the outcome of mixing fair and efficient behaviours or

even training these together in a MADRL system. While efficiency is considered for helping fair

models be efficient, the opposite is never. It may be the case that, depending on the dynamics of

the environment, these goals can lead to better solutions together.

1.2 Objectives

The general goal of this dissertation is to tackle the equality of rewards fairness problem in

MADRL in an exploratory manner. By relaxing assumptions on which goal is intended for the

system - efficiency or fairness - we aim to observe what solutions arise. We aim to observe whether

any of these is better than the efficient and fair baselines in any of the goals - ideally, both.

We aim to tackle this challenge by employing three different techniques. The first is het-

erogenous testing, where the agents in the system act selfishly or fairly according to a probability,

without updating their policies weights. This enables a direct mix in previously learned policies.

The second technique is to experiment with different settings for the training strategy that controls

how SOTO’s self- and team-oriented policies are trained. Doing so, we believe different solu-

tions will be found in both extremes and heterogeneous intermediates from testing. Finally, we

aim to experiment with an extension to the SOTO architecture, enabling the team-oriented pol-

icy to provide fair action insights to the self-oriented one. Because each policy recommends the

other intertwined in this setting, we call this method Intertwined SOTO (I-SOTO). To sum up, the

questions we aim to approach are:

• Is it possible to find a range of fair-efficient behaviours from previously learned policies?

• Does SOTO perform better in either fairness or efficiency with different training strategy

functions?

• If the fairness-oriented also gives action recommendations to a self-oriented one, does the

performance of the SOTO model change? In what ways?

1.3 Contributions

This dissertation contributes to the state of the art on equality fairness in MADRL in a variety of

manners. In a broad sense, our contribution mainly relies on presenting results for the exploratory

attempts made in combining fair and efficient policies and training them jointly. These results

are presented in popular environments in the equality fairness literature for MADRL because they

include dynamics that foster unequal access or opportunities to obtain rewards, i.e., being efficient.

We extend the art fairness model state and compare the results obtained with it, together with an
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efficient baseline. In particular settings of training strategies and environments, we find that our

models can perform better than the SOTO baseline. The list of contributions of this dissertation

could be summarised as follows:

• We propose methods for mixing the efficient and fair goals in MADRL through testing -

under heterogeneous behaviour - and training - exploring different training strategies for

SOTO and a different architecture I-SOTO

• We study these methods in two environments popular in the literature of fairness: Matthew

Effect and Traffic Light Control

• We show that, in both of these environments, particular instances of our methods outperform

the SOTO baseline and others the efficient baseline

• We provide visual intuitions and results for all of the experiments accomplished in our

exploratory methods

• We discuss differences in baseline results with SOTO authors and conclude on the adequate

efficiency metric for Traffic Light Control

• We review fairness related work within the MADRL field

1.4 Outline

In the remainder of this document, we start by presenting a background and related work overview

in Chapter 2. Then, we describe the methodological approach utilised in Chapter 3. The results

of the experiments employed under such methods are present in Chapter 4. Finally, in the last

chapter, we conclude on the final remarks regarding this work in Chapter 5.
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Chapter 2

Literature Review

In this chapter, we provide the necessary background to fully understand the extent of our work

together with related work. We start by providing some background on Reinforcement Learning

and its core concepts, then move to methods that require function approximation and, finally,

review existent literature within the multi-agent domain, both in settings with and without fairness

concerns.

2.1 Reinforcement Learning

Reinforcement Learning (RL) is the Machine Learning paradigm of learning to make good se-

quences of decisions. As its name suggests, RL agents learn by reinforcement from the envi-

ronment they are put under. Higher reinforcements signal positive behaviours from the agent as

opposed to lower reinforcement values, almost as praise or punishment for actions. The aim of

RL is then to make the most out of this reward signal and behave in the way that optimises it -

whatever it is.

2.1.1 Markov Decision Processes

Early forms of Reinforcement Learning were methods for solving the problem of a Markov Deci-

sion Process [69] (MDP). An MDP is a stochastic control optimisation problem [87] characterised

by the 5-tuple 〈T,S,A, p,r〉, where

5



6 Literature Review

T is the set of decision epochs, i.e. opportunities in time for the

agent to make decisions. Can be finite/infinite, discrete/continu-

ous.

S is the state space i.e. set of possible states

A is the action space i.e. set of possible actions. A(s) is the set of

possible actions in state s.

r : S×A×S→ R is the reward r(st ,at ,st+1) for performing action at under state st

and moving to the next state st+1

p : S×A×S→ [0,1] is the transition probability p(st+1|st ,at) of moving to state st+1

as after taking action at under state st .

π : S×A→ [0,1] is the policy or decision-making rule π(st) as the probability of

choosing action at under state st . Can be deterministic or stochas-

tic.

Illustrated by Figure 2.1, at each timestep t, an agent under state st consults its policy π to

perform an action at ∼ π(st). Then, the environment changes to state st+1 ∼ p(st+1|st ,at), and this

agent receives the corresponding reward r(st ,at ,st+1).

Figure 2.1: Agent-Environment interaction in a Markov Decision Process [87]

The name of these processes is inherited from the assumption they rely on. The Markov

Assumption states that the next state is independent of past states, given the current state. Formally,

this assumption is expressed in equation 2.1.

Pr{st+1,rt+1 | st ,at ,st−1,at−1, . . . ,s0,a0}= Pr{st+1,rt+1 | st ,at} (2.1)

As such, one can now clearly see why either of the functions that characterise an MDP - r, s and

π - provide insights on the dynamics of the environment provided information on the present time

step t, and only t.

To accommodate real-life challenges [24], the MDP definition has been extended to contem-

plate a more general case of conditions. One of these is incomplete or incorrect access to the

world’s state. Lack of sensors, sensory inaccuracy and environment limitations are some of many

reasons that may impair the accessibility of state information to the agent. A Partially Observable

Markov Decision Process [43, 84] (POMDP) is an extension the MDP fully observable model in

which agents only perceive observations o∈O, modelled by an observation function ω : S×A×O,

instead of accessing the state s ∈ S directly. Let ht
i = ot ,at−1,ot−1, . . . ,a1,o1,a0 be the history of
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observations and actions of agent i since the start of the simulation 1. Under these circumstances,

each agent i should find alternative ways of enriching their perception of st
i to overcome the lack

of information in an observation. In the literature, popular options are

st
i = ht

i Using the complete history of observations and actions available

to the agent. This naturally leads to an explosion in the dimen-

sions necessary to represent the state.

st
i ∼ P[s |ht

i] Building a belief of which is the current state, given the history,

as a probability distribution [62].

st
i = σ(st−1

iWs +otWo) Encoding the state in a recursive manner by combining the previ-

ous state representation st−1 with the current observation ot with

the weights Ws and Wo, respectively [30]. This encoding is com-

monly accomplished with the use of Artificial Neural Networks,

whose functioning is to be further described in section 2.2.1.

2.1.2 Prediction

In the RL domain, prediction refers to the task of estimating the consequences of actions performed

by agents. Oftentimes, the object of prediction in RL methods is associated with a nomenclature.

In particular, methods that make estimations of the policy π , the transition function p and the

reward function r or derivatives are named policy-, model- and value-based respectively. Due

to the importance of value-based methods in the RL literature, we dedicate section 2.1.2.1 to it.

Section 2.1.2.2 refers to how these estimations are made throughout time steps. Lastly, the com-

mitment of making predictions with regards to the action provided by the policy, or lack thereof,

is also a way of naming methods as on- or off-policy, respectively, as presented in Section 2.1.2.3.

2.1.2.1 Value Estimation

One of the most important outcomes to employ estimations on is, naturally, the reward value

expected to arise from performing some action. The agent is then able to control which action to

take by choosing the one that seems most promising. This potential reward outcome is commonly

known as return gt . An intuitive but naive way of defining this return is as the sum of rewards

received ∑
T
k=1 rk, where T is the last time step. However, many real applications are made of

continuous agent-environment interactions, making T infinite. In order to provide convergence

properties to gt [87], a discounting factor 0 ≤ γ ≤ 1 is added and gt is defined as the discounted

sum of rewards - also referred to as the discounted return - as defined in Equation 2.2.

gt
.
= rt+1 + γrt+2 + γ

2rt+3 + . . .=
T

∑
k=0

γ
krt+1+k

= rt+1 + γgt+1

(2.2)

1Also known as trajectory
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Because the ultimate goal of RL is to maximise this return, it is oftentimes referred to as

value. If this value is estimated only with respect to the state the agent is under, the State-value

function V π of some policy π is given by Equation 2.3. Notice that, contrary to the aforementioned

definition of return in Equation 2.2, because in this case, we are defining estimations of values that

may depend on stochastic processes - as seen in the MDP section - return and reward are now

random variables and, by extension, any estimations based on them.

V π(s) = Eπ [Gt | St = s] = Eπ

[
T

∑
j=0

γ
jRt+ j+1 | St = s

]
(2.3)

If we extend V by also considering particular actions, we are now referring to the Quality-

value, or Q-value in short. Such function provides the estimated return for performing a particular

action a, given the agent’s policy π , as shown in Equation 2.4.

Qπ(s,a) = Eπ [Rt | St = s,At = a] = Eπ

[
T

∑
k=0

γ
kRt+k+1 | St = s,At = a

]
(2.4)

In deterministic policies, V has the same value of Q given the policy’s action - unique in

this case. However, in stochastic ones, the q-value is equal to the state-value distributed over the

action distribution of the policy. This relationship is formally portrayed in Equations 2.5 and 2.6,

respectively.

V π(s) .
= Qπ(s,π(s)) (2.5) V π(s) .

= ∑
a∈A

p(a | St = s)Qπ(s,a) (2.6)

The availability of a reward function - or at least an accurate one - is not trivial in all appli-

cations. Indeed, designing a good reward function is a challenge per se in complex environments

such as driving a vehicle. Potential approaches to solve this problem include inferring the reward

function from already existing policies known to behave well, with Inverse Reinforcement Learn-

ing [59, 50], or even learning directly an approach from such examples, with Imitation Learn-

ing [35]. We could also tweak the existent reward function into a more reliable one with the use

of Reward Shaping [105, 9]. While we will not be directly approaching this problem, we ac-

knowledge the importance of having a good reward function to rely on while value predictions,

independently of the estimation utilised.

2.1.2.2 Update Strategy

A crucial part of making estimations is how they are successively updated. There are three es-

sential update paradigms in RL: Dynamic Programming (DP), Monte-Carlo methods (MC) and

Temporal Difference (TD). While each of these has its own intricacies, we compare them in a

high-level manner and direct the interested reader to [87]. We consider in this section the state-

value for simplicity in understanding.
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Dynamic Programming [22] was one of the first update methods that appeared in RL. In this

method, the estimation is updated at each time step t using Equation 2.7, also known as the Bell-

man Equation [6, 23]. As can be seen, this method relies on the transition function, being inapt for

model-free domains. Notice that this model requires the transition function p to function, being

inapt for model-free domains. It is also important to note that it bootstraps the return value if the

estimation of the value of the following state Vt (s′), which is naturally a source of bias.

V̂t+1(s) = ∑
a∈A

π(a | s)

[
r(s,a)+ γ ∑

s′∈S
p(s,a,s′)V̂t

(
s′
)]

(2.7)

Monte Carlo methods, on another note, function quite differently. Under this update paradigm,

the agent waits for the end of the episode to update its estimation, making this method not suitable

for continuing tasks as they may never come a time for the agent to learn. There are many variants

to this method, but the general idea is that the value of each state is a function of the summation of

returns generated after such state, G(s) over the number of times such state appeared throughout

episodes N(s) - popularly, the average, as shown in Equation2.8. In the First-Visit variant, each

state is only considered once per episode, so the summation of returns is averaged over the number

of episodes.

V̂ (s) = Ĝ(s)/N̂(s) (2.8)

Temporal difference is the most recent of all methods and the most popular in recent RL

literature. Combining principles from DP and MC, TD not only supports continuing domains but

also handles Model-free domains, i.e., problems in which the world model - transition and reward

functions - are unknown. A example of a TD variant, TD(0), is illustrated in equation 2.9. Given

the transition (st ,at ,rt ,st+1) from time step t to t + 1, TD updates the estimation of the value of

being in state s taking into account the reward received rt and the value of the next state Vt+1(s)

after performing the action a determined with the policy. The TD-error δt is then defined by

Equation 2.10 as the difference between the current reward plus value estimation for t +1 and the

value estimation for t. Although this difference does not include the true value of return gt , it is

the approximation possible at time step t.

V̂t+1(st) = V̂t(st)+α[rt + γV̂t(st)−V̂t(st+1)] (2.9)

δ̂t = rt+1 + γV̂ (St+1,wt)−V̂ (St ,wt) , rt+1 ∼ Rt+1 (2.10)

A comparative summary of these three methods follows in presented table 2.1.

2.1.2.3 On-Policy & Off-Policy

The terms on-policy and off-policy refer to value estimation methods that make estimations limited

on the policy π decision-making rules or that go beyond such rules, respectively. Q-Learning [93,
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Control Model-free domains Continuing domains Non-Markov domains Unbiased
DP
MC
TD

Table 2.1: Comparison of Prediction Update Strategies

92] is an example of an off-policy method, depicted in equation 2.11. While making q-value

updates quite similar to those of SARSA. However, after an agent performs action at under state st

and state is updated to st+1, the q-value update is made considering the next best action that can be

taken under state st+1, which may not be necessarily equal to what the policy πst+1 would dictate,

since the update of Q̂(st ,at) has not been completed yet. While having a very similar update

equation, SARSA is an on-policy alternative to Q-Learning. As depicted in equation 2.12, the

main difference is on the γ parcel that considers the action at+1 ∼ πst+1 , i.e. the action pointed by

the policy with regards to the next state, and naturally never in its updates considers other actions

from such.

Q̂t+1(st ,at)← Q̂t(st ,at)+α[rt+1 + γ max
a

Q̂t(st+1,a)− Q̂t(st ,at)] (2.11)

Q̂t+1(st ,at)← Q̂t(st ,at)+α[rt+1 + γQ̂t(st+1,at+1)− Q̂t(st ,at)] (2.12)

2.2 Approximate Solution Methods

When A and S are finite sets, it is possible to make predictions using tables with entries for

different states or state-action pairs, i.e. with tabular methods [98, 11]. However, when either

|A| or |S| are very large - maybe even infinite - these lack in generalisation and efficiency. Not

only would it be costly to store tables with a tremendous amount of entries, but it would also take

much time to be able to produce reasonable approximations for all entries, and they are built from

a sequence of several updates. Additionally, since each action/state is treated as an independent

entity, tabular methods lack in generalisation. Given two very similar in meaning states si and s j,

if si is close to convergence and s j is not, when the agent lands s j it will still perform poorly, in

theory, as it has not lived that exact state several times and there is no way of inferring v(s j) from

v(si. An evident case where this becomes problematic is when either A or S are continuous sets,

i.e. A ∈ Rn,n ∈ N, S ∈ Rn,n ∈ N, and thus it would be intractable to have a table with infinite

entries.

In these cases, a parameterised function representation is used to approximate the estimations

of policies, values or models. In the Machine Learning (ML) literature, linear models have been

widely used to make these approximations. These models frame the approximation problem as

finding the best set of weights w and bias b enable f(x) - as in Equation 2.13 - that better represents
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the real values of some distribution y. In order words, to minimise the difference f (x)−y.

f (x) = w>x+b (2.13)

2.2.1 Neural Networks

While linear models can be adapted to also approximate non-linear functions - with the use of

polynomials, Fourier series or Radial Basis Functions - this process requires manual transforma-

tion inputs and outputs ("feature engineering") and requires some insight to be successful. Artifi-

cial Neural Networks (ANNs), also known as Neural Networks (NNs), are more flexible models

that are able to learn at least some of these non-linear transformations.

A Neural Network, in its simplest form, can be viewed as a set of linear layers where each

layer l is placed after the other l−1. The values of the first layer also referred to as the input layer,

are the inputs given to the function h(0) = x. The subsequent layers are the result of applying an

activation function g(l) to the outputs of the previous h(l−1) layer multiplied by a set of weights

W (l) plus the layer biases b, as in Eq. 2.14. Neural Network architectures with a large number of

layers - "deeply layered" - give the name to a sub-field of Machine Learning called Deep Learning.

h(l) = g(l)
(

W (l)h(l−1)+b(l)
)

(2.14)

While NNs enable the learning of more complex functions, its fitting process is much more

challenging, requiring more data and time to converge successfully. Not only the parameter num-

ber is much larger, but the optimisation process is rather iterative through successive updates of

the weights applying the chain rule for each neuron ui, given that the previous layer in which ui is

located has D dimensionality2.15.

∂ f
∂ui

=
D

∑
d=1

∂ f
∂xd

∂xd

∂ui
(2.15)

Neural Networks use Gradient-based optimisation to fit their parameters. The most naive

optimisation process is the Steepest Gradient Descent 2.16 where the weights are updated by

being subtracted with the cost function multiplied by a learning rate η . The cost function used as

an example in Equation 2.16 is the squared error, having r be the vector of errors or differences

between the predictions and targets. However, a common loss function could be the root mean

squared error, averaging this error over the number of samples considered and then calculating

the square of such value. The important thing is that this cost function represents how much

the algorithm needs to "pay" for wrong predictions, such that its gradient on the weights of the

network ∇w[r>r] directs it to a good direction towards minimising it.

w← w−η∇w

[
r>r
]

(2.16)

An alternative is to use Gradient Ascent, which, as the name indicates, aims to maximise an

objective function instead of minimising a cost function. The key idea is identical to gradient,
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but instead, the product between the learning rate and the cost function is summed to the weights

instead of subtracted.

However, this process demands great computational power as either the cost or objective func-

tion needs to be evaluated for each sample of a dataset - which may have thousands of thousands

of entries in extreme cases - and for each step of the optimisation - which may also require a great

number of steps. In order to solve this, Stochastic Gradient Descent selects on a random sample of

the dataset to calculate the value of the cost function and multiplies it by the number of samples in

order to estimate the actual dataset value. ADAM optimiser [44] is an instance of such a method

that has become widely popular, especially for Deep Learning applications.

2.2.2 Eligibility Traces

An important concept to consider in Function Approximation updates is Eligibility Traces. Under

this paradigm, a parameter λ controls the eligibility of each dimension of the weight vector of a

function-approximated approximation to be updated. As such, it offers an in-between solution for

DP and MC updates with regards to how many time steps in advance are considered. When λ = 0

- TD(0) - it only considers the immediately following state as DP does. On the other hand, when

λ = 1 - TD(1) - it gets more similar to MC by considering all the following time steps until the

end of the episode, being identical when γ = 1. The eligibility trace is a vector Zt ∈Rd , as defined

in Equation 2.17, and the TD(λ ) update is now defined as presented in Equation 2.18.

z−1
.
= 0

zt
.
= γλzt−1 +∇V̂ (st ,wt) , 0≤ t ≤ T

(2.17)

wt+1
.
= wt +αδtzt (2.18)

2.2.3 Advantage

A recent approach to estimating value is the concept of advantage. As shown in Equation 2.19,

the advantage A(s,a) is by definition the difference between V and Q for a given state-action pair.

If we make a TD estimate for Q̂(s,a) as r+ γ · V̂ (s′), then the advantage can also be seen as the

TD error δ̂t , as previously seen. The intuition behind this idea is that if we remove to the Q-

value the value of the state itself, we are left with the value of the action itself under such a state.

Naturally, in cases where the state is very promising, all actions will have very high Q-values, so

the decision-making process may be misled and compromised. As such, the advantage function is

used to eliminate the bias for estimation of the value of an action that comes from the value of the

state itself.

A(s,a) .
= Q(s,a)−V (s)

Â(s,a) = r+ γ ·V̂
(
s′
)
−V̂ (s)

= δ̂t

(2.19)
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However, this advantage definition is highly dependent on the value estimation. Should this

estimation be biased, this will also be imprinted in the advantage estimation. In order to approach

this issue, the Generalised Advantage Function [75] (GAE) brings the eligibility Traces concept

to the definition of advantage. As shown in Equation 2.20, the GAE advantage ÂGAE
t for a given

transition time step is an exponential average of the advantage estimations for such transition but

throughout the following n steps. This concept, of course, implies that the update on the value

estimation is only done after a collection of n time steps.

ÂGAE(γ,λ )
t

.
= (1−λ )

(
Â(1)

t +λ Â(2)
t +λ

2Â(3)
t + . . . Â(n)

t

)
=

n

∑
l=0

(γλ )l
δ

V
t+l (2.20)

2.2.4 Policy Gradients

Policy Gradient methods are gradient-based optimisations used for policy approximation. The

general idea behind these algorithms is that at each timestep t, the policy is updated - originally,

through gradient ascent - towards the direction that leads to the policy choosing the best action

possible a∗, as shown in Equation 2.21.

θt+1 = θt +α∇πθt (a
∗ | s) (2.21)

REINFORCE [97] is one of the earliest and simplest Policy Gradients algorithms. Naturally, one

challenge of Policy Gradient methods is finding the direction where πθt (a
∗|s) gets closer to one.

In order to address this, REINFORCE uses an estimation of the expected return ĝt . This may

be in the form of a q-value or even an advantage value, as in Equation 2.22. However, because

this estimation may provide very high values in earlier stages due to the initialisation utilised, the

gradient is then divided by the current probability of the action in question π(at |st ,θ t).

θt+1 = θt +α
Q̂(s,a)∇πθt (a | s)

πθ (a | s)
(2.22)

Another very common way to present the REINFORCE equation is in the logarithm form, as

in Equation 2.23, since ∇πθ (a|s)
πθ (a|s) = ∇θ logπθ (s | a).

θt+1 = θt +αÂ(s,a)∇θ logπθ (s | a) (2.23)

Since the appearance of REINFORCE, many alternative policy optimisation algorithms have

appeared [74, 49, 76]. Trust Policy Region Optimisation [74] (TRPO) adds KL divergence con-

straints to ensure that new updated policies are not largely deviating. In other words, the new

policy is not far away from the old policy, or we can say that the new policy is within the trust

region of the old policy. Proximal Policy Optimisation [76] (PPO) that simplifies the implementa-

tion of this diversion implementation by imposing the policy ratio, r(θ) = πθ (a|s)
πθold(a|s) to stay within
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a small interval around 1, as shown in Equation 2.24 of PPO objective function. The clip operator

is what makes sure it won’t deviate largely by clipping the update in the range.

JCLIP(θ) = E
[
min

(
r(θ)Âθold (s,a),clip(r(θ),1− ε,1+ ε)Âθold (s,a)

)]
(2.24)

2.2.5 Actor-Critic

As the name implies, Actor-Critic [45] approaches involve a dynamic between two elements: an

actor - the policy - and a critic - some value estimation. The actor performs an action, and the

critic is used to access - "criticise" - the policy’s choice in behaviour [87]. However, as previously

seen, policy gradients also involve the use of both a policy and value estimation, where the latter

impacts the next policy weights θt+1. From a technical point of view, the main difference between

Actor-Critic methods and Policy Gradients is that, whichever method is used, Actor-Critic value

estimations contemplate the prediction of the value of the state after performing an action while

pure policy gradients do not. From an intuitive point of view, when I am going beyond estimating

the value of the current state but also including a prediction of value for the next, the model is no

longer only named a Policy Gradients approach but also an Actor-Critic one. An example of value

estimation associated with Actor-Critic approaches is the definition of advantage, as previously

seen in Section 2.2.3.

In function approximation approaches, the state-value or action-value yielded by the critic is

typically part of the expression of the gradient used by the actor to estimate the policy [77, 27, 52,

55, 36, 72, 28], linking the q-value approximation goal with the policy.

2.3 Multi-Agent RL

When multiple RL agents are placed within a shared environment, we are now under a Multi-

agent Reinforcement Learning (MARL) problem [11, 12, 64]. Multi-agent systems [79] bring

complexity to the optimisation process when compared to the single-agent case. In this case, the

system can no longer be considered stationary. Because the states of other agents’ are unknown

to each agent within the system, the Markov Property no longer holds. In other words, the future

state depends on more variables than the present state and action. This breach of this property is

problematic as some control methods - and especially TD - are built under this assumption, as seen

before, and bootstrap estimations accordingly. The following sections outline a few approaches

and respective concerns to take into consideration in this setting.

Independence

A natural approach to extending the well-known single-agent algorithms to the multi-agent setting

is to provide each agent with an independent single-agent model [1, 88]. This method is naturally

advantageous in the sense that any model could be very easily applied to the MARL setting. How-

ever, it also brings additional challenges. Because every agent is acting on its own, the emergence
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of coordinate behaviours is more challenging. Moreover, the computational complexity of the

model is higher, |D| times more demanding.

Joint Action

Another thread of RL models frames the action a as the vector of the actions chosen by each agent

- a joint action. If a model is set to optimise a joint action, perhaps the non-stationarity problem is

solved since - in centralised approaches - the actions of all agents can be seen before making the

final joint action decision. However, under this framing, the state and action spaces exponentially

grow with the number of agents within the system. Each state can now contemplate the states of

n-1 other agents, and each action is now |A| · |D|. This dimensionality explosion - often referred

to as a curse - presents a serial problem and affects the RL algorithms’ ability to converge. It

affects the exploration-exploitation trade-off agents need to make since it is tough to explore the

behaviour of all agents within the system.

On the other hand, should agents perform a joint action, it is only natural that the environment

should return a joint reward for such action - typically, the sum of the individual is potentially

different. Consequently, it may be difficult for agents to infer how much they are responsible for

such a reward and even ’learn to rest’ if other agents are already contributing very intensely to

the global systems’ reward. This challenge is popularly known as the multi-agent credit assign-

ment [14] problem. In the literature, many approaches aim to solve this problem and transform

this joint reward into a set of individual rewards. The most relevant techniques include neural

network architectures for reward distribution [86, 70, 83] and the usage of estimation concepts

such as Difference Rewards [27, 13] and Shapley Value [91]. In domains where the optimisa-

tion is multi-objective, this poses an even more complicated challenge since the reward is now a

multi-dimensional vector: there is a credit to attribute for each of these dimensions [99].

Decentralisation & Dec-POMDPs

As seen before, when the agents only have access to a part of the environment state, they are

called partially observable MDPs (POMDPs). Oliehoek et al. [62] introduces the concept of de-

centralised POMDPs (Dec-POMDPs) as a generalisation term for a system with multiple agents

of a POMDP used to model a team of cooperative agents under a stochastic, partially-observable

environment. [63, 46]]. Decentralisation implies there is a concern to some extent to the amount

of information the agents may share between each other and that methodologies that require com-

plete centralisation are to be avoided if possible. A typical approach to this scenario is either a

centralised learning and decentralised execution approach - where the centralised learning compo-

nents should be detachable for a posterior decentralised execution - or a fully decentralised [102]

approach, where communication between neighbours of state information is typically used to over-

come this problem [39, 40, 103, 54, 31]. These communication mechanisms may contemplate

weights of the functions being approximated towards building more complete estimations [39], or

even important state information that may help other agents make decision [103].
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2.4 Fairness

As with any social construct, fairness is inherently subjective [48]. As a result, its notion has been

extensively studied within various social science fields such as political philosophy [71], political

science [8] and in economics [57]. Most concepts that emerge from the literature can be seen as

particular instances of the concept of equal treatment of equals, including:

• Impartiality, as the lack of prejudice in making decisions towards specific individuals or

groups [73].

• Equality and Equity, as a special case when the population is a set of equals. Under such

a case, what is left is promoting an equal distribution of some resource - Equality - or equal

opportunity in obtaining it - Equity. Such a distribution is oftentimes evaluated with the use

of Social Welfare Functions (SWF) [57], which measure the welfare of the population as a

function of the individuals’ utilities.

• Pareto efficiency, as the state where no individual can improve their performance without

declining the performance of others.

• Envy-Freeness, as the perception of an individual, is that the share of resource it has been

allocated is, at least, as good as the share received by any other agent [16].

These notions of fairness have been brought to applied mathematics fields. In Operations

Research, fair optimisation deals with promoting equitable allocation of resources [60] in the

problems of sensor placement [58], resource allocation [7], MDPs [61] and, notably, in network

routing [3, 33, 60]. Regarding Artificial Intelligence, most multi-agent systems [79] work fo-

cus on resource allocation. While some work uses pre-established fairness definitions, such as

envy-freeness [16], others attempt to provide the agents with some self-organisation power to-

wards achieving such a definition [68, 67]. Instead, the latter develop either centralised [68] or

interaction-based [67] mechanisms for the agents to achieving rules that establish which concept

of justice, and consequently fairness. Enabling a definition of fairness to emerge from agents also

requires formal models of the world and rule generation. A popular use of the notions of fairness

in multi-agent systems is towards achieving increased cooperative behaviour, or at least coordi-

nate in competitive domains when believed to be beneficial [21, 29]. Finally, there have also been

considerations on the importance of a priority-awareness model regarding fairness [41], in order to

entangle a priority relationship between fairness and efficiency as the goal of the system. However,

there seem not to be any empirical results testing this approach.

With the increased presence of Machine Learning models in real-life decision-making situ-

ations, the notion of fairness has gained important attention in such a field. Motivated by the

impact of discriminatory harms from algorithmic bias [104], the most dominant notion of fairness

to be incorporated in Machine Learning is of Impartiality, under many forms [73, 89], either in

Classification [25, 47], Regression, Decision-Making [37] or Clustering [17] tasks. A more recent
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approach uses a Social Welfare Function (SWF) to measure the impact of using models that opti-

mise group impartiality on within-group inequality [85]. In Reinforcement Learning, this notion

of fairness has been brought to the classification task on the decision-making task of choosing

which action to take, both in the multi-armed bandit context [42] and the more general single-

agent case [37]. This idea has been extended to the general single-agent case by imposing the

constraint of never choosing one action over another unless its long-term return of choosing the

first is higher or equal to the latter. In other words, making sure that the action is chosen actually

has an estimation of better value - otherwise, it is a biased decision to act on it. A worse option is

never favoured over a, apparently, better one.

2.4.1 Equal Distribution

More recently, the equality notion of fairness has been brought to MARL systems with regards to

distributions of quantities - resources, opportunities, rewards, etc.

A line of work focuses on equitable resource allocation [53]. Some approaches solve the

problem with domain-specific knowledge towards solving a known issue in it. Applications in-

clude scheduling [100] in order to minimise traffic, IoT devices [26] in order to take into account

the preferences of various users in a shared system, networks, with regards to both connectiv-

ity [15] and routing [4, 78], and even stock trading strategies for a portfolio of clients with different

goals [5]. There are also approaches that consider resource allocation in a more abstract manner.

[101] use the max-min egalitarian notion of social welfare, in which it is defined as the lowest

utility within the system. However, it does not consider learning. On another note [19, 18], tackle

the multi-armed bandit domain by introducing constraints relative to the allocation process.

A different line of work focuses on including the equality concept in the model method itself.

[81] work on the multi-objective MDP problem, where the reward is a multi-dimensional vector to

be optimised. The approach taken was to make use of a social welfare function [10] as a way of

ensuring each of these goals is being learned in a fair way, i.e., being given approximately equal

opportunities to be learned. On another note, [91] approach the multi-agent credit assignment

problem using the notion of Shapley value, which approximates the impact of a single agent in a

coalition of agents. Each agent then is provided with this approximation of reward and is able to

estimate the return for its action - a Shapley Q-value.

Finally, there is a line of reward which focuses on equality of the rewards between the set of

agents within the MARL system. Because this is the fairness problem this work focuses on, we

will be dedicating the next section to it.

2.4.2 Reward Equality

In this section, we address the problem of making agents of a MA system receive an approximately

equal reward. Naturally, this cannot be forced, i.e. actually providing each agent with the same

reward value. Under such a setting, we would find ourselves with a credit assignment problem,
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which damages the capacity of each agent being able to learn to perform well, as already seen in

Section .

Under competitive domains, [34] tackle this by adding to the agents’ reward value parcels

that encode aversion for inequality in two forms: advantageous and disadvantageous, controlled

by parameters α and β , as shown in Equation 2.25. While this work is successful in promoting

cooperation in competitive environments such as social dilemmas, they do not make any consid-

erations fairness-wise.

Ui(ri, . . .rN) = ri−
αi

N−1 ∑
j 6=i

max(r j− ri,0)−
βi

N−1 ∑
j 6=i

max(ri− r j,0) (2.25)

Regarding cooperative domains, the agents are training towards a common fairness goal -

equality, in this case. However, the task of learning fair policies does not get easier. Indeed, if

an agent is trying to optimise a global characteristic of the system, it may be the case that what

they learn does not stimulate their individual performance as the fairness goal also depends on the

actions of other agents. This issue shares many similarities with the credit assignment problem.

The little existent literature in this set focuses on the architectural side of the models to mitigate

this issue. To the best of our knowledge, there are only two approaches that attempt to work on

this problem. Both of these measure fairness according to CV, the Coefficient of Variation [38].

As shown in Equation 2.26, CV is the standard deviation between the utilities of all n agents -

typically, their accumulated reward throughout time ui = ∑
T
t=1 ri,t for each agent i - divided by the

mean utility.

CV =
s
ū
, where ū =

∑
n
i=1 ui

n
, s =

√
∑

n
i=1 (ui− ū)2

n−1
(2.26)

One of them, FEN [40] is a hierarchical policy approach consisting of a controller that ensem-

bles several sub-policies. A key aspect of this architecture is that only one of the sub-policies is

trained with the typical reward signal rt and the remaining ones exploit an information-theoretic

objective to explore alternative behaviours that may be further beneficial to achieve fairness. Giv-

ing name to the model, the controller is then optimised according to a fair-efficient reward, given

by Equation 2.27 for each agent i. The results showed this model achieved better CV in a variety

of domains. An ablation study also showed the importance of FEN’s architecture as it signifi-

cantly improves efficiency compared to a single policy optimised with a fair-efficient reward. The

average agent utility ū is estimated using a gossip algorithm between neighbours.

r̂i
t =

ūt/c
ε +
∣∣ui

t/ūt −1
∣∣ (2.27)

The second one, SOTO [103], is, to the best of our knowledge, state of the art in this problem.

For this reason and because our work extends from it, we dedicate the next section to a more

in-depth description of it.
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2.4.3 SOTO

SOTO stands for Self-Oriented Team-Oriented networks. As the name indicates, its architecture

comprises a Self-Oriented Policy π IND and Team-Oriented one πSWF , trained for the traditionally

selfish and the fair goals respectively, as shown in Figure 2.2 2, with the use of distinct advan-

tage value estimations ÂIND and ÂSWF, respectively. Red arrows represent the back-propagation

process of the network. As can be seen, SOTO operates under the partially observable domain

(POMDP), giving as input to the policies the observations of the world rather than the states.

It is also important to note that the team-oriented policy receives two extra parameters: J and

π IND(a|o). The first one, corresponds to the distribution of discounted accumulated rewards by

each agent Ji(θ) = Eθ [∑t γ tri,t ]. The reason for including this vector as a feature for πSWF is

to provide this policy information on the welfare of other agents before making a decision. For

instance, before deciding to share resources, it would be useful for an agent to know how many re-

sources other agents possess. The second one is the distribution of probabilities of the self-oriented

policy for the next action a, given observation o. The reason for the inclusion of this distribution

of probabilities has to do with the definition of fairness and of ÂSWF, which is further detailed in

the following paragraphs.

Figure 2.2: SOTO architecture

Regarding fairness, the authors of SOTO consider three principles: Impartiality, Equity and

Pareto-efficiency [2]. In order to represent these 3, they use Social Welfare Functions that satisfy

these criteria [94]. The intricacies of these criteria are as follows:

• Impartiality is, in a way, intrinsically met since all agents are built equally in an RL system

and thus entitled to equal treatment. However, it also means that the social welfare function

should output the same value independently of the order in which the agents’ utilities are

currently.
2Although not explicit in the image, for simplicity purposes, each the advantages are estimated in an actor-critic

setting with the use of separate value function approximation V̂ IND and V̂ SWF, for the self- and team-oriented goal
respectively.

3Notice that, despite aiming to respect these principles, they are used to design the Social Welfare Function utilised,
which is a function of the utility - reward - of the agents. As such, the problem at stake is still equality in the distribution
of rewards.
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• Equity is materialised by the Pigou-Dalton Principle [65, 20]. This principle states that

for any utility vector u ∈ RD, if u j − ui > ε > 0, then u + εei − εej, where ei,ej ∈ RD

are the standard basis vectors on components i and j respectively 4, is considered a fairer

distribution of utilities than u. Intuitively, this states that if an agent has higher utility than

another by some difference ε , then transferring some of its utility to the poorer agent is

considered to be a fairer solution. While this Pigou-Dalton transfer is not enforced in any

way within SOTO, the authors require that the SWF respects this principle, such that when

two solutions in the learning process are encountered, the fairest is chosen. As such, by the

principle’s definition, φ must be strictly Schur-concave, i.e., strictly monotonic with respect

to Pigou-Dalton transfers. An instance of these criteria is symmetric and strictly concave

functions.

• Pareto-efficiency refers to the concept of pareto dominance i.e. for any pair of utility vectors

(u,u′) ∈ RD×D, u Pareto-dominates u′ (denoted u � u′ ) if ∀i,ui ≥ u′i and ∃ j,u j > u′j. In

other words, that a utility vector needs to be either weakly or strictly preferred by agents

in order to be chosen as solution. Regarding a social welfare function φ(u), it means that

it should be strictly monotonic with regards to Pareto-efficiency, i.e. u � u′ ⇒ φ(u) >
φ (u′). Although this principle may be harder to understand as a fairness concept, it could be

interpreted as a guarantee that independently of the social welfare function chosen, solutions

that are weakly more efficient solutions will always have higher social welfare value. In

other words, the social welfare function will not prevent agents from choosing more efficient

solutions - otherwise, it would be unfair.

Respecting these criteria, two families of Social Welfare Functions are considered for the set D

of agents. The first family is the Generalised Gini Function [95] (GGF), depicted in Equation 2.28,

which is a linear combination of the agents utilities. Under this definition w ∈ [0,1]D is a fixed

strictly decreasing weight vector (i.e., w1 > w2 > .. . > wD) and u↑ is the vector agents utilities

u sorted in decreasing order. Instances of this family include the utilitarian notion - ∀i,wi = 1 -

and the maxmin egalitarian approach - w1 = 1,w2 = . . .= wD = 0. The second family is depicted

in Equation 2.29. It is the summation of the transformation of the agents utilities by a strictly

decreasing concave function U : R → R. Instances of this function include proportional fair-

ness [66], the generalised entropy index [80], and, the one utilised by the authors, α-fairness [56]

where Uα(x) = x1−α

1−α
if α 6= 1 and Uα(x) = log(x) otherwise. The α ∈ R+ parameter controls the

aversion to inequality.

Gw(u) = ∑
k∈[D]

wku↑k (2.28) SU(u) = ∑
k∈[D]

U(uk) (2.29)

Independently of the social welfare function utilised, while ÂIND is identical to the typical

advantage definition, the definition of the advantage ÂSWF is a function of the social welfare

function φ(u) utilised as portrayed in Equations 2.30 and 2.31 respectively.

4Null vectors except in component i and j where they are 1
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ÂIND
i = ÂIi(oi,ai) (2.30) ÂSWF = ∇uφ(Ĵ(θ))> · Â(o,a) (2.31)

The team-oriented advantage is the dot product between the gradient of the SWF with regards

to the agents utilities and the global advantage of the system. The gradient term, after derivation,

is then equal to:

• ∇uGw(J(θ)) = wσ , where σ is a permutation that sorts J in an increasing order, as the

definition of this SWF family requires.

• ∇uSUα
(J(θ)) = J(θ)−α , for α ∈ [0,1[, which is the setting in consideration.

Since this method is fully decentralised, the agents resort to communication between neigh-

bours in order to estimate J. As a consequence, an agent i may receive conflicting information

about the quality of πSWF, making the learning of a policy under the advantage ÂSWF potentially

unstable. Furthermore, the value of a Social Welfare function is by definition the same for all

the agents within the system - or, in this case, tends to be the same as the number of neighbours

increases. These challenges motivated the authors to include a self-oriented policy in the archi-

tecture, providing an insight to the team-oriented policy on whether its successes/failures are due

to the individual behaviour of the agent or to behaviours of neighbours. The distribution of prob-

abilities estimated by such policy is provided as input to the team-oriented policy, serving as an

individualistic recommendation of how to act.

The dynamics of the SOTO training procedure of this architecture is fully detailed in Algo-

rithm 1. At each batch of steps, throughout episodes, a policy is chosen according to the value

of the β parameter. The agents act according to such policy for the length of the batch in time

steps and, by the end of it, updates the corresponding policy’s weights. As such, the training of

each policy depends on the evolution of β throughout episodes β (er), where er =
e
E is the ratio of

episodes that have already occurred, i.e. the number of the current episode e divided by the total

number of episodes E. The function chosen by the authors is β (er) = max(1−2er,0), where e

is the episode number and E is the number of the last episode. As visually illustrated in Figure

2.3, under this β (er) function, the value of β starts as 1, decreases to 0 until it reaches half of the

episodes designated for train and stabilises on 0 until the end of the training process.

2.5 Summary

In the multi-agent domain, there is work approaching important threats to efficiency such as non-

stationarity, partial-observability and decentralisation. In the fairness domain, it is clear that it is

still a novel thread of research appearing in Machine Learning, and is especially understudied in

the MARL paradigm for equitable distributions of rewards between agents.

The concept of equality is a characteristic of the whole system and not tied to the particular

performance of individual agents. As such, this goal may be hard to learn without falling into the

credit assignment problem. There are two solutions in the literature that approach this problem -
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Figure 2.3: β in function of relative episode number

FEN and SOTO. Both tackle this problem by making agents learn a set of policies with different

goals, instead of a single policy, to not lose sight of what good individual behaviour looks like.

However, there seems to be a gap in the literature. Attempting to learn to behave fairly may

undermine the efficiency of the agents. This may explain why the goal of fairness and efficiency

are, to the best of our knowledge, never considered altogether. With this underlying assumption,

there seems to be a lack of studies that consider these goals holistically and present solutions in-

between them. In a way, it seems that models are either built wholeheartedly for fairness or for

efficiency.
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Algorithm 1 SOTO

1: Initialize πSWF
i ,π IND

i ,vSWF
i ,vIND

i , respectively the team-oriented/self-oriented policies, team-
oriented/self-oriented critics.

2: for each episode e do
3: β = max(1−2er,0), where er =

e
E

4: for each agent i do
5: Initialize JIi = 0

6: (πi,vi)←
{ (

π IND
i ,vIND

i
)

with probability β(
πSWF

i ,vSWF
i
)

otherwise
7: end for
8: while episode e is not completed do
9: Collect M a minibatch of transitions with µ while updating and sharing

10: for each agent i do
11: Update vi with TD(λ ) on M
12: Compute ÂIi (oi,ai) on M with vi and TD(λ ) and send it to everyone
13: if πi = π IND

i then
14: Update π IND

i with Â
IND
i

15: else
16: Collect and form Â(o,a)
17: Update πSWF

i with ÂSWF

18: end if
19: (πi,vi)←

{ (
π IND

i ,vIND
i
)

with probability β(
πSWF

i ,vSWF
i
)

otherwise
20: end for
21: end while
22: end for
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Chapter 3

Methodological Approach

In this chapter, we describe the methodological approach devised for this dissertation. In order

to understand the problem at stake and the methods employed, the reader must be familiar with

SOTO [103], the state of the art fairness model, before reading this chapter. We defer the reader

to Section 2.4.3 if this is not the case.

We start by describing the problem we are studying, together with the questions we aim to

answer. Then, we move to the description of our methodology. We employ three methods: hetero-

geneous testing, changes in SOTO’s original training strategy and an architecture adaptation for

intertwined predictions - I-SOTO - each described in a separate section. In the last section, there

are general considerations on the performance of these models.

3.1 Problem Statement

Reinforcement Learning agents learn to optimise the return gt they expect to get from their

behaviour. Their ultimate goal is to behave in the way that provides them with the most favourable

outcomes, in the form of a reward. If the fairness concept of Equality is considered, it brings

additional challenges to this process. In particular, learning to be fair implies that the evaluation of

an agent’s behaviour depends on the outcomes of the actions of the other agents within the system.

Intuitively, it is hard to visualise what fair behaviour is, especially if the agents are placed in a

decentralised setting where they decide based on partial observation of the world.

Consequently, in MADRL literature, fairness is approached as a goal that needs to be carefully

learned to prevent the agents from not being efficient at all. In particular, SOTO, the state of the

art fairness model, employs an architecture that uses a self-oriented policy towards attempting to

help the fairness-oriented policy not forget what an efficient behaviour looks like.

While this approach makes logical sense towards finding the most fair-efficient policies, there

is, to the best of our knowledge, a lack in research on exploring what considering these two goals

25
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independently but simultaneously actually looks like. In real applications, a system designer may

prefer an efficient solution that is as fair as possible. Moreover, it is still unclear on what sort of

impact learning fair and efficient behaviours have on the final result that each of these ends up

learning. Motivated by this problem, we aim to answer the following questions:

1. Can a range of behaviours be generated between two trained policies? Given any two

MARL trained sets of policies, it is possible to mix the policies being utilised, making agents

act heterogeneously. Is this range of performances linear both in the fairness and efficiency

dimensions? Are its extremes the ones that provide better system’s performance in their

respective dimension?

2. In the SOTO architecture, can different β (er) training strategies generate solutions
that Pareto-front the original model or selfish baseline? The role of β in SOTO is func-

tional - it is the probability of agents choosing to act under and train the self-oriented policy

instead of the team-oriented one. If β is high, the behaviour of agents is then more selfish,

and the self-oriented policy is trained more often. The reverse happens when β is low. It is

also important to note that, while the authors provided ablation studies to justify this option,

they only tested a few options. On the one hand, they tested pre-training π IND for 20%

and 50% of the episodes and concluded it only delayed the convergence process. They also

tested a constant β = 0 (equivalent to having π IND always a randomly initiated network).

They showed the information provided by a somewhat trained π IND was significantly im-

portant to the optimisation of πSWF. This evidence goes to show that the definition of this

function is important. We aim to see if we can find settings that can generate solutions that

Pareto-front SOTO or even the independent baseline.

3. In such a model, what happens if the predictions of the team-oriented policy are also
provided to the self-oriented one? More specifically, we want to know whether this new

architecture generate solutions that Pareto-front the original model or selfish baseline. The

inclusion of insights from π IND as input πSWF is for efficiency purposes, specially for agents

that are under-performing. But what if these insights were mutual, and the self-oriented

policy also received fair insights from the team-oriented policy? Is it possible that the inverse

could be beneficial? Are there any improvements in either fairness or efficiency? Does this

architecture function better under a particular β training strategy?

3.2 Testing Heterogeneous Behaviour

Throughout our experiments, we repeatedly apply this testing technique of heterogeneous be-

haviour. Inspired by SOTO’s learning algorithm, it enables agents to act either selfishly or fairly

according to β . As depicted in Algorithm 2, β a fixed parameter is provided as an argument that

determines the probability of the agent being attributed the self-oriented policy. The agents act for

a mini-batch of M transitions, and its policy is changed again according to the same β criteria.
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It is important that under this testing method, no agent acts only selfishly or fairly - the intent

is to expose the behaviour of interactions of each policy kind for each agent, as each trained multi-

agent architecture trains a policy per agent. Moreover, notice that the policies are never updated

under this method. As such, this is only a testing method, putting in evidence the policy resultant

from training without changes.

Algorithm 2 Heterogeneous Policy Testing

1: Initialize πSWF
i ,π IND

i ,vSWF
i ,vIND

i , respectively the pre-trained team-oriented/self-oriented poli-
cies, team-oriented/self-oriented critics.

2: for each episode e do
3: for each agent i do
4: Initialize JIi = 0
5: end for
6: while episode e is not completed do

7: (πi,vi)←
{ (

π IND
i ,vIND

i
)

with probability β(
πSWF

i ,vSWF
i
)

otherwise
8: Collect M a minibatch of transitions with πi

9: end while
10: end for

3.3 Training strategy functions

In the context of this work, training strategy refers to the function of β (er), which determines the

probability of each agent choosing to act under the self-oriented policy π IND on a given episode

for and on before mini-batch of M transitions. Higher β makes the agents train more the self-

oriented policy and then vice-versa for the team-oriented policy. We test a variety of functions

β (er), where er =
e
E is the episode rate, i.e. the number of the current episode e divided by the

total number of episodes E. In the original training setting of SOTO, β (er) is present visually in

Figure 2.3 and formally in its caption. It is a linearly decreasing function until half of the episodes
1
e er and constant from such point on-wards on 0.

Our methodology tests 4 different beta families: constant, linear, baseline reverse and v-

shaped. A summary of all of the functions and respective variants is depicted in Table 3.1. Each

family of functions is then described in separate subsections.

Table 3.1: Strategy Functions by family: Constant, Linear, Baseline and V-shaped. Variants within
these families are given specific labels. For the Constant family this label is the constant itself. For
the remaining families it is lin, b and v, respectively. The prefix "r" is added to denote the reverse
version of such family. The π IND/πSWF sample ratio is the percentage of area under and above the
function line, since β constrols the samples dedicate to π IND
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Family Variant
π IND/πSWF

sample ratio Equation

Constant

0.25 25/75

β = 0.25

0.5 50/50

β = 0.5

Linear

lin 50/50

β (er) = er

rlin 50/50

β (er) = 1− er
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Baseline

b 25/75

β (er) = max(1−2er,0)

rb 75/25

β (er) = 1−max(1−2er,0)

V-shaped

v 50/50

β (er) = max(1−2er,2er−1)

rv 50/50

β (er) = 1−max(1−2er,2er−1)

Constant

This is the most elementary family of β functions, which is a constant function. Under this family,

β is not dependant on er, and the agents train selfishly/fairly according to the same probability
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throughout episodes. SOTO performs an ablation study where β = 0, which is indeed an instance

of this family. However, we aim to test with values greater than 0 to expose both policies’ training

simultaneously.

In particular, we want to study two values of β : 0.25 and 0.5. Studying β = 0.5 is impor-

tant as it gives the same opportunity for each policy π IND and πSWF to converge. On the other

hand, studying β = 0.25 is also interesting since it provides the same area below the curve as the

baseline. This implies that the number of mini-batches when the agents act under each policy is

approximately the same, by the law of large numbers.

Linear

Linear alternatives prolong the switch between choosing one or the other policy to double the

period compared to the baseline setting. We aim to test whether the stabilising period of baseline

after T
2 is necessary or if most of its performance gains come from slowly switching from self-

oriented to team-oriented. In a way, this family of functions is an intermediate between baseline

and linear in the sense that it is not constant but has a lower slope than the line of baseline until

er = 0.5. An important thing to note is that is alternative gives 50% of samples to each policy.

Baseline

This family comprises the baseline setting of SOTO and its reverse. Notice that the reverse variant

ends up being very similar to the independent baseline except that 25% of the samples are, in the

first half of episodes, directed to the team-oriented policy during. The test will make evident how

a later train of the self-oriented policy makes changes on either policies. Moreover, it is a mirror

of the baseline function utilised in SOTO, so it is important to include as an ablation study.

V-shaped

Derived from the baseline alternative, v-shaped functions are intended to provide the same function

as baseline until E
2 episodes and then return to the initial value linearly in a V-shaped manner. The

interest of this test relies on providing a view on, should the first episodes look similar to baseline

alternatives, if the policies’ number of training samples is compensated at the end to reach 50%

on each if both policies end up performing better, or if the team-oriented policy performance is

harmed since from a theoretical point of view - as previously seen - it is more prone to divergence.

3.4 Intertwining self- and team-oriented policies

In the SOTO architecture, the inclusion of a self-oriented policy is intended to provide a recom-

mendation on how to act efficiently to the team-oriented one. However, it is still unknown if the

recommendations of a team-oriented policy could improve the performance of the first as well.

We propose a new architecture in which the self-oriented policy also receives insights from the

team-oriented policy, generating an intertwined sharing of recommendations, which we name as
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Intertwined Self-Oriented Team-Oriented policy - I-SOTO. The team-oriented policy then receives

as input the action distribution resultant from forwarding π IND, as shown in Figure 3.1.

One problem that arises from this model is the dependency of each policy on the other in order

to provide forwarded action distributions. Indeed, if we want to get the action of policy πSWF , we

need to first forward the policy π IND. However, to forward this policy, we need the forward output

of the first, which is dependent on the latter. In order to address this, whenever some policy π is

being used, it forwards the other π ′ substituting the expected inputs from π with a null vector 0|A|.
Note that the distribution of wealth J is still not passed to the self-oriented policy. Indeed, we

aim to isolate the effect of this intertwined sharing of action recommendations.

Figure 3.1: Intertwined-SOTO architecture

3.5 Evaluation

The evaluation of any of these settings is done through simulation. The environment of the

simulation and the reward it provides drive the agents to do better next time—as such, choosing

appropriate environments is crucial, especially in the fairness domain. We choose two environ-

ments in which is the resource opportunity is unequal - Matthew Effect and Traffic Light Control.

In the first, the agents are placed on a map and receive rewards for each consumption. However,

after consumption, they also get a bigger size and higher speed. This dynamic catalyses the effect

of those who are "rich" become richer, and those who are "poor" become poorer - the Matthew

Effect. On the other hand, Traffic Light Control is an environment where multiple intersections

have to decide which light state is most beneficial to reduce the waiting time. However, because

some intersections lead to others, there is a high dependency on the rewards obtained within the

agents of the system, which translates into an unequal opportunity of performing well. The com-

mon aspect of these environments is this tendency for inequality, which is the desired challenge

for the methods to be tested.
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As baselines, we use the original SOTO model and an Independent baseline, which has the

same architecture as SOTO’s self-oriented policy for comparative reasons. For each environment,

we first run these baseline models to ensure that the results are coherent with those reported by the

authors of SOTO. Then, if so, we proceed to test our methods.

Running a model comprises two steps: training and testing. Training is a longer process in

which the agents update their policies weights. Testing is simply executing the policies obtained

from training. In each environment, a domain-specific measure per time step and agent mi
t is

considered and four types of metrics per episode are considered:

• Total which sums this measure for all time steps and agent within the system ∑
T
t ∑
|D|
i mi

t .

This metric represents efficiency.

• CV, the Coefficient of Variation, which is the standard deviation between the total reward

received by all agents, devised by the mean total reward per agent, as previously shown in

Equation 2.26 but having ui = ∑
T
t mi

t . This metric represents fairness. The lower the CV, the

fairer the system is.

• Min as the minimum accumulated reward in the system, i.e. min(u),u = {ui, i ∈D},ui =

∑
T
t mi

t .

• Max as the maximum accumulated reward in the system, i.e. max(u),u = {ui, i ∈D},ui =

∑
T
t mi

t .

3.6 Summary

Reinforcement Learning models traditionally optimise the expected outcome of their actions,

which is seen as an efficiency goal. More recently, models that approach the equality concept of

fairness have appeared in MADRL, bringing about other performance measures rather than solely

efficiency. However, there seems to be a gap in the literature devoid of assumptions on which of

these goals is ultimately intended for the system.

Our methodology approaches the problem of exploring fair and efficient behaviours in an

independent but simultaneous manner. Although the equality concept of fairness has been tackled

in the literature, it is approached as a goal that requires careful training and never – to the best of

our knowledge – in a joint way with the efficiency goal.

We employ three different methods to approach this problem. The first consists in mixing

two policies, which we refer to as Heterogeneous behaviour testing. The second two are changes

in the model. First, we change the strategy for training the self- and team-oriented policies of

SOTO. Then, we propose a novel architecture in which the team-oriented policy also recommends

a probability distribution of actions to the self-oriented policy.

All of these models are trained and tested to be evaluated in efficiency and fairness (CV).

We utilise environments that intrinsically do not provide agents the same access to resources,
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catalysing inequality phenomena. The question we aim to answer can be generally summarised

as searching for solutions that Pareto-front SOTO or the independent baseline in the efficiency-

fairness space.
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Chapter 4

Experimental Setup and Result Analysis

This chapter describes the settings utilised in our set of experiments and provides the results ob-

tained together with its analysis. We start by describing the core characteristics of all experiments

and then dedicate a separate chapter for each environment tested. We first present the baseline

results for each environment and then show the results of our methods. Finally, the last section

summarises the main experimental outcomes.

4.1 Core Setup

The experiments provided share with a core of setup settings. For comparative purposes, this

core setup is identical to the one reported by SOTO. For the same reason, the development of

the proposed methods was carried out by extending the original code base of SOTO 1 and can be

found at https://github.com/MargaridaSilva/Dissertation-Experimenting.

All policies use PPO optimisation. The importance sampling has a 0.03 exploration bonus

and 0.1 clipping ratio. The learning rate utilised was 10−3 for the critic and 2.5−3 for the actor.

Generalised Advantage Estimation was utilised with λ = 0.97. The neural networks have two

hidden layers with 256 ReLU units each. We used 50 time step batches of transitions. As for the

social welfare functions, we utilised an instance of the Generalised Gini Function, with wi =
1
2i

and an instance of α-fairness with α = 0.9

All of the results presented are the average from the execution of 50 episodes. When applica-

ble, the values of β used for heterogeneous behaviour were {0.02i,∀i ∈ {0,1, ...50}}.

4.2 Matthew Effect

In the Matthew Effect environment [40], agents are initialised with different property values in

position, size and speed and coexist in a map throughout the simulation. Three stationary ghosts

1https://github.com/matthieu637/DFRL
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are also put in the grid. The aspect of this environment and its elements, as rendered from the code

base, is illustrated in Figure 4.1.

Figure 4.1: Matthew Effect Environment

The dynamics between agents are as follows. Each agent can only observe the nearest three

other agents and the nearest ghost. Available actions include moving to one of the four directions

or stay in the same position. If a ghost is next to an agent, the ghost is consumed, and the agent

gets a reward of 1. A new ghost is then generated and attributed to a random position. As such,

the relationship between the number of ghosts consumed by agent i at time step t ni
t , the reward ri

t

and the evaluation measure mi
t for each agent i is as defined in Equation 4.1.

mi
t = ni

t = ri
t , referred to as income (4.1)

Whenever an agent consumes a ghost, it receives a reward and its size and speed will increase

correspondingly until the pre-established upper bounds are reached. This dynamic makes it prone

that agents who have already consume will become more likely to consume again since they have

been provisioned with faster movement capabilities - while others will be in advantage. This

effect where the rich get richer, and the poor get poorer is what gives name to the environment -

The Matthew Effect.

In the experiments of this environment, we consider ten agents, 10000 episodes, 1000 steps

per episode and a discount factor γ of 0.98.

4.2.1 Baseline Performance

The performance of SOTO and Independent baseline is depicted in Figure 4.2. These results show

that the Independent baseline is the most efficient, while the SOTO models are the fairest. While

SOTO(Gw) has a CV very close to 0, it is also approximately 1/3 less efficient. A side by side
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Figure 4.2: Baseline performance in Matthew Effect.

display of our results with those reported by the authors of SOTO can be found in the Section A.1.

The results agree with the ones reported by the authors of SOTO, so we decided to carry on with

our set of experiments using them as baselines.

4.2.2 Heterogeneous Behaviour

The first set of experiments carried out is the testing of heterogeneous behaviour within different

policies.

Self- and Team- Oriented Policy

SOTO trains two policies with different aims: a self- and a team-oriented goal. The results of

the heterogeneous behaviour produced by these policies in the Matthew Effect environment is

depicted in Figure 4.3. It seems that the two SWFs utilised can generate ranges of behaviour,

according to β , in two different directions.

Regarding fairness, as expected, the lower values of β seem to be associated with lower CV

values. This means, the higher the probability of each agent to act under πSWF, the fairer the

system is, globally. On the other hand, with regards to efficiency, a more complex scenario occurs.
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Figure 4.3: Heterogeneous Behaviour between SOTO self-(π IND) and team-oriented (π IND) poli-
cies in Matthew Effect. Higher diameter points correspond to higher probability of acting under
π IND.

Contrary to our expectations, for SOTO(α), there seems to be an inverse relationship between β

and the value of total income. Indeed, for this metric, the most efficient policy is also the fairest. As

for SOTO(Gw), such a relationship is no longer linear. The most efficient policy is an intermediate

behaviour between the two extremes π IND and πSWF.

Overall, it is possible to conclude that these two SWFs have quite distinct behaviours under

this environment. However, a similarity between them is the proximity in performance between

self-oriented extremes in each SWF. We believe this may be because such policy only trains for

25% of the training samples. This would also justify why the efficiency of such policy seems

mediocre, despite its training goal being directly oriented towards efficiency.

SOTO and Independent Baseline

As previously seen, under this environment, the performance of π IND is mediocre when compared

to πSWF. As such, the following set of experiments include attempts in improving the efficiency of

the first, with hopes of observing potential improvements in the latter. In other words, we aim to

observe whether a more efficient self-oriented policy leads to a more efficient and/or fair policy.

The first of these attempts is the production of heterogeneous behaviour between SOTO’s

πSWF and the Independent Baseline. The results of this attempt are depicted in Figure 4.4. As can

be seen, although a range of in-between solutions is formed, none of them Pareto-fronts the fair

and efficient extremes.

The second attempt consisted in setting the weights of π IND as the weights of the Independent

baseline θ IND = θ Independant and then observing the heterogeneous behaviour formed. Notice that

this attribution of weights is only possible since the architectures of both policies are identical,

and thus there is exactly one neuron to place each weight in θ Ind to SOTO. Had we used any other

architecture, concerns with loss of information would have to be considered.
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Figure 4.4: Heterogeneous Behaviour between SOTO and the independent baseline in Matthew
Effect

This behaviour, labeled as SOTO(α,θ Ind) and SOTO(Gw,θ
Ind) for the corresponding SWFs is

illustrated in Figure 4.5. As expected, instances with larger values of β got performance results

closer to the Independent baseline. However, for the other extreme, efficiency abruptly decreased.

This drastic change in performance is interesting to take intuitions from these models. One of them

could be that, whatever π IND ends up learning by the end of the training process, it is certainly

something very different from a purely selfish insight, which π Independant gives. Moreover, it is

also possible to conclude that a trained SOTO model does not get Pareto-front solutions by simply

plugging in a trained Independent model.

In order to further extend this line of thought, we also tested a version of SOTO initialised with

θ Independant but trained for E episodes. This version is entitled SOTO(α,θ Ind)2E and SOTO(Gw,θ
Ind)2E

respectively since, in theory, they take twice the amount of episodes to be trained than SOTO

- E episodes for the training of SOTO plus E episodes for the training of SOTO(θ Ind)2E . For

comparison sake, we also include a version of the Independent baseline trained in 2E episodes,

Independent2E. Another way to interpret the question at stake in this experiment would be: given

an already trained Independent model, what is the difference in performance between continuing

to train for E episodes or integrating it into the SOTO architecture to train it? As can be seen from

the results presented in Figure 4.5, it seems that this training brings πSWF towards a more efficient

performance. In particular, for α-fairness, it seems to be producing on the team-oriented end an as

efficient but significantly fairer performance. Under this metric, it seems that using SOTO leads

to improving fairness while not decreasing much efficiency. The great drawback of this solution

is that it takes twice the amount of episodes and is thus not a proper alternative to the Independent

baseline. It is also important to note that, should the user choose to keep training this baseline

within the same model, they would obtain even higher efficiency and a slight improvement in

fairness. In the end, it is up to the user or system designer to opt which alternative is the most

appropriate from a personal perspective.
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Figure 4.5: Heterogeneous Behaviour between π IND(θ Ind) and πSWF of SOTO in Matthew Effect

Figure 4.6: Heterogeneous Behaviour between π IND(θ Ind) and πSWF of SOTO trained with addi-
tional E episodes in Matthew Effect
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Figure 4.7: Heterogeneous Behaviour between SOTO(α) and SOTO(Gw) in Matthew Effect

SOTO(α) and SOTO(Gw)

This test, compared to the previous, aims to assess a different range of behaviours. Instead of

exploring ranges between a competitive and a cooperative end, in this experiment, we test whether

the two team-oriented policies under different SWFs together produce a Pareto-from solution. As

shown in Figure 4.7, it is possible to conclude that it was not the case. Indeed, the range produced

is almost a linear trade-off in performance between the two fair extremes, thus not producing any

fairer and/or efficient solution without decreasing one of these goals.

To conclude, this initial set of experiments was important to observe that, in this environment,

the behaviours generated between pre-trained policies do not seem to generate Pareto-front solu-

tions compared to the original policies utilised to generate them. The only solutions that achieved

this result were trained for double the number of episodes and thus can’t be considered as proper

alternatives. As such, changes in the training method of SOTO are applied in the following sec-

tions towards finding such solutions.

4.2.3 Training Strategy

The next set of experiments employed is the test of different training strategies for the SOTO

model. These strategies encode, as previously seen, which policy is more likely to be trained for

each agent throughout episodes. The results for each of each strategy under each SWF are depicted

in Table 4.1. The set of ranges generated from this transformation can be found in Figure A.2.

With regards to income, it seems that none of the SWF alternatives can surpass the respective

SWF baseline. The IND alternatives, naturally, are the ones that have the highest incomes. As

for fairness, the constant function of 0.25 achieved a slightly better fairness value in 0.02 CV.

However, this little improvement also leads to a decrease of ≈ 82 income units, which is around

5% of loss from the original value.
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Table 4.1: Training strategies (β ) performance under the self- (IND) and team-oriented (SWF)
policies in Matthew Effect. Bold values are entries which perform equal or better than the baseline
(b) of the respective model, in Total Income (higher) or CV (lower), i.e. efficiency or fairness.

Total Income CV Min Income Max Income
model β π

SOTO(α)

0.25
IND 1464 0.73 12.76 369
SWF 1581 0.47 43.16 280

0.5
IND 1654 0.65 24.16 392
SWF 1452 0.50 27.31 257

b
IND 1178 0.90 5.88 342
SWF 1663 0.49 43.29 297

rb
IND 1786 0.72 5.18 431
SWF 41 1.26 0.06 15

lin
IND 1746 0.66 22.60 410
SWF 1014 0.68 7.50 193

rlin
IND 1480 0.75 9.21 367
SWF 1628 0.51 29.96 294

v
IND 1638 0.70 18.32 398
SWF 1155 0.61 14.01 229

rv
IND 1660 0.66 24.88 391
SWF 1268 0.65 26.52 242

SOTO(Gw)

0.25
IND 1135 0.89 6.11 326
SWF 800 0.22 44.86 95

0.5
IND 1457 0.72 16.97 363
SWF 371 0.59 10.30 63

lin
IND 1719 0.70 16.65 416
SWF 18 1.10 0.04 5

rlin
IND 1188 0.85 7.58 327
SWF 480 0.43 18.71 68

b
IND 1139 0.86 9.00 324
SWF 1052 0.03 99.68 109

rb
IND 1724 0.78 5.69 427
SWF 9 1.51 0.00 4

v
IND 1649 0.68 23.90 394
SWF 235 0.90 2.41 58

rv
IND 1256 0.81 12.29 341
SWF 563 0.33 21.89 74

Independent N.A. N.A. 1793 0.73 8.11 421
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4.2.4 I-SOTO

Finally, we apply the Intertwined version of SOTO and test in this environment for the same set of

training strategies utilised in the previous section. The results are presented in Figure 4.2. The set

of ranges generated from this model can be found in Figure A.3. Regarding the α-fairness SWF,

one solution was found to Pareto-front the baseline, both in fairness and efficiency - the setting of

I-SOTO with the baseline function strategy. As for the Gw baseline, while no solution was found

to improve both efficiency and fairness, the baseline SWF function version of I-SOTO - once again

- obtained a slightly better CV in 0.02 at the cost of≈ 18 income points. Although this result does

not surpass the baseline, it is interesting that the CV of SOTO(Gw) was already very close to 0.

Another interesting result obtained was that the reverse baseline IND version of I-SOTO was

able to surpass the baseline in efficiency in both metrics. With regards to efficiency, this result is in

agreement with the fact that reverse baseline is the strategy function with most samples dedicated

to π IND of all the strategies explored. However, it is still interesting that the inclusion of a fairness

oriented policy was beneficial for both goals, and most significantly with the α-fairness setting

with a gain of ≈ 66 income points and decrease in 0.08 CV units.

4.3 Traffic Light Control

In the Traffic Light Control [96] environment, there is a grid of roads. Each intersection joins four

roads, each with two lanes in different directions - being a total of 8 lanes with different numbers

of vehicles per intersection, as illustrated in Figure 4.8.

Figure 4.8: Traffic Light Control Environment [103]

Each agent controls the state of its traffic light. The traffic light phase controls the traffic and

specifies which lanes have the green light and which don’t. We assume that each intersection has 4
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Table 4.2: I-SOTO performance under the self- (IND) and team-oriented (SWF) policies in
Matthew Effect. Bold values are entries which perform equal or better than the baseline (b) of
the respective model, in Total Income (higher) or CV (lower), i.e. efficiency or fairness.

Total Income CV Min Income Max Income
model β π

I-SOTO(α)

0.25
IND 1440 0.75 11.80 356
SWF 1529 0.48 35.22 271

0.5
IND 1626 0.66 24.18 385
SWF 1378 0.53 15.67 240

lin
IND 1771 0.64 31.42 417
SWF 888 0.69 4.77 167

rlin
IND 1617 0.64 23.68 372
SWF 1680 0.48 38.34 306

b
IND 1138 0.94 3.69 338
SWF 1756 0.44 58.02 316

rb
IND 1859 0.65 23.31 423
SWF 99 1.28 0.16 37

v
IND 1641 0.64 22.59 372
SWF 1473 0.56 29.96 293

rv
IND 1573 0.68 17.12 374
SWF 1550 0.52 21.75 282

SOTO(α) b
IND 1178 0.90 5.88 342
SWF 1663 0.49 43.29 297

I-SOTO(Gw)

0.25
IND 1178 0.86 6.91 327
SWF 733 0.21 43.32 87

0.5
IND 1552 0.64 25.88 358
SWF 130 0.89 0.90 34

lin
IND 1724 0.67 22.82 407
SWF 37 1.09 0.07 10

rlin
IND 1210 0.84 7.47 332
SWF 649 0.33 24.33 87

b
IND 1156 0.88 5.63 326
SWF 1035 0.01 101.06 106

rb
IND 1799 0.71 15.05 433
SWF 11 1.58 0.01 5

v
IND 1479 0.77 13.61 372
SWF 355 0.88 2.68 100

rv
IND 1241 0.81 8.97 325
SWF 581 0.37 18.50 81

SOTO(Gw) b
IND 1139 0.86 9.00 324
SWF 1052 0.03 99.68 109

Independent N.A. N.A. 1793 0.73 8.11 421
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phases. The state space is composed of the current traffic light phase, and for each lane, its queue

and density of cars stopped at the intersection. The action corresponds to choosing which traffic

light phase is going to be up next. At each time step, new vehicles enter into the intersection with

a fixed destination.

We use SUMO [51](Simulation of Urban Mobility) to simulate the waiting time of the vehicles

in a particular time step and intersection wi
t during 5000 seconds. Notice that while in Matthew

Effect, agents aim to maximise the income, in this case, they aim to minimise the waiting. As

such, at each time step, the reward provided to the agents is the difference between the waiting

time of the last time step wt−1 and the waiting time of the current wt . This definition motivates the

agent to minimise the accumulated waiting time, which is our goal in this domain. It is important

to note that because this difference may be negative, this environment is not compatible with the

α-fairness social welfare function and was thus not considered in the set of experimental results

for this environment.

The relationship between waiting time wi
t , the reward ri

t and the evaluation measure mi
t for

each agent i is as defined in Equation 4.2.

ri
t = wi

t−1−wi
t

mi
t = wi

t , referred to as waiting time
(4.2)

If the agents’ decisions are too bad in this environment, a situation of complete blockage may

occur. If this is the case, then regardless of the actions taken by the agents for the rest of the

episode, traffic will remain blocked everywhere. Indeed, even if a not so extreme case occurs,

there is a high dependence between agents’ success under this environment as delays in other

intersections may impact following intersections. Moreover, the flux of vehicles is not purposely

equally distributed, being an extra source potentiating inequality. Finally, an added intricacy of

this environment is that the notion of equality, and the value of CV, could be calculated in function

of the waiting time per lane. Indeed, it could make sense to consider equality in the waiting time

that agents take to pass through a lane and not an intersection. This option was not considered in

this work, but we acknowledge the existence of this added concern. We consider only the original

SOTO setting of fairness within intersections.

Experiments under this environment consider a 3x3 intersection grid, with a total of 9 agents,

2000 episodes, 500 steps per episode, and a discount factor γ is 0.99.

4.3.1 Baseline Performance

The performance of SOTO and the Independent baseline is depicted in Figure 4.2. These results

show that while the SOTO models are the fairest, they seem to be approximately as efficient as the

Independent baseline.
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Figure 4.9: Baseline performance in Traffic Light Control. Logarithmic scale is being used.

These results are not in agreement with those reported by the authors of SOTO [103], since

in their setting SOTO was approximately as fair as the Independent model but with waiting time

lower in 3 orders of magnitude. A side by side display of our results with those reported by

the authors of SOTO can be found in the Section B.1. In order to better understand why these

differences could be happening, we decided to contact the authors and debate potential reasons

for such differences being verified. The full discussion can be found at https://github.c

om/matthieu637/DFRL/issues/2. One of the outcomes of this contact was that, as an

evaluation metric, the authors were considering the reward value per time step t as the evaluation

measure mt = rt . However, we argue that, taking into account the reward formulation utilised, the

aggregated global waiting time per episode We would be equal to the waiting time of the last time

step negative wT , as demonstrated in Equation 4.3. As such, it should not be used as an evaluation

measure as it is not a representative value of the whole episode. This is what motivated us to record

mt as the waiting time such that We = ∑
T
t=1 wt , and not the reward as in the case of the Matthew

Effect. After presenting this argument to the authors, they agreed that the measure they were using

was not reliable and will be re-uploading their results for this environment. We moved forward

https://github.com/matthieu637/DFRL/issues/2
https://github.com/matthieu637/DFRL/issues/2
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with the planned set of experiments using mt = wt for this reason.

We =
T

∑
t=1

rt =
T

∑
t=1

wt−1−wt

= (w0−w1)+(w1−w2)+ ...+(wT−1−wT ), w0 = 0

=−wT

(4.3)

4.3.2 Heterogeneous Behaviour

The initial experimental setup and results relate to the testing of heterogeneous behaviour gener-

ated from different policies.

Self- and Team- Oriented Policy

The results of the heterogeneous behaviour produced by the self- and team-oriented policies of

SOTO are depicted in Figure 4.10. It is possible to observe that the range of SOTO behaviours

generated is approximately linear in the efficiency-fairness space. The team-oriented end is both

the most efficient and fair. When compared to the previous environment, this phenomenon also

occurred for the α-fairness metric. In the Gw, the performance range was not linear in the effi-

ciency dimension, so we can conclude that the behaviour of the same SWF can be different under

different environments.

Regarding the range of behaviours generated by π IND and πSWF, it seems to be sparser than in

the Matthew effect, with an outlier with a high global waiting time. Nonetheless, some solutions

seem to be able to be more efficient than the independent baseline, or as efficient with but fairer.

However, because these options - together with the seam-oriented extreme - have a close perfor-

mance to the independent baseline, the heterogeneous behaviour line of testing was not applied

for this environment.
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Figure 4.10: Heterogeneous Behaviour between SOTO self-(π IND) and team-oriented (πSWF) poli-
cies in Traffic Light Control. Higher diameter points correspond to higher probability of acting
under π IND.

4.3.3 Training Strategy

The results of each of the training strategies utilised are depicted in Table 4.3. The set of ranges

generated from this transformation can be found in Section B.2. Regarding waiting time, it seems

that many IND policies can surpass the SWF training strategy baseline, i.e., have lower waiting

times. This aligns with the past domain, where we saw that the IND extremes, naturally, are more

efficient. The most efficient result is the constant option of 0.5. Regarding fairness, interestingly,

the only policy that outperforms the baseline is the very same model under the IND extreme. We

conclude that, in this environment, it is possible to achieve between performing solutions in both

optimisation dimensions just by changing the training strategy.

4.3.4 I-SOTO

The last set of experiments is the testing of I-SOTO. Results are depicted in Table 4.4. The set of

ranges generated from this model can be found in Section B.3. Once again, in this environment,

the IND extremes seem to be the most efficient, with the exception of the baseline training strategy.

In particular, in the constant setting of 0.5, as in the previous case, waiting time is the lowest and

outperforms the Independent baseline in this goal. On the other hand, with regards to fairness, it

seems that rv in the IND setting achieves almost 50% of the baseline CV, 0.05 against 0.09, and

can still be more efficient and reduce the waiting time. Once again, a better solution than SOTO

was found.
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Table 4.3: Training strategies performance of SOTO(Gw) in Traffic Light Control for the self-
(IND) and team-oriented (SWF) policies. Bold values are entries which surpass the baseline, b,
for the respective SWF, in Total Waiting Time (lower) or CV (lower), representing better efficiency
or fairness respectively.

Global Time CV Min Time Max Time
model β π

SOTO(Gw)

0.25
IND 3.39e+05 0.09 9.5e+02 3.2e+04
SWF 3.76e+05 0.09 1.1e+03 3.5e+04

0.5
IND 3.27e+05 0.07 8.9e+02 3.0e+04
SWF 4.21e+05 0.09 1.4e+03 3.4e+04

lin
IND 3.57e+05 0.20 9.0e+02 2.8e+04
SWF 4.68e+05 0.15 1.9e+03 3.4e+04

rlin
IND 3.60e+05 0.13 8.1e+02 3.1e+04
SWF 4.48e+05 0.17 1.4e+03 3.5e+04

b
IND 3.86e+05 0.14 8.8e+02 4.3e+04
SWF 3.81e+05 0.09 1.4e+03 3.5e+04

rb
IND 3.66e+05 0.14 8.5e+02 4.5e+04
SWF 1.06e+06 0.14 4.6e+03 1.4e+05

v
IND 3.57e+05 0.13 9.4e+02 3.7e+04
SWF 4.67e+05 0.20 1.5e+03 4.6e+04

rv
IND 3.56e+05 0.13 8.9e+02 3.1e+04
SWF 4.68e+05 0.16 1.6e+03 3.8e+04

Independent N.A. N.A. 3.80e+05 0.10 8.6e+02 4.9e+04

4.4 Summary

We provide an experimental set of results within two environments and regarding heterogeneous

behaviour from pre-trained policies, training strategies that change the training process of SOTO,

and a novel architecture I-SOTO which intertwines self- and team-oriented policy recommenda-

tions. We are now able to answer the questions raised in Chapter 1 and detailed in Section 3.1.

Regarding heterogeneous behaviour, we conclude that it is indeed possible to generate ranges

of behaviours between two pre-trained policies. However, we also show that these ranges do not

represent linear trade-offs but more complex non-linear tendencies. Furthermore, in the Traffic

Light Control environment, the solutions generated seem to have higher frequencies of outliers.

Finally, this generation of intermediate behaviours seems not to produce solutions that outper-

form the extremes that originated them, with the exception of Traffic Light Control, where a few

solutions are found but with little improvement.

As for the methods utilised to change the SOTO model - different training strategies and I-

SOTO - a summary of the most relevant results is presented in Tables 4.5 and 4.6 for the Matthew

and Traffic Light Control environments, respectively. In these tables were included entries that

either (1) are the most efficient (2) are the fairest (3) Pareto-front the baseline SOTO model in the

same SWF.

As can be seen, the most efficient and fair solutions were, in both environments, found in
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Table 4.4: Training strategies performance of SOTO(Gw) in Traffic Light Control for the self-
(IND) and team-oriented (SWF) policies. Bold values are entries which surpass the baseline, b, in
Total Waiting Time (lower) or CV (lower), representing better efficiency or fairness respectively.

Global Time CV Min Time Max Time
model β π

I-SOTO(Gw)

0.25
IND 3.78e+05 0.11 9.1e+02 3.7e+04
SWF 3.80e+05 0.08 1.4e+03 2.9e+04

0.5
IND 2.89e+05 0.48 5.6e+02 3.8e+04
SWF 3.97e+05 0.32 1.6e+03 3.7e+04

lin
IND 3.58e+05 0.10 8.3e+02 3.9e+04
SWF 4.82e+05 0.10 1.2e+03 4.0e+04

rlin
IND 3.79e+05 0.23 1.2e+03 3.2e+04
SWF 4.48e+05 0.16 1.4e+03 3.7e+04

b
IND 3.56e+05 0.10 1.0e+03 3.0e+04
SWF 3.50e+05 0.08 9.8e+02 3.1e+04

rb
IND 3.48e+05 0.07 7.5e+02 4.2e+04
SWF 7.64e+05 0.10 3.4e+03 7.1e+04

v
IND 3.46e+05 0.07 9.1e+02 3.3e+04
SWF 4.22e+05 0.09 1.2e+03 3.4e+04

rv
IND 3.45e+05 0.05 9.2e+02 3.2e+04
SWF 4.44e+05 0.09 1.2e+03 3.3e+04

SOTO(Gw) b
IND 3.86e+05 0.14 8.8e+02 4.3e+04
SWF 3.81e+05 0.09 1.4e+03 3.5e+04

Independent N.A. N.A. 3.80e+05 0.10 8.6e+02 4.9e+04

the I-SOTO setting. This means that specific training strategies in I-SOTO can outperform the

Independent baseline, which is fully focused on selfish behaviour optimisation. Furthermore,

with this model, we were also able to find solutions that are both fairer and more efficient than

the corresponding baseline for Matthew Effect under the α SWF and for Traffic Light Control

under the Generalised Gini Function with I-SOTO(α;rlin)SWF and I-SOTO(Gw;rb)IND respectively.

Interestingly, in the Traffic domain, the solution that was better than SOTO was on the self-oriented

extreme. No solutions we found to outperform SOTO(Gw) in Matthew effect without sacrificing

one of the goals. One solution, however, is able to get a better CV than this baseline. This result

is nevertheless important to consider since the baseline CV was already very low, to begin with -

0.03 - and the baseline instance of I-SOTO reduced it to 0.01.

Furthermore, there is a broader pattern entailed in the experimental results data. With regards

to the self- and team-oriented policies, it seems to be the case that either (1) πSWF is the most fair

and πSWF is the most efficient policy or that (2) πSWF is both the most efficient and fair. The latter

case occurs for SOTO(α) in Matthew Effect and SOTO(Gw) in Traffic Light Signal. While we are

not able to provide an exact explanation of why this happens, there are two potential intuitions for

this reason.

On the one hand, it may have to do with the nature of the environment. As previously seen,

in Traffic Light Control, the success of an agent (intersection) is highly dependent on the success
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Table 4.5: Summary of result performances in Matthew Effect. Bold values are the best perform-
ing within its SWF.

Total Income CV
model β π

I-SOTO(α)
b SWF 1756 0.44
rb IND 1859 0.65

rlin SWF 1680 0.48
SOTO(α) b SWF 1663 0.49

I-SOTO(Gw)
b SWF 1035 0.01
rb IND 1799 0.71

SOTO(Gw) b SWF 1052 0.03
Independent N.A. N.A. 1793 0.73

Table 4.6: Summary of result performances in Traffic Light Control. Bold values are the best
performing within its SWF.

Global Time CV
model β π

I-SOTO(Gw)
0.5 IND 2.89e+05 0.48
rv IND 3.45e+05 0.05

SOTO(Gw) b SWF 3.81e+05 0.09
Independent N.A. N.A. 3.80e+05 0.10

of other agents. This leads to the intuition that finding a fair solution, in this environment, is also

finding a fair one. A result that is in agreement with this is the fact that the best performing model

in this environment is I-SOTO(Gw) with the constant 0.5 strategy function, in which self- and

team-oriented insights are shared between policies and in a balanced (50/50) way between goals.

On the other hand, this may also have to do with the nature of the social welfare function

utilised. As seen in Chapter 2, the self- and team-oriented advantages utilised in the training

process are a product of the derivative of the SWF with respect to the agents utilities, ∇uφ(Ĵ(θ))>,

with the original advantage. In the α-fairness scenario, this derivative is u0.9, while on the Gw

setting it is w = {2−i,∀i∈D}. This means that the team-oriented advantage for the first case is a

sum of an exponential function to the agents utilities as opposed to a weighted sum based on their

ranking. The fact that this function interprets social welfare as an independent concept from the

ranking of individual utilities within the system perhaps deposits more confidence in individual

success - efficiency - as a means towards fairness. On the other hand, considering the utility order

overall produces much fairer results as it ensures no agent is being left behind. This, however,

comes at the cost of a great deal in efficiency.
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Chapter 5

Conclusions

With the increasing presence of Machine Learning models in our lives, fairness concerns are in or-

der towards a trustworthy use of them. In Multi-Agent Reinforcement Learning domains (MARL),

there is a concern for making agents receive approximately the same reward. However, this cannot

be forced a priory - otherwise, agents would not receive reward reflecting the quality of their ac-

tions. The existent literature in the field approaches the problem as finding the fairest policy that,

ideally, is also efficient. While this is a legitimate aim for a system, the impact of joint fair-efficient

behaviours and training procedures is unknown, to the best of our knowledge. In a world where a

complete commitment to fairness may not be feasible, fairness-efficiency holistic approaches are

compelling to study.

5.1 Main Contributions

Our work approaches this problem in an exploratory manner in environments that expose the

agents to unequal access or opportunity to resources - the Matthew Effect and Traffic Light Con-

trol.

First, we propose using an algorithm for testing fair and efficient behaviours heterogeneously

in a MARL system. The intermediate solutions observed in both social welfare functions seem

to not Pareto-front the extremes visibly but demonstrate viable solutions for system designers to

consider having trained a SOTO model.

Then we evaluate SOTO with different training strategies for the self- and team-oriented goals

and propose a change to SOTO where these intertwine recommendations for better predictions -

I-SOTO. In every environment, we were able to find at least one I-SOTO solution that Pareto-

fronts SOTO in a specific training strategy and social welfare goal. However, we acknowledge the

limitation that if the same solutions in different environments perform differently, applying these

methods to other environments potentially needs to be reevaluated.

Our main contributions can be summarised as follows:
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• We propose an algorithm for testing different policies in a MADRL system

• We propose different training. strategies (β (er)) for SOTO.

• We propose I-SOTO, an architecture that intertwines recommendations from the self- and

team-oriented policies.

• We show the ranges of behaviours generated by any of these alternatives and find solutions

that are either fairer, more efficient or, in particular cases, that Pareto-front the baselines in

each of the environments.

• We debate the performance of the baselines obtained by us with those reported by the au-

thors of SOTO. It led to the conclusion that the metric they were using was inadequate and

that their results are in need to be updated.

• We present a literature review in MADRL architectures and on the existent related work in

fairness.

5.2 Future Work

As future work, we propose two main lines of work: expanding the testing space and architectural

changes.

Perhaps the most natural path, expanding the space in which our methods are tested, would be

interesting to accomplish in many dimensions. If there is one thing that became very evident in

our results, it is that the use of different SWFs to train SOTO makes an impact on the performance

direction it moves towards in the Fairness-Efficiency space. A natural direction would be including

training SOTO and I-SOTO under different SWF definitions. Even if they do not meet the fairness

criteria proposed by the authors of SOTO, it would be interesting to provide results comparing

the performance and the benefits (or not) of using a carefully designed SWF definition. On the

other hand, the β training strategy could also be rethought to accommodate more the needs of

particular SWFs. While some of our experiments worked well for the α-fairness case, the same

did not happen for GGF. These new definitions could include more dynamic definitions where

the value of β could be determined by properties of the system itself (e.g. total score, CV, min

score, avg score, etc.), apart from the episode ratio er, which is only an indicator of time. Another

interesting dimension to test would be testing with new environments. Fairness can naturally

behave differently if aimed in conditions where agents have more or less equal access to resources

and under different environment dynamics. FEN and SOTO test their approaches in a total of

5 different domains. Only 2 of those were considered in this work. Furthermore, we are also

curious to observe the behaviour of these models in environments not directly related to fairness

and equality concerns. A question that could be considered is if it is easier to learn fair behaviour

in environments that do not promote as much unequal resource access as the environments tested

since unequal solutions are less likely to be found. Finally, the inclusion of other actor-critic
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algorithms could be considered. For instance, with the use of A3C [55], the SOTO architecture

would have to be tested in the CLDE domain, and potentially other improvements to it could be

made to make the most out of the centralised learning setting.

On a different note, there could be attempts in changing the architecture of SOTO and I-SOTO

towards improving their performance. For instance, the vector J could be considered as input

of π IND. Although this inclusion is not intuitive, since J contains information more relevant to

the fair goal, it is unknown what the behaviour of the model would look like with this addition.

Furthermore, the architecture could be adapted to include more communication mechanisms in

the policies learned. Much like in DGN [39], there could be a communication of weights between

neighbour agents to build more insightful networks to approximate either policy or value functions.

In order to reduce the communication during execution, a viable approach could be performing

this additional communication only on the value functions - such that, during execution, agents

only need to communicate J which is at worse |D| dimensional.
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Appendix A

Matthew Effect

This chapter details further results with regards to the Matthew Effect Environment.

A.1 State of the art

In this section we present the results obtained for the baseline models when compared to those

reported by the authors of SOTO.

A.2 Training Strategy Behaviour Specter

In this section we provide the full set of behavioural ranges generated from heterogeneous testing

of SOTO under the different training strategies considered.

65
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Figure A.1: Performance of SOTO, FEN and the Independent baseline obtained (top) compared
to the performance stated in SOTO (bottom) in Matthew Effect. The correspondence between
models, top to bottom, is as follows: Independent as Independent, SOTO(α) as FD SOTO(φα ),
SOTO(Gw) as FD SOTO(Gw), FEN as FEN-g. The SOTO(Gw) alternative in the bottom plot is
referent to the CLDE scenario.
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Figure A.2: Performance of SOTO in the efficiency-fairness space with different functions of β

during training

(a) Constant 0.25

(a) Constant 0.5
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(a) Linear Ascending

(a) Linear Descending

(a) Reverse Baseline
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(a) V-shaped

(a) Reverse V-shaped
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A.3 I-SOTO Behaviour Specter

In this section we provide the full set of behavioural ranges generated from heterogeneous testing

of I-SOTO under the different training strategies considered.

Figure A.3: Performance of I-SOTO in the efficiency-fairness space with different functions of β

during training in Matthew Effect

(a) Constant 0.25
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(a) Constant 0.5

(a) Linear Ascending

(a) Linear Descending
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(a) Baseline

(a) Reverse Baseline

(a) V-shaped
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(a) Reverse V-shaped
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Appendix B

Traffic Light Control

This chapter details further results with regards to the Traffic Light Control Environment.

B.1 State of the art

In this section we present the results obtained for the baseline models when compared to those

reported by the authors of SOTO.

B.2 Training Strategy Behaviour Specter

In this section we provide the full set of behavioural ranges generated from heterogeneous testing

of SOTO under the different training strategies considered.

Figure B.2: Performance of SOTO in the efficiency-fairness space with different functions of β

during training in Traffic Light Control

(a) Constant 0.25
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Figure B.1: Performance of SOTO, FEN and the Independent baseline obtained (top) compared to
the performance stated in SOTO (bottom) in Traffic Light Control. The correspondence between
models, top to bottom, is as follows: Independent as Independent, SOTO(Gw) as FD SOTO(Gw),
FEN as FEN-g. The SOTO(Gw) alternative in the bottom plot is referent to the CLDE scenario.
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(a) Constant 0.5

(a) Linear Ascending

(a) Linear Descending
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(a) Reverse Baseline

(a) V-shaped

(a) Reverse V-shaped
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B.3 I-SOTO Behaviour Specter

In this section we provide the full set of behavioural ranges generated from heterogeneous testing

of I-SOTO under the different training strategies considered.

Figure B.3: Performance of I-SOTO in the efficiency-fairness space with different functions of β

during training

(a) Constant 0.25
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(a) Constant 0.5

(a) Linear Ascending

(a) Linear Descending
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(a) Baseline

(a) Reverse Baseline

(a) V-shaped
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(a) Reverse V-shaped
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