
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Video Similarity Measurement: Using
Convolutional Neural Networks To

Create Video Signatures

João Gabriel Marques Costa

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Luís Filipe Pinto de Almeida Teixeira

Company Supervisor: Alexandre Ulisses Silva

June 27, 2018

Video Similarity Measurement: Using Convolutional
Neural Networks To Create Video Signatures

João Gabriel Marques Costa

Mestrado Integrado em Engenharia Informática e Computação

June 27, 2018

Abstract

The widespread of the Internet along with the appearance of a multitude of video sharing and
streaming services has increased the amount of video data available dramatically. On the other
hand, a big portion of the videos available online show a large degree of similarity between each
other. In fact, YouTube alone is estimated to have over 859 million videos with 31.7% of them
considered to be near-duplicates.

This ease of sharing and redistribution has many implications, such as decreasing the amount
of useful storage space and increasing the risk of illegal distribution of copyrighted contents. As
such, there has been an increasing interest in the research of near-duplicate video detection and
retrieval techniques.

In this dissertation we propose a solution for measuring similarity between videos by using
Convolutional Neural Networks, which have been successfully applied in a variety of image and
video recognition tasks. We demonstrate that using semantic information extracted from videos
by these networks can be useful in the context of video similarity by testing our solution in the task
of near-duplicate video detection, using the CC_WEB_VIDEO dataset, and achieving an Average
Precision of 0.974 competitive with the current state-of-the-art.

i

ii

Resumo

A constante disseminação da Internet pelo mundo, assim como o surgimento de vários serviços
de partilha e streaming de vídeo, fez aumentar drásticamente a quantidade de dados de vídeo
disponíveis. Por outro lado, uma grande parte destes vídeos mostram um grau de semelhança
elevado entre eles. Só no YouTube é estimado que 31,7% dos mais de 859 milhões de vídeos
disponíveis são cópias.

Esta facilidade de partilha e redistribuição gera vários problemas, tal como a diminuição de
espaço de armazenamento livre e o aumento do risco de distribuição ilegal de conteúdos protegidos
por direitos de autor. Como tal, tem se notado um crescente interesse em desenvolvimento de
técnicas para deteção e procura de vídeos duplicados.

Nesta dissertação, propomos uma solução para medir a similaridade entre vídeos usando Con-
volutional Neural Networks, que têm sido aplicadas, com elevada taxa de sucesso, em várias tare-
fas de reconhecimento de vídeo e imagem. Demonstramos que o uso de informação semântica,
extraída por estas redes, pode ser útil no contexto de similaridade entre vídeos testando a nossa
solução em deteção de vídeos duplicados, usando o dataset CC_WEB_VIDEO, e obtendo uma
Average Precision de 0.974 comparável com o estado da arte atual.

iii

iv

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 3
1.3 Objectives . 4
1.4 Dissertation Outline . 5

2 Image and Video Recognition 7
2.1 Introduction . 7
2.2 Object Detection . 8
2.3 Scene Recognition . 9
2.4 Technologies . 9

3 Video Similarity 13
3.1 Introduction . 13
3.2 Applications . 14

3.2.1 Copyright Protection . 15
3.2.2 Video Monitoring . 15
3.2.3 Video Re-ranking . 16
3.2.4 Video Recommendation . 16

3.3 Common Approaches . 16
3.3.1 Feature Extraction . 17
3.3.2 Signature Generation . 18
3.3.3 Signature Comparison . 19

4 Proposed Solution 21
4.1 Overview . 21
4.2 Object Detection and Scene Recognition . 22
4.3 Object Tracking . 23
4.4 Shot Boundary Detection . 28
4.5 Feature Extraction . 29
4.6 Signature Generation and Comparison . 30

5 Experimental Results 33
5.1 Initial Observations . 33

5.1.1 Semantic Similarity . 33
5.1.2 Visual Transformations . 35
5.1.3 Problems . 37

5.2 Benchmarks . 38

v

CONTENTS

5.2.1 Feature Extraction . 39
5.2.2 Signature Generation and Comparison 41

5.3 Near-Duplicate Video Detection . 42

6 Conclusions and Future Work 47

References 49

vi

List of Figures

1.1 Computer Vision driven by advancements in multiple fields 2
1.2 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) Results 2
1.3 Example images from the classification task in ILSVRC 3

2.1 Example output from an object detector . 8
2.2 Some examples available on the official Places2 Demo 10

3.1 The two types of similarity: (a) and (b) are visually similar while (c) and (d) are
semantically similar . 14

3.2 Overview of NDVR and NDVD processes . 18

4.1 Overview of implemented system . 23
4.2 Example object detection outputs from the implemented YOLOv3 network . . . 24
4.3 Visual definition of Intersection over Union (IoU) 25
4.4 Overview of the whole object tracking process 26
4.5 Example tracking with occlusion . 26
4.6 Example tracking person across the screen with various occlusions and overlaps . 27
4.7 Various types of possible video annotations. (a) and (b) show scene information

and tracked objects. The red square in the lower right corner of (c) indicates the
current frame is a shot boundary . 30

4.8 Visual representation of a shot signature (feature vector) 31

5.1 All 4 shots have a similarity value above 93% between each other 34
5.2 All three shots have a similarity value above 90% between each other 34
5.3 Semantically similar shots with a measured value of 78 % 34
5.4 Similar locations and context but different camera angles and distance: 60 % similar 35
5.5 Examples of manually applied visual transformations and their measured similarities 36
5.6 Black bars are taken into account during scene recognition, which wrongly classi-

fies all of these shots as being indoor . 37
5.7 Ambiguity in semantic information leads to all these shots being considered highly

similar (around 70 %). They have a small number of common objects (one or two
people) and almost no relevant background information 37

5.8 Fast consecutive changes in color information, specially brightness, leads to the
incorrect detection of multiple shot boundaries 38

5.9 Examples of queries (first column on the left) and near-duplicate videos from the
CC_WEB_VIDEO dataset . 44

5.10 Precision-Recall and ROC curves of the whole subset (2537 videos) 45
5.11 Resulting confusion matrix from K-Fold Cross Validation 45

vii

LIST OF FIGURES

viii

List of Tables

2.1 Scene recognition results from the official Places2 Demo for the images in Figure 2.2 9

4.1 Different types of features used to detect shot transitions 28
4.2 Feature sets part of the shot signature feature vector 31

5.1 Scene recognition summary for the shots in Figure 5.4 35
5.2 Benchmarking machine specifications . 39
5.3 Benchmark results for Object Detection and Scene Recognition 39
5.4 Benchmark results for Object Tracking . 40
5.5 Benchmark results for Shot Boundary Detection 40
5.6 Benchmark results for the whole feature extraction process. Running time refers

to the average time a task takes per iteration/frame processed 41
5.7 Benchmarks for the signature generation and comparison processes 42
5.8 Similarity annotations available in the CC_WEB_VIDEO dataset 42
5.9 Summary of the subset of videos used from the CC_WEB_VIDEO dataset 43
5.10 Average Precision and ROC AUC measures for every query done 43
5.11 Results from K-Fold Cross Validation . 44

ix

LIST OF TABLES

x

Abbreviations

AI Artificial Intelligence
CVIS Computer Vision
ML Machine Learning
ANN Artificial Neural Network
DNN Deep Neural Network
CNN Convolutional Neural Network
GPU Graphics Processing Unit
ILSVRC ImageNet Large Scale Visual Recognition Challenge
NDV Near-Duplicate Video
NDVD Near-Duplicate Video Detection
NDVR Near-Duplicate Video Retrieval
ROC Receiver Operating Characteristic
AP Average Precision
PR Precision-Recall
AUC Area Under the Curve

xi

Chapter 1

Introduction

In recent years, there has been an increasing growth in research in both the areas of Computer

Vision and Machine Learning. As per Lee et al. [Lee17], this is mostly due to the emergence of

Deep Learning algorithms, which use Artificial Neural Networks that are inspired by the biological

neural networks in animal brains.

“From the biological science point of view, computer vision aims to come up with

computational models of the human visual system. From the engineering point of

view, computer vision aims to build autonomous systems which could perform some

of the tasks which the human visual system can perform.” [Hua96, chap. What is

Computer Vision?]

Computer Vision is an inherently difficult research field due to the human visual system being very

accurate in many complex tasks, such as face recognition, edge detection, and scene recognition.

By using massive computing power and large volumes of data to train different architectures of

Artificial Neural Networks, researchers are able to stop trying to solve these visual tasks that the

human vision is so good at and, instead, focus on how to formulate them so that machines can

learn how to do it themselves.

1.1 Context

Computer Vision (CVIS) is a very broad research field and is driven by various advancements

in other fields [Lee17], as seen in Figure 1.1. These other fields also benefit from CVIS’s own

advancements in technology and research. Machine Learning, in particular, is recently seeing a

rise in popularity due to the emergence of Deep Learning algorithms [Lee17].

The continuous increase in performance of Graphics Processing Units (GPU’s), starting in the

early 2010s, has allowed researchers to use them for performing the necessary Artificial Neural

Network computations with a noticeable increase of performance over common Central Process-

ing Units (CPU’s). This lowered the barrier of entry for research in the field which, in turn, led to

1

Introduction

Figure 1.1: Computer Vision driven by advancements in multiple fields

exploration into even deeper and more computationally expensive networks. The year 2010 also

marked the start of the annual ImageNet Large Scale Visual Recognition Challenge (ILSVRC):

“[ILSVRC] is a benchmark in object category classification and detection on hundreds of object

categories and millions of images” [RDS+15]. The winner models throughout the years can be

seen in Figure 1.2.

Figure 1.2: ImageNet Large Scale Visual Recognition Challenge (ILSVRC) Results

Two years later, in 2012, a version of a Deep Neural Network (DNN), called Convolutional

Neural Network (CNN), showed a big leap in accuracy and performance in image classification

and object detection tasks over previous non-ANN solutions. The CNN was called AlexNet [KSH12]

2

Introduction

and it won the ILSVRC that year. As of the time of writing, all the following years’ winners were

also architectures based on CNNs, each showing small iterative improvements in accuracy and

error rate over the previous.

The winner of 2015 was the first to achieve an error rate below that of humans which, according

to the experiment ran by Andrej Karpathy et al. [Kar14][RDS+15, Section 6.4], is estimated to be

between 5 % and 10 %. This marked the point where image classification could be considered a

solved problem.

In the context of Computer Vision, the process of changing the representation of an image

into something that is more meaningful and easier to analyze for both machines and humans is

called image recognition. This includes various tasks such as identifying objects, places, people,

and text. Video recognition is a superset of image recognition, in which the temporal dimension is

also accounted for. Common tasks in video recognition are object tracking and action recognition,

where actions could be running, playing, driving, etc.

Recent advancements in both image and video recognition have enabled the creation of various

technologies:

• Automated image and video tagging [SSBNMSBJSVSB15]

• Content-based search for images and videos [SSBNMSBJSVSB15]

• Self-driving vehicles [RB15]

• Face recognition [Ko18]

• Detect or censor inappropriate content [ZF13, PAM+17]

• Text extraction [WG15]

• Accessibility utilities for the visually impaired [KM15, MTZ17]

Figure 1.3: Example images from the classification task in ILSVRC

1.2 Motivation

A major setback in Machine Learning is the amount of data—and its subsequent labelling—that

is needed in order to train an accurate model. This is especially the case for problems that require

working with media contents, where manual annotations are very labor intensive.

3

Introduction

Due to the widespread of the Internet and its increasing broadband speeds, along with the

appearance of a multitude of video sharing and streaming services, lack of data isn’t considered

a problem anymore. In fact, according to Cisco [Cis17], IP video traffic accounted for 73 % of

all IP traffic globally in 2016. It doesn’t show signs of stopping either, with an estimate of 82 %

by the year 2021. In North America alone, Netflix, which is one of the most popular on-demand

video providers, is the top site by percentage of downstream Internet traffic with a value of 37 %.

YouTube follows in second place with a value of 18 % [San15].

The existence of large amounts of media data also brings new challenges. On one hand, in

order to continue providing a good experience for users as well as facilitate the management of the

underlying servers, there is the need to reconsider the way that retrieval, archiving, sharing, and

mining of these types of contents is done. On the other hand, we can observe that a big portion of

the videos available online show a large degree of similarity between each other. This is explained

by the increasing popularity of video sharing services, which provide an accessible platform to

share media contents on. In a study ran by Liu et al. in 2015 [LBX+15, Chapter 5], they estimated

that there are over 859 million videos on YouTube, 31.7 % of which are considered duplicates or

near-duplicates. Another major implication of this ease of share is the increased risk of illegal

redistribution and use of copyrighted content, where the emergence of video on demand services

also plays a big role by providing quick and easy access to such contents.

This work was developed in the care of the company named MOG Technologies1. MOG is

involved in the markets of media contents and broadcasting. It has developed world-class media

libraries, state of the art broadcast systems, and a cloud-based interactive and multi-content plat-

form. The main theme of the dissertation was proposed the company which, in turn, came from the

need to provide a solution to the problem of video monitoring, with the potential of transforming

it into an additional service to clients.

1.3 Objectives

Our main purpose in this dissertation is to try to approach the challenges described in the previ-

ous section using the recent advancements in the area of Computer Vision and Machine Learning.

More specifically, to develop a system that extracts relevant information from video assets us-

ing the latest CNN architectures in research and then uses that information to measure similarity

between videos.

The common approach for extracting information from media assets is through the use of

meta-data—data that describes data—which, besides some given properties like file name, size,

duration and encoding, needs to be manually annotated. Useful textual information can include

title, category, description, comments and tags.

Manually analyzing a video can be a lengthy and labour intensive process, as it requires re-

watching said video multiple times, depending on the level of detail wanted. In the context of video

1http://www.mog-technologies.com/

4

http://www.mog-technologies.com/

Introduction

sharing services with hours of videos uploaded every minute2, this can be an outright impossible

task to accomplish. The usual compromise is to make it the responsibility of the users to manually

annotate their own uploads.

Having a good annotation and organization of media contents is crucial for the development

of useful functionality such as content-based image and video retrieval, automatic tagging, and

content-based recommendation engines. By using the latest results in image and video recognition

research involving CNNs, we can automate this video annotation process, which is commonly

known as video signature generation. Furthermore, these same techniques can also be used in

applications dealing with duplicate videos, like copyright protection.

In summary, we test the hypothesis of whether the results from Convolutional Neural Networks

trained in image and video recognition tasks can be used in the creation of video signatures.

1.4 Dissertation Outline

Chapter 2 Image and Video Recognition
This chapter begins with an introduction to the areas of image and video recognition followed by a

brief history of Convolutional Neural Networks and their use in various visual related tasks. Next,

we review the state-of-the-art CNN architectures used in object detection and scene recognition

tasks. The chapter ends with a rundown of the most popular technologies used in the field.

Chapter 3 Video Similarity
In this chapter we explain the concepts of video similarity and near-duplicate videos. This is

followed by a description of some practical applications made possible by systems able to measure

these concepts in an automated fashion. We end the chapter with an in-depth look at the current

approaches used in literature.

Chapter 4 Proposed Solution
This chapter is dedicated to the presentation of our proposed solution of using the results from

CNNs to generate video signatures and its subsequent implementation details.

Chapter 5 Experimental Results
In this chapter we discuss a variety of results obtained from our implemented video similarity

system. It starts with initial observations and performance benchmarks and ends with the experi-

mental results in the task of near-duplicate video detection using the CC_WEB_VIDEO dataset.

Chapter 6 Conclusions and Future Work
This final chapter summarizes the results of the whole work with respect to our initial hypothesis

as well as contributions to the area. It concludes with possible improvements and future develop-

ment.

2https://www.youtube.com/yt/about/press/ (Accessed 3 March 2018)

5

https://www.youtube.com/yt/about/press/

Introduction

6

Chapter 2

Image and Video Recognition

2.1 Introduction

Image and video recognition is the process of changing the representation of an image or video

into something that is more meaningful and easier to analyze for both machines and humans. It

involves tasks such as identifying objects, places, people, writing, and actions. Ever since they

were first introduced, Convolutional Neural Networks have been successfully used to solve these

various tasks.

Convolutional Neural Networks are a class of deep, feed-forward artificial neural networks.

Their creation was inspired by biological processes [MMMK03], with its architecture decisions

being influenced by the organization of the animal visual cortex. As previously said in Section 1.1,

2012 was the year that CNNs came to prominence as Alex Krizhevsky’s AlexNet [KSH12] won the

ILSVRC that year. It achieved a classification error of 15 % compared to 26 % from the previous

record, a big improvement at the time. This sparked interest in both the industry and scientific

community. Researchers started focusing on finding new uses and architectures for CNNs while

companies put the already existing ones to the test, with their access to high amounts of data and

computational resources.

Various versions of CNNs have been developed throughout the years in an attempt to improve

on the concepts introduced by AlexNet:

• VGG Net (2014) [SZ14] reinforced the idea that, in order to effectively represent visual

data in an hierarchical way, CNNs needed to have a deep network of layers

• GoogLeNet (2014) [SLJ+14] showed that CNN layers didn’t always have to be stacked

up sequentially. With carefully crafted design, the depth and width of the network can be

increased while keeping the computational budget constant

• ResNet (2015) [HZRS15] presented a solution to ease the training of networks that are

substantially deeper than those used previously, achieving a 152 layer network that set new

7

Image and Video Recognition

records in classification, detection, and localization. It won ILSVRC 2015 with an error rate

of 3.6 %, which is below the human’s 5–10 % [Kar14] [Kar14, Section 6.4].

This chapter describes some particular tasks that are necessary to accomplish the main objec-

tive of the dissertation, showing the current most successful architectures and approaches for each.

The last section goes over the more popular technologies for implementing these architectures and

also some already existing solutions to the challenges at hand.

2.2 Object Detection

Object detection is the process of localizing and identifying multiple instances of semantic objects

of a certain class (e.g. humans, cars, flowers) in a single image or video.

Figure 2.1: Example output from an object detector

According to Huang et al. [HRS+16], a lot of the progress that has been made in recent years

on object detection is because of the use and advancement of CNNs, with R-CNN [GDDM13]

being one of the first object detectors based on them. The way R-CNN works is by first proposing

regions with possible objects, extract features from those regions using a CNN and, finally, classify

them. Although it manages to achieve great results, there are serious problems related to the

training. Most notably, the region proposals are statically generated, which results in huge training

datasets and a slow training time. This led to two subsequent iterations called Fast R-CNN [Gir15]

and Faster R-CNN [RHGS15], as well as a new approach named YOLO [RDGF15]. What all these

share in common is the fact that both detection and classification are done by a single network.

Not only are they faster during execution, but also allow end-to-end training, reducing the training

time significantly. YOLO, in particular, was the first object detector proposal that was fast enough

for real time usage, with the drawback of making more localization errors than the alternatives.

8

Image and Video Recognition

The current state-of-the-art object detectors are improvements over the Faster R-CNN and

YOLO architectures. R-FCN [DLHS16] and Mask R-CNN [HGDG17] take on slightly differ-

ent approaches to the former while YOLOv3 [RF18], YOLOv2 [RF16] and SSD [LAE+15] are

inspired by the latter.

2.3 Scene Recognition

Scene recognition is a special case of an image classification task where the goal is to successfully

identify the name or category of a specific scene in an image or video. As such, CNNs have been

successfully used for solving the problem. “A key aspect of scene recognition is to identify the

place in which objects seat” [ZLK+17]. This provides the appropriate level of abstraction for

putting the objects detected into context without needing to extensively describe all the present

objects and their spatial relationships.

The main contributions in the area come from MIT’s Places2 Database and Places Chal-

lenge [ZLX+14, ZLK+17]. The database is made of 10 million scene photographs, each labeled

with one of the 434 scene semantic categories and, in total, represents about 98% of the types of

places that exist in the world. In Table 2.1 we can see the scene recognition results obtained from

the official Places2 Demo1 for the images in Figure 2.2.

Figure Type of Environment Scene Categories

(a) Indoor
Entrance hall (53%)
Lobby (17%)

(b) Outdoor Aqueduct (94%)

(c) Outdoor
Hayfield (80%)
Wheat field (12%)

(d) Indoor
Bathroom (80%)
Shower (17%)

Table 2.1: Scene recognition results from the official Places2 Demo for the images in Figure 2.2

2.4 Technologies

In the area of Machine Learning, the main programming language in use by both the research

community as well as the industry is Python. As such, a large number of mature Deep Learning

libraries and frameworks are written in it.

The most popular frameworks for building computational graphs (neural networks) are Py-

Torch2 and Caffe23 by Facebook, and TensorFlow4 by Google. All three have a big, growing
1http://places2.csail.mit.edu/demo.html
2http://pytorch.org
3https://caffe2.ai
4https://www.tensorflow.org

9

http://places2.csail.mit.edu/demo.html
http://pytorch.org
https://caffe2.ai
https://www.tensorflow.org

Image and Video Recognition

(a) (b)

(c) (d)

Figure 2.2: Some examples available on the official Places2 Demo

community behind them and a multitude of pre-trained models available for use. This allows

faster prototyping and lowers the requirement for powerful computing resources during the early

research stages, because there is rarely a need to train every network completely from scratch.

Generally, PyTorch is considered to be aimed for use during the research stages while both

TensorFlow and Caffe2 are more optimized for production environments. In PyTorch, computa-

tional graphs are built and run in a dynamic way during code execution. In the other frameworks,

computational graphs are first built and compiled once—including any possible optimizations—

and continuously executed later. This provides better performance and easier deployment at the

cost of research flexibility, as the compilation process usually obfuscates the meaning of the opera-

tions executed. Although, there are some wrappers around TensorFlow, like Keras and TensorFlow

Fold, which enable the construction of graphs dynamically similarly to PyTorch.

Since these frameworks are pretty low-level, considering they only allow to operate up to

the network level, some other frameworks have been built on top of them that provide a higher

level usage. For object detection there is Detectron [GRG+18] and TensorFlow Object Detec-

tion API [HRS+16]. Both of these open-source projects offer a collection of pre-trained object

detection models and tools that help training these models with new object classes. For scene

recognition, there are various CNN models pre-trained on the Places2 Database [ZLK+17].

10

Image and Video Recognition

In terms of a more complete solution, there are various commercial cloud services available.

The most notable ones being Amazon Rekognition, Google Cloud Vision API and Clarifai. All

of them provide ready-made solutions for a variety of image and video recognition tasks such as

detecting objects, scenes and actions; facial analysis and recognition; and text extraction.

11

Image and Video Recognition

12

Chapter 3

Video Similarity

3.1 Introduction

Video similarity is often defined as how visually similar two given videos are. However, human

visual perception operates on high-level concepts, such as scenery, objects and depth. A video

also has a temporal dimension, which humans perceive as how these concepts change over time

and are recognized as gestures, actions, events, etc.

Formally describing how humans perceive visual similarity is a hard problem. Traditionally,

this is done by comparing different sets of features from two given videos. These features can

either be low-level, such as color, texture and shape; or high-level, such as the concepts described

above. It is also usual to refer to these as non-semantic and semantic features, respectively.

A common term in the context of video similarity is what’s referred to as near-duplicate

or near-identical. Fundamentally, a video is considered a near-duplicate if it is highly similar

to another. However, being a relatively new topic in research, there isn’t yet a universally ac-

cepted definition of what actually contributes to the measurement of similarity between videos.

Liu et al. [LHCS13] review a variety of representative definitions [WHN07, TSZH+07, BZS08,

CdOO09]. In summary, there are usually two types of similarity considered when classifying a

video as a near-duplicate: visual similarity, where the visual content largely remains the same al-

lowing for differences in file formats, encoding, frame rate, color and even some editing operations

such as insertion of logos, captions and subtitles; and semantic similarity, in which completely dif-

ferent videos can be considered similar if they share the same semantic concept like, for example,

two distinct videos showing a dog running on a beach.

In Figure 3.1 we show visual examples for the two types of similarity. Video (a) is a clip from

the original movie GoldenEye and video (b) is the same clip except that it suffered the following

modifications: insertion of two logos and a caption; changes in lighting and color; and different

encoding parameters and file format. Despite all this, the visual content largely remained the

same. As such, these two clips can be considered visually similar. In contrast, videos (c) and (d)

are completely unrelated. They were filmed in different places and have different actors on scene.

Despite this, they both represent the same concept: an interview process. Both scenes have the

13

Video Similarity

same setting, as in the type of place, and contain the same semantic objects: two formally dressed

people facing each other with a table in between. Hence, they can be considered semantically

similar.

(a) (b)

(c)

(d)

Figure 3.1: The two types of similarity: (a) and (b) are visually similar while (c) and (d) are
semantically similar

In order to test how close the human perception of video similarity is to the definitions de-

scribed previously, as well as measure what particular features are important for humans when

classifying a video as a near-duplicate, Cherubini et al. [dOCO09, CdOO09] have ran a user study

through the use of an online survey. In the end, they concluded that the technical definitions for

visual similarity are closely related to that of humans: changes in file format, lighting, color and

small editing operations aren’t significant for considering a video as different. The impact of se-

mantic differences wasn’t as conclusive. However, it was clear that semantic similarity does play

a role in the human perception of near-identical videos.

3.2 Applications

As seen previously in Section 1.2, there has recently been a rapid growth in video traffic and data,

mostly due to the continuous increase in popularity of video sharing websites, such as YouTube,

Yahoo! Video and Vimeo, and video on demand providers like Netflix and Hulu. On the other

hand, this growth has also surfaced some particularly hard to solve problems. First, video on

demand providers provide easy access to copyrighted material. Second, video sharing websites

constantly attract millions of users that both produce and consume videos. This ease of sharing

caused a mass increase in the presence of near-duplicate videos on the web [LW15]. Consequently,

14

Video Similarity

some of those near-duplicates refer to an original that is protected by copyright laws, including

user generated videos, which may have exclusive rights as well.

The existence of a large number of near-duplicate videos has other implications besides that

of copyright infringement:

• Storage space is filled with highly redundant data, which leads to an unnecessary increase

in maintenance and operation costs;

• Search queries are polluted with a large number of seemingly identical results;

• Video recommendation systems are harder to implement correctly;

• User activity is spread throughout the various versions of a video;

As the amount of data continues to increase, solving these challenges through manual inter-

vention quickly becomes impossible. Thus, a variety of near-duplicate video applications have

emerged [LHCS13, ZN15] in the hopes of solving or, at least, mitigating these problems in an

automated fashion. In the next subsections we review some of these applications.

3.2.1 Copyright Protection

The ease of access to copyrighted contents provided by on demand video services coupled with

the ease of sharing enabled by online video platforms has increased the risk of exclusive rights

being violated by unauthorized copying, editing, and redistribution. This decreases the number of

potential customers to these contents, which leads to a financial loss by the part of the creators. Not

only that, some video sharing platforms like YouTube also provide a notion of partnership with

its users, which enables them access to some of the revenue generated by their uploaded contents.

While not as problematic financially, as big studio companies have a substantially higher return of

investment value, this still increases the amount of copyrighted content dramatically.

Redistributed content may differ from its original in a variety of ways, such as format, reso-

lution, contrast, and brightness. It can also have additional visual information like banners, logos

and even entirely new scenes. There is a seemingly infinite number of transformations a video

may suffer while still remaining very similar to its original. This unpredictability makes it all the

more difficult and complicated to detect possible copyright violations.

Eliminating these violations is a real need for both content providers and video sharing ser-

vices. The development of techniques for near-duplicate detection and retrieval can potentially

eliminate the majority of cases. For example, video sharing services can check newly updated

videos against a list of protected videos provided by content providers.

3.2.2 Video Monitoring

The ability to find videos contained inside other videos, that is, to be able to match partial parts

of videos, is very important for some applications, such as nudity, inappropriate content and com-

mercial detection. For example, a company wants to ensure the terms of a TV commercial contract

15

Video Similarity

are being met by checking if it’s being broadcasted for its expected duration and during the agreed

time period.

Manually monitoring videos can be a very demanding task, specially in the context of real-

time broadcasts, which might even require multiple workers depending on the number of different

frequencies it’s being broadcasted on. Furthermore, in the context of a very popular video sharing

website like YouTube, tasks like nudity detection are downright impossible to accomplish manu-

ally, due to the amount of videos being uploaded constantly. As such, both detection and retrieval

techniques can be very useful to solve or, at least, mitigate these problems by filtering the number

of videos which need manual intervention.

3.2.3 Video Re-ranking

NDVs take a huge part in video search experience. The majority of users who use video sharing

websites do so with the main intent of actively searching for specific videos [dOCO09, CdOO09].

In addition, users also show preference to a single video in a list of near-duplicates, often wishing

to be able to discard the rest from the search results.

As the number of near-duplicate videos increases, video search service providers might want

to improve their results ranking algorithm by adding ability to detect novelty in videos. In the

context of user-generated content, this means finding the original video in the midst of a large

number of duplicates or near-duplicates. However, some instances of near-duplicates are often

considered useful by users, such as when they provide additional information like subtitles or

commentary [CdOO09]. NDVD techniques can prove very effective in these cases, either by

clustering NDVs using different criteria [HHC+10], or by moving the original to the top of the

list [WHN07].

3.2.4 Video Recommendation

A very common application related to video re-ranking is video recommendation. That is, to be

able to find videos which are not completely identical but do share some similarity or, at least,

add useful information. Cherubini et al. [CdOO09] observed that there’s a high probability that

if users like a video, then they are also interested in other very similar videos. As such, video

recommendation systems which only work with text based data, such as title, description and

comments, might want to enhance their user’s experience by including the visual information

obtained from NDV techniques in the video’s meta-data. This way, they can not only improve

their recommendation system, but also complement an additional text-based search system as well,

which can make use of the already implemented database to associate words to visual information.

3.3 Common Approaches

Near-duplicate video processes can be classified into two categories [LHCS13]: Near-Duplicate

Video Detection (NDVD) and Near-Duplicate Video Retrieval (NDVR). While very similar, it is

16

Video Similarity

important to note the differences in application between the two. In retrieval processes a video

database is previously established and a signature that represents each video is generated from the

results of feature extraction [JTL+17]. This procedure is usually done offline. Later, when a query

video is presented, its signature is generated and compared against the signatures in the database.

In the end, a set of near-duplicate videos is returned, commonly ranked by descending similarity

value (or ascending distance value). Copyright protection and video recommendation are the most

common applications of these systems.

Conversely, in detection processes the aim is to find pairs or groups of near-duplicate videos

from a given set of videos as input [WNHT09, TWNZ08]. The resulting groups are often obtained

either by using clustering techniques or a manually defined similarity threshold. Given that the

input set of videos is not known in advance, it is uncommon to have a previously established

database of videos and signatures. As such, detection usually takes longer than it’s counterpart

and is also subject to combinatorial explosion depending on the size of the input. Examples of

applications for NDVD include database cleaning, video re-ranking and video thread tracking.

Both detection and retrieval share a lot techniques. More specifically, feature extraction, sig-

nature generation and comparison largely remain the same. Figure 3.2 shows an overview of how

both systems work. In the rest of this section, we go over the most common approaches for NDVR

and NDVD from the aspects of feature extraction, and signature generation and comparison.

3.3.1 Feature Extraction

Feature extraction is the process of building derived values, known simply as features, from a set of

initial data. Its main purpose is to reduce redundancy while still retaining the relevant information

needed to describe that set of data. As videos are essentially a series of static images (frames) in

which the visual content doesn’t change significantly from frame to frame, they have high levels

of redundancy. In fact, most video compression methods work on the basis of mitigating that

redundancy. As such, feature extraction is usually the first and most important step in any kind of

computer analysis procedure which involves video data.

Most of the feature extraction methods used for videos are derived from the ones used in image

processing and can be classified into three groups [JTL+17]: global visual features, local visual

features, and deep learning features.

Global visual features refer to the statistical visual information of an image such as the color

histogram [HHC+10, TXZ+07, WHN07]. These types of features are very compact and can usu-

ally be computed efficiently. However, they can’t represent shape, geometric or texture informa-

tion, which proves to be problematic in cases where two completely distinct videos have similar

color distributions. Conversely, all it takes is a slight color change on the original video in order

to not be detected.

On the flip side, local visual features are used to describe both geometric and shape informa-

tion. These are often referred to as keypoint descriptors and there’s a variety of available algo-

rithms to generate them, such as Scale-Invariant Feature Transform (SIFT), Principal Components

Analysis (PCA) and Speeded Up Robust Features (SURF). These types of features provide much

17

Video Similarity

Figure 3.2: Overview of NDVR and NDVD processes

better accuracy compared to global features [ZN15]. They are also invariant to changes in scale,

rotation, viewpoint, brightness as well as the presence of noise. A major disadvantage is that they

are much more expensive to compute and also require more storage space.

The latest advancements in Computer Vision and Machine Learning (Section 1.1) have enabled

a new kind of features to be used for NDV tasks: deep learning features. Or, more specifically,

using the values of intermediate layers in a Convolution Neural Network pre-trained in image

recognition tasks as features [KZPPK17, Per15]. These have proven to be able to compete with

the state-of-the-art keypoint descriptors techniques in terms of accuracy and, if ran on a GPU, in

terms of performance as well.

3.3.2 Signature Generation

A video signature is defined as a high-level video summarization derived from low-level frame

features [LHCS13]. Its main purpose is to reduce the data needed to describe a video which, in

turn, reduces the computational complexity associated with the later signature comparison step.

As such, the process usually involves picking independent and informative features out of all the

ones previously extracted.

18

Video Similarity

Generally, different applications require the development of their own custom video signa-

tures as a consequence of distinct scenarios and purposes. According to Liu et al. [LHCS13], the

existing approaches in video signature generation can be classified into five categories:

• Textual Signature [AWB03]: represent a whole video using features from its associated

text meta-data, such as title, description, authors and comments;

• Video-level Global Signature [HSS+09, WHN07]: represent a whole video with a single

signature. It is often very efficient for storage and retrieval due to its small data size. May

not be suitable if the application demands high accuracy or granularity like, for example,

when dealing with long videos;

• Frame-level Local Signature [WNHT09, WHN07]: represent a frame using local features

such as keypoint descriptors obtained from algorithms like SIFT and SURF. Its main use is

in NDVD applications which demand a high level of accuracy. The main downside is that it

requires more space and is much more computationally expensive than a global signature,

due to the nature of the algorithms used for local keypoint extraction;

• Frame-level Global Signature [JN09]: represent a frame with a single signature. It pro-

vides a middle ground between local frame signatures and global signatures in both disk

space and computation efficiency. Depending on the features used, it can reach accuracy

levels close to those of local frame signatures;

• Spatio-temporal Signature [SYW+10]: represent a video using spatial and temporal infor-

mation. Most of the times, it involves tracking changes in video content over time. Its main

use is in detecting identical scenes shot from different camera angles. So, just like some key-

point descriptors, it is invariant to viewpoint changes and is usually more computationally

efficient;

3.3.3 Signature Comparison

The final step for both NDVD and NDVR tasks is the comparison between signatures in order

to get a similarity measurement between two videos. A very common strategy is to represent a

video signature as a feature vector [WHN07, WNHT09]. A feature vector is essentially just an

n-dimensional vector in which the features previously extracted are represented numerically. This

enables the use of a vast family of distance metrics which operate on vectors and matrices, such

as the Euclidean and Cosine distance metrics. Feature vectors can also be combined with weights

using a dot product in order to give more importance to specific sets of features when comparing.

The other common representation for signatures is using string data [HLCD13], where methods

like Jaccard similarity and edit distance can be used as similarity measures.

19

Video Similarity

20

Chapter 4

Proposed Solution

In the following sections we explain our proposed video similarity system, which uses Convolu-

tional Neural Networks to capture semantic information. The technology stack is based on the

Anaconda Distribution1 with Python 3.6 as the main programming language. The core libraries

used are NumPy2 and PyTorch3 0.4. NumPy and PyTorch’s Tensors are scientific computing pack-

ages which provide a high-level abstraction for working with multidimensional data efficiently.

The main distinguishing feature between them is that Tensors support running some of the opera-

tions on the GPU, which speeds up computations significantly when working with large portions

of data. PyTorch is also used as the main Deep Learning framework.

4.1 Overview

In order to be able to test the system in existing challenges as well as provide for exploration

during the research stages, a few requirements had to be met:

• The system should accept a variety of inputs including videos in multiple formats, streams,

and plain sequences of images;

• Similarity measure needs to be a percentage where 100% represents an exact duplicate and

0% means completely dissimilar;

• Extracted features should be interpretable by humans;

Our system’s architecture is similar to that of common NDV applications, where two main

modules can be identified: one that is responsible for analyzing videos and creating a concise

and structured representation of them, and another that uses this representation to generate and

1https://www.anaconda.com/distribution/
2http://www.numpy.org/
3https://pytorch.org/

21

https://www.anaconda.com/distribution/
http://www.numpy.org/
https://pytorch.org/

Proposed Solution

compare video signatures. An overview of the system and its main processes can be seen in Fig-

ure 4.1. Our approach is novel in the sense that it uses the results from CNNs pre-trained in image

and video recognition tasks, such as object detection, as the sole features to represent a video.

Essentially, we are testing the impact of using only high-level or semantic features to measure

similarity between videos. In addition, using these high level features means we can visually

annotate a processed video with relevant information, which can later be used to empirically ana-

lyze what data our system is working with. An example of such annotations can be seen later in

Section 4.5.

We found two other proposals which use CNNs as feature extractors in literature [KZPPK17,

Per15]. While they managed to achieve very good results, the works mostly focus on using the

results from intermediate layers, which aren’t as easily interpretable. Because CNNs are usually

trained using a variety of image augmentation techniques, a major advantage of using them as fea-

ture extractors is that they are inherently invariant to changes in scale, rotation, viewpoint and, to

some extent, color. The use of CNNs also usually implies a trade-off between precision and pro-

cessing time. Careful decisions must be made when choosing which neural network architectures

to use depending on the application and available hardware.

For the signature generation module, we decided to go with a shot based approach in the style

of Zobel and Hoad [ZH06]. In short, a video is split into shots based on major changes in camera

position or detected scene cuts and a signature is generated for each shot. Video signatures are then

composed by a sequence of shots and any relevant meta-data. This provides for a middle-ground

in accuracy and performance between video-level global signatures and frame-level signatures.

As an upside, it is invariant to changes in timescale. Some applications made possible by this

approach are: detecting parts of a video contained in another; retrieving similar videos based on

only a portion of the query video; and creating custom video queries by building a video signature

based on a collection of relevant shots.

4.2 Object Detection and Scene Recognition

We obtain high-level features from individual frames using CNNs pre-trained on object detection

and scene recognition tasks. For object detection, three of the state-of-the-art networks in inference

speed [RF16, RF18, LAE+15] were tested. We chose YoloV3 [RF18] as it was the one which

demonstrated the best accuracy while still allowing some headroom for real-time applications. The

implementation’s input size is 416x416 and the region proposals are filtered using Non-Maximum

Suppression with a threshold of 40%. Its output is stored as list of bounding boxes, each with an

associated object class and confidence score. Some example detections can be seen in Figure 4.2.

As for scene recognition, we use Places365-Standard [ZLK+17], a collection of Convolutional

Neural Networks pre-trained on a subset of 365 categories from the Places2 dataset. Specifically,

we are using the WideResNet-18 version as it not only provides the labels for the predicted cat-

egories, but also labels for what are called scene attributes, which can be seen as additional in-

formation of what features influenced the category prediction decision. The scene attributes are

22

Proposed Solution

Figure 4.1: Overview of implemented system

obtained by multiplying the results from the last average pooling layer of the network and an

officially provided weight matrix4.

4.3 Object Tracking

In the context of video recognition, object detection is rarely used on its own, as the information

provided by detectors is only relevant on a frame-by-frame basis. To associate detected objects be-

tween consecutive frames, a tracking method must be used. In this case, since we are dealing with

multiple detections of various different classes, the tracking needs to be able to handle multiple

objects simultaneously, including partial or full occlusions.

A common tracking algorithm which has been extensively used in multiple object tracking

applications is Kalman Filter [KWM94, MFMR02, LWWL10, JTJ14]. Kalman Filter is a very

popular signal processing algorithm which uses a series of measurements observed over time,

containing noise and other inaccuracies, and produces estimates of unknown variables. It only

4https://raw.githubusercontent.com/csailvision/places365/master/labels_
sunattribute.txt (Accessed 20 June 2018)

23

https://raw.githubusercontent.com/csailvision/places365/master/labels_sunattribute.txt
https://raw.githubusercontent.com/csailvision/places365/master/labels_sunattribute.txt

Proposed Solution

Figure 4.2: Example object detection outputs from the implemented YOLOv3 network

needs the previous estimated state and the current measurement to compute the estimate for the

current state. As such, it is very computationally efficient and, if designed well, also very accurate.

Kalman Filter is often conceptualized as two distinct steps [JTJ14]: predict and update. During

the prediction step, the current state estimate is derived from the state estimate of the previous

iteration. In the update step that estimate is then refined using the measurements made since the

last iteration. In our case, the state is a bounding box and we’re trying to predict its position,

velocity and size, using the detections obtained from our object detector as our measures. Our

filter is modeled as seen in Equation 4.1, where xk represents the filter’s state, Fk the state-transition

model and zk an example measurement.

xk =



posx

posy

scale

ratio

velx
vely

velscale


Fk =



1 0 0 0 ∆t 0 0

0 1 0 0 0 ∆t 0

0 0 1 0 0 0 ∆t

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


zk =


posx

posy

scale

ratio

 (4.1)

Bounding boxes are usually defined by the position of one of their corners and their width and

height. However, in the filter they are represented by the position of their center, their scale, and

width to height ratio. This is because we expect the size of the box to change much more rapidly

than it’s center, due to the inherent jittery in detections from YoloV3. What we’re trying to predict

is the bounding box’s velocity, both for it’s center position as well as scale. We don’t consider

predicting the rate of change for its ratio because it is uncommon to change significantly.

24

Proposed Solution

An important task in the implementation is the association between detections and their cor-

responding trackers. This is needed in the update step of the Kalman Filter, where each detection

serves as the measurement for its associated filter. To do this, we calculate the Intersection over

Union (IoU) for every (Detection,FilterState) pair of the same object class. IoU is an evaluation

metric used to measure how much two areas overlap each other where a value of 100 % means

they completely overlap while 0 % would mean no overlap. A visual definition can be seen in

Figure 4.3. The resulting IoUs are then used to do a linear assignment between trackers and de-

tections using the Hungarian algorithm. For any tracker, if its assigned detection has an IoU value

below 35 %, it is discarded and the update step of its Kalman Filter is not run. Any unassigned

detections are considered new objects and start getting tracked. Every tracker is assigned a unique

ID.

Figure 4.3: Visual definition of Intersection over Union (IoU)

There are a few parameters in our implementation. More specifically, every tracker requires a

minimum number of measurements before it is considered "alive", which avoids false detections

that only appear for a small number of frames. Furthermore, a tracker also has a maximum time

to live. This means that if no measurements are made within a specified window, the tracker is

considered "dead" and is discarded. While having a high time to live is beneficial for dealing with

temporary occlusions, it also means that objects which have effectively left the scene take a long

time to be discarded. After some experimentation, we ended up with a value of half a second for

minimum measurements and one second for time to live, which proved to be a good trade-off.

These values are derived from the frame rate of the video being analyzed. A full overview of the

tracking process can be seen in Figure 4.4

We made use of the videos from the MOT dataset [LTMR+15, MLTR+16] for testing. The

detections were discarded in favour of our own implementation (YoloV3) and validation was done

visually. Some examples can be seen in Figures 4.5 and 4.6.

25

Proposed Solution

Figure 4.4: Overview of the whole object tracking process

Figure 4.5: Example tracking with occlusion

26

Proposed Solution

Figure 4.6: Example tracking person across the screen with various occlusions and overlaps
(Other bounding boxes hidden for clarity)

27

Proposed Solution

4.4 Shot Boundary Detection

A very important step in the whole implementation is the detection of shot boundaries, which may

be separated by various transitions like: simple cuts; fades to and from black; black frame cuts;

and dissolves. Essentially, a shot represents a segment of a video where the semantic context and

visual content largely remain the same for its duration. Since we are extracting information related

to the scene and objects per frame, well defined shot boundaries are imperative in order to obtain

a signature that is representative of its contents. For example, if a cut to a completely different

scene isn’t detected, like from an indoor to outdoor location, the summary of the scene information

gathered for that shot will be a mix of features which aren’t representative of neither of the distinct

scenes. Furthermore, detecting boundaries is also important in order to reset the state of the object

tracker.

According to Gajanan [Gaj10], there are four types of features commonly used to detect var-

ious transitions, which are summarized in Table 4.1. They also describe the distinction between

soft and hard cuts. The former represents transitions that happen gradually during a time frame,

such as fades and dissolves, whereas the latter represents abrupt changes, usually no more than

a few frames long. As such, methods that need to detect soft cuts often involve calculations us-

ing multiple frames and perform slower, contrary to hard cut detection which is generally just a

comparison between a pair of frames.

Transitions

Features Cuts Fades Dissolves

Color Histogram -
Edge Change Ratio
Edge Based Contrast - -
Standard Deviation of Pixel Intensity -

Table 4.1: Different types of features used to detect shot transitions

Since our implementation must be able to run in real-time, and shot boundary detection is

a procedure that is run for every frame, we had to make a compromise between accuracy and

speed in order to not bottleneck the other more expensive operations such as object detection and

tracking. Our approach is similar to that of Liu and Wan [LW15], and Sun and Zhang [SZ17],

where a cut is detected by comparing the HSV color histogram of two adjacent frames. This

comparison is done by using a distance measure which represents the average absolute difference

between the H, S and V components of two frames. The frames must have the same dimensions,

as the difference between components is calculated using pixel pairs.

Equations 4.2 to 4.4 show the calculations for each HSV component where a and b are con-

secutive frames with width w and height h; and x and y are the position in 2D space of the pixels

28

Proposed Solution

being compared.

δ
H
a,b(w,h) =

w

∑
x=1

h

∑
y=1
|Ha(x,y)−Hb(x,y)|

w∗h
(4.2)

δ
S
a,b(w,h) =

w

∑
x=1

h

∑
y=1
|Sa(x,y)−Sb(x,y)|

w∗h
(4.3)

δ
V
a,b(w,h) =

w

∑
x=1

h

∑
y=1
|Va(x,y)−Vb(x,y)|

w∗h
(4.4)

The final distance measurement D is then calculated by averaging the component’s results, as seen

in Equation 4.5.

Da,b(w,h) =
δ H

a,b(w,h)+δ S
a,b(w,h)+δV

a,b(w,h)

3
(4.5)

A shot boundary is detected if the distance D between two consecutive frames is above a given

threshold t. Other available parameters are downscale factor, to reduce computation costs, and

minimum shot length. The latter is useful in the cases where multiple, major changes in the

histogram occur rapidly, like quick flashes of light. In our implementation we use the threshold

t = 30, a downscale factor of 4 and minimum shot length of 1 second.

4.5 Feature Extraction

The main feature extraction process is responsible for converting an input video into a structured

representation for later use in signature generation. It is also designed to work with streaming

applications and, as such, works on a frame-by-frame basis. The pseudo code of this process can

be seen in Algorithm 1.

In short, each frame received is compared to the previous for shot detection. When a new

shot is detected, all the information gathered previously is condensed into a single structure, rep-

resenting an analyzed shot. This is then appended to a list of shots, which will later represent an

analyzed video. Each shot is composed of scene information and tracked objects per frame. The

former is generated by running our Places365-CNN implementation on a defined interval of half a

second. The scene category confidences are averaged out and the scene attributes are counters for

number of occurrences in all measurements made.

29

Proposed Solution

Algorithm 1 Feature Extraction Process
1: i← 0

2: shots← empty list

3: currentShot← NEWSHOT(i)

4: while f rame← GRABFRAME() do
5: if ISSHOTBOUNDARY(frame) then
6: i← i+1

7: shots← APPEND(shots,currentShot)

8: currentShot← NEWSHOT(i)

9: end if
10: currentShot← SCENERECOGNITION(currentShot, f rame)

11: detections← DETECTOBJECTS(f rame)

12: currentShot← TRACKOBJECTS(currentShot,detections)

13: end while
14: return shots

Since the information obtained during the feature extraction process can be considered high-

level and semantically relevant, we can use it to visually annotate the videos being processed, as

seen in Figure 4.7. This allows for an intuitive understanding of what data the signature com-

parison process will be working with, which proved to be very useful during the research and

development stages.

(a) (b) (c)

Figure 4.7: Various types of possible video annotations. (a) and (b) show scene information and
tracked objects. The red square in the lower right corner of (c) indicates the current frame is a

shot boundary

4.6 Signature Generation and Comparison

The final step in the video similarity process is to generate a signature using the features previously

extracted. In our case, a video signature is simply a collection of shot signatures and additional

meta-data extracted from the input file or stream, such as name, duration, file size, frame dimen-

sions and encoding format. Shot signatures are generated using the scene and tracked objects

information available. They are represented as a feature vector with four feature sets: scene type,

scene category predictions, scene attributes frequency and number of distinct objects per class.

30

Proposed Solution

Table 4.2 gives an in-depth description for each feature set and Figure 4.8 serves as a visual repre-

sentation of the whole feature vector.

Feature Set Size Values Description

Scene Type 1 {−1,1} Represents an indoor (1) or outdoor (-1) scene

Scene Category Predictions 365 [0,1] Confidence value per scene category as re-
turned by the scene recognition network

Scene Attributes Frequency 102 [0,1] Relative frequency given by fa =
na
N , where a

is an attribute, na its number of occurrences
and N the total number of scene measure-
ments made

Distinct Class Objects 80 [0,+∞[Number of distinct objects per class that ap-
pear in the shot, calculated by counting the
distinct IDs of tracked objects per class

Table 4.2: Feature sets part of the shot signature feature vector

Comparison between signatures is done using the Cosine Similarity metric (Equation 4.6),

where the resulting value s ∈ [−1,1], −1 meaning completely dissimilar and 1 meaning exactly

the same. A few transformations are done on the feature vectors before comparison: feature sets

are normalized as unit vectors and then the whole feature vector is also normalized as a unit

vector. This effectively makes cosine similarity the same as the dot product (Equation 4.7), often

called the Cosine Normalization. Additionally, any columns between the feature vectors being

compared which only contain the value 0, meaning that none of the shots being compared have a

specific feature, are discarded in order to improve performance. Our micro-benchmarks showed

an improvement of 13% in comparison speed.

similarity(S1,S2) = cos(θ) =
S1 ·S2

‖S1‖‖S2‖
(4.6)

similarity(S1,S2) = S1 ·S2, if ‖S1‖= ‖S2‖= 1 (4.7)

Figure 4.8: Visual representation of a shot signature (feature vector)

31

Proposed Solution

32

Chapter 5

Experimental Results

In this chapter we show the results of several experiments conducted on the proposed system to

evaluate its performance, both in terms of computational efficiency as well as various video simi-

larity tasks. We begin with some observations on visual and semantic similarity tests, followed by

the various problems and edge cases identified. We then show the results obtained and conclusions

drawn from benchmarking the feature extraction, signature generation and signature comparison

processes. Finally, we measure the system’s performance in the task of near-duplicate video de-

tection using the CC_WEB_VIDEO dataset.

5.1 Initial Observations

5.1.1 Semantic Similarity

Given that the features used in the shot signatures aren’t based on any pixel information but rather

only its contents, we should expect the system to be able to match semantically similar shots

together, even if their visual representation is substantially different. In our case, since we are

using scenery information along with the number of different objects present, semantic similarity

would mean any two shots that have close to the same number of objects on a similar scene. As the

scenery information is dependant on the visible portion of the background, we should also expect

shots to show different degrees of similarity depending on their field size or camera distance—can

be close-up, medium or long shots—and camera angle.

We first tested this hypothesis by comparing videos with themselves. Since it is common for

a video to show a specific scene from a variety of camera angles and distances, the system should

successfully match a shot not only with itself but also with the other shots of that particular scene.

As an example, figures 5.1 and 5.2 show a series of shots from GoldenEye that happen throughout

a one minute time-frame. The shots from 5.2 are intertwined with the the shots from 5.1: 5.2a

is between 5.1a and 5.1b, 5.2b is between 5.1b and 5.1c, and so on. We can see our system

33

Experimental Results

successfully grouped the similar shots together, measuring over 93 % similarity for all shot pairs

in Figure 5.1 and over 90 % for the pairs in Figure 5.2.

We also ran the same experiment but with one of the videos being sped up (1.5x and 2x) or

slowed down (0.75x and 0.5x). The results obtained were largely the same, except for some shot

boundaries that were not marked in the sped up versions because the resulting shot’s duration

would be lower than the configured minimum of 1 second. This confirms the system’s invariance

to time-scale changes previously mentioned in Section 4.1.

(a) (b) (c) (d)

Figure 5.1: All 4 shots have a similarity value above 93% between each other

(a) (b) (c)

Figure 5.2: All three shots have a similarity value above 90% between each other

To further test the limits of semantic similarity, we fed the system completely unrelated videos

but with similar context. Figure 5.3 shows two different videos, each having only a single shot. The

similarity value of 78 % is justified by the fact that the scene recognition task identifies crosswalk

(48 % and 80 %) and sidewalk (29 % and 18 %) as the two most likely categories for both videos.

The remaining 22 % are the result of the differences between objects, as the shot (b) has more

people (28 vs 17) and also includes vehicles (18 in total).

(a) (b)

Figure 5.3: Semantically similar shots with a measured value of 78 %

Another example can be seen in Figure 5.4 which shows the impact of different camera angles

and distance. None of the shots contain any objects, so only the scene recognition information is

34

Experimental Results

being used. Since the shot (b) is a close-up, there isn’t enough contextual information to correctly

categorize the scene, which results in the top predicted categories to be evenly split in confidence

scores. On the other hand, despite the shot (a) having a similar angle, it extends farther into the

distance and, consequently, shows more contextual information, which directly translates into a

more confident prediction. The resulting similarity value of 60 % can then be explained by the

close match between scene attributes. A summary of the scene recognition results for both shots

can be seen in Table 5.1.

(a) (b)

Figure 5.4: Similar locations and context but different camera angles and distance: 60 % similar

Shot (a) Shot (b)

Type Outdoor Outdoor

Categories

Lagoon 41 %
Coast 14 %

Ocean 12 %
Islet 9 %

Beach 9 %

17 % Coast
13 % Beach
12 % Cliff
8 % Ocean
8 % Sky

Attributes

Boating
Far-away horizon

Ocean
Clouds
Sunny

Swimming
Natural

Open Area
Natural Light

Boating
Far-away horizon
Ocean
Clouds
Sunny
Swimming
Natural
Open Area
Natural Light

Table 5.1: Scene recognition summary for the shots in Figure 5.4

5.1.2 Visual Transformations

Most commonly, NDV systems are designed to detect similarity by comparing visual information

only. A useful property of such systems is the ability to successfully match near-duplicate videos

35

Experimental Results

even in the presence of various visual transformations, such as cropping, scaling, rotating, flipping

and color grading.

Our system works on top of features extracted from CNNs. An often employed technique

when training such networks is image augmentation, which is essentially the process of generating

multiple different versions of an original source image by applying different kinds of transforma-

tions on it. As such, it is expected that our system should also be invariant to most kinds of visual

transformations.

We tested this assumption on videos modified by ourselves with various transformations. A

subset of those videos can be seen in Figure 5.5 along with their similarity score based on the

original video (a). Overall, the system proved to be reliable to most types of transformations,

obtaining over 85 % similarity for most combinations of common changes such as horizontal flip,

rotation, scaling, text overlay and blurring, as seen in Figures (b), (e) and (f). Although, it is

important to note two particular types of cases: major color changes as seen in (c) and (d), and

major rotations/vertical flip as seen in (d). Color differences mostly affect scene recognition,

leading to unpredictable classifications and, in the case of (d), coupled with the vertical flip, it

even led to the network classifying the scene as being indoor, opposed to outdoor like the original

video. This is what led to such a low score of 13 %, taking into consideration the negative impact

from different scene types.

While major rotations alone aren’t able to automatically make every scene be misclassified,

we did observe a big decrease in the performance of the object detection task, resulting in a lot

less detections. To be specific, rotations between 90° and 180° in any direction lead to a major

drop in performance for object detection and a substantial drop for scene recognition.

(a) Original Video (b) Horizontal flip, rotated and
scaled (92 %)

(c) Horizontal flip, rotated,
scaled and color grading (78 %)

(d) Vertical flip, saturated and
vignette effect (13 %)

(e) Added text (93 %) (f) Gaussian blur 5x (91 %)

Figure 5.5: Examples of manually applied visual transformations and their measured similarities

36

Experimental Results

5.1.3 Problems

Through the various experiments done it was possible to identify three major problems or edge

cases. The first one is related to the scene type misclassification previously mentioned. This can

be observed in a variety of cases where changes in color can tip the balance between the two

scene types. While these particular cases could probably be solved by changing the scene type

representation from a simple binary value to a quantitative one, the problem is most often observed

in cases where the actual video doesn’t fill the whole screen, such as the existence of black bars

in either direction. Given that there is no pre-processing done on the video itself before sending it

to the CNNs, all the pixel data is taken into consideration for classification. Although this doesn’t

pose any issue in object detection, it leads to what we call the "movie theater problem" in scene

recognition, where every video with any kind of black bars results in a very high confidence score

in the movie theater scene category and, consequently, the indoor scene type. An example of

this can be seen in Figure 5.6, which shows some outdoor shots from the Justice League trailer

classified as indoor and movie theater with over 44 % confidence. Almost all of the outdoor scenes

of the trailer were wrongly classified as indoor.

Figure 5.6: Black bars are taken into account during scene recognition, which wrongly classifies
all of these shots as being indoor

The second major problem are semantically ambiguous shots, which commonly get clustered

together into a single big group. These shots are usually close-ups, such as the examples in Fig-

ure 5.7: low light conditions and/or no background information, and low number of objects. Since

the background information isn’t enough to get a confident scene classification score, and the dif-

ference between the number of objects isn’t significant, none of these shots have any identifying

features. As such, they show a high degree of similarity between each other, even if they can be

observed to be completely different. The only possible solution to this problem is to include ad-

ditional information in the signature, whether from meta-data, other feature extraction techniques,

or even entirely new image and video recognition CNNs.

Figure 5.7: Ambiguity in semantic information leads to all these shots being considered highly
similar (around 70 %). They have a small number of common objects (one or two people) and

almost no relevant background information

The third and last problem identified is related to the method used for shot boundary detection.

Since we use the color difference between frames, anything that alters the color information for

37

Experimental Results

a brief moment leads to the detection of an incorrect shot boundary. This is most often observed

with flashes of light, which cause a fast change in brightness levels. When occurred consecutively,

it results in the detection of shot boundaries very close to each other in time, as shown in the two

examples of Figure 5.8.

We mitigate this problem by enforcing a minimum shot length of one second, as previously

seen in Section 4.4. However, while this prevents identifying successive boundaries caused by

flashes of light, it still counts the first of those boundaries as correct, which might not always be

the case. Furthermore, by enforcing a minimum shot duration, we might prevent the system from

identifying actual shot boundaries if they happen too quick.

Incorrect shot boundary detection has many implications, as it can drastically change the re-

sulting signature depending on where in the shot those boundaries are detected. An easy exploit

could be to artificially insert a small number of frames in random places on a video in order to trick

the system. Sun and Zhang [SZ17] propose an approach to this problem by splitting the boundary

detection into two steps. The first step is the same as our current method, which is to detect based

on the HSV color histogram. The second step then uses image perceptual hashing to re-detect and

eliminate any fake boundaries.

Figure 5.8: Fast consecutive changes in color information, specially brightness, leads to the
incorrect detection of multiple shot boundaries

5.2 Benchmarks

Different kinds of NDV applications have different requirements in respect to both performance

and accuracy. While NDV systems are usually separated into two distinct processes, the type

and size of information obtained during feature extraction directly influences the amount of work

necessary in the later signature generation and comparison phases.

Generally, it is acceptable to have less than desirable performance during the feature extraction

process, which is usually done offline, in order to obtain an accurate and space efficient represen-

tation of a video. This, in turn, eases the computational load during the generation and comparison

of video signatures, which is typically an online process. However, for certain applications, such

as real-time video monitoring, some of the input videos aren’t available beforehand and, as such,

the feature extraction process has to be able to run concurrently with the signature generation and

comparison processes.

38

Experimental Results

In order to get more insight into the possible applications and performance improvements of

our system, we have ran extensive benchmarks for all of the underlying computations. In this

section we show the results obtained as well as identify possible bottlenecks and improvements.

The machine specifications where the benchmarks were ran on can be seen in Table 5.2.

Operating System Ubuntu 18.04 LTS

CPU Intel(R) Core(TM) i7-4770K CPU @ 3.50GHz

RAM 16GB DDR3 @ 1600 MHz

GPU GeForce GTX 1080 8GB GDDR5X

DISK HDD 500GB 7200 RPM 32MB SATA 6Gb/s

Table 5.2: Benchmarking machine specifications

5.2.1 Feature Extraction

Feature extraction is the main module in our system and is responsible for converting an input

video into a structured representation of high level features. The performance of its various sub-

tasks varies widely depending on the input video provided. To provide a baseline performance

report, all the measurements were made by running the extraction process single-threaded on 200

different videos with various resolutions, duration and formats. Tables 5.3 to 5.5 show the results

for the different sub-tasks and Table 5.6 the results for the whole process, where running time is

referring to the average time taken in each iteration or frame processed.

Component Execution Time

Pre-Processing* 3.43 ms

Forward Pass 5.53 ms

Results Processing 0.47 ms

Total 9.43 ms

(a) Scene Recognition using
Places365-WideResNet18

Component Execution Time

Pre-Processing* 4.39 ms

Region Proposal 21.27 ms

Non-Maximum Suppression 3.27 ms

Total 28.93 ms

(b) Object Detection using YoloV3

Table 5.3: Benchmark results for Object Detection and Scene Recognition
*Includes resizing input frame and transfering it to the GPU

39

Experimental Results

Component Execution Time

Predict Step 0.15 ms

IoU Matching 0.32 ms

Update Step 0.37 ms

Post-Processing* 0.10 ms

Total 0.94 ms

(a) Single class multiple object tracking using
Kalman Filter

Component Execution Time

Pre-Processing** 0.01 ms

Predict & Update 3.92 ms

Total 3.93 ms

(b) Multiple class tracking

Table 5.4: Benchmark results for Object Tracking
*Includes checking for "dead" trackers and converting the Kalman Filter states back into bounding boxes

**Grouping input detections by object class

As expected, the main bottlenecks are related to the use of CNNs in the object detection

and scene recognition tasks. However, it is worth noting the impact of the pre-processing steps

in both (15% for object detection and 36% for scene recognition). This is mostly due to the

constant moving of memory from the CPU to the GPU, which accounts for around 45 % of the

pre-processing time. While this isn’t as significant for scene recognition, which only runs every

half a second, as can be seen by the resulting running time of 1.57 ms in Table 5.6, it is extremely

detrimental to the object detection task, which runs every frame. A possible solution would be to

send the input frames as a batch, at the expense of a slight delay in real-time applications because

of the need to buffer incoming frames.

Another interesting observation is related to object tracking. In Table 5.4a we can see it takes

an average of 1 ms to track all the objects of a single class. Also, Table 5.4b shows the average

tracking time for all objects is around 4 ms. A possible conclusion is that, on average, there are

four different classes of objects being tracked at any given time. Since the tracking of different

classes is completely independent from each other, taking advantage of parallel computing by

having a process per class tracker would likely yield a performance improvement.

Component Execution Time

Pre-Processing* 0.85 ms
HSV Delta 0.61 ms

Total 1.46 ms

Table 5.5: Benchmark results for Shot Boundary Detection
*Includes downscaling input frame and RGB to HSV conversion

40

Experimental Results

Metrics

Task Execution Time Running Time

Shot Boundary Detection 1.46 ms 1.41 ms (709 fps)

Scene Recognition 9.43 ms 1.57 ms (637 fps)

Object Detection 28.93 ms 30.09 ms (33 fps)

Object Tracking 3.93 ms 4.09 ms (245 fps)

Total - 37.16 ms (27 fps)

Table 5.6: Benchmark results for the whole feature extraction process. Running time refers to the
average time a task takes per iteration/frame processed

One of the conclusions we take from the results in Table 5.6 is that, in our machine, the current

implementation with a throughput of 27 fps can’t be reliably used for real-time applications, at

least not without some kind of external pre-processing on the incoming stream, like downscaling

or throttling the frame-rate. This is taking into consideration that the majority of the videos tested

were 480p@24 fps and that the throughput can vary wildly depending on the number of objects

being tracked.

The other conclusion is that the major bottleneck is the object detection process. Initial testing

revealed that, on object detection alone, the previously mentioned batching solution could likely

improve the throughput by 10 %, reaching a total of 30 frames per second. Further improvements

should be focused on taking advantage of multiple GPUs for the forward passes in the CNNs,

using an alternative Non-Maximum Suppression implementation that takes advantage of graphics

cards and, finally, the before mentioned parallel object tracking.

5.2.2 Signature Generation and Comparison

The other module in the system is signature generation and comparison, which takes the results

from the feature extraction module and processes them into a list of shot signatures (feature vec-

tors) ready to be compared. The results of the benchmarks ran on this module can be seen in

Table 5.7. On average, the videos used have a duration between 3 to 7 minutes and contain 15 to

30 shots.

Just like in feature extraction, the performance here also varies depending on the input video,

specially during the comparison phase, which measures the similarity between two videos by

comparing every possible shot pair. As such, comparison time increases exponentially with every

additional shot that needs to be compared. We conclude that the observed average of 1.975 ms per

comparison, which translates to about 500 comparisons per second, poses no significant overhead

for real-time applications. Although, it is worth noting that the timings shown in 5.7a refer to the

generation of a single shot’s signature, and that the execution time of the object counting step can

quickly become a bottleneck if signature generation is done in real-time.

41

Experimental Results

Feature Set Execution Time

Scene Type 0.006 ms

Scene Attributes 0.015 ms

Scene Categories 0.033 ms

Objects Count 0.549 ms

Total 0.603 ms

(a) Signature Generation

Component Execution Time

Pre-Processing* 1.309 ms

Cosine Similarity 0.535 ms

Filter by Threshold 0.033 ms

Segment Matching 0.098 ms

Total 1.975 ms

(b) Signature comparison

Table 5.7: Benchmarks for the signature generation and comparison processes
*Includes removal of columns with all zeros and creating a matrix of every possible shot-pair combination

5.3 Near-Duplicate Video Detection

We conducted experiments on the CC_WEB_VIDEO dataset [WHN07, WNHT09]. It consists

of a sample of videos retrieved by submitting 24 text queries to popular video sharing websites

like YouTube and Yahoo! Video. For every query, a set of video clips ordered by descending

popularity was collected. The most popular video of the set is considered to be the original video.

Subsequently, the rest of the videos were manually annotated based on their near-duplicate relation

to the original video. Some examples of the entries in the dataset can be seen in Figure 5.9, where

the leftmost column are the original videos. The dataset is widely used in literature [KZPPK17,

JTL+17, WHN07, TWNZ08] as a good performance baseline for near-duplicate video detection,

since it reflects the real user behavior on transformations used in the generation of near-duplicates.

Table 5.8 depicts the different available near-duplicate annotations. In the present work, we

consider videos annotated with anything but X or M to be near-duplicates. Although the dataset

contains a total of 13,129 videos collected from 24 queries, we only use a small subset, given the

time it would take to run the feature extraction on all of them, as seen previously in the benchmarks

section (5.2). Our results are based on a total of 2537 videos gathered from the queries 1, 2, 7, 13,

14, 16 and 20 (Table 5.9).

Annotation Meaning

E Exactly duplicate
S Similar video
V Different version
M Major change
L Long version
X Dissimilar video

Table 5.8: Similarity annotations available in the CC_WEB_VIDEO dataset

The commonly used performance metrics in NDV applications are precision, recall and Aver-

age Precision (AP) [LHCS13]. The usual visualization is the Precision-Recall (PR) curve, which

42

Experimental Results

Query Videos Near-Duplicates

1 812 334 (41 %)
2 427 87 (20 %)
7 365 154 (42 %)
13 419 387 (92 %)
14 108 72 (67 %)
16 208 20 (10 %)
20 198 72 (36 %)

Total 2537 1126 (44 %)

Table 5.9: Summary of the subset of videos used from the CC_WEB_VIDEO dataset

is a useful graph that provides a good intuition of the system’s predictive performance in the case

of a very imbalanced class distribution. However, since our subset’s class distribution is well

balanced, with 44 % near-duplicates and 56 % dissimilar, we also include the Receiver Operating

Characteristic (ROC) curve and its Area Under Curve (AUC) measure as additional metrics.

Table 5.10 shows the Average Precision and ROC AUC for every query, and Figure 5.10

shows the PR and ROC curves of the total subset. The resulting AP value of 0.974 matches that

of the state-of-the-art as seen in [KZPPK17, Section 5.4], which varies between 0.892 for Color

Histogram approaches and 0.976 for CNN based approaches. Future work includes the analysis

of the whole dataset, to further increase the confidence in this value.

Query AP ROC AUC

1 0.99383 0.99486
2 0.99602 0.99912
7 0.99361 0.99221
13 0.99960 0.99532
14 0.95838 0.91358
16 1.00000 1.00000
20 0.97283 0.97906

Table 5.10: Average Precision and ROC AUC measures for every query done

In order to better assess the applicability of the system in real applications, we also ran Cross

Validation using the K-Fold method. Essentially, we randomly split our subset of videos into k

equally sized subsamples. Then, one of the subsamples is used for validation while the remaining

k− 1 are used for training. In our case, we use the training subsamples to derive the optimal

similarity threshold for the system, which is then used on the validation subsample to measure the

performance. This process is repeated k times, with each of the k subsamples used exactly once as

the validation data. In the end, the validation results as well as the optimal thresholds are averaged

in order to obtain the final estimate.

Taking into consideration the size of our subset, a value k = 5 was used, which means each of

43

Experimental Results

Figure 5.9: Examples of queries (first column on the left) and near-duplicate videos from the
CC_WEB_VIDEO dataset

the folds have on average 2030 videos for training and 507 videos for validation. The individual

and final averaged results can be and seen in Table 5.11, accompanied by a confusion matrix in

Figure 5.11. With this, we conclude that our implementation is slightly optimistic, as explained

by the high recall value (0.9655) and lower precision (0.8655), as well as the number of false

positives being 4 times higher than false negatives (168 vs 41). Further investigation into the false

cases concluded our initial observations of the system problems. A majority of the false positives

resulted from shot ambiguity, while 38 of the 41 false negatives resulted from the presence of

black bars or invalid shot boundaries.

Metrics

Fold Threshold Precision Recall F1 Score

1 0.7254 0.8320 0.9674 0.8946
2 0.7254 0.9027 0.9547 0.9280
3 0.7310 0.8823 0.9677 0.9230
4 0.7310 0.8450 0.9732 0.9046
5 0.7254 0.8656 0.9647 0.9125

Average 0.7276 0.8655 0.9655 0.9125

Table 5.11: Results from K-Fold Cross Validation

44

Experimental Results

Figure 5.10: Precision-Recall and ROC curves of the whole subset (2537 videos)

Figure 5.11: Resulting confusion matrix from K-Fold Cross Validation

45

Experimental Results

46

Chapter 6

Conclusions and Future Work

In this work, we have presented a shot-based video signature generation solution that uses Con-

volutional Neural Networks to extract high-level features from video data. With it, we showed

that utilizing only semantic information, such as objects and scenery information, to represent a

video not only results in compact signatures and fast comparison time, but also good performance

in the task of near-duplicate video detection, reaching an Average Precision value of 0.974 that

is competitive with the state-of-the-art. This supports the assumption by Basharat et al. [BZS08]

and Cherubini et al. [CdOO09] that semantic similarity might play a bigger role in the definition

of near-duplicate videos than previously thought.

Using semantic information also proved to be very helpful during the research and develop-

ment stages. It enabled annotating the analyzed videos with visual representations of the under-

lying data that are easily interpretable by humans. This, in turn, was useful for understanding

the results returned by the system as well as the further optimization of the signature comparison

process.

Representing videos as a collection of shots enables expanding the current solution into other

applications. For example, the representation of videos and their shots as a graph database, in

which similarity is given as a relation between shots, could prove very useful for video tracking

cases, such as a news outlet who wants to do a report on an event by following a connection of

online articles which contain recordings of that same event.

As the system is designed to be easily extended, further improvements can be done in a number

of areas depending on the desired application. First, in order to increase the precision and mitigate

the problem of shots without relevant information, results from other image and video recognition

networks can be used by just appending them as a new feature sets in the video signature. Second,

as the feature extraction process is highly modular, a distributed solution like the one proposed by

Jiang at el. [JTL+17] could be applied in order to decrease the bottleneck that CNNs introduce in

the whole feature extraction pipeline. Finally, to allow for applications that require fast retrieval

47

Conclusions and Future Work

in databases with a lot of entries, signature indexing methods, such as tree-like structures and

hashing, can be added.

48

References

[AWB03] James Allan, Courtney Wade, and Alvaro Bolivar. Retrieval and nov-
elty detection at the sentence level. In Proceedings of the 26th annual
international ACM SIGIR conference on Research and development in in-
formaion retrieval - SIGIR ’03, page 314, New York, New York, USA,
2003. ACM Press.

[BZS08] Arslan Basharat, Yun Zhai, and Mubarak Shah. Content based video
matching using spatiotemporal volumes. Computer Vision and Image Un-
derstanding, 110(3):360–377, 6 2008.

[CdOO09] Mauro Cherubini, Rodrigo de Oliveira, and Nuria Oliver. Understanding
Near-duplicate Videos: A User-centric Approach. In Proceedings of the
17th ACM International Conference on Multimedia, number April in MM
’09, pages 35–44, New York, New York, USA, 2009. ACM Press.

[Cis17] Cisco. The Zettabyte Era: Trends and Analysis. Technical Report June
2017, Cisco, 2017.

[DLHS16] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-FCN: Object Detection
via Region-based Fully Convolutional Networks. CoRR, abs/1605.0, 5
2016.

[dOCO09] Rodrigo de Oliveira, Mauro Cherubini, and Nuria Oliver. Human Per-
ception of Near-Duplicate Videos. In Tom Gross, Jan Gulliksen, Paula
Kotzé, Lars Oestreicher, Philippe Palanque, Raquel Oliveira Prates, and
Marco Winckler, editors, Human-Computer Interaction – INTERACT
2009, pages 21–24, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[Gaj10] Padalkar Milind Gajanan. Histogram Based Efficient Video Shot Detection
Algorithms. PhD thesis, Sardar Vallabhbhai National Institue of Technol-
ogy, 2010.

[GDDM13] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich
feature hierarchies for accurate object detection and semantic segmenta-
tion. CoRR, abs/1311.2, 11 2013.

[Gir15] Ross Girshick. Fast R-CNN. CoRR, abs/1504.0, 4 2015.

[GRG+18] Ross Girshick, Ilija Radosavovic, Georgia Gkioxari, Piotr Dollár, and
Kaiming He. Detectron. Retrieved from https://github.com/
facebookresearch/detectron, 2018. Accessed 2 June 2018.

49

https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron

REFERENCES

[HGDG17] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask
R-CNN. CoRR, abs/1703.0, 3 2017.

[HHC+10] Zi Huang, Bo Hu, Hong Cheng, Heng Tao Shen, Hongyan Liu, and Xiao-
fang Zhou. Mining Near-duplicate Graph for Cluster-based Reranking of
Web Video Search Results. ACM Trans. Inf. Syst., 28(4):22:1–22:27, 11
2010.

[HLCD13] Zi Huang, Jiajun Liu, Bin Cui, and Xiaoyong Du. A Gram-Based String
Paradigm for Efficient Video Subsequence Search. IEEE Transactions on
Multimedia, 15(3):608–620, 4 2013.

[HRS+16] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Ko-
rattikara, Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio
Guadarrama, and Kevin Murphy. Speed/accuracy trade-offs for modern
convolutional object detectors. CoRR, abs/1611.1, 11 2016.

[HSS+09] Zi Huang, Heng Tao Shen, Jie Shao, Xiaofang Zhou, and Bin Cui.
Bounded coordinate system indexing for real-time video clip search. ACM
Transactions on Information Systems, 27(3):1–33, 5 2009.

[Hua96] T. Huang. Computer Vision: Evolution And Promise. 19th CERN School
of Computing, pages 21–25, 1996.

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Resid-
ual Learning for Image Recognition. Multimedia Tools and Applications,
77(9):10437–10453, 12 2015.

[JN09] Yu-Gang Jiang and Chong-Wah Ngo. Visual word proximity and linguis-
tics for semantic video indexing and near-duplicate retrieval. Computer
Vision and Image Understanding, 113(3):405–414, 3 2009.

[JTJ14] Jong-Min Jeong, Tae-Sung Yoon, and Jin-Bae Park. Kalman filter based
multiple objects detection-tracking algorithm robust to occlusion. In
2014 Proceedings of the SICE Annual Conference (SICE), pages 941–
946. IEEE, 9 2014.

[JTL+17] Jiawei Jiang, Yunhai Tong, Hua Lu, Bin Cui, Kai Lei, and Lele Yu.
GVoS: A General System for Near-Duplicate Video-Related Applications
on Storm. ACM Transactions on Information Systems, 36(1):1–36, 6
2017.

[Kar14] Andrej Karpathy. What I learned from compet-
ing against a ConvNet on ImageNet. Retrieved
from https://karpathy.github.io/2014/09/02/
what-i-learned-from-competing-against-a-convnet-on-imagenet,
September 2014. Accessed 7 February 2018.

[KM15] Rahul Kumar and Sukadev Meher. A Novel method for visually impaired
using object recognition. In 2015 International Conference on Communi-
cations and Signal Processing (ICCSP), pages 0772–0776. IEEE, 4 2015.

50

https://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet
https://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet

REFERENCES

[Ko18] Byoung Ko. A Brief Review of Facial Emotion Recognition Based on
Visual Information. Sensors, 18(2):401, 2018.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Clas-
sification with Deep Convolutional Neural Networks. In F Pereira, C J C
Burges, L Bottou, and K Q Weinberger, editors, Advances in Neural In-
formation Processing Systems 25, pages 1097–1105. Curran Associates,
Inc., 2012.

[KWM94] Dieter Koller, Joseph Weber, and Jitendra Malik. Robust multiple car
tracking with occlusion reasoning. In Jan-Olof Eklundh, editor, Computer
Vision — ECCV ’94, pages 189–196, Berlin, Heidelberg, 1994. Springer
Berlin Heidelberg.

[KZPPK17] Giorgos Kordopatis-Zilos, Symeon Papadopoulos, Ioannis Patras, and
Yiannis Kompatsiaris. Near-Duplicate Video Retrieval with Deep Met-
ric Learning. In 2017 IEEE International Conference on Computer Vi-
sion Workshops (ICCVW), volume 2018-Janua, pages 347–356. IEEE, 10
2017.

[LAE+15] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C. Berg. SSD: Single Shot Multi-
Box Detector. CoRR, abs/1512.0, 12 2015.

[LBX+15] Yao Liu, Sam Blasiak, Weijun Xiao, Zhenhua Li, and Songqing Chen. A
Quantitative Study of Video Duplicate Levels in Youtube. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics), 8995:235–248, 2015.

[Lee17] Frank Lee. The Rise of Ubiquitous Computer Vision in IOT. Retrieved
from https://www.iotforall.com/computer-vision-iot,
2017. Accessed 6 February 2018.

[LHCS13] Jiajun Liu, Z Huang, Hongyun Cai, and HT Shen. Near-duplicate video
retrieval: Current research and future trends. ACM Computing Surveys
. . . , 45(4):1–23, 2013.

[LTMR+15] Laura Leal-Taixé, Anton Milan, Ian Reid, Stefan Roth, and Konrad
Schindler. MOTChallenge 2015: Towards a Benchmark for Multi-Target
Tracking. CoRR, abs/1504.0, 4 2015.

[LW15] Fang Liu and Yi Wan. Improving the video shot boundary detection using
the HSV color space and image subsampling. In 2015 Seventh Inter-
national Conference on Advanced Computational Intelligence (ICACI),
pages 351–354. IEEE, 3 2015.

[LWWL10] Xin Li, Kejun Wang, Wei Wang, and Yang Li. A multiple object track-
ing method using Kalman filter. Information and Automation (ICIA) . . . ,
1(1):1862–1866, 2010.

[MFMR02] L. Marcenaro, M. Ferrari, L. Marchesotti, and C.S. Regazzoni. Multi-
ple object tracking under heavy occlusions by using Kalman filters based

51

https://www.iotforall.com/computer-vision-iot

REFERENCES

on shape matching. In Proceedings. International Conference on Image
Processing, volume 1, pages III–341–III–344. IEEE, 2002.

[MLTR+16] Anton Milan, Laura Leal-Taixe, Ian Reid, Stefan Roth, and Konrad
Schindler. MOT16: A Benchmark for Multi-Object Tracking. CoRR,
abs/1603.0, 3 2016.

[MMMK03] Masakazu Matsugu, Katsuhiko Mori, Yusuke Mitari, and Yuji Kaneda.
Subject independent facial expression recognition with robust face detec-
tion using a convolutional neural network. Neural Networks, 16(5-6):555–
559, 2003.

[MTZ17] Bogdan Mocanu, Ruxandra Tapu, and Titus Zaharia. Seeing Without
Sight — An Automatic Cognition System Dedicated to Blind and Visually
Impaired People. In 2017 IEEE International Conference on Computer
Vision Workshops (ICCVW), pages 1452–1459. IEEE, 10 2017.

[PAM+17] Mauricio Perez, Sandra Avila, Daniel Moreira, Daniel Moraes, Vanessa
Testoni, Eduardo Valle, Siome Goldenstein, and Anderson Rocha. Video
pornography detection through deep learning techniques and motion in-
formation. Neurocomputing, 230:279–293, 3 2017.

[Per15] L Nathan Perkins. CONVOLUTIONAL NEURAL NETWORKS AS
FEATURE GENERATORS FOR NEAR-DUPLICATE VIDEO DETEC-
TION. Technical report, Boston University, 2015.

[RB15] Juan Rosenzweig and Michael Bartl. A Review and Analysis of Literature
on Autonomous Driving. The Making-of Innovation, com(October):1–57,
2015.

[RDGF15] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi.
You Only Look Once: Unified, Real-Time Object Detection. CoRR,
abs/1506.0, 6 2015.

[RDS+15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael
Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Journal of Computer Vision,
115(3):211–252, 2015.

[RF16] Joseph Redmon and Ali Farhadi. YOLO9000: Better, Faster, Stronger.
CoRR, abs/1612.0, 12 2016.

[RF18] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improve-
ment. CoRR, abs/1804.0, 4 2018.

[RHGS15] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks.
CoRR, abs/1506.0, 6 2015.

[San15] Sandvine. Global Internet Phenomena Report: Africa, Middle East &
North America. Technical report, Sandvine, 12 2015.

52

REFERENCES

[SLJ+14] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going Deeper with Convolutions. arXiv:1409.4842, 2014.

[SSBNMSBJSVSB15] Adnan Siddiqui SOIT, RGPV Bhopal Nischcol Mishra SOIT, RGPV
Bhopal Jitendra Singh Verma SOIT, and RGPV Bhopal. A Survey on Au-
tomatic Image Annotation and Retrieval. International Journal of Com-
puter Applications, 118(20):975–8887, 2015.

[SYW+10] Lifeng Shang, Linjun Yang, Fei Wang, Kwok-ping Chan, and Xian-sheng
Hua. Real-time large scale near-duplicate web video retrieval. In Pro-
ceedings of the international conference on Multimedia - MM ’10, page
531, New York, New York, USA, 2010. ACM Press.

[SZ14] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. CoRR, 51(4):769–784, 9 2014.

[SZ17] Bin Sun and Dengyin Zhang. A method for video shot boundary detection
based on HSV color histogram and DPHA feature. In Proceedings of the
Second International Conference on Internet of things, Data and Cloud
Computing - ICC ’17, pages 1–4, New York, New York, USA, 2017. ACM
Press.

[TSZH+07] Heng Tao Shen, Xiaofang Zhou, Zi Huang, Jie Shao, and Xiangmin Zhou.
UQLIPS: A real-time near-duplicate video clip detection system. VLDB,
2007.

[TWNZ08] Hung-Khoon Tan, Xiao Wu, Chong-Wah Ngo, and Wan-Lei Zhao. Accel-
erating near-duplicate video matching by combining visual similarity and
alignment distortion. In Proceeding of the 16th ACM international con-
ference on Multimedia - MM ’08, page 861, New York, New York, USA,
2008. ACM Press.

[TXZ+07] Heng Tao, Shen Xiaofang, Zhou Zi, Huang Jie, and Shao Xiangmin.
UQLIPS : A Real-time Near-duplicate Video Clip Detection System.
Vldb, pages 1374–1377, 2007.

[WG15] Kanika Wadhawan and E Gajendran. Automated Recognition of Text
in Images : A Survey. International Journal of Computer Applications,
127(15):15–19, 2015.

[WHN07] Xiao Wu, Alexander G. Hauptmann, and Chong-Wah Ngo. Practical elim-
ination of near-duplicates from web video search. In Proceedings of the
15th international conference on Multimedia - MULTIMEDIA ’07, page
218, New York, New York, USA, 2007. ACM Press.

[WNHT09] Xiao Wu, Chong-Wah Ngo, Alexander G. Hauptmann, and Hung-Khoon
Tan. Real-Time Near-Duplicate Elimination for Web Video Search With
Content and Context. IEEE Transactions on Multimedia, 11(2):196–207,
2 2009.

[ZF13] Matthew D Zeiler and Rob Fergus. Visualizing and Understanding Con-
volutional Networks. CoRR, 11 2013.

53

REFERENCES

[ZH06] J. Zobel and Timothy C. Hoad. Detection of video sequences using com-
pact signatures. ACM Transactions on Information Systems, 24(1):1–50,
1 2006.

[ZLK+17] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio
Torralba. Places: A 10 million Image Database for Scene Recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017.

[ZLX+14] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and
Aude Oliva. Learning Deep Features for Scene Recognition using Places
Database. Advances in Neural Information Processing Systems 27, pages
487–495, 2014.

[ZN15] Wan-Lei Zhao and Chong-Wah Ngo. Near-Duplicate Image and Video
Detection. In Wiley Encyclopedia of Electrical and Electronics Engineer-
ing, pages 1–13. American Cancer Society, Hoboken, NJ, USA, 2015.

54

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Dissertation Outline

	2 Image and Video Recognition
	2.1 Introduction
	2.2 Object Detection
	2.3 Scene Recognition
	2.4 Technologies

	3 Video Similarity
	3.1 Introduction
	3.2 Applications
	3.2.1 Copyright Protection
	3.2.2 Video Monitoring
	3.2.3 Video Re-ranking
	3.2.4 Video Recommendation

	3.3 Common Approaches
	3.3.1 Feature Extraction
	3.3.2 Signature Generation
	3.3.3 Signature Comparison

	4 Proposed Solution
	4.1 Overview
	4.2 Object Detection and Scene Recognition
	4.3 Object Tracking
	4.4 Shot Boundary Detection
	4.5 Feature Extraction
	4.6 Signature Generation and Comparison

	5 Experimental Results
	5.1 Initial Observations
	5.1.1 Semantic Similarity
	5.1.2 Visual Transformations
	5.1.3 Problems

	5.2 Benchmarks
	5.2.1 Feature Extraction
	5.2.2 Signature Generation and Comparison

	5.3 Near-Duplicate Video Detection

	6 Conclusions and Future Work
	References

