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Abstract

Cardiovascular diseases have their primary cause in blood flow pathologies. Numerical fluid dy-
namics simulation has proven to be a practical and efficient tool for the modelling of blood flow,
allowing a better understanding of cardiovascular diseases, the leading cause of death in developed
countries, such as atherosclerotic disease.

Haemodynamic analysis of blood flow requires an accurate characterization of the rheological
behaviour of blood by constitutive models relating the stress to the rate of deformation of the flow.
The models commonly used are usually simplifications, only considering blood as a Newtonian
fluid or a purely shear-thinning non-Newtonian fluid. However, experimental studies have shown
that blood flow exhibits other non-Newtonian characteristics such as viscoelasticity. The constant
progress in the field of haemorheology, that studies flow and deformation behaviour of blood, is
derived from its clinical interest.

The present work aims to study the dynamic behaviour of the blood flow while considering
constitutive models for blood that depict its viscoelastic property. For this purpose, different rhe-
ological models for blood where implemented in the ANSYS FLUENT commercial software by
writing additional code through the use of User-Defined Functions (UDF).

Three different idealized right coronary arteries geometries were used in a comparative nu-
merical study of different Newtonian, purely shear-thinning non-Newtonian and viscoelastic non-
Newtonian models. Results for velocity contours and profiles were used in direct comparison to
illustrate the influence of the shear-thinning and viscoelastic effects on the behaviour of blood flow.
When considering the elastic properties of blood, in particular for the multi-mode viscoelastic con-
stitutive models for blood, there is a significant reduction in axial velocity in the core regions of
the flow. Regions with higher velocity gradients, such as bifurcations or stenosed regions, have
also shown an increased impact of the viscoelastic effects in the flow. The reduced velocities in
the viscoelastic models result in a decrease of the wall shear stress distribution, the peak values
being close to half the magnitude (51%) of purely shear-thinning models.

To study the effects of considering the viscoelastic property of blood on the numerical tools for
diagnostic and prevention of cardiovascular diseases, more realistic scenarios were also analysed
by using patient-specific models of right coronary arteries. Haemodynamic wall shear stress-
based descriptors, which indicate the tendency for atherosclerosis development, were determined
for two healthy patient-specific cases. The wall shear stress reduction throughout the cardiac
cycle, due to the use of a viscoelastic constitutive model, has a noticeable impact on the calculated
haemodynamic descriptors. In the studied cases, it led to the appearance of new atherosusceptible
regions that would not be found critical if other non-viscoelastic rheological models were used.

The viscoelastic models allow for a more realistic study of patient pathology and, therefore,
an improved tool for prevention, diagnosis and treatment of cardiovascular diseases.

Keywords: Haemodynamics, haemorheology, blood, viscoelasticity, computational fluid dy-
namics, user-defined functions, atherosclerosis, right coronary artery
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Resumo

Doenças cardiovasculares têm como causa primária alterações no comportamento do fluxo sanguí-
neo. A simulação numérica da dinâmica de fluidos mostrou ser uma ferramenta prática e eficiente
para a modelação do fluxo do sangue, permitindo um melhor entendimento de doenças cardiovas-
culares, a principal causa de morte em países desenvolvidos, tal como a doença aterosclerótica.

A análise hemodinâmica do fluxo sanguíneo necessita de uma caracterização precisa do com-
portamento reológico do sangue por modelos constitutivos que relacionam a tensão com a taxa
de deformação do fluxo. Os modelos mais utilizados são geralmente simplificações, apenas con-
siderando o sangue como um fluido Newtoniano ou como um fluido não-Newtoniano puramente
pseudoplástico. Contudo, estudos experimentais demonstraram que o fluxo sanguíneo contém out-
ras características não-Newtonianas tal como a viscoelasticidade. O progresso constante no ramo
da hemorreologia, estudo do comportamento do fluxo e da deformação do sangue, é derivado do
seu interesse clínico.

Este trabalho visa estudar o comportamento dinâmico do fluxo sanguíneo considerando mod-
elos constitutivos para o sangue que retratem a sua propriedade viscoelástica. Para tal, foram im-
plementados diferentes modelos reológicos do sangue no software comercial ANSYS FLUENT
através da escrita de código adicional, usando User-Defined Functions (UDF).

Três geometrias idealizadas de artérias coronárias direitas diferentes foram usadas num estudo
comparativo numérico de diferentes modelos Newtonianos, não-Newtonianos puramente pseudo-
plásticos e não-Newtonianos viscoelásticos. Resultados de mapas e perfis de velocidade foram
utilizados em comparação direta para ilustrar a influência dos efeitos pseudoplásticos e viscoelás-
ticos no comportamento do fluxo sanguíneo. Quando se consideram as propriedades elásticas do
sangue, em particular, considerando os modelos constitutivos viscoelásticos multi-modo para o
sangue, há uma redução significativa da velocidade axial nas regiões centrais do fluxo. Regiões
com gradientes de velocidade superiores, tais como bifurcações ou zonas com estenose, demon-
straram também um aumento do impacto dos efeitos viscoelásticos no fluxo. As velocidades re-
duzidas nos modelos viscoelásticos resultam numa diminuição da distribuição de tensão de corte
na parede, cujos valores máximos são aproximadamente metade (51%) dos valores considerando
os modelos puramente pseudoplásticos.

De modo a estudar os efeitos de considerar a propriedade viscoelástica do sangue nas ferra-
mentas numéricas para prevenção e diagnóstico de doenças cardiovasculares, cenários mais realis-
tas foram também analisados através de geometrias específicas de pacientes de artérias coronárias
direitas. Descritores hemodinâmicos baseados na tensão de corte na parede, que indicam a tendên-
cia do aparecimento de aterosclerose, foram determinados para dois casos de artérias saudáveis.
A redução da tensão de corte na parede ao longo de todo o ciclo cardíaco, devido ao uso de um
modelo constitutivo viscoelástico, tem um impacto notável nos descritores hemodinâmicos cal-
culados. Nos casos em estudo, levou ao aparecimento de novas zonas aterosuscetíveis que não
seriam consideradas críticas se tivesse sido utilizado outro modelo reológico não viscoelástico.
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Os modelos viscoelásticos permitem um estudo mais realista da patologia do paciente e, por-
tanto, uma ferramenta melhorada de prevenção, diagnóstico e tratamento de doenças cardiovascu-
lares.

Palavras-chave: Hemodinâmica, hemorreologia, sangue, viscoelasticidade, dinâmica de flui-
dos computacional, user-defined functions, aterosclerose, artéria coronária direita



Acknowledgements / Agradecimentos

Gostaria de tomar esta oportunidade para agradecer a todas as pessoas que permitiram o sucesso
e a elaboração deste trabalho, dada a ajuda que me forneceram, quer de forma direta ou indireta,
durante este percurso.

Em primeiro lugar gostaria de agradecer às minhas supervisoras. À Prof. Sónia Pinto, pela
orientação e por todo o apoio contínuo que foram essenciais no decorrer deste trabalho. À Prof.
Catarina Castro, em particular, pela oportunidade de poder contribuir para este desafiante projeto
de engenharia e também por todo o apoio e aconselhamento no desenvolvimento do mesmo.

Agradeço também à Faculdade de Engenharia da Universidade do Porto e a todas as in-
stituições que contribuíram de modo imprescindível para o desenvolvimento deste estudo - o
INEGI, o DEMec, a FMUP e ao Centro Hospitalar de Vila Nova de Gaia/ Espinho. O autor
gostaria ainda de agradecer os fundos atribuídos pela Fundação para a Ciência e Tecnologia (FCT),
Portugal, através do "Associated Laboratory of Energy, Transports and Aeronautics (LAETA)",
UID/EMS/50022/2019.

Aos meus pais, por toda uma vida de apoio incondicional, sendo os responsáveis por este
culminar do meu percurso académico. Deram-me tudo o que alguma vez poderia sonhar e ainda
mais, e só tenho de agradecer por isso e ao mesmo tempo pedir desculpa por ter aproveitado tão
pouco.

À minha família e à minha irmã, por todo o carinho e toda a preocupação.
Aos meus amigos, em particular os que comigo fizeram lado a lado este percurso, um obrigado

especial. Foi difícil, mas para mim certamente não o foi tanto, dado que não tinha o problema de
ter de me ouvir falar sobre fluidos.

Por fim, queria agradecer à minha namorada Joana: foste a razão para eu vir todos os dias
trabalhar com um sorriso e sem qualquer remorso. Por todos os encontros para café pelas manhãs
e por todo o amor, motivação e paciência em qualquer momento.

Ernesto Romano

v



vi



“Don’t give yourselves to these unnatural men
- machine men with machine minds and machine hearts!

You are not machines! You are not cattle! You are men!”

Sir Charles Spencer Chaplin

vii



viii



Contents

1 Introduction 1
1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Structure of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Cardiovascular system 3
2.1 Heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Cardiac cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Vascular networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Right Coronary Artery . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Atherosclerosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Haemodynamics 7
3.1 Fluid mechanics and blood flow . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Steady Laminar Flow in a Uniform tube . . . . . . . . . . . . . . . . . . 8
3.1.2 Governing Equations for the motion of fluids . . . . . . . . . . . . . . . 8
3.1.3 Normal stress differences . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.4 Oscillatory flow and Womersley number . . . . . . . . . . . . . . . . . . 10
3.1.5 Wall shear stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Haemodynamic descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Blood rheology 13
4.1 Blood composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Mechanical Properties of Blood . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2.1 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.2 Viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.3 Thixotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.4 Yield Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 Constitutive models for blood . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.1 Generalized Newtonian Models . . . . . . . . . . . . . . . . . . . . . . 18
4.3.2 Viscoelastic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Methodology 27
5.1 Implementation in Fluent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.1 UDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.2 Blood properties and model parameters . . . . . . . . . . . . . . . . . . 30

5.2 Idealized Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Mesh convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

ix



x CONTENTS

5.5 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Results and discussion 37
6.1 Flow Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Direct Flow Differences and Comparison . . . . . . . . . . . . . . . . . . . . . 38
6.3 WSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.4 Application in patient-specific geometries . . . . . . . . . . . . . . . . . . . . . 48

7 Conclusions 53
7.1 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

References 57

A Direct flow differences: remaining geometries 61

B Abstracts of articles presented at an international conference 65



List of Figures

2.1 Schematics of the cardiovascular system. . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Schematics of the gross anatomy of a cross section of the heart. . . . . . . . . . . 5
2.3 Anterior view of coronary arteries. . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Transverse section of a normal artery and one partially obstructed by an atheroscle-

rotic plaque. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Sequences of velocity profiles in a tube with a sinusoidally varying pressure gra-
dient, for indicated values of Womersley number. . . . . . . . . . . . . . . . . . 11

4.1 Schematics of structures in non-Newtonian dispersions at rest and under shear. . . 15
4.2 Average steady shear viscosity (η) of whole blood. . . . . . . . . . . . . . . . . 16
4.3 Dependence of blood viscosity on haematocrit. . . . . . . . . . . . . . . . . . . 17
4.4 Diagram of a small cubical volume of height, H, in shear. The displacement, D,

due to deformation is composed of two parts: an elastic part, E, and a slippage
part, S. With constant force F, E remains constant but S continues to increase.
When F is removed, E diminishes to zero and S remains. . . . . . . . . . . . . . 18

4.5 Formation of compacted cell layers separated by plasma layers. . . . . . . . . . . 18
4.6 Effect of haematocrit on the yield stress of blood. . . . . . . . . . . . . . . . . . 19
4.7 Mechanical analogue of the Maxwell model. . . . . . . . . . . . . . . . . . . . . 21
4.8 Mechanical analogue of an Oldroyd-type model. . . . . . . . . . . . . . . . . . . 22

5.1 Idealized vessels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Example of the mesh obtained for one of the idealized geometries with stenosis. . 32
5.3 Idealized stenosed artery schematics. Red dashed lines indicate the velocity pro-

files’ position (left). Velocity profiles along the mid plane of the artery for different
mesh sizes (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.4 Mean time-dependent velocity imposed at the inlet and time-dependent pressure
profile imposed at the outlets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.1 Axial velocity contours in the non-stenosed idealized right coronary artery for the
different Newtonian and non-Newtonian models. . . . . . . . . . . . . . . . . . 40

6.2 Axial velocity contours in the idealized right coronary artery with a stenosed re-
gion after the bifurcation for the different Newtonian and non-Newtonian models. 41

6.3 Axial velocity contours in the idealized right coronary artery with a stenosed re-
gion before the bifurcation for the different Newtonian and non-Newtonian models. 42

6.4 Axial velocity contours: difference between the non-Newtonian and the Newto-
nian solution for the idealized right coronary artery with a stenosed region after
the bifurcation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xi



xii LIST OF FIGURES

6.5 Axial velocity contours: difference between the non-Newtonian solutions for the
idealized right coronary artery with a stenosed region after the bifurcation. . . . . 44

6.6 Velocity profiles along the mid plane of the artery for different non-Newtonian
models. Red dashed lines in the schematics indicate the velocity profiles’ position. 45

6.7 WSS magnitude in the idealized right coronary artery with a stenosed region after
the bifurcation for the non-Newtonian solutions. . . . . . . . . . . . . . . . . . . 47

6.8 Reconstructed right coronary arteries. . . . . . . . . . . . . . . . . . . . . . . . 49
6.9 TAWSS distribution in the studied RCA cases using two different rheological

models for blood. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.10 OSI distribution in the studied RCA cases using two different rheological models

for blood. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.11 RRT distribution in the studied RCA cases using two different rheological models

for blood. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.1 Axial velocity contours: difference between the non-Newtonian solutions for the
idealized healthy right coronary artery. . . . . . . . . . . . . . . . . . . . . . . . 62

A.2 Axial velocity contours: difference between the non-Newtonian solutions for the
idealized right coronary artery with a stenosed region before the bifurcation. . . . 63



List of Tables

4.1 Generalized Newtonian models for blood . . . . . . . . . . . . . . . . . . . . . 20
4.2 Multi-mode forms of the viscoelastic models . . . . . . . . . . . . . . . . . . . 24

5.1 Coefficients for the different viscoelastic constitutive equations . . . . . . . . . . 28
5.2 Parameters of the multi-mode Giesekus and sPTT model fits for whole human blood 30
5.3 Number of elements and maximum and average Skewness for each mesh . . . . 34

xiii



xiv LIST OF TABLES



Symbols and Abbreviations

Abbreviations

Ao Aorta
AV Aortic valve
CAD Coronary artery disease
CFD Computational fluid dynamics
CT Computed tomography
FSI Fluid-structure interaction
GNM Generalized Newtonian model
GOB Generalized Oldroyd-B
IVC Inferior vena cava
LA Left atrium
LV Left ventricle
MV Mitral valve
NS Newtonian model
PA Pulmonary artery
PDE Partial differential equation
PTT Phan-Thien/ Tanner
PV Pulmonary vein
PVv Pulmonary valve
RA Right atrium
RBC Red blood cell
RCA Right coronary artery
RV Right ventricle
sPTT Simplified Phan-Thien/ Tanner
SVC Superior vena cava
TV Tricuspid valve
UDF User-defined function
UDS User-defined scalar
WBC White blood cell
WSS Wall shear stress

xv



xvi SYMBOLS AND ABBREVIATIONS

Symbols

5 Upper-convected derivative
� Gordon-Schowalter convected derivative
D Diameter [m]
D Strain rate tensor [s−1]
en Unit normal vector
G Young’s modulus [MPa]
ID First principal invariant of the strain rate tensor [s−1]
IID Second principal invariant of the strain rate tensor [s−1]
IIID Third principal invariant of the strain rate tensor [s−1]
I Identity matrix
i Imaginary unit
Jo First order Bessel function
L Length [m]
N1 First normal stress difference [Pa]
N2 Second normal stress difference [Pa]
n Characteristic constant of the flow
OSI Oscillatory Shear Index
p Pressure [Pa]
Q Flow rate [m3/s]
R Radius [m]
Re Reynolds number
RRT Relative Residence Time [Pa−1]
r Radial distance from the axis [m]
S Source term
s Location
T Cardiac cycle duration [s]
T Cauchy stress tensor [Pa]
TAWSS Time Averaged Wall Shear Stress [Pa]
t Time [s]
t Wall traction [Pa]
U Mean velocity [m/s]
u Velocity vector [m/s]
Wo Womersley number
WSS Wall Shear Stress vector [Pa]



SYMBOLS AND ABBREVIATIONS xvii

Greek Symbols

α Mobility factor
γ̇ Shear rate [s−1]
ε Extensibility coefficient
λ Relaxation time [s]
µ Dynamic viscosity [Pa · s]
µe Elastic viscosity [Pa · s]
µ f Blood viscosity [Pa · s]
µs Solvent viscosity [Pa · s]
µ0 Zero shear viscosity [Pa · s]
µ∞ Infinite shear viscosity [Pa · s]
ρ Density [kg/m3]
ρ f Blood density [kg/m3]
τττ Extra stress tensor [Pa]
τττe Elastic contribution of the extra stress tensor [Pa]
τττs Solvent contribution of the extra stress tensor [Pa]
ω Angular frequency [rad/s]
ω f Cardiac frequency [rad/s]





Chapter 1

Introduction

Cardiovascular diseases are the leading cause of death in developed countries [1]. In particular,

about 7 million people die annually due to coronary heart disease [2, 3]. Atherosclerosis is the

outcome of the progressive accumulation of lipids on the arterial walls leading to a narrowing of

the blood vessel. The resultant stenosis formed by the atherosclerotic plaque can lead to alterations

in the haemodynamic behaviour of blood, such as increased flow velocities, high shear stress and

flow recirculation [4]. When the wall shear stress increases in the narrowed vessel, a rupture may

occur.

Computational fluid dynamics (CFD) has proven to be a practical and efficient tool for the

modelling of blood flow, allowing a better understanding of cardiovascular diseases [5, 6]. How-

ever, the performance of CFD models is directly dependent on the accuracy of the model. Un-

certainties in the solutions are sometimes due to limited computational resources or due to strong

simplifications of the physiological conditions. As such, for numerical fluid dynamics simulation

to be used as a tool for diagnostic and treatment of cardiovascular diseases, a good understanding

of haemodynamics, blood rheology and physiological flow conditions is needed.

When looking into the matter of blood rheology, or haemorheology, a considerable amount of

viscosity models can be found, although none of them has been agreed upon [5]. Blood exhibits

non-Newtonian behaviour which is further emphasized due to the pulsatile nature of blood flow

and the small-scale lengths in question. Different levels of simplification have been considered

when describing blood rheology. Although the rheological behaviour of human blood can be

considered Newtonian for high enough shear rates, in small vessels the elastic effects should not

be neglected [6].

The present work focuses on the complex rheological nature of blood, focusing on the mod-

elling blood as a viscoelastic non-Newtonian fluid, in order to obtain a more reliable and realistic

tool for the prevention and diagnosis of atherosclerotic disease.
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2 Introduction

1.1 Objectives

The necessity for better CFD tools able to describe increasingly realistic models of blood flow

has already been introduced. Despite the existence of several in-house codes, the advantages and

commodities provided by commercial software are of great importance in supporting the gener-

alization of the diagnostic tools in question. As such, the main objective of this thesis can be

described through the following key points:

• Investigate the non-Newtonian properties of blood, focusing in particular on the different

existing viscoelastic constitutive models;

• Perform numerical simulations of blood flow in ANSYS Fluent, a user-friendly commercial

solver widely used by many authors, while considering these more realistic rheological

models, implemented through User-Defined-Functions;

• Study the effects of considering the viscoelastic property of blood in the velocity and wall

shear stress distributions, and the resulting haemodynamic descriptors which indicate the

tendency for atherosclerosis appearance in patient-specific right coronary arteries.

1.2 Structure of the dissertation

The present thesis is organized as follows: Chapter 2 provides an introduction to the anatomy

and physiology of the cardiovascular system, as well as to the atherosclerotic disease; Chapter 3

focuses on haemodynamics and blood flow, providing all the fluid mechanics concepts which are

dealt with throughout the dissertation; In Chapter 4 the different aspects of blood rheology and

of the mechanical properties of blood are introduced, along with a discussion of some different

viscoelastic constitutive models; In Chapter 5 the methodology applied in all numerical simula-

tions is exposed, while introducing the workings behind the User-Defined Functions of ANSYS

Fluent and their usage to implement rheological models not present in the software; In Chapter 6

results for the velocity and wall shear stress distributions of the implemented rheological models

are presented and discussed for both idealized and patient-specific geometries; Finally, Chapter 7

includes a summary of the present work as well as the conclusions of this thesis, along with some

suggestions for future work.



Chapter 2

Cardiovascular system

A basic understanding of the anatomy and physiology of the cardiovascular system is needed to

achieve the objective of cardiovascular modelling. In this chapter a very brief introduction to the

subject will be made, focusing in the mechanical properties of the system and the aspects which

will be discussed in following chapters.

The cardiovascular system is composed by the heart, which acts as pump and is responsible

for the circulation of blood, and a closed network of blood vessels that convey blood to the body

(arteries), afterwards draining it to the heart (veins). Figure 2.1 shows a simplified representa-

tion of this system. The cardiovascular system contributes to homeostasis of other body systems

by transporting and distributing blood throughout the body to deliver materials (such as oxygen,

nutrients, and hormones) and carrying away wastes [2, 7].

2.1 Heart

The heart is a muscular organ made almost entirely of myocardium. It has four cavities: the upper

left (LA) and right (RA) atria, and the lower left (LV) and right (RV) ventricles, responsible for

the main contraction and propelling of blood into the arteries. The upper cavities, the atria, are

connected to the lower ones, the ventricles, through the tricuspid valve (TV) on the right side

and the mitral valve (MV) on the left side . The heart is composed by two synchronized parallel

pumps. The one on the right collects deoxygenated blood in right atrium, from the systemic veins

superior (SVC) and inferior (IVC) vena cava, passes to the RV and perfuses the lungs through the

pulmonary valve (PVv) into the main pulmonary artery (PA). The left side collects oxygenated

blood from the pulmonary veins (PV) into the left atrium, passes through the MV to the LV and

perfuses the rest of the body through the aortic valve (AV) and into the aorta (Ao) (Figure 2.2) [1].

2.1.1 Cardiac cycle

The heart beat is a two stage pumping action with a duration of approximately one second. The

systole is the period when the heart cavities contract and blood is ejected. The opposing period

3



4 Cardiovascular system

Figure 2.1: Schematics of the cardiovascular system. Adapted from [1].

is the diastole, when there is a relaxation of the myocardium and the heart fills with blood. The

diastole occupies approximately two thirds of the cardiac cycle.

When the ventricular systole begins, the pressure in the ventricles increases rapidly, exceeding

the pressure in the atria and causing the connecting valves to close. As all the valves are closed

and blood is incompressible this will enable an even faster increase in pressure, forcing the aortic

valve (or the pulmonary valve in the case of the right side of the heart) to open and the blood to be

expelled. After a short time the myocardium begins to relax and the pressure difference between

the left ventricle (LV) and the aorta (Ao), and the right ventricle (RV) and the pulmonary artery

(PA), reverses, becoming positive. This positive pressure gradient decelerates the flow, which

eventually starts to reverse. To stop this flow reversal the AV and PVv valves close. When the

diastole is over and the pressure in the ventricles is lower than in the atria, the MV and TV open,

beginning the ventricular filling [2, 1].

2.2 Vascular networks

There are five main types of blood vessels: arteries, arterioles, capillaries, venules and veins. As

already mentioned, the primary purpose of the arterial and venous vessels is to carry blood to

and from the various tissues. Arteries carry blood away from the heart to other organs. These

branch and divide into even smaller arteries called arterioles. Upon entering contact with a tissue,

arterioles branch into multiple vessels called capillaries. These reunite to form venules which then
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Figure 2.2: Schematics of the gross anatomy of a cross section of the heart. Adapted from [1].

progressively enlarge to form veins. Veins are vessels that convey blood from the tissues back to

the heart [7].

2.2.1 Right Coronary Artery

Due to the multiple layers that make up the heart walls, nutrients from the blood within its cavities

are not able to diffuse fast enough to supply the heart. For this reason, the myocardium has its own

set of blood vessels known as coronary circulation. There are two coronary arteries, left and right,

that branch from the ascending aorta and encircle the heart (Figure 2.3), transporting oxygenated

blood during the relaxation of the myocardium. The right coronary artery (RCA) supplies small

branches to the right atrium, ultimately diving into the posterior ventricular and marginal branches

[2].

2.3 Atherosclerosis

There are several types of cardiovascular diseases, such as heart failures, genetic disorders or

diseases due to the blockage of blood vessels. Blockages in the heart are commonly called heart

attacks, while blockages in the brain are called strokes. Together they compromise almost half of

all deaths, making cardiovascular diseases the leading cause of death in developed countries [1].

In particular, coronary artery disease (CAD) affects about 7 million people annually. CAD results

from the accumulation of atherosclerotic plaques in coronary arteries, leading to a reduction in

blood flow to the heart [2]. Atherosclerosis is the progressive formation of plaques on the arterial
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Figure 2.3: Anterior view of coronary arteries [2].

walls due to the accumulation of fatty material, fibrous elements and calcium (Figure 2.4). This is

a progressive disease that can take decades until the appearance of any symptoms, such as chest

pain or even heart attack and blood vessel ruptures, due to the obstruction of the stenosis. Although

atherosclerosis can also occur in arteries outside the heart, it is more common in coronary arteries

and it is close to unknown in pulmonary arteries or in the venous system. This apparent behaviour

could be explained by the strong focal nature of this lesion, which is commonly found in bends in

tortuous arteries and on the outer walls of bifurcations.

(a) (b)

Figure 2.4: Transverse section of a normal artery (a) and one partially obstructed by an atheroscle-
rotic plaque (b). Adapted from [2, 1].



Chapter 3

Haemodynamics

Haemodynamics is the study of blood flow in the cardiovascular system discussed in Chapter 2.

The circulatory system is composed by a pump - the heart - and multiple branching tubes (the

blood vessels) where blood flows [8]. The arterial blood flow in the human body is typically a

multiphase non-Newtonian pulsatile flow. In order to gain further insight into this system and the

dependencies of blood flow, it is helpful to start by introducing some notions in the mechanics of

fluid flow.

3.1 Fluid mechanics and blood flow

Flow can be characterized as either steady or unsteady. A flow can be said to be steady if the flow

velocity is constant in time at every location [9]. Blood flow shows, however, a high degree of

unsteadiness due to its pulsatile nature.

Another way to describe fluid flow is by introducing the notion of laminar or turbulent flows.

This distinction is usually done by association of a dimensionless parameter, the Reynolds number,

that physically represents the ratio of inertial forces to viscous forces. If a pipe of characteristic

diameter D is considered, the Reynolds number, ReD, for an internal flow of mean velocity U is

given by:

ReD =
ρUD

µ
(3.1)

where µ is the dynamic viscosity of the Newtonian fluid and ρ its density. The suffix D

indicates that the reference length in use is the diameter but this could be changed in different

geometries for another characteristic length. In laminar flow the fluid motion is smooth and or-

dered, while in turbulent flows there are unpredictable variations in velocity. If the flow in a pipe

is still considered, it is only the fluid velocity that will determine the character of the flow, as the

characteristic length is unchanged and the fluid properties are considered constant. For laminar

flow in a pipe there will only be a single velocity component, along the axis, and although the flow

7
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may be unsteady this time variation will be predictable. For turbulent flows, the main component

for velocity will still be along the pipe but it will be accompanied by random components normal

to the pipe axis that represent the unpredictable small disturbances to the velocity field [9, 8].

With large Reynolds numbers, the inertial forces become dominant over viscous forces and the

transition from laminar to turbulent flow will occur.

In uniform large arteries, the Reynolds number is high but usually within the laminar range.

However, as the Reynolds number is highly dependent of geometry, turbulence may still occur in

large enough arteries, stenosed regions, bifurcations and narrow openings [8].

3.1.1 Steady Laminar Flow in a Uniform tube

One of the first studies trying to relate blood flow rate to the imposed pressure gradient is due to

J.L.M. Poiseuille [10]. By considering a circular tube of diameter D and length L with a driving

pressure ∆P, the flow rate Q can be given by the following relationship known as Poiseuille’s law:

Q =
π

128
∆PD4

Lµ
(3.2)

The relationship in Equation (3.2) is only true when the tube is rigid and of constant cross

section, the fluid is Newtonian and under a steady laminar flow, not subject to any entrance effects

(disturbances associated to the entrance of the fluid in the tube).

3.1.2 Governing Equations for the motion of fluids

The governing equations that describe the motion of fluids are used in differential analysis of

infinitesimal control volumes and are rather complicated non-linear partial differential equations

with no exact solution except in some particular cases [9].

In a complete analysis of fluid motion, there is a need to establish a relationship between the

stresses acting upon the fluid and velocities. For incompressible Newtonian fluids, i.e., Newtonian

fluids with a constant density ρ even when under compression, the normal stresses are given by

the Cauchy stress tensor T and can be expressed as:

T =−pI+τττ (3.3)

where τττ is the extra stress tensor associated with the viscosity of the fluid, I is the identity matrix

and p is the pressure, an isotropic force that acts equally in every direction and is always normal

to a surface. The pressure portion of the tensor I can be written as:

 pressure

contribution

to I

=−

p 0 0

0 p 0

0 0 p

=−pI (3.4)
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When the fluid is at rest, T becomes -p I, the hydrostatic pressure [9, 11].

Newtonian fluids follow Newton’s law of viscosity. This law states that the extra stress tensor

τττ is proportional to the symmetric part of the velocity gradient, D:

τττ = 2µD (3.5)

D =
1
2
(∇u+∇uT ) (3.6)

D is also known as strain rate tensor, and µ is the already introduced dynamic viscosity of the

fluid [9].

Taking into account the principles of conservation of mass and conservation of linear mo-

mentum for an incompressible fluid and by using the definition of τττ given in Equation (3.3), the

governing equations used in flow dynamics can be expressed as:

∇ ·u = 0 (3.7)

ρ

(
∂u
∂ t

+u ·∇u
)
=−∇p+∇ ·τττ (3.8)

where u is the velocity vector. These are the well known incompressible Navier-Stokes Equations

that form a system of four partial differential equations (PDEs) that must be solved for the un-

known variables p and u with proper initial conditions and boundary conditions. Solving this set

of equations represents one of the most common flow modelling techniques known as Computa-

tional Fluid Dynamics. These governing equations can also describe fluids with non-Newtonian

behaviour. This can be done by using a different constitutive equation or rheological model to

describe τττ , such as the ones further introduced in Section 4.3.2.

The derivations of the continuity equations and of the equation of motion, Equations (3.7) and

(3.8), as well as the principles of conservation of mass and conservation of linear momentum can

be found in common fluid mechanics text books [9].

3.1.3 Normal stress differences

When dealing with incompressible non-Newtonian fluids such as blood, it is not possible to

achieve separate measurements for the different stress components Tii, τii and for the pressure

p. This is because the density of an incompressible fluid is (almost) not affected by pressure. If

the pressure part of Tii was sought for such a fluid, there would be a need for an independent and

accurate measurement of density.

The problem of this separation is not encountered in Newtonian fluids as the normal com-

ponents τxx,τyy and τzz are zero. However when considering non-Newtonian fluids, without the

ability to obtain an independent measurement of p it is not possible to obtain all the components

of τττ [11, 12].
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Rheologists found a way around this problem by considering normal stress differences instead

of normal stresses [11].

N1 ≡ Txx−Tyy = τxx− τyy (3.9)

N2 ≡ Tyy−Tzz = τyy− τzz (3.10)

where N1 and N2 are the two independent quantities known as first and second normal stress

differences, formed by the three normal stress components.

3.1.4 Oscillatory flow and Womersley number

As already discussed, blood flow has an unsteady nature, due to the pulsatile pumping action of

the heart [8]. The velocity waveforms generated by the heart are complex but can be reproduced

by considering a periodic flow of sinusoidal form and frequency ω (the cardiac frequency). This is

usually done by the use of the Womersley number, Wo, a non-dimensional flow parameter defined

as:

Wo = R
√

ρω

µ
(3.11)

where R is the pipe radius. Values for the Womersley number close to 1 are associated to

nearly parabolic velocity profiles, while for higher values of Wo the velocity profiles are blunted

in the middle, as seen in Figure 3.1.

If an harmonic pressure gradient is considered, given by ∂P
∂x = Aeiωt , as a function of time t,

then the fully developed velocity profile is:

u(r, t) =
AR2

iµWo2

(
1−

Jo
(
i3/2Wo r

R

)
Jo
(
i3/2Wo

) )eiωt (3.12)

where r is the radial distance from the axis, i indicates the imaginary unit and Jo the first order

Bessel function [8, 13, 3].

3.1.5 Wall shear stress

Wall shear stress (WSS) is defined as the tangential component of the surface force at the vessel

wall, acting against the fluid flow [14, 15]. The traction can be calculated at the wall as t = T · en

if both the stress tensor T and the unit normal vector en are taken at a point on the wall surface.

The WSS vector can then be defined as the tangential component of this wall traction as:
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Figure 3.1: Sequences of velocity profiles in a tube with a sinusoidally varying pressure gradient,
for indicated values of Womersley number. Adapted from [8].

WSS = t− (t · en)en (3.13)

3.2 Haemodynamic descriptors

Haemodynamic descriptors are parameters used to summarize haemodynamic behaviour. Most of

these descriptors are WSS-based, as WSS is one of the most used parameters in the description of

blood flow. Its correlation to cardiovascular diseases is done through the analysis of its temporal

and spacial variations during the cardiac cycle [15, 3]. Numerical studies that use this type of

descriptors have been a powerful auxiliary tool for the prevention and treatment for atherosclerosis

disease.

The first haemodynamic descriptor to be mentioned is the TAWSS - Time Averaged Wall Shear

Stress, which evaluates the mean value of the WSS magnitude
(

WSS =
√

WSS2
x +WSS2

y +WSS2
z

)
along the cardiac cycle through the following expression:

TAWSS(s) =
1
T

∫ T

0
|WSS(s, t)| dt (3.14)
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where T is the cardiac cycle duration and s refers to the location. Lower values for TAWSS, below

0.4[Pa], indicate a higher probability of plaque formation [3].

OSI - Oscillatory Shear Index is a dimensionless parameter that describes the disturbed flow

near surfaces by taking into account the spatial variation of WSS over the cardiac cycle. This

haemodynamic descriptor ranges from 0 (no oscillation, WSS is unidirectional) to 0.5 (highly

disturbed flow with 180º deflections) [3].

OSI(s) = 0.5

1−

∣∣∣∫ T
0 WSS(s, t) dt

∣∣∣∫ T
0 |WSS(s, t)| dt

 (3.15)

Lastly the RRT - Relative Residence Time descriptor indicates the residence time of particles

near the arterial wall. This haemodynamic descriptor is directly depent on the OSI and inversely

dependent on the TAWSS, making it that wall regions with low values for WSS and with high

variation of WSS direction (high values of OSI) are susceptible to atherosclerosis. RRT values over

the threshold of 8[Pa−1] indicate zones of risk. This parameter is considered to be the strongest

metric of assessing blood flow disruptions [16]:

RRT (s) =
1

(1−2×OSI)×TAWSS
(3.16)

The considerable variations in both space and time of WSS at any given location, specially

when taking into account the complicated geometries of blood vessels and diseased arteries, makes

the interpretation of this parameter extremely difficult. Thus, the application and study of haemo-

dynamic descriptors such as the ones presented is of major importance in the field of patient-

specific computational fluid dynamics.



Chapter 4

Blood rheology

A possible distinction between fluids and solids is based on their behaviour when under external

loads. Fluids can be defined as a substance that continuously deforms (flows) when acted on by a

shearing stress, as opposed to common solids [9].

Rheology deals with the flow of complex fluids, through the study of the deformation and flow

of matter [11], while its objective consists in determining the flow that would be produced due to

applied forces [17].If the fluid in question is blood, the field of investigation is haemorheology.

Most fluids show a behaviour as the one previously described in Chapter 3, where the shearing

stress is proportional to the shear rate by a constant called viscosity or dynamic viscosity, at a fixed

temperature and pressure. This model for fluid flow is also known as Newton’s law of viscosity.

The shearing stress is the force per unit area acting parallel to the surface and the shear rate, or

rate of shearing strain, is the rate of deformation of the fluid translated into its velocity gradient.

This type of fluid is usually designated as Newtonian fluid [9].

However, blood falls under a different category, the non-Newtonian fluids, due to its viscosity

being shear rate dependent [5]. Blood can be considered a multiphase, solid-liquid suspension of

particles (blood cells, the solid-like phase) suspended in plasma (the liquid phase). Despite plasma

showing Newtonian behaviour, blood still has non-Newtonian properties, this being related to its

composition, and should only be modelled has a Newtonian fluid in larger vessels [18].

In addition to what is described in Chapter 3 about haemodynamics, blood flow in arteries

can be approximately described as a multiphase non-Newtonian pulsatile flow through an elastic

tube with small branches. The unsteady nature of blood flow gives way to the necessity of further

studying its time-dependent properties, such as viscoelasticity and thixotropy [5].

4.1 Blood composition

Blood is a suspension of a heterogeneous mixture of cells in an aqueous polymer solution, the

plasma, which represents approximately 55% of the blood volume. Plasma is composed of 93%

water, with the remaining being organic molecules, proteins and ions. The cellular elements of

13
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blood are the red blood cells (RBCs or erythrocytes), white blood cells (WBCs or leukocytes) and

platelets (thrombocytes).

Erythrocytes represent 97 to 99% of the cell volume, and the red blood cell fraction of human

blood is called haematocrit. RBCs have a biconcave discoid shape with a mean diameter of 8 [µm]

and are 2 [µm] thick. Erythrocytes have an average life span of 3 months and are continuously

produced by the bone marrow. The haemoglobin, a protein that is part of its constitution and has

a high affinity to oxygen, makes the main function of erythrocytes the transportation of oxygen

and carbon dioxide. The high concentration of RBCs will be the main factor in blood rheological

properties due to cell deformation and aggregation, and it will be further analysed in the following

section [19, 1].

Leukocytes are globular in shape and as cells they are primarily involved in protecting the

body against infections, having a life span of only a few days. Despite being much larger than

erythrocytes they are less numbered, thus having small effect in the viscosity of blood. However,

they are still determinant in flow in micro-circulation [8]. Platelets are non-nucleated cells, discoid

in shape that are involved in blood coagulation [19].

4.2 Mechanical Properties of Blood

The mechanical properties of blood are highly dependable on its composition and the respective

properties of each component. The presence of these cellular elements and their interactions can

cause significant changes to the rheological characteristics of blood [19].

4.2.1 Viscosity

Normal human blood exhibits non-Newtonian shear-thinning behaviour [18]. This type of fluid is

characterized by an apparent viscosity that decreases with increasing shear rate. At both ends of

the spectrum the apparent viscosity approaches Newtonian behaviour. At low shear rates its value

tends to the zero shear viscosity, µ0, while at high shear rates there is another plateau, the infinite

shear viscosity, µ∞ [17].

Most structured fluids that contain irregularly shaped particles, show a different behaviour at

rest and under shear. At rest the particles are oriented randomly in their minimum energy states.

When under low levels of shearing these particles resist deformation, granting the fluid a high

value of viscosity and in some cases a yield stress. As the shear rate increases the structural units

can either disintegrate forming their initial aggregate or align with the direction of the flow and

deform along the streamlines, thus leading to the reduction of the apparent viscosity [17]. Figure

4.1 shows a schematic representation of these various micro-structures.

The rheological behaviour of blood can also be described in this way. It has a higher viscosity

than plasma, this difference being even more denoted at low shear rates and when the haema-

tocrit rises. At low shear rates the apparent viscosity is high, and it decreases with increasing

deformation, approaching a minimum value under high shear forces, as shown in Figure 4.2.
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Figure 4.1: Schematics of structures in non-Newtonian dispersions at rest and under shear [17].

This is due to RBC in plasma undergoing reversible aggregation (the rouleaux) which then

align with each other interacting to form three-dimensional structures [18, 8]. At low shear rates,

this tendency of RBC is responsible for higher viscosity values, due to the disturbance of the flow

streamlines. With increasing shear forces, these aggregates become progressively dispersed in the

plasma suspension. At higher shear rates, above 400 [s−1], RCBs begin deforming while aligning

with the flow and forming layers, losing their biconcave shape and becoming fully elongated [19].

The effect of haematocrit on blood viscosity can be seen in Figure 4.3.

In addition, it is important to note that the formation of rouleaux depends highly on the solution

in which the RBCs are suspended. There are solutions other than plasma that can induce this

RBC aggregation. However, this has been one of the main setbacks in the measurement of the

rheological properties of blood [18], alongside other properties, such as coagulation of blood

when in contact with air, that can lead to difficulties in the measuring of viscosity [8].

Blood viscosity is also strongly dependent on temperature [19]. The effects can be significant

and as rheological evaluations are usually done under a "room temperature" of 20 to 25 [ºC] as

opposed to the normal body temperature of 37 [ºC], care must be taken when comparing results

[8].

4.2.2 Viscoelasticity

For an ideal elastic solid, stress is directly proportional to strain, with the constant of proportion-

ality being the material’s Young’s modulus, G. A viscous fluid is considered to be elastic when
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Figure 4.2: Average steady shear viscosity (η) of whole blood measured experimentally by Valant
et al. [20].

it has the ability to store and release shear energy. In such fluids with both viscous and elastic

properties, a part of the stress is due to strain and another part due to the strain rate [17]. The dif-

ference between these components is schematically represented in Figure 4.4. This will be further

discussed when looking into the constitutive models for blood, since there will be a need to model

viscoelasticity.

In the case of blood, its viscoelastic properties are primarily dependent on the elastic behaviour

of erythrocytes [21]. The maximum theoretical value of RBC volume concentration without any

deformation is 58%. This means that at normal haematocrit there is little space available for flow

to occur without any cell deformation. In fact, blood flow can only happen because RBCs are

deformable and can slide in low viscosity plasma layers (Figure 4.5) [8, 21].

All these effects are also further increased due to the pulsatile nature of the flow as well as

the elastic properties of the blood vessels. Another important characteristic of the viscoelasticity

of blood is the dependence of the elastic stresses on strain. There is a maximum elastic shear

stress near unit strain, followed by a decrease in the ability to store elastic energy. This decrease

is justified by the dissipation of cell aggregates with increasing shear rates [21].

4.2.3 Thixotropy

There is a large number of definitions for thixotropy. When the subject of study is blood, this

property is usually referred to as the dependence of material properties on the time over which

shear has been applied [19]. The finite time for the microstructural changes in blood - formation

and dissolution of erythrocyte aggregates - is the reason for blood thixotropy. These flow-induced

structural changes require less time at higher shear rates than at lower shear rates [21, 8].
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Figure 4.3: Dependence of blood viscosity on haematocrit [18].

It is important to note that although there are constitutive models including this property of

blood, most only try to recreate its shear thinning and/or viscoelastic behaviour.

4.2.4 Yield Stress

Yield stress is a threshold above which a material will start to flow. This is considered a non-

Newtonian effect as Newtonian fluids always flow when stress is applied [11]. This critical stress

level is typically treated as a material property (constant) of the fluid. However, the different

experimental methodologies used, the definition of yield stress and the duration of the experiments,

give way to fluids having a large range of values for this property. The controversy generated due

to the reasons above stated has led researchers to question the pertinence of classifying yield stress

as a material property. It was later proposed that yield stress should be treated as a function of time,

linked to thixotropy [22].

The reversible formation of rouleaux observed in normal blood is responsible for the existence

of yield shear stress. This property, as expected and like the other main rheological properties of

blood, is highly haematocrit dependent [8]. This dependence is well represented in Figure 4.6.

4.3 Constitutive models for blood

Rheological constitutive equations are laws of flow that define the value of the extra stress tensor

τττ [23, 24]. As already discussed, in large enough vessels, blood shows Newtonian behaviour. Fol-

lowing Newton’s law of viscosity introduced in Section 3.1 this tensor is such that it is proportional

to the symmetric part of the velocity gradient D, also known as strain rate tensor, as described in
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Figure 4.4: Diagram of a small cubical volume of height, H, in shear. The displacement, D, due
to deformation is composed of two parts: an elastic part, E, and a slippage part, S. With constant
force F, E remains constant but S continues to increase. When F is removed, E diminishes to zero
and S remains [21].

Equations (3.5) and (3.6). For a given temperature, pressure and composition, µ , the dynamic

viscosity, is the constant of proportionality in this relationship [11].

4.3.1 Generalized Newtonian Models

This set of equations is commonly used to describe non-Newtonian behaviour, taking into account

the fact that viscosity changes with shear rate for some fluids, such as blood. In Generalized

Newtonian Models (GNM), if the viscosity is to depend on the tensor D, then it must depend on

its invariants, ID, IID and IIID,the first to third principal invariants of the strain rate tensor:

ID = trD (4.1)

IID =
1
2
((trD)2− tr(D2)) (4.2)

IIID = det(D) (4.3)

Figure 4.5: Formation of compacted cell layers separated by plasma layers [21].
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Figure 4.6: Effect of haematocrit on the yield stress of blood [8].

For incompressible fluids ID is equal to zero and for most real fluids IIID is practically zero. If

the shear rate denoted by γ̇ is defined as:

γ̇ =

√
2tr(D2) =

√
−4IID (4.4)

the negative sign under the square root due to the second invariant being negative. Then, the stress

tensor for a generalized Newtonian model can be written in the form of:

τττ = 2µ(γ̇)D (4.5)

where µ(γ̇) is a shear rate dependent viscosity function [24, 25].

There are many popular GNMs used to describe the non-Newtonian properties of blood. The

Power-Law model is one of such models where the viscosity function is given by

µ(γ̇) = mγ̇
n−1 (4.6)

where m and n are positive constants. This model has the Newtonian fluid as a particular case

when n has a unit value. When n < 1 the models shows shear-thinning behaviour while for values

of n > 1 the viscosity increases with shear rate, thus leading to shear thickening fluids.
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Another branch of models are the ones with viscosity functions that can be written in the

general form of:

µ(γ̇) = µ∞ +(µ0−µ∞)F(γ̇), (4.7)

where F(γ̇) is a shear rate dependent function, particular to each model, that satisfies the conditions

lim
γ̇→0

F(γ̇) = 1 (4.8)

lim
γ̇→∞

F(γ̇) = 0 (4.9)

It is important to note that the values of these parameters for blood modeling are highly de-

pendent on temperature[25]. Cho and Kensey [26] propose the following values for ρ f ,µ0 and µ∞

at a temperature of 37 [ºC]: ρ f = 1056 [kg/m3], µ0 = 0.056 [Pa·s], µ∞ = 0.00345 [Pa·s].
Table 4.1 shows some of the shear rate dependent functions along with the corresponding

models.

Table 4.1: Generalized Newtonian models for blood

Model µ(γ̇)−µ∞

µ0−µ∞
= F(γ̇)

Powell-Eyring sinh−1(λ γ̇)
λ γ̇

Cross 1
1+(λ γ̇)m

Modified Cross 1
[1+(λ γ̇)m]a

Carreau [1+(λ γ̇)2]
n−1

2

Carreau-Yasuda [1+(λ γ̇)a]
n−1

a

Provided that the µ(γ̇) function gives a good description of the viscosity data, care still has to

be taken in order to get reliable and accurate results. Bird [24] recommends GNMs to be used in

steady flow in conduits of constant cross section or in systems close to steady-state. These models

should not be used in flows such as blood flow, that change rapidly with time.

4.3.2 Viscoelastic Models

None of the characteristic models presented in the previous sections are able to portray the vis-

coelastic response of blood. Most viscoelastic models derive from the idea to combine viscosity

and elasticity, the latter through Hooke’s law of elasticity [24]. In fact, the first attempt at a simple

linear viscoelastic constitutive equation is attributed to the Maxwell model, defined by:
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τττ +λ
∂τττ

∂ t
= 2µD (4.10)

where λ is a time constant called the relaxation time. Figure 4.7 shows a schematic representa-

tion of the mechanical analogue for this linear model.The spring represents the elastic component,

while the damper represents the viscous forces. τττ is the total force, an analogue for the stress

tensor, given by τττ = γvµ + γeG. The relaxation time λ is given by the ratio between viscosity µ

and elastic modulus G [24].

Figure 4.7: Mechanical analogue of the Maxwell model [25].

Viscoelastic fluids obey the constitutive equation of linear viscoelasticity for small strains.

However this equation is not valid for deformations of arbitrary magnitude and rate, since it vi-

olates the principal of frame invariance [23]. More general constitutive equations, not restricted

by the factors above mentioned, can be obtained by modifying linear viscoelastic models. These

models obtained by replacing the time derivatives by convected derivatives,δ/δ t, are called quasi-

linear models [24]. This would allow the model to be made frame invariant, meaning that the

response of the material is not affected by its location and orientation [23].

The upper-convected derivative is defined by:

δA
δ t

=
5
A =

DA
Dt
−LA−ALT (4.11)

with:

L = ∇u+∇uT = 2D (4.12)

and where:

DA
Dt

=
∂A
∂ t

+
∂A
∂x

dx
dt

(4.13)

is the material time derivative. The Maxwell model in Equation (4.10) can now be reinterpreted

as the upper-convected Maxwell model (UCM):
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τττ +λ
5
τττ = 2µD. (4.14)

Oldroyd’s proposal is the combination of the Newtonian and the Maxwell models, through

the sum of the respective solvent and elastic (or polymer) stresses. If once again we take into

consideration a physical approach, the junction can be said to be in parallel as seen in Figure 4.8.

Figure 4.8: Mechanical analogue of an Oldroyd-type model [25].

Here, the total force τττ is expressed as the sum of solvent τττs and the elastic τττe contributions, as

an analogue to the decomposition of the stress tensor τττ:

τττ = τττs +τττe = 2µsD+τττe (4.15)

where τττe, the elastic stress, satisfies the UCM equation:

τττe +λ
5
τττ e = 2µeD (4.16)

Taking into account the total stress τττ , the model can be rewritten as:

τττ +λ1
5
τττ = 2µ(D+λ2D) (4.17)

where λ1 = λ is the relaxation time, µ = µs +µe is the total viscosity and λ2 = λ µs/µ is the

retardation time. The model in Equation (4.17) is called Oldroyd-B model. This type of fluid can

be considered as a Maxwell fluid with additional viscosity [25].

This constitutive equation, in a steady state shear flow, predicts a constant viscosity, a first nor-

mal stress difference quadratic in the shear rate, and a zero second normal stress difference [11].

The simplicity in the constitutive equation of Oldroyd models gives them great utility. However it

brings about poor approximation to some material functions, such as the prediction of an infinite
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stress at a finite elongational rate, which is not physically realistic [24]. Another downside of the

Oldroyd-B model is that it accounts for the viscoelasticity of blood but not for its shear-thinning

behaviour as in Generalized Newtonian equations.

There are, however, other ways to obtain non-linear viscoelastic constitutive equations that

more accurately represent real material data. The generalized Oldroyd-B (GOB) constitutive equa-

tions introduce a modification to the previous model, including a dependence of the solvent vis-

cosity on the second invariant of the strain rate tensor, i.e., as seen in GNMs a dependence on the

shear rate γ̇ [25]:

τττs = 2µs(γ̇)D (4.18)

The viscosity function can be, for example, any of the ones introduced in Table 4.1.

Another manner to achieve the non-linearity in a model is the inclusion of non-linear stress

terms. Such is the case of the Giesekus model.

τττ = τττs +τττe (4.19)

τττs = 2µsD (4.20)

τττe +λ
5
τττ e +

αλ

µe
(τττe ·τττe) = 2µeD (4.21)

The Giesekus model has an additional parameter, the mobility factor α , and it is a constitutive

equation based on anisotropic drag [23]. It differs from the UCM equation by the quadratic term

in stress. It is the inclusion of this term (τττe ·τττe) that results in more realistic material functions

[24].

This is a shear-thinning viscoelastic model, capable of predicting steady-state shear viscosity

and first and second normal stress differences [23]. It is important to note however, that the intro-

duction of a non-zero second normal stress difference, is not coherent with what has so far been

reported for blood [27].

Along with the non-linear models above mentioned there is also another category called the

network models, that can fit data in extensional as well as shear flow [23]. The Phan-Thien/Tanner

(PTT) constitutive equation falls under this category and is defined by:
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τττ = τττs +τττe (4.22)

τττs = 2µsD (4.23)

f (τττe)τττe +λ
�
τττ e = 2µeD (4.24)

where � is the symbol for the Gordon-Schowalter convected derivative and f (τττe) is a specified

function with two different possibilities:

f (τττe) = 1+
λε

µe
tr(τττe) (4.25)

f (τττe) = exp
(

λε

µe
tr(τττe)

)
(4.26)

ε being the extensibility coefficient. The PTT model with the linear choice for f (τττe), Equation

(4.25), is similar in its prediction to the Giesekus equation, with the exception that the linear PTT

model has a zero second normal stress difference [23, 12].

By replacing of the Gordon-Schowalter convected derivative with the upper-convected derivate

while using the linear form of f (τττe) we get the simplified PTT model or sPTT. This simpli-

fied equation is generally more popular due to the unphysical oscillations in µ that the Gordon-

Schowalter convected derivative brings about, which may be confused with numerically induced

oscillations [23].

All of the non-linear models presented have the shortcoming of having a single relaxation time.

A common approach to remedy this problem that can be used in any of the non-linear differential

constitutive equations, shown in Table 4.2, is the use of multiple modes, each with different time

constants [24].

Table 4.2: Multi-mode forms of the viscoelastic models

Model τττs τττe =
m

∑
k=1

τττek

Oldroyd-B τττek +λk
5
τττ ek = 2µek D

Giesekus 2µsD τττek +λk
5
τττ ek +

αkλk
µek

(τττek ·τττek) = 2µek D

sPTT f (τττek)τττek +λk
5
τττ ek = 2µek D
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Summarizing the above description, there are three different models that will be given a further

in-depth analysis: the Generalized Oldroyd-B and the multi-mode Giesekus and simplified Phan-

Thien/ Tanner models. All these models are capable of depicting non-linear viscoelasticity along

with the shear-thinning properties of blood and will be used in numerical simulations. Haemo-

dynamic results using these models will be compared with those obtained by the more popular

Newtonian (NS) and Generalized Newtonian (GNM) models, in order to move in the direction of

more accurate rheological models for blood.
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Chapter 5

Methodology

The present chapter deals with the methodology applied to all the three-dimensional numerical

simulations performed using ANSYS Fluent. The before mentioned viscoelastic models are not

included in the software but they can be implemented through the use of user-defined functions

(UDFs). The meshing was done using the ANSYS Meshing meshing tool. A series of simulations

were done in idealized geometries in order to simplify the interpretation and study of the different

rheological models.

5.1 Implementation in Fluent

ANSYS Fluent is one of the most popular commercial solvers for CFD applications. Due to the

commercial nature of the software, the only way to modify the governing equations is through the

inclusion of additional source code according to ANSYS Fluent requirements. The extra elastic

stress components and their respective transport equations will thus be treated as a series of partial

differential equations (PDEs) while the tensor’s gradient will be added as a source term in the

Navier-Stokes momentum equations in Equation (3.8).

It is important to note that this implementation translates in an additional set of equations,

one for each component of the stress tensor, that will have to be calculated. In particular, when

using this approach to model the multi-mode constitutive equations, there will be a high increase

in computational load.

5.1.1 UDFs

User-Defined Functions, or UDFs, are functions or subroutines that can be loaded with ANSYS

Fluent allowing the enhancement of the solver’s features. UDFs are programmed in a modified C

language and they are defined using macros provided by ANSYS Fluent that allow access to the

solver data as well as other functions.

These functions allow for the customization of a large amount of features such as boundary

conditions and scalar transport equations. Both types of UDF are used in the setups for the numer-

ical simulations although only the latter being the main focus of this thesis.
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In the interest of understanding how to implement the viscoelastic models of Chapter 4, these

models can be compactly written as:

τi j = τi js + τi je (5.1)

τi js = 2µsDi j (5.2)

τi je =
m

∑
k=1

τi jk (5.3)

with

f (τi jk)τi jk +λk
5
τ i jk +αk

λk

µek

(τink · τn jk) = 2µek Di j (5.4)

where

f (τi jk) = 1+
λkεk

µek

tr(τi jk) (5.5)

In Equation (5.3) the number of modes in the constitutive equations is referred to as m. In this

work the Oldroyd-B viscoelastic model implemented shows only a single mode, leading to m = 1.

In the case of both the multi-mode Giesekus and sPTT models m is equal to 4.

Adjusting the coefficients αk and εk in each mode as described in Table 5.1, it is possible to

get the different constitutive equations. Here the PTT models come as an exception, as only the

linear simplified one is represented.

Table 5.1: Coefficients for the different viscoelastic constitutive equations

Model αk εk

Oldroyd-B 0 0
Giesekus − 0
sPTT 0 −

Using the definition of the upper convected derivative in Equation (4.11), while using Einstein

notation for compactness, the following is achieved:

5
τ i jk =

∂τi jk

∂ t
+un

∂τi jk

∂xn
− τn jk

∂ui

∂xn
− τink

∂u j

∂xn
(5.6)

Replacing Equation (5.6) in Equation (5.4) and reordering the terms, leaving only the upper

convected derivative on the left side, it is possible to get:
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∂τi jk

∂ t
+un

∂τi jk

∂xn
− τn jk

∂ui

∂xn
− τink

∂u j

∂xn
=

2µek Di j

λk
− 1

λk
f (τi jk)τi jk −

αk

µek

(τink · τn jk) (5.7)

These stress components can now be added to the solver as User-Defined Scalars (UDS) trans-

port equations. The scalar equations are solved by Fluent after defining the diffusion coefficient,

and the convective flux and unsteady terms. As there is no diffusion term present in the viscoelas-

tic models, after setting this parameter to zero in Fluent, by default any UDS comes in the form

of:

∂φk

∂ t
+unρ

∂φk

∂xn
= Sφk where k = 1, ...,N scalars (5.8)

with ∂φk
∂ t being the unsteady term and unρ

∂φk
∂xn

the convected term, solved in Fluent to obtain

user-defined scalars. To allow the fitting of the viscoelastic models in this way there is a need to

modify the convected coefficient, unρ , for it to match the one in Equation (5.7), i.e., changing the

coefficient to un. This customization can be achieved through another UDF function that will be

later activated in the UDS window in Fluent.

If Equation (5.7) is once more rearranged, it can now be applied in the form of Equation (5.8)

where:

∂τi jk

∂ t
+un

∂τi jk

∂xn
= Sτi jk

(5.9)

and the sources are defined for each stress component, and for each mode, as:

Sτi jk
=

2µek Di j

λk
− 1

λk
f (τi jk)τi jk −

αk

µek

(τink · τn jk)+ τn jk
∂ui

∂xn
+ τink

∂u j

∂xn
(5.10)

As the elastic stress tensor for the constitutive equations is symmetric over the diagonal, that

is, τi jk = τ jik , for a three-dimensional case there is only the need to calculate six components for

each mode.

The last step is now to analyse the Navier-Stokes equations, through the modification of the

basic conversion of momentum equation, Equation (3.8), as to include the decomposition of stress

tensor τττ . The solvent contribution, τττs, is already included and is the one generally calculated by

Fluent, either with constant viscosity or with a shear dependent one. As such there is only the

need to account for the elastic parts of the stress, that were already calculated as scalars. This can

be achieved through the addition of the divergence of the extra stress tensor τττe as sources to the

momentum equations, known in Fluent as momentum sources.
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SMx =
m

∑
k=1

∂τxnk

∂xn
(5.11)

SMy =
m

∑
k=1

∂τynk

∂xn
(5.12)

SMz =
m

∑
k=1

∂τznk

∂xn
(5.13)

5.1.2 Blood properties and model parameters

Blood was considered an isotropic, homogeneous, non-Newtonian viscoelastic fluid with a con-

stant density [28], ρ f , of 1056 [kg/m3]. The viscoelastic models were first directly compared to

a purely Newtonian solution (NS) with a constant viscosity µ f = 0.00345[Pa · s] and to a purely

shear-thinning one. The Carreau model shown in Table 4.1 was used to account for this behaviour.

Blood can be fitted to this model with the parameters in Section 4.3.1 along with a relaxation time,

λ , of 3.313 [s] and a characteristic constant of the flow, n, of 0.3568 [26, 5].

Numerical simulations for the Generalized Oldroyd-B model (GOB) were performed using the

already introduced Carreau model for the solvent viscosity, as well as the following parameters for

the elastic components [29]: µe = 4.0×10−6 [Pa ·s] and λ1 = 0.06 [s]. Once again, it is important

to note that the GOB constitutive equation used is not a multi-mode one, thus only having a single

combination of parameters.

The viscoelastic Giesekus and sPTT models were both implemented in multi-mode form with

the corresponding fits by Campo-Deano [27], shown in Table 5.2.

Table 5.2: Parameters of the multi-mode Giesekus and sPTT model fits for whole human blood
[27]

Giesekus sPTT

Mode µek [Pa · s] λk [s] αk µek [Pa · s] λk [s] εk

1 0.05 7 0.06 0.05 7 0.2
2 0.001 0.4 0.001 0.001 0.4 0.5
3 0.001 0.04 0.001 0.001 0.4 0.5
4 0.0016 0.006 0.001 0.0016 0.006 0.5

Solvent µs = 0.0012 [Pa · s] µs = 0.0012 [Pa · s]

5.2 Idealized Geometry

The first numerical simulations were performed to model blood flow in three-dimensional ideal-

ized geometries of right coronary arteries. Particularly, the bifurcation zone was chosen, as the
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Figure 5.1: Idealized vessels.

flow separation that occurs here would lead to higher velocity gradients. Three geometries were

used in order to achieve different flow behaviour. One is an asymmetric bifurcation, with the re-

maining geometries being of stenosed arteries only differing in the location of the stenosis. In one

geometry the stenosed region is located after the bifurcation, as in the remaining one the stenosis

is present before the junction. All geometries share common parameters that were specified for

the parent and daughter vessels, such as branching angles, diameters and lengths.

The 2D schematics, taken along the middle plane for the different geometries, are shown in

Figure 5.1 where D1 = 3 [mm], D2 = 2.5 [mm] and D3 = 1.5 [mm]. The length for every branch is

five times the diameter of the parent vessel, L = 5×D1, while both stenosed regions correspond

to a 40% reduction in diameter.

5.3 Mesh convergence analysis

The discretization of the fluid domain was realized using the automatic meshing algorithm existent

in Workbench, ANSYS Meshing. All the geometries were meshed as seen in Figure 5.2, using

the Tetrahedrons Patch Independent Method, as implemented by Pinho et al. [30], along with a

refined mesh near the walls through the use of inflation. The need to further refine the mesh in

this region comes from the main objective of this study, which is to analyse WSS haemodynamic

descriptors in arterial walls.

A mesh convergence analysis was performed in order to ensure accurate and mesh independent

results, as is the common practice in most CFD studies. In order to evaluate the grid performance

for the meshes generated, initial simulations were made, increasing the number of elements in

each mesh approximately by a factor of 2. Three meshes were generated in these tests for the

idealized stenosed artery where the stenosis is present after the bifurcation. This choice is due to

the increased complexity of the geometry in the throat region, in either the meshing process or

the consequent flows, when compared to the simply bifurcated one. The simulations consider the

multi-mode Giesekus viscoelastic model as to guarantee an appropriate behaviour when modelling

the extra stress tensor.
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(a)

(b)

Figure 5.2: (a) Example of the mesh obtained for one of the idealized geometries with stenosis.
(b) Detail of the inflation layers.

Mesh sensitivity was analysed, as by Pinho et al. [28], through the Skewness parameter. This

is a Mesh Quality Metric provided by the software which refers to face proximity and the cell’s

angles. Skewness can vary from 0 to 1, where values closer to the upper limit are indicative of

poor mesh quality. In Figure 5.3, results for the different meshes were also compared in terms

of velocity profiles taken in the parent vessel and also after the throat region where there is the

appearance of a recirculation zone. Table 5.3 provides the key mesh parameters for the meshes

used.

It is possible to verify from Figure 5.3 that there is only a negligible difference in the velocity

profiles for the different meshes in the first position, i.e., when in a zone with a fully developed

profile. In this case, even the coarser mesh with approximately 150 000 elements shows accurate

result despite it’s maximum skewness value being close to the acceptable maximum of 0.9 [30].
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Figure 5.3: Idealized stenosed artery schematics. Red dashed lines indicate the velocity profiles’
position (left). Velocity profiles along the mid plane of the artery for different mesh sizes (right).

When looking at the recirculation zone after the stenosis the results provided by the coarser

mesh show a very large discrepancy from the finer meshes. In particular when away from the re-

fined areas near the walls, there is an over-prediction of approximately 12% in the velocity fields.

The behaviour for the medium mesh, 300 000 elements, is satisfactory, showing maximum devia-

tions from the finer mesh, 600 000 elements, in the order of 5%. Taking into account the previous

arguments and the reduced value for maximum skewness, the mesh with 300 000 elements was

found sufficient and is used to perform the simulations.
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Table 5.3: Number of elements and maximum and average Skewness for each mesh

Mesh #Elements maxSkewness avgSkewness

1 139 651 0.797 0.192
2 294 982 0.699 0.172
3 586 075 0.706 0.150

5.4 Boundary conditions

For the models to be solved there is a need to provide the flow parameters and appropriate bound-

ary conditions.

With respect to boundary conditions for the modified Navier-Stokes equations, there is a need

to prescribe the velocity at the inflow boundary (inlet). In this case, to simulate the pulsatile

nature of blood, a time-dependent Womersley profile already described in Section 3.1.4, was im-

plemented. The Womersley number was taken for the radius values of the geometries used, in

this case R1 =
D1
2 = 1.5 [mm] and with a blood density ρ f = 1056 [kg/m3]. The blood dynamic

viscosity µ f was considered equal to 0.00345 [Pa · s] and the cardiac frequency was calculated

for a period T of 0.74 [s] (the total time of the cardiac cycle) such that ω f =
2π

T = 8.48 [rad/s].

This resulted in a velocity profile with a Womersley number (Wo) equal to 2.40. For the outflow

boundary condition a time-varying pressure profile was imposed, simulating the blood pressure

during a cardiac cycle.

Both boundary conditions shown in Figure 5.4 have usual values for right coronary arteries

and were implemented and added to Fluent as UDFs, as by Pinho et al. [3].

Figure 5.4: Mean time-dependent velocity imposed at the inlet and time-dependent pressure profile
imposed at the outlets.
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On the vessel walls homogeneous Dirichlet conditions were imposed for the velocity, i.e., no-

slip condition, expressing that the velocity at the wall is the wall velocity (stationary). This is

appropriate due to the consideration of rigid walls.

The extra stresses for the viscoelastic models also need the prescription of boundary condi-

tions. Homogeneous Neumann boundary conditions are imposed for the components of the extra

stress tensor at all boundaries.

5.5 Numerical methods

A finite element approach has been adopted for the numerical solution of the blood flow models.

As already discussed, all the numerical simulations were performed in Workbench ANSYS, with

the Fluent software in double precision mode. No parallel computations have been performed

due to the extensive use of UDFs. The CFD model was set up for unsteady flow due to the time-

dependent nature of the models at hand. At each time-step (5× 10−3[s]) the velocity-pressure

coupled equations were solved with the SIMPLE algorithm. The momentum and UDS equations

were discretized by the second order upwind scheme. A convergence criteria of 1× 10−4 was

used.
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Chapter 6

Results and discussion

The models described in Section 4.3.2 were used to investigate the influence of shear-thinning

and viscoelastic effects on the behaviour of blood flow in different idealized geometries, under

physiological conditions. To further highlight these effects, the solution for the Newtonian and

Generalized Newtonian models were also obtained, under the same conditions. They are used as

references and for direct flow comparison.

6.1 Flow Fields

Figures 6.1 to 6.3 show the axial velocity contours at the systolic peak, maximum velocity of

the cardiac cycle, taken in the symmetry plane for the five different rheological models, in each

geometry.

A simple analysis of the flow fields allows for the identification of common characteristics

of fluid flows in asymmetric bifurcations. By observing the simpler geometry in Figure 6.1, it is

possible to see that the flow divides in two streams at the divider, forming a boundary layer at the

inner walls of each daughter vessel. This is due to each diving stream turning a corner of finite

radius of curvature when entering the respective secondary vessel and gaining characteristics of

flow in curved vessels, i.e., faster moving flows at the outer walls. It is also possible to see the

occurrence of flow separation in the branch with a smaller diameter. The sharper angle at the

outer wall of the branch along with the larger flow rate in the other daughter vessel being the

cause of this separation [31]. The appearance of stenosed regions as seen in the geometries of

Figures 6.2 and 6.3 will also result in additional recirculation zones. In fact, in the case where

the stenosis is located right before the bifurcation, this will lead to very complex flows and to

an increase of the recirculation region. As expected, at the neck of the stenosis there is also

flow acceleration, explaining the disparities in maximum velocity between the stenosed and non-

stenosed geometries. This flow acceleration induces a reduction in the local pressure and in cases

of higher grades of stenosis (larger reduction of the cross-section area) the pressure can be lower

than the external pressure. In extreme cases, this effect results in the collapse of the arteries [31].
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By looking into the different rheological models, the Newtonian flow shows higher velocity

values across the different geometries when compared to the non-Newtonian and viscoelastic mod-

els. Whereas the multi-mode Giesekus and simplified Phan-Thien/ Tanner flows result in overall

lower velocities.

6.2 Direct Flow Differences and Comparison

To gain further insight into the behaviour of the different constitutive models and allow for easier

comparison, the direct difference between each pair of solutions where plotted. To emphasize the

flow regions where the solutions are similar, grey colours where used in custom colour scales (with

physical units in [m/s]), while warm and cold colours represent large differences in the solutions.

As the results shown for the different geometries have been found coherent, the idealized artery

with a stenosed region after the bifurcation was chosen for the analysis while the remaining plots

can be found in Appendix A.

Viscoelastic and shear-thinning effects can be observed in Figure 6.4 where the Newtonian so-

lution (NS) was subtracted to the Carreau, Generalized Oldroyd-B (GOB), Giesekus and simplified

Phan-Thien/ Tanner (sPTT) models. The shear-thinning effects become evident when comparing

the Carreau and the Newtonian solutions (Figure 6.4a). The axial velocity is slower in the core

regions (negative difference) of the flow, due to this being a region of low shear rate, and faster

(positive difference) or similar (grey areas) near the walls. The non-Newtonian shear-thinning ef-

fects become less evident with the increase of shear rate close to the walls as the viscosity becomes

close to the value µ∞ - equal to the characteristic viscosity chosen for the Newtonian case.

The combined viscoelastic and shear-thinning effects can be depicted by observing the dif-

ferences between the viscoelastic models and the Newtonian solution. The similarity between

the subtracted GOB and NS models (Figure 6.4b), and the Carreau and NS models (Figure 6.4a),

seems to indicate that shear-thinning effects in the solvent contribution of the Generalized Oldroyd-

B model are more pronounced than the viscoelastic ones.

When looking into the case of the differences between the Giesekus and sPTT models with

respect to the Newtonian flow (Figure 6.4c and d), these show a similar behaviour before the

bifurcation (and the stenosis). However, the impact of the viscoelasticity in the flow is clearly

present in the regions after the bifurcation, where there are higher velocity gradients and the elastic

extra stress tensor, τeτeτe, contributes to flow acceleration/deceleration [32]. The recirculation region

after the stenosis is also larger for Newtonian flow. Both the shear-thinning and viscoelastic fluid

behaviour tend to reduce this region [32], as seen due to the presence of higher velocities.

A more detailed comparison of the implemented viscoelastic models can be obtained when

looking into the differences between all the non-Newtonian models in Figure 6.5. Here the large

similarity between the viscoelastic shear-thinning GOB model and the purely shear-thinning Car-

reau model (Figure 6.5a) is confirmed. It can be concluded that the influence of viscoelasticity in

GOB model is reduced. However, as it is to be expected of multi-mode solutions, the viscoelastic

effects in the Giesekus and sPTT models show a greater degree of significance when compared
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to the (single mode) GOB model (Figure 6.5c and d). This is, once again, especially pronounced

in the regions after the bifurcation and after the stenosis, resulting in flatter velocity profiles. It is

also important to note that the solutions for the Giesekus and sPTT have been found near equiv-

alent (Figure 6.5b). As already mentioned in Section 4.3.2, and according to Campo-Deano [27],

although the Giesekus model shows a better fit to the viscosity of blood, it introduces a non-zero

second normal stress difference, which so far has not been reported for blood. Thus, the sPTT

model becomes the best option for further applications, as will be the case in a subsequent section.

Figure 6.6 represents the systolic velocity profiles taken for the non-Newtonian models before the

bifurcation, at the bifurcation and after the stenosis. It is now possible to see in detail the al-

most complete overlap of the GOB and the shear-thinning Carreau models and of the multi-mode

Giesekus and sPTT models. In the velocity profiles before the bifurcation, the increased flattening

of the latter pair of models is already apparent. However when moving into the bifurcation area

and the region after the stenosis the previous effect is even further denoted.
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Figure 6.1: Axial velocity contours in the non-stenosed idealized right coronary artery for the
different Newtonian and non-Newtonian models.
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Figure 6.2: Axial velocity contours in the idealized right coronary artery with a stenosed region
after the bifurcation for the different Newtonian and non-Newtonian models.
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Figure 6.3: Axial velocity contours in the idealized right coronary artery with a stenosed region
before the bifurcation for the different Newtonian and non-Newtonian models.
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(a) (b)

(c) (d)

Figure 6.4: Axial velocity contours: difference between the non-Newtonian and the Newtonian
solution for the idealized right coronary artery with a stenosed region after the bifurcation. (a)
Difference between the Carreau and the Newtonian models. (b) Difference between the GOB
and the Newtonian models. (c) Difference between the Giesekus and the Newtonian models. (d)
Difference between the sPTT and the Newtonian models.
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(a) (b)

(c) (d)

Figure 6.5: Axial velocity contours: difference between the non-Newtonian solutions for the ide-
alized right coronary artery with a stenosed region after the bifurcation. (a) Difference between
the GOB and the Carreau models. (b) Difference between the Giesekus and the sPTT models. (c)
Difference between the GOB and the Giesekus models. (d) Difference between the GOB and the
sPTT models.
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Figure 6.6: Velocity profiles along the mid plane of the artery for different non-Newtonian models.
Red dashed lines in the schematics indicate the velocity profiles’ position.
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6.3 WSS

Although significant differences were found in the velocity fields when taking into account the

viscoelasticity of blood, there was no large influence in the actual flow behaviour or streamline

patterns. However, experimental evidence shows that elasticity has a remarkable effect upon the

stress distribution [33]. While the main goal of this study is the implementation of more accu-

rate rheological models for blood flow, if these are to be used to investigate the mechanics of

atherosclerotic vessels, the effect of these models on WSS distribution is of great importance.

As already mentioned a narrowing of the blood vessel will cause an increase in the wall shear

stress and a rupture may occur. This decrease in the cross-section area of the vessels is known

as atherosclerosis and it has been found that low WSS values lead to a haemodynamic behaviour

more propitious to atherosclerotic plaque formation [3].

Figure 6.7 shows the WSS distribution for the different non-Newtonian solutions. Notice that

the results seen in Figure 6.7 are now of the full 3D geometry, i.e., due to the definition of WSS

itself the results are taken and must also be visualized at the surface walls. By analysing Figure 6.7,

it is evident that there are significant differences in WSS magnitude for the multi-mode viscoelastic

models and that once again there is no visible deviation of the implemented Generalized Oldroyd-

B model when compared to the shear-thinning Carreau model. The Giesekus and sPTT solutions

show an overall decrease in WSS. In particular, in the most critical region at the throat of the

stenosis, these models predict peak WSS values close to half the magnitude (51%) of the Carreau

model.

No previous works have been found for the same models or conditions. However, results seem

to be in accordance to similar studies as the greatest differences in WSS are found at highly curved

regions. These are the locations of peak WSS, similar for different models while varying only in

magnitude [34]. Research has been done for other viscoelastic models that found lower WSS

values for a pure Oldroyd-B model than for a shear-thinning Cross model (Section 4.3.1) [35],

while in the present study the WSS values for the viscoelastic Giesekus and sPTT models were

also lower than for the shear-thinning Carreau model.
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Figure 6.7: WSS magnitude in the idealized right coronary artery with a stenosed region after the
bifurcation for the non-Newtonian solutions.
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6.4 Application in patient-specific geometries

The haemodynamic descriptors introduced in Chapter 3 are of extreme importance in the detection

of atherosusceptible regions. Therefore, their prediction must be as close as possible to reality. The

main motivation of the present work was to understand the influence of the usage of more complex

rheological models for blood, which additionally describe its viscoelastic behaviour, in the same

WSS-based descriptors. In this section, the numeric procedure already described and applied to

idealized blood vessels, was used in patient-specific right coronary artery (RCA) geometries. For

idealized geometries the results from the simulations were plotted at a given time step, in this

case the systolic peak. However, for patient-specific data the presented results of the WSS-based

descriptors correspond to a time average along the cardiac cycle.

As already mentioned, the RCA has a very complex geometry. The tortuous nature of this

artery can have a significant impact in haemodynamic behaviour. For this reason, there is a ne-

cessity to use more realist geometric models. Computed tomography (CT) scans of two healthy

individuals, provided by the Department of Cardiology of the Gaia/Espinho Hospital Centre, were

reconstructed into the three-dimensional models following the process described by Pinho et al.

[3]. Blood flow was then simulated, allowing for the comparison of the generalized Newtonian

Carreau model, used in previous works [30, 28, 3], and the newly introduced multi-mode sim-

plified Phan-Thien/ Tanner (sPTT) viscoelastic model. To visualize the differences between the

results by the using the two rheological models, the haemodynamic descriptors were calculated.

The two geometries can be found in Figure 6.8, showing the expected increase in roughness and

curvature as well as in the number of outlets, when compared to idealized vessels. The bound-

ary conditions applied were once more adapted to the three-dimensional models in question by the

Womersley number (Wo), with the values of 3.04 and 2.72, for Patient 1 and 2, respectively. These

were calculated by considering the effective area of the inlet in each geometry and a consequent

equivalent radius.

Figure 6.9 shows the distribution of the haemodynamic descriptor Time-Averaged Wall Shear

Stress (TAWSS). Although usually associated with WSS magnitude and not directly with atheroscle-

rotic plaque formation, regions with low WSS values are considered atherosusceptible [3]. In

particular, regions with TAWSS values under 0.4 [Pa] are critical in nature. Thus, in Figure 6.9

a reverse colour scale was used, where the warmer colours represent these same critical regions.

For both patients, the sPTT model shows critical regions of increased size when compared to the

Carreau model. This was expected due to the reduced WSS values previously found for the vis-

coelastic model (sPTT), in Section 6.3. A simple analysis of TAWSS values under 0.4 [Pa], in

terms of superficial area, shows that when using the Carreau model no percentage of the total

area actually reaches values lower than 0.4 [Pa]. While for the sPTT model, regions susceptible

to plaque formation can be seen, representing 0.20% and 0.72% of the total area in Patient 1 and

Patient 2, respectively. Although the percentage of critical area is low, meaning that both patients

have a reduced tendency for atherosclerosis development, the differences between the models are

notable.
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(a) (b)

Figure 6.8: Reconstructed right coronary arteries: (a) Patient 1 and (b) Patient 2.
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Figure 6.9: TAWSS distribution in the studied RCA cases using two different rheological models
for blood.

The Oscillatory Shear Index (OSI) distribution is shown in Figure 6.10. While it is possible to

see differences between the Carreau and sPTT models, these are not significant. Even considering

the increase of OSI values in certain regions near the bifurcations when the viscoelastic model is

used, low OSI values are common in healthy right coronary arteries. Despite showing increased
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Figure 6.10: OSI distribution in the studied RCA cases using two different rheological models for
blood.

curvature when compared to idealized geometries, the modelled patient-specific arteries can still

be considered to have low tortuosity when compared to most cases. Higher values for this haemo-

dynamic descriptor are usually found in stenosed arteries, due to the higher flow disturbance, but

by itself OSI is usually considered the less relevant of the WSS-based descriptors [3].

RRT appears as the most robust metric for the assessment of regions prone to the appearance of

atherosclerosis, showing the lowest number of false positives, since it is directly dependent on OSI

and inversely dependent on TAWSS [3]. Figure 6.11 shows the Relative Residence Time (RRT)

distribution in both patients. Once again, it is possible to observe a clear increase in the haemody-

namic descriptor values for the viscoelastic sPTT model. When considering the viscoelastic model

in Patient 2, it is even possible to identify a critical region (RRT> 8 [Pa−1]) near the outer wall of

the final bifurcation. As mentioned in Section 2.3, this is a common behaviour, as atherosclerosis

is usually found in high curvature zones and in the outer walls of bifurcations.

Another important point to take note of is the computational time. Due to the choice of a

non-linear multi-mode rheological model, one that is being added as an extra set of equations,

there will be a relevant increase in the computational time. This increase in has an increased

significance when considering larger computational domains, such as patient-specific right coro-

nary arteries. The simulations of the present section were performed in computer with 32 GB of

RAM, powered by an Intel® Core™ i7-7700K Processor with 8M Cache and a base frequency

of 4.20GHz. Regarding the Carreau model the simulations had an average time, for both patients,

of 1.5 hours, while when using the multi-mode viscoelastic sPTT model the computational time

reached an average of 8 hours.
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Figure 6.11: RRT distribution in the studied RCA cases using two different rheological models for
blood.
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Chapter 7

Conclusions

This thesis focuses on the numerical study of blood flow while considering the non-Newtonian

characteristic of blood, viscoelasticity. Three viscoelastic constitutive models for blood where

implemented in the commercial CFD solver ANSYS Fluent. The desired elastic effects were

modelled as additional source terms of the governing equations, through the use of User-Defined

Functions, a way to enhance the solver’s capabilities.

It has been found that through the described means, ANSYS Fluent is capable of modelling

viscoelastic behaviour and is a viable option against other in-house solvers. After the code devel-

opment, the performed simulations were of simple use due to the miscellaneous commodities and

the user-friendly layout of the commercial software package Workbench ANSYS.

In regard to the results obtained, the more popular constitutive models for blood, widely used

by many authors, such as the Newtonian solution and the previously used Carreau shear-thinning

model, were directly compared, in terms of flow behaviour, to those using considering the vis-

coelastic (shear-thinning and elastic) properties of blood. In a first stage, the simulations per-

formed in idealized geometries found that the shear-thinning effects of the solvent contribution

of the Generalized Oldroyd-B model are more pronounced than the viscoelastic ones. This effect

can be seen in the comparison between the solutions for this model and the Carreau model. This

outcome is coherent with similar studies, although not as clear as in the present work, where the

solutions for the models of different nature where found to be almost equivalent. As expected, the

viscoelastic effects were more pronounced for the multi-mode viscoelastic constitutive models,

Giesekus and Simplified Phan-Thien/ Tanner. These models show a general reduction in velocity,

a behaviour that becomes sharper in zones of higher velocity gradients, such as the bifurcations

and the stenosis, as well as smaller recirculation zones. It should also be noted that the results for

the different rheological models where found coherent for the distinct idealized right coronary ar-

teries. As both the Giesekus and sPTT multi-mode models have shown identical results, the sPTT

model has been found the better option for the modelling of the viscoelastic behaviour of blood,

due to its more accurate depiction of the physical properties of blood. The differences between the

viscoelastic constitutive models and the more commonly used Newtonian and Generalized New-

tonian models where found significant. The reduction in velocity seen in the multi-mode models

53



54 Conclusions

results in a decrease of the wall shear stress distribution, the difference in peak WSS values being

close to half the magnitude (51%) of the Carreau model.

In a second stage, using patient-specific geometries of right coronary arteries, the influence of

the chosen viscoelastic rheological model in the haemodynamic descriptors, used in the preven-

tion and diagnosis of atherosclerotic disease, was studied. In both of the two reconstructed right

coronary arteries, the WSS reduction throughout the cardiac cycle resulted in an expected drop in

the values of the Time Averaged Wall Shear Stress parameter. The impact of a viscoelastic con-

stitutive model for blood, the sPTT multi-mode model, on the WSS-based descriptors allows for

the conclusion that this choice of rheological model is indeed justifiable. In fact, and depending

on the geometry, the conclusion of the diagnostic can even change due to the appearance of new

critical regions (atherosusceptible zones), according to the criteria of the haemodynamic descrip-

tors. As such, in order to obtain a more reliable and realistic tool for the prevention and diagnosis

of atherosclerotic disease, the viscoelastic properties of blood should be considered, especially in

smaller arteries and vessels with complex geometries.

7.1 Future works

Despite the extensive work and the interesting results obtained throughout this thesis, some rec-

ommendations for further development should be made.

As already mentioned, no previous works for the numerical simulation of unsteady pulsatile

blood flow, with time-varying pressure profile imposed at the outlets and with a choice of vis-

coelastic rheological models for blood were found. Thus, other simulations, through different

already validated solvers, could be performed under the same current models, conditions and

geometries, in order to compare such results with those obtained in this thesis after the implemen-

tation of the viscoelastic properties.

The developed UDF based code that was implemented in ANSYS Fluent could also be opti-

mized in order to account for parallel computing capabilities. This would result in a considerable

reduction of the computational time of the simulations.

The rheological model for blood should be as accurate as possible. To move a step further on

this topic, more complex models for blood flow could be used. Ideally, in addition to viscoelastic

properties of blood, these models should also reflect the specific mechanisms that affect those

rheological properties. For example, the model developed by Anand and Rajagopal [36] falls under

this category. This model has a thermodynamic framework leading a characterization of blood’s

elasticity, the viscosity of plasma, the formation of rouleaux and their effect on the viscosity of

blood, along with it’s shear-thinning behaviour [36].

Finally, for a more realistic assessment of the blood flow dynamics through the use of nu-

merical simulations, while following a patient-specific approach, the current methodology could

be upgraded by considering realistic arterial wall deformation models that are able to reflect its

mechanical behaviour. This fluid-structure interaction (FSI) analysis can also be done resorting
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to tools included in Workbench ANSYS. Tests considering both FSI and the viscoelastic proper-

ties of blood should be done and compared to those which assume rigid walls. The conclusions

for this comparison would have a special significance as depending on whether FSI (deformable

walls) is found to make a relevant difference on the results or not, there will be a large impact on

the computational time of the simulations.



56 Conclusions



References

[1] Marc Thiriet e Kim H. Parker. Physiology and pathology of the cardiovascular system: A
physical perspective, páginas 1–45. Springer Milan, 2009.

[2] G.J. Tortora e B.H. Derrickson. Principles of Anatomy and Physiology. Wiley, 2015.

[3] N. Pinho, L. C. Sousa, C. F. Castro, C. C. António, M. Carvalho, W. Ferreira, R. Ladeiras-
Lopes, N. D. Ferreira, P. Braga, N. Bettencourt, e S. I. S. Pinto. The impact of the right
coronary artery geometric parameters on hemodynamic performance. Cardiovascular Engi-
neering and Technology, 2019.

[4] Nelson Pinho, Marco Bento, Luisa Sousa, S.I.s Pinto, Catarina Castro, Carlos Conceição An-
tónio, e Elsa Azevedo. Patient-specific study of a stenosed carotid artery bifurcation using
fluid–structure interactive simulation. volume 27, páginas 495–503, 2018.

[5] Fuat Yilmaz e Mehmet Yaar Gundogdu. A critical review on blood flow in large arteries; rele-
vance to blood rheology, viscosity models, and physiologic conditions. KOREA-AUSTRALIA
RHEOLOGY JOURNAL, 20(4):197–211, 2008.

[6] Laura Campo-Deaño, Mónica Oliveira, e Fernando T. Pinho. A review of computational
hemodynamics in middle cerebral aneurysms and rheological models for blood flow. Applied
Mechanics Reviews, 67:030801, 2015.

[7] S. Standring. Gray’s Anatomy: The Anatomical Basis of Clinical Practice. Gray’s Anatomy.
Elsevier Health Sciences, 2015.

[8] O.K. Baskurt, M.R. Hardeman, e M.W. Rampling. Handbook of Hemorheology and Hemo-
dynamics. Biomedical and health research. IOS Press, 2007.

[9] B.R. Munson, A.P. Rothmayer, e T.H. Okiishi. Fundamentals of Fluid Mechanics, 7th Edi-
tion. Wiley, 2012.

[10] J.L. Poiseuille. Recherches expérimentales sur le mouvement des liquides dans les tubes de
très-petits diamêtres. Imprimerie Royale, 1844.

[11] F.A. Morrison. Understanding Rheology. Raymond F. Boyer Library Collection. Oxford
University Press, 2001.

[12] N. Phan-Thien. Understanding Viscoelasticity: An Introduction to Rheology. Graduate Texts
in Physics. Springer Berlin Heidelberg, 2012.

[13] Denis Doorly e Spencer Sherwin. Geometry and flow, páginas 177–209. Springer Milan,
2009.

57



58 REFERENCES

[14] Demosthenes Katritsis, Lambros Kaiktsis, Andreas Chaniotis, John Pantos, Efstathios P. Ef-
stathopoulos, e Vasilios Marmarelis. Wall shear stress: Theoretical considerations and meth-
ods of measurement. PROGRESS IN CARDIOVASCULAR DISEASES, 49(5):307–329, 2007.

[15] Amirhossein Arzani e Shawn C. Shadden. Characterizations and Correlations of Wall
Shear Stress in Aneurysmal Flow. JOURNAL OF BIOMECHANICAL ENGINEERING-
TRANSACTIONS OF THE ASME, 138(1), 2016.

[16] Sang-Wook Lee, Luca Antiga, e David A. Steinman. Correlations Among Indicators of
Disturbed Flow at the Normal Carotid Bifurcation. JOURNAL OF BIOMECHANICAL
ENGINEERING-TRANSACTIONS OF THE ASME, 131(6), 2009. ASME Summer Bioengi-
neering Conference, Marco Isl, FL, JUN 25-29, 2008.

[17] A.P. Deshpande, J.M. Krishnan, e S. Kumar. Rheology of Complex Fluids. Rheology of
Complex Fluids. Springer New York, 2010.

[18] OK Baskurt e HJ Meiselman. Blood rheology and hemodynamics. SEMINARS IN THROM-
BOSIS AND HEMOSTASIS, 29(5):435–450, 2003.

[19] N. Bessonov, A. Sequeira, S. Simakov, Yu. Vassilevskii, e V. Volpert. Methods of Blood
Flow Modelling. MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 11(1):1–
25, 2016.
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Appendix A

Direct flow differences: remaining
geometries

In this Appendix results complementary to Section 6.2 regarding the direct flow differences be-

tween the rheological models are presented.
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(a) (b)

(c) (d)

Figure A.1: Axial velocity contours: difference between the non-Newtonian solutions for the
idealized healthy right coronary artery. (a) Difference between the GOB and the Carreau models.
(b) Difference between the Giesekus and the sPTT models. (c) Difference between the GOB and
the Giesekus models. (d) Difference between the GOB and the sPTT models.
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(a) (b)

(c) (d)

Figure A.2: Axial velocity contours: difference between the non-Newtonian solutions for the ide-
alized right coronary artery with a stenosed region before the bifurcation. (a) Difference between
the GOB and the Carreau models. (b) Difference between the Giesekus and the sPTT models. (c)
Difference between the GOB and the Giesekus models. (d) Difference between the GOB and the
sPTT models.
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Appendix B

Abstracts of articles presented at an
international conference

The following abstracts were accepted and presented in the ICoNSoM 2019 - International Con-

ference of Nonlinear Solid Mechanics, 16-19 June, Roma, Italy and are based on the works of this

dissertation.
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NONLINEAR VISCOELASTIC PROPERTY OF BLOOD FOR 

HEMODYNAMIC SIMULATIONS – CODE DEVELOPMENT 

E. Romano, L.C. Sousa, C.C. António, C.F. Castro, S.I.S. Pinto 

FEUP, LAETA-INEGI, Porto, Portugal 

spinto@fe.up.pt 

 

Hemodynamic simulations have proven to be an auxiliary clinical tool with great potential for 

diagnosis and the development of preventive measures and treatments of cardiovascular 

diseases. Therefore, simulations with complex rheology of blood are of great interest since the 

most accurate hemodynamic is essential for clinical practice. Several authors have used a 

large range of models defining the rheological behavior of blood, ranging from the most 

common Newtonian and Generalized Newtonian models to non-Newtonian viscoelastic 

models. The viscoelastic character of blood is due to the storage and release of elastic energy 

from RBC aggregates. There is a need in the use of models depicting this behavior.  

 

The aim of this study is to take a step forward in the numerical simulation of blood flow 

through the implementation and validation of a more accurate rheological model for blood in 

User-Defined Functions (UDF) associated to the basis of Ansys® software. 3D idealized 

geometries of a stenosed bifurcation in a right coronary artery were used along with time-

dependent velocity and pressure profiles of pulsatile flow and pressure waveforms as 

boundary conditions. Two different nonlinear viscoelastic non-Newtonian models able to 

predict shear-thinning behavior - a Generalized Oldroyd-B model and a multi-mode Giesekus 

model - were compared with a simpler Generalized Newtonian model – Carreau Model. The 

effect of the viscoelastic components of stress can be seen through the axial velocity contours 

in Fig. 1. The biggest impact is generated in the regions with high velocity gradients and 

significant differences were observed when considering Giesekus model relative to Oldroyd-

B or Carreau model. 

 

 
Fig. 1: Velocity contours along the middle plane of the 3D geometry for the different rheological models (top) 

and velocity difference between the Viscoelastic and the Generalized Newtonian (Carreau) models (bottom). 
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WSS DESCRIPTORS IN A PATIENT RCA CONSIDERING 

NONLINEAR VISCOELASTICITY OF BLOOD 

E. Romano, L.C. Sousa, C.C. António, C.F. Castro, S.I.S. Pinto  

FEUP, LAETA-INEGI, Porto, Portugal 

spinto@fe.up.pt 

 

Cardiovascular diseases, such as atherosclerosis development in arteries, are one of the most 

common causes of death in developed countries. The study of blood flow in patient-specific 

cases became highly relevant in clinical practice due to a need for understanding the 

mechanical stresses induced on the vessels. Hemodynamic simulations using computed 

tomography (CT) image-based geometries of blood vessels, with all the conditions as close as 

possible to the patient, has been a powerful auxiliary tool for prevention, diagnosis and 

treatment of atherosclerosis disease. Therefore, authors intend to model, for simulations, the 

most accurate behavior of blood. The rheological behavior of blood in the heart and large 

blood vessels is usually characterized as Newtonian. However, it is well-known that blood is a 

viscoelastic non-Newtonian fluid and should be modeled as such, especially when considering 

the pulsatile nature of blood flow and arteries of smaller size.  

 

The present work is focused on numerical studies of blood flow in patient-specific right 

coronary arteries (RCA), using Ansys® software. The hemodynamic behavior under two 

different rheological models for blood - the Carreau model, a Generalized Newtonian Model 

(GNM), and the multi-mode Giesekus model, a nonlinear viscoelastic non-Newtonian model - 

were compared. These models were already implemented and validated in Ansys® through 

3D idealized geometries. Moreover, pulsatile flow was considered and the time-dependent 

velocity and pressure profiles as boundary conditions. Fig. 1 shows the relative residence time 

(RRT) spatial distribution, the strongest metric for assessing atherosclerotic formation. This 

hemodynamic descriptor indicates the particles’ residence time near the arterial wall. Values 

greater than 8 Pa-1 are considered elevated showing atherosusceptible regions. Using the 

viscoelastic model or the GNM, the critical regions are in similar specific locations. However, 

when the viscoelastic model is considered, these critical regions are larger, meaning a higher 

tendency for atherosclerosis appearance and the importance of the viscoelastic model’s use. 
 

 
Fig. 1: RRT considering GNM (Carreau) and viscoelastic model (Giesekus); and difference between the models.  
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