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Resumo 

Foi apenas no século XX que os cientistas descobriram que a ocorrência de 

terramotos se deve à libertação da energia acumulada nas falhas tectônicas. Esses 

fenómenos naturais ocorrem com diferentes intensidades e escalas. As consequências 

destes fenómenos naturais, que podem ser sentidos a muitos quilómetros de distância 

do epicentro, dependem da magnitude e da profundidade a que ocorrem. É, por isso, 

crucial a delimitação da área afetada por um episódio desta natureza, para evitar riscos 

após o evento, como o desabamento de edifícios.  

 Os desenvolvimentos das técnicas de interferometria RADAR de Abertura 

Sintética (InSAR), na última década do século passado, proporcionaram o cálculo de 

imagens de deformações terrestres (interferogramas) com precisões centimétricas, 

permitindo estudar deformações provocadas por deslizamentos de terra, movimento de 

glaciares, variação dos níveis dos aquíferos e outros perigos naturais e artificiais. 

O lançamento da missão Sentinel-1 A/B, pela Agência Espacial Europeia (ESA),  

possibilitou o acesso a um vasto conjunto de dados SAR à escala global e de forma 

totalmente gratuita. Fazendo uso desta informação, o “Centre for Observation and 

Modelling of Earthquakes, Volcanoes & Tectonics” (COMET), gerou os interferogramas 

sobre as regiões mais ativas do planeta e disponibilizou-os de forma totalmente gratuita 

para serem utilizados por todos os interessados. Tendo em conta que a missão  

Sentinel-1 gera mais de 10 TB de dados por dia, seria impraticável processar e analisar 

toda a informação, através de métodos tradicionais-. A Inteligência Artificial, 

nomeadamente, as técnicas de Machine Learning, apresentam-se como a oportunidade 

para automatizar estes processos de processamento e de análise. 

Esta dissertação teve como objetivo principal explorar técnicas de Machine 

Learning e Deep Learningpara detetetar, de forma automática, deformações da crosta 

terrestre provocadas por eventos sísmicos e identificáveis em interferogramas SAR.  A 

partir dos dados públicos, disponibilizados pelo COMET, foi criado um conjunto de 

dados com anotações das deformações, para treinar e avaliar os modelos de Deep 

Learning. Os resultados alcançados pelos métodos de detecção foram satisfatórios e 

corroboram a ideia de que podem ser usados para detetar, com sucesso e de forma 

automática, deformações sísmicas - o melhor modelo de classificação alcançou uma 

area sob a curva ROC (AUC) de 0,86. Relativamente aos modelos de segmentação, 

apresentaram um comportamento menos eficiente, tendo o melhor modelo atingido um 

coeficiente de Dice de 0,64 – este resultado deve-se, provavelmente, ao tamanho 
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resduzido do conjunto de dados criado. Mais testes terão de ser realizados para testar 

esta hipótese.  

 

Palavras-chave: InSAR, Franjas de deformação, Aprendizagem Máquina, 

Aprendizagem Profunda, Ciência de dados 
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Abstract 

In the 20th century, scientists discovered that earthquakes occur due to the release 

of energy accumulated in tectonic faults. These natural phenomena occur with different 

intensities and scales. Depending on their magnitude and depth, they can be felt from a 

few hundred meters to several kilometres from their epicentre and cause significant 

damage and fatalities. Therefore, knowing the affected area is essential to avoid risks, 

such as the collapse of buildings in short/medium term after the event. 

Since 1992, with the development of Interferometric Synthetic Aperture Radar 

(InSAR) techniques, it has been possible to calculate images of terrestrial deformations 

across the globe with precision in the order of centimetres (or less) from Synthetic 

Aperture Radar (SAR). It allowed the study of landslides, glaciers, aquifers, and other 

natural and man-made hazards. The European Space Agency (ESA) developed the 

Sentinel-1 mission and provided free access to the acquired SAR data. The “Centre for 

Observation and Modeling of Earthquakes, Volcanoes & Tectonics” (COMET) carried 

out the heavy InSAR calculations and made available the respective interferograms also 

to free access. This information is very important, but Sentinel-1 alone generates more 

than 10 TB of data per day, making manual processing unviable. In this context, Artificial 

Intelligence (AI) techniques present themselves as the opportunity to automate the 

processing of such data. 

This dissertation’s main objective aims to explore AI techniques, as Machine 

Learning and Deep Learning techniques, for automation of seismic deformations 

detection in SAR interferograms and to estimate the earthquake's impact area. A dataset 

with deformation annotations was created from COMET public data to train and evaluate 

Deep Learning models. The results achieved by the detection methods were satisfactory 

and supported the idea that they can be used to automatically detect seismic 

deformations successfully - the best classification model achieved an area under curve 

ROC (AUC) of 0.86. The segmentation models were more limited, with the best model 

reaching a Dice coefficient of 0.64 – this result is probably due to the small size of the 

created dataset. More tests need to be carried out in the near future to test this 

hypothesis. 

 

Keywords: InSAR, Deformation Fringes, Machine Learning, Deep Learning, Data 

Science 
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“The first step is to establish that something 

is possible; then probability will occur.” 

 

Elon Musk 
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1. Introduction 

1.1. Context and Motivation 

Earthquakes are caused by a release of energy from faults like the tectonic plates, 

where blocks of crustal rocks move against each other, provoking a movement on the 

surface. The study and understanding of these natural disasters are critical, as they are 

responsible for the death of thousands of people and billions of euros of loss in the last 

decade. A single event can be catastrophic. For example, the 9.1 magnitude Haiti 

earthquake occurred in 2010, provoked more than 200,000 deaths and more than a 

million homeless people, achieving a loss of between six and thirteen million euros (Hou 

& Shi, 2011). A more recent case was the 6.1 Italy earthquake, occurred in 2016, killing 

226 people (Sorrentino et al., 2019). Scientists can not predict earthquakes, but 

techniques allowing a response as fast as possible can be developed, providing some 

seconds or even minutes before the event achieves civilisation (Dong & Shan, 2013).  

Due to the satellites' capability to obtain a considerable amount of information for 

big areas in a short time, they have been used to study the globe. In particular, Space-

borne Synthetic Aperture RADAR (SAR) sensors can obtain surface information 24h per 

day regardless of weather conditions. SAR interferometry (InSAR) represent a set of 

methods that can be used for studing. Two SAR images captured at different times for 

the same area permit the creation of interferograms that register deformations in the 

order of centimetres (or less) – it is in the scale of half of the wavelength used. Thus, the 

first practical demonstration of Space-borne InSAR consisted on the use of ERS-1 

interferogram to map the deformations of the 1992’ Landers earthquake (Gombert et al., 

2018). Since that time, the developments in InSAR techniques and the surprising results 

they allowed to achieve, transformed these methods into a mature technology in the 

detection of deformations. The success achieved by InSAR led space agencies, both 

governamental and private, to develop and launch new SAR missions, resulting in a 

more extensive amount of data from different bands and resolutions. The success of 

ESA’s ERS-1/2 followed by Envisat led ESA to launch C-band Sentinel-1 mission. It’s 

medium resolution sensor characterises this mission with a 250km-wide swath, global 

coverage, and a short revisit time (6 or 12 days). Sentinel-1 Level-1 products are 

available free of charge, which represents a milestone in InSAR technology. Scientists 

for all around the globe can now access the huge amount of SAR data to study natural 

and man-influenced deformations and improve this technology. Therefore, Sentinel-1 
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data has been used for the study of landslides, glaciers, aquifers, and other natural and 

man-caused hazards, but having a particular success in the study of volcanoes and 

earthquakes, leading not only to the evolution of information of these catastrophes but 

also for the evolution of InSAR. In fact, InSAR technology become a global monitoring 

tool in the last decade. All this evolution brings a new problem: how to deal with such 

amount of data? Nowadays, InSAR data fits in the domain of big data. For example, a 

single Sentinel-1 satellite generates more than 10 Tb of data per day. Therefore, with all 

this data it is no longer possible to process and analyse this data using conventional and 

hand-based methods. Thus, it is mandatory to find a way that automatically detects 

deformation to fully explore ESA (and other space agencies) archives (Potin et al., 2019). 

The scientific community has been developing new methods to deal with big data 

problems, and machine learning stood out as one of the most used. The evolution of 

technology and the appearance of new methods, allowed a revolution of artificial 

intelligence techniques, being Machine Learning and Deep Learning among the best 

successful. These techniques have been fulfilling what they promised. Machine Learning 

automates human processes for a large volume of data dealing with speech recognition, 

language translation, and image classification problems. It is nowadays one of the most 

used techniques by data scientists. Artificial neural networks are a Machine Learning 

technique and consist of trained models that pass the data through hidden layers to 

predict the response for a given problem. With the evolution of the neural networks, these 

models have more layers, achieving even better results. The layers evolved, and new 

types were created, like the convolutional layers that are 2D tensors. The introduction of 

convolutional layers into the neural network originates the modern convolutional neural 

networks (CNN). They become very successful for image classification problems. 

Scientists and engineers already make CNN architectures with high accuracy in plenty 

of datasets applied to specific cases. 

1.2. Objectives 

This work's main objective aims to explore Machine Learning techniques for 

automatic detection of seismic deformations in SAR interferograms and estimate the 

earthquake's impact area. To achieve this objective, we started by creating and 

annotating a dataset for training Deep Learning models. Then, we explored Deep 

Learning classifiers to detect seismic fringes in interferogram patches. Finally, we 

explored Deep Learning segmentation models to identify the seismic-fringes pixels in the 

interferogram. This allowed us to estimate the areas affected by the earthquakes.  
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During this work, we looked to answer the following questions: 

• Are the seismic deformations equally detected in wrapped and unwrapped 

interferograms? 

• What is the best state-of-the-art Deep Learning models to detect seismic 

deformations in SAR interferograms and estimate the earthquake's impact 

area? 

• Although vast public data are available on the COMET website, dataset 

creation requires a long time and effort to annotate. Thus, with the small 

dataset possible to create during this work, how efficiently is it possible to 

train Deep Learning models? 

• Available data is very unbalanced – there many areas without fringes and 

few with fringes. How to deal with this unbalanced and improve models 

training? 

1.3. Publications 

Three posters were published during the realisation of this project, and a 

conference paper (Scopus-indexed) is already accepted: 

• E-poster video Fringe 2021: “Detect Earthquake In SAR Interferograms 

Using Machine Learning.“; Bruno Silva, Joaquim Sousa, António Cunha. 

• E-poster for Dragon Symposium 2021: “Unbalanced Technics to Improve 

the Train for ML Models to Detect Earthquake Fringes”; Bruno Silva, 

Joaquim Sousa, Milan Lazecky, António Cunha. (Attachment 1) 

• E-poster for Dragon Symposium 2021: “ML Segmentation Models to 

Automatically Identify Areas Affected by Earthquakes”; Bruno Silva, 

Joaquim Sousa, Milan Lazecky, António Cunha. (Attachment 2) 

• Conference paper for Centeris 2021: “Deformation Fringes Detection in 

SAR interferograms Using Deep Learning”; Bruno Silva, Joaquim Sousa, 

Milan Lazecky, António Cunha. Proceedings will be published in Scopus-

indexed (Elsevier Procedia Computer Science Journal). 
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1.4. Structure of the Document 

Five chapters are present in this document. After this introductory chapter where 

the motivation and main objectives are presented, in Chaper 2 a literature review, focus 

on the concepts that support the work is presented.The chapter starts with InSAR and 

deep learning fundamentals, and ends with the explanation of some CNN architectures 

and some techniques used in this work. Material and methods, which describe how the 

work is done step-by-step are discussed in Chapter 3 and the main  The main Results 

achieved and their discussion is presenting the metrics achieved by the trained 

models and the interpretation, are presented in Chapter 4. Finally, Chapter 5, presents 

the main Conclusions by answering the research question stated in Chapter 1.  
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2. Literature review 

For the realisation of this work, it was necessary to understand two subjects. The 

InSAR data used in this work, how it works and what we can get from it, and Machine 

Learning, the technique we use to achieve our goal. 

Here is presented what we found in the literature, which is relevant to understand 

this work. To start, we will introduce the InSAR fundamentals, followed by the machine 

learning fundamentals. Then we go deeper into machine learning and theoretically 

explain the methods and architectures we use to detect the earthquakes fringes. Finally, 

we present and analyse the studies where the authors use deep learning to detect fringes 

in SAR interferograms. 

2.1. InSAR fundamentals 

This section is the explanation of InSAR, the data used in this project. It starts with 

an introduction to the SAR sensor, the sensor responsible for interferograms. Then, it 

explains the interferograms, how they are obtained, the possible information, and how to 

distinguish earthquakes of the remaining deformations. Finally, is the introduction of 

Sentinel-1, the satellite responsible for the data in this project. 

2.1.1. Synthetic Aperture Radar 

Synthetic-aperture radar (SAR) is a form of radar used to create two-dimensional 

images or three-dimensional reconstructions of objects, such as landscapes (Kirscht & 

Rinke, 1998) and reconstruction urban environment(Balz & Haala, 2002). For that, SAR 

systems transmit electromagnetic waves at a wavelength that can range from a few 

millimetres to tens of centimetres (Table 1).  

https://en.wikipedia.org/wiki/Radar
https://en.wikipedia.org/wiki/3D_reconstruction
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Table 1: The various frequency bands. 

SAR Band Frequency Range (GHz) Correspondent wavelength range(cm) 

P 0.230-1 130-30 

L 1-2 30-15 

S 2-4 15-7.5 

C 4-8 7.5-3.75 

X 8-12.5 3.75-2.40 

Ku 12.5-18 2.40-1.67 

K 18-26.5 1.67-1.13 

Ka 26.5-40 1.13-0.17 

 

These waves do not reflect on the atmosphere. Furthermore, they do not need 

sunlight to work appropriately (active sensor), so they can operate during the day and 

night under all weather conditions (Curlander & McDonough, 1991). 

Despite the wide variety of bands, the most used bands on-board SAR satellites 

are the L, C, and X bands. These sensors are usually attached to a moving satellite. 

Consequently, the sensor emits a sequence of electromagnetic pulses that send the 

echo back to the sensor. The echo is received and recorded when reflecting on the earth. 

A "synthetic aperture is created" when all the received signals are combined, providing 

a much-improved azimuth resolution than the Real Aperture Radar (RAR) (Figure 1).  

 

Figure 1: Illustration of a space-borne SAR sensor. Source:(Raab, 2016) 
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After the recording process, the sensor obtains two pieces of information. The time 

it takes the signal to reflect on the surface and return to the satellite and the signal 

intensity. Knowing the travel time of the signal(t) and its speed(c) (speed of light in the 

vacuum), it is possible to calculate the distance from the satellite to the ground in the 

following way:  

 
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐷) =  

𝑐 ∗ 𝑡

2
 (1) 

SAR images are created with the signal intensity (or signal amplitude). For that, 

the intensity of the signal can be modeled by the following equation (Nicolas & Adragna, 

2000): 

 
𝑃𝑟 = 𝑃𝑒

𝐺2𝜆2𝜎2

(4𝜋)3𝐷4𝑎
 (2) 

Where: 

Pr: received power. 

Pe: Transmitted power. 

G: antenna gain. 

λ: wavelength. 

a: losses related to absorption in the propagation medium. 

D: range between antenna and target. 

In the last years, SAR has been used for several studies in the most varied areas 

such as agriculture (LIU et al., 2019), forestry (Padalia & Yadav, 2017), hydrology (Lang 

& Kasischke, 2008), oceanography (Marino et al., 2016) and security (Tello et al., 2005). 

2.1.2. Interferometric Synthetic Aperture Radar and earthquakes 

SAR sensors can also store the signal phase and the amplitude, a value between 

-π and π that represents the signal at the moment of receipt by the sensor. Obtaining at 

different times two SAR images, it is possible to create an interferogram φ(x,r) calculating 

the phase difference between them (Chen et al., 2000): 

 
𝜑 = 𝛥Ф = Ф1 − Ф2 =

2𝜋𝑄𝛿𝑅

𝜆
 (3) 

Where: 

Ф= phase. 

𝑄: 𝑄 = 1 when the two antennas are mounted on the same flying platform; otherwise, 
𝑄 = 2. 

δR= slant range difference. 

λ: wavelength. 
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Through the interferogram, it is possible to create a digital elevation model (DEM). 

However, when topography is eliminated, deformations that occurred during the period 

of the two phases with precisions in the order of half the wavelength are observed (Figure 

2).  

 

Figure 2: INSAR functioning, source: (Biggs & Wright, 2020) 

The phase values are radian (between -π and π), not making its application very 

practical. To overcome the radians problem, it is necessary to unwrap the phase 

changing to a metric scale, facilitating its applicability (Figure 3). 

a) Wrapped interferograms

 

b) Unwrapped interferogram

 

Figure 3: Interferograms from an earthquake in California (2019). Inside the box, it is possible to see the 
deformation area as the fault represented by the line: (Figures obtained in LICSBAS database) 

In wrapped interferograms, deformations are characterised by fringes (Figure 3a), 

where each fringe corresponds to a deformation in the order of half of the signal's 

wavelength. These fringes can have different sizes and intensities, depending on the 

deformation scale, the difference in the dates of the two SAR images, or the amount of 
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atmospheric noise. Unwrapped interferograms are usually associated with a color scale 

that represents the displacement value. The greater the deformation, the greater the loss 

of information in the unwrapped interferograms. 

What makes earthquakes different from other types of deformation in 

interferograms is that it is usually possible to see the fault that causes the earthquake. 

However, this fault may not be visible when dealing with more minor deformations. 

InSAR has been used to monitor deformation in the earth, with a particular interest 

in volcanology (Ofeigsson et al., 2011) and earthquakes (Moro et al., 2017), but also 

inland subsidence (Chaussard et al., 2014), landslide (Schlögel et al., 2015) and 

Glaciares motion monitoring (Pavelka et al., 2019). 

2.1.3. Sentinel-1 

As part of the European Copernicus program from the European Space Agency 

(ESA), the Sentinel-1 mission, based on a constellation of two SAR satellites, ensures 

continuity for ERS/Envisat C-Band SAR observations for Europe. The mission is 

characterised by large-scale, frequent, and repetitive observations, systematic 

production, and a free and open data distribution policy (Attema, 2005). The Sentinel-1 

mission includes four exclusive imaging modes with different resolutions (down to 5 m) 

and coverage (up to 400 km). It provides a dual-polarisation capability (HH+HV, 

VV+VH)(H= horizontal; V= vertical), short revisits times, and rapid product delivery. For 

each observation, precise spacecraft position and attitude measurements are available 

(Potin et al., 2019). This satellite operates in four exclusive acquisition modes: Stripmap 

(SM), Interferometric Wide swath (IW), Extra-Wide swath (EW), Wave mode (WV) 

(Figure 4). 
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Figure 4: "The SM, IW, and EW modes support operation in single selectable polarisation (HH or VV) 
and dual-polarization (HH+HV, VV+VH), implemented through one transmit chain (switchable to H or V) 
and two parallel receive chains for H and V polarisation. The WV mode only supports single selectable 

polarisation (HH or VV)". (source: https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-1-sar/sar-
instrument/acquisition-modes, 26/03/2021) 

Sentinel-1 provides three product levels. Level-0 products are the basis from which 

all other high-level products are produced. Level-1 focused data are the products 

intended for most data users. The Level-0 product (raw data) is transformed into a Level-

1 product by the Instrument Processing Facility (IPF) via the application of various 

algorithms, and data can be processed into either Single Look Complex (SLC) and 

Ground Range Detected (GRD) products. There is also a Level-2 that consists of 

geolocated geophysical products derived from Level-1. The data used in this work are 

SLC products from Level-1. These are images in the slant range by azimuth imaging 

plane, in the image plane of satellite data acquisition. Each image pixel is represented 

by a complex magnitude value and therefore contains both amplitude and phase 

information. SLC images are produced in a zero Doppler geometry (N.Miranda et al., 

2015; Vincent et al., 2020). 

The ground segment provides systematic generation and availability of Level-1 

SLC products for all data acquired over land and ice masses since July 2015. Such SLC 

production increase has fostered the exploitation of Sentinel-1 data for an increasing 

number of InSAR applications and over a growing number of areas worldwide (Potin et 

al., 2019). 

https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-1-sar/sar-instrument/acquisition-modes
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-1-sar/sar-instrument/acquisition-modes
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2.2. Machine learning 

This section introduces the fundamentals of deep learning (DL). DL is a type of 

machine learning method and belongs to the artificial intelligent area. It is an evolution 

of neural networks (Figure 5). 

 

Figure 5: Evolution of artificial intelligence 

2.2.1. Artificial Intelligence 

Artificial Intelligence (AI), when it appeared in the 1950s, aimed to automate human 

processes, like playing chess. There was no "learning" in the beginning, only an involved 

hardcoded rules crafted by programmers. This type of "intelligence" cannot solve 

complex problems such as speech recognition, language translation, and image 

classification. Knowing this problem, experts wondered if it would be possible for the 

computer to tell beyond what man knows how to perform, this way born Machine 

Learning (François Chollet, 2018). 

Unlike classic programming that uses data and rules to get an answer, machine 

learning uses data and answers to create the rules (Figure 6). 

 

Figure 6: Machine Learning creates a new way of looking at data. This type of system is trained rather 
than explicitly programmed (adapted figure from Chollet, 2018) 

There are various approaches of ML, like: 

• Supervised classifier, where the algorithm uses data and labels to create a 
function that maps inputs to desired outputs. 

• Unsupervised classifier, where labeled examples are not available.  

• Semi-supervised classifier, a combination of the previous two.  
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• Reinforcement learning, where the algorithm learns how to act given an 
observation of the world. 

• Transduction, similar to supervised learning, but does not explicitly construct a 
function: instead, tries to predict new outputs based on training inputs, training 
outputs, and new inputs, 

• Learning to learn, the algorithm learns its own inductive bias based on previous 
experience (Ayodele, 2010).  

In this case, the focus is supervised learning, the one used in this work. 

2.2.2. Artificial Neural Networks 

Artificial Neural Networks are based on neurons in the mammalian cortex and are 

modeled loosely but on a much smaller scale. Neural Networks are a network of multiple 

layers of neurons consisting of nodes used to classify and predict data provided some 

data as input to the network. Thus, there is an input layer, one or many hidden layers, 

and an output layer. All the layers have nodes ( also called neurons), and each node has 

a weight and bias that is considered while processing information from one layer to the 

next layer (Sharma et al., 2020) (Figure 7). 

 

Figure 7: Representation of a Neural Network (adapted figure from Sharma et al., 2020) 

During the training of an NN, each node's weight and bias are constantly updated 

in each epoch, improving the output and understanding the data. Furthermore, an 

activation layer is defined to enhance the space of hypotheses in each layer. For 

classification problems and consequently for segmentation, ReLu is usually used as 

activation layer in the intermediate layers, and for the output layer, sigmoid or softmax is 

used. 

Relu (Agarap, 2019) eliminates negative values in input data, turning all negative 

values into zero and keeping positive values (Figure 8a). The sigmoid function (Narayan, 
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1997) uses function (4) that gives a value between zero and one (usual, a probability) 

(Figure 8b). 

 
𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =

1

1 + 𝑒−𝑥
 (4) 

a) ReLu

 

b) Sigmoid

 

Figure 8: Activation functions a) ReLu; b) Sigmoid 

The softmax function has a behavior identical to the sigmoid, but instead of a value, 

it gives N values between 0 and 1, where N = numbers of existing classes. 

The diagram of Figure 9 shows how is the training of NN layers. 

 

Figure 9: Usual architecture of a neural network (adapted figure from Chollet, 2018). 

To start, it is needed to prepare the data that will be the input. Then, the data will 

pass for the layers, giving a response (for the first time, it will be a random one). After 

that, it will compare the response provided for the algorithm and the actual response 

given by the operator (on the input), the difference will be the loss score. Finally, the loss 
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score will be used as a feedback signal to adjust the value of the layers' weights a little, 

in a direction that will lower the loss score for the current example. This adjustment is 

the job of an optimiser. This process will happen successively until the model obtains the 

best possible answer (François Chollet, 2018). The regularisation techniques appear in 

the form of layers and can improve the evolution of the model through the best answer 

possible. 

The operator's job is to choose the number and type of the layers and what is 

"inside the boxes" of Figure 9. 

Loss Function 

When training the model, the initial output will be a random value. Then this value 

will be "subtracted" from the desired real value through the loss function so that 

throughout the training, the output will be closer to the expected value (Chollet, 2018). 

Choosing the proper loss function for the right problem is extremely important: the 

network will take any shortcut to minimise the loss. If the objective does not fully correlate 

with the task's success, the network will do unwanted things. In this case, as the output 

is a sigmoid, the probability of the input having deformation fringes, the indicated loss 

function will be binary crossentropy(Janocha & Czarnecki, 2016). 

Binary crossentropy is a loss function that is used in binary classification tasks and 

is represented by the following formula: 

 
𝐿𝑜𝑠𝑠 = −

1

𝑁
∑ 𝑦𝑖 log(𝑝(𝑦𝑖)) + (1 − 𝑦𝑖) log(1 − 𝑝(𝑦𝑖))

𝑁

𝑖=1

 
(5) 

Where: 

𝑦𝑖= label (0 or 1) 

p(𝑦𝑖)= predicted probability given by the model. 

N = output size 

Reading this formula tells that, for each input y=1, it adds log(p(y)) to the loss, that 

is, the log probability of it being 1. However, conversely, it adds log(1-p(y)), that is, the 

log probability of 0, for each input y=0. 

Optimisers 

Selecting an optimiser is a significant step in the current deep learning pipeline. 

The optimisation algorithm chosen by a deep learning practitioner determines the training 

speed and the final predictive performance of their model. After having the value of the 

loss score, the optimiser is responsible for adapting the value of the weights. To date, no 

theory adequately explains how to make this choice. Instead, the choice relies on 
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empirical studies (Wilson et al., 2017) and benchmarking (Schneider et al., 2019). 

Analysing some studies, Choi et al., 2019 show that more general optimisers (like 

RmSProp, or Adam) never underperform their special cases (like Stochastic gradient 

descent (SGD) or Nesterov). Looking at the results, although the chosen 

hyperparameters can alter the results, Adam has slightly better results in most cases. 

For this reason, Adam is used in this work. 

Adam (Kingma & Ba, 2015) is an adaptive learning rate method that computes 

individual learning rates for different parameters. It uses the advantage of momentum 

(6) by using the moving average of the gradient like SGD (7 with momentum and uses 

the squared gradients to scale the learning rate (9) like RMSProp (8). 

 𝑤𝑡+1 = 𝑤𝑡 − α𝑚𝑡 (6) 

Where:  

 
𝑚𝑡 = β𝑚𝑡+1 + (1 − β) [

𝛿𝐿

𝛿𝑤𝑡
] 

(7) 

Where: 

wt = weights at time t 

mt = aggregate of gradients at time t (initially, mt = 0) (momentum) 

αt = learning rate at time t 

𝛿L = derivative of Loss Function 

β = Moving average parameter (const, 0.9) 

 
𝑤𝑡+1 = 𝑤𝑡 −

α𝑡

(𝑣𝑡 + 휀)
1
2

∗ [
𝛿𝐿

𝛿𝑤𝑡
] (8) 

Where: 

 
𝑣𝑡 = β𝑣𝑡+1 + (1 − β) [

𝛿𝐿

𝛿𝑤𝑡
]

2

 
(9) 

Where: 

vt = sum of the square of past gradients (initially, Vt = 0). 

ϵ = A small positive constant (10-8) 

mt, and vt have both initialised as 0 (based on the above methods), it is observed 

that they gain a tendency to be 'biased towards 0' as both β1 & β2 ≈ 1. This optimiser 

fixes this problem by computing bias-corrected mt and vt. This is also done to control the 

weights while reaching the global minimum to prevent high oscillations when near it. The 

formulas are: 

 𝑚�̂� =
𝑚𝑡

1−𝛽1
𝑡,𝑣�̂� =

𝑣𝑡

1−𝛽2
𝑡 (10) 
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Now, instead of normal weight parameters mt and vt, it takes the bias-corrected 

weight parameters. Then, putting them into the ADAM's we get the general formula.  

 
𝑤𝑡+1 = 𝑤𝑡 − 𝑚𝑡 (

α𝑡

√𝑣�̂� + 휀
) (11) 

Regularisation techniques 

During the training of a neural network, after some epochs, the training becomes 

inefficient. This is called overfitting and is characterised by an excessive increase in loss. 

However, some techniques to overcome this problem include L1 and L2 regularisation, 

Dropout, and batch normalisation. 

L1 and L2 regularisation (Ng, 2004), consisting of adding weight to the loss, make 

the distribution of values more regular. In L1 regularisation, the cost added is proportional 

to the absolute value of the weight coefficients. In L2 regularisation, the cost added is 

proportional to the square of the value of the weight coefficients. 

Dropout (Srivastava et al., 2014) takes a percentage (defined by the operator) of 

the output values of a particular layer and transforms them into 0. This technique consists 

of creating a noise that allows reducing the fit of the training data. 

Batch normalisation (Ioffe & Szegedy, 2015) is an algorithmic method that makes 

Neural Networks training faster and more stable. It consists of normalising activation 

vectors from hidden layers using the current batch's first and second statistical moments 

(mean and variance). 

2.2.3. Deep learning 

The "deep" in deep learning stands for the "idea of successive layers of 

representations. How many layers contribute to a model of the data is called the depth 

of the model" (Lecun et al., 2015). The NN was evolved in-depth and with the addition of 

new layers, giving rise to the Convolutional Neural Network (CNN). CNN is a class of 

ANN used successfully to process and analyse digital images. Like other Neural 

Networks, Convolutional Neural Networks has an input, an output, and hidden layers. 

The difference is that the hidden layers are essential 2D Convolutional layers (Conv2D), 

2D tensors (Y. Lecun et al., 1998). 

CNNs are capable of find patterns in images. These layers use filters in 

convolutional layers, leading to a sharp increase in the amount of data processed in the 

network. In addition, the pooling layer of max-pooling in some considered neighborhoods 

is used to reduce them (Valueva et al., 2020) (Figure 10). 
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Figure 10: Example of the architecture of CNN with max-pooling operation using a mask of 3x3 

matrix. 

In terms of performance, convolutional neural networks outperform neural 

networks in terms of conventional image recognition tasks. Also, CNN's are more 

efficient in memory and complexity and have better features extraction capability, better 

for entirely new tasks. This means that CNNs can extract useful attributes from an 

already trained CNN with its trained weights by feeding your data on each level and tune 

the CNN a bit for the specific task. 

2.3. Deep learning methods 

One of the biggest challenges encountered during this work was the lack of data 

and the unbalanced data. Interferograms with deformation fringes were more abundant 

than those without them. A widely used technique to deal with that problem is the use of 

pre-trained networks. Bellow, we present some architectures used for classification and 

segmentation tasks. 

2.3.1. Architectures for classification 

There is a wide variety of pre-trained CNN architectures for image classification 

that can be used. Here is explained those used in this project. 

InceptionV3 is a model that belongs to the inception family. The objective of 

Inception is to improve the detection of objects that can occupy different size areas in 

the image, winning the 2015 ImageNet challenge. Therefore, they created a more "wider" 

model instead of deeper, using filters of different sizes (1x1, 3x3, and 5x5) working at 

the same level that are connected in the end (Figure 11)(Szegedy et al., 2015). Later for 
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the Inception V2, the 5x5 convolutional was transformed into two 3x3 convolution 

operations to improve computational speed. Finally, for the third version of Inception, the 

7x7 convolutionals were factorised, batch normalisation was used for the auxiliary 

classifiers, and it was applied label smooth, improving the model without drastically 

changing the modules (Szegedy et al., 2016). 

 

Figure 11: Idea behind inception model. Adapted figure from Szegedy et al., 2015 

2 VGG models won first and second place in Imagenet challenge 2014. They are 

VGG16 and VGG19. The numbers (sixteen and nineteen) represent the number of 

weight layers in the network. These are very deep convolutional networks. VGG19 

comprises 16 convolution layers 3x3, three fully connected layers, five MaxPool layers, 

and one SoftMax layer (Figure 12)(Simonyan & Zisserman, 2015). 

 

Figure 12: Architecture of VGG19 

ResNet made it possible to train hundreds of layers and still achieve a good 

performance. Increase the deepness of the model is good up to a point. After that, if 

added more layers, the accuracy drops. To overcome this problem, the authors of 

ResNet apply a so-called "identity shortcut connection" that skips one or more layers. 



FCUP 
Use of Artificial Intelligence to detect earthquake’s deformations in SAR Interferograms 

19 

 

 

This way, stacking more layers, do not reproduce worse results. This architecture is also 

composed of Batchnormalization layers and does not have fully connected layers (He et 

al., 2016a). Later, the same authors created improvements to the ResNet architecture, 

calling it ResNetV2 (He et al., 2016b) (Figure 13). 

 

Figure 13: A residual block of ResNet and ResNetV2. Adapted image from (Van Hieu & Hien, 2020) 

2.3.2. Architectures for segmentation 

CNN's are also used for segmentation. Instead of classifying an image, the model 

classifies each pixel individually. Likewise, it is needed to give the real response for each 

pixel (a mask) in the input. Therefore, the output must be a matrix of the size of the 

desired image. There are some segmentation techniques like U-net and dual attention 

Unet (Weng & Zhu, 2015) comprises two parts, an encoder and a decoder. The 

encoder is a regular CNN and can use one of the state of the art or be pre-trained by us. 

This part can also be frozen or unfrozen, depending on if it wanted to train the encoder 

or not. The encoder is responsible for capturing the context of the image. The decoder 

will do the opposite. It will be the encoder in reverse, where the output will be the desired 

image size, usually the same size as the input. Drawing the architecture, this model looks 

like a "U" (Figure 14). 
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Figure 14: Architecture of Unet. Credit: Weng & Zhu, 2015 

Dual attention is a segmentation architecture that uses the resnet architecture 

followed by two segmentation modules (position attention module and channel attention 

module) to achieve better segmentation. The position attention model is responsible for 

detecting the location of objects, generates a spatial attention matrix that models the 

spatial relationship between any two pixels of the element. The channel attention module 

detects color channel differences and creates a channel attention matrix for model 

interdependencies between channels. The authors create this architecture for scene 

segmentation (Fu et al., 2018)(Figure 15). 

 

Figure 15: Dual attention architecture. credit: Fu et al., 2018 
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2.4. Deep Learning for InSAR 

"InSAR techniques have been known and used for decades, but it has gone from 

being an opportunistic science to becoming a global monitoring tool in the last decade" 

(Biggs & Wright, 2020).  

The use of machine learning in InSAR is recent, so studies in this area are scarce. 

For example, we only found one study where scientists use artificial intelligence to 

classify earthquake fringes from SAR interferograms. But for volcanic deformations and 

slow ground deformations in SAR interferograms, there are some more studies. 

2.4.1. Earthquake deformations detection 

In this study, (Brengman & Barnhart, 2021) created a model called SarNet to detect 

earthquake fringes and used 4 million synthetic interferograms to train the model. 

Although the model obtained an accuracy of 99.74% in the validation data (synthetic 

data), this value drops to 85.22% when tested on a dataset with real data. The authors 

also used Class activation maps to guarantee that the model returns the location of the 

fringes. 

2.4.2. Volcanoes deformations detection 

The first study applied machine learning to classify volcanic deformation (N. 

Anantrasirichai et al., 2018). In this study, the dataset is composed of 30,249 Envisat 

and Sentinel-1 wrapped interferograms from approximately 900 volcanoes worldwide. 

The data was unbalanced with 300 positives samples and over more than 100 times 

more negatives samples. Therefore, the authors created positive samples through data 

augmentation to compensate for the imbalance, applying a slight distortion to the images 

to balance the data. Next, they train the data in three pre-trained CNNs: AlexNet 

(Krizhevsky et al., 2012), ResNet50 (He et al., 2016b), and InceptionV3 (Szegedy et al., 

2016), and an SVM classifier based on textural features (N. Anantrasirichai et al., 2013). 

AlexNet proved to have better accuracy, with 0.995 against 0.989 from ResNet50, 0.975 

from InceptionV3, and 0.968 from SVM. In the end, another test was made but only in 

AlexNet and SVM. In this case, interferograms were tested from two volcanoes 

separately (Erta Ale and Etna). Once again, CNN achieved better results with an 

accuracy of 0.994 and 0.871 against 0.985 and 0.742. 

With the need to have balanced data, the same authors applied deep learning to 

detect deformation in volcanoes but used a new way of synthetic data (N. Anantrasirichai 



22 
 

et al., 2019). "Has been created Synthetic data of the deformation patterns based on a 

Monte Carlo selection of parameters for forwarding analytic models, stratified 

atmospheric effects derived from weather models, and turbulent atmospheric effects 

based on statistical simulations of correlated noise." The results show that adding 

synthetic data gives better results than using only real data, reducing the number of 

interferograms that required manual inspection by half and decreasing false positives by 

>80%. Another study where synthetic data is used to create a network can detect 

deformations in interferograms (Valade et al., 2019). In this case, the objective is to 

monitor volcanoes using multisensor sentinel missions and artificial intelligence. 

The last study found to date was also automatic detection of volcanic surface 

deformation but this time applied to unwrapped interferograms (Sun et al., 2020). The 

network was trained with synthetic data and then tested with real data from Masaya 

volcano, Nicaragua. The authors demonstrated using an end-to-end CNN with an 

encoder-decoder architecture as a potential tool for globally practical near real-time 

volcanic unrest detection. The CNN can reveal noise-free surface deformation signals 

from unwrapped surface displacement maps with variant SNRs. However, the precision 

of detected results depends on the time scale that time-consecutive unwrapped surface 

displacement maps covered." 

2.4.3. Slow ground deformation detection 

In this area, Anantrasirichai et al. (2018) used Convolutional Neural Networks to 

Detect Slow, Sustained Deformation in InSAR Time Series. The authors use synthetic 

wrapped data and found that when the number of fringes is increased to double, the 

detection threshold is lowered by 25/30%. Thus, an estimated detection threshold was 

3.9 cm for deformation signals alone and 6.3 when considered atmospheric artifacts. 

Overwrapping reduces to 1.8 and 5.2 cm, respectively. However, when data is 

overwrapping, the false positives increases. When applied to the study areas, a 

deformation of 8.5 cm/year was detected for Campi Flegrei and 3.5 cm/year for Dallol. 

This corresponds to cumulative displacements of 3 and 4 cm consistent with estimates 

based on synthetic data. 

Two articles study the deformation of a place. One made for the Erhai region, China 

(Wang et al., 2019), and the other for the whole of the United Kingdom (Nantheera 

Anantrasirichai et al., 2020). 

In the first one, Sentinel-1 Synthetic Aperture Radar (SAR) images "were used to 

study the characteristics of ground deformation in the Erhai region using the Small 
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Baseline Subset Interferometric SAR (SBAS-InSAR) technique." Then the 

backpropagation (BP) algorithm was used to predict and verify the ground deformation 

of the study area with high precision. 

In the second one, the authors "explore the applicability of deep learning 

approaches by adapting a pre-trained convolutional neural network (CNN) to detect 

deformation in a national-scale velocity field." However, like in the other cases, they have 

insufficient ground truth data to construct a balanced training data set. As a result, the 

deformation signals are slower and more localised than in previous applications. To 

tackle this problem, the authors used three methods: "i) spatial interpolation with modified 

matrix completion, ii) a synthetic training dataset based on the characteristics of real UK 

velocity map, and iii) enhanced overwrapping techniques" (like already seen in previous 

studies this reduce the detection threshold). "The results demonstrate the potential 

applicability of the proposed framework to the development of automated ground motion 

analysis systems." 

A study predicts InSAR time-series deformation using deep convolutional neural 

networks (Ma et al., 2019). First, the authors studied two types of deformation prediction, 

settlement prediction, and seasonal deformation prediction. For that, the authors 

detected the persistent scatterers (PS) and distributed scatterers (DS). With that, was 

used an interpolation method resulted in the training data for the DCNN. The results 

show that DCNN is very good at predicting deformation in a short time, with a 0.3 mm 

mean internal error. 

To conclude, a study uses an auto-encoder architecture to detect deformation in 

the mm scale between the noise that remains after applying atmospheric correction from 

the GAMs. After applying the model to two real cases with success, one for slow 

deformation from a fault and the other for deformation caused by underground pressure 

changes, the model was capable of find deformation on a scale of 2mm in the first case 

and a scale of 5 to 7 mm in the second case (Rouet-Leduc et al., 2020). 

2.5. Summary 

In summary, we can obtain some essential points from the literature review to 

create our methodology.  

For the data, we know that the medium precision C-band from the Sentinel-1 has 

a good precision for studying deformations created by natural disasters. We also know 
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that wrapped interferograms have more information when converted into a png image. 

However, they have more noise too. 

For the method to detect the deformation fringes, artificial intelligence in general 

and deep learning, in particular, seems to be an excellent choice for the work. Not having 

a significant amount of data, we can use some pre-trained CNNs to help the train, 

obtaining a better result. There are several CNN's to use for the different objectives. Like 

VGG, that are known for being deeper to ResNet, there is more used to detect the 

different size of objects. We also demonstrate two architectures for the segmentation, 

one with an encoder-decoder (Unet) and the other using two segmentation techniques 

(Dual attention). 

Analysing the literature, we realise that the studies are few and recent. However, 

we can already see the potential of deep learning applied to InSAR. For example, there 

is already a deep learning model to detect deformation created by earthquakes with 

some success. However, when we look for studies in other sources of deformation like 

volcanoes and slow ground deformation, we show that pre-trained state-of-the-art 

models obtain better results than the model created in the first study. Because of that, 

we will apply some of those pre-trained networks to detect fringes provoked by 

earthquakes. 
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3. Material and methods 

This chapter presents the methodology devised to address the earthquake fringes 

classification and segmentation in InSAR tasks. This methodology took into 

consideration several issues pointed out in Chapter 2: 

• The medium precision C-band from Sentinel-1 has information for studying 

deformations created by natural disasters. 

• Wrapped interferograms have more information than unwrapped when 

converted into images, but they are noisier. 

• Deep learning methodologies are adequate for detecting the deformation 

fringes (e.g., VGG and ResNet) and segmenting them (e.g., Unet).  

• Small annotated datasets are challenging, but several approaches can 

help, such as transfer learning and data augmentation.  

With all this in mind, a methodology to implement was proposed and is represented 

in the Figure 16 pipeline.  

 

Figure 16: Proposed methodology pipeline. 

The first step was creating and studying the InSAR datasets. Then, the data was 

normalized and manipulated to be prepared for the train, and the dataset was divided 

into three sets: train set, validation set, and test set. Next, the train and validation set to 

train both Classification and Segmentation models. Finally, the resulted models and the 

test set evaluate the models, achieving the metrics for the results. Each step of these 

steps will be described in detail in the following sections. 
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This work implementation used python version 3.7 with the following libraries: 

• Tensorflow 2.3.0 and Keras 2.4.5 for machine learning; 

• Segmentation_models 1.0.1 for the segmentation; 

• Numpy 1.19.2 to prepare and manipulate the data; 

• Sklearn (from Scikit-learn) 0.24.1 to calculate the metrics; 

• Matplotlib 3.1.2 to create the graphs. 

3.1. Data 

To the best of our knowledge, there are no public datasets with annotated 

interferograms to be used with supervised machine learning methods. So it was decided 

to create one for this work by manually annotate wrapped and unwrapped interferograms 

without atmospheric correction from the public LiCS database from COMET Centre1. 

This database made available satellite InSAR data from the Sentinel-1 mission since 

2015.  

First, a python program was created that automatically downloads all the available 

interferograms for a chosen area. This step was necessary because the website did not 

have a platform to download multiple data simultaneously and download the 

interferograms individually was not viable. 

Twenty-nine zones were selected worldwide, where earthquakes occurred 

between June 2019 and May 2021. Figure 17 shows those zones in a planisphere. 

 
1 https://comet.nerc.ac.uk/comet-lics-portal/ 

https://comet.nerc.ac.uk/comet-lics-portal/
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Figure 17: Earthquakes zones used in this work 

Figure 17 shows that most of the earthquakes of this work occurred in the northern 

hemisphere. This choice was not deliberate. In fact, it happened because the southern 

earthquakes were not strong enough to cause deformation (e.g., Chile) or occur in zones 

with substantial noise where deformations are not visible in interferograms (e.g., 

Indonesia). Also is essential to mention that Sentinel-1 is a European mission, and 

consequently, data for Europe and the surrounding are more extensive. 

A total of 3261 interferograms were downloaded, and 470 having positive 

deformation fringes are visible.  

The dimension of the earthquake is mainly influenced by two factores, the 

magnitude in the Richter scale of the earthquake and the depth in which it occurs; the 

largest earthquakes usually occur at shallower depths in the earth's crust. However, it is 

essential to emphasise that the type of soil and the built environment can change the 

proportion of deformation. 

In Table 2 (page 29), it can be seen the information about selected earthquakes 

and in Figure 18 their magnitude distribution histogram. 
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Figure 18: Earthquakes magnitude distribution for downloaded interferograms 

Two big groups with more interferograms are visible and can be seen in the 

earthquakes magnitude distribution histogram (Figure 18):  

• The first one is for more minor earthquakes, with fewer fringes between 5.4 

and 5.6 of magnitude having more than 140 interferograms.  

• The other is a smaller group with a little less than 100 interferograms with 

a medium magnitude.  

Additionally, there are three earthquakes, the largest magnitudes, 7.1 (one earthquake, 

Califórnia) and 7.4 (two earthquakes, Qinghai in China, and Oaxaca in México), 29 and 

43 interferograms, respectively. 

In this case, depth is not a good sign to analyse because we obtained United States 

Geological Survey (USGS) data, and when exist insufficient data to a proper value is 

used 10km as a fixed value. However worth note some earthquakes occurred in shallow 

depths like the Tonopah, Nevada earthquake. This type of earthquake (in shallow 

depths) can achieve high dimensions even with low magnitude. 
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Table 2: Information about selected earthquakes. 

Zone Date Magnitude 
Depth 
(KM) 

Number of 
interferograms 

Álftanes, Iceland 20/10/2020 5.5 10 22 

Arzak, China 19/01/2020 6 6 5 

Challis, Idaho 31/03/2020 5.6 15 5 

Chukotskiy Avtonomnyy Okrug, 
Russia 

09/01/2020 6.4 10 10 

Dali, China 21/05/2021 6.1 10 4 

Elazig, Turkey 24/01/2020 6.7 10 39 

Grindavík, Iceland 24/02/2021 5.6 10 37 

Hotan, China 25/06/2020 6.4 10 14 

Idgah, Pakistan 30/12/2019 5.4 14 7 

Kanallakion, Greece 21/03/2020 5.7 10 14 

Karakenja, Tajikistan 24/01/2020 5.5 10 2 

Kirkagac, Turkey 22/01/2020 5.6 6 20 

Magna, Utah 18/03/2020 5.7 12 8 

Mamurras, Albania 26/11/2019 6.4 22 24 

Mohr, Iran 09/06/2020 5.5 10 19 

Nagqu, China 19/03/2021 5.7 10 11 

Oaxaca, México 23/06/2020 7.4 26 14 

Petrinja, Croatia 29/12/2020 6.4 10 24 

Qinghai, China 21/05/2021 7.4 10 29 

Ridgecrest, California 06/07/2019 7.1 8 29 

Saray, Turkey 23/02/2020 5.8 10 17 

Tallaboa, Puerto Rico 07/01/2020 6.4 9 3 

Tonopah, Nevada 15/05/2020 6.5 3 28 

Turt, Mongolia 11/01/2021 6.8 10 3 

Týrnavos, Greece 04/03/2021 5.5 10 26 

Xegar, China 20/03/2020 5.7 10 13 

Xizang, China 22/07/2020 6.3 10 12 

western Xizang, China 29/03/2021 5.6 10 14 

Yedisu, Turkey 14/06/2020 5.9 10 17 

 

Analysing the interferograms, they can be divided into three types: i) the big 

earthquakes, ii) the medium earthquakes. Iii) the small earthquakes. This division was 

essential to split the data into sets in the next step to balance the sets as fairly as 

possible. 
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As expected, the big earthquakes, with a magnitude of 7.1 and 7.3, cover more 

extensive areas and have more fringes, as shown in Qinghai, Oaxaca, and California 

earthquakes. These types of earthquakes are very well visible in both wrapped and 

unwrapped interferograms. Note that Qinghai, China earthquake is so extensive that the 

demonstrated interferogram only shows part of him. The rest of the earthquake 

deformation is on another interferogram. Thus, this specific earthquake covers four 

interferograms zones been the most extensive of the dataset. The figure below shows 

some examples of interferograms from extensive surface deformation provoked by 

earthquakes inside the red boxes (Figure 19). 

Wrapped interferograms 

Qinghai, China

 

Ridgecrest, California 

 

Oaxaca, México 

 

Unwrapped interferograms 

Qinghai, China

 

Ridgecrest, California 

 

Oaxaca, México 

 

Figure 19: Examples of interferograms from big earthquakes zones 

Medium earthquakes are the most common. They can be detected easily in both 

wrapped and unwrapped interferograms. The fault is well seen in the majority of these 

earthquakes. However, if the dates of the SAR images are to separate, the fringes 

furthest from the epicenter start to vanish. These earthquakes go from 5.8 to 6.7 of 

Magnitude. Can be some exceptions if the earthquake is below 5.8 but occurs in shallow 

depth or if the magnitude is bigger than 6.7 but occurs at higher depths (Figure 20). 
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Wrapped interferograms 

Tonopah, Nevada 

 

Hotan, China 

 

Petrinja, Croatia

 

Unwrapped interferograms 

Tonopah, Nevada 

 

Hotan, China 

 

Petrinja, Croatia

 

Figure 20: Examples of interferogram from medium earthquakes zones 

Small earthquakes are the most difficult to detect. These can be “hidden” in the 

atmospheric noise. Wrapped interferograms usually have very few fringes (or even only 

one), and his fault goes from difficult to impossible to see. In the unwrapped 

interferograms, they are even more challenging to see. His fault is also difficult or 

impossible to see. Although, the right color scale can help to find him in unwrapped 

interferograms. The magnitude is usually less than 5.6. 

Wrapped interferograms 

Álftanes, Iceland 

 

western Xizang, China

 

Kanallakion, Greece 

 
Unwrapped interferograms 

Álftanes, Iceland 

 

western Xizang, China

 

Kanallakion, Greece 

 

Figure 21: Examples of interferograms from small earthquakes 
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3.2. Data preparation 

Deep learning dimension models require computational resources proportional to 

the input images to process. The downloaded interferograms represent vast areas and 

are stored in large images. Though, it was necessary to find patches that could represent 

earthquakes fringes. Thus, after analysing the interferograms, it was found that patches 

with 256x256 pixels size is adequate.  

To prepare the data for the model’s train was necessary to normalize the data. 

Therefore, the data was prepared according to the following pipeline (Figure 22). 

 

Figure 22: Data preparation pipeline 

First, deformation fringes were manually annotated with a mask with an image tool 

(Adobe Photoshop), as shown in Figure 23. 

 

  

Figure 23: Earthquake interferogram (left) and his mask (right) 

The mask has a small margin to test if the segmentation models can find 

deformation "hidden" in the atmospheric noise. All the steps below apply to the 

interferogram were also applied to the mask. 
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All images were initially normalised since machine learning methods, including 

deep learning, benefits from this operation.  

To assure that models are not trained and evaluated with the same earthquakes, 

interferograms data was distributed by earthquakes into three sets: train set (~60% of 

the earthquakes), validation set (~20% of the earthquakes), and test set (~20% of the 

earthquakes). All sets guarantee big and small earthquakes since earthquakes were 

individually assigned to their set (Table 3). 

Table 3: Number of interferograms for each set of each dataset (wrapped and unwrapped) 

Set Deformation 
No 

deformation 

Train 254 2189 

Validation 94 340 

Test 122 262 

 

Interferograms represent the same area size in km, but all the images do not have 

the exact dimensions. Therefore, to approximate the size of pixels was decided to 

resemble all interferograms to 1024x1024pixels.  

The raw interferograms came with a rotation, as shown in Figure 19, Figure 20, 

and Figure 21. This rotation can be for the right or left, depending on whether the satellite 

is ascending or descending orbit. As a result, the interferograms were aligned with the 

angle of the satellite's passage, eliminating the rotation. Without eliminating the rotation, 

the patches of the edges had much blank areas (Figure 24).  

 

Figure 24: Demonstration of interferogram rotation 
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Next, we cut the interferograms in patches of 256x256 pixels. Interferograms 

without deformation fringes were cut into parallel patches. For interferograms with 

deformation fringes, the patches were overlapped with a stride of 128 horizontally and 

vertically to guarantee the deformation in the patches center; deep learning models are 

sensitive to the object's location. Patches where the deformation was not in the 150x150 

pixels center were considered null and eliminated (Figure 25).  

 

Figure 25: Demonstration of patch creation 

As shown in Figure 25:  

• The red patches do not have the deformation inside;  

• The yellow patches have the deformation. However, the deformation does not 

belong to the 150x150 pixels patch center;  

• The green patch includes the deformation, and the deformation is on the patch 

center. 

Finally, the color channels of the interferograms were normalized to a greyscale. 

So, we change the pixel’s values from [0, 256] to [0,1] since the machine learning models 

perform better dealing with small values. 

After applying all these steps, the final datasets were for each wrapped and 

unwrapped interferogram are presented in Table 4. 
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Table 4: Final Dataset in patches (number of interferogram patches for a set) 

 Class dataset Seg dataset 

Set Deformation 
No 

deformation 
Only deformation 

Train 499 14979 499 

Validation 380 4051 380 

Test 253 3826 253 

 

The datasets were very unbalanced. This happened because the number of 

interferograms without deformation fringes is much more significant than those with 

deformation fringes. Therefore, there is necessary to use techniques to deal with this 

unbalanced. 

3.3. Models train 

After the creation of classification and segmentation datasets, the models were 

trained. It follows the methodologies followed for deal with the unbalanced data and small 

datasets and training the models.  

3.3.1. Dealing with unbalanced data and small datasets 

When datasets are unbalanced, i.e., they have very different amounts of data for 

each class, models tend to become more difficult to learning correctly. An unbalanced 

dataset will bias the prediction model towards the more common class (Lee & Lee, 2012). 

Some techniques deal with unbalanced data, including data augmentation (Mikołajczyk 

& Grochowski, 2018) and focal loss (Lin et al., 2017). Another common problem in 

training deep learning models is the shortage of data for which transfer learning is usually 

used. 

Data augmentation is a technique in which data is created for the class with the 

least amount of data, thus creating synthetic data. There are several ways to do this, but 

the most common is through traditional transformations, i.e., geometric deformations are 

applied to the images, which can be, zoom in/out, reflection, shear, rotation, among many 

others. Figure 26 shows some examples of common data augmentation transformations. 
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Figure 26: Example of data augmentation 

Focal loss is a variant of cross-entropy loss. For the Cross-entropy, if the 

prediction is identical to the correct answer, the loss will be low. Otherwise, it will be high. 

Thus, the cross-entropy idea is to penalise wrong predictions more than rewarding 

correct ones (5). Unfortunately, this brings a problem because after adding all the small 

losses on the images can overcome the overall loss (total loss). Thus, it leads to 

degenerate models. Focal Loss changes the weight factors to a factor of  (1 −  pt)𝛾 to 

the standard cross-entropy criterion. This way, the bigger the y, the lowers the loss. 

Setting 𝛾 > 0 reduces the relative loss for well-classified examples (pt>0.5), putting more 

focus on hard, misclassified examples: 

 𝐹𝐿(𝑝𝑡) =  −α (1 −  pt)𝛾𝑙𝑜𝑔(𝑝𝑡) (12) 

Where: 

pt = predicted probability given by the model. 

FL= Focal Loss. 

γ = values between [0,5], 0 corresponds to cross-entropy. 

α = weightage factor [0,1]. 

 

Figure 27: Comparison between cross-entropy and focal loss, adapted figure from T. Lin 2017 

Figure 27 shows the evolution chart of the loss for each value of γ. The authors 

tested Focal loss for the RetinaNet network and achieved the best results with α=0.25 

and γ=2. 
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Transfer learning is a widely used technique for deep learning problems used to 

deal with small datasets. It consists of using pre-trained models trained in wide datasets 

and using the weights of these models for our dataset. One way to use transfer learning 

is through fine-tuning. This technique consists of freezing all the base layers of the pre-

trained model and training only the last convolutional layer block and the layers added 

by the operator, usually the fully connected classifier. When the model starts to overfit 

its unfreeze all layers and trains the model for a few more epochs obtaining a slight 

improvement of the model (Hinton et al., 2006). 

 

3.3.2. Classification models 

Three state-of-the-art pre-trained models to classify the deformation fringes 

created by the earthquakes were chosen: InceptionV3, VGG19, and ResNet50V2.  

These models were selected because they are an evolution of models that achieve 

the best accuracy in ImageNet database, and they achieve satisfactory results in 

preliminary tests.  

First, was used the pre-trained models with the ImageNet dataset. Then, the model 

operates transfer learning with fine-tuning at the top, stratifying the first layers, and 

substituting and training the final classifier. For the classifier, we use fully connected 

layers (dense layers interspersed with batch normalisation layer as regularisation) to 

achieve the output after the convolutional model. The output was a sigmoid, i.e., a value 

between 0,1 which means the probability of having deformation fringes (Figure 28). 
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Figure 28: Architecture of the classification models 

The train of the classification models started in parallel with the dataset's creation, 

initially starting with a small dataset with 1800 interferograms until we got the entire 

dataset of Table 4. This was a smaller and much more controlled dataset (Table 5).  

Table 5: Preliminary dataset (number of patches) 

Set Deformation 
No 

deformation 

Train 287 5855 

Validation 146 1326 

Test 166 166 

 

Data augmentation was used in the positive cases for the train and validation set 

to equilibrate the positive/negative cases to deal with the unbalanced data. However, as 
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the dataset grew, this technique became useless and needed other options. So then, it 

was decided to use the focal loss as the loss function instead of the data augmentation. 

The model used the Adam optimiser with a learning rate of 0.0001, binary cross-

entropy for the loss function when using data augmentation on positive cases, and focal 

loss when not using data augmentation. To speed up the process, and for computational 

reasons, data was placed in generators with a 20 batch size. It was decided on 260 steps 

per epoch and 60 validation steps. The model was trained for 150 epochs. However, the 

algorithm had a call back that only saves the best model based on the loss score. 

3.3.3. Segmentation models 

To isolate the area affected by the earthquake were chosen two segmentation 

models, Dual attention and Unet. For the Unet model, we evaluate the three 

convolutional neural networks trained in the classification (VGG19, InceptionV2, 

ResNet50V2) as the encoder. As explained before, Unet is composed of an encoder and 

a decoder, and Dual attention combines two segmentation techniques (position attention 

and channel attention). Although Unet was chosen as the most used model for this 

purpose, Dual attention is a recent technique that can achieve good results. 

The model was trained for 20 epochs with the callback that only saves the best 

model. After the 20 epochs, the model starts to overfitting. The model uses the Adam 

optimiser with a learning rate of 0.001 and a Jaccard coefficient as the loss function 

(IoU). Finally, the data were put in generators of 20 batch sizes again and chose 125 

steps per epoch and 62 validation steps.  

The segmentation models only used the positive cases of the dataset. When tested 

with both positive and negative the results were poor. Therefore, the segmentation model 

cannot distinguish patches with deformation and patches without deformation but only 

detect the deformation in patches with deformation. Consequently, the classification 

model must be used to detect the patches with deformation before using the 

segmentation model for practical use.  

3.4. Model evaluation 

The convention set metrics to evaluate classification and segmentation models 

were used. For classification, were used accuracy, precision, recall, F1 score (Goutte & 

Gaussier, 2005), G-mean (Guo et al., 2016), ROC Curve, Area Under the Curve (AUC), 
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and for segmentation were used IoU Score and Dice coefficient. In the following sections, 

we present metrics definitions. 

3.4.1. Classification metrics 

The ground-truth value and the model prediction are used to evaluate classification 

models. Models’ predictions are classified as: 

• True Positive (TP), when the prediction is positive and equal to the ground-

truth; 

• True Negative (TN), when the prediction is negative and equal to the 

ground-truth; 

• False Positive (FP), when the prediction is positive, and the ground-truth is 

negative; 

• False Negative (FN), when the prediction is negative, and the ground-truth 

is positive. 

The total number of each TP, TN FP and FN are the basic metrics. These metrics 

are frequently summarised in the confusion matrix, as represented in Figure 29. 

 

Figure 29: Confusion Matrix 

 

Accuracy is the general metric and is defined by the percentage of correct 

predictions in all population test. 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (13) 
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Precision is the percentage of correct answers among all answers given as positive 

by the model. Low precision means that exist an high rate of false positives 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (14) 

 

The recall is the percentage of correct answers out of all expected positive 

answers. Low recall means that exist an high rate of false positives 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (15) 

 

G-mean is a metric used to find the best threshold; it is the geometric mean of 

recall and precision 

 Gmean = √𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (16) 

 

F1 score is a harmonic mean between precision and recall. 

 
𝐹1 𝑆𝑐𝑜𝑟𝑒 =

2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (17) 

 

The Receiver Operating Characteristic curve (Hoo et al., 2017) or ROC curve 

consists of the plot of the true positive and false positive rates calculated for each 

threshold, as shown in Figure 30. 

 

Figure 30: Example of a ROC Curve 
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This graph permits defining the best threshold for the model balancing the true 

positive rate with the false positive rate. The area under the ROC Curve (AUC) is the 

percentage of the metric score that characterises the model independently of the 

selected thresholds - a graph under the ROC Curve (Figure 30). Thus, as bigger the 

AUC is near 1, it usually means the better is the model. 

3.4.2. Segmentation metrics 

IoU (Intersection Over Union) score (Nowozin, 2014) is a metric that evaluates how 

similar are two areas, the predicted area, and the ground truth area. They can be 

calculated from the evaluation of each image pixel as TP, TN, FN, and FP, according to 

equation 18. 

 

𝐼𝑜𝑈 𝑠𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
=

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛
=    

(18) 

   

Dice coefficient (Fidon et al., 2018) is another widely used metric to evaluate how 

similar two areas are and is defined by the following formula.  

𝐷𝑖𝑐𝑒 =
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
=

2 ∗ 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 + 𝐺𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ
=  

2 ∗

+

  
(19) 
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4. Results and discussion 

In this chapter, the results of the different fringes detection and segmentation 

methods are presented, discussed, and compared to the published related works. First, 

in section 4.1, we present the results of the automatic classification approaches; 

followed, in section 4.2, by the results of the earthquakes localisation based on the 

segmentation methods.  

4.1. Classification 

Various tests were made with different setups to train the models InceptionV3, 

VGG19, and ResNet50V2. This section shows the most important results achieved: i) 

the preliminary results with the smaller dataset, ii)the results achieved with data 

augmentation in the final dataset, iii)the preliminary models applied to the final test set 

and, iv) the final dataset with the loss function instead of the data augmentation. 

Preliminary results 

The preliminary test with the smaller dataset (Table 5) and data augmentation to 

balance the dataset achieved the following results. Note that the test set was balanced, 

but data augmentation was not used. 

Table 6: Metrics for the preliminary tests. The threshold at 50%. 

Wrapped interferograms 

Model Accuracy F1-Score AUC* 

InceptionV3 0.84 0.85 0.90 

VGG19 0.89 0.87 0.96 

ResNet50V2 0.80 0.80 0.87 

Unwrapped interferograms 

Model Accuracy F1-Score AUC* 

InceptionV3 0.68 0.69 0.74 

VGG19 0.71 0.74 0.77 

ResNet50V2 0.70 0.75 0.77 

*value not affected for the threshold 

 

For the preliminary tests, the results obtained were great and showed deep 

learning capability in fringes detection, mainly for wrapped interferograms (Table 6). The 
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model VGG19 showed to be slightly better than the other models on wrapped 

interferograms, achieving an accuracy of 0.89 against 0.84 and 0.80 for the InceptionV3 

and ResNet50v2 models. VGG19 also obtained a better F1-Score and AUC than the 

other models.  

On unwrapped interferograms, the models VGG19 and ResNet50V2 achieved 

identical results with 0.71 and 0.70 for accuracy, 0.74 and 0.75 for F1-Score, and 0.77 

for the AUC. The InceptionV3 performs slightly worse than the other models. 

 The metrics show that all models perform better on the wrapped interferograms. 

The ROC curves confirm these affirmations with a cleaner view and show the 

performance regardless of the threshold (Figure 31). 

  

Figure 31: ROC Curves for the preliminary tests. At left wrapped interferograms, at right, unwrapped 
interferograms 

Analysing the ROC curves, VGG19 for wrapped interferograms keeps showing to 

be the better choice. Wrapped interferograms are better than unwrapped to use deep 

learning techniques regardless of the threshold. For the unwrapped interferograms, all 

models perform identically 

Data augmentation with the final dataset 

After the promising results achieved in the preliminary tests, the same techniques 

and setups were used in the final dataset (Table 4) achieved the following results (Table 

7). More metrics will be used after this point because the test set is unbalanced and more 

metrics are needed to better understand the results and the models. 
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Table 7: Metrics for data augmentation applied on the final dataset—the threshold at 50%. 

Wrapped interferograms 

Model Accuracy Precision Recall F1-Score AUC* 

InceptionV3 0.63 0.08 0.54 0.15 0.64 

VGG19 0.80 0.14 0.41 0.21 0.70 

ResNet50V2 0.63 0.08 0.51 0.14 0.59 

Unwrapped interferograms 

Model Accuracy Precision Recall F1-Score AUC* 

InceptionV3 0.49 0.07 0.62 0.13 0.57 

VGG19 0.26 0.06 0.83 0.12 0.51 

ResNet50V2 0.62 0.08 0.49 0.14 0.58 

*Not affected for the threshold 

These results do not corroborate the good results achieved in the preliminary tests. 

These models achieved a maximum of 0.21 for the F1-Score with the VGG19 model for 

the wrapped interferograms. The results are even worse for the unwrapped 

interferograms, reaching a maximum of 0.14 F1-Score for ResNet50V2. The shallow 

values for the precision for all models show that the models have a high rate of False 

Positives, showing the incapability of the model to detect the negative cases. This low 

precision also happened because the data is unbalanced, having many more negative 

cases than positive; this is another reason for the low precision values. Even though the 

results slightly improved adapting the threshold, that is not enough to achieve 

satisfactory results, as the ROC curves and AUC are both low (Figure 32).  

  

Figure 32: ROC Curves for models using data augmentation on the final dataset. At left wrapped 
interferograms, at right, unwrapped interferograms 
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For the unwrapped interferograms with the AUC values near 0.5, that means that 

the model's predictions are near random. The 0.49 of accuracy on the InceptionV3 model 

for unwrapped interferogram means the same, even more, when the dataset is 

unbalanced. The 0.29 accuracy on the VGG19 was a strange value. However, the ROC 

curves and AUC (0.52) show that the values, even being lower than the other models 

(0.57 and 0.58), can be comparable, which means that adapting the threshold the 

accuracy will be better despite that all these values achieve in this models are not 

satisfactory. 

Preliminary dataset models on the final test set 

Due to the results achieved using data augmentation in the final dataset, the 

preliminary models were used on the final test set for a fair comparison. This way is 

possible to conclude if the problem is the models or the data (Table 8). 

Table 8: Metrics for preliminary models applied on the final dataset. The threshold at 50%. 

Wrapped interferograms 

Model Accuracy Precision Recall F1-Score AUC* 

InceptionV3 0.69 0.12 0.63 0.20 0.70 

VGG19 0.80 0.17 0.60 0.25 0.78 

ResNet50V2 0.46 0.11 0.65 0.19 0.72 

Unwrapped interferograms 

Model Accuracy Precision Recall F1-Score AUC* 

InceptionV3 0.60 0.09 0.60 0.16 0.66 

VGG19 0.50 0.07 0.63 0.13 0.56 

ResNet50V2 0.43 0.08 0.82 0.15 0.68 

*Not affected for the threshold 

 

As expected, these results were worse than the ones obtained on the preliminary 

tests. This happened because this dataset is more extensive and unbalanced despite 

the models being the same. However, the most unexpected is that the preliminary 

models results were better than the final ones with data augmentation when applied to 

the same tests, even being trained with fewer data.  

Comparing the models for the 50% threshold, only the model ResNet50V2 

performs identically in both datasets. The models trained in the final dataset (Table 7) 

achieved better accuracy and precision, this one achieved better recall and F1-Score. 

For all the other models, the preliminary models (these ones) achieved better results. 
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This difference gets more notorious on the ROC Curves and AUC (Figure 33). 

  

Figure 33: ROC Curves of the preliminary models applied on the final test set. At left wrapped 
interferograms, at right, unwrapped interferograms 

Analysing the ROC Curves and AUC independent of the threshold, the difference 

is more notable mainly for wrapped interferograms. All models have better performance 

than the final models presented in Figure 32 with an AUC of 0.70, 0.78, and 0.72 against 

0.64, 0.70, and 0.60.  

The same happened on unwrapped interferograms but with a minor difference with 

an AUC of 0.63, 0.56, and 0.68 against 0.54, 0.51, and 0.58. Note that the more identical 

model (ResNet50V2) for the 50% threshold has a more significant difference on the AUC 

(0.12 for wrapped and 0.10 for unwrapped interferograms). 

After these results are possible, conclude that data augmentation is good up to a 

point, but as the imbalance gets bigger, the quality of the model starts to fail. Thus, 

applying a new method that outperforms these models was necessary since those not 

achieved satisfactory results.  

Focal Loss on final dataset 

The focal loss was tried instead of data augmentation. As shown before, this is a 

particular type of loss that helps to lead to unbalanced data. The results can be seen in 

Table 9. 
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Table 9: Metrics achieved for wrapped and unwrapped interferograms patches. The threshold at 50% 

Wrapped interferograms 

Model Accuracy Precision Recall F1-Score AUC* 

InceptionV3 0.95 0.95 0.23 0.37 0.77 

VGG19 0.97 1.00 0.52 0.69 0.86 

ResNet50V2 0.96 1.00 0.36 0.52 0.75 

Unwrapped interferograms 

Model Accuracy Precision Recall F1-Score AUC* 

InceptionV3 0.94 0.53 0.08 0.13 0.65 

VGG19 0.95 0.88 0.20 0.32 0.73 

ResNet50V2 0.94 1.00 0.08 0.15 0.67 

* not affected by the threshold 

The accuracy metric is not fair in these cases (they are all very high between 0.952 

and 0.970) because it is an unbalanced dataset. However, these high values are already 

indicative of improvement comparing with the other models shown above.  

The most unexpecting was the value of precision. Once that the data without 

deformation fringes is much more extensive than the ones with them is expecting that 

the precision achieves low values due to the amount of false positives but that doesn’t 

happen, reaching values of one or near it. The exceptions were the Inception V3 and 

VGG19 for unwrapping interferograms (0.53 and 0.87, also good results). Not finding 

false positives is an excellent result because the models were tested in more than 3800 

negative cases. The threshold can be lowered, and the metrics will probably improve. 

The right threshold depends on the user and how much FP/FN is suitable for the specific 

case. 

The values of the Recall were low. Therefore, without data augmentation, exist 

fewer positive cases to train and “teach” the model achieving more false negatives on 

the tests. However, the 0.52 achieved by the VGG19 for wrapped interferogram are 

exciting results, even more, when the F1-Score is 0.69. 

The F1-Score characterises the best performance of the models since it makes a 

consensus between these two metrics (equation 17), separating the best performance 

of the models (values 0.370, 0.52, and 0.69) and thus allows to complete that the VGG19 

model will present the best performance. 

Analysing the ROC curves and AUC is also concluded the same, regardless of the 

threshold decided (Figure 34). 
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Figure 34: ROC Curves for the classification models using focal loss: at left the ROC curve for wrapped 
interferograms, and at right the ROC curves for unwrapped interferograms. 

 

As expected, wrapped interferograms allowed better results compared to 

unwrapped interferograms. Thus, VGG19 for wrapped interferograms became the best 

model to detect earthquake fringes, as seen in the ROC Curve and AUC values, not only 

on these ROC curves but in all of them. InceptionV3 and ResNet50V2 perform 

identically. Although for precision, recall, and F1Score, we evaluate the model to a 50% 

threshold, that value can be adapted for some objective, depending on how many false 

negatives we are willing to have. For example, calculating the g-mean for all thresholds 

in VGG19 for the train set shows that the general best is 36%, with a g-mean of 0.98; 

50% threshold only have 0.92 g-mean.  

Focal loss performs better than data augmentation to deal with unbalanced data, 

as shown in Figure 35. We compare the best model using Focal Loss with the best model 

using data augmentation.  
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Figure 35: ROC Curve, Focal Loss vs. Data augmentation 

Overall, these results can be considered reasonable. However, in practice, the 

interferograms are cut into overlapped patches. As a result, the model did not detect the 

earthquake fringes in some patches, that change in the overlapped patch on the same 

interferogram, as shown in Figure 36. 

 

P(earthquake)= 0.336 

 

 

P(earthquake)= 0.999 

 

P(earthquake)= 0.491 

 

 

P(earthquake)= 0.723 

 

P(earthquake)= 0.297 

 

 

P(earthquake)= 0.998 

Figure 36: Overlapped earthquakes patches and its probability of having deformation earthquake 
according to the model 

Changing how the positive patches are in data preparation, we can eliminate at 

first the patches that the models do not found fringes. So, that way, having a better train, 
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achieving better results. However, considering that for almost all earthquakes are 

available more than one interferogram, we can guarantee a well-detected positive patch 

in all cases.  

The main objective is found the deformation fringes in interferograms and not in 

patches. So, it was decided to apply the best models (with focal loss) to calculate the 

metrics for interferograms and not only for the patches (dataset of Table 3). Thus, the 

data have a positive prediction (predicted as deformation) if at least one patch of that 

interferogram is predicted as positive.  

The results can be seen below in Table 10. 

Table 10: Metrics for tests on full interferograms 

Wrapped interferograms 

Model Accuracy Precision Recall F1-Score 

InceptionV3 0.82 0.96 0.44 0.61 

VGG19 0.89 1.00 0.64 0.78 

ResNet50V2 0.86 1.00 0.57 0.72 

Unwrapped interferograms 

Model Accuracy Precision Recall F1-Score 

InceptionV3 0.72 1.00 0.11 0.21 

VGG19 0.69 0.70 0.06 0.11 

ResNet50V2 0.69 1.00 0.02 0.04 

 

For this case, the dataset is not so much unbalanced as the other dataset (122 

positive cases for 266 negative cases). Thus, accuracy does not need to be discarded. 

Like in all other cases, wrapped interferograms have better performance than the 

unwrapped ones, and it can be now stated that they are indisputably better to be applied 

with deep learning. The unwrapped interferograms for all cases do not show be a good 

option, not having any advantage to use. 

For wrapped interferograms, VGG19 has better performance in all metrics again. 

In general, all the metrics were improved compared with the patches dataset. This 

improvement corroborates the idea that some false negatives are corrected in the 

overlapped patch. 

We believe that it is possible to improve these results significantly to a level that, 

in the future, will be possible to create systems to monitor the Earth in real-time.  For 
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this, is necessary a more extensive dataset and less unbalanced data collecting more 

positive cases. However, there is no need to train more negative cases since the results 

show that these models can already detect the patches without deformations.  

4.2. Segmentation 

Below is presented the IoU, Dice Score, and Accuracy for Unet and Dual attention 

segmentation models. As for classification, these metrics are calculated for a 50% 

threshold (Table 11). Only wrapped interferograms were tested once that they already 

showed the incapability to be detected.   

Table 11: Segmentation Metrics 

Model Coder IoU Score* Dice Score* Accuracy* 

Unet 

InceptionV3 0.43 0.59 0.83 

VGG19 0.32 0.47 0.85 

Resnet50V2 0.13 0.22 0.80 

Dual attention ResNet50 0.25 0.39 0.84 

Note: all metrics were calculated with a threshold of 50%. 

As happened for the classification, accuracy is not a good metric and should be 

ignored, being represented as indicative, as it depends on the area's dimensions to 

segment. The results were poor, tried several approaches, and needed more data to 

train the segment models properly. Dual attention does not prove to be a good model to 

segment earthquake fringes in interferograms. 

InceptionV3 obtained the best values in segmentation, with VGG19 reaching 

values close to InceptionV3. However, InceptionV3 has difficulty detecting the edges 

between deformation/ no deformation, which is the main factor contributing to some 

errors in this model. This effect can be seen in Figure 37a. Regarding VGG19, it shows 

a better capability to find the edges. However, the primary constraint is that VGG 19 

interprets some image noise as deformation fringes (Figure 37b).  

The models Unet with the Resnet50V2 and Dual attention were poor, unable to 

locate the fringes on the patch (Figure 37c,d). 

Note that for the best models (InceptionV3 and VGG19), the model has more 

confidence in the center than in the borders. 
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a) Unet (InceptionV3) 

 

b) Unet (VGG19) 

 

 

c) Unet (ResNet50V2) 

 

 

d) Dual attention 

  

 

Figure 37: Segmentation confidence area for two earthquakes using a) InceptionV3, b)VGG19, 
c)ResNet50V2, and d) Dual attention 
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Testing the metrics for all thresholds in the train set, Inception V3 shows a 90% 

threshold as his best, while the best threshold for VGG19 is 70%. Thus, evaluating the 

models for the best thresholds, we have an improvement in the metrics. 

Table 12: Metrics of segmentation for the best thresholds (90% for InceptionV3 and 70% VGG19) 

Unet Models IoU Score Dice Score Accucary 

InceptionV3 0.48 0.63 0.87 

VGG19 0.47 0.62 0.85 

 

These thresholds slighting improve the detection of the deformation fringes, as 

shown in Figure 38. 

a) InceptionV3 

 

b) VGG19 

 

Figure 38: Segmention borders for two earthquakes using a,b) InceptionV3, c,d)VGG19; -50%threshold, 
-best threshold 

Using the right threshold, the problems encountered above (Figure 37) are partially 

resolved, mainly for VGG19, where the noise rarely is detected as an earthquake using 

the suitable threshold. That is the reason why in Table 12, the VGG19 practically reached 

the values of InceptionV3. 

Here are some examples where the models don’t work so well, thus justifying the 

poor results. 
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a) InceptionV3

 

 

 

b) VGG19

 

 

Figure 39: Bad segmentation borders for two earthquakes using a) InceptionV3, b)VGG19; -
50%threshold, -best threshold 

These are promising results. However, more data is needed to achieve the desired 

results. In the future, with more data could be possible to train these models to segment 

both positive and negative cases. 
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5. Conclusion 

In this dissertation, Machine Learning techniques were explored for automatic 

detection of seismic deformations in SAR interferograms and estimate the earthquake's 

impact area -  datasets were created, and several models were trained for the 

classification and segmentation of seismic deformations. 

Initially, the literature review was done, where the fundamentals of InSAR, Machine 

Learning, and Deep Learning were studied and identified the state-of-the-art Deep 

Learning methods applied to InSAR data. A methodology was devised to address the 

earthquake fringes classification and segmentation in InSAR tasks, taking into 

consideration the knowledge learned from the literature review: Sentinel-1 

interferograms (wrapped and unwrapped) have adequate information for studying 

seismic deformations; Deep Learning methodologies are adequate for detecting the 

deformation fringes, and although small annotated datasets are challenging, it is possible 

to train Deep Learning models successfully. 

Two InSAR datasets were created for training classification models for wrapped 

and unwrapped interferograms. The data were normalized and manipulated to fit models. 

However, the available data were too unbalanced due to the small size of deformation 

areas in the interferograms compared with the areas without deformations, and most of 

the interferograms do not have any deformations at all. To deal with this, it was exploring 

the use of “data augmentation” approach and a special loss untitled “focal loss”. In a 

preliminary evaluation, the models were trained with a smaller dataset (during 

annotation) and with a balanced test set using “data augmentation” (on train and 

validation) and achieved as best 0.87 and 0.96 for F1-Score and AUC, respectively. 

When the dataset was complete, the dataset became bigger and more unbalanced. The 

test set became 15 times more negative cases than positive, and the final evaluation 

showed poor results with his best an F1-Score of 0.21 and an AUC of 0.70. To enable 

comparison, we evaluated the models trained in the preliminary dataset on the final test 

set and achieved were slightly better results - F1-Score of 0.25 and an AUC of 0.78. In 

this case, “data augmentation” performed worse with a more extensive and more 

unbalanced dataset than a smaller one. We can conclude that in this case, this method 

has worse performance when the unbalancing is bigger. We decide to explore the use 

of “focal loss to overcome this difficulty. This new approach achieved our best results - 

F1-Score of 0.69 and an AUC of 0.86. Once for each interferogram, we created several 

overlapped patches. Studying the prediction of overlapped patches, this model does not 
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show any false positives. For false negatives, in most of the cases overlap true positives. 

Considering the interferogram has seismic deformation where at least one of the 

overlapped patches has a positive prediction, the model reached an F1-Score of 0.78, 

which is a promising result. For all the tests made, VGG19 achieved better results, and 

the wrapped interferograms consistently achieved better results than the unwrapped 

ones for all models. 

Segmentation models were used in patches of wrapped interferograms that have 

seismic deformations. Two models were capable of segmenting the earthquake fringes, 

Unet with InceptionV3 encoder and Unet with VGG19 encoder, achieving a coefficient 

Dice of 0.59 and 0.47, respectively. We explore other models such as Dual attention and 

Unet with ResNet50V2 encoder. However, they performed poorly, achieving a coefficient 

Dice of 0.39 and 0.22, respectively. The best results were achieved with Unet with 

InceptionV3 encoder (Dice of 0.63)  and Unet with VGG19 encoder (Dice of 0.62). 

These results corroborate the idea that these Deep Learning methods have the 

potential to have a faster response to detecting and localising earthquake deformation. 

We believe that in the future, these results can be improved with a deeper application of 

deep learning methods. After achieving better results in the future, these methods can 

be used to detect small deformations with a seismic activity that can proceed a big 

earthquake giving time to the civilization to be prepared. 

The work carried ou in the scope of this dissertation, allowed to answer to the 4 

research questions: 

Question 1: Are the seismic deformations equally detected in wrapped and 

unwrapped interferograms? 

Answer 1: No, after doing various tests with different setups and datasets, they all 

achieved better results in wrapped interferograms than in unwrapped interferograms. 

This was expected once that wrapped interferograms are a more preliminary version of 

interferograms containing more information, and being easy to observe. 

Question 2: What is the best state-of-the-art Deep Learning models to detect 

seismic deformations in SAR interferograms and estimate the earthquake's impact area? 

Answer 2: In this work, three state-of-the-art models to detect seismic deformation 

and two models with four encoders (3+1) to estimate the earthquake impact area were 

tested. Among them, VGG19 obtained the best results in almost all cases (including the 

best result) to detect seismic deformation). To estimate the impact area, Unet with 
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InceptionV3 as encoder and Unet with VGG19 as encoder obtained similar results, being 

both the best one to segment the areas.  

 

Question 3: Although vast public data are available on the COMET website, 

dataset creation requires a long time and effort to annotate. Thus, with the small dataset 

possible to create during this work, how efficiently is it possible to train Deep Learning 

models? 

Answer 3: With our small dataset (mainly positive cases) for classification, using 

transfer learning, the results were satisfactory and already showed a great capacity of 

deep learning to detect the deformation fringes in wrapped interferograms. For 

segmentation, the results were promising, and we believe that more data is needed for 

improving results. 

Question 4: Available data is very unbalanced – there are a lot of areas without 

fringes and few with fringes. How to deal with this unbalanced and improve models 

training? 

Answer 4: This problem appeared in Classification models. Two techniques were 

tested to deal with the unbalanced data: data augmentation and focal loss. Among them, 

focal loss outperforms by far the results of data augmentation. Mainly for negative cases, 

where was not found any false positive for the best-trained model. 

For future works, the dataset can be expanded to have more positive data and thus 

train the models more efficiently. For the segmentation, more models, or combination of 

models (for example, Unet with InceptionV3 and VGG19) can be tested. After achieving 

the desirable results on detecting sismic deformation, we believe that the next step 

should be try to find small deformations that could occur before the event. 
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Unbalanced Technics to Improve the Train for ML 
Models to Detect Earthquake Fringes

Bruno Silva| Joaquim Sousa| Milan Lazecky| António Cunha

Abstract
Machine Learning can automatically process large datasets in
the most varied areas, including remote sensing data, and it
has become an opportunity for earth observation. Recent
studies have demonstrated the ability to detect visible
fringes deformations in InSAR images. However, InSAR data is
frequently unbalanced - deformations are sparse compared
to those that do not have deformation, and it needs special
attention for training ML models.
In this work, we created two InSAR datasets with 29
earthquake cases from the LICS database. At start we use
Data Augmentation to deal with data unbalanced to detect
fringes, but when the data grew, and the unbalancing got
bigger DA start to perform worse, so we apply a new
technique to deal with the unbalancing.

Introduction
Train deep learning models
1. prepare the input data
2. The data will pass for 

the layers, resulting
a prediction

3. Prediction are 
evaluated through
loss function resultin
a score.

4. The score is used as feedback to adjust model weights
throught the optimizer.

Focal Loss compensate data less represented.

Data augmentation creates artificial data with small alteration,
to balance the data in the same amount.

Objective
Deal with unbalanced data training deep learning models to
identify deformation in InSAR images, both is wrapped and
unwrapped interferograms.

Methods
Two dataset of InSAR interferograms were created (wrapped
and unwrapped). We cut images into 256x256pixels
overlapped patches. Finally we use the patches to train 3 pre-
trained models with focal loss and we use the best model to
compare focal loss with data augmentation.

Dataset preparation

Dataset Creation

Classification with 
Data Augmentation

Classification with 
Focal Loss

𝐹𝐿 𝑝𝑡 = − α𝑡(1 − 𝑝𝑡) γlog(𝑝𝑡)

Train Validation Test

Earthquake fringes  (deformation) 499 380 252

No deformation 14979 4051 3826

Wrapped interferograms Unwrapped interferograms

Models Accuracy F1 Score AUC Accuracy F1 Score AUC

InceptionV3 0.952 0.371 0.768 0.938 0.137 0.651

VGG19 0.971 0.691 0.864 0.951 0.330 0.734

Resnet50V2 0. 960 0.526 0.752 0.943 0.160 0.669

Dataset

Models evaluation

Conclusion

Focal loss 
performs better 

than data augmentation 
to deal with unbalanced data

Wrapped 
interferograms 

better then 
Unwrapped

VGG19
Best 

fringes finder

Good results 
With overlapped 

patch 

1. We successful create two InSAR datasets.
2. Wrapped interferograms proves to be better to train deep learning models.
3. VGG19 was the best model to detect earthquake deformation fringes
4. Focal Loss proves to be better to deal with data unbalanced then data augmentation.

5. We consider that a bigger dataset with more earthquake cases can improve these results.
6. Knowing the reasons why some patches have bad classification comparing with the

overlapped ones we can create a well chosen patches to train and improve the results.



ML Segmentation Models to Automatically 
Identify Areas Affected by Earthquakes

Bruno Silva| Joaquim Sousa| Milan Lazecky| António Cunha

Abstract
Some studies have been applying ML's ability to detect InSAR
images with the fringes in InSAR images; however, no studies have
been found where the area is isolated using segmentation
techniques. In this work we apply segmentation models to identify
areas affected by earthquakes in InSAR interferograms.

Introduction
Train deep learning models
1. prepare the input data
2. The data will pass for  the layers, resulting a prediction
3. Prediction are evaluated through loss function resulting a score.
4. The score is used as feedback to adjust model weights throught

the optimizer.

U-net uses an encoder and a deccoder to segment some área.

Dual attention is a technique where integrate local features with 
their global dependencies based on the self-attention mechanism. 

Objective
Evaluation Deep learning segmention techniques to estimate the
area affected by earthquakes in wrapped interferograms without
atmospheric correction.

Methods
We start this work creating a InSAR dataset with 469 interferograms
from 29 earthquake cases between 2019 and 2021 and create a
mask for each of them. We create the mask with a margin to test if
the model can detect deformation that cant be seen due to the
atmospheric error. we then cut the images into 256x256pixels
overlapped and choose the ones with fringe. Finally we use the
patches to train 3 pre-trained U-net models and a dual attention
model.

Dataset preparation

Dataset Creation

Segmentation with 
Dual attention

Segmentation with 
U-net models

Train Validation Test

Earthquake fringes  (deformation) 499 380 252

Dataset

Models evaluation

Conclusion

U-net (Pre-trained)

First test 
with 50% 
threshold

Model IoU Score Dice Score Accuracy

U-net

InceptionV3 0.43 0.59 0.83

VGG19 0.32 0.47 0.85

Resnet50 0.13 0.22 0.80

Dual attention Resnet50 0.25 0.39 0.84

Only U-net 
InceptionV3 and U-
net VGG19 shows 
promising results

Finding the best 
threshold on train 

set for this two 
models

90% for 
InceptionV3 and 
70% for VGG19 

U-Net Models IoU Score Dice Score Accuracy

Coder: InceptionV3 0.48 0.63 0.87

Coder: VGG19 0.47 0.62 0.85

U-Net with InceptionV3 coder
can found fringes but is not good 

to detect margins

U-Net with VGG19 coder
better find fringes and margins 
but interpret noise as fringes

1. We successful create two InSAR datasets with area affected by earthquakes annotated.
2. VGG19 and InceptionV3 for U-Net model were the best models to segment earthquake

deformation fringes.
3. Deep learning proves to be able to “see” deformation fringes and locate them.

Future work
• Results were promising but bigger dataset is needed to improve results.
• New segmentation models or combination of models may improve results.. 

4. Dual attention had worse results then U-net, not being good for segment deformation
fringes in InSAR interferograms.

Reference: Fu et al., Dual attention network for scene segmentation, 2019Reference: Weng & Zhu, UNet: Convolutional Networks for Biomedical Image
Segmentation ,2021

Dual attention

Predicted segmenation probability maps: left U-Net with InceptionV3 coder; right U-Net with VGG19 coder


