
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Towards Safer Continuous
Infrastructure-as-Code Deployments

Henrique Lima

UNIVERSIDADE DO PORTO

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Tiago Boldt Sousa

Second Supervisor: Hugo Sereno

July 12, 2021

Towards Safer Continuous Infrastructure-as-Code
Deployments

Henrique Lima

Mestrado Integrado em Engenharia Informática e Computação

July 12, 2021

Acknowledgements

The writing of this dissertation could not have been possible without the formidable amount of
support received throughout its development.

I would like to first deeply thank my supervisors, professors Tiago Boldt Sousa and Hugo Fer-
reira, for the consistent availability and guidance with insightful contributions and helpful feed-
back which ensured high quality standards and created a clearer vision for the direction to take at
each step.

I want to thank Amazon Web Services (AWS) for enabling the pursuit of this work through an
internship and for always having provided the necessary resources, tools and assistance to ensure
its success. I would like to thank the whole AWS CDK team for welcoming and including me with
overwhelmingly positive energy, as well as always providing intelligent feedback and proposing
and discussing ideas whenever necessary.

I must, however, dedicate a special acknowledgement and thank you to a member of the AWS
CDK team in particular, without whom this work would not have been possible, Engineer Rico
Huijbers. I am profoundly honored to have called you my mentor and friend from the very concep-
tualization of the hypothesis, to have had your unconditional technical and moral support through-
out the several obstacles, uncertainties and struggles in all phases of this project. Your expertise,
insights, teachings and feedback have consistently brought this dissertation to a higher level and
will proudly have a great effect on my future professional and personal life.

In addition, I would like to thank my parents and sister for actively motivating me. Your
willingness to listen to my problems and constantly ensure my mental and physical well-being,
while stimulating me with insightful discussions and promoting my self-development has allowed
me to achieve my goals, time after time. You have given me all the discipline and emotional
stability required to perform this work consistently over the past year.

To all my faculty colleagues and friends who have kept in touch and helped maintain a good
mentality and work-life balance throughout the past months, a huge thank you.

Finally, I want to leave a word to my dear friend Pedro Pinho, who has always stood alongside
me through every challenge with encouraging words. Our near-brotherhood friendship has been
extremely important to keep me focused and motivated, as well as take my mind off stressful
situations whenever they appeared. I am very privileged to be able to call you my friend and count
on your understanding, support and wake up calls whenever I need them.

i

ii

Abstract

As cloud computing resources become more adopted, the infrastructures in which they are used
naturally grow in the amount of resources and overall complexity, becoming harder to manage.

Infrastructure-as-Code (IaC) is presented as a solution to this problem, allowing developers to
manage and provision these cloud resources programmatically. The infrastructure is then main-
tained through a code base, allowing general software good practices like version control and peer
review, as well as aiding replication of the infrastructure across environments. Some IaC solutions
also offer the ability to review the effects of new infrastructure changes before deploying them.

By defining pieces of infrastructure through code or configuration files, it becomes easy to
share and reuse them. As such, community-made infrastructure is now widely available - and even
more accessible through platforms like CDK Construct Catalog1, Chef Supermarket2 or Puppet
Forge3 -, which enables developers to include third-party libraries or templates in their infrastruc-
ture. Such a process is hard to review as they can introduce large sets of changes, hampering
compliance checks and creating security concerns.

Moreover, infrastructure-as-code deployments are often part of continuous delivery pipelines
where the review and approval of changes are manual steps, which contradicts the fundamental
principles of continuous delivery.

Throughout this dissertation, techniques for analyzing IaC code were researched and devel-
oped to ultimately increase the efficiency and experience of the review and approval processes
without sacrificing safety. We were able to create a description and visualization of infrastructure
changes for easier user review, as well as enabling automating approval of changes through user-
defined rules, either based on recurrence or user expectations. These allow the developer to review
changes more easily and eliminate some unnecessary manual actions.

This work was developed and tested for the Amazon Web Services’ (AWS) Cloud Develop-
ment Kit (CDK) and, consequently, uses AWS services.

Keywords: Infrastructure-as-Code, Cloud Computing, Continuous Deployment, Visualization,
Automation, Security

1Available at https://awscdk.io/
2Available at https://supermarket.chef.io/
3Available at https://forge.puppet.com/

iii

https://awscdk.io/
https://supermarket.chef.io/
https://forge.puppet.com/

iv

Resumo

Com o aumento da utilização de recursos de cloud computing, as infraestruturas nas quais eles
são usados naturalmente se tornam mais complexas e com maior número de recursos, tornando-se
mais difíceis de gerir.

Infrastructure-as-Code (IaC) é apresentada como solução para este problema, permitindo que
programadores criem e giram este recursos de cloud programaticamente. A infraestrutura é, as-
sim, mantida através de código fonte, permitindo a utilização de boas práticas gerais de desen-
volvimento de software, como controlo de versões e peer review, e facilitando a replicação de
infraestrutura em vários ambientes. Algumas solução de IaC dispõem, também, da capacidade de
rever os efeitos de alterações à infraestrutura antes de as aplicar.

Ao definir blocos de infraestrutura através de código ou ficheiros de configuração, torna-se
fácil partilha-los e reutiliza-los. Assim sendo, infraestrutura feita pela comunidade encontra-se
agora largamente disponível - mais acessível ainda através de plataformas como CDK Construct
Catalog4, Chef Supermarket5 ou Puppet Forge6 -, permitindo a desenvolvedores a inclusão de
bibliotecas third-party ou templates na sua infraestrutura. Este processo revela dificuldade em
rever as alterações pois podem ser introduzidas em grande quantidade, criando preocupações em
termos de segurança e dificultando verificações de conformidade.

A aplicação de código de infrastructure-as-code é frequentemente feita através de pipelines de
continuous delivery, onde o processo de revisão e aprovação das alterações são tarefas manuais,
algo que contradiz os princípios de continuous delivery.

Ao longo desta dissertação, técnicas para analisar código IaC foram investigadas e desenvolvi-
das para aumentar a eficiência e experiência dos processos de revisão e aprovação sem sacrificar a
segurança. Foi criada uma descrição e visualização de alterações a uma infraestrutura para facilitar
a sua análise, assim como possibilitar a automação da aprovação de alterações através de regras
configuradas pelo utilizador, tanto por recorrência ou por vontade do utilizador. Assim, é mais
fácil para o desenvolvedor rever alterações e eliminar ações manuais desnecessárias.

Este trabalho foi desenvolvido e testado sobre a framework Cloud Development Kit (CDK) da
Amazon Web Services (AWS) e usa, consequentemente, serviços AWS.

Keywords: Infrastructure-as-Code, Cloud Computing, Continuous Deployment, Visualização de
Alterações, Automação, Segurança

4Available at https://awscdk.io/
5Available at https://supermarket.chef.io/
6Available at https://forge.puppet.com/

v

https://awscdk.io/
https://supermarket.chef.io/
https://forge.puppet.com/

vi

“Power comes not from knowledge kept,
but from knowledge shared.”

Bill Gates

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Problem . 2
1.4 Goals . 3
1.5 Document Structure . 3

2 Background 5
2.1 Cloud Computing . 5

2.1.1 Services Models . 5
2.1.2 Characteristics . 6
2.1.3 Advantages . 6

2.2 DevOps and CI/CD . 7
2.3 Infrastructure-as-Code (IaC) . 8

2.3.1 Advantages . 8
2.3.2 Characteristics of IaC tools . 8

2.4 Infrastructure-as-Code Tools . 10
2.4.1 Overview . 10
2.4.2 AWS CloudFormation . 11
2.4.3 AWS CDK . 12

2.5 Code Review . 12
2.6 Summary . 13

3 State of the Art 15
3.1 Methodology . 15
3.2 Continuous Deployment . 16

3.2.1 Infrastructure-as-Code . 16
3.2.2 Custom Rules . 16

3.3 Relevant Features of IaC Tools . 17
3.4 Infrastructure Changes Analysis . 17

3.4.1 Semantic Analysis . 17
3.4.2 Infrastructure Representation . 18
3.4.3 Identification of Changes . 19

3.5 Visualization of Changes for Review . 19
3.6 Summary . 20

ix

x CONTENTS

4 Preliminary Studies 21
4.1 Motivation . 21
4.2 Preliminary Research Questions . 22
4.3 Interview Methodology . 22
4.4 Interview Structure . 22
4.5 Study Results . 23

4.5.1 Interviewee Demographic . 23
4.5.2 Infrastructure Development Workflows 23
4.5.3 Proposal Feedback . 25

4.6 Summary . 27

5 Problem Statement 29
5.1 Problem . 29
5.2 Hypothesis . 30
5.3 Research Questions . 31
5.4 Validation . 31
5.5 Proposed Solution . 32
5.6 Validation . 32

6 CDK Change Analysis Tool 35
6.1 Proposed Solution Overview . 36

6.1.1 Semantic Representation and Change Interpretation 36
6.1.2 Change Visualization and User Review 36
6.1.3 User-defined Change Approval . 37
6.1.4 Change Detection . 38

6.2 Design and Technology Decisions . 38
6.3 Infrastructure Model . 38
6.4 IaC Declaration Parsers . 41

6.4.1 Basic CloudFormation Parsing . 41
6.4.2 AWS CDK Parser . 43

6.5 Detection of Changes between Infrastructure Models 44
6.5.1 Component Property Similarity . 45
6.5.2 Change Propagation . 46
6.5.3 Notes on Change Detection . 46

6.6 Tool output . 46
6.7 Visualization of changes . 47

6.7.1 Aggregations . 48
6.7.2 Display Component Property Operations 49
6.7.3 Changes View . 50
6.7.4 Hierarchical View . 51

6.8 Classification of changes . 52
6.8.1 The choice of graph-based querying . 52
6.8.2 Adapting the Infrastructure Model . 53
6.8.3 General Purpose Graph Querying Languages 54
6.8.4 Selecting Objects . 54
6.8.5 Effects . 55
6.8.6 Nested Rules . 55
6.8.7 Final Change Classification Language Grammar 55

6.9 Summary . 55

CONTENTS xi

7 Validation 57
7.1 Conducted Survey . 57

7.1.1 Considered Scenarios . 57
7.1.2 Participant Criteria . 59
7.1.3 Survey Structure . 59
7.1.4 Threats to Validity . 61

7.2 Findings . 62
7.2.1 Participant Population Analysis . 62
7.2.2 Benchmarking Participant Performance 62
7.2.3 Accurately Detected Changes . 63
7.2.4 Review Outcome Confidence . 64
7.2.5 Review Duration . 65
7.2.6 Reported Experience . 66

7.3 Observed Threats to Validity . 67

8 Conclusions and Future Work 69
8.1 Answering Research Questions . 69

8.1.1 ERQ1. Can code flaws introduced in IaC code changes be avoided by
performing peer-review? . 69

8.1.2 ERQ2. How can the peer-review process in IaC be facilitated to minimize
undetected code flaws? . 69

8.1.3 ERQ3. Is it possible to automate the change review process in IaC? Can it
be fully automated in a CI/CD pipeline? 71

8.2 Hypothesis . 71
8.3 Process Overview . 71
8.4 Future Work . 72

A Keywords Used in Literature Research 75

B Preliminary Studies - Interview Questions 77
B.1 Current Experience . 77
B.2 Approach Discussion . 79

C C2A - Change Rules Language Grammar 81

D Final Survey Content 83
D.1 Background . 83
D.2 Scenario 0 . 84
D.3 Scenarios 1 and 2 . 84

E Identified Changes 87

References 89

xii CONTENTS

List of Figures

2.1 CDK’s diff tool sample output. Assigning permissions and creating and updating
resources . 13

2.2 Code Review - Example of a comments/discussion section with requested changes 14

4.1 Reported adoption of IaC Technologies . 23
4.2 Reported usage of third party IaC code . 24
4.3 Reported usefulness of 3 proposed continuous deployment features for IaC code

by number of responses in each degree of usefulness for the participant’s workflow 25

6.1 Automated approval in a continuous deployment workflow 37
6.2 C2A - Separation of concerns of software modules 39
6.3 Initial simplistic infrastructure model, with Components, Relationships and Prop-

erties . 40
6.4 CloudFormation parsing helper classes - component diagram 41
6.5 Example of the InfraModel structure resulting from execution of the CloudForma-

tion parser . 43
6.6 Example of the InfraModel structure resulting from execution of the AWS CDK

parser . 44
6.7 Example of aggregations for three DynamoDB Tables insertions and one property

update . 49
6.8 Initial Mockups for the User Interface . 50
6.9 Changes View of the visualization interface - includes aggregations tree on the left

pane and details on the right pane with property diffing 51
6.10 Visualization Interface - Change Details - General Component Information . . . 52
6.11 Visualization Interface - Change Details - Causal Chain 53
6.12 Visualization Interface - Change Details - References 54
6.13 Visualization Interface - Hierarchical View - Component Details - Changes . . . 55
6.14 Rule-ready graph containing entities. Does not include InfraModel or InfraMod-

elDiff . 56

7.1 Reported participant experience . 62
7.2 Box Plot of the performance scores obtained in scenario 1 64
7.3 Box Plot of the performance scores obtained in scenario 2 64
7.4 Box Plot of the reported confidence in scenario 1 65
7.5 Box Plot of the reported confidence in scenario 2 65
7.6 Total Reported Time Spent in Review . 65
7.7 Reported time spent across scenarios 1 and 2 in the multiple processes of review . 66
7.8 Scatter plot of reported experience against obtained performance scores - scenario 0 67
7.9 Scatter plot of reported experience against obtained performance scores - scenario 1 67

xiii

xiv LIST OF FIGURES

7.10 Scatter plot of reported experience against obtained performance scores - scenario 2 67

List of Tables

2.1 Characteristics comparison between some of the most popular IaC tools 10

E.1 Scenario 0 - Change Detection Frequency . 87
E.2 Scenario 1 - Change Detection Frequency . 87
E.3 Scenario 2 - Change Detection Frequency . 88

xv

xvi LIST OF TABLES

Abbreviations

AWS Amazon Web Services
AWS CDK Amazon Web Services Cloud Development Kit
C2A the AWS CDK Change Analysis tool, currently a proof-of-concept
CI/CD Continuous Integration/Continuous Deployment
CLI Command Line Interface
CVL Configuration Validation Language
DAG Directed Acyclic Graph
DLQ Dead Letter Queue
DSL Domain Specific Language
GUI Graphical User Interface
IaaS Infrastructure as a Service
IaC Infrastructure-as-Code
IAM AWS Identity and Access Management
PaaS Platform as a Service
PR Pull Request
SaaS Software as a Service
SSI Semi-Structured Interview
TOSCA Topology and Orchestration Specification for Cloud Applications

xvii

Chapter 1

Introduction

1.1 Context . 1

1.2 Motivation . 2

1.3 Problem . 2

1.4 Goals . 3

1.5 Document Structure . 3

1.1 Context

Cloud computing is currently used for many applications in a wide range of fields. Several com-

panies currently provide cloud computing services which offer an easier way of meeting require-

ments like scaleability, resilience and availability by abstracting the management of physical re-

sources. As developers adopt a cloud based approach and their cloud infrastructures increase in

complexity, the resources and the way they interact become overwhelming to accurately manage

by hand.

Naturally, attempts to automate such management tasks surfaced, such as through scripts or

configuration files, introducing the concept of Infrastructure-as-Code (IaC). IaC consists in pro-

grammatically provisioning and controlling cloud resources. As such, it allows general software

good practices like version control and peer review. It also allows for executing monotonous or

frequent cloud management tasks with little to no manual input. A common approach in IaC tools

is to allow the user to define the desired state of the infrastructure rather than how it should be

deployed - here referred to as declarative IaC.

1

2 Introduction

1.2 Motivation

Consider a developer that may want to include a single-page web application in their cloud in-

frastructure, for example. In the past, they would have to manually provision and configure the

necessary infrastructure. This would be a troublesome and error-prone process, as they would

need to setup hosting, network routing, scaling and security services, which justifies the increased

adoption of Infrastructure-as-Code solutions to facilitate an infrastructure that nowadays tends to

be large, heterogeneous, and elastic [39, 27, 40, 41, 43, 42, 45, 44]. Thanks to these products, de-

velopers may define their infrastructure by writing configuration/source code files, which can be

auditable both throughout their creation and evolution, and allow analysis of the infrastructure as

part of the code review process. This approach to infrastructure management also allows develop-

ers to create higher level abstractions for setting up the infrastructure, reuse them and share them

as third-party libraries. As these abstractions become more and more available, developers can

spend less and less time configuring their infrastructure and may instead use already-developed

solutions. With higher level abstractions, however, it becomes harder to determine the effects of

their changes on the final infrastructure through regular code review. Considering the mentioned

developer setting up a single-page web application, they may use a third-party library which can

greatly simplify the provisioning of the necessary resources. Since this library would be able to

control the cloud infrastructure of the developer, they would be easily exposed to security threats

such as having configurations with low security standards, exposing private data or even using

computing power for the creator’s benefit. To ensure their safety for a given use case, the de-

veloper would have to audit them whenever they are introduced or updated - either through to

code review or through infrastructure compliance features offered by some cloud platforms or IaC

technologies. However, these are not able to identify worrisome changes that may have happened,

just the final state of the infrastructure, which means decreases in security, functionality breaking

changes or indirect consequences based on the previous state (e.g. data loss due to database table

replacements) easily go unnoticed. IaC code may also be integrated in a Continuous Integration

and Continuous Deployment (CI/CD) pipeline, which stresses the importance of a highly effective

change review process, such as peer reviews or automatic validation tasks in the pipeline.

1.3 Problem

Like all code, IaC implementations can be easily shared and included in one’s code, which can

speed up developer operations significantly, but can also present security concerns.

The problem is, then, how to review and analyze the security risk of large IaC code changes

efficiently, particularly when introducing third-party code which can be updated at any time. Large

code reviews can be very time-consuming and lead developers to rush through them and produce

lower quality reviews, hampering detection of vulnerability-prone resources, configurations or

permissions.

1.4 Goals 3

Multiple IaC solutions offer tools to review the upcoming infrastructure changes of an IaC

deployment, but they are designed for small iterations rather than optimizing the readability of

large changes. Moreover, this review is an additional step separate from code review. As such, it

is often used for manually approving changes during a CI/CD pipeline execution, interrupting it

and causing delays in the deployment process.

Typically this results in teams not including community-made IaC code unless it is small

enough to be reviewed or they fully trust its source (see Section 4.5.2, p. 23). Consequently, this

greatly reduces their adoption and hampers the search for usable existing solutions of particular

development problems.

1.4 Goals

In this work, we intend to achieve the following goals:

• Preliminary study - interview IaC professionals to further study their development work-

flows, experience and views on the subject, to better define the hypothesis and approach of

this work.

• Create a reference implementation - design and implement a proof-of-concept tool that pro-

duces the artifacts needed to validate the hypothesis.

• Validate the hypothesis - Using the reference implementation, validate the hypothesis and

answer the established research questions.

1.5 Document Structure

The present document is comprised of several chapters, described as follows:

• Introduction (see Chapter 1, p. 1) - introduces the problem under study and the motivation

behind this work, as well as the proposed hypothesis and validation approach.

• Background (see Chapter 2, p. 5) - provides the relevant background knowledge needed for

understanding the full contents of this document.

• State of the Art (see Chapter 3, p. 15) - covers the current state of the art of continuous

deployment in IaC, as well as visualization and interpretation of programmatically defined

infrastructure.

• Preliminary Studies (see Chapter 4, p. 21) - describes the preliminary work carried out to

understand the real-world applicability and feasibility of the proposed solution.

• Problem Statement (see Chapter 5, p. 29) - formalizes the problem of this work and pro-

poses a preliminary solution based on the literature and studies of chapters 3 and 4. Proposes

a validation approach and describes its evaluation.

4 Introduction

• CDK Change Analysis Tool (see Chapter 6, p. 35) - describes the design of the proof-of-

concept tool and the decisions taken on its development

• Validation (see Chapter 7, p. 57) - covers the design of the survey, the decisions taken on

its development and how it was conducted, and provides an analysis of the obtained results.

• Conclusions and Work Plan (see Chapter 8, p. 69) - briefly describes the achieved conclu-

sions, as well as details the work plan for the development of the solution.

Chapter 2

Background

2.1 Cloud Computing . 5

2.2 DevOps and CI/CD . 7

2.3 Infrastructure-as-Code (IaC) . 8

2.4 Infrastructure-as-Code Tools . 10

2.5 Code Review . 12

2.6 Summary . 13

2.1 Cloud Computing

Cloud computing abstracts the creation and configuration of physical and virtual resources for

web-based applications. As defined by the National Institute of Standards and Technology (NIST),

"Cloud computing is a model for enabling ubiquitous, convenient, on-demand net-

work access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned and re-

leased with minimal management effort or service provider interaction." [32]

2.1.1 Services Models

The services available in cloud computing exist under three service models [32, 47]:

• Infrastructure as a Service (IaaS) - the network, processing and storage are virtualized.

The client can then manage their own infrastructure (e.g. operating systems or application)

using those resources.

5

6 Background

• Platform as a Service (PaaS) - abstracted physical resources similarly to IaaS, but provid-

ing an operating system or software platform for the client to configure and deploy applica-

tions on.

• Software as a Service (SaaS) - access to an application is provided, ensuring the underlying

infrastructure and physical resources it is deployed on.

2.1.2 Characteristics

The definition of cloud computing mentioned above (see Section 2.1, p. 5) also encompasses 5

key characteristics. Among them are:

• On-demand self-service - the ability to provision resource capabilities (such as storage

capacity or server time) automatically from the service provider.

• Broad network access - the availability over standard network connections from different

client platforms (e.g., smartphones, laptops, tablets).

• Resource pooling - the physical resources of the service provider are shared across different

customers by dynamically allocating and abstracting them onto virtual ones to which the

clients have access, based on demand, without knowledge of their location.

• Rapid elasticity - provisioned virtual resource capabilities must be able to adjust to demand,

often automatically.

• Measured service - resources are automatically controlled and optimized according to col-

lected resource-specific metrics (e.g., storage, bandwidth), which provide transparency and

allow the client and the service provider to monitor their usage.

2.1.3 Advantages

The use of cloud computing results in a paradigm shift for developers as they perceive and interact

with resources differently, which offers several advantages versus the traditional approach [23]:

• Cost efficiency - Companies using cloud services can avoid upfront investment and main-

tenance costs of on-premise hardware and take advantage of pay-as-you-go payment plans,

while benefiting from less expensive computing power, storage, security and networking so-

lutions. Due to the large scale at which resources operate in the cloud, they can be optimized

and used more efficiently across multiple clients.

• Nearly Unlimited Storage - The large scale of cloud services requires ensuring large stor-

age capacity for the customers’ potential needs, which can be allocated on demand, seeming

nearly unlimited to any given client.

• Backup and Recovery - Backup and restoration of information in cloud computing is usu-

ally greatly abstracted for the customer by ensuring data redundancy across physical devices

and locations with little to no configuration overhead.

2.2 DevOps and CI/CD 7

• Automatic Software Integration - Cloud solutions include many automatic integrations

between services and technologies, reducing configuration efforts.

• Easy Access to Information - By having information in the cloud, it can be accessed and

managed in any location or time zone, provided there is an internet connection.

• Quick Deployment - Cloud services are optimized for quick configuration and iteration of

the infrastructure, accelerating deployments.

• Easier scale of services - Computing power, storage and networking service plans can often

be scaled automatically or easily manually upgradable.

• Delivery of new services - Cloud providers can make available new types of interactive

services otherwise not accessible to their customers.

2.2 DevOps and CI/CD

DevOps consists of integrating development and operations into the same workflow, so multi-

functional teams can continuously produce operational feature deliveries. This results in less mis-

communication issues and faster problem resolution [28].

Continuous Integration and Continuous Deployment (CI/CD) play a big role in DevOps.

Continuous Integration tries to reduce iteration cycles by decreasing manual time-consuming

tasks, such as merging developer code and checking for software quality issues. Continuous
Deployment focuses on decreasing manual processes of deployment, such as configuration main-

tenance or resource provisioning, by automating such tasks [28].

CI/CD tasks can be executed as part of a pipeline in which they run sequentially, as long as no

issue is detected. In this sequence, deployment tasks tend to be triggered only after the integration

tasks have finished successfully.

Development workflows integrate CI/CD pipelines with collaborative version control tools

(e.g., GitHub1, GitLab2, BitBucket3), running automatically on code reviews and merges. Some

examples of CI/CD tools include Jenkins4, CircleCI5, GitLab CI/CD6 and GitHub Actions7. They

allow developers to configure CI/CD pipelines through configuration files, defining, among other

settings: how to run each task, their execution order and whether the pipeline should abort upon

task failure.
1Available at https://github.com/
2Available at https://gitlab.com/
3Available at https://bitbucket.org/
4Available at https://www.jenkins.io/
5Available at https://circleci.com/
6Available at https://docs.gitlab.com/ee/ci/
7Available at https://github.com/features/actions

https://github.com/
https://gitlab.com/
https://bitbucket.org/
https://www.jenkins.io/
https://circleci.com/
https://docs.gitlab.com/ee/ci/
https://github.com/features/actions

8 Background

2.3 Infrastructure-as-Code (IaC)

As cloud-based systems because more complex, it becomes harder to maintain their configura-

tions, provision resources, replicate and ensure consistency of infrastructure across environments

and contexts. This creates a need for automating these maintenance tasks, leading to the adoption

of the Infrastructure-as-Code concept. As defined by Kief Morris in [35]:

"Infrastructure as Code is an approach to infrastructure automation based on practices

from software development. It emphasizes consistent, repeatable routines for provi-

sioning and changing systems and their configuration. You make changes to code,

then use automation to test and apply those changes to your systems."

Initially IaC consisted in writing scripts in general-purpose procedural languages that would

interact with the cloud provider’s API. However, standard tools are now available, which abstract

the provisioning of the infrastructure to either declarative or imperative programming languages.

Among the most popular are: Ansible [1], AWS CDK [2], AWS CloudFormation [4], Chef [7],

Pulumi [14], Puppet [16] and Terraform [19].

2.3.1 Advantages

The adoption of IaC offers clear advantages over manual infrastructure management. As men-

tioned by Kief Morris, it allows for [35]:

• Using IT infrastructure as an enabler for rapid delivery of value;

• Reducing the effort and risk of making changes to infrastructure;

• Enabling users of infrastructure to get the resources they need, when they need it;

• Providing common tooling across development, operations, and other stakeholders;

• Creating systems that are reliable, secure, and cost-effective;

• Make governance, security, and compliance controls visible;

• Improving the speed to troubleshoot and resolve failures.

Furthermore, it also helps ensuring consistency and allows reuse across deployments, in addi-

tion to enabling peer reviews, history audits and easier rollbacks.

2.3.2 Characteristics of IaC tools

IaC tools have inherent characteristics and concepts regarding their paradigms, approaches and

intents, as explained in the following subsections.

2.3 Infrastructure-as-Code (IaC) 9

2.3.2.1 Programming Paradigms

IaC solutions are divided into two categories regarding their coding paradigm:

• Declarative: the developer defines the desired state of the infrastructure, including its re-

sources, accounts and configurations. In most cases Domain Specific Languages (DSLs)

are used. A declarative-based IaC tool does not necessarily use declarative programming

languages (the case of AWS CDK [2] and Pulumi [14]).

1 defineServerlessFunction("functionName", "path/to/source/code");

Listing 2.1: Pseudocode example of a declarative IaC implementation to deploy a serverless

function

• Imperative: the developer defines the steps to bring the infrastructure to the desired state,

allowing extra logical operations that can produce different outcomes depending on the

situation. Usually general-purpose programming languages are used, which have benefits

such as the wide availability of external libraries.

1 if(!serverlessFunctionExists("functionName")){

2 createServerlessFunction("functionName");

3 }

4

5 getServerlessFunction("functionName")

6 .resetConfigurations()

7 .setPath("path/to/source/code");

Listing 2.2: Pseudocode example of an imperative IaC implementation to deploy a serverless

function

In other words, while in the declarative approach the code defines what the infrastructure

should look like, in imperative IaC tools the developer describes how the infrastructure should be

transformed from the current state into the desired state [35].

2.3.2.2 Immutability and Configuration Drift

The immutability of an IaC approach is determined by how configuration changes are applied

on each deployment. In a mutable approach, updates existing resources directly whereas an im-
mutable one replaces the existing instances by creating and configuring new ones. The latter helps

prevent configuration drift, which consists in introducing variations between systems that were

designed to be identical, commonly caused by manual changes to the resources [35].

10 Background

2.3.2.3 Stack Management vs Server Configuration tools

An infrastructure stack consists of a set of infrastructure resources defined, provisioned and

updated as a unit [35]. Stack management tools are used for provisioning and managing instances

of these developer defined stacks.

Server configuration tools (often called configuration management tools), on the other hand,

automate the configuration of existing servers. They often require the installation of agents on

each server, which constantly download and apply new changes [35].

Many server configuration tools are able to manage stacks to some degree, despite their focus

on server configuration. The same applies to configuring servers using stack management tools.

2.4 Infrastructure-as-Code Tools

The purpose of this section is to analyze some of the most popular IaC solutions - Chef [7],

Puppet [16], Ansible [1], [19], AWS CloudFormation [4], AWS CDK [2] and Pulumi [14] - and

compare their features and approaches.

2.4.1 Overview

The following characteristics of the considered tools are compared in table 2.1:

• Release - The year of the tool’s first release.

• Cloud - Which major cloud providers are supported.

• Source - Whether the source code is publicly available (open) or not (closed).

• Type - Whether it is a server configuration tool (see Section 2.3, p. 8)

• Paradigm - Whether the infrastructure is defined through declarative or imperative. pro-

gramming (see Section 2.3, p. 8).

• Immutable - Whether the tool adopts an immutable infrastructure approach

Tool Release Cloud Source Type Paradigm Immutable
Chef [7] 2009 All Open Server Configuration8 Imperative No
Puppet [16] 2005 All Open Server Configuration2 Declarative No
Ansible [1] 2012 All Open Server Configuration3 Imperative No
Terraform [19] 2014 All Open Stack Management Declarative Yes
AWS CloudFormation [4] 2011 AWS Closed Stack Management Declarative Yes
AWS CDK [2] 2019 AWS Open Stack Management Declarative4 Yes
Pulumi [14] 2018 All Open Stack Management Declarative4 Yes

Table 2.1: Characteristics comparison between some of the most popular IaC tools

2.4 Infrastructure-as-Code Tools 11

2.4.2 AWS CloudFormation

AWS CloudFormation is a declarative stack management tool released by Amazon in 2011. It

allows developers to define their desired infrastructure of AWS resources through CloudForma-
tion templates. These templates can then be used to automatically provision and configure the

infrastructure in multiple environments.

An instantiated template is called a stack, which represents all deployed resources described

in the template. A stack allows treating this collection of resources as a single unit. They can

be created, updated or deleted by updating the stack and modifying its template. Before apply-

ing these changes however, CloudFormation can generate a change set (i.e. a summary of the

proposed modifications), allowing the developer to review them [5].

2.4.2.1 Intrinsic Functions and Dependencies

The format of CloudFormation templates is centered around the declaration of the AWS resources

that will make up its Stack. These declarations are listed inside a Resources object. Similarly,

there are other declarable entities like parameters — to use custom values in the template when

deploying it — or outputs — to export values that can be used outside the deployed stack —,

among others.

Since these entities must be able to access information that may not be available prior to the

deployment, CloudFormation makes available a set of intrinsic functions to use in resource proper-

ties, outputs, metadata attributes or update policy attributes. Some of these functions allow treating

data or creating conditions, while others are used for referencing other entities or their attributes,

where the referenced entities may or may not be declared in the template itself. Intrinsic functions

are interpreted as expressions, which may be used in conjunction with other functions [5].

The instantiation of a given resource may depend on the existance of another. Consequently, its

creation must follow the creation of the dependee. CloudFormation templates allow the developer

to explicitly declare this dependency (e.g. using the DependsOn field in resources) or, alternatively,

to do so implicitly with the use of intrinsic functions such as Ref or GetAtt - referencing an entity

or an entity’s attribute respectively.

2.4.2.2 Nested Stacks

A CloudFormation stack can be used to instantiate a different Cloudformation template using a

nested stack. This is done by declaring a resource in the original template, that indicates the loca-

tion of the target template. This feature can be used for separation of responsibilities, reusability

of stacks or to circunvent CloudFormation’s limit of resources per stack. The nested stack can use

8Chef’s Provisioning stack management tool was discontinued in 2019 [9]
2Puppet can provision cloud resources using modules such as puppetlabs-aws [17]
3Ansible can provision cloud resources using Ansible’s Cloud Modules
4AWS CDK and Pulumi allow coding in imperative languages. However, both compile the code into a declarative

configuration file which is then processed upon deployment, hence being considered declarative

12 Background

values from the stack that instantiates it (the parent stack) by using its parameters and may also

expose values to be refrenced by the parent stack, using its outputs.

2.4.2.3 Template Formats

CloudFormation templates are written in either JSON or YAML formats, sharing the same struc-

ture among both. YAML also offers a short form for applying intrinsic functions (see Sec-

tion 2.4.2.1, p. 11) through explicit YAML tags [22], resulting in increased readability of the

template.

2.4.3 AWS CDK

The AWS Cloud Development Kit (CDK) is an open-source framework for defining cloud infras-

tructure with programming languages - currently TypeScript, JavaScript, Python, Java, Go and

C#/.Net. It produces, through a process called synthesis, AWS CloudFormation templates which

are then used to provision and maintain the infrastructure resources with AWS CloudFormation.

The main building blocks of this technology are referred to as Constructs. A Construct rep-

resents a component of the target infrastructure state and abstracts the necessary steps for its in-

stantiation or maintenance - in most cases its insertion onto the CloudFormation template. Simple

Constructs may represent a single AWS resource, while more complex ones may represent a set

of multiple resources, how they relate and other additional tasks necessary to instantiate it (e.g.

the deployment of assets onto a cloud storage service). In addition, Constructs can use other

Constructs, increasing the level of abstraction of the component they represent. A CloudForma-

tion stack can be created by using one or more constructs, forming a conceptual hierarchical tree

where its root is the CloudFormation stack, the leaves are the created CloudFormation entities and

all other nodes are Constructs.

AWS CDK provides a diff tool [3], used for reviewing the proposed infrastructure changes,

similarly to CloudFormation’s change sets (see Section 2.4.2, p. 11). The displayed information

includes permission changes, changes to the resources and their location within the code hierarchy

as well as the underlying CloudFormation change sets when relevant (see Figure 2.1, p. 13).

2.5 Code Review

Code review is a good practice frequently adopted in software engineering, which consists in

manual inspection of source code. This is commonly performed by developers other than the

author — peer-reviews — and is adopted in many contexts, including open source and enterprise

development. This process aims to help identify defects, as well as transfer knowledge, increase

team awareness and shared ownership, find alternative solutions to problems and even improve

other aspects of the code (e.g. readability, consistency) [24].

2.6 Summary 13

Figure 2.1: CDK’s diff tool sample output. Assigning permissions and creating and updating
resources. The table above presents changes to permissions (IAM Statements), indicating potential
security vulnerabilities, while the Resources view on the bottom displays resulting changes to the
AWS CloudFormation resource definitions

Multiple tools aid peer reviews, some of which are included in collaborative source code man-

agement platforms, such as GitHub, GitLab or Bitbucket. They allow developers to perform a

code review before including new code changes into their active codebase. Features include:

• Code diffing - Displaying comparison of the code before and after the changes

• Comments/Discussion section - Allowing developers to communicate and discuss feed-

back on code changes. Some solutions allow linking discussions to specific lines of code.

• Perform automated tasks - Adding support for executing automated tasks which provide

further feedback on the code, commonly using CI/CD pipelines. These may be used, for

example, to ensure automated software tests, formatting and styling are compliant.

2.6 Summary

This chapter explains concepts regarding Cloud Computing, DevOps, CI/CD, IaC and Code Re-

view.

14 Background

Figure 2.2: Code Review - Example of a comments/discussion section with requested changes in
the GitHub platform [12]

Section 2.1 (p. 5) defines Cloud Computing, distinguishes the different service models (IaaS,

PaaS and SaaS) (see Section 2.1.1, p. 5), reveals its relevant characteristics (see Section 2.1.2, p. 6)

and presents advantages over traditional approaches (see Section 2.1.3, p. 6).

Section 2.2 (p. 7) describes how DevOps allows development teams to include operational

tasks in their workflows, focusing on how Continuous Integration and Continuous Deployment

(CI/CD) is ensured and how it helps development iteration speed and quality. It explains the idea

of CI/CD pipelines and presents tools that allow their use.

Infrastructure-as-Code is described in Section 2.3 (p. 8), along with its advantages (see Sec-

tion 2.3.1, p. 8). It also distinguishes relevant characteristics of IaC tools (see Section 2.3.2, p. 8)

— including paradigms, immutability, configuration drift, stack management and server configu-

ration.

Section 2.4 (p. 10) contains an overview of some of the main IaC tools available, comparing

their characteristics. It also offers detailed explanation of relevant concepts concerning AWS

CloudFormation (see Section 2.4.2, p. 11) and AWS CDK (see Section 2.4.3, p. 12), as specific

knowledge of these technologies will be necessary to perform the validation of the hypothesis (see

Chapter 7, p. 57).

Lastly, Section 2.5 (p. 12) presents and explains the purpose of code review and peer-review,

as well as outlines the main review-oriented features of available tools.

Chapter 3

State of the Art

3.1 Methodology . 15

3.2 Continuous Deployment . 16

3.3 Relevant Features of IaC Tools . 17

3.4 Infrastructure Changes Analysis . 17

3.5 Visualization of Changes for Review . 19

3.6 Summary . 20

This work intends to study solutions to review and analyze the effective changes of large modifica-

tions to IaC code, particularly when introducing third-party dependencies which can be updated at

any time. The purpose of this chapter is, then, to analyze the current state of the art for the relevant

topics of this dissertation and review them against literature research to evaluate the proposal and

obtained results. The methodology used for obtaining this literature is described in detail in Sec-

tion 3.1. Section 3.2 introduces research in continuous deployment practices in Infrastructure-as-

Code (see Section 3.2.1, p. 16), presents research on the customization of continuous deployment

processes (see Section 3.2.2, p. 16) and analyzes and compares current IaC tools, their features

and approaches (see Section 3.3, p. 17). Section 3.4 describes applicable studies on approaches

for interpreting semantic changes of cloud infrastructure (see Section 3.4.1, p. 17), infrastructure

representation (see Section 3.4.2, p. 18) and change detection (see Section 3.4.3, p. 19), followed

by the visualization of said changes in Section 3.5.

3.1 Methodology

The research that supported this state of the art was performed across multiple trusted digital

repositories of scientific articles and conference papers. Among them were IEEE Xplore, ACM

15

16 State of the Art

Digital Library, Scopus, ScienceDirect, Research Gate, and the Open Repository of the Univer-

sity of Porto. The official documentation of available Infrastructure-as-Code solutions was also

consulted. The following core topics were used for this research:

• Infrastructure Change Analysis - including Semantic Analysis and Infrastructure Represen-

tation

• Identification of Changes

• Visualization of Changes for Review

• Continuous Deployment - including Custom Rules and Infrastructure-as-Code

• Similar Features of Current IaC Tools

This methodology followed a bottom-up strategy, which consisted of repeating the following

steps:

• For each core topic of the problem, finding relevant keywords to form a search query (see

Appendix A (p. 75) for the final keywords used)

• Searching in each selected repository using the mentioned search query and filtering the

applicable results based on their title, keywords, abstract, and conclusions.

• Refining the search query and keywords based on this literature to narrow or widen the

search scope or reach other relevant research.

3.2 Continuous Deployment

3.2.1 Infrastructure-as-Code

Meyer et al. [34] demonstrated how quality assurance can be integrated in continuous deployment,

particularly for including community-made configuration scripts. This is achieved by running the

scripts of server configuration tools (see Section 2.3.2.3, p. 10) in different platforms, analyzing

the issues that arise, and displaying such information to script developers and consumers. A

similar approach should be used to perform quality assurance of infrastructure security, ideally by

analyzing the infrastructure definition instead of analyzing deployed configurations.

3.2.2 Custom Rules

Baset et al. [25] developed a rule-based tool for validation of configurations which applies to

several environments, such as cloud, Docker images, and running containers. This tool uses a

Configuration Validation Language (CVL) to define configuration validation rules. To validate

the configurations, these rules are then run against configuration files, system properties (e.g.

file/directory permissions, software packages), and other configurations in custom formats. In the

context of this work, a similar approach will allow for validating infrastructure changes - instead

of configurations - against user-defined rules.

3.3 Relevant Features of IaC Tools 17

3.3 Relevant Features of IaC Tools

For the purpose of this work, the considered IaC tools (see Section 2.4, p. 10) offer the following

particularly relevant features:

Chef - offers a web app to audit and report on the compliance of a deployment against se-

curity standards. It also allows for automatic and customizable remediation of detected

vulnerabilities[8]. Through the why-run option, Chef also allows comparing the current and

proposed states of the system without applying changes.

Puppet - provides a configurable impact analysis tool for integration with CI/CD pipelines. It

has a web interface that displays the affected resources of each environment and the modi-

fications they will suffer [18].

Terraform - offers a command for listing the set of resource and configuration changes that

will be executed upon deployment of the current code. This command also checks the cur-

rent state of the deployed infrastructure beforehand, which allows it to detect configuration

drift[21]. Terraform also allows the configuration of compliance rules by using the Sentinal

policy-as-code framework[20]. (see Section 2.3.2.2, p. 9)

AWS CloudFormation - provides the ability to generate change sets(see Section 2.4.2, p. 11),

which show the differences between a Cloudformation template and a previously deployed

one. Through CloudFormation Guard it is also possible to restrict wanted characteristics of

resources through user-defined rules[6].

AWS CDK - offers a diff command (see Section 2.4.3, p. 12), similar to terraform plan. However,

no configuration drift is detected beforehand, comparing only the upcoming infrastructure

with the last stack deployment. AWS CDK also has the ability to perform checks on the

configured resources through the use of Aspects, which are scope-dependent operations that

can be used to validate some security requirements in the stack.

Pulumi - similarly to AWS CDK and terraform, the pulumi preview command allows for visual-

izing the upcoming infrastructure resource changes. It can also compare against the actual

currently deployed state.[15]

3.4 Infrastructure Changes Analysis

3.4.1 Semantic Analysis

Opdebeeck et al. [37] studied the adoption of semantic versioning in IaC code, focusing on third-

party created sets of tasks. A large dataset of code changes was obtained to study their impact on

versioning. The authors then developed a structural model for the IaC tasks, along with a domain-

specific change extraction algorithm to determine structural changes between two versions of their

code. These were then used to evaluate the impact of code changes in the resulting infrastructure

18 State of the Art

and predict how the semantic version should be increased. The version increments performed by

developers were found not to follow guidelines consistently.

Menarini et al. [33] studied the applicability of aiding code review through semantic analysis

of changes between code versions, allowing a developer to view behavioral differences during a

peer-review process. By creating a tool that analyses the existing test cases, the reviewer is pro-

vided more context on the changes (namely differences of likely invariants). After conducting

a user study with 18 developers, this additional semantic information was found consistently ef-

fective for detecting insufficient testing and finding bugs upon their introduction. The study also

concluded that more meaningful review comments were made with such extra information due to

the added context.

This research shows a positive general correlation between semantic aware analysis and code

review performance.

3.4.2 Infrastructure Representation

Topology and Orchestration Specification for Cloud Applications (TOSCA) [46] is a standard de-

veloped by the non-profit organization OASIS to define the interoperable description of services

and applications - either hosted on the cloud or elsewhere -, including their components, rela-

tionships, dependencies, requirements, and capabilities. This definition is done through topology

templates.

Because it is agnostic to the underlying platforms and infrastructure, TOSCA enables portabil-

ity and automated management across cloud providers. Consequently, it expands customer choice,

improves reliability, and reduces cost and time-to-value. Moreover, and perhaps most relevant to

this work, it allows for portability in continuous delivery processes[13].

In an attempt to facilitate the combination and integration of DevOps artifacts of different

platforms within a cloud infrastructure, Wettinger et al. [48, 49] worked on an automated transfor-

mation framework to generate TOSCA standard-based models from two distinct types of artifacts

of different platforms. This allowed them to orchestrate arbitrary artifacts through topology tem-

plates.

Similar to the TOSCA standard, Wurster et al. [50] introduced a metamodel (Essential De-

ployment MetaModel or EDMM) for representing declarative deployment models, agnostic of the

underlying technology. The authors also provide mappings between existing IaC models (e.g.,

Puppet, Chef, Ansible and AWS CloudFormation) and this metamodel. Although EDMM only

uses a subset of TOSCA’s entities, it is also mentioned how it can be mapped to that standard.

By supporting the migration of one technology to another, EDMM allows comparing technologies

besides enabling platform-independent deployment automation research.

The models mentioned form a graph-based representation of the infrastructure. Such an ap-

proach is optimal for the use case of this work, as it will allow us to trace the impact of a given

change to the affected resources or configurations. Furthermore, it will allow us to detect changes

that affect multiple resources by finding matching subgraphs in the representation.

3.5 Visualization of Changes for Review 19

The mapping of the models in the literature above is made to generate platform-specific code

from the technology-agnostic descriptions. However, for the purpose of this work, the inverse op-

eration is required to allow analyzing infrastructure regardless of its original definition. Moreover,

such mapping does not assume dependency relationships in some cases when they do not impact

the resulting platform-specific code. This cannot be ignored when trying to trace the impact of

changes in the infrastructure. As such, the approach of this work will have to go beyond simply

performing the mentioned mapping inversely, and will have to include all relevant dependency

relationships between elements of the infrastructure.

3.4.3 Identification of Changes

As mentioned briefly in Section 3.4.2 (p. 18), the representation of the infrastructure should follow

a graph approach, allowing the use of graph-based algorithms to detect similar sets of resources

or configurations that suffered the same changes.

Eder et al. [29], studied a technique for detecting and representing structural changes between

two versions of a Directed Acyclic Graph (DAG), in addition to its application to temporal data

warehousing. The authors describe several phases of this process, namely node matching, renam-

ing detection, detection of inserts and deletes of nodes and edges, and change detection within

nodes. Their approach, optimized for change rates below 10%, reveals positive results and they

reveal confidence in its suitability for describing evolution in systems represented by DAGs. The

problem in question, however, is admittedly a difficult one in the field of computer science.

Pham et al. [38] empirically studied a scalable, accurate, and complete clone detection ap-

proach in graph-based models. This was performed by developing a tool for Matlab/Simulink

models. Their approaches did not consider the detection of overlapping subgraphs. However, for

the proposed solution of this work, overlapping subgraphs should be considered in order to col-

lapse changes that may have been caused by the same modification in configurations or resources.

Similarly to Pham et al., Gabel et al. [30] present a scalable algorithm for semantic clone de-

tection in the context of identifying similar code fragments, detecting both syntactic and semantic

code clones, based on program dependency graphs.

3.5 Visualization of Changes for Review

Baum et al. [26] studied the response of developers in code review situations in order to optimize

the ordering of the displayed changes for improving a review’s efficiency and effectiveness. The

authors analyzed how much the understanding of the changes was affected in multiple scenarios

such as reading natural language texts, relationships between the changes, code structure, and the

grouping of the changes.

20 State of the Art

3.6 Summary

In this chapter, we describe the methodology used for literature review (see Section 3.1, p. 15) and

the findings concerning the current state of the art of the relevant topics of this dissertation.

Section 3.2 (p. 16) reviews studies found on continuous deployment in IaC (see Section 3.2.1,

p. 16), revealing an approach for ensuring quality of third-party configurations in continuous de-

ployment by running configuration scripts and analyzing possible issues. This section also sup-

ports the applicability of user-configurable languages for validating development configurations

(see Section 3.2.2, p. 16), including but not limited to the cloud.

Section 3.3 (p. 17) analyzes the functionalities offered by some of the most popular IaC tools,

showing a general availability of auditing and compliance tools for analyzing effective infrastruc-

ture state. However, these do not allow the analysis of proposed changes and are solely dependant

on the final state of the infrastructure. Furthermore, the available tools appear to allow visual-

ization of proposed changes, but have few optimizations for large sets of changes. Similarly to

compliance checks, the classification of the displayed changes is based solely on the resulting

infrastructure state.

In Section 3.4 (p. 17), topics regarding the analysis of infrastructure changes are discussed.

Little relevant literature was found on developing semantics-aware solutions for problems in

IaC, as seen on Section 3.4.1 (p. 17). A solution has been studied for predicting IaC code changes’

effects on semantic versioning, which takes into account included third-party code. Its results were

inconsistent with semantic versioning guidelines. However, semantic analysis of code changes has

been found to be effective for detecting introduced bugs and testing issues. Section 3.4.2 (p. 18)

presents existing models for representing cloud infrastructure that can be mapped to specific IaC

platform artifacts. Being able to perform this mapping should not be necessary to evaluate in-

frastructure changes, but these provide a good starting point for creating a generic and complete

representation. Since these models are graph-based, Section 3.4.3 (p. 19) reveals techniques for

comparing versions of a graph and extracting the occurred changes. Other algorithms have also

been developed that allow detection of similar sub-graphs, which could be used to group similar

sets of changes.

Finally, Section 3.5 (p. 19) demonstrates an increased effectiveness of the code review process

when displaying information with different techniques.

Chapter 4

Preliminary Studies

4.1 Motivation . 21

4.2 Preliminary Research Questions . 22

4.3 Interview Methodology . 22

4.4 Interview Structure . 22

4.5 Study Results . 23

4.6 Summary . 27

To complement Chapter 3 (p. 15), a more subjective research process was conducted to validate

this dissertation’s proposal. This process consisted of a user study, where 10 industry professionals

were interviewed (see Section 4.3, p. 22).

4.1 Motivation

This work intends to evaluate the effectiveness of automated classification and summarizing of

effective changes in IaC. To better identify the existing problems and, consequently, better define

the hypothesis and the research questions of this dissertation (see Section 5, p. 29), it is relevant to

collect closer insight into the current workflows adopted by IaC developers, to determine how they

could be impacted. This information also allows us to prioritize the parts of the proposed solution

that are more likely to be adopted and fruitful.

21

22 Preliminary Studies

4.2 Preliminary Research Questions

The preliminary studies described here were conducted to better understand the current real-world

difficulties and approaches regarding continuous deployment in IaC and gather feedback from in-

dustry professionals concerning this project’s initially proposed solution. This enabled answering

the following research questions:

PRQ1 - What are the currently adopted workflows for managing cloud infrastructure?

PRQ2 - How adopted are third-party IaC contributions, and how is their risk assessed?

PRQ3 - How well would the proposed solution be received in existing development

workflows?

PRQ4 - What types of use cases are there for automating infrastructure change ap-

proval?

PRQ5 - How can a diffing tool improve the efficiency of manual infrastructure change

reviews?

4.3 Interview Methodology

The study was performed as semi-structured interviews (SSIs) [36], conducted in an informal

setting and using the scripted questions for steering the conversation when necessary. In order to

ensure comparable responses from the interviewees, additional more specific follow-up questions

were designed for each discussion topic. This approach guaranteed the coverage of all relevant

matters while allowing the respondent to explore each one freely.

4.4 Interview Structure

The 45-60 minute interviews were divided into two parts:

• Current Experience - Focused on collecting information regarding the interviewee’s experi-

ence, their workflows regarding cloud and IaC. To avoid introducing bias in the results, the

hypothesis and goal were only revealed to the interviewee after this section.

• Approach Discussion - Dedicated to gathering feedback regarding the initial proposed solu-

tion, including usefulness, use cases, and further suggestions.

Alternative routes in case the interviewee did not use cloud services or IaC were created but

were not used. A comprehensive list and description of all interview questions is available in

Appendix B (p. 77).

4.5 Study Results 23

4.5 Study Results

4.5.1 Interviewee Demographic

The characteristics of the inquired interviewees follow the below information:

• A total of 10 developers, cloud consultants, and DevOps engineers of businesses ranging

from single developer consultants to multi-national companies with thousands of employ-

ees. However, half of the participants represented companies of 20 to 200 developers, while

3 belong to smaller organizations. Their clients range from general consumers to large

businesses.

• All interviewees were found to use the AWS cloud services provider, although half have

previous experience with Google Cloud Platform and Azure.

• Developed products include serverless architectured infrastructures and critical back-end

systems, where a wide spectrum of cloud resources are used (e.g., databases, message

queues, serverless functions, network routers, file storage services). In some cases, there

is also communication with on-premise systems and external tools.

• All participants had some experience in IaC, and those who provided further detail (4 out

of the 10 interviewees), ranged from 1 to 3 years of experience with their currently adopted

IaC technology.

4.5.2 Infrastructure Development Workflows

• Used IaC solutions include Terraform, Cloudformation, and CDK, with 9 of the participants

developing to some extent using the latter. Previous experience with IaC tools also includes

products such as Boto3, Jinja, Troposphere, and Serverless Framework.

Figure 4.1: Reported adoption of IaC Technologies

• All interviewees integrated development workflows using CI/CD pipelines, and only one

triggered the deployment of the infrastructure manually.

24 Preliminary Studies

• Deployment frequency ranges from hourly to monthly, although in most cases it is done

daily or a few times per week.

• Half of the participants have used third-party pieces of infrastructure code, of which 80%

have used external ones. Risk assessment for such reuse relies heavily on traditional manual

code analysis, although some also have automatic compliance checks through the cloud

provider or IaC tool. Code is mostly reused by copying directly onto the codebase rather

than including it through libraries or packages. This is done to have total control over the

code and, consequently, some security reassurance.

Figure 4.2: Reported usage of third party IaC code

• Since third-party code is currently reused mostly in small blocks to aid security reassur-

ance, code changes contain small incremental infrastructure modifications and are report-

edly quickly reviewed. Large changes, however, can take up to weeks to be reviewed,

particularly in critical systems.

• The responsibility of approving infrastructure changes - for organizations of more than one

person - is split between team developers and dedicated DevOps/QA developers. In all

cases, multiple people have such authority to ensure reviewer availability.

• Half of the inquired people use additional manual review tools to analyze infrastructure

changes beyond code review (e.g., CDK diff[3], CloudFormation guard[6])

• While all participants have multiple deployment environments in their pipelines, only half

deploy to multiple regions and none deploy to multiple cloud providers.

• Half of the participants reported having frequent infrastructure changes that could be auto-

matically approved, while only 3 would not benefit from automatic approvals of changes

that have been approved for other environments.

4.5 Study Results 25

4.5.3 Proposal Feedback

Figure 4.3 presents the obtained feedback about how useful each of the following abilities

would be for their current workflow:

– Collapsing repetitive changes in a diff tool - consists of providing a summary of the

infrastructure differences caused by a code change, where repeated changes are col-

lapsed to aid readability of large changes.

– Automated approvals for specific changes - the ability to deploy infrastructure changes

automatically only if they obey user-specified rules concerning its resources, configu-

rations, and permissions.

– Automatic approvals based on past approvals - the ability to deploy infrastructure

changes automatically in a given environment (stage or region) if such changes have

previously been approved for a distinct specified environment.

Figure 4.3: Reported usefulness of 3 proposed continuous deployment features for IaC code by
number of responses in each degree of usefulness for the participant’s workflow

The feedback obtained for the first two abilities demonstrates their positive impact in nearly

all workflows while having a more significant impact in 70% to 80% of the cases. However,

automatic approvals based on past approvals revealed a more split distribution of opinions,

where 60% claimed to benefit from it greatly, and 40% would benefit only slightly or not at

all from it.

The interviews’ obtained responses revealed two main workflow scenarios regarding possible

automation of infrastructure change approval: approve by default and reject by default. The first

26 Preliminary Studies

consists of always approving the deployment of the infrastructure except if any user-defined re-

jection rule is violated. Similarly, the latter requires human approval unless all of the changes are

specifically allowed in the user-defined rules.

Obtained examples of useful infrastructure change approval rules include:

• Rejecting removal of specific or general resources (e.g., databases, computing containers,

user authentication services, file storage)

• Rejecting changes in exposed ports of a web server, protocols, configured domain names,

etc

• Rejecting particular permission changes

• Rejecting encryption downgrading or creation of non-encrypted resources

• Rejecting resources in specific regions

• Approve the creation of specific or general resources (e.g., serverless functions, message

queues)

• Approve configuration changes of resources (e.g., message queue configurations, small

computing container size changes)

A participant made an additional suggestion for optionally associating a written justification

or context to be associated with rules, which could then be viewed upon rule violation to aid

interpretation.

Obtained examples of useful security threats to detect include, besides the approval/rejection

rule examples mentioned above:

• Any computing resources that can execute arbitrary code. Possibly performing static and

dynamic security and dependency scanning or checking base images.

• Cloud provider account grant access

• Any modification that results in higher cloud infrastructure maintenance costs.

Obtained examples of useful infrastructure change visualization optimizations include:

• Prioritizing shown changes according to the type of resource (stateful resources should have

higher priority) and type of modification (removal, creation, update).

• Taking advantage of traditional left vs. right code comparison standard for intuitive analy-

sis.

• Signaling the proposed changes in a diagram representation of the infrastructure, including

resource relationships.

• Collapsing changes based on abstraction hierarchy in the code.

4.6 Summary 27

• Revealing the code files that generated each change.

A code annotation feature to provide context to a set of defined resources in the IaC code -

which would then be included in the summary of infrastructure changes to aid readability - was

considered beneficial by 70% of the interviewees.

4.6 Summary

This chapter describes and evaluates the results of the preliminary study performed on 10 industry

professionals. This required conducting semi-structured interviews to evaluate how developers

manage their development, review, and deployment workflows in IaC, as well as gather feedback

regarding the initial proposed solution, including usefulness, use cases, and further suggestions

(see Section 4.4, p. 22).

Section 4.5.2 (p. 23) revealed that all interviewees integrated their development workflows

with CI/CD pipelines. Only half of the inquired people reported using tools for additional manual

review and an overall tendency was observed towards reusing community-made code, despite the

difficulty in ensuring safety when doing so.

Section 4.5.3 (p. 25) demonstrates a generally positive feedback regarding the proposed so-

lutions of collapsing the presented repetitive changes, automating approvals for specific changes,

and automating deployment approvals based on previous approvals. Furthermore, it contains ad-

ditional relevant insights collected from the performed interviews.

28 Preliminary Studies

Chapter 5

Problem Statement

5.1 Problem . 29

5.2 Hypothesis . 30

5.3 Research Questions . 31

5.4 Validation . 31

5.5 Proposed Solution . 32

5.6 Validation . 32

5.1 Problem

Like all code, third-party IaC implementations can be easily shared and included in one’s code,

either by manually copying blocks of community-created code or including external dependencies,

which can speed up developer operations significantly, but can also present security concerns.

IaC code may also be integrated in a Continuous Integration and Continuous Deployment

(CI/CD) pipeline, which stresses the importance of a highly effective change review process, such

as peer reviews or automatic validation tasks in the pipeline.

In Chapters 3 and 4, we observe the emerging availability of community-created IaC code. Its

adoption is suffering a natural hesitation due to potential security risks and the necessary time-

consuming review process typically required for deployment in production environments. The

referenced literature has revealed how little information there is concerning potential generalized

solutions to this problem, particularly regarding automated change approval and classification

approaches or optimization of the manual review process.

Existing IaC solutions offer tools to review the upcoming infrastructure changes of an IaC

deployment, but they are designed for small iterations rather than optimizing the readability of

large changes. Moreover, this review is an additional step separate from code review. As such, it

29

30 Problem Statement

is often used for manually approving changes during a CI/CD pipeline execution, interrupting it,

and causing delays in the development process.

Typically this results in teams not including community-made IaC code unless it is small

enough to be reviewed or they fully trust its source (see Section 4.5.2, p. 23). Consequently, this

greatly reduces their adoption and hampers the search for usable existing solutions to particular

development problems.

With this research, we will focus on how to review and analyze the security risk in large IaC

code changes efficiently, particularly when introducing third-party code. Large code reviews are

very time-consuming and may be unable to detect subtle dangerous resources, configurations, or

permissions.

5.2 Hypothesis

This work intends to validate the following hypothesis:

The productivity and security of declarative IaC code deployments can be increased

by: a) automating the approval or rejection of specific infrastructure changes in a

continuous deployment pipeline; b) generating a comprehensive summary of upcom-

ing infrastructure modifications, suitable for manual review of large changes. These

methods provide the highest impact when changes are hard to detect in regular code

reviews or introduced in third-party code.

The mentioned summary of the upcoming infrastructure changes would display the changes

according to their impact on the infrastructure, while condensing repetitive occurrences and high-

lighting vulnerability-prone ones. The goal is to allow developers to view the effective changes to

the infrastructure, even if they are caused by updates to third-party dependencies or a byproduct

of refactoring attempts. This ideally decreases the ability to hide dangerous infrastructure changes

in the code.

Automation of change classification, both in regards to their potential impact on the infras-

tructure or to whether they should require manual review, should be based on customizable user

configuration and adaptable to the specific project, team, or company where it is used. By in-

cluding such automated classification into a continuous deployment pipeline, certain deployments

could be approved or rejected without requiring human intervention. In other words, infrastruc-

ture deployments with non-compliant modifications would automatically be canceled and the ones

with indubitably safe changes would be deployed with no need for human review. This allows for

ensuring consistent standards across development iterations, detecting potential threats, and in-

creasing the efficiency of frequent similar deployments.

5.3 Research Questions 31

5.3 Research Questions

This work attempts to answer the following research questions, extracted from the hypothesis in

Section 5.2 (p. 30):

ERQ1. Can code flaws introduced in IaC code changes be avoided by performing peer-review?

ERQ2. How can the peer-review process in IaC be facilitated to minimize undetected code flaws?

ERQ2.1. What effect do the summary and automated classification of changes during code re-

view have on the percentage of accurately detected changes? What effect does it have

on both security-threatening and functionality-breaking changes?

ERQ2.2. What effect do the summary and automated classification of changes have on how

confident developers are in detecting all impactful changes? What effect does it have

on both security-threatening and functionality-breaking changes?

ERQ2.3. What effect does the extra information provided by the summary and classification of

changes have on how much time the code review takes? Does having changes pre-

approved and risk-sorted decrease the amount of time spent? Does it decrease the

amount of effort allocated to non-impactful changes?

ERQ3. Is it possible to automate the change review process in IaC? Can it be fully automated in a

CI/CD pipeline?

5.4 Validation

The validation of the hypothesis encompasses:

1. Identifying the features of a tool that can support the peer-review of IaC code changes -

including the summary and configurable automatic approval of upcoming changes, as de-

scribed in Section 5.2 (p. 30).

2. Implementing such functionalities in a reference implementation (see Chapter 6, p. 35)

3. Conducting a user survey, targeted at industry professionals, to validate the adopted tech-

niques and proof-of-concept tool.

This experiment entails the following:

• Using three codebase modifications of different sizes:

A small set of changes to understand the impact of the solution in a more incremental

development

Two larger sets of changes, affecting multiple files, to evaluate the effectiveness of the

proposed solution

32 Problem Statement

• Providing the codebase modifications to a sample of 10-20 IaC developers, while only al-

lowing half of the participants to access the summary and define automatic approval rules.

This will ensure a control group of 5-10 people.

• Requesting the developers to review each of the three sets of code changes.

• Analyzing the performance differences between the control group and the remaining partic-

ipants, for each of the three experiments.

To perform this experiment, a tool was developed as a proof-of-concept, intended to be used

in continuous deployment pipelines. It generates user-friendly reports for human review and auto-

matically asserts approval or rejection of infrastructure changes based on user configuration.

5.5 Proposed Solution

Solving this problem requires, as a starting point, the definition of a semantic representation of

the infrastructure and the interpretation of code changes between two versions of a codebase -

Section 6.1.1. With this mechanism, the gathered information should be summarized for human

review - Section 6.1.2. The automatic approval or rejection of infrastructure changes should then

be established based on user-defined rules - Section 6.1.3. Lastly, it should be possible to de-

tect semantically identical changes for improving the efficiency of both the review process and

automatic approvals - Section 6.1.4.

5.6 Validation

In order to validate the hypothesis, a reference implementation of the strategies that fulfill the

points in Section 5.5 should be developed. With access to such a proof-of-concept implementation,

a survey targeted at industry professionals should be conducted. The goal of the survey is to eval-

uate the efficiency and vulnerability detection success when the workflow includes the summary

and configurable automatic approval of upcoming changes, as described in Section 5.2 (p. 30).

This experiment would entail the following:

• Using three codebase modifications, mixing real-word and manually designed changes, of

different sizes:

A small set of changes to understand the impact of the solution in a more incremental

development

Two larger sets of changes, affecting multiple files, to evaluate the effectiveness of the

proposed solution

• Providing the codebase modifications to a sample of 10-20 IaC developers, while only al-

lowing half of the participants to access the summary and define automatic approval rules.

This will ensure a control group of 5-10 people.

5.6 Validation 33

• Requesting the developers to review each of the three sets of code changes.

• Analyzing the performance differences between the control group and the remaining partic-

ipants, for each of the three experiments.

To perform this experiment, a tool was developed as a proof-of-concept, intended to be used

in continuous deployment pipelines. It generates the user-friendly reports for human review and

automatically asserts approval or rejection of infrastructure changes based on user configuration.

Although a generic solution was developed, the AWS CDK framework and AWS ecosystem

were considered for validation purposes. Consequently, the tool was adapted to work with this

technology.

34 Problem Statement

Chapter 6

CDK Change Analysis Tool

6.1 Proposed Solution Overview . 36

6.2 Design and Technology Decisions . 38

6.3 Infrastructure Model . 38

6.4 IaC Declaration Parsers . 41

6.5 Detection of Changes between Infrastructure Models 44

6.6 Tool output . 46

6.7 Visualization of changes . 47

6.8 Classification of changes . 52

6.9 Summary . 55

In order to validate the formulated hypothesis, a tool - the CDK Change Analysis tool (C2A) -

was developed, which generates a visual report of changes based on two declarations of infrastruc-

ture states and optionally a custom set of change classification rules. Although C2A was developed

to be easily extended and support any declarative IaC technology (see Section 2.3.2.1, p. 9), the

current version supports solely the AWS CDK and its underlying platform, AWS CloudFormation,

since they both define infrastructure state through CloudFormation Templates (see Section 2.4.2,

p. 11).

Section 6.1 (p. 36) outlines the goals of this tool, while the remaining sections describe the

decisions and approaches in the developed reference implementation.

The development of this proof-of-concept was split into the following milestones:

• Infrastructure Model Design - Designing a representation of every component of an infras-

tructure state and their relationships.

• IaC Declaration Parsing - Instantiating the infrastructure model from existing declarations

of infrastructure state.

35

36 CDK Change Analysis Tool

• Detection of changes between infrastructure states - Comparing two infrastructure models

to predict the effective changes.

• Visualization of the Infrastructure Model and its Changes - Grouping changes based on

change characteristics and displaying them in a web application.

• Classification of changes - allowing user configuration to classify risk and pre-approval

behavior of changes

6.1 Proposed Solution Overview

6.1.1 Semantic Representation and Change Interpretation

In order to improve the continuous deployment experience with IaC, it is necessary to be able to

interpret semantic changes between versions of the code, so they can later be displayed and allow

automation tasks. To do so, there should be an optimal internal semantic representation of the

infrastructure for a given version, encompassing the resources, configurations, and permissions

resulting from its deployment. This representation, similar to the existing models for platform-

agnostic IaC definition, should follow a graph-based approach, connecting dependent resources

and configurations.

1 {

2 stack_id: ...,

3 stack_cloud: ...,

4 ...

5 resources: [

6 {

7 resource_id: ...,

8 resource_type: ...,

9 resource_configurations: {},

10 depends_on: [],

11 dependents: [],

12 hierarchy_path: ...

13 }

14]

15 }

Listing 6.1: Example of an initial semantic representation

6.1.2 Change Visualization and User Review

In order to improve the efficiency of human review, a visualization of the semantic infrastructure

modifications should be provided, including permission changes, in a readable and concise man-

ner. Ideally, it should also highlight breaking changes to further prevent unintended deployments.

6.1 Proposed Solution Overview 37

This visualization should initially be a high-level summary of the changes for interpreting large

changesets, but be able to expand the provided information as needed during the review. To allow

such interaction in an efficient manner, it will be developed in the form of a web application.

6.1.3 User-defined Change Approval

The user should also be allowed to configure which types of changes should be automatically ap-

proved for deployment, as well as those which should be rejected. It should also allow automating

approvals based on previous deployments.

Figure 6.1: Automated approval in a continuous deployment workflow

1 {

2 auto_approval: [//configure automatic approvals

3 {

4 resource_type: "aws.dynamodb",

5 changes: [

6 {

7 // automatically allows creating DynamoDB instances

8 type: "create_resource"

9 },

10 {

11 type: "config_update",

12 config: "partitionKey",

13 config_rule: {

14 changes: [

15 { // automatically allows changing ’partitionKey’ type

to STRING

16 type: "config_update",

17 config: "type",

18 before: [],

19 after: ["STRING"]

20 }

21]

22 } }] }] }

Listing 6.2: Initial draft change approval configuration

38 CDK Change Analysis Tool

6.1.4 Change Detection

The last core aspect of the proposed solution is that semantically similar changes should be de-

tected, both to reduce visual clutter in the change visualization (see Section 6.1.2, p. 36) and to

improve the identification of possible automatic approvals (see Section 6.1.3, p. 37). This should

be done by performing clone detection on two instances of the graph-based semantic representa-

tion(see Section 6.1.1, p. 36)

6.2 Design and Technology Decisions

This tool was developed in the programming language of Typescript on the Node.js Javascript

runtime. This choice was due to the following:

• The core of the AWS CDK is developed on these technologies and, as such, increases future

maintainability by the AWS CDK team. This fact also allows reusability of implementa-

tions or resources previously done for the AWS CDK product, which proved to be partic-

ularly relevant when parsing infrastructure definitions of the target platforms (AWS CDK

and CloudFormation).

• Typescript being a strongly typed language increases maintainability over standard Javascript.

• Quicker development iterations due to reusability of modules between the Front-end web

application and the core infrastructure analysis implementations, besides having previous

experience with the technology.

Throughout the development of the C2A tool, there was a big focus on remaining as indepen-

dent from the IaC technology (AWS CDK and CloudFormation) as possible, so it can be easily

expandable to support other platforms and use cases. Hence, there is only one module that holds

platform-specific logic: platform-mapping. Its responsibility is to map each supported platform’s

declarations of infrastructure into the C2A’s platform-agnostic infrastructure model - infra-model.

The purpose of this isolation of responsibilities is to ensure that any supported platform can

be easily added and kept up-to-date without affecting the change detection logic, visualization,

change classification, or the remaining platform integrations. Therefore, any technology-specific

maintenance is kept under its own submodule and all other logic is done over C2A’s infrastructure

model. A clearer view over this separation of concerns can be found on Figure 6.2 (p. 39).

6.3 Infrastructure Model

The definition of the infrastructure model and all of its entities is kept isolated in the infra-model

module (see Figure 6.2, p. 39).

As previously mentioned in (see Section 3.4.2, p. 18), models for describing cloud infras-

tructure already exist, such as the TOSCA standard or EDMM. These representations attempt to

6.3 Infrastructure Model 39

Figure 6.2: C2A - Separation of concerns of software modules

allow a generic definition of infrastructure resources or configurations that can be mapped onto

platform-specific IaC code. In this work, however, the purpose of the model is not to be trans-

formed into platform-specific descriptions of the infrastructure, but to instead infer performed

changes between two states of such a model.

As a first approach in designing the model, the existing representations from the literature

were taken as a starting point and iteratively reduced in complexity by removing unnecessary

distinctions of entities. However, this proved to be a difficult task, as one cannot fully predict

whether certain details of the model will be necessary for a comprehensible description of the

detected changes.

Ultimately, the chosen approach consisted of taking the core entities from EDMM: Compo-

nents, Relationships, and Properties - which in the TOSCA standard have the nomenclature of

Nodes, Relationships, and Properties. By starting with a simple model and adding complexity as

necessary, a simplistic model was achieved while keeping the standardized underlying structure.

Figure 6.3 (p. 40) depicts the original model considered upon the first implementations of platform

parsers.

Figure 6.3 (p. 40) also reveals a distinction between Structural and Dependency Relationships.

• Dependency Relationships allow tracking components that might be affected by changes

on other components. The two main use cases for this relationship in AWS CDK and AWS

Cloudformation are explicit dependencies or implicit ones in intrinsic functions (see Sec-

tion 2.4.2.1, p. 11).

• Structural Relationships have no behavior and purely allow linking components hierar-

chically for better user understanding of the infrastructure. In the case of the AWS CDK,

this can be mapped directly to the construct hierarchy (see Section 2.4.3, p. 12). In stan-

dard AWS CloudFormation templates, this concept of hierarchy could be used to represent

Nested Stacks, for example (see Section 2.4.2.2, p. 11).

40 CDK Change Analysis Tool

Figure 6.3: Initial simplistic infrastructure model, with Components, Relationships, and Proper-
ties.

A Relationship instance references its source and target Components. As such, a given

infrastructure state - the InfraModel - is represented by a list of Components and a list of their

Relationships.

Property Value represents the properties of components and can also be a collection of other

Property Values, hence the aggregation line to itself in Figure 6.3. Property Values also contain

information on how potential changes may affect their Component, as specified in the componen-

tUpdateType field. There are three types of values for this field:

• None - Changes to the property have no consequence to the component itself.

• Replacement - Changes to the property cause the resource or configuration represented by

the Component to be deleted and recreated, instead of mutated.

• Possible Replacement - Changes that may have the same behavior as in "Replacement",

but such behavior cannot be confirmed (e.g. due to unclear specifications or dependency on

unavailable data).

See Section 6.8 (p. 52) for how this model was later adapted to allow easier implementation

of change classification.

6.4 IaC Declaration Parsers 41

6.4 IaC Declaration Parsers

As Section 6.2 (p. 38) suggests, the parsing of infrastructure definitions was implemented for AWS

CloudFormation templates, since this format is used in both AWS CDK and CloudFormation to

define the target desired state of the infrastructure. These templates can be declared in either JSON

or YAML data formats (see Section 2.4.2, p. 11) which can be directly mapped onto Javascript

objects. This fact allowed the parsing process to focus on validating and mapping CloudFormation

concepts onto the developed InfraModel instead of focusing on data deserialization. Since the

AWS CDK only produces JSON CloudFormation templates, and since YAML-based ones also

require parsing the available short forms (see Section 2.4.2.3, p. 12), the parsers currently only

support JSON inputs (see Section 8.4, p. 72). This allowed for reduced development overhead.

6.4.1 Basic CloudFormation Parsing

AWS CloudFormation templates have lists of different entities, including Resources, Parameters

and Outputs (see Section 2.4.2, p. 11). Each of these entities in the template is used to instantiate

subclasses of CFEntity - creates the InfraModel Components corresponding to their CloudFor-

mation template entities and their respective relationships. Figure 6.4 describes this structure in

more detail.

Figure 6.4: CloudFormation parsing helper classes - component diagram

The CFRef class extracts references to entities in an entity’s declaration, from the used intrin-

sic functions (see Section 2.4.2.1, p. 11) and resources’ DependsOn field.

42 CDK Change Analysis Tool

The CloudFormation parser builds instances of CFEntity’s subclasses, which have the respon-

sibility of properly building the respective components, property values, and outgoing dependency

relationships.

The type of CloudFormation entity (Resource, Parameter, or Output) gets mapped to the type

of Component. In the case of CloudFormation resources, in particular, their type gets mapped to

the Component’s subtype (i.e. an AWS Lambda Function resource generates a Component with

type "Resource" and subtype "AWS::Lambda::Function").

The CloudFormation definition of each entity is mapped directly onto each Component’s Prop-

erties field, which is a Component Property Value. From this definition, CFRef s are extracted and

mapped to Dependency Relationships where the target is the referenced entity. These refer-

ences are obtained either from CloudFormation intrinsic functions or the DependsOn parameter

of CloudFormation resources (see Section 2.4.2.1, p. 11). In the first case, the expressions are

currently not evaluated in an attempt to save development time, since direct references can still

be detected as they are always preceded by a given set of keywords (e.g. Ref, Fn::GetAtt). In

other words, instead of reasoning on the behavior of the different intrinsic functions to determine

which references will in fact be used for instantiating the Stack, the tool assumes all references

from these keywords anywhere in the expression. This does not guarantee that a referenced entity

is used once the Stack is ultimately instantiated by CloudFormation and the intrinsic functions are

evaluated (e.g. when used in conditional intrinsic functions), but it is a strong indicator.

As CloudFormation does not offer a clear hierarchical structure of its entities, Structural
Relationships are used purely to describe CloudFormation Stacks and Nested Stacks (see Sec-

tion 2.4.2.2, p. 11). All Components originating from CloudFormation entities in a template file

are linked to a Component that represents the whole stack, through a Structural Relationship.

In the same way, a Nested Stacks’ inner entities are linked to the Nested Stack resource of the

referencing template (caller). This resource also defines the outside scope available to the Nested

Stack’s inner entities through its parameters and can be used by the caller to reference its outputted

values.

Nested Stacks, however, require getting their respective templates, which are often located re-

motely. For the purpose of this work, no automated mechanism to fetch this extra information was

implemented and these additional templates have to be manually provided to the CloudFormation

parser (see Section 8.4, p. 72).

This module of the tool also determines the values of the componentUpdateType field of prop-

erty values (see Section 6.3, p. 38) due to implicit consequences of property changes in CloudFor-

mation. Changes to some properties in CloudFormation resources may lead to the re-deployment

of those resources. These are obtained from a CloudFormation specification found on the AWS

CDK repository [10]. This specification contains the mutability of each field of the supported

resources. In other words, it states whether changing a field requires updating its parent. This is

then converted into whether changing a field requires deleting and recreating the resource entirely

by recursively following the immutable field’s parent until reaching a mutable one - in which case

the componentUpdateType is "None" - or the root of a resource’s properties - in which case the

6.4 IaC Declaration Parsers 43

Figure 6.5: InfraModel structure example resulting from execution of the CloudFormation parser

componentUpdateType is "Possible Replacement" or "Replacement" depending on whether a field

with "Conditional" mutability was found.

6.4.2 AWS CDK Parser

Despite providing a development experience based on imperative programming languages, AWS

CDK code produces a definition of the target infrastructure state in a CloudFormation template

format through synthesis (see Section 2.4.3, p. 12). This process also generates additional artifacts,

which are currently not taken into consideration since they have little impact on the resulting

infrastructure, although they could be used in the future to complement the contextual information

provided in the CloudFormation template (see Section 8.4, p. 72).

The AWS CDK generates CloudFormation templates with additional information that is useful

for this tool: the AWS CDK paths of every CloudFormation entity that logically fits into the Con-

struct-based structure of the AWS CDK. These paths contain the identifiers for the ancestors (i.e.

Stacks, Constructs, Resources) of each entity in the AWS CDK construct tree (see Section 2.4.3,

p. 12), which can be used to infer the construct tree itself - excluding, of course, the branches

that do not generate any CloudFormation entity, which are not relevant for analyzing the effective

infrastructure changes.

The AWS CDK parser, then, starts by executing the CloudFormation parser (see Section 6.4.1,

p. 41) on the synthesized CloudFormation template. On top of the obtained InfraModel, this parser

then adds a Component for each element in the construct tree, obtained from the AWS CDK paths,

and links them through Structural Relationships to build the hierarchy. The leaves of the tree are

also connected through Structural Relationships to the corresponding CloudFormation entities.

An example of the resulting InfraModel can be seen on Figure 6.6 (p. 44).

44 CDK Change Analysis Tool

Figure 6.6: InfraModel structure example resulting from execution of the AWS CDK parser

6.5 Detection of Changes between Infrastructure Models

The main goal behind this tool is to provide relevant insight into the effective changes of infras-

tructure definition. This includes not only detecting which Components were removed, inserted

or modified, but also which properties were changed and in what way. For the following sections,

we will refer to the two versions of the infrastructure definition, and their generated InfraModel’s

as old and new. We introduce the concept of Transition to describe an entity (e.g. Component,

Relationship, Property) over time, containing its two versions, old and new.

The current InfraModel defines a graph where the components are vertices and relationships

are edges. The methods obtained in the researched papers (see Section 3.4.3, p. 19) describe

approaches for Directed Acyclic Graphs (DAGs). Although the InfraModel does not explicitly

disregard cyclic graphs, its semantics exclude this possibility, both in dependency relationships

and structural ones. Based on this research, the following high-level algorithm was designed:

• Match Components with the same name if their similarity is above a given threshold.

• For the remaining Components, calculate the similarity for each potentially matching pair,

matching those above the threshold as renamed ones

• Consider remaining unmatched old Components to have been removed and the new ones to

have been inserted

6.5 Detection of Changes between Infrastructure Models 45

Component similarity is a value in the unit interval (any real number between 0 and 1), where

1 represents exact copies and 0 represents totally dissimilar Components. Components with dif-

ferent types or subtypes are immediately considered to have similarity 0, since semantically they

cannot match. Otherwise, calculating this value is currently only based on the similarity of a Com-

ponent’s Properties. Taking a Component’s relationships into account was considered, in addition

to the similarity of their targets, but throughout multiple experiments with different CloudForma-

tion templates this showed no improved accuracy in matching, in addition to reducing this analy-

sis’s performance. This might not be the case when applied to other IaC technology approaches,

however, leaving the future possibility of performing this comparison in topological order (of ei-

ther dependency or structural relationships) and taking into account the similarity of the entire

incoming subgraph (see Section 8.4, p. 72).

6.5.1 Component Property Similarity

Analyzing the similarity of a Component’s properties takes a similar approach to the comparison

of the Components themselves. When calculating this similarity, an auxiliary weight should be

used, which specifies the number of primitive values in a given property. The overall calculation

follows the following steps:

• If the properties are primitive values, their similarity’s weight is 1 and calculated in the

following manner:

– If they are of different types or completely different values, the similarity is 0.

– If the values are exactly alike, the similarity is 1.

– If the properties are both strings, the similarity of the strings is considered. In this

tool, this similarity is calculated with Dice’s Coefficient algorithm, since it provides a

normalized similarity in O(m+n) time complexity.

• If the property is a collection of values (either a list or a key-value map), the weight is the

sum of the weight of its elements and the similarity is the weighted average of the elements’

similarity, where the matching of elements is performed as follows:

– Match same-key elements if their similarity is above a given threshold.

– Match remaining unmatched elements in pairs by the most similar, if their similarity

is above the threshold.

– Consider unmatched old elements to have been removed and the new ones to have

been inserted (both have similarity 0).

• If the properties are not both primitives nor both collections, then they are considered to be

different. The similarity will then be 0 and the weight will be the sum of the weights of both

new and old versions.

46 CDK Change Analysis Tool

Over different experiments, the property similarity algorithm evolved to improve accuracy.

This included:

• Giving a similarity of 1 and weight of 1 to unchanged object keys of matching values - this

ensures property structure has an influence on similarity.

• Disregarding array indexes when looking for matches - arrays are often reordered or ele-

ments are introduced or removed, which removes relevance of matching by index.

6.5.2 Change Propagation

Certain changes may have indirect side effects, which also need to be identified.

One example of such changes is updating the name of a ’resource’ Component. Since these

identifiers are used by CloudFormation to uniquely identify a resource, renaming them will lead to

the deletion and recreation of such resource. Therefore, for every such renaming operation, a new

replacement operation is instantiated for that Component. Another cause for these replacement

operations is the change of properties with "Replacement" or "Possible Replacement" componen-

tUpdateType values. In the case of AWS CloudFormation (and AWS CDK), this is derived from

the CloudFormation specification as mentioned in Section 6.4.1 (p. 41).

Replaced Components, in turn, may result in new attribute values, updating the values of

properties that reference them even though this reference might not have been lexically changed.

To tackle this, additional property update operations are created for every property that references

a replaced Component’s attribute.

This process of detecting consequential changes is, necessarily, performed after matching all

entities between the InfraModels and detecting the direct changes suffered. To distinguish them

from direct changes, they are assigned a cause, which indicates the originating change, if such

change exists.

6.5.3 Notes on Change Detection

Originally, this module detected changes in Relationships (updated, removed, or inserted). How-

ever, this was found to provide redundant information in the final changes report. The root causes

for Relationship changes are more easily perceptible through the underlying causing changes.

Furthermore, tracking of these changes did not increase the ability to automate classification or

approval behavior (see Section 6.8, p. 52).

6.6 Tool output

The output of this tool has two main goals:

• Provide a quick manual review of the effective infrastructure definition changes (see Sec-

tion 6.7, p. 47)

6.7 Visualization of changes 47

• Allow automation of change approval based on user-defined rules (see Section 6.8, p. 52)

This output can be useful in either of the following scenarios:

• In local development before committing code changes.

• When reviewing a set of proposed changes in a collaborative code. development environ-

ment (ideally accessed through an automated process in a continuous integration pipeline)

• When executing the infrastructure deployment in a continuous deployment pipeline, as a

manual step. Reasons for taking this approach include:

– using the same code in different environments - i.e. merged code automatically gets

deployed on a testing environment but must be approved in this tool before getting

deployed to the production environment.

– requiring approval of a different team, such as Quality Assurance or Security.

– performing additional checks against a target deployment environment, such as evalu-

ating or fixing configuration drift (see Section 2.3.2.2, p. 9). Such features are unavail-

able in the current proof-of-concept (see Section 8.4, p. 72)).

6.7 Visualization of changes

When creating a visualization of the changes, several aspects were taken into account based on the

state of the art and the results from the preliminary studies:

• Collapsing repetitive changes

• Collapsing changes based on abstraction hierarchy

• Follow commonly used standards for code comparison interfaces

• Grouping changes by type of resource and type of modification

• Allow semantic navigating of Components and their Relationships

With this in mind, two main views over the changes were devised: one focusing on character-

istics (see Section 6.7.3, p. 50) of the changes and one focusing on the semantic structure of the

Components, according to their Structural Relationships (see Section 6.7.4, p. 51).

This interface would ideally be built as a Graphical User Interface (GUI) on a web applica-

tion, or as a Command Line Interface (CLI). Although the latter would help recognize important

changes locally, it would likely provide harder navigation and a steeper learning curve in compari-

son with the GUI. Instead, to make the interface more appealing and easier to interpret, it was built

as a web application. This also allows it to be easily shareable and used across device platforms,

as well as seamlessly integrated with collaborative code workflow contexts.

48 CDK Change Analysis Tool

6.7.1 Aggregations

To collapse repetitive changes while grouping them by resource type and type of modification,

changes are grouped in Aggregation. Aggregations identify changes with a given set of char-

acteristics and can have sub-aggregations with more specific characteristics, forming a tree of

characteristics that group changes (see Figure 6.7, p. 49). If an aggregation has sub-aggregations

(i.e. is not a leaf), all of its changes are guaranteed to be included in its sub-aggregations.

Aggregations are currently generated by splitting the changes over multiple levels of increased

specificity. Each level is defined by modules (referred to as Aggregation Modules or AMs) that are

responsible for grouping changes based on their characteristics. Currently, there are only equality-

based modules, which means aggregations are grouped on characteristics with the same value.

Please note that Entity in this section refers to a Component or one of its Properties. The modules

per level are the following:

• Risk - with values High, Unclassified and Low. This module was based on the user classi-

fication of changes (see Section 6.8, p. 52).

• Type and subtype of the affected Component.

• Component Operation Type - the type of change to the component (Insert, Remove, Up-

date, Rename or Replace).

• Operation Entity - whether the change was to a Property or the Component itself.

• Entity Operation Type - the type of change to the operation entity (Insert, Remove, Update

or Rename).

• Operation Cause, Old Property Path and New Property Path (if applicable).

• Old Property Value and New Property Value (if applicable and necessary for further dis-

tinguishing changes).

Each AM, when generating the aggregations, can be applied with slightly different behaviors:

• By default, aggregations are collapsed with their parent if they have no siblings. This col-

lapse can also be disabled or forced regardless of the number of siblings.

• Some aggregations are formed exclusively if their changes have a given set of characteristics

- e.g. grouping by property path does not make sense in changes to the Component itself.

• Exclude aggregations that have no siblings - this is useful when the information on charac-

teristics is only relevant for differentiating changes.

By displaying these aggregations in a tree-like manner, two main goals of the UI are achieved

(see Section 6.7, p. 47):

• Collapsing repetitive changes

• Grouping changes by type of resource and type of modification

6.7 Visualization of changes 49

Figure 6.7: Example of aggregations for three DynamoDB Tables insertions and one property
update

6.7.2 Display Component Property Operations

To allow users to view the changes in the Component Property changes (which in the case of AWS

CDK/CloudFormation are the template definition changes for that Component), a similar interface

to the traditional UNIX diff tool [31] was taken. Although existing text-diffing implementations

could be used for this purpose, the operations were already being detected by C2A (see Section 6.5,

p. 44) with additional semantics, such as indirect updates to components (see Section 6.5.2, p. 46).

Besides this, the interface should not only display the differences, but also be able to seamlessly

locate and link each displayed operation to its additional information.

Consequently, a custom implementation was developed for this purpose, divided into the fol-

lowing steps:

• Convert the new properties to a string. Initially attempted to do so with the existing JSON.stringify

functionality of Javascript. However, this does not offer the necessary control over the out-

put to add the changes with the necessary references and highlighting information. The

chosen format for the output string was JSON due to the familiarity and consistency with

the chosen IaC technologies.

• Modify the previously developed conversion algorithm to split the output string into sec-

tions with additional information, namely highlighting information. New property values,

50 CDK Change Analysis Tool

whether resulting from property insertions or updates, were associated with an insert high-

light.

• Allowing additional structures or values to be included in the final output, such as old values

(from removals, updates, or renamings) with their own highlights.

• Associating metadata with the output string sections to be able to associate them with the

Component Property Operations.

• Displaying each section with the appropriate highlighting color - green for insertions, red

for removals, and blue for updates.

6.7.3 Changes View

Figure 6.8: Initial Mockups for the User Interface

The first focus of the visualization was to provide easy navigation of the changes based on the

generated aggregations, with an emphasis on highlighting the different risk levels - displayed on

the left pane in Figure 6.8.

For each of these aggregations, the user is able to expand and collapse them - if they have sub-

aggregations - or view their changes’ details. As a first iteration, these details included only the

main characteristics of the changes and a traditional diffing of the affected Component’s properties

(see Figure 6.9, p. 51).

In subsequent iterations of the interface, other details were introduced in the right panel, split

by tabs, such as:

• General Component Information (see Figure 6.10, p. 52) - Provides details about the

affected Component

6.7 Visualization of changes 51

Figure 6.9: Changes View of the visualization interface - includes aggregations tree on the left
pane and details on the right pane with property diffing

• Causal chain (see Figure 6.11, p. 53) - Indicates any inderect causes on consequences of

the selected change

• References (see Figure 6.12, p. 54) - Enables navigation to Components that reference or

are referenced by this Component - i.e., allows following incoming or outgoing Dependency

Relationships.

On every displayed aggregation and change, there is also a checkmark icon to mark those

changes as approved or not. Some of these checkmarks may be selected by default according to

the pre-approval rules defined by the user (see Section 6.8, p. 52)

6.7.4 Hierarchical View

The Hierarchical View was kept with the same overall structure as the Changes View (see Sec-

tion 6.7.3, p. 50). It is visually divided between a left pane and a right pane. Each item on the left

pane is a component - expandable to show its children according to the Structural Relationships

- and, when selected, has its details shown on the right pane. The details are nearly identical to

the ones on the Changes View, with the exception of the Causal Chain tab being replaced with a

Changes one. This Changes tab uses Aggregations (see Section 6.7.1, p. 48) to show the changes

of a given component, but excluding characteristics like Risk or Component type and subtype (see

Figure 6.13, p. 55).

52 CDK Change Analysis Tool

Figure 6.10: Visualization Interface - Change Details - The right pane has the ’General Component
Information’ tab selected, which displays a brief summary of the Component that suffered the
selected change

6.8 Classification of changes

This tool attempts to not only display the effective infrastructure changes, but also limit user

attention to the relevant ones. For this, it is crucial that users are able to customize what constitutes

relevant changes. This configuration might also vary between contexts, such as the specific project

or company in which the infrastructure used. Therefore, this customization should be partially or

totally reusable. Base configurations could be provided by the IaC platforms and modified by

developers to suit their needs.

In addition to classifying the relevance of changes, C2A also attempts to enable automated

pre-approval of changes to keep developers from spending time reviewing certain changes. This

would even allow skipping the manual change approval step entirely when every proposed change

is deemed as pre-approved.

The rules language was designed with two main processes in mind: identifying objects and

setting effects on identified changes.

6.8.1 The choice of graph-based querying

The desired target for a rule is a change or a set of changes to be classified. The user may want

to identify these changes by their type, the details of the Component it affects, the properties it

affects or even distant Components, their changes and how they relate to each other.

These entities relate to each other in several unique ways, which would require interpreting and

processing the language distinctly for every entity and every possible type of connection between

entities. To simplify this process and its implementation, we can consider all of these entities and

6.8 Classification of changes 53

Figure 6.11: Visualization Interface - Change Details - Visualization Interface - Change Details -
The right pane has the ’Causal Chain’ tab selected, which displays the origin and consequences of
the selected change

their connections to be part of a graph representation, where each entity is a node and they relate

to each other through labeled edges. This allows the tool to query the resulting graph directly and

follow edges as specified by the user, without any knowledge of the underlying model.

6.8.2 Adapting the Infrastructure Model

All relevant entities were transformed into nodes and any connection between them into labeled

graph edges. This was done by creating a Model Entity that is extended by all of these entities and

represents a node with the necessary properties and edges (see Figure 6.14, p. 56). The final graph

includes the following node types:

• Components

• Relationships

• Property Values

• Operations (i.e. the detected changes)

• Transitions

• InfraModel

• InfraModelDiff - Node connected to both InfraModels and all Operations

54 CDK Change Analysis Tool

Figure 6.12: Visualization Interface - Change Details - The right pane has the ’References’ tab se-
lected, which displays the Components that are connected to the Component of the current change
through Dependency Relationships

6.8.3 General Purpose Graph Querying Languages

Given the full graph representation of the change analysis objects, it is possible to navigate it using

regular general-purpose graph querying languages such as Cypher [11]. Using such languages the

user could write queries to select the targeted changes and classify them as intended. However,

this approach showed issues regarding rule creation overhead and readability, particularly when

navigating the graph, resulting in extremely verbose queries (e.g. navigating to a Component’s

property in a given path would require explicitly traversing a hasProperty label before every sec-

tion of the path).

6.8.4 Selecting Objects

A custom syntax was designed specifically for navigating the graph, reducing verbosity:

• For selecting a change, one or more starting points are necessary. These can be any type of

entity (Component, Relationship, Component Property Value, Change) and can be directly

filtered by their own properties.

• Through bindings the user assigns a custom identifier to each selected entity, which can later

be used to reference it.

• Using bound identifiers, it is possible to navigate their property edges (hasProperty, value

or exposesValues seen in Figure 6.14 (p. 56)) using dots (".").

• Conditions allow further specification of selected entities. A condition is an expression that

evaluates to a boolean value and has two operands and an operator.

6.9 Summary 55

Figure 6.13: Visualization Interface - Hierarchical View - Component Details - Changes

6.8.5 Effects

Once the bindings of a rule have been defined and one of those bindings represents a change, an

effect can be applied to it. The effect contains the target change and at least one consequence: the

pre-approval behavior and/or the risk classification.

6.8.6 Nested Rules

Multiple rules were found to use bindings referring to the same objects. To avoid repetition of

context for multiple related rules, nested rules were implemented, where inner rules have access

to the bindings of their parents. Any effects applied on nested rules are applied over the effects of

their parents.

6.8.7 Final Change Classification Language Grammar

A grammar definition for the final change classification language for JSON format can be found

in Appendix C (p. 81).

6.9 Summary

To validate the hypothesis, a tool - the CDK Change Analysis tool (C2A) - was developed,

which generates a visual report of changes based on two declarations of infrastructure states and

optionally a custom set of change classification rules.

To achieve this, it was necessary to define a model for infrastructure representation (see Sec-

tion 6.3, p. 38), map platform-specific code (AWS CloudFormation and AWS CDK) onto this

56 CDK Change Analysis Tool

Figure 6.14: Rule-ready graph containing entities. Does not include InfraModel or InfraModelDiff

mentioned model (see Section 6.4, p. 41), perform detection of direct and indirect changes be-

tween two instances of this model (see Section 6.5, p. 44), generate a comprehensive summary of

these changes — e.g. offering semantic context by grouping changes according to their charac-

teristics and code hierarchy, grouping changes by risk, providing property comparison and other

relevant information (see Figure 6.6, p. 46) — , classify changes based on user-configurable rules

— e.g. assign them risk levels and mark specific ones as approved (see Section 6.8, p. 52).

Chapter 7

Validation

Due to the nature of the hypothesis of this work, its validation requires the execution of a user-

based study. To this end, a survey was conducted on developers of the AWS CDK, as it is the

best-supported platform of the current Proof-of-Concept tool (see Chapter 6, p. 35).

The study’s structure and design are discussed in Section 7.1 and Section 7.2 (p. 62) covers

the obtained results. The full structure of the survey can be found in Appendix D (p. 83).

7.1 Conducted Survey

The survey was made available through an online platform and was designed to take about 30

minutes. Its format was based on having users perform code reviews in a standard code review

platform to simulate a realistic IaC development workflow. Three scenarios were created as a

basis for this validation (see Section 7.1.1, p. 57): a simple Pull Request with few changes for

benchmarking participant performance - named scenario 0 - and two other distinct ones with higher

levels of complexity to measure the impact of the Proof-of-Concept in the quality of the responses

- named scenarios 1 and 2.

7.1.1 Considered Scenarios

The three considered scenarios are Pull Requests hosted on the GitHub platform of purposely-

built AWS CDK projects, covering common use cases of its usage: Building container-based web

applications and building serverless web applications.

Each scenario has multiple changes of different categories:

• Non-infrastructure related changes - do not affect the deployed cloud infrastructure itself,

but instead affect the application layer.

• Non-critical infrastructure-related changes - affect the deployed cloud infrastructure but

are unlikely to impact functionality or present security threats

57

58 Validation

• Critical infrastructure-related changes - affect the deployed cloud infrastructure and are

likely to impact functionality or present security threats

7.1.1.1 Scenario 0

The first scenario is used to control and benchmark the performance of each participant, while

ensuring familiarity with the platform and type of project before proceeding to the experimental

scenarios. It consists of a serverless web application that suffers the following small changes, in

no particular order:

• Introduction of a Dead Letter Queue (DLQ) to an AWS SQS Queue

• Removal of encryption on an SQS Queue.

• Set Lambda execution timeout to 4 seconds (from the inferred default value of 3).

• Assign full IAM policy permission to all AWS S3 accessible on the deploying AWS account.

• Remove unused IAM policy permission for sending a message to SQS Queues.

• Introduction of code in the existing Lambda function to list information on all Lambda

functions registered to the deploying AWS account.

• No introduction of permissions to allow the Lambda function to perform the listing opera-

tion mentioned in the previous point.

• Added project dependency to the AWS SDK.

7.1.1.2 Scenario 1

The first experimental scenario is used to compare the performance of users with and without

access to the generated information. It consists of a container-based web application which has

been refactored. Its main infrastructure-impacting changes are the following, in no particular

order:

• Newly created abstraction for creation of Amazon VPC DynamoDB Endpoints lacks PutItem

permission when trying to grant full access.

• Introduced a sort key in the schema definition of an existing DynamoDB table.

• As a result of the schema change mentioned in the previous point, the DynamoDB table is

replaced.

• IAM policy for ListTables and DescribeTable permissions limits the accessible resources to

a single table

• The IAM policy change mentioned in the previous item disables the use of the ListTables

permission.

7.1 Conducted Survey 59

• Boolean parameter for allowing SSH access to the EC2 is wrongfully named and conse-

quently invoked with an inverted value.

7.1.1.3 Scenario 2

The first experimental scenario is used to compare the performance of users with and without

access to the generated information. It consists of a more complex serverless web with a small

number of changes. Its main infrastructure-impacting changes are the following, in no particular

order:

• New version of updated construct library contains dangerous CloudFormation Origin change

to URL.

• A new function is invoked in the configured Step Functions, which intends to send push

notifications.

• A renamed DynamoDB Table gets replaced as a consequence.

• IAM policy for the Lambda function that operates over the users DynamoDB table can now

only perform operations on that table.

7.1.1.4 Notes on the Designed Scenarios

Some of these scenarios may have other inherent flaws in their functionality, such as misconfigu-

rations or small implementation bugs. However, the purpose of this research is to study the quality

of review of code changes and, as such, potentially existing flaws in the system are not taken into

account.

7.1.2 Participant Criteria

The targeted respondent demographic was defined as developers with some level of experience

with the AWS CDK using Typescript, since the scenarios were designed in this language. The

participant is not expected to have any given level of experience or organizational context, as the

hypothesis should apply to all users. It is also expected for the developer to be familiar with code

reviews, preferably with the GitHub code review interface.

7.1.3 Survey Structure

In order to guarantee the relevance of the results, each experimental scenario (scenario 1 and 2)

must be subject to a control group - a set of participants who do not receive the treatment (the

proof-of-concept tool’s output) - and an experimental group - who do get access to the additional

information. Several approaches were considered when establishing these groups, as described

below.

60 Validation

7.1.3.1 Considered Solutions

The first considered approach consisted of dividing the entire study into two groups and requesting

code reviews of the scenarios in the following way:

• The control group would have to review all scenarios in a fixed order without access to the

additional information.

• The experimental group would have to review the same scenarios, in the same order. How-

ever, in the second scenario, the change analysis interface would be provided without clas-

sification of changes, and in the third scenario, the fully categorized output would be made

available.

• The scenarios would be ordered in increasing complexity.

• To evaluate the accuracy of the reviews, a checklist would be shown with both accurate and

inaccurate changes for participants to select those that they were able to detect.

However, this approach presented threats to validity and execution:

• Due to the niche nature of the target group, raising candidates for the experiment was ex-

pected to be a difficult task - which was later confirmed. Having the control group review

three scenarios without experiencing the hypothesis in question was feared to cause users to

quit the survey without filling it entirely, consequently risking the group’s statistical signifi-

cance.

• Simultaneously increasing complexity and providing more detail in the additional informa-

tion could hamper determination of cause behind participant performance.

• The validity of the full hypothesis would only be analyzed in one scenario.

• A checklist of changes would introduce a considerable bias, as participants would know

what changes to look for when reviewing.

To tackle these problems, multiple solutions were considered:

• Providing the change report in both groups and reducing the scope of control groups to a

per-scenario basis, instead of survey-wide. With this solution, both participant groups could

have the additional information on one of the scenarios. The order of the experimental sce-

narios would be switched to ensure neither participant group would have that information in

the first scenario and avoid introducing bias in the following scenario (i.e. participant group

A would review scenario 1 without the information and then scenario 2 with it; participant

group B would review scenario 2 without the information and then scenario 1 with it).

• Reducing the number of scenarios to two, while increasing the number of groups. Keeping

one control group and having two experimental groups - one accessing the change report

7.1 Conducted Survey 61

with the customized rules and one without it. This solution still was greatly dependent on

having sufficient survey adoption, besides limiting the experimental portion to just a single

scenario.

7.1.3.2 Adopted Solution

The adopted solution resulted from a combination of these two proposed solutions. The survey is

then structured in the following manner:

• Keeping the three scenarios - one scenario for benchmarking participant performance (sce-

nario 0) and two experimental ones (scenario 1)

• Having two participant groups with access to the three scenarios.

• Requesting purely code review on scenario 0 in both participant groups, on scenario 1 in

group A and on scenario 2 in group B

• Requesting code review with the additional information on scenario 2 in group A and on

scenario 1 in group B.

• Keeping the order of scenarios as 0, 1, and 2 across participant groups.

• Having developers describe the reviewed changes in an open response text box.

• Introducing a third participant group if the original participant groups reach a satisfying

number of responses - 20.

The final contents of the survey followed this solution and are available in Appendix D (p. 83).

This solution, however, remains with significant threats to validity, presented in Section 7.1.4.

7.1.4 Threats to Validity

The adopted validation approach includes the following significant threats to validity:

• Possible introduction of bias in scenario 2 - its control participants will be aware of some

of the additional information to detect as they have been shown a similar one previously.

Nonetheless, while this bias only affects one scenario, the alternative of reviewing scenarios

in different orders would introduce bias in both, which would be harder to measure.

• Inability to accurately measure review duration. Heightened by participants not being ac-

customed to the user interface of the C2A tool, which leads them to spend more time in this

learning process.

• Having unclear or ambiguous descriptions of changes in the written reviews.

62 Validation

7.2 Findings

The following subsections analyze the results of the conducted study. These results are based on a

total of 21 participants with 10 participants in group A and 11 participants from group B.

7.2.1 Participant Population Analysis

The survey was filled by 155 individuals. However, in the large majority of responses partici-

pants quit the survey without completing it fully. A large number of participants abandoned the

survey when asked to review a Pull Request, in either scenario. Group A had significantly less

valid responses and because of this, users from that group who fully completed at least scenario

1’s questions as requested were also considered. This allowed having a balanced number of con-

sidered participants in each group, creating a total of 21 considered participants. Unavoidably,

scenario 2 holds fewer responses (16) and has, therefore, less statistical significance. In addi-

tion, some outliers were removed, who did not follow or may have completely misunderstood the

instructions.

All participants reported having at least basic experience in cloud services, IaC tools, AWS

Services and AWS CDK. Figure 7.1 reveals the distribution of experience levels across all partici-

pants and technologies.

Figure 7.1: Reported participant experience, on the following scale: 0 - Not experienced; 1 -
Somewhat experienced; 2 - Fairly experienced; 3 - Very experienced; 4 - Extremely experienced

7.2.2 Benchmarking Participant Performance

The changes from scenario 0 were given weights according to their categories (see Section 7.1.1,

p. 57). Non-infrastructure changes were given a weight of 1, non-critical infrastructure changes

were given a weight of 2 and critical infrastructure changes were given a weight of 3.

7.2 Findings 63

The detected changes of Section 7.1.1.1 (p. 58) were extracted from each answer and assigned

a value of 0 or 1 that were either not detected or detected, respectively. Answers with implicit

mentions of each change were given a value of 0,5. By performing a weighted sum - multiplying

these values with their corresponding change and summing them for a given participant -, we

can assign them a performance score that describes how complete and descriptive their answers

were. After normalizing these scores in relation to their theoretical maximum value, we obtain an

average score of 60% and a standard deviation of 17%.

Although the scores are lower than expected, this can be explained by the recommended 2

minute review time which limits the number of changes one can review and inherently affects their

overall score. Another factor that may have contributed to these values is the average experience

of 69% for the technologies used in this scenario (with a 16% standard deviation).

7.2.3 Accurately Detected Changes

To the answers from scenarios 1 and 2, we applied the performance analysis method in Sec-

tion 7.2.2 (p. 62), with a slightly different weight system. Since the participants were not asked to

identify changes other than security threats or functionality breaking ones, these cannot count to-

wards how accurate their reviews were. The applied weights were: 1 for security-related changes

and 2 for immediate security threats and functionality-breaking changes.

In scenario 1, we can observe an average score of 25,6% when the proof-of-concept tool is

not provided and an average score of about 27,3% when the participant does have access to it.

The overall scores in this scenario appear to be even lower than those obtained in scenario 0,

which can be explained by an even lower average experience score for its technologies (62%) and

a 10 minute recommended time for analyzing a fairly complex refactoring with multiple hidden

changes. Based on this data we can estimate that having this extra information leads to a 6,5%

increase in performance.

Scenario 2, instead of featuring code refactoring, focuses on small changes and hiding one

inside external dependencies. This shift of context leads to more optimal performance results,

with a 50,0% improvement on the average score when using C2A. The lower response volume for

this scenario, however, decreases the statistical significance of this obtained value.

When assigning a weight to each participant’s score proportionate to their performance in

scenario 0 - emphasizing the performance of more committed reviewers, we can observe a 10,0%

and 55,8% increase in performance with C2A in scenarios 1 and 2 respectively.

The overall increases in performance of 6-56% are lower than expected, which can be ex-

plained by the large portion of the sample who failed to detect any of the relevant changes - 33%

in scenario 1 and 25% in scenario 2 -. These participants either identified flaws in the existing

system instead of the presented changes, or failed to find any security or functionality concerns at

all.

The distribution of the unweighted performance scores can be found in Figures 7.2 and 7.3. In

both cases, having the proof-of-concept tool reveals a more condensed score distribution, meaning

that having the tool adds consistency among reviews. It also slightly increases the average obtained

64 Validation

Figure 7.2: Box Plot of the performance
scores obtained in scenario 1

Figure 7.3: Box Plot of the performance
scores obtained in scenario 2

score. It can also be observed that the best scores were obtained without the use of the tool, which

can be explained by certain participants having spent much more time than recommended in the

review process, as mentioned in Section 7.2.5 (p. 65).

When participants with access to the tool were asked what changes they would not be able

to identify without the tool, at least one change was reported by 90% in scenario 1 and 36%

in scenario 2. This confirms that the two scenarios were very different in complexity and that

participants found the tool to be helpful to some degree.

One particular change - Limiting IAM Policy permission resources of DescribeTable and List-

Tables actions to a single table disables the usage of ListTables (see Section 7.1.1.3, p. 59) - was

only detected by one participant, who did not have access to C2A’s output. This change required

very specific knowledge to be detected and was not included in the change classification configu-

ration and, therefore, not highlighted in the corresponding change summary.

7.2.4 Review Outcome Confidence

In both scenarios 1 and 2, the average participant confidence in having detected all security-

threatening changes suffered little impact by providing the C2A tool (having increased just 2,7%

and 0,8% respectively, while the standard deviation increased 4,8% and 32,1% respectively). On

the other hand, functionality-impacting changes saw an 18,5% increase in confidence in scenario 1

and a 4,8% decrease in scenario 2 (with 0,5% and 29,4% increases in standard deviation). Figures

7.4 and 7.5 further reveal this distribution in confidence across the different contexts.

Despite the mentioned effects on the average, the median remained unchanged across contexts.

Figure 7.4 (p. 65) reveals a more condensed distribution of the reported confidence when using the

tool, both in security threats and functionality breaking changes. By contrast, Figure 7.5 (p. 65)

revels the opposite consequence of making the tool available. This can be due to multiple factors,

including slightly less familiarity with its technologies (see Figure 7.1, p. 62), the refactoring

nature of scenario 1, the difficulty in checking possibly hidden changes in external packages, a

natural decrease in performance throughout the survey due to exhaustion or attention span.

7.2 Findings 65

Figure 7.4: Box Plot of the reported confi-
dence in scenario 1 - With and without access
to the tool, for changes representing security
threats and functionality impact

Figure 7.5: Box Plot of the reported confi-
dence in scenario 2 - With and without access
to the tool, for changes representing security
threats and functionality impact

7.2.5 Review Duration

The format of this survey has an inherent flaw in measuring time spent using the tool. Although

developers are traditionally accustomed to using code review interfaces, the C2A tool’s interface

requires a learning process which participants had not been subject to prior. For this reason, the

review duration was expected to increase slightly when having the tool available.

Figure 7.6: Total Reported Time Spent in Review (in minutes), for both groups and scenarios 1
and 2

Figure 7.6 contains the distribution of the reported total duration of the review process. As

expected, having access to the tool with no prior experience leads to a greater review time in both

66 Validation

scenarios. The majority of participants with access to C2A’s output in each scenario exceeded the

recommended time, having one outlier reported spending 350%.

Since the survey recommended a 10-minute review for each scenario, participants may also

have stopped the review before being fully satisfied with their conclusions. Hence, it is more

useful to compare the time spent to achieve similar performance scores for participants of simi-

lar experience backgrounds and benchmarked scores. The currently limited volume of obtained

responses does not allow us to ascertain such a relationship with statistical significance.

Figure 7.7: Reported time spent across scenarios 1 and 2 in the multiple processes of review

7.2.6 Reported Experience

An experience score was produced for each participant in each scenario by averaging the reported

experience values of the technologies relevant for that given scenario:

• Scenario 0 - Cloud Services, AWS Services, IaC tools, AWS CDK, AWS CloudFormation,

AWS EC2 Instances, AWS VPCs, Elastic Load Balancing, Auto Scaling Groups, AWS

Lambda Functions, AWS Step Functions, and Amazon DynamoDB.

• Scenario 1 - Cloud Services, AWS Services, IaC tools, AWS CDK, AWS CloudFormation,

AWS EC2 Instances, AWS VPCs, Elastic Load Balancing, Auto Scaling Groups, AWS

Lambda Functions, AWS Step Functions, and Amazon DynamoDB.

• Scenario 2 - Cloud Services, AWS Services, IaC tools, AWS CDK, AWS CloudFormation,

AWS EC2 Instances, AWS VPCs, Elastic Load Balancing, Auto Scaling Groups, AWS

Lambda Functions, AWS Step Functions, Amazon DynamoDB, and Amazon CloudFront.

Using these values and crossing them with the obtained performance values throughout the

three scenarios, we conclude there is no clear correlation between the reported experience for any

given scenario and a participant’s performance, as demonstrated in figures 7.8, 7.9 and 7.10. In

figure 7.10 there is arguably a trend for better performance with increased experience when using

the C2A tool’s output, but due to the lack of data points, it remains inconclusive.

7.3 Observed Threats to Validity 67

Figure 7.8: Scatter plot of reported experience against obtained performance scores - scenario 0

Figure 7.9: Scatter plot of reported experi-
ence against obtained performance scores -
scenario 1

Figure 7.10: Scatter plot of reported experi-
ence against obtained performance scores -
scenario 2

7.3 Observed Threats to Validity

The obtained results, as expected (see Section 7.1.4, p. 61), cannot fully validate all hypothesized

effects. Based on the submitted responses, the following validity defects were observed:

• A relatively low number of valid responses was collected - 21 - decreasing the statistical

significance of the drawn conclusion. This is especially relevant on the results of scenario

2, which were based on a limited number of 16 responses.

• Several people failed to identify any of the relevant changes in scenarios 1 (33%) and 2

(25%). These cases don’t seem to correlate with the amount of time people dedicate to the

review or whether they had access to the tool. It is, hence, impossible to extract relative

improvements of using the tool based on them.

• The bias introduced in scenario 2 that was expected to decrease the performance gains of

users with access to C2A’s output was not significant. The tool was found to have provided

68 Validation

a positive improvement to scenario 2’s scores, even surpassing the improvement obtained in

scenario 1.

• The total time spent increased as users had access to the tool, which was expected. However,

the amount of time users spent on the code review itself increased in scenario 1 when having

access to the tool. It is, therefore, unclear how much the observed increase in performance

was due to the tool versus the extra amount of time spent in code review.

• Multiple participants attempted to expose flaws in the codebase that were not part of the

set of changes introduced, decreasing the overall time dedicated to the changes and, conse-

quently, the number of relevant detected changes. This lowers the amount of data points on

a per-change basis, further decreasing the ability to take on their type.

Chapter 8

Conclusions and Future Work

This dissertation attempted to study a solution for safely introducing infrastructure changes in

an Infrastructure-as-Code (IaC) codebase, particularly for substantially large ones, such as when

including external libraries or updating already included ones. It is currently very hard to review

and analyze the security risk of such changes efficiently, as reviews become very time-consuming

and may be unable to detect subtle vulnerabilities in resources, configurations, or permissions.

8.1 Answering Research Questions

8.1.1 ERQ1. Can code flaws introduced in IaC code changes be avoided by per-
forming peer-review?

Analysis of the results suggests that code flaws introduced in IaC code changes can be avoided by

performing peer-review, but not completely (ERQ1. in Section 5.3 (p. 31)). In none of the three

scenarios presented to industry professionals in this study, was there a total identification of all

security threats or functionality breaking changes by any individual. This remains true when using

the proposed solution.

8.1.2 ERQ2. How can the peer-review process in IaC be facilitated to minimize
undetected code flaws?

8.1.2.1 ERQ2.1. What effect do the summary and automated classification of changes dur-
ing code review have on the percentage of accurately detected changes? What effect
does it have on both security-threatening and functionality-breaking changes?

The gathered results also show a slight overall improvement in the number of accurately detected

security threatening and functionality breaking changes when developers are given access to the

changes in a summarized, structured and classified manner (see ERQ2.1. in Section 5.3 (p. 31)).

69

70 Conclusions and Future Work

This is most observable when changes: are hidden in dependency updates (only detected by par-

ticipants with access to the proposed solution), implicitly result in stateful resource replacements

(49,1% more likely to be detected), or consist of bugs or small changes introduced when creat-

ing abstractions (on average twice as likely to be detected - 201,2% averaged across 4 different

changes).

8.1.2.2 ERQ2.2. What effect do the summary and automated classification of changes have
on how confident developers are in detecting all impactful changes? What effect
does it have on both security-threatening and functionality-breaking changes?

Despite the positive results regarding the quality of the reviews, the proposed solution did not

significantly impact the average developer confidence in the review outcome (see ERQ2.2. in

Section 5.3 (p. 31)). However, it did impact the distribution of such reported confidence val-

ues. This effect varied according to the presented set of changes, either converging or diverging

the reported confidence scores, but remained consistent across security-related and functionality-

breaking changes.

8.1.2.3 ERQ2.3. What effect does the extra information provided by the summary and
classification of changes have on how much time the code review takes? Does having
changes pre-approved and risk-sorted decrease the amount of time spent? Does it
decrease the amount of effort allocated to non-impactful changes?

The proposed solution also created an average 57% increase in the amount of time spent reviewing

the set of changes. Although this can be partially explained by the fact that users had no previ-

ous experience with the interface, the average reported time spent in traditional code review also

increased, possibly indicating skepticism or confusion introduced by the presented solution (see

ERQ2.3. in Section 5.3 (p. 31)).

Time spent on non-impactful information decreased 15% on average in scenario 1 (where C2A

showed the most benefit), but increased 14% in scenario 2. There is, therefore, no sufficient data

to determine this effect, but indicates that the C2A tool may be better suited for evaluating specific

types of scenarios.

One particular change was only identified by one participant, who did not have access to

C2A’s output, due to requiring very specific knowledge to be detected (see Section 7.2.3, p. 63).

Although its detection was not included in the change classification configuration used to produce

the change summary, this situation revealed a case where such configuration could be easily added

and highlighted in future deployments.

The results obtained presented lower increases in the number of accurately detected relevant

changes than expected, which is assumed to be due to the relatively small amount of optimizations

regarding user experience and navigation in the produced change summary (see Section 8.4, p. 72).

8.2 Hypothesis 71

8.1.3 ERQ3. Is it possible to automate the change review process in IaC? Can it be
fully automated in a CI/CD pipeline?

The developed reference implementation lacks the maturity to determine whether the change re-

view process in IaC can be fully automated in a CI/CD pipeline (see ERQ3. in Section 5.3 (p. 31)).

The developed change classification language should allow change review automation (see Sec-

tion 6.8, p. 52), but its applicability to real-world use is yet to be evaluated, making this a good

path to pursue as future work (see Section 8.4, p. 72).

8.2 Hypothesis

We attempted to validate the following hypothesis:

The productivity and security of declarative IaC code deployments can be increased

by: a) automating the approval or rejection of specific infrastructure changes in a

continuous deployment pipeline; b) generating a comprehensive summary of upcom-

ing infrastructure modifications, suitable for manual review of large changes. These

methods provide the highest impact when changes are hard to detect in regular code

reviews or introduced in third-party code.

Automated creation of an interactive summary of effective infrastructure changes was pro-

posed, featuring user-configurable highlighting of impactful modifications, condensing of repeti-

tive information, and pre-approval of modifications that do not require human review.

The reference implementation did not allow to confirm point a) of the hypothesis or conclude

productivity impacts. It did, however, confirm point b) regarding security, as generating a compre-

hensive summary of upcoming infrastructure modifications, suitable for manual review of large

changes, did have a positive effect on detecting impact on security functionality in declarative IaC

code deployments.

8.3 Process Overview

Designing the proposed solution involved extensive literature research, performed in the relevant

fields of continuous deployment of IaC code, analysis of infrastructure changes, visualization of

changes for review and usage of custom rules in continuous deployment. Furthermore, existing

IaC tools and products were studied and compared, depicting the current approaches for reviewing

and ensuring safe deployments of large sets of changes.

Complementing the current state of the art, interviews were conducted with industry profes-

sionals of different backgrounds. This provided information about the adopted practices in IaC

continuous deployment workflows, as well as allowed gathering feedback on the proposed solu-

tion to estimate its feasibility and applicability (see Chapter 4, p. 21).

To tackle this barrier in the wide adoption of IaC code sharing, we proposed a dedicated

visualization of changes, optimized to highlight unwanted changes and collapse less relevant ones.

72 Conclusions and Future Work

In addition, a user-defined set of rules was proposed to automatically skip the manual review

of specific changes - when integrated in a continuous deployment pipeline -, allowing for faster

human infrastructure deployment approval and safe automatable deployments.

For the validation of the mentioned proposal, a reference implementation was developed,

which consisted of a proof-of-concept tool that allows both human review of large infrastructure

changes, as well as their classification and approval based on user-defined rules.

8.4 Future Work

Although this study has given useful insights into the impact of change analysis and its automation

for declarative Infrastructure-as-Code development workflows, it remains a largely unexplored

field, leaving room for future studies.

The developed C2A tool can be further optimized for large adoption by implementing the

following improvements:

• Improving effectiveness and intuitiveness of the user interface by gathering further devel-

oper feedback on existing flaws and potential improvements of the displayed information

.

• Adding the distinction between sets and arrays of property values in Components since,

contrary to set reordering, array reordering may impact the resulting infrastructure.

• Providing the change analysis report under a Command Line Interface (CLI) for faster feed-

back on local development environments.

• Further increasing user-friendly syntax on the change classification rules language.

• Increasing support for AWS CDK and AWS CloudFormation features including, but not

limited to: resolving nested stack templates (see Section 2.4.2.2, p. 11); supporting YAML

templates (see Section 2.4.2.3, p. 12); interpreting intrinsic function expressions (see Sec-

tion 2.4.2.1, p. 11); using AWS CDK code information not currently included in the synthe-

sized CloudFormation template (e.g. asset changes, construct file locations) and checking

configuration drift of the target deployment environment.

• Adding support for other declarative IaC platforms.

Regarding the direct influence of this approach on the performance and safety of development

workflows, the following aspects should also be studied:

• Integrating approval with CI/CD pipelines and evaluate the applicability of automating the

change review process

• Studying the suitability and experience of defining change classification rules in real-world

development workflows.

8.4 Future Work 73

• Using historical change approval data to classify future changes automatically.

• Adding mechanisms for implementing new rules based on the produced change analysis

reports, possibly providing a rule generator based on the characteristics of a given displayed

change.

• Comparing applicability and impact of using this tool on the three idealized stages of devel-

opment (local, code-review, and pre-deployment) (see Section 6.6, p. 46)

• Providing textual descriptions of the rules applied to offer context on displayed changes

• Matching Components based on the entire incoming InfraModel subgraph (the subgraph ob-

tained by following all incoming relationships), either based on dependency relationships or

structural ones. This could potentially be done by comparing Components while performing

a topological traversal of both InfraModel versions.

• Grouping and displaying similar sets of related changes by performing subgraph clone de-

tection after change detection.

74 Conclusions and Future Work

Appendix A

Keywords Used in Literature Research

This appendix contains the keywords ultimately used in the literature research and review, as

depicted in Section 3.1 (p. 15).

• Semantic Analysis of Infrastructure Changes - Infrastructure-as-Code; Cloud Infrastruc-

ture; Semantics; Code Review; Analysis; Configuration Management; Code Changes; Ver-

sion; Code Differences; Impact Analysis.

• Infrastructure Representation - Cloud Infrastructure; Representation; Modeling; Archi-

tecture; Specification; Definition; DevOps; Standard; Metamodel; Automation.

• Identification of Changes - Code Changes; Code Differences; Code Diffing; Graph Diff-

ing; Graph Changes; Graph Matching; Cloud Infrastructure; Infrastructure-as-Code; Clone

Detection; Graph Comparison.

• Visualization of Changes for Review - Code Changes; Visualization; User Interface; Code

Review; Semantics; Display; Optimization; Analysis; Code Diffing; Code Comparison;

Code Differences.

• Custom Rules in Continuous Deployment - Configuration; Continuous Deployment; CI/CD;

Domain Specific Language; Validation; Rules Language; DevOps; Policy-as-Code.

• Continuous Deployment in Infrastructure-as-Code - Configuration; Continuous Deploy-

ment; CI/CD; Validation; DevOps; Infrastructure-as-Code; Cloud; Infrastructure; Provi-

sioning; Orchestration; Management.

• Relevant Features of Current IaC Tools - Infrastructure-as-Code; Tools; DevOps; Com-

pliance; Changes; Automation; Diff; Impact; Analysis; Check; Policy-as-Code; Pulumi;

AWS CDK; AWS CloudFormation; Ansible; Chef; Terraform; Puppet.

75

76 Keywords Used in Literature Research

Appendix B

Preliminary Studies - Interview
Questions

B.1 Current Experience

The following are the interview questions and justifications for gathering information on the inter-

viewee’s experience.

1. Give a short overview of your business and product.

Infrastructure requirements and approaches vary across different businesses and

products. While some require frequent deployments, others may accumulate

several changes onto a single deployment. Security requirements may also vary

across this spectrum, along with automated deployment processes and strategies.

In short, this information allows us to match specific expectations and require-

ments to their business contexts and assess whether the needs collected in the

following questions are generalized or context-specific.

2. Do you use cloud services? Which ones? For how long?

IaC helps manage and deploy cloud resources. If the interviewee does not have

experience with it, IaC related questions will not be relevant. Different providers

may also result in different experiences with IaC, which may be reflected in the

following questions’ answers.

3. Could you draw and describe the complexity of the infrastructure maintained by your
product?

Higher complexity and diverse infrastructure approaches provide insight into a

wide range of use cases. Asserting these use cases enables a better estimation

and prioritization of the critical aspects to consider for the proposed solution.

77

78 Preliminary Studies - Interview Questions

4. Give a short overview of your experience regarding IaC. Does your company use IaC?
What IaC technology do you currently use? For how long have you used it? Have
you or your company used other IaC solutions before? Which ones? What made you
change?

Different experiences and levels of expertise may have a wide range of use cases

relevant for this study. Asking the interviewees about their experience will allow

us to evaluate the proposed solution’s effectiveness within their work.

5. Can you describe your infrastructure deployment process? Are your deployments au-
tomatic? Do you use CI/CD pipelines? How frequent are your deployments?

The review of infrastructure changes and their approval is often a part of CI/CD

tasks. Since we intend to simplify and automate certain aspects of this process, it

is essential to determine how it is currently handled in order to design a solution

that can improve upon it consistently while fitting the strategies currently adopted

by the interviewees.

6. Have you previously used third-party IaC code in your project? If so, how was its risk
assessed?

Third-party IaC code may introduce or modify resources in ways that may not be

clear to the user. Understanding how the interviewees currently assess the risk in

such situations proves crucial to designing solutions for automatically detecting

and processing potential security risks or unintended side effects.

7. How much time do you usually spend analyzing the infrastructure changes before ap-
proving each new deployment? How much of this time is spent on interpreting the
changes or repetitive information? How is the approval responsibility managed? Who
is responsible for approving the deployment? How is it handled when the responsible
person is not available?

In order to successfully simplify the user’s experience and speed up the analysis

of the changes, it is essential to determine what aspects decrease productivity

and to what extent. Understanding this allows for evaluating and establishing

strategies that could be used to tackle such problems from a user experience

standpoint.

8. Are there any frequent changes in your project whose approval could be automated?

This question attempts to assess the applicability of rule-based automatic ap-

proval or refusal behaviors as a replacement for manual approval of specific

changes in order to establish its relevance for a cleaner and faster deployment

workflow.

B.2 Approach Discussion 79

9. Is your infrastructure deployed in multiple stages, regions, or clouds? If so, would
you benefit from automatic approval of infrastructure changes that have already been
approved for other environments? In which contexts (stages, regions, clouds)?

Through these questions, we attempt to understand how many interviewees would

benefit from automatic history-based approvals and by how much, specifically in

the case of multiple stages, regions, or clouds, as it is the most intuitive applica-

tion of this feature.

B.2 Approach Discussion

The following are the interview questions and justifications for gathering feedback from the inter-

viewee about the proposed solution.

1. Of the planned features, which would have the most impact on your current IaC work-
flow?

The following 3 questions allow us to determine the relative relevance of each feature in

order to better plan the implementation of the proposed solution.

2. On the following scale, how beneficial would collapsing repetitive information on the
diff tool be for your current IaC workflow?

Not beneficial - slightly beneficial - moderately beneficial - greatly beneficial

3. On the following scale, how beneficial would automating specific change approvals be
for your current IaC workflow?

Not beneficial - slightly beneficial - moderately beneficial - greatly beneficial

4. On the following scale, how beneficial would automatic approval of changes based on
past approvals be for your current IaC workflow?

Not beneficial - slightly beneficial - moderately beneficial - greatly beneficial

5. Can you give examples of rules that would be particularly relevant for your project?

Understanding which types of rules would be particularly useful for the inter-

viewees to implement enables the solution to be developed with a broader and

structured initial list of the feasible rule types.

6. What other simplifications would you expect to see in a more user-friendly diff tool?

This question aims to collect suggestions for the user experience features since

interviewees can offer different perspectives and may have very distinct experi-

ences.

80 Preliminary Studies - Interview Questions

7. What security threats could you want to detect and prevent in IaC, particularly when
re-using community-made code?

This question allows us to determine specific scenarios of potential security

threats in order to better plan solutions for their detection and treatment.

8. Would context provided by code annotations aid in interpreting the diff tool?

This dissertation might also consider the viability of using code annotations to

provide context in infrastructure changes. Asking the interviewees about such a

possibility will allow evaluating its convenience and usefulness.

Appendix C

C2A - Change Rules Language
Grammar

1 Rules = Rule[]

2

3 Rule = { // all fields are optional

4 "description": STRING, // textual context for this rule

5 "let": {

6 Identifier: Query

7 },

8 "effect": {

9 "target": STRING, // identifier of a change,

10 "risk": "high"|"low"|"unknown",

11 "action": "approve"|"reject"|"none",

12 }

13 "where": Condition[],

14 "then": Rules

15 }

16

17 Identifier = STRING // alfanumeric string with non-numeric first character

18

19 Query = PropertyAccess | ComplexQuery

20

21 ComplexQuery = ComponentShortQuery | GenericQuery

22

23 ComponentShortQuery = {

24 STRING: STRING, //Component Type and Component Subtype

25 "where": Condition[]

26 }

27

28 GenericQuery = {

29 "Component"|"Relationship"|"Property"|"Change": {

30 STRING: STRING // filters entities with key-value pairs that match the

31 ones provided

81

82 C2A - Change Rules Language Grammar

32 },

33 "where": Condition[]

34 }

35

36 PropertyAccess = Indentifier(.Accessor)+

37

38 Accessor = STRING // alfanumeric string or wildcard "*"

39

40 Condition = Operand Operator Operand

41

42 Operand = Literal | PropertyAccess

43

44 Literal = number | string | boolean

45

46 Operator =

47 "->", "<-", // has dependency relationship (to/from respectively)

48 ">>", "<<", // has structural relationship (to/from respectively)

49 "appliesTo" // [change] applies to entity,

50 "==", "!=",">",">=","<","<=", // standard scalar operators

Appendix D

Final Survey Content

D.1 Background

The performed survey includes background questions to determine the experience level of the par-

ticipant on the technologies used in the three scenarios. Responders are requested to classify each

technology on the following scale: Not experienced; Somewhat experienced; Fairly experienced;

Very experienced; Extremely experienced.

The technologies in question are:

• AWS Cloud Services

• AWS Services

• IaC tools

• AWS CDK

• AWS CloudFormation

• AWS EC2 Instances

• AWS VPCs

• AWS Elastic Load Balancing

• AWS Auto Scaling Groups

• AWS Lambdas

• AWSStep Functions

• AWS DynamoDB

• AWS CloudFront

83

84 Final Survey Content

D.2 Scenario 0

In scenario 0 the participants are only presented with the following question:

"In this survey you will have to review Pull Requests. The following question aims to

provide you some context before moving forward.

Please review the PR and identify in the text box below all changes that could be

considered: security threats to the infrastructure functionality-breaking changes. As

this question is only meant to provide context for the following ones, please try to

identify as many changes as you can for 2 minutes and move on to the next question."

Below this question, a hyperlink is provided to the corresponding GitHub PR.

From this answer, the detected changes are checked against the changes identified in Sec-

tion 7.1.1.1 (p. 58).

D.3 Scenarios 1 and 2

A small introduction is provided in scenarios 1 and 2 before requesting review, respectively:

• "Consider a CDK project designed to deploy a containerized web app. This project has a

new Pull Request, which you’ll have to review."

• "Consider a CDK project designed to deploy a serverless web app. This project has a new

Pull Request, which you’ll have to review."

In both scenarios, the participants start by doing reviews similarly to scenario 0. The following

question requests this review, recommending spending under 10 minutes:

"Please review the PR and identify in the text box below all changes that could be con-

sidered: security threats to the infrastructure functionality-breaking changes. To keep

this survey under the advertised duration, we recommend you limit your feedback to

the most relevant changes to the infrastructure you can find under 10 minutes."

For both user groups, a hyperlink is provided to the corresponding GitHub PR. In addition, a

hyperlink to the proof-of-concept’s user interface (see Section 6.6, p. 46) is also provided if the

participant is on the experimental group for that scenario. (see Section 7.1.3.2, p. 61).

Similarly to scenario 0, from this answer, the detected changes are checked against the changes

identified in Section 7.1.1.2 (p. 58) and Section 7.1.1.3 (p. 59).

In addition, for each scenario, there are multiple follow-up questions:

• "Please rate your confidence on the two following aspects after having reviewed the code

changes" - answered on the following scale: Not at all confident; Somewhat confident;

Reasonably confident;Very confident; Extremely confident.

D.3 Scenarios 1 and 2 85

• "How confident are you that you found all potential security threats to the infrastructure?"

• "How confident are you that you found all changes that break infrastructure functionality?"

• "How much time would you say you spent analyzing information that does not affect your

ability to approve a PR?"

• "Roughly how many minutes did you spend..."

"looking for problems in the Github PR?"

(If the participant is on the scenario’s experimental group) "looking for problems in the

Change Analysis tool?"

"describing the problems you found?"

• (If the participant is on the scenario’s experimental group) "Was there any change you were

unable to detect in the code review that you were able to detect in the Tool? (Feel free to

leave any other feedback you might have about the tool)"

86 Final Survey Content

Appendix E

Identified Changes

Change Detection without C2A (%)
Removed SQS Queue Encryption 20.00 95.24
Give all S3 permissions to Lambda 19.50 92.86
Listing Lambda Functions in Lambda 13.00 61.90
Missing permissions to List Lambdas 10.00 47.62
Removed sqs:SendMessage permission
from lambda

8.50 40.48

Set Lambda Timeout to 4s 6.00 28.57
Added Dead Letter Queue (DLQ) 4.00 19.05
Added AWS SDK to project and
lambda

4.00 19.05

Table E.1: Scenario 0 - Change Detection Frequency

Change Time
detected
without

C2A (%)

Times
detected

with C2A
(%)

Detection
rate

without
C2A (%)

Detection
rate with
C2A (%)

Improvement
with C2A

(%)

PutItem’ action was removed in Dy-
namoDB Endpoint permissions

3.00 5.50 27.27 61.11 124.07

Added sort key to DynamoDB Table
schema definition

4.00 4.50 36.36 50.00 37.50

DynamoDB table replaced 3.00 3.00 27.27 37.50 37.50
Allow SSH Logic flipped 4.00 1.00 36.36 11.11 -69.44
Narrower resources in ListTables and
DescribeTable permissions

1.00 2.00 9.09 22.22 144.44

ListTables permission cannot have nar-
rower resources

1.00 0.00 9.09 0.00 -100.00

Table E.2: Scenario 1 - Change Detection Frequency

87

88 Identified Changes

Change Time
detected
without

C2A (%)

Times
detected

with C2A
(%)

Detection
rate

without
C2A (%)

Detection
rate with
C2A (%)

Improvement
with C2A

(%)

Renamed DynamoDB Table will get re-
placed

4.00 5.00 44.44 71.43 60.71

Step Function invokes SendPush
Lambda

1.50 3.00 16.67 42.86 157.14

External Library CloudFormation Ori-
gin changed to URL

0.00 1.50 0.00 21.43 Inf

Restrict Lambdas resource access to
only the users dynamoDB Table

4.00 1.00 44.44 14.29 -67.86

Table E.3: Scenario 2 - Change Detection Frequency

References

[1] Ansible. Available at https://www.ansible.com/. Accessed: 2021-01-30.

[2] Aws cdk. Available at https://aws.amazon.com/cdk/. Accessed: 2021-01-30.

[3] Aws cdk toolkit commands. Available at https://docs.aws.amazon.com/cdk/latest/guide/cli.
html#cli-ref. Accessed: 2021-01-30.

[4] Aws cloudformation. Available at https://aws.amazon.com/cloudformation/. Accessed:
2021-01-30.

[5] Aws cloudformation documentation. Available at https://docs.aws.amazon.com/
AWSCloudFormation/latest/UserGuide/. Accessed: 2021-01-30.

[6] Aws cloudformation guard repository. Available at https://github.com/aws-cloudformation/
cloudformation-guard. Accessed: 2021-01-30.

[7] Chef. Available at https://docs.chef.io/chef_overview/. Accessed: 2021-01-30.

[8] Chef compliance. Available at https://www.chef.io/products/chef-compliance. Accessed:
2021-01-30.

[9] Chef provisioning. Available at https://github.com/chef-boneyard/chef-provisioning. Ac-
cessed: 2021-01-30.

[10] Cloudformation template specification used in aws cdk. Available at https://github.com/aws/
aws-cdk/tree/master/packages/%40aws-cdk/cfnspec. Accessed: 2021-05-30.

[11] Cypher general purpose graph querying language. Available at https://neo4j.com/developer/
cypher/. Accessed: 2021-05-31.

[12] Github pull request reviews. Available at https://docs.github.com/en/
github/collaborating-with-pull-requests/reviewing-changes-in-pull-requests/
about-pull-request-reviews. Accessed: 2021-06-25.

[13] Oasis tosca - frequently asked questions. Available at https://www.oasis-open.org/
committees/tosca/faq.php. Accessed: 2021-01-30.

[14] Pulumi. Available at https://www.pulumi.com/. Accessed: 2021-01-30.

[15] Pulumi’s preview command. Available at https://www.pulumi.com/docs/reference/cli/
pulumi_preview/. Accessed: 2021-01-30.

[16] Puppet. Available at https://puppet.com/. Accessed: 2021-01-30.

89

https://www.ansible.com/
https://aws.amazon.com/cdk/
https://docs.aws.amazon.com/cdk/latest/guide/cli.html#cli-ref
https://docs.aws.amazon.com/cdk/latest/guide/cli.html#cli-ref
https://aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/
https://github.com/aws-cloudformation/cloudformation-guard
https://github.com/aws-cloudformation/cloudformation-guard
https://docs.chef.io/chef_overview/
https://www.chef.io/products/chef-compliance
https://github.com/chef-boneyard/chef-provisioning
https://github.com/aws/aws-cdk/tree/master/packages/%40aws-cdk/cfnspec
https://github.com/aws/aws-cdk/tree/master/packages/%40aws-cdk/cfnspec
https://neo4j.com/developer/cypher/
https://neo4j.com/developer/cypher/
https://docs.github.com/en/github/collaborating-with-pull-requests/reviewing-changes-in-pull-requests/about-pull-request-reviews
https://docs.github.com/en/github/collaborating-with-pull-requests/reviewing-changes-in-pull-requests/about-pull-request-reviews
https://docs.github.com/en/github/collaborating-with-pull-requests/reviewing-changes-in-pull-requests/about-pull-request-reviews
https://www.oasis-open.org/committees/tosca/faq.php
https://www.oasis-open.org/committees/tosca/faq.php
https://www.pulumi.com/
https://www.pulumi.com/docs/reference/cli/pulumi_preview/
https://www.pulumi.com/docs/reference/cli/pulumi_preview/
https://puppet.com/

90 REFERENCES

[17] Puppet. Available at https://github.com/puppetlabs/puppetlabs-aws. Accessed: 2021-01-30.

[18] Puppet impact analysis. Available at https://puppet.com/docs/continuous-delivery/4.x/
impact_analysis.html. Accessed: 2021-01-30.

[19] Terraform. Available at https://www.terraform.io/. Accessed: 2021-01-30.

[20] Terraform sentinel. Available at https://www.terraform.io/docs/cloud/sentinel/index.html.
Accessed: 2021-01-30.

[21] Terraform’s plan command. Available at https://www.terraform.io/docs/cli/commands/plan.
html. Accessed: 2021-01-30.

[22] Yaml tags. Available at https://yaml.org/spec/1.2/spec.html#id2761292. Accessed: 2021-05-
30.

[23] Anca Apostu, Florina Puican, Geanina Ularu, George Suciu, Gyorgy Todoran, et al. Study on
advantages and disadvantages of cloud computing–the advantages of telemetry applications
in the cloud. Recent advances in applied computer science and digital services, 2103, 2013.

[24] Alberto Bacchelli and Christian Bird. Expectations, outcomes, and challenges of modern
code review. In 2013 35th International Conference on Software Engineering (ICSE), pages
712–721, 2013.

[25] Salman Baset, Sahil Suneja, Nilton Bila, Ozan Tuncer, and Canturk Isci. Usable declarative
configuration specification and validation for applications, systems, and cloud. In Proceed-
ings of the 18th ACM/IFIP/USENIX Middleware Conference: Industrial Track, Middleware
’17, page 29–35, New York, NY, USA, 2017. Association for Computing Machinery.

[26] Tobias Baum, Kurt Schneider, and Alberto Bacchelli. On the optimal order of reading source
code changes for review. In 2017 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pages 329–340. IEEE, 2017.

[27] Tiago Boldt Pereira de Sousa. Engineering Software for the Cloud: A Pattern Language.
PhD thesis, Faculty of Engineering, University of Porto, 2020.

[28] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano. Devops. IEEE Software, 33(3):94–100,
2016.

[29] Johann Eder and Karl Wiggisser. A dag comparison algorithm and its application to temporal
data warehousing. In John F. Roddick, V. Richard Benjamins, Samira Si-said Cherfi, Roger
Chiang, Christophe Claramunt, Ramez A. Elmasri, Fabio Grandi, Hyoil Han, Martin Hepp,
Miltiadis D. Lytras, Vojislav B. Mišić, Geert Poels, Il-Yeol Song, Juan Trujillo, and Christelle
Vangenot, editors, Advances in Conceptual Modeling - Theory and Practice, pages 217–226,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[30] Mark Gabel, Lingxiao Jiang, and Zhendong Su. Scalable detection of semantic clones. In
Proceedings of the 30th international conference on Software engineering, pages 321–330,
2008.

[31] David MacKenzie, Paul Eggert, and Richard Stallman. Comparing and merging files with
gnu diff and patch. Network Theory Ltd, 4, 2002.

[32] Peter Mell, Tim Grance, et al. The nist definition of cloud computing. 2011.

https://github.com/puppetlabs/puppetlabs-aws
https://puppet.com/docs/continuous-delivery/4.x/impact_analysis.html
https://puppet.com/docs/continuous-delivery/4.x/impact_analysis.html
https://www.terraform.io/
https://www.terraform.io/docs/cloud/sentinel/index.html
https://www.terraform.io/docs/cli/commands/plan.html
https://www.terraform.io/docs/cli/commands/plan.html
https://yaml.org/spec/1.2/spec.html#id2761292

REFERENCES 91

[33] M. Menarini, Y. Yan, and W. G. Griswold. Semantics-assisted code review: An efficient tool
chain and a user study. In 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 554–565, 2017.

[34] S. Meyer, P. Healy, T. Lynn, and J. Morrison. Quality assurance for open source software
configuration management. In 2013 15th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, pages 454–461, 2013.

[35] Kief Morris. Infrastructure as Code. O’Reilly Media, 2020.

[36] Kathryn E Newcomer, Harry P Hatry, and Joseph S Wholey. Conducting semi-structured
interviews. Handbook of practical program evaluation, 492, 2015.

[37] R. Opdebeeck, A. Zerouali, C. Velázquez-Rodríguez, and C. D. Roover. Does infrastructure
as code adhere to semantic versioning? an analysis of ansible role evolution. In 2020 IEEE
20th International Working Conference on Source Code Analysis and Manipulation (SCAM),
pages 238–248, 2020.

[38] N. H. Pham, H. A. Nguyen, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen. Complete and
accurate clone detection in graph-based models. In 2009 IEEE 31st International Conference
on Software Engineering, pages 276–286, 2009.

[39] Tiago Sousa, Hugo Sereno Ferreira, and Filipe Figueiredo Correia. A survey on the adoption
of patterns for engineering software for the cloud. IEEE Transactions on Software Engineer-
ing, pages 1–1, 2021.

[40] Tiago Boldt Sousa, Ademar Aguiar, Hugo Sereno Ferreira, and Filipe Figueiredo Correia.
Engineering software for the cloud: patterns and sequences. In Proceedings of the 11th
Latin-American Conference on Pattern Languages of Programming, pages 1–8, 2016.

[41] Tiago Boldt Sousa, Filipe Figueiredo Correia, and Hugo Sereno Ferreira. Patterns for soft-
ware orchestration on the cloud. In Proceedings of the 22nd Conference on Pattern Lan-
guages of Programs, pages 1–12, 2015.

[42] Tiago Boldt Sousa, Hugo Sereno Ferreira, and Filipe Figueiredo Correia. Overview of a pat-
tern language for engineering software for the cloud. In Proceedings of the 25th Conference
on Pattern Languages of Programs, pages 1–9, 2018.

[43] Tiago Boldt Sousa, Hugo Sereno Ferreira, Filipe Figueiredo Correia, and Ademar Aguiar.
Engineering software for the cloud: Messaging systems and logging. In Proceedings of the
22Nd European Conference on Pattern Languages of Programs, pages 1–14, 2017.

[44] Tiago Boldt Sousa, Hugo Sereno Ferreira, Filipe Figueiredo Correia, and Ademar Aguiar.
Engineering software for the cloud: Automated recovery and scheduler. In Proceedings of
the 23rd European Conference on Pattern Languages of Programs, pages 1–8, 2018.

[45] Tiago Boldt Sousa, Hugo Sereno Ferreira, Filipe Figueiredo Correia, and Ademar Aguiar.
Engineering software for the cloud: External monitoring and failure injection. In Proceed-
ings of the 23rd European Conference on Pattern Languages of Programs, pages 1–8, 2018.

[46] OASIS Standard. Topology and orchestration specification for cloud applications version
1.0, 2013.

92 REFERENCES

[47] Luis M Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A break in the
clouds: towards a cloud definition, 2008.

[48] Johannes Wettinger, Uwe Breitenbücher, and Frank Leymann. Standards-based devops au-
tomation and integration using tosca. In 2014 IEEE/ACM 7th International Conference on
Utility and Cloud Computing, pages 59–68. IEEE, 2014.

[49] Johannes Wettinger, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann. Streamlining
devops automation for cloud applications using tosca as standardized metamodel. Future
Generation Computer Systems, 56:317 – 332, 2016.

[50] Michael Wurster, Uwe Breitenbücher, Michael Falkenthal, Christoph Krieger, Frank Ley-
mann, Karoline Saatkamp, and Jacopo Soldani. The essential deployment metamodel: a
systematic review of deployment automation technologies. SICS Software-Intensive Cyber-
Physical Systems, 35(1):63–75, 2020.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Problem
	1.4 Goals
	1.5 Document Structure

	2 Background
	2.1 Cloud Computing
	2.1.1 Services Models
	2.1.2 Characteristics
	2.1.3 Advantages

	2.2 DevOps and CI/CD
	2.3 Infrastructure-as-Code (IaC)
	2.3.1 Advantages
	2.3.2 Characteristics of IaC tools

	2.4 Infrastructure-as-Code Tools
	2.4.1 Overview
	2.4.2 AWS CloudFormation
	2.4.3 AWS CDK

	2.5 Code Review
	2.6 Summary

	3 State of the Art
	3.1 Methodology
	3.2 Continuous Deployment
	3.2.1 Infrastructure-as-Code
	3.2.2 Custom Rules

	3.3 Relevant Features of IaC Tools
	3.4 Infrastructure Changes Analysis
	3.4.1 Semantic Analysis
	3.4.2 Infrastructure Representation
	3.4.3 Identification of Changes

	3.5 Visualization of Changes for Review
	3.6 Summary

	4 Preliminary Studies
	4.1 Motivation
	4.2 Preliminary Research Questions
	4.3 Interview Methodology
	4.4 Interview Structure
	4.5 Study Results
	4.5.1 Interviewee Demographic
	4.5.2 Infrastructure Development Workflows
	4.5.3 Proposal Feedback

	4.6 Summary

	5 Problem Statement
	5.1 Problem
	5.2 Hypothesis
	5.3 Research Questions
	5.4 Validation
	5.5 Proposed Solution
	5.6 Validation

	6 CDK Change Analysis Tool
	6.1 Proposed Solution Overview
	6.1.1 Semantic Representation and Change Interpretation
	6.1.2 Change Visualization and User Review
	6.1.3 User-defined Change Approval
	6.1.4 Change Detection

	6.2 Design and Technology Decisions
	6.3 Infrastructure Model
	6.4 IaC Declaration Parsers
	6.4.1 Basic CloudFormation Parsing
	6.4.2 AWS CDK Parser

	6.5 Detection of Changes between Infrastructure Models
	6.5.1 Component Property Similarity
	6.5.2 Change Propagation
	6.5.3 Notes on Change Detection

	6.6 Tool output
	6.7 Visualization of changes
	6.7.1 Aggregations
	6.7.2 Display Component Property Operations
	6.7.3 Changes View
	6.7.4 Hierarchical View

	6.8 Classification of changes
	6.8.1 The choice of graph-based querying
	6.8.2 Adapting the Infrastructure Model
	6.8.3 General Purpose Graph Querying Languages
	6.8.4 Selecting Objects
	6.8.5 Effects
	6.8.6 Nested Rules
	6.8.7 Final Change Classification Language Grammar

	6.9 Summary

	7 Validation
	7.1 Conducted Survey
	7.1.1 Considered Scenarios
	7.1.2 Participant Criteria
	7.1.3 Survey Structure
	7.1.4 Threats to Validity

	7.2 Findings
	7.2.1 Participant Population Analysis
	7.2.2 Benchmarking Participant Performance
	7.2.3 Accurately Detected Changes
	7.2.4 Review Outcome Confidence
	7.2.5 Review Duration
	7.2.6 Reported Experience

	7.3 Observed Threats to Validity

	8 Conclusions and Future Work
	8.1 Answering Research Questions
	8.1.1 ERQ1. Can code flaws introduced in IaC code changes be avoided by performing peer-review?
	8.1.2 ERQ2. How can the peer-review process in IaC be facilitated to minimize undetected code flaws?
	8.1.3 ERQ3. Is it possible to automate the change review process in IaC? Can it be fully automated in a CI/CD pipeline?

	8.2 Hypothesis
	8.3 Process Overview
	8.4 Future Work

	A Keywords Used in Literature Research
	B Preliminary Studies - Interview Questions
	B.1 Current Experience
	B.2 Approach Discussion

	C C2A - Change Rules Language Grammar
	D Final Survey Content
	D.1 Background
	D.2 Scenario 0
	D.3 Scenarios 1 and 2

	E Identified Changes
	References

