
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Mobile app for protecting cyclists and
pedestrians in road traffic

Luís Alvela Duarte Mendes

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Ana Cristina Costa Aguiar

July 14, 2021

Mobile app for protecting cyclists and pedestrians in road
traffic

Luís Alvela Duarte Mendes

Mestrado Integrado em Engenharia Informática e Computação

July 14, 2021

Abstract

In today’s interconnected world, vehicles have autonomous systems that allow them to commu-
nicate between themselves and improve road safety. However, although there is much research
in vehicle-to-vehicle communication, this vision usually neglects Vulnerable Road Users (VRU).
The point of this work is to develop a limited mobile application prototype that will serve as a
human-computer interface for pedestrian-to-vehicle and even cyclist-to-vehicle communication
systems, allowing for a safer road environment.

The application, known as the Unprotected Road User Shield (URU-S), was developed using
software engineering techniques, like requirements gathering, design and prototyping, implemen-
tation, validation, verification (unit testing), and documentation.

Previous work in developing an effective pre-crash collision detection system with smart de-
vices has struggled with power consumption, channel congestion, security, and many other issues.
URU-S differentiates itself from past efforts to conceive VRU safety systems by directly involving
VRU in the interaction design process and studying which methods are best to warn them. Focus
groups and usability tests were conducted to achieve user-centered design, making an effort to
develop a high-fidelity prototype of a road safety system that these users would want to install in
the future. Additionally, measurements were done to best gauge the application’s performance,
determining how long it took to detect movement, indoor and outdoor localization, and the latency
associated with each warning that it could receive.

The usability tests found that the application was straightforward for most of the participants.
In contrast, the additional measurements suggest that more work must be done regarding the com-
munication infrastructure. Overall, the result was a robust, well-documented, validated, and func-
tional prototype that includes the established use cases.

Keywords: Vulnerable Road User, VRU, mobile, safety, human-computer interaction, pedestrian-
to-vehicle, vehicle-to-vehicle, cyclist-to-vehicle, pedestrian, cyclist, vehicle, protection, collision
avoidance, smartphones, user-centered design, HCI.

i

ii

Resumo

No mundo interconectado de hoje, os veículos possuem sistemas autónomos que lhes permitem
comunicar entre si para evitar colisões. No entanto, apesar de haver muita pesquisa no domínio da
comunicação veículo-para-veículo, esta visão geralmente negligencia os Utilizadores Vulneráveis
da Estrada (VRU). O objetivo deste trabalho é desenvolver um protótipo de aplicação móvel limi-
tado que pretende servir como interface humano-computador para sistemas de comunicação peão-
para-veículo e até ciclista-para-veículo, permitindo um ambiente de estrada mais seguro.

A aplicação, conhecida como Unprotected Road User Shield (URU-S), foi desenvolvida através
de técnicas de engenharia de software como levantamento de requisitos, desenho e prototipagem,
implementação, validação, verificação (testes unitários) e documentação.

Trabalho prévio em desenvolver sistemas eficazes de aviso pré-colisão com dispositivos in-
teligentes deparou-se com desafios tais como consumo energético, congestionamento de canais,
segurança e muitos outros. URU-S distingue-se de esforços anteriores de desenvolvimento de sis-
temas de segurança VRU ao envolver VRU diretamente no processo de desenho de interação e
estudando quais os melhores métodos de os avisar. Grupos de foco e testes de usabilidade foram
feitos para atingir um desenho centrado no utilizador, fazendo-se um esforço para desenvolver um
protótipo de alta-fidelidade para um sistema de segurança rodoviária que estes utilizadores poderão
querer instalar no futuro. Adicionalmente, medições foram feitas para averiguar o desempenho da
aplicação, determinando quanto tempo é que demorava a detetar movimento, localização indoor e
outdoor, e a latência associada a cada aviso que recebia.

Os testes de usabilidade confirmam que a aplicação é de uso fácil para a maioria dos par-
ticipantes. Em contraste, as medições adicionais sugerem que mais trabalho devia de ser feito
em termos da infraestrutura de comunicações. Em geral, o resultado foi um protótipo funcional,
robusto, validado e bem documentado que incluí os casos de uso estabelecidos.

Palavras-chave: Utilizadores Vulneráveis da Estrada, VRU, móvel, segurança, interação computador-
humano, peão-para-veículo, veículo-para-veículo, ciclista-para-veículo, peão, ciclista, veículo,
proteção, evasão de colisões, smartphones, desenho centrado no utilizador, HCI.

iii

iv

Acknowledgements

I want to thank:

• My family, friends, and colleagues for their love and support.

• IT-Porto, the Telecommunications Institute (UIDB/50008/2020) for supplying me with the
tools and the environment necessary for the development of my work.

• My supervisor, Professor Ana Aguiar, for all of the support and orientation given.

• Professor Falko Dressler and Professor Klaus David for helping with the requirements phase
and giving me some tips on how to improve the project further.

• Professor Teresa Galvão for helping with some tips in Human-Computer Interaction.

• Professor Lars Wolf and Professor Miguel Pimenta Monteiro, for the comments given during
the final examination.

• Every attendee and organizer of the IEEE VNC 2020 conference, for also helping me gather
some requirements and understand the technologies of the automotive world better.

• Every attendee of my focus group and usability test.

• Doctor Isidro Ribeiro Pereira, for lending me some materials that were essential for the
dissertation’s progress.

• The developers of Moqups.com and Remove.bg, for providing a platform for developing
my WireFrames and a handy tool for removing backgrounds (respectively).

• Pngtree, for the stock png of the "shield" used in the URU-S logo.

• Raven17, the artist of "bird" png used in the URU-S logo.

• The developers of NumberEight (the context awareness mechanism), specifically Chris
Watts, for helping me out with some doubts that I had about the API.

Luís Alvela Duarte Mendes

v

vi

“The computing scientist’s main challenge is
not to get confused by the complexities of his own making.”

Edsger W. Dijkstra

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Objectives . 2
1.4 Document Structure . 3

2 State of the Art 5
2.1 Background on VRU Protection . 5
2.2 Background on HCI Methodologies . 6
2.3 Architectures and Relevant Technologies . 8

2.3.1 Direct Connection . 8
2.3.2 Cellular Communication . 13
2.3.3 Central Server (MEC) . 13

2.4 Related Work . 16
2.4.1 Vehicle-centered Solutions . 16
2.4.2 Requirements and Architectures . 17
2.4.3 Positioning and Context-Awareness . 19
2.4.4 Warning Interface . 19
2.4.5 Mobile/Multi-Access Edge Computing 21
2.4.6 Psychological Studies on Human Stimuli 22

2.5 Discussion Relative to Previous Work . 23

3 Smartphone Based VRU Protection 25
3.1 Application Use Case and Assumed System Model 25
3.2 Framing the Problem . 26
3.3 Proposed Solution and Approach . 28

3.3.1 User Centric Design Methodology . 28
3.3.2 Software Engineering Methods . 28
3.3.3 Tools . 30

3.4 Use Cases . 31

4 URU-S Design and Implementation 33
4.1 URU-S Design . 33

4.1.1 Preliminary Design (WireFrame) . 33
4.1.2 Focus Group . 38
4.1.3 Resulting WireFrame . 38
4.1.4 Additional Features . 43

4.2 Architecture . 43

ix

x CONTENTS

4.3 Context-Awareness and Glimpses . 45
4.4 Geofencing Foreground Service . 47
4.5 Geofencing Data Acquisition . 48
4.6 Geofence Accuracy . 49
4.7 Alert System . 51
4.8 Requirement Satisfaction . 53
4.9 Final Screens, Flow and Use Cases . 57

4.9.1 Home Screen . 57
4.9.2 Options Menu . 58
4.9.3 Alert Settings . 59
4.9.4 Statistics . 60
4.9.5 Real-Time Alert Notification . 61
4.9.6 Context-Awareness Notification . 62
4.9.7 Context-Awareness Override . 63
4.9.8 Alert Suspension . 63
4.9.9 Geofencing and Danger-Zone Entry . 64

5 Evaluation of the Proposed Solution 65
5.1 Unit-Test-Based Verification . 65

5.1.1 Results . 71
5.2 Usability-Test-Based Validation . 74

5.2.1 Setup . 75
5.2.2 Result . 76

5.3 Additional Measurements . 76
5.3.1 Context-Awareness . 77
5.3.2 Latency . 81

6 Conclusions and Future Work 91
6.1 Conclusion . 91
6.2 Further Work . 92

A Focus Group Report 95
A.1 Executive Summary . 95
A.2 Methodology & Participant Profile . 96

A.2.1 Instrument Development . 96
A.2.2 Site Selection . 96
A.2.3 Participant Selection . 96
A.2.4 Procedure for Current and Future Focus Groups 96
A.2.5 Participant Profile . 96

A.3 Demographics . 97
A.4 Discussion Results . 98

A.4.1 Question #1 - What would people like to see in a road safety app such as
this? . 98

A.4.2 Question #2 - What would people like in terms of notifications? Sound,
Touch, Visual? . 98

A.4.3 Question #3 - If you would like to have sounds, which sounds? 98
A.4.4 Question #4 - If visual, in what way? 99
A.4.5 Question #5 - Do you like the ability to configure/suspend the notification

settings? . 99

CONTENTS xi

A.4.6 Question #6 - Do you like the ability to suspend for a given amount of
minutes? . 99

A.4.7 Question #8 - Would they like some form of widget integration with a PSP
(police) map of the most dangerous locations in terms of accidents? . . . 100

A.4.8 Question #9 - Would you like to be capable of instructing the app’s notifi-
cations to shut down in certain areas that you know for a fact are prone to
false positives? . 100

A.4.9 Question #10 - Are you interested in the login/register option for saving
your settings, or would you like some other form, like the upload/down-
load or even some other form (please specify)? 100

A.4.10 Question #11 - Do you think the documentation is accessible where it is
now, via the options menu? . 100

A.4.11 Question #12 - What do you think was the most vital thing discussed today?100
A.5 Conclusion . 101
A.6 Recommendations . 101
A.7 Appendices . 102

A.7.1 Privacy Policy . 102
A.7.2 Presentation Used . 102
A.7.3 Question Guide . 102
A.7.4 Sketch of an interface misunderstanding 102
A.7.5 Polls . 103
A.7.6 Interest in Danger Reports or Crowd-Sourcing Elements 108

B Usability Testing Report 109
B.1 Introduction . 109
B.2 Executive Summary . 109
B.3 Methodology . 111

B.3.1 Participants . 112
B.4 Results . 113

B.4.1 Task Completion Success Rate . 114
B.4.2 Task Ratings . 115
B.4.3 Time on Task . 117
B.4.4 Errors . 118
B.4.5 Outdoor Phase . 118
B.4.6 Summary of Data . 118
B.4.7 Likes, Dislikes, Participant Suggestions 119
B.4.8 Participant Suggestions for Improvement 119

B.5 Recommendations . 120
B.6 Conclusion . 121

C Privacy Policy 123
C.1 URU-S . 123
C.2 Goals of the Treatment . 124
C.3 Collected Personal Data . 124
C.4 Conservation Dates . 124
C.5 Receivers of Personal Data . 125
C.6 Data Owner Rights . 125
C.7 Security Measures . 125
C.8 Use of Equipment and Questionnaires . 125

xii CONTENTS

C.9 Remove Consent . 126
C.10 Contacts . 126
C.11 Responsible for Data Protection . 126
C.12 Informed Consent Term . 126

List of Figures

2.1 Scheme Illustrating the advantages of "Wizard-of-Oz" experiments [13] 7
2.2 General concept of a VRU safety system. [14] 8
2.3 Left column: Three scenarios in which the ego vehicle’s sensor limitations may

compromise safety. Right column: How collective perception messages may im-
prove the safety of the ego vehicle for each scenario. [15] 9

2.4 Communication allowed between vehicles and people in WAVE: person to vehicle
(above); vehicle to person (below) [5] . 10

2.5 V2P system design in smartphone [7] . 11
2.6 Extended architecture of the VCE with the newly added Collision Warning System

(CWS) and signals (highlighted in black). Signals are provided to the cyclist via
vibration motors (haptic), speakers (audio), or a virtual display in the Unity 3D
visualization (visual). Collisions detected by the CWS are forwarded to the signals
via the EVI. [20] . 12

2.7 Cooperative perception system [4] . 13
2.8 A conceptual view of the proposed MEC-based architecture. POAs of different

mobile networks collect BSMs from both vulnerable users (such as the pedestrian
in blue) and vehicles (such as the car in red) in steps 1a and 1b. POAs then convey
the BSMs to a collision-detection server (steps 2a and 2b), which processes them
and establishes whether there is a collision risk. If there is, alerts are conveyed to
the appropriate POAs (steps 3a and 3b) and, hence, to the interested users (steps
4a and 4b). [27] . 14

2.9 MEC-based collision detection. [14] . 15
2.10 Block Diagram of the proposed architecture. [10] 16

3.1 Simplified Sketch of the Presumed Architecture 25

4.1 Optional Sign In, Sign Up, and Home . 34
4.2 Options . 35
4.3 Settings . 36
4.4 Collision . 37
4.5 Home, Reports and Options . 39
4.6 Options, FAQ, Alert Settings . 40
4.7 Alert Settings Complete View . 41
4.8 Danger warning . 42
4.9 Implemented Architecture . 44
4.10 Danger Zones JSON . 48
4.11 Location Request High Accuracy . 50
4.12 Alert System State Transitions . 51

xiii

xiv LIST OF FIGURES

4.13 Accessibility Delegate . 53
4.14 Other states of URU-S . 57
4.15 Home Screen Illustration . 57
4.16 Options Menu Illustration . 58
4.17 Alert Settings Illustration . 59
4.18 Statistics Illustration . 60
4.19 Real-Time Alert Notification Illustration . 61
4.20 Context-Awareness Notification Illustration . 62
4.21 Context-Awareness Override Illustration . 63
4.22 Alert Suspension Illustration . 63
4.23 Geofencing Notification Illustration . 64
4.24 Danger-Zone Notification Illustration . 64
4.25 Danger-Zone Positioning Illustration . 64

5.1 Reports Activity Test First Scenario . 66
5.2 Reports Activity Test Second Scenario . 67
5.3 Banner Tests with Drawable Compare . 68
5.4 Espresso and Ui Automator Working Together 69
5.5 Binding Services for Testing . 69
5.6 Context-Awareness Service Test . 70
5.7 Code Coverage Obtained with JaCoCo [66] . 72
5.8 Receivers package coverage . 72
5.9 Field Testing Area Illustration . 75
5.10 Camera and Laptop Connected . 76
5.11 Comparison Between the time to Swap in both Directions Indoor/Outdoor 78
5.12 Comparison Between the time to Swap in both Directions Moving/Stationary . . 79
5.13 Packet Travel Diagram where L = t3 − t0. We consider ti: application layer times-

tamp placed in points of the infrastructure; t0: timestamp obtained before the
data and token payload is delivered to the server (observable and comparable);
t1: timestamp marking the arrival of the payload at the server (not observable);
t2: timestamp for message acceptance by the server, after going through message
queues, the internal broker and before sending the data out to the device (observ-
able but not comparable due to an unknown time sync source); t3: timestamp for
message acceptance by the smartphone, engaging the warning for the VRU (ob-
servable and comparable). 82

5.14 WiFi Boxplots for Good and Bad Coverage . 87
5.15 5G Boxplots for Good and Bad Coverage . 88
5.16 Outdoor testing setup . 89
5.17 Comparing WiFi with 5G values . 89

A.1 Interface Misunderstanding Scheme . 103
A.2 Notification Types Poll . 104
A.3 Notification Types Results . 104
A.4 Sounds Poll . 105
A.5 Sounds Results . 105
A.6 On-and-Off-Switch Poll . 106
A.7 On-and-off-Switch Results . 106
A.8 Instructed-Notification-Shutdown Poll . 107
A.9 Instructed-Notification-Shutdown Results . 107

LIST OF FIGURES xv

A.10 Danger Reports Poll . 108
A.11 Danger Reports Results . 108

xvi LIST OF FIGURES

List of Tables

3.1 Technical Requirements . 26
3.2 Constraints . 27
3.3 Business Rules . 27
3.4 Use Cases . 31

4.1 Active Mechanisms by State . 47

5.1 WiFi Ping ∆0,1 . 85
5.2 WiFi Ping ∆2,3 . 85
5.3 5G Ping ∆2,3 . 85

B.1 Participant Demographics . 112
B.2 Completion Rate per Task for each Participant 114
B.3 Difficulty on Task for each Participant . 115
B.4 Time on Task for each Participant . 117
B.5 Task Summary . 118

xvii

xviii LIST OF TABLES

Abbreviations

URU-S Unprotected Road User Shield
VRU Vulnerable Road User
FEUP Faculdade de Engenharia da Universidade do Porto
C-ITS Cooperative Intelligent Transport Systems
API Application Programming Interface
ADAS Advanced Driver Assistance Systems
SDK Software Development Kit
HCI Human Computer Interaction
IT Instituto de Telecomunicações
LTE Long Term Evolution
LOS Line Of Sight
DSRC Dedicated Short-Range Communications
GPS Global Positioning System
WAVE Wireless Access in Vehicular Environment
IEEE Institute of Electrical and Electronics Engineers
BLE Bluetooth Low Energy
SAE Society of Automotive Engineers
VCE Virtual Cycling Environment
TVA Theory of Visual Attention
V2V Vehicle to Vehicle
V2I Vehicle to Infrastructure
V2C Vehicle to Cyclist
V2P Vehicle to Pedestrian
V2X Vehicle to Everything

xix

Chapter 1

Introduction

According to the World Health Organization in their latest (2018) Global Road Safety Report:

“The number of road traffic deaths on the world’s roads remains unacceptably high.” [1,

chap. 1]

“Road traffic injuries are the leading killer of children and young adults.” [1, chap. 1]

“More than half of global road traffic deaths are amongst pedestrians, cyclists and

motorcyclists who are still too often neglected in road traffic system design in many

countries.” [1, chap. 1]

This dissertation is a direct response to that very last quote. Despite there being extensive

research in vehicle-to-vehicle communication, there is very little concerning the protection of

Vulnerable Road Users (VRU) such as pedestrians, cyclists, motorcyclists, people on mobility

chairs, scooters, and any form of locomotion that lacks a proper protective structure. There are

even articles that "identify gaps that exist in these fields that could be improved/extended/enhanced

or newly developed" [2].

Thus, a novel solution is proposed to protect those most vulnerable: URU-S, a mobile (An-

droid) application that intends to protect these users from potential collisions, emitting non-intrusive

warnings in their devices that notify them when they are in imminent danger of colliding with a

motorized vehicle, cyclist or even another pedestrian.

1.1 Context

The road is a hazardous and volatile environment where many accidents can happen. This is partic-

ularly true for intersections with limited visibility. Vehicular communication technology already

exists today, and this vision could be extended to VRU. Several solutions have been devised over

the past years, some of them including beacons or other specific hardware that is attached to the

1

2 Introduction

VRU ("e.g., a C-ITS transmitter attached to a backpack or the safety vest of a worker at a road

works site;" [3, sec. 4]). However, this technology would be quite cumbersome, and it cannot

be presumed that all VRU would wear the same technology. Some solutions exist on vehicles

themselves and are more centered around them, some of which are mentioned later in section

2.4.1.

It is important to note that this work is a complementary solution that can act in conjunction

with others, such as the aforementioned VRU-portable devices and danger-perception technology

(either on vehicles or road infrastructures themselves [4]).

1.2 Motivation

The primary motivation is to contribute to a safer road environment, where pedestrians, cyclists,

and drivers alike may partake in a C-ITS that works towards their innate protection.

Studies estimate that "by 2020, 6.1 billion smartphone users are expected globally" ("70%

of the world’s population") [2]. Since most people have their smartphones on them at all times,

particularly when they are out on the road, the phone itself could have an application working

towards protecting them. The modern emphasis on smart devices truly shows the potential URU-S

may have.

1.3 Objectives

The objective is to design a VRU protection smartphone application and develop a robust, vali-

dated, and well-documented prototype that will include a list of established use cases. The proto-

type will attempt to verify the following hypothesis:

“A Vulnerable Road User can be notified of danger effectively, through a smartphone

application, if the appropriate software engineering and human-computer interaction

methods are used to develop it.”

This application would expand the field of pedestrian-to-vehicle and even cyclist-to-vehicle

communication, thus integrating the VRU in the interconnected vehicle world. The risks of dan-

gerous collisions would diminish by emitting warnings on the user’s smart device to notify them

in due time (considering reaction speeds) to prevent a dangerous crash. However, it is to note

that actual collision detection is outside of this project’s scope and is not implemented either; this

factor will be simulated in the testing phases of the prototype with an external third-party tool.

Instead, URU-S will make an effort to directly involve users in the design process as that seems to

have been disregarded by past work.

The work developed will also have to recognize previous issues and trade-offs existing in this

field. False positives are unavoidable, and the user should have the possibility to adjust their noti-

fication settings to allow them to be as non-intrusive as possible. It is important to note that false

positives and intrusion are only some of the significant challenges that plague these applications;

1.4 Document Structure 3

others explored more in-depth in Chapter 2 are equally important. However, the primary focus of

URU-S will be on the aspect of notifying the user effectively (and as non-intrusively as possible).

To clarify what is understood as "non-intrusively," all warnings are intrusive to a certain de-

gree; however, this study attempts to develop an alert system that can be customized and catered

to the user’s preferences. The warning will also never cover the entire screen and block all activity

on the phone. There are several ways to grab a user’s attention, and URU-S will try to do it in the

least annoying (but still effective) way possible, balancing effectiveness with intrusiveness.

Additionally, the dissertation will culminate in a prototype that is more focused on HCI com-

ponents. This work will assume the existence of a collision-detection server and the transmission

of positioning information to said server to handle the collision calculations.

1.4 Document Structure

The following document will be structured as such: in Chapter 2, the State of the Art will be pre-

sented, including some background, related work, a study of existing technologies, and approaches

to the same or related problems. In Chapter 3, the proposed solution will be described, and the

problem will be formulated in greater detail. In Chapter 4, the implementation of the solution

will be discussed. In Chapter 5, the evaluation of the solution will be explicated, including some

additional measurements conducted with the present infrastructure. Lastly, Chapter 6 presents the

conclusions, which involve the result of this dissertation and further work that could be done in

the field.

4 Introduction

Chapter 2

State of the Art

There have been several efforts to develop applications that integrate VRU in a more intercon-

nected C-ITS. These have struggled with intrusive notifications, battery consumption, range, la-

tency, scalability, precision, vehicle-centrism, and others. This section aims to explore previous

work and its upsides and downsides, offering a critical analysis of each article gathered so far.

2.1 Background on VRU Protection

Most articles involving Vulnerable Road Users, particularly in sensing or collision avoidance sys-

tems, tend to be from the car’s perspective. Vehicle-centrism is particularly evident in specific

standards stipulated by the Society of Automotive Engineers, an example of which is SAE J2735,

which implies that mainly vehicles are the ones that assume responsibility in these kinds of sit-

uations [5, chap. 1]. An example would be the work conducted by Shoma Hisaka and Shunsuke

Kamijo, which uses onboard wireless sensing mechanisms to determine where a pedestrian is, fo-

cusing entirely on vehicular technology [6]. Usually, the VRU is only involved passively in these

systems, whereas this project appeals to their active participation.

Those that do regard the pedestrian more actively, such as the work done by Wu et al. [7],

are commonly plagued by a poor user experience. This experience includes warnings covering up

the entire screen, interrupting all activity on the phone, and blaring loud noises accompanied by

bright visuals. Developing a non-intrusive and convenient application that integrates the VRU into

a unified road safety system would be ideal.

Lastly, the 5G Automotive Association (5GAA) [8] does show a certain level of concern for

solutions involving VRU, primarily as part of V2X (vehicle-to-everything) systems. In one of

their reports, the association categorizes connected vehicle applications in four main groups of

use cases: safety, convenience, advanced driving assistance, and vulnerable road user (VRU).

The VRU use case group is explicitly described as "Detects and Warns drivers of VRUs in the

vicinity" [9, sec. 2.1, table 5]; from this description, it seems it does not actively warn the VRU.

5

6 State of the Art

However, it does involve them in collision avoidance by having them "make their presence/loca-

tion known through their mobile devices (e.g., smartphone, tablets)," this is listed in their "Use

case example #3: Vulnerable Road User Discovery". Napolitano et al. take this one step further,

building upon the advanced driving assistance and VRU use cases to propose a VRU protection

system based on MEC. Their system allows road users to exchange potential crash information,

warning them in case there are collision-prone entities nearby [10]. The system, as mentioned

earlier, consists of a google-maps overlay application that displays information with pairs of lat-

itude and longitude, requiring the user to enter a server IP to send positional information. The

interface is quite technical and does not seem to be a byproduct of user-centered design but rather

a prototype build strictly to test the underlying technology.

2.2 Background on HCI Methodologies

Three standard Human-Computer Interaction methodologies were used in the development of

URU-S. These methodologies are known as focus groups, usability tests, and "Wizard-Of-Oz"

experiments.

A focus group is a qualitative research method that consists of inviting five to ten participants

to partake in an open discussion. Historically, focus groups were used for marketing purposes

to infer which qualities consumers valued most in a product; this helps marketers focus on those

aspects and gives valuable feedback to the development team. This methodology only became

popular in the field of social science around the 1980s [11], being later adopted by the HCI field.

These groups are a form of "focused interviewing" where the facilitator will ask a series of ques-

tions to stimulate discussion with the participants, encouraging them to share their thought process

as much as possible. It is important to have participants from a wide array of sociological back-

grounds to enable various discussions. The facilitator must also consider that some participants

may be more assertive than others and must be skilled in stimulating all of those present to speak

in their turn. Focus groups can be used in HCI, particularly in our context, to gather important

feedback about user-valued features in our application. Our group would focus primarily on which

notifications users would react to best and what features they would like to see in URU-S.

Usability testing is an empirical method of evaluation that attempts to gather feedback from

users on improving the usability of an interface. These kinds of tests achieve their goal by having

their participants (usually five to ten) interact with a prototype of the interface, following a struc-

tured set of tasks [12]. There are informal and formal ways of conducting a usability test; we will

be analyzing those and their applications in chapter 5. For URU-S, we will be conducting informal

usability tests coupled with a second phase that will feature a "Wizard-Of-Oz" experiment. We

address this combination of informal usability tests plus "Wizard-Of-Oz" as "biphasic usability

testing."

The "Wizard-Of-Oz" technique is a prototyping approach that allows a researcher to emulate

the end behavior of an interface feature before the back-end system related to that feature is work-

ing entirely. The researcher that operates the system behind the scenes is known as the "wizard,"

2.2 Background on HCI Methodologies 7

and, as technology develops, their influence over the system diminishes because it becomes more

autonomous [13]. One may consult an illustration of how the "wizard" bridges the technological

gap in figure 2.1. We may take advantage of this technique to compensate for the fact that URU-S

does not include automatic danger-detection technology, simulating warnings in our user’s devices

remotely instead.

Figure 2.1: Scheme Illustrating the advantages of "Wizard-of-Oz" experiments [13]

8 State of the Art

2.3 Architectures and Relevant Technologies

Various architectures can be used to design a VRU protection system. For simplicity’s sake, we

will be grouping them into three main categories: direct connection between actors (represented in

figure 2.2 as (1)), cellular communication (represented as (2) in figure 2.2), and MEC (multi-access

edge computing) with a central server (represented as (3) in figure 2.2).

Figure 2.2: General concept of a VRU safety system. [14]

2.3.1 Direct Connection

Direct connection architectures involve communicating directly between system actors via sen-

sors equipped in each participating entity. These communications can be one of the following:

V2V (vehicle-to-vehicle), V2P (vehicle-to-pedestrian), V2C (vehicle-to-cyclist), V2I (vehicle-to-

infrastructure), and even V2X (vehicle-to-everything). The communication is often bidirectional;

for example, a V2P system would conversely have a P2V (pedestrian-to-vehicle) component. A

system may include multiple types of communication at once or even all of them (V2X).

2.3 Architectures and Relevant Technologies 9

2.3.1.1 V2V

These works are predicated on the assumption that the vehicle is entirely responsible and is re-

garded as the leading entity in the system, communicating exclusively with other vehicles in its

general vicinity. Many of these systems involve using sensors attached to the car and communi-

cating with nearby automobiles to prevent crashes [15][16][6].

Many sensors utilizing vision, such as LIDAR and radar, have issues detecting other vehi-

cles or pedestrians in scenarios with no line-of-sight; this problem could be remedied using V2I

communication; however, that can be expensive. Some articles have proposed novel onboard sens-

ing mechanisms [6], whereas others have used wireless communication to exchange Cooperative

Perception Messages (CPM) [15]. An illustration of this may be found in figure 2.3.

Figure 2.3: Left column: Three scenarios in which the ego vehicle’s sensor limitations may com-
promise safety. Right column: How collective perception messages may improve the safety of the
ego vehicle for each scenario. [15]

10 State of the Art

2.3.1.2 V2P

V2P is one of the main fields URU-S will focus on, the communication between vehicles and

pedestrians. The articles surrounding V2P usually focus on swapping messages between the vehi-

cle’s onboard unit and the pedestrian’s smartphone (or wearable) bidirectionally. These messages

may come in the form of Basic Safety Messages (BSM) [7] or Personal Safety Messages (PSM) [5]

(see also figure 2.4) that include positional information about these entities. Once the devices have

harnessed messages, they may run their local collision detection algorithms and warn the driver,

pedestrian, or both of imminent danger.

Some of these implementations integrate a technology widely used in this field known as

DSRC (Dedicated Short-Range Communications). However, smartphones do not naturally come

with hardware equipped to handle DSRC. Often it will have to be implemented through alternative

methods like those used by Wu et al. [7]. Another example of DSRC, but now in accordance with

the WAVE framework, is the work done by Kim et al. [5], also featuring direct communication,

but now testing with an external DSRC module attached to the device. Since these solutions

are local, they may use an architecture like the one represented in figure 2.5, which runs several

modules locally. These modules could include context-awareness components (explored in further

detail in subsection 2.4.3), the collision detection algorithm runs at the phone’s level, and a DSRC

implementation (if they are not using an external module).

Other ways of achieving this include the use of sensors attached to the car and the pedestrian,

exchanging movement vectors between the two [17], the use of Wifi-Direct in a peer-to-peer net-

work [18], and even the use of Bluetooth Low Energy (BLE) [18]. It is noteworthy that V2P

communication does not necessarily need to be direct (device to device), as there are cellular and

MEC alternatives. Those architectures will be discussed in the following sections.

Figure 2.4: Communication allowed between vehicles and people in WAVE: person to vehicle
(above); vehicle to person (below) [5]

2.3 Architectures and Relevant Technologies 11

Figure 2.5: V2P system design in smartphone [7]

2.3.1.3 V2C

Most works in terms of cyclists tend to focus on accurately modeling a cyclists’ behavior and

integrating them in widely used systems that focus primarily on vehicles. Examples of these

technologies would be the Vehicular Ad-hoc Network (VANET) and Advanced Driver Assistance

Systems (ADAS). It is challenging to model their behavior without potentially placing them under

dangerous situations; thus, a novel solution was proposed: simulate their behavior in a Virtual

Cycling Environment (VCE) and assess VANET solutions’ impact on their safety [19]. These

studies even tried out different stimuli to figure out which would be best to warn cyclists [20]. The

extended architecture of this system can be found in figure 2.6.

To further cement V2C communication, studies have aimed to extend established ITS stan-

dards to meet cyclists’ special safety needs; these present extensions to the "ETSI ITS-G5 CAM

and DENM message formats." [21] CAMs are Cooperative Awareness Messages, and DENMs

are Decentralized Environmental Notification Messages. As they are defined in ITS-G5, these

messages have mainly been used by motorized vehicles, lacking the necessary details to include

cyclists.

Additionally, studies have been performed to "characterize experimentally the wireless link

performance and develop a model to estimate the received signal strength (RSSI) between WiFi

devices installed on bicycles and cars equipped with built-in WiFi APs" [22]. Evaluating these

communications’ performance is vital to integrate V2C systems in real urban scenarios success-

fully.

12 State of the Art

Figure 2.6: Extended architecture of the VCE with the newly added Collision Warning System
(CWS) and signals (highlighted in black). Signals are provided to the cyclist via vibration motors
(haptic), speakers (audio), or a virtual display in the Unity 3D visualization (visual). Collisions
detected by the CWS are forwarded to the signals via the EVI. [20]

2.3.1.4 V2I

Vehicle-to-infrastructure communication is mainly used alongside vehicle-to-vehicle communica-

tion to bridge the gaps left by the latter. Vehicle sensors often have blind spots and issues with

line-of-sight [6]. These issues could be alleviated by having vehicles share information between

themselves and nearby infrastructures. This information could be GPS-related, such as latitude,

longitude, speed, and heading, or vehicle-related, such as brake events, throttle position, and turn

signal status [23].

Besides helping with sensory blind spots, traffic infrastructures, particularly roadside units

(RSU), could also be used to compute collision probability in intersections by making vehicles

broadcast their positioning and movement information between themselves or with RSU [24].

The RSU will use the received data to predict the vehicle’s path and, thus, potential collisions.

2.3.1.5 V2X

Lastly, it is worth mentioning that vehicles may combine all of the previously mentioned types

of communications into larger vehicle-to-everything systems. V2X is an effort to overcome the

issues with local sensors [4], having the vehicle leverage technology around it to maximize system

performance. A study, in particular, recognizes the limitations of technologies such as LIDAR and

radar and attempts to use CAMs to form a cooperative perception system. This system harnesses

data from onboard sensors to effectively detect objects and forward that information through V2X

networks so that it may reach other vehicles and prevent accidents (see figure 2.7).

2.3 Architectures and Relevant Technologies 13

Figure 2.7: Cooperative perception system [4]

2.3.2 Cellular Communication

Over the years, a significant emphasis has been put on Cellular Vehicle-to-Everything (C-V2X)

technologies, particularly in the V2P domain. C-V2X allows different devices to interconnect

and device automation on the vehicle [25], which is particularly useful for designing road safety

systems that can deal with several different types of communications.

LTE-based V2P services, such as V2PSense [25], may leverage the low-latency and pervasive

coverage of 5G/LTE to timely warn pedestrians of imminent danger. These services can either be

network-based (not scalable) or client-based (have troubles dealing with time and device diver-

sity). They can implement LTE high-priority bearers, which are used by VoLTE (Voice over LTE)

signaling to communicate, and they are centered around three main entities: a V2P application

server, which could be deployed in the core LTE network or on edge; the vehicle’s ADAS system;

and the pedestrian’s smartphone. The way these systems function is as follows: first, the pedes-

trian’s smartphone and ADAS attach to the LTE network through the LTE base station (eNB),

then, in the network, LTE gateways forward data packets between the eNB and the Internet or the

server [25]. Once a dangerous vehicle approaches an intersection, all pedestrians around the area

will be notified of the potential dangers.

Another possibility for cellular collision avoidance is using "context filters" that identify vul-

nerable road users in potentially dangerous situations based on their immediate context. It is

possible to have this fine-grained to the point of recognizing a user stepping over the curb and

onto the road as shown by Jahn et al. [26].

2.3.3 Central Server (MEC)

Central server architectures have been adopted recently to improve collision avoidance systems’

effectiveness, addressing local devices’ computational power and energy limitations. A generic

MEC-based architecture forwards Basic Safety Messages (BSMs) containing relevant positioning

information to Points of Access (POAs). POAs send this information to a collision detection server

that will notify both the driver and the pedestrian if there is danger, communicating in the opposite

direction. An illustration may be seen in figure 2.8.

14 State of the Art

Figure 2.8: A conceptual view of the proposed MEC-based architecture. POAs of different mobile
networks collect BSMs from both vulnerable users (such as the pedestrian in blue) and vehicles
(such as the car in red) in steps 1a and 1b. POAs then convey the BSMs to a collision-detection
server (steps 2a and 2b), which processes them and establishes whether there is a collision risk. If
there is, alerts are conveyed to the appropriate POAs (steps 3a and 3b) and, hence, to the interested
users (steps 4a and 4b). [27]

The way these solutions decide to handle BSMs internally may vary. For example, they may

use an "obsolescence" system, where obsolescent BSMs are not factored into the algorithm. To

determine if a BSM is obsolete, one may compare the timestamp associated with that BSM and

check it against the current time, discarding it if it is over 0.8 seconds old. The information

included in the current BSM is sent to a data structure, abstracted in the article as a "table," that

contains positions and speeds of users that recently sent one of these messages. The positioning

information from the tables is iterated upon and later fed to a collision detection algorithm. This

algorithm is reasonably straightforward when not accounting for acceleration, using Euclidean

distance and movement equations to determine a potential crash. With negligible acceleration,

one only has to solve a polynomial of the second degree. The algorithm spikes in its complexity

and requires a fourth-degree equation when acceleration must be considered. The article presents

only a simplified version of the algorithm used and not the full scale, but it reassures the reader

that the complete algorithm is more complex, versatile, and works on curved and straight roads.

Finally, once the algorithm has calculated the probability of a crash using the information from

the BSM, the appropriate alerts will be sent out if necessary [27].

Another way to implement a MEC-based architecture is to use CAMs and DENMs instead of

BSMs. CAMs may be exchanged between vehicles and pedestrians via cellular communication

with an LTE base station (eNodeB). In these systems, the User Equipment (UE), meaning vehicles

or smartphones, will frequently report their existence to nearby eNodeB through CAMs. Base

stations will forward these messages to other UE in the same context. UE that receives CAMs

2.3 Architectures and Relevant Technologies 15

will perform a collision detection algorithm (CDA) locally, triggering the right actions if neces-

sary [14] (this is the so-called "Baseline approach"). However, some improvements can be made.

For example, at a data level, smartphones may decide whether or not to migrate their context in-

formation calculation to the remote MEC server, offloading some of their raw sensor data instead

of managing it locally. Nevertheless, now at the service level, another improvement is to offload

the collision detection algorithm calculations to the MEC server, waiting for a DENM response if

potential collisions are detected. An illustration of these approaches may be found in figure 2.9.

Figure 2.9: MEC-based collision detection. [14]

Lastly, another approach to the problem, using CAMs, consists of periodically sending CAMs

to a CAM server, which then parses those messages through the appropriate module ("Listening

Cam module") and stores the sender’s information. The distance between VRUs and nearby enti-

ties is then computed using a formula of ellipsoidal Earth projection approved by the FCC (Federal

Communications Commission); this is all done in Napolitano et al.’s "Geo-Computation Engine."

Finally, the "Logic Sending Alerts" module will alert the involved road entities if the distance be-

tween them is less than a fixed threshold. Additionally, a "Client for Demo Viewer" module was

created to send the needed information to a "Control Console" so that the entire process may be

visualized in a browser [10]. A block diagram of the architecture may found in figure 2.10.

16 State of the Art

Figure 2.10: Block Diagram of the proposed architecture. [10]

2.4 Related Work

The related work can be grouped into six subsections: those that deal with positioning and context-

awareness of the VRU, that propose more of a user interface to warn them in some way, that present

more of a literature review on the field or architectures/requirements, that are more related with

the automotive side of things, those that use edge computing, and even some psychological studies

on human reaction to different alert stimuli (particularly more on the cyclist side of things).

2.4.1 Vehicle-centered Solutions

Autonomous vehicle technology is becoming more and more prevalent these days. This section

will be brief compared to others since this work tries to detach itself from vehicle-centric ideals

and actively involve the VRU.

Vehicle-centered work usually makes use of V2V communication. It may involve, for exam-

ple, ways to compute the trajectory of a vehicle, which could be integrated into autonomous (or

semi-autonomous) platooning. Despite not being directly related to VRU protection, these systems

show the potential of autonomous vehicle technology. In these cases, the leading vehicle of the

platoon is driven manually, whereas all of the others follow suit in an organized fashion, maintain-

ing a safe distance between themselves. It can be applied to trucks, like what was accomplished

by Lee et al. [16].

As mentioned previously in section 2.3.1.1, a car’s onboard sensing mechanisms can be lim-

ited, particularly when it comes to situations with no line of sight. However, work has been done

to use novel wireless sensing mechanisms that do not struggle with line-of-sight problems. The

collision avoidance is done mainly through the car’s sensory mechanisms. It does not involve

pedestrians or cyclists as active entities [6].

Despite the inherent vehicle-centrism of this field of communications, there are attempts to

include the VRU in simulators. Often, vehicular systems are tested using simulators, such as the

VEINS simulator system framework. Before, there were no proper methods to include a VRU in

these simulators. However, recently there have been some innovations in the code of existing tools

to integrate "pedestrian" entities [28]. Even though this does not exactly classify as involving a

2.4 Related Work 17

VRU directly in a protection system, it can be valuable to evaluate said systems through realistic

simulated scenarios.

To conclude, it is worth reiterating the concept of perceived safety. As mentioned in 2.3.1.1,

there are systems that, through the use of Cooperative Perception Messages (CPM), may deter-

mine the safety condition the vehicle is in, anticipating possible crashes by communicating with

surrounding vehicles. The use of CPM is also proven (via simulation) to enhance connected auto-

mated vehicles’ ability to perform safe lane changes [15].

2.4.2 Requirements and Architectures

The articles referenced here primarily supply an overarching view of the automotive/VRU world,

enumerating past challenges and, in some cases, offering novel suggestions for dealing with them.

One of the goals of this project is to study past solutions and highlight some open issues in

the VRU-protection-via-smartphone field. To that end, extensive literary studies about "outdoor

localization and next step/movement prediction" via the use of smartphones were consulted. An

example of this is what was accomplished by Vourgidis et al. [2]. Their work identifies gaps that

could be expanded upon and briefly discusses some of the challenges related to the field mentioned

above. Like other articles, it explores the possibility of using the sensors on the phone to transmit

the pedestrian’s position and heading to surrounding vehicles, prioritizing the accelerometer, gy-

roscope, and magnetometer. It includes a summary of vehicle-to-pedestrian systems that discrim-

inates the sensors used, methods (e.g., collision risk evaluation, pedestrian behavior, dead reck-

oning, fusion), and the system type (e.g., collision avoidance, driver detection system). Several

outdoor VRU positioning methods are described: GPS, Assisted GPS, Differential GPS, Multi-

Satellite Systems, and Sensor Data Fusion. Finally, it includes some research regarding predicting

the future position of a pedestrian in the next few seconds and proposes a framework for these

kinds of systems.

It is of immense relevance to consider the architectural implications of integrating a VRU in

C-ITS; predominantly, it would be ideal to have an architectural description that would elicit the

interactions between actors at different levels of abstraction. Such an architectural description

was already accomplished by Scholliers et al. in their paper [3]. Their work elaborates upon an

architecture for the integration of the VRU in C-ITS, including requirements for the devices. This

architecture describes the roles of and the interaction between actors (e.g., pedestrian, cyclist, ve-

hicle driver) and components (e.g., VRU Transponder, Vehicle Connected System, Central ITS

Station). It can be seen in three ways: from the physical standpoint ("high-level description of

physical ITS sub-systems"), the functional standpoint (description of functional elements within

those sub-systems), and from a communications standpoint (the "type of communication and net-

works used between functional elements"). Additionally, it lists and describes specific issues and

their effects in these systems, such as road topology, location of the VRU, traffic infrastructure,

visibility, compliance with traffic rules, context-awareness, range, latency, scalability, and stan-

dardization of messages exchanged. For some of the problems mentioned, it suggests solutions:

in terms of position accuracy, it suggests using Global Navigation Satellite Systems (although

18 State of the Art

smartphone receivers for those systems have lower accuracy than those of cars). For context-

awareness, it suggests sensor fusion and that the app should only function when the pedestrian

is moving, saving power. For range, it places a range requirement of about 100 to 160 meters

(although it acknowledges it can be hard to achieve with available hardware). For latency, a re-

quirement of 300 milliseconds end-to-end latency time is placed; this can be attempted with 5G.

Finally, it recommends Decentralised Congestion Control; however, it recognizes that scalability

requirements end up being the most challenging and that LTE networks may be overloaded. It is

worth pointing out that this work also presents a "roadmap" for these applications. This "roadmap"

mentions technical performance, standardization, and privacy requirements, as well as the impor-

tance of a "non-distracting" user interface and an "efficient warning" strategy that contribute to a

pleasant user experience (our main focus). It goes on to place applications in this domain into three

phases: phase 1 includes basic applications; phase 2 has more of an advanced warning and sensing

mechanism; phase 3 boasts fully cooperative sensing with "high-quality risk management" and "a

low amount of false or missed alarms." URU-S will be more of a phase 1 application, as it is a

reasonably limited prototype.

For the enhancement of pedestrian safety systems, the Wireless Seat Belt [17] was developed.

Their article mentions requirements for ideal VRU protection systems in terms of position accu-

racy. It moves on to "experimentally show what can be done with current smartphones" (in terms

of the aforementioned requirements). By relying on the "exchange of movement vectors between

vehicle and pedestrian," they tried to evaluate if current smartphones could achieve an ideal accu-

racy level. The article found that, in normal conditions, the goal could not be achieved. For that,

they offered two solutions: the possibility to detect the curb, which has been proven feasible in

work done by Jahn et al. [26]; and using a technology known as Real-Time Kinematic positioning.

Ideally, combining both of their approaches would lead to a more acceptable level of positioning

accuracy.

Another vital requirement to consider is presented in work done by Morold et al. [29], regard-

ing how time delays for both detection and communication of VRU contexts may affect the ability

to detect collisions. Notably, this author also considers the option to detect a curb, presented and

discussed in yet another project [26]. This article found that, for a positioning inaccuracy of 0.5

meters and 1.0 meters, the delay must not exceed 100 milliseconds and 300 milliseconds, respec-

tively. For higher inaccuracies over 2 meters, the curb detection module can still increase the

collision detection probability, even considering delays up to 806.25 milliseconds.

Lastly, it is worth mentioning work done in terms of transmission control. Even though this

is technically not a literature review or an explicit "architecture"/requirement, it answers a typical

problem that these kinds of systems have; channel congestion. More specifically, transmission

control offers essential solutions to this problem. These solutions consist of: "defining accident

models," "estimating the degree of risk a pedestrian is in by exploiting their context information,"

only transmitting on a channel when they are, in fact, in danger, and "differentiating pedestrian

transmissions with different transmission intervals and channel access priorities" depending on

their level of risk. This way, high-risk pedestrians have priority over the channel, and their mes-

2.4 Related Work 19

sages are not lost. Experimental results have proven positive, improving packet delivery in high

congestion scenarios (copious users transmitting on the same channel) [30].

2.4.3 Positioning and Context-Awareness

This field deals with using the device’s sensors to predict pedestrian trajectories accurately. Usu-

ally, this field’s work fuses input from the magnetometer, accelerometer, and gyroscope with or

without GPS to infer valuable positional information about the VRU’s whereabouts. This infor-

mation can be fed into a dead-reckoning algorithm (determining the following position based on

the previously known position) to determine where the pedestrian may be going.

Recognizing activities is a crucial aspect of any context-awareness mechanism. Based on

the work done by Bocksch et al. [31], we see that it is possible to recognize activities such as

standing, walking, running, lying, cycling, throwing, and entering or leaving a car. In this paper,

the smartphone inertial sensors’ fusion allows the technology to identify each activity using a

linear classifier and decision tree approach. The algorithm managed to classify activities correctly

with an accuracy of 91%, boasting a low complexity algorithm that uses low-cost sensors and is

infrastructure independent. Such an algorithm could be helpful in the localization of the VRU in

pedestrian (or cyclist) protection systems.

Furthermore, collision detection algorithms rely on knowing where the pedestrian is heading

and where they might end up. The work done by Kotte et al. [32] may help shed some light on

this issue, proposing enhanced pedestrian behavior models to predict more accurately where the

pedestrian may end up. The article describes how they fused information from the inertial sensors

on the phone with personal information of the pedestrian and even with their history, feeding it into

a cost-function-based pedestrian trajectory prediction algorithm that estimates "the probability of

a pedestrian’s presence" in the next seconds.

Finally, as a testament to how specific context-awareness can get, it is worth mentioning the

work done by Morold et al. [26], where we have an approach that attempts to recognize pedes-

trians stepping onto the road (crossing the curb). It identifies the problems existing in this field,

such as inconsistent sensor data, over-representation of periodic activities (walking, cycling), and

evaluation of the recognition. It uses a "context filter" to identify VRU in potentially dangerous

situations. The results show that detecting the subtle movement of "stepping onto the road" is

possible.

2.4.4 Warning Interface

These are examples of systems that consider the VRU as an active entity in collision avoidance,

involving them in some way or another and proposing an interface to warn them. It is this field

specifically that this dissertation aims to develop more.

An example of a complete system is described in work by Wu et al. [7], which gives 360

degrees, extended range, no line of sight required, where the driver and pedestrian alike are warned

of a potential crash. It uses DSRC (Dedicated Short-Range Communications) to function. It deals

20 State of the Art

with issues, such as false positives, channel congestion, security, and localization, recommending

novel ways to treat them.

DSRC is a technology not commonly found in smartphones. The approach mentioned in

the previous paragraph had to implement a DSRC stack within the smartphone’s WiFi chipset,

leveraging the phone’s GPS and inertial system. It contains three main modules: one for context-

awareness, which allows it to tackle power-saving and channel congestion by only using power

to occupy the channels when the VRU is effectively moving; a DSRC Manager for handling

incoming or outgoing Basic Safety Messages; and a Safety Service that implements the collision

detection algorithm used.

The article mentioned above even includes a Distraction Monitor in the system that "detects

whether the pedestrian is engaged in potentially distracting activities" (e.g., texting, calling, lis-

tening to music) to adjust the safety algorithm threshold. However, despite all of the technological

ingenuity, the user experience tied to the pedestrian’s warning system is relatively poor. The inter-

face is far too technical. The collision warning blocks the entire screen and blares out loud noises,

all while showing bright yellow colors on the screen.

Another perspective would be the work done by Kim et al. [5], where the author implements

a novel communication system through Personal Safety Messages sent by the user’s smart device.

The system implemented here attempts to protect the most distracted road user type (the ones

continually staring at the phone) by scanning for nearby Basic Safety Messages sent by vehicles.

The work’s entirety is based on the "IEEE Wireless Access in Vehicular Environment (WAVE)

standards." It represents danger via a "blob" on the corners of the screen. This "blob" is meant to

track the vehicle’s side as it passes by the user.

The "blob" warning, however, has some issues with it: firstly, it adds some computational

overhead to the phone because knowing where to draw the "blob" relative to the screen, and

the passing car involves calculations that factor in the yaw, pitch, roll, and others. Secondly, it

depends on smartphone sensors to get the data needed for these calculations. These sensors can

be imprecise, causing the "blob" to appear jittery on occasion. Finally, the "blob" is not very

descriptive of what is happening. The "blob" can take three colors, indicating if the vehicle is

close by or far away; the user must memorize what each colored "blob" means. Presumably, the

color’s meaning is documented somewhere in the application, like in a manual, although that is

never explicitly stated in the article. As per Jakob Nielsen’s sixth heuristic, "recognition rather than

recall," user interfaces should be immediately recognizable and not appeal to recall of a manual

description [33].

Another interesting project was developed by Titov et al. [18], which uses Bluetooth Low En-

ergy and WiFi Direct in their implementation. Several "accident-pandering factors" were derived.

Five "typical" scenarios that cause accidents were created based on environmental, sociological,

and other factors. Each technology’s performance was evaluated in each scenario. Bluetooth

proved to cover shorter distances with high latency and only three messages each second, hav-

ing low accuracy but good battery economy. WiFi substantially increased road users’ visibility,

boasting a considerable connection distance and rapid peer detection and connection establish-

2.4 Related Work 21

ment. However, it had high battery consumption compared to the alternative. It also required user

interaction to accept each first connection. The prototype mentioned above consisted of a simple

Google-Maps-like overlay with an add-on that would draw a "conflict area" where a collision may

occur. The article discusses the technical aspects and technologies used and does not divulge much

about the interface.

More on the cyclist side of things, there were attempts to integrate haptic (tactile) signals

with V2X-based Safety Systems. The integration of said signals was done using an extended

Virtual Cycling Environment that can use tactile vibrations to inform cyclists of imminent danger

in complex traffic situations [20]. Visual and audio signals were also used to detect possible

safety-critical situations. The researchers found that "the use of vibrations turns out to be suitable

for giving directional cues" [20]. Most participants found that the warning vibrations were helpful

and improved their reaction time compared to not being warned. Visual cues were relatively

inefficient and distracting, whereas audio signals were not very significant.

Last but not least, we have V2PSense, a cellular-based warning service that "trades off po-

sitioning precision for energy savings while achieving low latency" [25] values. For this, high-

priority LTE bearers are used in conjunction with intermittent GPS (keeping the GPS always-on

would increase precision but drastically drain the battery). Like other articles, it leverages the

phone’s sensors to infer pedestrian movement and combines it with an analysis of cellular signal

strength changes to determine where the VRU may be going next.

The entirety of V2PSense operates on the notion that one "does not need to know precisely

where each pedestrian is" [25] to estimate a collision. The disregard for a precise position is why

it uses intermittent GPS and mobile sensing data to determine a Pedestrian Arrival Area (a general

area where the VRU may end up). The device’s signal strength variations are then used to curtail

this area successively until it can accurately anticipate where the VRU will be. Should this area

overlap with a dangerous spot, the pedestrian would be notified on their smartphone. It is to note

that it can achieve "92.6% precision ratio with 20.8% energy saving" [25]. Despite this, even

this last work does not precisely mention how it notifies the user or what interface is available (if

any). It mentions that it runs as a "background service," which would not be ideal. In Android,

foreground services should be used instead due to operating system specifications. According to

the official developer documentation, "on devices running Android 9 (API level 28) or higher,

apps running in the background have the following restrictions: sensors that use the continuous

reporting mode, such as accelerometers and gyroscopes, don’t receive events. Sensors that use the

on-change or one-shot reporting modes don’t receive events." [34].

Nevertheless, as we can see from the previous examples, this field lacks a more dedicated

warning system that puts the VRU first in Human-Computer Interaction.

2.4.5 Mobile/Multi-Access Edge Computing

Edge Computing is a notable contender for a place within the automotive industry, particularly in

road safety systems. The Cloud has potentially infinite computational power, reducing overhead

22 State of the Art

on existing devices and boasting low latency values (presuming the access points are nearby).

These solutions are particularly convenient for implementing collision avoidance mechanisms.

First and foremost, in work done by Malinverno et al. [27], we are presented with a collision-

avoidance system that works with Basic Safety Messages (BSM) that relay positioning, direction,

acceleration, and even speed of any road user to a cloud service. BSM can be obtained from

smartphone sensors, and vehicles can send them through their onboard units. These messages

are factored into a collision avoidance algorithm; more specifically, they are sent to the network

infrastructure point of access and combined within it to determine whether or not to send alert

messages that will notify both participants if a potential crash is detected. The solution achieves

low latency while conserving power on the phone and car, being very flexible and capable of inte-

grating several different technologies. This work demonstrates a much higher detection rate than

previous solutions that used more traditional architectures not involving MEC, detecting collisions

on time (taking into account reaction speeds). However, it is not perfect, as it does report a slightly

higher number of false positives.

There is also a study where the authors explore possibilities for exchanging "relevant safety

mechanisms" in VRU-to-vehicle communication, using LTE networks and "Multi-access Edge

Computing (MEC)" to run collision avoidance algorithms and even process some context infor-

mation [14]. Offloading some computation spares the phone’s energy supply and can also improve

overall latency. The study showed successful results in offloading some computation to MEC

servers, drastically reducing energy consumption. However, it is essential to note that this article

achieves context-awareness through a Machine Learning algorithm that can also be offloaded to the

MEC server. Several strategies were used depending on what is being offloaded or done locally on

the smartphone. These may vary between local context-awareness, offloaded context-awareness,

local Collision Detection, and offloaded Collision Detection. Out of these combinations, offloaded

context-awareness calculations and offloaded Collision Detection proved to be quite advantageous

in draining less battery power than any other alternative. Despite that, the pure offloading solution

had poor latency performance, which is undesirable for a safety-critical system such as this one.

In this case, to guarantee the timeliness of the warning messages, it is best to opt for a more lo-

cal scheme, as it is more critical to timely warn the VRU than it is to save energy on the phone.

However, part of the computation can still be offloaded to spend less energy than the purely local

variant.

2.4.6 Psychological Studies on Human Stimuli

Some studies have been conducted on the most effective way to warn a cyclist of incoming danger,

specifically how that would affect their behavior. Most of these derived from the establishment of

a VCE platform that offered a means to model cycling behavior and improved bicyclists’ safety at

intersections [19].

It is essential to evaluate the psychological feasibility of using the VCE for human experi-

ments. A study was conducted on cyclists to determine a method for measuring their attention [35].

This was a fundamental study for more advanced VRU safety systems to determine the best form

2.5 Discussion Relative to Previous Work 23

to warn these users effectively. It is essential to understand how they react to these warning sys-

tems and which signals are easily understood. The paper focuses primarily on visual attention.

The entirety of the test was done in a VCE, and the results showed that high road traffic density

required an excessive amount of visual attention compared to low traffic density. These results

were validated by trials on the mental workload of road users and proved the VCE’s potential to

be used in "human-in-the-loop" setups.

Lastly, it is worth mentioning that there are studies on human visual attention as a whole,

specifically on the theory of visual attention (TVA). In work such as the one conducted by Krueger

et al. [36], TVA’s advantages are analyzed to determine its potential for exploitation in cases where

the degree of control over stimulus varies, including experiments with mobile devices. According

to the previously mentioned paper, TVA parameters can be measured with sufficient precision. It

was also found that TVA can be used to model real-world tasks and infer temporal-order judgment

(determining which of two different stimuli appear first).

2.5 Discussion Relative to Previous Work

After researching the field of VRU protection, we can conclude that only a few papers character-

ize VRU protection systems that involve these users as active entities, focusing primarily on the

vehicle and sometimes not mentioning how they intend to warn pedestrians and cyclists. Work

involving these users does not seem to be a byproduct of user-centered design, never mentioning

how to develop a proper interface for users to interact with and be warned accordingly. Consider-

ing we are proposing a mobile solution that VRU will want to have installed in their devices, it is

nonsensical to expect them to install a highly technical product that offers no or minimal context

for the application itself. Some of these works, as seen previously, even require that the pedestrian

must actively be staring at their phones at all times to function correctly, and others require that

they enter IP addresses, displaying raw longitude and latitude coordinates.

Moreover, the communications and networking technologies used to implement these solu-

tions all have their associated trade-offs. For example, Bluetooth solutions have good battery

economy but low range and high latency, whereas WiFi-direct has poor battery economy but com-

pensates for the latency and range. MEC-based solutions can offload computation from devices,

preserving their energy, but that may come at the cost of higher latency values or even a more

considerable amount of false detection. Cellular solutions can provide low latency values on good

coverage areas. However, they could have availability problems; different operators may expe-

rience high end-to-end communication delay, and, according to ETSI TR 102962 [37], LTE net-

works have difficulties scaling. More specifically, LTE may be overloaded when under traffic from

20 vehicles per cell at a rate of 10 CAMS per second. Direct connection between the smartphone

and other nearby dangerous entities requires additional hardware to be attached to the device, con-

suming more battery and raising device discovery and trustful association problems. Additionally,

direct connection usually implies that collision detection is computed locally, which fixes the issue

with latency but introduces another problem: spending more energy and processing power on the

24 State of the Art

smartphone itself, drawing that away from other applications. Local computation can also have

a more limited view of the scene and thus be more prone to errors. There is a great degree of

uncertainty associated with which technologies will work or not in the future. In fact, most of

these prototypes never left the experimentation phase. These works are usually field-tested in lab-

oratory settings or simulators like Eclipse SUMO (Simulation of Urban MObility). Judging from

the research done when writing this document, none of these prototypes have been implemented

in a real road scenario.

URU-S differentiates itself from previous efforts to conceive VRU safety systems by directly

involving VRU in the interaction design process and studying which methods are best to warn

them. Focus groups and usability tests were conducted to achieve user-centrism, making an effort

to develop a high-fidelity prototype of a road safety system that these users would want to install in

the future. These were instrumental in obtaining live feedback from participants. That feedback al-

lowed us to shape the interface and alert system into its present state, focusing on human-computer

interaction. We chose the HCI aspect as it seems to have been neglected in previous assignments,

and the more technical ones are somewhat unsettled.

Chapter 3

Smartphone Based VRU Protection

The following section will frame the problem of trying to protect a VRU through a smartphone

application. We include a description of what URU-S is trying to do on a more conceptual level,

detailing our presumptions, constraints, rules, requirements, and tools. The enumerated assets will

then serve to formulate our solution and approach.

3.1 Application Use Case and Assumed System Model

Figure 3.1: Simplified Sketch of the Presumed Architecture

This work focuses on the solution set within the smartphone itself, which would be integrated

into a more extensive system. There are many assumptions associated with the monolithic per-

spective of a road safety application such as this one. In this case, we presume a Central Server

25

26 Smartphone Based VRU Protection

(MEC) architecture, like the ones referred to in section 2.3.3. Notably, as illustrated in figure 3.1,

the phone would have to communicate with a server (preferably located nearby to keep latency to

a minimum) that will calculate the probability of a collision. URU-S would ideally forward the

user’s speed and location to this server entity when VRU movement is detected. Forwarding of

positioning information should only occur when the user is moving, and for that to happen, URU-

S must be aware of the user’s current activity. The application would then send the information

by interacting with an appropriate API of some sort. Nearby cars would also send their relevant

info to the same API. Internally, the server would run a computationally complex algorithm (MEC

solutions such as those mentioned in the State of the Art could alleviate this burden). Should it

determine that a collision will likely occur, it will warn both the VRU (by forwarding a warning

to their smartphone) and the driver (sending a warning to the car’s onboard unit).

3.2 Framing the Problem

At a conceptual level, the problem URU-S attempts to solve is effectively notifying the VRU of

incoming danger (particularly collisions with vehicles, cyclists, or even pedestrians). Specifically,

a non-intrusive notification must be fired off in the user’s device in some way (preferably through

the use of haptic technology).

Table 3.1: Technical Requirements

Identifier Name Description
TR01 Accessibility The app should be accessible by all, regardless of their situation.
TR02 Usability The app should offer a simple and easy to use interface.
TR03 Security The app must not leak sensitive user information.
TR04 Ethics The system must respect ethical software development methods.
TR05 Robustness The system must be verified and checked against possible deadlocks.
TR06 Context-Awareness The system should know (and only function) in scenarios where the VRU is moving.
TR07 Battery Saving The app should preserve battery.
TR08 Presence The app must use certain foreground services (shown in the status bar with an icon).
TR09 Storage The app must store certain data.
TR10 Portability The app should function on all Android devices.
TR11 Scalability The system should work even with a large number of users interacting with it.
TR12 Availability The system should be available 99% of the time 24 hours a day 365 days a year.
TR13 Latency The system must have a maximum global end-to-end latency of 300 ms.
TR14 Accuracy The system must try to have very little false positives.
TR15 Range The collision should be detected 100 to 160 meters before it happens.

Based on previous literature and common sense (within the realm of application development),

a series of technical requirements have been compiled. These may be consulted in table 3.1.

The main challenges addressed in this work are usability (related to TR02 on table 3.1), context-

awareness (TR06), and battery-saving (TR07). The usability aspect is vital. To guarantee it, users

must be the center of the interaction design process, and notifications must be tailored to their

needs and reactions. Context-awareness and battery optimization follow suit; these are closely

related to one another, as the system should only drain resources "on the go" (movement detected)

3.2 Framing the Problem 27

to lessen the phone’s energy consumption. Additionally, the app must steer clear of any complex

computations that may instill unnecessary overhead on the device.

Table 3.2: Constraints

Identifier Name Description
CO1 Time We are limited by the time we have for development.
CO2 Available Tech We are limited by tech to test or use and are constrained by its specifications.
CO3 Sensors We are limited by current inertial sensing and global positioning technology.
CO4 Channels We are limited by the communication channels we are allowed to use.
CO5 Available Participants We are limited by the number and input from participants that can be gathered.
CO6 Android OS permissions We are limited in terms of push-notification permissions given by the OS.
CO7 Android API level 27 We are limited by the API levels we can use, we can only use 27 or above.

There are also a series of constraints (table 3.2) that limit what can be achieved with our work.

It is imperative to highlight available tech (CO2) and available participants (CO5). It was challeng-

ing to organize events that required active participants with the current health situation, dampening

the statistical validity of the observations due to the reduced sample size. Although the tech avail-

able was sufficient to test the prototype, it is worth noting that different smart devices will have

different hardware specifications and limitations that may hamper the application’s functionality in

different ways. Different results could be obtained using phones with more precise sensors, more

lax battery settings that allow URU-S to fetch sensor data at higher rates, and different software

in terms of operating system API level or distribution. Two phones with the same hardware will

behave in divergent ways if they run different systems with non-identical permissions.

Table 3.3: Business Rules

Identifier Name Description
BR01 Suspend Notifications A user may suspend his notifications for a given period of time.
BR02 Adjust Notification Settings A user may change the behavior of notifications to suit his needs.
BR03 Ignore Notifications A user may ignore the notification in case of false positive.
BR04 Battery Optimization A user may turn off URU in battery-optimization mode.
BR05 Transparency A user may know everything about how we are accessing their information.
BR06 Documentation A user has the right to consult functionality documentation.
BR07 User-Specified Permissions A user has the right to alter URU-S notification permissions via the OS.
BR08 Warranty A user has no warranty that URU-S will work as intended if tampered with.

Taking the two last paragraphs into account, it is worth mentioning a set of business rules

(table 3.3) tied to this project. The most relevant business rules are user-specified permissions

(BR07) and warranty (BR08). It is presumed that the user will not jeopardize the application’s

functionality by altering the phone’s permissions, blocking our notification channels, or denying

us access to their activity (e.g., standing still, running), location, or storage for alerts and custom

sounds. Should the user limit us in this sense, we cannot guarantee TR01 (table 3.1), as that

requires activity tracking or any use case that requires the user’s position, saving, or uploading

anything. Should the user tamper with the permissions, there is no warranty that the system will

behave as intended. URU-S may need to be switched exclusively to manual mode, functioning

28 Smartphone Based VRU Protection

with limited features. To clarify, "adjust notification settings" (BR02) refers to using the URU-

S interface. BR02 is a rule regarding using URU-S to change the sound, vibration, and others; it

should not be confused with BR07. BR07 refers to the user specifying permissions via the Android

interface and altering the back-end logic of the application.

3.3 Proposed Solution and Approach

3.3.1 User Centric Design Methodology

The proposed solution is designing a smartphone-based VRU warning application that focuses on

HCI aspects, which for the most part have been neglected, and developing a prototype of said

application in native Android. The thesis’s primary focus will be on the HCI dimension, providing

an easy-to-use and functional interface that can successfully involve the user (through methods

mentioned in section 2.2). It is imperative to have a user-centered design, involving them early on

in the process through events such as focus groups and a series of usability tests.

The focus group will be mainly for requirements gathering purposes; several discussions will

be stimulated between the participants and the researcher, based on a series of questions. These

questions mainly consist of asking the users what kind of notification they would react to best,

what they would like to see in an application such as this, and how the preliminary design may be

improved.

Later on, biphasic usability testing will be conducted. In the first phase, our testing participants

will be placed in a quiet and controlled room. The participants will sit down with the testing facil-

itator and get acquainted with the interface. A series of tasks will be presented. The participants

are encouraged to think out loud and express their opinions. It is important to note what partici-

pants are trying to do and their understanding of the interface. The second phase will include field

testing, and a simulated dangerous situation will arise. Notifications will be fired off remotely in

the testing devices (in a "Wizard-Of-Ozz" style testing) whenever a dangerous situation presents

itself. In the second phase, we will test the participant’s reactions to different situations. The situ-

ations include false positives (the user is warned, but there is no danger), false negatives (the user

is not warned, but there is danger), and true positives (the user is warned justly). In terms of met-

rics, primarily, the study will concern itself with the effectiveness of the notifications, the user’s

difficulty with utilizing the interface (on a scale of 1 to 5), the percentage of tasks completed, and

the amount of time taken to complete said tasks.

3.3.2 Software Engineering Methods

Throughout this work, an Agile Scrum [38] approach was used, dividing the work into a series

of sprints. A couple of product backlog items were selected to be worked on for each sprint.

The product backlog itself was constructed throughout the project’s development. The backlog

contents and priorities were agreed upon with the supervisor (playing the "product owner," more

3.3 Proposed Solution and Approach 29

or less). Regular meetings were held with the supervisor to keep them updated on the development

of the project. At the end of each sprint, a testable and stable version of the product was delivered.

First and foremost, an effective prototype was designed through low-fidelity methods, primar-

ily wireframes. These wireframes were instrumental for the focus group, held shortly after their

development. The focus group gave much crucial feedback to the prototype, inspiring another set

of wireframes. The final set, and a list of use cases to include in the final prototype, were validated

by the supervisor. Eventually, the interface’s high-fidelity prototype was developed in Android,

taking into account the established use cases.

This high-fidelity prototype was evaluated through a series of usability tests with a reason-

able number of participants. Of course, the actual collision detection was simulated and triggered

remotely by a third party. Due to time constraints and technical complexity, the application was

technologically agnostic in relaying positioning information to a collision detection module or im-

plementing such a module (these technologies presumably exist to be leveraged by the application

in the future). Whenever deemed necessary, specialists were consulted to improve the prototype

further.

Per TR05 on Table 3.1, the application must also be extensively verified. Model Checking

would be the preferred formal method, preventing it from going into undesirable states ("Dead-

Locks") that can occur. An extension to the Java Model Checker, JPF, has already been developed,

called JPF-Android [39]. It is open-source and extensively documented; however, it has not been

maintained in the last three to four years. JPF-Android is also quite limited and cannot verify the

user interface, which is quite concerning as this project is preoccupied primarily with providing a

user-centered interface prototype. Errors were obtained while trying to install the model checker,

and upon trying to contact the maintainer, no replies were received. Over the years, there have been

endeavors in applying formal verification methods to mobile applications [40][41][42]; however,

these projects are either not open source or have been discontinued for whatever reason.

Another approach was taken to satisfy the robustness requirement since available formal tools

were either outdated or unavailable. Many of these tools, an example being the TRIANGLE

framework [42], leveraged existing testing frameworks that were a part of Android, automating

them to generate several different test cases without burdening the developer with the task to

create them manually. Examples of these native Android testing tools include UI Automator [43],

Espresso [44], and instrumented unit testing [45]. Since obtaining access to the formal automated

tools was impossible, a series of unit tests using the aforementioned Android framework tools

were developed.

To further complement the robustness of the system, a stress testing tool was used. This tool

is the UI/Application Exerciser Monkey [46], and it made it possible to inject series of pseudo-

random events into an emulator (including clicking, swiping, and others) to test how URU-S would

behave under stress.

30 Smartphone Based VRU Protection

3.3.3 Tools

Different tools were used to achieve different means to accelerate and streamline the development

of the prototype. All of these tools are open-source and licensed adequately. The tools are:

• NumberEight SDK: The NumberEight SDK [47] is what allows the application to be

context-aware, giving it contextual glimpses over time. The SDK delivers context infor-

mation in the form of glimpses by using signal processing and sensor fusion algorithms. It

is tied to a foreground service that subscribes to different types of glimpses depending on

the situation.

• Google Services: Google Services supply us with the Maps SDK [48], allowing us to make

use of Google Maps for our heat-map of dangerous areas and the Geofencing API [49].

• Firebase Cloud Messaging: Firebase Cloud Messaging [50] is what allows us to trigger

warnings remotely in the user’s testing smartphone. We achieve this by having a Firebase

Messaging service running in the application and sending that service a data payload. The

service is triggered by an external testing tool that runs locally on the testing facilitator’s

laptop.

• Contrast Ratio Web Tool: This tool calculates a ratio between a foreground and back-

ground color and checks if it is under the proper accessibility guidelines. It is worth men-

tioning that it follows Web Content Accessibility Guidelines (WCAG) 2.1 [51] and can

check if elements of the URU-S interface contrast appropriately.

• Testing Tool: The testing tool is a simple React.js [52] localhost web application that we

developed ourselves. This tool has a set of buttons related to each testing smartphone.

Upon clicking one of those buttons, an HTTP request will be sent to a specific endpoint

that uniquely identifies one of the testing smartphones. At a back-end level, that endpoint

will have the Firebase token associated with the testing device. Triggering the endpoint will

cause it to send a data payload to the Firebase Cloud Messaging server, eventually routing

it to the testing device.

• Lingver: URU-S allows the user to change the language between Portuguese and English.

As such, all its string resources are translated in both of the previously mentioned languages.

To keep track and swap the application’s locale, which determines which string resource to

fetch, an open-source library, Lingver [53], is used.

• Markwon: To format URU-S documentation pages included in the app, like the application

manual, an open-source library, Markwon [54], was used that allows programmers to embed

markdown code into Android TextViews.

• Donuts: The circular graphs present in the statistics section of URU-S were drawn using

an open-source library, Donut [55]. These display the percentages of true positives, false

positives, and suspended alerts.

3.4 Use Cases

The following are all of the use cases derived from focus group participants and agreed upon with this project’s supervisor. They have all been

implemented and are accounted for in the final version of the application.

Table 3.4: Use Cases

Identifier Priority Name Description
US01 High Protection Status As a VRU, I want to consult the app’s status so that I may know that I am being protected.
US02 High Notification Volume As a VRU, I want to change the volume of the URU-S notifications so that I may adjust it to my liking.
US03 High Notification Suspension As a VRU, I want to suspend the URU-S notifications so that I may have control over the alert system.
US04 High Receive Notifications As a VRU, I want to receive URU-S notifications so that I may know that I am in imminent danger and avoid it.
US05 High Notification Vibration As a VRU, I want to adjust the intensity of the vibrations so that I may be more comfortable with them.
US06 Medium Language As a VRU, I want to change the language so that I may change it to one I am more comfortable with.
US07 Medium Options menu As a VRU, I want to access the options menu so that I may change configurations that are relevant to my interests.
US08 Medium Select Sound As a VRU, I want to select different sounds for the notification so that I may choose a sound that I prefer.
US09 Medium Customize Sound As a VRU, I want to upload my sound so that I may give the app my personal touch.
US10 Medium Access Statistics As a VRU, I want to access the statistics feature so that I may have an added component to the real-time alerts.
US11 Medium Access Heat-map As a VRU, I want to have a heat-map of the most dangerous spots so that I may know which places to avoid.
US12 Medium Receive Danger-Zone Notifications As a VRU, I want to receive a warning emitted whenever I enter a dangerous zone so that I may be more aware.
US13 Medium Disable Danger-Zone Notifications As a VRU, I want to disable the warnings emitted whenever I enter a dangerous zone so that I may control them.
US14 Low Neutralize Notification As a VRU, I want to signal the app that I have avoided danger, to count that as a true positive.
US15 Low Sharing As a VRU, I want to share the app with others so that I may tell others about it.
US16 Low Documents As a VRU, I want to consult the documentation so that I may know more about the app and who made it.
US17 Low Ignore Notifications As a VRU, I want to ignore URU-S notifications so that I may dismiss them in case of a false positive.

31

32 Smartphone Based VRU Protection

Chapter 4

URU-S Design and Implementation

This chapter will detail the implemented solution and its design. We include our user-centered

interaction design process, the architecture, an overview of the essential functionalities, a more

in-depth description of how each requirement was satisfied, the final screens of the interface, the

flow between said screens, and the use cases they cover.

4.1 URU-S Design

User-centered design is a vital component that is reinforced throughout the entirety of URU-S.

Previously neglected in past research, this aspect must be considered if we ever hope to convince

VRU to install this application on their smartphones.

VRU protection systems are predicated on the assumption that the VRU will have an appli-

cation like URU-S installed and running in their phones, using it in their daily lives. Users will

only install and use a product that appeals to them in some way, meeting their expectations and

providing a decent user experience.

To guarantee our users an optimal experience with URU-S, we must bring them into the design

process of the application, especially in its early stages, to have them be the main driving force of

the development. We accomplish their early involvement through focus groups. We then validate

our product by having VRU test its usability in an environment that we can solicit feedback from

to iterate even further on our design; these are our usability tests.

4.1.1 Preliminary Design (WireFrame)

The following is a wireframe conceived by considering the previous work done in the field (this

work is mentioned in chapter 2). It served as an essential asset to explain the prototype to others

during the focus group and stimulated discussion. This wireframe is a rough draft of the URU-S

interface that can be iterated upon with participant feedback, altering and shaping it into a model

that will later guide the implementation process.

33

34
U

R
U

-S
D

esign
and

Im
plem

entation
In figure 4.1, we may see an optional sign-in and sign-up feature; this is to preserve the user’s settings so that they may load these into other devices.

The Home screen is also presented; the only things to note here are the menu and some text fields. The upper text field shows the current status (if

danger was detected or not), and the bottom field is static text.

Figure 4.1: Optional Sign In, Sign Up, and Home

4.1
U

R
U

-S
D

esign
35

If the user clicks on the menu, they are directed to figure 4.2, where they may consult some additional documentation (static textual pages), swap

language, or access the internal settings.

Figure 4.2: Options

36
U

R
U

-S
D

esign
and

Im
plem

entation
Upon clicking on the "URU Settings" button, they are directed to figure 4.3, where they may change the notification settings or suspend them

entirely. If they wish to suspend them, they are met with the popup that we may see on the right of the image; this popup will ask them if they are sure

and specify the time to suspend the application.

Figure 4.3: Settings

4.1
U

R
U

-S
D

esign
37

Lastly, whenever a collision happens, a push notification will be generated, as shown in figure 4.4. The user may ignore (in case of a false positive)

or use it to better position themselves.

Figure 4.4: Collision

38 URU-S Design and Implementation

4.1.2 Focus Group

The focus group was instrumental in obtaining feedback from our participants. We found that

participants mainly gravitated to a mix between a haptic (tactile) and acoustic (sound) notification.

All participants showed interest in some form of feature that would warn them of potentially dan-

gerous areas beforehand. The whole discussion between real-time and non-real-time notifications

sparked great interest. Nevertheless, the wireframe successfully illustrated the general behavior of

the interface and warranted some suggestions from those present.

The group lasted for about an hour, and the researcher managed to ask all of the previously

planned questions. Despite the small sample size, the group raised interesting concerns and pos-

sible features. The concerns include not hearing or feeling the warning when the phone is tucked

away and the need to have a warning that is not strictly visual as users may not be staring at the

device constantly. Additional features include portability, a heat-map of the most dangerous areas,

a "danger-level" that indicates false and genuine alerts, and safe path prediction. Some recom-

mendations were taken into account when iterating on our preliminary design, and others were

discarded as they fell outside of this project’s scope.

The group is described in greater detail in appendix A. The appendix includes a summary of

questions asked, discussions had, the demographics, the poll results, and conclusions.

4.1.3 Resulting WireFrame

The researcher altered the preliminary wireframe based on participant feedback. The wireframe

was then presented to the project’s supervisor in conjunction with the corresponding use cases.

This design was agreed upon and later served to guide the developer during the implementation

process.

To jump-start the development process in an agile manner, we did not waste additional time

creating more wireframes. The wireframe from the focus group is not to be interpreted as the final

appearance of the system either. During the development, we had to add certain features that were

not predicted at its conception. These features will be made evident in section 4.9.

Regardless, the wireframe’s point is to serve as a low-fidelity prototype that can orient the

development and not as an end-system representation. Overall, it was a convenient asset to have,

and, most importantly, it resulted from a user-centered effort.

As we can see in figure 4.5, we no longer have any sign-in or sign-up feature, as participants were not interested in that. The home screen itself is

primarily the same, except for the real-time alerts switch at the center for quick access. We also have the reports screen that shows the user their danger

level and a danger heat-map, allowing them to choose if they want to have a popup notification whenever they enter a dangerous zone. Lastly, the user

may navigate to the options menu. What changes here is the terminology on our "alert settings" that seemed more explicit than the "URU settings" label

we had previously.

Figure 4.5: Home, Reports and Options

39

40
U

R
U

-S
D

esign
and

Im
plem

entation
Continuing throughout the design, we can see from figure 4.6 that the options menu gives us access to some textual pages (manual, FAQ, legal info)

and, more importantly, the alert settings. The alert settings screen is largely the same, except there is now a division between suspending the popup that

appears with a warning and the real-time alerts themselves, as that caused some confusion during the focus group. We maintain the confirmation pop-up

when suspending alerts, as shown in 4.7.

Figure 4.6: Options, FAQ, Alert Settings

4.1
U

R
U

-S
D

esign
41

Figure 4.7: Alert Settings Complete View

42
U

R
U

-S
D

esign
and

Im
plem

entation
Finally, figure 4.8 shows our real-time alert popup warning. It is still a push notification like before but does not open the "map" feature as

participants found that useless. Instead, the notification now has two buttons that allow users to classify the dangerous event as something that helped

the user avoid danger or a false alarm to ignore.

Figure 4.8: Danger warning

4.2 Architecture 43

4.1.4 Additional Features

Certain features were idealized based on the focus group. These features include some technology

that would be aware of whether the user is indoors or outdoors. One of our participants mentioned

they would like to have the application suspend alerts automatically when indoors. We also need

a system that can keep track of whether users have entered a dangerous zone or not to give them a

forewarning.

The user’s activities can be recorded using context-awareness. This mechanism can allow us

to know if the user is indoors or outdoors, walking or standing still, carrying their phones in their

pockets, or with headphones plugged in. We can use this information to alleviate specific concerns

our users had, such as raising the alert volume when they have their phones in their pockets and

lowering it when they have headphones plugged in. We can also suspend the application when the

user is standing still or indoors. Moreover, we can delineate dangerous areas using geofencing, a

Google service. This service can help us monitor when the user enters a dangerous place and warn

them of such.

The following sections will detail how the developer managed to implement these services and

how they fit into the application’s overall design.

4.2 Architecture

The architecture, as represented by figure 4.9, is comprised of three main entities: the application

running in the testing devices (URU-S), the external testing tool that triggers alerts remotely, and

the Firebase Cloud Messaging server. It is worth noting that this is the overarching testing archi-

tecture that we used to evaluate URU-S. We thought it would make sense to include the entire

architecture and not just the application module to describe how all of these elements fit together

and contextualize our system. The explanations given here will also be relevant for understanding

chapter 5.

Figure 4.9: Implemented Architecture

44

4.3 Context-Awareness and Glimpses 45

URU-S is comprised of three main modules that provide it with crucial functionalities. These

include context-awareness, Google services, and Firebase messaging. Context-awareness pro-

vides the application with contextual glimpses and works based on the NumberEight SDK. The

glimpses can be concerning the user’s current environment (if they are indoors or outdoors), their

movement (e.g., walking, running, standing), having their phone in their pockets, and having

headphones plugged into their device. Context-awareness runs as a foreground service in the ap-

plication, showing as an icon in the upper left corner of the screen; this service will subscribe

to NumberEight glimpses depending on which state the application is in; the way subscriptions

are handled will be covered in the following section. The Google services module allows the

application to make use of the geofencing API and Google maps. Geofencing is used to outline

accident-prone areas, creating a 120-meter radius around a given set of latitude and longitude co-

ordinates. Geofencing will notify the application when the user enters a geofence; similarly to

context-awareness, it is also tied to a foreground service; this will be explored in greater detail

later. Google maps are used to provide a visual representation of the accident-prone areas. They

use the maps SDK, particularly the heat-map variant, to draw a map with heat bubbles around the

most dangerous locations. Finally, the Firebase messaging module is used to receive simulated

warnings.

Upon installing the application on a given testing device, a Firebase token is emitted and

printed out on the console; this token is later extracted and associated with an endpoint in the

testing tool. Once the testing tool has been triggered, the resulting warning is delivered to a

background service that extends the "FirebaseMessagingService" class. Once the background

service has received the warning, it will mobilize an additional foreground service to play sounds

and vibrations and call upon a utility class to draw a push notification in the user’s device.

The external testing tool is a JavaScript application that runs on localhost. In terms of its

front-end, it consists of a series of buttons associated with each testing device. These buttons send

HTTP requests to given endpoints when clicked, one for each device. Each activated endpoint will

send a data payload with a hard-coded token belonging to the corresponding device at a back-end

level. This payload will be routed through the Firebase Cloud Messaging server and be delivered

to the application.

The Firebase Cloud Messaging server allows routing messages between the external testing

tool and the application running on the testing devices. If the application is uninstalled, the token

for the given testing device will change, and the server will not find it anymore. In case of a

reinstall, the new token must be extracted manually, and the corresponding endpoint for that testing

device must be altered to match the new token.

4.3 Context-Awareness and Glimpses

As mentioned previously, context-awareness relies on glimpses provided by the NumberEight

SDK. These glimpses are obtained by subscribing to specific NumberEight "topics." Topics in-

clude indoor and outdoor localization, movement detection, positioning of the device, and head-

46 URU-S Design and Implementation

phones. By calling specific methods defined in the SDK, one may subscribe to a given topic to

obtain glimpses regarding said topic. These glimpses come in the form of organized array lists

of "value pairs." In NumberEight’s terms, a value pair is an object comprised of a NumberEight

"type" and a probabilistic confidence value. NumberEight types could be activities, device posi-

tions, localization, connections, and more (in our case, only those mentioned earlier are relevant).

The array list is ordered by the confidence associated with each value pair. The most probable

value pair is obtained using a method from the SDK and accessed to determine the state of a given

topic. For example, to detect if the user is moving or standing still, one must first subscribe to the

movement detection topic. Upon subscribing, the SDK will asynchronously report glimpses to a

specified handler; once that glimpse is received, one must obtain the value pair with the highest

confidence. With that value pair, one may obtain the type associated with that pair. Once we have

the type, we can then access the state of said type. For example, for the "NEActivity" type, we

may obtain the following states: "stationary", "walking", "running", "cycling", "in-vehicle", and

"unknown". If it is likelier that the state is "stationary," that means the user is standing still. If the

likelier state is anything else besides "in-vehicle," that means the user is likely moving around (we

assume that the "unknown" state means a foreign type of movement).

The entity responsible for managing all of what was previously described is the "ContextAware-

nessForegroundService." As the name suggests, it is a foreground service that, on start, will launch

a scheduled thread executor at a fixed rate of 30 seconds that will alter shared preferences of the

application and start and stop subscriptions to specific topics depending on the state of URU-S.

This service is tied to context awareness and will only be active when context awareness is enabled

in the application. It is a foreground service because background services do not have all of the

necessary permissions to handle the NumberEight subscriptions and prevent Android from killing

the service prematurely.

Context-awareness is enabled in the application by default, which means the corresponding

foreground service is also running. The service subscribes to the indoor and outdoor localization

topic, determining if the user is indoors or outdoors. Should the user be indoors, it disables ge-

ofencing, the alert system (covered in greater detail in another section), and all other subscriptions.

Should the user be outdoors, it enables geofencing, the alert system, and starts the movement de-

tection and the headphone detection. In terms of movement detection, if the user moves, the

previously mentioned services keep working or are re-enabled if they recently restarted their mo-

tion. Should the user be standing still, then the headphone detection, device positioning detection,

and geofencing are stopped until the user moves once more. In terms of headphone detection, the

user will either have headphones plugged in or not. If the user has headphones on, the notification

volume will be adjusted, making it slightly lower than usual since the sound source is closer to the

ears. If no headphones are detected, we stop looking for them and start looking for the device’s

position. Regarding the device position detection, we are concerned with whether the device is

covered by something, either a bag or a pocket. Should the device be in a pocket, the alert’s sound

will be made louder, so it is still audible even with the device tucked away elsewhere. Should

the device be resting in the user’s hand or any other detectable position, the default alert volume

4.4 Geofencing Foreground Service 47

is used. This behavior of shutting mechanisms off and on can best be summarized by table 4.1,

which shows the mechanisms that are enabled (Y) or disabled (N) for each state. In that table,

we use ciphers to divide the different outdoor states. Cipher "ST" represents a stationary user,

"MW" is for a moving user without headphones plugged in, and "MH" for a moving user with

headphones on.

Geofencing Movement Device position Localization Headphones
INDOOR N N N Y N

OUTDOOR (ST) N Y N Y N
OUTDOOR (MW) Y Y Y Y Y
OUTDOOR (MH) Y Y N Y Y

Table 4.1: Active Mechanisms by State

It is to note that subscriptions may become idle, hence why it is crucial to have a scheduled

thread resubscribe them so the application does not go too long without receiving glimpses. Ad-

ditionally, these glimpses are susceptible to false positives, as they rely on imprecise smartphone

sensor data. Furthermore, so that URU-S is not overloaded with glimpses constantly, there is a

filtering system. NumberEight allows us to filter glimpses in terms of sensitivity and changes in

confidence levels. The localization glimpses have meaningful filtering, only glimpsing after being

inside or outside after approximately 30 seconds and when the most probable value pair changes.

The movement detection has mild filtering, glimpsing faster than the localization services but still

not quite in real-time, and only when changes occur to the value pairs. The remaining glimpses

have real-time sensitivity and only occur with changes in value pairs.

4.4 Geofencing Foreground Service

Geofencing allows URU-S to delineate circular perimeters around a predefined set of coordinates

(latitude and longitude) that mark accident-prone zones. We will explain how we obtained these

zones in the next section.

Regardless, when started, the geofencing foreground service will parse our raw data into ge-

ofence objects and set up each geofence, associating a pending intent to them. This pending intent

will be triggered when the user enters a geofence. The entry event is relayed to a broadcast re-

ceiver in the application that catches geofencing events. Should the event be an entry event, a push

notification will be generated, including a message with the identifiers for each triggered geofence.

Multiple geofences can be triggered if the user wanders into an area that results in the intersection

of the two (or more) circular perimeters. If multiple geofences are triggered simultaneously, only

one message will be sent with an enumeration of those geofences, avoiding spam.

Lastly, it is worth mentioning that the service is tied to context-awareness. These two mech-

anisms being associated means that the application will only register geofences when the user is

48 URU-S Design and Implementation

outdoors and moving. In all other states, the service will be stopped. Stopping the geofencing ser-

vice will immediately destroy all registered geofences, whereas starting it once more will re-create

them.

4.5 Geofencing Data Acquisition

The danger zones are obtained from a JSON file, representing an array of objects where each

object has an "id," "lat," and "lng" attribute. The "id" attribute is a textual identifier for the area,

recognizable by users (e.g., "Amial," "Bolhão"), whereas "lat" and "long" represent the latitude

and longitude of the circle’s center point. This JSON file is used as a raw, hard-coded resource of

the application, and it is transcribed in figure 4.10.

Figure 4.10: Danger Zones JSON

4.6 Geofence Accuracy 49

It seems that, at least in Portugal, accident data comes mainly from the police, specifically,

Polícia de Segurança Pública (PSP). This data is then supplied monthly to other entities, partic-

ularly Direção Municipal de Mobilidade e Transportes (DMMT) in .xls format [56]. This data

is usually under strict privacy policies and, as such, was not made available for the development

of the URU-S prototype. Ideally, we would have access to such a data-set or something similar,

like the one used in the study conducted by Vilaça et al. [57]. The study, as mentioned previously,

works with a comprehensive data-set of road accidents involving VRU to assess the factors that

may affect the severity of their injuries. The study uses several machine learning classifiers to

determine the factors that may influence these injuries and make recommendations for improve-

ments in those areas based on their findings. However, the so-called "CRASH VRU RECORDS"

that stand at the basis of these deductions are not publicly available either.

As we have established, accident data is not easy to come by and involves adamant bureau-

cracy. Even if we could obtain it, there is nothing to suggest that it would be in a format that

could easily be parsed into a JSON that URU-S could interpret. Thus, to collect our data, we

consulted civil engineering dissertations [56][58] and their findings to extrapolate our points. In

the previously mentioned dissertations, the authors usually outline entire avenues or streets, never

specifying a single set of coordinates. Since most accidents happen at intersections, we explored

those areas with Google Maps, extracting the latitude and longitude of intersections with reduced

visibility and many connecting roads. The previously mentioned process is under the presumption

that if the given avenue, street, or area is particularly prone to accidents, then those intersections

must be the danger hot-spots. This presumption may not be the ideal method to draw the ge-

ofences and outline these areas, but given the resources available, it was the best that could be

accomplished.

4.6 Geofence Accuracy

Our geofencing foreground service requires the user’s location to function appropriately. As such,

it will periodically request location updates to the device while it is active. It does this by using

a FusedLocationProviderClient [59] and calling its "requestLocationUpdates" method, using a

certain location request. This location request is expressed in figure 4.11

As we can see, it is a high accuracy request, which means the location provider will do its

best to obtain the most accurate position possible, fusing different sensors if need be. The high

accuracy request drains more battery than a less accurate request; however, since geofencing is tied

to context-awareness, it will only be active while the user is outdoors and in motion. This project

is also under the presumption that most users do not spend the entirety of their day outdoors and

in motion but rather a small portion of it. Despite this, we do not have the required infrastructure

to measure geofencing’s energy drain accurately; that could remain a factor to be looked at in the

future.

Geofences also have certain limitations. Accurate location may not be available if the geofence

has a radius of fewer than 100 meters, as most devices end up relying on network location for

50 URU-S Design and Implementation

Figure 4.11: Location Request High Accuracy

geofencing to work correctly. The official documentation [49] suggests using a radius of about 100

to 150 meters to mitigate this issue. In this work, a radius of 120 meters is used to allow for greater

accuracy. Additionally, if Wi-Fi is turned off, location accuracy may diminish. Furthermore,

having no reliable network connectivity inside of a geofence may cause alerts to be missed. Alerts

can also have a given latency that can go up to 2 minutes. There have been studies conducted to

develop more accurate location queries that mitigate the limitations of geofences, using less power

and achieving higher precision [60]. The study mentioned earlier does not seem to have an open-

source solution. It is from 5 years ago; it is also worth mentioning that the geofences used had a

radius of 25 meters, which is one-fourth of the recommended value. The small radii may explain

why Weaver et al. had such inconsistent findings with geofences. In their article, they experience

varying precision, latency, and energy drains. Their solution seems to have energy use similar to

geofencing but allegedly has better accuracy for smaller radii.

4.7 Alert System 51

4.7 Alert System

The URU-S alert system is a crucial mechanism that controls whether or not the user receives dan-

ger notifications. This service can be integrated with context-awareness or be used manually. The

interactions with context-awareness can be modeled by a state machine like shown in figure 4.12.

In the state machine, acceptance states represent states where the alerts are active and being

received. Non-acceptance states do not have alerts enabled. The meaning behind the labels of

each state and transition is as follows:

Figure 4.12: Alert System State Transitions

• In: represents the user is indoors, which is detected by the respective NumberEight SDK

glimpse.

• Out: represents the user being outdoors, which is detected by the respective NumberEight

SDK glimpse. The application is receptive to alerts, but they may be disabled if the user’s

context changes.

• Still: represents the user is still, which is detected by the respective NumberEight SDK

glimpse.

• ON: represents the application being in manual mode and receptive to alerts.

52 URU-S Design and Implementation

• OFF: represents the application being in manual mode and non-receptive to alerts. It may

become receptive again after a given time or stay that way until the user manually re-enables

(this is specified via the interface).

• stays: represents a transition used to signify that the user may remain in this state for an

undetermined period until they willingly decide to alter their situation or have set a timer in

the application to do so.

• comes out: represents the user stepping out of their indoor place and moving around out-

doors. The transition does not happen instantly as the state machine suggests; it may take

approximately 30 seconds or more to occur in reality.

• goes in: represents the user stepping into their indoor place, coming from the outside. The

transition does not happen instantly and may take up to 30 seconds.

• lack of movement: represents the user standing still for a given period. The transition does

not occur instantly and may take up to 30 seconds.

• moves: represents the user moving. The transition does not occur instantly and may take up

to 30 seconds.

• CA: represents a change in state that is triggered by context-awareness. States may change

upon receiving the right glimpses that indicate that they should. If context-awareness is

disabled, these transitions do not happen, and to re-enable it, the application must first be

turned ON.

• override: represents an override to the context-awareness mechanism, denying a context-

awareness state change to return the application to its manual ON state, disabling context-

awareness until manually re-enabled.

• switch: represents an interaction with the real-time alerts switch. The switch can turn the

application on and off by flipping it manually or setting a timer using the interface. The

switch prevails over context-awareness.

It is worth noting that to streamline the interactions between context-awareness and the alert

system, any attempt to override context-awareness will disable it until the user manually re-enables

it in the settings. When manual, the application will be receptive or non-receptive to alerts at the

user’s control. It will not benefit from geofencing or alert suspension during unnecessary periods

(e.g., indoors, standing still).

Furthermore, since implementing an algorithm that creates safety messages that relay the

user’s trajectory and speed is not within this project’s scope, the alert system being suspended

means that we disable geofencing, sound adjustments to the notifications, and the notifications

themselves. In a future implementation, with collision and trajectory detection modules, those

kinematic computations could be stopped in our non-acceptance states as well. By stopping the

4.8 Requirement Satisfaction 53

added modules in states where they are not strictly necessary, we could optimize the phone’s bat-

tery supply.

Note that "stopping the notifications themselves" does not mean stopping the Firebase Messag-

ing service. Due to the way it is implemented and made available in the Firebase API, one cannot

override the binding method for the service, and starting and stopping it may have unpredictable

behavior. For the reasons explained previously, we refrained from stopping the messaging service

entirely and instead made it so, when the application is not in a receptive state, it will not generate

a notification. The service still receives a data payload, but it is overlooked. Fortunately, the Fire-

base messaging service is battery-optimized, and having it running causes negligible drain [50].

4.8 Requirement Satisfaction

It is worth mentioning that the prototype includes technical requirements ranging from TR01 to

TR09, as they are stated in table 3.1, inclusively. Each requirement was considered during the

development of URU-S in the ways detailed in the following paragraphs.

Starting at TR01 (Accessibility), generic accessibility good practices were applied to develop

URU-S. These good practices include making every clickable view at least 48dp in length and

width (some are even larger than that), giving all relevant views a content description (available

in Portuguese and English), not specifying "control type" or "control state" in content descrip-

tions (like "button" or "switch"), giving decorative views a null content description, grouping

together containers using the "android:focusable" attribute, having a logical top-down and low-

density view hierarchy for each activity, having a reasonable contrast ratio, making use of acces-

sibility delegates, and testing out the application manually with TalkBack, SwitchAccess, and the

Accessibility Scanner, as recommended in the Android developers official documentation [61].

The Accessibility Scanner was instrumental, as running it gave us plenty of suggestions on im-

proving the interface. These suggestions essentially consisted of contrast recommendations and

expanding specific views to meet the minimum criteria of 48dp by 48dp. Lastly, we would like to

note that there were problematic interactions between the switch views in URU-S and SwitchAc-

cess, as activating a switch with the tool did not count as "pressing" the view. To remedy this,

we used accessibility delegates and associated them with relevant switches. These delegates will

respond to accessibility events and set the switch to be "pressed," as shown in figure 4.13 below

(this corresponds to the popups switch).

Figure 4.13: Accessibility Delegate

54 URU-S Design and Implementation

Moving on to requirement TR02 (Usability), general design principles, most of which overlap

with those mentioned in the previous paragraph, were followed to make the interface usable. Addi-

tionally, URU-S obeys the ten basic heuristics for interface design, specified by Jakob Nielsen [33].

To fulfill "visibility of the system status," URU-S displays its status on the homepage and through

foreground services that are visible in the notification tray. When it comes to "match between sys-

tem and the real world," the design uses familiar words, phrases, and concepts, such as "Real-time

alerts," "Danger Level," "Danger Map," and others. To guarantee "user control and freedom," we

have attached confirmation dialog boxes to destructive actions that involve deleting something with

the application. It is possible to undo turning components off or on using the respective switches.

Furthermore, "consistency and standards" are guaranteed, such as using the garbage-can-icon to

delete something, using a familiar icon for the refresh functionality, and the "hamburger button"

for the menu. Other factors to consider are "error prevention" and "error recovery." There is a slight

possibility of errors occurring while using the interface; should they happen, they are presented

to the user. An example is when the user tries to play a custom sound for their alert notification

that no longer exists in the device. The sound is removed from the list of available sounds, and

the user is told that sound does not exist in their device anymore, replacing it with the default;

moreover, drastic actions, such as disabling the alert system and overriding context-awareness

prompt the user with confirmation dialog-boxes. Even though the iconography used in URU-S is

quite familiar, to further enhance "recognition rather than recall," minimizing the user’s memory

load, labels were placed next to icons that may not have a very explicit meaning. The system is

also somewhat flexible, reinforcing "flexibility and efficiency of use." Examples include having

the real-time alerts switch available right on the main page, so users do not have to go all the way

to the alert settings to use it. The application also uses negative space to provide an "aesthetic

and minimalist design," containing relevant information units and never saturating the screen with

views. Finally, "help and documentation" are available in the options menu, containing a detailed

manual, FAQ, contact, and legal information. We must also point out that these heuristics are

usually regarded as simplistic guidelines that outline the most grievous issues with interfaces. To

meet this requirement, we also conducted focus groups to understand better what users wanted to

see in URU-S, using WireFrames to explore different possibilities. Also, we conducted a usability

testing phase, the results of which are covered in chapter 5.

Next up, we have TR03 (Security); this requirement was achieved primarily due to the proto-

type’s limitations and testing. User-sensitive data is never, in fact, "leaked" as the application is

never installed in the user’s devices. URU-S is in closed internal testing phases, which means par-

ticipants only ever test the application using specific testing devices at the testing facility. Since the

application is never installed in a personal phone and does not require any form of authentication

to be used, privacy can be guaranteed by omitting systems that may compromise one’s informa-

tion in the current conditions. However, an argument could be made that, since we utilize Google

services, which involves a call to a Google provider, the user’s position could be comprised as it

is received and processed by Google in an end-version of the system. We presume that if a user

has an Android phone, which uses Google technology by default, they already know this. For

4.8 Requirement Satisfaction 55

the phone to be completely secure and devoid of Google’s presence, they would have to resort to

a completely different operating system, like Secure OS [62]. Nevertheless, this project’s scope

involves a regular Android system, and free reign was given to use whichever development tools

necessary. In the future, other tools could be explored to remove the Google services dependency

from URU-S entirely. Regardless, this will not change the fact that a regular Android system

would still have Google’s presence in other applications unless those are entirely disabled, which

could limit the device severely.

When addressing TR04 (Ethics), we would like to clarify that these ethics are not the ones

tied to strict codes of conduct, mainly since those can be very controversial and challenging to

put into practice as they cannot orient engineers on particular ethical conundrums that occur every

day [63, sec.4.1]; moreover, those codes are usually applied to the practice of engineering at

a higher level, which is beyond the scope of URU-S as an academic project. We define TR04 as

treating everyone with dignity and producing software exclusively to serve our end-users. It is also

crucial to be transparent with our users by allowing them to consult our detailed privacy policy,

which complies with Regulamento Geral sobre a Proteção de Dados (RGPD). Additionally, we

never take or base code off of somewhere without attribution to that source. We do not have any

form of malware or spyware adjacent to the application’s source code, and we use open-source

licensed tools and libraries whenever possible.

Another requirement would be TR05 (Robustness), which is guaranteed by extensively cover-

ing the application using instrumented testing tools. Despite not being the most formal (for reasons

explained in chapter 3), the methodologies used are still effective at verifying the system, as they

cover all significant branches of the code through relevant assertions. We will be expanding on

how our verification was conducted and the results obtained in chapter 5.

Furthermore, a standard requirement would be TR06 (Context-Awareness), which is provided

mainly through our integration with the NumberEight SDK. Using the context-awareness fore-

ground service, as explained in section 4.3, we can instill state changes in the application through,

for example, movement detection.

A crucial requirement would be TR07 (Battery Saving), which is accentuated by our battery-

optimized services. The only instance of the code where we do not prioritize battery power is when

we specify high-precision location requests. However, those requests are tied to context-awareness

and only function for a reduced period of a user’s day (when they are moving outdoors). Whenever

the user stops, goes indoors, or disables context-awareness, the location requests will not be put

into practice, and, as such, we do not view this as a violation of this requirement. We are under

the presumption that our users will not walk outdoors nonstop for prolonged periods, as that is not

consistent with the average urban lifestyle. Admittedly, suppose the user is in motion for hours

on end without stopping once. In that case, our reliance on high-precision location requests will

start to drain a more significant amount of battery. Drain under continuous outdoor movement is

an inherent limitation that we cannot work around without lowering the precision of the locations

that we obtain or increasing the interval for obtaining said locations. Lowering the precision or

increasing the interval for requests may compromise the inner workings of the geofencing service

56 URU-S Design and Implementation

and make it unusable, as it is less likely to notify users helpfully. Less granular location requests

would also increase the inaccuracy in positioning our users relative to dangerous zones, hurting

the application’s credibility. In the end, if we are to presume we cannot alleviate battery drain by

suspending requests (i.e., the user is constantly moving outdoors and thus needs permanent pro-

tection), we are met with an inescapable trade-off between precision and energy. After consulting

with the project supervisor, the orientation received indicated a necessity to prioritize accuracy

over energy due to the above presumption.

Next, we would discuss TR08 (Presence), which is evident throughout the entirety of URU-S.

Whenever we want to accomplish a long-running task with an application that does not require

user input, such as geofencing and context-awareness, foreground services are used. There are

two reasons these services are of the foreground kind instead of the background kind. The first

reason is that they use sensors and location permissions that are restricted in the background. The

second reason is that Android may kill these services prematurely if they are declared as simple

background services; in our implementation, these services return "START_STICKY," which,

according to the documentation, is the appropriate mode for services that are "explicitly started

and stopped to run for arbitrary periods of time" [64].

Finally, we have TR09 (Storage), which is the most straightforward requirement to fulfill. We

use an "SQLiteOpenHelper" class to construct a simple internal database within the device. This

database will store alerts received as well as custom sounds that the user uploads. The reason-

ing behind this database will be made more explicit when we look at the application’s practical

functionality in the next section.

4.9 Final Screens, Flow and Use Cases 57

4.9 Final Screens, Flow and Use Cases

The various screens of the application are a result of user-centered design. URU-S has gone

through a prototyping phase that consisted of WireFrames. The first WireFrame was presented at

a Focus Group and iterated upon given the feedback from the present participants. That WireFrame

guided the development of the prototype in Android code. The prototype was then subjected to a

usability testing phase that caused the developer to alter the interface. The final results are shown

in this section.

4.9.1 Home Screen

This portion of URU-S aims to satisfy the following use cases: US01 (Protection Status), US03

(Notification Suspension), US04 (Receive Notifications), US07 (Options menu), and US10 (Ac-

cess Statistics), US15 (Sharing).

As we can see from figure 4.15, it is pos-

sible to consult the status of the application

by looking at the banner at the top of the

page, which could be in different states. The

"real-time" alerts switch allows a user to reg-

ulate whether they are receiving notifications

or not. One may navigate to the "Options"

menu or the "Statistics" section, accessing the

application’s settings and documentation or

the danger statistics, respectively. Lastly, one

may also share the app by clicking on the

"Share" image-button.

Figure 4.14: Other states of URU-S

The states the application can be in

are "INDOOR," "STILL," "NORMAL," and

"OFF." An illustration of the other states be-

sides "NORMAL" can be seen in figure 4.14.

The first two are only detected with context

awareness enabled, whereas the last two can

be enabled or disabled manually. The appli-

cation will always show the current state that

it is in through this screen, having different

colors and descriptions.

Figure 4.15: Home Screen Illustration

58 URU-S Design and Implementation

4.9.2 Options Menu

The options menu aims to satisfy the following use cases: US06 (Options menu), US07 (Lan-

guage), and US16 (Documents).

As we can see from figure 4.16, this menu

allows the user to go into their alert settings,

swap the language between English (EN) and

Portuguese (PT), access the application man-

ual frequently asked questions, contact, and

legal information. The user can also navigate

to the previous screen by using the arrow in

the upper left corner.

In terms of languages, only English and

Portuguese are available. Support for other

languages may be added in the future. Ad-

ditionally, it is worth mentioning that trans-

lating the interface will also translate every

notification the application receives, and even

the channel names and descriptions. Our "fre-

quently asked questions" were extrapolated

from remarks made by participants in the fo-

cus group and usability tests. Legal informa-

tion consists of the privacy policy participants

had to consent to before each event required

their participation. The manual explains the

interface and all of its elements in great de-

tail. Ideally, users will not need the manual,

but it is at their disposal if need be.

Figure 4.16: Options Menu Illustration

4.9 Final Screens, Flow and Use Cases 59

4.9.3 Alert Settings

This section aims to satisfy the following use cases: US02 (Notification Volume), US03 (Noti-

fication Suspension), US04 (Receive Notifications), US05 (Notification Vibration), US08 (Select

Sound), US09 (Customize Sound).

Given the research presented in the State

of the Art section 2.4.6, the most effective

method of warning the VRU would be tactile.

Haptic feedback can be achieved by emitting

vibrations on the phone [65]. Acoustic signals

are also possible to accomplish by leveraging

the phone’s speakers. This interface was de-

veloped to allow the user to configure these

warnings.

As we can see from figure 4.17, this

screen allows the user to configure their real-

time alert settings. Users may adjust the vol-

ume of their notification, select a sound by

choosing from a list of preset sounds, or even

upload their custom sound. Users may also

adjust the vibration until it is to their liking.

Upon changing a sound or vibration setting,

a preview of the new sound or vibration will

play. It is also possible to remove or re-enable

the notification popup that accompanies the

sounds and vibrations.

Besides configuring acoustics, haptics,

and visuals of one’s alert, the user may also

use this screen to suspend or manually en-

able real-time alerts, much like in the home

screen. Moreover, the user may suspend or re-

enable the alert regulation mode. In doing so,

the application will kill or engage the context-

awareness foreground service, respectively.

Figure 4.17: Alert Settings Illustration

60 URU-S Design and Implementation

4.9.4 Statistics

This section aims to satisfy the following use cases: US10 (Access Statistics), US11 (Access Heat-

map), US12 (Receive Danger-Zone Notifications), US13 (Disable Danger-Zone Notifications).

As we can see from figure 4.18, this

screen allows the user to consult their "Dan-

ger Level" statistics, mainly how many alerts

they have received for a given date range

(which could be today, this week, this month,

this year, or of all time). Users can also see

which percentage of their alerts were false

alarms or genuine alerts. The application dis-

tinguishes between a false alarm or an alert

that successfully prevented danger via user in-

put. Suppose a user is struggling to figure out

what these terms mean. In that case, they may

click on the question mark in the center to ac-

cess a textual activity that explains the mean-

ing of the graphs and how they are obtained.

Essentially, the "false alarm" is when a warn-

ing does not help the user avoid danger, and

the "genuine" alarm helped avoid a collision.

The user labels events using the notification

that we will be looking at in the next section.

It is also possible to consult a "Danger

Map" that displays a heat-map of the most

dangerous areas. This heat-map can be ad-

justed to the user’s liking, similar to any

Google Map. Users may zoom in and out of

the map, use the "my location" feature to situ-

ate themselves better relative to the dangerous

zones, or even use the icon with the green ar-

rows pointing outward to make the map full-

screen, as represented in the figure. Addition-

ally, users can set whether or not they want

a popup to appear, warning them once they

have entered a dangerous zone.

Figure 4.18: Statistics Illustration

4.9 Final Screens, Flow and Use Cases 61

4.9.5 Real-Time Alert Notification

The real-time alert notification is the one that appears when the user is in imminent danger, and it

serves to satisfy the following use cases: US14 (Neutralize Notification), US17 (Ignore Notifica-

tions).

As we can see from figure 4.19, this is a

simple push notification with two action but-

tons attached to it. These action buttons feed

into the application’s statistics directly, allow-

ing the user to classify each detected danger

event as either a false alarm or something that

genuinely helped them avoid danger. The pur-

pose of the notification is to serve as a vi-

sual indicator and integrate with the "Statis-

tics" section, but not to serve as the determin-

ing visual queue that would get the user’s at-

tention. We presume that the sound and vi-

bration URU-S emits would be more immedi-

ate and effective ways of notifying our users.

The visual element, as represented by the fig-

ure mentioned above, is just an add-on to the

overall user experience.

Figure 4.19: Real-Time Alert Notification Il-
lustration

62 URU-S Design and Implementation

4.9.6 Context-Awareness Notification

The context-awareness notification is the one that appears when the "automatic alert regulation

mode" option is checked in the alert settings screen.

As we can see from figure 4.20, the noti-

fication tells the user that the device is regu-

lating alerts automatically but does not blare

out the term "context-awareness" right away,

as that could confuse people. Instead, if the

user interacts with the notification by clicking

on it, they will be brought to an explanation

screen that tells them what context-awareness

is and what it does for them.

The explanation screen should elucidate

the user by reassuring them that context-

awareness monitors their whereabouts, activ-

ity, device position, and headphone state. The

user is informed that localization and activ-

ity will suspend alerts whenever they are not

needed, and device position and headphone

state will regulate the notification’s volume

accordingly.

Figure 4.20: Context-Awareness Notification
Illustration

4.9 Final Screens, Flow and Use Cases 63

4.9.7 Context-Awareness Override

At any point, users may choose to override

context-awareness. This override is done by

manually engaging the alert system through

one of the real-time alerts switches. Users

can do this either in the alert settings or home

screens. If they choose to override context-

awareness, they will be prompted with a con-

firmation dialog, as seen in figure 4.21. Upon

clicking "YES," URU-S will kill the context-

awareness service entirely. In manual mode,

the application is receptive to alerts unless the

user manually disables them by flipping the

alert switch to "OFF."

Figure 4.21: Context-Awareness Override Il-
lustration

4.9.8 Alert Suspension

If the application is in its "NORMAL" state,

whether because it has detected the user is

walking outdoors through context-awareness

or manually set to receive alerts, the user may

suspend the alert system; we may see an illus-

tration of this in figure 4.22. Alert suspension

is a fail-safe mechanism built into the applica-

tion in case the user either wants to preserve

battery on the device, notifications are spam-

ming them because they are in a highly con-

gested area, or for any other motive. The user

may suspend the application for 10 minutes,

30 minutes, 1 hour, 4 hours, or until they de-

cide to reactivate manually.

Figure 4.22: Alert Suspension Illustration

64 URU-S Design and Implementation

4.9.9 Geofencing and Danger-Zone
Entry

Figure 4.23: Geofencing Notification Illustra-
tion

Geofencing is essential to guarantee US12

(Receive Danger-Zone Notifications). It will

only be active while the user is outdoors and

moving, which is intrinsically tied to context-

awareness. When active, the notification

shown in figure 4.23 will appear on the user’s

device. The notification informs the user that

URU-S is watching where they step, and, at

any moment, they may click on it to know

more about the service. Should they click on

the geofencing notification, they are brought

to the explanation activity that tells them what

geofencing is and what it does for them.

Figure 4.24: Danger-Zone Notification Illus-
tration

Furthermore, if the user enters a danger-

ous area, and they have the Danger-Zone En-

try Popup enabled, they will receive a no-

tification telling them they have entered an

accident-prone zone, which is shown in fig-

ure 4.24. Should they wish to position them-

selves better in regards to the danger they may

potentially be facing, they can click on that

notification to be brought to the map activity,

as shown in figure 4.25.

Figure 4.25: Danger-Zone Positioning Illus-
tration

Chapter 5

Evaluation of the Proposed Solution

This chapter details an evaluation of the URU-S prototype from three different standpoints. First,

from a programming verification standpoint, we will explain the methodology taken to write our

unit tests using proper Android framework tools. Second, we will be looking at how our usability

tests were conducted and our reasoning behind that. Third, we will show our additional measure-

ments regarding context-awareness and latency.

5.1 Unit-Test-Based Verification

As mentioned in section 3.3.2, due to the technical difficulties experienced when trying to perform

model checking, the verification was done primarily through instrumented unit tests. Each test

uses AndroidJUnit4, and they make up a testing suite of 86 unit tests in total. To calculate code

coverage, the results of which are shown in the next section, a Gradle command is used, "gradlew

createDebugCoverageReport." The coverage report is calculated using JaCoCo [66], which con-

siders the percentage of lines of code covered by the tests and the number of execution branches

within said code that are being covered, organizing everything by package.

We made use of "ActivityScenarioRule" and "ServiceTestRule" to write our tests. Both of

these components are a part of the "androidx.test" package. They were combined with previously

mentioned tools such as Espresso and UiAutomator to check the behavior of activities and services,

respectively.

To test an activity, we obtain an "ActivityScenario" object for the given activity and call the

"onActivity" method of that class to test different scenarios. Each scenario consists of setting up

a factor that we want to test and then asserting if the correct elements are on screen or the correct

event took place. For example, to test the method that sets up the "donut" graphs in the Statistics

section of the app, we have the code demonstrated in excerpt 5.1 and 5.2.

65

66 Evaluation of the Proposed Solution

Figure 5.1: Reports Activity Test First Scenario

As we can see, two scenarios are being tested. The first scenario is when the alert database

is empty, so when we call the "setUpDashboard()" method, we should expect to see all graphs

empty and all labels saying nothing was received. The second scenario consists of inserting noti-

fications of type "NOTIF_AVOIDED" (true positive), two of the type "NOTIF_IGNORED" (false

positive), and one of type "NOTIF_SUSPENDED" (suspended alert). We expect there to be six

alerts received; half of those should be true positives, a third should be false positives, and a sixth

should be suspended. Additionally, we can also verify if the graphs have the correct labels and the

correct colors. We expect green to be associated with the true positives, orange to false positives,

and blue to suspended alerts. Should all of these factors be true, the test will pass. Should anything

go wrong, then the test will fail.

5.1 Unit-Test-Based Verification 67

Figure 5.2: Reports Activity Test Second Scenario

We try to test all relevant behaviors within all of our activities, and we can use other techniques

to verify different kinds of behavior. For example, in our main activity, we have a status banner

that changes depending on the application’s state. We can instantiate some activity scenarios, as

done previously, to test out if the banner is always consistent with the correct state; this is shown

in code excerpt 5.3. As shown in the excerpt, to check if the correct graphic is on screen, we use a

"DrawableCompare" auxiliary class that compares the number of pixels and bytes in two images

to ascertain if they are identical.

68 Evaluation of the Proposed Solution

Figure 5.3: Banner Tests with Drawable Compare

Furthermore, we can combine Espresso and UiAutomator in several different scenarios to

simulate user interactions and directly manipulate the device, respectively. Espresso allows us to

ascertain if certain elements are within a view or to interact with said elements. For example, we

can use Espresso to slide our sliders in the alert settings activity. UiAutomator allows us to do

similar things. However, it has the extra ability to open the notification tray of the device, which

we use to test out our push notifications, and it can click anywhere on the screen. In contrast,

Espresso is limited to the identifiable components of a view. A code excerpt that shows them both

in action is 5.4.

5.1 Unit-Test-Based Verification 69

Figure 5.4: Espresso and Ui Automator Working Together

The excerpt is trying to test the method that uploads a custom sound into the device. It belongs

to the "AlertSettingsActivity," so that activity is instantiated with an adequate "ActivityScenario,"

however, we do not need to set anything up in the said scenario. We then use Espresso’s "onView"

method to localize the custom sound "image button" using its respective Android resource iden-

tifier. After localizing, we perform a "click" "ViewAction." Clicking on that button opens up the

device’s file system. At that point, Espresso is no longer valid as it is limited to "AlertSettings-

Activity" components, and the Android file system activity exists outside of it. To compensate

for Espresso’s limitations, we use the UiDevice object (available from UiAutomator) and click a

specific point on the screen where the respective card for a custom file sound is located. Of course,

this test presumes that the emulator it runs on has the file downloaded and placed in that specific

screen position. Whenever a test requires some form of simulated user interaction that requires

assets to be in the emulator, code annotations will detail those assumptions.

Figure 5.5: Binding Services for Testing

To test our services, we must use a custom binder to bind the service being tested to a service

"rule." Besides the binding process, the procedures and technologies used are the same as ac-

tivities. Code excerpt 5.5 shows the example of a custom binder, in this case, associated with the

"ContextAwarenessForegroundService" that is used explicitly for testing purposes. Additionally, a

70 Evaluation of the Proposed Solution

code sample for the test relative to the method that starts and stops the different context-awareness

detection is supplied in excerpt 5.6 to exemplify the binding process at an instrumented test level.

We test every single detection and possible case; however, for simplicity’s sake, the excerpt is

abbreviated and only shows us binding the service and ascertaining that the movement detection

has started by consulting a shared preference.

Figure 5.6: Context-Awareness Service Test

We test other components besides activities and services, but the techniques used are essen-

tially the same. We use built-in methods from the Android testing framework whenever possible.

If we need to simulate user actions in the current view or across multiple views, we may use

Espresso or UiAutomator, respectively.

5.1 Unit-Test-Based Verification 71

5.1.1 Results

The code coverage shown in figure 5.7 demonstrates that our instrumented tests have covered a

great majority of the code (approximately 90%). We can also see that most execution branches

have been covered as well. All application packages have next to 100% instruction coverage,

except for the "receivers" and "dialogs" packages.

As we can see from figure 5.8, the "receivers" package is not fully covered because of the

GeofenceBroadcastReceiver. We cannot fully cover the geofencing methods as, to do so, we

would have to simulate a geofence entry event. Although we have the methods to attempt such a

thing, the official documentation [67] is deficient in explaining how to generate a valid geofence

entry transition intent through hard-code. Due to this, we cannot test the code execution branch

where the application enters a geofence. Regardless, the geofencing mechanism has been verified

via field testing and confirmed to be working as intended when a geofence entry is detected.

Moreover, we can see that the "dialogs" package has insufficient coverage. Testing a dialog

involves having them show up on the screen. Even though this is possible as individual tests,

using them in the testing suite of the application will cause it to hang indefinitely. This dead-

lock happens because tools like Espresso can experience unpredictable behavior when dealing

with dialog objects, even when the dialog itself has been dismissed by calling the correct method.

Despite this, the code within each dialog consists of a simple "YES" or "NO" case, depending

on whether the user clicked the former or the latter; confirming a dialog will set a given shared

preference to another value. At most, a dialog will start a timer, which is what happens when

the user suspends the application’s alerts with the real-time alerts switch, as seen in figure 4.22

of the previous chapter. The code behind these elements is uncomplicated and similar to other

instructions that are extensively covered. The dialog code is also a very minute portion of the

overall code-base, and they have been tested empirically.

In conclusion, every relevant behavior of the interface was appropriately verified, which is

further cemented by the logs of our UI Exerciser Monkey [46]. The application was submitted to

stress tests of up to one hundred thousand pseudo-random events. Barring a single experiment that

yielded a crash from URU-S that was swiftly patched, the application managed to resist all stress

tests without crashing once. An excerpt of one of the various logs from the "Monkey" tool can be

consulted in excerpt 5.1. It is also worth mentioning that participants in the usability testing phase

did not find any bugs with the application.

72
E

valuation
ofthe

Proposed
Solution

Figure 5.7: Code Coverage Obtained with JaCoCo [66]

Figure 5.8: Receivers package coverage

5.1
U

nit-Test-B
ased

V
erification

73

1 05-25 18:15:14.999 17411 17411 D AndroidRuntime: Calling main entry com.android.commands.monkey.Monkey
2 05-25 18:15:15.000 17411 17411 W Monkey : args: [-p, org.feup.luis.uru_s, --throttle, 500, --ignore-crashes, --ignore-timeouts,

--ignore-security-exceptions, --monitor-native-crashes, -v, 100000]
3 05-25 18:15:15.000 17411 17411 W Monkey : arg: "-p"
4 05-25 18:15:15.000 17411 17411 W Monkey : arg: "org.feup.luis.uru_s"
5 05-25 18:15:15.000 17411 17411 W Monkey : arg: "--throttle"
6 05-25 18:15:15.000 17411 17411 W Monkey : arg: "500"
7 05-25 18:15:15.000 17411 17411 W Monkey : arg: "--ignore-crashes"
8 05-25 18:15:15.000 17411 17411 W Monkey : arg: "--ignore-timeouts"
9 05-25 18:15:15.000 17411 17411 W Monkey : arg: "--ignore-security-exceptions"

10 05-25 18:15:15.000 17411 17411 W Monkey : arg: "--monitor-native-crashes"
11 05-25 18:15:15.000 17411 17411 W Monkey : arg: "-v"
12 05-25 18:15:15.000 17411 17411 W Monkey : arg: "100000"
13 05-25 18:15:15.001 17411 17411 W Monkey : data="org.feup.luis.uru_s"
14 (...)
15 05-25 18:15:15.057 17411 17411 I Monkey : // Event percentages:
16 05-25 18:15:15.057 17411 17411 I Monkey : // 0: 15.0%
17 05-25 18:15:15.057 17411 17411 I Monkey : // 1: 10.0%
18 05-25 18:15:15.057 17411 17411 I Monkey : // 2: 2.0%
19 (...)
20 05-25 21:29:20.663 17411 17411 I Monkey : :Sending Touch (ACTION_DOWN): 0:(67.0,189.0)
21 05-25 21:29:20.668 17411 17411 I Monkey : :Sending Touch (ACTION_UP): 0:(127.03428,253.60945)
22 05-25 21:29:21.173 17411 17411 I Monkey : :Sending Touch (ACTION_DOWN): 0:(913.0,1289.0)
23 05-25 21:29:21.176 17411 17411 I Monkey : :Sending Touch (ACTION_UP): 0:(897.45966,1286.4905)
24 05-25 21:29:22.184 17411 17411 I Monkey : :Sending Trackball (ACTION_MOVE): 0:(-2.0,-4.0)
25 05-25 21:29:22.186 17411 17411 I Monkey : Events injected: 100000
26 05-25 21:29:22.188 17411 17411 I Monkey : :Sending rotation degree=0, persist=false
27 05-25 21:29:22.198 17411 17411 I Monkey : :Dropped: keys=0 pointers=37 trackballs=0 flips=245 rotations=0
28 05-25 21:29:22.198 17411 17411 I Monkey : ## Network stats: elapsed time=11647137ms (0ms mobile, 0ms wifi, 11647137ms not

connected)
29 05-25 21:29:22.198 17411 17411 I Monkey : // Monkey finished

Listing 5.1: Monkey log example

74 Evaluation of the Proposed Solution

5.2 Usability-Test-Based Validation

When it comes to usability testing, there are essentially two routes to take: quantitative and qual-

itative. The quantitative route is adequate for proving something. However, it must be done very

rigorously and with a large representative sample size that could be extrapolated to a population

to draw significant conclusions. Experts in laboratories usually take this route, observing partic-

ipants through a one-way mirror and communicating tasks to them in a "Voice of God" sort of

way. These experts measure factors like the number of tasks completed and how long it takes to

complete said tasks; a rigorous protocol must be followed for each participant. The qualitative

route enables people to get insights on improving what they are building, is simpler to do, and

far more informal. The facilitator sits in a room with a participant, gives them a series of tasks

to complete, and asks them to "think out loud," querying them about why they feel a certain way,

what difficulties they may have, and how that could be improved [68].

Due to the current COVID-19 pandemic and the conditions available at the Faculty, it would be

very challenging to gather hundreds of participants and observe each of them through a one-way

mirror as if we had an actual usability lab and a recruitment agency at our beck and call. Thus,

the testing done regarding the URU-S prototype is closer to the qualitative end of the spectrum.

To test our prototype, we invited participants to room I322 and sat with them, giving them a series

of tasks and asking them to externalize their thought process. The facilitator also tried to do some

measurements of how long participants took to complete a task, whether or not they had completed

it, and how difficult it was for them on a scale of 1 to 5. The usability test also included an outdoor

phase where the participants would interact with the application’s status change. A simulated

"danger-zone" would be approached, and then participants would have to face a dangerous element

in a limited visibility intersection. For more details, one may consult the usability testing report in

appendix B.

It is worth mentioning that we had eight participants for the testing phase. The sample size

is small and not enough to reach statistical relevance. However, to quote Steve Krug in his book

"Rocket Surgery Made Easy" [68], "the point of this kind of testing is not to prove anything;

the point is to identify major problems and make the thing better by fixing them. It just works

because most of the kinds of problems that need to be fixed are so obvious that there is no need

for ’proof’". That statement is further reinforced by the fact that URU-S is a straightforward

application with only four main screens ("Statistics," "Home," "Options," and "Alert Settings"),

a couple of notifications, and two services that act to protect our users. The prototype is not

particularly complex to deal with, and even less tech-savvy participants managed to find their way

around it.

5.2 Usability-Test-Based Validation 75

5.2.1 Setup

In appendix B we go more in-depth into the results obtained in the usability testing phase and offer

a conclusion, but we omit our setup. We can use this section to describe that. As mentioned in

the report, the test consisted of two phases. Phase 1 was held in room I322, where the participant

and the testing facilitator sat next to each other and worked their way through a set of tasks;

the prototype was presented in testing phones available at the institute, namely the "Xiaomi Mi

MIX 3 5G" and the "SAMSUNG-SM-G977B". Phase 2 was held outdoors and culminated at the

"RAMP" field testing area. An illustration of that area may be found in figure 5.9. The participant

would wait at the "X" marked on the left of the image, while the facilitator would hide behind

the rightmost wall. The facilitator would then hook up their laptop to the camera like what is

shown in figure 5.10. After setting that up, the facilitator would prompt the participant to descend

the ramp, following the direction of the green arrow highlighted in 5.9. Once the participant had

breached the camera’s field of view, the facilitator would engage a warning on the testing device

and simultaneously launch a remote-controlled car in the direction of the red arrow. The remote-

controlled car would act as a simulated danger, and the entire situation would mimic a limited

visibility intersection. The camera’s feed was also recorded, using the windows built-in camera

application so that the facilitator could keep a registry of the participant’s video reactions. Ideally,

each participant should stop before hitting the remote-controlled car, as the warning is given well

in advance. Once the participant has avoided the car, they are expected to register to avoid danger

using URU-S’s notification.

Figure 5.9: Field Testing Area Illustration

76 Evaluation of the Proposed Solution

(a) Laptop placed behind the wall (b) Camera overseeing the ramp

Figure 5.10: Camera and Laptop Connected

5.2.2 Result

All participants managed to react to the warning and avoid the remote-controlled car thrown at

them, stopping before hitting it. As described in appendix B, they also had minimal difficulties

with the interface. In that appendix, we can also see how long users took to complete tasks (this

was measured by starting a timer on a smartphone for each task), their difficulty, and whether they

managed to complete them without help. Overall, participants managed to understand the general

concept of the application, contributing to its development with a plethora of minor tweaks that

could improve its general usability; these recommendations are also described in the appendix. It

is imperative to continue to work with users to keep URU-S centered on their needs and reactions.

5.3 Additional Measurements

Latency and context-awareness measurements have been done with the current setup to evaluate

the performance of URU-S quantitatively. The latency requirement is outside of this project’s

scope; however, we measured it as a relevant dimension for an application such as URU-S. We

conducted some measurements using WiFi, 5G, and the Firebase server as an intermediate. La-

tency was measured by subtraction of endpoint application timestamps placed in strategic points

of our testing infrastructure; it is relevant to measure latency under these different technologies to

evaluate the network access comparatively.

5.3 Additional Measurements 77

5.3.1 Context-Awareness

URU-S contains a context-awareness mechanism. It is relevant to understand the time and distance

traveled until a state swap happens because those represent "dead-zones" for the alert system.

When a user travels outside, coming from a building, for the period that the application takes to

recognize that they are outdoors, alerts are still disabled. A similar thought process is applied when

the user is outdoors, stops, goes into the "STATIONARY" state, and then begins to move again.

Until the application recognizes that the user is moving, alerts are still disabled. The following

questions can frame our experiments:

1. How long does the application take to switch to a "NORMAL" state when exiting a building?

2. How much do we walk out of the building until the application switches to a "NORMAL"

state?

3. How long does the application take to switch to an "INDOOR" state when entering a build-

ing?

4. How much do we walk into the building until the application switches to an "INDOOR"

state?

5. How long does the application take to switch to a "STATIONARY" state when we stop

moving?

6. How long does the application take to switch to a "NORMAL" state when we started moving

and were previously standing still?

7. How much do we walk until the application switches to a "NORMAL" state, knowing we

were previously standing still?

To get a sense of how damaging these "dead-zones" would be for the prototype, we measured

the time taken, and distance traveled until a state swap occurred. The way this was done was

using a screen recorder on a device that had URU-S installed and using another application called

SenseMyCity [69] to measure the distance traveled during each testing session. SenseMyCity also

gave us measurements of time taken during the session, but we would always match that with the

screen recording to see how long it took for the swap to occur. The tester would always initiate

the screen recorder and SenseMyCity simultaneously before beginning a test.

Tests consisted of walking in and out of a building to test the indoor and outdoor detection and

moving and stopping on an outdoor space to test movement detection. In total, 75 measurements

were made, 36 of which are indoor and outdoor, and the remaining 39 are movement detection.

78 Evaluation of the Proposed Solution

5.3.1.1 Indoor/Outdoor

The tester had to walk inside and outside of a building to get these measurements. The tester

would always factor out the time taken to walk to the door to measure how long it took to swap

into the proper state; the countdown would only start once they had stepped foot inside or outside

the building.

For all 36 measurements in both directions (indoor to outdoor and outdoor to indoor), we

noticed that the application changed states more rapidly when going into the building instead of

leaving it. This pattern motivated the tester to split the data by direction. This split means we

would analyze the parts of the overall sample relative to moving in the indoor to outdoor direction

separate from the outdoor to indoor direction. Thus, the main data-set was split into two groups of

18 measurements for each direction.

The "indoor to outdoor" group had a mean value of 34,33 seconds with a sample deviation of

10,48 seconds, coupled with a mean value of 56,11 meters with a deviation of 22,53 meters for dis-

tance traveled. The data gathered means we can answer question number one with "approximately

34,3 seconds" and question number two with "roughly 56,1 meters".

On the other hand, the "outdoor to indoor" group had a mean value of 19,28 seconds with a

deviation of 13,06 seconds, coupled with a mean value of 20,11 meters with a deviation of 19,11

meters. Our data means we can answer question number three with "approximately 19,3 seconds"

and question number four with "roughly 20,1 meters".

Figure 5.11: Comparison Between the time to Swap in both Directions Indoor/Outdoor

Moreover, in terms of outliers, our data is far more consistent here than for the latency mea-

surements. If we plot the time taken to swap in either direction, we can see from figure 5.11 that

we only detect a single outlier in the outdoor to indoor direction. This outlier may be explained by

the fact that the tester lost network connectivity during one session, as the Faculty had an outage.

5.3 Additional Measurements 79

When there is no network connectivity, it seems that URU-S has trouble detecting that the user is

indoors.

5.3.1.2 Moving/Stationary

The tester started and stopped their motion on an open space to measure this detection. There were

39 measurements taken, 20 of which were the tester stopping after moving, and the remaining 19

consisted of moving out of a stationary state. It is important to note that time is tracked differently

for these tests. Time starts ticking for the "moving to stop" scenario after the tester goes into a

full-stop; time stops ticking once the application recognizes they are no longer moving. For the

"stopped to moving" scenario, time begins to tick as soon as the tester starts their movement and

finishes ticking once the application has realized they are no longer standing still. In the scenario

where we stop and wait for the application to realize our immobility, the distance traveled is 0

meters. In the other scenario, distance traveled relates to a "dead-zone" where the tester is still

labeled as being "stationary" by the application when they are already moving.

Similar to the previous test, we have two groups of divided samples. It is worth noting that

our values relative to distance traveled only consider the 19 values of the "stationary to moving"

sample, as the inverse direction has 0 travel distance.

When analyzing the samples separately, a mean value of 11,80 seconds with a deviation of

7,40 seconds was obtained for the "moving to stationary" scenario. These measurements mean we

can answer question number five with "approximately 11,8 seconds".

Figure 5.12: Comparison Between the time to Swap in both Directions Moving/Stationary

The "stationary to moving" scenario had a mean value of 9,37 seconds with a deviation of

3,27 seconds. For distance traveled, we had a mean value of 5,63 meters with a deviation of

11,05 meters. As we can see from figure 5.12, the time swap difference between each scenario is

80 Evaluation of the Proposed Solution

far less relevant for this experiment than the last. However, we can still see that the application

swaps faster in this case. Either way, we can answer question number six with "approximately 9,4

seconds" and question number seven with "roughly 5,6 meters".

5.3.1.3 Conclusion

We can conclude that URU-S takes longer to recognize that users have left a building than their

entry upon it, presuming when they enter the building, it can automatically connect to an indoor

WiFi connection. Additionally, it can detect that the user is moving or standing still even faster

than localizing them. These differences in detection sensitivity are consistent with the implemen-

tation detailed in section 4.3. In the mentioned section, we specify that our context glimpses are

filtered to prevent the application from being overloaded. The indoor to outdoor glimpses have

more filtering than the moving to stationary ones, thus justifying these differences in detection.

Overall, these "dead-zones" are not too damming for the application, as, on average, URU-

S will detect changes in a reasonable time span. This time span coupled with average human

walking speed means users will not travel too far while in a "dead-zone" either. Moreover, the

application allows users to override context-awareness and manually enable alerts if they need

immediate protection, mitigating the problems associated with not having instant and ultra-reliable

state detection.

5.3 Additional Measurements 81

5.3.2 Latency

URU-S attempts to prototype a VRU protection system. These systems are safety-critical, and

receiving warnings hundreds of milliseconds too late can be the difference between avoiding an

accident or getting hit by another road user. It is important to get a sense of the latency associated

with these warnings, the components that make up that latency, and the different access technolo-

gies that can be integrated into the system to minimize latency. By studying each component of

the latency, we can discover the main source of slowdown and make recommendations for future

systems regarding which aspects should be improved. By experimenting with different access

technologies in different coverage scenarios, we may compare network access and get a sense of

how they would behave in a system such as this one. Additionally, our target delay here is 300

milliseconds; as mentioned by Scholliers et al., "road safety and pre-crash applications require

an estimated 300 ms end-to-end latency time as stated in ETSI TS 101539-1" [3]. The following

questions can frame our experiments:

1. What is the main component that affects our latency values, considering our current infras-

tructure?

2. What latency values can we expect when connected to a poor coverage WiFi network?

3. What latency values can we expect when connected to a good coverage WiFi network?

4. What latency values can we expect when connected to a poor coverage 5G network?

5. What latency values can we expect when connected to a good coverage 5G network?

6. When comparing WiFi to 5G at their best, which one guarantees lower latency?

7. Can we meet a target delay of 300 milliseconds?

First and foremost, we define "latency" as the time required for a warning message to leave

the designated JavaScript testing tool running in a laptop and reach the destination smartphone’s

instance of the Firebase Messaging service. To calculate this, we use the formula listed below.

L = t3 − t0

82
E

valuation
ofthe

Proposed
Solution

Figure 5.13: Packet Travel Diagram where L = t3 − t0. We consider ti: application layer timestamp placed in points of the infrastructure; t0: timestamp
obtained before the data and token payload is delivered to the server (observable and comparable); t1: timestamp marking the arrival of the payload at
the server (not observable); t2: timestamp for message acceptance by the server, after going through message queues, the internal broker and before
sending the data out to the device (observable but not comparable due to an unknown time sync source); t3: timestamp for message acceptance by the
smartphone, engaging the warning for the VRU (observable and comparable).

5.3 Additional Measurements 83

In the formula, L is a latency value expressed in milliseconds, t3 is the timestamp for message

delivery, and t0 is the timestamp for message sending. Additionally to the endpoint timestamps,

it is helpful to understand the components of the latency, and that is why it is essential to try

to measure intermediate timestamps such as t1 and t2 that mark the arrival and departure of the

data payload to the Firebase server, respectively. These timestamps are marked according to our

infrastructure, as we can see in figure 5.13. In this diagram, ti represents an application layer

timestamp, being that t1 is not observable and t2 is observable but not comparable, as the time

source for the Firebase Cloud Messaging Server cannot be controlled. Since we do not know

the synchronization mechanism for the Firebase server, we cannot evaluate all components of the

absolute delay.

We will rely on the larger interval from t3 to t0. We evaluated WiFi and 5G access compara-

tively and pinged the Firebase server from the laptop and the smartphone. Suppose the overhead

from the Firebase server’s message queues is negligible. In that case, the ping from the laptop to

Firebase should be representative of twice the interval t1− t0 and vice-versa for the interval t3− t2.

Should the ping values be relatively low, then this indicates that the latency is mainly affected by

the overhead introduced by the Firebase server despite its physical distance. On the other hand, if

the ping values are high, it could mean that the server is positioned too far to be useful, highlighting

the importance of having a more local alternative (situated in Lisbon, for example).

To guarantee that L > 0, the system clocks of the laptop and smartphone must be appropri-

ately synchronized. Once both clocks are synchronized, we print out t0 before making the HTTP

request to the Firebase Cloud Messaging Server and then print out t3 when the message lands on

the smartphone, triggering the "onMessageReceived()" method of the Firebase Messaging service.

We then take the logs obtained from the testing tool and the smartphone logs and subtract each

message timestamp pair. Two methods can be used to achieve clock synchronization: NTP and

GPS. Both of these methods were attempted. With NTP (Network Time Protocol), we tried to syn-

chronize the devices by forcing the laptop to sync its system clock with "2.android.pool.ntp.org",

using the Linux command "ntpdate 2.android.pool.ntp.org". According to the official Android

documentation on the subject [70], the previously mentioned server is what Android devices use

by default to sync their clocks, and most commercial Android devices sync their clocks with

network-provided time. Synchronizing with GPS time was also tested; however, this required

a rooted device. Some Android versions allow the user to change the time synchronization to

GPS time instead of network-provided time without root permissions, but those were not available

for testing. Using a rooted device and Smart Time Sync [71], we managed to synchronize the

smartphone with GPS time. To synchronize the laptop, we used a GNSS 7 CLICK circuit board

connected to a GPS receiver. The circuit-board was plugged into the laptop, and the NMEATime2

- PC GPS Time Synchronization [72] program was used to synchronize the computer’s clock with

GPS time.

It is worth mentioning that, even with both devices synchronized, the time interval for our

current infrastructure could be affected by a myriad of different factors. The Firebase Cloud Mes-

saging Server could be experiencing much traffic, causing a significant slowdown on its behalf;

84 Evaluation of the Proposed Solution

this issue is not only a traffic peak but an inherent delay that we cannot quantify. Additionally,

it is essential to remember that the message queues for the previously mentioned server are not

optimized for low-latency safety-critical road-safety scenarios, as that is not the primary use case.

Moreover, the Firebase Cloud Messaging Server would sometimes return "connection refused"

errors during our experiments, perhaps because we were sending too many messages at a time.

Thirdly, there could be paging delays associated with the experimental 5G station. Only the very

last portion of the interval, colored purple in figure 5.13, relies on the phone’s connectivity.

To reduce the number of varying factors and control our variables better, we tried to measure

the interval t3 − t2. We would obtain t3 at the smartphone and, instead of tracing the origin point

back to when the message is sent initially from the testing tool, we would subtract t2. The new

variable t2 would be the timestamp for when the message is accepted by the server and sent to

the device. Theoretically, it is possible to do this by linking our Firebase Messaging instance with

the BigQuery service [73]. However, when we attempted this, we quickly found that we would

sometimes "lose" messages that had been accepted but did not have the corresponding delivery

timestamp. BigQuery would also occasionally list values that suggested messages had been deliv-

ered before being accepted by the server, resulting in negative latency. The negative latency values

lead us to believe that the timestamps obtained from the integration were not synchronized. Fur-

thermore, BigQuery would report that we had different instances of the same Firebase Messaging

service running in the same device simultaneously, which is nonsensical. All of these issues added

to the fact that all data gathered using this method would come with a delay of about 48 hours, un-

labelled. What we mean by "unlabelled" is that, supposedly, we are allowed to append a Firebase

Analytics label to our messages, which we would use to label our experiments. BigQuery never

loaded a single Firebase Analytics label. After filing bug reports, no significant answers were

given. Due to these problems, we have decided not to take this route. Even though our current

interval (L = t3 − t0) makes it challenging to reach definite conclusions, it has well synchronized

and immediate values, so that we will opt for that instead due to a lack of a better option.

In the following section, we will be estimating the intervals t1 − t0 and t3 − t2 using the ping

command to send packets to the Firebase server.

5.3.2.1 Ping values

Let us consider that ∆0,1 = t1 − t0 and ∆2,3 = t3 − t2. As we can see by figure 5.13, we can ping

the Firebase server to approximate the ∆0,1 and ∆2,3 intervals. The approximation via ping will

give us a notion of the network layer latency on our messages. As mentioned previously, we can

also deduce if our latency values will be mostly influenced by the network connectivity on our

devices or by the overhead introduced by the server. It is worth mentioning that each ping travels

to and from the server, whereas we are interested in only one of the travel paths. For ∆0,1, we are

interested in packets heading towards the server from our testing tool. For ∆2,3, we are interested

in packets heading from the server to our smartphone. In any case, we presume that our intervals

can be calculated by approximation of half the average ping (AV G), so: ∆ = AV G
2 .

5.3 Additional Measurements 85

The following measurements for ∆0,1 and ∆2,3 are relative to the same WiFi network. Both

devices (phone and laptop) were right next to the router, emulating a good coverage condition. We

obtained the following:

Table 5.1: WiFi Ping ∆0,1

Packets sent AVG (ms) ∆0,1 (ms)
198 19,292 9,9645
180 19,896 9,948
299 18,694 9,347
82 18,079 9,0395

Table 5.2: WiFi Ping ∆2,3

Packets sent AVG (ms) ∆2,3 (ms)
289 72,935 36,4675
256 54,289 27,1445
34 51,912 25,956
155 62,452 31,226

All of our measurements were done through a ping with hostname "fcm.googleapis.com." We

experimented with a varying number of packets. We found that the ping on the smartphone’s side,

∆2,3, was significantly superior to the one obtained on the laptop’s side, ∆0,1. Evidently, it seems

we can presume that ∆0,1 ≈ 10 (ms) and ∆2,3 ≈ 30 (ms), giving us an overall network latency of

∆0,1 +∆2,3 ≈ 40 (ms). It is worth remembering that this latency is calculated without factoring in

the overhead from the Firebase server.

The following measurements for ∆2,3 were obtained with a cellular connection on the smart-

phone, placing it in line of sight of the experimental 5G station and thus emulating a good coverage

scenario. We obtained the following:

Table 5.3: 5G Ping ∆2,3

Packets sent AVG (ms) ∆2,3 (ms)
105 39,714 19,857
63 41,959 20,9795
141 41,007 20,5035

As we can see, in the 5G test, ∆2,3 ≈ 20 (ms). It is worth mentioning that the ping on the

laptop’s side remained relatively the same at about 20 milliseconds of average ping. Since the ping

for the laptop did not change, we can keep ∆0,1 ≈ 10 (ms). Taking the above into consideration, the

network latency is now ∆0,1+∆2,3 ≈ 30 (ms). Once again, these calculations are without factoring

in the overhead from Firebase.

We can expect a ten millisecond difference between a good connectivity scenario for WiFi

and 5G in receiving packets from the Firebase server. We conclude that even with WiFi, we only

have a network latency of about 40 milliseconds, which is not too significant and indicates that the

86 Evaluation of the Proposed Solution

Firebase server’s physical distance from the device does not critically impair the latency interval

(L). However, it is worth mentioning that with an unstable internet connection, one can obtain high

ping. For example, suppose the smartphone is placed within the Telecommunications Institute,

outside of the 5G station’s line of sight. In that case, we observe an average ping of about 186

milliseconds, meaning ∆2,3 ≈ 93 (ms). If we were to add ten milliseconds for the laptop, that would

mean an overall network latency of 103 milliseconds. Moreover, ping may experience fluctuations

for both the smartphone and the laptop, being more significant on the smartphone’s side even when

connected to the same network; as far as we can tell, this is due to a hardware characteristic. We

decided to evaluate the connectivity in a good coverage scenario and disregard other factors for this

study. These factors include outliers, outages, instability, high-traffic congestion, and scalability.

We want to observe network latency in nominal conditions; we are also limited in our time and

capacity to investigate all of those factors at once.

On that note, since our ping values are relatively low (taking into account the above assump-

tions), this means that the values of L that will be presented in the following sections will be

majorly influenced by the time that a message takes to sort itself out within the Firebase server.

We delimit this interval in figure 5.13 with time stamps t2 and t1. The time a message takes to be

accepted and forwarded to the correct phone in the Firebase server is given by t2 − t1. Once again,

this interval cannot be calculated directly since t1 is not observable, and it can only be estimated

based on our ping values.

In conclusion, we can answer question number one and say that "the main component that

affects our latency values, taking into account our current infrastructure" is the delay associated

with the Firebase server’s internal message handling, given by the interval t2 − t1.

5.3.2.2 WiFi

WiFi measurements were done in the tester’s domicile using their Xiaomi Redmi Note 8 Pro with

network-time sync enabled by default. The router is a dual-band WiFi certified 802.11ac device

that operates in both 2,4 GHz and 5 GHz. The tester’s laptop had been synchronized with the

NTP server "2.android.pool.ntp.org". Two scenarios were tested: one with good WiFi coverage

and another with worse coverage. In both of those scenarios, a series of warning messages were

sent using a script.

The poor coverage scenario was done first. The poor coverage conditions were achieved by

accessing the home WiFi network from a distant spot in the house. The network speed at the time

of the test was 12,40 Mbps download and 1,23 Mbps upload. The smartphone and the laptop were

both connected to the same network. With a sample size of 176 messages, we obtained a mean

value of 471,35 milliseconds and a sample deviation of 231,80 milliseconds. Most of our values

are within the 253 to 533 millisecond range. Our boxplot, shown in figure 5.14, also demonstrates

that we had six outlier values that were above 1 second, which could be explained by network

fluctuations in an unstable connectivity area such as this one. We can answer question number two

and say that in a "poor coverage WiFi network," we expect a latency of about 471 milliseconds.

5.3 Additional Measurements 87

Figure 5.14: WiFi Boxplots for Good and Bad Coverage

The subsequent testing scenario was a good coverage scenario. The coverage conditions were

achieved by accessing the home network while standing right next to the router. The network

speed at the time of the test was 295,50 Mbps download and 102 Mbps upload. The smartphone

and the laptop were, once again, connected to the same network. With a sample size of 193

messages, we obtained a mean value of 301,91 milliseconds with a sample deviation of 172,28

milliseconds. Most of our values are within the 197 to 397 millisecond range. Similar to our

previous test, our boxplot, shown in figure 5.14, demonstrates six outlier values above 1 second.

However, we now have fewer outliers in total, and they barely reach 1,40 seconds, whereas, in

the previous experiment, two of our outliers were above 1,60 seconds. We can answer question

number three and say that in a "good coverage WiFi network," we expect a latency of about 302

milliseconds.

5.3.2.3 5G

5G measurements were done at the Telecommunications Institute Shannon Laboratory (I322) and

outdoors in the grass fields next to building B at FEUP. The Android device used for testing was

a Xiaomi MI 10 5G with root privileges and the capability of accessing the experimental 4G/5G

station at FEUP. To synchronize the smartphone and the laptop, GPS was used. Two scenarios

were tested: one with good 5G coverage and another with worse coverage. In both of those

scenarios, a series of warning messages were sent using a script.

The poor coverage scenario was done first. The coverage conditions were achieved by enabling

mobile data on the testing device and placing it on one of the laboratory window-sills. Due to how

the 5G station is angled, the laboratory should be a low coverage area, as it sits almost wholly

88 Evaluation of the Proposed Solution

out of its field of view. The network speed at the time was 2.11 Mbps download and 13.4 Mbps

upload. With a sample size of 103 messages, we obtained a mean value of 577,7 milliseconds and a

sample deviation of 850,6 milliseconds. Most of our values are within the 305 to 945 millisecond

range. The test also experienced much higher variability than the WiFi variant. As we can see

from the boxplot in figure 5.15, we have three outliers above 1 second, which is less than the six

obtained with WiFi. However, these outliers are far more outrageous, reaching up to 8 seconds.

The high variability experienced could be a combination of network instability due to it being a

lousy coverage area and paging delays on the station’s behalf. We can answer question number

four and say that in a "poor coverage 5G network," we expect a latency of about 578 milliseconds.

Figure 5.15: 5G Boxplots for Good and Bad Coverage

The following test was done in a good coverage scenario. The coverage conditions were

achieved by bringing all of the tester’s hardware to the grass fields outside building B. The tester

set up their workbench to have both devices facing the experimental station directly, as shown

in figure 5.16. The coverage obtained in this location was far superior to that of the laboratory

since we had a direct line of sight. The network speed at the time was 201,2 Mbps download

and 135,6 Mbps upload. With a sample size of 71 messages (21 of which were removed due to

a Firebase error that caused a series of outlier values), we obtained a mean value of 421,8028

milliseconds and a sample deviation of 195,6643 milliseconds. Most of our values are within the

216 to 556 millisecond range. Our boxplot, shown in figure 5.15, surprisingly shows the least

amount of outliers so far, only one of them being above 1 second and consistent with outliers

obtained when testing with high-speed WiFi. We can answer question number five and say that in

a "good coverage 5G network," we expect a latency of about 422 milliseconds.

5.3 Additional Measurements 89

(a) Devices placed outdoor (b) Devices in LOS (c) Close-up of the station

Figure 5.16: Outdoor testing setup

5.3.2.4 5G vs. WiFi

It is worth reiterating that our latency interval is influenced mainly by the overhead introduced by

the Firebase server and not the network access, meaning we cannot accurately compare which of

these technologies would fare best in this scenario. Judging exclusively from the ping values we

showed previously, 5G seems to be the best candidate; however, as we can see from figure 5.17,

we obtained worse values with it than we did in the WiFi scenario.

Figure 5.17: Comparing WiFi with 5G values

This discrepancy could be attributed to the fact that the Firebase server may have been ex-

periencing much traffic when the 5G measurements were conducted. That assumption is further

90 Evaluation of the Proposed Solution

accentuated by the fact that our values show a peak in latency after a given point in the experiment;

this peak is consistent with console logs that report "connection refused" errors from Firebase.

In conclusion, we cannot give an accurate answer to question number six. We can only claim

that we happened to have lower values when measuring with WiFi access, which is not to say that

it is the superior technology.

5.3.2.5 Meeting the Target Delay

As we detailed in section 5.3.2.2, the best values we obtained had an average latency of about

302 milliseconds, meaning that, on average, they are above the target delay. We can answer

question number seven and say that no, it is not probable that we can "meet a target delay of 300

milliseconds" with our current infrastructure.

5.3.2.6 Conclusion

We cannot conclude 5G’s superiority over WiFi from the data collected. Additionally, our la-

tency values can go above 300 milliseconds, even in a best-case scenario. We cannot meet the

requirement echoed by Scholliers et al. and enunciated in the ETSI norm, indicating that our

infrastructure is a sub-optimal representation of one of these systems.

It is worth highlighting that our latency is comprised of network access components and server

overhead. The most significant cause of our exacerbated latency values is not related to the former

but the latter. In the future, perhaps with highly optimized message queues, lower latency values

could be guaranteed.

In conclusion, we cannot claim to have an accurate latency reading representative of a finalized

VRU safety system for this study. Moreover, the Firebase Cloud Messaging Server’s queues are

not optimized for our use case since, as seen previously in section 5.3.2.1, the overhead introduced

by the server is the leading cause of these high latency values. If possible, another implementation

would have to mitigate that by having high-priority low-latency queues to guarantee the sub-300-

millisecond target delay.

Chapter 6

Conclusions and Future Work

The research done in 2.4.4 shows that the field of warning VRU through applications running on

their smartphones must be expanded upon, as it is usually plagued by interfaces that provoke an

unpleasant user experience and emit inefficient warnings.

Our work attempted to develop a solution that can build upon those gaps. However, there will

be room for improvement, as there is quite a lot of potential for further development in this field.

This dissertation will not cover everything in its generously limited time.

6.1 Conclusion

The conclusion is that one may build a smartphone application that effectively warns a VRU

through the appropriate Human-Computer Interaction and Software Engineering methods. URU-

S is a verified, robust, and validated high-fidelity prototype of a road-safety system that includes

the established use cases. It was built based on feedback obtained from our users, and it includes

some end-system technology such as context-awareness and geofencing.

Our sample sizes for studies that required active human participation were small due to the

current health situation. However, this fact is not too damming as the straightforward nature of

the prototype guarantees its validation by five to ten participants, and our values were within

that range. Moreover, we managed to do some additional measurements, where our results are

indicative and specific of the infrastructure that we had.

We would also like to prioritize the requirements that we have found to be most important

for a VRU safety system using smart devices. First and foremost, we must focus on achieving

user-centrism, collaborating with our users to meet their needs with a usable interface that pro-

vides a good user experience. Secondly, low latency is vital as pre-crash collision detection is

safety-critical, and each millisecond counts. Third, accuracy must be high; our users will grow de-

sensitized with our warnings if they receive too many false positives, thus hurting the application’s

credibility. Fourth, battery optimization must be considered, as draining too much battery on the

91

92 Conclusions and Future Work

device may frustrate our users and cause them to uninstall. Although we realize battery conser-

vation may be a conflicting goal with high accuracy and low latency, we want to clarify that it is

preferable to warn the user rightfully and timely than to preserve energy. Fifth, we have scalability,

another crucial element to the application. We may have several users trying to access the system

at once. Sixth, we have availability, which works in tandem with the previous requirement to as-

sure our users will get their warnings no matter when or how many of them may need to. Seventh,

we have security; evidently, the system should not leak sensitive data. Our more tech-savvy users

may become aware of that fact and urge others to uninstall. Lastly, we have portability. Runners

and avid cyclists would like to have this sort of solution in a smartwatch if possible. We must also

investigate its integration with smart cars and other devices running Android.

In conclusion, if we are to reiterate our initial hypothesis:

“A Vulnerable Road User can be notified of danger effectively, through a smartphone

application, if the appropriate software engineering and human-computer interaction

methods are used to develop it.”

We may claim its veracity as we did develop a smartphone application, through the enunciated

methods, that culminated in a high-fidelity prototype of an effective danger notification system

that places the Vulnerable Road User first.

6.2 Further Work

Overall, the "Mobile app for protecting cyclists and pedestrians in road traffic" shows great poten-

tial. However, further investigation must be done. More investment must be placed into a robust

back-end communication network that could guarantee low latency pre-crash collision detection at

a large scale since the technology we have available would struggle to accomplish that. One may

also invest in local computation, but we must be mindful of the energetic costs. Either way, further

work would have to look into the more technical aspects of the application, including electronic

communications through the most appropriate means available at the time. In this work, a service

that relays the VRU position to a collision detection server is presumed to exist. A future project

could investigate the development of such a service.

Additionally, a server that appropriately calculates collisions, based on information supplied

by the phone and any nearby vehicles, could be explored since that was not developed in this

dissertation. The collision detection algorithm itself would also merit its research study.

Furthermore, added usability testing could improve the interface, gathering data from several

different VRU and forming a new prototype based on that; this would also increase the statistical

validity of our findings by testing with even more participants. Moreover, work could be done with

cyclists, perhaps with potential integration with the VCE, as most of the participants in this study

were not avid cyclists. Portability could be investigated as well, perhaps redesigning for tablets,

smartwatches, or other devices. There is also further potential to expand the usability testing to

drivers and the solution that would run in a smart car.

6.2 Further Work 93

One more study that we did not have the time for in this project would be perceptual/motor-

stimuli testing. URU-S invokes the senses of the user through visual queues, haptic and acoustic

signals. Perceiving and acting upon a stimulus is no easy task. It may draw knowledge from

neuroscience, psychology, kinesiology, and other medical fields [74][75]. The test could include

bringing the participant next to a road and stimulating them, measuring their reaction speed with

different warning elements in alternative scenarios, either using electromyography or any other

available method. It is important to note that studying the perception of a stimulus is different

from its motor reaction. Stimulus perception is fundamentally psychological and can be studied

with temporal-order judgments, simultaneity judgments, or even duration judgments. However,

all of those methods have their associated biases and inconsistencies [75], and one would have to

construct a controlled environment to deal with them accordingly. The physical component may

be more relevant to URU-S, and the participant’s motor reaction could be studied using simple

reaction times [74] and studying which combination of warning elements would elicit the best

nervous response. Regardless, at this point, we would be studying the human biomechanical sys-

tem’s adjustment to our application, and not URU-S itself, transcending the realm of informatics,

suggesting this may be best left off for other researchers.

In conclusion, even though this field is not as well developed as it should be, there is an over-

whelming possibility of constructing a C-ITS system that values the VRU as an active participant.

URU-S will only scratch the surface, and its efforts may be continued.

94 Conclusions and Future Work

Appendix A

Focus Group Report

The purpose of this appendix is to successfully communicate the findings of the Focus Group

held on the 18th of February 2021, going through the methodology, demographics, and discussion

results.

Prepared for: The interaction design process associated with the Unprotected Road User -

Shield (URU-S).

Prepared by: Luís Alvela Duarte Mendes

A.1 Executive Summary

The initial hypothesis was that the Focus Group would ascertain what people would like to see in a

road safety app such as this one. Primarily, what kinds of notifications they would like (that warn

them either when they are in immediate danger or perhaps afterward with some form of a report

feature).

The group found that participants mainly gravitated to a mix between a haptic (tactile) and

acoustic (sound) notification. Two participants voiced their concern that the vibration had to be

particularly intense, as even when carrying their phones in their pockets, they sometimes would

not feel vibrations coming from text messages or calls. All participants showed interest in some

form of offline reporting feature that would warn them of potentially dangerous areas beforehand.

The whole discussion between real-time notifications and non-real-time reports raised fascinating

concerns.

Despite this, all participants had a solid technical background and, as such, could not separate

themselves from their urge to know more about the technical, back-end aspects of the application.

That factor caused some confusion since the Focus Group did not go in-depth about those issues

and was more concerned with the overall user experience.

95

96 Focus Group Report

A.2 Methodology & Participant Profile

A.2.1 Instrument Development

To develop the discussion guide, the researcher mainly considered what people would like in terms

of notifications (sound, visual, touch), added functionalities, the ability to configure and interact

with the notification system, the placing of UI elements, if those accessible, and discussion of al-

ternative interface ideas. The end questions would be for discussing anything else the participants

may want to bring up. Finally, the last portion was related to what each participant found to be the

most crucial aspect discussed today.

A series of sound samples were played to complement the discussion guide so that the re-

searcher could get a better understanding of what types of sounds users would like best. Addition-

ally, polls were created to gather a census for each of the questions posed (note that some issues

were not polled as the participants had uniformly voiced their opinions on the subject).

Even though some issues were not polled, the group’s small size assured a common opinion

in most scenarios. The small size is perhaps the most debilitating factor of the group. However,

all the participants were gathered, taking into account the available contacts at the time and the

current pandemic situation.

A.2.2 Site Selection

Due to the current pandemic situation, the Focus Group was held online via Zoom.

A.2.3 Participant Selection

Since this took place as part of a dissertation project, the researcher had limited participant re-

cruiting resources. For the most part, they were academic contacts gathered via e-mailing other

academics. The participants were offered no incentive (money, items, or otherwise) to participate.

A.2.4 Procedure for Current and Future Focus Groups

Focus Groups will be held with a minimum of 5 participants at dates scheduled, taking into account

each participant’s availability; they will last for 45 minutes up to perhaps an hour if the participants

are available. All sessions will be held via Zoom and recorded (with the participant’s consent);

later, they will be documented and made available to the project supervisor.

A.2.5 Participant Profile

Most participants were avid researchers in the tech industry that consider themselves quite tech-

savvy. Their routines varied, some taking walks and biking on occasion.

A
.3

D
em

ographics
97

A.3 Demographics

The demographic data of each participant can be summarized as follows:

Participant Age Education Profession Tech-savvy Routine
A 25 MSC Researcher 4 Usually takes private transport; does leisure walking and biking.
B 25 MSC Data scientist 4 Mainly private transport; sometimes jogs in the middle of the city.
C 31 MSC/PHD PHD Student/Researcher 4 Mainly takes the car; sometimes jogs.
D 33 PHD Researcher 4 Public transport; sometimes walks and takes leisure bike rides.
E 30 MSC/PHD PHD Student/Researcher 4 Public transport and walks a lot.

The "tech-savvy" field is a measurement of how proficient these users are with technology. A scale from 1 to 5 was used to quantify technological

aptitude, with "1" meaning very little proficiency and "5" being an expert level. A level 1 tech-savvy participant would struggle with just using a regular

smartphone. A level 2 participant would be more capable of interacting with basic applications like FaceBook or WhatsApp. A level 3 participant can

use a wide variety of applications but does not know the internal workings of the Android or iOS frameworks. A level 4 participant has inside knowledge

of the operating system, knowing how to use it to configure and alter the behavior of their applications; they can use most applications with ease. A

level 5 participant is a master, knowing the ins and outs of technology and using any application.

98 Focus Group Report

A.4 Discussion Results

This section includes a detailed analysis of the topics discussed and stimulated through a series of

questions.

A.4.1 Question #1 - What would people like to see in a road safety app such as this?

Summary: The very first concern raised here was related to the application’s inherent Context-

Awareness (this is covered in section 4.3). One of the participants was particularly curious if the

application would mainly work on the go or otherwise. This concern sparked a conversation later

on where a different participant mentioned that even when the user is standing still, they could

still be in danger. Thus, they voiced their interest in manually enabling the alert system even if

they were standing still. After that, the participant further voiced their concerns with the "map"

visual cue present in the prototype, as they thought that such a cue would cause the user to become

tunnel-visioned. This topic had already been reassured by Professor Falko Dressler’s research [20].

Other participants pitched in, and the conversation seemed to point out that a real-time visual cue

for the danger notification did not seem ideal. However, this could work well for an "afterward"

consultation. A "heat-map" of the most dangerous locations also seemed appealing. All partici-

pants thought a mix between vibrations and sounds was best suited for the real-time notification.

The "heat-map" of the most dangerous locations was validated as a non-real-time component to

the application. A participant managed it would be interesting to integrate the application’s no-

tification system with a smartwatch (used while running), calling to the application’s portability.

Also, the best times or path recommendations to jog were mentioned as an alternative feature.

Nevertheless, another concern was the application being spammed by a series of false positives;

mainly, the application should be designed to prevent this. At this moment, some of the more

research-heavy participants started to voice some entropy surrounding the fact that they wanted to

dive deeper into some of the technical questions.

A.4.2 Question #2 - What would people like in terms of notifications? Sound,
Touch, Visual?

Summary: The participants were polled on this matter. Such may be consulted in the "Appen-

dices" section. Most of them agreed that a mix between vibrations and sound was best suited for

the real-time notification. At this point, one participant mentioned that they often did not feel their

phone’s vibration. Integrating with a smartwatch was mentioned here, but everyone settled on a

mix between vibrations and haptics.

A.4.3 Question #3 - If you would like to have sounds, which sounds?

Summary: The participants were polled on this matter, such may be consulted in the "Appen-

dices" section, and most of them agreed that the best possible sound was an "announcer" voice

A.4 Discussion Results 99

saying "warning" (a sample is provided in the "Appendices"). The participants voiced their con-

cerns yet again in distinguishing this sound, or sound plus vibration pairing, from other notifica-

tions in their device (e.g., text messages, calls); the "announcer" stood out as a unique sound.

A.4.4 Question #4 - If visual, in what way?

Summary: This question was more or less aborted by the group moderator, as all participants

made themselves clear that a visual cue was not the best here.

A.4.5 Question #5 - Do you like the ability to configure/suspend the notification
settings?

Summary: All participants agreed that configuring and being capable of suspending notifications

was a good idea, mainly since they had different preferences. It was at this point that a partic-

ipant voiced their concerns for a possible misunderstanding regarding the interface. They were

concerned that the button to suspend notifications was perhaps a bit misleading. What they meant

by this was: the switch to disable "notifications" made it seem like they were shutting down the

entire program, whereas it could also mean "disable the push-notifications only" (as in, the pop-up

message), so, in other words, they did not quite understand if it was meant to shut down the visual

alert message that pops up or the entire alerting system as a whole. This misunderstanding could

be remedied by splitting that button into two others, one that says to disable the push notifications

specifically and another more aptly titled "Disable all" to suspend the entire system.

A.4.6 Question #6 - Do you like the ability to suspend for a given amount of min-
utes?

Summary: All participants agreed on the relevance of suspending the application for a given

amount of minutes or until manual re-enable. At this point, a participant mentioned that they would

like it if the application could automatically shut down indoors. However, another participant

raised the concern that while indoors would like to shut down the real-time notifications, they

would still like to keep the non-real-time reporting features active. They stressed that it should

also shut down the reports, but these should be independent.

A.4.6.1 Question #7 - Do you like the positioning of the notifications on-and-off switch?
Would you prefer it on the main page, or should it be kept in the settings?

Summary: The participants were polled on this, and the results may be found in the "Appendices"

section A.7. One participant mentioned it would be more accessible to have the "disable all" button

on the home screen. However, another participant mentioned they would like it in both places

(where it is now and on the home screen, but that it would be more detailed in the former than

the latter). The poll alleviated some confirmation bias, and most people thought that having it

available in both places would be ideal.

100 Focus Group Report

A.4.7 Question #8 - Would they like some form of widget integration with a PSP
(police) map of the most dangerous locations in terms of accidents?

Summary: Participants were, once more, polled on this. Everyone across the board agreed that

this was an exciting integration that could be made, specifically since they were unaware that

something like this existed and manifested interested in seeing it in the application.

A.4.8 Question #9 - Would you like to be capable of instructing the app’s notifica-
tions to shut down in certain areas that you know for a fact are prone to false
positives?

Summary: A poll was made here as well. Participants were very divided on this, as half the group

thought it could be interesting, as they would pass by those same places every day and they know

for a fact it will not work all that well there, but others thought it was of no value.

A.4.9 Question #10 - Are you interested in the login/register option for saving your
settings, or would you like some other form, like the upload/download or
even some other form (please specify)?

Summary: Most participants thought that they would be using the same device for quite a while

and that they would not swap them frequently enough to warrant any of these functionalities.

They thought that they could configure the settings on their own. Another participant voiced

their concerns about being able to access the reports independently of logging in. Some other

participants mentioned that it would not be necessary to have this feature unless the application

had a learning mechanism. The settings seemed easy enough to reconfigure, so no one truly

manifested a desire for a porting feature.

A.4.10 Question #11 - Do you think the documentation is accessible where it is now,
via the options menu?

Summary: This was a resounding yes from all participants, and they viewed it as a non-issue.

A participant voiced their concerns regarding the group’s small sample size (after all, we started

with 5 participants only, which was reduced to 4 more to the end of the session). That should be

taken into consideration for the data analysis. They also did not understand that the notification

poll allowed them to pick more than one option (sound, visual, tactic) and stressed that having

vibrations combined with sound was their choice.

A.4.11 Question #12 - What do you think was the most vital thing discussed today?

Summary: One of the users confessed that this was their first focus group, and as such, they were

a bit new to its dynamics. They felt that the design’s technical implications should have been

discussed more, suggesting it was somewhat difficult to think like an end-user in this scenario.

A.5 Conclusion 101

However, they stressed that the most critical factor was distinguishing between real-time and af-

terward notifications and which types of real-time notifications to emit (sound, visual, tactile).

Another echoed the importance of how the notifications are displayed and other relevant features

(such as the PSP map). Additionally, they suggested that the app be called something else, as they

thought it could be confused with other ciphers that should not be associated with it. A different

participant praised the idea of bringing a prototype to the discussion and that they wished we spent

more time discussing the functionalities in a somewhat abstract form. They also reinforced their

interest in a planning element to the application and that the UX concerns were perfectly valid.

The final participant assured that real-time versus non-real-time features were the most relevant

discussion and that they would like to see more of a planning/reporting element to the application.

A.5 Conclusion

Overall, the group seemed to have difficulty detaching themselves from the more technical aspects

of the application, but this did not impair the discussion process. From the various topics dis-

cussed, such as the types of notifications participants enjoyed and the inclusion of non-real-time

elements, one can conclude that participants preferred a mixture of haptic and acoustic signals to

warn them in real-time. Additionally, they valued having a non-real-time aspect to the application

through danger reports or maps of accident-prone areas.

As far as the user interface goes, barring the slight misunderstanding with the settings inter-

face, pertaining to the "Notifications" switch being confusing, participants found that what they

needed was accessible. Although some thought having the kill switch on the home page could be

advantageous, this last change did not seem particularly exciting.

A.6 Recommendations

It is recommended to conduct another group (if possible) with people more distant from the tech

side of things to hone in on the human-computer interaction elements.

Aside from that, the topic of having the application available on other devices (such as smart-

watches) came up more than once, and, although the dissertation focuses exclusively on smart-

phones, this is worth mentioning as an example of further work to be done as there is a substantial

amount of fascination associated.

Another aspect to consider is that the interface should be altered, in the settings menu, to

differentiate between the suspension of the visual pop-up or the entire alert system as a whole.

Making the switch available on the home page may be looked into, although that did not garner

much value from the group.

Lastly, looking into a non-real-time component is advised. This component should be inde-

pendent of the real-time notifications and may consist of missed alerts, danger-level, or even a

heat-map of the most dangerous places. The recommendation of "safe paths" was also mentioned;

102 Focus Group Report

however, this deviates from the application’s scope. The functionality of "instructing" the applica-

tion to suspend notifications in given areas was quite divisive, so, considering the added layer of

false positives resulting from this, perhaps it would be best not to pursue it.

A.7 Appendices

The appendices include all assets used and data gathered in the focus group:

A.7.1 Privacy Policy

The privacy policy ensures that the participant’s rights are respected and that their data will never

be traced personally. All participants received a copy of this 40 minutes before the session began.

Even though the policy explicitly contains the right to film sessions, the moderator asked all

participants for their consent to film the session previously, and they allowed it. The recording

itself will not be shared in the URU-S repository and will remain in the researcher’s computer

unless mandated by a higher authority.

This document was not in its final form at the time the Focus Group was conducted. However,

it was edited and re-purposed for the usability testing phase. The final version is in appendix C,

whereas the ones used in the Focus Group are stored in GitHub (portuguese version and english

version).

A.7.2 Presentation Used

The presentation helped support the moderator in showing the prototype and explaining some of

the study’s context, objectives, and motivation. It is currently stored in GitHub.

A.7.3 Question Guide

The question guide helped the moderator stimulate discussion during the group. However, some

questions were not asked explicitly (or verbatim) because the participants had already answered,

or the conversation had lead to slight modifications that were better contextualized. It is also stored

in GitHub.

A.7.4 Sketch of an interface misunderstanding

One of the participants mentioned that the "Notifications" switch was not clear in what it meant.

Figure A.1 represents the sketch that and was used so that the moderator could better comprehend

their problem. Essentially, the participant was confused by the disabling switch, not sure if it was

only disabling the pop-up of the alert or the alert as a whole (no sound, vibration, or pop-up). The

moderator opened up Microsoft Paint and tried to reach an understanding with the participant.

https://github.com/github/hub/files/6010007/URU-S.Privacy.Policy.PT.pdf
https://github.com/github/hub/files/6010008/URU-S.Privacy.Policy.EN.pdf
https://github.com/github/hub/files/6010008/URU-S.Privacy.Policy.EN.pdf
https://github.com/github/hub/files/6009999/FOCUS-GROUP.pptx
https://github.com/github/hub/files/6010040/URU-S.Focus.Group.Question.Guide.pdf

A.7 Appendices 103

Figure A.1: Interface Misunderstanding Scheme

A.7.5 Polls

A series of Strawpolls were used to alleviate confirmation bias. Like in any focus group, a more

assertive participant voiced their opinions more intensively than the others. For issues where the

moderator was not entirely clear on the group’s consensus, polls were used where participants

could vote anonymously. These are the results of those polls.

104 Focus Group Report

A.7.5.1 Notification Types

The following is a visual representation of the poll itself and the results.

Figure A.2: Notification Types Poll

Figure A.3: Notification Types Results

It is to note here that some participants thought this was multiple choice, which is why "sound"

is not higher. However, everyone voiced their opinion and made it clear that they would like to

have a sound following the vibration.

A.7 Appendices 105

A.7.5.2 Sounds

Since the participants clarified they were interested in having the notification accompanied by a

sound, there was a poll where participants were given samples of sounds to listen to and pick the

type they liked most.

Figure A.4: Sounds Poll

Figure A.5: Sounds Results

The samples used are the following are courtesy of Floyd Bell, and are available in GitHub.

https://www.floydbell.com/tone-types
https://github.com/LuisAlvelaMendes/URU-S/wiki/Focus-Group#sound-links

106 Focus Group Report

A.7.5.3 Placing of the On-and-Off-Switch

Figure A.6: On-and-Off-Switch Poll

Figure A.7: On-and-off-Switch Results

A.7 Appendices 107

A.7.5.4 Ability to Instruct the Application to Shutdown in Certain Areas

Figure A.8: Instructed-Notification-Shutdown Poll

Figure A.9: Instructed-Notification-Shutdown Results

108 Focus Group Report

A.7.6 Interest in Danger Reports or Crowd-Sourcing Elements

Figure A.10: Danger Reports Poll

Figure A.11: Danger Reports Results

Appendix B

Usability Testing Report

The purpose of this appendix is to communicate the findings of the Usability Testing phase suc-

cessfully.

B.1 Introduction

URU-S is the Unprotected Road User Shield. It serves as a high-fidelity prototype of a road safety

system concerned with actively integrating vulnerable road users into the interconnected vehicle

world. Despite this being outside of the project’s scope, the end-system would be capable of

predicting dangerous collisions before they occurred, warning the user appropriately.

This project is a part of the dissertation formally known as "Mobile app for protecting cy-

clists and pedestrians in road traffic." The student assigned to the dissertation conducted an onsite

usability test using a live version of URU-S located on testing devices available at the Telecommu-

nications Institute. The testing devices had the screen-recorder enabled, capturing input from the

microphone and recording the participant’s conversation with the testing facilitator. Additionally,

the screen-recorders were capable of keeping track of where the participant was clicking. The

test had two phases, indoor and outdoor; the facilitator was with the participants throughout both

phases. Participants were also recorded with a webcam during the outdoor phase. The session

captured the participant’s difficulty completing tasks, the time required to complete said tasks, the

task completion rates, questions, and feedback.

B.2 Executive Summary

As mentioned above, the test had two phases. The first phase was an onsite usability test at the

Telecommunications Institute Shannon Laboratory, room number I322, at the Faculty of Engineer-

ing and University of Porto. The second phase was done around campus and consisted of walking

around the Department of Informatics Engineering outskirts, eventually reaching a ramp situated

in the parking lot between Department "I" and Department "L." The testing took place on May 6th,

109

110 Usability Testing Report

May 18th, May 20th, and May 22nd, 2021. The test’s purpose was to assess the interface’s usabil-

ity, the user’s understanding of the underlying mechanisms, and the warning signal’s effectiveness

when the user is in imminent danger.

A total of eight participants were amassed for the usability test. Usually, to ensure the stability

of the results, a total of eight to ten participants is ideal. We had the minimum amount, as it

was unmanageable to arrange more participants due to the current COVID-19 Pandemic. Each

individual session lasted approximately half an hour.

In general, participants found that URU-S was an aesthetically pleasing, straightforward, and

practical application. However, 50% of them had difficulties understanding the context-awareness

mechanism. Despite this, all of them understood the general concept and were capable of com-

pleting the tasks given by the testing facilitator. Furthermore, 88% of the participants used mobile

applications frequently, and 38% were not very tech-savvy.

The test identified some minor problems that the lead developer quickly patched, including:

• "Context-awareness" was a very technical term that was not quite clear to the participants in

its meaning.

• The Geofencing service was not very clear to some participants in what it did.

• The heat-map in the Statistics section had an overwhelming zoom feature that increased the

radius of the heat bubbles too much and confused the participants.

• The dropdown menus lacked affordance.

• The Statistics section was hard to scroll through due to the map taking up too much of the

screen.

• The sound selector in the Alert Settings section should play a sample of the selected sound

immediately and not only when the volume is adjusted.

• The "my location" button was missing in the Statistics section map.

• The Statistics section used to be called the "Reports" section, which confused users as they

associated it with reporting a bug.

• "Suspended" alerts confused some participants, causing them to be removed from the app

later on.

• The introduction paragraph in the Home screen should be more explicit in what kinds of

dangers URU-S prevents.

• Deleting the records of received alerts should only delete those selected in the date range

shown in the dropdown.

This document contains the participant feedback, task completion rates, difficulty ratings, time

on task, errors, and recommendations for future improvements.

B.3 Methodology 111

B.3 Methodology

The student assigned to the dissertation played the role of testing administrator, facilitator, lead

developer and was responsible for gathering the participants. The facilitator tried to contact as

many participants as possible, reaching out to fellow students, personnel at the Shannon laboratory,

and others. The invitations were sent via e-mail, WhatsApp, and Slack, informing the participants

of the test logistics and requesting their availability and participation. Participants responded with

a date and time that was more convenient for them. Each individual session lasted approximately

thirty minutes. During the session, the facilitator explained the test and mentioned that it would

have two phases. Before the test began, participants were assured that their data would be protected

at all costs and were asked to sign an informed consent form. With the paperwork out of the way,

the facilitator proceeded to ask the participants a series of demographic questions. Those inquiries

included age, education, profession, and level of tech-savvy. Participants were also inquired about

their daily routines, whether they used mobile apps frequently, and their favorite apps. Once the

facilitator was done with the questions, phase 1 of the test commenced. First, they showed the

intro screen to the participant and asked them to do a narrative of what they saw without touching

anything yet. Participants were encouraged to include details such as what kind of application they

were looking at and what they could do. After the narrative, the participants were given a series

of tasks for them to accomplish with URU-S.

After each task, the facilitator asked the participant to rate the difficulties they had in complet-

ing the said task on a scale of 1 to 5. The former means the task was straightforward, and the latter

that it was complicated to accomplish. The facilitator also noted whether or not the participant

managed to complete the task successfully and how long they took to complete it.

Throughout phase 1, participants were encouraged to "think out loud" and say what they were

trying to do, how they could do it, and if they were having any difficulties accomplishing their

goal. At any point, participants were free to request a break or suggest improvements for the

prototype.

Once the participant had completed all tasks, the facilitator would ask to be accompanied on a

short trip outside. The facilitator and the participant would then exit I322, descend the stairs, and

exit the department; this marks the beginning of phase 2. As they walked outside, the facilitator

informed the participant that the application should experience different behavior outdoors. Once

the application had switched its state, participants were motivated to figure out what it was doing

and why. Finally, upon reaching the ramp between departments, the facilitator would ask the

participants to wait at the top of the ramp while setting up the recording software and "simulated-

danger" equipment on the other side of the testing area. After a short time, the facilitator would

prompt the participant to descend the ramp. As soon as they were on camera, a warning would be

emitted in their devices, and a simulated danger would arise.

112
U

sability
Testing

R
eport

B.3.1 Participants

A total of eight different people participated in the usability tests held throughout May. Three participants were involved on May 6th, one participant

on the 18th, two on the 20th, and another two on the 22nd.

Most of these participants were tech-savvy academics. However, three of them had some more troubles with technology, and one of them even

claimed they did not use mobile applications frequently. The age range here was also broader than what was achieved in the previously held focus

group. Participants now had ages ranging from their early twenties to early forties and came from different backgrounds, holding different perspectives.

Their profile can be summarized in the following table:
Table B.1: Participant Demographics

ID Age Education Profession Tech-savvy Routine App-User Favourites
0 32 MSC Software Developer 5 Frequently goes on walks, public and private transport Y AirBnB, Google Keep
1 22 BSC Student 4 Frequently walks and uses public transport Y Facebook, Instagram, Youtube
2 25 BSC Student 4 Mainly private transport Y NOSTV, FlashScore, MSN
3 25 Highschool Student 5 Frequently walks and occasionally private transport Y WhatsApp, Youtube, Twitter
4 36 Highschool Research Assistant 2 Mainly private transport Y Instagram, Facebook, Twitter
5 41 MSC Researcher 3 Mainly private transport and walks on occasion N Weather
6 40 BSC Manager 2 Mainly private transport Y Pinterest, Outlook, Facebook
7 25 MSC Researcher 5 Mainly private transport Y Spotify, Linguist, Maps, WhatsApp

B.4 Results 113

B.4 Results

The testing facilitator recorded the participant’s interactions with the testing devices by activating a

screen recorder on said devices at the beginning of each session. The screen recorder also captured

the conversation the participants had with the facilitator and tracked their clicking. Additionally,

the facilitator started a timer after reading out each task to the participant and stopped that timer

when they had completed the task at hand. Furthermore, participants were asked how difficult

they found each task on a scale of one to five, where one means extremely easy, and five is very

difficult.

The tasks given to the participants during phase 1 are as follows:

• Task 1: Change the sound, adjust the volume, and change the vibrations of your danger

alert until they are to your liking.

• Task 2: Change the application’s language.

• Task 3: Try to alter the current behavior of the alert system.

• Task 4: Try and find out what your "automatic alert regulation mode" is doing, and what

"context-awareness" is and what it does for you.

• Task 5: Try to enable context-awareness.

• Task 6: Try to fully disable the alert system, no context-awareness, no alerts, nothing.

• Task 7: Try to restore the alert system to the way it was at the beginning of the test.

• Task 8: Try to find out how many alerts you have been receiving.

• Task 9: Try to find out if you are near a dangerous area and if you can receive some form

of warning when that happens.

• Task 10: Imagine you are walking down the street, and this happens *a warning is simulated

on the device*. Imagine that after that happens, a car zooms past. What can be done upon

seeing this new notification that showed up on the device?

114
U

sability
Testing

R
eport

B.4.1 Task Completion Success Rate

The task completion success rate is the number of participants that managed to complete the task without needing any form of hint from the facilitator

divided by the total number of participants that attempted that task. All of the participants managed to complete every single task. However, some of

them need hints prompted by the facilitator. In cases where that happened, we will label that task with an "N." For cases where the participant managed

to realize everything independently; we labeled that with a "Y." Participants and tasks are identified by their respective numbers, with "T1" being task 1

and so forth.
Table B.2: Completion Rate per Task for each Participant

Participant T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
0 Y Y Y Y Y Y Y Y Y Y
1 Y Y Y Y Y Y Y Y Y Y
2 Y Y Y Y Y Y Y Y Y Y
3 Y Y N N Y Y Y Y Y Y
4 Y Y Y N Y Y Y N Y Y
5 Y Y Y N Y Y Y Y Y Y
6 Y Y Y N Y Y Y Y Y Y
7 Y Y Y Y Y Y Y Y Y Y

Completion Rate 100% 100% 87,5% 50% 100% 100% 100% 87,5% 100% 100%

B
.4

R
esults

115

B.4.2 Task Ratings

After completing each task, participants rated the difficulty of completing that task on a scale of 1 to 5. It is worth noting that this rating is subjective, and

some participants were uncertain on an integer number for their difficulty. Despite this, no one found any particular task of difficulty level 5 (extremely

difficult). The following table shows the average difficulty for each task. It is to note that participants 3-7 had an easier time, generally speaking, than

participants 0-2. The reason for this is, participants 3-7 already experienced a version of the prototype with patches based on the feedback given by the

first three participants.
Table B.3: Difficulty on Task for each Participant

Participant T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
0 3.5 1 4 3 1 2 1 3 2.5 3
1 2 1 1 3.5 1 2 1 2 3 2
2 2 1 1.5 2 1 1 1 3 1.5 1
3 1 1 2 2 1 1 1 3.5 1 1
4 1 1 1 1 1 1 1 3 1 1
5 1 1 1 3 1 1 1 2 1 1
6 1 1 1 2 1 1 1 4 1 1
7 1 1 2 3 1 3 1 1 1 1

Average Difficulty 1.286 1 1.714 2.286 1 1.5 1 2.571 1.333 1.375

116 Usability Testing Report

Participants 0-3 had some difficulties configuring their alert settings due to the fact they were

expecting sounds to play right away when selecting different sounds from the dropdown, which,

at the time, was not very affordable. The sound selector and all other dropdowns were fixed, and

participants 3-7 exposed to the new prototype had no difficulty. It is worth mentioning that Par-

ticipant 0 experienced more difficulty because they experimented with the real-time alerts switch

first, instead of going to the options menu. Participant 0 demonstrated anomalous behavior, as the

real-time alerts switch is not meant to be used for this task, and all other users went to the options

menu directly. Nevertheless, task 1 is reasonably intuitive.

All participants managed to change the language with ease. Altering the behavior of the

alert system was also easier for participants 3-7, as they were no longer presented with the term

"context-awareness" right away. That had been replaced with "automatic alert regulation mode."

Furthermore, participants 3-7 had a quick and easy way to know what the "automatic mode" was

and what it did for them by clicking on its notification. Participants 0-3, however, had the un-

patched version of the prototype and thus struggled more with this task, mainly since the term

"context-awareness" confused them. Despite this, even with the added efforts to explain "context-

awareness" better, some users still had troubles figuring out where they could go to know what

this was and how it fit into the app.

Figuring out how to turn systems on and off was simple across the board. However, par-

ticipants had some difficulties finding out how many alerts they had been receiving and which

percentage of them were false alarms, genuine, or suspended alerts. This difficulty was not so

much due to navigation (except for participant 4) but due to them having trouble understanding

what a "false alarm," "genuine," or "suspended" alert meant. Most participants found the danger

heat-map very simple and accessible. It is worth noting that participants 0-3 had more difficulty

with task 9 because the prototype lacked a "my location" button on the heat-map and the zoom

feature caused the heat bubbles to expand too much. The issues causing difficulties with task 9

were patched; thus, participants 0-7 had no trouble with the task. Lastly, practically all partici-

pants found the danger notification intuitive, except participants 0 and 1. Participant 0 preferred

an "in-app" method of responding to the push notification, and Participant 1 did not appreciate the

terminology on one of the notification action buttons.

B
.4

R
esults

117

B.4.3 Time on Task

The time on task (in seconds) was measured by the testing facilitator, and it clearly shows that some tasks were more difficult than others. The most

difficult tasks were tasks 8 and 4. It took the participants a little over a minute to figure out what "context-awareness" meant and decipher the percentage

of alerts received, respectively. Task 9 was significantly easy for most participants but took longer because it relied on a map, and users usually navigated

and explored the map for a couple of seconds.
Table B.4: Time on Task for each Participant

Participant T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
0 47 8 30 77 10 40 5 93 150 150
1 61 8 5 49 5 21 8 115 39 24
2 45 6 45 60 5 30 5 8 37 102
3 61 5 10 30 5 14 15 66 107 25
4 50 5 62 130 5 46 12 161 82 20
5 89 5 52 46 5 21 6 14 70 44
6 76 14 29 154 5 31 5 48 30 20
7 82 10 21 40 5 67 9 23 49 32

Average Time on Task 63,875 7,625 31,75 73,25 5,625 33,75 8,125 66 70,5 52,125

118 Usability Testing Report

B.4.4 Errors

The participants did not commit any errors that hindered them from completing the tasks; it simply

took them a while to understand certain aspects of the task. Participants did not stumble into wrong

portions of the interface often or tried to do things that had nothing to do with the task at hand.

Regardless, there are two cases of anomalous behavior. Participant 0 tried to reach for the

alerts switch when told to try different sounds and vibrations instead of going for the options

menu. Participant 4 had trouble finding the Statistics section because they had forgotten that the

main page also allowed them to go there.

B.4.5 Outdoor Phase

The outdoor phase does not have a series of structured tasks, mainly because the participant was

on the move with the facilitator, causing difficulty performing measurements. However, the par-

ticipants all quickly understood that the application detected they were outdoors and enabled ge-

ofencing. They could also connect the geofencing service to the simulated dangerous area later

approached during this phase.

Judging from the recordings, the test at the ramp yielded promising results, as no participant

ever bumped into the danger thrown at them (a remote-controlled car) in the limited visibility

intersection that had been simulated. Upon receiving the warning, the participants heard the sound

and felt the vibration, stopping and becoming more aware of the encompassing danger.

B.4.6 Summary of Data

Table B.5: Task Summary

Task Completion Difficulty Time
T1 100% 1,285714 63,9
T2 100% 1 7,63
T3 87.5% 1,714286 31,8
T4 50% 2,285714 73,3
T5 100% 1 5,63
T6 100% 1,5 33,8
T7 100% 1 8,13
T8 87.5% 2,571429 66
T9 100% 1,333333 70,5
T10 100% 1,375 52,1

Table B.5 is the summary of all data. As we can see, the main problem areas are related to tasks

4 and 8. Participants had difficulty figuring out how context-awareness fit into the application and

interpreting the "danger level" graphs that showed them how many alerts they received and what

each percentage meant. Overall, participants did not struggle too much with URU-S and could

grasp its general concepts and inner mechanisms. During the outdoor phase, they also understood

the geofencing service and its integration with warning them of nearby dangerous areas.

B.4 Results 119

B.4.7 Likes, Dislikes, Participant Suggestions

Participants would comment on the application throughout the tasks and state what they did and

did not appreciate, offering suggestions.

B.4.7.1 Likes

Most participants enjoyed the application’s aesthetic and were capable of comprehending its in-

terface elements. There were no complaints regarding color contrasts or hard-to-read text. Once

participants understood what context-awareness was and what it did for them, they greatly appre-

ciated it and found it interesting. The same can be said about the geofencing service and the ability

to know when they are near dangerous areas. Great appreciation was shown for the manual and

all of the documentation surrounding the application to help if need be.

B.4.7.2 Dislikes

Two participants did not appreciate the reliance on push notifications, as they had personal gripes

with that mechanism. Other than that, every participant found it somewhat complicated to under-

stand the integration between context-awareness and the alert system. These doubts were cleared

once they had read the help documentation, but they would rather not have to read the text to

understand the functionality.

B.4.8 Participant Suggestions for Improvement

Participant suggestions may be summarized as follows:

• The introduction paragraph to the application should be more explicit about the types of

dangers URU-S protects people from (i.e., collisions with vehicles, cyclists, and pedestri-

ans).

• There could be a single switch to disable the entire application instead of two separate

switches.

• One could be capable of adjusting vibration intensity and duration separately.

• The application could have an "in-app" notification answering system instead of using push-

notification action buttons.

• The "suspended" alerts in the Statistics section are not useful and should be removed.

• The zoom-out feature of the heat-map should be different, as it makes the map unreadable.

• It should be more explicit what context-awareness and geofencing do.

• "Ignore" is not a very good term for the push-notification button associated with the danger

alert.

120 Usability Testing Report

• "Reports" is not a good name for the Statistics section.

• Dropdowns should look more like dropdowns, having a little down-facing arrow next to a

box.

• Sound selectors should play a sample of the selected sound immediately.

• The heat-map should have the "my location" button on it.

• The heat-map should be a little smaller so that one may scroll better through the Statistics

section.

• The date selector for the alerts range could be divided into further periods, representing

"trips" taken by the user.

• Deleting alerts from a certain date range should be specific to the selected date range.

B.5 Recommendations

It is recommended to keep all participant suggested improvements in the application, except for

the following:

• There is no need to have a single switch to turn off the entire system. This change was

suggested by a single participant that did not want to shut down alerts and the automatic

mode through two different switches, but no one else had any issues with flipping the two

switches. Additionally, it may add increased complexity to the code and the interface, par-

ticularly since it already has enough switches.

• Adjusting vibration intensity and duration with two separate sliders is meaningless. The

Android OS does not allow one to set a wide range of amplitude values for vibrations. To

distinguish a vibration from another, we have to use a single slider that alters duration in

tandem with intensity; otherwise, the difference would be imperceptible.

• Only a single participant suggested changing the date range on alerts received to narrow

it down to "trips" taken by the user. This alteration would involve detecting a "trip" event

and automatically logging it through advanced context-awareness. Due to the complexity

associated with this suggestion, and the rarity with which it was brought up, it may not be a

good idea to pursue this.

Furthermore, the decision to keep the push notification for the app with action buttons or to

have an "in-app" mechanism to answer the notification remains a bit of a controversial issue. A

single participant brought up their gripes with buttons attached to notifications. This suggestion

motivated the development team to create an alternative "in-app" method. During task 10, partici-

pants 3-7 were presented with two alternatives for the notification, one "in-app" and the other not.

B.6 Conclusion 121

Only a single participant preferred the "in-app" variant. So, we recommend keeping the push no-

tification with buttons for now. It is advisable to leave the code for the "in-app" version available

for further testing in the future.

B.6 Conclusion

Our participants found that URU-S was a relatively intuitive application. Furthermore, they

stressed its importance for runners, cyclists, and avid walkers. All participants recognized the

importance of having a vulnerable road user protection application such as this one. We recom-

mend that we implement the recommendations and continue to work with users to ensure that we

develop a practical and user-centered application.

122 Usability Testing Report

Appendix C

Privacy Policy

C.1 URU-S

The gathering of personal data is done under Regulation (EU) 2016/679 of the European Parlia-

ment and Council, April 27th, 2016. The regulation is relative to the protection of singular people

in terms of personal data gathering and the free circulation of said data (RGPD), including the

national legislation that complements it, mainly Law n. 58/2019, August 8th, that ensures the

execution, in terms of the juridical Nacional order, of RGPD.

Storage of personal data will be done only during the duration of the masters’ dissertation

known as “Mobile app for protecting cyclists and pedestrians in road traffic,” this is scientific

research in the area of usability of a road safety system for vulnerable road users that aims to:

• Raise awareness to the protection of vulnerable road users.

• Prototype a usable interface to protect vulnerable road users by emitting warnings in their

smartphones.

• Conduct a user-centered design process that considers all the needs and opinions of users,

involving them through Focus Groups and Usability Testing to guarantee the development

of an efficient and helpful interface.

The masters’ thesis is hosted by the Telecommunications Institute – Porto (IT-Porto) and the

Faculty of Engineering of the University of Porto (FEUP); these organizations are responsible for

the conjoint treatment of personal data involved in the study. This thesis is formally known as

“Mobile app for protecting cyclists and pedestrians in road traffic” and is led by FEUP.

This project will culminate in a prototype available in a private GitHub repository, not being

open to the general public. The source code is only accessible through gaining access to the

repository. The application itself will be available in phones meant explicitly for testing, lent by

the Telecommunications Institute, shared with the voluntary participants. It will not be necessary

for the participants to install the application on their phones.

123

124 Privacy Policy

The study will not gather personal data without your consent. For testing purposes, we will

present a privacy policy that is clear and detailed, describing the objectives of the study and the

treatment of your data throughout the said study; this project will always solicit your consent.

Your privacy is a significant concern to our team and will be faced with great seriousness.

C.2 Goals of the Treatment

This investigation work is framed within the context of a masters’ dissertation in Informatics

Engineering and Computation. It aims to raise awareness of the protection of vulnerable road

users, involving them actively in a cooperative collision avoidance system through smartphones.

Personal data will be exclusively used for investigation purposes related to the dissertation “Mobile

app for protecting cyclists and pedestrians in road traffic.” Data will not be reutilized for other

means, shared with third parties, or marketing targets.

C.3 Collected Personal Data

The categories of personal data treated in this investigation, developed for the dissertation, are the

following:

• Time-gated questionnaires:

– Sociodemographic data (Age, Education-level, Profession).

– Data pertaining to how tech-savvy someone is (on a scale of 1 to 5).

– Data about your daily routine (if you frequently bike or go on walks, either individually

or on your way to public transportation).

– Electronic data (e-mail to notify you of other testing phases).

• Video data during the usability testing phase.

This data will be gathered in two moments: during the focus group and the usability testing

phase. The latter will be done with devices lent by the Institute and do not require the participant’s

personal phone use.

Upon your first use of the application, there will be a demographic questionnaire (Age, Education-

level, Profession) after giving your consent. Additionally, there will be questions about how tech-

savvy you are (1 to 5) and about your routines and e-mail address in case you are interested in

participating again.

At the end of each usability testing phase, there will be a questionnaire related to the difficulty

the user had in reacting to the notification emitted in the smartphone that was lent to them.

C.4 Conservation Dates

Data will be stored until the end of the masters’ dissertation, 2021-10-31.

C.5 Receivers of Personal Data 125

Data can be deleted upon request of the participants and will be destroyed/anonymized after

the mentioned date.

C.5 Receivers of Personal Data

Gathered data will only be shared after pseudonymization.

There will be no transference of data to countries outside of the European Union.

Members of the investigation team associated with URU-S will be the only ones treating per-

sonal data. The final result of the investigation, which will contain anonymized or aggregated data

that make it impossible to identify each participant, will be disseminated through the scientific

community.

C.6 Data Owner Rights

The law allows you the right to Information, Access, Correction, Deletion, Portability, and Lim-

itation of the treatment, which are respected unless it is impossible or heavily damaging to the

treatment objectives for investigative purposes. As the owner of the data, you also have the right

to remove consent to data treatment at any time.

As the data owner, you have the right to present formal complaints to a European Authority of

supervision; in Portugal, the competent Authority is the CNPD (www.cnpd.pt).

At any moment, you may contact the DPO of the UP, the entity that establishes a common

contact point through the following e-mail address dpo@up.pt

C.7 Security Measures

The gathered data will not be shared with third parties, and there will be a series of technical and

organizational measures in place to assure confidentiality, integrity, physical and logical security

of the information, namely, pseudonymization and control of logical and physical access. Given

the nature and minimal quantity of the gathered data, it is implausible that it would be possible to

revert the pseudonymization process. The one responsible for the study will adopt good practices

in the use of informatics systems.

C.8 Use of Equipment and Questionnaires

The testing phones will be lent only during the usability testing phases and then promptly return to

IT-Porto. Since the user never has to install the application on their actual phones, they will only

have to consent to the questionnaires that will be made available, mentioned in other sections.

126 Privacy Policy

C.9 Remove Consent

The data owner may remove their consent to the treatment of their data; if that happens, they may

contact up201605769@fe.up.pt to reach a compromise.

C.10 Contacts

If you have any doubts about the investigation project or exercising your rights as owner of the

data, please contact up201605769@fe.up.pt.

C.11 Responsible for Data Protection

Luís Mendes (up201605769@fe.up.pt)

C.12 Informed Consent Term

I declare that I read and understood the information regarding the “Mobile app for protecting

cyclists and pedestrians in road traffic” and that I wish to participate, knowing that I may give up

at any moment without any form of repercussion or need of a justification.

Knowing that this project is directed to people above 18 years of age, I confirm that I am over

18 years old.

I consent to the treatment of my sociodemographic data and video for research purposes in the

present study.

Date: / / 2021

Bibliography

[1] World Health Organization. Global status report on road safety 2018. Licence: CC BY-

NC-SA 3.0 IGO. World Health Organization, 2018. URL: https://www.who.int/

publications/i/item/9789241565684.

[2] Ioannis Vourgidis et al. “Use Of Smartphones for Ensuring Vulnerable Road User Safety

through Path Prediction and Early Warning: An In-Depth Review of Capabilities, Limi-

tations and Their Applications in Cooperative Intelligent Transport Systems”. In: Sensors

20.4 (2020), p. 997. ISSN: 1424-8220. DOI: 10.3390/s20040997.

[3] Johan Scholliers, Marcel Van Sambeek, and Kees Moerman. “Integration of vulnerable road

users in cooperative ITS systems”. In: European Transport Research Review 9.2 (2017).

ISSN: 1867-0717. DOI: 10.1007/s12544-017-0230-3. URL: https://dx.doi.

org/10.1007/s12544-017-0230-3.

[4] Goncalo Pereira, Pedro M. Dorey, and Ana Aguiar. “Poster: Cooperative Perception Plat-

form for Intelligent Transportation Systems”. In: 2020 IEEE Vehicular Networking Confer-

ence (VNC) (2020). DOI: 10.1109/vnc51378.2020.9318404.

[5] Taeho Kim et al. “Vulnerable Road User Protection through Intuitive Visual Cue on Smart-

phones”. In: Proceedings of the 2nd ACM International Workshop on Smart, Autonomous,

and Connected Vehicular Systems and Services (2017), pp. 13–17. DOI: 10.1145/3131944.

3131950.

[6] Shoma Hisaka and Shunsuke Kamijo. “On-board wireless sensor for collision avoidance:

Vehicle and pedestrian detection at intersection”. In: 2011 14th International IEEE Confer-

ence on Intelligent Transportation Systems (ITSC) (2011), pp. 198–205. DOI: 10.1109/

itsc.2011.6082853.

[7] Xinzhou Wu et al. “Cars Talk to Phones: A DSRC Based Vehicle-Pedestrian Safety Sys-

tem”. In: 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall) (2014). DOI:

10.1109/vtcfall.2014.6965898.

[8] 5GAA. 5GAA Website. Acessed 25 March 2021. Sept. 2016. URL: http://5gaa.org/.

[9] Dario Sabella et al. Toward fully connected vehicles: Edge computing for advanced auto-

motive communications. 5GAA, 2017, pp. 4–16.

127

https://www.who.int/publications/i/item/9789241565684
https://www.who.int/publications/i/item/9789241565684
https://doi.org/10.3390/s20040997
https://doi.org/10.1007/s12544-017-0230-3
https://dx.doi.org/10.1007/s12544-017-0230-3
https://dx.doi.org/10.1007/s12544-017-0230-3
https://doi.org/10.1109/vnc51378.2020.9318404
https://doi.org/10.1145/3131944.3131950
https://doi.org/10.1145/3131944.3131950
https://doi.org/10.1109/itsc.2011.6082853
https://doi.org/10.1109/itsc.2011.6082853
https://doi.org/10.1109/vtcfall.2014.6965898
http://5gaa.org/

128 BIBLIOGRAPHY

[10] A. Napolitano et al. “Implementation of a MEC-based Vulnerable Road User Warning Sys-

tem”. In: 2019 AEIT International Conference of Electrical and Electronic Technologies for

Automotive (AEIT AUTOMOTIVE) (2019). DOI: 10.23919/eeta.2019.8804497.

[11] Raymond M. Lee. “The Secret Life of Focus Groups: Robert Merton and the Diffusion of

a Research Method”. In: The American Sociologist 41.2 (2010), pp. 115–141. ISSN: 0003-

1232. DOI: 10.1007/s12108-010-9090-1.

[12] John D. Gould and Clayton Lewis. “Designing for usability: key principles and what design-

ers think”. In: Communications of the ACM 28.3 (1985), pp. 300–311. ISSN: 0001-0782.

DOI: 10.1145/3166.3170.

[13] S. Dow et al. “Wizard of Oz Support throughout an Iterative Design Process”. In: IEEE

Pervasive Computing 4.4 (2005), pp. 18–26. ISSN: 1536-1268. DOI: 10.1109/mprv.

2005.93.

[14] Quang-Huy Nguyen et al. “Car-to-Pedestrian communication with MEC-support for adap-

tive safety of Vulnerable Road Users”. In: Computer Communications 150 (2020), pp. 83–

93. ISSN: 0140-3664. DOI: 10.1016/j.comcom.2019.10.033.

[15] Sergei S. Avedisov et al. “Perceived Safety: A New Metric for Evaluating Safety Benefits

of Collective Perception for Connected Road Users”. In: 2020 IEEE Vehicular Networking

Conference (VNC) (2020), pp. 131–134.

[16] Yongki Lee et al. “A Novel Path Planning Algorithm for Truck Platooning Using V2V

Communication”. In: Sensors 20.24 (2020), p. 7022. ISSN: 1424-8220. DOI: 10.3390/

s20247022.

[17] Marek Bachmann et al. “The Wireless Seat Belt Requirements, Experiments, and Solu-

tions for Pedestrian Safety”. In: 2018 IEEE International Conference on Pervasive Com-

puting and Communications Workshops (PerCom Workshops) (2018), pp. 361–366. DOI:

10.1109/percomw.2018.8480123.

[18] Titov Waldemar, Felix Boehm, and Thomas Schlegel. “Prototyping Approach of Network-

ing Road Users for Cooperative Collision Avoidance using Smartphones”. In: 2019 Sixth In-

ternational Conference on Internet of Things: Systems, Management and Security (IOTSMS)

(2019), pp. 374–379. DOI: 10.1109/iotsms48152.2019.8939273.

[19] Julian Heinovski et al. “Modeling Cycling Behavior to Improve Bicyclists’ Safety at Inter-

sections – A Networking Perspective”. In: 20th IEEE International Symposium on a World

of Wireless, Mobile and Multimedia Networks (WoWMoM 2019). Washington, D.C.: IEEE,

June 2019. ISBN: 978-1-7281-0270-2. DOI: 10.1109/WoWMoM.2019.8793008.

[20] Marie-Christin H. Oczko et al. “Integrating Haptic Signals with V2X-based Safety Systems

for Vulnerable Road Users”. In: IEEE International Conference on Computing, Networking

and Communications (ICNC 2020). Kailua, HI: IEEE, Feb. 2020, pp. 692–697. DOI: 10.

1109/ICNC47757.2020.9049723.

https://doi.org/10.23919/eeta.2019.8804497
https://doi.org/10.1007/s12108-010-9090-1
https://doi.org/10.1145/3166.3170
https://doi.org/10.1109/mprv.2005.93
https://doi.org/10.1109/mprv.2005.93
https://doi.org/10.1016/j.comcom.2019.10.033
https://doi.org/10.3390/s20247022
https://doi.org/10.3390/s20247022
https://doi.org/10.1109/percomw.2018.8480123
https://doi.org/10.1109/iotsms48152.2019.8939273
https://doi.org/10.1109/WoWMoM.2019.8793008
https://doi.org/10.1109/ICNC47757.2020.9049723
https://doi.org/10.1109/ICNC47757.2020.9049723

BIBLIOGRAPHY 129

[21] Stefan Loewen et al. “Backwards compatible extension of CAMs/DENMs for improved

bike safety on the road”. In: 2017 IEEE Vehicular Networking Conference (VNC) (2017).

DOI: 10.1109/vnc.2017.8275657.

[22] José Bastos Pintor. “Modeling and Performance Evaluation of Bicycle-to-X Communica-

tion Networks”. MA thesis. s/n, R. Dr. Roberto Frias, 4200-465 Porto: FEUP - Faculdade

de Engenharia da Universidade do Porto, Feb. 2019.

[23] Yifu Liu et al. “Vehicle position and context detection using V2V communication with

application to pre-crash detection and warning”. In: 2016 IEEE Symposium Series on Com-

putational Intelligence (SSCI) (2016). DOI: 10.1109/ssci.2016.7850093.

[24] Mahmoud Shawki and M. Saeed Darweesh. “Collision Probability Computation for Road

Intersections Based on Vehicle to Infrastructure Communication”. In: 2020 32nd Interna-

tional Conference on Microelectronics (ICM) (2020). DOI: 10.1109/icm50269.2020.

9331802.

[25] Chi-Yu Li et al. “V2PSense: Enabling Cellular-Based V2P Collision Warning Service through

Mobile Sensing”. In: 2018 IEEE International Conference on Communications (ICC) (2018).

DOI: 10.1109/icc.2018.8422981.

[26] Andreas Jahn, Michel Morold, and Klaus David. “5G Based Collision Avoidance - Benefit

from Unobtrusive Activities”. In: 2018 European Conference on Networks and Communi-

cations (EuCNC) (2018), pp. 352–356. DOI: 10.1109/eucnc.2018.8442711.

[27] Marco Malinverno et al. “Edge-Based Collision Avoidance for Vehicles and Vulnerable

Users: An Architecture Based on MEC”. In: IEEE Vehicular Technology Magazine 15.1

(2020), pp. 27–35. ISSN: 1556-6072. DOI: 10.1109/mvt.2019.2953770.

[28] Alexis Yáñez and Sandra Céspedes. “Pedestrians also Have Something to Say: Integration

of Connected VRU in Bidirectional Simulations”. In: 2020 IEEE Vehicular Networking

Conference (VNC) (2020), pp. 155–158.

[29] Michel Morold et al. “Requirements on Delay of VRU Context Detection for Cooperative

Collision Avoidance”. In: 92nd IEEE Vehicular Technology Conference (VTC 2020-Fall).

Virtual Conference: IEEE, Nov. 2020.

[30] Suhua Tang, Kiyoshi Saito, and Sadao Obana. “Transmission control for reliable pedestrian-

to-vehicle communication by using context of pedestrians”. In: 2015 IEEE International

Conference on Vehicular Electronics and Safety (ICVES) (2015), pp. 41–47. DOI: 10.

1109/icves.2015.7396891.

[31] Jasper Jahn Marcus Bocksch Jochen Seitz. “Pedestrian Activity Classification to Improve

Human Tracking and Localization”. In: 2013 International Conference on Indoor Position-

ing and Indoor Navigation (2013).

https://doi.org/10.1109/vnc.2017.8275657
https://doi.org/10.1109/ssci.2016.7850093
https://doi.org/10.1109/icm50269.2020.9331802
https://doi.org/10.1109/icm50269.2020.9331802
https://doi.org/10.1109/icc.2018.8422981
https://doi.org/10.1109/eucnc.2018.8442711
https://doi.org/10.1109/mvt.2019.2953770
https://doi.org/10.1109/icves.2015.7396891
https://doi.org/10.1109/icves.2015.7396891

130 BIBLIOGRAPHY

[32] Jens Kotte et al. “Concept of an enhanced V2X pedestrian collision avoidance system with a

cost function–based pedestrian model”. In: Traffic Injury Prevention 18.sup1 (2017). PMID:

28368684, S37–S43. DOI: 10.1080/15389588.2017.1310380. eprint: https://

doi.org/10.1080/15389588.2017.1310380. URL: https://doi.org/10.

1080/15389588.2017.1310380.

[33] Jakob Nielsen and Rolf Molich. “Heuristic Evaluation of User Interfaces”. In: Proceed-

ings of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’90. Seat-

tle, Washington, USA: Association for Computing Machinery, 1990, pp. 249–256. ISBN:

0201509326. DOI: 10.1145/97243.97281. URL: https://doi.org/10.1145/

97243.97281.

[34] Sensors Overview | Android Developers. https : / / developer . android . com /

guide/topics/sensors/sensors_overview. Accessed 16 May 2020.

[35] Lukas Stratmann et al. “Psychological Feasibility of a Virtual Cycling Environment for

Human-in-the-Loop Experiments”. In: Jahrestagung der Gesellschaft für Informatik (IN-

FORMATIK 2019), 1st Workshop on ICT based Collision Avoidance for VRUs (ICT4VRU

2019). Ed. by Claude Draude, Martin Lange, and Bernhard Sick. Vol. LNI P-295. Kassel,

Germany: Gesellschaft für Informatik e.V. (GI), Sept. 2019, pp. 185–194. ISBN: 978-3-

88579-689-3. DOI: 10.18420/inf2019_ws21.

[36] Alexander Krüger et al. “TVA in the wild: Applying the theory of visual attention to game-

like and less controlled experiments”. In: Open Psychology (2020). to appear.

[37] Sophia Antipolis Cedex. Intelligent Transport Systems (ITS);Framework for Public Mobile

Networks in Cooperative ITS (C-ITS). 1.1.1. ETSI, 2012, pp. 5–63.

[38] Jeff Sutherland and Ken Schwaber. The 2020 Scrum Guide. https://www.scrumguides.

org/scrum-guide.html. Accessed 23 December 2020. 2020.

[39] Heila Van Der Merwe, Brink Van Der Merwe, and Willem Visse. “Verifying android ap-

plications using Java PathFinder”. In: ACM SIGSOFT Software Engineering Notes 37.6

(2012), p. 1. ISSN: 0163-5948. DOI: 10.1145/2382756.2382797.

[40] Ana Rosario Espada et al. “Using Model Checking to Generate Test Cases for Android

Applications”. In: Electronic Proceedings in Theoretical Computer Science 180 (2015),

pp. 7–21. ISSN: 2075-2180. DOI: 10.4204/eptcs.180.1.

[41] Guangdong Bai et al. “Towards Model Checking Android Applications”. In: IEEE Trans-

actions on Software Engineering 44.6 (2018), pp. 595–612. ISSN: 0098-5589. DOI: 10.

1109/tse.2017.2697848.

[42] Ana Rosario Espada et al. “A formal approach to automatically analyse extra-functional

properties in mobile applications”. In: Software Testing, Verification and Reliability 29.4-5

(2019), e1699. ISSN: 0960-0833. DOI: 10.1002/stvr.1699. URL: https://dx.doi.

org/10.1002/stvr.1699.

https://doi.org/10.1080/15389588.2017.1310380
https://doi.org/10.1080/15389588.2017.1310380
https://doi.org/10.1080/15389588.2017.1310380
https://doi.org/10.1080/15389588.2017.1310380
https://doi.org/10.1080/15389588.2017.1310380
https://doi.org/10.1145/97243.97281
https://doi.org/10.1145/97243.97281
https://doi.org/10.1145/97243.97281
https://developer.android.com/guide/topics/sensors/sensors_overview
https://developer.android.com/guide/topics/sensors/sensors_overview
https://doi.org/10.18420/inf2019_ws21
https://www.scrumguides.org/scrum-guide.html
https://www.scrumguides.org/scrum-guide.html
https://doi.org/10.1145/2382756.2382797
https://doi.org/10.4204/eptcs.180.1
https://doi.org/10.1109/tse.2017.2697848
https://doi.org/10.1109/tse.2017.2697848
https://doi.org/10.1002/stvr.1699
https://dx.doi.org/10.1002/stvr.1699
https://dx.doi.org/10.1002/stvr.1699

BIBLIOGRAPHY 131

[43] Android UI Automator | Android Developers. https://developer.android.com/

training/testing/ui-automator. Accessed 28 April 2021.

[44] Android Espresso | Android Developers. https://developer.android.com/training/

testing/espresso. Accessed 28 April 2021.

[45] Android Instrumented Unit Tests | Android Developers. https://developer.android.

com/training/testing/unit-testing/instrumented-unit-tests. Ac-

cessed 28 April 2021.

[46] UI or Application Exerciser Monkey | Android Developers. https : / / developer .

android.com/studio/test/monkey. Accessed 29 April 2021.

[47] NumberEight SDK. https://www.numbereight.ai/. Accessed 29 April 2021.

[48] Maps SDK for Android | Android Developers. https://developers.google.com/

maps/documentation/android-sdk/overview. Accessed 29 April 2021.

[49] Geofencing API | Android Developers. https://developer.android.com/training/

location/geofencing. Accessed 29 April 2021.

[50] Firebase Cloud Messaging. https : / / firebase . google . com / docs / cloud -

messaging. Accessed 29 April 2021.

[51] Contrast Ratio. https://contrast-ratio.com/. Accessed 02 May 2021.

[52] React - A JavaScript library for building user interfaces. https://reactjs.org/.

Accessed 29 April 2021.

[53] Lingver. https://github.com/YarikSOffice/lingver. Accessed 29 April 2021.

[54] Markwon. https://github.com/noties/Markwon. Accessed 29 April 2021.

[55] Android Donut Library. https://github.com/futuredapp/donut. Accessed 29

April 2021.

[56] David Marcelo Duarte Lourenço. “Análise Espacial da Sinistralidade Rodoviária na Cidade

do Porto”. MA thesis. s/n, R. Dr. Roberto Frias, 4200-465 Porto: FEUP - Faculdade de

Engenharia da Universidade do Porto, Nov. 2019.

[57] Mariana Vilaça, Eloísa Macedo, and Margarida C. Coelho. “A Rare Event Modelling Ap-

proach to Assess Injury Severity Risk of Vulnerable Road Users”. In: Safety 5.2 (2019).

ISSN: 2313-576X. DOI: 10.3390/safety5020029. URL: https://www.mdpi.com/

2313-576X/5/2/29.

[58] Tânia Sofia Almeida Marinho. “Avaliação do Impacto de Ocorrências na Mobilidade da

Rede Viária do Porto”. MA thesis. s/n, R. Dr. Roberto Frias, 4200-465 Porto: FEUP - Fac-

uldade de Engenharia da Universidade do Porto, Sept. 2020.

[59] Android FusedLocationProviderClient | Android Developers. https://developers.

google.com/android/reference/com/google/android/gms/location/

FusedLocationProviderClient. Accessed 01 May 2021.

https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/espresso
https://developer.android.com/training/testing/espresso
https://developer.android.com/training/testing/unit-testing/instrumented-unit-tests
https://developer.android.com/training/testing/unit-testing/instrumented-unit-tests
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://www.numbereight.ai/
https://developers.google.com/maps/documentation/android-sdk/overview
https://developers.google.com/maps/documentation/android-sdk/overview
https://developer.android.com/training/location/geofencing
https://developer.android.com/training/location/geofencing
https://firebase.google.com/docs/cloud-messaging
https://firebase.google.com/docs/cloud-messaging
https://contrast-ratio.com/
https://reactjs.org/
https://github.com/YarikSOffice/lingver
https://github.com/noties/Markwon
https://github.com/futuredapp/donut
https://doi.org/10.3390/safety5020029
https://www.mdpi.com/2313-576X/5/2/29
https://www.mdpi.com/2313-576X/5/2/29
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient

132 BIBLIOGRAPHY

[60] Jesse Weaver, Qi Han, and Archan Misra. “Building the Case for Dynamic Location Query

Processing”. In: 2016 17th IEEE International Conference on Mobile Data Management

(MDM) (2016), pp. 40–49. DOI: 10.1109/mdm.2016.20.

[61] Test your app’s accessibility | Android Developers. https://developer.android.

com/guide/topics/ui/accessibility/testing. Accessed 02 May 2021.

[62] Secure OS. https://securegroup.com/secure-os/. Accessed 02 May 2021.

[63] Gogoll, Jan and Zuber, Niina and Kacianka, Severin and Greger, Timo and Pretschner,

Alexander and Nida-Rümelin, Julian. “Ethics in the Software Development Process: from

Codes of Conduct to Ethical Deliberation”. In: Philosophy I&’ Technology (2021). ISSN:

2210-5433. DOI: 10.1007/s13347-021-00451-w.

[64] Service | Android Developers. https://developer.android.com/reference/

android/app/Service. Accessed 02 May 2021.

[65] Android Vibrator API | Android Developers. https://developer.android.com/

reference/android/os/Vibrator. Accessed 22 December 2020.

[66] JaCoCo Java Code Coverage Library. https://www.eclemma.org/jacoco/. Ac-

cessed 28 April 2021.

[67] Geofence.GeofenceTransition | Google Play services | Google Developers. https://

developers.google.com/android/reference/com/google/android/gms/

location/Geofence.GeofenceTransition. Accessed 29 May 2021.

[68] Steve Krug. Rocket Surgery Made Easy: The Do-It-Yourself Guide to Finding and Fixing

Usability Problems. 1st. USA: New Riders Publishing, 2009. ISBN: 0321657292.

[69] SenseMyCity - Google Play Apps. https://play.google.com/store/apps/

details?id=future.cities.sensemycity&hl=pt_PT&gl=US. Accessed 1 June

2021.

[70] Android Framework Code | config.xml. https://android.googlesource.com/

platform/frameworks/base/+/40caf8f4432acd2b9d9230b2b1371660521415c2/

core/res/res/values/config.xml. Accessed 30 May 2021.

[71] Smart Time Sync - Google Play Apps. https://play.google.com/store/apps/

details?id=com.pautinanet.smarttimesync&hl=pt_PT&gl=US. Accessed 30

May 2021.

[72] VisualGPS, LLC. https://www.visualgps.net. Accessed 30 May 2021.

[73] Understanding message delivery | Firebase. https : / / firebase . google . com /

docs/cloud-messaging/understand-delivery. Accessed 31 May 2021.

[74] Ryota Kanai et al. “Larger Stimuli Require Longer Processing Time for Perception”. In:

Perception 46.5 (2017), pp. 605–623. ISSN: 0301-0066. DOI: 10.1177/0301006617695573.

URL: https://dx.doi.org/10.1177/0301006617695573.

https://doi.org/10.1109/mdm.2016.20
https://developer.android.com/guide/topics/ui/accessibility/testing
https://developer.android.com/guide/topics/ui/accessibility/testing
https://securegroup.com/secure-os/
https://doi.org/10.1007/s13347-021-00451-w
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/os/Vibrator
https://developer.android.com/reference/android/os/Vibrator
https://www.eclemma.org/jacoco/
https://developers.google.com/android/reference/com/google/android/gms/location/Geofence.GeofenceTransition
https://developers.google.com/android/reference/com/google/android/gms/location/Geofence.GeofenceTransition
https://developers.google.com/android/reference/com/google/android/gms/location/Geofence.GeofenceTransition
https://play.google.com/store/apps/details?id=future.cities.sensemycity&hl=pt_PT&gl=US
https://play.google.com/store/apps/details?id=future.cities.sensemycity&hl=pt_PT&gl=US
https://android.googlesource.com/platform/frameworks/base/+/40caf8f4432acd2b9d9230b2b1371660521415c2/core/res/res/values/config.xml
https://android.googlesource.com/platform/frameworks/base/+/40caf8f4432acd2b9d9230b2b1371660521415c2/core/res/res/values/config.xml
https://android.googlesource.com/platform/frameworks/base/+/40caf8f4432acd2b9d9230b2b1371660521415c2/core/res/res/values/config.xml
https://play.google.com/store/apps/details?id=com.pautinanet.smarttimesync&hl=pt_PT&gl=US
https://play.google.com/store/apps/details?id=com.pautinanet.smarttimesync&hl=pt_PT&gl=US
https://www.visualgps.net
https://firebase.google.com/docs/cloud-messaging/understand-delivery
https://firebase.google.com/docs/cloud-messaging/understand-delivery
https://doi.org/10.1177/0301006617695573
https://dx.doi.org/10.1177/0301006617695573

BIBLIOGRAPHY 133

[75] Daniel Linares and Alex O. Holcombe. “Differences in Perceptual Latency Estimated from

Judgments of Temporal Order, Simultaneity and Duration are Inconsistent”. In: i-Perception

5.6 (2014), pp. 559–571. ISSN: 2041-6695. DOI: 10.1068/i0675. URL: https://dx.

doi.org/10.1068/i0675.

https://doi.org/10.1068/i0675
https://dx.doi.org/10.1068/i0675
https://dx.doi.org/10.1068/i0675

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Document Structure

	2 State of the Art
	2.1 Background on VRU Protection
	2.2 Background on HCI Methodologies
	2.3 Architectures and Relevant Technologies
	2.3.1 Direct Connection
	2.3.2 Cellular Communication
	2.3.3 Central Server (MEC)

	2.4 Related Work
	2.4.1 Vehicle-centered Solutions
	2.4.2 Requirements and Architectures
	2.4.3 Positioning and Context-Awareness
	2.4.4 Warning Interface
	2.4.5 Mobile/Multi-Access Edge Computing
	2.4.6 Psychological Studies on Human Stimuli

	2.5 Discussion Relative to Previous Work

	3 Smartphone Based VRU Protection
	3.1 Application Use Case and Assumed System Model
	3.2 Framing the Problem
	3.3 Proposed Solution and Approach
	3.3.1 User Centric Design Methodology
	3.3.2 Software Engineering Methods
	3.3.3 Tools

	3.4 Use Cases

	4 URU-S Design and Implementation
	4.1 URU-S Design
	4.1.1 Preliminary Design (WireFrame)
	4.1.2 Focus Group
	4.1.3 Resulting WireFrame
	4.1.4 Additional Features

	4.2 Architecture
	4.3 Context-Awareness and Glimpses
	4.4 Geofencing Foreground Service
	4.5 Geofencing Data Acquisition
	4.6 Geofence Accuracy
	4.7 Alert System
	4.8 Requirement Satisfaction
	4.9 Final Screens, Flow and Use Cases
	4.9.1 Home Screen
	4.9.2 Options Menu
	4.9.3 Alert Settings
	4.9.4 Statistics
	4.9.5 Real-Time Alert Notification
	4.9.6 Context-Awareness Notification
	4.9.7 Context-Awareness Override
	4.9.8 Alert Suspension
	4.9.9 Geofencing and Danger-Zone Entry

	5 Evaluation of the Proposed Solution
	5.1 Unit-Test-Based Verification
	5.1.1 Results

	5.2 Usability-Test-Based Validation
	5.2.1 Setup
	5.2.2 Result

	5.3 Additional Measurements
	5.3.1 Context-Awareness
	5.3.2 Latency

	6 Conclusions and Future Work
	6.1 Conclusion
	6.2 Further Work

	A Focus Group Report
	A.1 Executive Summary
	A.2 Methodology & Participant Profile
	A.2.1 Instrument Development
	A.2.2 Site Selection
	A.2.3 Participant Selection
	A.2.4 Procedure for Current and Future Focus Groups
	A.2.5 Participant Profile

	A.3 Demographics
	A.4 Discussion Results
	A.4.1 Question #1 - What would people like to see in a road safety app such as this?
	A.4.2 Question #2 - What would people like in terms of notifications? Sound, Touch, Visual?
	A.4.3 Question #3 - If you would like to have sounds, which sounds?
	A.4.4 Question #4 - If visual, in what way?
	A.4.5 Question #5 - Do you like the ability to configure/suspend the notification settings?
	A.4.6 Question #6 - Do you like the ability to suspend for a given amount of minutes?
	A.4.7 Question #8 - Would they like some form of widget integration with a PSP (police) map of the most dangerous locations in terms of accidents?
	A.4.8 Question #9 - Would you like to be capable of instructing the app's notifications to shut down in certain areas that you know for a fact are prone to false positives?
	A.4.9 Question #10 - Are you interested in the login/register option for saving your settings, or would you like some other form, like the upload/download or even some other form (please specify)?
	A.4.10 Question #11 - Do you think the documentation is accessible where it is now, via the options menu?
	A.4.11 Question #12 - What do you think was the most vital thing discussed today?

	A.5 Conclusion
	A.6 Recommendations
	A.7 Appendices
	A.7.1 Privacy Policy
	A.7.2 Presentation Used
	A.7.3 Question Guide
	A.7.4 Sketch of an interface misunderstanding
	A.7.5 Polls
	A.7.6 Interest in Danger Reports or Crowd-Sourcing Elements

	B Usability Testing Report
	B.1 Introduction
	B.2 Executive Summary
	B.3 Methodology
	B.3.1 Participants

	B.4 Results
	B.4.1 Task Completion Success Rate
	B.4.2 Task Ratings
	B.4.3 Time on Task
	B.4.4 Errors
	B.4.5 Outdoor Phase
	B.4.6 Summary of Data
	B.4.7 Likes, Dislikes, Participant Suggestions
	B.4.8 Participant Suggestions for Improvement

	B.5 Recommendations
	B.6 Conclusion

	C Privacy Policy
	C.1 URU-S
	C.2 Goals of the Treatment
	C.3 Collected Personal Data
	C.4 Conservation Dates
	C.5 Receivers of Personal Data
	C.6 Data Owner Rights
	C.7 Security Measures
	C.8 Use of Equipment and Questionnaires
	C.9 Remove Consent
	C.10 Contacts
	C.11 Responsible for Data Protection
	C.12 Informed Consent Term

