
Faculdade de Engenharia da Universidade do Porto

Data Enrichment for Data Mining

Applied to Bioinformatics and

Cheminformatics Domains

Luís Ricardo Marques Oliveira

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Prof. Rui Camacho

September 20th, 2021

Data Enrichment for Data Mining Applied to
Bioinformatics and Cheminformatics Domains

Luís Ricardo Marques Oliveira

Mestrado Integrado em Engenharia Informática e Computação

September 20th, 2021

Abstract

Increasingly more complex problems are being addressed in life sciences. Acquir-
ing all the data that may be related to the problem in question is paramount. Equally
important is to know how the data is related to each other and to the problem itself.
On the other hand, there are large amounts of data and information available on the
Web. Researchers are already using Data Mining and Machine Learning as valuable
tools in their investigations, albeit the usual procedure is to look for the information
based on the inductive models.

So far, despite the great successes already achieved with Data Mining and Ma-
chine Learning, it is not easy to integrate this vast amount of available information in
the inductive process with propositional algorithms. The algorithms of propositional
machine learning are very dependent on data attributes. It still is hard to identify
which attributes are more suitable for a particular task in the research. It is also hard
to extract relevant information from the enormous quantity of data available. We ag-
gregate the data available and derive features that ILP algorithms can use to induce
descriptions and solve problems.

We have created a web platform to help solve relevant bioinformatics (particularly
Genomics) and Cheminformatics problems. It fetches information about compounds,
substances, genes and proteins from public genomics, protein and chemical reposi-
tories. The data enrichment aggregates material from different sources, produces a
conversion dictionary and generates Prolog facts from all the information collected.
With the facts, Prolog systems use inductive logic programming to induce rules and
solve specific Bioinformatics and Cheminformatics case studies.

Our main motivation was to address the problem of integrating domain informa-
tion into the inductive process of propositional Data Mining and Machine Learning
techniques by enriching the training data to be used in inductive logic programming
systems. The solution successfully addresses the problem at hand and is very easy
and simple to use. It has already been used to generate three Prolog knowledge base
datasets with millions of clauses each.

Keywords: Genomics, Cheminformatics, Data Mining, Classification, Enrichment,
ILP

i

ii

Resumo

Problemas cada vez mais complexos estão a ser tratados na àrea das ciências
da vida. A aquisição de todos os dados que possam estar relacionados com o prob-
lema em questão é primordial. Igualmente importante é saber como os dados estão
relacionados uns com os outros e com o próprio problema. Por outro lado, existem
grandes quantidades de dados e informações disponíveis na Web. Os investigadores já
estão a utilizar Data Mining e Machine Learning como ferramentas valiosas nas suas
investigações, embora o procedimento habitual seja procurar a informação baseada
nos modelos indutivos.

Até agora, apesar dos grandes sucessos já alcançados com a utilização de Data
Mining e Machine Learning, não é fácil integrar esta vasta quantidade de infor-
mação disponível no processo indutivo, com algoritmos proposicionais. Os algorit-
mos proposicionais de Machine Learning são muito dependentes dos atributos dos
dados. Ainda é difícil identificar quais os atributos mais adequados para uma de-
terminada tarefa na investigação. É também difícil extrair informação relevante da
enorme quantidade de dados disponíveis. Agregamos os dados disponíveis e deriva-
mos características que os algoritmos de ILP podem utilizar para induzir descrições,
resolvendo os problemas.

Criamos uma plataforma web para ajudar a resolver importantes problemas de
Bioinformática (particularmente Genómica) e Quimioinformática. Vai buscar os da-
dos a repositórios públicos de dados genómicos, proteicos e químicos. O enriqueci-
mento dos dados vai juntar material de diferentes fontes, produzir um dicionário de
conversáo e gerar factos Prolog a partir de toda a informação reunida. Com os factos,
sistemas Prolog utilizam programação lógica indutiva para induzir regras e resolver
casos específicos de Bioinformática e Cheminformática.

A nossa principal motivação era abordar o problema da integração de informação
de domínio no processo indutivo de técnicas proposicionais de Data Mining e Machine
Learning, por enriquecemento dos dados de treino a serem utilizados em sistemas
de programação de lógica indutiva. A solução resolve com sucesso o problema em
questão e é muito fácil e simples de usar. Já foi usada para gerar três datasets de
Base de Conhecimentos Prolog, com mais de dois milhões de clausulas cada.

Keywords: Genómica, Quimioinformática, Data Mining, Classificação, Enriqueci-
mento, ILP

iii

iv

Acknowledgements

I wish to thank Professor Rui Camacho, for his guidance, help and attention through-
out this project.

A special thank you to Marlene for her support and for encouraging me to take a
five-year (integrated) master’s course at the age of 42...

Luís Marques Oliveira

v

vi

“Being in a minority, even in a minority of one, did not make you mad. There was
truth and there was untruth, and if you clung to the truth even against the whole

world, you were not mad.

George Orwell, Nineteen Eighty-Four

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 1
1.3 Objectives . 2
1.4 Dissertation structure . 2

2 Bioinformatics and Cheminformatics 3
2.1 Repositories and their API . 15
2.2 Tools . 31
2.3 Related Work . 32
2.4 Summary . 33

3 Data Mining and Machine Learning Background 35
3.1 Relational Data Mining and Machine Learning 35
3.2 Inductive Logic Programming . 57
3.3 Tools . 63
3.4 Summary . 67

4 Implementation 69
4.1 Requirements . 69
4.2 Technologies . 71
4.3 Boilerplate . 75
4.4 Architecture . 80
4.5 User Stories . 87
4.6 User Interface . 90
4.7 Requests & Repositories . 98
4.8 Deployment . 105
4.9 Summary . 107

5 Case Studies 109
5.1 Handling Proteins . 109
5.2 Handling Chemistry . 112
5.3 Handling Genes . 114
5.4 Summary . 117

6 Conclusions and Future Work 119
6.1 Conclusions . 119
6.2 Future Work . 120

References 121

ix

x CONTENTS

A Databases 125

B More interface pages examples 133

List of Figures

2.1 Bioinformatics applications . 4
2.2 Omics from the genome to the phenome 7
2.3 Cheminformatics viewed by Frank K. Brown 8
2.4 QSAR / QSPR flow diagram . 9
2.5 Cheminformatics basic steps . 9
2.6 Chemical structure representations . 10
2.7 Cangen algorithm for SMILES representation 11
2.8 InChIKey generation workflow diagram. 12

3.1 CRISP-DM diagram . 36
3.2 RapidMiner Linear Regression output example 37
3.3 Examples of knowledge representation 38
3.4 Cluster representations . 39
3.5 Cluster representations . 39
3.6 K-nearest neighbours example . 41
3.7 Comparison of Bayes networks classifiers 42
3.8 Random forest diagram . 43
3.9 Support Vector Machines diagram . 44
3.10 Diagram of a generic perceptron . 46
3.11 Diagram of a Artificial Neural Network 47
3.12 Precision vs Accuracy . 48
3.13 Extended confusion matrix . 49
3.14 Confusion matrix . 49
3.15 ROC and AUC . 51
3.16 Hierarchical agglomerative and divisive approaches 54
3.17 Density-based neighbourhoods . 55
3.18 Sets with positive and negative examples 57

4.1 MVC architecture diagram . 72
4.2 Django application architecture diagram 73
4.3 Application Architecture . 80
4.4 Navigation Flow . 90
4.5 Landing Page . 91
4.6 Repositories page . 92
4.7 Kegg input page . 94
4.8 Bulk input page . 95
4.9 PaDEL Page . 96
4.10 .csv to .arff pipeline . 97
4.11 Cheminformatics conversion table in Administration Area 97

xi

xii LIST OF FIGURES

5.1 Proteomics case study pipeline . 111
5.2 Chemistry case study pipeline . 113
5.3 Genomics case study pipeline . 115

A.1 UML of the conceptual data model of the PDB database 125
A.2 UML of the conceptual data model of the Pubchem database 126
A.3 UML of the conceptual data model of the Kegg database 127
A.4 UML of the conceptual data model of the Genbank database 128
A.5 UML of the conceptual data model of the Ensembl database 129
A.6 UML of the conceptual data model of the Go database 130
A.7 UML of the conceptual data model of the Converter database 130
A.8 UML of the conceptual data model of the Knowledge Base database . . 131

B.1 Genomic field page . 133
B.2 Proteomic field page . 134
B.3 Bulk Input page with help tooltip . 135
B.4 Outputs page . 136
B.5 CSV to ARFF output page . 137
B.6 Output Prolog page . 138
B.7 PDB input page . 139
B.8 PDB search results . 140
B.9 PDB output page . 141
B.10 Pubchem repo page for compounds (2D output) 142
B.11 Pubchem repo page for compounds (3D output) 143
B.12 Pubchem repo page for substances . 144
B.13 Pubchem Output cut . 145
B.14 Kegg search results . 146
B.15 Genbank repo page . 147
B.16 Genbank repo page with help tooltip . 148
B.17 Genbank search results . 149
B.18 Genbank output page . 150
B.19 Ensembl repo page . 151
B.20 Ensembl Gene output page . 152
B.21 Ensembl Protein output page . 152
B.22 Orphan Exon not saved . 153
B.23 Login page . 154
B.24 Change Password page . 154
B.25 Database export example . 155
B.26 Add New user page . 155
B.27 Edit user page . 156

List of Tables

2.1 IUPAC’s one- and three-letter amino acid codes 6
2.2 Table of Cheminformatics methods . 14
2.3 NCBI GenBank RefSeq accession number prefixes and molecule types. . 18

4.1 Functional Requirements . 70
4.2 Restrictions . 70
4.3 Technical Requirements . 71
4.4 Frontend endpoints . 81
4.5 Backend endpoints . 84
4.6 Main User stories, their usages and corresponding UI Figures 88
4.7 Repositories corresponding UI Figures 89
4.8 User management User stories, their usages and corresponding UI Fig-

ures . 89
4.9 Properties obtainable from Pubchem . 99
4.10 Kegg entity types, examples and regular expressions 101

xiii

xiv LIST OF TABLES

xv

xvi ABBREVIATIONS

Abbreviations

ADMET Absorption, Distribution, Metabolism, and Excretion - Toxicity
ANN Artificial Neural Network
ANSI American National Standards Institute
API Application Product Interface
ARFF Attribute-Relation File Format
AUC Area Under the Curve
BLAST Basic Local Alignment Search Tool
CCDS Consensus Coding Sequence
CID (Pubchem) Compound IDentifier
CDK Chemistry Development Kit
CNN Convolutional Neural Network
CRISP-DM Cross-industry Standard Process for Data Mining
CSV Comma Sparated Values
DAG Directed Acyclic Graph
DBSCAN Density Based Spatial Clustering of Application with Noise
DM Data Mining
DNA DeoxyriboNucleic Acid
DTD Document Type Definition
DSSTox Distributed Structure-Searchable Toxicity
EBI The European Bioinformatics Institute
EMBL European Molecular Biology Laboratory
EPA (United States) Environmental Protection Agency
FN False Negatives
FP False Positives
FPR False Positive Rate
GAF Gene Annotation File
GAN Generative Artificial Network
GNN Graph Neural Network
GUI Graphical User Interface
HIV Human Immunodeficiency Virus
HTTP HyperText Transfer Protocol
ID3 Iterative Dichotomiser 3
IDE Integrated Development Environment
ILP Inductive Logic Programming
InChi IUPAC International Chemical Identifier
ISO International Organization for Standardization
IUPAC International Union of Pure and Applied Chemistry
JSON JavaScript Object Notation
JVM Java Virtual Machine
KEGG Kyoto Encyclopedia of Genes and Genomes

ABBREVIATIONS xvii

KNN K-Nearest Neighbours
MDL Meaning Definition Language
MIM Mendelian Inheritance in Man
ML Machine Learning
mRNA Messenger RiboNucleic Acid
MTV Model-Template-Controller
MVC Model-View-Controller
NCBI National Center for Biotechnology Information
NCI National Cancer Institute
NIH National Institutes of Health
npm Node Package Manager
OMIM Online Mendelian Inheritance in Man
OWL Web Ontology Language
PCR Polymerase Chain Reaction
pip Pip Installs Packages
PIR Protein Information Resource
PDB Protein Data Bank
QSAR Quantitative Structure–Activity Relationship
QSPR Quantitative Structure-Property Relationship
RCSB Research Collaboratory for Structural Bioinformatics
RDBMS Relational Database Management System
ROC Receiver Operating Characteristics
RNA RiboNucleic Acid
RNN Recurrent Neural Networks
SAR Structure–Activity Relationship
rRNA Ribosomal RiboNucleic Acid
SIB Swiss Institute of Bioinformatics
SDF Structural Data Files
SID (Pubchem) Substance IDentifier
SMILES Simplified Molecular-Input Line-Entry System
SSN Shared Nearest Neighbours
SQL Structured Query Language
STS Sequence Tagged Site
SVM Support Vector Machine
TN True Negatives
TP True Positives
TPR True Positive Rate
tRNA Transfer RiboNucleic Acid
UML Unified Modeling Language
URL Uniform Resource Locator
WEKA Waikako Environment for Knowledge Analysis
WWW World Wide Web
XML eXtensible Markup Language

Chapter 1

Introduction

The evolution of the Internet and the creation of collaborative databases allowed
access to increasing amounts of relevant data to the most diverse fields.

Data Mining and Machine Learning techniques are increasingly being used both
to take advantage of the available information and to enable the tracking of volumes
of data impossible to scrutinise by humans. They are being used mainly to gain knowl-
edge and to make predictions.

In the field of life sciences, there has been a great evolution in what is called
Bioinformatics and Cheminformatics, in sequencing, analysis and prediction.

In this chapter, we will contextualise this dissertation, the motivation behind it,
the objectives we aim to achieve, the methodology used and the structure.

1.1 Context

So far, despite the great successes already achieved with the use of Data Min-
ing and Machine Learning, is very difficult to integrate this vast amount of available
information in the inductive process, with propositional algorithms.

The algorithms of propositional machine learning are very dependent on data at-
tributes. It still is hard to identify which attributes are more suitable for a particular
task in the research. It is also hard to extract relevant information from the enormous
quantity of data available.

1.2 Motivation

Our main motivation is to address the problem of integrating domain informa-
tion into the inductive process of propositional Data Mining and Machine Learning
techniques, through the enrichment of the training data to be used in inductive logic
programming systems.

The use of domain knowledge Machine Learning algorithms can build simpler
models but with high accuracy, build more intelligible models that can be amenable

1

2 Introduction

to validation by experts and it can also provide new and valuable knowledge in the
domain under analysis that would otherwise pass unnoticed.

And how can domain knowledge be integrated into the process of propositional
induction? Through pre-processing, we can do it directly in the form of an attribute,
transform a set of values into a new, more powerful set with feature construction -
such as using the sub-graph of a recursive molecule as a new attribute - or, without
pre-processing, use a relational algorithm. For that we have Inductive Logic Program-
ming.

We will concentrate the available data, derive features that can be used by ILP
algorithms to induce descriptions that can solve the Bioinformatics and Cheminfor-
matics problems.

1.3 Objectives

We aim to address the problem at hand and use the enrichment information in the
induction process instead of the usual procedure of looking for the information based
on the induced models, as biologists do today.

Our objectives are creating a web platform that allows obtaining, in appropriate
repositories, using API, relevant information for problems in the area of Bioinformat-
ics, particularly Genomics, and of Cheminformatics, as well. The impact of this data
enrichment on Bioinformatics and Cheminformatics’s concrete applications will also
be evaluated, using specific case studies that we will also choose.

We expect to carry out enough experiments with the implemented solution that
can be conclusive and prove the enrichment was fruitful, enabling ILP systems to
outperform the propositional approach on certain situations.

1.4 Dissertation structure

The dissertation is divided into two main parts: one is the state of the art and
background both in data mining and technologies, and the other is the solution and
its architecture as well as the results obtained.

In the first part, in Chapter 2, we will describe and understand both Bioinformatics
and Cheminformatics. What they are, what they deal with and how. In some cases,
we will discuss certain Data Mining and Machine Learning techniques that are used.
Then, in Chapter 3, we will take a look at Data Mining and Machine Learning ap-
proaches, schemes and algorithms and how they address specific problems. We will
dedicate a special section to discuss inductive logic programming.

In the complementing part, in Chapter 4, we will present the different technologies
chosen for the development of this work, it’s implementation, architecture and uses.
In Chapter 5 is described how we have handled the three case studies, the flow of
execution and how to get outputs needed to the data mining processes.

Before ending, in Chapter 6, we will discuss the results and finish with a conclu-
sion.

Chapter 2

Bioinformatics and
Cheminformatics

With the technological and computer advancements, many fields of expertise in
life sciences increasingly adopted new computer-based solutions to solve old and new
challenges. In biology and chemistry, these eventually evolved to become areas on
their own and stabilised their names as Bioinformatics and Chem(o)informatics.

Bioinformatics

The origin of Bioinformatics lay in the path that led to DNA sequencing. It goes
back to 1953 when Watson and Crick published the DNA structure, and the 1960s,
with the accumulation of data and knowledge of biochemistry and protein structure.
The systematisation of knowledge of the three-dimensional protein structure, in 1984
gave Margaret O. Dayhoff the title of mother of bioinformatics [11].

The human genome project and the improvement of therapeutic processes with
the identification of a new gene or mutation into a known gene are some of the vis-
ible aspects of what bioinformatics is about. It usually refers to the use of compu-
tational tools in the study of biological problems and issues, also covering human
health-related applications such as planning new drugs through protein structures
from nucleotide sequences [55].

In 2001, Luscombe et al. defined bioinformatics as

“The application of computational techniques to understand and organise
the information associated with biological macromolecules.” [31]

Bioinformatics main applications are shown in Figure 2.1. We can divide them into
two main areas: sequence prediction or manipulation and 3D structure prediction,
even though the sequence determines the structure [55].

Sequencing involves the following applications[55]:

• comparisons between sequences (alignment);
• identification of patterns in sequences (signatures);
• characterisation of evolutionary relationships (phylogeny);

3

4 Bioinformatics and Cheminformatics

Figure 2.1: Bioinformatics applications. Source: [11]

• construction and annotation of genomes (genomics);
• network building (biology of systems).

and 3D structure prediction, these[55]:

• obtaining 3D models for proteins and other biomolecules (comparative mod-
elling);

• identification of modes of interaction between molecules (proteomics);
• selection of compounds with higher inhibition potential (proteomics);
• characterisation of molecular flexibility (molecular dynamics);
• evaluation of the effect of changes in structure and molecular environment in

the dynamics and function of biomolecules (molecular dynamics).

Gupta, in [18], lists several areas of application in bioinformatics: molecular medi-
cine, gene therapy, drug development, waste cleanup, climate change studies, alter-
native energy resources, crop improvement, structure prediction, insect resistance,
improve nutritional quality, food quality research and veterinary science comparative
studies.

"Support vector machines, random forests, hidden Markov models, Bayesian net-
works, Gaussian networks have been applied in genomics, proteomics, systems biol-

Bioinformatics and Cheminformatics 5

ogy, and numerous other domains" [30] and also deep learning architecture. Deep
neural networks, recurrent neural networks and convolutional neural networks are
used in predicting protein structure, gene expression and classifying proteins and
anomalies [37].

Biological Pathways

A biological pathway is a sequence of events between molecules within a cell lead-
ing to some action that produces a change in the cell or creates a product. Some of
the more important pathways in bioinfomatics research are those involved in the reg-
ulation of genes, metabolism and in sending signals to and from molecules to inform
or perform some task.

Pathways indicate the routes in time and transformations the molecule suffers
and those it generates between its creation until its demise. Genes, proteins and
other molecules in certain biological pathways may provide us information about what
causes certain diseases.

Omics

Omics is a term that applies to a research field in biological sciences that ends with
-omics, such as genomics, proteomics, transcriptomics, or metabolomics. It encapsu-
lates protein structure prediction, gene expression regulation, protein classification
and anomaly classification for cancer research. The "most common input data in these
fields are raw biological sequences (DNA, RNA or amino acid)" and as these have vari-
able lengths and their sequential information is important, RNN are expected to be
appropriate [37].

Genomics
Genomics deals mainly with sequencing, determining the order of the pairs of

nucleotide bases in a DNA chain.

DNA sequencing cannot read complete genomes at once, only about 20.000 to
30.000 pair bases at a time. We just need to know one base from each pair because
the other is derived from that. In each of these shorter segments, we can do what is
called shotgun sequencing, consisting of subdividing into smaller fragments that can
be sequenced separately, and then re-assembled into a bigger segment.

When sequencing, the researchers deal with fragments that are not exclusive; they
have overlapping parts. It implies multiple reads and re-reads of each base.

DNA sequencing is used in the search for genetic mutations. The variation to be
discovered can be as little as a single base pair change. Genome data analysis, gene
expression and gene prediction are all variants of genomics.

This area deals with assigning structures to genes, connecting diseases with genes
and predicting genes from raw DNA sequence. We can have genotyping when we talk
about genome sequencing and identifying genes’ biological function and their part
in diseases. And there is also gene expression, which has to do with correlating
expression patterns, relating expression data to sequence, biological and structural
data [31].

6 Bioinformatics and Cheminformatics

Transcriptomics
Transcriptomics is the study of all the RNA molecules within a cell and also deals

with the sequencing of bases. Not the same four bases of DNA but three of them and
a different one. Not all the RNA in a cell is the mRNA (messenger) that will origin the
DNA. There is still a little percentage of non-coding RNA, and transcriptomics also
deals with these. These other types of RNA can be transfer RNA (tRNA) or ribosomal
RNA (rRNA). All three of these are present in all prokaryote and eukaryote organisms.
Nevertheless, there are also small quantities of other types of RNA.

Proteomics
Proteomics is the analysis of proteins and proteomes (all proteins produced by an

organism) and, more specifically, protein purification and mass spectrometry. One
of the main applications is discovering new drugs to treat diseases, finding coupling
possibilities in the protein structure that disables or inactivates enzymes or malign
parts of molecules.

It deals with the comparison of sequences, sequence prediction and predictions
inferred from sequences. Roles of proteins in biological systems, 2D and 3D struc-
tures, geometry measurements and intermolecular interactions are all possibilities.
[31]

Table 2.1: IUPAC’s one- and three-letter amino acid codes

Amino Acid Code Code

alanine ala A
arginine arg R
asparagine asn N
aspartic acid asp D
asparagine or aspartic acid asx B
cysteine cys C
glutamic acid glu E
glutamine gln Q
glutamine or glutamic acid glx Z
glycine gly G
histidine his H
isoleucine ile I
leucine leu L
lysine lys K
methionine met M
phenylalanine phe F
proline pro P
serine ser S
threonine thr T
tryptophan trp W
tyrosine tyr Y
valine val V

Bioinformatics and Cheminformatics 7

Metabolomics
Metabolomics give a functional reading of the organisms’ physiological state, from

the study of metabolites, which are the final or transitional products of metabolism.
We can see an infography about everything metabolomics in Figure 2.2.

It has applications in drug toxicity studies, disease modelling and most importantly
fingerprinting and pathway discovery.

Metabolomics provides a better understanding of how cells work, as well as iden-
tifying new or important alterations in particular metabolites. We can obtain new
hypotheses and new targets for biotechnology through the analysis and data mining
of metabolomic data sets [49].

Figure 2.2: Omics from the genome to the phenome. Source: [48]

Sequence representations

The nucleotide and amino acid sequences are represented by their IUPAC one-
letter codes (Table 2.1). Margaret O. Dayhoff was the first person to have ever used
single letters to represent amino acids. Until then, and even after, the standard three
letters were used.

8 Bioinformatics and Cheminformatics

If we choose to represent a sequence in plain format, it will be like this1:

ACAAGATGCCATTGTCCCCCGGCCTCCTGCTGCTGCTGCTCTCCGGGGCCACGGCCACCGCTGCCCTGCC
CCTGGAGGGTGGCCCCACCGGCCGAGACAGCGAGCATATGCAGGAAGCGGCAGGAATAAGGAAAAGCAGC
CTCCTGACTTTCCTCGCTTGGTGGTTTGAGTGGACCTCCCAGGCCAGTGCCGGGCCCCTCATAGGAGAGG
AAGCTCGGGAGGTGGCCAGGCGGCAGGAAGGCGCACCCCCCCAGCAATCCGCGCGCCGGGACAGAATGCC
CTGCAGGAACTTCTTCTGGAAGACCTTCTCCTCCTGCAAATAAAACCTCACCCATGAATGCTCACGCAAG
TTTAATTACAGACCTGAA

Cheminformatics

Figure 2.3: Cheminformatics viewed by Frank K. Brown. Source: [7]

The term “cheminformatics” was first coined by Dr Frank K. Brown in 1998. Figure
2.3 depicts his approach. In his article for the Annual Reports of Medicinal Chemistry,
he defined Cheminformatics as

“The mixing of information resources to transform data into information,
and information into knowledge, for the intended purpose of making bet-
ter decisions faster in the arena of drug lead identification and optimisa-
tion.” [7]

One year later, Greg Paris related it to everything it has to do with:

“Chem(o)informatics is a generic term that encompasses the design, cre-
ation, organisation, management, retrieval, analysis, dissemination, visu-
alisation and use of chemical information.” [58]

The tools of cheminformatics are used to describe chemical structures for use in
computer databases and to analyze the connections between structure and molecular
properties [59].

1https://www.genomatix.de/online_help/help/sequence_formats.html

https://www.genomatix.de/online_help/help/sequence_formats.html

Bioinformatics and Cheminformatics 9

Figure 2.4: QSAR / QSPR flow diagram. Source: adapted from [17]

In the beginning, cheminformatics used local models based on linear, and later
multilinear regression that only used a few known data features and was only applica-
ble to a close-knit group of few related compounds. They were used mainly for quan-
titative structure–activity relationships (QSAR) or quantitative structure–property re-
lationships (QSPR) [38]. Figure 2.4 shows a QSQR/QSPR flow diagram.

Figure 2.5: Cheminformatics basic steps. Source: [38]

In chemistry, both the structure and the properties of matter are the sum of what
makes it (atoms, groups of atoms and molecules). The way the atoms or other com-

10 Bioinformatics and Cheminformatics

ponents of matter relate to each other, proximity, and more, determines the angles
between molecules, their geometry and, consequently, their properties. Different
properties of the matter influence its activity. Refer to Figure 2.5 to understand Chem-
informatics basic steps.

Molecule representations

To study and derive conclusions from known chemical compounds, the first thing
to do is to represent the molecules. We can represent them one-dimensionally, in 2D
or 3D.

In 1D, it is just a text string with the components’ chemical symbols, following
a set of rules. Rules of where to place the radicals, connected atoms, parenthesis
and how to represent the different types of bonds and chiral carbon atoms. Some
standards for these representations exist like SMILES, InChi(Figure 2.6).

The IUPAC International Chemical Identifier (InChI) is a chemical substance iden-
tifier in text format, developed by NIST (National Institute of Standards and Technol-
ogy) and IUPAC (International Union of Pure and Applied Chemistry).

Figure 2.6: Example of chemical structure representations. Source: [9]

At first glance, not much stereochemistry can be inferred from a one-dimensional
representation. 1D is also used to store descriptors of physicochemical properties like
solubility, melting and boiling points, partition coefficients, and individual properties
such as molecular weight, number of donor, and acceptor electrons, and number of
aromatic rings [33].

A two-dimensional representation would be like a graph, with the atoms as nodes
and the bonds as edges. Although we could add more info into the weights of the
edges, like bond length or order, angle and other properties, it could still not be
enough to determine the spatial coordinates of the atoms.

Some applications have developed different forms of representing the molecules
three-dimensionally. The representations are usually with ‘stick’ or ‘ball-and-stick’
models. In some cases approximate models of electron density distributions [33]. The
3D comparisons between compounds can find similarities that were not present in the
2D representation, but they are very computationally demanding, and in most cases,
2D is a suitable compromise.

Bioinformatics and Cheminformatics 11

SMILES
SMILES is a unidimensional ASCII string chemical representation specification

and file format (.smi). It exists since the 1980s and is more human-readable than
IUPAC’s InChI. Its final representation depends on what atom to put as node root and
at each branch point which path to follow first.

Figure 2.7: Cangen algorithm for SMILES representation of Cubane (C8H8). Source:
adapted from [61]

In 1989, an algorithm was proposed to create canonised SMILES representations
of molecules easily [61]. This algorithm (Figure 2.7), begins by breaking each cycle
by removing a bond. Numerical indices then mark broken bonds, and the atoms of
broken bonds are referenced by a concatenation of the indices of all the bonds they
make with the other atoms. Then we get a linearised version of the molecule, and
a string is produced by adding the chemical symbol and bond indices of the atom at
one end and appending the rest of the atoms until the end of the chain in the same
manner. We can say it is obtained through a depth-first traversal.

InChi
InChI is IUPAC’s representation identifier and overcomes various SMILES prob-

lems like its semi-proprietary and incompleteness. The atoms are numbered accord-
ing to the molecular formula. The connectivity information is similar to SMILES but
adds stereochemistry and describes molecules in five layers:

• Main layer or molecular formula
• Skeletal layer or topology (atom connectivity)
• Hydrogen layer (bond orders and hydrogen locations)
• Charge Layer
• Stereochemistry Layer

In the first layer, the chemical formula is represented beginning with carbon
atoms, then hydrogens, then all other elements in alphabetical order, according to
IUPAC conventions. The second layer is prefixed with /c and describes the connec-
tions between the skeletal atoms, listing the canonical numbers of the atoms in the
chain and branches between parentheses. The hydrogen layer is prefixed with /h and
enumerates the bonds between the atoms. The charge layer describes the elements’
net charge. The last layer contains sublayers representing double bond stereochem-
istry and tetrahedral stereochemistry. Some of these layers include other sublayers
that contain prefixes [21].

12 Bioinformatics and Cheminformatics

Figure 2.8: InChIKey generation workflow diagram.
Source: [21]

InChiKey
InChIKey is a compact chemical identifier derived from InChI. It is an encoded

version of the hash codes calculated from a source InChI string and is always 27-
symbols long. Therefore, it is a far more useful identifier to be used in indexing
databases and internet searches.

It is composed of three blocks separated by a dash. The first block is 14-characters
long and encodes the core molecular constitution. The second block is 10-characters
long and has two parts. The first six letters encode the advanced structural features
(stereochemistry, isotope, ligations) and the last two letters represent InChi’s stan-
dard and version. A final block is composed of one letter that maps the net charge or
(de)protonation of the molecule [21].

In Figure 2.8, we see the general workflow of InChi creation and InChiKey gener-
ation for pyridine.

SDF or MDL molfile
SDF is the acronym of Structural Data Files which is a file format to represent

chemical compounds according to the MDL Molfile format, which is an ontology for
chemical compounds, on how to represent the atoms, bonds, connectivity and coordi-
nates. SDF can include associated data.

All molfiles have a header and a connection table. The connection table is divided
into two blocks, the Atom Block and the Bond Block.

The header block has two lines. The first line is the chemical formula and the
second line has the program that made the file, the date (MMddyyhhmm) and if we
have 2D or 3D coordinates.

After that comes the count block that begins with the number of atoms and bonds
and ends with the version number of the molfile.

The atom block is of variable length and has one line for each atom in the molecule,
beginning with the coordinates and followed by the chemical symbol of the atom.

Bioinformatics and Cheminformatics 13

The bond block is also of variable length and has one line for each bond in the
molecule. The first two values tell us between which atoms is the bond and the third
value indicates the type of bond.

The molecule ends with "M END" and we can have a properties block after that
and before the end of the file marked with "$$$$"

We present an example for aspirin:

C9H8O4
APtclcactv02092107253D 0 0.00000 0.00000

21 21 0 0 0 0 0 0 0 0999 V2000
2.2393 -0.3791 0.2630 C 0 0 0 0 0 0 0 0 0 0 0 0
0.8424 1.9231 -0.4249 C 0 0 0 0 0 0 0 0 0 0 0 0
2.8709 0.8456 0.2722 C 0 0 0 0 0 0 0 0 0 0 0 0
2.1751 1.9935 -0.0703 C 0 0 0 0 0 0 0 0 0 0 0 0
-3.4838 0.4953 -0.0896 C 0 0 0 0 0 0 0 0 0 0 0 0
0.8910 -0.4647 -0.0939 C 0 0 0 0 0 0 0 0 0 0 0 0
0.1908 0.6991 -0.4402 C 0 0 0 0 0 0 0 0 0 0 0 0
-0.9633 -1.8425 -0.4185 O 0 0 0 0 0 0 0 0 0 0 0 0
-1.6531 0.8889 1.3406 O 0 0 0 0 0 0 0 0 0 0 0 0
0.8857 -2.8883 0.2267 O 0 0 0 0 0 0 0 0 0 0 0 0
0.2090 -1.7720 -0.1069 C 0 0 0 0 0 0 0 0 0 0 0 0
-2.0185 0.6853 0.2071 C 0 0 0 0 0 0 0 0 0 0 0 0
-1.1189 0.6285 -0.7886 O 0 0 0 0 0 0 0 0 0 0 0 0
0.3962 -3.7219 0.2035 H 0 0 0 0 0 0 0 0 0 0 0 0
2.7867 -1.2719 0.5268 H 0 0 0 0 0 0 0 0 0 0 0 0
0.3069 2.8224 -0.6911 H 0 0 0 0 0 0 0 0 0 0 0 0
3.9130 0.9108 0.5482 H 0 0 0 0 0 0 0 0 0 0 0 0
2.6781 2.9492 -0.0604 H 0 0 0 0 0 0 0 0 0 0 0 0
-3.7360 -0.5623 -0.0120 H 0 0 0 0 0 0 0 0 0 0 0 0
-4.0763 1.0637 0.6273 H 0 0 0 0 0 0 0 0 0 0 0 0
-3.6988 0.8471 -1.0986 H 0 0 0 0 0 0 0 0 0 0 0 0
6 7 2 0 0 0 0
1 6 1 0 0 0 0
6 11 1 0 0 0 0
2 7 1 0 0 0 0
7 13 1 0 0 0 0
1 3 2 0 0 0 0
10 11 1 0 0 0 0
8 11 2 0 0 0 0
2 4 2 0 0 0 0
12 13 1 0 0 0 0
5 12 1 0 0 0 0
9 12 2 0 0 0 0
3 4 1 0 0 0 0
1 15 1 0 0 0 0
2 16 1 0 0 0 0
3 17 1 0 0 0 0
10 14 1 0 0 0 0
4 18 1 0 0 0 0
5 19 1 0 0 0 0
5 20 1 0 0 0 0
5 21 1 0 0 0 0

M END
$$$$

14 Bioinformatics and Cheminformatics

We can see that the file was created on February 2nd 2021 at 07h25 EST and
corresponds to 3D coordinates. The count block tells us it has 21 atoms and 21 bonds.
The atom block has 21 lines and the bond block also.

Applications in cheminformatics

From the stored molecule representations, we extract features, also known as
descriptors. Everything can be a descriptor, from the number of total atoms to a
certain radical’s geometry attached to the molecule.

Data mining models will map the features to molecule properties using trained
models for classification and regression. Properties like dipole moments, polarizabil-
ities or vibrational frequencies, are better obtained using quantum chemistry theory
and calculations than with data mining. Data mining helps understand the properties
within a broader system, where physical chemistry methods are not enough [38].

Table 2.2: Cheminformatics methods. Source: [33]

Many areas of application exist in Cheminformatics. In Table 2.2, we can see
some of the methods. In the following paragraphs, we will talk about some of the
areas of application in cheminformatics of a few data mining and machine learning
techniques, such as support vector machines, random forests, K-nearest neighbours,
artificial neural networks, and the naïve Bayes classifier.

K-nearest neighbours depends heavily on the k parameter and are sensitive to
local structures, being ideal for predicting properties with a strong locality, such as
protein functions [38].

2.1 Repositories and their API 15

Bioactivity prediction
Support Vector Machines and K-nearest neighbours have been used to predict

numerous molecules’ bioactivity when adding new elements to it, like finding agonists
for receptors or inhibitors for enzymes. Artificial Neural Networks can also be used
but they are vulnerable to overfitting and learning noise and may not be suitable for
new data [38].

Toxicological prediction
The naïve Bayes classifier is very good in predicting biological properties like toxi-

city. Support Vector Machines are among the most popular machine-learning methods
in cheminformatics and can also predict various toxicity-related properties [38].

The properties considered in this area are know as ADMET (absorption, distri-
bution, metabolism, excretion and toxicity). Although there are good amounts of reli-
able experimental data in databases concerning metabolism and toxicity, for the other
properties such is not the case, making it difficult to train models [23].

Pharmacological prediction
The naïve Bayes classifier is successfully used for protein prediction and classifica-

tion for drug-like molecules. K-nearest neighbours is used in finding anti-inflammatories
and anti-cancer drugs [38]. The properties mentioned in bioactivity (section 2) can
also be used in drug research as can be discoveries for athletic performance enhance-
ment in which many methods are used.

Physicochemical properties
Support Vector Machines successfully predict properties like solubility, acid-base,

partition and density coefficients and melting point. K-nearest neighbours is also very
successful in predicting those properties and also of the boiling point. Solubility and
solvent discovery can also be predicted with the use of random forests [38]. According
to [23], there is plenty of information in databases and literature regarding these
properties and methods.

2.1 Repositories and their API

To search for information regarding the problems at hand, we will fetch data avail-
able on free databases on the web. Some of these databases have some common infor-
mation; others are aggregators of others and proxies to others. Despite this, there is
information only available on some and not all repositories, so we have to visit several
databases to gather the most information possible. The access to these repositories
is made through web API made available by them. An API has formatted and specific
requests made possible to fetch and upload data. In our case, only the fetching will
be necessary.

We start with some repositories from NCBI with the Entrez Programming Utili-
ties (E-utilities). Entrez is a molecular biology database system providing integrated
access to nucleotide and protein sequence data, gene-centred and genomic map-
ping information and 3D structure data. It is maintained by the National Center for

16 Bioinformatics and Cheminformatics

Biotechnology Information (NCBI) and covers over 20 databases, including chemical
compounds from PubChem and nucleotide sequence data from GenBank.

Another group of repositories come from the EMBL-EBI, the European Bioinfor-
matics Institute, part of the European Molecular Biology Laboratory. These reposito-
ries are the genome database Ensembl, the comprehensive resource for protein se-
quence UniProt and the open data resource of binding, functional and ADMET bioac-
tivity data ChEMBL.

GenBank [2] [3] [50]

GenBank is the US National Institutes of Health genetic sequence database and
one of the most used globally. It contains all the publicly available DNA sequences,
with annotations. GenBank is the NCBI (National Center for Biotechnology Informa-
tion) part of the International Nucleotide Sequence Database Collaboration, together
with the DNA DataBank of Japan, and the European Nucleotide Archive. These three
organisations exchange data daily.

A GenBank release occurs every two months. The current genetic sequence data
bank was released on August 18th, 2021 as Release 245.0. It comprises more than
230 million DNA sequences with more than 940 thousand million base pairs.

We present below an example of an API request of a summary of a Genbank record:

GET https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi?db=
gene&id=22

and its reply (fragment):

{<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE eSummaryResult PUBLIC "-//NLM//DTD esummary gene 20150202//EN" "https://

eutils.ncbi.nlm.nih.gov/eutils/dtd/20150202/esummary_gene.dtd">
<eSummaryResult>

<DocumentSummarySet status="OK">
<DbBuild>Build210210-2100m.1</DbBuild>
<DocumentSummary uid="22">

<Name>ABCB7</Name>
<Description>ATP binding cassette subfamily B member 7</Description>
<Status>0</Status>
<CurrentID>0</CurrentID>
<Chromosome>X</Chromosome>
<GeneticSource>genomic</GeneticSource>
<MapLocation>Xq13.3</MapLocation>
<OtherAliases>ABC7, ASAT, Atm1p, EST140535</OtherAliases>
<OtherDesignations>ATP-binding cassette sub-family B member 7,

mitochondrial|ABC transporter 7 protein|ATP-binding cassette
transporter 7|ATP-binding cassette, sub-family B (MDR/TAP), member 7</
OtherDesignations>

<NomenclatureSymbol>ABCB7</NomenclatureSymbol>
<NomenclatureName>ATP binding cassette subfamily B member 7</

NomenclatureName>
<NomenclatureStatus>Official</NomenclatureStatus>
<Mim>

<int>300135</int>
</Mim>

2.1 Repositories and their API 17

<GenomicInfo>
<GenomicInfoType>

<ChrLoc>X</ChrLoc>
<ChrAccVer>NC_000023.11</ChrAccVer>
<ChrStart>75156282</ChrStart>
<ChrStop>75051047</ChrStop>
<ExonCount>16</ExonCount>

</GenomicInfoType>
</GenomicInfo>
<GeneWeight>3493</GeneWeight>
<Summary>The membrane-associated protein encoded by this gene is a member

of the superfamily of ATP-binding cassette (ABC) transporters. ABC
proteins transport various molecules across extra- and intra-cellular
membranes. ABC genes are divided into seven distinct subfamilies (ABC1,
MDR/TAP, MRP, ALD, OABP, GCN20, White). This protein is a member of
the MDR/TAP subfamily. Members of the MDR/TAP subfamily are involved in
multidrug resistance as well as antigen presentation. This gene
encodes a half-transporter involved in the transport of heme from the
mitochondria to the cytosol. With iron/sulfur cluster precursors as its
substrates, this protein may play a role in metal homeostasis.
Mutations in this gene have been associated with mitochondrial iron
accumulation and isodicentric (X)(q13) and sideroblastic anemia.
Alternatively spliced transcript variants encoding multiple isoforms
have been observed for this gene. [provided by RefSeq, Nov 2012]</
Summary>

<ChrSort>X</ChrSort>
<ChrStart>75051047</ChrStart>
<Organism>

<ScientificName>Homo sapiens</ScientificName>
<CommonName>human</CommonName>
<TaxID>9606</TaxID>

</Organism>
<LocationHist>

<LocationHistType>
<AnnotationRelease>109.20201120</AnnotationRelease>
<AssemblyAccVer>GCF_000001405.39</AssemblyAccVer>
<ChrAccVer>NC_000023.11</ChrAccVer>
<ChrStart>75156282</ChrStart>
<ChrStop>75051047</ChrStop>

</LocationHistType>

...

<LocationHistType>
<AnnotationRelease>105</AnnotationRelease>
<AssemblyAccVer>GCF_000306695.2</AssemblyAccVer>
<ChrAccVer>NC_018934.2</ChrAccVer>
<ChrStart>74269045</ChrStart>
<ChrStop>74165915</ChrStop>

</LocationHistType>
</LocationHist>

</DocumentSummary>
</DocumentSummarySet>

</eSummaryResult>

18 Bioinformatics and Cheminformatics

If we want the full record we should use the efetch utility:

GET https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=
gene&id=22

We can define the return mode:

GET https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=
gene&id=22&retmode=xml

We can also search for terms with the esearch utility:

GET https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db
=gene&term=corona

A GenBank file may comprise several sequences and each sequence has an acces-
sion number. This is a unique identifier for different versions of the sequence and not
for each sequence. All repositories with sequence information use accession num-
bers. The accession number has a prefix that identifies the molecule type (see Table
2.3 for RefSeq accession prefixes).

Table 2.3: NCBI GenBank RefSeq accession number prefixes and molecule types.

Prefix Type Comment

AC_ Genomic Complete genomic molecule, usually alternate assembly
NC_ Genomic Complete genomic molecule, usually reference assembly
NG_ Genomic Incomplete genomic region
NT_ Genomic Contig or scaffold, clone-based or WGSa

NW_ Genomic Contig or scaffold, primarily WGSa

NZ_b Genomic Complete genomes and unfinished WGSa data
NM_ mRNA Protein-coding transcripts (usually curated)
NR_ RNA Non-protein-coding transcripts
XM_c mRNA Predicted model protein-coding transcript
XR_c RNA Predicted model non-protein-coding transcript
AP_ Protein Annotated on AC_ alternate assembly
NP_ Protein Associated with an NM_ or NC_ accession

YP_c Protein
Annotated on genomic molecules without an instantiated
transcript record

XP_c Protein Predicted model, associated with an XM_ accession
WP_ Protein Non-redundant across multiple strains and species

aWhole Genome Shotgun sequence data
bAn ordered collection of WGS sequence for a genome
cComputed

A GenBank record id has some prefixes that we need to understand. Table 2.3
clarifies what they mean.

2.1 Repositories and their API 19

PubChem [28]

PubChem is a public chemistry database started in 2004 by the National Institutes
of Health (NIH). It is updated constantly.

The repository stores around 110 million compounds and 270 million substances,
mostly small molecules. It also comprises chemically-modified macromolecules, nu-
cleotides, peptides, lipids, and carbohydrates. Their principal identifiers are cid for
compounds and sid for substances.

We present below an example of an API request asking for Aspirin properties:
GET https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/cid/2244/

property/MolecularFormula,MolecularWeight,CanonicalSMILES,
IsomericSMILES,InChI,InChIKey,IUPACName,XLogP,ExactMass,MonoisotopicMass,
TPSA,Complexity,Charge,HBondDonorCount,HBondAcceptorCount,
RotatableBondCount,HeavyAtomCount,IsotopeAtomCount,AtomStereoCount,
DefinedAtomStereoCount,UndefinedAtomStereoCount,BondStereoCount,
DefinedBondStereoCount,UndefinedBondStereoCount,CovalentUnitCount,
Volume3D,XStericQuadrupole3D,YStericQuadrupole3D,
ZStericQuadrupole3D,FeatureCount3D,FeatureAcceptorCount3D,
FeatureDonorCount3D,FeatureAnionCount3D,FeatureCationCount3D,
FeatureRingCount3D,FeatureHydrophobeCount3D,ConformerModelRMSD3D,
EffectiveRotorCount3D,ConformerCount3D,Fingerprint2D/json

and its reply:

{
"PropertyTable": {
"Properties": [
{
"CID": 2244,
"MolecularFormula": "C9H8O4",
"MolecularWeight": 180.16,
"CanonicalSMILES": "CC(=O)OC1=CC=CC=C1C(=O)O",
"IsomericSMILES": "CC(=O)OC1=CC=CC=C1C(=O)O",
"InChI": "InChI=1S/C9H8O4/c1-6(10)13-8-5-3-2-4-7(8)9(11)12/h2-5H,1H3,(H,11,12)"

,
"InChIKey": "BSYNRYMUTXBXSQ-UHFFFAOYSA-N",
"IUPACName": "2-acetyloxybenzoic acid",
"XLogP": 1.2,
"ExactMass": 180.042259,
"MonoisotopicMass": 180.042259,
"TPSA": 63.6,
"Complexity": 212,
"Charge": 0,
"HBondDonorCount": 1,
"HBondAcceptorCount": 4,
"RotatableBondCount": 3,
"HeavyAtomCount": 13,
"IsotopeAtomCount": 0,
"AtomStereoCount": 0,
"DefinedAtomStereoCount": 0,
"UndefinedAtomStereoCount": 0,
"BondStereoCount": 0,

20 Bioinformatics and Cheminformatics

"DefinedBondStereoCount": 0,
"UndefinedBondStereoCount": 0,
"CovalentUnitCount": 1,
"Volume3D": 136,
"XStericQuadrupole3D": 3.86,
"YStericQuadrupole3D": 2.45,
"ZStericQuadrupole3D": 0.89,
"FeatureCount3D": 5,
"FeatureAcceptorCount3D": 3,
"FeatureDonorCount3D": 0,
"FeatureAnionCount3D": 1,
"FeatureCationCount3D": 0,
"FeatureRingCount3D": 1,
"FeatureHydrophobeCount3D": 0,
"ConformerModelRMSD3D": 0.6,
"EffectiveRotorCount3D": 3,
"ConformerCount3D": 10,
"Fingerprint2D": "

AAADccBwOAAAAAAAAAAAAAAAAAAAAAAAAAAwAAAAAAAAAAABAAAAGgAACAAADASAmAAyDoAABgC
IAiDSCAACCAAkIAAIiAEGCMgMJzaENRqCe2Cl4BEIuYeIyCCOAAAAAAAIAAAAAAAAABAAAAAAAAAAAA
=="

}
]

}
}

e!Ensembl [42][65]

Ensembl, from EBI-EMBL, is a genome browser for vertebrate genomes that sup-
ports research in comparative genomics, evolution, sequence variation and transcrip-
tional regulation. It annotates genes, computes multiple alignments, predicts regula-
tory function and collects disease data.

The current Release 104, from May 2021, has data from 318 animal species. Re-
lease 106 is planned to arrive before the end of 2021.

We present below an example of an API request:

GET http://rest.ensembl.org/sequence/id/ENSP00000288602?content-typ
e=application/json

and its reply:

{
"query": "ENSP00000288602",
"seq": "

MAALSGGGGGGAEPGQALFNGDMEPEAGAGAGAAASSAADPAIPEEVWNIKQMIKLTQEHIEALLDKFGGEHNPPSIYL
EAYEEYTSKLDALQQREQQLLESLGNGTDFSVSSSASMDTVTSSSSSSLSVLPSSLSVFQNPTDVARSNPKSPQKPIVRVFLP
NKQRTVVPARCGVTVRDSLKKALMMRGLIPECCAVYRIQDGEKKPIGWDTDISWLTGEELHVEVLENVPLTTHNFVRKTFFTL
AFCDFCRKLLFQGFRCQTCGYKFHQRCSTEVPLMCVNYDQLDLLFVSKFFEHHPIPQEEASLAETALTSGSSPSAPASDSIGP
QILTSPSPSKSIPIPQPFRPADEDHRNQFGQRDRSSSAPNVHINTIEPVNIDDLIRDQGFRGDGAPLNQLMRCLRKYQSRTPS
PLLHSVPSEIVFDFEPGPVFRGSTTGLSATPPASLPGSLTNVKALQKSPGPQRERKSSSSSEDRNRMKTLGRRDSSDDWEIPD
GQITVGQRIGSGSFGTVYKGKWHGDVAVKMLNVTAPTPQQLQAFKNEVGVLRKTRHVNILLFMGYSTKPQLAIVTQWCEGSSL
YHHLHIIETKFEMIKLIDIARQTAQGMDYLHAKSIIHRDLKSNNIFLHEDLTVKIGDFGLATVKSRWSGSHQFEQLSGSILWM
APEVIRMQDKNPYSFQSDVYAFGIVLYELMTGQLPYSNINNRDQIIFMVGRGYLSPDLSKVRSNCPKAMKRLMAECLKKKRDE
RPLFPQILASIELLARSLPKIHRSASEPSLNRAGFQTEDFSLYACASPKTPIQAGGYGAFPVH",

http://rest.ensembl.org/sequence/id/ENSP00000288602?content-type=application/json
http://rest.ensembl.org/sequence/id/ENSP00000288602?content-type=application/json

2.1 Repositories and their API 21

"molecule": "protein",
"desc": null,
"version": 7,
"id": "ENSP00000288602"

}

KEGG [24][25][26]

KEGG is a molecular-level database with large datasets produced, especially, by
genome sequencing. It means Kyoto Encyclopedia of Genes and Genomes and is one
of the largest banks of biological pathways, currently holding more than 765 thou-
sand.

The latest release is 99.1 from August 1st, 2021. It currently stores data from al-
most 7000 organisms (545 eukaryotes, 6095 bacteria, 338 archaea), 349 viruses and
almost 35 thousand genes. It also comprises small molecule and glycan information,
more than 11 thousand chemical and biochemical reactions, complemented with hu-
man disease and drug information.

We present below an example of an API request for a human gene:

GET http://rest.kegg.jp/get/hsa:10458

and its reply:

{
ENTRY 10458 CDS T01001
NAME BAIAP2, BAP2, FLAF3, IRSP53, WAML
DEFINITION (RefSeq) BAR/IMD domain containing adaptor protein 2
ORTHOLOGY K05627 BAI1-associated protein 2
ORGANISM hsa Homo sapiens (human)
PATHWAY hsa04520 Adherens junction

hsa04810 Regulation of actin cytoskeleton
hsa05130 Pathogenic Escherichia coli infection
hsa05135 Yersinia infection

NETWORK nt06135 Cytoskeletal regulation (viruses and bacteria)
ELEMENT N01094 Escherichia Eae/Tir/TccP to Actin signaling pathway

BRITE KEGG Orthology (KO) [BR:hsa00001]
09140 Cellular Processes
09144 Cellular community - eukaryotes
04520 Adherens junction
10458 (BAIAP2)

...

Membrane trafficking [BR:hsa04131]
Endocytosis
Bin/Amphiphysin/Rvs (BAR) family proteins
I-BAR proteins

http://rest.kegg.jp/get/hsa:10458

22 Bioinformatics and Cheminformatics

10458 (BAIAP2)
POSITION 17q25.3
MOTIF Pfam: IMD SH3_2 SH3_9 SH3_1 BAR RasGAP Peptidase_Mx1 BAR_3
DBLINKS NCBI-GeneID: 10458

NCBI-ProteinID: NP_059345
OMIM: 605475
HGNC: 947
Ensembl: ENSG00000175866
Vega: OTTHUMG00000177698
Pharos: Q9UQB8(Tbio)
UniProt: Q9UQB8

STRUCTURE PDB: 3RNJ 4JS0 2YKT 1Y2O 1WDZ 6BQT 6BD2
AASEQ 552

MSLSRSEEMHRLTENVYKTIMEQFNPSLRNFIAMGKNYEKALAGVTYAAKGYFDALVKMG
ELASESQGSKELGDVLFQMAEVHRQIQNQLEEMLKSFHNELLTQLEQKVELDSRYLSAAL
KKYQTEQRSKGDALDKCQAELKKLRKKSQGSKNPQKYSDKELQYIDAISNKQGELENYVS
DGYKTALTEERRRFCFLVEKQCAVAKNSAAYHSKGKELLAQKLPLWQQACADPSKIPERA
VQLMQQVASNGATLPSALSASKSNLVISDPIPGAKPLPVPPELAPFVGRMSAQESTPIMN
GVTGPDGEDYSPWADRKAAQPKSLSPPQSQSKLSDSYSNTLPVRKSVTPKNSYATTENKT
LPRSSSMAAGLERNGRMRVKAIFSHAAGDNSTLLSFKEGDLITLLVPEARDGWHYGESEK
TKMRGWFPFSYTRVLDSDGSDRLHMSLQQGKSSSTGNLLDKDDLAIPPPDYGAASRAFPA
QTASGFKQRPYSVAVPAFSQGLDDYGARSMSRNPFAHVQLKPTVTNDRCDLSAQGPEGRE
HGDGSARTLAGR

NTSEQ 1659
atgtctctgtctcgctcagaggagatgcaccggctcacggaaaatgtctataagaccatc
atggagcagttcaaccctagcctccggaacttcatcgccatggggaagaattacgagaag
gcactggcaggtgtgacgtatgcagccaaaggctactttgacgccctggtgaagatgggg
gagctggccagcgagagccagggctccaaagaactcggagacgttctcttccagatggct
gaagtccacaggcagatccagaatcagctggaagaaatgctgaagtcttttcacaacgag
ctgcttacgcagctggagcagaaggtggagctggactccaggtatctgagtgctgcgctg
aagaaataccagactgagcaaaggagcaaaggcgacgccctggacaagtgtcaggctgag
ctgaagaagcttcggaagaagagccagggcagcaagaatcctcagaagtactcggacaag
gagctgcagtacatcgacgccatcagcaacaagcagggcgagctggagaattacgtgtcc
gacggctacaagaccgcactgacagaggagcgcaggcgcttctgcttcctggtggagaag
cagtgcgccgtggccaagaactccgcggcctaccactccaagggcaaggagctgctggcg
cagaagctgccgctgtggcaacaggcctgtgccgaccccagcaagatcccggagcgcgcg
gtgcagctcatgcagcaggtggccagcaacggcgccaccctccccagcgccctgtcggcc
tccaagtccaacctggtcatttccgaccccattccgggggccaagcccctgccggtgccc
cccgagctggcaccgttcgtggggcggatgtctgcccaggagagcacacccatcatgaac
ggcgtcacaggcccggatggcgaggactacagcccgtgggctgaccgcaaggctgcccag
cccaaatccctgtctcctccgcagtctcagagcaagctcagcgactcctactccaacaca
ctccccgtgcgcaagagcgtgaccccaaaaaacagctatgccaccaccgagaacaagact
ctgcctcgctcgagctccatggcagccggcctggagcgcaatggccgtatgcgggtgaag
gccatcttctcccacgctgctggggacaacagcaccctcctgagcttcaaggagggtgac
ctcattaccctgctggtgcctgaggcccgcgatggctggcactacggagagagtgagaag
accaagatgcggggctggtttcccttctcctacacccgggtcttggacagcgatggcagt

2.1 Repositories and their API 23

gacaggctgcacatgagcctgcagcaagggaagagcagcagcacgggcaacctcctggac
aaggacgacctggccatcccaccccccgattacggcgccgcctcccgggccttccccgcc
cagacggccagcggcttcaagcagaggccctacagtgtggccgtgcccgccttctcccag
ggcctggatgactatggagcgcggtccatgagcaggaatccctttgcccacgtccagctg
aagccgacagtgaccaacgacaggtgtgatctgtccgcccaagggccagaaggccgggag
cacggggatgggagcgcccgcaccctggctggaagatga

///

RCSB protein data bank [4]

The Protein Data Bank (PDB) was the first free digital database with medical and
biological data, hence the acronym for Research Collaboratory for Structural Bioinfor-
matics. It was established in 1971 at Brookhaven National Laboratory and originally
contained seven structures. It currently holds 181780 Biological Macromolecular
Structures.

We can explicitly request information directly from a particular database, like
PubMed, UniProt and DrugBank by their specific identifier or to PDB:

GET https://data.rcsb.org/rest/v1/core/pubmed/1RH7

getting the following reply (fragment):

{
"rcsb_id": "15155948",
"rcsb_pubmed_container_identifiers": {

"pubmed_id": 15155948
},
"rcsb_pubmed_doi": "10.1126/science.1093466",
"rcsb_pubmed_abstract_text": "Resistin, founding member of the

resistin-like molecule (RELM) hormone family, is secreted
selectively from adipocytes and induces liver-specific
antagonism of insulin action, thus providing a potential
molecular link between obesity and diabetes. Crystal structures
of resistin and RELMbeta reveal an unusual multimeric structure.
Each protomer comprises a carboxy-terminal disulfide-rich beta-
sandwich \"head\" domain and an amino-terminal alpha-helical \"
tail\" segment. The alpha-helical segments associate to form
three-stranded coiled coils, and surface-exposed interchain
disulfide linkages mediate the formation of tail-to-tail
hexamers. Analysis of serum samples shows that resistin
circulates in two distinct assembly states, likely corresponding
to hexamers and trimers. Infusion of a resistin mutant, lacking
the intertrimer disulfide bonds, in pancreatic-insulin clamp
studies reveals substantially more potent effects on hepatic
insulin sensitivity than those observed with wild-type resistin.
This result suggests that processing of the intertrimer

https://data.rcsb.org/rest/v1/core/pubmed/1RH7

24 Bioinformatics and Cheminformatics

disulfide bonds may reflect an obligatory step toward activation
.",

"rcsb_pubmed_affiliation_info": [
"Department of Biochemistry and Molecular Biophysics, Columbia

University, New York, NY 10032, USA."
],
"rcsb_pubmed_mesh_descriptors": [

"Molecular Weight",
"Humans",
"Liver",
"Disulfides",
"Molecular Sequence Data",
"Crystallography, X-Ray",
"Adipocytes",
"Glucose",
"Adiponectin",
"Proteins",
"Protein Structure, Quaternary",
"Resistin",
"Protein Structure, Tertiary",
"Amino Acid Sequence",
"Cell Line",
"Protein Structure, Secondary",
"Intercellular Signaling Peptides and Proteins",
"Crystallization",
"Insulin Resistance",
"Hormones, Ectopic",
"Insulin",
"Protein Folding",
"Culture Media, Conditioned",
"Animals",
"Mice",
"Mutation"

],
"rcsb_pubmed_mesh_descriptors_lineage": [

{
"id": "E05.196.300",
"name": "Crystallization",
"depth": 3

},

...

{
"id": "E05.196.309.742",
"name": "X-Ray Diffraction",

2.1 Repositories and their API 25

"depth": 4
},

}

mmCIF
mmCIF is a file format for representing macromolecular structural data with flex-

ible and extensible tag-values. It is an alternative to the Protein Data Bank (PDB)
format and is currently the default format used by the Protein Data Bank since 2014
(PDBx/mmCIF), representing data in key-value or tabular forms, being much easier to
parse than the record-oriented PDB format. The columns no longer have fixed widths
and blank values, being substituted with points or interrogation marks. Preceding the
rows with the values, we have a list of identifiers and metadata for the rows, useful
for parsers and allowing to add more columns.

Example of the identifiers and the first row of the _struct_conf (corresponding
to the HELIX records in a pbd file):

_struct_conf.conf_type_id
_struct_conf.id
_struct_conf.pdbx_PDB_helix_id
_struct_conf.beg_label_comp_id
_struct_conf.beg_label_asym_id
_struct_conf.beg_label_seq_id
_struct_conf.pdbx_beg_PDB_ins_code
_struct_conf.end_label_comp_id
_struct_conf.end_label_asym_id
_struct_conf.end_label_seq_id
_struct_conf.pdbx_end_PDB_ins_code
_struct_conf.beg_auth_comp_id
_struct_conf.beg_auth_asym_id
_struct_conf.beg_auth_seq_id
_struct_conf.end_auth_comp_id
_struct_conf.end_auth_asym_id
_struct_conf.end_auth_seq_id
_struct_conf.pdbx_PDB_helix_class
_struct_conf.details
_struct_conf.pdbx_PDB_helix_length
HELX_P HELX_P1 AA1 GLY A 34 ? LEU A 48 ? GLY A 34 LEU A 48 1 ? 15

The SHEET records are now split into several groups and if we want details about
each strand we need to go to the _pdbx_struct_sheet_hbond group. Here is an
example of the identifiers and of the first row:

_pdbx_struct_sheet_hbond.sheet_id
_pdbx_struct_sheet_hbond.range_id_1
_pdbx_struct_sheet_hbond.range_id_2
_pdbx_struct_sheet_hbond.range_1_label_atom_id
_pdbx_struct_sheet_hbond.range_1_label_comp_id
_pdbx_struct_sheet_hbond.range_1_label_asym_id
_pdbx_struct_sheet_hbond.range_1_label_seq_id

26 Bioinformatics and Cheminformatics

_pdbx_struct_sheet_hbond.range_1_PDB_ins_code
_pdbx_struct_sheet_hbond.range_1_auth_atom_id
_pdbx_struct_sheet_hbond.range_1_auth_comp_id
_pdbx_struct_sheet_hbond.range_1_auth_asym_id
_pdbx_struct_sheet_hbond.range_1_auth_seq_id
_pdbx_struct_sheet_hbond.range_2_label_atom_id
_pdbx_struct_sheet_hbond.range_2_label_comp_id
_pdbx_struct_sheet_hbond.range_2_label_asym_id
_pdbx_struct_sheet_hbond.range_2_label_seq_id
_pdbx_struct_sheet_hbond.range_2_PDB_ins_code
_pdbx_struct_sheet_hbond.range_2_auth_atom_id
_pdbx_struct_sheet_hbond.range_2_auth_comp_id
_pdbx_struct_sheet_hbond.range_2_auth_asym_id
_pdbx_struct_sheet_hbond.range_2_auth_seq_id
AA1 1 2 N GLU A 17 ? N GLU A 17 O LYS A 25 ? O LYS A 25

For general details about sheets, we have the _struct_sheet group:

_struct_sheet.id
_struct_sheet.type
_struct_sheet.number_strands
_struct_sheet.details
AA1 ? 4 ?
AA2 ? 4 ?
AA3 ? 2 ?
AA4 ? 2 ?
AA5 ? 2 ?
AA6 ? 3 ?
AA7 ? 4 ?
AA8 ? 4 ?
AA9 ? 2 ?
AB1 ? 2 ?

Example of the identifiers and the first ten rows of the _pdbx_poly_seq_scheme
(corresponding to the SEQRES records in a pbd file):

_pdbx_poly_seq_scheme.asym_id
_pdbx_poly_seq_scheme.entity_id
_pdbx_poly_seq_scheme.seq_id
_pdbx_poly_seq_scheme.mon_id
_pdbx_poly_seq_scheme.ndb_seq_num
_pdbx_poly_seq_scheme.pdb_seq_num
_pdbx_poly_seq_scheme.auth_seq_num
_pdbx_poly_seq_scheme.pdb_mon_id
_pdbx_poly_seq_scheme.auth_mon_id
_pdbx_poly_seq_scheme.pdb_strand_id
_pdbx_poly_seq_scheme.pdb_ins_code
_pdbx_poly_seq_scheme.hetero
A 1 1 MET 1 1 ? ? ? A . n
A 1 2 GLN 2 2 ? ? ? A . n
A 1 3 GLY 3 3 ? ? ? A . n
A 1 4 SER 4 4 ? ? ? A . n
A 1 5 VAL 5 5 5 VAL VAL A . n

2.1 Repositories and their API 27

A 1 6 THR 6 6 6 THR THR A . n
A 1 7 GLU 7 7 7 GLU GLU A . n
A 1 8 PHE 8 8 8 PHE PHE A . n
A 1 9 LEU 9 9 9 LEU LEU A . n
A 1 10 LYS 10 10 10 LYS LYS A . n

Example of the identifiers and the first row of the atom_site.group (correspond-
ing to the ATOM records in a pbd file):

_atom_site.group_PDB
_atom_site.id
_atom_site.type_symbol
_atom_site.label_atom_id
_atom_site.label_alt_id
_atom_site.label_comp_id
_atom_site.label_asym_id
_atom_site.label_entity_id
_atom_site.label_seq_id
_atom_site.pdbx_PDB_ins_code
_atom_site.Cartn_x
_atom_site.Cartn_y
_atom_site.Cartn_z
_atom_site.occupancy
_atom_site.B_iso_or_equiv
_atom_site.pdbx_formal_charge
_atom_site.auth_seq_id
_atom_site.auth_comp_id
_atom_site.auth_asym_id
_atom_site.auth_atom_id
_atom_site.pdbx_PDB_model_num
ATOM 1 N N . VAL A 1 5 ? 239.583 162.501 203.617 1.00 62.62 ? 5 VAL

A N 1

Converters

There are many online converter tools we can use to get the identifier of an entity
in another repository. We will talk about a few of them.

biodbnet : db2db [39]
db2db is an application from the biological DataBase network (bioDBnet). It inte-
grates many biological databases and handles all the conversions from one database
identifier to another. Without this conversion, it would not be easy to search different
databases for the same thing.

The current database update is from December 2020 and it has 211 distinct nodes
and 758 edges, meaning databases and relations between them.

We present below an example of a request:

GET https://biodbnet-abcc.ncifcrf.gov/webServices/rest.php/
biodbnetRestApi.xml?method=db2db&format=row&input=genesymbol&inputValue

28 Bioinformatics and Cheminformatics

s=MYC,MTOR&outputs=geneid,affyid&taxonId=9606

and its reply:

<?xml version="1.0"?>
<response>

<item>
<InputValue>MYC</InputValue>
<GeneID>4609</GeneID>
<AffyID>1827_s_at [Chip: U95A]//202431_s_at [Chip: GeneProfilingArray]//202431

_s_at [Chip: U133A_2]//ADXECRS.3198_s_at [Chip: Xcel]//ADXEC.556.C1_x_at [
Chip: Xcel]//1936_s_at [Chip: U95A]//37724_at [Chip: U95Av2]//202431_s_at [
Chip: HT_HG-U133A]//202431_s_at [Chip: U133A]//202431_PM_s_at [Chip:
U133_Plus_PM]//202431_s_at [Chip: Focus]//1936_s_at [Chip: U95Av2]//1973
_s_at [Chip: U95A]//37724_at [Chip: U95A]//ADXECAD.20878_s_at [Chip: Xcel
]//1827_s_at [Chip: U95Av2]//11745021_a_at [Chip: HG-U219]//1973_s_at [
Chip: U95Av2]//g12962934_3p_a_at [Chip: U133_X3P]//202431_s_at [Chip:
U133_Plus_2]//11745021_a_at [Chip: PrimeView]//ADXEC.556.C1_at [Chip: Xcel
]//ADXECAD.15167_at [Chip: Xcel]</AffyID>

</item>
<item>

<InputValue>MTOR</InputValue>
<GeneID>2475</GeneID>
<AffyID>11716133_a_at [Chip: HG-U219]//11716133_a_at [Chip: PrimeView]//202288

_PM_at [Chip: U133_Plus_PM]//RC_H79143_at [Chip: Hu35KsubD]//202288_at [
Chip: HT_HG-U133A]//40139_at [Chip: U95Av2]//11716134_a_at [Chip: HG-U219
]//267_at [Chip: U95Av2]//11716134_a_at [Chip: PrimeView]//215381_at [Chip:
U133A]//215381_at [Chip: U133_Plus_2]//215381_PM_at [Chip: U133_Plus_PM
]//202288_at [Chip: GeneProfilingArray]//45997_at [Chip: U95B]//
RC_N64398_at [Chip: Hu35KsubC]//11750567_a_at [Chip: HG-U219]//215381_at [
Chip: HT_HG-U133A]//202288_at [Chip: U133A_2]//40139_at [Chip: U95A]//Hs
.288569.0.S1_3p_x_at [Chip: U133_X3P]//11750567_a_at [Chip: PrimeView]//267
_at [Chip: U95A]//215381_at [Chip: U133A_2]//202288_at [Chip: U133A
]//202288_at [Chip: U133_Plus_2]//ADXEC.12115.C1_at [Chip: Xcel]//
g3282238_3p_at [Chip: U133_X3P]//215381_3p_at [Chip: U133_X3P]//215381_at [
Chip: GeneProfilingArray]</AffyID>

</item>
</response>

CTS - The Chemical Translation Service 2

We can use this service to translate to and from many identifiers, for instance:

Convert from one ID to another
http://cts.fiehnlab.ucdavis.edu/rest/convert/{from}/{to}/{query}

example of request:
https://cts.fiehnlab.ucdavis.edu/rest/convert/InChIKey/Chemical%20Name
/QNAYBMKLOCPYGJ-REOHCLBHSA-N

example of the reply:

2http://cts.fiehnlab.ucdavis.edu/

http://cts.fiehnlab.ucdavis.edu/rest/convert/{from}/{to}/{query}
https://cts.fiehnlab.ucdavis.edu/rest/convert/InChIKey/Chemical%20Name/QNAYBMKLOCPYGJ-REOHCLBHSA-N
https://cts.fiehnlab.ucdavis.edu/rest/convert/InChIKey/Chemical%20Name/QNAYBMKLOCPYGJ-REOHCLBHSA-N
http://cts.fiehnlab.ucdavis.edu/

2.1 Repositories and their API 29

[
{

"fromIdentifier": "InChIKey",
"searchTerm": "QNAYBMKLOCPYGJ-REOHCLBHSA-N",
"toIdentifier": "Chemical Name",
"result":
[

"L-Alanine"
]

}
]

We can get a list of valid source databases for conversion of ids:
https://cts.fiehnlab.ucdavis.edu/rest/fromValues

And a list of valid target databases for conversion of ids:
https://cts.fiehnlab.ucdavis.edu/rest/toValues

It can also be used to expand chemical formulas:
https://cts.fiehnlab.ucdavis.edu/rest/expandformula/H20

{
"formula": "H2O",
"result": "HHO"

}

g:profiler [46]
g:profiler is part of the ELIXIR infrastructure. It provides a toolset to convert between
gene identifiers, to find biological categories, and to map genes with orthologies.

g:Convert is the converter available at g:profiler. We can use it to convert between
various protein, gene, and other identifier types. It relies on Ensembl as a primary
data source and is able to identify what the input is without the user having to indi-
cate.

The REST API is available at this endpoint: https://biit.cs.ut.ee/gprofile
r/api/convert/convert/ and the input must be a json object, specifying the target,
the organism and a query with identifier(s).

https://cts.fiehnlab.ucdavis.edu/rest/fromValues
https://cts.fiehnlab.ucdavis.edu/rest/toValues
https://cts.fiehnlab.ucdavis.edu/rest/expandformula/H20
https://biit.cs.ut.ee/gprofiler/api/convert/convert/
https://biit.cs.ut.ee/gprofiler/api/convert/convert/

30 Bioinformatics and Cheminformatics

Example of a request to the g:convert API, in Python:

import requests

r = requests.post(
url=’https://biit.cs.ut.ee/gprofiler/api/convert/convert/’,
json={

’organism’:’hsapiens’,
’target’:’UCSC’,
’query’:["CASQ2", "CASQ1", "GSTO1", "DMD", "GSTM2"],

}
)

and the response data is parsed with r.json()[’result’] to obtain:

{
"converted":"uc001efx.5",
"description":"calsequestrin 2 [Source:HGNC Symbol;Acc:HGNC:1513]",
"incoming":"CASQ2",
"n_converted":1,
"n_incoming":1,
"name":"CASQ2",
"namespaces":"ENTREZGENE,HGNC,UNIPROT_GN,WIKIGENE",
"query":"query_1"

},
...
{

"converted":"uc057jbj.1",
"description":"glutathione S-transferase mu 2 [Source:HGNC Symbol;Acc

:HGNC:4634]",
"incoming":"GSTM2",
"n_converted":14,
"n_incoming":5,
"name":"GSTM2",
"namespaces":"ENTREZGENE,HGNC,UNIPROT_GN,WIKIGENE",
"query":"query_1"

},
{

"converted":"uc057jbr.1",
"description":"glutathione S-transferase mu 2 [Source:HGNC Symbol;Acc

:HGNC:4634]",
"incoming":"GSTM2",
"n_converted":15,
"n_incoming":5,
"name":"GSTM2",
"namespaces":"ENTREZGENE,HGNC,UNIPROT_GN,WIKIGENE",
"query":"query_1"

}

2.2 Tools 31

2.2 Tools

Here we will talk about cheminformatics tools and some wrappers that facilitate
and simplify access to these API.

PaDEL-Descriptor [64]

PaDEL-Descriptor is a software to calculate molecular descriptors. A descriptor
describe quantitatively the molecules’ physical and chemical information. A chemi-
cal fingerprint is like if a molecule left a trace. Through mass- or x-ray-spectroscopy,
unique patterns are discovered in samples. it currently calculates 1875 different de-
scriptors (1444 being 1D/2D and 431 3D) and more than 6000 fingerprint parameters.

PaDEL is available as a graphic interface, command-line and extensions for both
RapidMiner and Knime. For the calculation it uses The Chemistry Development Kit
(CDK), a library for bio- and cheminformatics written in Java.

PaDELPy 3

PaDELPy is a Python wrapper for the PaDEL-Descriptor Calculation Software that
provides methods to access PaDEL from within Python. We can use its two major
functions from_mdl and from_smiles to obtain descriptors/fingerprints from an MDL
MolFile or from a SMILES string, respectively, as well as other methods for more
controlled input and output possibilities.

The lastest release is 0.1.10 from July 12th 2017.

It is installed with

pip install padelpy

PubChemPy 4

PubChemPy is a Python wrapper that provides methods to access the PubChem
PUG REST API from within Python. We can access individual properties as well as full
records of both compounds and substances in the PubChem repository. We can also
get substructures or superstructures of those presented as inputs.

The lastest release is 1.0.4 from April 11th 2017.

It is installed with

pip install pubchempy

BioPython 5

BioPython is a collection of free Python libraries and applications, including wrap-
pers to access Bioinformatics repositories like NCBI Entrez, GenBank, Kegg, PDB
and Uniprot among others; parsers for various Bioinformatics file formats such as

3https://github.com/ECRL/PaDELPy
4https://pubchempy.readthedocs.io/en/latest/
5https://biopython.org/

32 Bioinformatics and Cheminformatics

BLAST, FASTA, Genbank, and others; and parsers for XML returns from the requests
to those services. It also includes data mining algorithms as Logistic Regression,
Markov Model, Max Entropy, Naïve Bayes and KNN.

It is installed with

pip install biopython

g:profiler client 6

gprofiler-official is the official Python client to acess the g:Profiler toolkit. It cur-
rently supports 98 different namespaces for enrichment analysis of functional terms,
conversion between identifiers and mapping orthologies.

It is installed with

pip install gprofiler-official

The lastest release is 1.0.0 from April 2th 2019.

2.3 Related Work

For broader ILP-based applications please see section 3.2.

Gene prediction and analysis tools presented in [34], [41] and [45] give a good
perspective on the data mining approaches, tools to use like Weka and DeepLearn-
ing4j, and can introduce to some of the repositories we will also access. They can also
provide useful info and insights regarding data preparation and results evaluation in
genomics studies.

The "Portal para Enriquecimento de Informação Genómica e Proteómica"[54] uses
proteomics information but only for clustering with no enrichment, whereas "A Tool-
box for Genetic Studies"[45] does use proteomic and metabolomic data to predict
cancer with SVM and C4.5.

Some of these projects mention the necessity to add other repositories and other
data mining techniques. A good source for obtaining datasets, Pisces [57], is refer-
enced on [45].

However, generally, data enrichment concerns web-based analysis tools [60]. Some
of the available tools include:

• Enrichr7 works with libraries of genes that we can download, enrich and upload
to analyse the enrichment;

• DAVID8 also has a huge integrated knowledge base of annotated genes and pro-
teins;

• Panther9 is a classification system for proteins;
• g:Profiler10 classifies gene, functionally, through a statistical enrichment and

also has an ID conversion tool;

6https://pypi.org/project/gprofiler-official/
7https://maayanlab.cloud/Enrichr
8https://david.ncifcrf.gov/
9http://pantherdb.org

10https://biit.cs.ut.ee/gprofiler

2.4 Summary 33

• Bioconductor11 does gene expression functional enrichment analysis
An interesting approach is presented in [60], using a statistical test to rank cate-

gories in sets of over- or under-represented items.
Generally, the most used bioinformatics approaches include fuzzy clustering and k-

means for gene expression and cancer subtypes grouping, protein classification with
SVM, and decision trees. In cheminformatics, k-means is also very employed in sub-
dividing large collections into smaller groups with some similarity and C4.5 is used to
determine the toxicity or drug-like properties of compounds based on their molecular
structure and important physical characteristics.

2.4 Summary

This chapter outlined the main concepts in Bioinformatics and Cheminformatics,
including areas of application, specific tools and representation formats.

We have also presented important database repositories and their API, which will
be important in developing this project as well as useful proxies, called wrappers, to
access these REST API.

Finally, we discussed some of the approaches followed in related works in this
area.

11https://bioconductor.org

34 Bioinformatics and Cheminformatics

Chapter 3

Data Mining and Machine
Learning Background

In this chapter we will discuss the state of the art in data mining and its applica-
tions pertaining to this project, including ILP concepts, notations, and techniques and
also some useful data mining tools.

3.1 Relational Data Mining and Machine Learning

In the past, statistics were used to find patterns and to derive models. Nowadays,
the amount of available data that needs to be searched is overwhelming, and every
day more data is being produced and added to the public domain.

Data mining came to aid in that search for pattern and insights. It can handle vast
quantities of data fast and efficiently. Its aim has been mainly to obtain knowledge
and to make predictions.

Machine learning brought the ability to learn. In the same situations, it can eval-
uate the outcome of different applications.

Attributes

The available data is stored with attributes representing information about a cer-
tain feature. There are several types of attributes:

• Numeric or continuous attributes measure numbers. Discrete numbers, both
real and integer-valued.

• Nominal, enumerated, discrete or categorical attributes correspond to a pre-
determined, finite set of possibilities. Boolean attributes are one of the exam-
ples. However, if we have any boolean attribute, the problem is a mixed-attribute
problem instead of a numeric-attribute one [63].

• Ordinal attributes allow sorting.
• Interval attributes are ordinal attributes with equal distance between the possi-

ble values.
• Ratio attributes are those that automatically have a reference (or zero) value.

35

36 Data Mining and Machine Learning Background

Usually, only numeric, nominal and ordinal attributes are used in data mining,
whereas machine learning can use more information about attributes [63].

We can use the algorithms for nominal attributes with numerical attributes if we
can discretise them first.

Phases

In 1999 a new methodology for data mining was presented that described a pro-
cess model to be followed in data mining, called CRISP-DM [51]. It is currently the
most used model [8] and an open standard. Initially, before its public disclosure, five
companies developed a project, with funding from the European Union, that grew into
a consortium of over 200 [8].

Figure 3.1: CRISP-DM diagram. Source: [56]

It consists of six major phases in a loop (Figure 3.1):

• Business Understanding
• Data Understanding
• Data Preparation
• Modelling
• Evaluation
• Deployment

Data Preparation, Modelling and Evaluation constitute a bigger phase that will be
looped through until a satisfactory outcome is reached.

3.1 Relational Data Mining and Machine Learning 37

We will talk in detail about these three and the presentation of the results. In data
mining, they are usually called pre-processing, mining, evaluation and knowledge
representation.

Pre-processing
In the pre-processing phase, we have four tasks. First, we need to select which data
to access. Then we need to clean the dataset.

This cleansing consists of removing noise, duplicate values, inconsistent data, and
deciding what to do with missing values in the attributes. Other things to look for
are inaccurate values and stale data. Stale data are values that can become incorrect
over time or which can have an expiration date due to the volatility of the attribute.

Next, we have the integration of data from several sources. This project accesses
different repositories to fetch data about the same instances and, therefore, integra-
tion is needed. Finally, the data is formatted to be better treated in the next phases.
The attribute type can be modified.

Modelling
After the pre-processing, we apply one more data mining technique to extract the
required knowledge.

Evaluation
After the pre-processing and data mining, we will evaluate the results. We will discuss
it in the metrics section (section3.1).

Figure 3.2: RapidMiner Linear Regression output example.

Knowledge representation
When we are satisfied with the results of the previous phase, we need to show the
results. There are several ways of representing them.

We can present it in a table fashion, with each line being an element and the
attributes in the columns. Each cell represents the value a given element has for a
certain attribute.

Another way is to use linear models, presenting the values of the linear combina-
tion of the attributes multiplied by their weights (Figure 3.2).

Another efficient way of representing the results is by using decision trees (Figure
3.3b), as the product of a divide and conquer approach.

An alternative to decision trees are rules as an if... then clause (Figure 3.3a).

38 Data Mining and Machine Learning Background

Figure 3.3: Examples of knowledge representation. Source: [63]

We can also present the decisions in a neural network manner (Figure 3.3c) if it is
easily understandable.

If it is the case of a clustering solution, then the best representation is to use
clusters. These can take different forms:

• A graphic with partition lines clearly separating one cluster from the others.
Figure 3.4a

• Venn diagrams with the elements belonging to each cluster inside. Figure 3.4b
• A Dendrogram. It is a representation that looks like the roots of a tree with the

height of each pair of roots representing the inverse similarity between them.
Figure 3.5a

• A Distance matrix is a 2D colour-graded matrix showing the distance between
the elements. Figure 3.5b

Overfitting
Overfitting occurs when a model is too much adapted to the training data, preventing
the model from generalising and classifying new data correctly. In such cases, it is
more likely that the model underwent memorisation than training. Overfitting tends
to occur more often in quite elaborate models with a great number of parameters. We
should be parsimonious in choosing how many descriptors to use. We should never
employ more descriptors than are necessary to model a problem[20] as this leads to
overfitting and lack of flexibility.

3.1 Relational Data Mining and Machine Learning 39

(a) Partition representation of clusters.
Source: [62]

(b) Venn diagram representation of clusters.
Source: [27]

Figure 3.4: Cluster representations

(a) Dendrogram representation of clusters.
Source: [27]

(b) Distance matrix representation of clusters.
Source: [27]

Figure 3.5: Cluster representations

Bias
During the whole process, we have to make assumptions. The assumptions we make
can bias the modelling in a certain way.

Language Bias
When predicting the weather in Lapland, how many different words should we

consider? Just one? Should we choose ten different types or the whole 180 words
they have?

If the language we choose to define concepts imposes constraints on what con-
cepts can be learned, we have language bias [63]. An example is nominal attributes
in which we have to ponder if all possibilities are considered or if we should divide
some into more subdivisions.

40 Data Mining and Machine Learning Background

Search Bias
Most of the times it is not possible to search the whole data space and at the

same time know for sure if the description found is the best one. So we have to make
decisions and choose a search path, making the search procedure heuristic. Different
search heuristics bias the search differently, and we cannot guarantee the result’s
optimality [63].

Overfitting-Avoidance Bias
To avoid overfitting, we may choose to use fewer features to solve the problem

and bias the process somehow. Moreover, if we start with simple descriptions and
proceed to more elaborate ones, it would bias the search favouring simpler concept
descriptions [63].

Data Mining Techniques

Now we will discuss basic data mining concepts and techniques to provide funda-
mental prior knowledge needed to understand the project. We try to understand how
they can be used in this project with different approaches and algorithms.

Classification
The classification, is part of what is called supervised learning, previews the outcome
or class, based on the attributes, i.e., find associations between one or more attributes
and the outcome in the training data. Those associations will be used to predict
the outcome when applying the model to (new) test data. The outcome is viewed
as the linear combination of the attributes, having weights as coefficients. To find
those weights, we have to solve that kind of linear equation, known as the regression
equation, from the training data outcomes.

Association
The association rules establish associations within attributes or between attributes
and classes. It is not suited for prediction but can be used to find attributes that
belong together, meaning that if one is present, the other(s) must also be. The associ-
ation rules can be viewed as a type of functional dependency between the attributes
in a database relation.

Regression
Regression implies finding a mathematical curve that explains the data and using it for
prediction. The most important types of regression are linear and logistic regressions.

Clustering
Clustering, a type of unsupervised learning, is about aggregating elements into groups,
based on their similarity. When assigning an element to a group, the objective is to
maximise the similarities within each cluster and minimise the similarities between
different clusters’ elements.

3.1 Relational Data Mining and Machine Learning 41

Classification Algorithms

We have many algorithms to classify the data. Some of them are described next.
It is recommended to try the simplest ones first as many times they work just as good
as the more complicated ones [63].

1R
1R, meaning one rule, is a very simple algorithm. Each attribute is tested according
to rules, and each different result produces a new branch, where another attribute
will be tested until we have no more attributes to be tested. We count the sum of the
different outcomes for each initial test. The chosen outcome of that test will be the
outcome that appears more than the others.

k-nearest neighbours
This algorithm is very slow, because it has to search the entire set for each instance
set (On2 complexity). It performs badly in the presence of noise because for each test
instance the class is defined by its sole nearest neighbour without averaging. It can
be used in the classification of numerical attributes.

The algorithm assigns each element to the class the majority of elements in the k-
nearest neighbourhood belong to. We define the parameter k, and it has to be an odd
number to guarantee there is never a draw. In Figure 3.6, we see an example where
we are trying to classify the blue element. If we choose k=1, the element will be
classified as red. If we choose k=3, it will also fall into the red class because of three
nearest elements, two are red. However, if we choose k=5, then the element will be
classified as green because there are three green elements in the neighbourhood and
only two are red.

Figure 3.6: K-nearest neighbours example. Source: [38]

42 Data Mining and Machine Learning Background

Naïve Bayes Classifier and Networks
The Naïve Bayes Classifier is a type of statistical modelling algorithm that learns
conditional probability of each attribute given the class from training data.

P(A|B) =
P(B|A)∗P(A)

P(B)
(3.1)

It is based on the Bayes’ theorem (Equation 3.1) that calculates an event’s proba-
bility, based on prior knowledge. Each attribute is considered independent from the
others, and the numeric attributes must follow some distribution. Otherwise, it will
not work. This algorithm is very good in prediction tasks and is widely used on doc-
ument classification, being very fast and accurate in this domain. The existence of
each word is regarded as a boolean attribute [63].

This classifier is viewed as a constrained form of a general Bayesian network,
which is more complex and harder to compute. Bayesian networks are directed
acyclic graphs and overcome the assumption of probabilistic independence between
attributes given the class. They enable the "efficient and effective representation of
the joint probability distribution across a set of random variables" [14].

(a) Error comparison. (b) Number of attributes comparison

Figure 3.7: Comparison of Bayes networks classifiers. Source: [14]

In Figure 3.7, we see a comparison between these two Bayes network classifiers in
a test with 25 different datasets. In the plot on the left (Figure 3.7a), each dataset is
depicted by a point. The error ratio according to unsupervised Bayesian networks is
the abscissa, and the error ratio of naïve Bayes is the ordinate. We can conclude that
unconditional Bayesian networks perform better above the diagonal line and naïve
Bayes performs better below. Unconditional Bayesian networks performed poorly
on those containing more than 15 attributes (Figure 3.7b) [14]. So we can derive
that naïve Bayes performs better than an unconditional Bayes network with bigger
numbers of attributes.

3.1 Relational Data Mining and Machine Learning 43

ID3 and C4.5 (Divide and Conquer)
Divide and conquer algorithms are based on decision trees constructed recursively,
branching at each node, in a greedily way. The nodes that we should branch next are
the ones that provide more info about the solution to the problem.

In 1986, Ross Quinlan developed ID3 (Iterative Dichotomiser 3). In 1993 he cre-
ated C4.5, which is an improvement of ID3.

The info of each node is calculated using the concept of entropy (Equation 3.2 and
3.3).

pn =
occurrence o f n

total o f occurrences
(3.2)

entropy(p1, p2, ..., pn) = −p1 logp1 − p2 logp2 ...− pn logpn (3.3)

The extreme cases are:

• If all children are the same then the info is minimum (0).
• If the count of each type of child is the same, then the info is maximum (1).

Decision trees work well with small datasets. They still perform well with larger
ones and are easy to update with new features but they may increase in complexity
and need branches to be cut out through pruning or other methods. They are not
robust enough and are very sensitive to little variations in the training set [34].

Random Forest
A more efficient algorithm based on decision trees is the random forest. In this algo-
rithm, we use a combination of several decision trees. In the end, we will choose the
value that was predicted more times. In Figure 3.8, we see a forest of five different
random trees, the class chosen in each is depicted by following the gold path. As four
trees classify the instance as red against one that predicts it is green, in the end the
algorithm will classify the instance as red (majority).

Figure 3.8: Random forest diagram. Source: [38]

44 Data Mining and Machine Learning Background

Linear Regression
Used when the outcome and all attributes are numeric. The outcome is the linear
combination of the sum of each attribute multiplied by a weight (coefficient).

We use the training data to solve these regression equations. We already have the
attribute values and obtain their weights. As we can see in Equation 3.4, with the test
data, we use those weights(wi) applied to each attribute (ai) to predict the numerical
value of the outcome (x).

x = w0 +w1 a1 + ... +wn an (3.4)

This solution can be easily perceived, looking at a graphic representation of the
linear combination equation.

Logistic Regression
In logistic regression, we separate one outcome from all the others for each class,
obtaining a binary decision, modelled by an adaptation of the linear equation. What
is important is that we obtain Equation 3.5 of a so-called hyperplane that separates
the possibilities.

w0 +w1 a1 + ... +wn an = 0 (3.5)

Support Vector Machines
Support Vector Machines is a non-probabilistic linear binary classifier. This means it
finds a maximum-margin hyperplane between two classes, a linear model that max-
imises the classes’ separation. We can always subdivide the problem successively in
x and ¬ x to obtain multiple classes.

Figure 3.9: Support Vector Machines diagram. Source: [63]

The instances closest to the separation are called support vectors. We always have
at least one support vector in each class, and usually more. "The set of support vec-
tors uniquely defines the maximum-margin hyperplane" [63] for the learning problem

3.1 Relational Data Mining and Machine Learning 45

(Figure 3.9). We do not need any other training instances because they do not affect
the hyperplane orientation or location. We can delete them [63].

If we have two attributes, we can write the hyperplane that separates the classes
with Equation 3.6.

x = w0 + w1a1 + w2a2 (3.6)

and the maximum hyperplane would be written with Equation 3.7.

x = b + ∑
i is support vector

(αiyia(i) ·a) (3.7)

Perceptron
Based on that notion of a hyperplane separating the instances, the perceptron ap-
peared, which is a very simple learning rule to find one if it exists, as we can see in
Algorithm 1.

Algorithm 1: Perceptron learning rule[63]

Result: weights
Set all weights to zero;
while not all instances in the training data are classified correctly do

for each instance I in the training data do
if I is classified incorrectly by the perceptron then

if I belongs to the first class then
add it to the weight vector;

else
subtract it from the weight vector;

end

else

end

end

end

The perceptron is the basis of artificial neural networks. A diagram of a generic
perceptron is shown in Figure 3.10. In ANN, each neuron is a perceptron, with a func-
tion that processes the inputs, each pondered by a weight and the result adapted with
a bias. If the value is above the activation threshold the signal from the perceptron
will be fed to the next layer.

Winnow algorithm
Another algorithm that will find a separating hyperplane, if one exists, is the Winnow
algorithm. It is very similar to the perceptron rule but, instead of altering the weight
vector by adding, it multiplies it with a parameter α, specified by the user, greater
than 1 [63]. We can also determine a threshold value for the instances to belong to a
certain class (Equation 3.8).

w0 +w1 a1 + ... +wn an > θ (3.8)

46 Data Mining and Machine Learning Background

Figure 3.10: Diagram of a generic perceptron. Source: [63]

Artificial Neural Networks
Artificial Neural Networks (ANN) were inspired by the connections between the neu-
rons in our brain and try to replicate what happens in the cerebral synapses with an
intricate network of elements that perform functions.

These nodes in the ANN are also called neurons. Each connection has a weight
associated with it and can also have a bias. The neurons process all the received input
values, together with their weights and the bias and forward a single value which is
the function of them all.

In an ANN we can have one or more hidden layers, each one composed by several
of these neurons. Before the hidden layers we have the input layer to receive the
data and pass it forward to be processed and at the end, the output layer receives the
results and returns them.

There are several types of ANN, namely:

• Recurrent Neural Network (RNN): the connections between nodes form a di-
rected graph along a temporal sequence, making it appropriate to predict tem-
poral dynamic behaviour and for speech recognition.

• Convolutional Neural Network (CNN): fully connected networks (each neuron
in one layer is connected to all neurons in the next layer), very successful in
analysing images and detecting transaction frauds with cards.

• Graph Neural Network (GNN): offers a suitable means for node, edge and graph
level prediction.

• Generative Adversarial Network (GAN): two neural networks fighting against
each other in a zero-sum game, used to generate artificial representations of
faces and more.

In Figure 3.11, we have a feed-forward ANN, because each layer feeds only the
next one and no cycles are formed. RNN use backpropagation, meaning that it calcu-
lates the error and send it back to the earlier layers to correct the function.

3.1 Relational Data Mining and Machine Learning 47

Figure 3.11: Diagram of a Artificial Neural Network. Source: VIASAT

Classification evaluation

How do we evaluate if the model is well trained and returns trustful values? We
need to use quantifiable metrics that can measure the performance of the model.

First, We need to distinguish between two different concepts: accuracy and pre-
cision. Accuracy means all predictions are within a close range from the true value,
whereas precision indicates how much each prediction is close to all the others. As
we can see in Figure 3.12, we can have all combinations of these two concepts. It is
preferable to have both high precision and high accuracy, but we may need just one
of those or one more than the other for some problems.

However, which data should be used to evaluate the performance? When a so-
lution to a problem is given as an example to a student, will we evaluate if he has
grasped the knowledge by asking to solve that same example? Of course, we will
not. Otherwise, we would be testing his memory. The same goes for data mining
models. We can not predict the performance on the training set because it is not an
independent test set [63].

We need to find a test set that had nothing to do with the classifier’s training of
the classifier, of which we know the outcomes, and use it to calculate the error rate
of the classifier predictions.

Many times we have three different sets. A training data set used to train the
model. Frequently, the bigger the training set, the more trustworthy the classifier. A
validation set to improve the parameters of the classifier obtained. And a test set to

48 Data Mining and Machine Learning Background

Figure 3.12: Precision vs Accuracy. Source: [52]

calculate the error rate. The larger the test set, the more accurate the classifier will
be [63].

Cross-validation
If we have a limited dataset, then we usually skip the validation set and use a minority
of data to train the model and a majority to test it. Different methods on how to do
this separation exists.

One of these methods is known as holdout . In this method, the dataset is split
into two mutually exclusive subsets. We have to tune the ratio between them and
choose a ratio that gives us good accuracy and good precision. We can start with 1/3
for training and 2/3 for testing and tweak from there. This method is usually more
suited for larger quantities of data.

Another method is known as k-fold , or cross-validation k-fold. The dataset is
randomly split up into k subsets of the same size. Iteratively, each subset will be used
for training and the others for testing and its error rate is calculated. At the end of
the k iterations, the global error rate is calculated by averaging the k error rates.

A method that increases the ratio of the training set while still keeping it indepen-
dent is the leave-one-out cross-validation. This method is cross-validation executed
n times, where n is how many instances exist in the dataset. Iteratively, we leave
each instance out and train the classifier with the remaining n-1 instances. In each
iteration, the testing is done on the instance that was left out and returning 1 if it is
a hit or 0 if it is a miss. At the end of the n iterations, we calculate the mean of the n
error rates and get the final error estimate.

While the other methods are all non-deterministic because the split is always ran-
dom and we can get lucky in the split or not, the leave-one out method is deterministic
because there is no stochastic sampling [63].

3.1 Relational Data Mining and Machine Learning 49

Bootstrap is another method and uses sampling with replacement. Whereas the
previous methods would only have the same instance once in each subset, this method
can use the same instance more than once in the same sampling group. If some
instances can appear more than once, then there will be some instances that will not
appear in the sampling group. As the sampling method is random, the probability of
each of the n instances not appearing is the result of Equation 3.9.(

1− 1
n

)n

≈ e−1 = 0.368 (3.9)

We can infer that the test set contains circa 36.8% of the instances for a fairly large
dataset. The training set has the remainder, around 63.2% (or 0.632). This number
gives the full name of this method, 0.632 bootstrap [63].

Confusion matrix
To calculate precision, accuracy and other metrics, we construct a 2x2 matrix known
as a confusion matrix. One line has, for one of the possible outcomes, how many
correct predictions and how many wrongful ones. The second line will have for the
other outcome. We put confirmed values on the columns and predicted ones on the
rows.

Figure 3.13: Extended confusion matrix example. Source: [19]

Figure 3.13, illustrates a confusion matrix extended with totals and the ratios of
rightful predictions of each outcome and weighted global average.

Figure 3.14: Confusion matrix.

The four cells of a confusion matrix (Figure 3.14) give us the following measure-
ments:

• True Positives (TP): predicted positive and is true.
• False Positives (FP), also known as type 1 error, predicted positive and is false.
• True Negatives (TN) predicted negative and is true.

50 Data Mining and Machine Learning Background

• False Negatives (FN), also known as type 2 error, predicted negative and is
false.

Accuracy
Accuracy measures the ratio of the correct predictions, i.e. of all the cases, how many
were correctly predicted (Equation 3.10).

accuracy =
T P+T N

Total
=

T P+T N
T P+T N +FP+FN

(3.10)

The error rate is is calculated with Equation 3.11:

error rate = 1−accuracy. (3.11)

Precision
Precision measures the ratio of the correct predictions of positives, i.e., of all the
positives, how many were predicted to be positive (Equation 3.12).

precision =
T P

T P+FP
(3.12)

Recall
Recall gives us the notion of how many of the predictions of positive are really positive
(Equation 3.13).

recall =
T P

T P+FN
(3.13)

F1-Score
The F1-score, also known as F-score and F-measure, helps measure Recall and Preci-
sion simultaneously (Equation 3.14). It is useful when we have models with low recall
and high precision or vice versa.

F1− score =
2

1
Precision +

1
Recall

=
2∗Precision∗Recall

Precision+Recall
=

2∗T P
2∗T P+FP+FN

(3.14)

As we can see in Equation 3.14, F1-score weights equally both precision and recall.
This will imply that even if either precision or recall is low, F1-score will also be low.
With Fβ-Score we can add some bias to that.

Fβ-Score
Fβ-Score is calculated with Equation 3.15 and is used when we don’t want recall
weighting the same as precision. For that matter, βrepresents how many times recall
is more important than precision.

3.1 Relational Data Mining and Machine Learning 51

Fβ = (1+β
2)∗ Precision∗Recall

β 2 ∗Precision+Recall
(3.15)

Figure 3.15: ROC and AUC. Source: [40]

ROC / AUC
Another possible measurement is to use the area under the ROC curve (AUC) (Figure
3.15). ROC is a probability curve of the TPR, true-positive rate (recall), as a function
of the FPR, false-positive rate or the complement of the specificity. The specificity is
the inverse of the recall (Equation 3.16). It measures the capability of the classifier
to distinguish between classes. The higher the AUC, the better the model in making
correct predictions [40].

speci f icity =
T N

T N +FP
(3.16)

Baseline
After we get all the evaluation metrics, we must compare it with the results a basic
solution would get to measure if our model is that good. The result of that basic model
is a baseline, which we want to outperform. For both regression and classification
problems, the baseline is designated Zero Rule, ZeroR or 0-R.

52 Data Mining and Machine Learning Background

Clustering Algorithms

Now we will discuss some algorithms used to cluster the data elements.
Clustering algorithms can use different methods for the dataset partition. We can

use distance-based algorithms employing a distance function that usually is Euclidean
distance. This is also the basis of finding the nearest neighbours.

The categories into which the following methods are divided follow the division
presented in [19].

Distance-based methods

Distance-based methods use the distances between one instance and the others to
segment the data space, and the closest elements have the greatest influence.

Partitioning methods

Partitioning methods divide the data into k mutually exclusive groups such that
each group must contain at least one object [19]. For convergence, the objects are,
iteratively, reallocated among groups. These methods usually create all clusters at
once [32].

These methods take a database with n elements and divide it into k partitions, or
clusters, with the following constraints [41] :

• k ≤
√

N
• Each cluster holds at least one element.
• Each element belongs to just one cluster.
Most partitioning methods are distance-based, so they come up with clusters of

spherical shape.

k-means
k-means is an iterative distance-based partitioning method and the classical clus-

tering one. We begin by specifying how many clusters we want (k) and then choose
k points in the data set that will be the centre of each of the k clusters. We attribute
each element to each of those k clusters, based on the Euclidean distance to the
nearest centre (Equation 3.17)

d =

√
n

∑
i=1

(xi− yi)2 (3.17)

After every element has been assigned to a cluster, we calculate each cluster’s aver-
age value and that will be the centroid, or mean, of the next iteration. The algorithm
converges when there is no change in any of the centroids from one iteration to the
next.

3.1 Relational Data Mining and Machine Learning 53

kD-trees
kD-trees, short for k-dimensional trees, recursively partitions a k-dimensional spa-

ce into two branches of a binary search tree. A variable i is calculated according to
Equation 3.18. In each iteration, the algorithm assigns elements with the i th coordi-
nate below a threshold to one branch and elements above it to the other. It is faster
than k-means.

level ≡ i (mod k) (3.18)

Expectation-Maximisation K-means is mostly based on Euclidean distances, out-
puting circular clusters. It will perform badly if the clusters have more variation in
one dimension than the other. The Expectation-Maximisation algorithm overcomes
this by adding a co-variance value to the calculation of the centroids. It is based on a
probabilistic density statistical function and takes into account prior probability as a
weighting factor.

The initialisation is similar to k-means, with the addition of the co-variance, then
in each iteration we have a expectation step and a maximisation step.

In the expectation step it calculates the a posteriori probability for every class
and every instance, with a formula similar to Bayes’ conditional probability function.
It returns a degree of belonging to a certain cluster.

The maximisation step maximises the expected likelihood from the previous step
by finding parameters that will be used to calculate the distribution of the latent
variables in the expectation step in the following iteration.

Hierarchical methods

Hierarchical methods decompose the data set in a tree-like fashion and have two
different approaches. The agglomerative approach, also called the bottom-up ap-
proach, starts with individual leaves consecutively merging them in groups, until all
the groups are merged into one at the tree’s root. The divisive approach, also called
the top-down approach, starts in the tree’s root and iteratively, branches into smaller
’clusters’ until reaching the leaves. Figure 3.16 explains the difference.

Hierarchical clustering methods can be distance-based or density-based [19].

This kind of method has a relatively low cost due to not being able to go back
after each iteration. That is one major drawback so a pre-processing must be made
beforehand to reduce the amount of data or of attributes to be used. Another possible
enhancement is beginning with the agglomerative approach and later improve the
results with the divisive approach [41].

Nearest neighbour chain
Nearest neighbour is an agglomerative hierarchical algorithm. It begins having n
nodes (n being the sample’s size). In each step, it joins the nodes with more similarity
and ends when the number of wanted clusters is obtained.

54 Data Mining and Machine Learning Background

Figure 3.16: Diagram of the agglomerative and divisive approaches. Source: [16]

The nearest neighbour chain algorithm repeatedly follows a chain of clusters by
transitivity from A to B to C... where each cluster is the nearest neighbour of the
previous one.

Density-based methods

Density-based methods are not distance-based but based on the cluster’s density.
Distance-based methods tend to create spherical-shaped clusters. Density-based algo-
rithms continue adding elements to the same cluster provided that the neighbourhood
density is greater than a pre-specified valued. The notion of a density neighbourhood
is explained in Figure 3.17.

DBSCAN
DBSCAN uses the notion of minimum density. Each element in a cluster must have,

within a given radius neighbourhood, at least a minimum pre-determined number of
elements. Although it finds clusters with different shapes, it can not find clusters with
different densities.

It begins identifying the k nearest neighbours of each point and the farthest k
nearest neighbours. Then it calculates the average of all the farthest distances. It
identifies, for each element in the dataset, the directly density-reachable ones using
the minimum provided and classifies the points into either core or border points.
Following this, it loops through all of the dataset and for the core elements it builds a
new cluster based on the density reachable [32].

SSN
SSN differs from DBSCAN in defining the similarity between points by looking at

the number of nearest neighbours that two points share. The density is determined
by the sum of the similarities of the nearest neighbours of a point. [32]. It performs
well in high-dimensional data and detects clusters of different shapes, densities and
sizes [12].

3.1 Relational Data Mining and Machine Learning 55

Figure 3.17: Density-based neighbourhoods. Source: [12]

Grid-based methods

Grid-based methods divide the data set into a limited number of cells and assign
elements to the grid’s suitable cell. Then calculate each cell’s density. If a cell’s den-
sity is bellow a given parameter, delete it. Finally, clusters are formed from adjacent
groups of dense cells [32].

Because all operations are made on the grid, and the grid is not dependent on the
amount of data, they are very fast [41].

Model-based methods

Model-based methods try to find a mathematical model that describes the data.
More than often it assumes probabilistic distributions. They can have two principal
approaches, the statistical approach and the neural network approach [32].

Fuzzy method

Fuzzy clustering, also known as soft clustering or soft k-means, is considered a
hybrid method. With this algorithm, instances can belong to more than one cluster,
hence the soft adjective. Each object has a set of membership coefficients that indi-
cate the degree of belonging to a certain cluster.

Objects closer to the centre of a cluster may have a higher belonging coefficient
than those in the cluster’s limits. This measure is a number ranging from 0 to 1.

The approach is very similar to the one used by k-means:

• Choose how many clusters.
• Assign random coefficients to each instance.
• Repeat until the algorithm converges (the coefficients’ change between two it-

erations is below a given threshold) :
– Calculate the centroid of each cluster.
– For each object, calculate its coefficients.

The centroid of a cluster is the average of all instances, weighted by their coeffi-
cient in that cluster, following Equation 3.19.

56 Data Mining and Machine Learning Background

Ck =
∑x wk(x)mx
∑x wk(x)m (3.19)

where m is how fuzzy the cluster will be, with higher values making the cluster
fuzzier.

If we know that the objects may belong to more than one cluster, we should choose
this soft clustering approach. If we want exclusive clusters or if we know that there
can not be overlapping clusters, we can try with a hard approach which is faster and
computationally lighter [5].

Number of clusters

If we do not have a pre-determined number of clusters that we want, how do
we know how many to ask the model for? If the model has a threshold option, like
the density-based methods, we feed it that number. We can use a dendrogram to
empirically try to determine a suitable number of clusters based on the similarities.
We can also use a heuristic rule by cutting a dendrogram tree with maximum length
[32].

Clustering Evaluation

The only thing we can really evaluate in these methods is whether the clusters we
came up with prove themselves to be useful in the problem’s context [63]. However, of
the several methods available that try to evaluate the clustering model’s performance,
the Silhouette Coefficient, assumes that justified truth markers are available. Another
option is to use a supervised learner on a related auxiliary task.

Silhouette Coefficient

This evaluation technique applies to any clustering method and gives a concise
graphical representation of how well the instances have been classified.

The coefficient is a measure of the similarity between each instance and their
cluster (cohesion) compared to other clusters (separation). It ranges between −1 and
+1 and is calculated according to:

s(i) =


1− a(i)

b(i)
if a(i)< b(i)

0 if a(i) = b(i)

a(i)
b(i)
−1 if a(i)> b(i)

with,

• a(i): the average distance between instance i and the other instances in the
same cluster.

• b(i): the minimum average distance of instance i to any of the instances in any
of the other clusters.

3.2 Inductive Logic Programming 57

The highest the value, the better the instance is matched to its own cluster and
worse to neighbouring clusters. If the majority of the instances are well matched to
their own clusters, then the clustering is well done. If not, then we may have few or
many clusters.

We can use both the Euclidean distance and the Manhattan distance.

The visualisation of the results is done by plotting a graph that combines the sil-
houette width of all the elements in the database with the average silhouette width of
each cluster and the whole database’s coefficient [41].

3.2 Inductive Logic Programming

In the last section, we presented the state of the art in propositional data mining,
that deals with attribute-value elements in a database table. This paradigm has its
drawbacks in solving certain types of problems like those related to molecular struc-
tures, maps and others.

Multi-relational data-mining is more suitable to address this category of issues.
Several solutions include algorithms that cover all the tables in a database and graph
representation learning.

This chapter will present a different approach, based on first-order logic clauses,
that prove to be more effective than propositional methods when we have less specific
training sets [29].

"Induction means reasoning from the specific to the general." [29]

Figure 3.18: Positive and negative examples of triangles inside circles. Source: [10]

58 Data Mining and Machine Learning Background

Inductive Concept Learning

The attributes of a table can be seen in propositional algorithms as the objects in
inductive concept learning. The number and name of attributes are determined be-
forehand, and their values may or not be very well constrained. In inductive concept
learning, we need to define a language to describe objects and to describe concepts,
in order to be able to map:

concept← condition between objects

Or

fact i f hypothesis

We use two subsets of examples of facts. One holds positive examples (E+) and
the other, negative examples (E−).

E = E+∪E−

From the facts, we try to reach a hypothesis.

If an object belongs to a concept, we say that “the concept description covers
the object description” or that “the object description is covered by the concept
description.”[29]

covers(H,e), where H is the hypothesis and e ∈ E

Inductive Concept Learning with Background Knowledge
Difficult problems need previous knowledge of the world besides the facts, giving
us more information on why those facts occur. This background knowledge “plays a
central role in relationship learning” [29] and comes in a uniform representation of
problem-specific data and general-purpose knowledge. With background knowledge,
we achieve better models because the training accepts both positive and negative
examples but also more rules that help them have a more suitable approach. Figure
3.18 tries to illustrate examples of sets with positive an negative examples. In that
case, of triangles inside circles. The main idea behind inductive concept learning with
background knowledge (B) is:

given E and B, find an H for a certain concept language L

Evaluation

There are several measurements to determine the performance of an ILP model:

Accuracy can be used to determine the percentage of objects correctly identified
by the hypothesis.

accuracy(H) =
objects correctly identified by H

total objects
(3.20)

3.2 Inductive Logic Programming 59

Transparency tries to define to what extent the model is understandable by hu-
mans. It usually employs some measure of the final hypothesis’s length, as the number
of conditions on the final rule set or the number of bits used to encode it.

Statistical Significance is used to determine if it has a real distribution behind
it or just some random assignment.

Information Content takes into account the difficulty of the problem. An exam-
ple of how to calculate IS could be the following function:

IS(Ck) =

{
−log(p(C))+ log(p′(C), p′(C)≥ p(C)

log(1− p(C))− log(1− p′(C)), p′(C)< p(C)

where C is the concept, p is the prior probability and p′ the value returned by the
classifier.

Completeness – We say that the hypothesis is complete wrt. B and E if it covers
every positive example.

H is complete i f covers(B,H,E+) = E+

Consistency - We say that the hypothesis is consistent wrt. B and E if it does not
cover any negative example.

H is consistent i f covers(B,H,E−) = /0

First-order Logic

First-order logic is a group of formal notations and inferences used in computer
science, using sentences with quantified variables. It uses Horn clauses in the reverse
form to emphasise the induction aspect. A Horn clause is a logical formula used in
logic programming: (p∧q∧ ...∧ t)→ u

In ILP, background knowledge is represented as facts. These follow a fixed format
as do hypotheses and the examples.

Background knowledge clauses are in the form:

grandfather(X,Y) :- father(X,Z), parent (Z,Y)

father(bob, alice)

And the set of clauses:

B = {mother(alice,david), mother(alice,elias), father(bob,alice)}

The positive examples fed to the training system are a non-empty set of Horn
clauses whereas the negative set may be empty.

60 Data Mining and Machine Learning Background

Example clauses are in the form:

grandfather(bob, charles)

And the two sets of examples can be:

E+ = {grandfather(bob, charles), grandmother(bob, alice)}

E− = {grandfather(bob, alice)}

An ILP problem can be defined as:

Given a set of examples E, a background knowledge B and a language L,
find a hypothesis H ⊂ L explaining the examples in E wrt. B.

Techniques

To generate the hypotheses from the example sets and background knowledge,
several different techniques may be employed.

Bottom-up or generalisation
Generalisation begins with a very specific example and progressively groups more
positive examples until it can no longer proceed without covering negative examples.
In the end, it will deliver a hypothesis definition.

Least general generalisation
The least general generalisation is a way to compute a minimal complete gener-

alisation set for a group of expressions. It has no redundant members but covers all
possible generalisations of the examples given.

lgg(c1,c2)

Relative least general generalisation
The relative least general generalisation of two clauses c1 and c2 is their least

general generalisation with respect to B.

rlgg(c1,c2)

Top-down or specialisation

The specialisation technique begins with a broader set of examples and tries to be
more specific, using the refinement operator, to find a hypothesis definition:

Given a language L, a refinement operator ρ maps a clause c to a set of clauses
ρ(c) which are refinements of c:

ρ(c) =
{

c′ | c′ ∈ L, c < c′
}

(3.21)

3.2 Inductive Logic Programming 61

Covering Algorithm
The covering algorithm is a rule-based algorithm that builds hypotheses covering all
positive examples but as few negative examples as possible. As long as there are
positive examples left it will try to explain them through the rules in the background
knowledge. Its implementation is explained in Algorithm 2.

Algorithm 2: Covering algorithm [1]

Repeat{
• Learn one rule: This performs a general to specific search for a rule, which
is highly accurate but has a lower coverage. It also learns a set of rules.

• Remove the data covered: The data covered in the algorithm is removed
from the search space to make the process efficient.

}Until (best possible rule is generated)

Ontologies for ILP Background Knowledge

Ontologies are used to describe the concept language and object language.

An ontology is an accurate description of a collection of information in a specific
field. It formats and constrains the meaning of a context and communicates and solves
semantic inconsistencies. Ontologies normally consist of a collection of concepts with
associations between them.

OWL
OWL, or Web Ontology Language, is a language for defining and representing on-
tologies on the WWW, including descriptions of classes, respective relationships and
properties. It is intended for use by applications that require information processing,
and it presents added vocabulary with an explicit definition.

GO
GO stands for Gene Ontology and represents the biological domain knowledge using
a markup language, concerning:

• Molecular Function - activities that occur at the molecular level (e.g. catalysis)
• Cellular Component - where it operates (e.g. ribosome)
• Biological Process performed by various molecular functions (e.g. DNA repair)

Applications in Bioinformatics and Cheminformatics

Next, we will analyse some of the documented applications of ILP in bioinformatics
and cheminformatics. These are old studies but work well as comparison examples.

Early diagnosis of rheumatic diseases
To diagnose rheumatic diseases at an early stage, Muggleton et al. (1992), according
to [29], used attribute-value descriptions of patient data and a knowledge base pro-
vided by medical specialists, consisting of co-occurrences of symptoms. It achieved
an accuracy of 72,9% when using background knowledge and only 62,8% without the

62 Data Mining and Machine Learning Background

use of background knowledge, whereas "the relative information score of a classi-
fier that always returns the prior probability distribution of diagnostic classes is zero
(accuracy 34%)" [29].

Predict the secondary structure of proteins
The easiest way to predict a protein’s geometry (secondary structure) is to verify if it
applies to a specific known structure. The examples are relative to that specific struc-
ture, of positive examples with said structures and negative examples with different
structures. Bear in mind that a protein is a sequence of amino acid residues and that
its shape almost always determines its function.

Muggleton et al. (1992) and Sternberg et al. (1992), according to [29], provided
examples with clauses with the format structure(protein, position).

The background knowledge included which amino acids are common in which po-
sitions of certain proteins and known sequences of amino acids within proteins. It also
incorporated pairs and triplets of amino acid residues that usually appear together
when the protein has that structure and unary predicates of proteins’ properties.

The training from the examples and the background knowledge a description was
obtained with a set of rules of the properties, positions and sequences that induce the
same format of the examples.

This approach obtained an accuracy of 81%, far better than neural networks had
obtained until then (76%) and also of propositional approaches (73%).

SAR/QSAR of trimethroprim analogues
As with the prediction of structures, it is more efficient to predict a molecule’s activity
by comparing it with activities of known molecules.

According to [29], King et al. (1992) fed the model a set of examples with com-
parisons between the activity level of known compounds. The background knowledge
had tuples with the radical that takes part in certain drugs and their structures. Other
tuples included provided information about known radicals, as polarities, sizes and
more.

The description induced by the training described the relative activity between
molecules from structures, electron donors, flexibility and other properties.

In this case, it obtained a better accuracy (46%) than statistical models (42%) but
lower than propositional approaches (54%).

The better performance of the propositional algorithms may rely upon the speci-
ficity in the problem. ILP can be better than propositional approaches if the training
sets are less specific [29].

3.3 Tools 63

3.3 Tools

The following applications are some of the available tools specially dedicated to
data mining. We use them to extract usable data from large sets, find patterns and
correlations, extract knowledge, and make predictions.

Weka[13]

Weka stands for Waikato Environment for Knowledge Analysis and is a free, portable
Java library for data mining, data analysis, and predictive modelling. It supports sev-
eral standard data mining tasks, including data pre-processing, classification, cluster-
ing, feature selection, regression and association rules, as a class in a java package,
like

• AssociationRules,
• BayesNet,
• BayesNetGenerator,
• DecisionTable,
• J48 (C4.5),
• LinearRegression,
• Logistic,
• MultilayerPerceptron,
• NaiveBayes,
• NeuralNetwork,
• OneR,
• RandomForest,
• Regression,
• RegressionByDiscretization,
• SimpleLinearRegression,
• SimpleLogistic,
• SupportVectorMachineModel,
• TreeModel
• ZeroR

The AssociationRules class includes various propositional algorithms.

Weka is as popular as RapidMiner as a data mining tool but lacks some specific
advanced features [34]. By default, Weka uses 10-fold cross-validation, but we can
define other values or select a split ratio if we prefer.

R and R-Studio

R is a programming language for machine learning statistical computing and anal-
ysis. It is popular in implementing regression, classification, and decision tree forma-
tion.

R-studio is an integrated development environment (IDE) for R and integrates with
Tensorflow and other libraries. It also includes several external data mining packages
and is possible to use Python with RStudio. The latest release is 1.4.1717 from June
1st 2021.

64 Data Mining and Machine Learning Background

RapidMiner

RapidMiner Studio is an IDE for text mining, machine learning, predictive analyt-
ics, deep learning, data analysis and preparation.

It allows every data mining step, has a quite straightforward to use, intuitive,
simple user-interface, loads and extracts information from unstructured data, has
many available extensions and integrates with R and Python [34].

Aleph

Aleph stands for ’A Learning Engine for Proposing Hypotheses’ and is the most
used tool when it comes to Inductive Logic Programing. It is written in Prolog and it
must be loaded inside a Prolog compiler or integrated in Knime or RapidMiner.

The Aleph system procedure works in four stages[53]:

• Selects an example to be generalised. Stops when there is none.
• Builds the most-specific-clause that covers the example, having the language

restrictions into account.
• Finds a more general clause by searching a subset in the bottom clause with a

best score.
• Adds the best scored clause to the current theory and removes all other exam-

ples, which are now considered redundant.

The background knowledge is in the form of Prolog clauses and the examples are
ground facts.

The ARFF file format

An ARFF (Attribute-Relation File Format) file represents a series of instances shar-
ing the same set of features. It is saved as an ASCII text file. This filetype was de-
veloped by the Machine Learning Project at the Department of Computer Science of
The University of Waikato to be used with the Weka machine learning software and is
currently used by many tools [43].

Two parts form ARFF files. In the beginning, it has a header and then we have
the Data information. It usually begins with authorship information in the form of
comments. Comments appear after the % symbol.

The header includes the name of the relation and a list of the attributes with their
types.

The ARFF header section contains the relation declaration and attribute declara-
tions. All keywords are case insensitive, but string values and nominal attributes are
case sensitive. The relation declaration is the first uncommented line in the ARFF file.
A relation is declared in the following format:

@relation <relation-name>

where <relation-name> is a string. If the name includes spaces, the string must
be quoted.

3.3 Tools 65

Then we have the declarations for each attribute in the relation, with its name and
datatype, formatted like this:

@attribute <attribute-name> <datatype>

The datatype is one of these:
• numeric (real or integer numbers)
• <nominal-specification> (for nominal attributes)
• string
• date [<date-format>] (format is optional. default: "yyyy-MM-dd’T’HH:mm:ss"

(ISO-8601 date and time format)).

For nominal attributes, we list the possible values (spaces imply quoting the string):

{<nominal-name1>, <nominal-name2>, <nominal-name3>, ...}

like the following example:

@ATTRIBUTE class {Iris-setosa,Iris-versicolor,Iris-virginica}

The following is an example of a header on the standard IRIS dataset1 (all the
fragments were taken from the same source):

% 1. Title: Iris Plants Database
%
% 2. Sources:
% (a) Creator: R.A. Fisher
% (b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
% (c) Date: July, 1988
%
@RELATION iris

@ATTRIBUTE sepallength NUMERIC
@ATTRIBUTE sepalwidth NUMERIC
@ATTRIBUTE petallength NUMERIC
@ATTRIBUTE petalwidth NUMERIC
@ATTRIBUTE class {Iris-setosa,Iris-versicolor,Iris-virginica}

The data section starts with a single line:
@data

Each instance has its own line, with attribute values separated by commas, in the
same order of the declaration. The line ends with a carriage return. Any unknown
value is represented by a question mark, as in:

4.4,?,1.5,?,Iris-setosa

1https://waikato.github.io/weka-wiki/formats_and_processing/arff_developer/

https://waikato.github.io/weka-wiki/formats_and_processing/arff_developer/

66 Data Mining and Machine Learning Background

The following is an example of a data section on the standard IRIS dataset:

@DATA
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
5.0,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa

If there are many zero values, we can reduce the file size, by not representing
them and use the sparse notation, with the other values explicitly identified by at-
tribute number followed by value after a white space and adding the number of at-
tributes after the last non-zero value:

ARFF:

@data
0, X, 0, Y, "class A"
0, 0, W, 0, "class B"

sparse ARFF:

@data
{1 X, 3 Y, 4 "class A"}
{2 W, 4 "class B"}

Scikit-learn [44]

Sci-kit Learn is a machine learning library for Python. It is used for data mining
and data analysis and implements many algorithms for classification, regression and
clustering, including support vector machines, random forests, k-means and DBSCAN.

The current version is 0.24.2 released in April 28th 2021.

It is installed through the Python package manager (pip) running the command:

pip install --upgrade scikit-learn

3.4 Summary 67

3.4 Summary

In this chapter, we have presented the state of the art in data mining and its ap-
plications pertaining to this project, complemented with an overview of ILP concepts,
notations, and techniques with a special detailed description of the covering algorithm
and some ontologies.

We have discussed different approaches and methods and how to evaluate their
implementation and presented various tools that help us to achieve our goals.

Then, we described some of the applications of ILP on bioinformatics and chem-
informatics together with the results of those applications and comparisons with the
statistical and propositional approaches.

To finish this chapter, we presented the available Data Mining tools pertaining to
this project.

68 Data Mining and Machine Learning Background

Chapter 4

Implementation

This chapter will analyse the problem we are addressing and present our solution,
together with implementation details, including the web development technologies
used.

4.1 Requirements

Problem

Increasingly more complex problems are being addressed in life sciences. Acquir-
ing all the data that may be related to the problem in question is paramount. Equally
important is to know how the data is related to each other and to the problem itself.
On the other hand, there are large amounts of data and information available on the
Web. Researchers are already using Data Mining and Machine Learning as a valuable
tool in their investigations. The usual procedure is to look for the information based
on the inductive models.

Today, there are large amounts of data and a lot of information available on the
net. It is not easy to integrate this vast amount of available information with propo-
sitional algorithms, that is, based on attributes, in the inductive process, that is, with
supervised learning.

It happens, despite the great successes already achieved with the use of DM/ML.
The platform will produce outputs for both propositional and relational algorithms.

We must enrich the training data to be used in the inductive process. Propositional
algorithms are based on attributes and relational are based on first-order logic. With
the two types of outputs one can compare the results using the two approaches.

Actors

The actors for this web application are just the user and the Administrator. An
User can access all input pages and introduce terms and ids to obtain properties and
save them to the database and/or generate the output files. An administrator can
do everything a user can but also navigate in the Administration Area to explore the
databases, import and export and also create other users.

69

70 Implementation

We can also consider the repository and tools API as actors.

Functional Requirements

After several conferences with the client we came up with the functional require-
ments displayed on Table 4.1.

Table 4.1: Functional Requirements

Name Description

Data Retrieval
The system must fetch data from public bioinformatics
and cheminformatics repositories using API.

ID conversion
The system must convert identifiers
from one repository to others.

Local Storage The system must save the retrieved data locally.

Fetch Once
The system only accesses the repositories
if the data is not yet available locally.

Prolog facts The system must generate appropriate Prolog facts.

Save Prolog
The system must save the generated
Prolog facts to .pl files.

Export Database
The system must be able to export database
tables in several formats (including .csv).

CSV2ARFF The system must be able to convert .csv files to .arff files.

Authentication Only an authenticated user can access the platform.

Add Users
The system must allow the creation of
other users and administrators.

Bulk Input
The system must allow the input of identifiers in bulk
(via file input or copy/paste).

Padel
The system must allow the retrieval of PaDEL descriptors
(with options).

Repository retrieval
The system must allow the input of
individual identifiers on specific repositories.

Repository search
The system must allow the searching specific
repositories for specified search terms.

Table 4.2: Restrictions

Name Description

Delivery time The application must be ready before October 20th 2021

4.2 Technologies 71

Technical Requirements

From the same meetings, we devised Table 4.3, with technical requirements for
the web application and the application’s restrictions displayed on Table 4.2.

Table 4.3: Technical Requirements

Name Description

Web applications
The system must be implemented with
dynamic pages of web Applications

.

Availability
The system will be available 24 hours a day,
7 days a week, with minimal downtime

.

Usability
The system will be intuitive, easy to handle
and to navigate and with a simple design.

Security
The system will be protected from unauthorized access
and protected from attacks by third parties.

Speed
The system will be fast, with a short response time,
offering a fluid experience to users.

Responsive
The system will be a responsive web site in order to
adapt to different types of windows and/or devices.

Ethics
The system must comply with software development ethics laws,
such as encrypting authenticated users passwords
so that only they know their password.

Scalability
The system has to be built with the possibility
of increasing the number of users in mind and adapting to
changes in the ecosystem with the growth of user base.

Database
The system must make use of a database technology
that allows the storage of big volumes of information.

4.2 Technologies

Considering the problem and the objectives, we created a web platform to obtain
relevant information for Bioinformatics (particularly Genomics) and Cheminformatics
problems. It fetches the data from public repositories with genomics, protein and
chemical data and enriches it, with the help of ontologies and the PaDEL-descriptor.
The new data is saved in files intended to be used by Prolog systems to be used in ILP
algorithms. These systems give us a classification and evaluation of the performance.

The platform has a backend developed using python-based technologies.

72 Implementation

Available Technologies

Next, we will discuss what technologies, languages and frameworks we have avail-
able to develop a web application to do the queries, display replies and in the backend,
do requests to the repository, store the data in a database, thus facilitating analysis
and making it faster.

Python

Python is a free, open-source, high-level interpreted programming language. It is
very simple and one of the easiest to work with. Its popularity has to do with using
it for different programming paradigms like object-oriented, imperative, procedural
and imperative.

Having an enormous community contributes to it to have numerous libraries and
frameworks.

There are many Django libraries and frameworks that make web development with
Python more productive and fast.

Python provides data mining tools with dedicated libraries for data collection, data
cleaning, data exploration, data modelling and data visualisation.

It is also very well served in automation frameworks and can scale very efficiently.
The latest version is 3.9.6 from June 28th 2021.

Django1

Django is a high-level web framework for Python. It is easy to work with complex
databases, has a very easy to use database administration interface and has an excel-
lent object-relational mapping solution in which we describe the database layout in
Python code.

The latest release is 3.2.7 from September 1st 2021.

Figure 4.1: MVC architecture diagram. Source: [6]

1https://www.djangoproject.com/

4.2 Technologies 73

MVC architecture

MVC means model-view-controller. It is a software design pattern usually imple-
mented on web applications to separate internal logic and databases from client-side
visualisation code.

The model concerns the data, database management and the logic behind the
application. The view deals with the visualisation, with what the user sees. The
controller sends user requests to the model and notifies the view to receive new data
from the model. Each component interacts with the others as we see in Figure 4.1.

MTV architecture

MTV means model–template–view and is the design pattern used in Django appli-
cations and is equivalent to the MVC [35].

Django handles the controller part of the MVC itself, and this design is sometimes
also referred to as the Model-Template-View + Controller [35].

The model is the same as in MVC, acting as an interface between the data. It also
deals with everything related to data access and validation.

The template is like the view in MVC. It controls what should be displayed and
how.

The view acts as the controller in MVC. It deals with all business logic behind
templates and connects the model and the template.

In Figure 4.2, we can see the MTV architecture of a Django application.

Figure 4.2: Django application architecture diagram. Source: [35]

74 Implementation

React2

React is a JavaScript library for frontend development. With it, we can build com-
plex user interfaces from small and isolated pieces of code called components.

React.JS makes it possible to easily display good looking and intelligible dash-
boards, graphics, graphs, and tables. It is done thanks to many external component
libraries like

• Material-UI,
• Victory,
• React-vis,
• React D3,
• Chart.Js
• ReGraph,
• ReCharts,
• ApexCharts,
• Nivo,
• React Google Charts

and many others.

Redux3

Redux is an open-source JavaScript library, commonly used with React for manag-
ing application state.

SQL

SQL is a declarative programming language used to design and manage data in
a relational database management system (RDBMS). It is recommended when using
structured data when there are relations between entities and variables. It has been
a standard of the American National Standards Institute (ANSI) since 1986 and since
the following year of the International Organization for Standardization (ISO).

The main purpose of SQL is to query data in a relational database. There are
extensions to standard SQL that add procedural elements such as control-of-flow con-
structs. One of those extensions is PostgreSQL.

PostgreSQL4

PostgreSQL, also known as Postgres, is a powerful, open-source object-relational
database system (RDBMS) that uses and extends the SQL language. The last stable
release13.4 was released on August 12th 2021.

It handles better big datasets than other database managers and can use Python
as a procedural language.

The creators of Django "recommend PostgreSQL, which achieves a fine balance
between cost, features, speed and stability".[22, 15]

2https://reactjs.org/
3https://redux.js.org/api/api-reference
4https://www.postgresql.org/

4.3 Boilerplate 75

gunicorn5

Gunicorn is a Python Web Server Gateway Interface (WSGI) HTTP server. In Gu-
nicorn, a master thread creates workers to handle requests but each worker is in-
dependent of the controller. The latter does not control how the workers handle the
request. This is known as pre-work worker model.

nginx[47]

Nginx is used as a web server for static assets like as images, JavaScript and
Cascade Style Sheets and also as a reverse proxy, which passes HTTP requests to a
WSGI server like Gunicorn.

Docker[36]

Docker is a container-based tool to provide environments for development, deploy-
ment and production of web applications. It works as a virtual machine but it does
not create a whole virtual operating system. It delivers the same Linux kernel to all
phases of implementation and to all contributing entities, which enables an incredible
performance improvement and reduction of the application’s size.

4.3 Boilerplate

As a framework, we choose Django with React frontend. Django is easy to work
with complex databases, has a very easy to use database administration interface and
is developed in Python. React helps in displaying clean looking, easily re-adaptable
interfaces and also adds possibilities to show charts, graphs and other analysis tools,
if necessary.

To save the data already collected, thus facilitating the analysis and making it
faster, we will have a PostgreSQL database.

First, we installed the Django framework, then the React library for the frontend.
Then we dockerized the application with settings for a PostgreSQL database and us-
age of Nginx and Gunicorn servers. During development, several more packages and
libraries were added, such as Redux and python wrappers.

The implementation of our application starts with the setting up of all the neces-
sary technologies, the installation of modules and packages and the establishment of
a boilerplate on which the rest of the development will build upon.

Django

To create a new Django application, first, we need to install the framework, which
is easily done using the python pip package installer:

python -m pip install Django

Then we need to write the following command in the command line:

5https://gunicorn.org/

76 Implementation

django-admin startproject <site_name>

The app is created with the following structure:

site_name/
manage.py
site_name/

__init__.py
settings.py
urls.py
asgi.py
wsgi.py

• manage.py is Django’s command-line utility for administrative tasks and sets the
DJANGO_SETTINGS_MODULE environment variable to point to the project’s
settings.py file.

• settings.py is the configuration file for the project.
• urls.py holds the URL declarations for the Django project, like a directory listing

of endpoints. We can have other URL dispatchers in each project module and
redirect from here to them after importing.

• asgi.py and wsgi.py are the entry-points for ASGI-compatible and WSGI-compa-
tible web servers, respectively.

To help uniform the environment between different locations, we also add a re-
quirements.txt file outside the project folder. This file holds the name of the modules
and their versions that must be present for the Django project to run. Throughout the
implementation phase, as modules were being added to the project, the file was up-
dated. Then, to assure the modules are or will be installed, we run

pip install -r requirements.txt

This project has the main project folder like this:

mainapp/
__init__.py
local_settings.py
settings.py
urls.py
asgi.py
wsgi.py

There are also folders for each module, inside the project folder, alongside the
mainapp folder:

django_app/
converter/
ensembl/
genbank/

4.3 Boilerplate 77

files/
go/
kegg/
mainapp/
output/
padel/
pubchem/
reqs/
static/
users/
utils/

The files folder holds the downloaded .sdf, .mmcif and other files. The users
module deals with user authentication. To hold static files like images and cascade
style sheets, we have the static folder. There are more folders for modules related
to each repository and API accessed.

Inside each of these repository modules, we have the files related to the Django
MVT architecture, like models.py and views.py. We do not have the template files
because we use React for the frontend, but we have urls.py files for URL redirect-
ing inside the modules. They hold a mapping between the endpoints called by the
frontend and the views with the logic.

The views.py files deal with the backend logic. The models.py files describe the
database schemas, with the tables as classes and the attributes inside each of them.
Their relationships are also considered. We describe the database schema in its own
section (section A).

We can bring the Django app up using the command

python manage.py runserver

The application will be available at localhost:8000

React

React was installed in the frontend folder. To install a React application, having
the Node package manager installed, we simply have to enter:

npm -g install create-react-app

create-react-app <app_name>

We can then start the application, navigating to the app_name folder and running

npm run start

By default, the application will be visible at http://localhost:3000

The node file that holds the package names and versions that must be present or
installed for the React app to run the same way in every environment is package.json.

localhost:8000
http://localhost:3000

78 Implementation

As modules are being added to the project throughout the implementation phase, the
file is automatically updated.

react-router-dom6

We chose react-router-dom as our routing module to map the get requests into
react components. It is installed with

npm install react-router-dom

material-ui7

Material-ui is an interface library for React that implements Google’s Material De-
sign. It has easy to incorporate, ready-made, clean, appealing to the eye components
into any react application. It is installed with

npm install @material-ui/core

Redux
We use Redux to hold state between pages and specifically to deal with user au-

thentication. Redux works with all types of javascript development, and there is a
specific package for React: react-redux. To return functions from action creators in
redux dispatch, we need to use a middleware called redux-thunk. We can install all in
one go:

npm install redux react-redux redux-thunk

Axios8

Axios is a Javascript library that simplifies HTTP requests from node.js or XML-
HttpRequests from the browser and supports promises, useful for asynchronous com-
munication. It is installed with

npm install axios

Docker

Docker operates with containers and images. Each container wraps the code and
all its dependencies for the correct use of part of an application. We have three con-
tainers and one image. The image is for the postgresql database, which just needs
to be pulled, and then they turn into containers when ran. For the frontend, back-
end and Nginx service containers, we prepared a Dockerfile for each of them [15].
The Dockerfile calls commands defined by us to assemble and build an image to run
the part of the application as intended. To run the whole application from a single
command, we created a docker-compose.yml, a config file for docker-compose. It

6https://reactrouter.com/
7https://material-ui.com/
8https://github.com/axios/axios

https://reactrouter.com/
https://material-ui.com/
https://github.com/axios/axios

4.4 Architecture 79

configures and lifts at the same time multiple containers. Afterwards, we just need to
run the docker-compose up command to deploy and access the whole application.

Also, environment (.env) files in the backend and postgres folders, postgres folder
and project root folder were created. [15]

The final architecture of the project is the following:

DEDaMi/
backend/

django_app/ (*not showing the files inside the folders)
converter/
ensembl/
genbank/
go/
files/
kegg/
mainapp/
output/
padel/
pubchem/
reqs/
static/
users/
utils/
manage.py

Dockerfile
entrypoint.sh
.env
requirements.txt

frontend/
react_app/ (*not showing the files inside the folders)

node_modules/
public/
src/
package.json
package-lock.json

Dockerfile
nginx/

Dockerfile
nginx.conf

postgres/
.env

docker-compose.yml
Dockerfile

80 Implementation

Figure 4.3: Application Architecture

4.4 Architecture

The DEDaMi application is split between the backend and the frontend. Frontend
only deals with asking for input and choices and showing results and forms. The
backend receives the user inputs and choices, uses them to ask the repositories and
data-mining software for data, uses some wrappers, and returns to the front end to
show it to the user. Also, in the backend, the database is accessed to save the data
fetched from repositories and read it beforehand to access if the requested data by
the user is already available locally. And for each record fetched conversions are
made to other repository with more subsequent retrievals and generation and saving
of Prolog clauses. Figure 4.3 illustrates a rough high-level architecture design of the
platform. Besides the architecture, we will also discuss the different interfaces the
user will deal with, the navigation flows, and possible user stories.

4.4 Architecture 81

Frontend

Frontend endpoints
The endpoints available in the frontend are listed in Table 4.4.

Table 4.4: Frontend endpoints

Method relative path description

GET / Landing page
GET /bulk Bulk input of identifiers via file or textbox
GET /output List of output options
GET /output/padel Input of identifiers to get descriptors from
GET /output/prolog Input of identifiers to convert to Prolog facts
GET /output/csv2arff Input of a .csv file to convert to an .arff file
GET /input List of repositories available
GET /genomics List of Genomics repositories available
GET /genomics/genbank Genbank repository page
GET /genomics/kegg Kegg repository page
GET /genomics/ensembl Ensembl repository page
GET /cheminformatics List of Cheminformatics repositories available
GET /cheminformatics/pubchem Pubchem repository page
GET /proteomics List of proteomics repositories available
GET /proteomics/pdb PDB repository page
GET /update_password Page for the user to change password
GET /admin Administration page
GET /login Login page

Site Administration
Django automatically provides an administration section, where we can manage users
and the databases. Previously we must create a superuser. This superuser will ac-
cess the administration site /admin, and then he can add, remove, and manage other
admins or users. To create a superuser, we just need to input the following command:

python manage.py createsuperuser

For the databases to appear on the administration page, we need to register the
models in the admin.py file in each app folder.

We use the django-import-export library to handle the way databases and tables
are shown, imported and exported.

/
/bulk
/output
/output/padel
/output/prolog
/output/csv2arff
/input
/genomics
/genomics/genbank
/genomics/kegg
/genomics/ensembl
/cheminformatics
/cheminformatics/pubchem
/proteomics
/proteomics/pdb
/update_password
/admin
/login

82 Implementation

django-import-export 9

With the help of this library, we can easily add the possibility of exporting tables from
the database to several formats (csv, xls, and others) from the administration page.
We install it with:

pip install django-import-export

In the end, an admin.py file would look like this stripped example from pub-
chem:

from django.contrib import admin
from import_export import resources
from import_export.admin import ImportExportModelAdmin
from .models import Compound

class CompoundResource(resources.ModelResource):
class Meta:

model = Compound
exclude = (’created’, ’modified’,)

class CompoundAdmin(ImportExportModelAdmin):
resource_class = CompoundResource

admin.site.register(Compound, CompoundAdmin)

But, because we created a customised class that can be called by every module so
we wouldn’t be repeating code again and again, this code ended slightly different in
the utils package.

Frontend architecture
The react application entrypoint is the Index.js file, which points to the App.js.
App.js calls the router in Urls.js and applies classes from the react-router-dom:
import {BrowserRouter, Route, Switch, Redirect} from "react-router-dom";

Each route the Urls.js can call will use the master templates, in which the layout
is filled with the requested page, and a Repo page is composed by blocks:

src>
components>

blocks>
RepoForm
RepoCheckGroup
RepoRadioGroup
TextInput

comps>
Breadcrumbs
Help
StyledLink

master>

9https://github.com/django-import-export

4.4 Architecture 83

Layout
TopBar
Footer

pages>
Field
Landing
Repo

images>
setts>
store>

In the comps subfolder, we have customizations of material-ui components: Bread-
crumbs, Popover and Link.

The images folder hold several images, icons and logos used in the application. In
the store folder, we find the store, actions and reducers for Redux. We use Redux
in some cases to have the state available in all the layers of the component hierarchy
at the same time.

We also use, in certain reusable modules, settings held in configuration files in the
setts folder. The settings are then parsed by the application for the right appliance
and mapping according to the page to display.

Landing Page
The DEDaMi application root points to a landing page where we have to choose be-
tween accessing the bulk input page, the output options page and the repositories
page. The access is granted if authenticated. If we are not, we are redirected to the
login page, and after authentication, we get redirected to our choice.

Repositories Page
In this page we can choose an available repository to access. Here, we choose which
repository we want to make specific queries to.

Repository Access Pages
The pages where we choose which properties we want to fetch from the repositories.
Here, we can choose the properties to access from the repository, the input we are
supplying, and the output format we expect.

Bulk Input Page
To allow bulk inputs, either from a file or by inputting or pasting identifiers directly
in a textbox, there is one special kind of Repository page that uses the same React
construction logic, using the same RepoForm, RepoCheckGroup, RepoRadioGroup
and TextInput components.

84 Implementation

Outputs Page
In this page we choose between accessing one resource that produces Prolog facts
from PDB ids and Gene ids or another resource that get PaDEL descriptors from
Pubchem compound ids and saves Prolog facts using them.

PaDEL-Descriptor output Page
To ask the system to generate Prolog facts with chemical descriptors obtained from
the PaDEL-Descriptor we insert Pubchem compound identifiers using this page. We
can also choose which type of descriptors we are looking for: 1D/2D, 3D, fingerprints,
all of these or one of the other three possible pair combinations.

Other Prolog outputs Page
We can ask the application to process PDB ids or Gene ids, either from a file or by
inputting or pasting identifiers directly in a textbox, and save Prolog facts according
to the available information about them.

Backend

Backend Endpoints
Axios handles the requests and responses to the backend. The parameters chosen by
the user are sent to a function that directs the Axios request to the backend. Axios
then send these values through a POST request and waits for the response. The
backend receives the request with the parameters, and the appropriate function in
the requested view processes the information. It verifies if the requested information
is already available locally, in which case it will be returned to the frontend or if a call
must be made to a repository.

Table 4.5: Backend endpoints

method relative path description

POST /api/auth/logout/ Logout
POST /api/auth/login/ Login

POST
/api/auth/
update_password/

Change Password

POST /api/admin/ Administration area
POST /api/pubchem/ Pubchem repository logic request handler
POST /api/kegg/ Kegg repository logic request handler
POST /api/pdb/ PDB repository logic request handler
POST /api/genbank/ Genbank repository logic request handler
POST /api/ensembl/ Ensembl repository logic request handler
POST /api/bulk/ Batch input logic request handler
POST /api/padel/ Get PaDEL descriptors logic request handler
POST /api/prolog/ Output to Prolog facts logic request handler
POST /api/arff/ Convert a .csv file to an .arff file

Table 4.5 lists the available endpoint calls to the backend.

/api/auth/logout/
/api/auth/login/
/api/auth/
update_password/
/api/admin/
/api/pubchem/
/api/kegg/
/api/pdb/
/api/genbank/
/api/ensembl/
/api/bulk/
/api/padel/
/api/prolog/
/api/arff/

4.4 Architecture 85

The request sent to the backend has the following format:

{
"repo": <repository>,
"inputvalue": <input value>,
"input": <input supplied type>,
"domain": [pubchem substance/compound],
"output": [pubchem selected outputs],
"outformat": [pubchem output format],
"d3d": 2d/3d [pubchem compound],
"file": [file uploaded]

}

The response from the backend has either the data with JSON with element or
properties asked for or an error message and one of the following status codes:

• 200 : "OK"
• 422 : "Unprocessable Entity"

Backend architecture
In the backend, besides the normal Django architecture, we have a module for each
of the repositories to access. There is also another module for the conversion tables
logic and database and other useful separated folders.

django_app/
converter/
ensembl/
files/
genbank/
go/
kegg/
mainapp/
output/
padel/
pubchem/
reqs/
static/
users/
utils/

Each module folder has a migrations folder, with every change made in that mod-
ule’s models since creating the database schema. The files in the module folder in-
clude models.py with the table definitions, urls.py with module related sub-endpoints
and admin.py. The admin.py file has templates and directives of what to be displayed
in the administration area.

Most importantly, we have the views.py file with the logic for handling the fron-
tend requests and creating an instance of an object of the repository class and calling
its method(s). And in most of the modules there is also another package, named after

86 Implementation

the module, that holds all the major logic, classes and methods regarding the module
operations.

We may also have a test.py file with tests for the backend regarding that module
and repository objects Repository modules

Repository modules
Each repository has its own module with its own database schema, a views.py file
with the logic to handle the frontend requests, and a <repo_name.py> file with the
class for the module’s objects.

Converter module
The converter module holds the converter module with classes to handle the conver-
sion of identifiers between different repositories and deal with the bulk requests. The
folder also has the same structure and sub-folders as the repositories’ folders.

The entry point sends the input request to a parser that identifies the type of
identifiers introduced. The flow next retrieves information available locally if it exists
or fetches from the appropriate repository if it does not. Using id converters it gets
ids for the same entity on other repositories of the same field of study. Using this ids
it will fetch the record if it is till not available locally. In the end we have a database
entry that points to objects from each repository in the same field of study.

Output module
In this module we have the classes and methods to handle the requests to generate
Prolog facts from PDB ids and Gene ids. It will try to obtain information in the lo-
cal database and if there is still none it will access the repositories needed. It will
then, from the attributes of the records, format the string to be saved into the Prolog
knowledge base and to .pl files.

Padel module
This module deals with the requests to generate Prolog facts from Pubchem com-
pound ids. It will try to obtain information in the local database and if there is still
none it will fetch it from the Pubchem repository and save it locally and then ask
PaDEL-Descriptor for descriptors. After saving new records to the database (not nec-
essary of already has them), it formats the string to be saved into the Chemistry
knowledge base and to .pl files.

Go module
Whenever a Go:id is saved in a database of a repository or conversion, its properties
are fetched and a Go term and bioentity are also saved using the Go module.

The Go module consists of a simple class with a constructor that receives the Go:id
and automatically fetches the properties from GOlr and BioLink endpoints. The Go
class has only two methods, one saves the Term and the other all bioentities related
to a Go term.

4.5 User Stories 87

Testing
To run tests, we just have to input the following in the command line:

python manage.py test

Django automatically runs the unit test functions inside test classes on every
test.py file in the project.

If we want to run tests for just one module, like Pubchem, for instance, we run:

python manage.py test pubchem

In addition, if we want a specific test, we include the name of the function of the
intended test:

python manage.py test pubchem.test.PubchemTestCase.test_substance_by_sid

Django unit tests usually inherit the TestCase class but, because we launch sep-
arate threads and TestCase runs inside of a transaction we could not access the
conversion tables from a repository test. To achieve the intended goal of the tests
we need to use TransactionTestCase, so that the test process runs in the regular
auto-commit mode.

Cross-module utility functions
The utils folder consists of only one file (utils.py) with methods used by any class
in the application and also constants like regex patterns and others.

Repository requests classes
The reqs folder includes packages with classes to make and handle requests to the
repositories and conversion tools. These include Biodb, CTS, Kegg, Ensembl, Entrez
and G:Profiler.

4.5 User Stories

In Tables 4.6, 4.7 and 4.8, we enumerate the main user stories of the application
and how to achieve them. The main possible uses of the application are listed in the
table. There can be additional, more specific user stories for different repositories,
like searches constrained to a particular database. Searches are not available on
some repositories, and on others, we can specify which properties we want to be
returned.

When a user specifies an identifier in a Repository page, the application will search
in the local database and only if the record is not found it will access the repository
to get it and save it. The properties of the object pointed by the provided identifier a
returned to the frontend. In the background, a new thread is launched to convert the
identifier to other repositories of the same field of study, get the object from converted
identifiers in the other repositories, and relate them in a dictionary-like table.

88 Implementation

Table 4.6: Main User stories, their usages and corresponding UI Figures

User Story Usage UI

Export Database
Go to the administration area
by clicking the symbol and there
click export in the chosen table

Figure
B.25

Insert identifiers in bulk in a textbox
Access the Bulk Page via Landing Page
and type or paste identifiers in the textbox

Figure
4.8

Provide identifiers in bulk from a text file
Access the Bulk Page via Landing Page
and click the select file button

Figure
B.3

Get chemical descriptors from PaDEL
(and choose which)
and generate Prolog clauses

Access the PaDEL page via Output Page
and paste/write Pubchem compound ids
or click the select file button

Figure
4.9

Generate Prolog clauses
from protein or gene ids

Access the Prolog page via Output Page
and paste/write PDB ids or gene ids
or click the select file button

Figure
B.6

Provide a(n exported) .csv file
to convert to an .arff file

Access the Csv2arff Page via Output Page
and click the select file button

Figure
B.5

Search for terms in some repositories and
get a list of identifiers matching that query

Input a query on a repository page
Table
4.7

Save objects properties
(in each repositorya)

Provide identifiers in a Repository page
or in the Bulk Input Page

Table
4.7

Convert identifiers between repositories
Provide identifiers in a Repository page
or in the Bulk Input Page

Table
4.7

Keep a translation table between
different repositories (for each fieldb)

Provide identifiers in a Repository page
or in the Bulk Input Page

Table
4.7

Query each repository and see the
properties for the identifier asked for

Specify an identifier on a repository page
Table
4.7

Authenticate
Change password
Add user
Edit user

Table
4.8

aPubchem, PDB, Kegg, Ensembl, Genbank
bCheminformatics, Proteomics, Genomics

4.5 User Stories 89

Table 4.7: Repositories corresponding UI Figures

Repository input page UI

Pubchem Repository page
Figure B.10
Figure B.11
Figure B.12

PDB Repository page Figure B.7
Kegg Repository page Figure 4.7
Genbank Repository page Figure B.15
Ensembl Repository page Figure B.19

If the user takes advantage of the bulk input feature, the identifiers will be first
parsed to identify where to look locally and the correct repository to access, and
then the flow takes the same course as the one described for the Repository use
case described above. Nonetheless, there is one major difference because all the
bulk process is handled quietly in the background by new threads. Therefore, and
because, presumably, more than one identifier was provided, no properties are shown
in the frontend. Instead, a message will be shown saying that when the background
process is over, a message will be sent to the user’s stored email account.

Table 4.8: User management User stories, their usages and corresponding UI
Figures

User Story Usage UI

Authenticate
Go to the Login Page
either by clicking the symbol
or trying to access a protected resource

Figure
B.23

Change Password Click the symbol on the topbar
Figure
B.24

Add user (administrator)
Go to the administration area
by clicking the symbol and there
click on Add User (and give privileges)

Figure
B.26

Edit user
Go to the administration area
by clicking the symbol and there
click on the User and edit the information

Figure
B.27

90 Implementation

4.6 User Interface

Figure 4.4: Navigation Flow

For a first glance on the whole frontend navigation flow, we can observe Figure
4.4. The first page displayed when accessing the application is the Landing Page
(Figure 4.6). Authentication is mandatory in order to access any other resource.

A user logs into the platform if he clicks on the Login symbol in the top bar or as
soon as he tries to access a protected resource. Every page is a protected resource
apart from the Landing Page.

At the Landing Page an user must chose between three areas: Bulk Input; PaDEL /
Prolog outputs; and Repositories. Apart from the Administration Area, we can access
the Landing Page by clicking the home button in the top bar (4.6) from anywhere in
the application.

The main pages for a user to visit are the Repository Pages, the Bulk Input page,
the Output pages and the Administration Area, where database export is possible.

In the Output Page, the user chooses between sending Chemical data to PaDEL to
get descriptors or to convert protein or gene ids to Prolog facts.

In the Repositories Page, the user chooses which repository he wants to access for
specific searches.

Interface

Here we present the pages displayed to the user, allowing data input and showing
the responses from the server.

More examples of interface page can be viewed on appendix B

4.6 User Interface 91

Figure 4.5: Landing Page

Landing page
On the landing page, all that a guest or registered user can see are the avatars of the
highest level pages: Bulk Inputs Page; Outputs Page; and Repositories Page.

Topbar
The top bar has a direct link to the landing page on the left side. On the right side, if
we are authenticated, we can find three links. At the far right, we have the logout (lo-
gin if we are authenticated), then the link for changing our password and finally a link
to access the administration area, or export database area, with a floppy disk symbol.
Not in the top bar, but directly below it, we have the breadcrumbs. This component
helps us navigate through the application and helps us situate in the application.

Field page
The field page is similar to the Landing Page, restricted to the repositories related to
the given field of study, and only accessible by authenticated users (Figure B.1). The
only way we can navigate to a field page is through the breadcrumbs on a Repository
Page.

Repositories page
The user is presented with the avatars (working as buttons) representing each repos-
itory Page to choose which repository to access (Figure 4.6).

92 Implementation

Figure 4.6: Repositories page

Repository Access pages
For each repository that the application uses, a specific page is displayed. This way,
the user can interact just with that repository and with repo-specific actions.

We will list what can be done on each repository page.

Pubchem
On the Pubchem page, which is the one with the most options, we can choose between
the substance and the compound modes, using a slider on the top. If we choose the
compound mode, we have another slider that we can use to specify if 3D proper-
ties should be returned or just 2D. Because of how the pubchempy wrapper works,
accessing different information without combining it, it is better to work like this
(Figure B.13).

In the compound mode, we can input the pubchem compound identifier (CID), one
of its names, the formula, the inchi identifier, the inchikey hash or the smiles notation.
The possible inputs in the substance mode are only the Pubchem substance identifier
(SID) and one of the possible names.

Pubchem makes a distinction between compounds and substances. A compound is
a standardized chemical structure representation present in possibly more than one
substance.

On the Pubchem page, we can choose which properties to be presented in the
interface. There are only four properties possible for a substance: Synonyms, Stan-

4.6 User Interface 93

dardized Compound, CID and AID. A compound has a larger number of possibilities10,
27 to be exact, to which we can still add eleven exclusive to 3D11. Of course, we can
simply check the "all" option.

Regardless of which properties we choose to see, all possible properties will be
saved in the database.

PDB
On the PDB page, we only have two input possibilities. We can specify a PDB identifier
that already known to us to see its properties and save them to the database or enter
a query to get identifiers related to the term queried (Figure B.7, B.8 and B.9).

Kegg
On the Kegg page, the input possibilities are divided between searches for terms in
the Kegg databases and inputs of known identifiers to see its properties and save them
to the database (Specify Entry). If we want to find identifiers that match a term, we
can search in a specific Kegg database12 or on all of them at once. The search results
will be presented on the same page, and we can then use one of the identifiers in the
Specify Entry input box.

We can see the Kegg input page in Figure 4.7 and search results in Figure B.14.

Genbank
On the Genbank page, we only have two input possibilities. We can specify an iden-
tifier (gene id, accession or gene name) that we already know to see its properties
and save them to the database or enter a query to get identifiers related to the term
queried (Figure B.17 and B.18).

Ensembl
On the Ensembl page, we can only specify an Ensembl identifier that we already
know. The application will show the properties of that identifier and save it (and also
identifiers on other related repositories) to the database (Figure B.20, B.21 and B.22).

Bulk Inputs Page
To introduce bulk requests of several identifiers, the user must access the bulk page
at /input/bulk. On the Bulk page, the user has two options: uploading a file with
the identifiers or writing/pasting into a textbox (Figure 4.8).

Both alternatives follow the same format of one instruction or identifier per line.
The preferred mode of input is through a perfectly unique identifier, but sometimes
that is not possible, namely when introducing gene ids.

10Molecular Formula, Molecular Weight, Canonical SMILES, InChI, InChIKey, Isomeric SMILES, IU-
PAC Name, Synonyms, XLogP, Exact Mass, Monoisotopic Mass, TPSA, Complexity, Charge, HBond Donor
Count, Rotatable Bond Count, Heavy Atom Count, Isotope Atom Count, Atom Stereo Count, Defined
Atom Stereo Count, Undefined Atom Stereo Count, Bond Stereo Count, Defined Bond Stereo Count,
Undefined Bond Stereo Count, Covalent Unit Count, SID, AID

11Volume 3d, Multipoles 3d, Conformer RMSD 3D, Pharmacophore Features 3d, MMFF94 Partial
Charges 3d, MMFF94 Energy 3d, Conformer ID 3d, Shape Selfoverlap 3d, Feature Selfoverlap 3d, Shape
Fingerprint 3d and Effective Rotor Count 3D

12Search Pathway, Search Gene, Search Disease, Search Enzyme, Search Drug, Search Compound,
Search Reaction, Search Orthology

/input/bulk

94 Implementation

Figure 4.7: Kegg input page

For those disambiguation occasions, we have introduced two higher optional lev-
els. We call these levels header and field. The header is the level directly above the
identifier and tells the application to which repository send the identifiers on the lines
directly below it. The field level identifies the field of study of the identifiers following
it, ’chem’, ’gen’ or ’prot’.

Whether being uniquely identifiable identifiers or even properties (inchikey and
more) or ambiguous or strange strings, the system, with the help of the headers and
fields, if present, will try to correctly identify the input and save the records directly
asked, those related to it and the conversion table.

All these processes are made in the background, using threading. When the task
completes, the user will receive an email message at the email associated with his
account, telling that the job has finished and with information about the number of
inputs processed and conversion records saved.

The following list is a possible input (without the comments, which are only present
to describe the identifier on each line)

cid5090 # Pubchem cid with ’cid’ prefix
SID6433516 # Pubchem cid with ’SID’ prefix
KEGG10458 # Gene number with ’KEGG’ prefix
D10453 # Kegg drug id
c21200 #Kegg compound id
NM_001206992 # RefSeq transcript accession
NP_001193921 # RefSeq protein accession
NG_029843 # RefSeq gene accession

4.6 User Interface 95

Figure 4.8: Bulk input page

ENSP00000349892 # Ensembl protein id
ENST00000296026 # Ensembl transcript id
ENSG00000163734 # Ensembl gene id
ense00001184784 # Ensembl exon id
BQJCRHHNABKAKU-KBQPJGBKSA-N # InChiKey
Nr1H4 # gene symbol (will try to identify)
PDB5a39 # pdb_id with ’PDB’ prefix
6Xl5 # pdb_id (will try to identify)

If we want to pass ambiguous identifiers using headers:

genbank
NR1h4
10458

pdb
5a39
6Xl5

96 Implementation

A blank line can be used to force the reset of the settings of the previous block.
If after a blank line comes ambiguous identifiers, the application will not know the
repository and can only try to identify.

Figure 4.9: PaDEL Page

Outputs page
In this page, the user must choose between PaDEL or PDB/gene Prolog pages (Figure
B.4).

Padel page
Page in which the user tells the system which compound ids he wants to get PaDEL
descriptors from and generate Prolog clauses. The ids can be introduced in a textbox
or selecting a file and he can choose which descriptors (Figure 4.9).

Prolog page
Page in which the user tells the system which PDB ids or gene ids he wants to generate
Prolog clauses with. The ids can be introduced in a textbox or selecting a file and he
can choose which descriptors.

4.6 User Interface 97

Figure 4.10: .csv to .arff pipeline

Csv2arff page
Page in which the user provides the system with a .csv file to be converted to a Weka
.arff file. The backend will save the converted file in the files/arff/ folder in a file
with the format <yyyyMMddhhmmss>.arff. After conversion, the interface will show
the user the name of the converted file. The full flow of the .csv to .arff can be seen
in Figure 4.10.

Figure 4.11: Cheminformatics conversion table in Administration Area

98 Implementation

Administration Area

The administration area is the regular Django administration area but with tem-
plates to show attribute tables and import/export possibilities provided by the django-
import-export library. In Figure 4.11 we see an example of database table view
inside the Administration Area.

Only an administrator can add and edit user accounts, but we can give other user
permissions to access the database and export the tables. In the scope of this work,
we can create a user group with the right permissions and add users to that group.

4.7 Requests & Repositories

We access some of the repositories and data-mining calculators either through
GET requests to their REST API endpoints or using open-source freeware wrappers
and libraries written specifically for that effect.

Pubchem & PubChemPy
PubChemPy is used to ease the access, requests and parsing of the responses to and
from the Pubchem repository. It is installed with

pip install pubchempy

The main methods used with this library are the following:

• get_compounds(value, property)
• Compound.from_cid(cid_value)
• get_substances(value, property)
• Substance.from_sid(sid_value)
• get_cids(value, property, [...])
• get_sids(value, property, [...])

We can search for substances or compounds. If we are after compounds, we have
some properties only available if we choose the 3D mode. We can obtain all properties
at once or just some. The available properties are shown in Table 4.9.

PaDEL-Descriptor & PaDELPy
PaDELPy allows direct access to the PaDEL-Descriptor command-line interface via
Python. It is installed with

pip install padelpy

The main methods used are:

• from_smiles(smiles_list) - gets a list with the descriptors for the molecules
with smiles supplied in the list. We can also provide further parameters to indi-
cate which type of descriptors we want and timeout instructions, for instance.

4.7 Requests & Repositories 99

Table 4.9: Properties obtainable from Pubchem

Domain Property obs.
Compound cid
Compound canonical_smiles
Compound charge
Compound complexity
Compound exact_mass
Compound isomeric_smiles
Compound iupac_name
Compound molecular_formula
Compound molecular_weight
Compound monoisotopic_mass
Compound tpsa
Compound xlogp
Compound atom_stereo_count
Compound bond_stereo_count
Compound covalent_unit_count
Compound defined_atom_stereo_count
Compound defined_bond_stereo_count
Compound h_bond_acceptor_count
Compound h_bond_donor_count
Compound heavy_atom_count
Compound isotope_atom_count
Compound rotatable_bond_count
Compound undefined_atom_stereo_count
Compound undefined_bond_stereo_count
Compound sids
Compound aids
Compound synonyms
Compound volume_3d only in 3d
Compound conformer_id_3d only in 3d
Compound conformer_rmsd_3d only in 3d
Compound multipoles_3d only in 3d
Compound pharmacophore_features_3d only in 3d
Compound mmff94_partial_charges_3d only in 3d
Compound mmff94_energy_3d only in 3d
Compound shape_selfoverlap_3d only in 3d
Compound effective_rotor_count_3d only in 3d
Compound feature_selfoverlap_3d only in 3d
Compound shape_fingerprint_3d only in 3d
Substance sid
Substance cids
Substance aids
Substance deposited_compound
Substance standardized_compound
Substance synonyms

100 Implementation

• from_mdl(mdl_file) - gets a list with the descriptors for the molecule in the
supplied mdl file. We can also provide further parameters to indicate which type
of descriptors we want and timeout instructions, for instance.

• padeldescriptor(list_with_property:value_pairs) - sends a set of proper-
ties and settings to configure the PaDEL descriptor options.

PDB & BioPython
To access the PDB REST APi we chose to use Biopython. BioPython is a suite of
modules to access several bioinformatics resources. We describe the ones we use.

To use the Biopython parser we first need to download a PDB/mmCIF file for a
specific protein or aminoacid. Then we use the Biopython pdb/mmCIF parser module
to parse the file and extract the properties and information we want.

Main methods used:

file = PDBList().retrieve_pdb_file(query.lower(), pdir=’filepath’)

and a mmcif file is saved on the supplied directory with the data corresponding to
the structure with the PDB identifier in the query.

dicto = MMCIF2Dict.MMCIF2Dict(file)

and a dictionary with all the data available in the file specified is created, from
which we can obtain properties directly like:

complete_sequence = dicto[’_pdbx_poly_seq_scheme.mon_id’]

or through a transposition, using the python zip() method, like it is done in the method
to get all the sheets with their properties (early short version):

sheets = [
dict(

zip(
(’sheet_id’, ’sheet_type’, ’number_strands’, ’details’),
col
)

)
for col in zip(

dicto[’_struct_sheet.id’]
dicto[’_struct_sheet.type’],
dicto[’_struct_sheet.number_strands’],
dicto[’_struct_sheet.details’]

)
]

4.7 Requests & Repositories 101

We can also get counts directly from the dictionary

number_of_helices = len(dicto[’_struct_conf.id’])
number_of_sheets = len(dicto[’_struct_sheet.id’])

Table 4.10: Kegg entity types, examples and regular expressions

Entity examples regex

orthology
K00161, K00162, K00163,
K00627, K00382

K\d{5}

compound C00031 C\d{5}
disease H00004 H\d{5}
drug D01441 D\d{5}
drug group DG00710 DG\d{5}
glycan G00109 G\d{5}
module M00010 M\d{5}
reaction R00259 R\d{5}
reaction class RC00046 RC\d{5}
network N00002 N\d{5}
network variation map nt06210 nt\d{5}
genome T01001 (hsa) T\d{5}\s\(.*\)
enzyme ec:2.7.10.1 (?i)EC:\d{1,2}(\.\d{1,2}){3}

gene
hsa:3643, vg:155971,
vp:155971-1, ag:CAA76703

(<org>a|vg|vp|ag):.*

pathway map00010, hsa04930 (map|ko|ec|rn|<org>a)\d{5}

brite
br:08303, br:01002,
br08303, ko01002, jp01023

-

variant hsa_var:25v1 -

athree or four-letter character substring that match any element of the list of Kegg organism codes

Kegg
The Kegg requests are provided by the kegg_request method that can be found on
the reqs.kegg_rest package:

Kegg REST API base url
request_url = ’http://rest.kegg.jp’

def kegg_request(request_type, request_value):
if request_value.upper().startswith(’NT’):

request_value = ’ne:’ + request_value
url = f"{request_url}/{request_type}/{request_value}"
return requests.get(url, timeout=(60, 60))

We can ask Kegg for a list of all pathways from a specific organism or just of the
ones that match a query (e.g. "hsa,corona" for all human pathways with corona in the
description). The main uses are these:

102 Implementation

find = kegg_request(’find’, f’{search_type}/{query}’)

response = kegg_request(’get’, newinput)

def get_find(self, term, database):
return kegg_request(’find’, f’{database}/{term}’)

The entities we can extract from Kegg are listed in Table 4.10 along with examples
of codes and regular expressions to identify which entity the code refers to.

The attributes we extract and save from each of these entities are displayed in the
database schema (Figure A.3).

GenBank
GenBank returns an XML response that can be easily parsed, despite the abuse of
Gene-commentary tags, and similar ones, and without any verticality.

We use two of the possible endpoints from eutils. The esummary and the efetch.
The esummary has fewer details but readily accessible at a higher level.

To allow a higher request frequency to the repository, we have created an appli-
cation key that we can use in our requests by registering our app in the NCBI REST
API. NCBI’s eutils requests are not database dependent, so we indicate the database
in the request URL:

response=requests.get(’https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=
gene&id={id}&retmode=xml&api_key={NCBI_KEY}’)

To process the xml we use the ElementTree(etree) API from the lxml XML toolkit:

tree = etree.fromstring(response.text)} # or response.content

To parse the xml we use the xpath rules with the ElementTree.xpath() method.
Example to get the ensembl id from a GenBank efetch record using xpath:

ensembl_id = tree.xpath("string(//Dbtag_db[text()=’Ensembl’]/..//Object-id/*/text())")

Ensembl
We have four different entity types: genes (ENSG prefix), transcripts (ENST), proteins
or translations (ENSP) and exons (ENSE). One gene may have several transcripts,
and each transcript several exons and translations. Whatever entity is specified, the
application will fetch and save information for the whole tree.

The Ensembl requests are provided by the EnsemblRequest class.

We use the following REST endpoints:

• https://rest.ensembl.org/lookup/id/<gene_id>?content-type=applicat
ion/json;expand=1
to fetch a summary of the gene properties, one of which is the gene symbol,
necessary for the next endpoint.

• https://rest.ensembl.org/lookup/symbol/homo_sapiens/<gene_symbol>
?content-type=application/json;expand=1

https://rest.ensembl.org/lookup/id/<gene_id>?content-type=application/json;expand=1
https://rest.ensembl.org/lookup/id/<gene_id>?content-type=application/json;expand=1
https://rest.ensembl.org/lookup/symbol/homo_sapiens/<gene_symbol>?content-type=application/json;expand=1
https://rest.ensembl.org/lookup/symbol/homo_sapiens/<gene_symbol>?content-type=application/json;expand=1

4.7 Requests & Repositories 103

to fetch the complete gene record, with transcripts, exons and proteins (but
without the sequence).

• https://rest.ensembl.org/sequence/id/<gene_id>?content-type=text/p
lain
to fetch the gene sequence.

Go
To get the properties from a Go:id (Gene Ontology identifier) we access the Gene
Ontology Resource REST API13.

To get all meta data about the GO term we use the GO Solr search engine API
called GOlr14,15.

Example of a GOlr endpoint:

http://golr-aux.geneontology.io/solr/select?fq=document_category:"ontology_class"&q
=*:*&fq=id:"GO:0030182"&wt=json

To get the relationships between Go terms we use the BioLink Data Model16,17, in
which a GO term is referred to as function.

Example of a BioLink endpoint:

http://api.geneontology.org/api/bioentity/function/GO:0006915

bioDBnet db2db
The default id converter for genes and proteins is bioDBnet’s db2db. It is accessed
using creating a Biodb instance and getting it’s converted attribute. This class is
located in the biodb.py package inside the reqs module.

In the __init__() method we have:
self.converted = requests.get(self.biodb_url % (

source.strip(’ ’).lower(), value, target), timeout=(30, 30))

CTS
The Chemical Translation service is the default converter used for chemistry id con-
versions. Once again we just need to create an instance of the Cts class located in the
cts.py package inside the reqs module.

The converter attribute points to the response, inside __init__() method of:
requests.get(f"self.cts_url/self.source/self.target/self.value",

timeout=(30, 30))

G:profiler
When db2db is unable to convert the ids, we can try G:profiler’s g:Convert for a
second try.

To access g:profiler’s g:convert, we use its official Python client gprofiler-official.

13http://geneontology.org/docs/tools-guide/
14http://wiki.geneontology.org/index.php/GOlr
15https://github.com/geneontology/amigo/blob/master/golr/solr/conf/schema.xml
16https://github.com/biolink/biolink-model
17https://github.com/biolink/biolink-model/blob/master/json-schema/biolink-model.json

https://rest.ensembl.org/sequence/id/<gene_id>?content-type=text/plain
https://rest.ensembl.org/sequence/id/<gene_id>?content-type=text/plain

104 Implementation

In the gpconvert.py package inside the reqs module, we have the __init__()
method that automatically does the request:
gp.convert(organism=’hsapiens’, query=[self.value],

target_namespace=self.target)

To easily obtain a gene id from gene name we use this method that calls g:profiler’s
g:convert:

def name_to_uid(self, name):
"""converts a gene name/symbol into a genbank uid"""
g_prof = GProfiler(return_dataframe=False)
try:

return g_prof.convert(organism=’hsapiens’, query=[name], target_namespace=’
ENTREZGENE_ACC’)[0][’converted’]

except:
return 0

Conversion

Each field of study has a table that relates the tables from each repository, namely
Cheminformatics, Genomics and Proteomics (Figure A.7). The Cheminformatics trans-
lation table relates compounds and drugs obtained with pubchem and Kegg, as well
as their ids in ChEmbl and Chebi. The Genomics table relates gene records obtained
from Kegg with Genbank and Ensembl. The Proteomics table deals with proteins from
Ensembl, Genbank, Kegg (enzymes), and also Uniprot ids.

Whenever an entry from one of the repositories is saved, all the other related are
also accessed. The conversion tables relating to all of them are updated. All made in
the background, not delaying the response to the frontend because a new thread is
launched to handle the conversion and saving in other repositories.

Example of a thread creation after a compound is requested in pubchem, calling
the Converter class to access the other repositories with compounds:

from converter.views import Converter
import threading

def foo(bar):
...
t = threading.Thread(target=call_converter, args=[’chem’,’Pubchem CID’, pubchem.

entry, pubchem.id_, pubchem.shared], daemon=True)
t.start()
...

def call_converter(conversion, repo, entry, id_, shared):
Converter(conversion=conversion, repo=repo, entry=entry, id_=id_, shared=shared)

We use different online conversion tools, according to the field of study.

For cheminformatics, we use the cts converter to get the id of the same compound
in another database, using the InChi Key as starting point. As we do not have an
inchikey in a Kegg compound record, we thought a suitable workaround was to use
the pubchem and chebi properties in it to convert to inchikey.

4.8 Deployment 105

The biodb db2db is used in genomics conversion. In this case, the Entrez Gene ID
is used to convert from one database to the others. We also use g:profiler but just to
easily obtain a Genbank gene uid from its name.

In Proteomics, the conversion is more difficult as one entry in one database may
relate to many on another. We chose to use the Ensembl Protein Id as it offered a
one-to-one conversion between Genbank, Uniprot and Ensembl. The biodb db2db is
also used in the proteomics conversion.

These conversions are made using instances of objects of the class representing
each conversion tool.

4.8 Deployment

The development of this application included the dockerization in four containers:
Frontend, Backend, Database and nginx. Wrapping the containers, a docker-compose
lifts all of them at the same time.

To install Docker Engine18 in Linux:

sudo apt-get update
sudo apt-get install apt-transport-https ca-certificates curl software-properties-

common
curl -fsSL https://download.docker.com/Linux/ubuntu/gpg | sudo apt-key add -
sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/Linux/ubuntu $(

lsb_release -cs) stable"
sudo apt-get update
sudo apt-get install docker-ce docker-ce-cli containerd.io

To check if it is correctly installed:

docker run hello-world

To install docker-compose19 in Linux:

sudo curl -L "https://github.com/docker/compose/releases/download/1.28.5/docker-compose
-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker-compose

To verify that it was correctly installed:

docker-compose --version

The Docker image is pushed to Docker Hub.

Docker hub account name: up201607946
App name: dedami

To connect to the Docker hub from the terminal, first, we need to login:

docker login

To build the image, in the binaries root folder, run the following command:

18https://docs.docker.com/get-docker
19https://docs.docker.com/compose/install/

106 Implementation

docker build -t up201607946/dedami .

The next command is used to push the image to Docker Hub. We can add a tag for
future references.

docker push up201607946/dedami[:tag]

To pull the image from Docker Hub, we just need to change push to pull:

docker pull up201607946/dedami[:tag]

We may want to save the image (to export):

docker save --output <filename>.tar up201607946/dedami

In that case, we use this command to load the image:

docker load --input <filename>.tar

If docker-compose is installed and we have either the binaries or an image built,
saved or pulled, to deploy we just need the following command:

docker-compose up

If the image for a container is not found, but the binaries are there, docker-compose
will build a new image before lifting all the containers.

Deployment in a DigitalOcean20 Docker Droplet
We chose to deploy this project in a DigitalOcean droplet because it is very easy and
simple. Since we already have the Docker containers and the docker-compose.yml,
we just need a Linux server that either already has docker-compose installed or allows
us to install it.

We access a DigitalOcean droplet using a remote connection with ssh. Inside
the droplet, we just need to pull the image from Docker or the binaries from a git
repository. Then lift with the docker-compose, adding the option to leave it running
in the background:

docker-compose up -d

In addition to the Docker droplet, we need a physical volume in DigitalOcean, and
we need to mount it.

To allow the database to be persistent between deployments, we need to have a
volume for the database in docker-compose and to create a symbolic link from that
volume name pointing to the volume mount.

20https://www.digitalocean.com/

4.9 Summary 107

4.9 Summary

We have covered and detailed the problem we intend to solve, the basis of the so-
lution we propose, in terms of technologies, case studies and approaches, and ended
describing the implementation and final presentation of this specific solution.

108 Implementation

Chapter 5

Case Studies

In this chapter we describe how we have processed the introduction of ids and
retrieval of Prolog files with clauses for the ILP.

5.1 Handling Proteins

We chose to download pre-compiled culled PDB lists from PISCES: A Protein Se-
quence Culling Server1.

The chosen list has the following constraints:
• Maximum pairwise per cent sequence identity : 95.0
• Resolution (X-ray and EM) : 0.0 - 5.0
• Do not include chains with chain breaks
• Chain length : 40-10000
• Maximum R-value (X-ray only) : 1.0
This file comprises 45163 lines that correspond to PDBchains but have fewer PDB

structure IDs. The data is presented in six columns, separated by tabs, as we can see
in the following example:

PDBchain len method resol rfac freerfac
5D8VA 83 XRAY 0.48 0.072 0.078
3NIRA 46 XRAY 0.48 0.127 NA
5NW3A 54 XRAY 0.59 0.135 0.146
1UCSA 64 XRAY 0.62 0.139 0.155
3X2MA 180 XRAY 0.64 0.122 0.129

A specific Python script was written to parse the PDB ID to write the first four
characters of each line (PDB ID from PDB chain) to a new file. This file was then
selected in the Bulk Inputs page and the PDB tables populated.

1http://dunbrack.fccc.edu/pisces/

109

http://dunbrack.fccc.edu/pisces/

110 Case Studies

Proteomic Knowledge Base

As the clauses concerning PDB structures are only generated from PDB id inputs,
we decided that when there is any input of any PDB id, automatically the system
creates facts and adds them to the Proteomic knowledge base. Nonetheless, a user
can still introduce PDB structure ids in the Output Prolog page to generate facts. This
page is prepared to receive either Gene ids or PDB ids. Every time a PDB structure
is queried, a series of facts are added to the Proteomic Knowledge Base as soon as
the new records are added to the PDB tables in the relational database. Either when
inserting in the PDB page or the Bulk page.

The system will go through a sample of the input list and easily assign the right
type to the whole list. After identifying the ids as PDB structure ids, it will verify for
each ID if there is already any information for it in the Proteomic Knowledge Base
database. If there isn’t it will create a new fact a save in the Proteomic KB database
and then proceed to appending it to a Prolog file. If there is, it will just save the facts
already in the Proteomic KB to the Prolog file.

The Prolog file has the name proteomic_kb_<yyyyMMddhhmmss>.pl and is saved
in files/output folder and the full flow of the Proteomics case study can be seen in
Figure 5.1.

To comply with Prolog language specificities all text values were either converted
to lowercase or wrapped in single quotes.

The facts in the Proteomic Knowledge Base have the following formats:

protein(structure_id, keywords, description, number_of_chains)

helix(structure_id, conf_id, helix_id, beg_res_name, beg_chain_id, beg_res_num,
beg_ins_code, end_res_name, end_chain_id, end_res_num, end_ins_code, helix_class,
details, length)

sheet(structure_id, sheet_id, sheet_type, number_strands, details, Beg_NDB_res_name,
Beg_NDB_Chain_ID, Beg_NDB_res_num, Beg_NDB_ins_code, End_NDB_res_name,
End_NDB_Chain_ID, End_NDB_res_num, End_NDB_ins_code, Sense,
H_bond_cur_str_NDB_atom_id, H_bond_cur_str_NDB_res_name,
H_bond_cur_str_NDB_Chain_ID, H_bond_cur_str_NDB_res_num,
H_bond_cur_str_NDB_ins_code, H_bond_prev_str_NDB_atom_id,
H_bond_prev_str_NDB_res_name, H_bond_prev_str_NDB_Chain_ID,
H_bond_prev_str_NDB_res_num, H_bond_prev_str_NDB_ins_code)

strand(strand_id, structure_id, seq_align_beg, seq_align_beg_ins_code, seq_align_end,
seq_align_end_ins_code, one_letter_sequence, chain_id)

And here, we present some extracts of the facts related to the structure with id
’7a5p’:

protein(’7a5p’, ’[’SPLICING’]’, ’Pre-mRNA-processing factor 17’, 1)
protein(’7a5p’, ’[’SPLICING’]’, ’U2 small nuclear ribonucleoprotein B’, 1)
protein(’7a5p’, ’[’SPLICING’]’, ’U5 small nuclear ribonucleoprotein 200 kDa helicase’,

1)

helix(’7a5p’, ’HELX_P1’, ’AA1’, ’UNK’, ’8’, 5, ’?’, ’UNK’, ’8’, 25, ’?’, 1, ’?’, 21)
helix(’7a5p’, ’HELX_P2’, ’AA2’, ’UNK’, ’8’, 27, ’?’, ’UNK’, ’8’, 33, ’?’, 1, ’?’, 7)
helix(’7a5p’, ’HELX_P3’, ’AA3’, ’UNK’, ’8’, 43, ’?’, ’UNK’, ’8’, 51, ’?’, 1, ’?’, 9)

5.1 Handling Proteins 111

Figure 5.1: Proteomics case study pipeline

sheet(’7a5p’, ’AA1’, ’?’, 4, ’?’, ’PHE’, ’A’, 1808, ’?’, ’PHE’, ’A’, 1810, ’?’, ’anti-
parallel’, ’N’, ’ASP’, ’A’, 1781, ’?’, ’O’, ’PHE’, ’A’, 1808, ’?’)

sheet(’7a5p’, ’AA2’, ’?’, 2, ’?’, ’ILE’, ’A’, 1777, ’?’, ’ASP’, ’A’, 1781, ’?’, ’
parallel’, ’O’, ’ILE’, ’A’, 1862, ’?’, ’N’, ’VAL’, ’A’, 1780, ’?’)

sheet(’7a5p’, ’AA3’, ’?’, 8, ’?’, ’GLN’, ’A’, 1860, ’?’, ’VAL’, ’A’, 1863, ’?’, ’
parallel’, ’O’, ’LYS’, ’A’, 1885, ’?’, ’N’, ’ILE’, ’A’, 1861, ’?’)

...
strand(’i’, ’7a5p’, 1, ’?’, 504, ’?’, ’

mslicsisnevpehpcvspvsnhvyerrliekyiaengtdpinnqplse
eqlidikvahpirpkppsatsipailkalqdnewdavmlhsftlrqqlqttrqelshalyqhdaacrviarltkevtaareal
atlkpqaglivpqavpssqpsvvgagepmndlgelvgmtpeiiqklqdkatvltterkkrgktvpeelvkpeelskyrqvash
vglhsasipgilaldlcpsdtnkiltg\ngadknvvvfdksseqilatlkghtkkvtsvvfhpsqdlvfsaspdatiriwsvp
nascvqvvrahesavtglslhatgdynllsssddqywafsdiqtgrvltkvtdetsgcsltcaqfhpdglifgtgtmdsqiki
wdlkertnvanfpghsgpitsiaf\nsengyylataaddssvklwdlrklknfktlqldnnfevkslifdqsgtylalggtdv
qiyickqwteilhftehsglttgnvafghhakfiastgmdrslkfysl’, ’j’)

...

112 Case Studies

5.2 Handling Chemistry

The testing dataset was obtained from two HIV-related study files with f(orward)
and n(egative) examples. We have plucked the unique compound ids from these files
and pasted them in the Bulk Inputs page, thus populating the Pubchem tables and the
Chemistry conversion table. As this takes a while to process 39363 ids, we wait until
the server informs us that the processing has finished.

We chose to first populate the Pubchem database and then request the PaDEL
descriptors as this last phase takes too long.

Chemistry Knowledge Base

To populate the Chemistry Knowledge Base, we need to supply Pubchem com-
pound ids in the Outputs/PaDEL page. We supplied the same ids already used to
populate the Pubchem database.

In the backend, the details are obtained from the Pubchem tables and facts are
generated and saved both to the knowledge base and to a Prolog file. If there are
already facts for that Compound ID in the Chemistry KB, the system will just transfer
them directly to a new Prolog file. Once again, all text values were either converted
to lowercase or wrapped in single quotes.

The full flow of the Chemistry case study can be seen in Figure 5.2.

The Prolog file has the name chemistry_kb_[<??>_]<yyyyMMddhhmmss>.pl and
is saved in files/output folder. The <??> can be either ’2D’, ’3D’ or ’fp’, if the
file refers to 2D, 3D descriptors or fingerprints, respectively. The smiles, atoms and
bonds facts are saved to a file without the <??> part.

The facts in the Chemistry Knowledge Base have the following formats:

smiles(cid, smiles)

atom(cid, element, position)

bond(cid, element1, element2, bond_order)

descriptor(cid, descriptor, value)
and
descriptor(cid, fingerprint, binary_value)

Here are some examples of facts for fingerprints, 3D descriptors and 1D/2D de-
scriptors for the molecule with Pubchem Compound ID 4280:

descriptor(4280, ’PubchemFP2’, 0)
descriptor(4280, ’PubchemFP1’, 1)
descriptor(4280, ’PubchemFP0’, 1)

descriptor(4280, ’Ds’, 1.45892185832188)
descriptor(4280, ’Ks’, 0.6197710509438344)
descriptor(4280, ’Vs’, 58.02765906734143)

descriptor(4280, ’Zagreb’, 90.0)
descriptor(4280, ’XLogP’, -2.0260000000000002)
descriptor(4280, ’WPOL’, 29.0)

5.2 Handling Chemistry 113

Figure 5.2: Chemistry case study pipeline

The following three sets of examples are of some of the fact for the atoms and
bonds of the same molecule and, finally, the smiles fact.

atom(4280, ’h’, 34)
atom(4280, ’n’, 8)
atom(4280, ’o’, 2)

bond(4280, ’o’, ’h’, 1)
bond(4280, ’s’, ’c’, 1)
bond(4280, ’s’, ’n’, 1)
bond(4280, ’s’, ’o’, 2)

smiles(4280, ’c1=cc(=cc(=c1)s(=o)(=o)n(cco)cco)c(=o)o’)

The PaDEL clauses take much time to fetch and save. We have tried different
approaches trying to make the process more robust and speedy at the same time. We
are talking of about 1444 descriptors and 881 fingerprints, which total 2325 lines per
molecule.

114 Case Studies

At first, we thought we should ask the descriptors for all the molecules asked for
at once. This method required just one API request and would save us time with in-
puts with dozens of thousands of compound ids. All ids at once could be impossible
to fit in a single request, so the solution was to request the API for blocks with some
molecules. This prompted another problem. When a subprocess call (to handle a par-
ticular molecule) at the PaDEL server timed out, how could we handle it appropriately
if we did not know which molecule caused the error? We could subdivide further and
try one-by-one in such faulty blocks. However, we would be wasting time. The better
solution was to request descriptors and deal with each response one at a time.

Some larger molecules take an awful amount of time to get the descriptors, so
we had to increase the request timeout to hundreds of seconds. We opt to signal the
molecules that we are still not able to fetch the descriptors or fingerprints after that
timeout.

We concluded that it would also be better to separate the Prolog output into three
different files, one for fingerprints, another for 1D/2D descriptors, and the last for 3D
descriptors.

There are two possible undesired outcomes in this procedure. One is that the
molecule asked for still does not have a defined smiles notation registered. With-
out the smiles notation, we cannot obtain the descriptors from PaDEL. The other
possibility is that the descriptors cannot be calculated on time, or there are still no
fingerprints available for the compound.

The user is informed if any of the above occurs. The mail sent to the user informing
that the process has finished, also details from which molecules it was not possible to
get the information from.

5.3 Handling Genes

To populate the Genbank , we used a list with 19249 stomach cancer gene ids
available in the format name_id separated by commas in a single line. We extracted
the ids to a new file with just the ids, one per line. This new file was fed into the Bulk
Page (preceded by a line with ’gen’ to inform the backend which type of identifiers
we were feeding it).

Besides the population of the Genbank database and the Gene table in particular
(the other tables are also populated through their relationships), the calling to the
conversion option also populates the Converter tables and the tables in the Kegg and
Ensembl databases.

Genomic Knowledge Base

To populate the Genomic Knowledge Base, we need to supply Gene ids in the
Outputs/Prolog page. We used the same list of ids used to populate the Genbank (and
related) databases. In this case, we do not need to precede the ids with any indication
of what they refer to. Since this endpoint only accepts PDB ids or Gene IDs, the parser
at the backend will look through a small sample of given identifiers, and if it verifies
that at least one of them corresponds to a PDB structure, it will treat all of them as
such and as gene ids otherwise.

5.3 Handling Genes 115

Naturally, if the identifier is already in the database, the system uses that record
and only requests the repositories’ API if otherwise.

In the backend, all gene-related tables are used to extract information to produce
the inductive logic clause. From Gene, Protein and Ontology tables of the Genbank
database, we collect information about the chromosome, the map_location, the start
and end of the codification, the number of exons, the biotype, the category, the list of
tissues and extra properties. We also get which go ids we have of each type. From
the Gene, Protein and Transcript tables of the Ensembl database, we fetch the strand
orientation, the begin, end and name of sequence region, the number of transcripts,
the number of proteins, and the protein_accessions. From the Chemistry conversion
table, PDB structures.

From the Kegg database, we gather data about amino-acid sequences from the
Gene table, efficacies, related compounds, sequencing, diseases and classes from the
Drug table, orthologies, more go ids, more related compounds and classes from Path-
way, perturbants, metabolites, classes and types from Network, categories, pathogens,
carcinogens and related genes from Disease.

Figure 5.3: Genomics case study pipeline

116 Case Studies

One meaningful piece of information was still missing. It is important to know if
a gene is located on the cell nucleus or in a mitochondrion as mitochondrial genes
are very much linked to cancer because cancer demands large quantities of energy,
and the energy is produced in the mitochondria. To that effect, we have added to the
system a file with the list of mitochondrial genes that we have obtained from experts
in the field. The list is checked for each gene the user asks to generate facts from,
and a value added to the gene clause.

Once again, before creating the fact, the system verifies if it already has facts re-
lated to the provided Gene id in the Genomic KB database. If there isn’t it will execute
all the steps that lead to the creation of a new fact and saving it in the Genomic KB
database and then proceed to appending it to a Prolog file. If there is, it will just save
the facts already in the Genomic KB to the Prolog file.

The Prolog file has the name genomic_kb_<yyyyMMddhhmmss>.pl and is saved in
files/output folder and the full flow of the Genomics case study can be seen in
Figure 5.3.

Each Gene fact has the following format:

Gene(gene_id, mitochondrial, gene_chromosome, gene_map_location, start, stop,
gene_exon_count, gene_type, gene_category, gene_tissue_list, gene_prop,
seq_region_start, seq_region_end, seq_region_strand, seq_region_name,
gene_transcripts_count, gene_proteins_count, gene_proteins_accessions,
gene_gos_function, gene_gos_component, gene_gos_process, gene_pdb_ids,
gene_pathways, gene_diseases, gene_elements, gene_networks, gene_modules,
gene_keggorthologies, gene_drugs, gene_drugs_efficacies, gene_drugs_pubchems,
gene_drugs_diseases, gene_diseases_categories, gene_diseases_genes,
gene_diseases_orthologies, gene_disease_pathogens, gene_disease_carcinogens,
gene_drug_sequences, gene_drug_high_sequences, gene_gene_drug_low_sequences,
gene_drug_classes, gene_networks_type, gene_networks_pathways,
gene_networks_diseases, gene_networks_genes, gene_networks_perturbants,
gene_networks_metabolites, aaseq)

For the Amino-Acid sequence we use the one-letter encoding (in lowercase). To
comply with Prolog requirements all text values were either converted to lowercase
or wrapped in single quotes.

An example of a fact in the Genomic Knowledge Base (for gene with id 2):

gene(2, nuclear, 12, 12p13.31, 9067707, 9116228, 37, ’protein-coding’, ’Broad
expression’, [lung, urinary bladder, gall bladder, liver, fat, placenta,
endometrium, colon, kidney, prostate, spleen, heart, esophagus, adrenal, small
intestine, appendix, thyroid, brain, duodenum, stomach, testis, lymph node, ovary,
], ’’, 9067664, 9116229, -1, 12, 13, 5, [’NP_001334352’, ’XP_006719119’, ’
NP_001334354’, ’NP_000005’, ’NP_001334353’], [48306, 19838, 19966, 19959, 43120],
[62023], [1869, 48863], [’2p9r’, ’4acq’, ’1bv8’], [’hsa04610’], [], [], [], [], [’
k03910’], [], [], [], [], [], [], [], [], [], [], [], [], [], , [], [], [], [], [],
mgknkllhpslvllllvllptdasvsgkpqymvlvpsllhtettekgcvllsylnetvtvsaslesvrgnrslftdleaendv
lhcvafavpksssneevmfltvqvkgptqefkkrttvmvknedslvfvqtdksiykpgqtvkfrvvsmdenfhplneliplvy
iqdpkgnriaqwqsfqlegglkqfsfplssepfqgsykvvvqkksggrtehpftveefvlpkfevqvtvpkiitileeemnvs
vcglytygkpvpghvtvsicrkysdasdchgedsqafcekfsgqlnshgcfyqqvktkvfqlkrkeyemklhteaqiqeegtv
veltgrqsseitrtitklsfvkvdshfrqgipffgqvrlvdgkgvpipnkvifirgneanyysnattdehglvqfsinttnvm
gtsltvrvnykdrspcygyqwvseeheeahhtaylvfspsksfvhlepmshelpcghtqtvqahyilnggtllglkklsfyyl
imakggivrtgthgllvkqedmkghfsisipvksdiapvarlliyavlptgdvigdsakydvenclankvdlsfspsqslpas
hahlrvtaapqsvcalravdqsvllmkpdaelsassvynllpekdltgfpgplndqdnedcinrhnvyingitytpvsstnek
dmysfledmglkaftnskirkpkmcpqlqqyemhgpeglrvgfyesdvmgrgharlvhveephtetvrkyfpetwiwdlvvvn

5.4 Summary 117

sagvaevgvtvpdtitewkagafclsedaglgisstaslrafqpffveltmpysvirgeaftlkatvlnylpkcirvsvqlea
spaflavpvekeqaphcicangrqtvswavtpkslgnvnftvsaealesqelcgtevpsvpehgrkdtvikpllvepegleke
ttfnsllcpsggevseelslklppnvveesarasvsvlgdilgsamqntqnllqmpygcgeqnmvlfapniyvldylnetqql
tpeikskaigylntgyqrqlnykhydgsystfgerygrnqgntwltafvlktfaqarayifideahitqaliwlsqrqkdngc
frssgsllnnaikggvedevtlsayitialleipltvthpvvrnalfclesawktaqegdhgshvytkallayafalagnqdk
rkevlkslneeavkkdnsvhwerpqkpkapvghfyepqapsaevemtsyvllayltaqpaptsedltsatnivkwitkqqnaq
ggfsstqdtvvalhalskygaatftrtgkaaqvtiqssgtfsskfqvdnnnrlllqqvslpelpgeysmkvtgegcvylqtsl
kynilpekeefpfalgvqtlpqtcdepkahtsfqislsvsytgsrsasnmaivdvkmvsgfiplkptvkmlersnhvsrtevs
snhvliyldkvsnqtlslfftvlqdvpvrdlkpaivkvydyyetdefaiaeynapcskdlgna)

5.4 Summary

In this chapter we have explained how we have used the system to handle prob-
lems in three different fields: Chemistry, Genomics and Proteomics. We described
which inputs we used, how we fed them to the system and the output the system
returned.

118 Case Studies

Chapter 6

Conclusions and Future Work

In this concluding chapter, we present the results of this project, draw conclusions
and point to directions for future work.

6.1 Conclusions

The main goal of this dissertation was to produce a system to access bioinformatics
and cheminformatics repositories, enrich the data by generating pieces of information
aggregating details from different sources and finally creating files with this enriched
information to feed to ILP systems.

This was accomplished. With this solution one can get enriched genomic, pro-
teomic and chemistry information simply by introducing ids in the Web Application
interface and use the outputs in ILP systems to obtain data mining classifications.
We have already produced three datasets: One with around twenty thousand gene
clauses from as many cancer gene ids, another with almost one and a half million
proteomic clauses from 45 thousand HIV-related Pdb structure ids and a third with
almost three and a half million chemistry clauses from almost 40 thousand compound
ids.

The clean looking and appealing interface is easy to use and meets all the needs
in terms of inputs, outputs and functionalities. It is no longer necessary to go into
different repositories nor to do conversions. All is available in the same portal making
all tasks faster and less laborious.

Regarding the four FEUP projects mentioned in state of the art, our application
works with more repositories, five in all, allowing a broader scope, something re-
quested in those theses. It is not limited to genomics, allowing outputs for chemistry
and proteomics studies since it is also the first of these projects to deal with chem-
istry. Also requested in those theses was the possibility of exporting to more file types,
which we also achieved. Those projects are more about data integration, while our
project is mainly focused on data enrichment and Prolog fact production. It does not
have integrated Machine Learning / Data Mining algorithm processing, but it is only
necessary to provide the outputs to systems like Weka or Aleph.

119

120 Conclusions and Future Work

The other projects mentioned in state of the art do not enrich either. They are
more of analysis, classification and clustering, which can be done from the outputs
generated we generate.

It was a good decision to choose Python/Django as many libraries are easily avail-
able, the development is easy, and new blocks are easily isolated tested. Furthermore,
as some of the tables hold several million records, using PostgreSQL was also a great
decision.

One of the biggest challenges was to find a suitable common property that could
be used as a primary key for the Proteomic conversion table. Another problem lay
with the reply formats from specific API. Some repository replies, namely from Kegg,
may format blocks of information differently, causing problems when we get unex-
pected behaviours that need to be addressed even after reading the documentation
and successfully obtaining testing samples. Other times, the REST API started reply-
ing differently and what was working good needs to be adapted.

Still, in the repository access domain, we needed to add robustness to the calls to
handle downtimes or processing timeouts.

6.2 Future Work

If there was no time limit, we could gather data from at least one more Chemin-
formatics repository (ChEmbl) and another Proteomics (Uniprot).

Populating the facts with PaDEL fingerprints and descriptors takes a long time,
and we would need more time to get a more representative dataset.

An improvement to be added in the future is a more elaborate user management
scheme, separating data from different users. Each researcher that accesses the
system will have his own data.

References

[1] P. Basak. A GUI For Defining Inductive Logic Programming Tasks For Novice
Users. PhD thesis, University of Minnesota Twin Cities, 2017.

[2] D. A. Benson et al. GenBank. Nucleic Acids Research, 36(suppl_1):D25–D30, 12
2007.

[3] D. A. Benson et al. Nucleic acids res. 2013 jan;41(database issue):d36-42. Epub-
Nov, 27, 2012.

[4] H. M. Berman et al. The Protein Data Bank. Nucleic Acids Research, 28(1):235–
242, 01 2000.

[5] D. Bora and O. P. Gupta. A comparative study between fuzzy clustering algorithm
and hard clustering algorithm. International Journal of Computer Trends and
Technology, 10:108–113, 04 2014.

[6] Q. Boucher et al. Engineering Configuration Graphical User Interfaces from
Variability Models, pages 1–46. Springer, 10 2017.

[7] F. K. Brown. Chemoinformatics: What is it and how does it impact drug discovery.
In J. A. Bristol, editor, Annual Reports in Medicinal Chemistry, volume 33, pages
375 – 384. Academic Press, 1998.

[8] M. S. Brown. What IT Needs To Know About The Data Mining Process, 2015.

[9] T. Clark and M. Hicks. Models of necessity. Beilstein Journal of Organic Chem-
istry, 06 2020.

[10] L. De Raedt. Inductive Logic Programming, pages 529–537. Springer US,
Boston, MA, 2010.

[11] W. J. Diniz and F. Canduri. Bioinformatics: an overview and its applications.
Genetics and molecular research : GMR, 16:1, 2017.

[12] L. Ertöz et al. Finding clusters of different sizes, shapes, and densities in noisy,
high dimensional data. In Finding Clusters of Different Sizes, Shapes, and Den-
sities in Noisy, High Dimensional Data, 05 2003.

[13] E. Frank et al. The WEKA Workbench. Online Appendix. In Data Mining: Prac-
tical Machine Learning Tools and Techniques. Morgan Kaufmann, 4th edition,
2016.

[14] N. Friedman et al. Bayesian network classifiers. Mach. Learn., 29(2–3):131–163,
November 1997.

121

122 REFERENCES

[15] M. Gaurav. Docker Guide - Build a fully production ready machine learning app
with React, Django, and PostgreSQL on Docker, 2020.

[16] E. Giacoumidis et al. Blind nonlinearity equalization by machine learning based
clustering for single- and multi-channel coherent optical ofdm. Journal of Light-
wave Technology, PP:1–1, 11 2017.

[17] G. Gini. How far chemistry and toxicology are computational sciences? Springer-
Briefs in Applied Sciences and Technology, 7:15–33, 06 2014.

[18] O. P. Gupta and S. Rani. Bioinformatics Applications and Tools: An Overview.
Biometrics and Bioinformatics, 3:107–110, jan 2011.

[19] J. Han et al. Data Mining: Concepts and Techniques. Morgan Kaufmann, 3rd
edition, 2011.

[20] D. M. Hawkins. The problem of overfitting. Journal of Chemical Information and
Computer Sciences, 44(1):1–12, 2004. PMID: 14741005.

[21] S. Heller et al. The iupac international chemical identifier. Journal of Cheminfor-
matics, 7, 12 2015.

[22] A. Holovaty and J. Kaplan-Moss. The Definitive Guide to Django: Web Develop-
ment Done Right, Second Edition. Apress, USA, 2nd edition, 2009.

[23] S. Jónsdóttir et al. Prediction methods and databases within chemoinfromat-
ics: emphasis on drugs and drug candidates. Bioinformatics (Oxford, England),
21:2145–2160, 2005.

[24] M. Kanehisa. Toward understanding the origin and evolution of cellular organ-
isms. Protein Science, 28(11):1947–1951, 2019.

[25] M. Kanehisa et al. KEGG: integrating viruses and cellular organisms. Nucleic
Acids Research, oct 2020.

[26] M. Kanehisa and S. Goto. KEGG: Kyoto Encyclopedia of Genes and Genomes.
Nucleic Acids Research, 28(1):27–30, jan 2000.

[27] A. Kassambara. Cluster Validation Statistics: Must Know Methods, 2020.

[28] S. Kim et al. Pubchem in 2021: new data content and improved web interfaces.
Nucleic acids research, 49((D1)):D1388–D1395, 2019.

[29] R. D. King. Inductive logic programming: techniques and applications by nada
lavrac and saso dzeroski, ellis horwood, uk, 1993, pp 293, £39.95, isbn 0-13-
457870-8. The Knowledge Engineering Review, 9(3):311–312, 1994.

[30] P. Larrañaga et al. Machine learning in bioinformatics. Briefings in Bioinformat-
ics, 7(1):86–112, mar 2006.

[31] N. M. Luscombe et al. What is bioinformatics? a proposed definition and
overview of the field. Methods Inf Med, 40(4):346–58, 2001.

[32] T. S. Madhulatha. An overview on clustering methods, 2012.

REFERENCES 123

[33] K. Martínez et al. The impact of chemoinformatics on drug discovery in the
pharmaceutical industry. Expert Opinion on Drug Discovery, 15:1–14, 2020.

[34] P. Martins et al. Gene prediction using Deep Learning. PhD thesis, Universidade
do Porto, 2018.

[35] MDN Contributors. Django introduction, 2021.

[36] D. Merkel. Docker: Lightweight linux containers for consistent development and
deployment. Linux J., 2014(239), March 2014.

[37] S. Min et al. Deep learning in bioinformatics. Briefings in bioinformatics,
18(5):851–869, sep 2017.

[38] J. B. O. Mitchell. Machine learning methods in chemoinformatics. Wiley Inter-
disciplinary Reviews. Computational Molecular Science, 4(4):468–481, 2014.

[39] U. Mudunuri et al. bioDBnet: the biological database network. Bioinformatics,
25(4):555–556, 01 2009.

[40] S. Narkhede. Understanding AUC - ROC Curve, 2018.

[41] L. Natividade et al. Data Mining para análise dos resultados de Gene Expression.
PhD thesis, Universidade do Porto, 2017.

[42] A. Nightingale et al. The Proteins API: accessing key integrated protein and
genome information. Nucleic Acids Research, 45(W1):W539–W544, jul 2017.

[43] G. Paynter. Attribute-Relation File Format (ARFF), 2008.

[44] F. Pedregosa et al. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[45] C. Pereira et al. A Toolbox for Genomic Studies. PhD thesis, Universidade do
Porto, 2019.

[46] U. Raudvere et al. g:Profiler: a web server for functional enrichment analysis and
conversions of gene lists (2019 update). Nucleic Acids Research, 47(W1):W191–
W198, 05 2019.

[47] W. Reese. Nginx: The high-performance web server and reverse proxy. Linux J.,
2008(173), September 2008.

[48] M. Ritchie et al. Methods of integrating data to uncover genotype-phenotype
interactions. Nat Rev Genet, 16:85–97, February 2015.

[49] U. Roessner and J. Bowne. What is metabolomics all about? BioTechniques,
46(5):363–365, 2009. PMID: 19480633.

[50] E. Sayers. A general introduction to the e-utilities. Entrez Programming Utilities
Help [Internet]. National Center for Biotechnology Information, Bethesda, 2010.

[51] C. Shearer. The crisp-dm model: The new blueprint for data mining. Journal of
Data Warehousing, 5(4), 2000.

124 REFERENCES

[52] Shmula. Precision, Accuracy, Measurement System, 2010.

[53] A. Srinivasan. The Aleph Manual, 2007.

[54] D. Vanhuysse and R. Camacho. Portal Web para enriquecimento de informação
Genómica e Proteómica. PhD thesis, Universidade do Porto, 2017.

[55] H. Verli. Bioinformática: da biologia à flexibilidade molecular. Sociedade
Brasileira de Bioquímica e Biologia Molecular, 2014.

[56] W. Vorhies. CRISP-DM – a Standard Methodology to Ensure a Good Outcome,
2016.

[57] G. Wang and R. Dunbrack. Pisces: a protein sequence culling server. Bioinfor-
matics (Oxford, England), 19:1589–91, 09 2003.

[58] W. Warr. EXTRACT FROM 218TH ACS NATIONAL MEETING AND EXPOSITION
NEW ORLEANS, LOUISIANA, AUGUST 22-26, 1999. Technical report, Wendy
Warr & Associates, 2000.

[59] S. P. Wathen. Introduction to cheminformatics for green chemistry education.
Physical Sciences Reviews, 4(2):20180078, 2019.

[60] D. Weichselbaum et al. Fuento: functional enrichment for bioinformatics. Bioin-
formatics (Oxford, England), 33, 03 2017.

[61] D. Weininger et al. Algorithm for generation of unique smiles notation. Journal
of Chemical Information and Computer Sciences, 29(2):97–101, 1989.

[62] Wikipedia contributors. Kmeans-gaussian-data — Wikipedia, the free encyclope-
dia, 2011. [Online; accessed 25-January-2021].

[63] I. H. Witten et al. Data Mining: Practical Machine Learning Tools and Tech-
niques. Morgan Kaufmann Series in Data Management Systems. Morgan Kauf-
mann, Amsterdam, 3 edition, 2011.

[64] C. W. Yap. Padel-descriptor: An open source software to calculate molecular
descriptors and fingerprints. Journal of Computational Chemistry, 32(7):1466–
1474, 2011.

[65] A. D. Yates et al. Ensembl 2020. Nucleic Acids Research, 48(D1):D682–D688,
jan 2020.

Appendix A

Databases

PDB

Figure A.1: UML of the conceptual data model of the PDB database

125

126 Databases

Pubchem

Figure A.2: UML of the conceptual data model of the Pubchem database

Databases 127

Kegg

Figure A.3: UML of the conceptual data model of the Kegg database

128 Databases

GenBank

Figure A.4: UML of the conceptual data model of the Genbank database

Databases 129

Ensembl

Figure A.5: UML of the conceptual data model of the Ensembl database

130 Databases

Go

Figure A.6: UML of the conceptual data model of the Go database

Convert

Figure A.7: UML of the conceptual data model of the Converter database

Databases 131

Knowledge Base

Figure A.8: UML of the conceptual data model of the Knowledge Base database
[each fact format is described in the Handling sections]

132 Databases

Appendix B

More interface pages examples

Figure B.1: Genomic field page

133

134 More interface pages examples

Figure B.2: Proteomic field page

More interface pages examples 135

Figure B.3: Bulk Input page with help tooltip

136 More interface pages examples

Figure B.4: Outputs page

More interface pages examples 137

Figure B.5: CSV to ARFF output page

138 More interface pages examples

Figure B.6: Output Prolog page

More interface pages examples 139

Figure B.7: PDB input page

140 More interface pages examples

Figure B.8: PDB search results

More interface pages examples 141

Figure B.9: PDB output page

142 More interface pages examples

Figure B.10: Pubchem repo page for compounds (2D output)

More interface pages examples 143

Figure B.11: Pubchem repo page for compounds (3D output)

144 More interface pages examples

Figure B.12: Pubchem repo page for substances

More interface pages examples 145

Figure B.13: Pubchem output cut

146 More interface pages examples

Figure B.14: Kegg search results

More interface pages examples 147

Figure B.15: Genbank repo page

148 More interface pages examples

Figure B.16: Genbank repo page with help tooltip

More interface pages examples 149

Figure B.17: Genbank search results

150 More interface pages examples

Figure B.18: Genbank output page

More interface pages examples 151

Figure B.19: Ensembl repo page

152 More interface pages examples

Figure B.20: Ensembl Gene output page

Figure B.21: Ensembl Protein output page

More interface pages examples 153

Figure B.22: Orphan Exon not saved

154 More interface pages examples

Figure B.23: Login page

Figure B.24: Change Password page

More interface pages examples 155

Figure B.25: Database export example

Figure B.26: Add New user page

156 More interface pages examples

Figure B.27: Edit user page

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Dissertation structure

	2 Bioinformatics and Cheminformatics
	2.1 Repositories and their API
	2.2 Tools
	2.3 Related Work
	2.4 Summary

	3 Data Mining and Machine Learning Background
	3.1 Relational Data Mining and Machine Learning
	3.2 Inductive Logic Programming
	3.3 Tools
	3.4 Summary

	4 Implementation
	4.1 Requirements
	4.2 Technologies
	4.3 Boilerplate
	4.4 Architecture
	4.5 User Stories
	4.6 User Interface
	4.7 Requests & Repositories
	4.8 Deployment
	4.9 Summary

	5 Case Studies
	5.1 Handling Proteins
	5.2 Handling Chemistry
	5.3 Handling Genes
	5.4 Summary

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	References
	A Databases
	B More interface pages examples

