
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Towards Reproducible and
Privacy-preserving Analyses Across

Federated Repositories for Omics data

Rafael Lima Joia

Mestrado em Engenharia de Software

Supervisor: João Correia Lopes

Co-Supervisor: Artur Rocha

July 23, 2021

Towards Reproducible and Privacy-preserving Analyses
Across Federated Repositories for Omics data

Rafael Lima Joia

Mestrado em Engenharia de Software

July 23, 2021

Abstract

Even when duly anonymized, health research data has the potential to be disclosive and there-
fore requires special safeguards according to the European General Data Protection Regulation
(GDPR). Furthermore, the incorporation of FAIR principles (Findable, Accessible, Interoperable,
Reusable) for a more favorable reuse of existing data, calls for an approach where sensitive data is
kept locally and only metadata and aggregated results are shared. Additionally, since central pool-
ing is discouraged by ethical, legal, and societal issues, it is more frequent to observe maturing
data management frameworks, and platforms adopting the federated approach.

Current implementations of privacy-preserving analysis frameworks seem to be limited when
data becomes very large (millions of rows, hundreds of variables). Biological samples data, col-
lected by high-throughput technologies, such as Next Generation Sequencing (NGS), and pro-
cessed by computational workflows known as bioinformatics pipelines, are examples of this kind
of data (commonly known as Omics data). The reproducibility of these pipelines is hard and it
is often underestimated. Nevertheless, it is important to generate trust in scientific results, and
therefore, is fundamental to know how these Omics data were generated or obtained.

This work will leverage the promising results of current open-source implementations for dis-
tributed privacy-preserving analyses, while aiming at generalizing the approach and addressing
some of their shortcomings, including the reproducibility concerns.

The results were promising, seeing that the privacy-preserving analysis was effective when us-
ing the DataSHIELD framework in conjunction with the "resource R" package. We also concluded
that the adoption of specialized DataSHIELD packages for Omics analyses, such as dsOmics, is a
viable pathway to leverage the privacy-preserving for Omics data. To address the reproducibility
challenges, we defined a relational database model to represent the steps, commands and oper-
ations executed by the bioinformatics pipelines. The proposed reproducible relation model can
afford the traceability of bioinformatics pipelines very well, but this model alone does not guar-
antee a full reproducible ecosystem, since it does not solve the platform isolation problem. It can
only be guaranteed when combining reproducible tools that offer built-in support for containers,
such as Nextflow or Snakemake, and a set of values and good practices.

We concluded that the proposed solution would be a viable option for privacy-preserving anal-
ysis using Omics data. In contrast, the proposed pipeline reproducibility model must be improved
or incorporated into existing reproducible pipeline tools.

Keywords: health research data, federated repositories, privacy-preserving analyses, FAIR prin-
ciples, TRUST principles, GDPR, Omics data, traceability, reproducibility.

i

ii

Resumo

Os dados de pesquisas em saúde, mesmo quando devidamente anonimizados, têm o potencial
de ser reveladores e, portanto, requerem salvaguardas especiais de acordo com o Regulamento
Geral Europeu de Proteção de Dados (GDPR). Por outro lado, a incorporação dos princípios FAIR
(Findable, Accessible, Interoperable, Reusable) para a reutilização mais favorável dos dados ex-
istentes exige uma abordagem em que os dados privados sejam mantidos localmente e apenas
metadados e resultados agregados sejam compartilhados. Adicionalmente, como o agrupamento
central de dados é desencorajado por questões éticas, legais e sociais, é mais frequente observar
frameworks de gerenciamento de dados e plataformas adotando uma abordagem federada.

As implementações atuais de frameworks de análise de preservação de privacidade parecem
ser limitadas quando o volume de dados se torna muito grande (milhões de linhas, centenas de
variáveis). Dados de amostras biológicas, coletadas por tecnologias de alto desempenho, como as
Next Generation Sequence (NGS), e processadas por workflows computacionais conhecidos como
pipelines bioinformáticos, são exemplos deste tipo de dado (comumente conhecidos como dados
ômicos). A reprodutibilidade desses pipelines é difícil e muitas vezes subestimada. No entanto,
ela é importante para gerar confiança nos resultados científicos e, portanto, é fundamental saber
como esses dados ômicos foram gerados ou obtidos.

Este trabalho aproveitará os resultados promissores das implementações atuais de código
aberto para análises distribuídas de preservação de privacidade, ao mesmo tempo que visa generalizá-
las, abordando algumas de suas deficiências, includindo preocupacões sobre reprodutibilidade.

Os resultados foram promissores, visto que a análise de preservação de privacidade foi eficaz
ao usar a estrutura DataSHIELD em conjunto com o pacote "resource R". Também concluímos que
a adoção de pacotes DataSHIELD especializados para análises que envolvam dados ômicos é um
caminho viável para alavancar a preservação da privacidade deste tipo de dado. Para enfrentar os
desafios de reprodutibilidade, definimos um modelo de banco de dados para representar as etapas,
comandos e operações executadas pelos pipelines bioinformáticos. O modelo relacional proposto
pode permitir a rastreabilidade dos pipelines muito bem, mas esse modelo sozinho não garante
um ecossistema totalmente reprodutível, uma vez que não resolve o problema de isolamento das
plataformas. Isto só pode ser garantido ao combinar ferramentas que oferecem suporte integrado
para contêineres, como Nextflow ou Snakemake, e um conjunto de valores e boas práticas.

Concluímos que a solução proposta seria uma opção viável para análise de preservação de
privacidade usando dados ômicos. Em contraste, o modelo proposto de reprodutibilidade deve ser
melhorado ou incorporado às ferramentas existentes de reprodutibilidade de pipelines.

Keywords: dados de pesquisa em saúde, repositórios federados, análises com preservação de
privacidade, princípios FAIR, princípios TRUST, GDPR, dados ômicos, rastreabilidade, repro-
dutibilidade.

iii

iv

Acknowledgements

First, I would like to thank my advisor, professor João Correia Lopes, and my co-advisor,
researcher Artur Rocha, for the teachings, discussions, and suggestions that guided this work’s
preparation.

I would like to thank my friends at work, José Pedro Ornelas, Gonçalo Campos Gonçalves,
and Alexandre Almeida Costa, people of high knowledge, dynamism, and who at no time refused
to help me develop ideas and make suggestions for improvements.

My colleagues received me at INESC TEC very well. I feel privileged to be part of such a
competent and talented team. I learn from them every day.

I would like to thank my wife, Paula Ferraz de Oliveira, for her dedication to our family while
I was involved in this work. We became parents during the period of development of this work. It
was challenging, but my inseparable wife was able to accommodate all our needs in all that was
required.

I thank all colleagues of the Master’s in Software Engineering at FEUP, companions on this
journey. I wish them every success in their careers.

Author

v

vi

“I have a great desire to improve always.
Improving is what makes me happy.”

Ayrton Senna

vii

viii

Contents

1 Introduction 1
1.1 Problem Description and Motivation . 1
1.2 Objectives . 2
1.3 Structure . 2

2 Background 3
2.1 Omics Data . 3
2.2 Bioinformatics Pipelines . 5
2.3 General Data Protection Regulation . 6
2.4 FAIR Principles . 8
2.5 TRUST Principles . 9
2.6 Federated Data Repositories . 11
2.7 Non-disclosive Analysis . 12
2.8 Summary . 13

3 Related Work 15
3.1 Privacy-preserving Analyses solutions . 15

3.1.1 The iReceptor+ platform . 15
3.1.2 The OBiBa solution . 21
3.1.3 The MOLGENIS solution . 30
3.1.4 The GA4GH solutions . 31

3.2 Reproducible Bioinformatics Pipeline Tools . 34
3.3 Summary . 36

4 Proposed solution 37
4.1 Requirements . 37
4.2 Methodology . 40
4.3 Architecture . 42
4.4 Reproducibility: Relational model . 45
4.5 Summary . 47

5 Implementation 49
5.1 Introduction . 49
5.2 Setup . 49
5.3 Implementation . 50

5.3.1 Evaluating the Resources to access AIRR-Rearrangement data 56
5.3.2 Accessing the pipeline execution metadata 57

5.4 Summary . 59

ix

x CONTENTS

6 Conclusions and Future Work 61
6.1 Results . 61
6.2 Future Work . 62

References 65

A Reproducibility: Relational model 67

B Registers generated in a simulated pipeline execution 69

C Docker stack for the database pipeline 73

List of Figures

2.1 Omics technologies. 4
2.2 AIRR-Seq Pipeline example. 5

3.1 The High-Level iReceptor Plus Platform Architecture. 16
3.2 Immune Repertoire Sequencing. 18
3.3 An example of a sequencing instrument. 19
3.4 An extracted section of a raw sequencing file that follows the .FASTQ format. . . 19
3.5 A typical MiXCR pipeline. 20
3.6 From data collection to data federation via data harmonization in a study consortia. 22
3.7 VJ Gene Distribution. 23
3.8 V-J Gene Distribution with Treemap visualization. 24
3.9 V-J Gene Distribution with Spectratyping visualization. 24
3.10 Benchmarking and Feasibility of V-J Gene Distribution. 25
3.11 Clonotypes in order of CDR3 length (left), Abundance of Clonotypes (middle),

Number of Unique clonotypes per Sample (right). 25
3.12 Most abundant cell clonotypes (left) vs Least prolific clonotypes (right). 26
3.13 Benchmarking and Feasibility of Clone Frequency. 26
3.14 Repertoire overlap. 27
3.15 Example of K-mers analysis based on a k size = 5, including frequency matrix. . 28
3.16 Benchmarking and Feasibility of Motif Extraction. 28
3.17 AIRR Data Commons datasets: millions of sequences per subject. 28
3.18 Resource R package architecture . 29
3.19 MOLGENIS overview and its modular architecture. 30
3.20 The GA4GH federated ecosystem. 32
3.21 The MME data repositories. 33

4.1 A mind map that represents a complex Bioinformatics pipeline. 41
4.2 Coral Architecture. 43
4.3 Deployment Architecture. 44
4.4 Database schema to store the Pipeline’s execution metadata. 45

5.1 Setup configuration using pipeline outputs as resources. 50
5.2 Resource properties on Opal. 52
5.3 Alignments and Clones datasets registered as resources in Opal software. 53
5.4 ADC API endpoints. 56
5.5 An example of HTTP request to the v1/rearrangement endpoint. 57
5.6 A Resource of the HTTP category. 58

A.1 Reproducibility - Relational model. 68

xi

xii LIST OF FIGURES

C.1 Adminer - Login page. 79

List of Tables

2.1 Comparison of the Pipeline Annotation of Leishmania infantum Genome Executed
Across Different Platforms. 6

3.1 Diversity of Scientific Pipeline Tools. 35

4.1 Reproducibility of a Bioinformatics Pipeline . 46

B.1 Data Processing Registers. 69
B.2 Processing Step Registers. 70
B.3 File Type Registers. 70
B.4 File Registers. 70
B.5 Input Files Registers. 70
B.6 Output Files Registers. 70
B.7 Tool Registers. 71
B.8 Command Registers. 71
B.9 Command Processing Step Registers. 71
B.10 Command Option Registers. 71

xiii

xiv LIST OF TABLES

Listings

5.1 MiXCR pipeline basic example. 51
5.2 Basic R script to access the resources. 53
5.3 Output of the R script. 54
5.4 Example of how to access a PostgreSQL database on R. 57
C.1 Docker-Compose to deploy the suggested database model. 73
C.2 DDL script to create the database. 74

xv

xvi LISTINGS

Abbreviations

ADC AIRR Data Commons
AIRR Adaptive Immune Receptor Repertoire
API Application Programming Interface
BCR B-cell receptor sequences
CDR Complementarity-determining regions
CIHR Canadian Institutes of Health Research
CRWG AIRR Common Repository Working Group
CWL Common Workflow Language
DDL Data Definition Language
DTA Data Transfer Agreements
DSL Domain Specific Language
DWG GA4GH Data Working Group
EOSC European Open Science Cloud
FAIR Findable, Accessible, Interoperable, Reusable
GA4GH Global Alliance for Genomics and Health
GDPR European General Data Protection Regulation
HPC High-Performance Computing
HTTPS Hypertext Transfer Protocol Secure
IMGT international ImMunoGeneTics information system
MME Matchmaker Exchange
MRI Magnetic Resonance Imaging
NCBI National Center for Biotechnology Information of the United States
NGS Next-generation sequencing
OAIS Open Archival Information System
OMICS in biology, refers to the names that end in the suffix -omics, such as genomics,

proteomics, metabolomics, and glycomics
PCR Polymerase chain reaction
REST Representational State Transfer
REWG GA4GH Regulatory and Ethics Working Group
SDC Statistical Disclosure Control
SDL Statistical Disclosure Limitation
SLURM Simple Linux Utility for Resource Management
SRA Sequence Read Archive
SSH Secure Shell
TCR T-cell receptor sequences
TRUST Transparency, Responsibility, User focus, Sustainability, Technology
URI Uniform Resource Identifier
URL Uniform Resource Locator
WDL Workflow Definition Language

xvii

Chapter 1

Introduction

The exponential growth of patient data is shaking healthcare in several ways. Wearable fitness

trackers, apps to manage pregnancy, calorie ingestion, mental health, medication, genealogical

DNA test and drug control, all collecting health data. As a result, over the past fifteen years,

personal health data has become, in some way, no longer private1.

1.1 Problem Description and Motivation

The privacy concern obligates the government agencies to rethink their regulations, especially

in this scenario, where the patients become increasingly proactive in their healthcare and private

companies are interested in making these data profitable.

Personal data is defined as any information relating to an identifiable person. It can include

names, identification numbers, location data, IP addresses, cookies, and any other information

through which an individual can be identified, even indirectly. There is no doubt that personal

health data is capable of identifying an individual. Moreover, even when health information is

intentionally stripped of personal identifiers, it can often be re-identified with low effort using data

science techniques[15].

By collecting data from digitally conscious citizens, it is possible to understand the dynamics

of the entire population. People with resemblant profiles can be easily grouped, making it possible

to apply interventions to those groups. Thus, the produced real-world data is sufficient for life

sciences companies to understand the context of real-world data as evidence, and that evidence

can be used as insight, for good or bad purposes. In a more pleasant scenario, these insights

can help researchers make scientific discoveries and produce successful health treatments. On

the other hand, in an undesired situation, these insights can be explored for advertising, unethical

health-insurance valuation, and other unknown purposes.

Sequencing thousands of human genes produce a lot of data, commonly known as Omics data

(see Section 2.1). These data, collected by next-generation sequencing tools and processed by

1https://www.idc.com/getdoc.jsp?containerId=US45415720.

1

https://www.idc.com/getdoc.jsp?containerId=US45415720

2 Introduction

Bioinformatics Pipelines2(see Section 2.2), have enabled discoveries in many fields, among them

precision medicine, the study of rare diseases, and even the development of drugs and vaccines.

However, mass collection of such sensitive data introduces enormous legal and ethical risks if

not protected to the highest standards and following the highest principles, such as European

General Data Protection Regulation (GDPR) regulations (see Section 2.3) and FAIR principles

(see Section 2.4).

Therefore, it is imperative to rethink how to make health research non-disclosive analysis (see

Section 2.7), which means, that preserve privacy, including analyses that involve Omics data.

1.2 Objectives

The purpose of this dissertation is to study the existing proposals for deal with privacy-

preserving analysis, examine their benefits and shortcomings, to suggest a novel architecture that

can effectively and efficiently perform privacy-preserving analysis for Omics data.

In addition, the proposed solution suggest a data model that can enhance the reproducibility of

the Bioinformatics Pipelines that generated the Omics data used for analysis.

1.3 Structure

The remaining chapters of this dissertation are organized as follows. In Chapter 2 we discuss

relevant information for the comprehension of this dissertation, such as: what is Omics data and

how these data are generated and manipulated by bioinformatics pipelines; how the European

General Data Protection Regulation deal with privacy concerns; a brief description of FAIR and

TRUST Principles and how it can be useful to data repositories; what are the characteristics of

federated data repositories and, finally, what is non-disclosive analysis and why this technique can

be useful to deal with privacy-preserving requirements.

Chapter 3 exposes a survey of the most significant proposals for privacy-preserving analyses

and reproducible bioinformatics pipeline tools, with an analysis of their benefits and flaws.

In Chapter 4, we present the design proposals of a privacy-preserving analyses for Omics data,

including also a relational model to deal with reproducibility. Proceeding to Chapter 5, we present

the actual implementation of our proposed solution.

Finally, we conclude this dissertation with Chapter 6, by summarizing the goals that where

accomplished and propose the remaining ones as future work.

2A Bioinformatics pipeline is composed of a wide array of software algorithms to process raw sequencing data and
generate a list of annotated sequence variants[14].

Chapter 2

Background

2.1 Omics Data

The term "Omics" refers to some areas of study in biology, all of which end in the suffix

-omics, such as genomics (to study genomes), transcriptomics (to study transcribed RNAs), pro-

teomics (to study proteins), metabolomics (to study metabolites), etc. Omics are innovative, far-

reaching approaches for the analysis of humans and other organisms in the point of view of genetic

or molecular profiles.

Genomics is the field of science that studies the complete genome1 of organisms and their

inter-relationships, while genetics focuses on single genes. Genomics helps to determine the entire

sequence of nucleotides2 present in a DNA, analyzing and comparing them with other organisms

as a way to understand their functioning and regulation. Though revolutionary and of great impor-

tance, genomics did not answer all the scientists’ questions. The main curiosity is how an organism

responds to different environmental conditions. DNA analysis cannot answer this because it will

always be the same response for a particular individual, regardless of the environment. Therefore,

to help answering these questions, other "omics" sciences were soon born, as we can see on Fig-

ure 2.1, presented by VERDI3, such as transcriptomics, proteomics, metabolomics, lipidomics,

etc.

This holistic vision can allow the researchers to understand "omics systems’" problems, i.e.,

how complex interactions between genes, molecules exposed to different environmental condi-

tions, can influence the phenotype4. The results from a phenotype organism comes from two main

factors: the genetic code expression (or gene expression5) of an organism or its genotype6 and

1Genome is all genetic material of an organism. Available at https://en.wikipedia.org/wiki/Genome
2Nucleotides are organic molecules consisting of a nucleoside and a phosphate. Available at https://en.wikipedia.

org/wiki/Nucleotide
3https://edisciplinas.usp.br.
4A phenotype can be defined as a set of observable characteristics or traits of an organism. Available at

https://www.oxfordlearnersdictionaries.com.
5Gene expression is the process the cell uses to produce the molecule it needs by reading the genetic code written

in the DNA. Available at https://www.genome.gov/genetics-glossary/Gene-Expression.
6The genotype of an organism is its complete set of genetic material. The term is often used to refer to a single gene

or set of genes, such as the genotype for eye color. Available at https://en.wikipedia.org/wiki/Genotype.

3

https://en.wikipedia.org/wiki/Genome
https://en.wikipedia.org/wiki/Nucleotide
https://en.wikipedia.org/wiki/Nucleotide
https://edisciplinas.usp.br/pluginfile.php/4449003/mod_resource/content/1/Aula%207%20-%20ESTUDOS%20DAS%20%C3%94MICAS%20GEN%C3%94MICA%20VS%20TRANSCRIPT%C3%94MAS%20E%20METAGEN%C3%94MICA.pdf
https://www.oxfordlearnersdictionaries.com/definition/english/phenotype?q=phenotype
https://www.genome.gov/genetics-glossary/Gene-Expression
https://en.wikipedia.org/wiki/Genotype

4 Background

Figure 2.1: Omics technologies. Adapted from VERDI et al., 2019.

the influence of environmental conditions. Understanding these factors helps to understand the

disease symptoms of a patient.

Currently, there is no single approach for processing, analyzing and interpreting all kinds

of Omics data. Each organism poses different challenges, facing the uniqueness of metabolite

abundance, gene expression bias, epigenetic regulation and cell-type specificity of a given Omics

dataset.

The development of high-throughput techniques, such as Next Generation Sequencing (NGS)7,

allows the sequencing of entire genomes. The analysis of this kind of data is revolutionizing sci-

entific research and holds great potential for improving treatments. Hence, the importance of these

technologies is fundamental to expand and create new perspectives for advanced diagnoses, such

as how to understand the effect of variations with the human genome on response to drugs.

There is a real necessity of the health research community to access these data (or, ideally,

a summarized, non-disclosive version of them, see Section 2.7), preferentially from repositories

that follow the FAIR (see Section 2.4) and TRUST principles (see Section 2.5). Sharing these

data across researchers may hugely increase sample sizes, strengthen statistical conclusions and

unquestionably relevant to search and discover for the patterns that enable personalized treatments.

Nevertheless, sharing these large datasets between researchers to improve analysis results can

be challenging, especially when there is a need to address data privacy concerns, whose theme is

covered by regulations like the GDPR (see Section 2.3). The adoption of a federated architecture

for data repositories helps to address some of these aspects (see Section 2.6).

Additionally, these data are usually unstructured, with millions of registers. Several tools

and commands pre-process them before ready to make an analysis. These processing steps are

7Next Generation Sequencing is a term used to describe a number of different modern sequencing technologies.
These technologies allow for sequencing of DNA and RNA. Available at https://www.ebi.ac.uk/.

https://www.ebi.ac.uk/training/online/courses/functional-genomics-ii-common-technologies-and-data-analysis-methods/next-generation-sequencing/

2.2 Bioinformatics Pipelines 5

Figure 2.2: AIRR-Seq Pipeline example. Image by MiLaboratory.com, 2018.

executed by Bioinformatics Pipelines (see Section 2.2). Understand how these data were generated

and processed is fundamental to validate the reliability of the analysis, generating trust in scientific

results. Reproducibility, therefore, is an essential aspect to consider for sustainable Omics data

analysis.

2.2 Bioinformatics Pipelines

Researchers and Bioinformatics use algorithms, statistical methods, and tools to extract, or-

ganize, and analyze large and complex Omics data. When executed in a set of predefined steps,

these elements, combined, are usually referred to as a Bioinformatics Pipeline.

Thus, Bioinformatics Pipelines, sometimes referred to as Genomics workflows, is a mash-up

of many different tools and scripts to process raw sequencing data (see an example in Figure 3.4)

and generate a list of annotated sequence variants8.

A Pipeline, in the context of Bioinformatics, receives a set of parameters. These parameters,

used through each processing step, can include the software tools, algorithms, quality thresholds,

the Germline9 reference database, the Primers10, data processing protocols, etc.

A Pipeline can build alignments11, assemble clonotypes12, apply several error-correction algo-

rithms to eliminate artificial diversity arisen from sequencing errors, assemble complete receptor

sequences, etc. You can see a visual representation of a simplified pipeline in Figure 2.2.

8Sequence variants is a surrogate term covering any unintentional amino acid substitutions, omissions, or insertions
during protein biosynthesis. Available at https://pubs.acs.org/doi/abs/10.1021/bk-2015-1201.ch002

9The Germline is the population of a multicellular organism’s cells that pass on their genetic material to the progeny
(offspring). In other words, they are the cells that form the egg, sperm and the fertilised egg. Available at https:
//en.wikipedia.org/wiki/Germline

10A Primer is a short single-stranded nucleic acid used by all living organisms in the initiation of DNA synthesis.
Available at https://en.wikipedia.org/wiki/Primer_(molecular_biology)

11In Bioinformatics, a sequence alignment is a way of arranging the sequences of DNA, RNA, or protein to identify
regions of similarity that may be a consequence of functional, structural, or evolutionary relationships between the
sequences. Available at https://en.wikipedia.org/wiki/Sequence_alignment

12Clonotype is a unique nucleotide sequence that arises during the gene rearrangement process for that receptor. The
combination of nucleotide sequences for the surface expressed receptor pair would define the T cell clonotype[19].

https://pubs.acs.org/doi/abs/10.1021/bk-2015-1201.ch002
https://en.wikipedia.org/wiki/Germline
https://en.wikipedia.org/wiki/Germline
https://en.wikipedia.org/wiki/Primer_(molecular_biology)
https://en.wikipedia.org/wiki/Sequence_alignment

6 Background

Table 2.1: Comparison of the Pipeline Annotation of Leishmania infantum Genome Executed
Across Different Platforms. From Di Tommaso[3].

Platform Amazon Linux Debian Linux Mac OSX
Number of chromosomes 36 36 36
Overal length (bp) 32.032.223 32.032.223 32.032.223
Number of genes 7.781 7.783 7.771
Gene density 236,64 236,64 236,32
Number of coding genes 7.580 7.580 7.570
Average coding length (bp) 1.764 1.764 1.762
Number of genes with multiple CDS 113 113 111
Number of genes with known function 4.147 4.147 4.142
Number of t-RNAs 88 90 88

The researchers use the final outputs to make analyses, but these outputs are sensitive to the

parameters used in the Pipeline. For example, different tool versions can produce different results.

For instance, if the version of a Germline reference database differs, two pipelines can produce

different results.

A Germline reference database is being updated over time13, as new research develops and

identifies new alleles. (e.g., several news alleles14 were aggregated last year in the international

ImMunoGeneTics information system (IMGT) databases)15. Additionally, the Germline reference

database has population characteristics.

Pipelines are usually executed in a complex parallelization, spawning hundreds of jobs over

a distributed cluster. In this way, a typical Bioinformatics Pipeline exhibits complex dependency

trees and configuration, resulting in a very fragile ecosystem.

To emphasize this fragility, the same pipeline deployed in different environments can produce

different results. To complicate even more, some commands and tools use non-deterministic algo-

rithms16. For example, in Table 2.1, presented in this article[3], we can see the results of a pipeline

executed in different platforms, where it is possible to identify different small results (underlined)

in some attributes.

Since different platforms show different results, isolating the pipeline tools using a platform

independence strategy, such as container technologies17, is highly recommended.

2.3 General Data Protection Regulation

The digital transformation changes the paradigm of technology use in many areas, such as

medicine and healthcare. This phenomenon collaborates to every type of data is generated, col-

13https://www.antibodysociety.org/the-airr-community/airr-working-groups/germline_database/.
14An allele is one of two, or more, forms of a given gene variant. Available at https://en.wikipedia.org/wiki/Allele.
15http://www.imgt.org/.
16A non-deterministic algorithm is an algorithm that, even for the same input, can exhibit different behaviors on

different runs. Available at https://en.wikipedia.org/wiki/Nondeterministic_algorithm.
17https://containerjournal.com.

https://www.antibodysociety.org/the-airr-community/airr-working-groups/germline_database/
https://en.wikipedia.org/wiki/Allele
http://www.imgt.org/
https://en.wikipedia.org/wiki/Nondeterministic_algorithm
https://containerjournal.com/topics/container-ecosystems/how-container-technologies-are-transforming-the-it-landscape/

2.3 General Data Protection Regulation 7

lected, and replicated in several places. Therefore, controlling the data, i.e., defining permissions

and access rules and regulations to protect citizen privacy, is challenging. On the other hand,

controlling the data controllers instead of controlling the data is not only feasible, but also vital.

Recent consumer custody laws, like GDPR, address this issue.

GDPR takes a conceptual approach to the permitted and prohibited uses of personal informa-

tion, individuals’ rights of access and control, and companies’ obligations to respect the limits

and rights of the owners. The biggest concern in GDPR is "what" the data is, not "who" may be

holding it.

In the core of its structure, GDPR adopts the notion of primary data custodian, or in other

words, a Controller. In general, a Controller is "the natural or legal person, public authority,

agency or other body which, alone or jointly with others, determines the purposes and means of

the processing of personal data". Another relevant stakeholder is the Processor, which is "a natural

or legal person, public authority, agency or other body which processes personal data on behalf of

the Controller"18.

Controllers specify the steps of processing personal data, and may or may not be responsible

for directly collect the data from data subjects. An example in health area would be: a diagno-

sis laboratory (Controller) can collect the data of its patients while they do an exam, but there is

another institution (Processor) that curates, loads, digitizes, catalogs, and indexes the information

produced by the Controller (diagnosis laboratory). These institutions can be data centers or doc-

ument management holders. Both institutions are responsible for treating the patients’ personal

data.

A building block for good data protection practice is to follow the guiding principles for the

processing of personal data defined by the GDPR. We take a look at each principle below19:

• Lawfulness, fairness, and transparency: This kind of data must be processed transpar-

ently, legally, adequately.

• Purpose limitation: Data that can be collected and used only for those purposes that have

been clearly defined to the data subject. The consent from the data owner is required.

• Data minimization: The purpose for which data is processed will limit the amount of

collected data.

• Accuracy: Data must be kept up to date, i.e. old or outdated data and contacts must be

erased.

• Storage limitation: Data which have public interest, for historical and scientific research

may be archived. Otherwise, should not be stored for longer than is necessary.

• Integrity and confidentiality (i.e. data security): Data must be curated with appropri-

ate security requirements, to avoid accidental loss or unlawful processing. To protect the

identity of the clients, some techniques, like pseudonymization, must be applied.
18https://edpb.europa.eu/.
19https://crsreports.congress.gov/product/pdf/R/R45631.

https://edpb.europa.eu/our-work-tools/documents/public-consultations/2020/guidelines-072020-concepts-controller-and_en
https://crsreports.congress.gov/product/pdf/R/R45631

8 Background

• Accountability: The GDPR’s principles must be followed by Controllers.

When we look at the Controller and Processor stakeholders, the technology constraints and

Regulation rules find an intersection. In this intersection, emerges another set of principles: the

FAIR principles (see Section 2.4).

2.4 FAIR Principles

The reuse of research data needs improvement, including not only better infrastructure support,

but a set of techniques, tools, practices, and last, but not least, principles.

The principles precede implementation, working as guidelines: they affect how the tools will

be produced, how the relationship between different stakeholders will proceed, how the data gov-

ernance must be accomplished, and which types of guarantees must be feasible and agreed with

data owners.

The FAIR Principles improve data management and stewardship, defining guidelines that help

Controllers and Processors.

The FAIR Guiding Principles can be summarized as follows[16]:

• Findable: Humans and computers must be capable to find the data and metadata. Metadata

must include tags and identifiers of the data it describes. Data and metadata must be indexed.

• Accessible: Data and metadata are retrievable using tags or identifiers, using open and uni-

versally implementable communications protocols, possibly including authentication and

authorization.

• Interoperable: The data usually needs to be interoperable with other systems. Its knowl-

edge representation must use broadly applicable language.

• Reusable: To optimise the reuse, data and metadata should be richly described, versioned

and associated with detailed provenance, following community standards.

The FAIR principles help to describe a path in the direction of "machine-actionability", i.e.,

the ability of software, or bots, to find, access, interoperate, and reuse data without manual inter-

vention. This process enables the agent to:

1. identify the object’s structure, including its type;

2. analyze the semantic context of the task interested in that object to determine if it is useful;

3. determine if it is usable by checking the license, consent, accessibility or other use con-

straint;

4. take the expected action, like a human would.

2.5 TRUST Principles 9

The semantic relationships of the data, its metadata, curation, and harmonization are useful

aspects to assist algorithms in their discovery and data inquiry through interoperability. These

characteristics are attributes of a good data management and stewardship.

There is a real interest of governing bodies and funding institutions in following the FAIR

Principles for open data publishing, as we can see within the Horizon 2020, a Work Programme

2018-2020 from European Commission, call topic SC1-BHC-05-2018: “International flagship

collaboration with Canada for human data storage, integration and sharing to enable personalised

medicine approaches”20. In parallel, many portals are emerging, where it is possible to find useful

information and data repositories that are FAIR compliant21.

The FAIRsFAIR22 initiative facilitates sharing of knowledge, guidelines, courses, education

and expertise needed to turn the FAIR principles into reality. FAIRsFAIR is producing examples to

support the use of the FAIR data principles, generating recommendations for the European Open

Science Cloud (EOSC)23, an intergovernmental cloud service to support EU science.

The GO FAIR24 is a bottom-up, self-governed initiative and focused on culture changing,

training, technology standards and infrastructure components. GO FAIR developed and dissem-

inated the FAIRification process25, a schema to transform non-FAIR data repositories into FAIR

repositories. It is focused on data, and indicates the required changes for metadata. The FAIRifi-

cation process is particularly useful for organizations that have a lot of useful datasets that are not

ready to be shared in a secure and federated way.

The FAIRsharing.org26 is a FAIR resource hosted at the University of Oxford since 2011,

focused on producing standards, policies and educational content about how to curate data and

metadata following the FAIR principles. In FAIRSharing it is possible to find FAIR maturity

indicators, metrics, models, guidance to stakeholders, training material, and so on.

Many known repositories are already implementing the FAIR principles, such as Dataverse27,

FAIRDOM28 and wwPDB29.

2.5 TRUST Principles

The emergence of FAIR implies a related question: "Who can we trust to enable FAIR?".

Transparency (T), responsibility (R), user community (U), sustainability (S), and technology (T),

define the TRUST principles[8], and help to keep FAIR data over time. TRUST provides a way

to think about data life-cycle management and preservation within repositories aligned with FAIR

20https://ec.europa.eu/info/funding-tenders/.
21https://ec.europa.eu/research/participants/.
22https://www.fairsfair.eu/.
23https://ec.europa.eu/info/research-and-innovation/.
24https://www.go-fair.org/.
25https://www.go-fair.org/fair-principles/fairification-process/.
26https://fairsharing.org/.
27https://dataverse.org/.
28https://fair-dom.org/.
29https://www.wwpdb.org/.

https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/sc1-bhc-05-2018
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2018-2020/main/h2020-wp1820-health_en.pdf
https://www.fairsfair.eu/
https://ec.europa.eu/info/research-and-innovation/strategy/goals-research-and-innovation-policy/open-science/european-open-science-cloud-eosc_en
https://www.go-fair.org/
https://www.go-fair.org/fair-principles/fairification-process/
https://fairsharing.org/
https://dataverse.org/
https://fair-dom.org/
https://www.wwpdb.org/

10 Background

principles. In other words, a successful application of the TRUST principles ensure the alignment

of data management standard practices for managing and preserving FAIR data in repositories.

It is not a good strategy to delegate to individuals the responsibility of managing data reposi-

tories. Frequently, individuals do not have career stability, e.g. they may change careers or move

departments/institutions, or necessary technological resources to ensure trustworthiness. FAIR

data does not guarantee that data will be preserved, remain available, and become usable for inde-

pendent verification of results at any time in the future. Operationalizing FAIR to preserve FAIR

data objects requires digital repositories to be trustworthy for the longer term.

The fundamental difference between FAIR and TRUST is that FAIR defines the desirable char-

acteristics of digital objects (data and associated metadata) at a certain time point, while TRUST

describes the characteristics of repositories that are needed for responsibly managing and dissem-

inating digital objects and maintaining their FAIR alignment over a long period.

TRUST works like guidelines to ensure that repositories have transparent policies, organiza-

tional capabilities, and guardians behind the websites, infrastructures and databases, who under-

stand what enabling FAIR data entails on a practical level. We can define every characteristic of

the TRUST principles as follows:

• Transparency is achieved by providing publicly accessible evidence of the services that a

repository does and does not offer.

• Responsibility is a commitment to provide reliable data services together with clarity as to

where responsibility for those services resides.

• User focus is a commitment to be clear which community is being served, and implement

and enforce the standards and norms of the user community.

• Sustainability is a measure to identify if a data system is ready to support long-term preser-

vation and use.

• Technology is the infrastructure and capability of supporting repository operations.

The adoption of TRUST Principles offers the following advantages:

• The opportunity to bring different certification standards, such as CoreTrustSeal30, ISO

1636331, DIN 3164432 and others.

• An easily understandable manner to apply conceptual frameworks, like OAIS ("Open Archival

Information System", ISO 1472133), to generalize trustworthiness beyond disciplinary data

repositories.

30https://www.coretrustseal.org/.
31https://www.iso.org/standard/56510.html.
32https://www.beuth.de/en/standard/din-31644/147058907.
33https://www.iso.org/standard/57284.html.

https://www.coretrustseal.org/
https://www.iso.org/standard/56510.html
https://www.beuth.de/en/standard/din-31644/147058907
https://www.iso.org/standard/57284.html

2.6 Federated Data Repositories 11

• Guidance of repositories’ operation, in concert with other principles, such as the FAIR prin-

ciples.

• The opportunity to communicate and describe how they are working toward each component

of the TRUST principles and share practices.

Quality data are the fuel that powers the research enterprise. The TRUST principles can help

support the infrastructure required to manage these valuable resources for research communities.

2.6 Federated Data Repositories

A federated data repository is part of a federated system. A federated system is composed of a

collective agreement upon many standards, at the same time admits independence and autonomy

of each component of the federation. Heterogeneity in terms of hardware, operating systems and

network are also characteristics of a federated system. Most importantly, the analysis is executed

distributively, accessing the data distributed over multiple databases.

Federated data repositories are necessary in order to facilitate cross-border collaborations be-

tween research centers. In a typical federated data repository, each data holder is responsible for

maintaining the control over their data, including curation and security aspects while sharing sam-

ples of this data to other researchers or data holders. Researchers can produce queries using a

central portal that then searches to all participants of the federated system. Records are matched

to fulfill the requests.

The characteristics of the federated data repositories can be briefly listed as follows:

• Data ownership: Each institution is the owner of their data and responsible for your own

staff.

• Technical requirements: All the required hardware and network bandwidth must have been

provided for each data holder.

• System Performance: The data delivery is influenced by delays during the loading of each

source systems.

• Privacy/Security: Each source data system provider is responsible for your security pro-

cess.

• Data updates/corrections: Data resides within each data provider. Each data provider is

responsible for communicating all corrections, updates or data processes changes.

• Data availability: Access to data is determined by the source data provider.

• Data quality: Dependent on processes implemented at each data provider.

• Implementation: Usually requires less time than a central approach, but the data provision

can be more complex.

12 Background

• Scalability: Each source data system is responsible to include any additional required hard-

ware or other resources.

• Production of standard reports: Dependent on a data provider’s responsibility.

• Sustainability: Partners of the system are responsible. Engagement is necessary, but a

funding formula can help to increase the uniformity of resources.

• Usability: Partners will query a large amount of data, which requires assurance of compa-

rability.

The federated approach for data repositories mitigates the turf battles/gets around trust issues.

Moreover, tailored protection of data is based more on the sensitivity of each data holder. The

federated approach, combined with non-disclosive analysis mechanisms (see Section 2.7), can

also minimize the necessity of Data Transfer Agreements (DTA)34.

2.7 Non-disclosive Analysis

The non-disclosive analysis is a technique that provides information that respects all of the

legal, contractual, or ethical undertakings about the usage of the data. The data owner has agreed

with third parties, and no individual data should be inferred. It makes use of data with those

agreements under which sensitive or personal information can be shared.

The purpose of the non-disclosive analysis is to protect the privacy of the participants and

subjects of the research, respecting the legal restrictions imposed by governance rules (see Sec-

tion 2.3).

Researchers are usually interested in statistics and trends among larger groups of individuals

or samples instead of single individuals. The non-disclosive analysis uses statistical disclosure

control (SDC), also known as statistical disclosure limitation (SDL) or disclosure avoidance.

The non-disclosive analysis is feasible in several research situations. In essence, a central anal-

ysis computer may coordinate a parallelized simultaneous analysis of the individual-level data on a

spread, federated set of data repositories (see Section 2.6). These request each server to undertake

a particular analysis and return non-disclosive summary statistics to the analysis computer, that is,

data that cannot possibly lead to the identification of the individuals to which they relate.

For instance, to know an average value from a specific variable, the central analysis computer

can send a command block for all data repository participants asking for the average in your

dataset. Then, each participant response with the average value without exposing the individual

value of the requested variable.

In this way, it is possible to fit a mathematical model as if the individual-level data from all

studies were pooled centrally on the analysis computer while, in reality, the data never leave their

studies of the origin, and all that does leave are the non-disclosive summary statistics.
34A DTA is a contract between the providing and recipient institutions that governs the legal obligations and re-

strictions, as well as compliance with applicable laws and regulations, related to the transfer of such data between the
parties. Available at http://www.ott.emory.edu.

http://www.ott.emory.edu/documents/forms/data_transfer_instructions.pdf

2.8 Summary 13

2.8 Summary

This chapter presented vital concepts to provide the necessary background to understand the

related work and the proposed solution. Most of these concepts are not directly related to Software

Engineer, corroborating the idea that the presented work involves a diversity of topics, such as

Legal, Health, and Software.

14 Background

Chapter 3

Related Work

In this chapter, we will take a look at some of the most prominent initiatives for privacy-

preserving analyses across federated health data repositories. Whenever possible, the current lim-

itations of each one will be cited, especially when involving Omics data. We will also present an

overview of Reproducible Bioinformatics Pipeline tools, which aim to provide a general schema

and an infrastructure to distribute reproducible workflows.

3.1 Privacy-preserving Analyses solutions

In this section, we will present four known solutions: iRecetor+ platform, OBiBa, MOLGE-

NIS, and GA4GH solutions. The selection criteria were: the direct involvement of INESC TEC,

and the relevance of related scientific papers.

3.1.1 The iReceptor+ platform

The iReceptor1 platform, developed at Simon Fraser University, Canada, is a distributed data

management system and a scientific gateway for mining sequence data (a large collection of com-

puterized nucleic acid sequences, protein sequences, or other polymer sequences) from immune

responses.

iReceptor smooths curating, analyzing and sharing of antibody/B-cell and T-cell receptor

repertoires (Adaptive Immune Receptor Repertoire or AIRR-sequencing data). AIRR-sequencing

has enormous potential for understanding the dynamics of the immune repertoire2 in vaccinology,

infectious disease, autoimmunity, and cancer biology, but also poses substantial challenges[2].

The iReceptor+3 is a project, funded by the European Union’s H2020 Research and Innova-

tion Programme and Canadian Institutes of Health Research (CIHR), will expand the analysis tools
1http://ireceptor.irmacs.sfu.ca/.
2Immune repertoire is defined as the sum of T cell receptors and B cell receptors (also named immunoglobulin) that

makes the organism’s adaptive immune system. Available at https://en.wikipedia.org/wiki/Immune_repertoire.
3https://www.ireceptor-plus.com/.

15

http://ireceptor.irmacs.sfu.ca/
https://en.wikipedia.org/wiki/Immune_repertoire
https://www.ireceptor-plus.com/

16 Related Work

Figure 3.1: The High-Level iReceptor Plus Platform Architecture. From ireceptor-plus.com.

available on the iReceptor Gateway, including for single cell or systems immunology approaches,

and add security for iReceptor+ repositories. Figure 3.1 is a high-level iReceptor+ platform archi-

tecture:

The iReceptor+ is designed as a network of federated repositories, following standards for

sharing and interoperability developed by the AIRR Community, known as AIRR Data Commons.

The AIRR Data Commons aims to facilitate data queries and advanced analysis across multi-

ple projects, labs, institutions, and countries, through web portals (e.g., the iReceptor+ Scientific

Gateway).

The data privacy and ownership are concerns addressed by the distributed federated architec-

ture that was adopted in this project. It allows each institution to maintain control over its data and

stay compliant with local legislation. There are plans for iReceptor+ to integrate with relevant non

AIRR-seq clinical and biological. It is useful because allows the analysis of global interactions

within the immune system and within its environment.

The AIRR Common Repository Working Group (CRWG) has developed a set of recommen-

dations that promote the storage, sharing, and use of AIRR sequence data. In May 2020, was

released the first version of the AIRR Data Commons API (ADC API). AIRR Data Commons can

be viewed as a set of repositories that adhere to the CRWG recommendations, that implement the

ADC API as a mechanism to access that data.

The iReceptor+ Web Portals work like a scientific gateway that integrates these large, dis-

tributed, AIRR-seq data repositories. Present functionalities include:

• Search for repertoires satisfying certain metadata (e.g. find all AIRR-seq repertoires from

ovarian cancer studies);

• Search for all repertoires that contain specific complementarity-determining regions (CDRs)

sequences;

• Search identified repertoires for sequences derived from particular V, D, and J genes and

alleles (alternative forms, created by mutation, from the same gene);

• Download sequences from these repertoires in AIRR.tsv format that can be imported by

other AIRR-seq analysis tools.

3.1 Privacy-preserving Analyses solutions 17

Some repositories are currently adhering with AIRR Data Commons (ADC), such as the iRe-

ceptor Turnkey, Immune DB, and sciReptor.

The iReceptor Turnkey4 is a mechanism for researchers to create their own AIRR Data Com-

mons repository. The iReceptor Turnkey Repository consists of a database software stack (based

on MongoDB), a API that allows external users to query that repository through the API (ADC

adherent), and a set of services that help users curate data in the repository. By using the iReceptor

Turnkey Repository, a research lab will have access to both a local repository for their data as well

as the ability to share that data by integrating their repository node into the AIRR Data Commons.

Such integration would allows the iReceptor Scientific Gateway to perform queries across all of

the data in the AIRR Data Commons, including the data in their own repository.

ImmuneDB5 is a tool to analyze and store B-cell receptor (BCR) and T-cell receptor (TCR)

data. In its more common use, ImmuneDB excels at acting as a central data storage and as interface

between other tools such as IgBlast6, MiXCR7, and VDJtools8 via AIRR compliant importing and

exporting routines. ImmuneDB uses an optimized MySQL database to store raw sequencing data

as input. The list of possible analyses the researcher can do include:

• annotate receptor gene usage;

• calculate selection pressure;

• infer clonotypes;

• aggregate results;

• construct clonal lineages9.

Pre-annotated data can be imported as well, and analysis outcomes can be exported in several

file formats.

sciReptor[6] is a tool to process, store and analyse single-cell level immunoglobulin (Ig) and

TCR sequence data. With sciReptor it is possible to analyse and compare Ig sequencing data orig-

inating from various experimental protocols. sciReptor has a relational database, which stores all

sequences, annotations and metadata in a standardized format. sciReptor support sequences or ge-

nomic annotations of reference sequences. The parameters and reference sequences are customiz-

able for individual projects. sciReptor can analyze data from a previously published single-cell

matrix PCR platform, and from data generated by alternative experimental procedures.

The concept of iReceptor+ Web Portal finds similarity with TCRdb Web Portal. TCRdb10 is

a comprehensive human TCR sequences database. TCRdb categorizes sample metadata, enables

4https://github.com/sfu-ireceptor/turnkey-service-php.
5https://immunedb.readthedocs.io/en/latest/.
6https://www.ncbi.nlm.nih.gov/igblast/.
7https://mixcr.readthedocs.io/en/master/.
8https://vdjtools-doc.readthedocs.io/en/master/.
9Clonal lineage represents a set of B cells that are related by descent, arising from the same VDJ rearrangement

event. Available at https://ionreporter.thermofisher.com.
10http://bioinfo.life.hust.edu.cn/TCRdb.

https://github.com/sfu-ireceptor/turnkey-service-php
https://immunedb.readthedocs.io/en/latest/
https://www.ncbi.nlm.nih.gov/igblast/
https://mixcr.readthedocs.io/en/master/
https://vdjtools-doc.readthedocs.io/en/master/
https://ionreporter.thermofisher.com/ionreporter/help/GUID-DBD52910-88CC-4A88-A969-5E00259B4402.html
http://bioinfo.life.hust.edu.cn/TCRdb

18 Related Work

Figure 3.2: Immune Repertoire Sequencing. By Victor Greiff (greifflab.org).

comparison of TCRs in different sample types, shows several data visualization charts, describes

the TCR in diversity, length distribution and V-J gene utilization. TCRdb collects and curates

TCR-Seq data and TCR sequences from public TCR-Seq datasets from the National Center for

Biotechnology Information of the United States (NCBI) Sequence Read Archive (SRA), and from

other TCR sequences databases, including iReceptor, VDJServer11 and immuneACCESS12.

3.1.1.1 AIRR-seq: Adaptive immune receptor repertoire sequencing

AIRR-seq has enormous promise for understanding the dynamics of the immune repertoire

in vaccinology, infectious diseases, autoimmunity, and cancer biology, but also poses substantial

challenges. The AIRR sequencing is described on Figure 3.2.

The first step is the isolation of the T/B-cell population of interest, followed by the RNA

isolation. After that, raw sequence data of B-cell/T-cell are extracted using sequencing instruments

like Illumina Genome Analyzer or Illumina NextSeq 550 Series13, as we can see on Figure 3.3.

Once these data are extracted, they are stored in files with .FASTA or .FASTQ extensions (see

Figure 3.4), that are text files that contain the sequence data. These files, at this point, are known

as "raw data" or "raw sequences", and can contain up to millions of entries and can have several

megabytes or even gigabytes in size, which often makes them too large to open in a normal text

editor. Viewing these files is not necessary as they are intermediate output files used as input for

11https://vdjserver.org/.
12https://clients.adaptivebiotech.com/immuneaccess.
13https://www.illumina.com/systems/sequencing-platforms.html.

https://vdjserver.org/
https://clients.adaptivebiotech.com/immuneaccess
https://www.illumina.com/systems/sequencing-platforms.html

3.1 Privacy-preserving Analyses solutions 19

Figure 3.3: An example of a sequencing instrument (Illumina NextSeq 550 Series).

tools that perform downstream analysis, such as alignment to a reference or de novo assembly14.

Examples of these tools are iGBlast and MiXCR.

MiXCR is an universal framework for processing big immunome data15 from raw sequences

to quantitated clonotypes. MiXCR assembles clonotypes by applying several error-correction

algorithms. It is necessary to eliminate artificial diversity arising from PCR (polymerase chain re-

action) and sequencing errors, handle paired- and single-end reads, consider sequence quality, and

identify germline hypermutations. For example, the workflow from T-cell receptor data sets to fi-

nal clonotypes, following a typical MiXCR pipeline (commonly used in bioinformatics pipelines),

is shown on Figure 3.5.

Once clonotypes are assembled, they become ready for exploring targeted and advanced data

analysis.

14de novo assembly is a method for constructing genomes from a large number of DNA fragments, with no a
priori knowledge of the correct sequence or order of those fragments. Available at https://thesequencingcenter.com/
knowledge-base/de-novo-assembly/.

15immunome data is a set of genes and proteins that constitute the immune system. Available at https://en.wikipedia.
org/wiki/Immunome.

Figure 3.4: An extracted section of a raw sequencing file that follows the .FASTQ format.

https://thesequencingcenter.com/knowledge-base/de-novo-assembly/
https://thesequencingcenter.com/knowledge-base/de-novo-assembly/
https://en.wikipedia.org/wiki/Immunome
https://en.wikipedia.org/wiki/Immunome

20 Related Work

Figure 3.5: A typical MiXCR pipeline. Image by MiLaboratory.com.

3.1 Privacy-preserving Analyses solutions 21

3.1.2 The OBiBa solution

OBiBa16 is a project developed as part of the Maelstrom Research17 program, in collaboration

with Canada, United Kingdom, and the European Union. Its aim is to build and maintain open-

source software solutions for epidemiological studies and support the entire data management

lifecycle including data collection, integration, harmonization, sharing and analysis.

OBiBa solution offer a comprehensive and integrated software solution for both individual

studies and networks of studies, giving the possibility to build a federated infrastructure.

OBiBa solution has extensible interfaces to enable interoperability and secure data transfer

from one OBiBa application to another. The OBiBa support almost all data management activities,

and can be used for both individual studies and study consortia. Each application of the OBiBa

stack is responsible for a domain-specific problem:

• Mica: is the web portal for report and summarizes published data dictionaries and aggre-

gated results. Mica has advanced search capabilities that allow researchers to explore the

study’s variables and data profiles. Data access requests can also be submitted and evalu-

ated, making it for other researcher to evaluate the published data and aggregated results.

• Opal: is able to store data from several data sources, like CSV or SPSS files. These data

can be imported into study-specific Opal databases. In Opal it is possible to create views and

derived variables to implement processing algorithms that transform data collected by each

study into a common (i.e. harmonized) dataset. Opal is extensible and offers data transfor-

mations such as curation, data cleaning and quality checks. The studies’ data can also be

enriched with metadata. In Opal you can compartmentalize the data for better privacy.

• Agate: is a web application that offers users related services to the OBiBa software stack:

user central authentication, user profile management, user notifications. These services

are offered to the remaining applications: Opal, and Mica.

OBiBa’s solution is promoted by several health research consortium in Europe and Canada,

such as RECAP Preterm (Research on European Children and Adults Born Preterm)18, and Eucan-

Connect (Connecting Europe and Canada in personalized & preventive health care)19.

3.1.2.1 DataSHIELD

DataSHIELD20 is a solution developed and maintained by the University of Newcastle, com-

posed by a client and a server R Package. There are planning to develop a Python version of the

client and server packages.

16https://www.obiba.org/.
17https://www.maelstrom-research.org/.
18https://recap-preterm.eu/.
19https://eucanconnect.com/.
20https://www.datashield.ac.uk/.

https://www.obiba.org/
https://www.maelstrom-research.org/
https://recap-preterm.eu/
https://eucanconnect.com/
https://www.datashield.ac.uk/

22 Related Work

Figure 3.6: From data collection to data federation via data harmonization in a study consortia.
Adapted from OBiBa.org.

DataSHIELD is a powerful tool that enables advanced and federated statistical analysis across

a network of data, including Opal databases, without interposing ethical and legal constraints when

the central pooling of individual-level data is prohibited.

DataSHIELD helps the researchers in situations where:

• It is scientifically necessary to perform co-analysis of individual-level data from several

studies, but there are regulations or governance rules that prevent the release, the sharing, or

the copying of some of the required data.

• A researcher wishes to share the information held in its data with others researchers actively

but would like to maintain the governance control or the intellectual property of these data.

• A dataset that is to be remotely analyzed or included in another study contains data objects

that are too large to be physically transferred to the analysis site.

The OBiBa team built the native integration required to run DataSHIELD analyses on data

stored in Opal. Such integration, as we can see on Figure 3.6, studies can run advanced analysis

such as linear regressions, logistic regressions, in a controlled environment where the fine permis-

sion for authorization and authentication can be set. OBiBa, in conjunction with DataSHIELD,

can offer a federated software solution to support privacy-preserving analyses.

The data transformed in a common dataset can be queried and analyzed with the DataSHIELD

approach through a federated database system without sending individual-level study data outside

of host institutions. DataSHIELD allows the data owner to set (and control) a variety of optional

privacy levels to deal with disclosure control[17].

3.1 Privacy-preserving Analyses solutions 23

Figure 3.7: VJ Gene Distribution.

The DataSHIELD analyses are executed in R Sessions, which are long-running tasks that

contain the current working environment. At the end of an R session, the researcher can save an

image of the working environment that can be automatically reloaded the next time R is started.

3.1.2.2 Using "DataSHIELD like" approach for non-disclosive analysis of AIRR-seq data

To test the feasibility of "DataSHIELD like" approach for AIRR-seq data, a setup was de-

ployed using the OBiBa stack, with Opal for data storage and R Server, DataSHIELD and Immunarch[11]

for analysis.

Immunarch makes immune sequencing data analysis as effortless as possible and helps users

to focus on research instead of coding. Immunarch works with any type of data: single-cell,

bulk, data tables, databases, and offers automatic format detection and parsing for several popular

immunosequencing formats: MiXCR, ImmunoSEQ21, 10XGenomics22, and ArcherDX23.

In this setup, the dsImmunarch package, deployed on server, runs like a wrapper for Immu-

narch functions, and clients may query for specific analyses using dsImmnuarchClient, including

VJ gene distribution, clone frequencies, repertoire similarity, and extraction of motif features (mo-

tifs are short, recurring patterns in DNA that are presumed to have a biological function). This

Immunarch customization was not fully adapted to deal with the DataSHIELD disclosure control

rules, since it was a proof of concept. An Immunarch version full DataSHIELD compliant requires

additional development.

In the VJ Gene distribution, to compute the distributions of genes, immunarch includes the

geneUsage()24 function. It receives a repertoire or a list of repertoires as input and genes for

which the user wants to get statistics (see Figure 3.7 to see in gene usage computation format, see

Figure 3.8 to see in a TreeMap format, see Figure 3.9 to see in a Spectratype format).

When dealing distributions, data may be plotted in multiple ways. Spectratype is a useful way

to represent distributions of genes per sequence length.

21https://www.adaptivebiotech.com/products-services/immunoseq/.
22https://www.10xgenomics.com/.
23https://archerdx.com/.
24https://immunarch.com/articles/web_only/v5_gene_usage.html.

https://www.adaptivebiotech.com/products-services/immunoseq/
https://www.10xgenomics.com/
https://archerdx.com/
https://immunarch.com/articles/web_only/v5_gene_usage.html

24 Related Work

Figure 3.8: V-J Gene Distribution with Treemap visualization.

Figure 3.9: V-J Gene Distribution with Spectratyping visualization.

3.1 Privacy-preserving Analyses solutions 25

Figure 3.10: Benchmarking and Feasibility of V-J Gene Distribution.

Each experiment was performed at least three times for averaging. It was noticed a non-

proportional behavior between clonotypes and time to process (see Figure 3.10).

In the Clone Frequency analysis, for determining clone frequencies, immunarch implements

the function repExplore()25 to extract statistics from repertoires (see Figure 3.11), and repClonal-

ity()26 to assess clonal proportions of repertoires (see Figure 3.12):

In terms of feasibility and benchmarking (see Figure 3.13), the Clone Frequency analysis was

slightly more resource-demanding than Gene Usage, and the non-proportional behavior between

samples and time to process was noticed as well.

In the Repertoire Similarity analysis, repertoire overlap is a common approach to measure

similarity. It was achieved by comparing clonotypes shared between give repertoires, also called

"public" clonotypes (see Figure 3.14). It was based on Morisita’s index, that is a statistical measure

of dispersion of "individuals" in a population.

25https://immunarch.com/reference/repExplore.html?q=repexplore.
26https://immunarch.com/reference/repClonality.html?q=repclonality.

Figure 3.11: Clonotypes in order of CDR3 length (left), Abundance of Clonotypes (middle), Num-
ber of Unique clonotypes per Sample (right).

https://immunarch.com/reference/repExplore.html?q=repexplore
https://immunarch.com/reference/repClonality.html?q=repclonality

26 Related Work

Figure 3.12: Most abundant cell clonotypes (left) vs Least prolific clonotypes (right).

Figure 3.13: Benchmarking and Feasibility of Clone Frequency.

3.1 Privacy-preserving Analyses solutions 27

Figure 3.14: Repertoire overlap.

In the Motif extraction analysis, a K-mers based analysis was used to extract motifs from

clonotype sequences (see Figure 3.15). It is possible to do this directly using immunarch by using

the getKmers()27 method.

In terms of feasibility and benchmarking (see Figure 3.16), Motif Extraction demanded more

resources than Gene Usage and Clone Frequency. Like Clone Frequency, a non-proportional be-

havior between samples and time to process was noticed.

All the previous examples were based on previously extracted clonotypes using MiXCR, not

raw sequences.

There are differences in data organization between epidemiology and immunogenetics datasets.

For example, in the OBiBa stack, each dataset is usually one line per subject, while in AIRR Data

Commons datasets, there are millions of sequences per subject (see Figure 3.17).

These differences did not favor Opal’s solution for data storage, since OBiBa’s solution ini-

tially was more focused on epidemiological studies.

The tests performed raised the consideration that processing times can become fairly high even

with modest numbers of samples (on average, 10 samples take about 5 minutes).

Once performance can be further improved, it can be useful to perform tests retrieving data

directly from a iReceptor+ repository, i.e. not using Opal for data storage.

This proposal was suggested before the development of a feature known as "Resources"28,

that we will explore in the proposed solution, and limitations of the use of Opal to data store were

related.

27https://immunarch.com/reference/split_to_kmers.html?q=getkmers#arguments.
28https://github.com/obiba/resourcer.

https://immunarch.com/reference/split_to_kmers.html?q=getkmers#arguments
https://github.com/obiba/resourcer

28 Related Work

Figure 3.15: Example of K-mers analysis based on a k size = 5, including frequency matrix.

Figure 3.16: Benchmarking and Feasibility of Motif Extraction.

Figure 3.17: AIRR Data Commons datasets: millions of sequences per subject.

3.1 Privacy-preserving Analyses solutions 29

Figure 3.18: Resource R package architecture. From OBiBa.org.

3.1.2.3 Resource R

In the beginning of 2020, OBiBa announced a new feature for the Opal/DataSHIELD solution:

the Resource. A Resource, in this context, can represent datasets or computation units which

location is described by a URL and access is protected by credentials. Instead of storing the data

in Opal’s database, the datasets, usually in a non-relational representation, are kept in their original

format and location. These Resources can take on different formats such as database resources, file

resources, computation resources, can be defined in Opal. Opal is also responsible to takes care

of the DataSHIELD permissions and the resources assigned to a R/DataSHIELD session. Once a

DataSHIELD session is defined, it is possible for the researchers to combine different datasets in

their analyses.

The Resource R package (see Figure 3.18) provides access to resources and circumvents some

of Opal’s performance limitations. Resource R will enable connections to several resources.

The Resource R package allows the researchers to deal a wide range of data sources (using

tidyverse, DBI, dplyr, sparklyr, MongoDB, AWS S3, SSH, etc.) and is extensible to new ones.

The Resource R package is extensible and enables to work with specific R data classes, such

as Omics data structure classes. New data types can be created as well. You can see an example

of this extensibility in packages such as dsOmics29 and dsOmicsClient30. Generally speaking, any

data format and storage that can be read by R can be expressed as a resource. Opal works like

a register of these resources, not storing the data itself, but all metadata necessary to access the

resource.

29https://github.com/isglobal-brge/dsOmics.
30https://github.com/isglobal-brge/dsOmicsClient.

https://github.com/isglobal-brge/dsOmics
https://github.com/isglobal-brge/dsOmicsClient

30 Related Work

Figure 3.19: MOLGENIS overview and its modular architecture. From molgenis.org.

3.1.3 The MOLGENIS solution

MOLGENIS31 is a modular web application focused initially on molecular genetics research,

but has grown to other uses, such as patient registries, rare disease research, and biobanking. It

is developed and maintained by the Genomics Coordination Center (GCC), from the University

Medical Center Groningen, Netherlands. MOLGENIS is capable of capturing, exchanging and

exploiting large datasets, and runs on a scalable software infrastructure.

One of the key features is that it has a customizable data system, allowing researchers to

model the data according to their needs. Figure 3.19 depicts MOLGENIS modularity that allows

researchers to use or create extensions modules, such as R and Python scripts, to store and interact

with the data. This enables the researchers to add their own statistical modules to run statistical

analysis, or create plots based on their data within an online environment. MOLGENIS deals with

storing data, and offers filters and fast search capabilities.

MOLGENIS helps the researcher to implement the FAIR principles by providing the following

features:

• Structured Data Management: Model, capture, and manage data. Data can be imported

by forms or data files, such as CSV. Data and metadata modeling can be refined dynamically.

• FAIR Data Sharing: MOLGENIS enables the researcher to create views for their datasets

and variables to the outside world while preventing exposure of (sensitive) data values using

the fine-grained permission system.

31https://molgenis.org/.

https://molgenis.org/

3.1 Privacy-preserving Analyses solutions 31

• Secure Access: MOLGENIS provides controls by group, role and individual access. Au-

thentication can be done using Google two-factor authentication or using SURFconext (Nether-

lands) 32 and BBMRI/ELIXIR AAI (Europe) 33.

• Scripting and Visualisation: Bioinformaticians and researchers can add scripts (e.g. R,

javascript, python) and connect to the data using API’s to add analysis tools and views.

• Harmonization and Integration: MOLGENIS aims to promote interoperability. MOLGE-

NIS offers ’FAIRification’ (the process to make data FAIR) tools to find related data, codify

data contents and transform different tables into one standardized table. It helps to promote

combined analysis, more powerful than running smaller analyses on each dataset separately.

• Task Automation: It is possible to automate data upload, transformation and statistics

scripts. Frequently data from multiple sources must be combined.

• Questionnaires: The questionnaire tool provides chapters, sub questions, advanced valida-

tions, conditional or ’skip’ questions and intermediate save.

• High-Performance Computing: Schedule large scale analysis jobs on a computer cluster.

MOLGENIS does also provide a high-performance computing (HPC) framework that works

with OpenPBS34 and SLURM35.

The MOLGENIS team has developed a DataSHIELD implementation, known as Armadillo,

within the MOLGENIS suite 36 37 38. Like in the OBiBa solution, the "FAIRification" of MOL-

GENIS datasets is achieved by using the DataSHIELD solution.

3.1.4 The GA4GH solutions

The Global Alliance for Genomics and Health (GA4GH) was established in 2013, focused on

discussions about responsible and effective sharing of genomic and clinical data. To support these

premises, the conclusion was that data underlying genomic medicine must be federated. This

hypothesis is anchored on the framework document developed by the GA4GH Regulatory and

Ethics Working Group (REWG), that provides principles and core aspects for responsible data

sharing[5].

The GA4GH Data Working Group (DWG) has developed a standardized API, which offers a

defined protocol to allow disparate technology services of institutions to communicate with each

other to exchange genotypic and phenotypic information.

32https://www.surf.nl/en/surfconext-global-access-with-1-set-of-credentials.
33https://wiki.egi.eu/wiki/Competence_centre_BBMRI.
34https://www.openpbs.org/.
35https://slurm.schedmd.com/.
36https://github.com/molgenis/molgenis-service-armadillo.
37https://github.com/molgenis/molgenis-r-armadillo.
38https://github.com/molgenis/molgenis-r-datashield.

https://www.surf.nl/en/surfconext-global-access-with-1-set-of-credentials
https://wiki.egi.eu/wiki/Competence_centre_BBMRI
https://www.openpbs.org/
https://slurm.schedmd.com/
https://github.com/molgenis/molgenis-service-armadillo
https://github.com/molgenis/molgenis-r-armadillo
https://github.com/molgenis/molgenis-r-datashield

32 Related Work

Figure 3.20: The GA4GH federated ecosystem. From ga4gh.org.

GA4GH members developed several projects using this API and the framework document,

as we can see on Figure 3.20. One of promising projects based on these artifacts is the Beacon

Project39. It is a driver project of the GA4GH and supported through ELIXIR40. ELIXIR is an

european intergovernmental organisation whose goal is to coordinate life science resources, that

include databases, tools, training materials, cloud storage, so that they form a single infrastructure.

The Beacon Project is a web application that allows researchers to query and determine whether

they contain a genetic variant of interest. The solution is capable of answering questions, such as

of the examples below, with a yes/no:

• “Do you have any genomes with an ‘L’ at position ’U’ on chromosome ’M’?”

• "Does this dataset contain an allele ’R’ at ’W’ genomic position?"

The project is being expanded to provide other advanced query options and answers, and some

information retrieved can also be useful alongside additional metadata, including allele frequen-

cies, pathogenicity scores, and phenotypic information associated with the queried allele. These

additional features in the future may include other advanced analyses, such as: identify different

types of genomic variants, e.g. copy number variations (CNVs) or fusion events; flexible vari-

ant queries (e.g. genomic “range queries”); identify clinical and other biological parameters (e.g.

phenotypes, diagnoses, time related data, geodata).

39https://beacon-project.io/.
40https://elixir-europe.org/about-us/commissioned-services/beacons.

https://beacon-project.io/
https://elixir-europe.org/about-us/commissioned-services/beacons

3.1 Privacy-preserving Analyses solutions 33

Figure 3.21: The MME data repositories. From matchmakerexchange.org.

The Beacon protocol was not designed to deliver data beyond the aggregated responses to

Beacon queries. However, extensions of the protocol may provide mechanisms to deliver to other

protocols and services which could provide such additional functionality, preserving constraints

included in the framework document developed by GA4GH.

The Matchmaker Exchange (MME)[13] is a solution more focused on facilitating the discov-

ery and analyses in rare diseases databases. For example, the MME solution helps the researchers

to identify cases with phenotypes and disrupted genes in common.

After consortia established an API, several matchmaker services as we can see on Figure 3.21,

have implemented it. GeneMatcher41, Phenome Central[1], and DECIPHER[4] are some exam-

ples. The Human Phenotype Ontology42 is used to ensure an accurate comparison of patients.

One important aspect is that successful matching increases as the volume of cases through

MME data repositories increases. MME has already led to the diagnosis of several previously

undiscovered rare diseases.

MME helps to find significant correlations, matching in which the genotype aspects of match-

ing can occur by direct query of variants within a VCF that meet certain criteria.

MME is compliant with the GA4GH Regulatory and Ethics Working Group (REWG), so a

mechanism and policy were developed to define the type of consent needed for using MME and

when no consent is needed. For example, if the data are associated with a unique or sensitive

41https://genematcher.org/.
42https://hpo.jax.org/app/.

https://genematcher.org/
https://hpo.jax.org/app/

34 Related Work

phenotype or with sequence-level data, consent from the patient is required to share it for research

purposes. However, if only standard phenotype terms and candidate gene names are used, consent

to clinical care allows for matchmaking. Even so, challenges remain in balancing discovery with

privacy and data protection.

The BRCA Challenge aims to advance the understanding of the genetic basis of breast, ovar-

ian, and other cancers that are driven by germline variants in BRCA1 and BRCA2 (Breast cancer

type 1 or 2 susceptibility protein is a protein that in humans is encoded by the BRCA1/BRCA2

gene). The project’s product is the BRCA Exchange43, a public web portal to access curated,

expert interpretations of BRCA1/2 genetic variants, as well as supporting evidence. Like others

GA4GH projects, BRCA Exchange has a public API44.

Liability concerns faced by federated databases of this kind, such as misclassifications or fail-

ure to regularly validate and update classifications, are permanent discussion topics by BRCA

Exchange team members. It is expected that a variety of issues arise when data must cross multi-

ple domains, such as the aspects that involve patient privacy, individual academic success in gene

discovery, distinct international laws, etc.

The GA4GH highlights that the scalability of all solutions that involve omics data is a big

challenge. It occurs because for every problem there will be domain-specific challenges that may

require uniquely applicable tools.

For instance, GA4GH says that the field of dementia research may demand new solutions

that integrate data from brain Magnetic Resonance Imaging (MRI) technology. Applying existing

GA4GH approaches in new contexts will require solutions that are portable, customizable, and in-

teroperable. GA4GH must also focus on solutions that can benefit many different spectrums, such

as specific patient groups, jurisdictions, health systems, and environmental and socioeconomic

realities.

3.2 Reproducible Bioinformatics Pipeline Tools

Bioinformatics pipeline tools often involve a number of heterogeneous steps, from applying

various command-line tools, such as provided by the Immcantation framework45, combined with

script languages, such as Python, AWK, or R, for the pre-processing, population structure deter-

mination, and repertoire analysis. There is a high diversity of pipeline tools available. A curated

list can be found on "Awesome Pipeline"46.

It is broadly desirable that Bioinformatics pipelines should be modeling in a reproducible

way. Reproducibility enables technical validation and regeneration of results over time. Other

requirements, such as Portability (i.e., ability to run in different platforms), Scalability (i.e., ability

to deploy big distributed workloads), Usability (i.e., minimizing the complexity of deployment

43https://brcaexchange.org/.
44https://brcaexchange.org/about/api.
45https://immcantation.readthedocs.io/en/stable/.
46https://github.com/pditommaso/awesome-pipeline.

https://brcaexchange.org/
https://brcaexchange.org/about/api
https://immcantation.readthedocs.io/en/stable/
https://github.com/pditommaso/awesome-pipeline

3.2 Reproducible Bioinformatics Pipeline Tools 35

Table 3.1: Diversity of Scientific Pipeline Tools.

Group Tools Characteristics
1 Galaxy, Watchdog, KN-

IME
Offer graphical user interfaces for composition and exe-
cution of workflows, smoothing the learning curve and
making it accessible for people with no programming
skills.

2 SCOOP, Ruffus, Pwrake,
Hyperloom, COMPSs,
Jug, Balsam, Anduril,
SciPipe

Workflows are specified using specialized packages
available in script languages such as Scala, Python, and
others. Such systems can be used in server environ-
ments, and that workflows can be managed and easily
shared in version control systems.

3 Snakemake, BioQueue,
Nextflow, Cylic, Bpipe,
BigDataScript, Cluster-
flow

Workflows are specified using Domain Specific Lan-
guages (DSL). It contains all advantages of group 2,
adding the additional benefit of improved readability.
DSL provides annotations that explicitly model central
elements of workflow management, thereby preventing
excessive operators or boilerplate code.

4 Popper Workflows are specified declaratively, using configura-
tion file formats like YAML, particularly readable for
non-developers. These declarative tools share some
benefits with the third group, but the declarative for-
mat can be more restrictive in the processes that can be
expressed.

5 System-independent
workflow specification
languages like CWL and
WDL

These define a standard syntax for describing work-
flows, which can be interpreted and performed by ar-
bitrary runners. Similar to the fourth group, a downside
is that imperative or functional programming is not or
less integrated into the specification language, thereby
limiting the expressive power.

workloads instead of adding new ones), and Consistency (i.e., track changes and revisions con-

sistently for code, config files, and binary dependencies), are also necessary to guarantee a robust

Bioinformatics pipeline.

MOLDER [10] classifies these tools in five groups, listed on Table 3.1. Several of the men-

tioned tools support the full reproducibility of pipelines (e.g., Nextflow47, Snakemake48, Galaxy49)

by enabling the description of each processing step, including all expected inputs and outputs.

Additionally, these tools allow a scalable execution, including deploying the software stack in

container technologies, such as Docker50 and Singularity51.

It is not the purpose of this Section to present an exhaustive comparative list of all pipeline

tools. To summarize, the tools from group 3, including those that have an integration with version

47https://www.nextflow.io/.
48https://snakemake.readthedocs.io/en/stable/.
49https://usegalaxy.org/.
50https://www.docker.com/.
51https://singularity.hpcng.org/.

https://www.nextflow.io/
https://snakemake.readthedocs.io/en/stable/
https://usegalaxy.org/
https://www.docker.com/
https://singularity.hpcng.org/

36 Related Work

control systems, are the most suitable for dealing with bioinformatics pipelines like those used

by the iReceptor+ project (see Section 3.1.1), as such tools allow the needed flexibility in writing

pipelines while providing the requirements of reproducibility, portability, scalability, usability, and

consistency. Of this list, and according to Google Trends52, Nextflow and Snakemake are more

widespread until the present date.

3.3 Summary

This chapter presented known initiatives about privacy-preserving analyses and some previous

related work. Tools to deal with reproducible pipeline tools were also discussed.

52https://trends.google.pt.

https://trends.google.pt/trends/explore?date=today%205-y&q=nextflow,snakemake,clusterflow,cylic,bpipe

Chapter 4

Proposed solution

The proposed solution will suggest a suitable architecture to deal with privacy-preserving anal-

ysis, leveraging the existing solution’s capabilities to deal with Omics data. In Section 4.1 we will

show the main aspects that must be considered, including a proposal to deal with the lack of

information about how the Omics data were generated.

4.1 Requirements

A typical architecture of a solution that adheres to the FAIR principles and is compliant with

the GDPR, must address several questions. The first assumption is that health data repositories

are disorganized, population biased, hard to integrate and search. Furthermore, data needs to be

analyzed together to accomplish statistical power with high diversity in individuals, populations,

and environments, relating each profile to health and disease.

Proceeding, regulations about data-privacy are not ready to deal with secure sharing of data,

especially across countries. When data protection and governance rules discourage centralized

storage, the data cannot be shared. Despite much progress, these data sets are still collected in

clusters: by institution, by disease, by consortium, by country.

Another relevant assumption is that the methods used by institutions to collect cohort data are

heterogeneous. In this way, to use these data in a combined analysis requires the addition of data

descriptors and/or, if necessary, harmonization of these data using research-ready core variables

that use measurements similar enough to be analyzed in unison.

Of the four FAIR Principles, Interoperability is the most difficult to accomplish[16]. There are

many standards emerging, addressing several aspects of Interoperability. Also related to this point,

data in the health sciences are vastly diverse, ranging from those designed for particular-purpose,

to those that are for general-purpose.

Data management requires different privacy levels, including security considerations. For ex-

ample, clinical analyses about genetic mutations in humans are especially sensitive, since involves

37

38 Proposed solution

personal data, while analyses of other species are not. The diversity of models across repositories

and the different level of detail, including (or not) metadata, makes the integration and analysis of

these data a hard effort with low scalability.

Current implementations of privacy-preserving analysis frameworks seem to be limited when

data becomes very large (millions of rows, hundreds of variables). Biological sample data, col-

lected by high-throughput technologies, such as Next Generation Sequencing (NGS), which allows

the sequencing of entire genomes, are examples of this kind of data[9].

The Omics technologies intend to produce a systematic identification of all mRNA (transcrip-

tomics), proteins (proteomics), and metabolites (metabolomics), present in a given biological sam-

ple. In the particular case of Omics data, these data are produced by computational workflows

known as bioinformatics pipelines. The reproducibility of these pipelines is hard and it is often

underestimated. Nevertheless, it is important to generate trust in scientific results, and therefore,

it is fundamental to know how these Omics data were generated or obtained.

AIRR-seq data are mostly private data from patients and, therefore, only privacy-preserving

analyses can be done. Data usage typically goes through ethic boards, requiring data stewards

at given institutions to be confident that data are treated securely from several institutions[2]. A

federated data model enables a data steward to curate, maintain, and share data as appropriate to

the study’s ethics and common agreements, while at the same time having visible control over

who has access to those data[2].

For example, the iReceptor+ project (see Section 3.1.1) aims to follow a distributed, federated

architecture. Their approach is not fully distributed, but intermediately distributed, where repos-

itories are distributed and separately maintained, but are connected by a central resource and/or

share technical service components such as a registry. A distributed data model, although difficult

to support, is critical to the success of research in this area. One of the objectives of iReceptor+ is

to hide the bureaucratic complexities, while empowering AIRR-seq researchers to perform sophis-

ticated, and in many cases, computationally expensive, analyses on federated data from multiple,

distributed repositories[2].

To address some of these challenges, a suitable implementation of a privacy-preserving health

data analysis framework must be designed accurately. The proposed solution aims to identify these

characteristics and generalize existing privacy-preserving analytic capabilities for large/complex

data, including Omics data.

The following list displays questions that must be addressed in designing such a solution:

Privacy-preserving questions

1. How to preserve sensitive data?

2. How to enable non-disclosive analysis in the context of Omics data?

3. How to be adherent to GDPR regulation in a Omics scenario?

Interoperability questions

4.1 Requirements 39

4. How to deal with any type (format) of data?

5. How to avoid a specific solution, or in other words, how to achieve a generic and open

solution?

FAIR and TRUST principles questions

6. How to be adherent to FAIR principles?

7. How to be adherent to TRUST principles?

Omics data questions

8. How to deal with large unstructured data (millions of rows, hundreds of variables), such as

Omics data?

9. How to improve the reproducibility of Bioinformatics Pipelines to generate trust in scientific

results?

Federated architecture questions

10. How to avoid, whenever possible, duplicate data?

11. Do centralized and federated approaches allow institutions the same level of autonomy?

12. How to make institutions autonomous in storing data in a way that non-disclosive collabo-

ration with other partners becomes achievable?

13. How to correlate information between different data sources?

In an initial analysis, we observed that the incorporation of FAIR principles for optimal reuse

of existing data, calls for an approach where sensitive data kept locally and only metadata and

aggregated results being shared. Secondly, since governance rules discourage central pooling, it is

necessary to adopt the federated approach.

INESC TEC is a partner of research consortiums, such as EUCAN-Connect and iReceptor+.

The participation in multiple projects enables the INESC TEC team to suggest solutions that are

not directly involved in the context of a specific consortium. For example, EUCAN-Connect have

partners that are maintainers from the OBiBa solution (see Section 3.1.2) and MOLGENIS solu-

tion (see Section 3.1.3), while iReceptor+ promotes the iReceptor+ platform (see Section 3.1.1).

INESC TEC is not directly involved with the GA4GH project (see Section 3.1.4), so a deep

understanding of its architecture, and even its usage, was not explored in the scope of this disser-

tation. Nevertheless, genomic data sharing initiatives such as GA4GH, can benefit directly from

the DataSHIELD architecture[18].

Non-disclosive analyses (see Section 2.7) is a core aspect of OBiBa and MOLGENIS solu-

tions, who benefit from DataSHIELD (see Section 3.1.2.1) integration. The robustness of the

DataSHIELD solution to deal with non-disclosive analyses cannot be ignored.

40 Proposed solution

Moving forward, the implementation of the Resources feature (see Section 3.1.2.3) by OBiBa

opens new possibilities, such as making non-disclosive analyses using large datasets. The Re-

sources feature was not used in previous tests executed by in Section 3.1.2.2.

INESC TEC also developed the Coral distribution1, that is comprised of a series of Docker

containers, built using images originally created by OBiBa, adapted and customized for ease of

configuration and deployment, which integrates additional features, such as proxy support and

monitoring.

These developments favor the OBiBa solution (using the Coral distribution) in conjunction

with DataSHIELD to leverage the promising results of the distributed privacy-preserving analyses

of Omics data.

Although Omics data can be referred to as resources in the solution we intend to propose,

it is still necessary to understand how such resources were originated and which pipelines and

parameters were used.

The lack of information about how a pipeline was executed and how the outputs were generated

are critical ingredients that can affect the robustness and reliability of an analysis. Another scenario

where reproducibility is crucial is when data sets require auditing to prevent result manipulation.

This is especially critical when this kind of auditing is done by an automated tool.

4.2 Methodology

While understanding the OBiBa solution and DataSHIELD was quite simple, since we devel-

oped the Coral distribution, understanding the Bioinformatics pipelines (see Section 2.2) required

some extra effort and it was necessary to involve other stakeholders.

We purposely requested a complex pipeline example from an iReceptor+ member (related to

the project PRJNA3686232). This pipeline was developed using a set of tools, such as AWK,

IgBlast, Python, and several specialized packages from the Immcantation framework.

In order to run such a pipeline, a virtual machine was made available to install and execute

these tools and execute the required pipeline. The execution takes some time (after several ad-

justments, the entire process takes more than one week), even with a virtual machine with the

following configuration: 8 vCPUs, 20GB memory RAM, and 500GB storage.

After all necessary dependencies were installed successfully, we developed a mind map to

understand the workflow of the processing steps, also taking the opportunity to assimilate some

concepts. This mind map is shown in Figure 4.1.

The development of this mind map gave us some insights, listed below:

• Each step of a typical pipeline receives inputs and produces outputs.

• A step usually manipulates files. Intermediary steps produce intermediary files, and these

files can be useful or not.
1https://coral.inesctec.pt/.
2https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA368623.

https://coral.inesctec.pt/
https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA368623

4.2 Methodology 41

Figure 4.1: A mind map that represents a complex Bioinformatics pipeline.

42 Proposed solution

• The “raw sequences”, or “raw data” are the input for the first step in a pipeline.

• A stage is a set of steps, but there are pipelines without stages. It is an abstract grouping.

• A stage can be ordered, but can exists parallel stages.

• A step can read multiple input files.

• A step can produce multiple output files.

• Some input files can be from external sources, e.g., files related to “germlines” or “primers”.

• Steps are executed following an order, but a step can invoke tools that create multiple pro-

cesses.

• “Loop” operators can appear in a step to create multiple processes.

• A step is composed of commands.

• One command receives parameters or options. These options can affect the command results

and the outputs of a step.

• A command can be a custom script or a command derived from a tool.

• A tool has a version. Different tool versions can produce different outputs.

• The order of command parameters is important.

• The last step usually produces the output files in which researchers are interested for making

analyses.

In summary, the multiple components of a Bioinformatics Pipeline frequently have depen-

dencies on different software run-times, parameters, and, in some instances, different versions of

the same software. Additionally, there are external dependencies that evolve along time, such as

germline reference databases. The pipelines can result in a complex software ecosystem with a lot

of commands, options, and versions.

Having the various processing steps and execution parameters documented in a machine-

readable and relational model format, enables this kind of process to be more consistent, accessi-

ble, robust and reliable.

4.3 Architecture

The proposed solution will use the OBiBa stack (using the Coral distribution3) in conjunction

with DataSHIELD to leverage the promising results for distributed, privacy-preserving analyses

of Omics data.
3https://coral.inesctec.pt/.

https://coral.inesctec.pt/

4.3 Architecture 43

Figure 4.2: Coral Architecture.

44 Proposed solution

Figure 4.3: Deployment Architecture. By DataSHIELD team.

As depicted in Figure 4.2, the Apache container acts as the only entry point for the whole

system. All incoming requests must go through the Apache server acting as a reverse proxy for

Agate, Opal, and Mica. In the context of privacy-preserving analysis of Omics data, Agate and

Mica are not so relevant the Opal and R Server. The Resources are configured in Opal.

The Resource feature (see Section 3.1.2.3) will be a key piece of this architecture. The Re-

source integration can be visualized on Figure 4.3.

In this scenario, each Opal box represents a server where a Coral stack is installed, including

Opal and R Server services, following a federated architecture. Each Opal instance is responsible

for maintaining a list of its own resources.

DataSHIELD is composed by client and server packages. A DataSHIELD server package

(dsBase package4) is installed on the R Server that is integrated with Opal. The dsBaseClient

package5, needs to be installed on the Analyst/Researcher client machine. Both package need to

be used in conjunction to do the analyses.

A recent and relevant development is that since Opal v4.x, the R Server (now called "Rock

Server") can be horizontally scalable6, which means that, as the computation load grows, horizon-

tal scalability will allow the expansion of the number of Rock servers, creating a Rock Cluster.

It is a valuable feature since the execution of all privacy-preserving analysis occurs in the Rock

Cluster.

4https://github.com/datashield/dsBase.
5https://github.com/datashield/dsBaseClient.
6https://rockdoc.obiba.org/en/latest/introduction.html#scalability.

https://github.com/datashield/dsBase
https://github.com/datashield/dsBaseClient
https://rockdoc.obiba.org/en/latest/introduction.html#scalability

4.4 Reproducibility: Relational model 45

Using Resources (see Section 3.1.2.3), it is possible to register the output files of interest,

generated by the Bioinformatics pipelines, i.e., the alignments, clonotypes, receptor files, etc. This

way, it will enable these resources, or datasets, to be used by DataSHIELD in privacy-preserving

analyses.

4.4 Reproducibility: Relational model

After the distress of running the pipeline completely, it was decided to create a model that

would allow documenting the entire pipeline execution process, as well as helping with traceability

and reproducibility. We developed a relational model to represent the execution process. The

insights obtained from the mind map of Figure 4.1 were useful to detail the proposed relational

database schema (see Figure 4.4).

Figure 4.4: Database schema to store the Pipeline’s execution metadata.

Figure 4.4 does not represent the entire model. The focus here is to show the entities related

with the pipeline execution process. This model can be complemented with a more thorough

representation that includes other pre-processing entities, or entities related to the Bioinformatics

itself, such as Organism, Species, Subject, Repertoire. We developed a simplified version contain-

ing these other entities (see the Appendix A). Table 4.1 summarizes a description of each table of

the database schema.

46 Proposed solution

Table 4.1: Reproducibility of a Bioinformatics Pipeline

Entity Usage
DATA_PROCESSING Represents the execution of a pipeline. One Reper-

toire can contains multiple data processing.
READING_TECHNIQUE Represents the technique used to read a fragment.

Usually, it is Single-end or Paired-end.
PROTOCOL Refers to the library preparation protocols used by

the data processing.
GERMLINE_DATABASE Represents the germline provider associated with

the species referred on the subject. E.g.: IMGT,
Homo Sapiens, version x.x.

PROCESSING_STEP Represents a data processing step. E.g.: “Assemble
Data”.

PROCESSING_STAGE Represents a set of processing steps. Filling it is op-
tional.

INPUT_FILES All the necessary input files to execute a processing
step, such as raw sequences, files with primers, etc.

OUTPUT_FILES All the output files generated/manipulated by a pro-
cessing step, such as intermediary files generated by
processing steps, rearrangement files, etc.

COMMAND_PROCESSING_STEP Represents the commands associated with one pro-
cessing step.

COMMAND Represents a command used from a tool. E.g.: Tool
pRESTO, command AlignSets.

COMMAND_OPTION Represents the list of parameters used by a com-
mand in a processing step.

TOOL Represents the Tools used by the Pipelines. E.g.,
Python, pRESTO (parent tool is Python), IgBlast,
MIxCR, AWK, etc.

T_FILE Represents the list of files used/created/manipulated
by the pipeline in each processing step.

FILE_TYPE Defines the types of files used during the pipeline.
E.g.: RAW Data, Primer Data, Rearrangement Data,
other intermediary processing Step Data, etc.

A Data Processing registry can be associated to a Repertoire. Accordingly with the iRecep-

tor+ definition, a Repertoire is an abstract organizational unit of analysis that is defined by the

researcher and consists of study metadata, subject metadata, sample metadata, so on, including a

set of raw sequence files, data processing metadata, and a set of rearrangements7.

The best way to populate or search registers in this database is through a REST API. Once this

is done, the registers can be inserted by the pipelines during the execution (an initial ad hoc way is

to use the curl command8, for example). The development of a REST API will be listed in the Fu-
7https://docs.airr-community.org/en/stable/datarep/metadata.html#.
8https://curl.se/.

https://docs.airr-community.org/en/stable/datarep/metadata.html#
https://curl.se/

4.5 Summary 47

ture Work (see Chapter 6). For now, it was developed a Docker stack with the database configured

to run on PostgreSQL9. More details about this Docker stack can be found on Appendix C.

4.5 Summary

This chapter presented the proposed solution to deal with privacy-preserving analyses using a

federated architecture, leveraging existing solutions to deal with Omics data. A database model

focused in the minimize the reproducibility problem was also proposed.

9https://www.postgresql.org/.

https://www.postgresql.org/

48 Proposed solution

Chapter 5

Implementation

Throughout this chapter, we will demonstrate the execution of a bioinformatics pipeline, which

uses MiXCR and is more straightforward than the one provided by one of the iReceptor+ members

in Section 4.2.

5.1 Introduction

The bioinformatics pipelines will produce some files, such as alignments and clonotypes.

These files are usually used in scientific analyses.

To make such files (or datasets) available for review, we will need to register them as resources

in Opal. The location where the files (or resources) are originally saved does not need to be the

same location where Opal was installed. In Opal, the location of these resources can be referenced

using a Uniform Resource Identifier (URI). These resources can be accessed, for example, through

an HTTPS connection, through the SSH protocol, locally, through the Amazon S3 service, etc.

Once resources have been registered, they will be available for further review.

As discussed in Section 3.1.2.1, the DataSHIELD architecture is composed of two R packages:

dsBase (server) and dsBaseClient (client). The dsBase package needs to be installed on the R

server associated with Opal, while the dsBaseClient is installed on the R environment (usually

RStudio) on the Analyst machine.

In our setup, Opal will simply work as a resource catalog. All the processing interactions will

be carried out by the DataSHIELD packages, i.e., between the R Server and the Analyst machine.

5.2 Setup

It was provided a virtual machine (PIPELINE-SERVER) for the execution of bioinformatics

pipelines. On this server, all pipeline dependencies were installed, such as MiXCR, Python, Java,

and other libraries.

49

50 Implementation

Figure 5.1: Setup configuration using pipeline outputs as resources.

Another server (CORAL-TEST) was used to install the Coral stack, which contains Opal

and R Server running in separated containers (see Section 4.3). The latest versions of dsBase

(DataSHIELD package server) and Resource R package are installed on the R Server during the

deployment process.

The third machine of our setup is the ANALYST-COMPUTER, where RStudio is installed. In

this same environment, it will also be necessary to install the dsBaseClient package, responsible

for establishing the connection with dsBase, installed on the R Server. Figure 5.1 summarizes this

setup.

The Figure 5.1 already shows the files generated by the execution of the pipeline, in the

PIPELINE-SERVER. We will take a look at more details in the next Section.

5.3 Implementation

In our test, we will use a simple pipeline built using MiXCR. The file SRR1033675.fasta

contains the raw sequencing data used in this pipeline. These data are public and can be accessed

in PRJNA2290701. The germline reference can be accessed in imgt.2018-5.sv2.json.gz2.

In the following script, we can see the basic_pipeline.sh. For instance, in the first

step (Process Alignments), we can see the usage of the MiXCR tool, with the command "align",

1https://www.omicsdi.org/dataset/omics_ena_project/PRJNA229070.
2https://github.com/repseqio.

https://www.omicsdi.org/dataset/omics_ena_project/PRJNA229070
https://github.com/repseqio/library-imgt/releases/download/v2/imgt.201802-5.sv2.json.gz
https://github.com/repseqio

5.3 Implementation 51

receiving a param "–library imgt.201802-5", related to the Germline reference database version,

and a param "-s hsa", related to the Homo Sapiens species.

1 #!/bin/bash

2

3 # Process Alignments

4 mixcr align -Xmx16g --verbose -f --library imgt.201802-5 -s hsa -OvParameters.

parameters.absoluteMinScore=25 -OsaveOriginalReads=true ./raw/SRR1033675.fasta

SRR1033675_mixcr_redo.vdjca

5

6 # Assemble Data

7 mixcr assemble -Xmx16g -f SRR1033675_mixcr_redo.vdjca SRR1033675_mixcr_redo.clns

8

9 # Export Assembled Alignments

10 mixcr exportAlignments -Xmx16g -f -c TRB -vHit -dHit -jHit -vGene -dGene -jGene -

vFamily -dFamily -jFamily -vHitScore -dHitScore -jHitScore -nFeature CDR3 -

aaFeature CDR3 -lengthOf CDR3 -readIds -targetSequences -descrsR1

SRR1033675_mixcr_redo.vdjca SRR1033675_mixcr_redo_annotations.txt

11

12 # Export Clonotypes

13 mixcr exportClones -Xmx16g -f -c TRB -targets -vHit -dHit -jHit -cHit -vGene -dGene

-jGene -vGenes -dGenes -jGenes -vFamily -dFamily -jFamily -vHitScore -

dHitScore -jHitScore -cHitScore -vAlignment -dAlignment -jAlignment -cAlignment

-nFeature CDR3 -aaFeature CDR3 -lengthOf CDR3 -cloneId -count -fraction -

targetSequences -defaultAnchorPoints SRR1033675_mixcr_redo.clns

SRR1033675_mixcr_redo_clones.txt

Listing 5.1: MiXCR pipeline basic example.

This pipeline will produce four output files, being two intermediary files (with extensions

.clns and .vdcja) and two final output files, SRR1033675_mixcr_redo_annotations.txt

(refers to the alignment sequences) and SRR1033675_mixcr_redo_clones.txt (refers to

the clonotypes).

The relational model that we created can accommodate the traceability of this example very

well. For instance, we can see the result of a simulated tracking execution in Appendix B. In

an ideal scenario, the filling process of this tracking execution should be automated, i.e., without

human intervention. It should be possible by using reproducible tools, such as the ones listed in

Section 3.2. Therefore, the proposed relational model helps to organize and structure the script

according to the domain entities described on the database schema but does not replace the usage

necessity of reproducible tools. The proposed relational model is a complementary approach to

enhance the reproducibility and traceability of bioinformatics pipelines.

After this pipeline is executed, we can register the output target files as resources in Opal (see

Figure 5.3).

We define a resource to be a data file. A registered resource will have the following properties

52 Implementation

Figure 5.2: Resource properties on Opal.

(see Figure 5.2): the location of the data file; the data format; the access credentials (if appli-

cable). The resource location description will use the Uniform Resource Identifier (URI); more

specifically, the Uniform Resource Locator (URL). The URL syntax is composed of several parts:

• A scheme that describes how to access the Resource, e.g., HTTPS, SSH, or “s3” (for access-

ing Amazon Web Service S3 file store services),

• An authority (optional), e.g., a server name address,

• A path to identify the location of the Resource hierarchically.

The Resource’s credentials property can be used for authenticating with a username/password, or

an access token or any other credentials encoded string. The advantage of separating the creden-

tials property from the resource location property is that a user with limited permissions could

access the Resource’s location information while the credentials are kept secret.

Once a resource has been formally defined, it should be possible to programmatically build a

connection object that will use the data described.

5.3 Implementation 53

Figure 5.3: Alignments and Clones datasets registered as resources in Opal software.

Opal can register access to different types of resources, including different formats, such as

CSV, TSV, R data, SQL, tiddy files. The Resources and DataSHIELD help to promote a federated

architecture, avoiding duplicated data in different research centers.

With the resources registered, it is time to configure an R script in RStudio to access these

resources and make them available for analyses using DataSHIELD or even more specialized

packages, such as dsOmicsClient3.

1 # Install packages

2 install.packages("DSOpal", dependencies = TRUE)

3 install.packages("dsBaseClient", repos = c("https://cloud.r-project.org", "https://

cran.obiba.org"), dependencies = TRUE)

4

5 # Load libraries

6 library(DSOpal)

7 library(dsBaseClient)

8

9 # Opal Connection

10 builder <- newDSLoginBuilder()

11

12 builder$append(server = "study1", url = "https://coral-test/repo",

13 user = "administrator", password = "XXXXXXXXXXX",

14 resource = "OmicsProject.SRR1033675_annotations",

15 driver = "OpalDriver")

16

17 logindata <- builder$build()

18 conns <- datashield.login(logins = logindata, assign = TRUE,

19 symbol = "res")

20

3https://htmlpreview.github.io.

https://htmlpreview.github.io/?https://github.com/isglobal-brge/dsOmicsClient/blob/master/vignettes/dsOmics.html

54 Implementation

21 #Annotations

22 datashield.assign.expr(conns, symbol = "annotations",

23 expr = quote(as.resource.data.frame(res)))

24

25 #Clones

26 datashield.assign.resource(conns, symbol = "res.clones",

27 resource = list(

28 study1 = "OmicsProject.SRR1033675_clones"

29))

30 datashield.assign.expr(conns, symbol = "clones",

31 expr = quote(as.resource.data.frame(res.clones)))

32

33 ds.ls()

34 ds.colnames("annotations")

35 ds.colnames("clones")

Listing 5.2: Basic R script to access the resources.

The output of ds.ls(), ds.colnames("annotations"), and ds.colnames("clones") can be viewed

as follows:

1 > ds.ls()

2 Aggregated (lsDS(search.filter = NULL, 1L))

[==] 100% / 1s

3 $study1

4 $study1$environment.searched

5 [1] "R_GlobalEnv"

6

7 $study1$objects.found

8 [1] "annotations" "clones" "res" "res.clones"

9

10 > ds.colnames("annotations")

11 Aggregated (exists("annotations"))

[===] 100% / 1s

12 Aggregated (classDS("annotations"))

[==] 100% / 0s

13 Aggregated (colnamesDS("annotations"))

[===] 100% / 1s

14 $study1

15 [1] "bestVHit" "bestDHit" "bestJHit" "bestVGene" "

bestDGene" "bestJGene" "bestVFamily" "bestDFamily" "

bestJFamily" "bestVHitScore"

16 [11] "bestDHitScore" "bestJHitScore" "nSeqCDR3" "aaSeqCDR3" "

lengthOfCDR3" "readId" "targetSequences" "descrsR1"

17

18 > ds.colnames("clones")

19 Aggregated (exists("clones"))

[==] 100% / 1s

5.3 Implementation 55

20 Aggregated (classDS("clones"))

[===] 100% / 0s

21 Aggregated (colnamesDS("clones"))

[==] 100% / 0s

22 $study1

23 [1] "numberOfTargets" "bestVHit" "bestDHit" "bestJHit" "

bestCHit" "bestVGene" "bestDGene" "bestJGene" "

allVGenes" "allDGenes"

24 [11] "allJGenes" "bestVFamily" "bestDFamily" "bestJFamily" "

bestVHitScore" "bestDHitScore" "bestJHitScore" "bestCHitScore" "

bestVAlignment" "bestDAlignment"

25 [21] "bestJAlignment" "bestCAlignment" "nSeqCDR3" "aaSeqCDR3" "

lengthOfCDR3" "cloneId" "cloneCount" "cloneFraction" "

targetSequences" "refPoints"

Listing 5.3: Output of the R script.

The function datashield.assign.expr is responsible for accessing the resource iden-

tified on the builder object. Once executed, this command will be interpreted by the dsBase

package, installed on R Server from CORAL-TEST. In sequence, dsBase will parse the resource

name and request from Opal all the resource information, including location, format, and creden-

tials.

After that, R Server will establish a connection with the PIPELINE-SERVER and copy the

file related to the resource to a temporary and protected folder on R Server, i.e., the R Server will

copy the file to the same R Server machine. It is not a security problem since the credentials

to access the resources are defined in Opal, allowing access to that data. On the other hand, it

can be a legal problem if the Opal and R Server run in a location subordinate to different privacy

regulations, when compared with the associated resource. Therefore, it is a good practice to have

a Coral environment (or an Opal/R Server) installed on a location where the data owner is also

responsible, e.g., if the data owner is a research center, this same research center should have a

Coral environment, with their resources registered there. This will not be a problem because Opal

and DataSHIELD are fully compatible with a federated setting.

Depending on the size of the file that represents the resource, the copying process can take

some time, but it will occur once time per active R Session (an R Session can be saved to be used

later).

The technical advantage of having the file associated to the resource available at the same

machine (or container) on the R Server is the performance. The content of these files can be

quickly loaded on memory and transformed into R-specific data structures, such as data frames.

So, the Opal performance problems, mentioned in Section 3.1.2.2, are effectively minimized in

this architecture.

Establishing connections to others Opal instances is also possible, i.e., the researchers can

access resources from different locations, keeping the privacy-preserving analyses constraints.

56 Implementation

Figure 5.4: ADC API endpoints.

There are many DataSHIELD commands available4. Nevertheless, the usage of specific packages

to deal with Omics analysis should be necessary. An example of the extensibility of DataSHIELD

is the dsOmics package5. This package provides facilities, such as transcriptomic, epigenomic,

and genomic data analyses. A detailed tutorial is available6.

The usage of other packages for specific repertoires analyses, such as Immunarch7 or Alakazam8

depends, at first, on adapting them so that they work according to the DataSHIELD architecture

and disclosure control rules. For instance, the "DataSHIELD-like" wrapper for Immunarch9 10

used in Section 3.1.2.2 does not have disclosure control rules and it was used only to support a

proof of concept.

5.3.1 Evaluating the Resources to access AIRR-Rearrangement data

The AIRR Standards11, maintained by AIRR Community, provides specifications about data

representations, including Repertoire, Rearrangement, Alignment (experimental), Clonal and Lin-

eage Tree (experimental) and Cell data (experimental). These specifications define how the ADC

API[12] works. The ADC API provides a list of endpoints[12], as shown on Figure 5.4.

Some AIRR repositories are currently adhering to AIRR Data Commons (ADC), such as the

iReceptor Turnkey. We have a test environment with iReceptor Turnkey and ADC API available.

In the context of the iReceptor+ project, this API specifies how data generated by pipelines are

organized and how they can be retrieved to perform analyses. As we can see on Figure 5.4, if

we want to make queries in rearrangements data, we need to use a POST HTTP method in the

endpoint /v1/rearrangement. Upon success, it will return a list of Rearrangements in JSON

or TSV format according to the AIRR Data Model. Filters can also be applied. An example of

this request can be viewed on Figure 5.5.

4https://cran.datashield.org/web/.
5https://github.com/isglobal-brge/dsOmics.
6https://htmlpreview.github.io/?https://github.com/isglobal-brge/dsOmicsClient/blob/master/vignettes/dsOmics.

html.
7https://immunarch.com/.
8https://alakazam.readthedocs.io/en/stable/.
9https://gitlab.inesctec.pt/ireceptorplus/r-projects/dsimmunarch

10https://gitlab.inesctec.pt/ireceptorplus/r-projects/dsimmunarchclient.
11https://docs.airr-community.org/en/stable/index.html

https://cran.datashield.org/web/
https://github.com/isglobal-brge/dsOmics
https://htmlpreview.github.io/?https://github.com/isglobal-brge/dsOmicsClient/blob/master/vignettes/dsOmics.html
https://htmlpreview.github.io/?https://github.com/isglobal-brge/dsOmicsClient/blob/master/vignettes/dsOmics.html
https://immunarch.com/
https://alakazam.readthedocs.io/en/stable/
https://gitlab.inesctec.pt/ireceptorplus/r-projects/dsimmunarch
https://gitlab.inesctec.pt/ireceptorplus/r-projects/dsimmunarchclient
https://docs.airr-community.org/en/stable/index.html

5.3 Implementation 57

Figure 5.5: An example of HTTP request to the v1/rearrangement endpoint.

Resources also provide a mechanism to retrieve data files using HTTPS and TSV format (see

an example on Figure 5.6) but, instead of using the POST method, Resources uses the GET

method. Additionally, Resources are not able to receive filter information on the Body Request.

This is a typical situation where we need to design a custom resource connector. First, this

connector should be initiated with the URL to the desired endpoint and credentials. Then the

implementation of the connection will send a POST request with the appropriate body and headers

and will handle the response content (the TSV data) to make it available for further analysis. Such

a custom resource connector is not yet available.

5.3.2 Accessing the pipeline execution metadata

The pipeline execution metadata, in our simulated scenario, should contain the registers ac-

cording to Appendix B.

If an Analyst wants to check this information, he/she can simply access the data registered

on the pipeline execution database. By convention, the name of the resources can be the same as

the data file. Then, this name can be used in a SELECT statement to retrieve all the information

related to the pipeline that generate that file. The script below is a simple example of how to

configure a PostgreSQL connection on RStudio:

1 # Install the latest RPostgres release from CRAN:

2 install.packages("RPostgres")

3

58 Implementation

Figure 5.6: A Resource of the HTTP category.

4 # Connect to the default postgres database

5 con <- dbConnect(RPostgres::Postgres(),dbname = ’SEQUENCING_PIPELINE’,

6 host = ’XXX.XXX.XXX.XXX’,

7 port = 5432,

8 user = ’XXX’,

9 password = ’XXX’)

10

11 dbListTables(con)

12

13 dbListFields(con, "t_file")

14 dbReadTable(con, "t_file")

15

16 # You can fetch all results:

17 res <- dbSendQuery(con, "SELECT * FROM t_file")

18 dbFetch(res)

19 dbClearResult(res)

Listing 5.4: Example of how to access a PostgreSQL database on R.

Moreover, a database table (or a materialized view with custom queries) can also be registered

as a resource, so all these data can be accessed through RStudio as a resource and transformed into

R data frames.

The step_order field in PROCESSING STEP table, together with the command_line

field in the COMMAND PROCESSING STEP table and other auxiliary tables, allow assembling

a pipeline script easily, making the pipelines traceable.

Having the various processing steps and execution parameters documented in a machine-

readable and relational model format, enables this kind of process to be more auditable, consistent,

accessible, robust and reliable. These requirements, in the context of ADC API, are important,

5.4 Summary 59

since the endpoint /v1/repertoire (see Figure 5.4) shows part of this information for each

repertoire. Nevertheless, as we mentioned, this model alone does not guarantee a full reproducible

ecosystem.

5.4 Summary

This chapter presented an example of the implementation of the proposed solution using a

basic pipeline example to generate target datasets to be used in future analyses. We also presented

a way to access the stored data on the proposed database that deals with reproducibility.

60 Implementation

Chapter 6

Conclusions and Future Work

Privacy-preserving analyses across federated data repositories is a paramount requirement in

health research. Indeed, there are many recent articles whose central aspect involves this topic.

On the other hand, Omics data, even if they are related to the health area, have their own

characteristics: they are large, poorly structured, and do not have evident labels that identify them.

Making an analogy, while in computation, we only need two characters (0 and 1) to represent the

entire computational ecosystem, we also need a few primary characters in Omics data to represent

biological samples. Still, such data is also highly sensitive, and privacy concerns should also be

applied. Not just, the analysis of this kind of data can show researchers a path to many scientific

conclusions.

We started this work by defining our motivation and objectives. The requirements for our

proposed solution were further described in Section 4.1. The requirements were met with the

adoption of Coral Distribution, which includes the Opal DataSHIELD and Resources feature. The

proposed relation model enhances the reproducibility but does not replace existing reproducible

Bioinformatics pipeline tools. Indeed, further work is needed to evaluate the incorporation of this

model into existing reproducible pipeline tools.

6.1 Results

We evaluated that the proposed solution (see Section 4.3) worked as expected in the scenario

of privacy-preserving analyses for Omics data. Adjustments were necessary on the Apache Server

provided by the Coral distribution to deal with the upload of large files.

The files referenced as resources are copied to a temporary folder on the R Server machine

during the analyses, which can cause a legal problem if the Opal and R Server run in a location

subordinate to different privacy regulations, when compared with the associated resource. There-

fore, a workaround is to have a Coral environment (or an Opal/R Server) installed on a location

where the data owner is also responsible and registers the resources in this installation.

61

62 Conclusions and Future Work

The Resources feature is not fully compatible with the ADC API, but it is possible to develop

a custom resource connector to directly enable access to AIRR-Rearrangement data.

The proposed reproducible relation model can afford the traceability of bioinformatics pipelines

very well, but this model alone does not guarantee a full reproducible ecosystem, since it does not

solve the platform isolation problem. It can only be guaranteed when combining reproducible

tools that offer built-in support for containers, such as Nextflow or Snakemake, and a set of values

and good practices. Some of these best practices were cited by Di Tommaso[3]:

• Publish your pipeline project from day one on a version control system, such as GitHub, to

manage pipeline revisions;

• Create a small dataset to test your scripts quickly and include it as default data in your

project;

• Use a Continuous Integration server (e.g., GitLab, Travis) to test any change timely;

• Isolate the pipeline tools using container technology, such as Docker. The support for con-

tainer runtimes is a practical way to guarantee the execution of the stack in the same envi-

ronment, also enabling the portability and facilitating scalability;

• Join a community to collect, improve and discuss pipelines[7]. A standout community can

be seen in nf-core1;

• Preferably, choose reproducible tools that are command-line oriented, in order to accommo-

date the migration of existing bioinformatics pipelines.

6.2 Future Work

Although we have analyzed several scenarios involving privacy-preserving analyses and pipelines

reproducibility, we did not have time to setup and test all the desired functionalities.

Mainly, we are interested in adapting the basic pipeline presented in Section 5.3 to run across

some reproducible tools. From the options listed in Section 3.2, Nextflow seemingly allows fast

prototyping and steps declarations. It promotes a Domain Specific Language (DSL) with a declar-

ative reactive programming approach based on functional composition. The parallelization steps

are implicitly defined by inputs and outputs declarations.

The suggested reproducible database (see Appendix A) should be accessible through an API.

We can use a framework, such as LoopBack2, to build this API. We can extend Nextflow to fill the

relational database while the pipeline is executed.

While we were evaluating the Resources to access AIRR-Rearrangement data (see Section 5.3.1),

we noticed that it is necessary to design a custom resource connector. Accordingly to the main

1https://nf-co.re/
2https://loopback.io/

https://nf-co.re/
https://loopback.io/

6.2 Future Work 63

developer of Resources, it should be possible by implementing the POST request in plain R, us-

ing the httr package3. Then this code can be wrapped in a ResourceClient4 subclass (from the

resources package). Finally, an R package should be created with this code and deployed in the R

server.

We didn’t have time to perform analyses on the datasets from the presented example. The us-

age of other packages for specific repertoires analyses, such as Immunarch or Alakazam, depends,

at first, on adapting them to work according to the DataSHIELD architecture and disclosure control

rules. At first, not all types of analyses can be non-disclosed. It is necessary evaluate if existing

analyses have the potential to expose privacy data. A good example of a specialized package

adherent with DataSHIELD architecture is dsOmics5.

Lastly, we also would like to evaluate the performance of a Rock Cluster6, a recent and rel-

evant development feature, and how it works with Resources. Unfortunately, its benefits remain

theoretical, since we didn’t have time to evaluate it.

There is a long way to go towards in direction to the incorporation of privacy-preserving anal-

yses for Omics data. Though regulations and principles, such as GDPR, FAIR, and TRUST guide

the development of solutions to deal with sensitive data at the same time promote mechanisms

to improve scientific research, many challenges are remaining. Interoperability, Scalability, Re-

producibility are examples of challenging requirements that rarely are addressed. In the context

of bioinformatics pipelines, the raw data and the list of tools used in the workflow could not be

enough to guarantee the reproducibility of the results. Indeed, different releases of the same tools

or the system libraries might lead to sneaky reproducibility issues.

Additionally, the sharing of raw data should be avoided in the context of privacy-preserving.

Existing reproducible tools allow users to create reproducible pipelines, but the flexibility of the

metalanguage offered by these tools can make their utilization difficult for users without advanced

programming skills. Novel approaches can appear in the following years, and we expect that the

present work collaborates to seed new discussions.

3https://cran.r-project.org/web/packages/httr/vignettes/quickstart.html
4https://rdrr.io/github/obiba/resourcer/man/ResourceClient.html
5https://htmlpreview.github.io.
6https://rockdoc.obiba.org/en/latest/introduction.html#scalability

https://cran.r-project.org/web/packages/httr/vignettes/quickstart.html
https://rdrr.io/github/obiba/resourcer/man/ResourceClient.html
https://htmlpreview.github.io/?https://github.com/isglobal-brge/dsOmicsClient/blob/master/vignettes/dsOmics.html
https://rockdoc.obiba.org/en/latest/introduction.html#scalability

64 Conclusions and Future Work

References

[1] O. J. Buske, M. Girdea, S. Dumitriu, B. Gallinger, T. Hartley, H. Trang, A. Misyura, T. Fried-
man, C. Beaulieu, W. P. Bone, A. E. Links, N. L. Washington, M. A. Haendel, P. N. Robinson,
C. F. Boerkoel, D. Adams, W. A. Gahl, K. M. Boycott, and M. & Brudno. Phenomecentral:
A portal for phenotypic and genotypic matchmaking of patients with rare genetic diseases.
Human Mutation, 1(1), July 2015.

[2] B. D. Corrie, N. Marthandan, B. Zimonja, J. Jaglale, Y. Zhou, E. Barr, N. Knoetze, F. M. W.
Breden, S. Christley, J. K. Scott, L. G. Cowell, and F. & Breden. ireceptor: A platform for
querying and analyzing antibody/b-cell and t-cell receptor repertoire data across federated
repositories. Blackwell Publishing Ltd, 284(1), June 2018.

[3] et al. Di Tommaso, Paolo. Nextflow enables reproducible computational workflows. Nature
Biotechnology, 35(4), April 2017.

[4] H. V. Firth, S. M. Richards, A. P. Bevan, S. Clayton, M. Corpas, D. Rajan, S. Van Vooren,
Y. Moreau, and N. P. Pettett, R. M. & Carter. Decipher: Database of chromosomal imbalance
and phenotype in humans using ensembl resources. American Journal of Human Genetics,
1(1), April 2009.

[5] The Global Alliance for Genomics and Health. A federated ecosystem for sharing genomic,
clinical data. American Association for the Advancement of Science, 352(1), June 2016.

[6] K. Imkeller, P. F. Arndt, H. Wardemann, and C. E. & Busse. scireptor: Analysis of single-cell
level immunoglobulin repertoires. BMC Bioinformatics, 1(1), June 2016.

[7] N. Kulkarni, L. Alessandrì, and R. et al. Panero. Reproducible bioinformatics project: a
community for reproducible bioinformatics analysis pipelines. BMC Bioinformatics, 19,
October 2018.

[8] D. Lin, J. Crabtree, I. Dillo, R. R. Downs, R. Edmunds, D. Giaretta, M. De Giusti, H. L’hours,
W. Hugo, R. Jenkyns, V. Khodiyar, and M. E. et al Martone. The tRUSt principles for digital
repositories. Scientific Data, 1(1), May 2020.

[9] B. B. Misra, C. Langefeld, M. Olivier, and L. A. & Cox. Integrated omics: tools, advances
and future approaches. Journal of Molecular Endocrinology, 62(1), January 2019.

[10] F. Mölder, K.P. Jablonski, B. Letcher, and et al. Sustainable data analysis with Snakemake.
F1000Research, 1(2), April 2021.

[11] V. I. Nazarov, M. V. Pogorelyy, E. A. Komech, I. V. Zvyagin, D. A. Bolotin, M. Shugay,
D. M. Chudakov, Y. B. Lebedev, and I. Z. Mamedov. tcR: an R package for T cell receptor
repertoire advanced data analysis. BMC Bioinformatics, 16(1), May 2015.

65

66 REFERENCES

[12] Tuan Pham, Jason J Jung, Ernesto Satoshi Nakayasu, Scott Christley, Ademar Aguiar,
George Blanck, Felix Breden, Syed Ahmad, Chan Bukhari, Christian E Busse, Jerome
Jaglale, Srilakshmy L Harikrishnan, Uri Laserson, Bjoern Peters, Artur Rocha, Chaim A
Schramm, Sarah Taylor, Jason Anthony, Vander Heiden, Bojan Zimonja, Corey T Watson,
Brian Corrie, and Lindsay G Cowell. Article 22 LG (2020) The ADC API: A Web API for
the Programmatic Query of the AIRR Data Commons. Front. Big Data, 3:22, June 2020.

[13] A. A. Philippakis, D. R. Azzariti, S. Beltran, A. J. Brookes, C. A. Brownstein, M. Brudno,
H. G. Brunner, O. J. Buske, K. Carey, C. Doll, S. Dumitriu, S. O. M. Dyke, J. T. den Dunnen,
H. V. Firth, R. A. Gibbs, M. Girdea, M. A. Gonzalez, M.and Haendel, A. Hamosh, and H. L.
Rehm. The matchmaker exchange: A platform for rare disease gene discovery. Human
Mutation, 352(1), August 2015.

[14] Somak Roy, Christopher Coldren, Arivarasan Karunamurthy, Nefize S Kip, Eric W Klee,
Stephen E Lincoln, Annette Leon, Mrudula Pullambhatla, and et al. Robyn Temple-
Smolkin. Standards and Guidelines for Validating Next-Generation Sequencing Bioinfor-
matics Pipelines. Monica The Journal of Molecular Diagnostics, 20(1), January 2018.

[15] J. M. M. Rumbold and B. Pierscionek. The effect of the general data protection regulation
on medical research. Journal of Medical Internet Research, 19(2), Feb 2017.

[16] M.D. Wilkinson, M. Dumontier, I.J. Aalbersberg, G. Appleton, M. Axton, A. Baak,
N. Blomberg, J.W. Boiten, L.B. da Silva Santos, P.E. Bourne, and J. Bouwman. The
FAIR Guiding Principles for scientific data management and stewardship. Scientific Data,
3(1):160018, March 2016.

[17] R.C. Wilson, O.W. Butters, D. Avraam, J. Baker, J.A. Tedds, A. Turner, M. Murtagh, and
P.R. Burton. DataSHIELD – New Directions and Dimensions. Data Science Journal, 16,
April 2017.

[18] Marcon Y., Bishop T., Avraam D., Escriba-Montagut X., Ryser-Welch P., and et al.
Wheater S. Orchestrating privacy-protected big data analyses of data from different resources
with R and DataSHIELD. PLoS Comput Biol, 17, March 2021.

[19] Maryam B Yassai, Yuri N Naumov, Elena N Naumova, and Jack Gorski. A clonotype nomen-
clature for T cell receptors. Immunogenetics, 1(1), July 2009.

Appendix A

Reproducibility: Relational model

This is a simplified version of a relational database model that includes entities related to the

Bioinformatics domain and the Pipeline execution process domain.

Some entities were inspired in the AIRR Data Model1, from AIRR Community. Still, it does

not represent a definitive model, since we need to improve our domain-specific knowledge of

Bioinformatics.

1https://docs.airr-community.org/en/latest/datarep/overview.html#relationship-between-schema-objects.

67

https://docs.airr-community.org/en/latest/datarep/overview.html#relationship-between-schema-objects

68 Reproducibility: Relational model

Figure A.1: Reproducibility - Relational model.

Appendix B

Registers generated in a simulated
pipeline execution

This is the result of a simulated tracking execution of the pipeline presented on Section 5.3. In

an ideal scenario, the filling process of this tracking execution should be automated, i.e., without

human intervention.

The proposed relation model is a complementary approach to enhance the reproducibility and

traceability of pipelines and does not replace all functions of reproducible bioinformatics pipeline

tools.

Table B.1: Data Processing Registers.

DATA_PROCESSING
data_processing_id repertoire_id ...
1

69

70 Registers generated in a simulated pipeline execution

Table B.2: Processing Step Registers.

PROCESSING_STEP
processing_step_id data_processing_id description step_order
1 1 Process Alignments 1
2 1 Assemble Data 2
3 1 Export Assembled Data 3
4 1 Export Clonotypes 4

Table B.3: File Type Registers.

FILE_TYPE
file_type_id type
1 Raw Sequences
2 Alignment Data
3 Assembled Data
4 Rearrangement Data
5 Clonotype Data
6 Germline reference Data

Table B.4: File Registers.

T_FILE
t_file_id file_type_id file_name
1 1 SRR1033675.fasta
2 2 SRR1033675_mixcr_redo.vdjca
3 6 imgt.2018025.sv2.json
4 3 SRR1033675_mixcr_redo.clns
5 4 SRR1033675_mixcr_redo_annotations.txt
6 5 SRR1033675_mixcr_redo_clones.txt

Table B.5: Input Files Registers.

INPUT_FILES
processing_step_id t_file_id
1 1
1 3
2 2
3 2
4 4

Table B.6: Output Files Registers.

OUTPUT_FILES
processing_step_id t_file_id
1 2
2 3
3 4
4 5

Registers generated in a simulated pipeline execution 71

Table B.7: Tool Registers.

TOOL
tool_id name version
1 MiXCR 3.0.13

Table B.8: Command Registers.

COMMAND
command_id tool_id description
1 1 align
2 1 assemble
3 1 exportAlignments
4 1 exportClones

Table B.9: Command Processing Step Registers.

COMMAND_PROCESSING_STEP
command_
processing_
step_id

processing_
step_id

command_id command_line step_order

1 1 1 <entire command line> 1
2 2 2 ... 2
3 3 3 ... 3
4 4 4 ... 4

Table B.10: Command Option Registers.

COMMAND_OPTION
command_
option_id

command_
processing_
step_id

option_order description

1 1 1 -Xmx16g
2 1 2 –verbose
3 1 3 -f
4 1 4 –library img.201802-5
5 1 5 -s hsa
...

72 Registers generated in a simulated pipeline execution

Appendix C

Docker stack for the database pipeline

To run this Docker stack, it is necessary to configure Docker and Docker-Compose1. It is

composed by two services: a PostgreSQL database and an administrator client (adminer). After

the stack is installed, the administrator client can be accessed on port 8080.

docker-compose.yml

1 version: ’3.7’

2

3 services:

4 db:

5 image: postgres

6 restart: always

7 environment:

8 - POSTGRES_USER=admin

9 - POSTGRES_PASSWORD=admin_pwd

10 - POSTGRES_DB=SEQUENCING_PIPELINE

11 ports:

12 - 5432:5432

13 volumes:

14 - db_data:/var/lib/postgresql/data

15 - ./ddl.sql:/docker-entrypoint-initdb.d/ddl.sql

16 networks:

17 - net

18

19 adminer:

20 image: adminer

21 restart: always

22 ports:

23 - 8080:8080

24 networks:

25 - net

26

27 volumes:

1https://docs.docker.com/compose/.

73

https://docs.docker.com/compose/

74 Docker stack for the database pipeline

28 db_data:

29 labels:

30 system: "SEQUENCING_PIPELINE"

31

32 networks:

33 net:

34 name: db_net

35 driver: overlay

36 attachable: true

Listing C.1: Docker-Compose to deploy the suggested database model.

In the same folder, it is necessary to create an SQL file like below:

ddl.sql

1

2

3 CREATE TABLE FILE_TYPE (

4 file_type_id serial PRIMARY KEY,

5 type VARCHAR (255) UNIQUE NOT NULL

6);

7

8 CREATE TABLE T_FILE (

9 t_file_id serial PRIMARY KEY,

10 file_type_id INT NOT NULL,

11 file_name VARCHAR (255) NOT NULL,

12 location TEXT NULL,

13 format VARCHAR (255) NOT NULL,

14 description VARCHAR (255) NOT NULL,

15 FOREIGN KEY (file_type_id) REFERENCES FILE_TYPE (file_type_id)

16);

17

18 CREATE TABLE PROCESSING_STAGE (

19 processing_stage_id serial PRIMARY KEY,

20 stage_order INT NULL,

21 description VARCHAR (255) NULL

22);

23

24

25 CREATE TABLE TOOL (

26 tool_id serial PRIMARY KEY,

27 parent_tool_id INT NULL,

28 name VARCHAR (255) UNIQUE NOT NULL,

29 version VARCHAR (255),

30 description VARCHAR (255),

31 doc_reference VARCHAR (255),

32 FOREIGN KEY (parent_tool_id) REFERENCES TOOL (tool_id)

Docker stack for the database pipeline 75

33);

34

35 CREATE TABLE COMMAND (

36 command_id serial PRIMARY KEY,

37 tool_id INT NOT NULL,

38 description VARCHAR (255),

39 doc_reference VARCHAR (255),

40 FOREIGN KEY (tool_id) REFERENCES TOOL (tool_id)

41);

42

43

44 CREATE TABLE READING_TECHNIQUE (

45 reading_technique_id serial PRIMARY KEY,

46 technique_name VARCHAR (255) NOT NULL

47);

48

49 CREATE TABLE PROTOCOL (

50 protocol_id serial PRIMARY KEY,

51 description VARCHAR (255) NOT NULL

52);

53

54 CREATE TABLE LABORATORY (

55 laboratory_id serial PRIMARY KEY,

56 name VARCHAR (255) NOT NULL,

57 address VARCHAR (255) NOT NULL

58);

59

60 CREATE TABLE STUDY_TYPE (

61 study_type_id serial PRIMARY KEY,

62 description VARCHAR (255) NOT NULL,

63 identifier VARCHAR (255) NULL

64);

65

66 CREATE TABLE STUDY (

67 study_id serial PRIMARY KEY,

68 study_type_id INT NOT NULL,

69 title VARCHAR (255) NOT NULL,

70 description VARCHAR (255) NOT NULL,

71 FOREIGN KEY (study_type_id) REFERENCES STUDY_TYPE (study_type_id)

72);

73

74 CREATE TABLE LABORATORY_STUDY (

75 laboratory_id INT NOT NULL,

76 study_id INT NOT NULL,

77 collected_by VARCHAR (255) NULL,

78 submitted_by VARCHAR (255) NULL,

79 pub_ids VARCHAR (255) NULL,

80 PRIMARY KEY (laboratory_id, study_id),

81 FOREIGN KEY (laboratory_id) REFERENCES LABORATORY (laboratory_id),

76 Docker stack for the database pipeline

82 FOREIGN KEY (study_id) REFERENCES STUDY (study_id)

83);

84

85 CREATE TABLE KEYWORD_STUDY (

86 keyword_study_id serial PRIMARY KEY,

87 study_id INT NOT NULL,

88 keyword VARCHAR (255) NOT NULL,

89 FOREIGN KEY (study_id) REFERENCES STUDY (study_id)

90);

91

92 CREATE TABLE ORGANISM (

93 organism_id serial PRIMARY KEY,

94 description VARCHAR (255) NOT NULL

95);

96

97 CREATE TABLE AGE_UNIT (

98 age_unit_id serial PRIMARY KEY,

99 description VARCHAR (255) NOT NULL

100);

101

102 CREATE TABLE SEX (

103 sex_id serial PRIMARY KEY,

104 description VARCHAR (255) NOT NULL

105);

106

107 CREATE TABLE SPECIE (

108 specie_id serial PRIMARY KEY,

109 description VARCHAR (255) NOT NULL

110);

111

112 CREATE TABLE SUBJECT (

113 subject_id serial PRIMARY KEY,

114 specie_id INT NOT NULL,

115 organism_id INT NOT NULL,

116 age_unit_id INT NOT NULL,

117 sex_id INT NOT NULL,

118 age VARCHAR (255) NULL,

119 age_min VARCHAR (255) NULL,

120 age_max VARCHAR (255) NULL,

121 age_event VARCHAR (255) NULL,

122 synthetic BOOLEAN NULL,

123 ethnicity VARCHAR (255) NULL,

124 ancestry_population VARCHAR (255) NULL,

125 race VARCHAR (255) NULL,

126 FOREIGN KEY (specie_id) REFERENCES SPECIE (specie_id),

127 FOREIGN KEY (organism_id) REFERENCES ORGANISM (organism_id),

128 FOREIGN KEY (age_unit_id) REFERENCES AGE_UNIT (age_unit_id),

129 FOREIGN KEY (sex_id) REFERENCES SEX (sex_id)

130);

Docker stack for the database pipeline 77

131

132 CREATE TABLE GERMLINE_DATABASE (

133 germline_database_id serial PRIMARY KEY,

134 specie_id INT NOT NULL,

135 database_provider VARCHAR (255) NOT NULL,

136 database_location VARCHAR (255) NOT NULL,

137 version VARCHAR (255) NULL,

138 FOREIGN KEY (specie_id) REFERENCES SPECIE (specie_id)

139);

140

141 CREATE TABLE REPERTOIRE (

142 repertoire_id serial PRIMARY KEY,

143 study_id INT NOT NULL,

144 subject_id INT NOT NULL,

145 name VARCHAR (255) NOT NULL,

146 description VARCHAR (255) NULL,

147 FOREIGN KEY (study_id) REFERENCES STUDY (study_id),

148 FOREIGN KEY (subject_id) REFERENCES SUBJECT (subject_id)

149);

150

151 CREATE TABLE TISSUE (

152 tissue_id serial PRIMARY KEY,

153 description VARCHAR (255) NOT NULL

154);

155

156 CREATE TABLE SAMPLE (

157 sample_id serial PRIMARY KEY,

158 repertoire_id INT NOT NULL,

159 tissue_id INT NOT NULL,

160 single_cell BOOLEAN NULL,

161 FOREIGN KEY (repertoire_id) REFERENCES REPERTOIRE (repertoire_id),

162 FOREIGN KEY (tissue_id) REFERENCES TISSUE (tissue_id)

163);

164

165 CREATE TABLE CELL_SUBSET (

166 cell_subset_id serial PRIMARY KEY,

167 description VARCHAR (255) NOT NULL

168);

169

170 CREATE TABLE CELL_PHENOTYPE (

171 cell_phenotype_id serial PRIMARY KEY,

172 description VARCHAR (255) NOT NULL

173);

174

175 CREATE TABLE SAMPLE_CELL_SUBSET (

176 sample_id INT NOT NULL,

177 cell_subset_id INT NOT NULL,

178 PRIMARY KEY (sample_id, cell_subset_id),

179 FOREIGN KEY (sample_id) REFERENCES SAMPLE (sample_id),

78 Docker stack for the database pipeline

180 FOREIGN KEY (cell_subset_id) REFERENCES CELL_SUBSET (cell_subset_id)

181);

182

183 CREATE TABLE SAMPLE_CELL_PHENOTYPE (

184 sample_id INT NOT NULL,

185 cell_phenotype_id INT NOT NULL,

186 PRIMARY KEY (sample_id, cell_phenotype_id),

187 FOREIGN KEY (sample_id) REFERENCES SAMPLE (sample_id),

188 FOREIGN KEY (cell_phenotype_id) REFERENCES CELL_PHENOTYPE (cell_phenotype_id)

189);

190

191 CREATE TABLE DATA_PROCESSING (

192 data_processing_id serial PRIMARY KEY,

193 repertoire_id INT NOT NULL,

194 reading_technique_id INT NULL,

195 protocol_id INT NULL,

196 germline_database_id INT NULL,

197 primer_match_cutoffs BOOLEAN NULL,

198 quality_thresholds INT NULL,

199 FOREIGN KEY (repertoire_id) REFERENCES REPERTOIRE (repertoire_id),

200 FOREIGN KEY (reading_technique_id) REFERENCES READING_TECHNIQUE (

reading_technique_id),

201 FOREIGN KEY (protocol_id) REFERENCES PROTOCOL (protocol_id),

202 FOREIGN KEY (germline_database_id) REFERENCES GERMLINE_DATABASE (

germline_database_id)

203);

204

205

206 CREATE TABLE PROCESSING_STEP (

207 processing_step_id serial PRIMARY KEY,

208 processing_stage_id INT NULL,

209 data_processing_id INT NOT NULL,

210 step_order INT NULL,

211 description VARCHAR (255) NULL,

212 FOREIGN KEY (processing_stage_id) REFERENCES PROCESSING_STAGE (

processing_stage_id),

213 FOREIGN KEY (data_processing_id) REFERENCES DATA_PROCESSING (data_processing_id

)

214);

215

216 CREATE TABLE COMMAND_PROCESSING_STEP (

217 command_processing_step_id serial PRIMARY KEY,

218 command_id INT NOT NULL,

219 processing_step_id INT NOT NULL,

220 command_line TEXT NULL,

221 command_processing_step_order INT NULL,

222 FOREIGN KEY (command_id) REFERENCES COMMAND (command_id),

223 FOREIGN KEY (processing_step_id) REFERENCES PROCESSING_STEP (processing_step_id

)

Docker stack for the database pipeline 79

Figure C.1: Adminer - Login page.

224);

225

226 CREATE TABLE COMMAND_OPTION (

227 command_option_id serial PRIMARY KEY,

228 command_processing_step_id INT NOT NULL,

229 option_order INT NOT NULL,

230 description TEXT NULL,

231 FOREIGN KEY (command_processing_step_id) REFERENCES COMMAND_PROCESSING_STEP (

command_processing_step_id)

232);

233

234 CREATE TABLE INPUT_FILES (

235 processing_step_id INT NOT NULL,

236 t_file_id INT NOT NULL,

237 PRIMARY KEY (processing_step_id, t_file_id),

238 FOREIGN KEY (processing_step_id) REFERENCES PROCESSING_STEP (processing_step_id

),

239 FOREIGN KEY (t_file_id) REFERENCES T_FILE (t_file_id)

240);

241

242 CREATE TABLE OUTPUT_FILES (

243 processing_step_id INT NOT NULL,

244 t_file_id INT NOT NULL,

245 PRIMARY KEY (processing_step_id, t_file_id),

246 FOREIGN KEY (processing_step_id) REFERENCES PROCESSING_STEP (processing_step_id

),

247 FOREIGN KEY (t_file_id) REFERENCES T_FILE (t_file_id)

248);

Listing C.2: DDL script to create the database.

Once the stack is running, it can be accessed using any database client. We can see on Fig-

ure C.1 how to do this on Adminer.

In our test, the server name is "db", the username is "admin", and the password is "ad-

min_pwd", the same values defined on the db service in the docker-compose.yml.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Problem Description and Motivation
	1.2 Objectives
	1.3 Structure

	2 Background
	2.1 Omics Data
	2.2 Bioinformatics Pipelines
	2.3 General Data Protection Regulation
	2.4 FAIR Principles
	2.5 TRUST Principles
	2.6 Federated Data Repositories
	2.7 Non-disclosive Analysis
	2.8 Summary

	3 Related Work
	3.1 Privacy-preserving Analyses solutions
	3.1.1 The iReceptor+ platform
	3.1.2 The OBiBa solution
	3.1.3 The MOLGENIS solution
	3.1.4 The GA4GH solutions

	3.2 Reproducible Bioinformatics Pipeline Tools
	3.3 Summary

	4 Proposed solution
	4.1 Requirements
	4.2 Methodology
	4.3 Architecture
	4.4 Reproducibility: Relational model
	4.5 Summary

	5 Implementation
	5.1 Introduction
	5.2 Setup
	5.3 Implementation
	5.3.1 Evaluating the Resources to access AIRR-Rearrangement data
	5.3.2 Accessing the pipeline execution metadata

	5.4 Summary

	6 Conclusions and Future Work
	6.1 Results
	6.2 Future Work

	References
	A Reproducibility: Relational model
	B Registers generated in a simulated pipeline execution
	C Docker stack for the database pipeline

