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Resumo

A fala é uma ferramenta vital utilizada pela maioria das pessoas, tanto na sua vida social como
profissional. O facto de o nosso quotidiano depender tanto desta habilidade, leva-nos a en-
contrar soluções que possam substituir ou auxiliar quando somos impedidos de a utilizar. A
fala sussurrada é também uma forma conveniente de comunicação. Permite manter uma con-
versa restrita a um público próximo ou evitar perturbar ambientes silenciosos. No entanto, estar
restringido a esta forma de comunicar pode ser limitador. Portanto, soluções foram criadas
para evitar esta situação. Na maioria das vezes, estas passam por métodos invasivos ou descon-
fortáveis para o utilizador e, além disso, é de se notar a artificialidade do som da voz sintetizada.
No passado, isto seria suficiente, mas os atuais desenvolvimentos na área de processamento de
fala e a expectativa do utilizador exigem melhores abordagens. O trabalho que foi realizado
durante esta dissertação relaciona-se com uma melhor estimação e modelação da fonte glótica
com o objetivo de aprimorar as aplicações e superar limitações atuais. Além disso, este trabalho
teve como objetivo a caraterização espectral da magnitude e da estrutura de fase do sinal da
fonte glótica, o que pode melhorar a inteligibilidade dos sinais sintéticos de fala e a preservar
características idiossincráticas do orador. O sinal tratado foi até então considerado inacessível,
devido à sua localização limitada. Para o efeito, foram captados dois sinais alinhados temporal-
mente: um que corresponde ao sinal natural da fonte glótica e outro que corresponde ao sinal
natural da fala. Por ser um procedimento inovador, invasivo e complexo, que exige alto nível de
especialização, contou com a ajuda de uma equipa multidisciplinar no campo de medicina e de
engenharia. Os dados reais recolhidos foram analisados utilizando técnicas de processamento
de fala, a fim de recuperar novos conhecimentos sobre a fonte glótica. Além disso, um modelo
empírico da fonte glótica foi obtido de acordo com o orador, baseado nos sinais reais da fonte
glótica. Os filtros do trato vocal foram caracterizados e estimados com sucesso, preservando as
características idiossincráticas dos oradores.
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Abstract

Speech is a vital tool often used by most people on their social and professional life. The fact
that our daily life depends so much on this ability urges us to find solutions that can replace or
assist when prevented from using it. Whispered speech is also a convenient form of communi-
cation, since it allows keeping a conversation restricted to a nearby audience and prevents from
disturbing silent environments. However, being restrained to this way of conveying information
can be limiting. Therefore, solutions have been created to avoid this situation. Most of the time,
these are either invasive or unfavorable for the user, creating artificial and synthesized sound-
ing voices. In the past these would be sufficient, but the developments in the field of speech
processing and also the user expectations require better approaches. The work carried out dur-
ing this dissertation focused on finding a more accurate estimation and modelling of the signal
generated by the vocal folds, the glottal source. This aims to improve current applications and
overcome their limitations. Furthermore, the goal was to characterize the spectral magnitude
and phase structure of the glottal source signal, improving the intelligibility of the synthetic sig-
nals of speech and preserving the idiosyncratic features of the speaker. The handled signals were
thought to be unattainable, due to their location and limited access. The goal was to capture two
time-aligned signals: one corresponding to the natural glottal source signal and another to the
natural speech signal. Being this an innovative, invasive and complex procedure that requires
a high level of expertise, it counted with the help of a multidisciplinary team in the fields of
medicine and engineering. The real data collected was analysed using speech processing tech-
niques in order to retrieve new knowledge about the glottal source. Furthermore, an empirical
model of the glottal source was obtained according to speaker based on the real glottal source
signals. Vocal tract filters were successfully characterized and estimated, while preserving the
idiosyncratic features of the speakers.
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Chapter 1

Introduction

1.1 Context

Voice has been a tool of utmost importance for human development. The ability to produce
sounds allowed for the evolution of what were once mere noises into a high complexity

speech. Furthermore, it represents one of the most efficient methods for exchanging informa-
tion between speakers, such as ideas or emotions. Whispering is another useful form of com-
municating, whether when conveying private information or when avoiding disturbing quiet
environments. However, some people are restricted to this way of communication, which is
characterized by its reduced perceptibility and lack of idiosyncrasy.

Millions of people suffer from voice-related problems, either due to efforts related to their
careers, such as teachers and singers [1], or for natural reasons. In fact, in the United States of
America, it is estimated that at least 1 out of 50 people has or will have a voice-related disorder
during their lifetime [2, 3]. In recent years, research has been conducted with the purpose of
converting whispered speech to voiced speech [4, 5, 6]. However, current solutions are far from
ideal, since these are often invasive or sound synthetic and artificial. These applications depend
highly on trustworthy models that represent the glottal excitation and on the support of acoustic
features that describe the vocal tract response. Nevertheless, due to the difficulty in accessing
the real source signal, the glottal excitation is usually estimated from the available speech signal,
which requires complicated processing. Consequently, these models fall short in describing
accurately the real glottal source.

The primary source of excitation, the glottal source, carries interesting information that can
improve the naturalness of these speech synthesis applications. In the short-term, this disserta-
tion is focused on the realization of DyNaVoiceR project’s sub-task for accurate glottal source es-
timation and modelling. Alongside with better understanding of the human phonation process,
it can add valuable information that can be applied in multiple areas such as speech synthesis,
expressivity analysis, pathology detection and speaker recognition. These findings will translate
in excelling quality and performance once integrated into the diverse voice technology applica-
tions. The expected long-term outcome of this project is to restore natural voiced speech from
whispered or dysphonic speech based on speech processing techniques.

1
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1.2 Motivation

In everyday life, different situations require the use of different modes of speech. However, in
order to be heard, the speech mechanism is able to compensate when the surrounding condi-
tions demand so. Being restricted from using its full potential can be socially unfavourable and
limiting for patients. Even more so if their voice is a valuable asset to their professional life,
jeopardising their aptness to fulfil their role. Having this in mind, the long-term goal of this
project is to assist people who suffer from voice disorders or that have undergone medical pro-
cedures that have restrained them to whispered voicing as a way of communicating. The desired
solution is a non-invasive and real-time application that preserves idiosyncrasies and converts
whispered speech into voiced speech. Thereby, fitting this existing gap between the need for a
more natural and effective way of communicating for voice disabled people. One of the critical
aspects of this approach is the faithful characterization of the real glottal source in its spectral
magnitude and phase structure, which will be the aim of this dissertation.

1.3 Goals

The aim of this dissertation is the estimation and modelling of the glottal source, a sub-task
of the project DyNaVoiceR. The project is focused on converting whispered speech into voiced
speech for a real-time application. For this reason, the approach to be considered has to be
feasible in a limited period of time, i.e., it should be fast enough in order to avoid the "lip sync"
problem.

With this work, it is expected that an accurate characterization of the glottal source is achieved
and, consequently, the reconstruction of the vocal tract filter that is needed for easily converting
the glottal source signal into a speech signal. For this, special recordings of acoustic data near the
vocal folds will be carried out. Insight and models extracted from these recordings are expected
to improve the understanding of the real glottal excitation.

1.4 Contributions

The work has major relevance in the field of speech processing and enhances the scientific knowl-
edge about the involvement of the vocal folds in the phonation process. Furthermore, a dataset
of 6 speakers (3 males and 3 females) of two time-aligned signals of 3 sustained vowels (\a\,
\i\ and \u\) was developed, one from the glottal excitation source within the phonatory system
(as close as possible to the vocal folds) and another from the speech signal outside (close to
the mouth). Finally, the characterization of the magnitude and phase glottal pulse will be the
highlight of this work and, subsequently, the estimation of a vocal tract filter that can transform
the glottal source signal into a natural speech signal. The application of these models to the
project’s developed framework will contribute for improving the whispered speech to voiced
speech conversion system.
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1.5 Document structure

Throughout this dissertation, fundamental concepts and technical terms are defined. Moreover,
basic knowledge is provided in order to promote a coherent and rational thought process. The
structure of this document is the following:

• Chapter 1: Introductory chapter, where it is explained the need and the pertinence of
having a more accurate glottal source model based on empirical data and its applications;

• Chapter 2: Background information, giving fundamental concepts on the physiological
and anatomical aspects of the speech apparatus and the current medical procedures for
assessing the phonatory system, as well as the Source-Filter model used as a fundamental
basis for speech processing;

• Chapter 3: Covers the most recently developed approaches for analysing and estimating
the glottal source, the existing glottal pulse models and their parameterization;

• Chapter 4: Describes the signal acquisition procedure and characterizes of the dataset ob-
tained for further study of the recorded signals. Also, a preliminary study of the linguistic
content of the glottal source signals is performed;

• Chapter 5: In this Chapter, the spectral analysis performed to the signals recorded is ex-
plained and the characterization of the glottal source is described. Furthermore, a statistical
analysis of the recorded signals is made and the empirical models obtained from the real
glottal source signals are described;

• Chapter 6: This chapter addresses the approaches used for the vocal tract estimation and
the evaluation of the synthetic signals generated;

• Chapter 7: Conclusions are presented on what has been accomplished in this dissertation
and future steps.
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Chapter 2

Background

Speech is defined as the faculty or power of speaking through oral communication, the ability
of expressing thoughts or emotions using speech sounds. Speech production is a complex

process that requires the use of the vocal apparatus and results in the utterance of intelligible
speech.

This chapter addresses some fundamental concepts about the anatomy and physiology of the
speech apparatus and the current methods for assessing and visualizing the organ responsible
for the glottal excitation, the vocal folds. Finally, a light is shone on the source-filter theory and
the way the glottal excitation interacts with the vocal tract.

2.1 Speech apparatus

The voice organ is an intricate structure that allows the production of speech, depicted in Fig-
ure 2.1. Its study will be relevant for further understanding the function of each component and
how it contributes for the occurrence of this phenomenon. The phonatory system can be func-
tionally divided into three major parts: the breathing apparatus (subglottal system), the larynx
(more precisely, the vocal folds) and the vocal tract (supraglottal system) [7]. The larynx, which
corresponds to the boundary of these two systems, can be clearly visualized in Figure 2.2.
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Figure 2.1: Illustration of the phonatory sys-
tem (sagittal cut) [8].

Figure 2.2: Illustration of the phonatory sys-
tem (transversal cut) [8].

The main energy source is provided by the subglottal system, due to the eviction of airflow
towards the trachea by the lungs. The lungs are the major organ involved in the crucial gas
exchange process, allowing for blood to obtain oxygen and release carbon dioxide. Supported
by the diaphragm and aided by the intercostal muscles, the thorax volume decreases and creates
an ascendant airflow, that increases the subglottal pressure [9]. Once this airflow reaches the
larynx it is modulated by the vocal folds (or cords), which can be seen in Figure 2.3. The space
between the vocal folds is defined as glottis and corresponds to the boundary between subglottal
and supraglottal systems [10].
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Figure 2.3: Illustration of the vocal folds and glottis [8].

The modulation at the glottal level previously mentioned can be either periodic or noisy,
depending on the positioning of the arytenoid cartilages (2) that, subsequently, control the con-
figuration of the vocal folds (3), as shown in Figure 2.4.

Figure 2.4: Illustration of the different configurations of the vocal folds that result in different
phonation forms: a) normal voice; b) whispered voice; c) voicelessness. The numerated struc-
tures correspond to: 1. glottis; 2. arytenoid cartilages; 3. vocal folds; and 4. epiglottis. Adapted
from [11].

The arytenoid cartilages have different possible dispositions: in adduction, where the vocal
folds constrict the air passage; or in abduction, where the vocal folds are wide opened (which
is the case when breathing) [12, 13]. The combination of these different positions allows the
production of different phonation modes. When in adduction, the rising subglottal pressure
forces the air to open and cause a quasi-periodic vibration of the vocal folds. Consequently,
the opening and closing at a certain frequency generates a harmonic structured sound wave. In
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case of abduction, the vocal folds open and the airflow passes without constrictions and, subse-
quently, exhibiting a continuous airstream without periodic glottal excitation (noisy behaviour)
and resulting in an unvoiced sound [12, 13].

The glottal cycle can be divided into four different moments: the opening phase, the closing
phase, the return phase and the closed phase [14]. Each phase can be associated to a certain
moment of the glottal pulse, as shown in Figure 2.5.

Figure 2.5: Glottal pulse and its relation with the glottal cycle [14].

The speech attributes, such as speech volume, stress pattern and speech duration, can be
controlled at the glottal level by adjusting the airstream volume. The glottal behaviour also
influences the voice perceived pitch. This property of speech is associated to the fundamental
frequency (F0) of the speech sound, which in turn is conditioned by the length of the speaker’s
vocal folds. Generally, the length of the vocal folds can be approximately, according to the
gender, 9 to 13 mm for healthy females and 15 to 20 mm for healthy males [10].

The oral, nasal and pharyngeal resonant cavities constitute the vocal tract. These are respon-
sible for further modulating the glottal source according to the influence of the supra-laryngeal
portions and its articulators. The articulators can be divided into: active, which correspond to
the velum (soft palate), jaw, tongue and the lower lip; and passive, such as the upper lip, the
teeth, the alveolar ridge and the hard palate. By assuming different configurations, the articu-
lators create distinct levels of constriction that act on different sites and modify the produced
sound [15]. This confers the sound its timbre and the intended linguistic information by shaping
the airflow spectral properties [16, 17].

The measurements of the vocal tract vary according to each individual. Commonly, the
length of a healthy adult male ranges between 17 to 20 cm and its diameter corresponds to 3 cm
[10].

Lastly, the labial radiation contributes with the final spectral modifications. The combination
of all these elements determines the sound wave that is perceived by the listener as speech.
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2.2 Glottal assessment and visualization

The glottal source or voice source corresponds to the acoustic pressure signal generated by the
vocal folds at the glottis that serves as excitation in speech. However, the vocal folds are difficult
to analyze due to their fast vibration and the difficult access to the signal (inside the larynx)
[18, 19].

Having this in mind, multiple devices and procedures were developed in order to overcome
these limitations and allow the observation of glottal behaviour. Such approaches rely on differ-
ent functional methods, such as electrical [20], electromagnetic [21] and visual [22]. The latter is
broadly accepted for voice production research and employed by voice clinicians to examine vo-
cal folds with possible disorders. However, in order to obtain visual information the procedures
are usually very invasive [23].

2.2.1 Electroglottography

The electroglottography (EGG) is a non-invasive exam that measures the impedance between the
vocal folds and does so by transmitting a high-frequency current through two electrodes placed
on opposite sides of the throat (on the larynx level). The different positions of the vocal folds are
translated in fluctuations of the electrical impedance of the applied current. This is possible due
to the fact that soft tissues are good electrical conductors when in comparison with the air that
is present within the larynx lumen. Whenever the vocal folds move, the glottis takes a different
conformation and changes the volume of the air column, altering the impedance accordingly
[24].

The EGG shows a signal throughout time, as can be seen in Figure 2.6, measuring the vocal
folds relative contact area. The waveshape of the signal is flat when the vocal folds are held apart
due to the lack of impedance variation. Results are susceptible to the effects of skin moistness
and involuntary movements of the larynx. Some noise can be also introduced by the inherent
distortion levels of the device. Nonetheless, this solution allows the examination of the glottal
behaviour. The interpretation of the EGG signal and its correlation with the phonation process
is still a subject of great interest in current studies [25]. These measurements may also be used
as a reference for comparing pitch tracking methods or Glottal Closure Instant (GCI) detection
methods [11].

Figure 2.6: EGG signal waveform of a healthy adult male subject [26].

2.2.2 Videostroboscopy

The videostroboscopy is an efficient method for observing and studying the dynamic aspects of
the vocal folds is the laryngeal, by using an intermittent light to illuminate the vocal folds, it



10 Background

is capable of obtaining a series of frames that create a video. Through establishing a flashing
frequency lower than the vocal folds vibration frequency, each frame captures the cycle phase
shortly after the previously captured.

For an easier understanding, a visualization of the its fundamental principle can be observed
in Figure 2.7. This imposes some limitations and requires that the vibration frequency is station-
ary in order to capture the whole vibration cycle with high accuracy and quality [27, 28, 25].

Figure 2.7: Fundamental principle of videostroboscopy [29].

2.2.2.1 Videokymography

Videokymography (VKG) is a digital technique that allows the visualisation of the vocal folds
vibration at high-speed. The system utilizes a high-speed camera that captures almost 8 000
images per second. From the standard laryngeal image, the camera selects a horizontal active
line, which is transversal to the glottis. The recorded horizontal lines are compiled vertically,
forming a top-down image with the evolution of the vocal folds behaviour through time. From
the visual analysis of this image, it is possible to extract information related with frequency,
amplitude, left-right asymmetries and the phases of the glottal cycle [30]. However, only recently
more than qualitative outcomes have been shown from a VKG, such as the segmentation of the
vocal folds edges [31].
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Figure 2.8: Fundamental process of videokymography, where is depicted the line selected for
frame by frame analysis (top) and output image (bottom) [29].

2.2.3 High quality video examination

The High-Speed Videoendoscopy (HSV) is considered one the most accurate and precise pro-
cedures for visualizing the vibration of the vocal folds due to its high-speed imaging system
capable of recording entire high quality images. The endoscope is placed inside the larynx near
the vocal folds, where it records from a top-down position, as shown in Figure 2.9. Only recently,
the high frame rate procedure was made possible due to the technological progress in the field
of signal acquisition.

Nevertheless, there are still improvements to be done in the temporal and spatial resolution.
As a consequence, a compromise between image resolution and frame rate needs to be made due
to the limited data transfer speed. Another limitation is the light source restriction because of
the endoscope work channel small diameter. The typical resolution of a HSV system ranges from
100 up to 300 pixels in each direction and frame rates of 10 000 frames per second. This requires
large data storage and, for this reason, the recordings are usually short. A way of circumventing



12 Background

this issue is by recording gray-scale images, since color images imply heavier files and require
more illumination.

This technique is one of the most adequate for studying glottal behaviour related phenomena
and for carrying vocal folds dynamics research [25].

Figure 2.9: Sequence of high-speed videoendoscopy frames [32].

A similar technique is the Fiber Naso-Pharyngo-Laryngoscopy (FNPL) which consists in the
visualization and acquisition of high quality video of the vocal folds that makes use of a fiber
optic system. The major difference to the HSE is the fact that the naso-pharyngo-laryngoscope
is inserted through one of the nasal cavities instead of the oral cavity [33].

2.3 Source-Filter theory

The source-filter theory attempts to represent the previously described vocal system in a simpli-
fied analog model that approximates the complex phonation mechanism by combining different
sound sources and acoustic filters. This approach relates the speech articulation with the acous-
tic signals intrinsic features and is supported by assuming that source and filter are independent
[34, 35]. This statement is not entirely correct since interactions between source-tract exist and
the glottal flow depends, to a certain extent, on the modifications of the vocal tract impedance.
Nevertheless, this theory has been presumed appropriate for the work developed in this disser-
tation, given that most research studies and technological applications rely on its assumptions
[36]. According to this theory, the functional parts of the phonatory system can be represented
by the elements of a sound generator: where the lungs represent the power supply, the vocal
folds represent an oscillator and the vocal tract represents a resonator [37]. As previously men-
tioned, the sound sources can be either periodic or non-periodic according to glottal behaviour.
When dealing with voiced sounds, the glottal excitation signal is modelled as a periodic impulse
train and the unvoiced sounds are modelled as white noise [38].

The supraglottal system is represented by a group of filters, for which the resonances re-
semble the filter formants and the radiation effects. Therefore, the voice production model is
assumed to be the result of a convolution between the excitation source and the set of filters that
represent to the vocal tract [35, 39].

The glottal cycle provides a train of air pulses that propagates towards the vocal tract. This
train of air pulses is characterized in the Fourier domain by several peaks of energy called the
harmonics or partials. The partials are a group of spectrum tones for which the lowest tone
corresponds to the fundamental frequency and the remaining are called the overtones. During
this process, the shape of the wave is spectrally modified in which several formants are formed,
as a result of the influence from the different acoustic resonances of the vocal tract [15]. The
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frequency amplitude for each formant is associated with the quality of voice and the type of
vowel or consonant of the perceived sound [15].

Figure 2.10: Descriptive scheme representing speech production process based on the source-
filter model and the different contributions of the phonatory system to the development of the
speech signal. Adapted from [23, 40]

This model represented in Figure 2.10 is a simple and convenient approximation that allows
the study of voiced and unvoiced speech [41]. Thereby, the source-filter theory can be mathe-
matically represented in the time-domain by:

s[n] = g[n] ∗ v[n] ∗ `[n] (2.1)

where, s[n] corresponds to the speech output signal, g[n] to the glottal source signal, v[n] to the
vocal tract response and `[n] to the labial radiation. In the Z-domain, the Equation 2.1 can be
represented by:

S(z) = G(z)V(z)L(z) (2.2)

where the Z transform of the glottal source signal corresponds to G(z), the Z transform of the
vocal tract response corresponds to V(z), also referred to as Vocal Tract Filter (VTF), and the Z
transform of the labial radiation corresponds to L(z).

Accordingly, the solution of the following equation needs to be reached in order to use the
glottal inverse filtering:

G(z) =
S(z)

V(z)L(z)
. (2.3)

According to Equation 2.3, the impact of the vocal tract must be accounted for in order to
determine the waveform of the glottal flow. Specifically when dealing with a voiced speech
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signal, the waveform of the glottal flow shows a regular periodic shape. Usually, a p-order
all-pole filter is used to model the VTF:

V(z) =
1

1−∑P
i=1 biz−i

(2.4)

where the resonances of the VTF correspond to poles and, consequently, to the formant frequen-
cies of the vocal tract. A high pass filter is applied by the labial radiation which is approximated
by a first-order time-domain derivative [15], implying that the effective excitation of the vocal
tract corresponds to the derivative of glottal flow and thus:

L(z) = 1− αz−1. (2.5)

The labial radiation coefficient α assumes a value lower than 1, normally within 0.95 and 0.99
so that the zero lies in the unitary inner circle of the z plane, which can be expressed by the
following equation [40]:

L(z) ≈ 1

∑N
k=0 αk.z−k

. (2.6)

Since α < 1, then N is in practice finite, but in theory it should be infinite. This result implies
that a significant number of poles approximates the effect of a zero [42].

Many attempts have been made in order to model in both time and frequency domains
the glottal source signal according to these assumptions. However, there are limitations to the
linear Source-Filter theory, which falls short to describe the real scenario where source and filter
interact.

2.4 Summary

Throughout this chapter, a background is given regarding the anatomy and the physiology of
the phonatory system. Additionally, some techniques are presented, in particular the naso-
pharyngo-laryngoscopy, for the analysis and observation of the vocal folds.

The chapter ahead describes current techniques used for the estimation of the glottal source
and the vocal tract filter. The theoretical glottal source models as well as the time and frequency
parameters that characterize them are also mentioned.



Chapter 3

Literature review

Here some of the most recent developments in the field of glottal source and vocal tract
filter estimation are outlined. Moreover, the theoretical glottal pulse models described in

the literature are introduced, alongside with the time and frequency parameters used to define
them. In this chapter a review is made of the current solutions for glottal source estimation and
some of their shortcomings. It is also given a brief summary of the theoretical models, their
evolution and improvements throughout time.

3.1 Glottal source estimation

This section describes the main methodologies for estimating the glottal source directly from the
speech waveform. It is interesting to note that these methods only requires the speech signal,
allowing for a non-invasive approach.

3.1.1 Inverse filtering

These techniques are based on the Source-Filter theory of speech production and on the assump-
tion that a system exists when the transfer function is equal to the inverse transfer function of
one filter (or an aggregation of filters) due to the influence of the articulatory components that
change speech both in time and frequency [43]. First, a parametric model of the vocal tract is
obtained and, secondly, the contribution of the vocal tract is removed.

However, current estimation methods rely on different approaches, either taking into account
the glottal cycle particularities or relying on iterative and adaptive processes [44, 45].

3.1.1.1 Closed Phase Inverse Filtering

The Closed Phase Inverse Filtering (CPIF) algorithms that are presented here depend on the
information during the closed phase of the cycle. When the glottis is closed, the effects of the
subglottal cavities are minimal, allowing a better estimation of the vocal tract transfer function.
Accordingly, these CPIF methods estimate a parametric model of the spectral envelope, which
is calculated for the duration of the closed phase [46].
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Major disadvantage is the imprecision in determining the closed phase period. Some ap-
proaches have tried to tackle this problem by extracting information from a EGG signal to iden-
tify this period [47].

Another approach attempted to analyze the formant frequency modulation during the glottal
cycle and was focused on identifying the transitions between open and closed phases [48].

Improvements to the robustness of CPIF were also described by constraining the direct cur-
rent gain [49]. A drawback of this approach is the sample rate being insufficient to determine the
closed phase in high-pitched voices (with shorter periods) and, therefore, not providing an ac-
curate filter estimation. Having this in mind, an approach was proposed where multiple glottal
cycles are examined for a more accurate estimation of the closed glottal phases [50].

Finally, an approach that allows the presence of a non-zero glottal wave over closed glottal
phases was also proposed [51].

3.1.1.2 Iterative adaptive inverse filtering

Iterative and adaptive algorithms improved substantially the quality of the glottal source estima-
tion. One approach attempted the integration of the Liljencrants-Fant (LF) within the AutoRe-
gressive eXogenous (ARX) model of speech production, where the parameters for both source
and filter were collectively estimated and the resultant ARXLF model estimation was optimized
by iterative and adaptive processes [52, 53].

Another method consisted in finding, within a speech frame, the best candidate for a glottal
waveform estimate through iterative processing without the necessity for detection of Glottal
Closure Instants (GCI) [52].

Lastly, one of the most prevailing approaches is the Iterative Adaptive Inverse Filtering (IAIF),
which is based on iterative enhancement of the vocal tract and source components [54]. This
algorithm is a semi-automatic method that uses speech pressure signal as an input and pro-
duces an estimation of the correspondent glottal source signal. The procedure can be divided
in analysis, inverse filtering and integration. An iterative process initially estimates the glottal
contribution from the speech spectrum. The estimation of the glottal excitation is attained by
cancelling the vocal tract effect, using inverse filtering, and the labial radiation, by integration
[54].

The previous approach was later improved, showing more accurate results for high-pitched
voices by replacing the Linear Predictive Coefficients (LPC) analysis with the Discrete All Poles
(DAP) modelling technique [55]. This modification made possible a bias reduction related to
the harmonic structure of the speech spectrum in the approximations of the formant frequencies
[55].

3.1.1.3 Javkin et al. Method

This method relies on the assumption that speech waveforms are a combined result of the phona-
tory setting and the configuration of the vocal tract. Assuming that it is possible to subtract the
effect of the vocal tract from the speech waveform, then the glottal waveform can be examined
without requiring invasive procedures. This approach describes a frequency-domain based al-
gorithm, since the spectral analysis conveys more information on the formants produced due to
the effects of the vocal tract and the labial radiation [40].
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During the open phase of the glottal cycle, formant frequency and bandwidth suffer modi-
fications due to the vocal tract and source interactions. Therefore, the most reliable estimation
of the vocal tract parameters should be obtained during the glottal closed phase, which can be
obtained from the LPC residual signal. In order to eliminate the vocal tract formants and to
cancel the effects of labial radiation, a digital filter with the inverse response was proposed and
a model for each formant was developed [40].

3.1.2 Mixed-phase decomposition

A distinct approach for glottal source estimation methods is based on a speech mixed-phase
model [56]. These models assume that speech has a minimum phase (causal) and a maximum
phase (anti-causal) constituents. The maximum-phase is related to the glottal open phase, while
the minimum-phase is related to the glottal return phase and to the vocal tract impulse response
[57]. The idea behind mixed-phase decomposition methods is to isolate the maximum-phase
component, which describes the glottal excitation and its contribution, from the speech signal
[49].

3.1.2.1 Zeros of the z-transform

The Zeros of the Z-Transform (ZZT) method assumes that speech is a mixed-phase signal. This
means that the glottal open phase corresponds to the anti-causal component and both the glottal
closed phase and the vocal tract filter correspond to the causal component [58]. The GCI deter-
mine the limit between these two glottal cycle phases. On one hand, the vocal tract dominated
spectrum presents scarcely the glottal source component. On the other hand, the glottal domi-
nated spectrum shows ripples of low amplitude due to the vocal tract influence [58]. ZZT is a
representation of the z-transform polynomial through its roots and that representation in case of
a speech signal is equivalent to the union of the ZZT sets for the pulse, the glottal source and the
vocal tract filter [58]. Once the GCI and the roots of the z-transform are obtained, the latter are
divided into two sets that correspond to the causal and anti-causal part of the speech signal. By
applying the DFT to each set their spectrum is achieved. Therefore, by computing the Inverse
of the Discrete Fourier Transform (IDFT) of the anti-causal the estimation of the glottal source is
determined [58].

3.1.2.2 Complex cepstrum

The Complex Cepstrum (CC) methodology is based on the same assumptions as the ZZT
method. This method is similar to the previously mentioned, although in terms of computa-
tion time it is considered to be a faster approach [59]. The decomposition of the speech signal
in this case considers that the maximum-phase component and the minimum-phase component
relate, respectively, to the glottal open phase and to both the glottal closed phase and the contri-
bution of the vocal tract. The separation of these components and the estimation of the glottal
contribution is possible by only considering the negative part of the CC. Later, a new method was
proposed that uses the information regarding the identification of GCI. This method takes ad-
vantage of the fact that the GCI delimits the glottal closed phase and the glottal open phase and,
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therefore, the causal and anti-causal signals. The Anti-causality Dominated Region is demon-
strated to approximate accurately the glottal open phase, due to the lack of contribution from
the glottal closed phase and the vocal tract filter inside this region [60].

3.2 Glottal source models

The purpose of theoretical models is to describe the glottal source waveform using different ana-
lytical parametric expressions that derive from the analysis of physiological measurements [11].

3.2.1 Liljencrants-Fant model

The Liljencrants-Fant (LF) model was suggested as a four parameter model. The LF model of the
glottal source derivative can be divided in two parts, the first is related with the opening phase
and the second describes the closure phase. It complies with the premise that the integration of
the function must be null for the complete period [61].

g′LF(t) =

{
E0eαt sin(ωgt) , 0 ≤ t ≤ tc

− E0
βta

(e−β(t−tc) − eβ(T0−tc)) , tc < t ≤ T0
(3.1)

for which tz is the instant of the glottal source pulse maximum, tc is the instant of the time-
derivative minimum, ta is the last instant of the return phase, T0 is the fundamental period.
This model is described by: Ec, which corresponds to the amplitude value of the time-derivative
minimum and is used to obtain a scale factor required for ensuring area balance from Eo =

− Ec
eαt sin ωgte

; α which corresponds to Cπ (for which C relates to the exponential growth of the

sinusoid); ωg, the sinusoid frequency obtained from ωg = 2πFg (where Fg = 1
2tz

); and β is a
decrease constant for the exponential recovery period [62, 42].

The LF model has shown its efficiency and is hitherto considered one the most widely ac-
cepted models for describing the glottal pulse. Furthermore, the LF model takes advantage of
the derivative of the glottal glow to model the labial radiation, producing consequently better
results and a more natural speech [45, 61]. The derivative and the glottal source pulse according
to the LF model can be seen in Figure 3.1.
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Figure 3.1: Waveshape of the glottal source derivative (left) and the glottal source (right) accord-
ing to the LF model.

3.2.2 Rosenberg model

The Rosenberg Glottal Model is characterized according to pulse amplitude, width and skew
values [63]. The most popular model is described by:

gR(t) =


Av
2

[
1− cos(πt

tz
)
]

, 0 ≤ t ≤ tz

Av cos π(t−tz)
2tc

, tz ≤ t ≤ tc

0 , tc ≤ t ≤ T0

(3.2)

for which Av represents the amplitude of the glottal pulse peak, tz corresponds to the instant
where the amplitude of the glottal pulse peak is maximum and T0 is the fundamental period.
The model defines clearly three phases concerning the glottal cycle, the opening, closing and
closed phase. This model is considered to be an efficient alternative to the LF model in terms
of computation time [42]. The waveshape of the glottal source pulse according to the Rosenberg
model can be seen in Figure 3.2.

Figure 3.2: Waveshape of the glottal source according to the Rosenberg model.
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3.2.3 Other models

The models that have been addressed previously are the most well-accepted by the scientific
community and are usually a reference for the development of new models. However, there
have been other models created during the last half century. In Table 3.1 summarises these other
models. The table shows a brief description of each model, the required number of parameters
and their contributions.

Table 3.1: Main theoretical glottal source models with a brief description, the number of param-
eters required and their improvements [11, 64].

MODEL DESCRIPTION # PARAMETERS IMPROVEMENTS

Rosenberg (1971) [65]
Described by separate trigonometric
functions for the opening and the
closing phases of the glottal pulse

3 -

Fant (1975) [66]
Described by separate trigonometric
functions for the opening and the closing
and the closed phases of the glottal pulse

4 Controls the slope of
the descending branch

Liljencrants-Fant (1985) [62]

Represents the first derivative of
the glottal flow volume velocity pulse
Described by the combination of
sinusoidal and exponential functions

4 Incorporates labial
radiation effects

Fujisaki-Ljungqvist (1986) [63] Described by polinomial functions 6 Greater detail in modelling
the glottal pulse shape

KLGLOTT88 (1987) [67] Derived from the Rosenberg model 6 Considers turbulence noise
generation at the glottis

Rosenberg++ (1998) [68] Derived from the Rosenberg model,
but uses the LF parameters 6 Computationally more efficient

and perceptually equivalent

CALM (2003) [57] Described in the spectral domain 5
Accounts for the mixed
causal/anticausal phase
behavior of the source

EE1 (2010) [69] Described by the combination of
sinusoidal and exponential functions 5 Ability to adjust the opening and

closing phases slopes separately

EE2 (2012) [70] Redefines EE1 parameters (speed of
opening and speed of closing) 6

Lower computational complexity,
faster generation and more
accurate pulse shape manipulation

Among these is the Rosenberg++ model, which requires less computational time and still
maintaining its efficiency in producing good results in perceptual terms, when compared to
the LF model [68]. The Fant model was an earlier presented model that worked with indepen-
dent parameters, three of them related with frequency, amplitude and the exponential growth
constant of a sinusoid. Another parameter was added regarding the exponential recovery time
constant of the return phase [62]. This model ensures that all found waveforms are fitted with
the least amount of parameters and is compliant to meet unusual waveshapes [62]. The Klatt
model describes the glottal pulse characteristics with two simple features such as the fundamen-
tal frequency or the pulse peak amplitude [67]. The Causal-Anticausal Linear Model (CALM)
characterizes the glottal signal in the spectral domain, by using the glottal peak and the spectral
slope [57].

3.3 Glottal source parameterization

3.3.1 Time domain features

From the glottal waveform it is possible to extract time-domain features, which characterize its
shape [11]. The waveform can be divided into different phases of the glottal cycle, as shown in
Figure 3.3, from which relevant instants can be noted, such as the glottal opening instant or the
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glottal closing instant. These are used for accounting the glottal source pulse or measuring the
duration of each phase [71].

Figure 3.3: Illustrative example of the waveshape of the glottal source (left) and the glottal source
derivative (right), where are depicted the different phases and events of the glottal cycle [11].

The LF model is created using time-domain parameters, such as the Open Quotient (OQ),
OQ = Tc

T0
, the Asymmetry coefficient, αm = Tz

Tc
, and the Voice Speed Quotient (SQ), SQ = Tz

Tc−Tz

[71, 44].
In order to overcome a major difficulty related with locating accurately the relevant instants,

the Quasi-Open Quotient (QOQ), QOQ = T2−T1
T0

is used, that describes the relative glottal open
phase [71].

Parameters can also be obtained from the amplitude of peaks of the glottal pulse or its
derivative [72].

In 1995, a glottal feature was proposed that characterizes the glottal closing phase that corre-
lates with voice quality, the Basic Shape Parameter [73].

Later, the Normalized Amplitude Quotient (NAQ), NAQ = Amax−Amin
Dmin ·T0

, a similar parameter
was developed that relates the glottal source maximum and its derivative minimum [74].

3.3.2 Frequency domain features

Features with relevant information can be extracted from the glottal source signal spectral con-
tent, as shown in Figure 3.4. Only recently, these features have been studied more thoroughly,
since it used to be time-consuming, could be contaminated with artifacts and dependent on
other time-domain features [59]. However, these computational challenges have been overcome
during the most recent years and several frequency-domain features have been described.
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Figure 3.4: Magnitude power spectrum and the respective harmonic structure of a real glottal
source signal.

From the spectrum of the LF glottal source model one can distinguish the glottal formant, a
low-frequency resonance, that can be described by both frequency and bandwith [71, 59].

The Parabolic Spectrum Parameter (PSP) is based on a spectral error measure that results
from the comparison of a model with the estimated glottal source [75]. This estimates the
spectral slope by fitting a second-order polynomial to the source flow spectrum [76].

The difference between amplitude of the fundamental frequency and the second harmonic
from the glottal source magnitude spectrum, H1 − H2, is also a common parameter used to
describe the glottal source [77].

The Harmonic to Noise Ratio (HNR) and the Harmonic Richness Factor, HRF = ∑k≥2 Hk
H1

are
two parameters used for assessing the amount of harmonics in the glottal source spectrum. The
latter, specifically, calculates the number of harmonics present in the glottal source magnitude
spectrum and corresponds to the ratio of the sum of the k harmonics and the fundamental
frequency amplitudes [78, 79, 80].

3.4 Summary

The review made on glottal source models and its estimation reveals that there are still limita-
tions and challenges that prevent these methods to describe and characterize accurately the real
glottal source. From this chapter, we conclude that an empirical model built from real acoustic
pressure signals and its characterization would improve the understanding of speech production
processes and the performance of speech applications that rely on theoretical models.

The following chapter describes the experimental procedure for the dataset acquisition, as
well as preliminary analysis and perceptual tests carried out in order to understand the content
carried by the glottal source signals.



Chapter 4

Data Acquisition and Dataset
Characterization

The creation of a reliable dataset is required for further characterizing the glottal source signal
and, therefore, a procedure was designed for the acquisition of the real glottal source signal.

In this chapter the data acquisition process is explained and a description of the equipment used
is given, followed by a characterization of the dataset created.

4.1 Signal acquisition

The acquisition of these signals was performed under controlled conditions in the Otorhino-
laryngology (ORL) Department of Centro Hospitalar e Universitário de São João (CHUSJ) by
two otorhinolaryngology specialists, Dr. Jorge Spratley (Co-Supervisor) and Dr. Laurentino
Mendes. The procedure used the following equipment for the signal acquisition (specifications
can be found in Appendix A):

• two high quality microphones with reduced dimensions (B6 Omnidirectional Lavalier);

• a 128 kHz USB audio/MIDI interface (Scarlett 2i4 Focusrite) with 2 stereo channels;

• two phantom power adaptors (MZA 900 P);

• a flexible rhyno-laryngo fiberscope (ENF-XP OLYMPUS);

• a nasogastric tube (6mm diameter).

The signal acquisition consisted of a normal Fiber Naso-Pharyngo-Laryngoscopy (FNPL)
exam with a larger than usual working channel in order to accommodate the internal micro-
phone, which was placed at a distance of approximately 1 cm away from the vocal folds. The
external microphone was placed using an earpiece adapter to fixate its location approximately
5 cm away from the mouth. This procedure is illustrated in Figure 4.1 where the internal micro-
phone is represented in blue and the external microphone is represented in orange. A similar
approach was already attempted for glottal source signal acquisition in [81]. However, the use
of different microphones for the acquisition of each signal lead us to believe that their results are
questionable.

23
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Figure 4.1: Scheme of the positioning for the internal microphone (blue) with an approximated
distance to the vocal folds and the external microphone (orange) with an approximated distance
to the mouth.

The patients were recruited and treated according to the ethical diligences required by the
Comissão de Ética para a Saúde (CES) of CHSJ. A document with the information regarding
the procedure was handed out to each participant and an informed consent document filled in
by the participants. Both the document with the information regarding the procedure and the
approval document signed by CES can be found in Appendix A.4.

The inclusion criteria used for this study regarding the participants were:

• having at least 18 years of age;

• leading a healthy lifestyle, e.g. non-smoker;

• absent history of voice disorders;

• showing viability for the procedure after anterior rhinoscopy inspection.

The choice of the three sustained vowels (/a/, /i/ and /u/) has to do with the fact that
these vowels represent the extreme values for the first two formants (F1 and F2) for the acoustic
triangle formed by the oral vowels in the standard European Portuguese (EP) [82], as shown in
Figure 4.2. This choice is important since the second part of this work consists in the estimation
and modelling of the vocal tract filter. Therefore, it is convenient to have a set of vowels covering
the associated formant frequency range.
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Figure 4.2: Illustration of the acoustic triangle for the oral vowels /a/, /i/ and /u/ of the
standard EP. Adapted from [83].

The EGG signals and their time aligned speech signals were also collected for future reference
and to be used as the ground-truth for events of the glottal cycle. However, in this dissertation
these signals were not carefully analysed due to time shortage.

4.2 Dataset description

The database comprises the recordings of six healthy speakers, three males and three females,
as characterized in Table 4.1.

Table 4.1: Characterization of the 6 volunteer speakers regarding gender and age.

Speaker Gender Age
1 Male 25
2 Female 23
3 Female 19
4 Female 22
5 Male 27
6 Male 22

Each file contains the recording of two time-aligned signals of three sustained vowels (/a/,
/i/ and /u/), as shown in Figure 4.3. The vowels were uttered in the most natural way as
possible and two time-aligned signals were acquired: one signal recorded externally, close to the
mouth, and one recorded internally, near the vocal folds. The acquisition was performed using
a 44 kHz sampling frequency and then the files were downsampled to 22 kHz.
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Figure 4.3: Example of the time-aligned stereo recording of speaker 6 and containing three
repetitions of the three sustained vowels (/a/, /i/ and /u/).The upper figure corresponds to
the signal recorded near the vocal folds and the lower figure corresponds to the signal recorded
outside close to the mouth.

The internal and the external microphone signals were recorded, respectively, as the Left
and the Right channel of a stereo time-aligned signal and subsequently separated for individual
analysis. These individual signals were further segmented to isolate relevant portions of the
uttered vowels for detailed analysis regarding time, spectral magnitude, and spectral phase
structure. This segmentation resulted in a total of 108 separate files, 54 for the external signals
and 54 for the internal signals.

4.3 Preliminary analysis

The waveshape typically observed for a signal collected from the glottal source and the wave-
shape of its corresponding speech signal is represented, respectively, in the upper and lower part
of Figure 4.4.
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Figure 4.4: Shape of the acoustic pressure signals, the upper signal recorded near the vocal folds
and the bottom signal recorded close to the mouth of speaker 3 for the sustained vowel /i/.

A preliminary analysis of the recordings lead to the conclusion that some signals had one
or more additional impulses per cycle in the internal signals, such as the one illustrated in
the upper part of Figure 4.5. In order to avoid compromising the analysis, only the signals
obtained from speakers 2, 3 and 4 were considered in the subsequent analysis. It is important to
note, however, that the signals which showed an absence of additional impulses corresponded
exclusively to signals collected from female speakers. This phenomenon was first mentioned by
Timcke, who describes it as multiphasic patterns of vibration [84]. This most likely occurs due
to the asynchronous behaviour of the vocal folds, which leads to an irregular flow passage and
results in a combined signal. Since this is observed in most of the cases for the male speakers, it
is possible that the length of the vocal folds is related to this behavioural characteristic.

Figure 4.5: Shape of the acoustic pressure signals, the upper signal recorded near the vocal folds
showing clear influence of two distinct signals and the bottom signal recorded close to the mouth
of speaker 5 (male) for the sustained vowel /i/.
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4.4 Perceptual tests

Perceptual tests were carried out in order to obtain a better understanding of the internal signals
linguistic content. For this purpose, 29 participants were recruited to perform informal tests,
under the recommendation of using headphones, and they were required to identify 18 different
samples (6 for each vowel) of the internal acoustic pressure signal recordings collected from 6
different speakers. Specifically, after listening to a recorded internal signal (i.e. near the vocal
folds), subjects were asked to identify their correspondence to a known Portuguese vowel. In
the first part of the test, the participants were given the chance to choose among all the 9 main
oral vowels in EP (/à/, /â/, /e/, /é/, /i/, /ê/, /ó/, /ô/ and /u/). In the second part, the
choice was limited to the vowels which were recorded for this study (/a/, /i/ and /u/). The
perceptual tests results are displayed in Figure 4.6 according to repetition and divided in the two
parts of the test. The 95% Confidence Intervals (CIs) were computed using the Adjusted Wald
method for binary data [85].

Figure 4.6: Results obtained for the perceptual tests describing the percent correct identification
of the signals given. The lighter bars correspond to the first part and the darker to the second
part of the perceptual tests.

The first conclusion that emerges from the results in Figure 4.6 and in Table 4.2 is that the
success in the vowel identification tests improves from the first part to the second part of the
test. This is an expected outcome since the diversity of options in the first case is much higher
than in the second case (9 versus 3). It can be concluded that between the first and the second
part of the test neither the results for the correct identification of the vowel /a/ (from 90.83% to
98.87%) nor the identification of the vowel /u/ (from 39.65% to 65.52%) showed a statistically
significant difference with p-values of 0.1581 and 0.1021, respectively. On the other hand, the
results obtained for the correct identification of the vowel /i/ (from 30.57% to 51.73%) showed a
statistically significant difference with a p-value of 0.0035. The p-values were obtained using the
MATLAB function ttest2().
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Table 4.2: Results for both parts of the perceptual tests where the values shown correspond to
the success rate in identifying the vowel recorded. The p-values obtained regarding the statistical
difference between results for Part I and Part II are also depicted.

/a/ /i/ /u/
PART I 90.83% 30.57% 39.65%
PART II 98.87% 51.73% 65.52%

p-VALUE 0.1581 0.0035 0.1021

Additionally, participants could recognize effectively the vowel /a/, while having more diffi-
culty in recognizing the vowels /i/ and /u/. Specifically, the vowel /i/ was often misidentified
as being the vowel /u/, which suggests that the signals recorded for both vowels are very similar
in terms of linguistic content. Moreover, this could be explained by the fact that the internal sig-
nals for the vowels /i/ and /u/ suffer less influence from the vocal tract filter when compared
to the internal signals recorded for the vowel /a/.

4.5 Summary

This chapter outlined the acquisition procedure for glottal source signal. The dataset which will
be used throughout this work for the characterization of the glottal source signal was described.
This will also be used as the ground truth for the vocal tract filter estimation. Perceptual tests
were performed for determining whether the glottal source signals had linguistic content. The
results implied that the signals acquired for vowel /a/ suffered the most from the influence of
the vocal tract and that the signals acquired for vowel /i/ suffered the least, showing the lowest
success rates of 30.57% and 51.73%, respectively, for the first and second parts with a statistically
significant difference of 0.0035. The next chapter will explain how these signals were analyzed
and the parameters used to characterize them.
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Chapter 5

Glottal Source Characterization

Theoretical models have provided enough information for speech analysis and synthesis
applications hitherto. However, a better understanding of the glottal source could poten-

tially improve the performance of voice technology applications with a more efficient and simple
approach [44]. Consequently, an accurate glottal source modelling and its estimation is a crucial
task in the field of voice processing. By accessing to the acoustic pressure signal closer to the
vocal folds, it is expected a better and more direct study of the glottal source signal. More-
over, conclusions may be drawn about the relationship between the glottal source signal and
the corresponding speech signal by comparing the content of the internal signal to its external
counterpart. In this chapter, the approach used for analysing the spectral magnitude and phase
content is described with the purpose of characterizing the glottal source and to compare it with
the theoretical reference models described in Chapter 3.

5.1 Parametric spectral analysis

A periodic signal can be decomposed in sinusoidal components that contribute to its harmonic
structure [86]. In order to perform a spectral analysis, the time domain signals must first be
converted to their frequency domain, so that they can be described according to their magnitude,
|X(ejω)|, and phase, ∠X(ejω) [87]. Since the work is focused on the voiced speech, in particular
with sustained vowels, we may assume quasi-stationary conditions. Therefore, by analysing
the magnitude spectrum |X(ejω)| of any given portion of the signal, this portion is expected to
be constant to time-shift. However, when analysing the phase spectrum ∠X(ejω) the opposite
scenario is expected. The time-shift influences the frequency components of the signal and,
consequently, their absolute phases. Nevertheless, a time-shift independent phase representation
would provide valuable information for describing a periodic signal, which is characterized by
its unaltered waveshape. For this reason, a phase-related feature was used that allows a time-
invariant phase representation.

The block diagram represented in Figure 5.1 describes the DyNaVoiceR framework, where
` denotes the harmonic index and the fundamental frequency is denoted by ω0. The harmonic
magnitude and phase values are represented by A` and φ`. Each discrete-time signal, x[n], was
segmented using a sine window, h[n], with the length of 1024 samples and using a 50% overlap
between adjacent frames [88]. This overlap-add analysis takes advantage of the combination of

31
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this discrete-time analysis window with the Odd-Frequency Discrete Fourier Transform (ODFT)
and their respective properties for the computation and of the power spectrum [89]. The ODFT is
similar to the Discrete Fourier Transform (DFT), however it rearranges the frequencies differently
[90].

Figure 5.1: Block diagram with the main steps of the analysis and parametric modelling per-
formed by the DyNaVoiceR framework, where the LPC represents the spectral magnitude and
the NRD represents the spectral phase structure of a periodic signal [91].

The harmonic analysis performed by the DyNaVoiceR framework extracts the spectral con-
tent from the power spectrum of the selected acoustic signals, as shown in Figure 5.2. From this
analysis, accurate values of the respective frequencies, magnitudes and phases of all detected
harmonics were estimated [88, 89, 92].

Figure 5.2: Typical waveform of the internal acoustic pressure signal uttered by Speaker 3 for
vowel /i/ (top), respective magnitude power spectrum (mid) and the respective harmonic struc-
ture alongside with the estimated peaks of the harmonic (red triangles) and wrapped NRD
representation (bottom).

5.1.1 Spectral magnitude analysis

The spectral magnitude analysis provides accurate information regarding the peaks of the har-
monics, concerning their frequencies and magnitude values.
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The magnitude modelling is obtained by using an all-pole (LPC) model of 22nd order, which
is appropriate for the diversity of Portuguese oral and nasal vowels and for signals recorded
with a sampling frequency of 22050 Hz.

This information is obtained by firstly estimating the average Power Spectral Density (PSD)
through interpolation of the magnitude values for all the harmonic peaks in a dB scale. Subse-
quently, the autocorrelation coefficients are calculated according to the Wiener-Khintchine the-
orem and followed by the computation of the LPC model by employing the Levinson-Durbin
recursion [87, 93].

A representation of the magnitude spectrum of a glottal source signal frame for repetition 3
of a sustained /i/ vowel uttered by speaker 3 is shown in Figure 5.3. The peaks of the harmonics
are identified by the red triangles and these correspond to their accurately estimated frequency
and magnitude values.

Figure 5.3: Magnitude power spectrum and the respective harmonic structure alongside with
the estimated peaks of the harmonic (red triangles) for vowel /i/ from speaker 3.

The natural decay of the glottal pulse spectral magnitudes is used for characterizing the glot-
tal source signal in the frequency domain and can be described by the spectral magnitude slope
[94]. For the spectral magnitude analysis, an estimation of the spectral slope was computed for
all speakers, considering only the 7 repetitions of the vowel /i/ and 8 repetitions of the vowel
/u/. The remaining two repetitions of the vowel /i/ and another one of the vowel /u/ were
disregarded from this study, since these segments showed signs of clipping. Conclusions could
not be drawn for the vowel /a/, since the effect of vocal tract was evident in the internal signals,
as shown in Figure 5.4, and these were disregarded from the spectral magnitude study. When-
ever the titles are composed by, pacX1_22050_regX2_X3, the figure being analysed corresponds
to the file containing the signal recorded using a sampling frequency of 22050 Hz from speaker
number X1 for the repetition number X2 of the uttered X3 vowel.
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Figure 5.4: Individual frames spectral magnitudes of the internal (blue) and external (orange)
signals, and their respective 95% CIs, where k is the harmonic number, obtained from repetition
3 of speaker 3 uttering the sustained vowel /a/.

Excluding the first and last seven frames (in order to analyse the stationary region of the
signal), this study only considered the frames where a minimum of 20 harmonics were detected.
The spectral magnitude slope was computed by fitting a linear model to the mean magnitude
values (on a dB scale) of the 19 harmonics above the fundamental frequency of all frames con-
sidered for each segment. The linear model was obtained using a logarithmic scale in order
to obtain a better fit to the magnitude values, similarly to the spectral magnitude slope values
described in the literature [95, 96]. Hence, the spectral magnitude slopes were computed in dB
per octave for comparison with the reference values of the theoretical models. For a better visual
analysis, figures were generated with a semi-logarithmic scale for all the segments illustrating
the magnitude values for each frame, the magnitude means and their respective 95% CIs for
each harmonic, as exemplified in Figure 5.5. The figures obtained for the remaining signals are
available in Appendix B.1.
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Figure 5.5: Mean spectral magnitude slope (brown) and individual frames spectral magni-
tudes (blue) and their respective 95% CIs, where k is the harmonic number, obtained from
repetition 3 of speaker 3 uttering the sustained vowel /i/.

The spectral decay values obtained for each vowel considered in the analysis, /i/ and /u/,
are presented in Table 5.1, identified by the respective segment and speaker. Generally, the
spectral decay is consistent between repetitions for each specific speaker and vowel.

Table 5.1: Spectral magnitude slope values obtained for different repetitions of each sustained
vowel (/i/ and /u/) according to the speaker. The values below correspond to the mean
value (x) and to the standard deviation (σ). The bottom values correspond to the mean value of
all spectral magnitude slope values.

Speaker Repetition # /i/ /u/

2
1 -14.52 -13.61
2 -13.06 -12.66
3 -13.90 -12.78

3
1 - -
2 -12.72 -13.06
3 -12.78 -12.30

4
1 - -13.94
2 -11.99 -13.36
3 -11.09 -13.40

x -12.85 -13.15
σ ± 0.83 ± 0.45

x/i/,/u/ -13.01

The mean spectral magnitude slope values obtained for the vowel /i/ and the vowel /u/
correspond, respectively, to -12.85 ± 0.83 dB/oct and -13.15 ± 0.45 dB/oct. It is noticeable that
the mean slope value for the vowel /u/ is relatively higher than the mean slope value for the
vowel /i/ and the standard deviation confirms the consistency of these values. Furthermore, as
Table 5.1 shows, both the average slope value for the vowel /i/ and vowel /u/, as well as the
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average value of -13.01 dB/oct for both values, fall in between the reference values of -12 dB/oct
and -16 dB/oct, given by the Rosenberg model and the LF model, respectively.

The experimental values obtained for the spectral magnitude are highly congruent as shown
by their respective 95% CIs, depicted in Figure 5.6 and Figure 5.7. The characterization of this
empirical model obtained from the spectral magnitude of all the glottal source signals recorded
constitutes one of the goals of this work.

Figure 5.6: Linear regression model that represents the mean spectral magnitude found for all
repetitions collected from different speakers uttering the sustained vowel /i/.

Figure 5.7: Linear regression model that represents the mean spectral magnitude found for all
repetitions collected from different speakers uttering the sustained vowel /u/, where k is the
harmonic number.

The models obtained empirically, as described above, are able to fit the data correctly for any
speaker, regardless of the chosen repetition, as illustrated by the example in Figure 5.8 example,
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corresponding the vowel /i/ of repetition 3 from speaker 3, where the mean magnitude values
of each harmonic are represented with the respective 95% CIs, along with the mean spectral
magnitude slope model previously obtained for the vowel /i/.

Figure 5.8: Spectral magnitude mean and the representation of the magnitude power spectra for
all frames and their corresponding mean for repetition 3 from speaker 3 uttering the sustained
vowel /i/, where k is the harmonic number.

5.1.2 Spectral phase structure analysis

In order to describe a periodic signal, it would be necessary a phase-related feature that allowed
time-invariant representation. According to Equation 5.1, when describing a periodic signal as an
harmonic discrete-time signal, where L corresponds to the number of the magnitude spectrum
harmonics below the Nyquist Frequency, the signal phase structure includes L initial phase
values (φ`).

x[n] =
L−1

∑
`=0

A` sin(nω` + φ`) (5.1)

However, the phase structure mentioned earlier is shift dependent and, therefore, by shifting
the waveform in n samples, the phase values are altered. However, when dealing with harmonic
signals, ω` = (`+ 1)ω0, the equation that describes a discrete-time signal can be represented as
Equation 5.2, where the phase structure is portrayed as a time-shift invariant feature [97].

x[n] =
L−1

∑
`=0

A` sin[(`+ 1)(nω0 + φ0) + 2πNRD`] (5.2)

The Normalized Relative Delay (NRD) can be obtained according to Equation 5.3. The NRD
feature can be represented in a wrapped or unwrapped format and ranges from 0 to 1 for each
harmonic, since it represents the normalized phase. This work focused on the latter in order
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to facilitate interpretation, which corresponds to a smooth and more easily interpretable phase-
related feature [98].

NRD` =
φ` − (`+ 1)φ0

2π
, ` = 0, 1, ..., L− 1 (5.3)

When dealing with a periodic signal, this normalized phase-related feature represents the
phase delay for each individual harmonic in relation to the fundamental frequency and repre-
sents the phase contribution to its shape invariance [99]. For most cases, the unwrapped NRD
vectors were prone to follow a linear tendency. Having this in mind, the behaviour of the un-
wrapped NRD was approximated by a linear regression model of the 19 harmonics above the
fundamental frequency in each ODFT frame of the signal. Similarly to the previous study, the
first and last seven frames were excluded (in order to remove the outliers created by the analysis
of the fade in and fade out regions) and the frames considered were the ones with a minimum
of 20 harmonics detected. Following this procedure, the NRD slope was obtained, both for inter-
nal and external signals, among all speakers, for 14 signals regarding vowel /a/, for 14 signals
regarding the vowel /i/ and 16 signals regarding vowel /u/. The experimental values that were
obtained for the NRD models were plotted alongside with the NRD vectors, their respective
mean and 95% CIs for each harmonic regarding each repetition. Two examples are given in
Figure 5.9 (internal signal) and Figure 5.10 (external signal). The remaining results are available
in Appendix B.2.

Figure 5.9: Spectral NRD slope mean, the unwrapped NRD values (blue), and the corresponding
mean and the 95% CIs of the internal signal for repetition 3 from speaker 3 uttering the sustained
vowel /i/.
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Figure 5.10: Spectral NRD slope mean, the unwrapped NRD values (orange), their correspond-
ing mean and the 95% CIs of the external signal for repetition 3 from speaker 3 uttering the
sustained vowel /i/.

These results showed that the external signals regarding all vowels had a positive NRD slope,
while only the internal signals regarding the vowels /i/ and /u/ had a negative NRD slope. The
internal signals regarding the vowel /a/ showed a positive NRD slope similarly to the external
signals. This reassures that the internal signals are not inverted due to its acquisition conditions.
Moreover, taking into account the fact that all the internal signals were recorded at the same
distance from the vocal folds, the positive polarity of the vowel /a/ suggests that there is an
earlier influence of the vocal tract in this case. This hypothesis is supported by the results of the
perceptual tests carried out to evaluate the linguistic content of the internal signals, where vowel
/a/ had the highest rate for successful identification. Table 5.2 shows the slope values obtained
for the NRD models for each vowel considered for this study (/a/,/i/ and /u/) according to
the speaker and repetition.
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Table 5.2: Spectral NRD slope values for different repetitions of each sustained vowel (/a/, /i/
and /u/) according to the speaker. The mean spectral NRD slope values (x) and the standard
deviation (σ) are also depicted according to vowel and location, alongside with the difference
values between the internal and the external NRD means according to vowel.

/a/ /i/ /u/Speaker Repetition # L R L R L R
1 0.084 0.077 -0.084 0.131 -0.119 0.031

2 2 0.092 0.067 -0.029 0.132 -0.081 0.046
3 0.101 0.098 -0.089 0.185 -0.123 0.138
1 - - - - - -

3 2 0.133 0.231 -0.077 0.161 -0.117 0.046
3 0.106 0.186 -0.107 0.196 -0.147 0.078
1 - - - - -0.029 0.140

4 2 0.148 0.169 -0.074 0.199 -0.058 0.124
3 0.160 0.183 -0.037 0.156 -0.068 0.146

x 0.118 0.144 -0.071 0.166 -0.093 0.094
σ ±0.024 ±0.055 ±0.022 ±0.023 ±0.034 ±0.043

xR−xL 0.026 0.238 0.187

The analysis of the results in Table 5.2 indicates that these unwrapped NRD slope values are
highly vowel dependent. The internal signals presented values around 0.12 for vowel /a/, -0.07
for vowel /i/ and -0.09 for vowel /u/. The external signals seem to have a steeper slope with
values around 0.14 for vowel /a/ and 0.17 for vowel /i/, except for the slope value of 0.09 found
for vowel /u/.

It should be noted that the average NRD slope value found for the internal signal of vowel
/a/ of 0.12 has a similar value to the NRD slope reference value of 0.09 given by the LF glottal
source model [42]. Additionally, the average NRD slope values found for the external signals
of vowels /a/ and /i/ of, respectively, 0.14 and 0.17, replicate approximately the NRD slope
obtained from experimental human data of approximately 0.15 [97].

The NRD values and models were reproduced graphically for both signals in Figure 5.11 for
a better visual perception of the NRD relation between internal and external signals according
to the respective repetition. The remaining illustrations are available in Appendix B.2.
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Figure 5.11: Spectral NRD slope mean found for the internal signal (blue) and the external sig-
nal (orange). The unwrapped NRD for the internal signal (blue) and the external signal (orange)
are depicted, their corresponding mean and the 95% CIs for repetition 3 from speaker 3 uttering
the sustained vowel /i/.

A relation was obtained for the difference between the external NRD mean vectors and the
internal NRD mean vectors for time-aligned signals. For that reason, the NRD means were
represented alongside with the difference between them and the equation of the linear regression
model that describes its development, as shown in Figure 5.12. The remaining illustrations can
be found in Appendix B.2.

Figure 5.12: Difference between the external NRD mean (orange) and the internal NRD
mean (blue) for repetition 3 of speaker 3 uttering the sustained vowel /i/. The equation that
corresponds to the linear regression model of the NRD difference is represented in brown.

After determining these results, it was important to study this behaviour in more detail. In
this perspective, a linear regression was used to study the difference between the internal and
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external signals NRD means of all the signals according to vowel. Therefore the differences were
plotted and the equations of the linear regression models for the mean difference were depicted
according to vowel, as shown in Figure 5.13. The goal was to verify the existence and study
the relation between inner and outer spectral content to infer the behaviour of the glottal source
signal from the information available in the external speech signal.

From this study, it could be concluded that the slope of the NRD mean difference model for
the vowel /i/ is the highest, with a value of 0.246, closely followed by the slope of the NRD
mean difference model for the vowel /u/, with a value of 0.186, and, finally, followed by the
slope of the NRD mean difference model for the vowel /a/, with a value of 0.032.

Moreover, it can be observed in Figure 5.13 that the behaviour of the NRD mean difference
for the first 10 harmonics is quite similar for both /i/ and /u/ vowels.

Figure 5.13: Differences between the external and internal NRD means for all signals. Also
depicted the equations that correspond to the linear regression model of the NRD difference for
each vowel.

The characterization of these empirical NRD models obtained from the spectral phase struc-
ture (NRD) values of all the glottal source signals recorded corresponds to another goal of this
work.

5.2 Statistical analysis

In this section, a descriptive statistical tool is used for the representation of the empirical data
distribution of the magnitude and phase (NRD) values estimated for the first 20 harmonics of
each recorded sample. The purpose of this analysis is to verify the quality of the dataset, namely
the congruence of the spectral magnitude and phase estimated data. A comparison is made
between the values obtained for the internal and external signals for the same vowels. The
boxplots regarding the spectral magnitude values estimated for the first 20 harmonics of the
internal signals for repetition 3 from speaker 3 uttering vowel /i/ and vowel /u/ are illustrated
in Figure 5.14 and in Figure 5.15, respectively.
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Figure 5.14: Boxplots of all the spectral magnitude values for the first 20 harmonics of the
internal signal for repetition 3 from speaker 3 uttering vowel /i/.

Figure 5.15: Boxplots of all the spectral magnitude values for the first 20 harmonics of the
internal signal for repetition 3 from speaker 3 uttering vowel /u/.

After analysing the boxplot figures provided in Appendix C.1, some significant conclusions
can be drawn. The first relates to the spectral magnitude values which present condense box-
plots with low variability, as can be seen in Figure 5.14 and Figure 5.15. Secondly, that some
harmonics present noticeable deviations from the logarithmic relation previously studied, as
shown in Figure 5.15.

The boxplots for the estimated NRD values are depicted from Figure 5.16 to Figure 5.21.
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Figure 5.16: Boxplots of all the unwrapped
NRD values for the first 20 harmonics of the
internal signal for repetition 3 from speaker 3
uttering vowel /a/.

Figure 5.17: Boxplots of all the unwrapped
NRD values for the first 20 harmonics of the
external signal for repetition 3 from speaker
3 uttering vowel /a/.

Figure 5.18: Boxplots of all the unwrapped
NRD values for the first 20 harmonics of the
internal signal for repetition 3 from speaker 3
uttering vowel /i/.

Figure 5.19: Boxplots of all the unwrapped
NRD values for the first 20 harmonics of the
external signal for repetition 3 from speaker
3 uttering vowel /i/.

Figure 5.20: Boxplots of all the unwrapped
NRD values for the first 20 harmonics of the
internal signal for repetition 3 from speaker 3
uttering vowel /u/.

Figure 5.21: Boxplots of all the unwrapped
NRD values for the first 20 harmonics of the
external signal for repetition 3 from speaker
3 uttering vowel /u/.

Regarding the NRD values, these show higher variability for the internal signals when com-
pared to the external signals in the specific case of vowel /a/, illustrated respectively in Fig-
ure 5.16 and Figure 5.17. The opposite was verified for vowels /i/ and /u/, where the boxplots
show less variability for the internal signals, as can be seen in Figure 5.18 and Figure 5.20 for the
internal signals and in Figure 5.19 and Figure 5.21 for the external signals. The figures of the re-
maining repetitions and speakers depict similar distributions and can be found in Appendix C.2.

A conclusion that can be drawn from these boxplots and the ones available in Appendix C is
the fact that the first harmonics show substantially less variability when compared to the higher
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harmonics, this is reassuring since the first harmonics are the most important for defining a
periodic signal shape invariance.

5.3 Empirical model of the glottal source

Each speaker produces a unique glottal source signal, carrying idiosyncratic information. When
that is combined with their own vocal tract characteristics results in a recognizable speech signal.
One of the main goals for accurately modelling the real glottal source is to improve speech
synthesis in terms of speech quality and naturalness. However, many theoretical models fail
to perceptually fit natural voices due to the complex associations between the physical and the
psychoacoustic events [64]. Having this in mind, an empirical glottal source model is presented
based on real data collected directly from and quite near the vocal folds.

It is known that it is possible to define the shape invariance of a given periodic waveform
using both independent spectral magnitude and spectral phase structure (NRD) models and
reconstruct it in the time and frequency domain [100, 101, 97]. Considering that the periodic
component of a speech signal may be decomposed on a series of harmonic related sine waves,
such signals require at least three independent parameters to be generated: the fundamental
frequency ω0 = 2π

T0
; the spectral magnitude values obtained from the signal harmonics, A`; and

the coefficients from the shift-invariant phase-related model, NRD`. Therefore, the glottal source
signal gs(t) can be defined according to Equation 5.4, where L represents the total number of
harmonics and ` represents the index number of each harmonic.

gs(t) =
L−1

∑
`=0

A` sin(
2π

T0
(`+ 1)t + 2πNRD`) (5.4)

The glottal source derivative signal dgs(t) can be obtained by differentiating Equation 5.4. Ac-
cording to Fourier Theory, the derivative of x(t) may be computed by multiplying X(jω)*(jω)

on the frequency domain, where X(jω) corresponds to the Fourier Transform of x(t). There-
fore, this corresponds to multiplying the magnitude of the Fourier transform by the frequency
and adding π/2 to the phase [97] and, thus, except for a constant scaling factor, we obtain
Equation 5.5.

dgs(t) =
L−1

∑
`=0

(`+ 1)A` sin(
2π

T0
(`+ 1)t + 2πNRD` + π/2) (5.5)

Since the glottal source carries speaker-dependent characteristics, these empirical models
were generated for each vowel and speaker. The resulting models show, however, similar wave-
shapes as Figure 5.22 shows. The fundamental frequency used for this representation was 220
Hz and the sampling frequency 22050 Hz. These empirical models were synthesized using
the spectral magnitude and phase information regarding the first 20 harmonics. Similarly, the
idealized glottal source signal was synthesized using the spectral magnitude and phase informa-
tion for the first 20 harmonics of the LF model, obtained through the v_glotl f () function from
VOICEBOX, which is a speech toolbox available for MATLAB [102].
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Figure 5.22: Waveform of the empirical model of the glottal source for vowel /i/ obtained
for Speaker 2 (orange), for Speaker 3 (yellow) and for Speaker 4 (purple), alongside with the
waveform of theoretical model LF (blue) and their derivatives.

According to Figure 5.22, the empirical glottal signals present a longer opening phase and a
shorter return and closed phase than the LF glottal source signal. The empirical glottal source
signal derivatives show an early maximum when compared to the LF glottal source derivative
signal. Moreover, it depicts a stationary period (null glottal source derivative) during the opening
phase and before the closing phase, besides the expected stationary period during the closed
phase.

These empirical models intend to be a proof of concept and, even though these may differ
from the well-accepted theoretical models, they show high similarity between the synthesized
glottal source signals for different speakers and to the real glottal source signals recorded for
each speaker. There are certainly studies that can follow up this unexplored approach for a
better understanding of this topic.

5.4 Summary

This chapter described the estimation of the magnitude and phase (NRD) features for each
vowel. These spectral features were then analysed and characterized. For the spectral magnitude
analysis, the natural harmonic decay was estimated through the spectral slope of the empirical
spectral magnitude model of both sustained vowels /i/ and /u/ of -13 dB/oct. The spectral
phase structure (NRD) analysis of the internal signals resulted in slope values of 0.118 for the
vowel /a/, -0.071 for the vowel /i/ and -0.093 for the vowel /u/. The analysis of the slope
values for the mean differences between the external and internal signals showed values of 0.032
for the vowel /a/, 0.246for the vowel /i/ and 0.186 for the vowel /u/. Using these features, a
synthesized signal of the glottal source was obtained and compared to the theoretical LF model.

The focus of the next chapter is the vocal tract filter estimation and its characterization in
terms of magnitude and phase.



Chapter 6

Vocal Tract Characterization

According to the Source-Filter model, previously explained in Chapter 2, the speech pro-
duction system can be divided into: the source, corresponding to the glottal excitation

signal; and the filter, corresponding to the effect of the vocal tract structure. The Vocal Tract Fil-
ter (VTF) conveys the linguistic content by modulating the source signal in time and frequency.
This filter reproduces the effect of the resonances and anti-resonances formed in the oral and
nasal cavities, which results, in particular, in the presence of proeminences on the magnitude
spectrum, known as formant frequencies in the speech signal. In this chapter, the procedures
followed for estimating the VTF according to vowel and speaker will be described, as well as the
results obtained for the perceptual tests carried out using the synthetic signals generated with
the estimated VTF.

6.1 Estimation of the vocal tract filter

6.1.1 Deconvolution approach

A first approach was attempted by using the concept of deconvolution, considering the Source-
Filter Theory, which presupposes the simplified speech production described as a convolution
between the excitation signal g(t) and the impulse response of the vocal tract v(t), resulting in a
speech signal s(t) in the time domain, as shown in Equation 6.1.

s(t) = g(t) ∗ v(t) (6.1)

When expressed in the frequency domain, the speech, S(ω), can be modelled as the product
between the source, G(ω), and the VTF, V(ω), as described in Equation 6.2

S(ω) = G(ω)V(ω) (6.2)

The VTF transfer function, V(ω), is estimated by dividing the speech signal, S(ω), by the
glottal source signal, G(ω), in the frequency domain, as described in Equation 6.3.

V(ω) =
S(ω)

G(ω)
(6.3)

47
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Therefore, by computing the inverse Fourier transform of the transfer function, V(ω), it is
possible to obtain the impulse response of the VTF in the time domain, v(t).

Although this approach seems rather straightforward, the experimental results were incon-
clusive due to the high variability of the glottal source signal in comparison with the VTF, which
constrains the validity of the solution of Equation 6.3.

6.1.2 Adaptive filtering approach

Adaptive filtering was another approach attempted to estimate the VTF, which is based on
iterative adjustments of the coefficients of an adaptive filter. This opportunity exists because
both input and output signals are known. This technique consists in finding a filter matching
the impulse response of the unknown filter according to a statistical criteria that minimizes the
error signal, typically the minimization of the root mean square error. In the present case, we
are dealing with a system identification problem where the goal is to design an adaptive filter
that provides an approximation model for the unknown system [103]. The processing structure
of the adaptive filter modelling can be represented by the block diagram shown in Figure 6.1.

Figure 6.1: Block diagram representing the structure of a general adaptive filtering processing
for system identification.

For the error minimization procedure, a gradient algorithm known as Least Mean Squares (LMS)
was used, a common technique used for this purpose [104]. However, the conditions for con-
vergence in order to obtain an optimal estimate of the unknown system were not achieved. In
fact, even when the adaptive filter order was varied between 10 and 500, convergence was not
obtained for a single well defined filter. For this reason, it was not possible to guarantee that
the adaptive filter learns towards a global minimum, rather than towards a local minimum of
the error function. Once more, this is related to the fact that the source signal has its energy re-
stricted in several limited bands that correspond to its harmonic structure, resulting in multiple
local minima of the error function and, therefore, it is not possible to ensure that this iterative
process delivers a useful solution.
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6.1.3 Holistic filter design approach

Finally, a holistic approach was carried out to overcome the limitations of the attempts previously
described in Subsection 6.1.1 and Subsection 6.1.2 and accurately estimate the VTF, by taking ad-
vantage of the spectral envelopes computed for the internal and external signals to design digital
filters that approximate the transfer function of a useful VTF. In order to evaluate the relevance of
phase information, two filters were computed for all the repetitions of each vowel from different
speakers. For this reason, a linear-phase all-zero Finite Impulse Response (FIR) filter and an all-
pole Infinite Impulse Response (IIR) filter were obtained with equal magnitude response |V(ω)|
for each pair of concomitant files ( corresponding to the internal and external recordings). Using
the harmonic analysis described in Chapter 5, we take advantage of the spectral envelope of the
all-pole (LPC) model obtained from the average Power Spectral Density (PSD) of both internal
and external signals. Using these two spectral envelopes, the frequency response of a prototype
filter was computed by performing the difference, on a dB scale, between the computed speech
and glottal source spectral envelopes, as shown in Figure 6.2.

Figure 6.2: Spectral envelopes of the internal (blue) and external (orange) harmonic structure
and frequency response of the prototype filter (red).

The IIR filter was obtained using the magnitude frequency response of this prototype. From
the magnitude squared of the prototype, the autocorrelation coefficients were firstly obtained
by using the Wiener-Khintchine theorem. Then, the parameters of the 22nd order all-pole model
were obtained through the Levinson-Durbin recursion [93]. This was followed by the design of
a single-band FIR filter by using the IIR filter magnitude frequency response. The linear-phase
property of the FIR filter was ensured by the use of a single band Parks-McClellan optimal
equiripple design of order 500, independently of the desired magnitude frequency response
[91]. Both IIR and FIR filters are depicted alongside the prototype in Figure 6.3.
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Figure 6.3: Frequency response of the prototype filter and the corresponding frequency response
of the IIR and FIR filters computed for the repetition 3 of the vowel /i/ from speaker 3.

Overall, the magnitude frequency responses for both IIR and FIR filters were very similar, as
shown by the dashed lines in Figure 6.3. The figures for other filters can be found in Appendix D,
where a small ripple effect may be observed for some FIR filters computed for the vowels /i/
and /u/ from speaker 4.

The estimated filters for each vowel were then compared for different repetitions for each
speaker. When observing Figure 6.4 it is possible to conclude that the estimated VTFs have a
very similar frequency response for all the three repetitions of the vowel /i/ from speaker 2. The
same conclusion can be drawn from the figures regarding other vowels and speakers available
in Appendix D.

Figure 6.4: Frequency response of the prototype filters and the corresponding frequency re-
sponse of the IIR and FIR filters obtained for all three repetitions of vowel /i/ from speaker
2.
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Figure 6.5 represents the frequency responses of the different filters (and their prototype)
obtained for different speakers for the vowel /i/. It is known that vowels are defined mostly
by the location the first two formants [10]. In fact, as observed in Figure 6.5, the low variability
shown in the lower frequencies indicates that these frequencies, where the formant frequencies
are located, are related to the linguistic content while the greater variability at higher frequen-
cies should be related to the speaker idiosyncratic characteristics. A similar conclusion can be
inferred from the figures for the other two vowels (/a/ and /u/) available in Appendix D.

Figure 6.5: Frequency response of the prototype filters and the corresponding frequency re-
sponse of the IIR and FIR filters obtained for all the repetitions of vowel /i/ from all speakers.

Subsequently, synthetic signals were generated for each vowel and speaker using as the
source, the signal recorded by the internal microphone and as the filter, the estimated IIR and
FIR filters representing the vocal tract approximation. The synthesized signals obtained from
each filter version (IIR and FIR) were compared by the DyNaVoiceR Project team and no signif-
icant perceptual differences were found. Having this in mind, it was concluded that the phase
differences do not play a major role in the perceptual impact of the synthetic vowels studied.
However, even though the results show that phase contribution is not relevant for perceptual
differences in short duration sustained vowels, phase contribution should not be disregarded in
interconnected speech [91].

6.2 Perceptual tests

The synthetic signals obtained with the FIR filter corresponding to the estimated VTF were used
to conduct perceptual tests to compare the generated synthetic speech signals with its corre-
sponding speech signal recorded by the external microphone, in order to evaluate whether the
VTF was estimated correctly and if it carries idiosyncratic characteristics that allow the speaker
identification. The F0 contour and its microvariations also represented relevant perceptual cues.

Twenty five volunteer listeners participated in the perceptual tests under informal conditions,
though the participants were recommended the use of headphones. The participants were given
an original reference sample of a vowel utterance and three synthetic samples, one from the same
speaker and two from other speakers uttering the same vowel. The participants were asked to
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identify the synthetic sample corresponding to the given reference sample. Additionally, the
participants were asked to grade the similarity level between the chosen synthetic signal and
the reference signal, using for this purpose a scale ranging form 1 (low similarity) to 5 (high
similarity). Hence, a reference sample was used for each vowel (/a/, /i/ and /u/) of each
speaker, which amounts to a total of 9 real audio references and 27 synthetic samples.

The results obtained with these perceptual tests can be observed in Figure 6.6 and Figure 6.7,
where each female speaker is identified by a different color. The 95% CIs obtained for the success
rate were computed using the Adjusted Wald method for the binary data [85] and the 95% CIs
obtained for the similarity were computed using the MATLAB function ttest2() for continuous
data.

Figure 6.6: Results obtained with the perceptual tests regarding the accuracy in identifying the
correct speaker. The blue bars correspond to Speaker 2, the green bars correspond to Speaker 3
and the red bars correspond to Speaker 4.

Figure 6.7: Results obtained with the perceptual tests regarding the degree of similarity that the
participants gave to the chosen sample when compared to the reference sample. The blue bars
correspond to Speaker 2, the green bars correspond to Speaker 3 and the red bars correspond to
Speaker 4.
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Figure 6.6 represents the percentage of cases for which the speaker was correctly identified
and it can be concluded that the majority of the participants identified correctly the speakers
given as a reference. According to the results, speaker 2 (blue) was the most accurately identified,
with 100.00% success rate for both vowels /a/ and /i/, and speaker 3 (green) the least, with
76.00% for vowel /u/. The vowels that obtained a higher success rate for speakers 2 and 3 were
vowels /a/ and /i/, while for speaker 4 was vowel /u/.

Based on the results depicted in Figure 6.7 it can be stated that the synthetic signals resemble
the natural signals, since every sample achieved a mean score above 4 out of 5, which according
to the scale corresponds to very similar. A statistical analysis was performed regarding the
similarity results obtained for a significance level of 5% using the MATLAB function ttest() for
continuous data.

Table 6.1: p-values obtained for the statistical
analysis between the degree of similarity for
different vowels for the same speaker.

S2 S3 S4
/a/ vs /i/ 0.1931 0.4748 0.4669
/a/ vs /u/ 0.0004 0.8551 0.7221
/i/ vs /u/ 0.0178 0.5864 0.7196

Table 6.2: p-values obtained for the statistical
analysis between the degree of similarity for
different speakers for the same vowels.

/a/ /i/ /u/
S2 vs S3 0.0002 0.0004 0.2092
S2 vs S4 0.0014 0.1277 1
S3 vs S4 0.5890 0.0509 0.2827

In Table 6.1, it can be observed a statistically significant difference for Speaker 2 between the
degree of similarity for vowels /a/ and /u/, with p-values of 0.0004. Table 6.2 shows a statis-
tically significant difference between the degree of similarity for vowel /a/ between speakers 2
and 3 and speakers 2 and 4, with p-values of 0.0002 and 0.0014, respectively, and for vowel /i/
between speakers 2 and 3, with p-values of 0.0004.

Table 6.3: Results of the perceptual tests where the values shown correspond to the average
success rate in identifying the reference and average similarity to the reference according to
speaker. The last column corresponds to the mean value (x) for the three speakers.

Speaker 2 Speaker 3 Speaker 4 x
SUCCESS RATE 97.33% 84.00% 92.00% 91.11%

SIMILARITY 4.61 4.05 4.32 4.33

It can be seen in Table 6.3 that both success rate and similarity show good agreement, proving
that the participants gave a higher similarity grade when they were more convinced of their
choice. A conclusion to be drawn is the fact that speaker 2 showed the highest success rate and
degree of similarity with 97.33% and 4.61, respectively, followed by speaker 4 with 92.00% and
4.32. Finally, speaker 3 showed the lowest success rate and degree of similarity with 84.00% and
4.05.

Overall, the results indicate that participants were able to select the correct speaker in most
instances and that the synthetic signal was found to be highly similar to the reference signal with
a mean success rate of 91.11% and mean degree of similarity of 4.33. Therefore, we conclude
that the attempt to estimate the VTF was successfully achieved using this last approach and that
the filter seems to carry idiosyncratic characteristics associated to each speaker. It should also be
stated that the synthesized data seemed to have better quality than the corresponding recorded
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real speech data. This is probably due to the surrounding noise recorded by the external micro-
phone, which was not captured by the internal microphone, nor did it manifest its effect in the
synthesized data.

6.3 Summary

The deconvolution and the adaptive filtering techniques were not well succeeded, since the
obtained results did not produce useful vocal tract filters. However, by using the holistic design
filter approach for the estimation of the VTF, it was possible to obtain synthesized data with
a mean success rate of 91.11% and a mean degree of similarity of 4.33. The synthetic signals
seemed very similar to the natural signals, as shown by the results of the perceptual tests, which
indicates that this holistic approach allowed to obtain a good approximation of the VTF. In the
next chapter, the major conclusions of this research work will be presented, as well as future
trends.



Chapter 7

Conclusions and Future Work

Speech is an ability taken for granted. It is such a natural part of our life, since the moment
we are born until the moment we breath our last breath, and we do not value it enough. We

only realise its importance, when restrained from using it.
Firstly, it is clear that the waveshape of the internal signals shows discrepancies when com-

pared to the glottal source waveshape of theoretical models. In fact, it even differs when com-
pared between speakers, probably due to slight variations in the acquisition conditions and
possibly due to the different phonation modes [11]. Nonetheless, to the best of our knowledge,
there is no evidence in the literature of recent references reporting research work dealing with
the real, i.e. physiological, glottal waveshape. In fact, in real case scenarios, the LF model has
been stated to fall short when manipulated in the time domain [105]. For this reason, a spec-
tral approach was outlined for accurately modelling the glottal source according to the spectral
content extracted from real data opposing to the theoretical models. Thereby, a more accurate
spectral model gives more flexibility to overcome shape constrictions imposed by the idealized
models and improve the naturalness of synthesized speech signals.

The segments regarding the internal recordings of the sustained vowel /a/ show a more
significant influence of the vocal tract filter than the observed in the vowels /i/ and /u/. In
fact, for the vowel /a/, the power spectra of the internal recordings are very similar to the
power spectra of the external recordings. This may be explained by the articulation of the vocal
tract for this vowel, which consists in fewer constrictions when compared to the vowels /i/ or
/u/, enabling the contributions of the supralaringeal cavities to contaminate the internal signal
through echoed signals.

In terms of spectral magnitude analysis, the value obtained for the spectral magnitude slope
of the empirical spectral magnitude model of both sustained vowels /i/ and /u/ of -13 dB/oct
approximates more to the Rosenberg reference value of -12 dB/oct [65], rather than to the -16
dB/oct reference from the LF glottal model [35].

In terms of spectral phase structure analysis, the values obtained for the empirical spectral
NRD models vary according to the vowel. On one hand, the analysis of the internal signals
resulted in NRD slope values of 0.118 for the vowel /a/, -0.071 for the vowel /i/ and -0.093 for
the vowel /u/. On the other, the analysis of the external signals resulted in NRD slope values
of 0.144 for the vowel /a/, 0.166 for the vowel /i/ and 0.094 for the vowel /u/. The NRD slope
value obtained for the mean differences between the external and internal signals for the vowel
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/a/ was 0.032, for the vowel /i/ was 0.246 and, lastly, for the vowel /u/ was 0.186. This last
analysis relates the NRD values obtained for the internal glottal source signal with the NRD
values obtained for the external speech signal and shows a larger difference for the recordings
obtained for vowels /i/ and /u/, when compared to vowel /a/.

The perceptual tests that were carried out support the hypothesis that the internal recordings
of vowel /a/ show a larger effect of the vocal tract filter when comparing to the internal record-
ings of vowels /i/ and /u/. Another important conclusion from these tests is the fact that the
internal recordings of vowels /i/ and /u/ show very similar linguistic content since these were
often misidentified as the opposite.

The estimation of VTF was possible using the holistic design filter approach. The filters
obtained showed relevant similarities not only among the same speaker, but also for different
speakers according to vowel. The perceptual tests carried to with the synthesized data, showed
that the filters were correctly estimated for the signals recorded with a mean success rate of
91,11% and a mean degree of similarity of 4,33. Additionally, it was concluded that the NRD
phase structure contribution was not substantial in terms of perceptual impact for vowel utter-
ance.

In conclusion, a characterization of both spectral magnitude and phase was performed in
order to describe the glottal source signal as accurately as possible, which fulfills the purpose
of this dissertation. Additionally, empirical glottal source models are described according to
speaker in order to preserve the idiosyncratic information. Finally, the estimation of the vocal
tract filter for a given vowel was successful according to each speaker and shown to replicate
faithfully the signals recorded externally.

This study has only scratched the surface of this uncharted topic. Future directions are given
on the continuity of this dissertation:

• Improve the dataset and record for a larger variety of speakers and different types of
phonation (e.g. whispering);

• Estimate the glottal source using different state-of-the-art techniques developed in more
recent studies and compare it with the glottal source empirical models obtained, in order
to validate that the recorded signal obtained corresponds to the real glottal source signal;

• Compare the empirical glottal source model obtained and the theoretical glottal source
models described in the literature, regarding the relation between the glottal source deriva-
tive behaviour and the physiological events;

• Study the cause of the difference in NRD slope polarity between the signals captured
internally and externally, in the case of /i/ and /u/ vowels, which is probably related the
acoustic radiation effects.
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Supplied with carrying case, black and white cable 
clips, wind screen, and 3 protective caps.

COUNTRYMAN ASSOCIATES INC

B6 OMNIDIRECTIONAL
LAVALIER MICROPHONE

Only one tenth of an inch in diameter, the B6 is the smallest lavalier in the world 
and outperforms microphones many times its size.

The swappable protective caps provide moisture resistance and color options 
and let you shape the frequency response to suit different applications or to 
match other microphones. 

With exceptionally low handling noise and rugged construction, the B6 is the 
ideal choice for theater, broadcast, churches, and general lavalier applications.

Unobtrusive 

Smaller than the cable of other 
lavaliers, the B6 is easily hidden in 
hair or on costumes, or taped to a 
performer’s face. The B6 comes in 
five colors to match clothing, hair, and 
skin tones, or use a felt tip marker to 
color the white caps for near-perfect 
concealability. Never suffer the hassle 
and degraded sound quality of under-
clothing miking again.

Exceptional Sound Quality

The highest-quality audio available 
in a lavalier mic. Low distortion at 
SPL up to 140 dB on 48 V Phantom 
Power. The Aramid cable and ultra-
thin diaphragm combine to set a new 
standard for low handling noise. The 
tiny size and natural sound pickup 
make the B6 easy to position for 
ambient noise and feedback rejection.
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Frequency Response : 20 Hz to 20 kHz
Operating Current : 500 µA
Operating Voltage : 1 to 2 Volts
Power Supply Voltage :
+3 V with 2.7 kΩ load
+5 V with 6.8 kΩ load
+9 V with 15 kΩ load

The B6 Lavalier is available in three sensitivities:

B6W4 
standard (gray band) for most uses
Sensitivity: 16.0 mV/Pascal
Equivalent Acoustic Noise: 24 dBA SPL
Overload Sound Level: 120 dB SPL

B6W5  
low sensitivity (red band): head mic for theater
Sensitivity: 7.0 mV/Pascal
Equivalent Acoustic Noise: 29 dBA SPL
Overload Sound Level: 130 dB SPL

B6W6  
very low sensitivity (blue band): instrument / near mouth
Sensitivity: 2 mV/Pascal
Equivalent Acoustic Noise: 39 dBA SPL
Overload Sound Level: 140 dB SPL

Versatile

Swappable protective caps let you 
shape the frequency response for 
different situations or to match other 
microphones. Versions available for 
different speaking or singing styles, 
with up to 140 dB SPL capability.

Rugged and Reliable

The B6 is exceptionally resistant to 
makeup, sweat, and moisture when 
used with the supplied protective 
caps, and is well-suited to use in 
hair or on the body. The protective 
caps are easily removed for cleaning 
or replacement, and the Aramid-
reinforced cable gives it world-class 
survivability.
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Countryman Associates, Inc. 195 Constitution Drive, Menlo Park, CA 94025  US: (800) 669-1422  Intl: 650-364-9988 F: (650) 364-2794  
sales@countryman.com  For more information and warranty registration visit www.countryman.com  Made in the United States.

B6 Lavalier: Frequently Asked Questions

What are other popular placement tips for the B6?

Attached to EyeglassesBehind a Button
The B6 is also popular on stage 
attached to glasses. Placement on 
eyeglasses with O-rings or tape is 
secure, discreet, and a convenient 
alternative to hair miking. 

Positioned in the knot of a tie or behind 
a shirt button, the B6 delivers flawless 
audio and hides in plain sight. When 
placed completely under clothing use 
the +4 dB or +8 dB protective cap to 
boost high frequencies.

Hair Mic
The B6 is very popular as an 
ultraminiature hair microphone. This 
placement provides good gain before 
feedback and natural sound that 
doesn’t change when the head moves. 
(Microphone extended here for visibility)

Flat 
+0 dB

Bright 
+4 dB

Very Bright 
+8 dB

Which cap should I use?
The B6 Lavalier should always be used with a protective cap in place to keep sweat, 
makeup, and other foreign material out of the microphone.  The three omni caps each have 
a different high-frequency response characteristic that controls the amount of “crispness” or 
“sibilance” (response at 15 kHz). To identify caps, compare size to the drawings.

The omni ships with the +4 dB protective cap fitted to the mic. This will boost the perceived 
amount of presence in your sound, while leaving the lower frequencies unchanged. If you 
experience problems with high-frequency feedback, you should switch to the 0 dB cap.

How do I choose the right color for my skin tone?
Tan works very well for Caucasian skin tones as well as olive complexions. Light beige works 
well for light and pink tones. Cocoa is the ideal choice for very light brown to chocolate 
tones. Choose black for deep brown skin, or on other tones when you want the mic to be 
visible. When in doubt, choose the darker option. That’s because a mic that’s too light can 
resemble a scar or blemish, while a mic that’s slightly darker than the background resembles 
a shadow and draws less attention.

Which sensitivity should I choose?
Making a microphone more sensitive to catch soft sounds means it will overload sooner for 
loud sounds. Because sound pressure levels vary between individuals and applications, we 
provide three sensitivities with three overload or clipping characteristics.

• The most sensitive (W4, gray band) is for general speaking, such as presentations or 
sermons, where the mic is positioned on the chest or lapel

• The middle sensitivity (W5, red band) is ideal for use as a head mic in theater

• The least sensitive mic (W6, blue band) with the highest overload sound level is a good choice for 
instrument applications, opera, or where the microphone will be positioned very near the mouth.
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A.2 Data Acquisition Board Specifications
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A.3 Rhino-Laryngo Fiberscope Specifications



RHINO-LARYNGO FIBERSCOPE

ENF-XP
The Optimal Choice for Observation of Narrow Upper Airway Passages
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Shinjuku Monolith, 2-3-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-0914, Japan

Specifications, design and accessories are subject to change without any notice or obligation on the part of the manufacturer.

For a complete listing of 
sales and distribution locations visit:

www.olympus.com 

Ultra-slim 2.2 mm Insertion Tube—
Perfectly Sized for Narrow Nasal Cavities.
Featuring an ultra-slim insertion tube diameter of 

2.2 mm as well as high resolution optics and 

brightness, the Olympus ENF-XP is perfectly 

suited for observing the nasal cavity, larynx and 

pharynx. Optimally sized for narrow nasal 

cavities, it also makes observation of adult 

paranasal sinuses easier than ever, while its 

angulation range of 130° both up and down 

enables trachea insertion maneuverability. For 

minimally invasive insertion and clear, reliable 

observation, depend on the Olympus ENF-XP 

Rhino-Laryngofiberscope.

Versatile, durable and reliable Olympus rhino-laryngofiberscopes ensure smooth operation. A full range of 

rhino-laryngo fiberscopes for your procedural needs. Olympus rhino-laryngofiberscope — the right choice for 

superior performance.

Ultra-slim 2.2 mm Insertion Tube Diameter 

Optimally sized for smaller nasal cavities. 

This endoscope also makes observation of 

adult paranasal sinuses easier than ever.

Wide Angulation Range — 130° Up and Down

The endoscope wide bending range of 

130° up/130° down allows trouble-free 

insertion, even through the trachea, 

allowing you to focus more on observation. 

Field of view  75˚

Depth of field  2.5 - 50 mm

Range of tip bending     Up 130˚/ Down 130˚

Distal end outer diameter  1.8 mm

Insertion tube diameter  2.2 mm

Working length  300 mm

Total length  530 mm

RHINO-LARYNGO FIBERSCOPE ENF TYPE XP
Specifications

Olympus Rhino-Laryngofiberscope Lineup

ENF-P4 ENF-T3 ENF-GP

Printed in Japan R0025E2-122011
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Appendix B

Glottal Source Characterization

B.1 Spectral Magnitude Analysis
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B.2 Spectral Phase Analysis
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Appendix C

Statistical Analysis

C.1 Spectral Magnitude Boxplots
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C.2 Spectral Phase Boxplots 125

C.2 Spectral Phase Boxplots
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Appendix D

Vocal Tract Characterization
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