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Abstract

As the capacity to generate renewable energy increases worldwide, private companies and
public utilities operating in the energy sector must be capable of dealing with the high variability
and seasonality of these energy sources. As such, renewable power forecasting is likely to play a
key role in the global movement for carbon neutrality. In fact, as of today, forecasts of a few hours
to multiple days-ahead are already widely used by energy market participants. The present work
reports new results in using autoregression-basedmodels to forecast renewable power generation.
Besides the standard Autoregressive (AR) model, different approaches within the autoregressive
framework are pursued, namely: the use of weather forecasts as exogenous predictors, the use of
geographically distributed data (spatiotemporal models), the use of additive models with splines
to model the non-linear relation between the weather forecasts and the power generated, and the
use of different objective functions within the Least Absolute Shrinkage and Selection Operator
(LASSO) regularization framework. The implemented models were used to forecast wind power
generation up to 24 hours-ahead in 10 Wind Power Plants (WPP) in Australia. The models were
compared with performance metrics and statistical tests. The use of exogenous variables proved
to have a positive impact on the forecasts, particularly in forecasts of more than a few hours-
ahead. The use of geographically used data provided marginal improvements over the univariate
models. The use of additive models led to significant improvements in the longer-term horizons.
Overall, even though not all results proved to be statistically significant, it is possible to conclude
that additive vector autoregressive models can match up to machine learning based models and
even improve on their results for forecasting horizons of up to 12 hours-ahead.

Keywords: wind power forecasting, autoregressive models, spatiotemporal models, additive
models.
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Resumo

Há medida que a capacidade de produção de energia renovável instalada no Mundo cresce,
as empresas privadas e os serviços de utilidade pública que operam no setor da energia têm de
ser capazes de lidar com a alta variabilidade e sazonalidade destas fontes de energia. Sendo assim,
é expectável que a previsão de energia renovável desempenhe um papel fundamental no movi-
mento global pela neutralidade carbónica. De facto, hoje-em-dia, previsões de algumas horas até
vários dias à frente são já amplamente utilizadas pelos operadores do mercado da energia. O pre-
sente trabalho apresenta novos resultados utilizando modelos baseados em autoregressão para
fazer previsões da potência gerada por fontes de energia renovável. Para além do modelo autore-
gressivo (AR), diferentes abordagens neste âmbito são exploradas, nomeadamente: a utilização
de previsões meteorológicas na previsão (variáveis exógenas), a utilização de dados geografica-
mente distribuídos (modelos espaço-temporais), a utilização de modelos aditivos com splines para
modelar a relação não linear entre as previsões meteorológicas e a potência gerada, e a utilização
de diferentes funções objetivo aplicadas à regularização LASSO (Least Absolute Shrinkage and Se-
lection Operator ). Os modelos implementados foram utilizados para fazer previsões de potência
eólica até 24 horas à frente em 10 parques eólicos na Austrália. Os modelos foram comparados
com métricas e testes estatísticos. A utilização de variáveis exógenas provou ter um impacto pos-
itivo nas previsões, em particular em horizontes superiores a duas horas à frente. A utilização de
dados geograficamente distribuídos proporcionou benefícios marginais sobre os modelos uni-
variados. A utilização de modelos aditivos proporcionou benefícios significativos nos horizontes
mais longos. De maneira geral, embora nem todos os resultados seja estatisticamente signifi-
cantes, é possível concluir que modelos vetoriais autorregressivos aditivos conseguem rivalizar
com modelos baseados em aprendizagem automática e, inclusive, melhorar os resultados destes
em horizontes de até 12 horas à frente.

Palavras-chave: previsão de energia renovável, modelos autoregressivos, modelos espaço-temporais,
modelos aditivos.
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Chapter 1

Introduction

1.1 Motivation
Renewable energy production has seen a remarkable increase over the past decade. Prompted

by the growing concern over global warming, which took unprecedented proportions in the
2010s, the wind industry saw the total installed capacity quadruple since 2009, reaching 744 GW
in 2020.

Figure 1.1: Wind power global capacity, 2009-2020 [Adapted from GWEC (2021)]

One of the most relevant trends in the market has been the increase of the offshore wind
power segment, from 1.8 GW installed in 2009 (around 1.1%) to 35.1 GW in 2019 (around 4.7%).
The 2010s have also seen China establish itself as the biggest market for wind energy production,
representing more than one in every three GW installed worldwide.

The total wind power capacity installed globally is expected to keep growing for the foresee-
able future. According to the Global Wind Report 2021 from the Global Wind Energy Council
(GWEC, 2021), despite the impact of the COVID-19 pandemic, the wind energy market is ex-
pected to grow 4% a year for the next five years, bringing the total installed capacity just over
1200 GW in 2025.

Two fundamental factors when planning for a greener, highly renewable energy sector are
the seasonality and short-term variability of these resources. Seasonality refers to the recurrence
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of predictable patterns or fluctuations in a time series. In renewable power forecasting, sea-
sonality arises from the underlying relation between the weather (and other natural phenomena)
and renewable power generation. For instance, in Europe, wind power generation is generally
stronger in winter than in summer months, while solar power generation is lower in winter and
non-existent during night-time throughout the year. Short-term variability refers to the stochas-
tic nature of the weather and of renewable power generation, which limits the ability to make
predictions and hinders the operation and management of power grids (Tastu, Pinson, Trombe,
& Madsen, 2014). The negative effects of seasonality and short-term variability in renewable
energy production may be mitigated with adequate storage capacity, diversified energy sources,
and accurate forecasting. Forecasting allows for a cost-efficient balancing of load and genera-
tion in intra-day and day ahead scheduling, reducing fuel costs, improving system reliability, and
increasing productivity (Leisch & Cochran, 2016).

1.2 Renewable power generation forecasting
As discussed in Section 1.1, renewable power generation is variable and intermittent even in

timescales of a few minutes. In this context, accurate forecasting of variables such as generated
power and consumption is extremely relevant for decision-makers, whether they are market par-
ticipants, looking to buy or sell energy, or power system operators. The former use forecasts to
manage risks and optimize their investments, while the latter are concerned with maintaining a
steady energy supply under all possible market and weather conditions (Sweeney, Bessa, Browell,
& Pinson, 2019).

Renewable energy forecasts are usually divided into 3 groups, depending on the forecasting
horizon: intraday forecasts, day-ahead forecasts, and long-term forecasts. A brief description of
the applications of each timescale is presented in Table 1.1.

Table 1.1: Time-horizon classification for wind forecasting [Adapted from Wang et al. (2011)]

Timescale Applications

Intraday Real-time grid operations
Regulation procedures

Day-ahead
Economic load dispatch planning
Load management decisions
Operational security measures

Long-term (multiple days ahead)
Maintenance planning
Operations management
Optimal operating cost

Renewable power forecasting usually makes use of variables such as past power generation
measurements and weather forecasts. A new trend in renewable power forecasting concerns the
use of power generation data from multiple sites (geographically distributed data). In the case of
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wind power forecasting, the geographical dispersion of wind farms allows for the understanding
of the propagation of meteorological systems and power forecast errors. Spatiotemporal models,
as they are designated, take advantage of the correlations in power generation data collected in
neighbouring sites, warranting significant gains in forecast accuracy (Tastu et al., 2014).

Renewable power forecasting models can be classified according to the underlying method-
ology observed. In this case, one should distinguish between physical and statistical models. The
first are concerned with modelling the governing equations taking place in the atmosphere and
the latter focus on modelling the statistical relationship between meteorological forecasts and the
power generated (Sweeney et al., 2019). Statistical models usually rely on time series analysis (clas-
sical statistics) or machine learning techniques. Both physical and statistical models are discussed
thoroughly in Section 2.1.

1.3 Aim and objectives
Examples of statistical models using time series analysis include autoregression-basedmodels.

Autoregressive models make use of past observations of the target variables to make predictions.
The standard Autoregressive (AR) model is used to make forecasts of one target variable using
past observations of itself. The Autoregressive model with exogenous (AR-X) is used to make
forecasts of one target variable using past observations of itself and linear combinations of other
relevant exogenous variables (e.g., weather forecasts for the forecasting hour). In the context of
autoregression, endogenous variables are variables that are assumed to be correlated and, thus,
are potentially effective at forecasting each other, while exogenous variables are independent
variables that are assumed to affect the system. In wind power generation forecasting, wind
speed and direction at different levels above the ground are often considered to have a positive
impact on the forecast.

Attempting to capture the correlations in geographically distributed data described in Section
1.2., the Vector Autoregressive (VAR) model is used to make forecasts of the target variable at
n geographically distributed sites using the past observations of the same variable in all n sites
(spatiotemporal model). Like the AR-Xmodel, the Vector Autoregressive model with exogenous
variables (VAR-X) model uses both the past observations at the n geographically distributed sites
and relevant exogenous variable collected in one or more relevant sites (typically the same sites as
the endogenous variables). In wind power forecasting, recent works show that models that use
linear combinations of geographically distributed sites are competitive in forecasting timescales
of up to 6 hours-ahead (Cavalcante et al., 2017).

While the AR-X and VAR-X models make use of linear combinations of the exogenous
variables in the prediction, in reality, the relation between the weather forecasts and the renew-
able power generated is not linear. In wind power forecasting, this problem originates from the
transfer functions of wind turbines, in which there is frequently no power generation below a
minimum speed of 3 m/s and no increase in power generation for speeds above 15 m/s (Mon-
teiro et al., 2009). Furthermore, while the relation between wind speed and power generation is
well understood and modelled, the available forecasts are rarely the ones needed to proceed with
this calculation.

17



To describe the non-linear relation between the weather forecasts and power generation in
a time series analysis setting, one option is to adapt traditional linear AR-X and VAR-X models
into additive models with splines. Additive models, such as the Additive AR-X (AAR-X) and
Additive VAR-X (AVAR-X) models, are obtained from the sum of the explanatory variables’
individual effects. These models are quite good at modelling non-linearities in the data, while
maintaining some of the positive aspects of the linear approaches.

The present work will make use of the autoregressive models mentioned above to produce
intraday and day-ahead forecasts of wind power generation, benchmarking the results against
standard approaches, such as Persistence and machine learning-based models (gradient boosting
trees). An illustration of the problem is presented in Figure 1.2.

Figure 1.2: Problem illustration [Adapted from Cavalcante et al. (2017)]

The aim of the present work is to answer a set of research questions regarding the implemen-
tation of the different autoregressive models, namely:

• Does the inclusion of exogenous variables improve the quality of the forecast for all
timescales?

– AR model vs. AR-X model
– VAR model vs. VAR-X model

• Does the inclusion of data from other Wind Power Plants (WPP) improve the quality of
the forecast for all timescales?

– AR model vs. VAR model
– AR-X model vs. VAR-X model
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– AAR-X model vs. AVAR-X model

• Are models that use weather forecasts in additive settings better at forecasting wind power
generation than models which use linear combinations of these variables?

– AR-X model vs. AAR-X model

– VAR-X model vs. AVAR-X model

• How do the autoregressive-based models implemented compare with other commonly
used methods, such as Persistence and gradient boosting trees at forecasting energy pro-
duction?

1.4 Structure of the Report
The present thesis is structured into five major chapters. A brief description of each chapter

is provided below.
In Chapter 1, Introduction, the subject of renewable energy forecasting is introduced, as well

as the most used forecasting timescales. The aim of the present work is presented, as well as the
research questions it intends to address.

In Chapter 2, State-of-the-art in Renewable Power Generation Forecasting, the two main
approaches to renewable power generation forecasting are discussed – physical models and sta-
tistical models. Models such as Persistence and gradient boosting trees are introduced.

In Chapter 3, Time Series Models for Renewable Power Generation Forecasting, the subject
of autoregression is introduced, as well as the models that are to be implemented in Chapter 4.
The subject of LASSO regression is introduced.

In Chapter 4, Forecasting Results and Discussion, the data used to assess the models is thor-
oughly analysed and discussed. The performance metrics and statistical testes used to compare
the forecasting results are introduced, as well as the subject of Bayesian Optimization. The results
of the intraday and day-ahead forecasts are presented. The in-depth discussion of the results is
performed.

In Chapter 5, ‘Conclusions and Future Work’, the main conclusions of the present work are
presented, as well as possible future works on this subject.
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Chapter 2

State-of-the-Art in Renewable Power
Forecasting

Forecasting is the art of making informed estimates about the future behaviour of a given
process or trend using historical and present data. Focussing on the evolution of a given variable,
y, in time, forecasting is based on the premise that the modelled behaviour will continue in the
future. In renewable power forecasting, y is the generated power by a given turbine orWPP(Bessa,
2008).

As discussed in Chapter 1, physical models and statistical models, or a combination of both,
are the main approaches to renewable power forecasting. This section of the report is centred
around these two methods.

2.1 Physical Models
Physical models rely on Numerical Weather Prediction (NWP) to forecast renewable power

generation. NWP is concerned with accurately representing the interactions between wind, pres-
sure, density, and temperature, which take place in the Earth’s atmosphere. For a given point in
time and space, this means solving the Navier-Stokes and mass continuity equations, as well as
the first law of thermodynamics and the ideal gas law. To obtain a solution, these equations must
be solved numerically using temporal and spatial discretization (Bauer et al., 2015).

The idea of using the governing laws of physics to forecast the weather was first introduced by
Abbe (1901) and Bjerknes, Volken, and Brönnimann (1904) in the first decades of the twentieth
century. Revolutionary at the time, the idea was only fully realized with the appearance of the
first computers. The full set of governing equations was first solved in the 1970s, after two
decades of attempts at using computers for weather prediction. Since then, the sharp increase
in computing power has made it possible to consider larger numbers of grid-points, meaning
models can cover wider areas and present, at worst, the same levels of accuracy. Today, NWP can
provide predictions at kilometre scale multiple times per day and at tens of kilometres monthly
(Bauer et al., 2015).
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Figure 2.1: Physical processes of importance to weather prediction (Bauer et al., 2015)

Even though the physical process is well understood and modelled, since the output and
input variables are often not the same, determining power generation from weather forecasts is
not always straightforward. One way to circumvent this issue is to construct a statistical model
of the relation between the outcome of the NWP and the power generated, in what is commonly
known as an hybrid model (Sweeney et al., 2019).

2.2 Statistical Models
Statistical models aim at bridging the gap between weather forecasts and renewable power

observations. In NWP postprocessing, statistical models are used to generate power produc-
tion forecasts of a few hours to days ahead (hybrid models). In forecast horizons of less than
two hours, statistical models are used to predict the next values of power production time se-
ries. Furthermore, given their high computational costs, physical models are practically unusable
in timescales of minutes, making statistical models the best suited for very short-term forecast-
ing(Sweeney et al., 2019).

Most statistical forecasting models follow either a time series analysis or a machine learning
approach. It is also relevant to make a distinction between linear and non-linear models. As
the name suggests, non-linear models are those in which the fitting function, f, is a non-linear
function. Non-linear models may also be obtained by adding several functions in a piecewise
manner (e.g., splines). In general, non-linear models are more flexible, but also more prone to
overfitting than linear ones.

2.2.1 Persistence
The simplest very short-term statistical model is Persistence, in which the forecast is equal to

the most recent observation. Persistence is commonly used as a benchmark in very-short term
forecasting (Sweeney et al., 2019).
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2.2.2 Time series models
Time-series models make use of classical statistics methods, such as regression, to model the

evolution of a target variable, y, in time. If only the past measurements of y are used, the model
is said to be a univariate model. However, if past measurements from other variables are used,
the model is often described as a multivariate one.

Univariate regression models take the form

ŷt = f(yt−1, ..., yt−n) + et (2.1)

where f is a generic function, yt−1,…, yt−n are the past values of the target variable y and et are
variations that cannot be explained by the regression model (white noise) (Monteiro et al., 2009).

One example of a time series regression model is the Autoregressive (AR) model. Discussed
thoroughly in Section 3.1.1., an AR(p) model takes the form of a linear combination of the p past
observations of the target variable. If one or more external (exogenous) variables are thought to
affect the system, these may be included in the model in an AR model with exogenous variables
(AR-X), model discussed thoroughly in Section 3.1.2.

Forecasting with geographically distributed data

As discussed in Section 1.2., models that take in geographically distributed data in the forecast
are able take advantage of the correlations in power generation data collected in neighbouring
sites. As such, spatiotemporal models make use of past values of the target variable at multiple
geographically distributed sites (multivariate regression).

Spatiotemporal models take the form

ŷt = f(yt−1,…, yt−n, χt−1, χt−2,…, χt−n) + et (2.2)

where χt−1, χt−2,…, χt−n are the past values of variables χ.
Ghofrani and Alolayan (2018) presents a review of studies applying time series analysis tech-

niques to renewable power forecasting. These include the use the Vector Autoregressive (VAR)
model, method which is thoroughly discussed in Section 3.2.1.

2.2.3 Machine learning models
Amachine learning approach makes use of computing systems such as Artificial Neural Net-

works (ANN) and Support Vector Machines (SVM) to model complex relations between the
input variables and the target variable. Machine learning uses past observations of one or more
variables to acquire knowledge on a given process (inductive learning). The tasks conducted by
machine learning take either the form of supervised learning, unsupervised learning or reinforce-
ment learning tasks. In supervised learning tasks, which include classification and regression
problems, labelled data is used to train the model, which is then used to make predictions on
unlabelled data. The main goal of unsupervised learning tasks is to explore and describe a given
dataset. These include clustering and association problems (Gama, Carvalho, Faceli, Lorena, &
Oliveira, 2012).
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Tree-based models and gradient boosting

Tree-based models work by recursively partitioning the predictor space into a number of sim-
pler non-overlapping regions. Widely used for both classification (decision trees) and regression
(regression trees) problems, tree models are acyclic graphs where each node is either a leaf node
or a decision node. Corresponding to the final subsets of a tree model, leaf nodes usually take
the value of the mode (classification) or the mean (regression) of the response values of the train-
ing observations in that subset of the predictor space. The prediction for a given observation in
a regression setting is, then, the mean of the response values of the training observations that
have fallen on the same leaf node. Decision nodes are intermediate nodes where, based on a
conditional test, the splitting is performed (Gama et al., 2012).

While simple and easily interpretable, standard tree-based methods are usually not as accurate
as other machine learning algorithms. As a consequence, a number of approaches aiming to
enhance the capabilities of these models have been developed. Two of such approaches are
bagging and gradient boosting.

One of the problems with standard tree-based methods is the propensity to overfitting the
training dataset, resulting in models with high variance. Designed to reduce the variance of sta-
tistical learning methods, the Bootstrap Aggregation (Bagging) procedure consists in extracting
many training sets from the population, building separate models for each subset, and averaging
the predictions. In Bagging, the training sets are generated independently by taking repeated sam-
ples from the original training dataset (bootstrap) (James, Witten, Hastie, & Tibshirani, 2000)).

Another approach to improve standard tree-based methods is boosting. While bagging gen-
erates independent training datasets from the original dataset, the boosting procedure consists in
training trees sequentially, using the residuals from the trees that preceded it. This approach aims
to slowly improve the model in areas of the predictor space where it performs poorly (James et
al., 2000).
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Algorithm 1 Boosting for Regressions Trees (James et al., 2000).

1. Set f̂(x) = 0 and ri = yi for all i in the training set.
2. For b = 1, 2, ..., B, repeat:

(a) Fit a tree f̂ b with d splits (d+ 1 terminal nodes) to the training data (X ,r).
(b) Update f̂ by adding in a shrunken version of the new tree:

f̂(x)← f̂(x) + λf̂ b(x). (2.3)

where λ is the shrinkage parameter.
(c) Update the residuals,

ri ← ri − λf̂ b(xi) (2.4)

3. Output the boosted model,

f̂(x) =
B∑
b=1

λf̂ b(x). (2.5)

The term gradient boosting refers to the numerical optimization problem of a boosting pro-
cedure, where the objective is to minimize the loss function of the model by successively adding
trees. In gradient boosting, this optimization is performed using gradient descent, an optimiza-
tion algorithm for finding a local minimum of a differentiable function (Mujtaba, 2020).

An up-to-date literature review on renewable power forecasting using machine learning ap-
proaches can be found at Lai, Chang, Chen, and Pai (2020). Commonly applied methods include
SVM-based approaches and ANN-based approaches, models which will not be discussed in the
present work. Bessa, Trindade, and Miranda (2015) combines VAR and gradient boosting to
explore Photovoltaic (PV) observations from a smart grid.
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Chapter 3

Time Series Models for Renewable Power
Forecasting

This chapter introduces the time series regression frameworks that will be implemented and
compared in Chapter 4.

The first section concerns the use of autoregression-based models in a univariate setting. The
second section introduces the subject of vector autoregression, i.e., autoregression-based models
in a multivariate setting. In the third section, the subject of LASSO regularization is discussed,
as well as its use in vector autoregressive models.

3.1 Autoregressive Processes
Autoregressive processes are trends that can be explained by their own preceding values. AR

models usually take the form of a linear combination of the p lagged values, where p refers to the
order of the process.

This section introduces the different AR models to be implemented.

3.1.1 Autoregressive (AR) model
The standard AR model predicts each WPP power measurement time series separately by

using a linear combination of the most recent observations.
The future trajectory of an AR model of order p, AR(p), is given by

yi,t = µ+

p∑
l=1

β(l) · yi,t−l + ϵt (3.1)

where {yi,t}Tt=1 is the time series containing the power measurements at WPPi, µ is a constant
or intercept term, β(l) is the model coefficient associated with lag l of the wind power time series
and ϵt is an error term with zero mean and constant variance σ2

ϵ (Cavalcante et al., 2017).
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3.1.2 Autoregressive Model with Exogenous Variables (AR-X)
An AR process may be affected by other variables which are determined outside the system

(exogenous). AR models that use exogenous variables are commonly designated AR-X models.
An AR-X model of order p with s exogenous variables takes the form

yi,t = µ+

p∑
l=1

β(l) · yi,t−l +
s∑

k=1

α(k) · xk,t + ϵt (3.2)

where {yi,t}Tt=1 is the time series containing the power measurements at WPPi, {xk,t}Tt=1 is the
time series corresponding to the kth exogenous variable, µ is a constant or intercept term, β(l) is
the model coefficient associated with lag l of the wind power time series, α(k) is the coefficient
associated with the kth exogenous variable and ϵt is an error term with zero mean and constant
variance σ2

ϵ .

3.1.3 Additive Autoregressive Model with Exogenous Variables (AAR-X)
Designed to overcome the lack of flexibility of linear models, additive models are obtained

from the sum of the partial responses of each predictor variable.
Additive models are used in renewable power forecasting to model the non-linear relation

between the weather forecasts and renewable power generation. In an AAR-X, the relation be-
tween the target variable and its lagged values is modelled in the same manner as the standard
AR and AR-X models, while the relation between the exogenous variables and the target variable
is modelled using smooth functions. This is performed in an additive way, so that each function
is smoothed in a restricted part of the training data.

To fit the training data, additive models make use of smooth functions such as splines. Splines
are polynomial functions defined in a piecewise manner. In an additive model, each spline is used
tomodel a particular section of the observed data. The degree of a spline is given by themaximum
degree of the corresponding polynomial function. For instance, a linear spline has degree one,
whereas a cubic spline has degree three.

The points where the separate regression splines connect are called knots. The fact that the
number and location of the knots may not be known a priori means that smoothing regression
splines can become very computationally demanding without an efficient strategy (Wand, 2000).

Instead of specifying the number of knots, it is possible to refer to the number of degrees of
freedom of a spline. An additive model with df degrees of freedomwill have k = df−degree−1
(if there is an intercept) knots.

An additive AR-X model with d degrees of freedom, p lags and s exogenous variables takes
the form

yi,t = µ+

p∑
l=1

β(l) · yi,t−l +
s∑

k=1

d∑
j=1

fj(xk,t) + ϵt (3.3)

where {yi,t}Tt=1 is the time series containing the power measurements atWPPi, {xk,t}Tt=1 is the
time series corresponding to thekth exogenous variable, µ is a constant or intercept term, β(l) is
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the model coefficient associated with lag l of the wind power time series, fj are smooth functions
and ϵt is an error term with zero mean and constant variance σ2

ϵ .
The present work will make use of two different types of splines: natural cubic splines and B

splines of the third degree (cubic B splines). The main difference between the two is that, whereas
the natural cubic splines model extrapolates beyond the knots, in the B splines model, the second
derivative of each polynomial is set to zero at the knots, which constitutes a necessary boundary
condition. This difference tends to make natural cubic splines less flexible than B splines but
also less susceptible to oscillations at the knots.

3.2 Vector Autoregressive (VAR) Processes
This section introduces the models capable of capturing the correlations in power generation

data collected in geographically distributed sites (spatiotemporal models).

3.2.1 Vector Autoregressive (VAR) Model
Introduced by Sims (1980), VAR models are widely used in economics and finance. They

make use of past (lagged) observations to describe the dynamic behaviour of multiple time se-
ries, being an extension of the AR model to multivariate time series. In a VAR model, each
variable is explained both by its own lagged values and current and past values of the remain-
ing variables included in the model. A VAR model is, therefore, capable of capturing the linear
interdependencies between the various time series (Cavalcante et al., 2017).

A VAR model consists of a multi-equation system where all the variables are treated as en-
dogenous, meaning that it is presumed to exist correlation between them. A pth order VAR
model takes the form

Yt = η +

p∑
l=1

B(l) · Yt−l + et (3.4)

where {Yt}Tt=1 is a n-dimensional time series containing the power measurements at the n WPPs,
η = [η1, ..., ηn] is a vector of constant terms, B(l) is the coefficient matrix associated with lag
l of the wind power time series and et is a vector of error terms with zero mean and constant
variance σ2

e (Cavalcante et al., 2017).
If Yt is assumed to follow a centred process (η = 0), a VARn(p) model can be written in

matrix form as
Y = BZ + E (3.5)

where Y = [y1, ..., yT ], B = [B(1), ..., B(p)], Z = [z1, ..., zT ], zt = [Y ⊤
t−1, . . . , Y

⊤
t−l], and

E = [e1, ..., eT ].

3.2.2 Vector Autoregressive Model with Exogenous Variables (VAR-X)
VAR models that use exogenous variables are designated VAR-X models. Although de-

terministic variables can be used, exogenous variables are often defined in probabilistic terms.
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Variables related to stochastic processes, such as the weather, are often used in VAR-X models
(Lütkepohl, 2005). A VAR-X model of order p with s exogenous variables takes the form

Yt = η +

p∑
l=1

B(l) · Yt−l +
s∑

k=1

α(k) · xk,t + et (3.6)

where {Yt}Tt=1 is a n-dimensional time series containing the average power measurements at the n
WPPs, {xt,k}Tt=1 is the time series corresponding to the kth exogenous variable, η = [η1, ..., ηn]
is a vector of constant terms,B(l) is the coefficient matrix associated with lag l of the wind power
time series, α(k) is the coefficient vector associated with the kth exogenous variable and et is a
vector of error terms with zero mean and constant variance σ2

e .

3.2.3 Additive Vector Autoregressive Model with Exogenous Variables
(AVAR-X)

Identically to AAR-X models, AVAR-X models are implemented to model non-linear rela-
tions between the target variables and the exogenous variables.

An AVAR-X model with d degrees of freedom, p lags and s exogenous variables takes the
form

Yt = η +

p∑
l=1

B(l) · Yt−l +
s∑

k=1

d∑
j=1

fj(xk,t) + et (3.7)

where {Yt}Tt=1 is a n-dimensional time series containing the power measurements at the nWPPs,
{xk,t}Tt=1 is the time series corresponding to the kth exogenous variable, η = [η1, ..., ηn] is a
vector of constant terms, B(l) is the coefficient matrix associated with lag l of the wind power
time series, fj are smooth functions and et is a vector of error terms with zero mean and constant
variance σ2

e .

3.3 Least Absolute Shrinkage and SelectionOperator (LASSO)
Introduced by Tibshirani (1996), LASSO is a regularization method used in statistics to pre-

vent overfitting the model to the data. It is also useful to assure computational viability in models
with many variables. LASSO works by adding a L1 penalty to the value of the coefficients, mean-
ing that some coefficients may become equal to zero. The result is a simpler sparse model where
only the coefficients with the strongest contributions are considered.

The combination of LASSO and VAR was introduced in Hsu, Hung, and Chang (2008)
to overcome the difficulty of VAR in handling high-dimensional data, which results from the
coefficients matrix growing quadratically with the number of time series being considered in the
model (Cavalcante et al., 2017).

LASSO can generate different sets of sparse models, depending on the loss function used.
The standard LASSO-VAR (sLV) loss function is given by

1

2
∥Y − BZ∥22 + λ∥B∥1 (3.8)
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where λ > 0 is a scalar regularization parameter controlling the amount of shrinkage. Hence the
LASSO-VAR coefficients can be estimated by computing

B̂ = argminB

(
1

2
∥Y − BZ∥22 + λ∥B∥1

)
(3.9)

Another approach consists in grouping the coefficients by their time lags, meaning that, for a
given time, either all or none of the lags are considered. The lag-group LASSO-VAR (lLV) loss
function is given by

1

2
∥Y − BZ∥22 + λ

p∑
l=1

∥B(l)∥2 (3.10)

where B(l) is a matrix that contains the lag l coefficients.
While this approach can be useful for lag selection, it is sometimes inefficient, since it may

include or exclude an entire lag even if only a small number of coefficients is significant.

Figure 3.1: Example of sLV and lLV structures [Adapted from Cavalcante et al. (2017)].

LASSO-VAR models have been successfully used in renewable power forecasting. Caval-
cante et al. (2017) uses VAR with several variants of LASSO for very-short term wind power
forecasting, concluding that the sparse model outperformed Persistence, the AR model, and the
standard VAR model. Other examples of the use of VAR in renewable energy forecasting are
presented in Bessa et al. (2015) and Messner and Pinson (2019).

LASSO-VAR model fitting with ADMM

Introduced by Boyd, Parikh, Chu, Peleato, and Eckstein (2010), the AlternatingDirectionMethod
of Multipliers (ADMM) is a recent algorithm used to solve complex optimization problems. De-
veloped as a combination of the dual ascent method and the method of multipliers, ADMM
enables parallel estimation for data divided by records or features. In ADMM form, the objec-
tive function is split into two distinct objective functions. This is done by replicating variable B
in variable H and adding an equality restriction.
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Hence, the objective function in (3.8) is given by

minimize
1

2
∥Y − BZ∥22 + λ∥H∥1 (3.11)

subject to B −H = 0

And the solution for (3.9) by

argminB

(
1

2
∥Y − BZ∥22 + λ∥H∥1

)
(3.12)

subject to H = B

The solution to the ADMM problem can then be obtained by performing alternating mini-
mization of the augmented Lagrangian of (3.12) over B and H (Cavalcante et al., 2017).
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Chapter 4

Forecasting Results and Discussion

4.1 Data and Tools
The present workmakes use of data provided at theGlobal Energy Forecasting Competition (GEF-

Com) 2014. GEFCom is one of the leading competitions for probabilistic energy forecasting,
with over 200 participants from more than 40 countries taking part in the 2014 edition. The
competition was divided into four tracks: electric load, electricity price, wind power, and solar
power forecasting.

The goal of the wind power forecasting track of GEFCom was to predict the wind power
generation 24 hours-ahead in 10 zones, corresponding to 10 Wind Power Plants (WPPs) in Aus-
tralia.

The explanatory variables available are past power measurements in all 10 WPPs, normalized
by the respective nominal capacity of each WPP, which takes values between zero and one, and
input weather forecasts, given as the zonal and meridional wind components, u and v, at two
heights, 10 and 100 m. Although these components were not altered in any way before being used
in the models, if necessary, they can be used to deduce wind and direction forecasts. Provided
for the location of each WPP, these forecasts were issued every day at midnight, meaning that
the observations registered at 01:00 refer to a forecast made one hour before, the observations
registered at 02:00 refer to a forecast made two hours before, and so on. In total, five variables
were provided for each WPP location.

The dataset used in the present work corresponds to Task 15 of the wind power track of
GEFCom 2014 and comprises hourly observations of the five aforementioned variables (power
generated, u at 10 m, v at 10 m, u at 100 m, and v at 100 m) for each of the 10 WPPs (50 variables
in total) between 01/01/2012 and 01/12/2013 (16800 observations).

The present workmakes use of a previously developed VARmodel written in R programming
language.
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4.2 Exploratory Data Analysis
Corresponding to the normalized past power measurements in 10 WPPs (ZONE1, ZONE2,

and so on), the target variables take values between zero and one. The mean value of all obser-
vations at the 10 WPPs is 0.3615, whereas the highest mean was recorded in ZONE10 and the
lowest mean in ZONE9.

Table 4.1: Mean value of power generated at each WPP.

ZONE1 ZONE2 ZONE3 ZONE4 ZONE5 ZONE6 ZONE7 ZONE8 ZONE9 ZONE10

0.304 0.319 0.41 0.356 0.43 0.436 0.304 0.303 0.297 0.456

Figure 4.1 presents the boxplots for the power measurement time series at all WPPs.

ZONE1 ZONE2 ZONE3 ZONE4 ZONE5 ZONE6 ZONE7 ZONE8 ZONE9 ZONE10

0.
0
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4
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8

1.
0

Figure 4.1: Distribution of power generation values in all WPPs.
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4.2.1 Autocorrelation
Autocorrelation can be seen as the capacity of a variable to predict itself. In a time series,

autocorrelation measures the degree of correlation between a lagged value of the variable and its
present value.

Introduced byGeurts, Box, and Jenkins (1977), the autocorrelation coefficient is a widely used
indicator of autocorrelation. In autoregression-based models, the autocorrelation coefficient can
be used to identify the appropriate number of lags to consider in a model, i.e., the order of the
model. The autocorrelation coefficient takes values between +1 and -1, where the first represents
a perfect positive correlation and the latter a perfect negative correlation.

Figure 4.2: Lag autocorrelation for ZONE1.

Figure 4.2 presents the mean autocorrelation coefficients for the first 50 lags of ZONE1
(complete results in Appendix A.1) and Table 4.2 displays the mean autocorrelation coefficients
for the first 20 lags of all WPPs.

It is possible to conclude that, on average, the power measurement at any given time dis-
plays a positive correlation with the first 20 lags. For all WPPs, the first lags display a very high
autocorrelation with the present values (>0.9), whereas the twentieth lags have coefficients, in
general, around 0.25.

TheWPPs with the worst mean correlation for the first 20 lags are ZONE10 (0.391), ZONE6
(0.464) and ZONE5 (0.474).

On the opposite side, the WPPs with the best mean correlation for the first 20 lags are
ZONE7 (0.530), ZONE2 (0.524) and ZONE3 (0.519).

Although these results were ultimately not used, due to the use of Bayesian Optimization to
optimize the number of lags, it is reasonable to say that, since they display significantly high levels
of correlation with the respective present values, all 20 first lags for each time series could be used
in an autoregressive model.
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Table 4.2: Autocorrelation Coefficients for all WPPs (20 lags)

Lag ZONE1 ZONE2 ZONE3 ZONE4 ZONE5 ZONE6 ZONE7 ZONE8 ZONE9 ZONE10

1 0.9423 0.9488 0.9496 0.9337 0.9457 0.9439 0.9433 0.9266 0.9283 0.9361
2 0.8764 0.8770 0.8820 0.8515 0.8672 0.8652 0.8772 0.8476 0.8447 0.8369
3 0.8179 0.8103 0.8200 0.7839 0.7910 0.7882 0.8170 0.7816 0.7752 0.7426
4 0.7616 0.7494 0.7614 0.7235 0.7170 0.7137 0.7624 0.7238 0.7150 0.6555
5 0.7063 0.6937 0.7083 0.6685 0.6453 0.6424 0.7127 0.6741 0.6623 0.5753
6 0.6538 0.6425 0.6603 0.6219 0.5809 0.5766 0.6653 0.6272 0.6128 0.5046
7 0.6058 0.5972 0.6160 0.5786 0.5228 0.5173 0.6220 0.5850 0.5680 0.4414
8 0.5611 0.5572 0.5752 0.5406 0.4723 0.4642 0.5820 0.5457 0.5265 0.3836
9 0.5195 0.5209 0.5358 0.5071 0.4294 0.4183 0.5433 0.5087 0.4884 0.3322
10 0.4802 0.4870 0.4974 0.4788 0.3931 0.3803 0.5055 0.4715 0.4525 0.2884
11 0.4448 0.4546 0.4627 0.4539 0.3632 0.3509 0.4700 0.4378 0.4187 0.2518
12 0.4118 0.4246 0.4310 0.4302 0.3403 0.3275 0.4367 0.4089 0.3908 0.2232
13 0.3830 0.3995 0.4010 0.4055 0.3216 0.3087 0.4074 0.3812 0.3644 0.2043
14 0.3586 0.3775 0.3719 0.3816 0.3077 0.2955 0.3807 0.3558 0.3421 0.1936
15 0.3352 0.3589 0.3440 0.3611 0.2990 0.2879 0.3564 0.3316 0.3233 0.1878
16 0.3142 0.3432 0.3184 0.3426 0.2943 0.2823 0.3361 0.3105 0.3053 0.1889
17 0.2965 0.3288 0.2945 0.3266 0.2933 0.2794 0.3190 0.2915 0.2895 0.1970
18 0.2815 0.3145 0.2710 0.3111 0.2947 0.2786 0.3037 0.2778 0.2754 0.2103
19 0.2680 0.3008 0.2491 0.2997 0.2990 0.2801 0.2893 0.2647 0.2652 0.2283
20 0.2574 0.2891 0.2308 0.2934 0.3038 0.2837 0.2777 0.2542 0.2583 0.2463

4.2.2 Cross-correlation
Cross-correlation refers to the quality of variables to predict each other. Variables that are

strongly correlated are usually good at predicting each other, whereas poorly correlated variables
are not.

Between Endogenous Variables

The cross-correlation coefficient measures the degree of correlation between different time
series. Like the autocorrelation coefficient, it takes values between +1 and -1, where the positive
values indicate a positive correlation and the negative values a negative one.

The mean cross-correlation coefficients for the first 10 lags of all WPPs were computed.
Table 4.3 displays the results obtained for ZONE1 (complete results in Appendix A.2). The
results show that, in general, the power measurement in ZONE1 is positively correlated with the
first 10 lags of the remaining WPPs. With all coefficients of the first 10 lags above 0.4, ZONE3
seems to be the WPP better suited to forecast ZONE1. These results could also indicate a
proximity between the location of these two WPPs.
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Table 4.3: Cross-correlation Coefficients for ZONE1

Lag ZONE2 ZONE3 ZONE4 ZONE5 ZONE6 ZONE7 ZONE8 ZONE9 ZONE10

0 0.3343 0.6322 0.395 0.611 0.6497 0.6601 0.31 0.2818 0.3384
1 0.327 0.649 0.3807 0.5963 0.6222 0.6268 0.3021 0.2734 0.344
2 0.3171 0.6503 0.3597 0.5666 0.5771 0.5782 0.2897 0.2603 0.3433
3 0.3044 0.6386 0.3336 0.5297 0.5213 0.523 0.2751 0.2454 0.3346
4 0.2907 0.6179 0.3057 0.4911 0.4639 0.466 0.2603 0.2309 0.322
5 0.2738 0.5926 0.2778 0.453 0.407 0.4115 0.2439 0.2163 0.306
6 0.2559 0.5625 0.249 0.4159 0.3554 0.3599 0.228 0.2009 0.286
7 0.2351 0.53 0.2226 0.3785 0.3078 0.3104 0.2094 0.1833 0.2626
8 0.2136 0.4975 0.1974 0.3431 0.2647 0.2664 0.1878 0.1635 0.2369
9 0.1927 0.4639 0.1731 0.3096 0.2281 0.2287 0.1657 0.1436 0.2121
10 0.1727 0.4325 0.1503 0.2781 0.1975 0.1965 0.1449 0.1245 0.1891

The mean cross-correlation coefficients for each WPP were computed (Table 4.4).
The WPPs with the lowest correlation with the remaining WPPs for the first 10 lags are

ZONE2 (0.316), ZONE1 (0.349) and ZONE10 (0.349). The WPPs with the highest correlation
are ZONE9 (0.476), ZONE3 (0.466) and ZONE7 (0.463).

Table 4.4: Mean Cross-correlation Coefficients with the remaining WPP for each WPP.

Lag ZONE1 ZONE2 ZONE3 ZONE4 ZONE5 ZONE6 ZONE7 ZONE8 ZONE9 ZONE10

0 0.4681 0.4516 0.4481 0.5781 0.5724 0.5758 0.5544 0.5201 0.5210 0.4681
1 0.4579 0.4304 0.4645 0.5647 0.5628 0.5689 0.5422 0.5094 0.5221 0.4579
2 0.4380 0.4045 0.4751 0.5410 0.5415 0.5489 0.5237 0.4929 0.5177 0.4380
3 0.4117 0.3759 0.4808 0.5135 0.5149 0.5233 0.5038 0.4751 0.5105 0.4117
4 0.3832 0.3459 0.4828 0.4832 0.4853 0.4949 0.4835 0.4571 0.4998 0.3832
5 0.3535 0.3164 0.4811 0.4505 0.4533 0.4636 0.4634 0.4393 0.4860 0.3535
6 0.3237 0.2870 0.4762 0.4182 0.4219 0.4319 0.4432 0.4212 0.4708 0.3237
7 0.2933 0.2575 0.4690 0.3878 0.3920 0.4018 0.4232 0.4027 0.4535 0.2933
8 0.2634 0.2291 0.4599 0.3591 0.3636 0.3732 0.4039 0.3856 0.4351 0.2634
9 0.2353 0.2025 0.4487 0.3335 0.3376 0.3470 0.3852 0.3690 0.4163 0.2353
10 0.2096 0.1775 0.4375 0.3104 0.3140 0.3233 0.3671 0.3530 0.3978 0.2096

Between Endogenous and Exogenous Variables

To study the relation between the weather forecasts and power generation, scatter plots were
computed for all WPPs (results in Appendix A.2). Although the relation between these variables
is known to be not linear, linear regression models were fitted to assess potential positive or
negative linear correlations.

For the power generation at ZONE1, the results seem to display a mild positive correlation
with the zonal wind component, u, at both 10m and 100m heights, and a mild negative corre-
lation with the meridional wind component, v. The same applies to ZONES 2, 4, 5, 6 and 9.
ZONES 7 and 8 seem to display a mild positive correlation with the zonal wind component at
both heights and a very small to non-existent correlation with the meridional wind component.
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ZONE3 displays positive correlations with both the zonal and meridional wind components at
both heights and ZONE10 seems to display a very small to non-existent linear correlation with
both variables.
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Figure 4.3: Correlation between power production and the weather forecasts, z and u, for
ZONE1.

4.3 Model Performance Comparison and Metrics
This section introduces the performance metrics and statistical tests used to assess the quality

of the models.

4.3.1 Performance Metrics
The two metrics most widely used to assess the quality of the models employed in renew-

able power forecasting are the Mean Absolute Error (MAE) and the Root Mean Squared Error
(RMSE). Other tools for performance evaluation include histograms of the frequency distribu-
tion of the error, the correlation coefficient,R, theMean Absolute Percentage Error (MAPE) and
the coefficient of determination, R2 (Wang et al., 2011). Given that they are industry standards,
the RMSE and MAE metrics were computed.
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Mean Absolute Error (MAE)

The MAE is given by

MAE =
1

n

n∑
i=1

|x̃i − x| (4.1)

where n is the total number of samples, x̃ is the predicted value and x is the observed value.

Root Mean Squared Error (RMSE)

The RMSE is given by

RMSE =

√√√√ 1

n

n∑
i=1

(x̃i − x)2 (4.2)

4.3.2 Comparison Tests
Two statistical tests will be used to compare the performance of the models: the Friedman

test, which compares the performance of multiple models, and the Diebold-Mariano test, which
compares the performance of two models.

Friedman Test

The Friedman test is a statistical test used to compare the performance of multiple models.
It compares the mean ranks for each group of forecasts and shows how the groups differ.

Under the null hypothesis, which states that all models are equivalent in terms of their pre-
dictive capability, the test statistics, FF , follows a chi-squared distribution (Gama et al., 2012).

If the null hypothesis is rejected, it is possible to conclude that there is a significant difference
in performance between the models. However, to assess which particular models are dissimilar,
a post-test must be performed. In the post-test, two models are said to be statistically different
if their mean ranks are greater or equal than the Critical Difference, CD, where

CD = qα

√
A(A+ 1)

6N
(4.3)

whereN in the number of blocks of observations used in the ranking,A is the number of models
being tested and qα can be obtained from the Nemenyi statistics (Nemenyi, 1963).

Diebold-Mariano Test

Introduced by Diebold and Mariano (1995), the Diebold-Mariano test is a statistical test de-
signed to determine whether the forecasts produced by two models are significantly different.

For h ≥ 0, the Diebold-Mariano statistic is given by

DM =
d̄√

[γ0 + 2
∑h−1

k=1 γk]/n
(4.4)
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where d̄ is the sample mean of the loss differential time series, {dt}Tt=1, and γk is the autocovari-
ance at lag k.

According to the null hypothesis, which states that there is no significant difference between
the two models, DM follows a standard normal distribution.

DM∼N(0, 1) (4.5)

If |DM | > Zcrit, the null hypothesis is rejected and, therefore, it is possible to conclude that
there is a significant difference between the predictive capabilities of the two models.

4.4 Model Optimization
Like most statistical learning models, autoregression-based models like the ones described in

Chapter 3 contain hyperparameters, i.e., parameters that are not directly estimated by the model
and need to be set manually. Hence, hyperparameter optimization (tunning) is necessary to obtain
the set of parameters that will lead to the best results.

The simplest approach would be to run the model iteratively, changing the parameters at
each iteration, and choose the set of parameters that leads to the smallest error. This strategy is,
however, very inefficient and time consuming.

Introduced by Mockus, Tiesis, and Zilinskas (1978), Bayesian Optimization is a more ef-
ficient way to tackle the issue of parameter optimization. It assumes that the function to be
optimized was sampled from a Gaussian process, maintaining a posterior distribution as new ob-
servations are introduced. The process can be driven by the maximization of either the Expected
Improvement (EI) or the Gaussian process Upper Confidence Bound (UCB) (Snoek, Larochelle,
& Adams, 2012).

Algorithm 2 Pseudo-code for Bayesian Optimization (Frazier, 2018).
Place a Gaussian process prior on f .
Observe f at n0 points according to an initial space-filling experimental design. Set n = n0.
while n ≤ N do

Update the posterior probability distribution on f using all available data.
Let xn be a maximizer of the acquisition function over x, where the acquisition function

is computed using the current posterior distribution.
Observe yn = f(xn).
Increment n.

end while
Return a solution: either the point evaluated with the largest f(x), or the point with the largest
posterior mean.

In the case of the AR models, Bayesian Optimization was used to optimize the following
parameters:

• λ hyperparameter
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• ρ hyperparameter

• number of lags used in the model

• degrees of freedom of the splines used in the additive models

In the Gradient Boosting algorithm, Bayesian Optimization was used to optimize:

• maximum tree depth

• minimum child weight, i.e., the minimum instance weight required for a leaf node to be
kept in the model

• subsampling ratio of the training observations

• number of lags used in the model

The parameters introduced and results of the Bayesian Optimization are presented in Ap-
pendix A.3.

Even though the optimization space was significantly restricted for computational reasons,
the results obtained indicate that the models without exogenous variables seem to benefit from
the use of more lags, whereas the models using weather forecasts in additive settings seem to
perform better by using just one to three lagged values. In these models, the optimal number of
degrees of freedom seems to be around four.

4.5 Intraday and Day-Ahead Forecasting Results
This sections presents the results of the application of the AR models introduced in Chapter

3 to the GEFCom 2014 dataset described in Section 4.1.
The models were used to make forecasts of 1 to 24 hours-ahead of the wind power generated

in 10 WPPs.

4.5.1 AR model
The AR model described in Section 3.1.1. was implemented. For each WPP (10 models),

only the past power measurements recorded at that specific location are used. The mean RMSE
and MAE obtained with the model for each timescale are displayed in Figure 4.4 and Table 4.5.
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Figure 4.4: Mean RMSE for all WPPs and Max/Min values obtained with the AR model.

The AR model yielded mean RMSE values between 0.10, for the 1 hour-ahead forecast,
and 0.30, for the 24 hours-ahead forecast. ZONE9 was the WPP with the best results in most
timescales (between 11 hours-ahead and 21 hours-ahead), whereas ZONE10 was the worst in 11
timescales (between 2 hours-ahead and 12 hours-ahead). At this point, it is relevant to remember
that ZONE10 was the WPP that displayed the lowest mean autocorrelation coefficient in Section
4.2.1, while ZONE9 displayed average results for the first 20 lags.

As expected, the AR model performs better when forecasting the first few hours-ahead. As
the time interval between the lags used in the model and the forecast increases, the model starts
to lose its predictive capability, yielding RMSE values above 0.25 for the 10 hours-ahead forecast
onward.

Regarding the MAE, the AR model yielded mean results between 0.071, for the 1 hour-ahead
forecast, and 0.26, for the 24 hours-ahead forecast.
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Table 4.5: AR Model Results Summary

hours-ahead
RMSE MAE

Mean Value Maximum Value Minimum Value Mean Value Maximum Value Minimum Value

Value WPP Value WPP Value WPP Value WPP

1 0.10154 0.1135 ZONE9 0.0909 ZONE5 0.07096 0.0758 ZONE4 0.0622 ZONE2
2 0.15118 0.1776 ZONE10 0.1318 ZONE2 0.11098 0.13 ZONE10 0.0969 ZONE2
3 0.18106 0.2099 ZONE10 0.155 ZONE2 0.13641 0.165 ZONE10 0.1127 ZONE2
4 0.19961 0.2215 ZONE10 0.1723 ZONE2 0.15466 0.1797 ZONE10 0.1283 ZONE2
5 0.21341 0.237 ZONE10 0.1855 ZONE7 0.16762 0.1908 ZONE10 0.1447 ZONE2
6 0.22658 0.2435 ZONE10 0.2033 ZONE2 0.17958 0.199 ZONE10 0.1554 ZONE2
7 0.23501 0.2629 ZONE10 0.2058 ZONE7 0.18656 0.2181 ZONE10 0.1611 ZONE2
8 0.24096 0.2665 ZONE10 0.2065 ZONE7 0.19319 0.2231 ZONE10 0.162 ZONE7
9 0.24922 0.2865 ZONE10 0.2071 ZONE7 0.2013 0.2396 ZONE10 0.1623 ZONE7
10 0.25625 0.3061 ZONE10 0.2209 ZONE7 0.20856 0.2614 ZONE10 0.1758 ZONE7
11 0.25585 0.3142 ZONE10 0.2027 ZONE9 0.20866 0.2678 ZONE10 0.1627 ZONE9
12 0.26682 0.317 ZONE10 0.2073 ZONE9 0.21868 0.2721 ZONE10 0.1689 ZONE9
13 0.27575 0.3158 ZONE4 0.2183 ZONE9 0.2268 0.261 ZONE10 0.1813 ZONE9
14 0.28242 0.3245 ZONE4 0.2182 ZONE9 0.2332 0.2704 ZONE5 0.1792 ZONE9
15 0.28531 0.3295 ZONE4 0.2178 ZONE9 0.23539 0.2747 ZONE5 0.1765 ZONE9
16 0.28598 0.3322 ZONE4 0.2219 ZONE9 0.23527 0.2771 ZONE4 0.1799 ZONE9
17 0.29 0.3348 ZONE4 0.2279 ZONE9 0.24092 0.2815 ZONE4 0.1847 ZONE9
18 0.29352 0.3519 ZONE4 0.23 ZONE9 0.24554 0.2964 ZONE4 0.1901 ZONE9
19 0.29357 0.3552 ZONE4 0.226 ZONE9 0.24628 0.298 ZONE4 0.1867 ZONE9
20 0.29269 0.3479 ZONE4 0.229 ZONE9 0.24638 0.2899 ZONE4 0.188 ZONE9
21 0.29654 0.349 ZONE4 0.2291 ZONE9 0.25213 0.2927 ZONE6 0.1906 ZONE9
22 0.30297 0.344 ZONE4 0.2777 ZONE7 0.25737 0.2944 ZONE5 0.231 ZONE9
23 0.3033 0.337 ZONE5 0.2753 ZONE7 0.25615 0.2955 ZONE5 0.2249 ZONE7
24 0.30413 0.3386 ZONE5 0.2753 ZONE2 0.25652 0.2982 ZONE5 0.2251 ZONE7

4.5.2 AR-X model
The AR-X model described in Section 3.1.2 was implemented. For each WPP (10 models),

both past power measurements and weather forecasts, u and v, recorded at that specific location,
are used. The mean RMSE and MAE obtained with the model for each timescale are displayed
in Figure 4.5 and Table 4.6.

The AR-X model yielded mean RMSE values between 0.10, for the 1 hour-ahead forecast,
and 0.27, for the 24 hours-ahead forecast. Once more, ZONE9 was the WPP with the best
results in more timescales (between 11 hours-ahead and 21 hours-ahead), whereas ZONE10 was
the worst in 14 timescales.

Besides displaying the lowest mean autocorrelation for the first 20 lags, ZONE10 also dis-
played a very small to non-existent linear correlation with the weather forecasts (Section 4.2.2) ,
which could explain the results for this WPP. On the other hand, ZONE9 displayed mild corre-
lation with both variables, u and v.
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Figure 4.5: Mean RMSE for all WPP and Max/Min values obtained with the AR-X model.

Like the AR model, the AR-X model yields better results for the forecasts performed a few
hours-ahead. For this timescale, the mean RMSE values obtained with AR-X model represent
only a marginal improvement from the ones yielded by the AR model. This is likely due to the
prevalence of the lags’ coefficients for the few hours-ahead forecasts. However, as the forecasting
timescale increases, the use of a linear combination of the weather forecasts seems to improve
upon the AR model’s results, yielding mean RMSE values below 0.28 for all timescales.

Regarding the MAE, the AR-X model yielded mean results between 0.070, for the 1 hour-
ahead forecast, and 0.23, for the 24 hours-ahead forecast.
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Table 4.6: AR-X Model Results Summary

hours-ahead
RMSE MAE

Mean Value Maximum Value Minimum Value Mean Value Maximum Value Minimum Value

Value WPP Value WPP Value WPP Value WPP

1 0.10028 0.1153 ZONE9 0.0883 ZONE5 0.07004 0.0766 ZONE4 0.0609 ZONE2
2 0.14674 0.1724 ZONE10 0.1252 ZONE2 0.10684 0.1208 ZONE10 0.0912 ZONE2
3 0.17355 0.1942 ZONE10 0.1433 ZONE2 0.12887 0.1453 ZONE10 0.1054 ZONE2
4 0.18734 0.208 ZONE10 0.162 ZONE2 0.14183 0.161 ZONE10 0.1215 ZONE2
5 0.20055 0.226 ZONE10 0.1776 ZONE7 0.15435 0.1781 ZONE10 0.1344 ZONE2
6 0.212 0.228 ZONE3 0.1885 ZONE2 0.16452 0.1845 ZONE3 0.1432 ZONE2
7 0.22426 0.2454 ZONE10 0.2012 ZONE7 0.17551 0.1985 ZONE10 0.158 ZONE2
8 0.22988 0.2452 ZONE6 0.2018 ZONE7 0.18118 0.1963 ZONE10 0.1608 ZONE7
9 0.23768 0.2743 ZONE10 0.1967 ZONE7 0.18953 0.2218 ZONE10 0.1558 ZONE7
10 0.24331 0.3058 ZONE10 0.2062 ZONE7 0.1959 0.2526 ZONE10 0.1642 ZONE7
11 0.24028 0.3096 ZONE10 0.1928 ZONE9 0.19571 0.2593 ZONE10 0.1559 ZONE9
12 0.24807 0.3137 ZONE10 0.1863 ZONE9 0.20288 0.2646 ZONE10 0.1509 ZONE9
13 0.25355 0.3055 ZONE10 0.1967 ZONE9 0.20754 0.255 ZONE10 0.1617 ZONE9
14 0.25875 0.3011 ZONE10 0.1968 ZONE9 0.21259 0.2544 ZONE10 0.1604 ZONE9
15 0.25876 0.2971 ZONE10 0.1953 ZONE9 0.21116 0.2475 ZONE10 0.1575 ZONE9
16 0.25621 0.2993 ZONE5 0.197 ZONE9 0.20844 0.2457 ZONE5 0.1583 ZONE9
17 0.25972 0.2993 ZONE5 0.202 ZONE9 0.21056 0.2449 ZONE10 0.1613 ZONE9
18 0.26337 0.3033 ZONE4 0.1983 ZONE9 0.21543 0.2517 ZONE4 0.1599 ZONE9
19 0.26145 0.3031 ZONE4 0.204 ZONE9 0.2161 0.2523 ZONE4 0.1668 ZONE9
20 0.26044 0.3008 ZONE4 0.2061 ZONE9 0.21526 0.2495 ZONE4 0.1712 ZONE9
21 0.2653 0.2997 ZONE5 0.2057 ZONE9 0.21973 0.2539 ZONE10 0.1713 ZONE9
22 0.27305 0.3042 ZONE5 0.2359 ZONE2 0.22763 0.2593 ZONE5 0.1905 ZONE2
23 0.27296 0.3075 ZONE10 0.2301 ZONE2 0.2267 0.2646 ZONE10 0.1888 ZONE2
24 0.27269 0.3056 ZONE10 0.2304 ZONE2 0.22609 0.2598 ZONE10 0.1863 ZONE2

4.5.3 AAR-X model
The AAR-X model described in Section 3.1.3 was implemented. Both past power measure-

ments and weather forecasts, u and v, recorded at each WPP (10 models), are used in the forecast.
The model uses natural cubic splines to model the non-linear relation between the weather fore-
casts and the power generated at each WPP. The mean RMSE and MAE obtained with the
AAR-X model for each timescale are displayed in Figure 4.6 and Table 4.7.

The results display a significant improvement in regards to the AR and AR-X models. Mean
RMSE values between 0.095 and 0.20 were obtained with the AAR-X model.

The WPPs that yielded the best and worst results for more timescales were ZONE9 and
ZONE10, respectively.
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Figure 4.6: Mean RMSE for all WPPs and Max/Min values obtained with the AAR-X model.

As anticipated, the use of additive smooth functions in the forecast seems to better capture
the relation between the weather forecasts and the power generated, yielding significantly lower
mean RMSE values than the AR-X. This is particularly true for timescales larger than 2 to 3
hours-ahead.

Regarding the MAE, the AR-X model yielded mean results between 0.067, for the 1 hour-
ahead forecast, and 0.15, for the 22 hours-ahead forecast.
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Table 4.7: AAR-X Model Results Summary

hours-ahead
RMSE MAE

Mean Value Maximum Value Minimum Value Mean Value Maximum Value Minimum Value

Value WPP Value WPP Value WPP Value WPP

1 0.09534 0.1104 ZONE9 0.0801 ZONE5 0.06733 0.0726 ZONE8 0.0606 ZONE5
2 0.13351 0.1453 ZONE10 0.1102 ZONE3 0.09587 0.1073 ZONE1 0.0838 ZONE3
3 0.14992 0.1688 ZONE9 0.1275 ZONE2 0.10916 0.1195 ZONE1 0.0935 ZONE2
4 0.15411 0.175 ZONE1 0.1343 ZONE2 0.11507 0.1353 ZONE1 0.1003 ZONE2
5 0.16181 0.1843 ZONE9 0.1432 ZONE5 0.12148 0.1428 ZONE1 0.1084 ZONE7
6 0.16996 0.1948 ZONE1 0.15 ZONE5 0.12813 0.151 ZONE1 0.1144 ZONE2
7 0.17545 0.2078 ZONE10 0.1562 ZONE7 0.13088 0.1581 ZONE10 0.115 ZONE7
8 0.17699 0.2025 ZONE10 0.1414 ZONE7 0.13247 0.1563 ZONE10 0.1038 ZONE7
9 0.18268 0.2188 ZONE10 0.1356 ZONE7 0.13784 0.1711 ZONE10 0.1032 ZONE7
10 0.1916 0.2338 ZONE10 0.1569 ZONE7 0.14838 0.186 ZONE10 0.1203 ZONE7
11 0.1877 0.231 ZONE10 0.1593 ZONE9 0.14741 0.1892 ZONE10 0.1224 ZONE2
12 0.19195 0.2451 ZONE10 0.1508 ZONE9 0.15108 0.198 ZONE10 0.1199 ZONE9
13 0.19478 0.2442 ZONE10 0.1523 ZONE9 0.15325 0.1963 ZONE10 0.1197 ZONE9
14 0.19517 0.2346 ZONE10 0.1524 ZONE9 0.15257 0.189 ZONE10 0.1208 ZONE9
15 0.19129 0.2319 ZONE10 0.1424 ZONE9 0.14969 0.1862 ZONE10 0.1099 ZONE9
16 0.18928 0.2231 ZONE10 0.1483 ZONE9 0.14773 0.1796 ZONE10 0.1139 ZONE9
17 0.19257 0.2324 ZONE10 0.1542 ZONE9 0.14837 0.1862 ZONE10 0.1135 ZONE9
18 0.19761 0.232 ZONE10 0.1476 ZONE9 0.15204 0.1857 ZONE10 0.1124 ZONE9
19 0.19538 0.2266 ZONE10 0.1497 ZONE9 0.15174 0.1858 ZONE10 0.1144 ZONE9
20 0.1919 0.2195 ZONE10 0.1514 ZONE9 0.15038 0.1801 ZONE10 0.1184 ZONE9
21 0.19109 0.2197 ZONE10 0.1557 ZONE9 0.14905 0.1801 ZONE10 0.1219 ZONE9
22 0.19475 0.2157 ZONE6 0.1683 ZONE3 0.15207 0.171 ZONE6 0.1326 ZONE2
23 0.19526 0.2102 ZONE6 0.1683 ZONE2 0.15035 0.1678 ZONE10 0.124 ZONE2
24 0.19224 0.2158 ZONE10 0.1615 ZONE2 0.14756 0.1691 ZONE10 0.1178 ZONE2

4.5.4 VAR model
The VAR model described in Section 3.2.1 was implemented. As discussed, the VAR model

is capable of capturing the linear correlations between the power generated in all WPP locations.
As such, a unique model, using the power generation time series in all WPPs, was implemented.

To assess whether the use of different LASSO-VAR frameworks significantly impacted the
results, the two methods discussed in Section 3.3 were implemented in different versions of the
model.

Standard LASSO-VAR (sLV)

The first method corresponds to sLV and uses the lagged values of the variables without
grouping them in any way, meaning that each lagged value of any variable can be removed or
added to the model by the use of LASSO regularization.

The mean RMSE and MAE obtained with the VAR model with sLV for each timescale are
presented in Figure 4.7 and Table 4.8.
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Figure 4.7: Mean RMSE for all WPPs and Max/Min values obtained with the VAR model.

The VAR model with sLV yielded mean RMSE values between 0.098, for the 1 hour-ahead
forecast, and 0.30, for the 24 hours-ahead forecast. ZONE9 was the WPP with the best results
in more timescales (between 11 hours-ahead and 22 hours-ahead), whereas ZONE10 was the
worst in 10 timescales. One of the reasons behind the good results in ZONE9 is likely the high
cross-correlation with the remaining WPPs’ lagged values (Section 4.2.2).

On average, the VAR model seems to marginally improve the results obtained with the AR
model, meaning that the use of geographically distributed data likely had a positive impact on the
accuracy of the forecasts.

Like the previous models, the VAR model yields better results for the forecasts performed a
few hours-ahead.

Regarding the MAE, the VAR model yielded mean results between 0.069, for the 1 hour-
ahead forecast, and 0.25, for the 24 hours-ahead forecast.
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Table 4.8: VAR Model Results Summary

hours-ahead
RMSE MAE

Mean Value Maximum Value Minimum Value Mean Value Maximum Value Minimum Value

Value WPP Value WPP Value WPP Value WPP

1 0.09813 0.1131 ZONE9 0.0845 ZONE5 0.06914 0.0754 ZONE9 0.0632 ZONE5
2 0.14285 0.1661 ZONE10 0.1276 ZONE3 0.10566 0.1179 ZONE10 0.0958 ZONE2
3 0.17122 0.1924 ZONE10 0.1515 ZONE2 0.12943 0.1407 ZONE10 0.1132 ZONE2
4 0.19182 0.2046 ZONE8 0.1714 ZONE2 0.1475 0.1568 ZONE8 0.1316 ZONE2
5 0.20604 0.2217 ZONE6 0.1872 ZONE7 0.15971 0.1741 ZONE6 0.1453 ZONE2
6 0.22236 0.2375 ZONE6 0.2029 ZONE2 0.17317 0.1853 ZONE6 0.1561 ZONE2
7 0.23173 0.2593 ZONE10 0.2055 ZONE7 0.181 0.2082 ZONE10 0.16 ZONE2
8 0.23797 0.2715 ZONE10 0.2022 ZONE7 0.18703 0.2203 ZONE10 0.1577 ZONE7
9 0.24593 0.2969 ZONE10 0.2044 ZONE7 0.19482 0.2414 ZONE10 0.1609 ZONE7
10 0.25163 0.3158 ZONE10 0.2118 ZONE7 0.20002 0.2619 ZONE10 0.1663 ZONE7
11 0.24934 0.3214 ZONE10 0.1865 ZONE9 0.19998 0.2667 ZONE10 0.148 ZONE9
12 0.25847 0.3219 ZONE10 0.1854 ZONE9 0.20786 0.2681 ZONE10 0.1499 ZONE9
13 0.26572 0.3142 ZONE10 0.1954 ZONE9 0.2153 0.2607 ZONE10 0.1581 ZONE9
14 0.27217 0.3238 ZONE4 0.194 ZONE9 0.22177 0.2652 ZONE5 0.1548 ZONE9
15 0.27491 0.3261 ZONE4 0.1919 ZONE9 0.2224 0.2642 ZONE4 0.1528 ZONE9
16 0.27195 0.3205 ZONE4 0.196 ZONE9 0.21948 0.2617 ZONE4 0.1582 ZONE9
17 0.27936 0.322 ZONE4 0.2051 ZONE9 0.22792 0.2705 ZONE10 0.1635 ZONE9
18 0.28408 0.3355 ZONE4 0.2089 ZONE9 0.2345 0.2768 ZONE4 0.167 ZONE9
19 0.28486 0.3403 ZONE4 0.2072 ZONE9 0.23537 0.2775 ZONE4 0.1669 ZONE9
20 0.28553 0.332 ZONE4 0.2124 ZONE9 0.23598 0.2723 ZONE10 0.1707 ZONE9
21 0.28973 0.335 ZONE4 0.2148 ZONE9 0.2411 0.2804 ZONE10 0.1731 ZONE9
22 0.29667 0.3299 ZONE4 0.2615 ZONE9 0.24731 0.283 ZONE5 0.2106 ZONE9
23 0.29964 0.332 ZONE10 0.2746 ZONE7 0.24825 0.2868 ZONE10 0.2192 ZONE7
24 0.30039 0.3294 ZONE5 0.2751 ZONE7 0.24896 0.2822 ZONE5 0.2209 ZONE7

Lag-Group LASSO-VAR (lLV)

The second LASSO-VAR framework implemented corresponds to lLV, method which ap-
plies LASSO on the lagged values of the variables grouped by their time lags (first order lags,
second order lags, and so on). The mean RMSE and MAE obtained with the VAR model with
lLV for each timescale are presented in Figure 4.8 and Table 4.9.
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Figure 4.8: Mean RMSE for all WPPs and Max/Min values obtained with the VAR model with
lag-group LASSO-VAR.

The VAR model with lLV yielded mean RMSE values between 0.099, for the 1 hour-ahead
forecast, and 0.30, for the 24 hours-ahead forecast. Once again, ZONE9 was the WPP with the
best results in more timescales (between 11 hours-ahead and 22 hours-ahead). ZONE10 was the
worst in 13 timescales.

Regarding the MAE, the VAR model with lLV yielded mean results between 0.069, for the 1
hour-ahead forecast, and 0.25, for the 24 hours-ahead forecast.
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Table 4.9: VAR Model with Lag Group LASSO Results Summary

hours-ahead
RMSE MAE

Mean Value Maximum Value Minimum Value Mean Value Maximum Value Minimum Value

Value WPP Value WPP Value WPP Value WPP

1 0.09912 0.1124 ZONE9 0.0881 ZONE3 0.06887 0.0739 ZONE4 0.0613 ZONE2
2 0.14485 0.1673 ZONE10 0.1248 ZONE3 0.10626 0.1185 ZONE10 0.0949 ZONE2
3 0.17471 0.194 ZONE10 0.1518 ZONE2 0.13153 0.144 ZONE10 0.1133 ZONE2
4 0.19357 0.2074 ZONE6 0.1699 ZONE2 0.14789 0.16 ZONE6 0.1298 ZONE2
5 0.20796 0.2314 ZONE6 0.1887 ZONE2 0.16104 0.1808 ZONE6 0.1434 ZONE2
6 0.22315 0.2419 ZONE6 0.2 ZONE2 0.17422 0.1883 ZONE6 0.1545 ZONE2
7 0.23264 0.2579 ZONE10 0.2102 ZONE2 0.18248 0.206 ZONE10 0.162 ZONE2
8 0.23871 0.2727 ZONE10 0.2078 ZONE7 0.18829 0.2212 ZONE10 0.1646 ZONE7
9 0.24664 0.2975 ZONE10 0.2054 ZONE7 0.19741 0.2443 ZONE10 0.1643 ZONE7
10 0.25204 0.3234 ZONE10 0.2148 ZONE7 0.20131 0.2724 ZONE10 0.1692 ZONE1
11 0.25101 0.3316 ZONE10 0.187 ZONE9 0.20209 0.281 ZONE10 0.1502 ZONE9
12 0.26034 0.3322 ZONE10 0.1869 ZONE9 0.20994 0.2832 ZONE10 0.1503 ZONE9
13 0.26775 0.328 ZONE10 0.1958 ZONE9 0.21614 0.274 ZONE10 0.1574 ZONE9
14 0.27553 0.3251 ZONE10 0.1964 ZONE9 0.22244 0.2696 ZONE10 0.1566 ZONE9
15 0.27741 0.326 ZONE4 0.1935 ZONE9 0.223 0.2685 ZONE10 0.152 ZONE9
16 0.27464 0.3198 ZONE10 0.1999 ZONE9 0.22056 0.2623 ZONE10 0.1592 ZONE9
17 0.28091 0.3319 ZONE10 0.2096 ZONE9 0.22731 0.2796 ZONE10 0.1648 ZONE9
18 0.28614 0.3331 ZONE10 0.2143 ZONE9 0.23317 0.2828 ZONE10 0.1704 ZONE9
19 0.2878 0.3365 ZONE4 0.2126 ZONE9 0.23566 0.2814 ZONE10 0.1707 ZONE9
20 0.28709 0.3279 ZONE4 0.217 ZONE9 0.23563 0.2799 ZONE10 0.1728 ZONE9
21 0.29111 0.3354 ZONE4 0.2152 ZONE9 0.24052 0.2884 ZONE10 0.1719 ZONE9
22 0.299 0.3345 ZONE4 0.2639 ZONE9 0.24747 0.2878 ZONE10 0.2115 ZONE9
23 0.29942 0.3364 ZONE5 0.2697 ZONE7 0.24652 0.2881 ZONE10 0.2144 ZONE7
24 0.30107 0.3346 ZONE5 0.2709 ZONE7 0.24717 0.2821 ZONE5 0.2169 ZONE7

The VAR with lLV displays a similar behaviour to VAR with sLV in terms of the RMSE
values.

4.5.5 VAR-X model
The VAR-X introduced in Section 3.2.2 was implemented. In the VAR-X model developed,

all 50 variables provided at GEFCom 2014 are used, corresponding to the power generation time
series and the weather forecasts for all WPPs.

As in the VAR model’s case, both the sLV and lLV frameworks were tested.

Standard LASSO-VAR (sLV)

The mean RMSE and MAE obtained with the VAR-X model with sLV for each timescale
are presented in Figure 4.9 and Table 4.10.
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Figure 4.9: Mean RMSE for all WPPs and Max/Min values obtained with the VAR-X model.

The VAR-X model with sLV yielded mean RMSE values between 0.10, for the 1 hour-ahead
forecast, and 0.27, for the 24 hours-ahead forecast. Once more, ZONE9 and ZONE10 were the
WPPs with the best and worst results, respectively.

As in the AR-X and AR models’ case, the VAR-X model significantly improves the accuracy
of the forecasts obtained with the VAR model, particularly for timescales of more than a few
hours-ahead.

Regarding the MAE, the VAR-X model with sLV yielded mean results between 0.071, for the
1 hour-ahead forecast, and 0.22, for the 24 hours-ahead forecast.
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Table 4.10: VAR-X Model Results Summary

hours-ahead
RMSE MAE

Mean Value Maximum Value Minimum Value Mean Value Maximum Value Minimum Value

Value WPP Value WPP Value WPP Value WPP

1 0.10117 0.1156 ZONE9 0.0868 ZONE3 0.07128 0.0759 ZONE4 0.0617 ZONE2
2 0.14303 0.1622 ZONE10 0.1208 ZONE3 0.10519 0.1167 ZONE10 0.0911 ZONE2
3 0.17046 0.1839 ZONE8 0.143 ZONE2 0.12664 0.1349 ZONE6 0.1059 ZONE2
4 0.18291 0.1978 ZONE8 0.1622 ZONE2 0.13773 0.1476 ZONE8 0.121 ZONE2
5 0.19834 0.2264 ZONE6 0.1783 ZONE2 0.15099 0.1688 ZONE6 0.1351 ZONE2
6 0.20958 0.2323 ZONE6 0.1891 ZONE2 0.16085 0.1725 ZONE6 0.1468 ZONE2
7 0.22172 0.2431 ZONE6 0.2017 ZONE2 0.1737 0.1916 ZONE10 0.1573 ZONE2
8 0.22464 0.2419 ZONE5 0.201 ZONE7 0.17511 0.1904 ZONE10 0.1585 ZONE7
9 0.23032 0.2682 ZONE10 0.1972 ZONE7 0.18069 0.216 ZONE10 0.1533 ZONE1
10 0.23641 0.3007 ZONE10 0.2086 ZONE1 0.18823 0.2473 ZONE10 0.1625 ZONE1
11 0.23234 0.2992 ZONE10 0.1853 ZONE9 0.18714 0.2474 ZONE10 0.1462 ZONE9
12 0.24047 0.3089 ZONE10 0.1777 ZONE9 0.19324 0.2509 ZONE10 0.1408 ZONE9
13 0.23964 0.3073 ZONE10 0.1799 ZONE9 0.19404 0.253 ZONE10 0.1442 ZONE9
14 0.24801 0.3088 ZONE10 0.1862 ZONE9 0.19947 0.2557 ZONE10 0.1476 ZONE9
15 0.24698 0.2997 ZONE10 0.1762 ZONE9 0.19889 0.2475 ZONE10 0.1397 ZONE9
16 0.24243 0.2925 ZONE10 0.1814 ZONE9 0.19292 0.2365 ZONE10 0.1393 ZONE9
17 0.24452 0.2876 ZONE10 0.1868 ZONE9 0.19343 0.2368 ZONE10 0.1449 ZONE9
18 0.24628 0.2848 ZONE10 0.18 ZONE9 0.19564 0.2374 ZONE10 0.1399 ZONE9
19 0.24403 0.278 ZONE10 0.1818 ZONE9 0.1964 0.2312 ZONE10 0.1413 ZONE9
20 0.24297 0.2784 ZONE10 0.1852 ZONE9 0.1957 0.2298 ZONE10 0.1485 ZONE9
21 0.25315 0.2912 ZONE10 0.1915 ZONE9 0.20574 0.24 ZONE10 0.1545 ZONE9
22 0.26454 0.2858 ZONE6 0.2387 ZONE2 0.217 0.241 ZONE5 0.1926 ZONE2
23 0.26307 0.2883 ZONE10 0.239 ZONE2 0.21449 0.239 ZONE10 0.1958 ZONE2
24 0.26687 0.2944 ZONE10 0.2361 ZONE2 0.21639 0.2448 ZONE10 0.1905 ZONE2

Lag-Group LASSO-VAR (lLV)

The mean RMSE and MAE obtained with the VAR-X model with lLV for each timescale are
presented in Figure 4.10 and Table 4.11. In this case, not only the lagged values were grouped
by their time lags, but also the weather forecasts were grouped by location, meaning that, for a
given WPP, either all or none of the weather forecasts were considered.
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Figure 4.10: Mean RMSE for all WPPs and Max/Min values obtained with the VAR-X model
with lag-group LASSO-VAR.

The VAR-X model with lLV yielded similar mean RMSE values than the VAR-X model with
sLV. The minimum error was obtained for the 1 hour-ahead forecast (0.10) and the maximum
value for the 24 hours-ahead forecast (0.28).

Regarding the MAE, the VAR-X model with lLV yielded mean results between 0.074, for the
1 hour-ahead forecast, and 0.22, for the 24 hours-ahead forecast.

As in the case of the VAR model, the grouping of the lags and weather forecasts does not
seem to result in an improvement of the mean RMSE results obtained with the VAR-X model
with sLV.
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Table 4.11: VAR-X Model with Lag Group LASSO Results Summary

hours-ahead
RMSE MAE

Mean Value Maximum Value Minimum Value Mean Value Maximum Value Minimum Value

Value WPP Value WPP Value WPP Value WPP

1 0.10358 0.1185 ZONE9 0.0883 ZONE3 0.07409 0.0795 ZONE4 0.0652 ZONE2
2 0.14659 0.1694 ZONE10 0.1248 ZONE3 0.10791 0.1209 ZONE10 0.0938 ZONE2
3 0.1749 0.191 ZONE6 0.1502 ZONE2 0.12944 0.1403 ZONE6 0.1091 ZONE2
4 0.1875 0.198 ZONE8 0.1681 ZONE2 0.13982 0.1478 ZONE6 0.1236 ZONE2
5 0.20576 0.236 ZONE6 0.186 ZONE2 0.15429 0.1737 ZONE6 0.1367 ZONE2
6 0.21634 0.2414 ZONE6 0.1958 ZONE2 0.16406 0.1763 ZONE6 0.1503 ZONE2
7 0.22544 0.2487 ZONE6 0.2051 ZONE7 0.17652 0.1933 ZONE6 0.1617 ZONE2
8 0.22765 0.2461 ZONE10 0.2029 ZONE7 0.17675 0.1939 ZONE10 0.1611 ZONE7
9 0.23428 0.277 ZONE10 0.197 ZONE7 0.1818 0.2203 ZONE10 0.1543 ZONE1
10 0.24291 0.3155 ZONE10 0.2113 ZONE1 0.19119 0.2547 ZONE10 0.1638 ZONE1
11 0.24079 0.3199 ZONE10 0.1908 ZONE9 0.19225 0.2601 ZONE10 0.149 ZONE9
12 0.24904 0.3301 ZONE10 0.1819 ZONE9 0.19784 0.2652 ZONE10 0.1426 ZONE9
13 0.24965 0.3253 ZONE10 0.1855 ZONE9 0.19932 0.261 ZONE10 0.1473 ZONE9
14 0.25784 0.3252 ZONE10 0.1904 ZONE9 0.20506 0.2653 ZONE10 0.1494 ZONE9
15 0.25893 0.3196 ZONE10 0.181 ZONE9 0.20518 0.2585 ZONE10 0.1427 ZONE9
16 0.25236 0.3098 ZONE10 0.1844 ZONE9 0.19809 0.2457 ZONE10 0.1407 ZONE9
17 0.2541 0.3021 ZONE10 0.1909 ZONE9 0.1982 0.2451 ZONE10 0.1471 ZONE9
18 0.25511 0.2984 ZONE10 0.1847 ZONE9 0.19966 0.2392 ZONE10 0.1418 ZONE9
19 0.25251 0.2914 ZONE10 0.1875 ZONE9 0.20099 0.2366 ZONE10 0.1465 ZONE9
20 0.25171 0.286 ZONE10 0.1937 ZONE9 0.19992 0.2336 ZONE10 0.1563 ZONE9
21 0.26206 0.3024 ZONE10 0.1986 ZONE9 0.20983 0.2435 ZONE10 0.1603 ZONE9
22 0.27325 0.2988 ZONE10 0.2506 ZONE2 0.22138 0.2488 ZONE10 0.1976 ZONE9
23 0.27519 0.3071 ZONE10 0.2536 ZONE7 0.22097 0.2531 ZONE10 0.1993 ZONE7
24 0.27549 0.3059 ZONE10 0.2452 ZONE2 0.21816 0.2461 ZONE10 0.1936 ZONE2

4.5.6 AVAR-X model
The AVAR-X model discussed in Section 3.2.3 was implemented. The model uses both the

past power measurements and the weather forecasts, u and v, recorded at all locations. As in the
VAR and VAR-X models’ case, both the sLV and lLV frameworks were tested.

Given the good results obtained with the natural cubic splines model, a different set of
smooth functions was also tested (cubic B splines).

Standard LASSO-VAR (sLV) and Natural Cubic Splines

The mean RMSE and MAE obtained with the AVAR-X model with sLV and natural cubic
splines for each timescale are presented in Figure 4.11 and Table 4.12.
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Figure 4.11: Mean RMSE for all WPPs and Max/Min values obtained with the AVAR-X model
(Natural Cubic Splines).

The AVAR-X model with sLV and natural cubic splines yielded mean RMSE values between
0.095, for the 1 hour-ahead forecast, and 0.19, for the 18 hours-ahead forecast.

Regarding the MAE, the AVAR-X model with sLV and natural cubic splines yielded mean
results between 0.067 and 0.15.

54



Table 4.12: AVAR-X Model with Natural Cubic Splines Results Summary

hours-ahead
RMSE MAE

Mean Value Maximum Value Minimum Value Mean Value Maximum Value Minimum Value

Value WPP Value WPP Value WPP Value WPP

1 0.09542 0.111 ZONE9 0.0776 ZONE5 0.06684 0.0721 ZONE4 0.0595 ZONE5
2 0.13063 0.1452 ZONE10 0.1052 ZONE3 0.0951 0.1053 ZONE10 0.0807 ZONE3
3 0.14937 0.1688 ZONE9 0.1267 ZONE2 0.10802 0.1186 ZONE8 0.0912 ZONE2
4 0.15096 0.1784 ZONE9 0.1326 ZONE2 0.11206 0.1261 ZONE9 0.0961 ZONE2
5 0.15903 0.1843 ZONE9 0.1428 ZONE2 0.1183 0.1287 ZONE10 0.1013 ZONE2
6 0.16931 0.1957 ZONE9 0.1516 ZONE2 0.12679 0.141 ZONE10 0.108 ZONE2
7 0.17595 0.2126 ZONE10 0.1537 ZONE2 0.13168 0.1572 ZONE10 0.1111 ZONE2
8 0.17482 0.2134 ZONE10 0.1403 ZONE7 0.13026 0.161 ZONE10 0.1078 ZONE7
9 0.1823 0.2292 ZONE10 0.1399 ZONE7 0.1355 0.1696 ZONE10 0.102 ZONE1
10 0.18841 0.2377 ZONE10 0.157 ZONE7 0.1453 0.1899 ZONE10 0.1204 ZONE1
11 0.18553 0.2405 ZONE10 0.156 ZONE9 0.14486 0.1963 ZONE10 0.1188 ZONE1
12 0.18663 0.2492 ZONE10 0.1441 ZONE9 0.14633 0.2 ZONE10 0.1134 ZONE9
13 0.18795 0.2403 ZONE10 0.1465 ZONE9 0.14832 0.1946 ZONE10 0.1142 ZONE9
14 0.18844 0.2362 ZONE10 0.1493 ZONE9 0.14676 0.1926 ZONE10 0.1158 ZONE1
15 0.18408 0.228 ZONE10 0.1356 ZONE9 0.14308 0.1828 ZONE10 0.1063 ZONE9
16 0.17933 0.2161 ZONE6 0.1364 ZONE9 0.13898 0.1704 ZONE6 0.1049 ZONE9
17 0.18045 0.2213 ZONE10 0.1411 ZONE9 0.1387 0.1798 ZONE10 0.1024 ZONE9
18 0.18908 0.2249 ZONE8 0.1364 ZONE9 0.1428 0.175 ZONE6 0.1008 ZONE9
19 0.18475 0.2179 ZONE10 0.1448 ZONE9 0.14319 0.1787 ZONE10 0.1052 ZONE9
20 0.18199 0.2185 ZONE10 0.1446 ZONE9 0.14162 0.1773 ZONE10 0.1093 ZONE9
21 0.1814 0.2135 ZONE10 0.1439 ZONE9 0.14164 0.1747 ZONE10 0.111 ZONE1
22 0.18719 0.2147 ZONE10 0.1527 ZONE1 0.14645 0.1735 ZONE10 0.1127 ZONE1
23 0.18879 0.2219 ZONE10 0.1671 ZONE1 0.14631 0.1783 ZONE10 0.121 ZONE7
24 0.18538 0.2046 ZONE10 0.1651 ZONE7 0.1427 0.1631 ZONE10 0.1233 ZONE7

Standard LASSO-VAR (sLV) and B Splines

The mean RMSE and MAE obtained with the AVAR-X model with sLV and B splines for
each timescale are presented in Figure 4.12 and Table 4.13.
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Figure 4.12: Mean RMSE for all WPPs and Max/Min values obtained with the AVAR-X model
(B Splines).

The AVAR-X model with sLV and B splines yielded mean RMSE values between 0.095, for
the 1 hour-ahead forecast, and 0.18, for the 19 hours-ahead forecast.

Regarding theMAE, the AVAR-Xmodel with sLV and B splines yieldedmean results between
0.067 and 0.14.

In general, the mean RMSE values obtained with the AVAR-X model with the B splines
constitute an improvement on the natural cubic splines model, yielding mean RMSE values below
0.19 for most forecasting horizons greater than 10 hours.
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Table 4.13: AVAR-X Model with B Splines Results Summary

hours-ahead
RMSE MAE

Mean Value Maximum Value Minimum Value Mean Value Maximum Value Minimum Value

Value WPP Value WPP Value WPP Value WPP

1 0.09453 0.111 ZONE9 0.0787 ZONE5 0.06634 0.072 ZONE7 0.0592 ZONE2
2 0.12931 0.1441 ZONE8 0.104 ZONE3 0.09328 0.1025 ZONE10 0.0796 ZONE3
3 0.14436 0.1666 ZONE9 0.1237 ZONE2 0.10444 0.1157 ZONE9 0.0885 ZONE2
4 0.14597 0.1725 ZONE8 0.1278 ZONE2 0.10848 0.1262 ZONE8 0.0932 ZONE2
5 0.15257 0.1726 ZONE8 0.1339 ZONE2 0.11384 0.1271 ZONE8 0.0964 ZONE2
6 0.15961 0.1893 ZONE9 0.1427 ZONE2 0.11964 0.1321 ZONE9 0.1043 ZONE2
7 0.16548 0.1972 ZONE10 0.1491 ZONE7 0.1234 0.1476 ZONE10 0.1074 ZONE2
8 0.16546 0.1964 ZONE10 0.1327 ZONE7 0.12245 0.1474 ZONE10 0.0995 ZONE7
9 0.16747 0.2093 ZONE10 0.1252 ZONE7 0.12507 0.1578 ZONE10 0.0941 ZONE7
10 0.17824 0.2237 ZONE10 0.145 ZONE7 0.13523 0.175 ZONE10 0.1085 ZONE7
11 0.17612 0.2261 ZONE10 0.1469 ZONE3 0.13509 0.1809 ZONE10 0.1105 ZONE2
12 0.17707 0.2342 ZONE10 0.1408 ZONE9 0.13688 0.1836 ZONE10 0.1099 ZONE9
13 0.17806 0.2274 ZONE10 0.1413 ZONE9 0.13878 0.1798 ZONE10 0.1087 ZONE9
14 0.18203 0.2244 ZONE10 0.1436 ZONE9 0.14033 0.1785 ZONE10 0.1116 ZONE9
15 0.17603 0.221 ZONE10 0.1308 ZONE9 0.13604 0.172 ZONE10 0.1016 ZONE9
16 0.17036 0.2018 ZONE10 0.1316 ZONE9 0.13122 0.1564 ZONE10 0.1012 ZONE9
17 0.17486 0.2129 ZONE10 0.1377 ZONE9 0.13306 0.1681 ZONE10 0.0994 ZONE9
18 0.17997 0.2055 ZONE10 0.1357 ZONE9 0.13675 0.1619 ZONE6 0.1003 ZONE9
19 0.18867 0.2234 ZONE6 0.1526 ZONE7 0.13904 0.1664 ZONE10 0.1047 ZONE9
20 0.18609 0.2238 ZONE1 0.1387 ZONE9 0.13808 0.166 ZONE10 0.105 ZONE9
21 0.1788 0.2078 ZONE10 0.1408 ZONE9 0.1369 0.1651 ZONE10 0.1093 ZONE9
22 0.18487 0.2042 ZONE10 0.1617 ZONE3 0.14165 0.1606 ZONE10 0.1236 ZONE1
23 0.18269 0.2017 ZONE10 0.1663 ZONE3 0.14023 0.1593 ZONE5 0.1214 ZONE7
24 0.17934 0.1973 ZONE10 0.1616 ZONE2 0.13627 0.1542 ZONE6 0.1192 ZONE2

Lag-Group LASSO-VAR (lLV) and Natural Cubic Splines

As in the VAR-X model’s case, in AVAR-X with lLV not only the lagged values were grouped
by their time lags, but also the weather forecasts were grouped by location. The mean RMSE and
MAE obtained with the AVAR-X model with lLV and natural cubic splines for each timescale
are presented in Figure 4.13 and Table 4.14.
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Figure 4.13: Mean RMSE for all WPPs and Max/Min values obtained with the AVAR-X model
(Natural Cubic Splines) with lag-group LASSO-VAR.

The AVAR-X model with lLV and natural cubic splines yielded mean RMSE values between
0.097, for the 1 hour-ahead forecast, and 0.21, for the 10 hours-ahead forecast.

Regarding the MAE, the AVAR-X model with lLV and natural cubic splines yielded mean
results between 0.070 and 0.17.
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Table 4.14: AVAR-X Model with Natural Cubic Splines and Lag Group LASSO Results Sum-
mary

hours-ahead
RMSE MAE

Mean Value Maximum Value Minimum Value Mean Value Maximum Value Minimum Value

Value WPP Value WPP Value WPP Value WPP

1 0.09713 0.116 ZONE9 0.0799 ZONE5 0.06973 0.076 ZONE9 0.0619 ZONE2
2 0.13525 0.1502 ZONE10 0.1127 ZONE3 0.09937 0.111 ZONE10 0.0861 ZONE3
3 0.15784 0.1744 ZONE9 0.1334 ZONE2 0.11477 0.1265 ZONE9 0.0981 ZONE2
4 0.16109 0.1855 ZONE9 0.1342 ZONE2 0.11941 0.1315 ZONE9 0.0986 ZONE2
5 0.1705 0.1902 ZONE9 0.1486 ZONE2 0.12639 0.1356 ZONE9 0.1075 ZONE2
6 0.18107 0.2146 ZONE9 0.1594 ZONE2 0.13539 0.1567 ZONE9 0.1152 ZONE2
7 0.19047 0.2175 ZONE10 0.17 ZONE2 0.14106 0.1669 ZONE10 0.1221 ZONE2
8 0.1922 0.2275 ZONE10 0.1607 ZONE7 0.14102 0.1723 ZONE10 0.1155 ZONE7
9 0.19891 0.2397 ZONE10 0.1564 ZONE7 0.14696 0.1787 ZONE10 0.1159 ZONE7
10 0.20925 0.2581 ZONE10 0.178 ZONE3 0.15768 0.1991 ZONE10 0.1315 ZONE2
11 0.20818 0.2663 ZONE10 0.1673 ZONE3 0.16023 0.2148 ZONE10 0.1254 ZONE3
12 0.21498 0.2805 ZONE10 0.1543 ZONE9 0.16547 0.2165 ZONE10 0.1215 ZONE9
13 0.20688 0.2588 ZONE10 0.1519 ZONE9 0.15861 0.2068 ZONE10 0.1188 ZONE9
14 0.20436 0.2507 ZONE4 0.1602 ZONE9 0.15534 0.1903 ZONE4 0.1243 ZONE9
15 0.20489 0.2487 ZONE4 0.1551 ZONE9 0.15566 0.1903 ZONE4 0.1203 ZONE9
16 0.19503 0.2294 ZONE4 0.153 ZONE9 0.15009 0.1754 ZONE4 0.1201 ZONE9
17 0.20049 0.2359 ZONE10 0.1557 ZONE9 0.15179 0.1861 ZONE10 0.1153 ZONE9
18 0.20581 0.2369 ZONE6 0.1495 ZONE9 0.15592 0.1879 ZONE6 0.1116 ZONE9
19 0.2038 0.2362 ZONE4 0.159 ZONE9 0.1554 0.1821 ZONE10 0.1169 ZONE9
20 0.19924 0.2314 ZONE4 0.1604 ZONE9 0.15386 0.1834 ZONE6 0.1219 ZONE9
21 0.20325 0.2438 ZONE10 0.1599 ZONE9 0.15764 0.1925 ZONE10 0.1254 ZONE9
22 0.2069 0.2361 ZONE10 0.1729 ZONE1 0.16012 0.1913 ZONE10 0.1283 ZONE1
23 0.20224 0.2252 ZONE10 0.1776 ZONE7 0.15611 0.1782 ZONE10 0.1337 ZONE7
24 0.20336 0.2169 ZONE10 0.1768 ZONE2 0.15593 0.1712 ZONE6 0.1333 ZONE2

Once more, the grouping of the lags and weather variables did not yield any significant im-
provement over the sLV model.

Lag-Group LASSO-VAR (lLV) and B Splines

The mean RMSE and MAE obtained with the AVAR-X model with lLV and B splines for
each timescale are presented in Figure 4.14 and Table 4.15.
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Figure 4.14: Mean RMSE for all WPPs and Max/Min values obtained with the AVAR-X model
(B Splines) with lag-group LASSO-VAR.

The AVAR-X model with lLV and B splines yielded mean RMSE values between 0.098, for
the 1 hour-ahead forecast, and 0.19, for the 24 hours-ahead forecast.

Regarding theMAE, the AVAR-Xmodel with lLV and B splines yieldedmean results between
0.070 and 0.15.
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Table 4.15: AVAR-X Model with B Splines and Lag Group LASSO Results Summary

hours-ahead
RMSE MAE

Mean Value Maximum Value Minimum Value Mean Value Maximum Value Minimum Value

Value WPP Value WPP Value WPP Value WPP

1 0.09754 0.1151 ZONE9 0.0861 ZONE3 0.06953 0.0753 ZONE9 0.0603 ZONE2
2 0.13375 0.148 ZONE8 0.1094 ZONE3 0.09715 0.1064 ZONE10 0.0835 ZONE3
3 0.15122 0.1707 ZONE9 0.1302 ZONE2 0.10937 0.1203 ZONE9 0.0928 ZONE2
4 0.1554 0.1774 ZONE8 0.1329 ZONE2 0.11376 0.1275 ZONE8 0.0954 ZONE2
5 0.16035 0.1788 ZONE8 0.14 ZONE2 0.11877 0.1307 ZONE8 0.1003 ZONE2
6 0.16972 0.2022 ZONE9 0.1479 ZONE2 0.12584 0.1436 ZONE9 0.1067 ZONE2
7 0.17859 0.2011 ZONE10 0.1593 ZONE7 0.13015 0.1505 ZONE10 0.1134 ZONE2
8 0.18155 0.2123 ZONE9 0.1491 ZONE7 0.1304 0.1508 ZONE10 0.1061 ZONE7
9 0.18218 0.2141 ZONE10 0.1473 ZONE7 0.13236 0.1617 ZONE10 0.1048 ZONE7
10 0.1916 0.2381 ZONE10 0.1654 ZONE7 0.14235 0.1847 ZONE10 0.1187 ZONE2
11 0.18933 0.2445 ZONE10 0.1588 ZONE9 0.14341 0.1946 ZONE10 0.1163 ZONE2
12 0.19443 0.2601 ZONE10 0.1406 ZONE9 0.14722 0.1988 ZONE10 0.1102 ZONE9
13 0.19674 0.2504 ZONE10 0.1444 ZONE9 0.14841 0.1938 ZONE10 0.1096 ZONE9
14 0.21686 0.2665 ZONE4 0.153 ZONE9 0.14948 0.1879 ZONE10 0.1153 ZONE9
15 0.21285 0.2553 ZONE10 0.1565 ZONE9 0.14904 0.1832 ZONE10 0.1121 ZONE9
16 0.18587 0.2209 ZONE10 0.1449 ZONE9 0.13975 0.1713 ZONE10 0.1106 ZONE9
17 0.19496 0.2347 ZONE10 0.1505 ZONE9 0.14238 0.1812 ZONE10 0.108 ZONE9
18 0.19384 0.2231 ZONE10 0.1505 ZONE9 0.14468 0.1746 ZONE10 0.1036 ZONE9
19 0.22365 0.3124 ZONE4 0.1632 ZONE7 0.15114 0.1823 ZONE4 0.1131 ZONE9
20 0.208 0.265 ZONE4 0.1595 ZONE9 0.14772 0.1784 ZONE10 0.112 ZONE9
21 0.19651 0.2355 ZONE10 0.1601 ZONE9 0.14866 0.1797 ZONE10 0.12 ZONE9
22 0.19929 0.2306 ZONE10 0.167 ZONE1 0.15109 0.1774 ZONE10 0.1226 ZONE1
23 0.19367 0.2163 ZONE10 0.1678 ZONE7 0.14543 0.1682 ZONE5 0.1219 ZONE7
24 0.19082 0.2175 ZONE6 0.1643 ZONE2 0.14409 0.165 ZONE6 0.1224 ZONE2

As in the natural cubic splines model’s case, the grouping of the lags and of the weather
variables in the B splines model did not yield any significant improvement over the sLV model.

4.6 Discussion
This chapter makes the in-depth discussion of the results presented in Section 4.5.
To establish a benchmark for comparison, two additional models were implemented: Per-

sistence, which was discussed in Section 2.2.1, and Gradient Boosting Trees (XGB), which was
introduced in Section 2.2.3.

4.6.1 LASSO-VAR Frameworks
This section discusses the results obtained with the two different LASSO-VAR frameworks

implemented: Standard LASSO-VAR (sLV) and Lag-Group LASSO-VAR (lLV).
Overall, the use of lLV instead of sLV did not yield any improvement on the mean RMSE

results. At this point, it is relevant to point out that these results are consistent with the idea
that lLV is too restrictive for some applications (Section 3.3). By going through entire grouped
sets of lags and weather forecasts, lLV ends up removing variables which would have a positive
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impact on the forecasts and including variables that do not. The mean RMSE improvements
in relation to the mean RMSE values obtained with Persistence were plotted for the different
models implemented.
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Figure 4.15: Mean RMSE improvement in relation to Persistence for all WPPs with the VAR
model with sLV and the VAR model with lLV.

Whereas, in the VAR setting (Figure 4.15), the use of lLV resulted in similar results to sLV, in
the VAR-X (Figure 4.16) and AVAR-X settings (Figures 4.17 and 4.18), the use of lLV significantly
worsened the mean RMSE values obtained with the original framework.

In the VAR-X setting, the use of sLV resulted in a mean improvement of 25.0% in relation
to the mean RMSE values obtained with Persistence, whereas the use of lLV results in a mean
improvement of just 22.6%.
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Figure 4.16: Mean RMSE improvement in relation to Persistence for all WPPs with the VAR
model with sLV and the VAR model with lLV.
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Figure 4.17: Mean RMSE improvement in relation to Persistence for all WPPs with the VAR
model with sLV and the VAR model with lLV.
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In the AVAR-X setting, the use of sLV resulted in mean improvements of 40.9% (natural cu-
bic splines) and 42.6% (B splines). On the other hand, the use of sLV yieldedmean improvements
of 35.8% and 38%, respectively.
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Figure 4.18: Mean RMSE improvement in relation to Persistence for all WPPs with the VAR
model with sLV and the VAR model with lLV.

Given the aforementioned results, the results obtained with lLV will not be discussed in
subsequent sections.

4.6.2 Exogenous Variables
This section addresses the subject of exogenous variables and whether their use in the models

yields improvements in the forecasts. The models with exogenous variables discussed in this
section use linear combinations of the weather variables, u and v. The subject of additive models
is discussed in Section 4.6.3.

In the univariate setting, the use of exogenous variables yielded a positive result in the fore-
casting capability of the model, resulting in a mean improvement of 22.4% in relation to the mean
RMSE values obtained with Persistence against a mean improvement of 16.3% yielded by the AR
model, as displayed in Figure 4.19 and Table 5.15 (Appendix B.1). However, for the 1 hour-ahead
forecast, this improvement is only marginal, representing an additional 1.2 % improvement in the
accuracy of the forecast.
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Figure 4.19: Mean RMSE improvement in relation to Persistence with the AR and AR-Xmodels
(%).

The Diebold-Mariano test was implemented on the RMSE results of the AR and AR-X mod-
els, as displayed in Table 4.16. The p-value results show that, for a level of significance of 5%,
it is only possible to conclude that the results obtained with both models for the 1 hour-ahead
horizon are significantly different for ZONE10. For ZONES 1 to 9, the null hypothesis stands
and it is not possible to make such a statement. However, for the 24 hours-ahead horizon, for
the same level of significance, the null hypothesis is rejected in 5 out of 10 ZONES.

Even though the results do not display the same level of statistical significance for all WPPs,
it is fair to say that the AR-X model improves the accuracy of the forecasts made with the AR
model, particularly in timescales of more than a few hours-ahead. As discussed in Section 4.5.2,
this is likely due to the prevalence of the lags’ coefficients over the weather variables’ coefficients
in the shorter forecasting horizons.

Table 4.16: P-Value results for the two-sided Diebold-Mariano Test (AR vs AR-X Model)

hours-ahead ZONE1 ZONE2 ZONE3 ZONE4 ZONE5 ZONE6 ZONE7 ZONE8 ZONE9 ZONE10

h=1 0.8270 0.8727 0.2088 0.4525 0.2675 0.7364 0.4555 0.5019 0.2394 0.0404
h=24 0.0734 0.0202 0.2144 0.0301 0.0364 0.0112 0.0487 0.1523 0.2686 0.1277

In the multivariate setting, the VAR-X model yielded a mean improvement of up to 25.0 %
in relation to the mean RMSE values obtained with Persistence against a mean improvement
of 18.8% obtained with the VAR model, as displayed in Figure 4.20 and Table 5.15 (Appendix
B.1). However, for the 1 hour-ahead forecast, the VAR-X model performed worse than the VAR
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model, which seems to indicate a potential detrimental effect of the use of exogenous variables
for this timescale.
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Figure 4.20: Mean RMSE improvement in relation to Persistence with the VAR and VAR-X
models (%)

For the 1 hour-ahead time horizon, the Diebold-Mariano test results show that, for a level of
significance of 5%, it is not possible to reject the null hypothesis in any of the 10 WPPs, which
means that it is not possible to conclude that the models’ performance is significantly different
for this timescale. For the 24 hours-ahead time horizon, for the same level of significance, the
null hypothesis is rejected in 4 of the 10 WPPs, meaning that, to a certain extent, it is possible to
affirm that the models perform differently for this forecasting horizon.

Table 4.17: P-Value results for the two-sided Diebold-Mariano Test (VAR vs VAR-X Model)

hours-ahead ZONE1 ZONE2 ZONE3 ZONE4 ZONE5 ZONE6 ZONE7 ZONE8 ZONE9 ZONE10

h=1 0.8592 0.7369 0.2887 0.8431 0.382 0.441 0.4761 0.3146 0.8333 0.7127
h=24 0.04899 0.04434 0.0981 0.07553 0.0476 0.04052 0.05541 0.5603 0.3004 0.1319

Overall, even though the results of the Diebold-Mariano test do not display the same level
of statistical significance for all WPPs and forecasting horizons, it is fair to say that the use of
exogenous variables increased the accuracy of the forecasts, yielding particularly good results in
timescales of more than a few hours-ahead.
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4.6.3 Spatiotemporal Models
This section discusses the subject of spatiotemporal models and whether the use of geo-

graphically distributed data yielded improvements in the forecasts.
In the models without exogenous variables, the use of data from all WPPs yielded marginal

improvements in the forecast, as displayed in Figure 4.21 and Table 5.15 (Appendix B.1). The
AR model yielded a mean improvement of 16.3% in relation to the mean RMSE values obtained
with Persistence, while the VARmodel resulted in a mean improvement of 18.8%. Therefore, it is
possible to conclude that the VARmodel was able to capture to some degree the cross-correlation
displayed by the power generation time series, as discussed in Section 4.2.2.

The Diebold-Mariano test was implemented, as displayed in Table 4.18. For a level of signif-
icance of 5%, it is not possible to reject the null hypothesis in any circumstance, meaning that it
is not possible to affirm that there is any significant difference in the forecasting accuracy of the
AR and VAR models.

Table 4.18: P-Value results for the two-sided Diebold-Mariano Test (AR vs VAR Model)

hours-ahead ZONE1 ZONE2 ZONE3 ZONE4 ZONE5 ZONE6 ZONE7 ZONE8 ZONE9 ZONE10

h=1 0.7067 0.9052 0.4831 0.8676 0.7215 0.7543 0.6658 0.9305 0.8861 0.5624
h=24 0.5852 0.3863 0.736 0.4066 0.2049 0.1696 0.5094 0.6311 0.1401 0.8005
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Figure 4.21: Mean RMSE improvement in relation to Persistence with the AR and VAR models
(%).

The results obtained with the AR-X and VAR-X models are identical. The use of geograph-
ically distributed data represented a mean improvement of 25.0% in relation to the mean RMSE
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values obtained with Persistence against a mean improvement of 22.4% obtained with the AR-X
model, as displayed in Figure 4.22 and Table 5.15 (Appendix B.1).

For the 1 hour-ahead forecasting horizon, the mean improvement obtained with the VAR-X
model (2.8%) is actually lower than that provided by the AR-X model (3.71%).
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Figure 4.22: Mean RMSE improvement in relation to Persistence with the AR-X and VAR-X
models (%).

Regarding the results of the Diebold-Mariano test, for a level of significance of 5%, it is not
possible to affirm that the models have significantly different levels of performance in either the
1 hour-ahead or the 24 hours-ahead forecasting horizons.

Table 4.19: P-Value results for the two-sided Diebold-Mariano Test (AR-X vs VAR-X Model)

hours-ahead ZONE1 ZONE2 ZONE3 ZONE4 ZONE5 ZONE6 ZONE7 ZONE8 ZONE9 ZONE10

h=1 0.9246 0.9741 0.454 0.7231 0.7081 0.669 0.6433 0.2722 0.9963 0.8301
h=24 0.6256 0.1756 0.2005 0.2917 0.05541 0.4117 0.71 0.5965 0.1703 0.4733

When it comes to the AAR-X and AVAR-X (natural cubic splines) models, in general, the
use of geographically distributed data yielded similar results. The AAR-X model yielded a mean
improvement of 39.4% in relation to the mean RMSE values obtained with Persistence, while the
AVAR-X model yielded a mean improvement of 40.9%. The main disparities seem to occur after
the 11th hour. Given the predominance of the weather forecasts in this timescale, this probably
results from the VAR-X model capturing the linear correlations between the weather forecasts
from the different WPP locations.
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The complete results are displayed in Figure 4.23 and Table 5.15 (Appendix B.1).
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Figure 4.23: Mean RMSE improvement in relation to Persistence with the AAR-X (natural cubic
splines) and AVAR-X models (natural cubic splines) (%).

The results of the Diebold-Mariano test show that, for a level of significance of 5%, the null
hypothesis stands for all WWP in the 1 hour-ahead forecasting horizon. However, for the 24
hours-ahead forecasting horizon, the null hypothesis is rejected in ZONES 1 and 2, meaning
that the models display a significantly different performance.

Table 4.20: P-Value results for the two-sided Diebold-Mariano Test [AAR-X (natural cubic
splines) vs AVAR-X Model (natural cubic splines)]

hours-ahead ZONE1 ZONE2 ZONE3 ZONE4 ZONE5 ZONE6 ZONE7 ZONE8 ZONE9 ZONE10

h=1 0.9819 0.996 0.8348 0.7572 0.6872 0.7086 0.8888 0.8265 0.9747 0.5239
h=24 1.21E-34 0.008907 0.6707 0.4278 0.3411 0.5808 0.118 0.3632 0.8096 0.3454

Overall, the improvements yielded by the use of geographically disperse data did not prove to
be very statistically significant. However, the improvements seen in the RMSE seem to validate
the concept behind spatiotemporal models.

4.6.4 Additive Models
This section discusses the subject of additivemodels and whether the use of piecewise smooth

functions (splines) resulted in improvements in the forecasting capabilities of the models.
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In the univariate setting, the use of natural cubic splines yielded very positive results, particu-
larly in the longer term horizons. The use of the AAR-X model yielded a mean improvement of
39.4% in relation to the mean RMSE values obtained with Persistence against the 22.4% obtained
with the AR-X model.

For the 24 hours-ahead horizon, the use of splines resulted in an additional improvement of
more than 21% in relation to the linear model.

The results are displayed in Figure 4.24 and Table 5.15 (Appendix B.1).
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Figure 4.24: Mean RMSE improvement in relation to Persistence with the AR-X and AAR-X
models (%).

The results from the Diebold-Mariano test show that, for the 1 hour-ahead forecast, for a
level of significance of 5%, the null hypothesis is rejected in 5 WPPs. For the 24 hours-ahead
forecast, the null hypothesis is rejected in all WPPs, meaning that it is possible to conclude that
the AR-X and AAR-Xmodels display significantly different levels of forecasting accuracy for this
timescale.

Table 4.21: P-Value results for the two-sided Diebold-Mariano Test (AR-X vs AAR-X Model)

hours-ahead ZONE1 ZONE2 ZONE3 ZONE4 ZONE5 ZONE6 ZONE7 ZONE8 ZONE9 ZONE10

h=1 0.6355 0.2884 0.168 0.02437 5.03E-05 0.02449 0.2823 0.9116 0.008304 0.000108
h=24 1.05E-12 2.25E-08 1.61E-23 4.12E-18 2.58E-21 1.74E-17 1.30E-93 5.73E-10 1.21E-09 6.58E-16

In the multivariate setting, the results yielded by the use of splines display similar results. For
the 1 hour-ahead forecasting horizon, the use natural cubic splines resulted in an additional im-
provement of 5.6% in relation to the mean RMSE values obtained with Persistence. For the 24
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hours-ahead forecasting horizon, the additional improvement is over 22%. The mean improve-
ment obtained with the VAR-X model was 25.0% and the mean improvement yielded by the
AVAR-X model was 40.9%.

The results are displayed in Figure 4.25 and Table 5.15 (Appendix B.1).
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Figure 4.25: Mean RMSE Improvement from Persistence with the VAR-X and AVAR-X (natural
cubic splines) models (%).

According to the Diebold-Mariano test results, for the 1 hour-ahead horizon, for a level of
significance of 5%, it is not possible to affirm that the models are significantly different in 9 of the
10 WPPs, where ZONE5 is the exception. For the 24 hours-ahead forecast, the null hypothesis
is rejected in all WPPs, meaning that the models are significantly different at forecasting this
horizon.

Table 4.22: P-Value results for the two-sided Diebold-Mariano Test (VAR-X vs AVAR-X Model
with Natural Cubic Splines)

hours-ahead ZONE1 ZONE2 ZONE3 ZONE4 ZONE5 ZONE6 ZONE7 ZONE8 ZONE9 ZONE10

h=1 0.7991 0.815 0.4485 0.198 0.007648 0.5754 0.7076 0.159 0.7637 0.5698
h=24 4.96E-11 3.98E-06 5.94E-11 2.65E-13 8.77E-15 6.50E-09 3.46E-14 3.92E-08 1.45E-22 4.53E-08

Overall, the use of splines proved to have a statistically significant positive effect in the longer
forecasting horizons. For the smaller term horizons, the results proved not to be as statistically
significant. Nevertheless, the improvements seen in the RMSE seem to indicate that the use of
additive models is beneficial for timescales of even a few hours-ahead.
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AVAR-X model (Natural Cubic Splines) vs AVAR-X model (B Splines)

When it comes to the use of different types of smooth functions, the cubic B splines models
seem to perform slightly better than the ones using natural cubic splines. The first yielded a
mean improvement of 43.0% in relation to the mean RMSE values obtained with Persistence,
while the latter resulted in a mean improvement of 40.9%. Apart from the 19 hours-ahead and
20 hours-ahead horizons, the B splines were the best performing model among the two splines
models.

For the 1 hour-ahead horizon and a level of significance of 5%, the null hypothesis of the
Diebold-Mariano test stands in all WPPs, meaning that the models are not significantly different
at forecasting this horizon. For the 24 hours-ahead forecasting horizon and the same level of
significance, the null hypothesis is rejected in two WPPs.

Table 4.23: P-Value results for the two-sided Diebold-Mariano Test (AVAR-X Model with Nat-
ural Cubic Splines vs AVAR-X Model with B Splines)

hours-ahead ZONE1 ZONE2 ZONE3 ZONE4 ZONE5 ZONE6 ZONE7 ZONE8 ZONE9 ZONE10

h=1 0.261 0.1466 0.4629 0.1063 0.2554 0.1697 0.7064 0.2767 0.9303 0.512
h=24 0.7201 0.008111 0.001727 0.07711 0.05877 0.3347 0.7596 0.454 0.3203 0.227
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Figure 4.26: Mean RMSE Improvement from Persistence with the AVAR-X (natural cubic
splines) and AVAR-X (B splines) models (%).

Overall, even though the results were not statistically significant for most WPPs, the improve-
ments seen in RMSE seem to indicate a slight superiority of the B splines for forecasting wind
power generation in most timescales.
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4.7 Model Comparison
After an in-depth discussion of the individual models, the final section of this chapter com-

pares the performance of all models used.

Results for each WPP location

The first part of this section discusses the results obtained for each WPP, identifying which
models performed best in each WPP and for each timescale. Table 4.24 presents the results
obtained for ZONE1, while the results for the remaining WPPs are disclosed in Appendix B.2.

Table 4.24: ZONE1 Mean RMSE Results per Timescale.

hours-ahead AR AR-X AAR-X VAR VAR-X AVAR-X (natual cubic splines) AVAR-X (B splines) XGB

[1,3] 0.1466 0.1427 0.1351 0.1396 0.1398 0.1221 0.1217 0.1325
]3, 12] 0.2263 0.2103 0.185 0.2156 0.2026 0.1519 0.1478 0.1549
]12, 24] 0.2863 0.2406 0.197 0.2679 0.23 0.1562 0.1703 0.1406

The ranking of the models for each WPP and for three different horizons were computed,
as seen in Tables 4.25 to 4.27.

Among the models implemented, the one that performed better in the shorter forecasting
horizon (1 to 3 hours-ahead) was the AVAR-X model with B splines, yielding the lowest mean
RMSE in all WPPs. The second best performing models in the shorter forecasting horizon were
the AVAR-X model with natural cubic splines (in 6 WPPs) and the AAR-X model (in 4 WPPs).
The worst performing models in this horizon were the ARmodel (in 6 WPPs), the VAR-Xmodel
(in 3 WPPs) and the AR-X model (in 1 WPP).

Table 4.25: Model ranking for the shorter forecasting horizon (1 to 3 hours-ahead).

WPP AR AR-X AAR-X VAR VAR-X AVAR-X (natural cubic splines) AVAR-X (B splines) XGB

ZONE 1 8 7 4 5 6 2 1 3
ZONE 2 8 6 3 7 5 2 1 4
ZONE 3 8 7 3 6 5 2 1 4
ZONE 4 8 7 3 5 6 2 1 4
ZONE 5 8 7 3 5 6 2 1 4
ZONE 6 7 6 2 5 8 4 1 3
ZONE 7 7 6 2 5 8 3 1 4
ZONE 8 6 5 2 7 8 3 1 4
ZONE 9 7 8 3 4 6 2 1 5
ZONE 10 8 7 2 6 5 3 1 4

In the medium term forecasting horizon (3 to 12 hours-ahead), the best performing model
was, once again , the AVAR-X model with B splines, followed by the XGB (in 4 WPPs) and the
AVAR-X with natural cubic splines (in 3 WPPs).

The worst performing models were the AR model (in 8 WPPs) and the VAR model (in 2
WPPs).
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Table 4.26: Model ranking for the medium term horizon (3 to 12 hours-ahead).

WPP AR AR-X AAR-X VAR VAR-X AVAR-X (natural cubic splines) AVAR-X (B splines) XGB

ZONE 1 8 6 4 7 5 2 1 3
ZONE 2 8 6 4 7 5 2 1 3
ZONE 3 8 7 3 6 5 2 1 4
ZONE 4 7 6 4 8 5 3 1 2
ZONE 5 8 6 3 7 5 4 1 3
ZONE 6 7 6 3 8 5 4 1 2
ZONE 7 8 5 2 7 6 3 1 4
ZONE 8 8 5 2 7 6 4 1 3
ZONE 9 8 7 4 6 5 3 1 2
ZONE 10 8 6 3 7 5 4 1 2

Finally, in the long term forecasting horizon (12 to 24 hours-ahead), the best performing
models were the XGB model (in 7 WPPs) and the AVAR-X model with B splines (in 3 WPPs).
Once again, the worst performing models were the AR model (in 8 WPPs) and the VAR model
(in 2 WPPs).

Table 4.27: Model ranking for the longer forecasting horizon (12 to 24 hours-ahead).

WPP AR AR-X AAR-X VAR VAR-X AVAR-X (natural cubic splines) AVAR-X (B splines) XGB

ZONE 1 8 6 4 7 5 2 3 1
ZONE 2 7 6 4 8 5 3 1 2
ZONE 3 8 6 2 7 5 3 1 4
ZONE 4 8 6 4 7 5 3 2 1
ZONE 5 8 6 4 7 5 2 1 3
ZONE 6 8 6 4 7 5 3 2 1
ZONE 7 8 6 4 7 5 3 2 1
ZONE 8 8 6 4 7 5 3 2 1
ZONE 9 8 6 4 7 5 3 2 1
ZONE 10 7 6 4 8 5 3 2 1

Overall, the rankings of the models by WPP do not display significant differences. As ex-
pected, the approaches capable of modelling the non-linear relation between the power mea-
surements and the weather forecasts prove to be the most adequate for all forecasting horizons.
However, as seen in Sections 4.6.2 and 4.6.4 , this difference is not statistically significant for the
1 hour-ahead horizon, meaning that, as the forecasting horizon decreases, so does the positive
effect of the use of the weather forecasts.

General Results

A brief overview of the results obtained with all models is presented in this section. Figure
4.27 and Table 5.15 (Appendix B.1) display the mean improvements yielded by all models in
relation to the mean RMSE values obtained with Persistence for all forecasting horizons.
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To statistically compare all the models, the Friedman test was performed and the critical
difference diagrams computed for all WPPs (1 hour-ahead and 24 hours-ahead forecasting hori-
zons), as displayed in Figures 4.28 and 4.29 and Figures 5.19 to 5.36 (Appendix B.3).
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Figure 4.27: Mean RMSE improvement in relation to Persistence with all models (%).

For the 1 hour-ahead forecasting horizon, one of the key insights from the results is that
none of the models implemented was able to improve the mean RMSE values obtained with
Persistence more than 10%, which validates the use of this method as a reference tool in very-
short term wind power generation forecasting. In fact, as highlighted throughout Section 4.2, the
mean RMSE results obtained for this horizon were, in most cases, not significantly different.

However, the results of the Friedman test for the 1 hour-ahead forecast show that, for a level
of significance of 5%, it is possible to conclude that the models display significantly different
levels of accuracy for all WPPs, with the horizontal lines of the critical difference diagrams linking
models where no statistical significant differences were found between the results.

Nevertheless, given that these results are statistically less significant than the results obtained
for the 24 hours-ahead forecasting horizon, and taking into account the changes in the rankings’
positions between WPPs, it is difficult to conclude which model, or models, are the definitive
best for this forecasting horizon.

In this regard, and even though the results for all models resulted in marginal to small im-
provements in respect to the mean RMSE values obtained with Persistence, the AVAR-X models
and the AAR-X model, methods which have yielded the highest improvements for this timescale,
seem to prevail slightly over the others.
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Figure 4.28: Critical Difference diagram for ZONE1 and 1 hour-ahead (Result: Different; p-
value = 4.6e-06; Critical Distance = 0.457).

For the 24 hours-ahead forecast, the results show a statistically significant difference between
the XGB, the AVAR-X and the AAR-X and the remaining models in all WPPs, result which
validates the thesis which states that the use of weather forecasts and, in particular, the use of these
variables in such a way that non-linear correlations between them and the power measurements
are captured, improves the forecasting capabilities of the models in horizons of more than a
few hours-ahead. Furthermore, although not with the same level of statistical significance, the
VAR-X and AR-X models seem to prevail over Persistence and the AR and VAR models.

By the same token, in Figure 4.27, it is possible to distinguish the three aforementioned
clusters of predictor models being created as the forecasting horizon increases.

Figure 4.29: Critical Difference diagram for ZONE1 and 24 hours-ahead (Result: Different;
p-value = 1.5e-135; Critical Distance = 0.458).
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As discussed in Sections 4.6.3 and 4.6.4, the AVAR-X model with B splines seems to improve
slightly the results obtained with the AVAR-X with natural cubic splines. The final part of this
section is dedicated to the comparison of the AVAR-Xmodel with B splines and the XGBmodel,
which proved to be, on average, the two best methods for intraday and day-ahead renewable
power forecasting, particularly in forecasting horizons of more than 6 to 8 hours-ahead.

The main difference between the models resides in the fact that, although both approaches
are able to capture the correlations between the power generated in the different WPP locations,
unlike the XGB, the AVAR-X with B splines model is only able to capture the linear interde-
pendencies between these variables. Both models are, however, able to capture the non-linear
relation between the weather forecasts and the power generated, even if in different ways.

For the 1 hour-ahead forecast, the AVAR-X model with B splines yielded a mean improve-
ment of 9.2% in relation to the mean RMSE values obtained with Persistence, while the XGB
model resulted merely in a 2.7% improvement. The Diebold-Mariano test results show that, for
a level of significance of 5%, for the 1 hour-ahead time horizon, it is possible to conclude that the
models have a significantly different performance in 6 of the 10 WPPs locations. Even though
the results are not statistically significant for all WPPs, it is fair to say, given the improvements in
the RMSE, that the AVAR-Xmodel with B splines is the best model of the two for this forecasting
horizon.
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Figure 4.30: Mean RMSE improvement in relation to Persistence with the AVAR-X (B splines)
and XGB models (%).

For the 24 hours-ahead horizon, the AVAR-X model with B splines yielded a mean improve-
ment of 51.3% in relation to the mean RMSE values obtained with Persistence, while the XGB
model resulted in a 51.1% improvement. For this horizon and a significance level of 5%, the
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null hypothesis is rejected in 3 WPPs, meaning that, in 7 WPP locations, it is not possible to
distinguish the performance of both models.

Table 4.28: P-Value results for the two-sided Diebold-Mariano Test (AVAR-X Model with B
Splines vs XGB)

hours-ahead ZONE1 ZONE2 ZONE3 ZONE4 ZONE5 ZONE6 ZONE7 ZONE8 ZONE9 ZONE10

h=1 0.0495 0.03934 0.002881 0.0355 0.003847 0.1297 0.1334 0.05098 0.08851 0.01088
h=24 0.0118 0.7589 0.00359 0.3303 0.06765 0.6876 0.05327 0.01194 0.8601 0.5204

Overall, the use of AVAR-X model with B splines resulted in a mean improvement of 43.0%
in relation to the mean RMSE values obtained with Persistence against a mean improvement of
41.5% yielded by the XGB model. Furthermore, the mean results obtained with the AVAR-X
model were better in 17 of the 24 forecasting horizons.

Given the RMSE results yielded by both models, the results by WPP presented earlier in this
section and the results of the Diebold-Mariano test, it is possible to conclude that the AVAR-X
with B splines proved to be the best model for horizons of up to 12 hours-ahead.

For horizons of more than 12 hours-ahead, where the use of AVAR-X model with B splines
resulted in a mean improvement of 49.8% in relation to the mean RMSE values obtained with
Persistence and the XGB model a mean improvement of 50.6%, it is possible to affirm that the
AVAR-X proved to be able to compete against the XGB model.
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Chapter 5

Conclusion and Future Work

The present work implemented a total of 11 autoregression-based models to wind power
forecasting. Among these were models that used different LASSO-VAR frameworks, models
that used linear combinations of weather forecasts to make predictions, models that used ge-
ographically distributed power measurements to capture the linear interdependencies between
neighbouring WPPs, and models that used weather variables in additive frameworks.

The use of lag-group LASSO-VAR (lLV) proved not to yield any positive impact on the
forecasts over the standard LASSO-VAR (sLV) framework. The reason for this is most likely
related with a lack of flexibility of the first model, which drops or includes entire groups of lags
and weather forecasts from the process even if only a small number of coefficients is significant.

The use of linear combinations of exogenous variables can be said to have had a positive
impact on the forecasting results. Even though the results were not statistically significant for the
1 hour-ahead horizon, it is clear that, as the predominance of the lags’ coefficients shrinks over
time, the use of weather forecasts can prove to have a positive impact on the results.

The use of geographically distributed data proved not to yield statistically significant improve-
ments over the results obtained with univariate models. However, the marginal improvements
observed validate the concept behind spatiotemporal models.

The use of additive models led to statistically significant improvements for the 24 hours-
ahead forecasting horizon. For the shorter horizons, even though the results proved to be not as
statistically significant, the marginal improvements seem to indicate that these models are a good
solution even timescales of a few hours-ahead.

The AVAR-X model with B splines proved to be the autoregressive model yielding the best
overall results. For forecasting horizons of up to 12 hours-ahead, this model proved to be able to
improve on the results obtained with Persistence and the XGB model. For forecasting horizons
of more than 12 hours-ahead, even though the results proved not to be statistically significant,
it is possible to conclude that the AVAR-X model proved to be capable of competing against
machine learning models such as the XGB.

To conclude, some of the possible future works on this subject may encompass:

• The increase of the solution space used in the Bayesian Optimization process which, for
computational reasons, was very limited;
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• The use of different LASSO-VAR frameworks, namely lag-sparse-group LASSO-VAR
(lsLV), which adds within-group sparsity to lLV;

• The use of different types of smooth functions, namely splines of varying polynomial
degrees.
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Appendix
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A Exploratory Data Analysis

A.1 Autocorrelation

Figure 5.1: Lag autocorrelation for WPP2.

Figure 5.2: Lag autocorrelation for WPP3.

Figure 5.3: Lag autocorrelation for WPP4.
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Figure 5.4: Lag autocorrelation for WPP5.

Figure 5.5: Lag autocorrelation for WPP6.

Figure 5.6: Lag autocorrelation for WPP7.
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Figure 5.7: Lag autocorrelation for WPP8.

Figure 5.8: Lag autocorrelation for WPP9.

Figure 5.9: Lag autocorrelation for WPP10.
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A.2 Crosscorrelation

Table 5.1: Crosscorrelation Coefficients for ZONE2

Lag ZONE1 ZONE3 ZONE4 ZONE5 ZONE6 ZONE7 ZONE8 ZONE9 ZONE10

0 0.4097 0.3441 0.5637 0.5256 0.5273 0.3601 0.3208 0.3811 0.6322
1 0.3932 0.3155 0.5419 0.5018 0.5033 0.3444 0.3072 0.3635 0.6031
2 0.3705 0.2844 0.5160 0.4737 0.4732 0.3244 0.2907 0.3420 0.5658
3 0.3454 0.2533 0.4866 0.4423 0.4396 0.3021 0.2714 0.3193 0.5227
4 0.3194 0.2241 0.4556 0.4072 0.4029 0.2797 0.2510 0.2940 0.4793
5 0.2958 0.1954 0.4241 0.3710 0.3659 0.2588 0.2320 0.2676 0.4372
6 0.2703 0.1677 0.3941 0.3356 0.3291 0.2356 0.2119 0.2402 0.3983
7 0.2441 0.1427 0.3644 0.3022 0.2946 0.2111 0.1891 0.2108 0.3587
8 0.2183 0.1180 0.3353 0.2709 0.2626 0.1863 0.1661 0.1835 0.3208
9 0.1938 0.0946 0.3069 0.2415 0.2342 0.1624 0.1441 0.1579 0.2867
10 0.1693 0.0725 0.2802 0.2149 0.2092 0.1397 0.1236 0.1340 0.2544

Table 5.2: Crosscorrelation Coefficients for ZONE3

Lag ZONE1 ZONE2 ZONE4 ZONE5 ZONE6 ZONE7 ZONE8 ZONE9 ZONE10

0 0.4909 0.3441 0.4142 0.4033 0.4169 0.4805 0.4456 0.6421 0.3950
1 0.5144 0.3690 0.4292 0.4139 0.4266 0.4991 0.4629 0.6626 0.4025
2 0.5325 0.3901 0.4390 0.4205 0.4328 0.5133 0.4759 0.6670 0.4049
3 0.5460 0.4093 0.4462 0.4240 0.4346 0.5233 0.4852 0.6570 0.4012
4 0.5558 0.4263 0.4497 0.4241 0.4338 0.5297 0.4913 0.6413 0.3932
5 0.5608 0.4398 0.4493 0.4216 0.4302 0.5318 0.4916 0.6199 0.3852
6 0.5597 0.4484 0.4489 0.4165 0.4234 0.5288 0.4879 0.5968 0.3751
7 0.5556 0.4528 0.4462 0.4108 0.4163 0.5235 0.4819 0.5719 0.3623
8 0.5483 0.4562 0.4413 0.4031 0.4076 0.5143 0.4731 0.5459 0.3491
9 0.5370 0.4587 0.4335 0.3944 0.3974 0.5022 0.4609 0.5186 0.3354
10 0.5258 0.4589 0.4241 0.3846 0.3860 0.4898 0.4492 0.4931 0.3258
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Table 5.3: Crosscorrelation Coefficients for ZONE4

Lag ZONE1 ZONE2 ZONE3 ZONE5 ZONE6 ZONE7 ZONE8 ZONE9 ZONE10

0 0.5010 0.5637 0.4142 0.8780 0.8626 0.4534 0.4253 0.4941 0.6110
1 0.4929 0.5787 0.3950 0.8394 0.8254 0.4419 0.4139 0.4873 0.6075
2 0.4792 0.5849 0.3721 0.7802 0.7685 0.4266 0.3988 0.4732 0.5859
3 0.4625 0.5817 0.3472 0.7227 0.7091 0.4095 0.3821 0.4547 0.5519
4 0.4433 0.5732 0.3210 0.6648 0.6505 0.3903 0.3637 0.4292 0.5126
5 0.4197 0.5595 0.2938 0.6071 0.5945 0.3678 0.3424 0.4001 0.4696
6 0.3925 0.5424 0.2660 0.5553 0.5444 0.3435 0.3204 0.3706 0.4291
7 0.3659 0.5264 0.2396 0.5081 0.5002 0.3174 0.2966 0.3426 0.3930
8 0.3388 0.5090 0.2147 0.4669 0.4612 0.2908 0.2721 0.3148 0.3638
9 0.3134 0.4920 0.1913 0.4322 0.4266 0.2668 0.2484 0.2893 0.3413
10 0.2879 0.4765 0.1697 0.4037 0.3976 0.2437 0.2259 0.2668 0.3215

Table 5.4: Crosscorrelation Coefficients for ZONE5

Lag ZONE1 ZONE2 ZONE3 ZONE4 ZONE6 ZONE7 ZONE8 ZONE9 ZONE10

0 0.4632 0.5256 0.4033 0.8780 0.9243 0.4394 0.4178 0.4501 0.6497
1 0.4573 0.5409 0.3885 0.8477 0.8912 0.4303 0.4104 0.4449 0.6543
2 0.4460 0.5448 0.3694 0.7977 0.8320 0.4164 0.3978 0.4345 0.6353
3 0.4313 0.5405 0.3472 0.7454 0.7643 0.4007 0.3835 0.4213 0.5995
4 0.4139 0.5330 0.3239 0.6925 0.6943 0.3833 0.3672 0.4045 0.5547
5 0.3936 0.5200 0.3001 0.6392 0.6249 0.3628 0.3469 0.3860 0.5060
6 0.3731 0.5031 0.2764 0.5914 0.5627 0.3417 0.3267 0.3641 0.4576
7 0.3519 0.4859 0.2526 0.5505 0.5078 0.3193 0.3067 0.3402 0.4133
8 0.3301 0.4678 0.2289 0.5146 0.4591 0.2966 0.2842 0.3161 0.3754
9 0.3093 0.4506 0.2067 0.4827 0.4166 0.2749 0.2606 0.2944 0.3422
10 0.2885 0.4340 0.1865 0.4552 0.3811 0.2537 0.2383 0.2757 0.3129

Table 5.5: Crosscorrelation Coefficients for ZONE6

Lag ZONE1 ZONE2 ZONE3 ZONE4 ZONE5 ZONE7 ZONE8 ZONE9 ZONE10

0 0.4682 0.5273 0.4169 0.8626 0.9243 0.4453 0.4252 0.4523 0.6601
1 0.4632 0.5446 0.4029 0.8400 0.8928 0.4373 0.4180 0.4515 0.6697
2 0.4524 0.5520 0.3845 0.7921 0.8309 0.4230 0.4042 0.4456 0.6550
3 0.4378 0.5509 0.3619 0.7424 0.7640 0.4058 0.3882 0.4367 0.6222
4 0.4218 0.5469 0.3390 0.6905 0.6947 0.3891 0.3728 0.4209 0.5785
5 0.4024 0.5369 0.3163 0.6387 0.6250 0.3687 0.3533 0.4014 0.5296
6 0.3809 0.5198 0.2921 0.5917 0.5603 0.3474 0.3346 0.3801 0.4804
7 0.3589 0.5022 0.2683 0.5513 0.5041 0.3254 0.3142 0.3577 0.4338
8 0.3364 0.4844 0.2451 0.5162 0.4562 0.3025 0.2915 0.3352 0.3910
9 0.3159 0.4680 0.2222 0.4844 0.4140 0.2818 0.2686 0.3133 0.3546
10 0.2969 0.4530 0.1998 0.4551 0.3787 0.2625 0.2467 0.2928 0.3241
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Table 5.6: Crosscorrelation Coefficients for ZONE7

Lag ZONE1 ZONE2 ZONE3 ZONE4 ZONE5 ZONE6 ZONE8 ZONE9 ZONE10

0 0.9298 0.3601 0.4805 0.4534 0.4394 0.4453 0.9145 0.6563 0.3100
1 0.8927 0.3732 0.4567 0.4568 0.4399 0.4463 0.8688 0.6360 0.3093
2 0.8424 0.3829 0.4307 0.4555 0.4363 0.4425 0.8101 0.6108 0.3021
3 0.7933 0.3894 0.4040 0.4500 0.4290 0.4342 0.7557 0.5851 0.2935
4 0.7469 0.3937 0.3752 0.4443 0.4201 0.4244 0.7053 0.5583 0.2837
5 0.7007 0.3939 0.3481 0.4369 0.4113 0.4149 0.6595 0.5306 0.2745
6 0.6544 0.3925 0.3227 0.4284 0.4031 0.4048 0.6161 0.5009 0.2656
7 0.6121 0.3901 0.2988 0.4160 0.3924 0.3937 0.5769 0.4704 0.2582
8 0.5719 0.3875 0.2764 0.4035 0.3816 0.3824 0.5397 0.4398 0.2521
9 0.5356 0.3826 0.2557 0.3913 0.3696 0.3714 0.5040 0.4097 0.2470
10 0.4992 0.3761 0.2372 0.3800 0.3567 0.3585 0.4701 0.3835 0.2426

Table 5.7: Crosscorrelation Coefficients for ZONE8

Lag ZONE1 ZONE2 ZONE3 ZONE4 ZONE5 ZONE6 ZONE7 ZONE9 ZONE10

0 0.8394 0.3208 0.4456 0.4253 0.4178 0.4252 0.9145 0.6103 0.2818
1 0.8130 0.3326 0.4241 0.4287 0.4176 0.4256 0.8714 0.5930 0.2789
2 0.7726 0.3425 0.4026 0.4267 0.4137 0.4205 0.8160 0.5709 0.2702
3 0.7326 0.3495 0.3795 0.4219 0.4062 0.4121 0.7629 0.5503 0.2609
4 0.6921 0.3551 0.3549 0.4174 0.3982 0.4022 0.7143 0.5296 0.2505
5 0.6516 0.3565 0.3319 0.4104 0.3902 0.3936 0.6701 0.5063 0.2427
6 0.6104 0.3568 0.3113 0.4038 0.3821 0.3849 0.6266 0.4798 0.2350
7 0.5712 0.3558 0.2905 0.3930 0.3712 0.3764 0.5851 0.4516 0.2291
8 0.5353 0.3534 0.2708 0.3835 0.3615 0.3671 0.5481 0.4246 0.2259
9 0.5026 0.3489 0.2530 0.3735 0.3514 0.3574 0.5135 0.3982 0.2227
10 0.4697 0.3453 0.2374 0.3623 0.3401 0.3462 0.4803 0.3753 0.2203

Table 5.8: Crosscorrelation Coefficients for ZONE9

Lag ZONE1 ZONE2 ZONE3 ZONE4 ZONE5 ZONE6 ZONE7 ZONE8 ZONE10

0 0.6639 0.3811 0.6421 0.4941 0.4501 0.4523 0.6563 0.6103 0.3384
1 0.6814 0.3945 0.6096 0.4938 0.4499 0.4496 0.6690 0.6211 0.3296
2 0.6877 0.4051 0.5711 0.4932 0.4483 0.4455 0.6684 0.6194 0.3208
3 0.6856 0.4142 0.5301 0.4917 0.4454 0.4412 0.6602 0.6117 0.3140
4 0.6751 0.4216 0.4894 0.4860 0.4401 0.4360 0.6454 0.5989 0.3055
5 0.6563 0.4264 0.4504 0.4777 0.4331 0.4297 0.6250 0.5807 0.2951
6 0.6338 0.4288 0.4132 0.4667 0.4228 0.4214 0.6017 0.5608 0.2879
7 0.6056 0.4279 0.3783 0.4539 0.4126 0.4115 0.5737 0.5362 0.2821
8 0.5740 0.4274 0.3474 0.4388 0.4026 0.3997 0.5430 0.5074 0.2758
9 0.5429 0.4259 0.3197 0.4203 0.3897 0.3862 0.5125 0.4779 0.2716
10 0.5133 0.4208 0.2950 0.4012 0.3761 0.3724 0.4824 0.4485 0.2705
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Table 5.9: Crosscorrelation Coefficients for ZONE10

Lag ZONE1 ZONE2 ZONE3 ZONE4 ZONE5 ZONE6 ZONE7 ZONE8 ZONE9

0 0.3343 0.6322 0.3950 0.6110 0.6497 0.6601 0.3100 0.2818 0.3384
1 0.3270 0.6490 0.3807 0.5963 0.6222 0.6268 0.3021 0.2734 0.3440
2 0.3171 0.6503 0.3597 0.5666 0.5771 0.5782 0.2897 0.2603 0.3433
3 0.3044 0.6386 0.3336 0.5297 0.5213 0.5230 0.2751 0.2454 0.3346
4 0.2907 0.6179 0.3057 0.4911 0.4639 0.4660 0.2603 0.2309 0.3220
5 0.2738 0.5926 0.2778 0.4530 0.4070 0.4115 0.2439 0.2163 0.3060
6 0.2559 0.5625 0.2490 0.4159 0.3554 0.3599 0.2280 0.2009 0.2860
7 0.2351 0.5300 0.2226 0.3785 0.3078 0.3104 0.2094 0.1833 0.2626
8 0.2136 0.4975 0.1974 0.3431 0.2647 0.2664 0.1878 0.1635 0.2369
9 0.1927 0.4639 0.1731 0.3096 0.2281 0.2287 0.1657 0.1436 0.2121
10 0.1727 0.4325 0.1503 0.2781 0.1975 0.1965 0.1449 0.1245 0.1891
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Figure 5.10: Correlation between power production and the weather forecasts, z and u, for
ZONE2.
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Figure 5.11: Correlation between power production and the weather forecasts, z and u, for
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Figure 5.12: Correlation between power production and the weather forecasts, z and u, for
ZONE4.
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Figure 5.14: Correlation between power production and the weather forecasts, z and u, for
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Figure 5.15: Correlation between power production and the weather forecasts, z and u, for
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Figure 5.16: Correlation between power production and the weather forecasts, z and u, for
ZONE8.
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Figure 5.17: Correlation between power production and the weather forecasts, z and u, for
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Figure 5.18: Correlation between power production and the weather forecasts, z and u, for
ZONE10.
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A.3 Model Optimization

Table 5.10: Bayesian Optimization Parameters (AR models).

Model Optimization Parameters

Iterations No. Lags Lambda Rho Degrees of Freedom (Splines)

AR 150 1 - 24 0 - 1 0 - 1 -
AR-X 150 1 - 24 0 - 1 0 - 1 -
AAR-X 150 1 - 24 0 - 1 0 - 1 1 - 10
VAR 150 1 - 24 0 - 1 0 - 1 -
VAR-X 150 1 - 24 0 - 1 0 - 1 -

AVAR-X (natural cubic splines) 50 1 - 24 0 - 1 0 - 1 1 - 10
AVAR-X (B splines) 50 1 - 24 0 - 1 0 - 1 1 - 10

VAR with Lag Group LASSO 150 1 - 24 0 - 1 0 - 1 -
VAR-X with Lag Group LASSO 50 1 - 24 0 - 1 0 - 1 -

AVAR-X (natural cubic splines) with Lag Group LASSO 50 1 - 7 0 - 1 0 - 1 2 - 6
AVAR-X (B splines) with Lag Group LASSO 50 1 - 7 0 - 1 0 - 1 2 - 6

Table 5.11: Bayesian Optimization Results (AR models).

Model Optimization Results

No. Lags Lambda Rho Degrees of Freedom (Splines)

AR 21 0.69714 0.85129 -
AR-X 15 0.74901 0.65448 -
AAR-X 7 0.51266 0.00497 5
VAR 14 0.60890 0.03652 -
VAR-X 1 0.44674 0.67143 -

AVAR-X (natural cubic splines) 3 0.32470 0.38730 3
AVAR-X (B splines) 2 0.32750 0.03650 4

VAR with Lag Group LASSO 1 1.00000 0.04674 -
VAR-X with Lag Group LASSO 1 0.38680 0.05400 -

AVAR-X (natural cubic splines) with Lag Group LASSO 2 0.56150 0.09890 4
AVAR-X (B splines) with Lag Group LASSO 1 0.70140 0.18030 4

Table 5.12: Bayesian Optimization Parameters (XGB model).

Model Optimization Parameters

Iterations No. Lags Maximum Depth Minimum Child Weight Subsample

XGB 100 3 - 24 1 - 20 1 - 20 0 - 1
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Table 5.13: Bayesian Optimization Results (XGB model).

Model Optimization Results

No. Lags Maximum Depth Minimum Child Weight Subsample

XGB 3 2 18 0.06524
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B Discussion

B.1 Complete Results

Table 5.14: Mean RMSE Results

hours-ahead Persistence AR AR-X AAR-X VAR VAR-X AVAR-X (natural cubic splines) AVAR-X (B splines) XGB

h=1 0.1041 0.1015 0.1003 0.0953 0.0981 0.1012 0.0954 0.0945 0.1013
h=2 0.1576 0.1512 0.1467 0.1335 0.1428 0.143 0.1306 0.1293 0.1374
h=3 0.1937 0.1811 0.1736 0.1499 0.1712 0.1705 0.1494 0.1444 0.1552
h=4 0.2219 0.1996 0.1873 0.1541 0.1918 0.1829 0.151 0.146 0.1594
h=5 0.2452 0.2134 0.2006 0.1618 0.206 0.1983 0.159 0.1526 0.1647
h=6 0.2648 0.2266 0.212 0.17 0.2224 0.2096 0.1693 0.1596 0.1718
h=7 0.2814 0.235 0.2243 0.1754 0.2317 0.2217 0.176 0.1655 0.1748
h=8 0.2957 0.241 0.2299 0.177 0.238 0.2246 0.1748 0.1655 0.1703
h=9 0.3081 0.2492 0.2377 0.1827 0.2459 0.2303 0.1823 0.1675 0.1734
h=10 0.3189 0.2562 0.2433 0.1916 0.2516 0.2364 0.1884 0.1782 0.1825
h=11 0.3281 0.2558 0.2403 0.1877 0.2493 0.2323 0.1855 0.1761 0.1819
h=12 0.336 0.2668 0.2481 0.192 0.2585 0.2405 0.1866 0.1771 0.1816
h=13 0.3426 0.2758 0.2536 0.1948 0.2657 0.2396 0.188 0.1781 0.1803
h=14 0.3481 0.2824 0.2588 0.1952 0.2722 0.248 0.1884 0.182 0.1817
h=15 0.3526 0.2853 0.2588 0.1913 0.2749 0.247 0.1841 0.176 0.1799
h=16 0.3564 0.286 0.2562 0.1893 0.272 0.2424 0.1793 0.1704 0.1728
h=17 0.3592 0.29 0.2597 0.1926 0.2794 0.2445 0.1804 0.1749 0.1746
h=18 0.3614 0.2935 0.2634 0.1976 0.2841 0.2463 0.1891 0.18 0.1766
h=19 0.3629 0.2936 0.2614 0.1954 0.2849 0.244 0.1848 0.1887 0.1735
h=20 0.3638 0.2927 0.2604 0.1919 0.2855 0.243 0.182 0.1861 0.1725
h=21 0.3645 0.2965 0.2653 0.1911 0.2897 0.2532 0.1814 0.1788 0.1734
h=22 0.3652 0.303 0.273 0.1948 0.2967 0.2645 0.1872 0.1849 0.1801
h=23 0.3662 0.3033 0.273 0.1953 0.2996 0.2631 0.1888 0.1827 0.1843
h=24 0.3682 0.3041 0.2727 0.1922 0.3004 0.2669 0.1854 0.1793 0.18
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Table 5.15: Mean RMSE Improvement from Persistence Results (%)

hours-ahead AR AR-X AAR-X VAR VAR-X AVAR-X (natural cubic splines) AVAR-X (B splines) XGB

h=1 2.5 3.7 8.5 5.8 2.8 8.4 9.2 2.7
h=2 4.1 6.9 15.3 9.4 9.3 17.1 18.0 12.8
h=3 6.5 10.4 22.6 11.6 12.0 22.9 25.5 19.9
h=4 10.0 15.6 30.6 13.6 17.6 32.0 34.2 28.2
h=5 13.0 18.2 34.0 16.0 19.1 35.2 37.8 32.8
h=6 14.4 19.9 35.8 16.0 20.8 36.1 39.7 35.1
h=7 16.5 20.3 37.7 17.7 21.2 37.5 41.2 37.9
h=8 18.5 22.3 40.1 19.5 24.0 40.9 44.0 42.4
h=9 19.1 22.8 40.7 20.2 25.3 40.8 45.6 43.7
h=10 19.7 23.7 39.9 21.1 25.9 40.9 44.1 42.8
h=11 22.0 26.8 42.8 24.0 29.2 43.5 46.3 44.6
h=12 20.6 26.2 42.9 23.1 28.4 44.5 47.3 46.0
h=13 19.5 26.0 43.1 22.4 30.1 45.1 48.0 47.4
h=14 18.9 25.7 43.9 21.8 28.8 45.9 47.7 47.8
h=15 19.1 26.6 45.7 22.0 29.9 47.8 50.1 49.0
h=16 19.8 28.1 46.9 23.7 32.0 49.7 52.2 51.5
h=17 19.3 27.7 46.4 22.2 31.9 49.8 51.3 51.4
h=18 18.8 27.1 45.3 21.4 31.8 47.7 50.2 51.1
h=19 19.1 28.0 46.2 21.5 32.8 49.1 48.0 52.2
h=20 19.5 28.4 47.3 21.5 33.2 50.0 48.8 52.6
h=21 18.7 27.2 47.6 20.5 30.5 50.2 50.9 52.4
h=22 17.0 25.2 46.7 18.8 27.6 48.7 49.4 50.7
h=23 17.2 25.5 46.7 18.2 28.2 48.4 50.1 49.7
h=24 17.4 25.9 47.8 18.4 27.5 49.6 51.3 51.1
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Table 5.16: Mean MAE Results

hours-ahead Persistence AR AR-X AAR-X VAR VAR-X AVAR-X (natural cubic splines) AVAR-X (B splines) XGB

h=1 0.0672 0.071 0.07 0.0673 0.0691 0.0713 0.0668 0.0663 0.0701
h=2 0.1052 0.111 0.1068 0.0959 0.1057 0.1052 0.0951 0.0933 0.0991
h=3 0.1328 0.1364 0.1289 0.1092 0.1294 0.1266 0.108 0.1044 0.1135
h=4 0.1553 0.1547 0.1418 0.1151 0.1475 0.1377 0.1121 0.1085 0.1184
h=5 0.1746 0.1676 0.1543 0.1215 0.1597 0.151 0.1183 0.1138 0.1224
h=6 0.1912 0.1796 0.1645 0.1281 0.1732 0.1608 0.1268 0.1196 0.1288
h=7 0.2056 0.1866 0.1755 0.1309 0.181 0.1737 0.1317 0.1234 0.1323
h=8 0.2181 0.1932 0.1812 0.1325 0.187 0.1751 0.1303 0.1225 0.1282
h=9 0.2292 0.2013 0.1895 0.1378 0.1948 0.1807 0.1355 0.1251 0.1316
h=10 0.2389 0.2086 0.1959 0.1484 0.2 0.1882 0.1453 0.1352 0.1415
h=11 0.247 0.2087 0.1957 0.1474 0.2 0.1871 0.1449 0.1351 0.1414
h=12 0.254 0.2187 0.2029 0.1511 0.2079 0.1932 0.1463 0.1369 0.1422
h=13 0.26 0.2268 0.2075 0.1532 0.2153 0.194 0.1483 0.1388 0.1412
h=14 0.2649 0.2332 0.2126 0.1526 0.2218 0.1995 0.1468 0.1403 0.141
h=15 0.2687 0.2354 0.2112 0.1497 0.2224 0.1989 0.1431 0.136 0.1386
h=16 0.2718 0.2353 0.2084 0.1477 0.2195 0.1929 0.139 0.1312 0.1337
h=17 0.274 0.2409 0.2106 0.1484 0.2279 0.1934 0.1387 0.1331 0.1344
h=18 0.2758 0.2455 0.2154 0.152 0.2345 0.1956 0.1428 0.1368 0.1353
h=19 0.2769 0.2463 0.2161 0.1517 0.2354 0.1964 0.1432 0.139 0.133
h=20 0.2772 0.2464 0.2153 0.1504 0.236 0.1957 0.1416 0.1381 0.1331
h=21 0.2773 0.2521 0.2197 0.149 0.2411 0.2057 0.1416 0.1369 0.1351
h=22 0.2774 0.2574 0.2276 0.1521 0.2473 0.217 0.1464 0.1416 0.1407
h=23 0.2779 0.2562 0.2267 0.1504 0.2482 0.2145 0.1463 0.1402 0.1416
h=24 0.2794 0.2565 0.2261 0.1476 0.249 0.2164 0.1427 0.1363 0.1366
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Table 5.17: Mean MAE Improvement from Persistence Results (%)

hours-ahead AR AR-X AAR-X VAR VAR-X AVAR-X (natural cubic splines) AVAR-X (B splines) XGB

h=1 0.0 0.0 0.0 0.0 0.0 0.6 1.3 0.0
h=2 0.0 0.0 8.8 0.0 0.0 9.6 11.3 5.8
h=3 0.0 2.9 17.8 2.6 4.7 18.7 21.4 14.5
h=4 0.4 8.7 25.9 5.0 11.3 27.8 30.1 23.8
h=5 4.0 11.6 30.4 8.5 13.5 32.2 34.8 29.9
h=6 6.1 14.0 33.0 9.4 15.9 33.7 37.4 32.6
h=7 9.2 14.6 36.3 12.0 15.5 35.9 40.0 35.7
h=8 11.4 16.9 39.2 14.3 19.7 40.3 43.8 41.2
h=9 12.2 17.3 39.9 15.0 21.2 40.9 45.4 42.6
h=10 12.7 18.0 37.9 16.3 21.2 39.2 43.4 40.8
h=11 15.5 20.8 40.3 19.0 24.3 41.3 45.3 42.8
h=12 13.9 20.1 40.5 18.1 23.9 42.4 46.1 44.0
h=13 12.8 20.2 41.1 17.2 25.4 43.0 46.6 45.7
h=14 12.0 19.7 42.4 16.3 24.7 44.6 47.0 46.8
h=15 12.4 21.4 44.3 17.2 26.0 46.7 49.4 48.4
h=16 13.4 23.3 45.7 19.2 29.0 48.9 51.7 50.8
h=17 12.1 23.1 45.8 16.8 29.4 49.4 51.4 50.9
h=18 11.0 21.9 44.9 15.0 29.1 48.2 50.4 50.9
h=19 11.1 22.0 45.2 15.0 29.1 48.3 49.8 52.0
h=20 11.1 22.3 45.7 14.9 29.4 48.9 50.2 52.0
h=21 9.1 20.8 46.3 13.1 25.8 48.9 50.6 51.3
h=22 7.2 18.0 45.2 10.9 21.8 47.2 49.0 49.3
h=23 7.8 18.4 45.9 10.7 22.8 47.4 49.6 49.0
h=24 8.2 19.1 47.2 10.9 22.5 48.9 51.2 51.1

B.2 Results for each WPP

Table 5.18: ZONE2 Mean RMSE Results per Timescale

hours-ahead AR AR-X AAR-X VAR VAR-X AVAR-X (natural cubic splines) AVAR-X (B splines) XGB

[1,3] 0.1263 0.1196 0.1115 0.125 0.1193 0.1111 0.1093 0.1164
]3, 12] 0.2167 0.2023 0.1603 0.2137 0.2003 0.1564 0.1486 0.1568
]12, 24] 0.2722 0.2372 0.1823 0.2749 0.2358 0.1814 0.1742 0.1794

Table 5.19: ZONE3 Mean RMSE Results per Timescale

hours-ahead AR AR-X AAR-X VAR VAR-X AVAR-X (natural cubic splines) AVAR-X (B splines) XGB

[1,3] 0.1396 0.1306 0.1086 0.1281 0.1223 0.1064 0.104 0.1177
]3, 12] 0.2443 0.234 0.1572 0.2279 0.2128 0.1554 0.1465 0.1714
]12, 24] 0.2835 0.274 0.1667 0.2778 0.2595 0.1681 0.1618 0.1771
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Table 5.20: ZONE4 Mean RMSE Results per Timescale

hours-ahead AR AR-X AAR-X VAR VAR-X AVAR-X (natural cubic splines) AVAR-X (B splines) XGB

[1,3] 0.1511 0.1466 0.1285 0.1379 0.1417 0.1265 0.1217 0.1313
]3, 12] 0.2499 0.2329 0.1862 0.2504 0.2283 0.1857 0.1741 0.1815
]12, 24] 0.3372 0.2915 0.2142 0.3264 0.268 0.2044 0.201 0.1964

Table 5.21: ZONE5 Mean RMSE Results per Timescale

hours-ahead AR AR-X AAR-X VAR VAR-X AVAR-X (natural cubic splines) AVAR-X (B splines) XGB

[1,3] 0.1422 0.1343 0.1171 0.1299 0.1337 0.1155 0.1137 0.1226
]3, 12] 0.2564 0.2361 0.1824 0.2554 0.2349 0.1854 0.1718 0.1824
]12, 24] 0.326 0.2988 0.207 0.3206 0.272 0.203 0.1912 0.2038

Table 5.22: ZONE6 Mean RMSE Results per Timescale

hours-ahead AR AR-X AAR-X VAR VAR-X AVAR-X (natural cubic splines) AVAR-X (B splines) XGB

[1,3] 0.1464 0.1448 0.1314 0.1392 0.1468 0.1344 0.131 0.1339
]3, 12] 0.2511 0.2394 0.1837 0.2515 0.239 0.1909 0.1795 0.1812
]12, 24] 0.3214 0.29 0.2153 0.3158 0.2775 0.211 0.2036 0.2023

Table 5.23: ZONE7 Mean RMSE Results per Timescale

hours-ahead AR AR-X AAR-X VAR VAR-X AVAR-X (natural cubic splines) AVAR-X (B splines) XGB

[1,3] 0.1353 0.1342 0.1231 0.1335 0.1362 0.1256 0.1223 0.1288
]3, 12] 0.2093 0.1975 0.1525 0.2065 0.2002 0.153 0.1439 0.154
]12, 24] 0.2617 0.2351 0.1714 0.2523 0.2218 0.1605 0.1556 0.1433

Table 5.24: ZONE8 Mean RMSE Results per Timescale

hours-ahead AR AR-X AAR-X VAR VAR-X AVAR-X (natural cubic splines) AVAR-X (B splines) XGB

[1,3] 0.143 0.1416 0.1353 0.1436 0.1467 0.1359 0.1342 0.1404
]3, 12] 0.2247 0.2133 0.1721 0.222 0.2166 0.1752 0.1689 0.174
]12, 24] 0.2755 0.2508 0.1959 0.2631 0.2447 0.1911 0.184 0.1782

Table 5.25: ZONE9 Mean RMSE Results per Timescale

hours-ahead AR AR-X AAR-X VAR VAR-X AVAR-X (natural cubic splines) AVAR-X (B splines) XGB

[1,3] 0.1508 0.1514 0.1414 0.1441 0.1472 0.141 0.1404 0.1446
]3, 12] 0.2304 0.2213 0.1825 0.214 0.2093 0.1813 0.175 0.1773
]12, 24] 0.2409 0.2163 0.1599 0.2212 0.2015 0.1528 0.1495 0.1459
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Table 5.26: ZONE10 Mean RMSE Results per Timescale

hours-ahead AR AR-X AAR-X VAR VAR-X AVAR-X (natural cubic splines) AVAR-X (B splines) XGB

[1,3] 0.1646 0.1563 0.1305 0.1531 0.1485 0.1328 0.1291 0.1448
]3, 12] 0.2728 0.2611 0.2073 0.271 0.2523 0.2126 0.1974 0.2002
]12, 24] 0.3172 0.296 0.2247 0.3175 0.2913 0.2204 0.2102 0.2077

B.3 Friedman Test Results

Figure 5.19: Critical Difference diagram for ZONE2 and 1 hour-ahead (Result: Different; p-
value = 1.5e-05; Critical Distance = 0.457).

Figure 5.20: Critical Difference diagram for ZONE2 and 24 hours-ahead (Result: Different;
p-value = 2.0e-155; Critical Distance = 0.458).
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Figure 5.21: Critical Difference diagram for ZONE3 and 1 hour-ahead (Result: Different; p-
value = 0.026; Critical Distance = 0.457).

Figure 5.22: Critical Difference diagram for ZONE3 and 24 hours-ahead (Result: Different;
p-value = 3.7e-176; Critical Distance = 0.458).

Figure 5.23: Critical Difference diagram for ZONE4 and 1 hour-ahead (Result: Different; p-
value = 2.3e-06; Critical Distance = 0.457).
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Figure 5.24: Critical Difference diagram for ZONE4 and 24 hours-ahead (Result: Different;
p-value = 3.9e-161; Critical Distance = 0.458).

Figure 5.25: Critical Difference diagram for ZONE5 and 1 hour-ahead (Result: Different; p-
value = 0.0048; Critical Distance = 0.457).
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Figure 5.26: Critical Difference diagram for ZONE5 and 24 hours-ahead (Result: Different;
p-value = 1.7e-171; Critical Distance = 0.458).

Figure 5.27: Critical Difference diagram for ZONE6 and 1 hour-ahead (Result: Different; p-
value = 0.0012; Critical Distance = 0.457).
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Figure 5.28: Critical Difference diagram for ZONE6 and 24 hours-ahead (Result: Different;
p-value = 3.5e-140; Critical Distance = 0.458).

Figure 5.29: Critical Difference diagram for ZONE7 and 1 hour-ahead (Result: Different; p-
value = 3.9e-05; Critical Distance = 0.457).
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Figure 5.30: Critical Difference diagram for ZONE7 and 24 hours-ahead (Result: Different;
p-value = 5.4e-131; Critical Distance = 0.458).

Figure 5.31: Critical Difference diagram for ZONE8 and 1 hour-ahead (Result: Different; p-
value = 0.0061; Critical Distance = 0.457).
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Figure 5.32: Critical Difference diagram for ZONE8 and 24 hours-ahead (Result: Different;
p-value = 8.1e-98; Critical Distance = 0.458).

Figure 5.33: Critical Difference diagram for ZONE9 and 1 hour-ahead (Result: Different; p-
value = 9.2e-11; Critical Distance = 0.457).

Figure 5.34: Critical Difference diagram for ZONE9 and 24 hours-ahead (Result: Different;
p-value = 9.4e-138; Critical Distance = 0.458).
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Figure 5.35: Critical Difference diagram for ZONE10 and 1 hour-ahead (Result: Different; p-
value = 0.0016; Critical Distance = 0.457).

Figure 5.36: Critical Difference diagram for ZONE10 and 24 hours-ahead (Result: Different;
p-value = 4.4e-140; Critical Distance = 0.458).

xxvii


	Acknowledgements
	Abstract
	Resumo
	List of Abbreviations
	Introduction
	Motivation
	Renewable power generation forecasting
	Aim and objectives
	Structure of the Report

	State-of-the-Art in Renewable Power Forecasting
	Physical Models
	Statistical Models
	Persistence
	Time series models
	Machine learning models


	Time Series Models for Renewable Power Forecasting
	Autoregressive Processes
	Autoregressive (AR) model
	Autoregressive Model with Exogenous Variables (AR-X)
	Additive Autoregressive Model with Exogenous Variables (AAR-X)

	Vector Autoregressive (VAR) Processes
	Vector Autoregressive (VAR) Model
	Vector Autoregressive Model with Exogenous Variables (VAR-X)
	Additive Vector Autoregressive Model with Exogenous Variables (AVAR-X)

	Least Absolute Shrinkage and Selection Operator (LASSO)

	Forecasting Results and Discussion
	Data and Tools
	Exploratory Data Analysis
	Autocorrelation
	Cross-correlation

	Model Performance Comparison and Metrics
	Performance Metrics
	Comparison Tests

	Model Optimization
	Intraday and Day-Ahead Forecasting Results
	AR model
	AR-X model
	AAR-X model
	VAR model
	VAR-X model
	AVAR-X model

	Discussion
	LASSO-VAR Frameworks
	Exogenous Variables
	Spatiotemporal Models
	Additive Models

	Model Comparison

	Conclusion and Future Work
	Appendix
	Exploratory Data Analysis
	Autocorrelation
	Crosscorrelation
	Model Optimization

	Discussion
	Complete Results
	Results for each WPP
	Friedman Test Results



