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Abstract

In this thesis, I describe the process of deriving stellar atmospheric parameters for FGK stars using

high resolution and high signal-to-noise ratio near-IR spectra. The effort presented here is the first step

towards analysing the cooler and more atmospheric complex M stars. Our own galaxy, The Milky Way,

consist of around 75% M stars, thus studying these stars is a study of the galaxy: galactic archaeology.

Additionally, these stars are prone to form low-mass rocky planets, making them ideal targets for habitable

Earth-like planets.

In Chapter 2 and 3 I will introduce the theory needed for spectroscopic analysis and the methodology

for the actual study. Especially in Chapter 3 I will present an automatic tool for deriving stellar

atmospheric parameters, FASMA. This tool can derive parameters for solar-type stars in both the optical

and the NIR and is used throughout the thesis.

After setting up the theory and methodology I will in Chapter 4 present the results from my studies

in the NIR. These will start with a compilation of a NIR iron line list used for the spectroscopic analysis.

This is then used to successfully study four stars with varying spectral type; the Sun, one hotter than

the Sun, and two cooler. Due to lack of NIR spectra, I choose to analyse some synthetic spectra as well

which is also presented in Chapter 4.

Part of the thesis was dedicated to the continuous update of SWEET-Cat, a database of planet host

stars. This lead to a paper presenting 50 planet host parameters derived in a homogeneous and consistent

way. The analysis of 50 planet hosts is followed by another work discovering two giant planet populations;

a study I was part of.

With this thesis, another few pieces has been put in the NIR spectroscopy puzzle, preparing for the

next pieces as well, which will be the study of M stars. This will then lead to the studies of the tinniest

rocky planets to the galaxy.
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Resumo

Nesta tese, descrevo o processo de derivação de parâmetros de atmosferas de estrelas FGK usando

espectros de infra-vermelho de alta resolução e de elevado sinal-sobre-ruído. O esforço aqui apresentado

representa o primeiro passo para derivar parâmetros atmosféricos de estrelas mais frias (estrelas M)

onde a análise espectroscópica é bem mais complexa. Notar que na nossa própria galáxia, a Via Láctea,

cerca de 75% de todas as estrelas são de estrelas M, pelo que estudar estas estrelas é também um passo

importante para o estudo da nossa galáxia, também denominada por arqueologia galáctica. Estas estrelas

são também as mais propensas a formar planetas rochosos de baixa massa, tornando-as alvos ideais para

a detecção de planetas habitáveis parecidos com a Terra.

Nos Capítulos 2 e 3 vou apresentar a teoria necessária para a análise espectroscópica e a metodologia

usada no trabalho aqui apresentado. Em especial no Capítulo 3 irei apresentar uma ferramenta automática

para a derivação de parâmetros estelares, FASMA. Esta ferramenta pode derivar parâmetros para estrelas

de tipo solar quer usando espectros no visível quer no infra-vermelho próximo. Esta ferramenta é usada

em toda a tese. Depois de apresentar a teoria e a metodologia, no Capítulo 4 apresento os resultados

dos meus trabalhos desenvolvidos no infra-vermelho-próximo, começando com uma compilação de uma

lista de riscas espectrais de Ferro usada para a análise espectroscópica. Esta lista é posteriormente usada

para estudar com sucesso quatro estrelas de diferentes classes espectrais: o Sol, uma estrela mais quente

do que o Sol e duas estrelas mais frios do que o Sol. Devido á escassez de espectros de infra-vermelho,

optou-se também por analisar alguns espectros sintéticos.

Parte da tese foi dedicada á atualização constante do SWEET-Cat, uma base de dados para estrelas

com planetas detetados. Deste trabalho escrevi um artigo onde são apresentados novos parâmetros

estelares para 50 estrelas com planetas que foram derivados de uma forma homogénea e consistente.

Posteriormente á análise destas 50 estrelas contribui também para um trabalho onde se descobriu a

possível presença de duas populações de planetas gigantes.

Esta tese permitiu não só adicionar novas peças no complicado puzzle da espectroscopia no infra-

vermelho NIR, mas também abriu caminho para o desenvolvimento de novas peças para completar o

puzzle que será o estudo das estrelas M que será importante para o estudo dos planetas rochosos mais

conhecemos na nossa galáxia.
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Chapter 1
Introduction

Every atom in your body came from a star
that exploded. And, the atoms in your left
hand probably came from a different star
than your right hand. It really is the most
poetic thing I know about physics: You are
all stardust.

Lawrence M. Krauss

Ever since the dawn of time, the humankind have looked at the stars and wondered if we are alone in
this Universe. To answer this question, one must look toward the field of extrasolar planets (exoplanets).
This is a rapidly growing field in astronomy and science in general. Ever since the first confirmed discovery
of an exoplanet around a millisecond pulsar in 1992 by Wolszczan and Frail (1992) and three years later,
exoplanet 51 Peg b was discovered around a solar-type star by Mayor and Queloz (1995), more than 3600
exoplanets have been discovered at the time of writing, July 20171.

With the discoveries of exoplanets, the main focus of observational exoplanetology is now mainly on
finding a twin of Earth; that is a planet that can harbour life as we know it. An Earth twin will be of
similar size (both in mass and radius), and be located in a distance from its host star were liquid water
may exists on the surface. When speaking of detecting similar life as we know it, it is important to note
that it is the biosignatures that life will cause on the exoplanet’s atmosphere that the astronomers are
and will be looking for. These biosignatures are the subtle changes life can cause on its host planets
atmosphere. Generally we refer to e.g. animals here on Earth which produce carbon-dioxide, while plants
produce oxygen. Before even start the search for these biosignatures on another exoplanet, the exoplanet
must be carefully characterised so we do not end up looking blindly for the biosignatures. Such a search
will be extremely costly. Additionally, it may not be necessary to find an Earth replica in order to find
conditions for life (see e.g. Alibert (2014) for a discussion on habitable planets unlike the Earth). Lastly,
are the compositions and origins interesting in this era of exoplanetary science. However, in order to
accurately and precisely characterise an exoplanet, it is crucial to characterise its host star. This is
commonly known as “know the star, to know the exoplanet”. It is only possible to obtain planetary
global parameters such as its radius and mass if the stellar parameters are accurately known. With
sufficiently high precision it is even possible to distinguish between different planetary bulk compositions
1 http://exoplanet.eu/

1

http://exoplanet.eu/
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such as water-worlds, rocky planets, gaseous planets, iron planets, or exotic combinations of the above
(e.g. Thiabaud et al., 2014; Dorn et al., 2015). Dorn et al. (2015) found that stellar elemental abundances
(Fe , Si , Mg ) are key to reduce the degeneracy in interior structure models and mantle composition.

In this chapter there will be a general introduction to exoplanets, detection methods, and characteri-
sation (Section 1.1). Then a throughout introduction on the exoplanet host stars (Section 1.2), which is
the main focus of this thesis. In the end of this chapter, the importance of stellar studies will be discussed
along with its wide-spread applications (Section 1.3) before a general overview of this thesis (Section 1.4).

1.1 Exoplanets

The holy grail in the field of exoplanets is to find the first exoplanet with biosignatures. This is by no
means an easy task. To give an idea of the difficulty of detecting biosignatures on an exoplanet, it is
important to understand all the difficulties when simply detect and confirm the presence an exoplanet.
This will shortly be described in the sections below where several detection techniques will be introduced.

1.1.1 Detecting exoplanets

There are six main techniques for detecting exoplanets around main sequence stars, some with advantages
over others. These advantages depends strongly on the advancement of the instruments used for the
different techniques, but also on the physical properties of the exoplanetary system. A lot of information
about the exoplanets can be extracted when more than one of these techniques is used and combined.
The success of the different methods can be seen in Figure 1.1. Here all the detected planets (with
measured masses) are shown divided into which group was used for detecting the exoplanets into different
detection methods. The most exoplanets are discovered with the transit method and the radial velocity
method, both which will be explained in more detail below. Additionally, the figure also includes Mercury,
Earth, and Jupiter (size of the symbols are not to scales) that are here presented as a reference for the
comparison with the known exoplanets.

It is important to note, that different phenomena might mimic planetary signals, such as stellar
activity, or the contaminating light from a fainter stellar companion (see e.g. Queloz et al., 2001; Oshagh
et al., 2013, 2014). However, they will not be described in this thesis. For more details on the description
of these techniques see e.g. Seager (2010).

1.1.1.1 Transit method

The most successful method, if based on numbers of exoplanets detected, is the transit method. The
way to use this method is to measure the integrated light of a star is continuously monitored in order
to detect a transit. This kind of data is called a photometric time-series, and has wide applications in
stellar astrophysics. It is not enough to monitor a star to detect a transiting exoplanet. It has to be
aligned with the line of sight from the observer, thus the probability of detecting exoplanets depends on
the geometry of the system.

Transit photometry is a well-known method in astronomy, however only used recently for detecting
exoplanets. Before this, it has been used extensively for finding and characterising eclipsing binary stars.
The difference here is, that the exoplanet is extremely small and does not radiate (or at least emit very
little radiation compared with the host star). An example of an exoplanet transiting a star can be seen
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Figure 1.1: Confirmed exoplanets with the derived masses (relative to Jupiter) and the semi-major
axis. The position of Mercury, Earth, and Jupiter are also shown, however the symbols are not to
scale. The size of the symbols for the different detection methods are different in order to clearly see
the methods which did not yet detect many exoplanets such as Imaging or Astrometry. Note that the
masses discovered solely by the radial velocity (RV) method are the minimum masses. The data is from
http://exoplanet.eu
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in Figure 1.2 for K2-29 b. The data is from a summer school2, which was prepared from Santerne et al.
(2016).
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Figure 1.2: Upper plot: The lightcurve of a star with an exoplanet transiting. Lower plot: The phase
folded curve of the above lightcurve using the period of 3.259 days.

When an exoplanet transits its host star, the total brightness observed from the system will decrease, as
the exoplanet blocks some of the light from the star. This dimming in brightness will be seen periodically
as the exoplanet orbits its host star. The decrease in brightness as the planet transit the star is directly
related to the ratio between the stellar radius R∗ and the planetary radius Rp:

k =
√
Rp
R∗

, (1.1)

where k is the depth of the transit compared to the normalised stellar brightness. This in turn means
that the transit method is most sensitive to exoplanets with a large radius, and often in close orbits as
these exoplanets are more likely to be aligned with the observer (us), and its host star. In Figure 1.3 all
detected exoplanets with the transit method is shown. In particular the radius against the period (two
parameters that will always be measured by this method). Especially due to the Kepler space mission,
exoplanets with low radius have been found, but it is evident as the period for a exoplanet increases, the
detectability decreases, hence the desert in the high-period/low-radius quadrant in the figure.
2 Data can be found here: https://github.com/iastro-pt/AzoresTE1

https://github.com/iastro-pt/AzoresTE1
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Figure 1.3: Period and radius of all exoplanets discovered by the transit method from the http:
//exoplanet.eu database. The desert at high-period/low-radius is clearly evident here. This is where
an Earth twin would be found around a Sun twin.
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This method allows to determine the radius of the planet as far as the radius of the star is known.
Furthermore, detailed analysis of the phase curve3 of an exoplanet can additionally reveal the surface
temperature of the exoplanet. The transit described above is also known as the primary transit. The
secondary transit is when the exoplanet is behind its host star as seen from Earth. This lead to a faint
dimming of the total brightness observed from the system. This dimming is due to the reflected light
missing from the exoplanet and its self-irradiation caused by its surface temperature. It is difficult to
observe secondary transits. This is mainly due to the low flux from the exoplanet compared to its host.

While transit photometry can be done from Earth, the best results are from space with e.g. Kepler
(Borucki et al., 2010) and CoRoT (Baglin et al., 2006), while ground-based surveys have been successful
as well, e.g. WASP (Pollacco et al., 2006), and HAT-P (Bakos et al., 2004) to mention just a few.

1.1.1.2 Radial velocity method

When an exoplanet orbits a star, they both orbit the centre of mass. Since the star is more massive
than the exoplanet, the centre of mass is much closer to the star. The radial velocity method is the
study of the motion of the host star around the centre of mass using the Doppler effect caused by an
orbiting exoplanet4. This together with the transit method described above are by far the most successful
methods to detect and characterise exoplanets with the current instruments. The periodic signal created
by the exoplanet on the host star depends on the mass ratio between the star M∗ and the planet Mp:

K = 28.4329 m/s√
1− e2

Mp sin i
MJup

(
M∗ +Mp

M�

)−2/3(
P

1 year

)−1/3
(1.2)

where K is the semi-amplitude of the sinusoidal, e is the eccentricity, i is the inclination of the orbital
plane compared to the line of sight from Earth, P is the orbital period, and MJup is the mass of Jupiter.
Since M∗ �Mp, the term M∗ +Mp 'M∗ in order to simplify the equation. The sinusoidal motion of
the star can be seen in Figure 1.4 where both the time series and the phase curve is presented for the
exoplanet, K2-29 b. The data used is from the same source as the lightcurve above in Section 1.1.1.1.

In order to apply the radial velocity method for detecting exoplanets, it is necessary to collect a time
series of spectra in order to cover most part of the phase of the orbit. These spectra need to be obtained
with high spectral resolution in order to obtain a high precision measurement of the RV. The RV is
obtained when the observed spectrum is compared with a reference spectrum of the star at RV = 0 km/s.
The Doppler shift needed to be applied to the observed spectrum to cause the maximum overlap between
the two spectra corresponds to the measured RV. The instrument needs to be stable for the same reason
(see e.g. Bouchy et al., 2001). These spectra can be used for the analysis and characterisation of the
host star if combined in order to increase the signal-to-noise (S/N). The spectra traditionally used for
exoplanet detection have a high resolution, which typically is more than 50 000. The spectral resolution
is key, as the precision is strongly dependent on this parameter.

The currently most precise radial velocity spectrographs are HARPS (ESO) (Mayor et al., 2003) and
HARPS-N (La Palma) (Cosentino et al., 2012), able to achieve long term precision below 1 m/s (see e.g.
Pepe et al., 2013).

Very interestingly the RV measurements might be used to detect what is known as the Rossiter–McLaughlin
3 A phase curve is here a light curve cut at every period of the planet and plotted on top of itself. This is equivalent to

a single transit at a very high sampling rate
4 As the transit method, this method has been known for decades in the study of e.g. binary stars.
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Figure 1.4: Upper panel: RV time series of K2-29 b from the SOPHIE spectrograph. Lower panel:
Phase curve of the time series above, using the period of 3.259 days. The fit is a simplistic sinusoidal for
visual guidance.
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effect. This effect is a combination of two things. First, the rotation of the host star slightly cause
a red-shift of one side (the side rotating away from us), while the other side of the rotating star is
slightly blue-shifted. The net effect is zero. Second, if an exoplanet transit its host, it might block
some of the blue-shifted light, thus the net effect will suddenly be ever so slightly red-shifted. While
the exoplanet transit over the surface of the star the net effect will change from slightly red-shifted to
slightly blue-shifted. This effect is used to determine the orbital configuration, i.e. the orbital inclination
and whether the orbit is prograde or retrograde. This effect have been used in several studies (Winn
et al., 2005; Triaud et al., 2010, to mention just a few). An illustration on how they RV phase curve
might look like is illustrated in Figure 1.5.
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Figure 1.5: A model of the Rossiter-McLaughlin effect on a phase folded RV time series. This is a
simple circular prograde orbit.

1.1.1.3 Other techniques

The following four techniques have all detected exoplanets, however, they are currently not widely used
and neither have the same level of success as the two methods described above. This is something that
will change in the future with new and up-coming instruments.

Direct imaging Direct imaging is probably the easiest method to understand, however it is quite
difficult to actually use this technique due to the immense difference in luminosity between a star and
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an exoplanet. In its core, by carefully blocking the light of a star, it is possible to directly image the
exoplanets around it. However, it is extremely difficult to block the light of the host star and find the
emitted light of the exoplanet(s) in orbit. One has to deal with residual light from the host star, which
are orders of magnitudes brighter than the exoplanets. With SPHERE at VLT it is expected than more
exoplanets will be found with this technique (Beuzit et al., 2008). The first exoplanet detection with
SPHERE have already been made (Vigan et al., 2016; Bonnefoy et al., 2016; Apai et al., 2016; Maire
et al., 2016; Zurlo et al., 2016, see e.g.).

Astrometry Astrometry is the measurement of the position of a star on the sky, i.e. its coordinates.
The coordinates for a star may change over time due to its relative motion compared to our Solar System.
Additionally, an exoplanet might cause minute changes in the coordinates due to the orbit of the star
and exoplanet around the centre of mass. Using astrometry to detect exoplanets is very similar to the
RV method described above in Section 1.1.1.2. The Gaia mission (Gaia Collaboration et al., 2016) will
provide many exoplanets detected with astrometry. Perryman et al. (2014) estimates that 21 000± 6 000
high-mass (1 − 15MJup) long-period planets will be discovered to a distance of 500 pc with the Gaia
mission for the nominal 5 year mission.

This technique is more sensitive to massive, long period exoplanets as they cause a larger motion
compared to lighter, short period companions. See e.g. Figure 1 by Perryman et al. (2014) for the
astrometric signatures produced by a range of exoplanets at different period.

Transit timing variation This technique of detecting exoplanets is a highly indirect method of
detecting exoplanets. Here a transiting exoplanet has to be detected first as explained in Section 1.1.1.1.
Then variations in the occurrence of mid-transit can be detected if a second non-transiting exoplanet
interact with the primary transiting exoplanet (known as planet-planet interaction). This interaction will
periodically cause the mid-transit to happen ahead/behind of the time if only one exoplanet would be
present (Agol et al., 2005; Holman and Murray, 2005).

A careful analysis of the transit timing variations (TTV) can give the mass of the transiting exoplanet.
Most of these exoplanets pairs which shows TTV are in an orbital resonance. This technique as well, is
more sensitive to massive exoplanets as they will induce a higher signal. However, it is also sensitive to
exoplanets with comparable semi-major-amplitudes.

Microlensing This technique is very exotic and not widely used, however since a few exoplanets have
been discovered by this technique it deserves to be mentioned. The core theory in this technique is the
well-known General Relativity by Einstein (1916). With this method an observer looks at a distant star
as a star between the observer and the distant star passes in between the line of sight. The intermediate
star will act as a lens and increase the magnitude of the distant star. This increase of magnitude will
reach its maximum as the two stars are most aligned as seen from Earth.

To use this method for detecting exoplanet, there will have to be an exoplanet orbiting intermediate
star. The exoplanet act as a microlens, momentarily make a secondary increase in magnitude. The
amount of increase in magnitude is related to the mass of the exoplanet and its configuration in the orbit
around its host star. The higher the mass, the higher the effect, however it is possible to detect quite
low-mass exoplanets with this technique.

While this exotic technique is interesting and has detected exoplanets, it is not as useful as the RV and
transit detection methods in individual studies of planets since it only occurs once. The stars observed
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with this technique are often faint, thus making follow-up RV detection very difficult if not impossible
with the current instruments.

1.1.2 Towards an Earth twin

The above mentioned techniques will be used to find an Earth twin. Especially will the two first techniques
(transit and RV method) be the ones finding the smallest exoplanets as a wide range of instruments are
being developed dedicated for this. Since the detection of the first exoplanet around a solar-type star
by Mayor and Queloz (1995), the community has been able to detect lower mass exoplanets as seen in
Figure 1.6 and the regime of Earth-mass exoplanets have been reached very recently.
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Figure 1.6: The mass of exoplanet since the detection of the first exoplanet until now. The horizontal
lines indicate the mass of Jupiter (upper), Neptune (middle), and Earth (lower).

While the first many discoveries of exoplanets were the (at the time) exotic and strange hot Jupiter-like
exoplanets in close orbits, the time have come to detect exoplanets with both lower mass and wider orbits.
It is crucial to have high precision instruments and long surveys to detect these exoplanets. Missions as
Kepler and CoRoT have been excellent for this, since they have focused on few fields of the sky for a
long time.

The first place to naively look for a Earth’s twin would be in a system similar to our own Solar system.
That means around a G dwarf like our own Sun. However, due to the high surface temperature of these
stars5, the habitable zone will be far from the host star (see e.g. Kasting et al., 1993). The habitable zone
is the distance interval from a star where liquid water can be found. This zone is not only dependent on
stellar parameters, but also on the atmospheres of exoplanets since a exoplanet with a dense atmosphere
5 Very few effort have been made to look for exoplanets around OB stars as these are both few in numbers and hostile

environments for exoplanets.
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can keep the heat, thus be further away from its host star and still have liquid water, compared to an
exoplanet with a lighter atmosphere. Indeed, to detect a copy of our own Sun-Earth system we would
need to detect the minute signature of an exoplanet in a 1 year orbit around its host star (a solar twin).
For the RV method, this minute signature will be 10 cm/s, while the current level of precision is around
1 m/s. For photometry a precision of 100 ppm is required to detect an Earth sized planet around a
solar-type star (Borucki, 2017). These signatures can be measured with the next generation of ultra
stable high resolution spectrographs such as ESPRESSO (Pepe et al., 2010) and future photometric
space missions such as PLATO (Rauer et al., 2014). If detected with the transit method, more than
one transit is needed, hence this will take at least two years, and probably even longer. Moreover, this
is all assuming that the geometry of the system aligns in such as way that a transit can even be seen
from Earth. The endeavour to get the follow-up RV afterwards will also be extremely challenging with
today’s technology, and only the next generation of instruments will be able to detect these signals. In
conclusion, even with perfect instruments, it will take years to detect an Earth twin around a Sun-twin
with the RV and transit methods.

Therefore, it is not a surprise that an effort has been towards detecting Earth-like planets around the
lightest stars. These stars (M stars) are also cooler, hence the habitable zone will be closer to its host
compared to the more massive and hotter stars (Kasting, 1997), and ultimately the period for habitable
exoplanets will be shorter. The nature has been kind, since it seems that the M stars are prone to
form rocky planets rather than giant gaseous planets (Bonfils et al., 2013; Delfosse et al., 2013). The
shorter period means that the surveys can be shorter for these exoplanets. Moreover, since the host stars
are smaller the signal from a transit will be easier to detect (see Equation 1.1). Similarly will the RV
signal be larger for an Earth-like planet in the habitable zone around an M star compared to a similar
exoplanet around a G star6. Both due to the lower period and due to the lower mass of the host star (see
Equation 1.2).

While M stars seems to be the place to look for the Earth’s twin, there are still some challenges to
tackle. Foremost is the detailed characterisation of the host star, which are particular troublesome for
these stars. This is something that will be focused on in Section 1.2.

1.1.2.1 Detecting biosignatures on an exoplanet

The best hope to indirectly detect life is by finding biosignatures (Kasting and Siefert, 2002; Snellen et al.,
2013, see e.g.) in the exoplanet’s atmosphere. Transmission spectroscopy and lightcurves in different
pass bands are the techniques to study the atmosphere of exoplanets. For transmission spectroscopy
a spectrum is obtained of the star during transit. This spectrum will thereby contain signals of the
atmosphere of the transiting exoplanet. Later, a spectrum of the star can be obtained, e.g. during the
secondary transit. The difference in these two spectra will reveal the exoplanetary spectrum. This was
e.g. done by Charbonneau et al. (2002).

An interesting test to look for biosignatures from the Earthshine on the Moon was performed by
Arnold et al. (2002) where they clearly see the blue colour of the Earth’s atmosphere due to Rayleigh
scattering. This was done by obtaining a Moon spectrum and an Earthshine spectrum using the 80 cm
telescope at OHP. They also observed signatures for oxygen, ozone, and water vapours; all important
biosignatures in a planetary atmosphere supporting life.
6 For a solar twin, with an Earth twin at 1 AU the semi-amplitude will be close to 10 cm/s while it would be roughly

50 cm/s for an Earth twin around a 0.3M� M dwarf at 0.1 AU.
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These signatures, especially oxygen, are from microorganisms through photosynthesis (see e.g. Kasting
and Siefert, 2002). However, there might be conditions outside the habitable zone which might sustain
life. Here on Earth, extremophiles such as the water bears are known to thrive in extreme places such as
boiling water, acid, ice, etc. This might eventually lead to a new window of opportunity in the search of
extraterrestrial life (Cavicchioli, 2002).

1.2 Planet host stars

With the present diversity of exoplanets it becomes increasingly important to get an accurate and precise
characterisation of the exoplanets in order to study them in samples and on an individual level. An
accurate and precise characterisation can give us an idea whether the planet is rocky, composed of water,
gaseous, or some other more exotic combination, by comparing fixed density profiles (based on different
compositions) to the planetary mass and radius (see Dorn et al., 2015, e.g.). As mentioned above, it is
crucial to characterise the host stars in order to characterise the exoplanets. The host stars discovered
so far are mainly FGK dwarf stars, although some are more evolved. This can be seen in Figure 1.7
where the effective temperature of all host stars are shown against the luminosity. The colour represents
the temperature, while the size of the symbols is a measure of the radius, or with other words, the
evolutionary state. The smallest points are the dwarf stars. The luminosity was derived combining the
following equations:

g = GM

R2

L = 4πR2σT 4
eff ,

into

L

L�
= M

M�

(
Teff

5777 K

)4
104.44−log g, (1.3)

where σ is Boltzmann’s constant, G is Newton’s gravitational constant, and log g is the surface gravity.
The data for Figure 1.7 is obtained from SWEET-Cat7.

To make an in-depth characterisation of stars it is common to use several different methods to
gain knowledge about different aspects of a star. If the effective temperature is needed, the reliable
determination comes from the analysis of a high resolution and high signal-to-noise (S/N) spectrum
or the infrared flux method (see Section 3.1.1 for more details). Spectroscopy is also used to identify
chemical abundances of the photosphere of the star, while a method like asteroseismology8 is used to
determine the mass and radius of a star with higher precision; two parameters crucial to characterise the
orbiting exoplanet. More of these methods are described in greater detail in Chapter 3.

In the example given above, the effective temperature is needed before asteroseismology can be used
to determine the mass and radius. In order to perform a successful detailed asteroseismic analysis a
long time series is needed like the ones obtained from CoRoT and Kepler which are months and years
long time series. The light curves provided by these dedicated missions are used both for the detection
of exoplanets and stellar oscillation studies. Likewise will the spectra obtained from the RV method
7 https://www.astro.up.pt/resources/sweet-cat/
8 Asteroseismology is the study of stellar oscillations. See Section 3.1.3 for details on this method.

https://www.astro.up.pt/resources/sweet-cat/
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Figure 1.7: The effective temperature of all host stars are shown against the luminosity. The colour
represents the temperature, while the size of the symbols is a measure of the radius, or with other words,
the evolutionary state. The smallest points are the dwarf stars. The green star in the plot show the
location of the Sun.
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to detect/confirm an exoplanet be used for the stellar characterising afterwards by combining them to
increase the S/N. This combined high S/N spectrum is ideal for the spectral analysis of stars.

The synergy between a spectroscopic analysis and asteroseismology have proven very successful (see
e.g. Huber et al., 2013) for characterising an exoplanet system (host star and exoplanet). However, it
does have its limitations. It can be difficult to detect solar-like oscillations as the stars get colder than the
Sun. The community has yet to detect any solar-like oscillations in M dwarf stars (Rodríguez et al., 2016;
Berdiñas et al., 2017). Many of the detected exoplanets are from the Kepler mission, where many of the
host stars are very faint. While it is not impossible to make high resolution and high S/N spectroscopic
observations, it is extremely time consuming. Therefore brighter targets are often prioritised, unless
there is an exceptional case.

With the search for an Earth twin around the small cool M dwarf stars, it is important to develop
reliable methods for the analysis of these stars. The methods to analysis typical planet hosts (FGKM
stars) currently works best for the FGK dwarf stars compared to M dwarf stars. To illustrate this
the median errors on the atmospheric parameters can be seen in Table 1.1. The parameters are from
SWEET-Cat, and for the FGK stars only parameters analysed by the Porto group are presented. It
is important to note that there are 138 M stars while there are 538 FGK stars (after only using stars
analysed here). More details on SWEET-Cat will follow in Chapter 5.

Table 1.1: The median precision errors on the stellar atmospheric parameters for FGK planet hosts and
M planet hosts as taken from SWEET-Cat.

Atmospheric parameter FGK M
Teff [K] 44 60
log g[cgs] 0.090 0.04
[Fe /H ] 0.035 0.10

The detailed characteristics of M dwarfs are currently a problem, however, with the advance of
NIR spectrographs this is slowly changing. It is general believed that a NIR analysis is needed to
characterise M stars. The reason is simple that these stars are so intrinsic faint, that it is important to
collect as much flux as possible. This happens in the NIR. Since M stars are intrinsically faint in the
visible, it is advantageous to use NIR spectrographs where M stars emit most of their light. Moreover,
for spectroscopic studies, the optical spectrum of these stars are severely contaminated by molecular
absorption lines, which depress the continuum. It is crucial to get the continuum placement correct
during spectroscopic studies. In the NIR the continuum depression is less severe, however still challenging.
This can clearly be seen in Figure 1.8 where the optical and NIR part of the spectrum for HD 79210, a
K7 dwarf star9, is plotted. The spectra were obtained by CARMENES simultaneously and have therefore
the same exposure time. During a spectroscopic analysis, which will be the applied method in this thesis,
it is important to observe isolated absorption lines. The more contaminated and blended a absorption
line is, will result in more uncertain results at the end of the analysis. This will be described in detail in
Section 3.2.2. In Figure 1.8 it is clear that the NIR spectrum is far less contaminated by absorption lines.

The main goal of this thesis is to work towards a consistent derivation of stellar atmospheric parameters
for M stars in NIR. Before tackling the M stars, it is important to have a method that work well for
solar-like stars (FGK), which are better known during countless studies.

9 Note that there are very little difference between a K7V and M0V. For the latter case, the situation raised in Figure 1.8
will be more clear.
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Figure 1.8: Comparison between an optical and NIR part of the spectrum of HD 79210 obtained by
the CARMENES spectrograph. This clearly illustrate why NIR spectra are preferred over optical spectra
for cool stars, where absorption lines are less blended. HD 79210 is a K7 dwarf star.
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1.2.1 Star-planet correlations

While the stellar parameters are used to determine the planetary parameters, they can also be used to
reveal correlations between planets and their host stars. This might give insight in the formation and
evolution of the planets. Indeed, several important correlations have been found already.

Giant planet and metallicity correlation Since the first discoveries of exoplanets, it became evident
that giant planets were systematically orbiting more metal-rich stars compared to stars with no planets.
This correlation have been confirmed by several studies (Gonzalez, 1997; Santos et al., 2004; Fischer and
Valenti, 2005; Sousa et al., 2008; Mortier et al., 2013b) and can be seen in Figure 1.9 using the data from
Sousa et al. (2008). This correlation in turn establish that core accretion is likely the main formation
mechanism among giant exoplanets (Pollack et al., 1996; Ida and Lin, 2004; Mordasini et al., 2012) and
not disc instability (Boss, 2002).
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2.0
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Figure 1.9: Metallicity correlation for giant planets, comparing planet hosts and non host stars from
the sample of Sousa et al. (2008). It is clear that planet host stars have higher metallicities than non
hosting stars. The histograms are normalised.

It is important to note that recent studies find this correlation for Neptune-like and super-Earth
planets as well (Adibekyan et al., 2012a; Wang and Fischer, 2015; Zhu et al., 2016) even if a debate exists
(Sousa et al., 2011; Buchhave et al., 2012).
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It has been shown that metal-poor stars harbouring gas planets are enhanced in alpha elements10

(see e.g. Adibekyan et al., 2012a). This means that other elements than iron also have a role to play in
planet formation in iron-poor environments.

Lithium and the presence of planets It has been shown by Israelian et al. (2004); Delgado Mena
et al. (2014); Figueira et al. (2014a); Gonzalez (2015); Takeda and Kawanomoto (2005) that stars hosting
planets are significantly more Li depleted compared to stars without planets. This correlation seems to
be physically related with the occurrence of planets and not e.g. age, mass, or metallicity of the stars
(Sousa et al., 2010). Other studies does not find any correlation between Li depletion and stars with
planets (Baumann et al., 2010; Ramírez et al., 2012).

1.3 Applications from knowing the stars

While “know the star, to know the exoplanet” is the main motivation behind this thesis, it is obviously not
the only application behind detailed stellar characterisation. Working towards a better understanding of
especially M stars, which consist of to 70% of all the stars in the Milky Way (Bochanski et al., 2010), will
also open a new window into the study of different galactic components and galactic chemical evolution.
Such a study was done by e.g. Adibekyan et al. (2012b); Delgado Mena et al. (2017) where spectra of
1111 FGK dwarf stars from the HARPS GTO sample was used to derive chemical abundances of 12
refractory elements. It is possible to separate different galactic populations (thin disk, thick disk, and the
halo) by studying the chemical abundances of stars as was shown in Adibekyan et al. (2012b).

In order to do a detailed chemical analysis11, it is crucial to have reliable and homogeneously derived
stellar atmospheric parameters. If the parameters are homogeneously derived, i.e. with the same method,
then errors when comparing populations are minimised and in case of known offsets it is easy to correct
for them (this is the case for the method used throughout this thesis, where the surface gravity will be
corrected based on another method).

1.4 This thesis

This thesis will be focused on deriving stellar atmospheric parameters for FGK stars, making the bridge
towards M stars. This task will be accomplished utilising high resolution and high S/N NIR spectra; a
methodology using a wavelength domain still in its infant stage. The theory of stellar atmospheres in a
nutshell is described in Chapter 2, setting up all the tools to derived them as described in Chapter 3. In
Chapter 3 the description of other useful and commonly used methods for deriving parameters are also
presented. Thereafter the knowledge will all be used in Chapter 4. First by obtaining a NIR line list
containing Fe i and Fe ii lines, then by the derivation of parameters for HD 20010 (F sub-giant). Before
deriving parameters for two K giants, the NIR line list will be revisited.

After focusing on the NIR spectra, the optical counterpart of the method described below will be
used to derive parameters for 50 planet-host stars for an online catalogue of homogeneously derived
parameters (SWEET-Cat) in Chapter 5.

10 These are elements formed by fusion of a helium core; C, N, O, Ne, Mg, Si, S, Ar, Ca, and Ti.
11 See also references within Adibekyan et al. (2012b) for other similar studies.
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Last in Chapter 6 the future of the work established here will be discussed along with the results
already obtained. This will round of the thesis.

After the last chapter there will be a few appendices with large tables that would otherwise distract
the reader from the main points. One appendix, Chapter C, will be on derivation of stellar atmospheric
parameters using machine learning, which was a side project during the thesis. This appendices are
followed by the bibliography for this thesis.



Chapter 2
Theory of stellar spectroscopy in a nutshell

“Begin at the beginning,” the King said, very
gravely, “and go on till you come to the end:
then stop.”

Lewis Carroll, Alice in Wonderland

To encompass all theory regarding stellar atmospheres is far beyond the scope of this thesis. Rather
the theory needed is presented below with highlights on the most important aspects.

2.1 Stellar atmosphere

Much of this Section is inspired by Gray (2005). While all the figures here were made by the author of
this thesis, most of them can be found in Gray (2005) as well.

Stellar atmospheres are rather complex. This is where the energy produced in the interior of the stars
is released. However, the atmosphere of a star is not completely transparent to all light, and some of
the light is absorbed or scattered in the atmosphere. In the case of absorption the light will later be
emitted in a random direction. This is seen as an absorption line in the stellar spectrum. The different
elements in the atmosphere is the reason for absorbing light at specific wavelength. The strength of
the absorption depends on the physical conditions in the atmosphere, the effective temperature (Teff),
the pressure/gravity (log g), the chemical abundances, and the atomic characteristics of the transition
making the absorption line.

The strength of a line depends on the fraction of atoms excited to the nth energy level, Nn, on which
the electron that produces the absorption is. This fraction is proportional to the statistical weight gn
and the Boltzmann factor and is described as:

Nn
N

= gn
u(T )10−θχn Boltzmann

This equation is also called the Boltzmann equation. Here N is the total number of atoms per unit
volume, u(T ) = Σgie−χi/kT is the partition function, k is Boltzmann’s constant, T is the temperature,
and χn is the excitation potential for the lower energy level.

While atoms can get excited following Boltzmann’s equation above, they can also get ionized. The

19
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ionization ratio for a collision dominated gas (which is a good approximation for FGKM stars, when
assuming Local Thermodynamic Equilibrium, LTE1) is described by the Saha equation. This equation
relate the ratio of atoms in state r to atoms in the excited state above for the same element, r+ 1, in the
following way:

Nr+1

Nr
= 1
Pe

(2πme)3/2(kT )5/2

h3
2ur+1(T )
ur(T ) e−I/kT = Φ(T )

Pe
Saha

here me is the electron mass, h is Planck’s constant, I is the ionization potential of the neutral atom,
and Φ(T ) is all not related to the electron pressure, Pe.

The atomic lines are characterised by a few quantum mechanical descriptors.

• The wavelength, λ, of an absorption (or emission) describes the energy difference between the
two energy levels where the transition occurs.

• The ionization state, e.g. Fe i describes iron in its atomic form, while Fe ii describes iron in its
first ionized form.

• The excitation potential, χ, is the excitation energy level of the lower state in the transition.
A atomic line with a high χ is formed in the deeper layers of the atmosphere, since the higher
temperatures there can excite the element. This is compared to the atomic lines with lower χ which
are formed higher in the atmosphere at lower temperatures.

• The oscillator strength, log gf , is related to the atomic transition probability.

• The damping coefficients, Γ, is a natural damping (also known as radiation damping) caused
by the uncertainty of lifetime in an energy level according to Heisenberg’s uncertainty principle.
This is related to a uncertainty in the energy level and thus a natural broadening is introduced.

These are essential to know from either theoretical calculations or experiments. The oscillator strength
is a quantity that is difficult to measure, and these values are often changed when absorption lines are
matched with real observations of e.g. the Sun. This is a way of calibrating a line list and will be
described in detail in Section 4.1.

It is important to mention that one of the main differences between absorption lines at different
wavelengths is the excitation potential. The energy levels of an atom gets denser packed as the energy level
increase as shown in Figure 2.1 for hydrogen. For hydrogen the energy levels En follow the very simple
formula from Bohr’s atomic model, En = −13.6 eV

n2 , where n is the principal quantum number, and 13.6 eV
is the ionization energy for hydrogen, i.e. the minimum amount of energy required to ionize hydrogen.
The energy levels for heavier atoms show a similar structure. The outer electron for a multi-electron
atom is partially shielded from the nucleus by the inner electrons, and thus does not experience the full
charge Z but rather an effective charge Zeff , giving the expression

En = −hcR∞
Z2

eff
n2 , (2.1)

where h is Planck’s constant, c is the speed of light, and R∞ is Rydberg’s constant.
1 LTE is obtained in stellar atmospheres, when the length scale at which temperatures are changing are larger than the

mean free path. This is a good approximation for dwarf stars, where the mean free path is small, compared to the
larger mean free path in evolved stars, where LTE is no longer a good assumption.
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With increasing n the energy levels get closer, or in other words the photon required to excite an
electron from one energy level to a neighbouring state will get redder. These redder photons used for
exciting an atom are the absorption lines seen in the NIR. However, the excitation to the lower state is
related to the temperature and pressure according the Boltzmann and Saha equations. Since tight energy
levels require a highly excited lower state, the temperature required here are similar high, which means
that the NIR lines are typically formed in the deeper layers of the atmosphere compared to absorption
lines seen in the optical part of the spectrum.
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Figure 2.1: Energy levels for hydrogen, En = −13.6 eV
n2 .

The above discussed energy transitions are purely electronic, however there exists so called fine
structure transitions as well. This is due to the spin of the electron (or magnetic moment) interacting with
the orbital angular momentum of the electron. This leads to a splitting of the absorption line. In atoms
there also exists an even finer structure, commonly known as the hyperfine structure. This structure
arise due to the interaction between the magnetic field created by the electrons and the nuclear spin.
These splittings are important to consider for some transitions and some atoms. For Fe the hyperfine
structure is not important since the net nuclear spin of protons is 0 because there is an even number of
protons, hence hyperfine structure is only important for atoms with an odd number of protons. There
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are other splitting and shift for spectral absorption lines like the Zeeman splitting coursed by an external
magnetic field, and the Stark effect splitting a line due to an external electric field. These two last effect
are minor and will not be discussed more, however it is worth noting that the Zeeman splitting can be
used to measure the strength of a magnetic field in a star if this is strong enough.

2.1.1 Atmosphere models

In order to derive abundances or calculate a synthetic spectrum, two main things are needed: 1) An
atmosphere model, and 2) a radiative transfer code that solves the equations above. There are different
atmosphere models available. Throughout this thesis the ATLAS9 model atmosphere are used (Kurucz,
1993). Other atmosphere models includes MARCS models (Gustafsson et al., 2008) and the PHOENIX
models (Husser et al., 2013). An atmosphere model is a description of the structure of the atmosphere.
This description has a number of quantities. The Kurucz atmosphere model grids that are available and
used here have 72 layers. Each layer includes physical quantities such as temperature, gas and electron
pressure, and the optical depth. The models can be calculated on the fly, but it is common practise
because of computational reasons to pre-calculate a grid of atmosphere models at certain Teff , log g,
and [Fe /H ]. A specific atmosphere model is then obtained from this grid by interpolating from nearest
neighbours. The interpolation code used throughout this work includes the four nearest neighbours in the
Teff-space, and the two nearest neighbours in both the log g- and [Fe /H ]-space, in total 4× 2× 2 = 16
atmosphere models to generate a single interpolated atmosphere model.

2.1.2 Radiative transfer code - MOOG

There exists many different codes that solves the radiative transfer equations. In this thesis the MOOG2

code is used by Sneden (1973) which assumes LTE. This code has different drivers, only some are used
here.

• Derive a theoretical equivalent width (see Section 2.1.3 for details) for a given star, i.e. atmosphere
model with a given set of atmospheric parameters.

• Derive line abundance from a measured equivalent width for a given model atmosphere.

• Calculate a synthetic spectrum for a given model atmosphere and atomic line list.

• Calculate the curve-of-growth for an atomic line.

There exists other drivers as well, but these are the ones used here. Some only for visualising the figures
below.

2.1.3 The equivalent width

Measuring the equivalent width (EW) of spectral lines are important for some analysis of stellar spectra.
The EW is a measure of the strength of the line, and dependent on the atmospheric conditions in where
the spectral line is formed, such as Teff , log g, [Fe /H ], and ξmicro.

2 http://www.as.utexas.edu/~chris/moog.html

http://www.as.utexas.edu/~chris/moog.html
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Figure 2.2: An absorption line centred at λ0 normalised at the flux level Fc. The area of the absorption
line to the left is equal to the blue shaded area in the rectangle to the right with width EW.

The EW is mathematically described as integrating over the entire line, and assign this area to
a rectangle from 0 to the normalised continuum flux (Fc) with the width, EW. This is illustrated in
Figure 2.2 and the equation below:

EW =
∫ ∞

0

Fc − F (λ)
Fc

dλ, (2.2)

where λ is the wavelength. In the integral above it is assumed that there is only one single line, hence the
integral is over all wavelength. In practice the integral is calculated in small windows around a spectral
line. See Section 3.2.2.2 for more details on how this is performed in practice. The unit of the EW is
the same as the wavelength used. Throughout this thesis we will use Ångström (1Å = 0.1 nm) for the
wavelength, and mÅ for the EW.

2.1.3.1 Temperature dependence

As mentioned above, the theory presented here is the bare minimum. For the full derivations of the
equations presented below see Chapter 13 in Gray (2005).

As mentioned above the EW depends on the atmospheric parameters. At low Teff neutral elements,
say Fe i, are the strongest lines as the number of ionized atoms are too small to contribute significantly to
the EW. This is the result the Saha equation. As Teff increases Fe i is converted into ionized Fe ii. Slowly,
as the number of Fe i decreases so does the EW, and likewise as the number of Fe ii increases so does
the EW. This goes on until second ionized atoms, Fe iii, are formed and the same situation arise again.
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This is illustrated in Figure 2.3 where the EW of two iron lines, one neutral and one ionized, are plotted
against Teff . These two lines have similar EW in the Sun: 46.2 mÅ and 53.9 mÅ for the Fe i and Fe ii line
respectively.

This can be explained with four simple cases:

Case 1 Weak line of a neutral species (e.g Fe i) with the element mostly neutral

Case 2 Weak line of a neutral species with the element mostly ionized

Case 3 Weak line of an ion species (e.g Fe ii) with the element mostly neutral

Case 4 Weak line of an ion species with the element mostly ionized

The behaviour of the line strength R is shown in the equations below for the four different cases

1
R

dR
dT = 2.5

T
+ χ+ 0.75

kT 2 − Ω Case 1

1
R

dR
dT = χ+ 0.75− I

kT 2 Case 2

1
R

dR
dT = 5

T
+ χ+ 0.75 + I

kT 2 − 2Ω Case 3

1
R

dR
dT = 2.5

T
+ χ+ 0.75

kT 2 − Ω, Case 4

where χ is the excitation potential, I is the ionization energy, and Ω can be considered a constant as it
mildly depends on pressure. The four cases are also shown in Figure 2.3.

2.1.3.2 Pressure dependence

Pressure dependence in the stellar atmosphere can be related to the gravity dependence. There are
many ways to measure the pressure, and thus the gravity which is what is ultimately the goal with
the measurement of log g. Below are listed some of the most common methods to measure log g from
spectroscopy.

• Continuum: The Balmer jump is the only continuum feature sensitive enough to estimate the log g.

• Hydrogen lines: Hydrogen profiles are pressure and temperature sensitive and can therefore be
used to estimate log g. However, the gravity dependence rapidly diminishes for temperatures above
10 000 K.

• Other strong lines: There exists other strong lines with pressure-broadened wings such as the Ca ii
H and K lines. These are better for cooler stars than the hydrogen lines described above.

• Weak lines: By comparing two stages of ionization for the same element it is possible to obtain
log g using weaker or modestly strong lines.

In this thesis weak lines are used to measure log g. More specifically a comparison between Fe i and Fe ii
lines are used. For FGK stars, as the atmosphere contracts (i.e. log g increases) the pressure likewise
increases, which in turn means that both the gas pressure, Pg, and electron pressure, Pe, increases.
However, the electron pressure is much smaller than the gas pressure because hydrogen, as the main
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Figure 2.3: The EW for a Fe i and Fe ii line with increasing Teff . The two lines have similar EW in the
Sun and are found in the optical part of the spectrum. The vertical line show the solar Teff .

electron contributor, is not fully ionized. The gas pressure follow a simply empirical approximation with
gravity:

Pg ≈ constant g2/3, (2.3)

where g is the gravity. The electron pressure is in turn given by

Pe ≈ constant g1/3. (2.4)

There are three cases for which a line show dependence on gravity, when considering only weak lines:

1. A weak line formed by any ion or atom, where most of the element is in the next higher ionized
state.

2. A weak line formed by any ion or atom, where most of the element is in the same ionized state.

3. A weak line formed by any ion, where most of the element is in the next lower ionized state.

Using the Saha Equation for case 1, it is important to note that the number of the atoms in the
highest state is roughly equal to the total number of atoms of that element, Nr+1 ≈ N . Hence

Nr ≈ constant Pe (2.5)
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which means that the line absorption coefficient is

lν ≈ constant Nr ≈ constant Pe. (2.6)

The strength of a weak line, R, is proportional to the ratio of the line to the continuous absorption
coefficient, κν

R = Fc − Fλ
Fc

= constant lν
κν
. (2.7)

When negative hydrogen dominates κν which is the case here it is proportional to the electron pressure,
κν ∝ Pe which means the line strength is not proportional to electron pressure:

R = lν
κν
≈ constant. (2.8)

For case 2, the approach is the same, here Nr ≈ Nr+1 ≈ N = constant. This leads to lν ≈ constant,
eventually giving

R = lν
κν
≈ constant

Pe
≈ constant g−1/3. (2.9)

Only the first two cases are relevant for solar-type stars used in this thesis, and the relation for the third
case will be omitted.

In Figure 2.4 is shown how the Fe ii line used previously change with log g. The curve of growth is
shown in the upper panel, while a synthetic spectrum for each log g is presented in the lower left panel. It
is clear that the ionized line is sensitive to log g as shown in the lower right panel, where the correlation
between the abundance and log g is 0.40. This is expected as can be seen in Gray (2005, Table 16.1).
There is used δ logA/δ log g as an indicator, and for neutral elements the correlation is much weaker. It
is important to note that the correlation does change with Teff and the element used.

2.1.3.3 Abundance dependence

The abundance of a given element obviously has an effect on the EW. The more abundant an element
is, the more photons can be absorbed thus increasing the EW. However, the relationship is not strictly
linear. For weak lines (see Figure 2.5) EW is approximately linear with the abundance, however it reach
a plateau where the core of the line saturates. In this regime the EW only increases slowly, until the
absorption “spills” into the wings and the increase is again linear. However, for these strong lines the
profile is no longer Gaussian. The curve of growth for the same Fe i line used in Figure 2.3 is shown in
Figure 2.5. Instead of EW it is common to use the reduced EW, log(EW/λ)3, which we will use more
later.

2.1.3.4 Microturbulence

Small-scale motion, that is motion of material at length scales small compared to the unit optical depth,
are called microturbulence, ξmicro. This is not to be confused with macroturbulence, which is motion
of material at scales larger than the unit optical depth. The latter is associated with granulation and
3 The reduced EW is useful since it normalises Doppler-dependent phenomena, such as microturbulence and thermal

broadening.
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Figure 2.4: Upper panel: Curve of growth for same Fe ii used in Figure 2.3 for four different log g values.
Here it is the weak lines mostly affected by the change in log g. Lower left panel: Synthetic spectra of
the same line. The colour scale is the same. Lower right: The abundance for the line at different log g. A
strong correlation (0.40) is seen.
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will not be discussed further in this thesis. ξmicro comes into play when looking at the curve of growth
for saturated lines (i.e. between green and red points in Figure 2.5). If no ξmicro is assumed, then the
measured abundance is higher than predicted by models based on thermal and damping broadening
alone. In Figure 2.6 is shown three curves of growth with ξmicro = 0.5 km/s, 2.5 km/s, 5.0 km/s. As ξmicro

increases, so does the EW and hence the abundance.
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Figure 2.6: Curve of growth for three different values of ξmicro. The EW is increasing with increasing
ξmicro.

The broadening of an absorption line measured by the shift in wavelength, ∆λ, when ξmicro is included
is defined as:

∆λ = λ0

c

√
2kT
m

+ ξ2
micro, (2.10)

where c is the speed of light, λ0 is the rest wavelength of the given line, k is Boltzmann’s constant, T
is the temperature, and m is the mass of the atom. Setting ξmicro = 0 km/s, we end up with thermal
broadening.



Chapter 3
Deriving stellar parameters

The best way to learn is by doing. The only
way to build a strong work ethic is getting
your hands dirty.

Alex Spanos

There are different methods for obtaining stellar atmospheric parameters. Here follows a short
description of some of the most common methods, however the spectroscopic method will be explained in
much greater detail later in this chapter.

3.1 Photometry

Photometry can be used in different ways to estimate the effective temperature. In this section two
methods will be mentioned; a colour calibration, and asteroseismology. There are other methods, e.g.
SED fitting but this will not be discussed further.

3.1.1 InfraRed Flux Method - IRFM

The InfraRed Flux Method (IRFM) was first described by Blackwell and Shallis (1977). From IRFM it is
possible to measure the stellar radius and Teff with a measurement of the angular diameter, θ, derived
from infrared photometry. Teff is derived from the angular diameter from the simple relation

σT 4
eff = 4FE

θ2 , (3.1)

where FE is the monochromatic flux measured at Earth, and σ is Boltzmann’s constant. The angular
diameter is calculated from the following equation:

θ = 2
√
FE/FS , (3.2)

where FS is the calculated monochromatic flux from the star. This flux is based on a model atmosphere
with an effective temperature based on the spectral energy distribution (SED). The calculated flux show
a strong dependence on Teff in the visible, however this dependence is much weaker in the infrared. Hence

30
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a poor first estimation of Teff will lead to a reliable angular diameter. From this new angular diameter
Teff can be re-derived, a new model atmosphere can be used with a new set of FS can be calculated.
Iteratively the angular diameter and Teff can be calculated. If the distance d is known of the star, the
stellar radius is R∗ = θd

2 . The solar flux, both measured and calculated, from Blackwell and Shallis
(1977) are shown in Figure 3.1. Using the data provided the solar radius and Teff were derived using the
equations above: R = 1.011R� and Teff = 5963 K. This was simply done for each wavelength, and the
results presented here are just a simple average value.
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Figure 3.1: Measured and calculated flux from the Sun at infrared wavelengths. Data from Table 2 in
Blackwell and Shallis (1977). Mean solar radius from this data is 1.011R�, and mean solar Teff = 5963 K
using Equation 3.3.

The main drawbacks of the IRFM is the model dependence, a drawback many methods share, and
the need of high precision infrared photometry. For the model atmosphere a metallicity and surface
gravity is assumed which has an effect on FS , and hence on the final derived Teff and R. A more in-depth
description of the IRFM can be see in e.g. Casagrande et al. (2006, section 4).

3.1.2 Teff-colour-[Fe /H ] calibration

Photometry can be used for deriving Teff using existing colour calibrations like that of for example
Ramírez and Meléndez (2005) where adopted Teff and [Fe /H ] in combination with colours X such as
B − V , V − S, etc. are used to fit a polynomial such that the Teff can easily be estimated with a simple
relation:

θeff = a0 + a1X + a2X
2 + a3X[Fe /H ] + a4[Fe /H ] + a5[Fe /H ]2, (3.3)
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where θeff = 5040/Teff . A polynomial fit was performed on the residuals in order to deal with spectroscopic
features such as the Balmer lines, the Paschen jump, etc. This polynomial fit, P (X, [Fe /H ]) is added to
Equation 3.3 so the calibration finally reads:

Teff = 5040
θeff

+ P (X, [Fe /H ]), (3.4)

After obtaining the coefficients (ai) for different combinations of colours, it is trivial to obtain Teff if
the metallicity and a colour is known of the star.

3.1.3 Asteroseismology

Asteroseismology is the study of stellar pulsations. For main sequence stars (which will be the only
focus here), these pulsations propagate as sounds waves throughout a star, their origin and amplitude is
determined by the characteristics of the star. Hence the study of the pulsations, which are seen on the
surface, will thus be a study of the stellar properties. In order to to study these a time series is needed.
This can both be radial velocities as it was used in the recent results from the SONG telescope (Grundahl
et al., 2017), or photometry like the numerous results from e.g. the space telescopes CoRoT and Kepler
(see e.g. Christensen-Dalsgaard et al., 2010; Chaplin et al., 2011; Huber et al., 2014). The analysis is
identical for either time series, however the amplitudes in the power spectrum will be different.

After determining the frequencies of a range of pulsations from a power spectrum of the time series,
a pattern emerge at every ∆ν (the so-called large frequency separation). A finer pattern also occur
described by δν. Last the frequency at maximum power is also measured from the power spectrum, νmax.
The frequency at maximum power is used to obtain log g via

νmax ∝
g√
Teff

(3.5)

= M/M�

(R/R�)2
√
Teff/5777

3.05 mHz, (3.6)

where νmax,� = 3.05 mHz is the frequency of maximum amplitude for the Sun. A similar equation exists
for the determination of the stellar density:

∆ν = (M/M�)−1/2(R/R�)−3/2 134.9 µHz. (3.7)

These simple scaling relation are described in detail in Kjeldsen and Bedding (1995) for main sequence
stars. These two equations can be used together to determine the mass and radius of the star, often
to a high precision. These scaling relations are applicable for stars which shows solar-like oscillations,
mostly found in main sequence FGK stars, but can also be found in red giant stars. The mass and
radius for a range of νmax and ∆ν can be seen in Figure 3.2, where Teff = 5777 K. The star located at
{∆ν = 134.9 µHz; νmax = 3.05 mHz} is the Sun.

The small frequency separation, δν, is sensitive to the sound-speed gradient in the core which in turn
is sensitive to the composition. Thus the small frequency separation is a very important diagnostic for
stellar evolution. An interesting case is that of Bedding et al. (2011), where it was shown it is possible to
distinguish between hydrogen- and helium-burning cores in red giant stars.

A drawback of asteroseismology is the dependence of Teff in Equation 3.6 which has to be provided
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Figure 3.2: Mass and radius from asteroseismic scaling relation. The colour is the mass and radius for
the upper and lower panel, respectively. The location of the Sun is added for reference.

from another method. Ideally this will come from spectroscopy for which the determination of Teff is
often reliable. This drawback is minor compared to the weak model dependence which is one of the
strongest advantages of asteroseismology.

For both of the mentioned photometric methods to determine some atmospheric parameters a
disadvantage is the dependence on the knowledge of other atmospheric parameters which usually comes
from spectroscopy (e.g. metallicity). However, as will be discussed in Section 3.2 log g is often difficult to
determine reliably and synergies are welcomed between different methods.

3.2 Spectroscopy

A spectrum can be analysed with a range of different methods. The method finally chosen depend on
quality of the spectrum, i.e. high/low resolution and high/low S/N, the spectral type of the star, the
region that was observed, e.g. UV, optical, NIR, etc., some stellar properties, e.g. fast-rotator, activity,
etc. In practise, no methods work for all cases, but sometime several methods can be used for on case.

Since this thesis is focused on FGKM stars, and mainly dwarfs, three methods will be described;
synthesis, spectral indices, and the EW method. The latter method will be described in a separate section
since this is the main method used for the analysis in this thesis.
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3.2.1 Synthesis

The synthesis fitting method is a standard method for obtaining stellar atmospheric parameters from a
wide range of spectra, that is with different spectral resolution, spectral parameters such as Teff , log g,
v sin i the projected rotational velocity, etc., and S/N (see e.g. Tsantaki et al., 2017). The synthetic
fitting method is in simple terms a comparison between the observed spectrum and a synthetic spectrum,
which is either calculated on the fly like Spectroscopy Made Easy (SME) (Valenti and Piskunov, 1996),
or using a pre-calculated grid like Starfish (Czekala et al., 2015). By analysing the

χ2 =
N∑
i

(yobs,i − ymodel,i)2

σi
, (3.8)

the synthetic spectrum that best match the observed spectrum can be found. Here the yobs is the observed
spectrum, ymodel is the synthetic spectrum, and σ is the error on the measurement.

The synthetic fitting can be done by utilising small windows around sensitive spectral features such
as ionized lines or hydrogen lines for obtaining the surface gravity, iron lines for obtaining the effective
temperature, a series of different atomic lines for obtaining the overall metallicity. This approach is used
by SME and FASMA (Valenti and Piskunov, 1996; Tsantaki et al., 2017, respectively) and is a compromise
between fitting the entire spectral range and calculating the synthetic spectra on the fly which is time
consuming. On the other hand the entire spectrum can be fitted if a pre-calculated grid of synthetic
spectra are available. By masking small windows, one can also exclude different features that are
troublesome, this can be telluric lines, bad reduction of the spectra, or real spectral features where there
currently is poor atomic/molecular data such as the oscillator strength and thus it is not possible to
reliably fit this feature.

This method is affected by the different approaches one can use, that is which atmosphere models are
used (ATLAS, MARCS, etc.), atomic data and whether this has been calibrated, the radiative transfer
code in the case the synthetic spectra are calculated on the fly, and the minimization procedure chosen.
With these things in mind it is important to stress the wide range spectra and spectral classes this
method works with.

The advantage of the synthetic fitting method over the curve-of-growth analysis (see Section 3.2.2) is
that it allows for the analysis of lower resolution and with a higher rotational velocity, v sin i.

3.2.2 The EW method and FASMA

The EW method or curve-of-growth analysis is another standard method for obtaining stellar atmospheric
parameters from spectra as the synthetic fitting method (Section 3.2.1). Since this is the method used
throughout this thesis it will be explained in detail. This analysis follow a chain of tasks, each has been
made automatic in the software “Fast Analysis of Spectra Made Automatically" (FASMA1) which was
developed during this thesis (Andreasen et al., 2017b). FASMA is made of three drivers:

1. EW measurement driver

2. Obtain stellar atmospheric parameters driver

3. Abundance driver
1 Greek for spectrum
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An additional driver is under development; a synthetic fitting driver (Tsantaki et al., 2017). FASMA has
been made available to the community via a web application at http://www.iastro.pt/fasma/.

3.2.2.1 Ingredients

FASMA is written in the Python programming language and glue together other software and model
atmospheres necessary for obtaining stellar atmospheric parameters from high quality spectra. These
software and models are described in greater detail in the following sections. In short, the curve-of-growth
analysis require measured EWs where the latest version2 of ARES is used (Sousa et al., 2015). These EWs
are used to derive line abundances using model atmosphere like the ATLAS9 (Kurucz, 1993), MARCS
models (Gustafsson et al., 2008), or PHOENIX models3 (Husser et al., 2013) to mention the most popular
for this analysis. Note that the PHOENIX models are relative new and not as widely used yet. In tandem
with model atmospheres a radiative transfer code is also needed. FASMA uses MOOG (Sneden, 1973) for
this. The model atmosphere usually comes in a pre-calculated grid in the {Teff , log g, [Fe /H ]} parameter
space. These are interpolated in order to access the requested combination of parameters. Last, FASMA

consist of a minimization routine which looks for the best matching parameters given a spectrum.

3.2.2.2 Wrapper for ARES

There are two ways to measure the EW of an absorption line, “manually” or automatically. There are
advantages and disadvantages for both approaches: For the manual, an advantage is that we can inspect
the lines and try to measure lines in different ways (which is useful if a absorption line is blended). We
have more control over how blended lines are fitted, and which profiles are used. Disadvantages are that it
is very time consuming, and it is prone to errors, as a measurement might change drastically by the eyes
measuring it. Even for the same person, the measurement can change. By mentioning the advantages
and disadvantages of the manual method, it should be clear that the advantages and disadvantages of
the automatic method is the opposite of those. Especially the time to measure the lines are orders of
magnitudes faster, which is crucial when dealing with more than a handful of spectra. However, most
important is the fact that the EWs of the lines are measured consistently throughout the entire spectral
range, allowing a homogeneous analysis of the lines.

When a line is measurement by hand (manually) it is in this thesis done using the splot command in
IRAF. Here the deblending mode is used whenever necessary. It is often necessary to fit one spectral lines
with several Gaussians, as neighbouring lines might contaminate the line of interest.

Throughout this thesis line EWs are automatically measured with ARES (Sousa et al., 2007, 2015).
When using ARES it is important to use a correct value of the rejt parameter. This parameter is used for
placing the continuum level, and is thus directly related to the final measurement EW. It is difficult to
get this parameter right, however the newest version of ARES has the option to analyse a few absorption
free regions and measure the S/N. The rejt is then calculated as:

rejt = 1− 1
S/N .

ARES is used via the first driver of FASMA. All the options available for ARES can be accessed by FASMA.
The options are
2 The latest version can be found here: https://github.com/sousasag/ARES
3 The PHOENIX models are currently not a part of FASMA, however it is planned to implement these models with MOOG.

http://www.iastro.pt/fasma/
https://github.com/sousasag/ARES
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• Setting the spectral window, λmin and λmax

• RV correction to be applied or a mask to measure the RV and automatic make this correction

• Minimum and maximum EW to be considered (5 mÅ and 150 mÅ respectively by default)

• Minimum acceptable distance between two consecutive lines

• Smoothing applied with a boxcar filter before measuring the EWs. This is only for automatic line
identification.

An in-depth description of these options can be found in Sousa et al. (2007, 2015).
Rarely ARES crash when measuring an absorption line. The reason is not clear, however when dealing

with a large amount of spectra, it is important that the analysis moves on. However, a closer inspection
usually reveal strange spectral features such as zero flux, sharp peaks in the spectra, etc. To deal with
this problem, FASMA finds the last line which ARES tried to measure in the log file. This line is temporarily
removed from the line list and ARES is restarted. The line list used for deriving parameters consists of
numerous iron lines, thus removing one line will have a negligible effect on the final derived parameters.

3.2.2.3 Interpolation of atmosphere models

FASMA has access to both ATLAS9 models by Kurucz (1993) and MARCS models by Gustafsson
et al. (2008), both are in a pre-calculated grid as described above. Let this grid be described by
{Teff,g, log gg, [Fe /H ]g}, where subscript g is one of the grid points. Such a grid can be seen in Figure 3.3
for [Fe /H ] = 0.00 in the Teff range; 3000 K to 10 000 K. For visualisation the location of the Sun is shown
as well. The colour scale corresponds to the temperature in the first layer of each model atmosphere, i.e.
the uppermost layer. The requested value will be {Teff,r, log gr, [Fe /H ]r}. The task is now to find the
surrounding grid points in the parameter space of the requested parameters. For log g and [Fe /H ] two
neighbouring grid point are used, and for Teff four surrounding grid point are used, in total 4× 2× 2 = 16
model atmospheres for the interpolation. FASMA use the four surrounding grid points for Teff instead of
two, since the model atmosphere changes most with Teff . This is common in other interpolations as well
(see e.g. Valenti and Piskunov, 1996).

When the 16 model atmosphere have been located, the interpolation goes through each layer of the
model atmosphere, where there typical are 72 layers, and each column of which there are six. The
columns are described in Section 2.1.1. The interpolation are done using the griddata function from
SciPy4. The interpolation is linear in the parameter space. After the interpolation, the result is saved to
a file in the format expected by MOOG.

3.2.2.4 Minimization

With the measured EWs for all the lines in the line list, we choose an atmosphere model to determine
the abundances. If there is no prior knowledge of the star it is common simply to choose an atmosphere
model with solar parameters as a starting point. Once the line abundances of all the iron lines has been
determined, the linear correlation between the abundances and the reduced EWs (RW) aRW, and the
abundances and the excitation potential aEP is calculated. If there is a correlation it means the model
atmosphere used is wrong. Moreover, we also have to check if the mean abundance of Fe i and Fe ii lines
4 https://scipy.org/

https://scipy.org/
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Figure 3.3: Model atmosphere grid from Kurucz (1993) at [Fe /H ] = 0.00 between 3000 K and 10 000 K.
The grid extends to higher Teff , but these are not considered in this thesis.

are equal, and last if mean abundance of the Fe i lines is equal to the input [M /H ] of the atmosphere
model5. If one of these four criteria does not pass, then the atmosphere model is wrong, and we have to
search for a new one. A common way to do this, is by combining the indicators into a scalar value:

f({Teff , log g, [Fe /H ], ξmicro}) =
√
a2

EP + a2
RW + ∆Fe 2, (3.9)

where aEP is the correlation between abundances and excitation potential, aRW is the correlation between
abundances and RW, and ∆Fe is the difference between the mean abundances of Fe i and Fe ii. This
scalar function can be minimized using standard minimization procedures as the simplex downhill among
others. However, there is another approach that takes into the account the information stored in these
indicators. For example, if aEP is positive it means Teff has to be increased by an amount correlated
by the numerical value of aEP. In the same way, a non-zero aRW means ξmicro has to be changed, and
∆Fe is an indicator for log g. In the end it is a vector function being minimized which are more difficult,
however we are not minimizing this using standard mathematical methods, but rather using the physical
knowledge. This minimization is useless for anything else, but it is excellent for this. The vector function
has the form:

f({Teff , log g, [Fe /H ], ξmicro}) = {aEP, aRW,∆Fe ,Fe i}. (3.10)

The abundances of Fe i lines versus EP and RW are shown in Figure 3.4 for the planet host star
5 We use Fe i instead of Fe ii lines for this, since they are more numerous.
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HATS-1. The three rows are for three different model atmospheres. From upper to lower:

• Converged: Teff = 5959 K, log g = 4.59, [Fe /H ] = −0.04, and ξmicro = 1.05 km/s.

• Converged with 0.5 km/s added to ξmicro.

• Converged with 500 K added to Teff .

Left column show the abundances against the EP, and the right column is abundances against RW.
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Figure 3.4: The abundances of Fe i for the planet host star: HATS-1. Upper plot: Converged parameters
(see text for stellar parameters for this star). Middle plot: Converged parameters with 0.5 km/s added to
ξmicro. Lower plot: Converged parameters with 500 K added to Teff .

Option: outliers - The minimization with the different options is depicted in Figure 3.6. In each
iteration where convergence is not reached, the input metallicity is changed to that of the average output
metallicity using the Fe i lines. FASMA is able to set one or all of the four atmospheric parameters to a
fixed value, and when it reach convergence it checks if there are any outliers in the abundances. These
outliers are likely to come from a bad measurement of the EW of the given line. This can be due to line
blending or a poor spectral reduction. These can be removed, either:
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• All outliers above 3σ once; minimization routine is restarted after removal of outliers.

• All outliers above 3σ iteratively; minimization routine is restarted after removal of outliers each
time.

• One outlier above 3σ (with the highest deviation) is removed iteratively; minimization routine is
restarted after removal of outliers each time.

It is optional to remove any outliers, but recommended.
All restarts of the minimization will start at the previous best found parameters. For the latter two

where outliers are removed iteratively, this will continue until no outliers are present. An optical line list
like the ones by Sousa et al. (2008); Tsantaki et al. (2013) have been tested thoroughly and due to the
large amount of lines it is safe to remove a larger amount of lines and still obtain reliable parameters, thus
using the first option is common here. However, with a less tested line list, like the one by Andreasen
et al. (2016) (and refined in Andreasen et al. (2017a)), one should remove outliers more carefully, and it
is recommended that one outlier is removed iteratively.

Option: fix ξmicro - Sometimes the minimization can not reach convergence with all parameters free.
The first approach to progress is to fix ξmicro to a value. This parameter is known to depend on the
spectral type (see e.g. Tsantaki et al., 2013, and references therein). This is also shown in Figure 3.5
for a sample of 583 stars analysed with FASMA. FASMA use one of two empirical relations to fix ξmicro if
this is close to either 0km/s or 5km/s and |aRW| > 0.050 at the end of the minimization. The empirical
relations are:

ξmicro =

6.935 · 10−4 Tteff − 0.348 log g − 1.437 For log g ≥ 3.95

2.72− 0.457 log g + 0.072 · [Fe /H ] For log g < 3.95,
(3.11)

where the first case is from Tsantaki et al. (2013) and the latter case is from Adibekyan et al. (2015).
In this way ξmicro is changed in each iteration according to one of these relations. This option is called
autofixvt in Figure 3.6.

Option: Change line list - After the minimization, it happens that the derived Teff is below 5200 K.
At this temperature it is well known that the line list by Sousa et al. (2008) does not work well. Some
of the lines start to be blended for lower Teff , thus giving poor measurements of some EWs. This is
something that was corrected by Tsantaki et al. (2013), who created a subset of the previous iron line list.
This smaller line list are able to successfully derive Teff below 5200 K. Therefore, if the option teffrange

is on (which is highly recommended), the line list by Sousa et al. (2008) will simply be converted to the
smaller line list by Tsantaki et al. (2013) if Teff is below this threshold, and the minimization will be
restarted. This conversion happens after the convergence.

Option: Refine results - Last there is an option, refine. This apply more strict criteria for the
indicators to reach convergence, thus making the minimization less sensitive to the initial guess since it
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Figure 3.5: ξmicro dependence on Teff and log g for a sample of 583 stars.

could otherwise reach convergence from one “side” of the parameter space. The default criteria are:

aEP = 0.001

aRW = 0.003

∆Fe = 0.001.

The criteria for aRW is not as strict as aEP since this indicator can change rapidly with small changes
in ξmicro, thus a very strict criteria might never lead to convergence. Convergence is reached once all
of the above criteria are met, and the input and output metallicity are identical. If one or more of the
parameters are fixed, the corresponding criterion is simply set to 0 and effectively ignored, thus not
changing the parameter.

Stepping in each iteration - For each iteration, the change to be applied for the atmospheric
parameters are defined by adding the following:

Teff : 2000 K · aEP (3.12)

ξmicro : 1.5 km/s · aRW (3.13)

log g : −∆Fe (3.14)

to each parameter. Note again that metallicity is simply changed to the the output metallicity of the
previous iteration. These are empirical relations. Note that by changing e.g. Teff not only is aEP affected,
but the other indicators as well as seen in Figure 3.4. This inter-dependency between the parameters
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is ignored by FASMA as it is not a simple problem to solve. The stepping presented above is chosen to
rapidly reach convergence, without causing problems for the inter-dependency. This minimization is thus
build to apply a standard method, curve-of-growth analysis, using as few calls to the time consuming
part, which is the calculation of the abundances with MOOG.

Figure 3.6: Overview of the minimization for FASMA. Credit: Andreasen et al. (2017b).

3.2.2.5 Error estimate

The error estimate is based on the same method presented in Neuforge-Verheecke and Magain (1997).
The error on ξmicro corresponds to the 1σ statistical error on the slope of the linear regression between
Fe i abundances and RW. The error on Teff is the statistical error on the slope between Fe i abundances
and EP as well as the uncertainty in ξmicro. The error for [Fe /H ] corresponds to the dispersion of the
Fe i abundances as well as the uncertainties in ξmicro and Teff . The error in log g corresponds to the
dispersion in the pressure sensitive Fe ii abundances.

3.2.2.6 Testing FASMA

Parameters were derived for a 582 sample presented in Sousa et al. (2011) with FASMA as a test. The
results were compared with Sousa et al. (2011) since the method is the one previously used in the Porto
group, thus making a fair test.

ARES was used to measure the EWs. ARES can give an estimate of the S/N by analysing the continuum
in certain intervals. For solar-type stars the following intervals work well: 5764-5766 Å, 6047–6053 Å, and
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6068–6076 Å. From the estimated S/N, ARES can give an estimate on the very important rejt parameters
(see Sousa et al., 2015, for more information).

After measuring the EWs with ARES, FASMA was used to determine the stellar atmospheric parameters.
The results are presented in Figure 3.7 which shows Teff , log g, [Fe /H ], and ξmicro for FASMA against those
of Sousa et al. (2011). The sample contains stars with Teff too cold for the line list used. As described
in Section 3.2.2.4 the line list by Sousa et al. (2008) should be converted to the line list presented in
Tsantaki et al. (2013). However, since this line list was not available when Sousa et al. (2011) derived
parameters, the teffrange option was left off in order to make a fair comparison for FASMA.
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Figure 3.7: Stellar atmospheric parameters derived by FASMA compared to the sample by Sousa et al.
(2011). The x-axis in all plots shows the results from FASMA, while the y-axis shows the parameters
derived by Sousa et al. (2011).

The mean of the difference between parameters from Sousa et al. (2011) and those by FASMA are
presented in Table 3.1. The comparison is very consistent, as expected, and the small offsets are within
the errors except for metallicity. This can be due to different versions of MOOG, measured line lists (i.e.
using slightly different settings/version of ARES to measure the EWs), interpolation of atmosphere grid,
and minimization routine. Most likely the difference will be due to the different rejt parameters used
in ARES, which can alter the EWs systematically and hence the metallicity. To test this hypothesis 20
randomly stars with different Teff were selected and the EWs directly from Sousa et al. (2011) were used
to derive parameters. The results are presented in the last column of Table 3.1. Note that the log gf
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values from the original line lists by Sousa et al. (2011), which used the MOOG 2002 version, were not
changed for the 2014 version of MOOG. This might lead to some errors as well. However, the offsets are
very small and are compatible with the errors on parameters normally obtained from high-quality spectra.

Table 3.1: Difference in derived parameters by Sousa et al. (2011) and FASMA. The second column is
the mean difference with EWs measured by ARES in FASMA, while the third column is the mean difference
using 20 randomly stars with the exact same EWs from Sousa et al. (2011).

Parameter Mean difference Same line list
Teff (16± 36) K (21± 11) K
log g (−0.04± 0.07) dex (−0.007± 0.009) dex
[Fe /H ] (0.03± 0.02) dex (0.004± 0.009) dex
ξmicro (−0.04± 0.14) km/s (0.04± 0.02) km/s



Chapter 4
NIR spectroscopy of FGK stars - towards M
stars

Promises are only words until more than
words are required.

Terry Brooks

It is time to apply the theory and methodology on some real data. The tools presented above will be
used on NIR spectra of three stars. The goal is to derive parameters in the NIR. The reason for using
the NIR part of the spectrum rather than the optical part is, that it is better suited for characterisation
of the coolest stars, M stars. These stars are interesting for many reasons (see Chapter 1): 1) They make
up around 75% of the stars in our galaxy and 2) they are known to be prone to form small rocky planets
rather than giant planets. There is the compilation of a NIR iron line list for deriving stellar atmospheric
parameters. This line list was tested against the well-studied solar-type star, HD 20010 in Andreasen
et al. (2016). Later a second version of the line list was made. This was tested again on HD 20010 and
additionally on two cooler stars, Arcturus and 10 Leo in Andreasen et al. (2017a). A small summary
of the stars and their characteristics can be found in Table 4.1. A plot of the spectra of the four stars
analysed in this chapter is shown in Figure 4.1. More details are provided in the individual sections below
for each star. Last is the analysis of a range of synthetic spectra from the PHOENIX spectral library
(Husser et al., 2013), with Teff lower than analysed in previous stars with the methodology described
above in Section 3.2.2. However, before diving into the results of the analysis it is important to describe
how the NIR line list was compiled, and why and how it was later refined.

Table 4.1: Summary of the four stars used in this thesis. The stellar parameters are an average from
the PASTEL catalogue (Soubiran et al., 2016) (see text for details), except the parameters for the Sun.

Star Spectrographs Resolution Teff (K) log g (dex) ξmicro (km/s) [Fe/H] (dex)
Sun FTS 600 000 5777 4.44 1.00 0.00
Arcturus FTS 100 000 4300± 111 1.60± 0.29 1.93± 0.17 −0.54± 0.11
HD 20010 CRIRES 100 000 6152± 95 3.96± 0.11 1.17± 0.24 −0.27± 0.06
10 Leo CRIRES 100 000 4742± 61 2.76± 0.17 1.45± 0.08 −0.03± 0.02

44
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Figure 4.1: Spectrum of HD 20010 (blue), the Sun (orange) 10 Leo (green), and Arcturus (red) in two
different spectral regions. The spectra are all normalised to 1, but the flux of HD 20010, the Sun, and 10
Leo is added with 0.2, 0.4, and 0.6, respectively, for visual effect. The upper panel is part of the J band,
while the bottom panel is part of the H band.
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4.1 The creation of a NIR line list

Although previous work (see e.g. Önehag et al., 2012; Shetrone et al., 2015; Lindgren et al., 2016) have
compiled some NIR line lists for different purposes, there still does not exists an iron line list to determine
stellar atmospheric parameters from high S/N and high resolution spectra. With the advancement of NIR
high resolution spectrographs the time has arrived to compile such a line list, which should be properly
tested (used to determine parameters of well known stars).

As discussed extensively in Chapter 2 and Chapter 3, an atomic line list is needed for employing the
method of deriving the stellar atmospheric parameters used in this thesis. This line list is composed
by neutral and ionized iron lines in the NIR. This has already been mentioned in Chapter 2. Here the
process will be explained in greater detail below for the two versions presented in Andreasen et al. (2016)
and Andreasen et al. (2017a), respectively.

4.1.1 Measuring the EWs and first filtering

The first version of a NIR iron line list for determining stellar atmospheric parameters of high resolution
and high S/N spectra were presented in Andreasen et al. (2016). Other NIR line lists exists such as
the one from Önehag et al. (2012); Lindgren et al. (2016) for utilising the synthetic method described
above of high resolution spectra. Their line list cover the J band in the NIR and consists of 48 lines of
different elements. For the line list presented here all iron transitions between 10 000Å to 25 000Å1 were
downloaded from the VALD database (Piskunov et al., 1995; Kupka et al., 2000), only including Fe i and
Fe ii transitions. In total were 50 198 Fe i and 28 339 Fe ii lines respectively acquired.

The EW of all lines were measured in the solar atlas obtained by (Hinkle et al., 1995b). The EWs
were measured using ARES due to the large amount of lines and to be as consistent as possible in the
measurements. Since ARES expect a 1D spectrum with equidistant wavelength step2, the solar spectrum
was interpolated onto a regular wavelength grid of 0.01Å. This did not change the appearance, and
hence not the EW, of the final spectrum. This wavelength step is equivalent to a spectral resolution of
1 500 000 at 15 000Å. The S/N for the solar atlas varies between 300 to 2000 across the spectrum, but is
generally of a very high quality.

The EWs were measured by fitting Gaussian profiles to the spectral lines. For a given line, ARES

output the central wavelength of the line (provided in the line list), the FWHM maximum of the fitted
line, the number of lines fitted for the final result (in case of blending), the depth of the line, and the EW
of the line. In the latest version of ARES, the error of the EW is also provided (Sousa et al., 2015).

As a first selection step, lines were discarded according to the following four criteria:

• Lines with EW lower than 5 mÅ: these lines can be problematic to see in spectra with lower S/N
or spectra with many spectral features. Therefore the measurements of these lines are less reliable
than stronger lines.

• Lines with EW higher than 200 mÅ: These lines are too strong to be fitted with a Gaussian profile.
These lines might also be saturated and do not fall in the linear regime of the curve-of-growth (see
Figure 2.5).

• Lines where the total number of fitted lines are 10 or higher meaning the presence of severe blending.
1 That is equivalent to the YJHK bands.
2 This is changed in the newer version of ARES (Sousa et al., 2015).
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• If the fitted central wavelength is more than 0.05Å away from the wavelength provided by VALD3
to avoid false identification. This should also remove some blended lines.

• Removal of lines with EP higher than 5.5 eV. This cut was inspired by available EPs in the optical
(see e.g. Sousa et al., 2008), thus the optical method is being reproduced for the NIR which is one
of the goals with this thesis.

After this removal the number of Fe i and Fe ii lines were reduced to 6060 and 2735, respectively.

4.1.2 Visual removal of lines

At this point a visual inspection was necessary. All atomic data for possible transitions from all elements
were downloaded from the VALD3 database in a 3Å window around each of the nearly 9000 iron lines
from the previous step. For each small spectral window, all absorption lines (including the iron line(s))
were located in a plot of the solar spectrum. An iron line was discarded if another line had the same
central wavelength and/or the absorption line were severely blended. Most of the discarded iron lines
had high EP, which are weak compared to the low EP lines. Therefore, it is fair to assume that many of
these iron lines were falsely identified as another stronger line from another element. After the visual
removal the number of Fe i and Fe ii lines were reduced to a mere 593 and 22, respectively. In Figure 4.2
is a case where too many lines are present near the iron line of interest (green line in the middle). The
green lines are all iron lines in the spectral region, while the orange lines are other elements or molecules.
The depth and transparency is a measure by the line strength given by

strength = log gf − χΘ, (4.1)

where Θ = 5040 K/Teff (solar temperature is used here). Note that this strength of the lines does not
include any abundance information, and should therefore be a guide rather than an actual measure.

For some of the absorption lines it was not clear which element was causing it. These lines were
marked for further investigation with synthesis as described below.

4.1.3 Synthetic investigation

For the lines marked above for further investigation an even broader window of 6Å was used. Once again,
all atomic data for possible transitions were downloaded from the VALD3 database in these spectral
windows. MOOG was used with the synth driver to create a synthetic spectrum using a solar atmosphere
model with Teff = 5777 K, log g = 4.438, A(Fe) = 7.47, and ξmicro = 1.00 km/s. The iron abundance
(7.47) is from Gonzalez and Laws (2000), while the overall metallicity for the solar atmosphere model is
[M /H ] = 0.00 by definition. This step is different from the step visual inspection done in Section 4.1.2
since synthetic spectra were created here. This was done for all spectral windows for three different
iron abundances [Fe /H ] = {−0.20; 0.00; 0.20} in order to identify iron lines and their impact on the
synthetic spectra. The metallicity, [M /H ], was kept fixed at 0.0. Before creating a synthetic spectrum all
elements which are more than singly ionised were removed since MOOG does not allow these. An example
of the three synthetic spectra can be seen in Figure 4.3. Here the neutral iron line at 15 550.439Å was
investigated. The three coloured curves are synthetic spectra with the three different [Fe /H ]. The upper
plot shows the result with the full VALD3 line list, while in the lower plot the iron line was removed from
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Figure 4.2: Solar spectrum (blue) with all iron lines in the spectral region (green) and other elements
(orange). The depths and transparencies of the vertical lines are a measure of the line strengths (see
Equation 4.1 for details). This is a case where the iron line is discarded due to blending, which is clear in
the left wing of the central absorption line.
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the line list. The grey curve is the solar atlas for reference. Note that it is not the purpose to match a
synthetic spectrum to the solar atlas.
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Figure 4.3: The three coloured curves represent different iron abundance, {−0.20; 0.00; 0.20} compared
to solar abundance. The grey curve is the solar atlas for reference. In this case the iron line at 15 550.439Å
was investigated. Upper panel: Synthetic spectra were computed using the full VALD line list in the
spectral range for the three different iron abundances. Lower panel: Same as the upper panel, but with
the iron line removed from the line list. Since the synthetic spectra shows no features at this absorption
line anymore, it is a fair assumption to say the iron line is the cause of this absorption line.

If the synthetic spectra shows variation at the iron line of interest, then it is assumed that the iron
line is the cause for the absorption line. As a simple test, the iron line was also removed from the line list
used to create the synthetic spectra. If the iron line in the synthetic spectra disappeared, it was a clear
signal that this line can be used in the final iron line list ( this can be seen clearly in the lower plot of
Figure 4.3). In some cases two iron lines had the same or very similar wavelength, and this technique
was used to include the correct iron line. In cases where both iron lines causes the absorption line, they
were both discarded since they are blended. In theory both iron lines will contribute to the absorption,
however one of the contributions might be negligible, hence only one of the lines will be discarded.

In a few cases two iron lines had the same wavelength and EP but different log gf . In these cases the
two iron lines they can be combined into a single line by adding their gf values. After this step, there
were 414 Fe i lines and 12 Fe ii lines, respectively.

4.1.4 Calibrating the line list: astrophysical log gf values

These lines were collected into a single line list in the format required by MOOG (Sneden, 1973) and
the line abundance were measured by all lines using the solar atmosphere model described above. If the
derived abundance for a single line differs by more than 1.0 dex from the solar iron abundance, the line
was discarded. All lines before this step can be seen in Figure 4.4 with all lines discarded marked in red.

After the removal of the lines mentioned above, the final line list is almost compiled. At this point
the line list has to be calibrated. This is done by changing log gf so the line abundance for all iron lines
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Figure 4.4: Line abundance of all iron lines before calibrating the log gf values. The green points
are the points with a deviation less than 1.0 dex from the solar iron abundance. All the red points are
discarded. The horizontal line shows the solar iron abundance.



Chapter 4. NIR spectroscopy of FGK stars - towards M stars 51

are 7.47 when using the solar atmosphere model mentioned above. There is an anti-correlation between
the abundance of a line and log gf . This means a simple bisector minimization can be used to locate the
log gf that gives the desired abundance. This was done for all the iron lines at this stage.

Note If the setup3 used to determine the parameters is changed, then it is important to calibrate the
log gf values for the line list again. This includes the type of model atmospheres used (e.g. ATLAS9 or
MARCS), the interpolation code to generate a model atmosphere from the grid, or the settings of the
radiative code, here MOOG, and even the settings used in the radiative transfer code, i.e. the specific physics
used. In the results listed below the setups are identical, except for the work done with synthetic spectra
(see Section 4.7). There both ATLAS9 and MARCS model atmospheres were used, and a calibrated set
of log gf values are available for both setups.

4.1.5 Removal of high dispersion lines

The line list calibrated above was used to derive parameters for HD 20010 (see Section 4.2), however
the derived parameters showed poor results when compared to the literature values. This lead to the
following test to identify lines which show high dispersion:

A Gaussian distribution was made for the EW of each line centred on the EW itself,

f(x,EW, σ) = 1√
2πσ2

e−
(x−EW )2

2σ2 , (4.2)

where σ is the error on the EW, expressed by Cayrel (1988):

σ ' 1.6
√

∆λEW
S/N

, (4.3)

where ∆λ = 0.1 and a S/N=50 were considered here, which is much lower than the actual S/N of the
solar atlas. The search for lines to remove from the line list, in order to improve the results is as follows:

1. Make 100 draws for each EW (giving a total of 100 line lists)

2. Derive the line abundances for all 100 line lists using the solar model atmosphere and MOOG

3. Calculate the mean absolute deviation (MAD) for each line using the derived abundances

4. Locate the lines with highest dispersion in a MAD versus original EW plot (see Figure 4.5)

In the upper panel of Figure 4.5 the weaker lines (i.e. lines with lower EW) shows a higher MAD
value, however this is expected since a small absolute change in the EW results in a large relative change
in abundance for these lines. This does not mean these lines necessarily have a high dispersion, since it is
just the expected outcome of this test. Moreover, these relatively weak lines from the solar atlas should
be stronger for some other spectral types, and therefore important to include if possible. Therefore
the disperse lines are found in the de-trended MAD value, where an exponential function was used for
de-trending. A single point above 3σ was removed iteratively in the de-trended data. After this process
there are 334 Fe i lines and 13 Fe ii lines.
3 That can be different atmosphere models, interpolation codes, etc.
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Figure 4.5: The most disperse lines. Upper panel: The MAD versus the original EW. The red points
are the outliers which were discarded during this process. Lower plot: Same as above with the de-trended
MAD by the exponential fit as shown in the upper panel.

4.2 HD20010

To test the NIR line list a well-studied solar-type star was needed. The spectrum for such a target needs
to be available in the NIR at both high resolution and high S/N. An ideal place to look for such a star
was the CRIRES-POP database (Lebzelter et al., 2012). Here, the best target for testing was HD 20010,
an F8 subgiant star. At the time of writing this thesis and Andreasen et al. (2016) the spectrum of HD
20010 was not fully reduced. Here it is still contaminated by some telluric lines, and the wavelength
solution used is not optimal; both which are essential, however a tedious and difficult task to accomplish.

HD 20010 star has been part of many surveys and is therefore well studied. Different parameters
from the literature are listed in Table 4.2.

Table 4.2: Selection of literature values for the atmospheric parameters for HD 20010. The mean and a
3σ standard deviation is presented at the end of the table from the literature values included, which was
used as a reference for the derived parameters.

Author Teff (K) log g (dex) [Fe /H ] (dex) ξmicro (km/s)
Balachandran (1990) 6152 4.15 −0.27± 0.08 1.60
Favata et al. (1997) 6000 . . . −0.35± 0.07 . . .
Santos et al. (2004) 6275± 57 4.40± 0.37 −0.19± 0.06 2.41± 0.41
Gonzalez et al. (2010) 6170± 35 3.93± 0.02 −0.206± 0.025 1.70± 0.09
Ramírez et al. (2012) 6073± 78 3.91± 0.03 −0.30± 0.05 . . .
Mortier et al. (2013a) 6114 . . . −0.19 . . .
Mean 6131± 255 4.01± 0.60 −0.23± 0.14 1.90± 1.08

The data available at CRIRES-POP are in the raw format and pipeline reduced, while three small
pieces of the spectrum are fully reduced on the web page4. The data is in the standard CRIRES format
4 http://www.univie.ac.at/crirespop/data.htm

http://www.univie.ac.at/crirespop/data.htm
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with each fits file including four binary tables with the data from the four detectors with the same
resolution in each spectrum. In the future, the final reduced data will be presented by the CRIRES-POP
team. In contrast to the pipeline reduced data, this will be of higher quality, a better wavelength
calibration, and telluric corrected.

The EWs were measured of the pipeline reduced spectrum, and where there was an overlap with
the fully reduced spectrum, the EW was measured in both cases as a consistency check. The measured
EWs from the fully reduced spectra were consistent with the measured EWs from the pipeline reduced
spectra, although with less noise in the fully reduced spectral parts. As mentioned above, the Y, J, H,
and K-bands, which are all available for this star, were used in this analysis. The spectra come in pieces
of 50Å to 120Å. These pieces overlap each other, and up to five EW measurements were made for some
lines. Unfortunately, wavelength calibration is a difficult task for CRIRES owing to the rather small
spectral regions measured on each detector. Each calibration was performed separately for each detector
and required the availability of a sufficient number of calibration lines in the respective spectral region.
This was not always the case and a default linear solution was applied. A pipeline reduced spectrum
shows up as a stretched spectrum if the wavelength calibration is poor compared to a model spectrum or
a solar spectrum, for example. The wavelength calibration does not have any effect on the signal-to-noise
ratio, which is generally high for the spectrum of HD 20010. The signal-to-noise varies between 200 and
400 for different chunks. However, the stretched spectra will most likely have an effect on the measured
EWs.

The pipeline reduced spectrum for HD 20010 contains tellurics and the wavelength is shifted in radial
velocity. All of these factors make the line identification very difficult, so a program was developed5 to
properly identify the lines, which does the following:

1. Plotting the observed spectrum

2. Overplotting a model spectrum. In this particular case the solar spectrum was used since the
atmospheric parameters are close enough, so the sun was able to serve as a model

3. Overplotting a telluric spectrum from the TAPAS web page (Bertaux et al., 2014)

4. Overplotting vertical lines at the location of lines in the list

5. Calculating the cross-correlation function (CCF) for the telluric spectrum with respect to the
observed spectrum, locating the maximum value by a Gaussian fit, and using this to shift the
telluric spectrum with the found RV

6. Performing the same as step 5, but for the model spectrum

7. Shifting the lines with the same RV as found for the model/solar spectrum

The final plot shows the shifted spectra, and the CCFs at the sides. An example of the software in
use is shown in Figure 4.6. The two radial velocities (for the telluric and model spectrum) are part of
the title of the plot. Once the lines were identified, the EWs were measured with the splot routine
in Image Reduction and Analysis Facility (IRAF). The reason not to choose ARES for this task was to
visually confirm the identification of the line given the relative poor wavelength calibration from the
automatic pipeline. 249 Fe i lines and 5 Fe ii EWs were measured compared to 344 Fe i lines and 13 Fe ii
5 The program (and other small scripts) can be found herehttps://github.com/DanielAndreasen/astro_scripts

https://github.com/DanielAndreasen/astro_scripts
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Figure 4.6: Line identification in piece of Arcturus spectrum with PHOENIX model and telluric model
for correcting RV.

lines for the Sun over the whole NIR spectral region in the line list. Whenever there were more than one
EW measurement of a line, due to overlap in different spectra, the average was used for the final EW.
The stellar atmospheric parameters were derived using the standard procedure (see Section 3.2.2). Lines
below 5 mÅ were removed in order to remove the lines which are most affected by contamination from
either telluric or other line blends. Additionally, a cut in EP at 5.5 eV was made since the Fe i and Fe ii
lines usually used for stellar parameter determination in the optical regime are also limited to similar
values (see e.g Sousa et al., 2008).

When deriving the stellar atmospheric parameters, one outlier were removed at a time (after a
completed minimization) until no outliers were present. Since we could only measure 5 Fe ii lines, the
parameter were also derived with log g = 4.01 dex fixed at the reference mean value (see Table 4.2).
The resulting atmospheric parameters and iron abundances are presented in Table 4.3. The effective
temperature, surface gravity, and metallicity agree within the errors with the literature values. Similar
parameters are obtained by fixing log g to the average literature value or by leaving it free.

Table 4.3: The derived parameters for HD20010 with and without fixed surface gravity.

Teff (K) log g (dex) ξmicro (km/s) [Fe/H] (dex)
Literature 6131± 255 4.01± 0.60 1.90± 1.08 −0.23± 0.14

6116± 224 4.21± 0.58 2.45± 0.45 −0.14± 0.14
6144± 212 4.01 (fixed) 2.66± 0.42 −0.13± 0.29

The errors on the atmospheric parameters for HD 20010 are much higher than what is achievable
with other measurements in the literature, as presented above in Table 4.2. In order to explain these
errors, the abundances for all lines which have at least two measurements of the EW were calculated
from the highest and lowest measured EW. The differences in abundances are presented in Figure 4.7.
The very large differences (more than 0.1 dex) translate to the high errors in the parameters.

This test strongly suggest that errors in the EWs, likely due to the telluric contamination and non-
optimal reduction of the spectrum (poor default wavelength calibration), are responsible for the relatively
large error in the derived stellar parameters. After the first analysis of HD 20010, the CRIRES-POP
team published a fully reduced spectrum of 10 Leo (Nicholls et al., 2017) with telluric correction and an
optimal wavelength solution. The results obtained from this star (see Section 4.6) are very promising for
the method used here, and it encourage a complete re-visit of HD 20010 once the reduction is optimal.
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Figure 4.7: Difference in abundance for HD 20010 when multiple measurements of EW were obtained.
The differences are between the lowest and highest measured EW in case of multiple measurements. This
is shown against the wavelength (upper panel) and in a histogram (lower panel).

4.3 The NIR line list - toward cooler stars

As was seen in Section 4.2 the line list presented above was used to derive atmospheric parameters of
HD 20010. Even though the first test of the line list was successful, it left room for improvements. The
errors on the derived parameters were quite high for the spectral type compared results obtainable with
a similar analysis utilising the optical spectrum (see Section 4.2 for details on this). Additionally, the
derived metallicity was 0.10 dex higher than the literature values used.

If all derived parameters except metallicity are reliable (when compared to e.g. a literature value),
then it suggest that the measured EW are either over- or underestimated. However, when using a line
list for the first time like here, it can also suggest problems with the line list itself, most likely a bad
calibration. This could have been wrong measurements of the EWs of the calibrator star, Sun in this
case. This combines to several cases:

• Correct measurements of EWs of calibrator star:

– Systematic lower measurements of EWs of target star leads to underestimated [M /H ]

– Systematic higher measurements of EWs of target star leads to overestimated [M /H ]

– Correct measurements of EWs of target star leads to correct [M /H ]

• Systematic lower measurements of EWs of calibrator star:

– Systematic lower measurements of EWs of target star leads to underestimated [M /H ]
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– Systematic higher measurements of EWs of target star can lead to underestimated, correct or
overestimated [M /H ] depending on the amount of systematic higher measurements

– Correct measurements of EWs of target star leads to underestimated [M /H ]

• Systematic higher measurements of EWs of calibrator star:

– Systematic lower measurements of EWs of target star can lead to overestimated, correct or
underestimated [M /H ] depending on the amount of systematic lower measurements

– Systematic higher measurements of EWs of target star leads to overestimated [M /H ]

– Correct measurements of EWs of target star leads to overestimated [M /H ]

It is important to note, that correct has been used here, assuming a perfect setup, that includes perfect
model atmosphere, perfect radiative transfer code, etc. In reality the final [M /H ] (and the other
parameters) measured by different groups will occasionally differ regarding the setup used (see e.g. Hinkel
et al., 2016).

As described in Section 4.1 the EW of the Sun (calibrator star) was measured with ARES. A crucial
option to set when using ARES is the rejt parameter as mentioned in Section 3.2.2.2. This option is used
to place the continuum and will thus directly affect the measured EW. At the time of compiling the first
version of the line list it seems the rejt value used did not reflect the high S/N of the spectrum, thus
placing the continuum too low and thereby underestimate the EW. The rejt parameter used was 0.995
(S/N=200), while it should have been closer to 0.999 (S/N=1000). This might have excluded some of the
weakest lines, since a cut in EW was made at 5 mÅ.

In this second version of the line list, the goal is to:

1. Make sure the EW measurements are as correct as possible by measuring them by hand

2. Free of blended lines in cooler stars (K stars in this case)

The second point is a similar exercise which was done in the optical by Tsantaki et al. (2013), where
blended lines were removed from the larger line list by Sousa et al. (2008). This allowed to determine
the atmospheric parameters of stars cooler than 5200 K. However, the optical spectrum still suffer for
severely blended lines at low Teff , thus this method does not work for M stars.

Both of the above steps were done at the same time, by measuring the EWs by hand using IRAF.
Whenever a line was difficult to reliably measure, i.e. a consistent measurement was not possible/easy,
it was discarded since it was blended. This can be seen in Figure 4.8 where the difference in the EW
measurements are shown against the EWs from the first version. The average difference of the two
versions is (2.1± 11.1) mÅ. The large deviation are due to line blending. There are some measurements
of EW higher than 150 mÅ which should have been removed. These lines have not been used during the
analysis, however they were kept since they might appear useful on a later stage.

With the increased access to high quality NIR spectra and the gained experience during the course of
the thesis, it was possible to improve the line list by a second visual inspection on the solar spectrum.

After the new measurements of the EWs, the line list was re-calibrated according to the procedure
described above. The average change in log gf is −0.062± 0.157, i.e. on average the oscillator strengths
are higher in the second version compared to the first version of the line list.

With the second version there are only 5 Fe ii lines left which is a concern since these are crucial for
the derivation of the surface gravity.
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Figure 4.8: Comparison of the EW from the first version of the line list (measured with ARES), EW1,
and the second version, EW2 (measured with IRAF). The EWs are generally higher in the second version,
with an average difference between the two version of (2.1± 11.1) mÅ. The three horizontal lines show
the average value and the standard deviation.
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4.4 HD 20010 - revisited

During the analysis of Arcturus (see Section 4.5) and 10 Leo (see Section 4.6) with the refined line list
presented in Section 4.3 it was a simple task to apply the updated line list on HD 20010 a second time as
a test whether it would perform similar, worse or better. This is compared to results obtained from the
literature and the previous results in Section 4.2.

Therefore HD 20010 was revisited, and the atmospheric stellar parameters were derived. The measured
EWs from the results above in Section 4.2 were kept, however the lines which did not make the cut in
the second version of the line list were removed. Moreover, the log gf values were updated since these
were re-calibrated.

At this point FASMA was fully developed and was used to obtain the results which are shown in
Table 4.4 along with the results for Arcturus and 10 Leo (details on their parameters will be found
below). The agreement with the adopted average literature values are better for HD 20010 compared to
the results from above in Section 4.2 (especially [Fe /H ] and log g), and smaller errors with the updated
results. This first test of the line list already shows promising results. The literature values are slightly
different here than compared to the first analysis of this star. This is solely because other references were
used, the PASTEL catalogue (Soubiran et al., 2016). However, this does not change the improvement
seen.

Table 4.4: Results for the three stars where first set of parameters are the literature values as presented
in Table 4.1, second set of parameters are results with log g set to the same value during the minimization
procedure as found in the literature (fixed), and last set of parameters are with all parameters free during
the minimization procedure.

HD 20010 10 Leo Arcturus
Literature
Teff (lit.) 6152± 95 4741± 60 4300± 110
log g (lit.) 3.96± 0.19 2.76± 0.17 1.60± 0.29
[Fe /H ] (lit.) −0.27± 0.06 −0.03± 0.02 −0.54± 0.11
ξmicro (lit.) 1.17± 0.24 1.45± 0.08 1.93± 0.13
log g fixed
Teff 6161± 164 4761± 118 4357± 74
log g 3.96 (fixed) 2.76 (fixed) 1.60 (fixed)
[Fe /H ] −0.18± 0.11 0.01± 0.07 −0.55± 0.04
ξmicro 1.72± 0.44 1.25± 0.11 1.55± 0.10
All free
Teff 6162± 184 4805± 98 4439± 62
log g 4.08± 0.77 2.42± 0.61 1.20± 0.20
[Fe /H ] −0.18± 0.11 −0.01± 0.07 −0.58± 0.06
ξmicro 1.59± 0.49 1.23± 0.10 1.55± 0.10

4.5 Arcturus

Arcturus is one of the brightest stars on the Northern hemisphere with a V magnitude of -0.05 (Ducati,
2002), and is well studied (see e.g. Griffin and Griffin, 1967; McWilliam, 1990; Ramírez et al., 2013, to
mention just a few), and a benchmark star in current spectroscopic surveys such as Gaia-ESO (Jofré et al.,
2014; Smiljanic et al., 2014). Hence it is a prime target for testing with the numerous measurements of
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the atmospheric parameters.
The atlas of Arcturus, acquired at Kitt Peak National Observatory using the FTS spectrograph at

the Mayall telescope by Hinkle et al. (1995a), covers the spectral range of interest (YJHK bands). Strong
telluric features were identified with a spectrum from the TAPAS web page (Bertaux et al., 2014) which
was useful during the line identification. The atlas also comes with a telluric standard and the ratio of
the two spectra in order to correct for the tellurics. The telluric spectrum from TAPAS was only used for
telluric line identification. Both the telluric corrected and non-corrected spectra was used during the
analysis, however the focus was on the non-corrected spectrum since it is simple to identify the telluric
lines in this spectrum.

The atlas consists of both a summer observation set and a winter observation set. The two data sets
have been obtained in order to minimise the effect of tellurics at different spectral regions. A comparison
between the two sets of measured EWs, both the manual measurements using IRAF and the automatic
measurements using ARES, are shown in Figure 4.9. The automatic EW measurements for the summer
set and winter set show excellent agreement with a dispersion of 7 mÅ and a systematic difference of
0.1 mÅ, i.e. ineligible. This means that the two data sets are very similar, thus it was decided to only
manually measure the EWs for one set (summer). Since this is a test of the line list (rather than a
study of Arcturus) and the fact that the EWs are very similar, the parameters are only derived from the
summer set with the EWs measured by ARES. Parameters were derived with and without log g set to a
fixed value (1.60 dex, the average literature value adopted). The derivation of the parameters followed
the same procedure as described above for HD 20010 using FASMA. Again outliers in abundance were
removed one at the time until there were no more outliers. The final results are presented in Table 4.4
together with mean parameters from the literature.

There is overall good agreement between the derived parameters and the average values from the
literature adopted (see Table 4.4). The only parameter being difficult to measure is the surface gravity
due to the low number of Fe ii lines in the NIR. This was already suspected and mentioned in Section 4.3.
There are also some problems determining ξmicro, however this is not a major concern, since it is not as
important a parameter as the other three. The derived metallicity is consistent with the literature here
which is promising since there were some problems with this parameter in Section 4.2.

4.6 10 Leo

The spectrum for 10 Leo was recently made available by the CRIRES-POP team (Nicholls et al., 2017).
10 Leo is very similar to Arcturus, which is also one reason this star was the first to be fully reduced
by the CRIRES-POP team. The spectrum is divided into several pieces according to the atmospheric
windows in the NIR: YJ (only together), H, K, L, and M. Here the first three were used since this is the
range of the line list. Some small gaps are present in the spectrum due to tellurics that could not be
properly removed, low S/N, bad pixels, etc. Rather than giving an uncertain interpolation, Nicholls et al.
(2017) decided to leave small gaps in the data. This had very little effect on this line by line analysis,
however, due to those gaps, one Fe ii line were not measured which are crucial to determine the surface
gravity.

The approach for determining the atmospheric stellar parameters for 10 Leo is identical to Arcturus.
ARES was used on each band (YJ, H, and K-band) separately. For the small gaps in the spectrum, the
flux was simply set to 1, since the spectrum has already been normalised. This also prevented ARES to
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Figure 4.9: Top figure: Difference of the automatic EW measurements between the summer observations
and winter observations from the Arcturus spectra. Bottom figure: Same as above, but with manual
measurements from ARES (summer) and automatic measurements (summer).
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identify and measure any lines in these regions. The EWs from the three regions were combined to one
final line list used for the determination of the parameters. The final results can be seen in Table 4.4.

Generally the derived parameters are in excellent agreement with the literature values listed here.
A 64 K difference is seen for Teff with log g set as a free parameter, well within the errors. The only
parameter that show a discrepancy compared to the literature value is ξmicro with a difference of 0.22 km/s,
which is at the limit of the errors reported. We note that this parameter is not reported in the PASTEL
database, and this was a derived parameter from an empirical relation. log g was derived with large
errors which is a result from the few Fe ii (three lines) measured. However, the log g is not far from the
literature value, only 0.34 dex lower, which is well within the large errors reported. However, it also shows
it is safer to obtain log g from other more reliable methods, such as asteroseismology when possible.

4.7 Synthetic cool stars

Mainly due to lack of available high quality spectra in the NIR, it is a good test to use a simulation. By
deriving parameters from synthetic spectra, it is possible to carefully control the work flow, in the sense
that the target parameters are known. In this section the synthetic library6 by Husser et al. (2013) will
be used. These are synthetic spectra created from spherical symmetric PHOENIX atmosphere models
under local thermodynamic equilibrium. The model atmospheres does not include dust settling since
all models are hotter than 2300 K. The details for the atmosphere models can be seen in Husser et al.
(2013).

For this test only the Teff will vary, ranging from 3500 K to 6000 K with most densely sampled at
lower temperatures (see Figure 4.10). Here log g = 4.5 dex and [M /H ] = 0.00 dex, i.e. synthesised dwarf
stars with solar metallicity. Before analysing the data, the spectra was broadened to have a spectral
resolution of 100 000, comparable with current and future high resolution NIR spectrographs.

In this test ARES was used to measure the EWs of as many lines from the line list (second version)
as possible for each of the 12 synthetic spectra. These line list were used to derive parameters with
two different model atmospheres, ATLAS9 (Kurucz, 1993) and MARCS (Gustafsson et al., 2008), with
FASMA. This was done twice, with all parameters derived from FASMA (Figure 4.10), and again with log g
fixed at 4.5 dex and ξmicro fixed which means it is changed in each iteration (see Section 3.2.2 for details)
according to an empirical relation. The latter case with fixed parameters is shown in Figure 4.11.

For the results with log g and ξmicro fixed at the correct parameters during the derivation, the first
thing noticed is the good agreement between the two model atmospheres. Second, the derived Teff are
underestimated for Teff > 4000 K while for the two lowest Teff it is the opposite case. It is important to
know that the grid of ATLAS9 models only go down to 3750 K, however these synthetic spectra were
included for completeness. For Teff > 4000 K it is systematically lower by the same amount, roughly
100 K. As have been shown in the previous sections in this chapter, the methodology is reliable for Teff

ranging from 4300 K to 6200 K (see Table 4.4). With the consistent offset in Teff , it is a clear indication
that the methodology is reliable down to these temperatures.

In the case of log g and ξmicro fixed the derived mean metallicity for the 12 synthetic spectra are
[Fe /H ] = (−0.12± 0.17) dex and [Fe /H ] = (−0.19± 0.12) dex for the ATLAS9 and MARCS model
atmospheres, respectively. The offset is likely to be found in the discrepancy between the model atmosphere
and real data (Arcturus in this case) as shown in Figure 4.13. Here a PHOENIX synthetic spectrum with
6 http://phoenix.astro.physik.uni-goettingen.de/

http://phoenix.astro.physik.uni-goettingen.de/
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Figure 4.10: Derived parameters of 12 synthetic PHOENIX spectra with varying Teff .
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Teff = 4300 K, log g = 1.50 dex, and [Fe /H ] = −0.50 dex is plotted with a piece of the Arcturus atlas
from Section 4.5. The synthetic spectrum has similar parameters as Arcturus, thus they should have
similar spectral features. However, in the plot the spectral lines are deeper for the PHOENIX model and
there seem to be more absorption lines in this synthetic spectrum compared to the observed spectrum.
This have a direct effect on the measured EWs as they will be blended and deeper than expected.

3500 4000 4500 5000 5500 6000
3000

4000

5000

6000

T e
ff d

er
iv

ed
 fr

om
 F

AS
M

A 
[K

]

Marcs
Kurucz

3500 4000 4500 5000 5500 6000
True Teff from PHOENIX [K]

500

0

500

1000

T e
ff (

PH
OE

NI
X-

FA
SM

A)
 [K

]

Figure 4.11: Derived parameters of 12 synthetic PHOENIX spectra with varying Teff . Here log g is
fixed at 4.5 dex and ξmicro fixed according to an empirical relation, thus only deriving Teff and [Fe /H ].

A comparison with EWs from the iron line list from the observed Arcturus spectrum and the synthetic
spectrum which resembles Arcturus closest is shown in Figure 4.12. The EWs are clearly getting more
disperse with increasing EW.

When all the parameters are derived it is a very different story for Teff . In this case the Teff

are overestimated for the synthetic spectra colder than 5000 K. Above this limit the Teff are slightly
underestimated with a hint of the results getting worse further from this limit. The reason for this
can partly be found in the measured Fe ii lines. As mentioned before, these are used to determine
log g. There have been measured between 1 and 3 Fe ii lines, generally fewer the lower Teff is, out of 5
possible measurements. The mean derived values for the surface gravity are log g = (1.11± 1.63) dex and
log g = (1.38± 1.45) dex for ATLAS9 and MARCS model atmospheres, respectively. Similarly for the
metallicity the following mean values are [Fe /H ] = (−0.73± 0.37) dex and [Fe /H ] = (−0.73± 0.38) dex
for ATLAS9 and MARCS model atmospheres, respectively. The measured iron abundance for the 12
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Figure 4.12: Common EWs between Arcturus and the synthetic spectrum with closest parameters (see
text for details). The EWs are getting more disperse with increasing EW which is expected when seeing
the direct comparison of the spectrum in Figure 4.13.

synthetic spectra can be seen in Figure 4.14. The figure only includes runs which reached convergence
with FASMA.
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Figure 4.13: Comparison between the Arcturus atlas and a PHOENIX synthetic spectrum with similar
parameters to Arcturus (see text for details).
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Chapter 5
SWEET-Cat

If you hold a cat by the tail you learn things
you cannot learn any other way.

Mark Twain

Part of the work during the thesis has been dedicated to regularly update SWEET-Cat1 after
announcements of new exoplanet hosts, a catalogue with all discovered planet hosts, and the stellar
parameters. After collecting spectra for more than 50 exoplanet hosts, these were analysed and presented
in Andreasen et al. (2017b).

In this chapter a detailed description of SWEET-Cat will be presented along with the analysis of the
newly collected spectra.

5.1 What is SWEET-Cat?

As mentioned above, SWEET-Cat is a catalogue of planet host stars. However, the strength of SWEET-
Cat is the homogeneously analysed stars utilising the method described in Section 3.2.2 with FASMA or
ARES+MOOG.

In the era with a large number of discovered exoplanets (more than 3500 confirmed exoplanet at the
moment of writing), it is possible to perform in-depth statistical studies. However, when conducting these
studies it is crucial to have consistent measurements of e.g. stellar atmospheric parameters. This can be
obtained by using a single analysis to obtain these parameters, as it is know that different methods will
lead to different results (see e.g. Hinkel et al., 2016, for a recent review).

To obtain stellar atmospheric parameters in a consistent and homogeneously way is an on-going goal
with SWEET-Cat, where high quality spectra are obtained for stars hosting planets. These are used to
determine the stellar parameters in a homogeneous way. All stars in SWEET-Cat analysed with the
method from our group are marked with a flag. The columns provided in SWEET-Cat are summarised
in Table 5.1. It is important to note that SWEET-Cat does not include any planetary parameters.

SWEET-Cat is updated on a weekly basis if new planet hosts are discovered, and whenever planet
hosts have been analysed with the method from our group, as described in this thesis.

1 https://www.astro.up.pt/resources/sweet-cat/
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Table 5.1: Columns in SWEET-Cat

Column Unit Description
Name Popular stellar name
HD number HD number
RA deg Right ascension
Dec deg Declination
Vmag mag V magnitude
σ(Vmag) mag Error on V magnitude
π mas Parallax
σ(π) mas Error on parallax
Source of π Source of parallax measurement
Teff K Effective temperature
σ(Teff) K Error on effective temperature
log g dex Surface gravity
σ(log g) dex Error on surface gravity
log gLC dex Surface gravity corrected from light curves
σ(log gLC) dex Error on surface gravity corrected from light curves
ξmicro km/s Micro turbulence
σ(ξmicro) km/s Error on micro turbulence
[Fe /H ] dex Metallicity
σ([Fe /H ]) dex Error on metallicity
Mass M� Stellar mass
σ(Mass) M� Error on stellar mass
Reference Reference for parameters
Homogeneity flag 0/1 0 for not homogeneous analysis, 1 otherwise
Last updated date Last updated
Comments Any special remarks/comments (e.g. M star)

5.2 Data for 50 planet hosts

In this section the data for a large update to SWEET-Cat will be described (Andreasen et al., 2017b).
The majority of the data comes as a result from proposals submitted for observational time, while some
of the data was found in the archive. In the next section the analysis of the 50 spectra will be presented
along with the results.

5.2.1 The data

Data2 for 43 out of the 50 stars were collected using UVES/VLT (Dekker et al., 2000), FEROS/2.2m
telescope in La Silla (Kaufer et al., 1999), and FIES/NOT (Frandsen and Lindberg, 1999) spectrographs.
The remaining spectra were found in various archives3. This includes spectra from the HARPS/3.6m
telescope in La Silla (Mayor et al., 2003) and ESPaDOnS/CFHT (Donati, 2003). Some characteristics of
the spectrographs are presented in Table 5.2 with the mean S/N for the spectra used. The S/N for each
star can be seen in Table B.1 along with the atmospheric parameters of the stars. The S/N is measured
automatically by ARES. These 50 stars are confirmed exoplanet hosts listed in SWEET-Cat, but they

2 Based on observations collected at the La Silla Observatory, ESO (Chile), with FEROS/2.2m (run 2014B/020),
with UVES/VLT at the Cerro Paranal Observatory (runs ID 092.C-0695, 093.C-0219, 094.C-0367, 095.C-0324, and
096.C-0092), and with FIES/NOT at Roque de los Muchachos (Spain) (runs ID 14AF14 and 53-202).

3 ESPaDOnS
HARPS

http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/
http://archive.eso.org/wdb/wdb/adp/phase3_spectral/form
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belonged to the list of stars that have not previously been analysed by our team because no spectra was
public available or of high enough quality (high spectral resolution and high S/N).

Table 5.2: Spectrographs used for this paper with their spectral resolution, wavelength coverage, and
mean S/N from the spectra used.

Spectrograph Resolution Spectral range Mean S/N
HARPS 115 000 378 nm to 691 nm 642
UVES 110 000 480 nm to 1100 nm 212
ESPaDOnS 81 000 370 nm to 1050 nm 775
FIES 67 000 370 nm to 730 nm 763
FEROS 48 000 350 nm to 920 nm 208

5.2.2 Data collected from archive

The spectra4 was obtained with the highest possible resolution for a given spectrograph, and in cases with
multiple observations, we include all the observations unless a spectrum is close to the saturation limit for
a given spectrograph. All S/N were considered. However, the lower the S/N would in general yield a lower
precision on the final parameters. For multiple spectra, we combine them after first correcting the radial
velocity (RV) and using a sigma clipper to remove strange peak like features. The individual spectra are
then combined to a single spectrum for a given star to increase the S/N. This single spectrum is used in
the analysis described below. For most of the spectra in the archive included here, several spectra were
combined as described above, while for the observations dedicated to this work, the spectrum would be a
single spectrum, or in cases of faint stars, it would be observed a few times to reach the desired S/N.
The reason to observe faint stars multiple times rather than in one exposure, is that the total amount of
exposure (to reach the desired S/N) is higher than recommended/possible with the instruments used.
Moreover, activity on the time scale of the exposure might deform the spectra. This can e.g. be stellar
pulsations. The reason for having a single/few spectra of high S/N versus multiple spectra of low S/N is
mostly due to the difference in science cases behind the observations; for example, the HARPS spectra
were mostly used for RV monitoring or follow-up of the exoplanet(s), while the UVES spectra were mostly
used to characterise stellar parameters or other similar projects.

5.3 Analysis of 50 planet hosts

The method of determining atmospheric parameters from the curve of growth analysis has been applied
several times in the optical (see e.g. Sousa et al., 2011; Mortier et al., 2013b; Tsantaki et al., 2013; Santos
et al., 2013). When studying stars with planets and any correlations between stellar and planetary
parameters it is important to have a homogeneous characterisation of the stars. An effort to compile
a sample into a catalogue was initiated by Santos et al. (2013) with the SWEET-Cat database. The
motivation to homogenise the stellar hosts is mainly to compare the hosts and make statistical studies on
one consistent scale. When doing these statistical studies, the results might otherwise suffer from offsets
between different methods.
4 Based on observations collected at the La Silla Observatory, ESO (Chile), with HARPS/3.6m (runs 60.A-9036(A), 072.C-

0488(E), 081.C-0842(D), 083.C-1001(A), 084.C-0229(A), 087.C-0012(B) 089.C-0732(A), 091.C-0034(A), 092.C-0721(A),
093.C-0409(A), 183.C-0972(A), 188.C-0265(A,D,F,G,H,I,J,K,L,M,N), 192.C-0852(A,M)), and with ESPaDOnS/CFHT
at the National Research Council of Canada (runs 14AF14, 07bo03, 11AQ78, 05AC23, 06AF22).
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The skills acquired during the thesis on NIR studies as mentioned above were directly translated into
deriving parameters for a sample of 50 known planet host stars that were not previously analysed by our
group (Andreasen et al., 2017b). The spectra of these stars were required at UVES, FIES, HARPS, and
ESPaDOnS with the mean S/N higher than 200.

A Hertzsprung-Russell diagram of the sample can be seen in Figure 5.1. The sample covers a large
range of Teff , FGK, while there are both dwarf, sub-giant, and some giant stars. The colours indicate the
log g. In order to determine the luminosity of each star the simple relation

L = 4πR2σT 4
eff

is used, where L is the luminosity, R is the stellar radius, and σ is the Stefan-Boltzmann constant. In
solar units this relation is simply:

L

L�
=
(
R

R�

)2(
Teff

Teff,�

)4

In order to determine the the stellar radius, the empirical relation from Torres et al. (2010) was used.
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Figure 5.1: A Hertzsprung-Russell diagram of the sample of 50 planet host stars added to SWEET-Cat.
The parameters were derived using optical high resolution and high S/N spectra in tandem with FASMA
and an optical line list. The colour scale shows the derived log g for each star.
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The parameters were derived using FASMA with the optical line list compiled by Sousa et al. (2008)
and Tsantaki et al. (2013) for stars where Teff was below 5200 K. All the new derived parameters were
added to SWEET-Cat, available for the community. The parameters are also available in Table B.1,
while the previous results can be seen in Table B.2. A comparison between the new derived parameters
and the previous parameters can be seen in Figure 5.2
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Figure 5.2: The new atmospheric parameters of 50 exoplanet hosts against the previous parameters.

Since there exists more reliable surface gravities than the spectroscopic surface gravity (log gspec),
such as that derived from asteroseismology or transit light curves, a correction to log gspec is applied
based on asteroseismology as found by Mortier et al. (2014) given by:

log gseis = log gspec − (3.89± 0.23)× 10−4 Teff + 2.10± 0.14, (5.1)

where log gseis is the corrected surface gravity. This correction is only used for FGK dwarf stars, i.e.
between 4800 K ≤ Teff ≤ 6500 K and log g ≥ 4.2 dex. For stars with a log g lower than this limit the
correction will not be applied, and if the log g changes to below this limit after the correction, the
spectroscopic log g will be used again. The correction for log g depends on both Teff and log g. The
correction can be up to 0.5 dex, depending on the Teff .

With these updated parameters the completeness of SWEET-Cat for stars brighter than V magnitude
10 is 85% (77% for stars brighter than 12). For fainter stars it is time expensive to acquire spectra of the
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quality needed for this method. Moreover, many of the fainter planet host stars have been observed with
the Kepler space mission, where most stars are faint.

5.3.1 Habitable zone

This section was not part of the original paper (Andreasen et al., 2017b), however it is an interesting
showcase of what a catalogue like SWEET-Cat can be used for.

The habitable zone of a star is at the distance where liquid water may exists. This distance depends
on Teff and the luminosity, but also on the planetary atmosphere and its composition. Using Equation 3
described in Kopparapu et al. (2013) to calculate the inner and upper limits of the habitable zone. The
equation is rather simple:

d =

√
L/L�
Seff

AU, (5.2)

Seff = Seff,� + aT∗ + bT 2
∗ + cT 3

∗ + dT 4
∗ , (5.3)

where T∗ = Teff − 5780 K, and the coefficients can be found in Table 3 in Kopparapu et al. (2013), which
depends on the specific model of habitable zone used. Here are used the “Runaway Greenhouse” for the
inner limit and “Maximum Greenhouse” for the outer limit of the habitable zone. The equation above is
only valid for main sequence stars FGKM, thus only stars with log g ≥ 4.2 dex have been included.

It was possible to find three planets within this zone; GJ 785 c, HD 37124 c, and KELT-6 c.
These planets does not have known radii, and their minimum masses are (0.076, 0.652, 3.710)MJupiter,
respectively. Thus, it is fair to assume they are all gas planets when comparing to gas planets in our
Solar System. All three host stars are metal-poor. A correlation between orbital period and host star
metallicity is known (see e.g. Adibekyan et al., 2013), where metal-poor stars have planets with higher
orbital period. Since the habitable zone is often quite far from the host star, that is the case for e.g.
FGK dwarf stars which can be seen in Figure 5.3, it is expected that metal-poor stars will harbour most
of the exoplanets in the habitable zone according to the correlation found in Adibekyan et al. (2013). A
quick summary of the system is shown in Table 5.3.

Table 5.3: Host star and planetary properties of GJ 785, HD 37124, and KELT-6; all which have an
exoplanet in the habitable zone.

Parameter GJ 785 HD 37124 KELT-6
Stellar parameters
Teff (5087± 48) K (5460± 35) K (6246± 88) K
log g (4.30± 0.10) dex (4.26± 0.04) dex (4.22± 0.09) dex
[Fe /H ] (−0.01± 0.03) dex (−0.42± 0.03) dex (−0.22± 0.06) dex
Luminosity 0.72L� 1.10L� 2.70L�
V magnitude 6.13 7.68 10.38
Planetary parameters
Planet GJ 785 c HD 37124 c KELT-6 c
Period 525 days 885 days 1276 days
Mass 0.076MJ 0.652MJ 3.710MJ

Semi-major axis 1.18 AU 1.71 AU 2.39 AU
Inner HZ limit 0.86 AU 1.04 AU 1.56 AU
Outer HZ limit 1.53 AU 1.84 AU 2.70 AU
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In Figure 5.3 the habitable zone of the stars analysed here are shown along with the location of the
planets. The three systems mentioned above are highlighted in the figure.
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Figure 5.3: The habitable zone for the updated SWEET-Cat stars. The coloured line shows the
theoretical habitable zone, while the dots shows the location of the planets in the actual system. The
blue lines show the habitable zone of the three stars where a planet is located within it (green points).
The red dots and orange lines are systems which does not lie within the habitable zone. Finally, the
green line shows the location of the Sun’s habitable zone and the first five planets placement. In this
model both Earth and Mars are within the habitable zone.

5.3.2 Changes to planetary parameters

As a results to the analysis above, it is expected that some planetary parameters will change compared
with the previous literature values due to the connection between derived planetary parameters and
stellar parameters (see Equation 1.1 and Equation 1.2).

Therefore the radius and mass of all the 50 new stars updated in SWEET-Cat were computed using
the empirical formula presented in Torres et al. (2010). Some of the stars have radii derived from different
methods, usually from isochrones. These radii generally show a good correlation with radii derived from
Torres et al. (2010) if the literature parameters of Teff , log g, and [Fe /H ] are used. However, when
comparing with the new radius derived using the parameters presented here, the results can differ by up
to 65%. This is shown in Figure 5.4 how the radius calculated from Torres et al. (2010) differs between
the literature atmospheric parameters and the new homogeneous atmospheric parameters presented here.
Note that stellar radii are provided by many of the authors from different discovery papers, but here the
atmospheric parameters via the derivation of the stellar radius, as described above, are compared, rather
than comparing the stellar radii from different methods.

In the sections below there follow a discussion of the systems (seven stars, eight exoplanets) where
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Figure 5.4: Stellar radius on both axes calculated based on Torres et al. (2010). The x-axis shows the
stellar radius based on the atmospheric parameters from the literature, while the y-axis indicates the new
homogeneous parameters presented here. The colour and size indicate the surface gravity. This clearly
shows that the disagreement is biggest for more evolved stars.
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the radius or mass of the stars changes more than 25% and how this influences the planetary parameters.
The changes in radius for a star is primarily due to changes in log g, which can be used as an indicator
of the evolutionary stage of a star. Discrepancies in log g are also typically the reason for derived mass
differences.

The planetary radius, mass, and semi-major axis were re-derived when possible following the three
simple scaling relations based on Newton’s law of gravity (Newton, 1687) for deriving mass and distance
and simple geometry for radius (see e.g. Torres et al., 2008)

Mpl,new =
(
M∗,lit
M∗,new

)−2/3
Mpl,lit (5.4)

Rpl,new =
(
R∗,lit
R∗,new

)
Rpl,lit (5.5)

apl,new =
(
M∗,lit
M∗,new

)1/3
apl,lit, (5.6)

where the subscript “lit” denotes the value from the literature used in the comparison, the subscript “new”
indicates the new computed values, the subscript “pl” is short for planet, and the subscript “∗” is short
for star; M , R, and a are mass, radius, and semi-major axis, respectively. Note that for the literature
values, the values reported directly from the literature were used and not the derived radius and mass
from Torres et al. (2010). To identify outliers, the radii and masses were compared when derived from
Torres et al. (2010) since this is a measure of how the atmospheric parameters have changed.

5.3.2.1 HAT-P-46

HAT-P-46 has two known exoplanets according to Hartman et al. (2014a). The outer planet HAT-P-46 c
is not transiting, hence the radius is not known for this planet. The results presented above for this star
come from UVES/VLT data with a S/N of 208. Hartman et al. (2014a) derived the following spectroscopic
parameters: Teff = (6120± 100) K, log g = (4.25± 0.11) dex, and [Fe /H ] = (0.30± 0.10) dex. Note that
for this star the asteroseismic correction applied (see Section 5.3) results in a corrected log g below 4.2dex,
so the spectroscopic log g was used for this star.

If mass and radius is derived of HAT-P-46 b with the new parameters, the radius obtained is
Rpl = 0.93RJ , while Hartman et al. (2014a) derived Rpl = 1.28RJ . No change in mass is seen (Hartman
et al. 2014a found Mpl = 0.49MJ); however, there is a decrease in the radius, and this results with a
more dense planet, ρpl = 0.76 g/cm3 from ρpl = (0.28± 0.10) g/cm3.

Only the minimum mass is known for the secondary companions, as it does not transit HAT-P-46
seen from Earth. With the derived parameters here, the minimum mass is M sin ipl = 1.97MJ , where
Hartman et al. (2014a) presented M sin ipl = 2.00MJ , so a very small change, as expected.

5.3.2.2 HD 120084

The exoplanet orbiting this star with a period of 2082 days and a quite eccentric orbit at 0.66 was
discovered by Sato et al. (2013a). The atmospheric parameters were derived by Takeda et al. (2008)
using a similar method to that described here. The quality of the spectra they analysed, however, were
not as high as those used here. Using the HIDES spectrograph at the 188 cm reflector at NAOJ, Takeda
et al. (2008) reported an average S/N for their sample of 100-300 objects at a resolving power of 67 000.
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The spectrum used here is from ESPaDOnS with a resolving power of 81 000, and with a S/N for this
star at 850. With the new parameters obtained, there is a slight decrease in stellar mass for the star
at 1.93M� compared to 2.39M� obtained by Takeda et al. (2008), hence the minimum planetary mass
is also slightly lower, from mpl sin i = 4.5MJ to mpl sin i = 3.9MJ . The stellar radius decrease by 28%,
from 9.12R� to 7.81R�. Since there are no observations of the planet transiting, the planetary radius
has not been computed.

5.3.2.3 HD 233604

HD 233604 b was discovered by Nowak et al. (2013), while the stellar atmospheric parameters of the
star were derived by Zieliński et al. (2012), who used the same method as described here using the HRS
spectrograph at HET with a resolving power of 60 000 with a typical S/N at 200-250. For the analysis
presented here, a spectrum from the FIES spectrograph was used with a slightly higher resolution at
67 000, and similar but also slightly higher S/N at 320 for this star.

This planet is in a very close orbit with a semi-major axis of ∼ 15R∗ (R∗ is the stellar radius) using
the parameters from Nowak et al. (2013). Using the updated parameters presented in this paper the
stellar mass increase slightly from 1.5M� to 1.9M�, and a decrease in stellar radius from 10.5R� to
8.6R�. This increases the semi-major axis to ∼ 21R∗. We note that the correct stellar radii are used
to describe the semi-major axis in both cases. The increase in stellar mass leads to an increase in the
minimum planetary mass, from mpl sin i = 6.58MJ to mpl sin i = 7.79MJ .

Moreover, Nowak et al. (2013) found a high Li abundance at A(Li )LTE = (1.400± 0.042) dex for
this star and speculated that this star might have engulfed a planet. A more likely explanation is that
this star has not yet reached the first dredge-up process (Nowak et al., 2013). In the analysis here a
much lower value is found, A(Li )LTE = 0.92 dex, and hence the star is not believed to be Li rich. The
Li abundance found here is in excellent agreement with Adamów et al. (2014). Even applying a NLTE
correction, as was done in Adamów et al. (2014) (A(Li )NLTE = 1.08), this star is not Li rich.

5.3.2.4 HD 5583

This exoplanet was discovered by Niedzielski et al. (2016) with an orbital period of 139 days around a
K giant. This exoplanet was discovered with the radial velocity technique, and the planetary radius
is not known. The stellar parameters were derived in a similar manner to that presented here (see
Niedzielski et al., 2016, and references therein); the biggest disagreement is in the surface gravity. Here
was derived a log g that is higher by 0.34 dex, which gives a stellar radius that is smaller by 37%. The
derived mass is 15% higher, which in turn increases the minimum planetary mass from mpl sin i = 5.78MJ

to mpl sin i = 8.63MJ . Even with the increase in mass, it is still within the planetary regime for most
inclinations, as was noted by Niedzielski et al. (2016).

5.3.2.5 HD 81688

This exoplanet was discovered by Sato et al. (2008) with the RV method. The host star is a metal-poor
K giant. The atmospheric parameters presented in Sato et al. (2008) are obtained via the same method
as presented here, and the agreement is quite good. Once again the big disagreement is in the surface
gravity: Here was obtained 0.48 dex higher. Even though the stellar atmospheric parameters, and hence
the planetary parameters, do change, the radius and mass derived are not far from the values presented



Chapter 5. SWEET-Cat 76

in the paper by Sato et al. (2008). This is a case where the star was marked as an outlier, due to the
comparison between the radius and mass derived from Torres et al. (2010).

The new stellar mass is the same as before, 2.1M�. The stellar radius changed from 13.0R� to
10.8R�. Since a transit of this star has not been observed and the stellar mass remains the same, there
is no change in the planetary parameters.

It is worth noting that this system is in an interesting configuration with a very close orbit around an
evolved star. This system, among others, has been the subject of work on planet engulfment (see e.g.
Kunitomo et al., 2011).

5.3.2.6 HIP 107773

The planetary companion was presented in Jones et al. (2015) as an exoplanet around an intermediate-
mass evolved star. The stellar parameters were obtained from the analysis by Jones et al. (2011) using the
same method as presented here, but with a different line list, which might lead to some disagreements. A
higher log g (2.83 dex compared to 2.60 dex) was derived here, thus the star is slightly smaller with 11.6R�
to 9.2R� and 2.4M� to 2.1M� for radius and mass of the star, respectively. The other atmospheric
parameters are very similar to those derived by Jones et al. (2011). This leads to a reduced minimum
mass of the planetary companion from m sin i = 1.98MJ to m sin i = 1.78MJ . The planetary radius has
not been measured.

5.3.2.7 WASP-97

The exoplanet orbiting WASP-97 was discovered by Hellier et al. (2014). The host star parameters were
derived using a similar method to that described here after co-adding several spectra from the CORALIE
spectrograph. They reach a S/N of 100 with a spectral resolution of 50 000. The parameters presented
here come from the UVES spectrograph with a S/N of more than 200.

The parameters do not change much for this planet. The minimum planetary mass changes from
mpl sin i = 1.32MJ to mpl sin i = 1.37MJ and the radius from 1.13RJ to 1.42RJ . This affects the density
quite strongly; it changes from 1.13 g/cm3 to 0.59 g/cm3. This exoplanet is then in the same category as
Saturn; its density is lower than water, but it is slightly larger than Jupiter.

5.3.2.8 ω Serpentis (ome Ser)

The exoplanet orbiting this star with a period of 277 days and an eccentric orbit at 0.11 was also presented
by Sato et al. (2013a). The atmospheric parameters were derived in the same way as for HD 120084.
Data from FIES with a resolving power of 67 000 was used, and with a S/N for this star of 1168. With
the new parameters a slightly higher stellar mass for the star is obtained at 2.19M� compared to the
value of 2.17M� obtained by Takeda et al. (2008). This change is not significant enough to change the
minimum planetary mass at mpl sin i = 1.7MJ . The stellar radius decreases by more than one solar
radius, from 12.3R� to 11.1R�. However, since there are no observations of transiting exoplanets, any
change in planetary radius cannot be detected.

5.3.2.9 o Ursa Major (omi UMa)

omi UMa b was discovered by Sato et al. (2012) using the RV method. The stellar parameters are from
Takeda et al. (2008), as discussed above. The spectrum used for this star is from ESPaDOnS with a S/N
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of more than 500 compared to the value of 100-300 reached for the large sample presented in Takeda
et al. (2008). The luminosity and mass for omi UMa were obtained from theoretical evolutionary tracks
(see Sato et al., 2012, and references therein). The radius was then estimated using the Stefan-Boltzmann
relationship, using the measured luminosity and Teff .

The parameters presented here mainly differ in the surface gravity: here it is 0.72 dex higher at
log g = 3.36. This leads to a big change in stellar mass and radius from 3.1M� to 1.6M� and 14.1R�
to 4.5R�, respectively. Sato et al. (2012) have reported that omi UMa b is the first planet candidate
around a star more massive than 3M�, which is not supported by the results presented here. With these
updated results, the minimum mass of the planet is now m sin i = 2.7MJ , whereas previously it was
m sin i = 4.1MJ (Sato et al., 2012). The exoplanet is not reported to transit, as seen from Earth, so the
radius for this exoplanet is not known, which would have changed a great deal with these new results.

5.4 Discovering two giant planet populations

The stellar parameters from SWEET-Cat was combined with the exoplanetary database from Exoplanet.eu
to explore new star-planet connections by Santos et al. (2017). With the amount of exoplanets discovered,
it opens up the possibility for statistical studies, which might give insight in the models describing planet
formation and evolution (see e.g. Mayor et al., 2014).

In this work by Santos et al. (2017), the study was focused on giant exoplanets, namely exoplanets
with masses higher than 1MJup and below 25MJup. The upper limit is to avoid entering the brown dwarf
regime. In cases where the exoplanet have only been detected by RV, the minimum mass is used. There
were some additionally constraints:

• All stars have Teff , log g, and [Fe /H ] listed in SWEET-Cat.

• Teff between 4000 K and 6500 K for more reliable derived stellar atmospheric parameters with high
quality spectra.

• Visual magnitude below 13 (not very constraining) for more reliable RV measurements and confidence
that the stellar atmospheric parameters can be derived reliably.

• Cut in orbital period to only consider exoplanets between 10 days and 5 years. Lower limit is to
avoid hot Jupiters for which the formation mechanism is still debated (see e.g. Ngo et al., 2016;
Nelson et al., 2017). The upper limit is for completeness, assuring that the planet would not be
missed in RV surveys.

A histogram of the exoplanetary masses (in the 1− 20MJup mass range) is shown in Figure 5.5. Both
with and without the constraint. Two different peaks become evident in this plot around 4MJup.

The sample was divided at the highest mass exoplanets (4 − 15MJup) and the lowest mass giant
exoplanets (1− 4MJup), and the stellar parameters were explored in these two sub-samples. Specifically
the [Fe /H ] was explored here. This can be seen in Figure 5.6, where the samples have been divided into
stellar mass groups as well (including the full sample). Kolmogorov-Smirnov (K-S) tests were performed
on each case, in order to understand if the sub-samples comes from the same parent population.

From the K-S p-values, it suggest that the two sub-samples (high and low exoplanet masses) comes
from distinct population when considering all the stars (p = 5 · 10−4) and the highest mass stars (above
1.5M�; p = 3 · 10−3), while the p-value increasing for the intermediate stellar masses (1 − 1.5M�;

http://exoplanet.eu/
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Figure 5.5: Giant planet masses for the full sample and constrained sample (see text for details). This
study was performed by Santos et al. (2017) to distinct two giant planet populations.
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Figure 5.6: [Fe /H ] distributions for the lowest and highest exoplanet masses. These are divided into
different stellar mass ranges.
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p = 0.06), and the lowest stellar masses (1M�; p = 0.06). No statistical evidence were found that the
two sub-samples were significantly different, when considering orbital period or eccentricities instead of
stellar metallicity.

The results suggest that there are evidence for two different giant planet populations. Stars with
planets more massive than 4MJup are in average more metal-poor; a trend that is statistically significant
for more massive stars (above 1.5M�), although it is observed in all stellar mass regimes. As was discussed
briefly in Section 1.2.1, there is a strong correlation between stellar metallicity and planet frequency; stars
hosting giant planets are more metal-rich than stars without planets. An observational fact that supports
the core-accretion model for planet formation. Thus it is intriguing that here the most massive planets
are found around the more metal-poor stars. In the core-accretion paradigm it has been suggested that
the planet frequency increase with stellar mass up to 3M� (Kennedy and Kenyon, 2008). Additionally,
it is known that higher mass stars have higher mass disks (Natta et al., 2000). Therefore, the results
presented here might simple show that the most massive exoplanets (> 4MJup) are formed around the
most massive stars, even though these stars might be more metal-poor (compared to the stars hosting
low mass giant exoplanets), because the most massive stars can have more massive disks.

To explorer this explanation, the M∗10[Fe /H ] index was compared for the two planet population. This
index is expected to measure the total amount of the heavy material in the disks, and is thus a better
measure for the planet formation efficiency in the core-accretion scenario. For all the stars in the sample,
the K-S test gives a p-value of 0.08. So the stellar mass can only be part of the explanation.

Alternatively it has been suggested that gravitational instability may be less dependent on metal
content as core-accretion to form planets (Boss, 2002; Cai et al., 2006).

Then the observational results can be interpreted as showing two distinct giant planet populations
formed by different physical processes:

• Low mass giant planets (1− 4MJup): Formed by core-accretion around more metal-rich stars.

• High mass giant planets (> 4MJup): Formed by gravitational instability (or other instability
process), less sensitive to stellar metallicity.

5.5 Updating SWEET-Cat

While SWEET-Cat is already a success, it is important to strive to improve the catalogue. Therefore
several improvements for SWEET-Cat are planned. The most important additions are the derivation of
chemical abundances and derivation of mass5, radius, and age using stellar modelling.

With the deviation of chemical abundances, it is possible to make more in-depth studies of the planet
hosts, e.g. by studying trends with condensation temperatures (see e.g. Adibekyan et al., 2016). By
deriving the masses and radii of the planet hosting stars, the planetary parameters, (mass and radius,
and thus the bulk density) can be derived in a consistent way. This leads to a third improvement of
SWEET-Cat; namely re-derived planetary parameters using the homogeneously derived stellar parameters.

When deriving the stellar masses and radii, the luminosity is also an output, which could be added to
the future version of SWEET-Cat. This leads to simple estimates of the habitable zone limits (see the
discussion above in Section 5.3.1). The implication of this is immediately evident: locating exoplanets in

5 The mass is currently available, however it is derived from a empirical relation.
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the habitable zone with the updated stellar parameters. This is of course particular interesting if the
exoplanet is rocky.

Two other additions to SWEET-Cat could be the projected rotational velocity, v sin i, and activity
indicators such as logR′HK. Note that v sin i will be difficult to derive. Here it is simplest to use synthesis
to estimate this parameter, although for slow rotating stars (below 10 km/s) it is difficult to measure
accurately with a high precision. These slow rotating stars are the ones used with the method described
above in e.g. Section 5.3. The activity is very important to include, since relations with stellar age
and stellar rotation might be explored. Moreover, some non-obvious correlations such as the correlation
found between logR′HK and planetary surface gravity (Hartman, 2010; Figueira et al., 2014b) might be
explored as well.

The last update on the wish-list is for the web page itself. It could be made modern with plotting
capabilities, and in tandem combine SWEET-Cat with an exoplanet database, such as Exoplanet.eu.
This will allow any user to quickly explorer relations between stellar and planetary properties. The tool
for plotting has already been developed and is distributed along with other scripts developed during this
PhD under astro_scripts6.

6 Can be found here: https://github.com/DanielAndreasen/astro_scripts, and can be installed with pip install
astro-scripts

http://exoplanet.eu/
https://github.com/DanielAndreasen/astro_scripts


Chapter 6
Conclusions and future work

Don’t cry because it’s over, smile because it
happened.

Dr. Seuss

6.1 Conclusions

This thesis consisted of two separated analysis. 1) The analysis of NIR stellar spectra and the compilation
of a new iron line list for determining stellar atmospheric parameters, and 2) the analysis of 50 planet-
hosting stars and update of SWEET-Cat. These two different analyses (NIR and optical) were both done
using the same method; determination of stellar atmospheric parameters using high quality spectra by
imposing ionization and excitation equilibrium. In a few summarised points, this thesis brings:

• A new NIR line list consisting of 84 Fe i lines and 5 Fe ii lines. This line list is optimised for usage
with high quality spectra. The goal is to analyse FGK stars and making the bridge towards the M
stars. Especially are the dwarf stars of most interest, in the context of exoplanets and the search of
habitable worlds. “Know the star, know the exoplanet” is the key.

The line list has been tested on few NIR spectra, mostly due to the lack of spectra and the difficulties
it is to currently obtain any NIR spectra. This is about to change in the near future. The tests
performed have been increasingly successful, and progress is evident.

• To analyse the data a new tool was created, FASMA. This tool provides many different options, can
be used with different atmosphere models, is available to the community as a web application, and
provides three different drivers for analysis of spectra: EW measurements, deriving parameters,
and deriving abundances of a range of elements. A fourth driver is under construction which is to
derive parameters using the synthesis method (Tsantaki et al., 2017).

• The analysis of 50 planet-host stars to increase the number of homogeneously analysed stars was
also the first appearance and official usage of FASMA. This analysis increased the completeness to
85% for stars brighter than 10 V magnitude. It is time consuming to obtain high quality spectra
for stars fainter than this magnitude, however the completeness is still at 77% for stars brighter
than 12 V magnitude. Out of the 50 planet host stars analysed, eight changed either the radius or
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mass by more than 25%. These eight systems were carefully analysed, and the updated planetary
parameters (radius, mass, and density) were derived when possible.

6.2 Future work

While the tests with the NIR line list has been successful, there will still be room for improvements. The
same is the case for the FASMA and SWEET-Cat. Here are some of the main points for (possible) future
work.

• One of the most difficult parameters to derive from high quality NIR spectra is the surface gravity.
This has also been known for the optical part of the spectrum (see e.g. Mortier et al., 2014).
However, with the iron line list presented here, the problem is more severe than the optical. This is
mainly due to the lack of Fe ii lines. There might be different ways to solve this problem.

1. Set the log g to a fixed value determined from other sources (this can e.g. be asteroseismology).

2. Obtain more Fe ii lines in the NIR. With the increased experience, it might prove valuable to
have a second look at the Fe ii lines, thereby increase the numbers.

3. Explorer another element than iron. While iron is both abundant in numbers and have a lot
of transitions, there might exists a better element for this.

4. Find other pressure sensitive features in the NIR to derive log g. In this case it will then be
combined with the first point raised, and iteratively obtaining Teff , [Fe /H ], and ξmicro, before
then obtaining log g.

This points requires some consideration before anything is done, as they might be time consuming
or not work as intended. As an example, it might not always be a advisable to set the surface
gravity (or any other parameters) to a fixed value.

• The model atmosphere used is reliable, however newer versions are available. It would be interesting
to use more recent versions of the ATLAS9 atmosphere models, and to explorer other atmosphere
models altogether, as the PHOENIX library.

• While FASMA is in a state where it work well and is stable, there are still ways to improve it. One
way is to use machine learning to get a better guess of initial parameters. This work has already
been initiated, and details on this can be seen in Chapter C, however the work is not yet connected
to FASMA. An additional plugin to FASMA could be to correct line abundances for non-LTE effects
using a pre-calculated grid of these corrections. The main part of this has already been done in
another project, but is not yet implemented into FASMA.

• After obtaining stellar atmospheric parameters from a high quality spectrum it is natural to explorer
the spectrum with another purpose: to obtain abundances for other elements. The individual
abundances of other elements than iron might be used to explorer the history of the star, and can
be used in connection with the planet-star correlations. This is something that is already explored
in detail in the optical, but is yet a relative new approach in the NIR from high quality spectra.

• One of the main limitations during this thesis have been the limited access to data. This lead to the
analysis of synthetic spectra. It will be very interesting to explorer real data in the future. Particular
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interesting is the CARMENES library which is under constructions. This library will contain a high
S/N spectrum of all the stars observed by CARMENES. This can be used to accurately explorer
different part of the parameter space and find weak points in the methodology presented here in
this thesis.

• This was already discussed previously, however, it will be interesting to update SWEET-Cat. These
updates can include more columns such as abundances of the planet host, modelled mass, radius,
and age, rotational velocity, etc. The update to SWEET-Cat can also be for the web interface. A
wish is to update this and include easy-plotting capabilities for users to quickly explorer planet-star
correlations.



Appendix A
NIR line list

Table A.1: The NIR iron line list. The log g are calibrated with FASMA using the ATLAS9 model
atmospheres by Kurucz (1993).

Wavelength Atomic number Excitation potential log gf Element Solar EW
Å eV mÅ

10065.05 26.0 4.83 -0.279 Fe i 94.0
10080.42 26.0 5.10 -1.964 Fe i 5.9
10081.39 26.0 2.42 -4.512 Fe i 6.9
10086.24 26.0 2.95 -3.978 Fe i 7.0
10137.10 26.0 5.09 -1.736 Fe i 9.8
10142.84 26.0 5.06 -1.554 Fe i 14.9
10145.56 26.0 4.80 -0.118 Fe i 109.0
10155.16 26.0 2.18 -4.336 Fe i 16.2
10156.51 26.0 4.59 -2.109 Fe i 12.2
10167.47 26.0 2.20 -2.319 Fe i 125.7
10195.11 26.0 2.73 -3.608 Fe i 22.6
10216.31 26.0 4.73 0.047 Fe i 129.9
10218.41 26.0 3.07 -2.893 Fe i 40.9
10265.22 26.0 2.22 -4.648 Fe i 8.1
10307.45 26.0 4.59 -2.432 Fe i 6.4
10332.33 26.0 3.63 -3.131 Fe i 10.5
10340.89 26.0 2.20 -3.665 Fe i 46.6
10347.97 26.0 5.39 -0.717 Fe i 37.0
10353.81 26.0 5.39 -0.989 Fe i 24.2
10364.06 26.0 5.45 -1.100 Fe i 18.0
10379.00 26.0 2.22 -4.236 Fe i 18.7
10388.75 26.0 5.45 -1.471 Fe i 8.7
10395.80 26.0 2.18 -3.435 Fe i 61.3
10423.03 26.0 2.69 -3.658 Fe i 22.9
10423.74 26.0 3.07 -3.119 Fe i 29.9
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Table A.1: continued.

Wavelength Atomic number Excitation potential log gf Element Solar EW
Å eV mÅ

10469.65 26.0 3.88 -1.277 Fe i 89.3
10532.24 26.0 3.93 -1.650 Fe i 64.4
10555.65 26.0 5.45 -1.282 Fe i 13.1
10577.14 26.0 3.30 -3.222 Fe i 17.2
10616.72 26.0 3.27 -3.306 Fe i 15.6
10725.19 26.0 3.64 -2.948 Fe i 15.7
10753.00 26.0 3.96 -2.077 Fe i 39.7
10780.69 26.0 3.24 -3.553 Fe i 10.4
10783.05 26.0 3.11 -2.786 Fe i 47.0
10818.28 26.0 3.96 -2.160 Fe i 35.6
10863.52 26.0 4.73 -0.877 Fe i 67.1
10884.26 26.0 3.93 -2.129 Fe i 39.1
10896.30 26.0 3.07 -2.911 Fe i 42.9
11013.24 26.0 4.80 -1.240 Fe i 42.4
11026.79 26.0 3.94 -2.517 Fe i 21.2
11119.80 26.0 2.85 -2.452 Fe i 84.8
11641.80 26.0 4.58 -2.116 Fe i 15.6
11778.42 26.0 5.34 -1.708 Fe i 8.4
12053.08 26.0 4.56 -1.602 Fe i 41.3
12119.50 26.0 4.59 -1.897 Fe i 25.0
12213.34 26.0 4.64 -2.006 Fe i 19.1
12227.11 26.0 4.61 -1.408 Fe i 51.5
12244.92 26.0 3.64 -3.222 Fe i 11.8
12340.48 26.0 2.28 -4.680 Fe i 9.4
12342.92 26.0 4.64 -1.545 Fe i 42.1
12510.52 26.0 4.96 -1.930 Fe i 12.9
12557.00 26.0 2.28 -4.026 Fe i 33.8
12615.93 26.0 4.64 -1.686 Fe i 35.7
12638.70 26.0 4.56 -0.679 Fe i 112.3
12807.15 26.0 3.64 -2.649 Fe i 37.1
12808.24 26.0 4.99 -1.811 Fe i 16.4
12824.86 26.0 3.02 -3.612 Fe i 20.1
12840.57 26.0 4.96 -1.612 Fe i 25.3
12879.77 26.0 2.28 -3.525 Fe i 68.7
12896.12 26.0 4.91 -1.713 Fe i 23.2
12933.01 26.0 5.02 -1.879 Fe i 13.9
12934.67 26.0 5.39 -1.103 Fe i 30.9
13014.84 26.0 5.45 -1.542 Fe i 12.3
13352.17 26.0 5.31 -0.355 Fe i 94.4
13392.10 26.0 5.35 -0.105 Fe i 115.1
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Table A.1: continued.

Wavelength Atomic number Excitation potential log gf Element Solar EW
Å eV mÅ

15194.49 26.0 2.22 -4.808 Fe i 14.1
15201.57 26.0 5.49 -1.315 Fe i 29.0
15207.53 26.0 5.38 0.311 Fe i 215.9
15335.38 26.0 5.41 0.252 Fe i 205.2
15490.34 26.0 2.20 -4.787 Fe i 16.1
15593.74 26.0 5.03 -1.796 Fe i 28.0
15611.15 26.0 3.42 -2.966 Fe i 51.6
15631.95 26.0 5.35 0.171 Fe i 207.0
15648.51 26.0 5.43 -0.633 Fe i 93.8
15676.58 26.0 5.11 -1.848 Fe i 22.3
16198.50 26.0 5.41 -0.376 Fe i 131.4
17420.83 26.0 3.88 -3.628 Fe i 6.7
19923.34 26.0 5.02 -1.536 Fe i 49.7
21851.38 26.0 3.64 -3.578 Fe i 12.7
22257.11 26.0 5.06 -0.704 Fe i 132.5
22380.80 26.0 5.03 -0.377 Fe i 179.4
22392.88 26.0 5.10 -1.330 Fe i 60.8
22619.84 26.0 4.99 -0.564 Fe i 158.2
23308.48 26.0 4.08 -2.705 Fe i 31.3
10427.31 26.1 6.08 -1.575 Fe ii 13.7
10501.50 26.1 5.55 -1.861 Fe ii 19.5
10862.64 26.1 5.59 -2.006 Fe ii 15.3
11125.58 26.1 5.62 -2.213 Fe ii 10.5
13251.14 26.1 9.41 0.768 Fe ii 13.4



Appendix B
SWEET-Cat update of 50 planet hosts

Table B.1: Derived parameters for the 50 stars in our sample. The S/N was measured by ARES.

Star Teff log g [Fe /H ] ξmicro ξmicro fixed? Instrument S/N
[K] [cgs] [km/s]

BD -11 4672 4553± 75 4.87± 0.51 −0.30± 0.02 0.14± 0.07 yes FIES 487
BD +49 828 5015± 36 2.87± 0.09a −0.01± 0.03 1.48± 0.04 no FIES 567
GJ 785 5087± 48 4.42± 0.10 −0.01± 0.03 0.69± 0.10 no HARPS 801
HATS-1 5969± 46 4.39± 0.06 −0.04± 0.04 1.06± 0.08 no UVES 155
HATS-5 5383± 91 4.41± 0.22 0.08± 0.06 0.91± 0.14 no UVES 158
HAT-P-12 4642± 106 4.53± 0.27 −0.26± 0.06 0.28± 0.63 no FIES 185
HAT-P-24 6470± 181 4.33± 0.27 −0.41± 0.10 1.40± 0.03 yes UVES 158
HAT-P-39 6745± 236 4.39± 0.47 −0.21± 0.12 1.53± 0.04 yes UVES 127
HAT-P-42 5903± 66 4.29± 0.10a 0.34± 0.05 1.19± 0.08 no UVES 130
HAT-P-46 6421± 121 4.53± 0.14a 0.16± 0.09 1.67± 0.18 no UVES 208

HD 120084 4969± 40 2.94± 0.14a 0.12± 0.03 1.41± 0.04 no ESPaDOnS 852
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Table B.1: continued.

Star Teff log g [Fe /H ] ξmicro ξmicro fixed? Instrument S/N
[K] [cgs] [km/s]

HD 192263 4946± 46 4.61± 0.14 −0.05± 0.02 0.66± 0.12 no HARPS 415
HD 219134 4767± 70 4.57± 0.17 0.00± 0.04 0.59± 0.24 no ESPaDOnS 725
HD 220842 5999± 39 4.30± 0.06a −0.08± 0.03 1.21± 0.05 no FIES 459
HD 233604 4954± 46 2.86± 0.11a −0.14± 0.04 1.61± 0.05 no FIES 314
HD 283668 4841± 73 4.51± 0.18 −0.74± 0.04 0.16± 0.61 no FIES 592
HD 285507 4620± 126 4.72± 0.61 0.04± 0.06 0.74± 0.43 no UVES 239
HD 5583 4986± 35 2.87± 0.09a −0.35± 0.03 1.62± 0.04 no FIES 933
HD 81688 4903± 21 2.70± 0.05a −0.21± 0.02 1.54± 0.02 no b 1350, 860
HD 82886 5123± 18 3.30± 0.04a −0.25± 0.01 1.16± 0.02 no c 1198,1294

HD 87883 4917± 68 4.53± 0.19 0.02± 0.03 0.46± 0.21 no ESPaDOnS 753
HIP 107773 4957± 49 2.83± 0.09a 0.04± 0.04 1.49± 0.05 no UVES 218
HIP 11915 5770± 14 4.33± 0.03 −0.06± 0.01 0.95± 0.02 no HARPS 709
HIP 116454 5042± 72 4.69± 0.15 −0.16± 0.03 0.71± 0.17 no UVES 412
HR 228 5042± 42 3.30± 0.09a 0.07± 0.03 1.14± 0.04 no UVES 400
KELT-6 6246± 88 4.22± 0.09a −0.22± 0.06 1.66± 0.13 no FIES 374
Kepler-37 5378± 53 4.47± 0.12 −0.23± 0.04 0.58± 0.13 no FIES 205
Kepler-444 5111± 43 4.50± 0.13 −0.51± 0.03 0.37± 0.15 no FIES 675
mu Leo 4605± 94 2.61± 0.26a 0.25± 0.06 1.64± 0.11 no ESPaDOnS 354

ome Ser 4928± 35 2.69± 0.06a −0.11± 0.03 1.55± 0.04 no FIES 1168
omi UMa 5499± 52 3.36± 0.07a −0.01± 0.05 1.98± 0.06 no ESPaDOnS 527
Qatar-2 4637± 316 4.53± 0.62 0.09± 0.17 0.63± 0.83 no UVES 97
SAND364 4457± 104 2.26± 0.20a −0.04± 0.06 1.60± 0.11 no UVES 220
TYC+1422-614-1 4908± 41 2.90± 0.12a −0.07± 0.03 1.57± 0.05 no FIES 506
WASP-37 5917± 72 4.25± 0.15 −0.23± 0.05 0.59± 0.13 no FIES 232
WASP-44 5612± 80 4.39± 0.30 0.17± 0.06 1.32± 0.13 no UVES 125
WASP-52 5197± 83 4.55± 0.30 0.15± 0.05 1.16± 0.14 no UVES 125
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Table B.1: continued.

Star Teff log g [Fe /H ] ξmicro ξmicro fixed? Instrument S/N
[K] [cgs] [km/s]

WASP-58 6039± 55 4.23± 0.10 −0.09± 0.04 1.12± 0.08 no FIES 310
WASP-61 6265± 168 4.21± 0.21a −0.38± 0.11 1.44± 0.02 yes UVES 163

WASP-72 6570± 85 4.25± 0.13 0.15± 0.06 2.30± 0.15 no UVES 174
WASP-73 6203± 32 4.16± 0.06a 0.20± 0.02 1.66± 0.04 no d 193,231
WASP-75 6203± 46 4.42± 0.22a 0.24± 0.03 1.45± 0.06 no UVES 189
WASP-76 6347± 52 4.29± 0.08a 0.36± 0.04 1.73± 0.06 no UVES 165
WASP-82 6563± 55 4.29± 0.10a 0.18± 0.04 1.93± 0.08 no UVES 239
WASP-88 6450± 61 4.24± 0.06a 0.03± 0.04 1.79± 0.09 no UVES 174
WASP-94 A 6259± 34 4.34± 0.07a 0.35± 0.03 1.50± 0.04 no UVES 356
WASP-94 B 6137± 21 4.42± 0.05a 0.33± 0.02 1.29± 0.03 no UVES 397
WASP-95 5799± 31 4.29± 0.05a 0.22± 0.03 1.18± 0.04 no UVES 247
WASP-97 5723± 52 4.24± 0.07 0.31± 0.04 1.03± 0.08 no UVES 219

WASP-99 6324± 89 4.34± 0.12 0.27± 0.06 1.83± 0.12 no UVES 249
WASP-100 6853± 209 4.15± 0.26a −0.30± 0.12 1.87± 0.02 yes UVES 166

a Spectroscopic log g.
b Weighted average of ESPaDOnS and FIES results. The parameters are (FIES in parentheses): Teff = 4870(4934)± 30(29), log g = 2.50(2.73)±

0.14(0.05), [Fe /H ] = −0.26(−0.19)± 0.03(0.02), and ξmicro = 1.50(1.59)± 0.03(0.03).
c Weighted average of ESPaDOnS and FIES results. The parameters are (FIES in parentheses): Teff = 5124(5121)± 22(29), log g = 3.30(3.31)±

0.05(0.07), [Fe /H ] = −0.25(−0.24)± 0.02(0.02), and ξmicro = 1.15(1.17)± 0.03(0.04).
d Weighted average of UVES and FEROS results. The parameters are (FEROS in parentheses): Teff = 6313(6162)± 61(37), log g = 4.26(4.14)±

0.15(0.06), [Fe /H ] = 0.22(0.19)± 0.04(0.03), and ξmicro = 1.85(1.61)± 0.08(0.04).
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Table B.2: Previous parameters from SWEET-Cat.

Star Teff log g [Fe /H ] ξmicro Reference
[K] [cgs] [km/s]

BD-114672 4475± 100 4.10± 0.36 −0.48± 0.05 0.67± 0.16 Moutou et al. (2015)
BD +49 828 4943± 30 2.85± 0.09 −0.19± 0.06 ... Niedzielski et al. (2015b)
GJ 785 5144± 50 4.60± 0.06 0.08± 0.03 ... Howard et al. (2011)
HATS-1 5780± 100 4.40± 0.08 −0.06± 0.12 ... Penev et al. (2013)
HATS-5 5304± 50 4.53± 0.02 0.19± 0.08 ... Zhou et al. (2014)
HAT-P-12 4650± 60 4.61± 0.02 −0.29± 0.05 ... Lee et al. (2014)
HAT-P-24 6373± 80 4.29± 0.04 −0.16± 0.08 ... Kipping et al. (2010)
HAT-P-39 6340± 100 4.16± 0.03 0.19± 0.10 ... Hartman et al. (2012)
HAT-P-46 6120± 100 4.25± 0.11 0.30± 0.10 0.85± ... Hartman et al. (2014b)
HAT-P-42 5743± 50 4.14± 0.07 0.27± 0.08 ... Boisse et al. (2013)
HD 120084 4892± 22 2.71± 0.08 0.09± 0.05 1.31± 0.10 Sato et al. (2013a)
HD 192263 4906± 57 4.36± 0.17 −0.07± 0.02 0.78± 0.12 Tsantaki et al. (2013)
HD 219134 4699± 16 4.63± 0.10 0.11± 0.04 0.35± 0.19 Motalebi et al. (2015)
HD 220074 3935± 110 1.30± 0.50 −0.25± 0.25 1.60± 0.30 Lee et al. (2013)
HD 220842 5920± 20 4.24± 0.02 −0.17± 0.02 ... Hébrard et al. (2016)
HD 233604 4791± 45 2.55± 0.18 −0.36± 0.04 ... Nowak et al. (2013)
HD 283668 4845± 66 4.35± 0.12 −0.75± 0.12 0.02± 0.30 Wilson et al. (2016)
HD 285507 4503± 73 4.67± 0.06 0.13± 0.01 ... Quinn et al. (2014)
HD 5583 4830± 45 2.53± 0.14 −0.50± 0.18 ... Niedzielski et al. (2016)
HD 81688 4753± 15 2.22± 0.05 −0.36± 0.02 1.43± 0.05 Sato et al. (2008)
HD 82886 5112± 44 3.40± 0.06 −0.31± 0.03 ... Johnson et al. (2011)
HD 87883 4958± 44 4.56± 0.06 0.07± 0.03 ... Valenti and Fischer (2005)
HIP 107773 4945± 100 2.60± 0.20 0.03± 0.10 ... Jones et al. (2015)
HIP 11915 5760± 4 4.46± 0.01 −0.06± 0.00 ... Bedell et al. (2015)
HIP 116454 5089± 50 4.59± 0.03 −0.16± 0.08 ... Vanderburg et al. (2015)
HR 228 4959± 25 3.16± 0.08 0.01± 0.04 1.12± 0.07 Sato et al. (2013b)
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Table B.2: continued.

Star Teff log g [Fe /H ] ξmicro Reference
[K] [cgs] [km/s]

KELT-6 6102± 43 4.07± 0.06 −0.28± 0.04 ... Collins et al. (2014)
Kepler-37 5417± 70 4.57± 0.01 −0.32± 0.07 ... Barclay et al. (2013)
Kepler-444 5046± 74 4.60± 0.06 −0.55± 0.07 ... Campante et al. (2015)
mu Leo 4538± 27 2.40± 0.10 0.36± 0.05 1.40± 0.10 Lee et al. (2014)
ome Ser 4770± 10 2.32± 0.04 −0.24± 0.02 1.34± 0.04 Sato et al. (2013a)
omi UMa 5242± 10 2.64± 0.03 −0.09± 0.02 1.51± 0.07 Sato et al. (2012)
Qatar-2 4645± 50 4.60± 0.02 −0.02± 0.08 ... Bryan et al. (2012)
SAND364 4284± 9 2.20± 0.06 −0.02± 0.04 ... Brucalassi et al. (2014)
TYC+1422-614-1 4806± 45 2.85± 0.18 −0.20± 0.08 ... Niedzielski et al. (2015a)
WASP-37 5940± 55 4.39± 0.02 −0.40± 0.12 ... Simpson et al. (2011)
WASP-44 5400± 150 4.48± 0.07 0.06± 0.10 ... Anderson et al. (2012)
WASP-52 5000± 100 4.58± 0.01 0.03± 0.12 ... Hébrard et al. (2013)
WASP-58 5800± 150 4.27± 0.09 −0.45± 0.09 ... Hébrard et al. (2013)
WASP-61 6250± 150 4.26± 0.01 −0.10± 0.12 ... Hellier et al. (2012)
WASP-72 6250± 100 4.08± 0.13 −0.06± 0.09 1.60± 0.10 Gillon et al. (2013)
WASP-73 6030± 120 3.92± 0.08 0.14± 0.14 1.10± 0.20 Delrez et al. (2014)
WASP-75 6100± 100 4.50± 0.10 0.07± 0.09 1.30± 0.10 Gómez Maqueo Chew et al. (2013)
WASP-76 6250± 100 4.13± 0.02 0.23± 0.10 1.40± 0.10 West et al. (2016)
WASP-82 6490± 100 3.97± 0.02 0.12± 0.11 1.50± 0.10 West et al. (2016)
WASP-88 6430± 130 4.03± 0.09 −0.08± 0.12 1.40± 0.10 Delrez et al. (2014)
WASP-94 A 6170± 80 4.27± 0.07 0.26± 0.15 ... Neveu-VanMalle et al. (2014)
WASP-94 B 6040± 90 4.26± 0.06 0.23± 0.14 ... Neveu-VanMalle et al. (2014)
WASP-95 5630± 130 4.38± 0.03 0.14± 0.16 ... Hellier et al. (2014)
WASP-97 5640± 100 4.43± 0.03 0.23± 0.11 ... Hellier et al. (2014)
WASP-99 6180± 100 4.12± 0.03 0.21± 0.15 ... Hellier et al. (2014)
WASP-100 6900± 120 4.04± 0.11 −0.03± 0.10 ... Hellier et al. (2014)



Appendix C
FASMA and machine learning

With the increasing amount of astrophysical data, it is important to perform a rapid and trustworthy
analysis. This is one of the strengths for FASMA when dealing with high quality spectroscopic data for
determination of stellar atmospheric parameters. Here a classic method to analyse these large amount of
data has been modernised with a new minimisation technique that utilise the physical knowledge about
the system. However smart it may sound like, it can be improved. The time consuming part in FASMA are
the calls to MOOG. In the end a couple of minutes are spent on the minimisation on a modern computer.

This lead to a side-project: explorer the use of machine learning to determine stellar atmospheric
parameters. Machine learning (ML) is not a new topic in computer science, but it is a tool that is steadily
becoming more and more popular in today’s science. The effort of using ML here is meant as a proof of
concept, and something that can be improved upon in the future.

The idea was to remove the expensive calls to MOOG completely. Two things are required in order to
do so in the approach presented here:

1. Stellar atmospheric parameters of a large sample of stars with a big span in the parameter space

2. The EW measurements of as many absorption lines as possible (in this case Fe i and Fe ii)

Additionally it is here required that the above two points are obtained in a homogeneous way. Luckily
such a sample was already analysed during this thesis as a test of FASMA (see Section 3.2.2.6) where a
sample of 582 stars were analysed; all of which meet the above required criteria.

This data set of measurements of EWs and the parameters were organised and prepared in a big table
as follows:

• Each row contains both the measurements of the EWs (first N columns) and the parameters (last
four columns). The parameters are Teff , log g, [Fe /H ], and ξmicro

• The columns excluding the last four are labelled with the wavelength of the absorption line

• All wavelength columns which contained at least one missing measurement of the EW for any of
the 582 stars were removed

There are 58 wavelength columns after removing wavelength columns with missing measurements. Before
the removal there were 299 columns with wavelength. In this case the scikit-learn package1 from the
1 http://scikit-learn.org/
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Python ecosystem was used to train the data set. This also package also include a tool to split the data
into a training part and testing part. This is particular useful when trying to evaluate the accuracy of
the model used. Here the training consist of 2/3 of the data, and the rest is for testing. This splitting is
done randomly, giving slight different results each time the script is executed.

The training itself is quite fast (less than 10 s). However, the real power comes when the trained
model is saved to the disk, which can later be loaded again. In this way the training will only be done
once. Using the model to obtain the parameters is much less than 1 s, which makes is many orders of
magnitudes faster2 than a more traditional approach as with FASMA.

When testing the model trained, the 1/3 data set is used to derive parameters. Those derived
parameters are then compared to the actual parameters with a mean absolute error. This gives an idea
of the accuracy. In Figure C.1 the script was run 1000 times (the splitting was done randomly in each
run), and the error for each parameter is shown as a histogram. The mean errors for each parameters are
roughly Teff : 47 K, log g : 0.10 dex, [Fe /H ] : 0.038 dex, and ξmicro : 0.12 km/s.
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Figure C.1: Mean absolute error on each parameter after 1000 runs.

There exists many different algorithms within scikit-learn to train the final model. In the test here
a simple LinearRegression was used. Other algorithms were tested as well, such as Ridge and Lasso,
however with very similar results. The main difference between the different algorithms are found in the
details on how the minimisation is done. This is described in great detail in the online documentation.
2 Improvements in the order of millions have been obtained here.



Bibliography

Adamów, M., Niedzielski, A., Villaver, E., Wolszczan, A., and Nowak, G.: 2014, A&A 569, A55

Adibekyan, V., Delgado-Mena, E., Figueira, P., Sousa, S. G., Santos, N. C., González Hernández, J. I.,
Minchev, I., Faria, J. P., Israelian, G., Harutyunyan, G., Suárez-Andrés, L., and Hakobyan, A. A.:
2016, A&A 592, A87

Adibekyan, V. Z., Benamati, L., Santos, N. C., Alves, S., Lovis, C., Udry, S., Israelian, G., Sousa, S. G.,
Tsantaki, M., Mortier, A., Sozzetti, A., and De Medeiros, J. R.: 2015, MNRAS 450, 1900

Adibekyan, V. Z., Figueira, P., Santos, N. C., Mortier, A., Mordasini, C., Delgado Mena, E., Sousa, S. G.,
Correia, A. C. M., Israelian, G., and Oshagh, M.: 2013, A&A 560, A51

Adibekyan, V. Z., Santos, N. C., Sousa, S. G., Israelian, G., Delgado Mena, E., González Hernández,
J. I., Mayor, M., Lovis, C., and Udry, S.: 2012a, A&A 543, A89

Adibekyan, V. Z., Sousa, S. G., Santos, N. C., Delgado Mena, E., González Hernández, J. I., Israelian,
G., Mayor, M., and Khachatryan, G.: 2012b, A&A 545, A32

Agol, E., Steffen, J., Sari, R., and Clarkson, W.: 2005, MNRAS 359, 567

Alibert, Y.: 2014, A&A 561, A41

Anderson, D. R., Collier Cameron, A., Gillon, M., Hellier, C., Jehin, E., Lendl, M., Maxted, P. F. L.,
Queloz, D., Smalley, B., Smith, A. M. S., Triaud, A. H. M. J., West, R. G., Pepe, F., Pollacco, D.,
Ségransan, D., Todd, I., and Udry, S.: 2012, MNRAS 422, 1988

Andreasen, D. T., Sousa, S. G., Delgado Mena, E., Santos, N. C., Lebzelter, T., Mucciarelli, A., and Neil,
J. J.: 2017a, A&A 585, A143

Andreasen, D. T., Sousa, S. G., Delgado Mena, E., Santos, N. C., Tsantaki, M., Rojas-Ayala, B., and
Neves, V.: 2016, A&A 585, A143

Andreasen, D. T., Sousa, S. G., Tsantaki, M., Teixeira, G. D. C., Mortier, A., Santos, N. C., Suárez-Andrés,
L., Delgado Mena, E., and Ferreira, A. C. S.: 2017b, A&A 600, A69

Apai, D., Kasper, M., Skemer, A., Hanson, J. R., Lagrange, A.-M., Biller, B. A., Bonnefoy, M., Buenzli,
E., and Vigan, A.: 2016, ApJ 820, 40

95



BIBLIOGRAPHY 96

Arnold, L., Gillet, S., Lardière, O., Riaud, P., and Schneider, J.: 2002, A&A 392, 231

Baglin, A., Auvergne, M., Boisnard, L., Lam-Trong, T., Barge, P., Catala, C., Deleuil, M., Michel, E.,
and Weiss, W.: 2006, in 36th COSPAR Scientific Assembly, Vol. 36 of COSPAR Meeting

Bakos, G., Noyes, R. W., Kovács, G., Stanek, K. Z., Sasselov, D. D., and Domsa, I.: 2004, Publications
of the ASP 116, 266

Balachandran, S.: 1990, ApJ 354, 310

Barclay, T., Rowe, J. F., Lissauer, J. J., Huber, D., Fressin, F., Howell, S. B., Bryson, S. T., Chaplin,
W. J., Désert, J.-M., Lopez, E. D., Marcy, G. W., Mullally, F., Ragozzine, D., Torres, G., Adams, E. R.,
Agol, E., Barrado, D., Basu, S., Bedding, T. R., Buchhave, L. A., Charbonneau, D., Christiansen,
J. L., Christensen-Dalsgaard, J., Ciardi, D., Cochran, W. D., Dupree, A. K., Elsworth, Y., Everett, M.,
Fischer, D. A., Ford, E. B., Fortney, J. J., Geary, J. C., Haas, M. R., Handberg, R., Hekker, S., Henze,
C. E., Horch, E., Howard, A. W., Hunter, R. C., Isaacson, H., Jenkins, J. M., Karoff, C., Kawaler,
S. D., Kjeldsen, H., Klaus, T. C., Latham, D. W., Li, J., Lillo-Box, J., Lund, M. N., Lundkvist, M.,
Metcalfe, T. S., Miglio, A., Morris, R. L., Quintana, E. V., Stello, D., Smith, J. C., Still, M., and
Thompson, S. E.: 2013, Nature 494, 452

Baumann, P., Ramírez, I., Meléndez, J., Asplund, M., and Lind, K.: 2010, A&A 519, A87

Bedding, T. R., Mosser, B., Huber, D., Montalbán, J., Beck, P., Christensen-Dalsgaard, J., Elsworth,
Y. P., García, R. A., Miglio, A., Stello, D., White, T. R., De Ridder, J., Hekker, S., Aerts, C., Barban,
C., Belkacem, K., Broomhall, A.-M., Brown, T. M., Buzasi, D. L., Carrier, F., Chaplin, W. J., di
Mauro, M. P., Dupret, M.-A., Frandsen, S., Gilliland, R. L., Goupil, M.-J., Jenkins, J. M., Kallinger,
T., Kawaler, S., Kjeldsen, H., Mathur, S., Noels, A., Silva Aguirre, V., and Ventura, P.: 2011, Nature
471, 608

Bedell, M., Meléndez, J., Bean, J. L., Ramírez, I., Asplund, M., Alves-Brito, A., Casagrande, L., Dreizler,
S., Monroe, T., Spina, L., and Tucci Maia, M.: 2015, A&A 581, A34

Berdiñas, Z. M., Rodríguez-López, C., Amado, P. J., Anglada-Escudé, G., Barnes, J. R., MacDonald, J.,
Zechmeister, M., and Sarmiento, L. F.: 2017, MNRAS 469, 4268

Bertaux, J. L., Lallement, R., Ferron, S., Boonne, C., and Bodichon, R.: 2014, A&A 564, A46

Beuzit, J.-L., Feldt, M., Dohlen, K., Mouillet, D., Puget, P., Wildi, F., Abe, L., Antichi, J., Baruffolo, A.,
Baudoz, P., Boccaletti, A., Carbillet, M., Charton, J., Claudi, R., Downing, M., Fabron, C., Feautrier,
P., Fedrigo, E., Fusco, T., Gach, J.-L., Gratton, R., Henning, T., Hubin, N., Joos, F., Kasper, M.,
Langlois, M., Lenzen, R., Moutou, C., Pavlov, A., Petit, C., Pragt, J., Rabou, P., Rigal, F., Roelfsema,
R., Rousset, G., Saisse, M., Schmid, H.-M., Stadler, E., Thalmann, C., Turatto, M., Udry, S., Vakili,
F., and Waters, R.: 2008, in Ground-based and Airborne Instrumentation for Astronomy II, Vol. 7014
of Proceedings of the SPIE, p. 701418

Blackwell, D. E. and Shallis, M. J.: 1977, MNRAS 180, 177

Bochanski, J. J., Hawley, S. L., Covey, K. R., West, A. A., Reid, I. N., Golimowski, D. A., and Ivezić, Ž.:
2010, AJ 139, 2679



BIBLIOGRAPHY 97

Boisse, I., Hartman, J. D., Bakos, G. Á., Penev, K., Csubry, Z., Béky, B., Latham, D. W., Bieryla, A.,
Torres, G., Kovács, G., Buchhave, L. A., Hansen, T., Everett, M., Esquerdo, G. A., Szklenár, T., Falco,
E., Shporer, A., Fulton, B. J., Noyes, R. W., Stefanik, R. P., Lázár, J., Papp, I., and Sári, P.: 2013,
A&A 558, A86

Bonfils, X., Delfosse, X., Udry, S., Forveille, T., Mayor, M., Perrier, C., Bouchy, F., Gillon, M., Lovis, C.,
Pepe, F., Queloz, D., Santos, N. C., Ségransan, D., and Bertaux, J.-L.: 2013, A&A 549, A109

Bonnefoy, M., Zurlo, A., Baudino, J. L., Lucas, P., Mesa, D., Maire, A.-L., Vigan, A., Galicher, R.,
Homeier, D., Marocco, F., Gratton, R., Chauvin, G., Allard, F., Desidera, S., Kasper, M., Moutou, C.,
Lagrange, A.-M., Antichi, J., Baruffolo, A., Baudrand, J., Beuzit, J.-L., Boccaletti, A., Cantalloube,
F., Carbillet, M., Charton, J., Claudi, R. U., Costille, A., Dohlen, K., Dominik, C., Fantinel, D.,
Feautrier, P., Feldt, M., Fusco, T., Gigan, P., Girard, J. H., Gluck, L., Gry, C., Henning, T., Janson, M.,
Langlois, M., Madec, F., Magnard, Y., Maurel, D., Mawet, D., Meyer, M. R., Milli, J., Moeller-Nilsson,
O., Mouillet, D., Pavlov, A., Perret, D., Pujet, P., Quanz, S. P., Rochat, S., Rousset, G., Roux, A.,
Salasnich, B., Salter, G., Sauvage, J.-F., Schmid, H. M., Sevin, A., Soenke, C., Stadler, E., Turatto,
M., Udry, S., Vakili, F., Wahhaj, Z., and Wildi, F.: 2016, A&A 587, A58

Borucki, W. J.: 2017, Proceedings of the American Philosophical Society 161, 38

Borucki, W. J., Koch, D., Basri, G., Batalha, N., Brown, T., Caldwell, D., Caldwell, J., Christensen-
Dalsgaard, J., Cochran, W. D., DeVore, E., Dunham, E. W., Dupree, A. K., Gautier, T. N., Geary,
J. C., Gilliland, R., Gould, A., Howell, S. B., Jenkins, J. M., Kondo, Y., Latham, D. W., Marcy, G. W.,
Meibom, S., Kjeldsen, H., Lissauer, J. J., Monet, D. G., Morrison, D., Sasselov, D., Tarter, J., Boss,
A., Brownlee, D., Owen, T., Buzasi, D., Charbonneau, D., Doyle, L., Fortney, J., Ford, E. B., Holman,
M. J., Seager, S., Steffen, J. H., Welsh, W. F., Rowe, J., Anderson, H., Buchhave, L., Ciardi, D.,
Walkowicz, L., Sherry, W., Horch, E., Isaacson, H., Everett, M. E., Fischer, D., Torres, G., Johnson,
J. A., Endl, M., MacQueen, P., Bryson, S. T., Dotson, J., Haas, M., Kolodziejczak, J., Van Cleve,
J., Chandrasekaran, H., Twicken, J. D., Quintana, E. V., Clarke, B. D., Allen, C., Li, J., Wu, H.,
Tenenbaum, P., Verner, E., Bruhweiler, F., Barnes, J., and Prsa, A.: 2010, Science 327, 977

Boss, A. P.: 2002, ApJL 567, L149

Bouchy, F., Pepe, F., and Queloz, D.: 2001, A&A 374, 733

Brucalassi, A., Pasquini, L., Saglia, R., Ruiz, M. T., Bonifacio, P., Bedin, L. R., Biazzo, K., Melo, C.,
Lovis, C., and Randich, S.: 2014, A&A 561, L9

Bryan, M. L., Alsubai, K. A., Latham, D. W., Parley, N. R., Collier Cameron, A., Quinn, S. N., Carter,
J. A., Fulton, B. J., Berlind, P., Brown, W. R., Buchhave, L. A., Calkins, M. L., Esquerdo, G. A.,
Fűrész, G., Gråe Jørgensen, U., Horne, K. D., Stefanik, R. P., Street, R. A., Torres, G., West, R. G.,
Dominik, M., Harpsøe, K. B. W., Liebig, C., Calchi Novati, S., Ricci, D., and Skottfelt, J. F.: 2012,
ApJ 750, 84

Buchhave, L. A., Latham, D. W., Johansen, A., Bizzarro, M., Torres, G., Rowe, J. F., Batalha, N. M.,
Borucki, W. J., Brugamyer, E., Caldwell, C., Bryson, S. T., Ciardi, D. R., Cochran, W. D., Endl, M.,
Esquerdo, G. A., Ford, E. B., Geary, J. C., Gilliland, R. L., Hansen, T., Isaacson, H., Laird, J. B.,



BIBLIOGRAPHY 98

Lucas, P. W., Marcy, G. W., Morse, J. A., Robertson, P., Shporer, A., Stefanik, R. P., Still, M., and
Quinn, S. N.: 2012, Nature 486, 375

Cai, K., Durisen, R. H., Michael, S., Boley, A. C., Mejía, A. C., Pickett, M. K., and D’Alessio, P.: 2006,
ApJL 636, L149

Campante, T. L., Barclay, T., Swift, J. J., Huber, D., Adibekyan, V. Z., Cochran, W., Burke, C. J.,
Isaacson, H., Quintana, E. V., Davies, G. R., Silva Aguirre, V., Ragozzine, D., Riddle, R., Baranec, C.,
Basu, S., Chaplin, W. J., Christensen-Dalsgaard, J., Metcalfe, T. S., Bedding, T. R., Handberg, R.,
Stello, D., Brewer, J. M., Hekker, S., Karoff, C., Kolbl, R., Law, N. M., Lundkvist, M., Miglio, A.,
Rowe, J. F., Santos, N. C., Van Laerhoven, C., Arentoft, T., Elsworth, Y. P., Fischer, D. A., Kawaler,
S. D., Kjeldsen, H., Lund, M. N., Marcy, G. W., Sousa, S. G., Sozzetti, A., and White, T. R.: 2015,
ApJ 799, 170

Casagrande, L., Portinari, L., and Flynn, C.: 2006, MNRAS 373, 13

Cavicchioli, R.: 2002, Astrobiology 2, 281

Cayrel, R.: 1988, in G. Cayrel de Strobel and M. Spite (eds.), The Impact of Very High S/N Spectroscopy
on Stellar Physics, Vol. 132 of IAU Symposium, p. 345

Chaplin, W. J., Kjeldsen, H., Christensen-Dalsgaard, J., Basu, S., Miglio, A., Appourchaux, T., Bedding,
T. R., Elsworth, Y., García, R. A., Gilliland, R. L., Girardi, L., Houdek, G., Karoff, C., Kawaler, S. D.,
Metcalfe, T. S., Molenda-Żakowicz, J., Monteiro, M. J. P. F. G., Thompson, M. J., Verner, G. A.,
Ballot, J., Bonanno, A., Brandão, I. M., Broomhall, A.-M., Bruntt, H., Campante, T. L., Corsaro, E.,
Creevey, O. L., Doğan, G., Esch, L., Gai, N., Gaulme, P., Hale, S. J., Handberg, R., Hekker, S., Huber,
D., Jiménez, A., Mathur, S., Mazumdar, A., Mosser, B., New, R., Pinsonneault, M. H., Pricopi, D.,
Quirion, P.-O., Régulo, C., Salabert, D., Serenelli, A. M., Silva Aguirre, V., Sousa, S. G., Stello, D.,
Stevens, I. R., Suran, M. D., Uytterhoeven, K., White, T. R., Borucki, W. J., Brown, T. M., Jenkins,
J. M., Kinemuchi, K., Van Cleve, J., and Klaus, T. C.: 2011, Science 332, 213

Charbonneau, D., Brown, T. M., Noyes, R. W., and Gilliland, R. L.: 2002, ApJ 568, 377

Christensen-Dalsgaard, J., Kjeldsen, H., Brown, T. M., Gilliland, R. L., Arentoft, T., Frandsen, S.,
Quirion, P.-O., Borucki, W. J., Koch, D., and Jenkins, J. M.: 2010, ApJL 713, L164

Collins, K. A., Eastman, J. D., Beatty, T. G., Siverd, R. J., Gaudi, B. S., Pepper, J., Kielkopf, J. F.,
Johnson, J. A., Howard, A. W., Fischer, D. A., Manner, M., Bieryla, A., Latham, D. W., Fulton, B. J.,
Gregorio, J., Buchhave, L. A., Jensen, E. L. N., Stassun, K. G., Penev, K., Crepp, J. R., Hinkley, S.,
Street, R. A., Cargile, P., Mack, C. E., Oberst, T. E., Avril, R. L., Mellon, S. N., McLeod, K. K., Penny,
M. T., Stefanik, R. P., Berlind, P., Calkins, M. L., Mao, Q., Richert, A. J. W., DePoy, D. L., Esquerdo,
G. A., Gould, A., Marshall, J. L., Oelkers, R. J., Pogge, R. W., Trueblood, M., and Trueblood, P.:
2014, AJ 147, 39

Cosentino, R., Lovis, C., Pepe, F., Collier Cameron, A., Latham, D. W., Molinari, E., Udry, S., Bezawada,
N., Black, M., Born, A., Buchschacher, N., Charbonneau, D., Figueira, P., Fleury, M., Galli, A., Gallie,
A., Gao, X., Ghedina, A., Gonzalez, C., Gonzalez, M., Guerra, J., Henry, D., Horne, K., Hughes, I.,
Kelly, D., Lodi, M., Lunney, D., Maire, C., Mayor, M., Micela, G., Ordway, M. P., Peacock, J., Phillips,



BIBLIOGRAPHY 99

D., Piotto, G., Pollacco, D., Queloz, D., Rice, K., Riverol, C., Riverol, L., San Juan, J., Sasselov, D.,
Segransan, D., Sozzetti, A., Sosnowska, D., Stobie, B., Szentgyorgyi, A., Vick, A., and Weber, L.:
2012, in Ground-based and Airborne Instrumentation for Astronomy IV, Vol. 8446 of Proceedings of
the SPIE, p. 84461V

Czekala, I., Andrews, S. M., Mandel, K. S., Hogg, D. W., and Green, G. M.: 2015, ApJ 812, 128

Dekker, H., D’Odorico, S., Kaufer, A., Delabre, B., and Kotzlowski, H.: 2000, in M. Iye and A. F.
Moorwood (eds.), Optical and IR Telescope Instrumentation and Detectors, Vol. 4008 of Proceedings of
the SPIE, pp 534–545

Delfosse, X., Bonfils, X., Forveille, T., Udry, S., Mayor, M., Bouchy, F., Gillon, M., Lovis, C., Neves, V.,
Pepe, F., Perrier, C., Queloz, D., Santos, N. C., and Ségransan, D.: 2013, A&A 553, A8

Delgado Mena, E., Israelian, G., González Hernández, J. I., Sousa, S. G., Mortier, A., Santos, N. C.,
Adibekyan, V. Z., Fernandes, J., Rebolo, R., Udry, S., and Mayor, M.: 2014, A&A 562, A92

Delgado Mena, E., Tsantaki, M., Adibekyan, V. Z., Sousa, S. G., Santos, N. C., González Hernández,
J. I., and Israelian, G.: 2017, ArXiv e-prints

Delrez, L., Van Grootel, V., Anderson, D. R., Collier-Cameron, A., Doyle, A. P., Fumel, A., Gillon, M.,
Hellier, C., Jehin, E., Lendl, M., Neveu-VanMalle, M., Maxted, P. F. L., Pepe, F., Pollacco, D., Queloz,
D., Ségransan, D., Smalley, B., Smith, A. M. S., Southworth, J., Triaud, A. H. M. J., Udry, S., and
West, R. G.: 2014, A&A 563, A143

Donati, J.-F.: 2003, in J. Trujillo-Bueno and J. Sanchez Almeida (eds.), Solar Polarization, Vol. 307 of
Astronomical Society of the Pacific Conference Series, p. 41

Dorn, C., Khan, A., Heng, K., Connolly, J. A. D., Alibert, Y., Benz, W., and Tackley, P.: 2015, A&A
577, A83

Ducati, J. R.: 2002, VizieR Online Data Catalog 2237

Einstein, A.: 1916, Annalen der Physik 354, 769

Favata, F., Micela, G., and Sciortino, S.: 1997, A&A 323, 809

Figueira, P., Faria, J. P., Delgado-Mena, E., Adibekyan, V. Z., Sousa, S. G., Santos, N. C., and Israelian,
G.: 2014a, A&A 570, A21

Figueira, P., Oshagh, M., Adibekyan, V. Z., and Santos, N. C.: 2014b, A&A 572, A51

Fischer, D. A. and Valenti, J.: 2005, ApJ 622, 1102

Frandsen, S. and Lindberg, B.: 1999, in H. Karttunen and V. Piirola (eds.), Astrophysics with the NOT,
p. 71

Gaia Collaboration, Prusti, T., de Bruijne, J. H. J., Brown, A. G. A., Vallenari, A., Babusiaux, C.,
Bailer-Jones, C. A. L., Bastian, U., Biermann, M., Evans, D. W., and et al.: 2016, A&A 595, A1



BIBLIOGRAPHY 100

Gillon, M., Anderson, D. R., Collier-Cameron, A., Doyle, A. P., Fumel, A., Hellier, C., Jehin, E., Lendl,
M., Maxted, P. F. L., Montalbán, J., Pepe, F., Pollacco, D., Queloz, D., Ségransan, D., Smith, A. M. S.,
Smalley, B., Southworth, J., Triaud, A. H. M. J., Udry, S., and West, R. G.: 2013, A&A 552, A82

Gómez Maqueo Chew, Y., Faedi, F., Pollacco, D., Brown, D. J. A., Doyle, A. P., Collier Cameron, A.,
Gillon, M., Lendl, M., Smalley, B., Triaud, A. H. M. J., West, R. G., Wheatley, P. J., Busuttil, R.,
Liebig, C., Anderson, D. R., Armstrong, D. J., Barros, S. C. C., Bento, J., Bochinski, J., Burwitz, V.,
Delrez, L., Enoch, B., Fumel, A., Haswell, C. A., Hébrard, G., Hellier, C., Holmes, S., Jehin, E., Kolb,
U., Maxted, P. F. L., McCormac, J., Miller, G. R. M., Norton, A. J., Pepe, F., Queloz, D., Rodríguez,
J., Ségransan, D., Skillen, I., Stassun, K. G., Udry, S., and Watson, C.: 2013, A&A 559, A36

Gonzalez, G.: 1997, MNRAS 285, 403

Gonzalez, G.: 2015, MNRAS 446, 1020

Gonzalez, G., Carlson, M. K., and Tobin, R. W.: 2010, MNRAS 403, 1368

Gonzalez, G. and Laws, C.: 2000, AJ 119, 390

Gray, D. F.: 2005, The Observation and Analysis of Stellar Photospheres, 3rd ed.

Griffin, R. and Griffin, R.: 1967, MNRAS 137, 253

Grundahl, F., Fredslund Andersen, M., Christensen-Dalsgaard, J., Antoci, V., Kjeldsen, H., Handberg,
R., Houdek, G., Bedding, T. R., Pallé, P. L., Jessen-Hansen, J., Silva Aguirre, V., White, T. R.,
Frandsen, S., Albrecht, S., Andersen, M. I., Arentoft, T., Brogaard, K., Chaplin, W. J., Harpsøe, K.,
Jørgensen, U. G., Karovicova, I., Karoff, C., Kjærgaard Rasmussen, P., Lund, M. N., Sloth Lundkvist,
M., Skottfelt, J., Norup Sørensen, A., Tronsgaard, R., and Weiss, E.: 2017, ApJ 836, 142

Gustafsson, B., Edvardsson, B., Eriksson, K., Jørgensen, U. G., Nordlund, Å., and Plez, B.: 2008, A&A
486, 951

Hartman, J. D.: 2010, ApJL 717, L138

Hartman, J. D., Bakos, G. Á., Béky, B., Torres, G., Latham, D. W., Csubry, Z., Penev, K., Shporer, A.,
Fulton, B. J., Buchhave, L. A., Johnson, J. A., Howard, A. W., Marcy, G. W., Fischer, D. A., Kovács,
G., Noyes, R. W., Esquerdo, G. A., Everett, M., Szklenár, T., Quinn, S. N., Bieryla, A., Knox, R. P.,
Hinz, P., Sasselov, D. D., Fűrész, G., Stefanik, R. P., Lázár, J., Papp, I., and Sári, P.: 2012, AJ 144,
139

Hartman, J. D., Bakos, G. Á., Torres, G., Kovács, G., Johnson, J. A., Howard, A. W., Marcy, G. W.,
Latham, D. W., Bieryla, A., Buchhave, L. A., Bhatti, W., Béky, B., Csubry, Z., Penev, K., de
Val-Borro, M., Noyes, R. W., Fischer, D. A., Esquerdo, G. A., Everett, M., Szklenár, T., Zhou, G.,
Bayliss, D., Shporer, A., Fulton, B. J., Sanchis-Ojeda, R., Falco, E., Lázár, J., Papp, I., and Sári, P.:
2014a, AJ 147, 128

Hartman, J. D., Bakos, G. Á., Torres, G., Kovács, G., Johnson, J. A., Howard, A. W., Marcy, G. W.,
Latham, D. W., Bieryla, A., Buchhave, L. A., Bhatti, W., Béky, B., Csubry, Z., Penev, K., de
Val-Borro, M., Noyes, R. W., Fischer, D. A., Esquerdo, G. A., Everett, M., Szklenár, T., Zhou, G.,
Bayliss, D., Shporer, A., Fulton, B. J., Sanchis-Ojeda, R., Falco, E., Lázár, J., Papp, I., and Sári, P.:
2014b, AJ 147, 128



BIBLIOGRAPHY 101

Hébrard, G., Arnold, L., Forveille, T., Correia, A. C. M., Laskar, J., Bonfils, X., Boisse, I., Díaz, R. F.,
Hagelberg, J., Sahlmann, J., Santos, N. C., Astudillo-Defru, N., Borgniet, S., Bouchy, F., Bourrier, V.,
Courcol, B., Delfosse, X., Deleuil, M., Demangeon, O., Ehrenreich, D., Gregorio, J., Jovanovic, N.,
Labrevoir, O., Lagrange, A.-M., Lovis, C., Lozi, J., Moutou, C., Montagnier, G., Pepe, F., Rey, J.,
Santerne, A., Ségransan, D., Udry, S., Vanhuysse, M., Vigan, A., and Wilson, P. A.: 2016, A&A 588,
A145

Hébrard, G., Collier Cameron, A., Brown, D. J. A., Díaz, R. F., Faedi, F., Smalley, B., Anderson, D. R.,
Armstrong, D., Barros, S. C. C., Bento, J., Bouchy, F., Doyle, A. P., Enoch, B., Gómez Maqueo
Chew, Y., Hébrard, É. M., Hellier, C., Lendl, M., Lister, T. A., Maxted, P. F. L., McCormac, J.,
Moutou, C., Pollacco, D., Queloz, D., Santerne, A., Skillen, I., Southworth, J., Tregloan-Reed, J.,
Triaud, A. H. M. J., Udry, S., Vanhuysse, M., Watson, C. A., West, R. G., and Wheatley, P. J.: 2013,
A&A 549, A134

Hellier, C., Anderson, D. R., Cameron, A. C., Delrez, L., Gillon, M., Jehin, E., Lendl, M., Maxted,
P. F. L., Pepe, F., Pollacco, D., Queloz, D., Ségransan, D., Smalley, B., Smith, A. M. S., Southworth,
J., Triaud, A. H. M. J., Udry, S., and West, R. G.: 2014, MNRAS 440, 1982

Hellier, C., Anderson, D. R., Collier Cameron, A., Doyle, A. P., Fumel, A., Gillon, M., Jehin, E., Lendl,
M., Maxted, P. F. L., Pepe, F., Pollacco, D., Queloz, D., Ségransan, D., Smalley, B., Smith, A. M. S.,
Southworth, J., Triaud, A. H. M. J., Udry, S., and West, R. G.: 2012, MNRAS 426, 739

Hinkel, N. R., Young, P. A., Pagano, M. D., Desch, S. J., Anbar, A. D., Adibekyan, V., Blanco-Cuaresma,
S., Carlberg, J. K., Delgado Mena, E., Liu, F., Nordlander, T., Sousa, S. G., Korn, A., Gruyters, P.,
Heiter, U., Jofré, P., Santos, N. C., and Soubiran, C.: 2016, ApJS 226, 4

Hinkle, K., Wallace, L., and Livingston, W.: 1995a, Publications of the ASP 107, 1042

Hinkle, K. H., Wallace, L., and Livingston, W.: 1995b, in A. J. Sauval, R. Blomme, and N. Grevesse
(eds.), Laboratory and Astronomical High Resolution Spectra, Vol. 81 of Astronomical Society of the
Pacific Conference Series, p. 66

Holman, M. J. and Murray, N. W.: 2005, Science 307, 1288

Howard, A. W., Johnson, J. A., Marcy, G. W., Fischer, D. A., Wright, J. T., Henry, G. W., Isaacson, H.,
Valenti, J. A., Anderson, J., and Piskunov, N. E.: 2011, ApJ 730, 10

Huber, D., Chaplin, W. J., Christensen-Dalsgaard, J., Gilliland, R. L., Kjeldsen, H., Buchhave, L. A.,
Fischer, D. A., Lissauer, J. J., Rowe, J. F., Sanchis-Ojeda, R., Basu, S., Handberg, R., Hekker, S.,
Howard, A. W., Isaacson, H., Karoff, C., Latham, D. W., Lund, M. N., Lundkvist, M., Marcy, G. W.,
Miglio, A., Silva Aguirre, V., Stello, D., Arentoft, T., Barclay, T., Bedding, T. R., Burke, C. J.,
Christiansen, J. L., Elsworth, Y. P., Haas, M. R., Kawaler, S. D., Metcalfe, T. S., Mullally, F., and
Thompson, S. E.: 2013, ApJ 767, 127

Huber, D., Silva Aguirre, V., Matthews, J. M., Pinsonneault, M. H., Gaidos, E., García, R. A., Hekker, S.,
Mathur, S., Mosser, B., Torres, G., Bastien, F. A., Basu, S., Bedding, T. R., Chaplin, W. J., Demory,
B.-O., Fleming, S. W., Guo, Z., Mann, A. W., Rowe, J. F., Serenelli, A. M., Smith, M. A., and Stello,
D.: 2014, ApJS 211, 2



BIBLIOGRAPHY 102

Husser, T.-O., Wende-von Berg, S., Dreizler, S., Homeier, D., Reiners, A., Barman, T., and Hauschildt,
P. H.: 2013, A&A 553, A6

Ida, S. and Lin, D. N. C.: 2004, ApJ 616, 567

Israelian, G., Santos, N. C., Mayor, M., and Rebolo, R.: 2004, A&A 414, 601

Jofré, P., Heiter, U., Soubiran, C., Blanco-Cuaresma, S., Worley, C. C., Pancino, E., Cantat-Gaudin, T.,
Magrini, L., Bergemann, M., González Hernández, J. I., Hill, V., Lardo, C., de Laverny, P., Lind, K.,
Masseron, T., Montes, D., Mucciarelli, A., Nordlander, T., Recio Blanco, A., Sobeck, J., Sordo, R.,
Sousa, S. G., Tabernero, H., Vallenari, A., and Van Eck, S.: 2014, A&A 564, A133

Johnson, J. A., Clanton, C., Howard, A. W., Bowler, B. P., Henry, G. W., Marcy, G. W., Crepp, J. R.,
Endl, M., Cochran, W. D., MacQueen, P. J., Wright, J. T., and Isaacson, H.: 2011, ApJS 197, 26

Jones, M. I., Jenkins, J. S., Rojo, P., and Melo, C. H. F.: 2011, A&A 536, A71

Jones, M. I., Jenkins, J. S., Rojo, P., Olivares, F., and Melo, C. H. F.: 2015, A&A 580, A14

Kasting, J. F.: 1997, Origins of Life and Evolution of the Biosphere 27, 291

Kasting, J. F. and Siefert, J. L.: 2002, Science 296, 1066

Kasting, J. F., Whitmire, D. P., and Reynolds, R. T.: 1993, Icarus 101, 108

Kaufer, A., Stahl, O., Tubbesing, S., Nørregaard, P., Avila, G., Francois, P., Pasquini, L., and Pizzella,
A.: 1999, The Messenger 95, 8

Kennedy, G. M. and Kenyon, S. J.: 2008, ApJ 673, 502

Kipping, D. M., Bakos, G. Á., Hartman, J., Torres, G., Shporer, A., Latham, D. W., Kovács, G., Noyes,
R. W., Howard, A. W., Fischer, D. A., Johnson, J. A., Marcy, G. W., Béky, B., Perumpilly, G.,
Esquerdo, G. A., Sasselov, D. D., Stefanik, R. P., Lázár, J., Papp, I., and Sári, P.: 2010, ApJ 725, 2017

Kjeldsen, H. and Bedding, T. R.: 1995, A&A 293, 87

Kopparapu, R. K., Ramirez, R., Kasting, J. F., Eymet, V., Robinson, T. D., Mahadevan, S., Terrien,
R. C., Domagal-Goldman, S., Meadows, V., and Deshpande, R.: 2013, ApJ 765, 131

Kunitomo, M., Ikoma, M., Sato, B., Katsuta, Y., and Ida, S.: 2011, ApJ 737, 66

Kupka, F. G., Ryabchikova, T. A., Piskunov, N. E., Stempels, H. C., and Weiss, W. W.: 2000, Baltic
Astronomy 9, 590

Kurucz, R.: 1993, ATLAS9 Stellar Atmosphere Programs and 2 km/s grid. Kurucz CD-ROM No. 13. Cam-
bridge, Mass.: Smithsonian Astrophysical Observatory, 1993. 13

Lebzelter, T., Seifahrt, A., Uttenthaler, S., Ramsay, S., Hartman, H., Nieva, M.-F., Przybilla, N., Smette,
A., Wahlgren, G. M., Wolff, B., Hussain, G. A. J., Käufl, H. U., and Seemann, U.: 2012, A&A 539,
A109

Lee, B.-C., Han, I., and Park, M.-G.: 2013, A&A 549, A2



BIBLIOGRAPHY 103

Lee, B.-C., Han, I., Park, M.-G., Mkrtichian, D. E., Hatzes, A. P., and Kim, K.-M.: 2014, A&A 566, A67

Lindgren, S., Heiter, U., and Seifahrt, A.: 2016, A&A 586, A100

Maire, A.-L., Bonnefoy, M., Ginski, C., Vigan, A., Messina, S., Mesa, D., Galicher, R., Gratton, R.,
Desidera, S., Kopytova, T. G., Millward, M., Thalmann, C., Claudi, R. U., Ehrenreich, D., Zurlo, A.,
Chauvin, G., Antichi, J., Baruffolo, A., Bazzon, A., Beuzit, J.-L., Blanchard, P., Boccaletti, A., de
Boer, J., Carle, M., Cascone, E., Costille, A., De Caprio, V., Delboulbé, A., Dohlen, K., Dominik, C.,
Feldt, M., Fusco, T., Girard, J. H., Giro, E., Gisler, D., Gluck, L., Gry, C., Henning, T., Hubin, N.,
Hugot, E., Jaquet, M., Kasper, M., Lagrange, A.-M., Langlois, M., Le Mignant, D., Llored, M., Madec,
F., Martinez, P., Mawet, D., Milli, J., Möller-Nilsson, O., Mouillet, D., Moulin, T., Moutou, C., Origné,
A., Pavlov, A., Petit, C., Pragt, J., Puget, P., Ramos, J., Rochat, S., Roelfsema, R., Salasnich, B.,
Sauvage, J.-F., Schmid, H. M., Turatto, M., Udry, S., Vakili, F., Wahhaj, Z., Weber, L., and Wildi, F.:
2016, A&A 587, A56

Mayor, M., Lovis, C., and Santos, N. C.: 2014, Nature 513, 328

Mayor, M., Pepe, F., Queloz, D., Bouchy, F., Rupprecht, G., Lo Curto, G., Avila, G., Benz, W., Bertaux,
J.-L., Bonfils, X., Dall, T., Dekker, H., Delabre, B., Eckert, W., Fleury, M., Gilliotte, A., Gojak, D.,
Guzman, J. C., Kohler, D., Lizon, J.-L., Longinotti, A., Lovis, C., Megevand, D., Pasquini, L., Reyes,
J., Sivan, J.-P., Sosnowska, D., Soto, R., Udry, S., van Kesteren, A., Weber, L., and Weilenmann, U.:
2003, The Messenger 114, 20

Mayor, M. and Queloz, D.: 1995, A Jupiter-mass companion to a solar-type star

McWilliam, A.: 1990, ApJS 74, 1075

Mordasini, C., Alibert, Y., Benz, W., Klahr, H., and Henning, T.: 2012, A&A 541, A97

Mortier, A., Santos, N. C., Sousa, S., Israelian, G., Mayor, M., and Udry, S.: 2013a, A&A 551, A112

Mortier, A., Santos, N. C., Sousa, S. G., Adibekyan, V. Z., Delgado Mena, E., Tsantaki, M., Israelian,
G., and Mayor, M.: 2013b, A&A 557, A70

Mortier, A., Sousa, S. G., Adibekyan, V. Z., Brandão, I. M., and Santos, N. C.: 2014, A&A 572, A95

Motalebi, F., Udry, S., Gillon, M., Lovis, C., Ségransan, D., Buchhave, L. A., Demory, B. O., Malavolta,
L., Dressing, C. D., Sasselov, D., Rice, K., Charbonneau, D., Collier Cameron, A., Latham, D.,
Molinari, E., Pepe, F., Affer, L., Bonomo, A. S., Cosentino, R., Dumusque, X., Figueira, P., Fiorenzano,
A. F. M., Gettel, S., Harutyunyan, A., Haywood, R. D., Johnson, J., Lopez, E., Lopez-Morales, M.,
Mayor, M., Micela, G., Mortier, A., Nascimbeni, V., Philips, D., Piotto, G., Pollacco, D., Queloz, D.,
Sozzetti, A., Vanderburg, A., and Watson, C. A.: 2015, A&A 584, A72

Moutou, C., Lo Curto, G., Mayor, M., Bouchy, F., Benz, W., Lovis, C., Naef, D., Pepe, F., Queloz, D.,
Santos, N. C., Ségransan, D., Sousa, S. G., and Udry, S.: 2015, A&A 576, A48

Natta, A., Grinin, V., and Mannings, V.: 2000, Protostars and Planets IV pp 559–588

Nelson, B. E., Ford, E. B., and Rasio, F. A.: 2017, AJ 154, 106

Neuforge-Verheecke, C. and Magain, P.: 1997, A&A 328, 261



BIBLIOGRAPHY 104

Neveu-VanMalle, M., Queloz, D., Anderson, D. R., Charbonnel, C., Collier Cameron, A., Delrez, L.,
Gillon, M., Hellier, C., Jehin, E., Lendl, M., Maxted, P. F. L., Pepe, F., Pollacco, D., Ségransan, D.,
Smalley, B., Smith, A. M. S., Southworth, J., Triaud, A. H. M. J., Udry, S., and West, R. G.: 2014,
A&A 572, A49

Newton, I.: 1687, Philosophiae Naturalis Principia Mathematica. Auctore Js. Newton

Ngo, H., Knutson, H. A., Hinkley, S., Bryan, M., Crepp, J. R., Batygin, K., Crossfield, I., Hansen, B.,
Howard, A. W., Johnson, J. A., Mawet, D., Morton, T. D., Muirhead, P. S., and Wang, J.: 2016, ApJ
827, 8

Nicholls, C. P., Lebzelter, T., Smette, A., Wolff, B., Hartman, H., Käufl, H.-U., Przybilla, N., Ramsay,
S., Uttenthaler, S., Wahlgren, G. M., Bagnulo, S., Hussain, G. A. J., Nieva, M.-F., Seemann, U., and
Seifahrt, A.: 2017, A&A 598, A79

Niedzielski, A., Villaver, E., Nowak, G., Adamów, M., Kowalik, K., Wolszczan, A., Deka-Szymankiewicz,
B., Adamczyk, M., and Maciejewski, G.: 2016, A&A 588, A62

Niedzielski, A., Villaver, E., Wolszczan, A., Adamów, M., Kowalik, K., Maciejewski, G., Nowak, G.,
García-Hernández, D. A., Deka, B., and Adamczyk, M.: 2015a, A&A 573, A36

Niedzielski, A., Wolszczan, A., Nowak, G., Adamów, M., Kowalik, K., Maciejewski, G., Deka-
Szymankiewicz, B., and Adamczyk, M.: 2015b, ApJ 803, 1

Nowak, G., Niedzielski, A., Wolszczan, A., Adamów, M., and Maciejewski, G.: 2013, ApJ 770, 53

Önehag, A., Heiter, U., Gustafsson, B., Piskunov, N., Plez, B., and Reiners, A.: 2012, A&A 542, A33

Oshagh, M., Santos, N. C., Boisse, I., Boué, G., Montalto, M., Dumusque, X., and Haghighipour, N.:
2013, A&A 556, A19

Oshagh, M., Santos, N. C., Ehrenreich, D., Haghighipour, N., Figueira, P., Santerne, A., and Montalto,
M.: 2014, A&A 568, A99

Penev, K., Bakos, G. Á., Bayliss, D., Jordán, A., Mohler, M., Zhou, G., Suc, V., Rabus, M., Hartman,
J. D., Mancini, L., Béky, B., Csubry, Z., Buchhave, L., Henning, T., Nikolov, N., Csák, B., Brahm, R.,
Espinoza, N., Conroy, P., Noyes, R. W., Sasselov, D. D., Schmidt, B., Wright, D. J., Tinney, C. G.,
Addison, B. C., Lázár, J., Papp, I., and Sári, P.: 2013, AJ 145, 5

Pepe, F., Cameron, A. C., Latham, D. W., Molinari, E., Udry, S., Bonomo, A. S., Buchhave, L. A.,
Charbonneau, D., Cosentino, R., Dressing, C. D., Dumusque, X., Figueira, P., Fiorenzano, A. F. M.,
Gettel, S., Harutyunyan, A., Haywood, R. D., Horne, K., Lopez-Morales, M., Lovis, C., Malavolta, L.,
Mayor, M., Micela, G., Motalebi, F., Nascimbeni, V., Phillips, D., Piotto, G., Pollacco, D., Queloz, D.,
Rice, K., Sasselov, D., Ségransan, D., Sozzetti, A., Szentgyorgyi, A., and Watson, C. A.: 2013, Nature
503, 377

Pepe, F. A., Cristiani, S., Rebolo Lopez, R., Santos, N. C., Amorim, A., Avila, G., Benz, W., Bonifacio,
P., Cabral, A., Carvas, P., Cirami, R., Coelho, J., Comari, M., Coretti, I., De Caprio, V., Dekker,
H., Delabre, B., Di Marcantonio, P., D’Odorico, V., Fleury, M., García, R., Herreros Linares, J. M.,
Hughes, I., Iwert, O., Lima, J., Lizon, J.-L., Lo Curto, G., Lovis, C., Manescau, A., Martins, C.,



BIBLIOGRAPHY 105

Mégevand, D., Moitinho, A., Molaro, P., Monteiro, M., Monteiro, M., Pasquini, L., Mordasini, C.,
Queloz, D., Rasilla, J. L., Rebordão, J. M., Santana Tschudi, S., Santin, P., Sosnowska, D., Spanò,
P., Tenegi, F., Udry, S., Vanzella, E., Viel, M., Zapatero Osorio, M. R., and Zerbi, F.: 2010, in
Ground-based and Airborne Instrumentation for Astronomy III, Vol. 7735 of Proceedings of the SPIE,
p. 77350F

Perryman, M., Hartman, J., Bakos, G. Á., and Lindegren, L.: 2014, ApJ 797, 14

Piskunov, N. E., Kupka, F., Ryabchikova, T. A., Weiss, W. W., and Jeffery, C. S.: 1995, A&A Supp.
112, 525

Pollacco, D. L., Skillen, I., Collier Cameron, A., Christian, D. J., Hellier, C., Irwin, J., Lister, T. A., Street,
R. A., West, R. G., Anderson, D. R., Clarkson, W. I., Deeg, H., Enoch, B., Evans, A., Fitzsimmons,
A., Haswell, C. A., Hodgkin, S., Horne, K., Kane, S. R., Keenan, F. P., Maxted, P. F. L., Norton,
A. J., Osborne, J., Parley, N. R., Ryans, R. S. I., Smalley, B., Wheatley, P. J., and Wilson, D. M.:
2006, Publications of the ASP 118, 1407

Pollack, J. B., Hubickyj, O., Bodenheimer, P., Lissauer, J. J., Podolak, M., and Greenzweig, Y.: 1996,
Icarus 124, 62

Queloz, D., Henry, G. W., Sivan, J. P., Baliunas, S. L., Beuzit, J. L., Donahue, R. A., Mayor, M., Naef,
D., Perrier, C., and Udry, S.: 2001, A&A 379, 279

Quinn, S. N., White, R. J., Latham, D. W., Buchhave, L. A., Torres, G., Stefanik, R. P., Berlind, P.,
Bieryla, A., Calkins, M. C., Esquerdo, G. A., Fűrész, G., Geary, J. C., and Szentgyorgyi, A. H.: 2014,
ApJ 787, 27

Ramírez, I., Allende Prieto, C., and Lambert, D. L.: 2013, ApJ 764, 78

Ramírez, I., Fish, J. R., Lambert, D. L., and Allende Prieto, C.: 2012, ApJ 756, 46

Ramírez, I. and Meléndez, J.: 2005, ApJ 626, 465

Rauer, H., Catala, C., Aerts, C., Appourchaux, T., Benz, W., Brandeker, A., Christensen-Dalsgaard, J.,
Deleuil, M., Gizon, L., Goupil, M.-J., Güdel, M., Janot-Pacheco, E., Mas-Hesse, M., Pagano, I., Piotto,
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