
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Diagnosis of epilepsy in EEGs using
limited supervision

Joana Sofia Mendes Ramos

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Prof. Dr Luís Filipe Teixeira

Supervisor: Prof. Dr Michel van Putten

Co-Supervisor: Eng.ª Catarina da Silva Lourenço

July 21, 2021

Diagnosis of epilepsy in EEGs using limited supervision

Joana Sofia Mendes Ramos

Mestrado Integrado em Engenharia Informática e Computação

July 21, 2021

Abstract

Electroencephalographies (EEGs) are exams that monitor brain activity that are widely used as an
auxiliary tool in the diagnosis of epilepsy, a neurological disease. EEGs can be ictal (i.e., during
a seizure) or interictal. In interictal EEGs, specialists look for the presence of patterns that seem
to be highly correlated with epilepsy. These patterns are called interictal epileptiform discharges
(IEDs) and are useful to distinguish epilepsy from other conditions.

This diagnosis is not trivial since it is time-consuming and requires trained specialists. For this
reason, a reliable automated diagnosis is of importance. Using machine learning it is possible to
accomplish such task but a lot of data is needed to train the models, especially using deep learning
paradigms. Yet, although there is plenty of data available for problems such as this one, most of
the time that data is not annotated. With self-supervised learning, it is possible to train with limited
annotations, making it possible to use all the available data.

We explored self-supervised learning as a method to learn the model representation efficiently
and extract physiologically meaningful features from the EEG data. This is possible through
the use of pretext tasks, which are regression or classification tasks for which an algorithm can
autonomously generate the true labels. Ultimately, these tasks provide knowledge on the data.

In this approach, we designed two different pretext tasks, Relative Positioning (literature-
inspired) and Channel Correlation. The models developed to perform such tasks were then used
to initialize a model that performed IED detection. The results of such weight initialization were
compared against a well-established baseline with random initialization. It was proven that this
SSL approach could make up for the lack of positive samples in low-labelled data regimes.

Keywords: Epilepsy, EEG, machine learning, self-supervised learning, IED, automated diagnosis

i

ii

Resumo

Eletroencefalogramas (EEGs) são exames que monitorizam a atividade cerebral, frequentemente
usados para auxiliar no diagnóstico da epilepsia, uma doença do foro neurológico. EEGs podem
ser ictais (i.e., durante uma crise convulsiva) ou interictais. Nos EEGs interictais, especialistas
clínicos procuram por certos padrões que parecem estar altamente relacionados com a presença de
epilepsia. Estes padrões chamam-se Descargas Epileptiformes Interictais (DEIs), e são úteis para
distinguir epilepsia de outras condições.

Este diagnóstico está longe de ser trivial, uma vez que leva bastante tempo e requer especial-
istas treinados. Por este motivo, seria útil e importante ter uma ferramenta fiável de diagnóstico
automático. Fazendo uso de machine learning é possível atingir este objetivo mas são necessários
muitos dados para treinar os modelos, especialmente utilizando paradigmas de deep learning.
Mas, embora existam muitos dados disponíveis para problemas como este, na maioria das vezes
esses dados não estão anotados. Com self-supervised learning, é possível treinar com uma quan-
tidade limitada de anotações, tornando possível o uso de todos os dados disponíveis.

Exploramos self-supervised learning como um método para aprender a representação do mod-
elo e extrair features com um significado fisiólogico. Isto é possível através de tarefas de pretexto,
que são tarefas de classificação ou regressão para as quais um algoritmo consegue gerar automati-
camente as labels. Em última instância, estas tarefas dotam o modelo de conhecimento sobre os
dados.

Nesta abordagem, criámos duas tarefas de pretexto, Relative Positioning (inspirada na liter-
atura) e Channel Correlation. Os modelos desenvolvidos para levar a cabo essas tarefas foram
usados posteriormente para inicializar um modelo que detetasse DEIs. Os resultados dessa ini-
cialização de pesos foram comparados com uma baseline bem estabelecida com inicialização
aleatória. Foi provado que esta abordagem consegue compensar a falta de exemplos positivos
num regime de dados fracamente anotados.

Keywords: Epilepsia, EEG, machine learning, self-supervised learning, DEI, diagnóstico au-
tomático

iii

iv

Acknowledgements

First and foremost, I would like to thank my supervisors Luís Teixeira, Catarina Lourenço and
Michel van Putten for their invaluable efforts in helping me throughout this work. Your feedback
and ideas were much appreciated.

I wish to thank everyone in the CNPH group who pitched in. This was the most encouraging
environment I could ask for to carry out this project.

To the incredible Tugas in Enschede, especially my amazing housemates Catarina, Manuel
and Mariana, it has been great exploring the Netherlands with you. Nonetheless, a big thank you
to my friends from home, who were always with me.

I have to mention Joana and Maggie, with whom I have shared more than I can recall; you are
the best.

To the people I have missed the most these past five months, my family, thank you for giving
me the freedom to be whoever I want to be and for being proud of me for it. Also, thank you for
taking care of my cat while I was away.

Finally, a special thank you to Koen; you are definitely my favourite Dutch person.

Joana Sofia

v

vi

Contents

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Objectives . 2
1.3 Document Structure . 2

2 State of the Art 3
2.1 Background . 3

2.1.1 Electroencephalography . 3
2.1.2 Self-Supervised Learning . 5

2.2 Deep Learning for EEG Analysis . 6
2.3 Self-Supervised Learning in EEG . 8

3 Methods 13
3.1 EEG Data . 13
3.2 Downstream Task (IED Detection) . 16

3.2.1 Baseline . 16
3.3 Self-Supervised Learning Approach . 17
3.4 Pretext Tasks . 20

3.4.1 Relative Positioning . 20
3.4.2 Channel Correlation . 22

4 Results 27
4.1 Pretext Tasks . 27
4.2 Downstream Task . 27

4.2.1 Varying the Amount of Data . 30
4.2.2 Varying the Number of Positive Samples 30

5 Discussion 35
5.1 Pretext Tasks . 35
5.2 Downstream Task . 36

5.2.1 Varying the Amount of Data . 36
5.2.2 Varying the Number of Positive Samples 36
5.2.3 Summary . 37

6 Conclusions 39
6.1 Future Work . 39

A Memory Experiments 41

vii

viii CONTENTS

B Supplementary Tables of Chapter 3 - Methods 43

C Supplementary Tables of Chapter 4 - Results 45

D Supplementary Figures of Chapter 4 - Results 55

References 57

List of Figures

2.1 The international 10-20 system for electrode placement. The nasion is the point
between the forehead and nose while the inion is the bump at back of skull. . . . 4

2.2 Fragment of an EEG recording of a 32-year-old patient with left temporal lobe
epilepsy [7] . 4

2.3 Examples of morphological features of an IED [9] 5
2.4 Visual representation of the TS and RP pretext tasks [14] 9
2.5 Impact of varying the number of examples per class on each dataset [14] 9
2.6 Comparison of the different approaches for anomaly detection [18] 11

3.1 The longitudinal bipolar montage, also known as the double banana montage be-
cause of the shape formed by the electrodes on the left and right sides of the head. 14

3.2 Structure of an array containing the discretized information from an EEG signal. 15
3.3 Box plot of the number of IEDs in sets F and G. Note that the dispersion in set F

is much larger than the dispersion in set G, even though the first quartile is very
similar in both. 15

3.4 The VGG16-var model architecture. This architecture is similar to the original
VGG16, except for the convolutional and max-pooling layers’ dimensions and the
output activation function. 17

3.5 Number of training/validation samples obtained by linearly decreasing the amount
of available data used. 19

3.6 Number of training/validation samples obtained by linearly decreasing the amount
of positive samples used. 19

3.7 The positive context around an anchor epoch, xt . The y value in each epoch repre-
sents the resulting label of paring the anchor with that epoch. 21

3.8 Siamese model used to perform the Relative Positioning task. 22
3.9 An epoch from set F (top) and its corresponding lower triangle of the correlation

matrix (bottom). 23
3.10 Gaussian distribution and box plots of the EEG correlation means for each set. . . 24
3.11 Gaussian distribution of the EEG correlation means for the F_select and G_select

sets. The intersection of both was used as a cutoff value in order to create a binary
classification task. 25

4.1 ROC curve of the siamese model (RP task) on the test set. 28
4.2 ROC curve of the VGG16-var model (CC task) on the test set. 28
4.3 ROC curve of the baseline VGG16-var model (downstream task) on the test set. . 29
4.4 AUC of the baseline model on the test set for every percentage of available data

used. Note that the values from 1 to 10% are average values. 31

ix

x LIST OF FIGURES

4.5 Mean AUC of the baseline model on the test set, using 1 to 10% of all available
data, including the standard deviation (in grey) for every percentage. Random, RP
and CC weight initialization were tried. 31

4.6 AUC of the baseline model on the test set for every percentage of positive samples
used. Note that the values from 1 to 10% are average values. 33

4.7 Mean AUC of the baseline model on the test set, using 1 to 10% of all available
positive samples, including the standard deviation (in grey) for every percentage.
Random, RP, CC and RP + CC weight initialization were tried. 33

D.1 Mean AUC of the baseline model on the test set, using 1 to 10% of all available
data, including the standard deviation (in grey) for every percentage. 55

D.2 Mean AUC of the baseline model on the test set, from 1 to 10%, including the
standard deviation (in grey) for every percentage. 56

List of Tables

2.1 Summary of the studies presented . 12

3.1 All 18 channels of the longitudinal bipolar montage. 14
3.2 Distribution of epochs, recording duration and IEDs per set. 15
3.3 Data distribution for the downstream task. 16
3.4 Main differences between the original VGG16, the VGG16 from [33] (VGG16-C)

and our adaptation, called VGG16-var. 17
3.5 Summary of the steps described in Section 3.3. 20
3.6 Data distribution for the Relative Positioning pretext task. 21
3.7 Average channel correlation for each EEG set. 24
3.8 Data distribution for the Channel Correlation pretext task. 25

4.1 Model performance for the Relative Positioning task. 27
4.2 Model performance for the Channel Correlation task. 28
4.3 Model performance for the downstream task. Note that for the validation and test

sets it was not possible to find a threshold for which sensitivity = speci f icity.
Instead, the closest two values were used. 29

4.4 AUC obtained by the baseline model on the test set by varying the amount of data
available for training/validation and the weight initialization method. Note that
the values from 1 to 10% are average values. 30

4.5 AUC obtained by the baseline model on the test set by varying the amount of posi-
tive samples available for training/validation and the weight initialization method.
Note that the values from 1 to 10% are average values. 32

5.1 Summary of the appreciations made to the previously presented results. Note that
Experiment 1 refers to varying the amount of data while Experiment 2 refers to
varying the number of positive samples. 37

A.1 Summary of the experiments made assessing memory issues. 42

B.1 Number of training/validation samples obtained by varying the percentage of avail-
able data used. 43

B.2 Number of positive samples in training/validation obtained by varying the percent-
age of available positive samples used. 44

C.1 AUC of the BL-RW on the training, validation and test sets for experiment 1. Note
that the values from 1 to 10% are average values. 45

C.2 AUC of the BL-RP on the training, validation and test sets for experiment 1. Note
that the values from 1 to 10% are average values. 46

xi

xii LIST OF TABLES

C.3 AUC of the BL-CC on the training, validation and test sets for experiment 1. Note
that the values from 1 to 10% are average values. 47

C.4 AUC of the BL-RW on the training, validation and test sets for experiment 2. Note
that the values from 1 to 10% are average values. 48

C.5 AUC of the BL-RP on the training, validation and test sets for experiment 2. Note
that the values from 1 to 10% are average values. 49

C.6 AUC of the BL-CC on the training, validation and test sets for experiment 2. Note
that the values from 1 to 10% are average values. 50

C.7 AUC of the BL-RP-CC on the training, validation and test sets for experiment 2.
Note that the values from 1 to 10% are average values. 51

C.8 Performance (AUC) of the 3 models in the test set in experiment 1, with the re-
sults of each run individually shown as well as the resulting averages and standard
deviations. 52

C.9 Performance (AUC) of the 4 models in the test set in experiment 2, with the re-
sults of each run individually shown as well as the resulting averages and standard
deviations. 53

Abbreviations

EEG Electroencephalography
IED Interictal Epileptiform Discharge
PWE People With Epilepsy
SSL Self-Supervised Learning
CNN Convolutional Neural Network
AUC Area Under the Curve
ROC Receiver Operating Characteristic
AE Autoencoder
SVM Support Vector Machine
DL Deep Learning
RNN Recurrent Neural Network
RBM Restricted Boltzmann Machine
DBN Deep Belief Network
SGD Stochastic Gradient Descent
ANN Artificial Neural Network
RP Relative Positioning
CC Channel Correlation

xiii

Chapter 1

Introduction

Epilepsy is a chronic neurological condition characterised by the recurrent occurrence of unpro-

voked seizures [1]. As of 2007, this disorder was the most common neurological disorder in hu-

mans and, according to World Health Organization data, affected approximately 50 million people

in the world [2]. However, it is important to note that the presence of seizures does not mean that a

patient has epilepsy since these can occur due to other conditions. As such, the clinical diagnosis

takes into account other factors besides ictal periods (which are not a necessary condition for an

epilepsy diagnosis), such as electroencephalography (EEG) recordings [3].

1.1 Context and Motivation

Electroencephalography is a fundamental tool in diagnosing and monitoring people with epilepsy

(PWE). Non-invasive EEG is a procedure that records cerebral electrical activity through the elec-

trodes placed on a patient’s scalp. Currently, the gold standard for diagnosing this disease lies in

the visual analysis of EEG recordings. These exams can record ictal activity if performed during

a seizure, or interictal activity if performed while the patient is not having a seizure. An ictal EEG

is the most efficient way of distinguishing an epileptic seizure from a non-epileptic one. However,

it is rare to have an ictal EEG. In interictal EEGs, lab technicians look for interictal epileptiform

discharges (IEDs), which are patterns that seem to be highly correlated with epilepsy [3, 4].

This visual analysis is not trivial since it is time-consuming and requires trained specialists.

More so, it might not be possible at all for many patients since 85% of the people affected by this

disorder live in developing countries [4]. For these reasons, a reliable automated diagnosis is of

importance.

Machine learning models require many data to be trained, validated and tested, especially in

deep learning paradigms where the architecture is more layered and complex. However, although

there is plenty of data available for problems such as this one, most of the time, that data is not

annotated.

Self-supervised learning (SSL) tackles the problem of limited annotated data by leveraging

large amounts of unlabelled data to uncover its structure. This is possible through the use of

1

2 Introduction

pretext tasks. These are machine learning tasks that intend to provide knowledge on the data. This

means that the model needs to extract meaningful patterns from the input to correctly predict the

output.

1.2 Objectives

Ideally, the representations created by the pretext tasks are meaningful enough that the model that

performs the classification task at hands (in this case, detect the presence of IEDs in EEGs) will

need fewer annotated examples to achieve state-of-the-art performance. As such, this work aims

to prove that SSL can make up for the lack of annotated EEG data.

1.3 Document Structure

This document is divided into 6 chapters. A brief introduction is made in Chapter 1, contextualiz-

ing the problem, the motivation and the objectives of this approach. In Chapter 2 the state of the

art is assessed, clarifying some background terms. The pretext tasks designed for this work, as

well as the self-supervised learning pipeline, are presented in Chapter 3. The obtained results are

shown in Chapter 4 and discussed in Chapter 5. Finally, the conclusions that can be drawn from

this dissertation can be read in Chapter 6, as well as the future work.

Chapter 2

State of the Art

2.1 Background

2.1.1 Electroencephalography

The electroencephalogram is normally a non-invasive recording of cerebral electrical potentials by

means of electrodes placed on the scalp [5]. The first EEG performed on a human was done in 1924

by Hans Berger, a German physiologist and psychiatrist [6]. This method is in practice to this day

and is used to diagnose and monitor epilepsy, among other brain conditions and clinical purposes.

In the machine learning field, it has been used for clinical domains such as the detection/prediction

of Alzheimer’s disease, epilepsy, schizophrenia and sleep stages.

During an EEG, electrodes are pasted onto the scalp of the patient. Electrodes are patches

made of metal conductors that detect electrical potentials which result from neural activity. These

charges are recorded either digitally or printed out on paper and analysed by clinical experts. The

location of each electrode on the scalp depends on the electrode placement system used. One of

the most common is the International 10-20 system, seen in Figure 2.1. In the figure, it is possible

to see the electrodes represented by circles. The labels on the circles represent the lobe of the

brain that is most close to that electrode. For example, the electrode Fp1 is one of the electrodes

most close to the prefrontal cortex, while T4 is one of the electrodes that tracks activity from the

temporal lobe. In Figure 2.2, a fragment of an EEG recording from a patient with epilepsy can be

seen. It consists of pairs of electrodes (that can also be called channels, although a channel does

not necessarily need to be associated with a pair of electrodes) and the voltage between them over

time.

The flow of acquiring and analysing EEG signals usually goes as follows: firstly, the sig-

nals are acquired from the patient and passed through an amplifier. Then, the signals are filtered

according to their frequency to exclude potential biological noise. Some artefacts may also be

present in the signal, due to co-occurring physiologic activity like muscle and ocular movements,

or environmental noise such as that from electronic equipment. For that reason, artefact removal

is also carried out. After that, the signals are divided into time windows of the same size (the size

3

4 State of the Art

Figure 2.1: The international 10-20 system for electrode placement. The nasion is the point be-
tween the forehead and nose while the inion is the bump at back of skull.

Figure 2.2: Fragment of an EEG recording of a 32-year-old patient with left temporal lobe epilepsy
[7]

2.1 Background 5

Figure 2.3: Examples of morphological features of an IED [9]

of these windows depends on the condition that is being assessed) called epochs. These epochs

can then be inspected for specific electrical patterns depending on the domain.

2.1.1.1 The role of EEG in epilepsy

EEGs can be ictal (if acquired during a seizure) or interictal (if done in a so-called normal state).

Interictal EEG is the most common and easy to obtain. Interictal epileptiform discharges (IEDs)

are electrical patterns that can usually be seen in interictal EEGs of patients with epilepsy, and

only rarely in healthy subjects (see Figure 2.3 for an example of an IED). These patterns are

sudden spikes/waves often followed by a slow-wave complex [7]. IEDs also help discriminate the

epilepsy condition into different syndromes, particularly, generalized epilepsy (when they arise in

both brain hemispheres) or focal epilepsy (when certain regions of the brain are responsible for

the epileptic activity) [8].

Currently, the analysis of EEG signals in search for IEDs is the gold standard for the clinical

diagnosis of epilepsy. In order to improve the chances of interictal spikes occurring during EEG,

activation procedures can be used. These procedures include: putting the patient to sleep, inducing

hyperventilation by having the patient breathe very quickly and performing photic stimulation

[10].

2.1.2 Self-Supervised Learning

Self-supervised learning (SSL) is a learning technique for which the goal is to uncover meaningful

structures in data and use them to make predictions. This type of learning has been emerging re-

cently because it seems to mimic the way humans learn. It has gained a lot of attention, especially

in the computer vision field [11].

6 State of the Art

There are two main concepts in SSL: pretext tasks and downstream tasks. The pretext task

is a machine learning task that is meant to provide a meaningful representation of the data that

can later be used to classify the data according to the downstream task (the actual classification

problem we intend to tackle).

The pretext tasks must have the following characteristics:

• The labels can be generated automatically from the dataset;

• The task requires understanding, i.e. the model has to extract meaningful patterns from the

data in order to predict the output correctly.

Usually, these are the main steps to carry out a pretext task:

1. Data generation: create new examples from the original ones;

2. Self-labelling: associate the new examples with the auxiliary values related to their creation,

these are their labels;

3. Classify/predict: develop a model to classify/predict all examples;

Here is an example of this framework on a pretext task developed for a dataset consisting of

images:

1. Data generation: rotate the original image Xi by an arbitrary angle of θ ◦i . This generates a

new example Xi′ ;

2. Self-labelling: pair Xi′ with its label which is the rotation angle θi;

3. Classify/predict: develop a model that, given an image X predicts the angle θ by which that

image was rotated. In the case of images that were not altered, θ should be 0.

A general and theoretically grounded framework to SSL was recently formalized in [12] from

the perspective of nonlinear independent components analysis (ICA). Under that framework, vari-

ables are statistically dependent on a random variable u (e.g., θ from the previous example) and u

is used to perform data augmentation. Then, a classifier is trained to predict whether a sample is

paired correctly with its auxiliary variable u (θ = 0◦) or a perturbed (random) one, u′ (θ 6= 0◦). In

the case of EEG data, this auxiliary variable u can be time and, as such, a lot of the pretext tasks

from the literature consist of temporal shuffling, which will be discussed later.

2.2 Deep Learning for EEG Analysis

Deep learning (DL) has been trending in this last decade in machine learning applications because

of its completeness: it makes it possible to skip steps such as data pre-processing and feature

extraction. It does this by using deep neural networks (DNNs), where deep refers to the number of

2.2 Deep Learning for EEG Analysis 7

layers of the network (even though there is not a consensus on how many layers a network should

have in order to be considered deep). This method has been widely used in the computer vision

field because of the hierarchical nature of the features present in an image. The first layers seem

to extract low-level features like edges while the last layers deal with more complex features, for

example, a nose in a picture of a person.

DL has also been adopted in many other areas, and EEG analysis is one of them. As was said

before, algorithmically analysing an EEG requires some pre-processing. Because of its automatic

end-to-end learning, DL is believed to reduce the number of pre-processing operations necessary

to obtain good results.

In [13], 154 papers consisting of different deep learning approaches to EEG analysis are

reviewed. These approaches are inserted in several domains, from the detection of epilepsy,

Alzheimer’s disease and schizophrenia to cognitive and affective monitoring. Regarding common

phases for machine learning tasks, here is the general outlook:

• Dataset: half of the datasets contained epochs from less than 13 subjects, although this

results in different input sizes, depending on the sampling rate (most common was 250Hz)

and the epoch size;

• Data augmentation: few studies carried out data augmentation, having demonstrated better

results when that technique was employed. Multiple studies used overlapping epochs as a

way to augment their data;

• Artefact removal: almost half the papers did not perform artefact removal, although, ac-

cording to the authors, it may be essential for achieving good performance;

• Feature extraction: the studies that performed feature extraction usually did so with un-

supervised methods, namely restricted Boltzmann machines (RBMs), deep belief networks

(DBNs) and autoencoders (AEs). However, most studies leveraged deep learning to perform

both feature extraction and classification/regression;

• Architecture design: convolutional neural networks (CNNs) were the most common archi-

tecture type followed by recurrent neural networks (RNNs). Most of the architectures had

no more than 10 layers;

• Network regularization: 79 papers used at least one regularization method;

• Optimizer: most papers did not mention the optimizer that was used, but Adam and stochas-

tic gradient descent (SGD) were the most common optimizers for those that did;

• Hyperparameter search: some studies performed hyperparameter search using either grid

search or Bayesian methods;

• Model inspection: most solutions employed at least one model inspection technique.

8 State of the Art

Regarding CNNs and RNNs in particular, their popularity seems natural given their ability to

deal with time-series data. CNNs, in particular, can be used for EEG data in two ways: the conven-

tional one using 2D convolutions (one dimension is the time and another is the location/channels)

or simply 1D convolutions, having only one dimension which is time.

In what concerns the results, it is hard to compare the different solutions: this field lacks

benchmark datasets and baseline models. It also remains unclear whether deep learning methods

are more efficient than traditional machine learning algorithms in these domains. However, the

difference in accuracy between each proposed model and corresponding baseline (defined by the

authors) per domain type was assessed, and the median gain in accuracy with DL was of 5.4%

[13]. It is worth noting that the lack of labelled data in clinical settings was specifically pointed

out as an obstacle.

2.3 Self-Supervised Learning in EEG

Self-supervised learning is a recent trend in the machine learning field. For that reason, the liter-

ature on this topic is scarce. Recently, it has been used in some approaches for automatic EEG

analysis, namely, in 3 studies (one in 2019, one in 2020 and one in 2021). These will be presented

next.

In [14], the authors present a self-supervised solution for the multiclass problem of identifying

sleep stages using EEG data. Experiments were performed with two pretext tasks (seen in Figure

2.4): relative positioning (RP) and temporal shuffling (TS). This solution was framed under the

framework discussed before and the auxiliary variable used, u, was the time index, under the

assumption that an accurate representation of the EEG data should depend and evolve according

to time.

For the RP task, two values were considered, τpos and τneg, which are the durations of two con-

texts around time windows, namely the positive context and the negative context, correspondingly.

In order to create the self-labelled dataset, pairs (xt ,xt ′) of time windows are sampled. The goal is

to classify each pair with 1, if |t− t ′| ≤ τpos or -1, if |t− t ′|> τneg. Similarly, the TS task samples

tuples (xt ,xt ′ ,xt ′′), where xt ′′ is in the positive context of xt . The goal is now to classify the tuple as

temporally ordered (t < t ′ < t ′′) or shuffled.

In both tasks, firstly, a feature extractor h was used. This feature extractor is an embedder

that maps a time window to its representation on the feature space. The architecture used for this

feature extractor was adapted from a convolutional neural network (CNN) previously used in the

literature that had shown to perform well on this problem (sleep staging). A contrastive module

is then used in order to combine all the representations together, by computing an elementwise

absolute difference. Finally, logistic regression is used to predict the labels of each pair or tuple.

The authors conducted experiments on two public datasets of EEG sleep data: the Physionet

Sleep EDF expanded dataset [15] and the MASS dataset session 3 [16]. The datasets comprised,

in total, 189,510 (Physionet Sleep EDF dataset) and 57,445 (MASS dataset) time windows from

83 and 62 patients, correspondingly. The results were compared with 3 different baselines for h:

2.3 Self-Supervised Learning in EEG 9

Figure 2.4: Visual representation of the TS and RP pretext tasks [14]

an artificial neural network (ANN) with random initialization and frozen weights, a convolutional

autoencoder (AE) and a purely supervised model (by adding an additional softmax layer). Bal-

anced accuracy was used as an indicator of performance and comparison was made by varying the

number of labelled examples per class (see Figure 2.5).

On MASS, the SSL approach outperformed all baselines, for all data regimes (number of

labelled examples). The same happens on the Physionet Sleep EDF dataset, except for when there

are more than 500 examples per class available, where the purely supervised model outperformed

all the other ones. When it comes to comparing the pretext tasks (RP and TS) between themselves,

RP was slightly better than TS on the MASS dataset, well the opposite happened on the Physionet

Sleep EDF dataset.

(a) Mass dataset (b) Physionet Sleep EDF dataset

Figure 2.5: Impact of varying the number of examples per class on each dataset [14]

10 State of the Art

Additionally, in order to explore the features learned with SSL, the embeddings (representa-

tions) obtained on the Physionet Sleep EDF dataset were projected to two dimensions using UMAP

[17]. This projection showed that the learned features were physiologically meaningful, which is

the primary goal of pretext tasks (discover meaningful patterns in data) and SSL in general.

In [18], SSL is used in a slightly different manner: the pretext task is enough to fulfil the

downstream task. The authors formulate an anomaly detection problem where the goal is to score

the degree of abnormality in EEG data. The EEG data included short sequences (time windows of

1 second) of signal values from multiple electrodes and patients.

For this purpose, one pretext task was developed based on the fact that abnormal EEG data

often include signals of higher frequencies. This task performs a scaling transformation on the data

by interpolating the EEG values in order to create a new sequence of values, with lower frequency.

The resulting sequence has sk×d values where d is the number of values in the original sequences,

and sk is the scaling factor (the values used for this factor were 1.0, 2.0 and 3.0). Finally, d

contiguous values from the scaled sequence are extracted from either the beginning or the centre of

the sequence, so that all transformed sequences have the same length. All transformed sequences

together construct a self-labelled dataset, where each label in the labels vector is the same as the

scaling factor sk applied to the sequence.

These sequences are then fed into a deep convolutional neural network (CNN) that reuses

the backbone of a well known CNN, ResNet34 [19]. In the convolutional layers of the ResNet

network, the kernels have a size of 3× 3. Initially, the kernels were to be altered to a 1× 3 size.

However, it was experimentally verified that 3× 3 kernels performed better, which is interesting

because it suggests that some relationship was captured between the two dimensions (brain region

and time). The classifier was trained using only healthy EEG data, i.e., EEG from patients without

any disease or condition. This way, one could expect new normal EEG data to be classified

correctly, while abnormal EEG data would ideally be misclassified, and the differences between

the predicted values and the ground truth could be used to measure the degree of abnormality.

This solution was compared against well-known anomaly detection methods, namely the one-

class support vector machine (OC-SVM), the statistical kernel density estimation (KDE) method,

the autoencoder (AE) and the variational autoencoder (VAE). The self-supervised solution outper-

formed every one of these methods, as can be seen in Figure 2.6 (the performance metric used to

this end was the AUC).

The robustness of the developed model was also tested by varying some settings:

• The CNN structure (VGG19 [20], ResNet18, ResNet34, ResNet50, and DenseNet121 [21]);

• Number of scaling transformations (2, 3, 4 and 5);

• The scaling range ([1−2], [1−2.5], [1−3], [1−3.5] and [1−4]);

• The sampling position, i.e., the heuristic used to sample the d values from the scaled se-

quence (starting from the beginning position, the one-third position, or around the centre of

the scaled sequence).

2.3 Self-Supervised Learning in EEG 11

Figure 2.6: Comparison of the different approaches for anomaly detection [18]

The solution proved to be robust to these changes, demonstrating relatively small differences

in performance. Despite these apparently excellent results, it is worth noting that the data used for

experimental evaluation consisted of EEG data from 4 dogs. It would be important to evaluate the

same framework with a more representative dataset as well as human patients.

Recently, another self-supervised learning approach to EEG was developed [22], inspired by

wav2vec 2.0 [23], which is a framework for self-supervised speech recognition. Recognizing

the impact of ImageNet [24] pre-training in the computer vision field, the authors proposed that

DNN transfer learning in brain-computer interface (BCI) and neuroimaging analysis could follow

a similar line, with encephalography models. To test this hypothesis, the authors compiled a

dataset with data from various datasets, namely, TUEG [25], MMI [26], BCIC [27], ERN [28],

P300 [29] and SSC [30]. However, this raises uniformity problems. These were solved by:

• focusing on the 19 channels from the 10/20 channel set (all additional channels were ig-

nored, while missing ones were set to 0);

• over- or under-sampling the signals to achieve a sampling frequency of 256 Hz.

The model architecture resembles that of wav2vec 2.0, comprised of two stages. The first

one was titled by the authors as BENDR (BErt-inspired Neural Data Representations). BENDR

takes raw EEG data and downsamples it to a new sequence of vectors. The second stage uses a

transformer encoder to map the previous representations to a new sequence for the downstream

task. The main difference between BENDR and the original architecture is that BENDR treats

several channels, while wav2vec 2.0 only 1 (raw audio).

In accordance with their results, the authors believed this pre-training step to be suitable for all

EEG data and every domain of the target task (e.g. sleep stage classification, pathology detection,

affective monitoring, etc.). If accurate, this can be paradigm-changing in the field of automatic

EEG analysis.

In Table 2.1, a summary of these studies and their results can be seen. Since SSL is an increas-

ing trend, we expect more solutions and approaches to come out during our work.

12 State of the Art

Study Task Results
H. Banville, G.
Moffat, I. Al-
buquerque, D.
A. Engemann,
A. Hyvarinen,
and A. Gram-
fort [14]

Sleep stage classification
SSL outperformed all baselines in low-
labelled data regimes.

J. Xu, Y.
Zheng, Y. Mao,
R. Wang, and
W. S. Zheng
[18]

EEG anomaly detection

SSL outperformed other anomaly detection
methods considered by the authors (AE,
VAE, KDE and OC-SVM), with an AUC of
0.941.

D. Kostas,
S. Aroca-
Ouellette, and
F. Rudzicz [22]

Pre-training a model for EEG tasks

SSL keeps up with other approaches on the
same datasets used, however, authors claim
that with fine-tuning for specific domains
the BENDR system can achieve better per-
formance.

Table 2.1: Summary of the studies presented

Chapter 3

Methods

The purpose of this Chapter is to explain the development pipeline used in this project. In Section

3.1, the dataset is presented, and the data preparation and understanding processes are carried out.

Section 3.3 comprehends a brief description of the employed self-supervised learning framework,

while Sections 3.2 and 3.4 build on this by describing, respectively, the downstream task and the

pretext tasks of this work.

3.1 EEG Data

The EEG data was kindly provided by the Clinical Neurophysiology (CNPH) group [31] of the

University of Twente [32]. It contained EEGs from 166 patients between 4 and 72 years of age,

randomly selected from the digital database of the Medisch Spectrum Twente in the Netherlands.

The data was anonymized before use. The recordings were made with twenty-one silver/silver

chloride cup electrodes placed on the scalp according to the international 10-20 system. These

EEGs are distributed in the following manner:

• 50 recordings from patients with focal epilepsy (from now on referred to as set F);

• 49 recordings from patients with generalized epilepsy (from now on referred to as set G);

• 66 recordings from people without epilepsy (from now on referred to as set N).

Sets F and G contained IEDs besides normal brain activity, while set N contained no EEG

abnormalities.

This data was provided in the form of .mat files, with some pre-processing already employed,

namely:

• Filtering operations in the 0.5–35 Hz range in order to reduce artefacts;

• The raw signal was discretized using a sampling frequency of 125 Hz to reduce input size;

13

14 Methods

Figure 3.1: The longitudinal bipolar montage, also known as the double banana montage because
of the shape formed by the electrodes on the left and right sides of the head.

• Each recording was split into 2s non-overlapping time windows, commonly called epochs.

Each epoch contained 125×2 = 250 values. These values are potential differences between

2 electrodes that form a channel;

• Signals were re-referenced to a longitudinal bipolar montage. This montage consists of 19

electrodes placed on the scalp in the disposition seen in Figure 3.1. A list of the resulting 18

channels is presented in Table 3.1;

• Epochs were annotated by clinical experts concerning the presence of IEDs (0 if no IED

was present, 1 otherwise).

In each EEG file, the following information was provided:

• The discretized signal in the form of an array with the shape: number of epochs (depends

on the duration of the EEG) × number of samples (250) × number of channels (18). This

structure can better be understood in Figure 3.2;

• The labels (list of 1 and 0 values). Labelling is done at the epoch level, so this list has a size

equal to the number of epochs in the signal;

• The bandpass filter applied to the signal during artefact removal;

• The beginning and end time marks for each epoch.

As shown in Table 3.2, set G was the largest set, although set F contained more positive

samples (IEDs). Set N was the smallest set, and, naturally, it did not contain any positive samples.

The dispersion in IEDs in sets F and G can best be seen in the box plot of Figure 3.3.

Fp1-F7 Fp1-F3 Fp2-F4 Fp2-F8 F7-T3 F3-C3
Fz-Cz F4-C4 F8-T4 T3-T5 C3-P3 Cz-Pz
C4-P4 T4-T6 T5-O1 P3-O1 P4-O2 T6-O2

Table 3.1: All 18 channels of the longitudinal bipolar montage.

3.1 EEG Data 15

Figure 3.2: Structure of an array containing the discretized information from an EEG signal.

Set No. of epochs No. of minutes No. of IEDs
F 86 250 2 875 (∼ 47.92 hours) 1 752
G 120 692 4 023.07 (∼ 67.05 hours) 912
N 57 989 1 932.97 (∼ 32.22 hours) 0

Total 264 931 8 831.04 (∼ 147.18 hours) 2 664
Table 3.2: Distribution of epochs, recording duration and IEDs per set.

Figure 3.3: Box plot of the number of IEDs in sets F and G. Note that the dispersion in set F is
much larger than the dispersion in set G, even though the first quartile is very similar in both.

16 Methods

Label
Set 0 1 Total

Training 13 383 1 487 14 870 (∼ 39%)
Validation 6 597 733 7 330 (∼ 19%)

Test 15 414 452 15 866 (∼ 42%)
Total 35 394 (∼ 93%) 2 672 (∼ 7%) 38 066

Table 3.3: Data distribution for the downstream task.

3.2 Downstream Task (IED Detection)

As discussed before (see Section 2.1.2), in the context of self-supervised learning, a downstream

task is a supervised learning task that can benefit from pre-trained models, especially when the

available data is limited. In this project, the downstream task is a binary classification problem in

which the inputs (X) are EEG epochs, and the output (y) is 0 if the epoch does not contain an IED

and 1 if the epoch contains an IED. This classification task can be helpful for the clinical diagnosis

of epilepsy, as we have already discussed.

3.2.1 Baseline

A baseline was established in order to compare a fully supervised learning approach to the self-

supervised learning method presented in this work. In [33], an adaptation of the VGG16 model

with remarkable performance (refer to the original paper) was proposed for the task at hand. The

authors provided the code for that model and we used it as a basis for the baseline.

3.2.1.1 Data

The mentioned paper was also developed in the CNPH [31] group, and as such, the EEG data

available included the data described in Section 3.1 as well as some additional EEGs. The data

was split into training/validation/test sets with approximate proportions of 40%/20%/40%, making

sure that data from one patient was only present in a single set. Not all negative samples were used

for the sake of increasing the proportion of positive samples present in the data. However, the true

proportion was kept in the test set (1:34). The resulting distribution of positive and negative

samples throughout these sets can be seen in Table 3.3. As can be expected in clinical problems

such as this one, the resulting dataset is highly unbalanced, with only 7% positive samples.

3.2.1.2 Model

Due to compatibility issues, the architecture from [33] was slightly modified. The architecture in

place is essentially the same as the VGG16, with some adaptations due to the input and output

shape. The convolutional blocks are the same, as well as the stride and padding. ReLu activation

was also used in hidden layers. The dense layers are also the same as in the original VGG16, except

for the output layer. The model architecture can be seen in Figure 3.4 while the main differences

3.3 Self-Supervised Learning Approach 17

Figure 3.4: The VGG16-var model architecture. This architecture is similar to the original
VGG16, except for the convolutional and max-pooling layers’ dimensions and the output acti-
vation function.

between the original VGG16, the architecture from [33] and ours (referred to as VGG16-var) are

highlighted in Table 3.4.

The model was trained for 20 epochs (not to be confused with EEG epochs) with a batch size

of 64. The Adam optimizer was used with a learning rate of 2×10−5, β1 = 0.91, β2 = 0.999 and

ε = 10−8. The loss function employed was binary cross-entropy, and class weights of 100:1 (100

corresponding to the positive class) were used to compensate the class imbalance problem.

AUC, sensitivity and specificity were monitored to evaluate model performance. The points

where either the sensitivity and specificity were the same or the specificity was 99.00% were

recorded.

3.3 Self-Supervised Learning Approach

In Section 2.1.2, the theory behind the SSL framework was briefly explained. Now that we have

dived further into the topic, we can explore its practical side, applied to our context.

Self-supervised learning aims to take advantage of large quantities of unannotated data, and

use that leverage to benefit a supervised model. Usually, in clinical settings, that is the case —

VGG16 VGG16-C VGG16-var
Input dimensions 224 × 224 × 3 250 × 18 × 1 250 × 18
Kernel size in convolutional layers 3 × 3 3 × 3 3
Kernel size in max pooling layers 2 × 2 2 × 2 2
No. of units in output layer 1 000 2 1
Activation function in output layer Softmax Softmax Sigmoid

Table 3.4: Main differences between the original VGG16, the VGG16 from [33] (VGG16-C) and
our adaptation, called VGG16-var.

18 Methods

there is a vast amount of unannotated data at our disposal.

The first step is to design a pretext task. This pretext task should take as input our data, in

some shape, and the output must be automatically verifiable (no need for human annotations). As

such, the next step is to automatically label the data according to our newly designed pretext task.

Then, a model, m1, can be trained to perform that classication/regression task.

Subsequently, the pre-trained model m1 can be used to perform the downstream task (IED

classification) in one of two ways:

• Continue the training of the pre-trained model m1 to perform the downstream task, this time

in a supervised manner (on the human-annotated dataset). This will be the case for one of

our pretext tasks, where the model is exactly the same for the pretext and downstream tasks;

• Partially initialize a second model m2 with model m1’s weights and train m2 to perform

the downstream task. This will be the case for our other pretext task, where the model

architecture is not exactly the same and as such the m2 model’s weights are only partially

initialized.

Note that in any case there are two classification/regression tasks (the pretext task and the

downstream task) and two model training processes. These training processes make use of two

different datasets - one self-labelled and one annotated by humans - even though the data itself is

the same (in our case, EEG data).

Having a baseline that was trained in a fully supervised manner, it is then possible to compare

the gain from this transfer learning process. However, since our baseline model was trained with a

decent amount of annotated data and its performance was quite good, we performed an additional

step: we trained the baseline model on different data regimes to monitor the impact of withdrawing

human-annotated data. This was done in two ways:

Varying the amount of data Reducing the number of samples in both the training and validation

sets to 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%,

2% and finally 1%;

Varying the number of positive samples Reducing the number of positive samples in both the

training and validation sets to 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, 9%,

8%, 7%, 6%, 5%, 4%, 3%, 2% and finally 1%, while maintaining the number of negative

samples to 100%.

The percentage interval changes from 10% to 1% in the [10-1%] range because the SSL ap-

proach should be beneficial especially in such low-labelled data regimes.

The difference on the training and validation sets with these variations can be seen in Figures

3.5 and 3.6 (to see the original training/validation sets refer to Table 3.3). This is further detailed

in Tables B.1 and B.2.

The pretext tasks created for this problem will be explained in the next sections.

3.3 Self-Supervised Learning Approach 19

Figure 3.5: Number of training/validation samples obtained by linearly decreasing the amount of
available data used.

Figure 3.6: Number of training/validation samples obtained by linearly decreasing the amount of
positive samples used.

20 Methods

Summary of the SSL framework
1. Design a pretext task that makes use of the data at your disposal;
2. Self-label the data according to the pretext task;
3. Use the self-labelled dataset to train/validate/test a model m1 to test;
4. Leverage model m1 to perform the downstream task in different data regimes;
5. Compare the performances of the fully supervised baseline model and the initialized model.

Table 3.5: Summary of the steps described in Section 3.3.

3.4 Pretext Tasks

Two pretext tasks were experimented in this work: one adapted from the literature [14] and one

fully designed by us. The first one is named Relative Positioning, as in its original work, and the

second is Channel Correlation. For both pretext tasks we will go through the steps listed in Table

3.5.

3.4.1 Relative Positioning

This pretext task explores the temporal dimension of the EEG data by defining a positive and a

negative context around an EEG epoch, assuming that the signal evolves slowly over time and that

epochs closer in time will be closer in value as well. The original downstream task for this pretext

task was sleep stage classification, which encompasses neurophysiological phenomena at a greater

scale than epilepsy-related abnormalities (a sleep stage lasts much longer than an IED). For that

reason, the duration of the positive context was adjusted. We defined the positive context’s length,

τpos, as 6s (equal to 3 EEG epochs). The negative context includes every epoch that is not included

in the positive context.

3.4.1.1 Task Definition

The goal is to have as input 2 epochs (a pair) and predict whether they belong in the same positive

context (y = 1) or not (y = 0). Thus, this pretext task is a binary classification problem.

3.4.1.2 Dataset Labelling

In order to self-label the data, every epoch of every EEG was iterated. At each iteration, the epoch

in question would be an anchor, xt , which means the positive context was generated considering

the anchor the central point. The positive and negative context around an anchor can be seen in

Figure 3.7. All epochs belonging to the positive context of the anchor would be retrieved. These

are its consecutive epochs (xt−1 and xt+1), therefore, a maximum of two epochs in the positive

context would be retrieved (only one if the anchor was the first or the last epoch in the EEG). The

pairs (xt , xt+1) and (xt−1, xt) would be added to the input set (X), while the labels 1 would be added

to the output set (y). Following this, 1 to 3 other epochs belonging to the anchor’s negative context

would be retrieved randomly. For every epoch xt ′ retrieved, a pair (xt , xt ′) or (xt , xt ′) (depending

3.4 Pretext Tasks 21

Figure 3.7: The positive context around an anchor epoch, xt . The y value in each epoch represents
the resulting label of paring the anchor with that epoch.

on the correct order) would be added to X whereas the label 0 would be added to y. After going

through every epoch and every EEG, the sets X and y were saved in .npy files for posterior use.

Some problems arose due to the large volume of pairs created (in total, 72GB). There was not

enough RAM to deal with this amount of data, and the same applies to the GPU card (even with

reduced batch sizes). Some experiments were done in order to determine how much of the data

we had could be used. These experiments are detailed in Appendix A.

Eventually, it was assessed that 150 EEGs represented a good balance: ∼ 91% of the total

EEGs and ∼ 93% of the total IEDs were being used, while the memory savings were about 50%.

Still, the batch size had to be 16, and each training epoch took, on average, 1291 seconds (21.52

min).

The resulting dataset was balanced (due to the pair generation algorithm). The samples were

split into training/validation/test sets with approximate proportions of 60%/20%/20%, making sure

data from one patient was only present in a single set. The distribution of samples per set and

category is presented in Table 3.6.

3.4.1.3 Model

To perform this task, we used Siamese Neural Networks, which are networks that consist of two

identical subnetworks. These subnetworks share the same weights, so whenever one is updated,

both of them are updated with the same values. They are widely used in tasks where one would

Label
Set 0 1 Total

Training 172 900 172 878 345 778 (∼ 61%)
Validation 57 280 57 196 114 476 (∼ 20%)

Test 51 288 51 274 102 562 (∼ 18%)
Total 281 468 (∼ 50%) 281 348 (∼ 50%) 562 816

Table 3.6: Data distribution for the Relative Positioning pretext task.

22 Methods

Figure 3.8: Siamese model used to perform the Relative Positioning task.

want to match two samples because of their similarity, e.g. signature verification or facial recog-

nition.

A siamese neural network with two identical VGG16-var subnetworks (already described in

Section 3.2) was used. Each VGG receives as input one of the epochs of the input pair, and a

lambda layer connects the output of the two subnetworks by computing the euclidean distance

between the output features of each subnetwork. Again, sigmoid activation was used in the output

layer to produce a binary output. Figure 3.8 portrays a depiction of this model.

The model was trained for 24 epochs (which took approximately 19 hours due to the problems

already mentioned) with a batch size of 16. The Adam optimizer was used with a learning rate

of 1× 10−4, β1 = 0.9, β2 = 0.999 and ε = 10−7. The loss function employed was binary cross-

entropy.

3.4.2 Channel Correlation

In the previous pretext task, we explored the temporal dimension of the EEG data. In this task,

we aimed to explore the spatial dimension by analysing the correlation between channels. We

expected to see a higher channel correlation in controls and patients with generalized epilepsy

in comparison to patients with focal epilepsy, where IEDs occur in a few channels only. Only a

subset of F and G were used for this task: the epochs containing IEDs. These subsets were named

F_select and G_select, respectively. This decision was made after analysing the results from the

previous pretext task, which will be discussed later, that strongly hinted that the baseline model

was highly dependent on positive samples.

We started by computing the average Pearson correlation between channels for each set of

EEGs (F_select, G_select and N). We did this by computing the correlation matrix for every epoch.

The absolute values were considered because we were only interested in the magnitude of the

correlation. This matrix is symmetric, so only half was saved, excluding the diagonal, which is

only made up of 1’s (an example of an EEG epoch and its corresponding correlation values can be

seen in Figure 3.9). The mean of these values was taken as the correlation mean for that epoch.

The EEG mean was, in turn, the average of all the epoch means. We obtained the following results:

As can be seen in Figure 3.10 the values were significantly overlapped. However, F_select and

G_select seem to have less overlapping, so we decided to base the task off of these two sets.

3.4 Pretext Tasks 23

Figure 3.9: An epoch from set F (top) and its corresponding lower triangle of the correlation
matrix (bottom).

24 Methods

EEG set Average correlation
F_select 0.3449 ± 0.0584
G_select 0.4393 ± 0.0683

N 0.3805 ± 0.0615
Table 3.7: Average channel correlation for each EEG set.

3.4.2.1 Task Definition

We used the value of the intersection of both probability density functions (see Figure 3.11) as a

cutoff value for a binary classification task. Thus, the input for this classification task is an EEG

epoch, and the output should be 1 if the channel correlation mean is greater or equal to the cutoff

value (0.382) and 0 otherwise.

3.4.2.2 Dataset Labelling

Labelling the EEG data according to this pretext task was only a matter of iterating through all

EEG epochs from F_select and G_select, computing their Pearson correlation mean (as mentioned

before with the absolute values of the correlation matrix) and labelling them accordingly.

The self-labelled data was split into training/validation/test sets with approximate proportions

of 60%/20%/20% ensuring data from one patient was only present in a single set. The resulting

dataset is presented in Table 3.8.

3.4.2.3 Model

The model architecture used was the same as the baseline model already presented in Section 3.2

(VGG16-var). The model was trained for 10 epochs with a batch size of 64. The Adam optimizer

was used with β1 = 0.9, β2 = 0.999, ε = 10−7, and a learning rate of 2× 10−5 for the first 7

epochs and 1×10−5 for the last 3 epochs since the performance was plateauing. The loss function

employed was binary cross-entropy.

Figure 3.10: Gaussian distribution and box plots of the EEG correlation means for each set.

3.4 Pretext Tasks 25

Figure 3.11: Gaussian distribution of the EEG correlation means for the F_select and G_select
sets. The intersection of both was used as a cutoff value in order to create a binary classification
task.

Label
Set 0 1 Total

Training 826 536 1 362 (∼ 49%)
Validation 311 202 513 (∼ 19%)

Test 521 362 883 (∼ 32%)
Total 1 658 (∼ 60%) 1 100 (∼ 40%) 2 758

Table 3.8: Data distribution for the Channel Correlation pretext task.

26 Methods

Chapter 4

Results

In the previous chapter, we described the methods developed in this work. The purpose of the

current chapter is to present the results obtained by carrying out said methods. All the sensitivi-

ty/specificity pairs presented are the ones where speci f icity = 99% or sensitivity = speci f icity.

4.1 Pretext Tasks

In Table 4.1 a performance summary of the siamese model for the Relative Positioning task on the

training/validation/test sets can be seen. Additionally, the ROC curve on the test set is shown in

Figure 4.1. The same information for the VGG16-var model on the Channel Correlation task is

presented in Table 4.2 and Figure 4.2.

4.2 Downstream Task

Similarly, Table 4.3 and Figure 4.3 provide an overview of the baseline VGG16-var model’s per-

formance on the downstream task (IED detection).

As mentioned before (refer to Section 3.3), the baseline model was trained on different data

regimes in order to assess the contribution of the SSL approach when using a limited amount of

annotated data. The following sections showcase the results of each of the two experiments done.

Set AUC Sensitivity Specificity

Training 0.97
45.80% 99.00%
90.90% 90.90%

Validation 0.84
4.70% 99.00%
75.80% 75.80%

Test 0.83
5.00% 99.00%
74.70% 74.70%

Table 4.1: Model performance for the Relative Positioning task.

27

28 Results

Figure 4.1: ROC curve of the siamese model (RP task) on the test set.

Set AUC Sensitivity Specificity

Training 0.97
76.00% 99.00%
90.00% 90.00%

Validation 0.83
35.60% 99.00%
76.00% 76.00%

Test 0.92
42.80% 99.00%
83.70% 83.70%

Table 4.2: Model performance for the Channel Correlation task.

Figure 4.2: ROC curve of the VGG16-var model (CC task) on the test set.

4.2 Downstream Task 29

Set AUC Sensitivity Specificity

Training 1.00
100.00% 99.00%
100.00% 100.00%

Validation 0.99
89.09% 99.00%
96.45% 96.82%

Test 0.96
65.00% 99.00%
91.00% 90.00%

Table 4.3: Model performance for the downstream task. Note that for the validation and test sets
it was not possible to find a threshold for which sensitivity = speci f icity. Instead, the closest two
values were used.

Figure 4.3: ROC curve of the baseline VGG16-var model (downstream task) on the test set.

30 Results

Percentage of
available
data used

Random weights Initialized weights (RP) Initialized weights (CC)

100% 0.96 0.92 0.97
90% 0.96 0.92 0.97
80% 0.94 0.91 0.97
70% 0.95 0.91 0.96
60% 0.94 0.90 0.95
50% 0.93 0.91 0.94
40% 0.93 0.88 0.93
30% 0.88 0.77 0.89
20% 0.87 0.75 0.84
10% 0.91 0.81 0.86
9% 0.82 0.80 0.84
8% 0.84 0.74 0.90
7% 0.81 0.71 0.88
6% 0.80 0.66 0.80
5% 0.78 0.63 0.77
4% 0.82 0.54 0.80
3% 0.80 0.56 0.80
2% 0.67 0.54 0.65
1% 0.69 0.52 0.65

Table 4.4: AUC obtained by the baseline model on the test set by varying the amount of data
available for training/validation and the weight initialization method. Note that the values from 1
to 10% are average values.

4.2.1 Varying the Amount of Data

For this experiment, the baseline VGG16-var model was trained with different settings and weights.

The model’s weights were initialized either randomly, with the RP model’s weights or with the CC

model’s weights. The training/validation procedure was repeated for all percentages enumerated

before and for all weight initialization methods. The results (AUC on the test set) are illustrated in

Table 4.4 and Figure 4.4. The training/validation cycle was repeated 10 times for the percentages

1–10% and, as such, the AUC values presented in the aforementioned table in that range are then

the mean of all 10 runs. Refer to Figure 4.5 for the standard deviations. The full results of this

experiment (including the AUC on the training/validation sets and the test AUC for all 10 runs) as

well as the next one are included in Appendix C.

4.2.2 Varying the Number of Positive Samples

Likewise, for this experiment, the baseline model was trained with different settings and weights.

The model’s weights were initialized either randomly, with the RP model’s weights or with the

CC model’s weights. Again, the training/validation procedure was repeated for all percentages

enumerated before and for all weight initialization methods, with the addition of the RP + CC

4.2 Downstream Task 31

Figure 4.4: AUC of the baseline model on the test set for every percentage of available data used.
Note that the values from 1 to 10% are average values.

Figure 4.5: Mean AUC of the baseline model on the test set, using 1 to 10% of all available
data, including the standard deviation (in grey) for every percentage. Random, RP and CC weight
initialization were tried.

32 Results

Percentage of
positive

samples used

Random
weights

Initialized
weights (RP)

Initialized
weights (CC)

Initialized
weights (RP +

CC)
100% 0.96 0.92 0.97 0.90
90% 0.97 0.92 0.97 0.90
80% 0.97 0.92 0.97 0.90
70% 0.96 0.92 0.96 0.92
60% 0.96 0.92 0.96 0.92
50% 0.94 0.93 0.95 0.90
40% 0.92 0.91 0.93 0.86
30% 0.90 0.90 0.90 0.82
20% 0.86 0.87 0.88 0.84
10% 0.81 0.84 0.85 0.84
9% 0.82 0.85 0.82 0.83
8% 0.83 0.84 0.83 0.85
7% 0.80 0.83 0.82 0.85
6% 0.79 0.82 0.80 0.85
5% 0.78 0.82 0.78 0.82
4% 0.42 0.81 0.84 0.80
3% 0.77 0.80 0.80 0.71
2% 0.50 0.69 0.45 0.68
1% 0.50 0.63 0.46 0.60

Table 4.5: AUC obtained by the baseline model on the test set by varying the amount of positive
samples available for training/validation and the weight initialization method. Note that the values
from 1 to 10% are average values.

initialization. The results (AUC on the test set) are illustrated in Table 4.5 and Figure 4.6. Once

more, the training/validation cycle was repeated 10 times for the percentages 1–10% and, as such,

the AUC values presented in the aforementioned table in that range are the mean of all 10 runs. A

more detailed look into the 1–10% range is shown in Figure 4.7.

4.2 Downstream Task 33

Figure 4.6: AUC of the baseline model on the test set for every percentage of positive samples
used. Note that the values from 1 to 10% are average values.

Figure 4.7: Mean AUC of the baseline model on the test set, using 1 to 10% of all available positive
samples, including the standard deviation (in grey) for every percentage. Random, RP, CC and RP
+ CC weight initialization were tried.

34 Results

Chapter 5

Discussion

The aim of this dissertation was to prove that SSL can make up for the lack of annotated EEG data.

To that end, two pretext tasks were created: Relative Positioning (RP) and Channel Correlation

(CC). The models developed to perform these tasks were then used to initialize the weights of

a baseline model (VGG16-var). This baseline model was trained/validated/tested under different

data regimes and with different weight initialization (random initialization, RP initialization and

CC initialization) to assess the performance gain that pretext tasks could produce. In the present

chapter, the results from both pretext tasks and the downstream tasks are discussed, with a greater

focus on the latter.

5.1 Pretext Tasks

The siamese model (RP task) had decent performance. However, it could benefit from improve-

ment. It is possible that the distance measure computed in the lambda layer (euclidean distance) is

not the best fit for this task, since an IED usually lasts for less than an epoch, and its shape is very

distinct from other EEG activity. Therefore, this sudden change could lead the model into misclas-

sifying a pair of consecutive epochs as non-consecutive when one of the epochs contains an IED.

It is worth mentioning that while in [14] the RP model performs better, the nature of the EEG data

was quite different since the downstream task was sleep stage classification. Sleep stages last for

much more than an epoch, and the EEG signal evolves slowly over time, assuming that the patient

possesses no brain conditions. This may be one of the reasons this model did not do exceptionally

well on this task. Nonetheless, the model performance on the test set was reasonably good.

The VGG16-var model for the CC task, however, was quite good. With good results on every

set, this model learned very quickly (the training/validation cycle lasted for 10 epochs, with each

epoch lasting roughly 10 seconds). When we compare it with the previous task, it is even more

impressive to see that this model had better performance because there was far more data available

for the RP task than for the CC task. However, since this task was designed in collaboration

with a neurologist and inspired by what a real-life lab technician intuitively does (compare the

35

36 Discussion

activity in different channels), it may be that this domain knowledge may have been translated to

a classification task more fit to the data we used.

5.2 Downstream Task

For simplicity purposes, we will refer to the baseline model with random weight initialization as

BL-RW, to the baseline model with RP model’s weights as BL-RP and to the baseline model with

CC model’s weights as BL-CC.

The results of the BL-RW in the IED detection task were very good across all sets. When we

start reducing the amount of data (either globally or positive samples only), the performance is

still quite stable (at 30% the model AUC on the test set was around 0.9 for both experiments). For

that reason, the data regimes with less labels (1–10%) will be more deeply analysed, since it is the

focus of this work as well as where there is more potential for a performance gain.

5.2.1 Varying the Amount of Data

The RP initialization actually worsened the baseline performance in this experiment. The BL-RP

was outperformed by both the BL-RW and BL-CC at every point (as can be seen in Figure 4.4)

and, most of the times, with a significant difference. The reason for this may be that the RP model

was not good enough or that the features it learned for the pretext task were not relevant enough for

the downstream task. It is also interesting to note that the standard deviation of the performance

of the BL-RP model was ≈ 0 at every point.

From 30 to 100%, the BL-CC was either better or as good as the BL-RW. On the other hand,

the BL-CC model had equal or worse performance than the BL-RW at 7 out of the 10 points in the

low-labelled data regimes, as illustrated in Figure D.1d. Moreover, the standard deviation of the

performance is distinctively higher at some points for both the BL-RW and the BL-CC.

In short, the BL-CC was marginally better than the BL-RW for higher-labelled data regimes,

however, in low-labelled data regimes (1–10%), the BL-RW did not seem to benefit much from

either pretext task. Nonetheless, the shape of the graphs was very irregular and inconsistent, which

does not allow us to draw significant conclusions.

5.2.2 Varying the Number of Positive Samples

For this experiment, an additional initialization was considered. In the Channel Correlation task

the VGG16-var model was initialized with the RP model’s weights, and then trained like before.

The resulting weights were then used to initialize the baseline model. We will call this model

BL-RP-CC.

The BL-RW was consistently outperformed either by the BL-RP or the BL-CC. Its perfor-

mance deteriorated much more with this type of data variation (positive samples) than with the

previous one. This is possibly due to the already unbalanced nature of the IED detection task,

which was aggravated with this variation.

5.2 Downstream Task 37

In low-labelled data regimes, the BL-RW was consistently outperformed by the BL-RP (see

Figure D.2c). Nonetheless, and repeating the same pattern from before, the RP initialization was

the worst option in higher-labelled data regimes (from 30% on). Again, this can be due to the

fact that the RP model does not adapt well to this type of data (it is in fact the one with the worst

performance on its original task) or that the pretext itself does not fit our downstream task, and

does not push the model to learn enough physiologically meaningful features. Moreover, it is

especially interesting to note that in low-labelled data regimes the RP initialization outperformed

the CC initialization while for higher percentages it was the other way around.

Regarding the BL-RP-CC model, although it had the highest performance in 4 out of 10 points

from 1–10%, it is hard to say whether the RP initialization benefit the CC model or not because

although the BL-RP-CC was generally better than the BL-CC in low-labelled data regimes, it was

much worse in high-labelled data-regimes.

In both cases, it is hard to draw conclusions from higher percentages because the BL-RW has

excellent and stable performance throughout most of those, and, as such, the potential performance

gain is minimal. Besides that, all models converge to approximately the same AUC value, further

making it impossible to make comparisons (which was to be expected for higher percentages).

5.2.3 Summary

The following table presents an overview of the appreciations made in this chapter.

Low-labelled data regimes (1–10%) Higher-labelled data regimes (30–
100%)

Experiment 1 BL-RP far worse than the other mod-
els; BL-RW and BL-CC similar.

BL-RP worse than the other models;
BL-RW and BL-CC very similar (max-
imum 0.03 difference).

Experiment 2 BL-RP better than BL-RW and BL-
CC; BL-CC similar to BL-RW.

BL-RP worse than the other models;
BL-RW and BL-CC very similar (max-
imum 0.01 difference).

Table 5.1: Summary of the appreciations made to the previously presented results. Note that
Experiment 1 refers to varying the amount of data while Experiment 2 refers to varying the number
of positive samples.

38 Discussion

Chapter 6

Conclusions

This experimental approach hints that the self-supervised learning approach can indeed lead to

a performance gain in scenarios where data is abundant but human annotations are scarce, and

therefore the (labelled) dataset is limited.

However, we can also conclude that the context/domain is crucial. It is fundamental that the

pretext tasks fit the downstream task. This can be done best with professionals from the respective

area (e.g. in our Channel Correlation pretext task, we had the valuable help of Prof. Dr Michel Van

Putten, a neurologist). It also seems to be essential that the models developed for the pretext tasks

have good performance themselves. In fact, the Relative Positioning model seemed to be capped

in higher-labelled data regimes, while in low-labelled data regimes it actually did very good in one

of the experiments.

6.1 Future Work

Considering that in [14] it was concluded that “SSL pretext task hyper-parameters strongly influ-

ence downstream task performance”, we believe that the following steps would include tuning the

RP model. It was not possible to do that methodically due to the amount of time it took to train the

network. However, it would be interesting to perform hyper-parameter tuning and then re-test it

on the downstream task to see how it affects the performance gain. The idea of training the model

with only IED epochs (as anchor epochs for generating the pairs) is also appealing since the CC

model was trained only with IEDs and this would be much quicker to test.

Designing new pretext tasks and assessing their suitability is also another path for extending

this work. One of those could build on the analysis of the channels symmetry (or lack of). That is

to say, calculate the channel correlations between channels belonging to the left region of the brain

and channels belonging to the right region of the brain. We could then analyse how correlated the

EEG activity in both sides of the brain is and possibly design a pretext task like the CC task. For

instance, when we think of focal epilepsy, it is possible that this correlation may be low if the

origin of the epileptic activity lies in one of the temporal lobes, causing abnormal activity only on

the channels of that lobe.

39

40 Conclusions

Another possible pretext task could be based on predicting the signal’s autocorrelation or (se-

rial correlation). This is the correlation of a signal or time-series data with a delayed copy of itself.

Like the RP task, this explores the time dimension of the signal, however, it can be done in a much

lower scale by adjusting how delayed the copy of the signal is, possibly mitigating the problem of

IEDs being sudden.

Appendix A

Memory Experiments

As mentioned in Chapter 3, some problems arose due to the large volume of pairs created in the

Relative Positioning task (in total, 72GB). There was not enough RAM to deal with this amount

of data, and the same applies to the GPU card (even with reduced batch sizes). Three EEG files,

in particular, contributed immensely to this problem because they were ambulatory recordings of

approximately 16, 22 and 24 hours. The pairs/labels generated from these three files represented

41GB of data. Considering that they were not very relevant (they did not contain a significant

amount of IEDs), they were removed. Even so, there were memory problems still, and some

experiments were conducted.

For these experiments, we used a successively higher number of EEGs to generate the self-

labelled dataset, from 10 up to 165 EEGs (total number of available EEGs). At each iteration,

we would generate the self-labelled dataset for the RP task with the EEGs available at that point,

split them into training/validation/test sets and run the siamese model for 5 epochs to assess 1) if

it would run at all 2) how much time it would take per epoch, on average. The results of these

experiments is summarized in Table A.1. The meaning of each table column is the following:

Number of EEGs used Number of EEG files used to generate the pairs;

Number of training pairs Number of resulting training pairs;

Number of validation pairs Number of resulting validation pairs;

Seconds per epoch Average duration of an epoch;

Epochs Total amount of epochs that the network trained for;

Batch size Batch size used in the training/validation cycle;

Execution time Total execution time in minutes;

Data preparation time Amount of time (in minutes) it took to prepare the pairs (load the array

files, split them into training/validation/test and concatenate them);

Ran without problems? Whether the script completed without throwing memory errors.

41

42 Memory Experiments

N
o.

of
E

E
G

su
se

d
N

o.
of

tr
ai

n.
pa

ir
s

N
o.

of
va

l.
pa

ir
s

Se
co

nd
sp

er
ep

oc
h

E
po

ch
s

B
at

ch
si

ze
E

xe
cu

tio
n

tim
e

D
at

a
pr

ep
tim

e
R

an
w

/o
pr

ob
le

m
s?

10
13

40
1

4
83

2
23

10
32

4.
1

0.
27

Y
es

20
28

69
2

9
09

3
50

10
32

8.
87

0.
54

Y
es

30
58

09
4

14
65

7
10

0
10

32
17

.4
8

0.
81

Y
es

40
74

57
2

29
05

0
13

1
5

32
11

.9
7

1.
05

Y
es

50
10

5
02

1
28

36
3

18
1

5
32

15
.6

5
0.

57
Y

es
60

10
6

73
8

47
14

4
18

9
5

32
17

.1
3

1.
38

Y
es

70
14

0
61

2
41

29
3

24
3

5
32

22
.2

5
2.

00
Y

es
80

14
6

04
3

60
27

1
25

8
5

32
24

.3
5

2.
85

Y
es

90
28

2
14

6
66

59
4

48
5

5
32

47
.9

6
7.

55
Y

es
10

0
21

3
21

3
24

0
72

3
60

0
5

32
59

.4
8

9.
48

Y
es

11
0

37
8

61
0

75
01

1
81

1
5

32
78

.0
9

10
.5

0
Y

es
12

0
-

-
-

-
32

-
-

N
o

A
ft

er
de

le
tin

g
th

e
3

la
rg

e
E

E
G

s
12

0
28

8
05

3
69

61
7

49
6

5
32

49
.3

6
7.

78
Y

es
13

0
27

4
91

9
12

4
59

6
50

0
5

32
50

.8
3

8.
76

Y
es

14
0

31
0

82
9

10
2

25
6

56
1

5
32

55
.9

1
8.

93
Y

es
15

0
-

-
-

-
32

-
-

N
o

15
0

34
5

77
8

11
4

47
6

1
29

1
5

16
11

8.
34

10
.4

4
Y

es
15

5
35

1
68

0
13

2
87

0
1

51
5

5
16

13
7.

95
11

.3
8

Y
es

16
0

38
5

14
5

10
3

14
7

-
1

16
-

11
.8

8
N

o
16

5
34

7
85

4
11

3
37

6
-

-
10

-
11

.5
2

N
o

16
5

34
7

85
4

11
3

37
6

3
10

8
1

5
63

.5
6

11
.5

3
Y

es

Table A.1: Summary of the experiments made assessing memory issues.

Appendix B

Supplementary Tables of Chapter 3 -
Methods

Percentage # of training samples # of validation samples Total
100% 14 870 7 330 22 200
90% 13 383 6 597 19 980
80% 11 896 5 864 17 760
70% 10 409 5 131 15 540
60% 8 922 4 398 13 320
50% 7 435 3 665 11 100
40% 5 948 2 932 8 880
30% 4 461 2 199 6 660
20% 2 974 1 466 4 440
10% 1 487 733 2 220
9% 1 338 660 1 998
8% 1 190 586 1 776
7% 1 041 513 1 554
6% 892 440 1 332
5% 744 367 1 110
4% 595 293 888
3% 446 220 666
2% 297 147 444
1% 149 73 222

Table B.1: Number of training/validation samples obtained by varying the percentage of available
data used.

43

44 Supplementary Tables of Chapter 3 - Methods

Percentage # of positive samples (training) # of positive samples (validation) Total
100% 1 487 733 2 220
90% 1 338 660 1 998
80% 1 190 586 1 776
70% 1 041 513 1 554
60% 892 440 1 332
50% 744 367 1 110
40% 595 293 888
30% 446 220 666
20% 297 147 444
10% 149 73 222
9% 134 66 200
8% 119 59 178
7% 104 51 155
6% 89 44 133
5% 74 37 111
4% 59 29 89
3% 45 22 67
2% 30 15 44
1% 15 7 22

Table B.2: Number of positive samples in training/validation obtained by varying the percentage
of available positive samples used.

Appendix C

Supplementary Tables of Chapter 4 -
Results

Percentage of
available
data used

Training Validation Test

100% 1.00 0.99 0.96
90% 1.00 0.99 0.96
80% 1.00 0.98 0.94
70% 1.00 0.98 0.95
60% 1.00 0.98 0.94
50% 1.00 0.98 0.93
40% 1.00 0.99 0.93
30% 1.00 0.97 0.88
20% 1.00 0.96 0.87
10% 1.00 0.95 0.91
9% 1.00 0.95 0.82
8% 1.00 0.99 0.84
7% 1.00 0.97 0.81
6% 1.00 0.95 0.80
5% 1.00 0.95 0.78
4% 1.00 0.96 0.82
3% 1.00 0.95 0.80
2% 1.00 0.80 0.67
1% 1.00 0.87 0.69

Table C.1: AUC of the BL-RW on the training, validation and test sets for experiment 1. Note that
the values from 1 to 10% are average values.

45

46 Supplementary Tables of Chapter 4 - Results

Percentage of
available
data used

Training Validation Test

100% 1.00 0.97 0.92
90% 1.00 0.96 0.92
80% 1.00 0.97 0.91
70% 1.00 0.96 0.91
60% 1.00 0.95 0.90
50% 1.00 0.96 0.91
40% 1.00 0.96 0.88
30% 1.00 0.93 0.77
20% 1.00 0.92 0.75
10% 0.98 0.90 0.81
9% 0.98 0.93 0.80
8% 0.97 0.89 0.74
7% 0.96 0.85 0.71
6% 0.96 0.81 0.66
5% 0.95 0.78 0.63
4% 0.93 0.75 0.54
3% 0.94 0.64 0.56
2% 0.94 0.63 0.54
1% 0.96 0.56 0.52

Table C.2: AUC of the BL-RP on the training, validation and test sets for experiment 1. Note that
the values from 1 to 10% are average values.

Supplementary Tables of Chapter 4 - Results 47

Percentage of
available
data used

Training Validation Test

100% 1.00 0.98 0.97
90% 1.00 0.98 0.97
80% 1.00 0.98 0.97
70% 1.00 0.98 0.96
60% 1.00 0.98 0.95
50% 1.00 0.97 0.94
40% 1.00 0.98 0.93
30% 1.00 0.97 0.89
20% 1.00 0.93 0.84
10% 1.00 0.95 0.86
9% 1.00 0.96 0.84
8% 1.00 0.99 0.90
7% 1.00 0.99 0.88
6% 1.00 0.97 0.80
5% 1.00 0.96 0.77
4% 1.00 0.95 0.80
3% 1.00 0.92 0.80
2% 1.00 0.82 0.65
1% 1.00 0.99 0.65

Table C.3: AUC of the BL-CC on the training, validation and test sets for experiment 1. Note that
the values from 1 to 10% are average values.

48 Supplementary Tables of Chapter 4 - Results

Percentage of
positive

samples used
Training Validation Test

100% 1.00 0.99 0.96
90% 1.00 0.98 0.97
80% 1.00 0.98 0.97
70% 1.00 0.98 0.96
60% 1.00 0.98 0.96
50% 1.00 0.97 0.94
40% 1.00 0.97 0.92
30% 1.00 0.97 0.90
20% 1.00 0.99 0.86
10% 1.00 0.97 0.81
9% 1.00 0.97 0.82
8% 1.00 0.95 0.83
7% 1.00 0.94 0.80
6% 1.00 0.93 0.79
5% 1.00 0.92 0.78
4% 0.41 0.41 0.42
3% 1.00 0.91 0.77
2% 0.50 0.50 0.50
1% 0.50 0.50 0.50

Table C.4: AUC of the BL-RW on the training, validation and test sets for experiment 2. Note that
the values from 1 to 10% are average values.

Supplementary Tables of Chapter 4 - Results 49

Percentage of
positive

samples used
Training Validation Test

100% 1.00 0.97 0.92
90% 1.00 0.97 0.92
80% 1.00 0.96 0.92
70% 1.00 0.98 0.92
60% 1.00 0.98 0.92
50% 1.00 0.97 0.93
40% 1.00 0.96 0.91
30% 1.00 0.95 0.90
20% 1.00 0.96 0.87
10% 1.00 0.95 0.84
9% 1.00 0.95 0.85
8% 1.00 0.95 0.84
7% 1.00 0.95 0.83
6% 1.00 0.92 0.82
5% 1.00 0.90 0.82
4% 1.00 0.91 0.81
3% 1.00 0.87 0.80
2% 1.00 0.77 0.69
1% 1.00 0.63 0.63

Table C.5: AUC of the BL-RP on the training, validation and test sets for experiment 2. Note that
the values from 1 to 10% are average values.

50 Supplementary Tables of Chapter 4 - Results

Percentage of
positive

samples used
Training Validation Test

100% 1.00 0.98 0.97
90% 1.00 0.98 0.97
80% 1.00 0.98 0.97
70% 1.00 0.98 0.96
60% 1.00 0.98 0.96
50% 1.00 0.97 0.95
40% 1.00 0.97 0.93
30% 1.00 0.98 0.90
20% 1.00 0.99 0.88
10% 1.00 0.97 0.85
9% 1.00 0.96 0.82
8% 1.00 0.95 0.83
7% 1.00 0.95 0.82
6% 1.00 0.94 0.80
5% 1.00 0.92 0.78
4% 1.00 0.91 0.84
3% 1.00 0.92 0.80
2% 0.44 0.44 0.45
1% 0.44 0.45 0.46

Table C.6: AUC of the BL-CC on the training, validation and test sets for experiment 2. Note that
the values from 1 to 10% are average values.

Supplementary Tables of Chapter 4 - Results 51

Percentage of
positive

samples used
Training Validation Test

100% 1.00 0.95 0.90
90% 1.00 0.95 0.90
80% 1.00 0.97 0.90
70% 1.00 0.98 0.92
60% 1.00 0.98 0.92
50% 1.00 0.96 0.90
40% 1.00 0.94 0.86
30% 1.00 0.90 0.82
20% 1.00 0.91 0.84
10% 1.00 0.90 0.84
9% 1.00 0.88 0.83
8% 1.00 0.93 0.85
7% 1.00 0.93 0.85
6% 1.00 0.91 0.85
5% 1.00 0.89 0.82
4% 1.00 0.84 0.80
3% 1.00 0.69 0.71
2% 1.00 0.73 0.68
1% 1.00 0.59 0.60

Table C.7: AUC of the BL-RP-CC on the training, validation and test sets for experiment 2. Note
that the values from 1 to 10% are average values.

52 Supplementary Tables of Chapter 4 - Results

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Mean SD
BL-RW

10% 0.91 0.91 0.89 0.91 0.90 0.91 0.92 0.91 0.91 0.77 0.91 0.0439
9% 0.84 0.83 0.78 0.76 0.81 0.81 0.82 0.83 0.79 0.84 0.82 0.0268
8% 0.84 0.88 0.83 0.83 0.79 0.82 0.86 0.86 0.88 0.83 0.84 0.0274
7% 0.87 0.82 0.77 0.87 0.83 0.79 0.80 0.80 0.80 0.81 0.81 0.0331
6% 0.79 0.78 0.80 0.71 0.77 0.83 0.87 0.91 0.93 0.78 0.80 0.0684
5% 0.77 0.81 0.79 0.80 0.77 0.75 0.77 0.76 0.79 0.81 0.78 0.0210
4% 0.87 0.80 0.69 0.70 0.91 0.80 0.90 0.94 0.84 0.81 0.82 0.0848
3% 0.89 0.79 0.80 0.78 0.78 0.81 0.79 0.80 0.87 0.81 0.80 0.0390
2% 0.73 0.68 0.66 0.75 0.66 0.76 0.66 0.70 0.67 0.66 0.67 0.0398
1% 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.0016

BL-RP
10% 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.0004
9% 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.0003
8% 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.0002
7% 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.0004
6% 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.0003
5% 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.0002
4% 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.0007
3% 0.56 0.55 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.0001
2% 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.0001
1% 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.0002

BL-CC
10% 0.87 0.84 0.87 0.86 0.86 0.88 0.85 0.85 0.86 0.87 0.86 0.0129
9% 0.84 0.83 0.84 0.84 0.84 0.83 0.84 0.84 0.84 0.84 0.84 0.0053
8% 0.89 0.91 0.91 0.87 0.91 0.87 0.92 0.88 0.91 0.89 0.90 0.0184
7% 0.89 0.89 0.82 0.88 0.83 0.88 0.89 0.89 0.88 0.88 0.88 0.0260
6% 0.85 0.80 0.80 0.84 0.80 0.80 0.81 0.81 0.81 0.80 0.80 0.0168
5% 0.78 0.77 0.78 0.77 0.76 0.78 0.77 0.76 0.78 0.77 0.77 0.0049
4% 0.73 0.83 0.72 0.82 0.83 0.82 0.71 0.85 0.79 0.69 0.80 0.0592
3% 0.80 0.81 0.80 0.81 0.80 0.78 0.79 0.79 0.82 0.80 0.80 0.0099
2% 0.66 0.65 0.65 0.65 0.65 0.65 0.66 0.65 0.67 0.65 0.65 0.0049
1% 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.0003

Table C.8: Performance (AUC) of the 3 models in the test set in experiment 1, with the results of
each run individually shown as well as the resulting averages and standard deviations.

Supplementary Tables of Chapter 4 - Results 53

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Mean SD
BL-RW

10% 0.84 0.81 0.82 0.83 0.81 0.82 0.81 0.82 0.81 0.81 0.81 0.0095
9% 0.82 0.83 0.83 0.80 0.81 0.83 0.83 0.81 0.81 0.78 0.82 0.0179
8% 0.83 0.84 0.84 0.80 0.84 0.80 0.84 0.83 0.83 0.82 0.83 0.0163
7% 0.79 0.80 0.78 0.78 0.80 0.80 0.80 0.82 0.79 0.80 0.80 0.0114
6% 0.80 0.78 0.80 0.78 0.79 0.82 0.79 0.79 0.80 0.75 0.79 0.0177
5% 0.79 0.79 0.77 0.76 0.78 0.79 0.78 0.77 0.78 0.61 0.78 0.0528
4% 0.43 0.43 0.42 0.42 0.40 0.42 0.43 0.42 0.42 0.41 0.42 0.0094
3% 0.78 0.28 0.77 0.77 0.81 0.80 0.79 0.28 0.80 0.59 0.77 0.2140
2% 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.42 0.50 0.0238
1% 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.32 0.50 0.0560

BL-RP
10% 0.84 0.84 0.84 0.85 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.0011
9% 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.0010
8% 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.0010
7% 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.0016
6% 0.83 0.83 0.83 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.0014
5% 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.0008
4% 0.81 0.81 0.81 0.81 0.81 0.82 0.81 0.81 0.81 0.81 0.81 0.0008
3% 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.0023
2% 0.69 0.69 0.70 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.0031
1% 0.63 0.64 0.62 0.63 0.64 0.63 0.63 0.63 0.63 0.63 0.63 0.0051

BL-CC
10% 0.84 0.85 0.84 0.86 0.83 0.85 0.86 0.84 0.86 0.86 0.85 0.0109
9% 0.84 0.85 0.83 0.83 0.82 0.82 0.82 0.81 0.83 0.82 0.82 0.0100
8% 0.82 0.82 0.85 0.83 0.83 0.83 0.82 0.82 0.82 0.85 0.83 0.0121
7% 0.82 0.82 0.82 0.80 0.81 0.82 0.82 0.80 0.80 0.82 0.82 0.0117
6% 0.80 0.79 0.80 0.82 0.78 0.82 0.81 0.80 0.79 0.80 0.80 0.0122
5% 0.78 0.77 0.80 0.79 0.77 0.76 0.78 0.75 0.79 0.79 0.78 0.0162
4% 0.84 0.83 0.83 0.84 0.84 0.86 0.84 0.84 0.84 0.85 0.84 0.0066
3% 0.80 0.81 0.81 0.79 0.80 0.79 0.78 0.82 0.78 0.80 0.80 0.0129
2% 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.0003
1% 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.44 0.46 0.46 0.0035

BL-RP-CC
10% 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.0014
9% 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.0010
8% 0.85 0.85 0.85 0.85 0.85 0.85 0.86 0.85 0.85 0.85 0.85 0.0025
7% 0.85 0.85 0.86 0.85 0.86 0.85 0.86 0.85 0.86 0.85 0.85 0.0013
6% 0.85 0.84 0.85 0.85 0.85 0.84 0.85 0.85 0.85 0.85 0.85 0.0014
5% 0.83 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.0018
4% 0.80 0.80 0.80 0.79 0.80 0.79 0.80 0.80 0.80 0.79 0.80 0.0035
3% 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.72 0.71 0.71 0.71 0.0043
2% 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.0026
1% 0.60 0.60 0.60 0.60 0.60 0.59 0.60 0.59 0.60 0.60 0.60 0.0022

Table C.9: Performance (AUC) of the 4 models in the test set in experiment 2, with the results of
each run individually shown as well as the resulting averages and standard deviations.

54 Supplementary Tables of Chapter 4 - Results

Appendix D

Supplementary Figures of Chapter 4 -
Results

(a) With random, RP and CC initialization. (b) With RP and CC initialization.

(c) With random and RP initialization. (d) With random and CC initialization.

Figure D.1: Mean AUC of the baseline model on the test set, using 1 to 10% of all available data,
including the standard deviation (in grey) for every percentage.

55

56 Supplementary Figures of Chapter 4 - Results

(a) With random, RP, CC and RP + CC initialization. (b) With RP and CC initialization.

(c) With random and RP initialization. (d) With random and CC initialization.

(e) With random and RP + CC initialization. (f) With RP and RP + CC initialization.

Figure D.2: Mean AUC of the baseline model on the test set, from 1 to 10%, including the standard
deviation (in grey) for every percentage.

References

[1] P. Kandula and C. Harden, “Epilepsy,” in Encyclopedia of Neuroscience, pp. 1147–1149,
Elsevier Ltd, jan 2009.

[2] L. Knutsen and M. Williams, “Epilepsy,” in Comprehensive Medicinal Chemistry II, vol. 6,
pp. 279–296, Elsevier, jan 2007.

[3] W. O. Tatum, G. Rubboli, P. W. Kaplan, S. M. Mirsatari, K. Radhakrishnan, D. Gloss, L. O.
Caboclo, F. W. Drislane, M. Koutroumanidis, D. L. Schomer, D. Kastelijn-Nolst Trenite,
M. Cook, and S. Beniczky, “Clinical utility of EEG in diagnosing and monitoring epilepsy
in adults,” in Clinical Neurophysiology, vol. 129, pp. 1056–1082, Elsevier Ireland Ltd, may
2018.

[4] U. R. Acharya, S. Vinitha Sree, G. Swapna, R. J. Martis, and J. S. Suri, “Automated EEG
analysis of epilepsy: A review,” Knowledge-Based Systems, vol. 45, pp. 147–165, jun 2013.

[5] C. D. Binnie and P. F. Prior, “Electroencephalography,” nov 1994.

[6] L. F. Haas, “Hans Berger (1873-1941), Richard Caton (1842-1926), and electroencephalog-
raphy.,” Journal of neurology, neurosurgery, and psychiatry, vol. 74, no. 1, p. 9, 2003.

[7] S. Noachtar and J. Rémi, “The role of EEG in epilepsy: A critical review,” Epilepsy and
Behavior, vol. 15, pp. 22–33, may 2009.

[8] P. Gloor and R. G. Fariello, “Generalized epilepsy: some of its cellular mechanisms differ
from those of focal epilepsy,” Trends in Neurosciences, vol. 11, pp. 63–68, jan 1988.

[9] E. Bagheri, J. Dauwels, B. C. Dean, C. G. Waters, M. B. Westover, and J. J. Halford, “Inter-
ictal epileptiform discharge characteristics underlying expert interrater agreement,” Clinical
Neurophysiology, vol. 128, pp. 1994–2005, oct 2017.

[10] J. Pillai and M. R. Sperling, “Interictal EEG and the Diagnosis of Epilepsy,” Epilepsia,
vol. 47, pp. 14–22, oct 2006.

[11] L. Jing and Y. Tian, “Self-supervised visual feature learning with deep neural networks: A
survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1, 2020.

[12] A. Hyvärinen, H. Sasaki, and R. E. Turner, “Nonlinear ICA using auxiliary variables and
generalized contrastive learning,” in arXiv, pp. 859–868, PMLR, apr 2018.

[13] Y. Roy, H. Banville, I. Albuquerque, A. Gramfort, T. H. Falk, and J. Faubert, “Deep learning-
based electroencephalography analysis: A systematic review,” aug 2019.

57

58 REFERENCES

[14] H. Banville, G. Moffat, I. Albuquerque, D. A. Engemann, A. Hyvarinen, and A. Gram-
fort, “Self-Supervised Representation Learning from Electroencephalography Signals,” in
IEEE International Workshop on Machine Learning for Signal Processing, MLSP, vol. 2019-
October, IEEE Computer Society, oct 2019.

[15] B. Kemp, A. H. Zwinderman, B. Tuk, H. A. Kamphuisen, and J. J. Oberyé, “Analysis of a
sleep-dependent neuronal feedback loop: The slow-wave microcontinuity of the EEG,” IEEE
Transactions on Biomedical Engineering, vol. 47, pp. 1185–1194, sep 2000.

[16] C. O’Reilly, N. Gosselin, J. Carrier, and T. Nielsen, “Montreal Archive of Sleep Studies:
an open-access resource for instrument benchmarking and exploratory research,” Journal of
Sleep Research, vol. 23, pp. 628–635, dec 2014.

[17] L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform Manifold Approximation and Pro-
jection for Dimension Reduction,” arXiv e-prints, p. arXiv:1802.03426, Feb. 2018.

[18] J. Xu, Y. Zheng, Y. Mao, R. Wang, and W. S. Zheng, “Anomaly Detection on Electroen-
cephalography with Self-supervised Learning,” in Proceedings - AISTATS, pp. 363–368,
2020.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–
778, 2016.

[20] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” in 3rd International Conference on Learning Representations, ICLR 2015
- Conference Track Proceedings, International Conference on Learning Representations,
ICLR, sep 2015.

[21] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely Connected Convolu-
tional Networks,” in Proceedings - 30th IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, vol. 2017-Janua, pp. 2261–2269, Institute of Electrical and Elec-
tronics Engineers Inc., aug 2016.

[22] D. Kostas, S. Aroca-Ouellette, and F. Rudzicz, “BENDR: using transformers and a con-
trastive self-supervised learning task to learn from massive amounts of EEG data,” arXiv
e-prints, p. arXiv:2101.12037, Jan. 2021.

[23] A. Baevski, H. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A Framework for Self-
Supervised Learning of Speech Representations,” arXiv e-prints, p. arXiv:2006.11477, June
2020.

[24] “ImageNet.” http://image-net.org/. Accessed: 2021-02-11.

[25] I. Obeid and J. Picone, “The Temple University Hospital EEG Data Corpus,” Frontiers in
Neuroscience, vol. 10, p. 196, 2016.

[26] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E.
Mietus, G. B. Moody, C. K. Peng, and H. E. Stanley, “PhysioBank, PhysioToolkit, and Phy-
sioNet: components of a new research resource for complex physiologic signals.,” Circula-
tion, vol. 101, jun 2000.

http://image-net.org/

REFERENCES 59

[27] M. Tangermann, K.-R. Müller, A. Aertsen, N. Birbaumer, C. Braun, C. Brunner, R. Leeb,
C. Mehring, K. Miller, G. Mueller-Putz, G. Nolte, G. Pfurtscheller, H. Preissl, G. Schalk,
A. Schlögl, C. Vidaurre, S. Waldert, and B. Blankertz, “Review of the BCI Competition IV,”
Frontiers in Neuroscience, vol. 6, p. 55, 2012.

[28] P. Margaux, M. Emmanuel, D. Sébastien, B. Olivier, and M. Jérémie, “Objective and subjec-
tive evaluation of online error correction during P300-based spelling,” Advances in Human-
Computer Interaction, vol. 2012, 2012.

[29] L. Citi, R. Poli, and C. Cinel, “Documenting, modelling and exploiting P300 amplitude
changes due to variable target delays in Donchin{\textquotesingle}s speller,” Journal of
Neural Engineering, vol. 7, no. 5, p. 56006, 2010.

[30] B. Kemp, A. H. Zwinderman, B. Tuk, H. A. C. Kamphuisen, and J. J. L. Oberye, “Analysis
of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the eeg,”
IEEE Transactions on Biomedical Engineering, vol. 47, no. 9, pp. 1185–1194, 2000.

[31] “Home CNPH | Clinical Neurophysiology (CNPH).” https://www.utwente.nl/en/
tnw/cnph/. Accessed: 2021-01-31.

[32] “Universiteit Twente (UT) | Enschede | High Tech Human Touch.” https://www.
utwente.nl/en/. Accessed: 2021-01-31.

[33] C. Lourenço, M. C. Tjepkema-Cloostermans, L. F. Teixeira, and M. J. van Putten, “Deep
Learning for Interictal Epileptiform Discharge Detection from Scalp EEG Recordings,” in
MEDICON 2019, pp. 1984–1997, 2019.

https://www.utwente.nl/en/tnw/cnph/
https://www.utwente.nl/en/tnw/cnph/
https://www.utwente.nl/en/
https://www.utwente.nl/en/

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context and Motivation
	1.2 Objectives
	1.3 Document Structure

	2 State of the Art
	2.1 Background
	2.1.1 Electroencephalography
	2.1.2 Self-Supervised Learning

	2.2 Deep Learning for EEG Analysis
	2.3 Self-Supervised Learning in EEG

	3 Methods
	3.1 EEG Data
	3.2 Downstream Task (IED Detection)
	3.2.1 Baseline

	3.3 Self-Supervised Learning Approach
	3.4 Pretext Tasks
	3.4.1 Relative Positioning
	3.4.2 Channel Correlation

	4 Results
	4.1 Pretext Tasks
	4.2 Downstream Task
	4.2.1 Varying the Amount of Data
	4.2.2 Varying the Number of Positive Samples

	5 Discussion
	5.1 Pretext Tasks
	5.2 Downstream Task
	5.2.1 Varying the Amount of Data
	5.2.2 Varying the Number of Positive Samples
	5.2.3 Summary

	6 Conclusions
	6.1 Future Work

	A Memory Experiments
	B Supplementary Tables of Chapter 3 - Methods
	C Supplementary Tables of Chapter 4 - Results
	D Supplementary Figures of Chapter 4 - Results
	References

