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ABSTRACT 

 

Regular intestinal motility is essential to guarantee complete digestive function. The coordinative 

action and integrity of the smooth muscle layers in the small intestine’s wall are critical for mixing and 

propelling the luminal content. However, some patients present gastrointestinal limitations which may 

negatively influence the normal motility of the intestine, by changing the wall's mechanical properties, 

the muscle's contractile ability, or the motility patterns. As patients with gastrointestinal limitations may 

likely need medical intervention, establishing a comparison concerning the impaired propulsion can help 

to ease the evaluation and treatment of future complications.  

In this thesis, the propulsive capability of the small intestine during a peristaltic wave was examined 

along the distal direction of the tract as the mechanical properties of the wall varied. Likewise, the 

impaired muscle contractile ability of systemic sclerosis patients was compared with the intestinal 

characteristics of normal patients. Furthermore, the influence of the sores resultant from ulcers was also 

analyzed.  

To this matter, a coordinated activation signal, quantified in the Martins constitutive model 

(Martins et al. 1998), triggers the peristaltic contractions. The model decouples the strain energy 

function into an isotropic contribution of the ground-matrix and an active and passive contribution of 

the fiber-reinforcement. The passive constitutive model parameters were obtained from uniaxial tensile 

tests in the porcine small intestine along both longitudinal and circumferential directions. The contractile 

peristaltic wave was defined based on a space and time-dependent variable (activation) written in a 

USDFLD subroutine, which was linked to a user-defined UMAT for describing the Martins model. 

A biomechanical simulation of the chyme’s propulsion in the small intestine under a peristaltic 

contraction was defined in the software ABAQUS. Based on biologically inspired constitutive 

assumptions, the simulations show decreased force generated by the peristaltic contraction in systemic 

sclerosis and ulcer patients.  
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RESUMO 

 

Uma motilidade intestinal regular é essencial para garantir a completa função digestiva. A ação 

coordenada e a integridade das camadas de músculo liso no intestino são fundamentais para misturar e 

impulsionar os conteúdos intraluminais. No entanto, alguns pacientes apresentam limitações no sistema 

gastrointestinal que podem influenciar negativamente a motilidade normal do intestino, através de uma 

mudança nas propriedades mecânicas da parede, na capacidade contráctil do músculo liso ou nos 

padrões de motilidade. Como pacientes com limitações gastrointestinais geralmente necessitam de 

intervenção médica, estabelecer uma comparação relativa à alteração na propulsão pode facilitar a 

avaliação e tratamento de futuras complicações. 

Nesta dissertação, a capacidade de propulsão do intestino delgado durante uma onda peristáltica foi 

examinada ao longo da direção distal do intestino uma vez que as propriedades mecânicas da parede 

variam nesta direção. Do mesmo modo, a capacidade contráctil muscular reduzida em pacientes com 

esclerose múltipla foi comparada com a de intestino de um paciente normal. Além disso, a influência 

das feridas resultantes de úlceras foi analisada. 

Para este efeito, um sinal de ativação, definido no modelo constitutivo Martins (Martins et al. 1998), 

desencadeia a contração peristáltica. Este modelo dissocia a energia de deformação numa contribuição 

isotrópica da matriz e na contribuição ativa e passiva do reforço por fibras. Os parâmetros constitutivos 

que descrevem o comportamento passivo foram obtidos de ensaios de tração no intestino delgado de um 

porco segundo a direção longitudinal e circunferencial. A onda peristáltica foi definida tendo por base 

uma variável dependente do espaço e do tempo (ativação) numa sub-rotina USDFLD ligada a uma sub-

rotina UMAT que descreve o modelo Martins.  

A simulação biomecânica da propulsão do quimo no intestino delgado durante uma contração 

peristáltica foi definida no software ABAQUS. Com base em pressupostos inspirados na biologia dos 

tecidos, as simulações demonstraram uma diminuição da força gerada pela contração peristáltica em 

pacientes com esclerose múltipla e úlceras. 
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LO
M Rest length of the muscle 

λM Muscle stretch 

α Activation level 

AO Physiological cross-sectional area of the muscle 



xxi 

TSE Stress developed by the series element 

TPE Stress developed by the passive element 

TO
M Muscle peak stress 

Ψmat Isotropic matrix contribution to the strain energy function 

Ψfib Fiber-reinforcement contribution of the strain energy function 

ΨPE Passive behavior of the fiber-reinforcement contribution to the strain energy function 

ΨCE Active behavior of the fiber-reinforcement contribution to the strain energy function 

λf Stretch ratio of the muscle fibers 

D1 Penalty parameter to ensure incompressibility 

c, b Parameters of the matrix for the Martins constitutive model 

A, a Parameters of the fibers for the Martins constitutive model 

t0 Initial thickness 

w0 Initial width  

l0 Initial length between clamps 

l Final length between clamps 

∆y Displacement of the upper crosshead 

RMSE Root mean-squared error 

ζ Damping factor 

𝐌∗ Artificial mass matrix 

𝒗 Vector of the nodal velocities 

C10 Parameter for the Neo-Hooke constitutive model 
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CHAPTER 1   

1. INTRODUCTION 

 

1.1 Background and Motivation 

Biomechanics is the field of Mechanical Engineering applied to the study of living organisms and 

their complex biological phenomena, ranging from the cellular level to the tissue level – hard (bone) or 

soft (skin, muscle, cartilage) tissues. The engineering principles help to make the mechanical behavior 

of living organisms clearer, through the study of the motion and mechanical responses to forces and 

displacements, the study of biological fluids and its flow pattens and even through the study of the 

physiological behavior of the living tissues, useful for the development of Tissue Engineering. Within 

the subfields of Biomechanics, this work is mainly focused on the Computational, Continuum and 

Experimental Biomechanics. 

Computational Biomechanics applies the computational tools of Mechanical Engineering to the 

study of biological systems. The Finite Element Method is a powerful numerical method in the analysis 

of biological systems as it allows simulating the complex geometries of biological structures and the 

stresses and strains resultant from both a normal or altered behavior (derived from injuries or 

pathologies), or even from the interaction with medical devices during surgical or examination 

procedures. With the usage of Computational Biomechanics, the outcomes of new surgical techniques 

or medical devices can be predicted and the ethical constrains resulting from in vivo and ex vivo 

preparations can be avoided, allowing the progressive evolution of the medical procedures. 

Continuum Biomechanics is the field of Biomechanics responsible for analyzing the biomaterials 

and fluids under the Continuum Mechanics Theory. The mechanical properties of materials are 

expressed by constitutive equations. Unlike many engineering materials, which can be described by the 

linear elasticity theory, the biological soft tissues present a complex behavior featured by nonlinearities, 

anisotropy, incompressibility, and viscoelasticity. Therefore, though some constitutive models are 

already used to describe the behavior of soft tissues, like the isotropic Mooney-Rivlin and Neo-Hooke 

material models or the anisotropic Martins and Holzapfel-Gasser-Ogden material models, these are still 

underdeveloped, as other mechanical features of the biological tissues should be considered.  
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Experimental Biomechanics results from the application of experimental procedures to the 

biological structures. In fact, by performing simple uniaxial, biaxial and shear mechanical tests to the 

biological tissues, the stress-strain curves can be plotted and the parameters for each of the constitutive 

models can be predicted. Continuum and Experimental Mechanics allow the accomplishment of more 

realistic results from the simulations performed within the finite element simulations. 

The simulations performed for a biological system can be performed using the finite element 

software ABAQUS. Although it is possible to define a wide range of materials, the ABAQUS database 

of materials is not packed with all constitutive models for biological tissues. However, it has the ability 

of being tailored, and the constitutive equations can be integrated into a user defined UMAT subroutine, 

written using the FORTRAN language. 

Applied to Gastroenterology, the experimental, numerical, or analytical methods of Biomechanics 

aids in understanding the smooth muscle activity, the transport of the luminal contents, the tissue growth, 

the behavior of the intestine under disease and its interaction with the equipment used in medical 

interventions.  

In this thesis, the goal was to model the propulsive behavior of the small intestine under a peristaltic 

contraction and to compare the results of normal individuals with the results of patients with 

gastrointestinal limitations, like ulcers or systemic sclerosis. To define the mechanical properties of the 

small intestine, an UMAT, developed by Ferreira et al. (2017) to describe the Martins model, was used 

with the constitutive parameters fitted from the experimental stress-strain curves of the uniaxial tests 

performed. The peristaltic contraction was established by a space and time-dependent variable in a 

USDFLD subroutine. 

 

1.2 Milestones 

The development of the present work was supported by the following set of objectives: 

• Understand the small intestine’s and its wall constituents’ anatomy, mechanical properties 

and motility; 

• Investigate some gastrointestinal limitations, their associated complications and methods 

of inspection and treatment; 

• Analyze the Martins constitutive model and its suitability in describing the mechanical 

behavior of the small intestine’s wall; 

• Obtain the fitted constitutive parameter for the Martins model, using the stress-stretch 

curves acquired though the uniaxial tensile tests performed on the porcine small intestine; 

• Validate an existing UMAT subroutine for the Martins model and introduce an USDFLD 

subroutine for defining the fiber’s activation level; 



Mariana Carvalho INTRODUCTION 

3 

• Define a biomechanical model for the chyme propulsion during a peristaltic contraction in 

the small intestine and test the propulsive capacity in patients with gastrointestinal 

limitations. 

 

1.3 Thesis Organization 

The Chapter 2 introduces an anatomic description of the small intestine wall, as well as a narrative 

on the activation process in the smooth muscle cells. Moreover, some gastrointestinal disorders are 

presented (systemic sclerosis and peptic ulcer disease) alongside the techniques used for their anatomic 

inspection and for the treatment of the possible complications they might cause. 

In the Chapter 3, the mechanical characteristics and the motility patterns of the small intestine are 

introduced in addition to a description of peristalsis. 

The Chapter 4 offers an overview on the Continuum Mechanics and the Finite Element Method 

theories. This departs from a description of the kinematics, stress and balance principles, followed by 

the presentation of the constitutive equations for describing isotropic and transversely isotropic 

hyperelasticity. Only after all this is the Finite Element Method presented. 

Chapter 5 focus on presenting the Martins constitutive model and validating the UMAT for the 

passive and active isometric behavior. 

In the Chapter 6, the experimental procedure and results for the uniaxial tests on the porcine small 

intestine are presented. A statistical analysis is performed to compare mechanical properties over the 

small intestine’s length and direction. Then, a fitting procedure is implemented to obtain the constitutive 

parameters for the duodenum and ileum. 

In the Chapter 7, a biomechanical model of the small intestine chyme propulsion is developed. 

Several tests are performed to evaluate the influence of the mechanical properties and boundary 

conditions in the muscular contraction, as well as to validate the USDFLD used for defining the 

activation variable. In the end, a comparison of the propulsive capability was established between the 

small intestine sections, between different stiffnesses of the chyme and also between normal individuals 

and patients suffering from gastrointestinal limitations.CHAPTER 3 

Finally, the Chapter 8 presents the concluding remarks and some suggestions for future 

improvements in the work developed. 
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CHAPTER 2   

2. ANATOMY OF THE SMALL INTESTINE 

 

The small intestine is the portion of the gastrointestinal tract that extends from the end of the 

stomach (pyloric region) to the beginning of the large intestine (ileocecal valve). A major part of the 

digestion and water and nutrients absorption occurs at this visceral organ, which is commonly divided 

into 3 segments (duodenum, jejunum and ileum) based on their different functions during the digestive 

process (Seeley et al. 2007) – Figure 2.1. 

 

 

Figure 2.1. Portion of the gastrointestinal tract covering the stomach, small (divided into the duodenum, jejunum 

and ileum) and large intestines [inspired in (Feldman et al. 2010)]. 

 

Besides the distinct performed functions, these segments also differ in their geometric and anatomic 

structures and mechanical properties. The duodenum is the only portion fixed in a position. The 

remaining are suspended by the mesentery (organ attaching the small intestine to the posterior abdominal 

wall), which allows the intestinal movements during its contractions while preventing large 

deformations and twists (Gregersen 2003).  
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2.1 Anatomy of the Small Intestine’s Wall 

The wall of the gastrointestinal tract has a multilayered structure, like a laminate composite, as it is 

made of several layers with different properties. Considering the direction towards the tube’s interior, 

four main layers can be defined: serosa, muscularis propria, submucosa and mucosa (Seeley et al. 2007) 

– Figure 2.2.  

 

 

Figure 2.2. Laminate structure of the small intestine wall and alignment of the muscle fibers in the muscularis 

propria and of the collagen fibers in the submucosa [inspired in (Ciarletta et al. 2009)]. 

 

The serosa is a layer of adherent epithelial cells (peritoneum) that surround the intra-abdominal 

organs. These cells segregate a fluid which forms a thin film over the intra-abdominal organs, reducing 

the friction between them. The muscularis propria (the main muscle layer) is also covered by the 

epithelial cells of the serosa (Gregersen 2003). 

The muscularis propria is composed of two layers, separated by the myenteric plexus, which differ 

in the orientation of their smooth muscle cells and are the basis for the small intestine’s motility. The 

outer one, with its cells oriented along the revolution axis of the tube (longitudinal layer), and the inner 

one, with its cells oriented in the circumferential direction (circular layer) (Gregersen 2003). The cells 

of Cajal (pacemaker cells which generate the slow wave activity) establish the communication between 

gastrointestinal muscle cells and the nervous system and serve as mechanoreceptors to the muscle stretch 

– transducing extracellular mechanical stimulus to intracellular signal. These are located in-between and 

within the circular and longitudinal muscle layers (Al-Shboul 2013). 

The submucosa, the region that separates the main muscle and mucosa, has a massive percentage 

of collagen and water. The stressed collagen fibers in the submucosa have a ±30° orientation from the 

longitudinal direction (Gregersen 2003).  

The mucosa is composed by the muscularis mucosa, whose muscle cells are oriented along their 

own axis, having no specified direction; by the lamina propria (composed by fibers of collagen and 
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elastin, scattered small cells and nerve fiber), which is responsible for the attachment of the epithelium 

to the muscularis mucosa; and, finally, by the gastrointestinal epithelium, which corresponds to the inner 

surface of the gastrointestinal tract (Gregersen 2003). The epithelial cells, which release secretions to 

protect the mucosa and lubricate the luminal content (Seeley et al. 2007), are arranged into villi (finger-

like projections) and crypts (folds) (Koeppen and Stanton 2018). This anatomic configuration increases 

the contact area with the chyme and delays the intestinal transit (Avvari 2019).  

The histology of the small intestine’s wall under a longitudinal and transverse cut in presented in 

the Figure 2.3. 

 

(a) 

 

(b) 

 

Figure 2.3. Histology of the duodenum wall in a longitudinal cut with identification of the mucosa (M), submucosa 

(SM), circular (CM) and longitudinal (LM) muscle layers (a) (Calvo 2020a) and in a transverse cut where the 

folded configuration of the small intestine mucosa can be identified (b) (Calvo 2020b). 
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2.2 Smooth Muscle 

In the gastrointestinal tract, the smooth muscle is considered unitary as it is arranged in bundles of 

about 1000 fibers which contract together (Guyton and Hall 2006). In this visceral organ, each smooth 

muscle fiber has a diameter of 2 to 10 µm and a length of 200 to 500 µm. These bundles are separated 

by connective tissue (Guyton and Hall 2006). The smooth muscle cells are composed of actin and 

myosin filaments like the skeletal muscle, but these are not arranged in a striated configuration (Guyton 

and Hall 2006).  

The activation process, caused by nervous signals, hormonal stimulations, fiber stretch, etc., is 

characterized by an increase in the intracellular calcium ions. These trigger the myosin filament, 

promoting the development of attractive forces between myosin and actin filaments and, consequently, 

the muscle contraction (Guyton and Hall 2006). This process is slower (2% per unit length per second 

(Lentle and Loubens 2015)) than the process within the skeletal muscle due to a slower attachment and 

detachment of the myosin cross-bridges to the actin filament. The smooth muscle contracts 50 to 100 

milliseconds after being excited (lag phase). In about 0.5 seconds, it reaches full contraction (contraction 

phase), which is followed by a relaxation process which may last from 1 to 2 seconds (relaxation phase). 

Even though this is a typical behavior of the smooth muscle contraction, depending on the type of 

smooth muscle the total time may vary between 0.2 and 30 seconds. The maximum contractile force can 

reach 4 to 6 kg/cm2 of cross-sectional area (Guyton and Hall 2006). 

 

Figure 2.4. Time variation of the contractile force during the lag, contraction and relaxation phases of the smooth 

muscle activation [inspired in (Koeppen and Stanton 2018)]. 

 

The smooth muscle can sustain phasic and tonic contractions. Phasic contractions refer to 

coordinated contractions of short duration with neural (initiated by the nerve cell) or myogenic (initiated 

by the smooth muscle cell) stimulation. In the small intestine, peristalsis and segmentation are examples 

of phasic contractions. Tonic contractions refer to sustained contractions of the muscle fibers that 

generate tone (continuous muscle tension) (Lentle and Loubens 2015).  
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2.3 Gastrointestinal Diseases 

Regular intestinal motility is essential to guarantee the complete digestive function. The smooth 

muscle layers' coordinative action and integrity are critical for mixing and propelling the luminal 

content. However, some patients present gastrointestinal limitations which may negatively influence the 

normal motility of the intestine, either by changing the wall's mechanical properties or anatomy, the 

muscle's contractile ability, or the motility patterns (Ghoshal 2019). Furthermore, these limitations can 

lead to severe complications – some of them of a life-threatening level whose treatment usually requires 

medical interventions (Feldman et al. 2010).  

The scope of diseases affecting the small intestine is large, as well as the associated symptoms and 

impacts on the quality of the patients’ life. In a study conducted in 33 countries spread out over six 

continents (Sperber et al. 2021), it was found that 40% of the inquired had a functional gastrointestinal 

disorder (FGID). The FGIDs are disorders affecting the brain-gut connection, which result in movement 

impairment, hypersensitivity, and altered microbiota. Even though no structural abnormalities can be 

identified, its symptoms affect the quality of life (Sperber et al. 2021). 

Some of the diseases that affect the small intestine are celiac disease, cancer, Crohn’s disease, 

systemic sclerosis and peptic ulcer disease (Feldman et al. 2010). In this subchapter, the systemic 

sclerosis and peptic ulcer disease are analyzed 

 

2.3.1 Systemic Sclerosis 

Systemic sclerosis (SS) is an autoimmune disease, which affects the connective tissue, causing 

inflammation, progressive degenerative changes, and an increase in the percentage of collagen produced 

and deposited (fibrosis) in the skin, joints and internal organs, such as the gastrointestinal tract, lungs, 

and kidneys (Gao et al. 2009).  

Symptoms arising from SS in the gastrointestinal tract can be found in over 90% of the patients, 

while the percentage of severe cases associated with a high mortality rate is about 8% (McFarlane et al. 

2018). As a constituent organ of the gastrointestinal tract, the small intestine might be one of the target 

organs of this chronic disease, being asymptomatic in approximately 65% of the patients (McFarlane et 

al. 2018). This is the second most affected organ of the gastrointestinal tract, surpassed only by the 

esophagus. Although SS is a rare disease, with a prevalence of 7.2-33.9 per 100000 individuals in 

Europe, it decreases deeply the live expectancy of the patients (ten-year survival at 65-76% of patients) 

(Bergamasco et al. 2019). In fact, the involvement of the gastrointestinal tract in this disease has 

correlated with a decrease in the survival rate (nine-year survival in 15% of patients), mainly due to 

problems associated with malabsorption (McFarlane et al. 2018). 

In the small intestine, this disease is expressed by intestinal dilatation, muscle atrophy, fibrosis and 

dysmotility. Dysmotility (associated with slower intestinal transit) is present both as a neuropathic 

(nerves) atrophy, with absent, abnormal or uncoordinated motility patterns, and myopathic (muscle) 
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atrophy, with reduced contraction amplitudes (Feldman et al. 2010). Even though dysmotility itself does 

not present symptoms, it might lead to inertia which favors the overgrowth of bacteria in the small 

intestine. As a direct consequence, symptoms like nausea, vomiting, diarrhea, bloating, and 

malabsorption can arise (Shreiner et al. 2016). 

To explore the repercussions of the disease in the mechanical properties of the duodenum, Pedersen 

et al. (2003) have conducted an in vivo experiment of balloon distension both in individuals with 

systemic sclerosis and in healthy individuals to access the differences. From this study, it was found that 

the duodenal walls of SS patients presented dilatation and higher stiffness (probably due to the collagen 

deposition with a higher elastic modulus than the smooth muscle). Moreover, it was noticed that the 

maximum of the active tension-strain curves in patients with SS occurred at both lower tension and 

strain. This is an indicator of the muscular atrophy and the fibrosis, which are evidenced through the 

fact that the muscle is not able to generate the same force as it is in a healthy individual. 

 

2.3.2 Peptic Ulcer Disease 

A peptic ulcer is a sore developed in the lower esophagus, stomach or upper small intestine mucosa 

due to a disparity between the quantity of pepsin (digestive enzyme) and gastric acid secreted by the 

gastric mucosa, and its neutralization by the alkaline pancreatic juice in the duodenum (Guyton and Hall 

2006).  

The origin of peptic ulcers is largely associated with a bacterial infection caused by the bacteria 

Helicobacter pylori (7 to 33% of prevalence in the USA and European countries between 2009 and 2011 

(Wang and Peura 2011)), whose released digestive enzymes destroy the mucosa. It is also linked to the 

use of nonsteroidal anti-inflammatory drugs (NSAIDs), which deregulate the mucosa defense 

mechanisms against acid and pepsin (Feldman et al. 2010). Even though these are the main initiators of 

peptic ulcers, there are many other factors which can be its facilitators, like stress, smoking and alcohol 

(Guyton and Hall 2006).  

Peptic ulcers can be single or multiple and are diagnosed in endoscopies by mucosal breaks of 

diameters of 5 mm or higher. Below this minimum diameter, the sores are called erosions (Feldman et 

al. 2010). In fact, the best way to prevent the peptic ulcer disease and its evolution is through a regular 

monitorization of the area, resorting to steady endoscopic checkups in response to the appearance of the 

first symptoms. A common mistake is to use antacids as a way to prevent NSAIDs ulcers as these only 

relieve the symptoms and enable a silent evolution of the disease (Feldman et al. 2010). 

In an initial stage, the symptoms include epigastric pain (associated with hunger), bloated sensation, 

fullness, and heartburn. However, as the ulcer develops itself, other common complications can arise, 

such as bleeding, perforation or obstruction (Malfertheiner et al. 2009).  

This disease achieved its peak of incidence and mortality rate during the 19th century, being largely 

associated then with the H. pylori infections. With the improvement of sanitary conditions, food and 

water supply (Feldman et al. 2010) and the development of an efficient treatment with antibiotics 
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(Guyton and Hall 2006), the amount of infections by this bacteria has decreased, as well as the incidence 

of peptic ulcers (Feldman et al. 2010) (which is about 0.03% to 0.17% regarding hospitals’ diagnostics, 

according to a literature review between 1997 and 2007 (Sung et al. 2009)). Moreover, the complications 

associated with the disease have also been reported to be dropping (Laine et al. 2012). Nevertheless, 

nowadays, peptic ulcer disease remains a real concern, due to a steady increase in the H. pylori resistance 

to antibiotics, which limits its eradication (Almeida et al. 2014). Besides this, the NSAIDs, like 

ibuprofen and aspirins, are also a rising concern as they are frequently used on a regular basis without 

medical prescription for relieving pain. In fact, a study conducted in Portugal in 2016 indicated that the 

prevalence of NSAIDs was of 57,6% and the rate of self-medication with this type of medicine was 

about 64.2% (Monteiro et al. 2017). 

 

2.4 Anatomic Inspection and Treatment 

Several techniques and surgical procedures are implemented to inspect the small intestine mucosa 

or treat the complications encountered along the tract.  

Enteroscopy is a procedure were an endoscope passes through the gastrointestinal tract. In a 

standard upper enteroscopy, the endoscope field of action is limited to the second portion of the 

duodenum, whereas in a colonoscopy only a few centimeters of the terminal part of the small intestine 

(ileum) can be accessed (Feldman et al. 2010).  

Other techniques can be used to access the entire length of the small intestine, like the double-

balloon enteroscopy (DBE). This technique, introduced in 2001, consists of an endoscope equipped with 

two balloons, which, once inflated, attach themselves to the small intestine’s wall, allowing a controlled 

maneuver of the endoscope (Feldman et al. 2010). 

The techniques previously described allow both the inspection of the tube, as the endoscope has a 

source of light and video camera incorporated, and also the performance of some medical procedures: 

collection of tissue fragments for subsequent analysis (biopsy) and treatment of some complications, 

such as bleeding, polyps removal and obstructions (Feldman et al. 2010). 

Another methodology is to use video capsule endoscopy (VCE). VCE is a noninvasive technique 

used to inspect the entire length of the small intestine mucosa for bleeding but it can equally be used to 

diagnose Crohn or celiac disease (Feldman et al. 2010). It consists in the ingestion of a capsule of the 

size of a pill with a LED light, a camera, a battery and a transmitter (Bellini et al. 2017). As the capsule 

moves forward through the gastrointestinal tract, aided by the natural contractions of the smooth muscle 

layers, the camera captures images in a rate of 2 frames-per-second (Fernandez-Urien et al. 2014). As 

the peristaltic movement controls the capsule's motion, the camera's direction is uncontrollable, and 

some areas might remain inaccessible to the inspection (Ciarletta et al. 2009).
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CHAPTER 3   

3. MECHANICAL RESPONSE OF THE SMALL INTESTINE 

 

3.1 Mechanical Characteristics of the Small Intestine’s Tissue 

The small intestine is a roughly cylindrical structure with high heterogeneity along the wall’s radial 

direction as it is composed by several distinct layers formerly described in the Section 2.1 (Ciarletta et 

al. 2009). Because of the multilayered wall, the small intestine presents an anisotropic behavior, 

described by a directional variation of the mechanical properties. The cross-ply arrangement of the 

collagen fibers in the submucosa and the orientation of the smooth muscle fibers in the muscularis 

propria have major contributions for the tissue’s anisotropy (Ciarletta et al. 2009).  

Soft tissues are known for enduring large deformations, within the physiological range (Holzapfel 

et al. 2000), with a very low level of compressibility (Gregersen 2003). The incompressibility 

assumption for the small intestine (Ciarletta et al. 2009) (Bellini et al. 2017) is highly motivated by the 

high percentage of water in the soft tissue’s composition (Gilchrist et al. 2014).  

Biological tissues have a nonlinear passive response (Martins et al. 1998), which leads to a stiffer 

mechanical response with an increase in their deformation level (Ciarletta et al. 2009), related to the 

recruitment of the wavy collagen fibers (Holzapfel et al. 2000). This property is particularly relevant as 

it helps protecting the small intestine wall against over-distention due to high luminal pressure 

(Gregersen 2003).  

Viscoelasticity is a property than sets stress and strain time-dependent responses. Therefore, the 

stress depends on the quantity and rate of the applied strain (Gregersen 2003). There are three features 

of viscoelasticity: stress relaxation (after the material is suddenly deformed, if the strain remains 

constant, the induced stress decreases over time), creep (after the material is suddenly loaded, if the 

stress remains constant, the material deformation persists) and hysteresis (when subjected to a cyclic 

load, the loading and unloading load-deformation curves are different) (Gregersen 2003). The stress-

relaxation (ability of the tissue to return to the homeostatic state after being deformed) is vital in hollow 

organs as it allows a constant lumen pressure even with volume variations (Guyton and Hall 2006). Even 
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though viscoelasticity is a common property of biological tissues, like the small intestine (Ciarletta et 

al. 2009), it is out of the scope of this work. 

 

3.2 Motility Patterns 

In the small intestine, the smooth muscle produces motility patterns which differ between periods 

of fasting and periods of food ingestion (Koeppen and Stanton 2018).  

The inter-digestive motility pattern is known as migrating motor complex (MMC). It starts right 

after the digestion and the absorption of nutrients are concluded, being the motility pattern present in 

fasting or in-between meals periods (Wood 2004a). The purpose of the MMC is to clean the small 

intestine from undigested food, microorganisms, and dead epithelial cells (Hasler 2004). The MMC is a 

motility cycle with an average time of 80-120 minutes in humans which is divided into 3 phases. Firstly, 

it starts with a quiescent period, without contractile activity, which lasts from 40% to 60% of the total 

duration of the cycle (phase I). Then, it is followed by a period of irregular phasic contractions, which 

takes over 20% to 30% of the time (phase II). Finally, the cycle ends with a set of strong and regular 

contractions which last 5 to 10 minutes (phase III) (Hasler 2004). After phase III, the cycle returns to 

phase I and repeats itself until it is interrupted by the ingestion of food (Wood 2004c).  

The digestive motility pattern or fed motor pattern, occurring in the postprandial period (period 

which follows a meal), is characterized by intermittent phasic contractions of varying amplitude. The 

duration of this period can change according to the content and volume of the consumed meal, being 

extended by a higher fat percentage. This pattern is mainly portrayed by two types of mechanical 

movements: mixing and propulsion over small distances (Hasler 2004).  

The small intestine movement in the MMC and in the fed motor pattern is promoted by phasic 

contractions, with different propagation rates, of the smooth muscle present in the organ’s wall: 

segmentation, pendular activity and peristalsis (Lentle and Loubens 2015).  

Segmentation contractions are responsible for mixing the chyme with the bile, pancreatic secretions 

and intestinal fluid and for enhancing absorption (Seeley et al. 2007), being quite important in the 

postprandial period (Lentle and Loubens 2015). Segmentation results from alternating stationary 

contraction/relaxation of the circular muscle layer (Tobergte and Curtis 2013) – Figure 3.1. The pendular 

activity, occurring both during the MMC and postprandial period, results from non-propulsive 

contractions of the longitudinal smooth muscle layer (Lentle and Loubens 2015). 
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Figure 3.1. Segmentation contractions resultant from the contraction of the circumferential muscle fibers [inspired 

in (Wood 2004b)]. 

 

Peristalsis results from the coordinate contraction/relaxation of the longitudinal and circular muscle 

layers and it is responsible for propelling the chyme throughout the gastrointestinal tract (Seeley et al. 

2007). The distance travelled by the peristaltic wave varies, being smaller in the postprandial period 

(Lentle and Loubens 2015). 

The initiation of the peristalsis occurs after the tube is stretched by the chyme, which induces the 

activation of the smooth muscle (Koeppen and Stanton 2018). In order to facilitate the analysis, the 

portion of the tube enduring a peristaltic contraction can be divided into three segments: a segment 

which does not contract (A), the propulsive segment (B) and the receiving segment (C) (Wood 2004a) 

– Figure 3.2. 

 

 

Figure 3.2. Coordinated action of the circular muscle layer and longitudinal muscle layer during a peristaltic 

contraction, propelling the chyme from the oral (near to the stomach) to the aboral (near to the large intestine) 

direction [inspired in (Wood 2004a)]. 

 

The activation of the circumferential muscle fibers happens from 2 to 3 cm to the left of the chyme 

(oral side) (Guyton and Hall 2006). This creates the propulsive segment (segment B) – a contractile ring 

with an axial length of 1 to 2 cm (Hasler 2004) – which pushes the luminal content 3 to 5 cm until the 

peristaltic wave (travelling at a velocity of 0.5 to 2.0 cm/s) dies out (Guyton and Hall 2006). In ex vivo 

preparations with both ends fixed, the tube’s diameter reduction in the propulsive segment was reported 
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up to 40% of its initial size. However, the amplitude of these contractions increases when the intestine 

is free to shorten. In fact, in vivo, as the length of the intestine is not constrained, full occlusion of the 

lumen may occur (Tobergte and Curtis 2013).  

In the Figure 3.3, the progression of a 60% occlusion circular muscle contraction is drawn for a 

peristaltic wave travelling for 3 cm. Even though they are reported in the literature, the visual parameters 

considered for drawing the Figure 3.3 are merely illustrative – in vivo the shape of the propulsive 

segment may vary between contractions or even within the same contraction (Tobergte and Curtis 2013). 

Therefore, despite being considered with axial symmetry during propagation (Figure 3.3), truly, “the 

occluding segment undergoes progressive lengthening” (Tobergte and Curtis 2013), which means that 

the downward and the upward segments (of the contractile ring) propagate at different rates in the 

longitudinal direction (Schulze-Delrieu 1999). 

 

 

Figure 3.3. Progression of the propulsive segment originated by the contraction of the circumferential muscle 

fibers over 30 mm during a peristaltic contraction. 

 

In the receiving segment (segment C), the longitudinal muscle contracts, shortening the tube in the 

axial direction and enlarging it in the radial direction, facilitating the propulsion of the intraluminal 

content towards this segment (Wood 2004a).  

The coordination between the contraction of the muscle layers during the peristaltic event is rather 

controverse (Tobergte and Curtis 2013). Some authors have reported synchronous contractions (Wood 

and Perkins 1970), while others described them as being out of phase (Kottegoda 1969). In the 

spatiotemporal mapping of an ex vivo opossum’s small intestine, where the circular and longitudinal 
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motility was closely recorded, the variation of diameter and longitudinal strain showed that the lumen’s 

constriction in the propulsive segment occurred synchronously with the radial extension in the receiving 

segment (Lentle et al. 2007).  

 

3.3 Discussion 

In Chapter 2, the anatomic structure of the small intestine's wall and some underlying diseases and 

treatments were evaluated. In this Chapter 3, the mechanical behavior of the small intestine wall and 

respective motility were accessed.  

Thus, an introduction to the physiology of the biological structure (small intestine) was tackled and 

the respective mechanical considerations accomplished. This corresponds to the first stage of a 

biomechanical study. Once the biological features and phenomena are understood, the subsequent 

effects of the diseases, which decrease the life quality and expectancy of the patients, can be studied 

through Mechanical Engineering methods. 

In Gastroenterology, particularly in the case of the small intestine, the application of Biomechanics 

plays a considerable advantage. It contributes to the evolution of Tissue Engineering since the 

engineered tissues can be either validated or rejected by the study of in vivo mechanical properties. 

The means of inspection and treatment described in Section 2.4 are still being developed nowadays 

due to the difficulty in accessing the small intestine. In this context, the VCE is probably the most 

attractive technique to improve because of its non-invasive character. Numerical simulations can help 

the study of the contact between endoscopic capsules and the gastrointestinal wall. Therefore, its scope 

could potentially be applicable to capsule maneuver towards specific areas of the small intestine for a 

more accurate examination (independent of the natural contractions of the organ) or even for tissue 

collection. Here, simulations could help to understate the injury risks of these techniques for patients. 

Patients with gastrointestinal limitations (like celiac disease, cancer, Crohn's disease, SS, and peptic 

ulcer disease) will likely need medical intervention. However, these patients usually present impaired 

contractility, distinct passive mechanical, or even an altered pain sensation. So, understanding the 

propulsion in these patients can simplify the means of accessing and treating possible upcoming 

complications in their condition.  

This work aims to compare the chyme propulsion and force generated in patients with 

gastrointestinal limitations based on the gathered information. This allows a comparison concerning the 

impaired propulsion, which ultimately can affect the correct usage of the referred medical devices. 
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CHAPTER 4  

4. COMPUTATIONAL SOLID MECHANICS 

 

In this chapter, the fundamentals of Continuum Mechanics, constitutive equations for dealing with 

hyperelastic materials and the Finite Element Method are presented.  

The books of Holzapfel (2000), Oliver and Saracibar (2017), Kim (2015), Korelc and Wriggers 

(2016) and Bonet and Wood (2008) are recommended for a detailed formulation of the concepts of 

Continuum Mechanics; for the better understanding of the presented constitutive equations and of more 

complex constitutive models; and for the implementation of the Finite Element Method in large 

deformations. 

 

4.1 Introduction on Continuum Mechanics 

Continuum mechanics is the field of studies whose focus is understanding the material’s response 

under different loading conditions. This theory may be divided into the study of general balance 

principles applied to all bodies and the constitutive equations defined for a particular material, which 

may vary depending on the loading conditions (Lai et al. 1996). 

A continuum body ℬ is a continuous distribution of matter in time and space and is composed of a 

set of particles 𝒫 (𝒫 ∈ ℬ). When referring to a body as continuous, the physical phenomena may be 

simplified as if the body was a macroscopic system. This simplification takes place due to a lack of 

relevance of the underlying microscopic events while macroscopically deforming a body. As so, 

continuum mechanics studies body motion and consequent deformation, and stress generation.  

 

4.2 Kinematics 

Kinematics concerns the study of motion and deformation of a continuum body without considering 

the source of these events. Therefore, the motion of a body along space and time can be defined.  

  



Mariana Carvalho COMPUTATIONAL SOLID MECHANICS 

20 

4.2.1 Configurations of a Continuous Body and Motion 

A body ℬ moving through space occupies a sequence of regions Ω ∈ ℝ3, which represent the 

configurations (deformed state) of this body at a specific time 𝑡 – Figure 4.1. Therefore, the referential 

used for describing the behavior of the body under motion is relevant to consider. 

 

 

Figure 4.1. Motion of a continuum body ℬ from the initial Ω0 to the current Ω configuration [inspired in (Oliver 

and Saracibar 2017)]. 

 

When 𝑡 = 0, the body presents an initial configuration (Ω0), known as the reference (undeformed) 

configuration and the position vector of the generical point 𝑃 is 𝚾 (material coordinates of the point 𝑃). 

This referential offers a material or Lagrangian description of the variation of the kinematic quantities 

to be studied. 

When a motion 𝓧 (change in shape, position or orientation) is induced in the body ℬ, a new region 

Ω is occupied at a certain time 𝑡. This new configuration is called current (deformed) configuration and 

the position vector 𝐱 (spatial coordinates of point 𝑝) at a certain time 𝑡 is given by the Equation (4.1). If 

the current configuration is set as the coordinate system used for describing the kinematic quantities, a 

spatial or Eulerian description is used.  

𝐱 = 𝓧(𝚾, 𝑡) (4.1) 

 

The motion 𝓧 is a vector field that relates the current configuration 𝐱 with the reference 

configuration 𝚾 for each time 𝑡. As 𝓧 might be assumed invertible, the position vector 𝚾 can be written 

as: 

𝚾 = 𝓧−1(𝐱, 𝑡) (4.2) 
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The material 𝐔 and spatial 𝐮 displacement fields, relating the position 𝚾 with the position 𝐱, are 

defined by the Equation (4.3) and (4.4), accordingly. 

𝐔(𝚾, 𝑡) = 𝐱(𝚾, 𝑡) − 𝚾 (4.3) 

𝐮(𝐱, 𝑡) = 𝐱 − 𝚾(𝐱, 𝑡) (4.4) 

 

Looking more carefully into the Equations (4.3) and (4.4), it is possible to deduce that the 

displacement field is equal in both formulations. 

𝐔(𝚾, 𝑡) = 𝐔(𝓧−1(𝐱, 𝑡), 𝑡) = 𝐮(𝐱, 𝑡) (4.5) 

 

4.2.2 Deformation Tensors 

The deformation applied to a body is described by the deformation gradient 𝐅 (primary measure of 

deformation), which is a second order tensor that represents the gradient of the motion 𝓧 – Equation 

(4.6). Thus, this enables the linear transformation of the material tangent vector d𝚾 into the spatial 

tangent vector d𝐱 – Equation (4.7). The determinant of the deformation gradient is known as the 

Jacobian determinant 𝐽 and corresponds to the volume ratio. 

𝐅(𝚾, 𝑡) =
𝜕𝓧(𝚾, 𝑡)

𝜕𝚾
= ∇𝚾𝓧(𝚾, 𝑡) (4.6) 

d𝐱 = 𝐅(𝚾, 𝑡) d𝐗 (4.7) 

 

As 𝐅 and ∇𝚾 are linear, the mapping of the Equation (4.6) is one-to-one, which results in the 

inexistence of singularities in 𝐅 (𝐽 ≠ 0) and in the definition of the inverse deformation gradient 

𝐅−1(𝐱, 𝑡) – Equation (4.8). Furthermore, the body cannot endure self-penetration, which leads to a 

Jacobian determinant restricted by 𝐽 > 0. In a volume-preserving or isochoric deformation, the Jacobian 

determinant is unitary (𝐽 = 1). 

𝐅−1(𝐱, 𝑡)  =
𝜕𝓧−1(𝐱, 𝑡)

𝜕𝐱
= ∇𝐱𝓧

−1(𝐱, 𝑡) (4.8) 

 

The inverse deformation gradient tensor 𝐅−1(𝐱, 𝑡) is also a primary measure of deformation which 

does not represent the description of 𝐅(𝚾, 𝑡) in the spatial coordinates, but instead characterizes the 

displacement’s variation in the neighborhood of a spatial point. 

The deformation gradient 𝐅 and the inverse of the deformation gradient 𝐅−1 may also be expressed 

as a function of the displacement field in the Equations (4.9) and (4.10), where 𝐈 is the second order 

identity tensor.  

𝐅(𝐔, 𝑡) = ∇𝚾𝐔 + 𝐈 (4.9) 

𝐅−1(𝐮, 𝑡) = ∇𝐱 𝐮 − 𝐈 (4.10) 
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If the deformation gradient 𝐅 is independent from the material coordinates 𝚾, the deformation is 

said to be homogeneous – 𝐅(𝚾). In opposition, the deformation is inhomogeneous if dependent both on 

time and on the material coordinates – 𝐅(𝚾, 𝑡). 

Once the deformation gradient and its determinants are defined, the line, surface and volume 

elements (Figure 4.2) in the spatial configuration (dx, ds, dv) can be transformed from the material 

configuration (d , dS, dV). 

d𝐱 = 𝐅 d𝐗 (4.11) 

d𝐬 = 𝐽𝐅−T d𝐒 (4.12) 

dv = 𝐽 dV (4.13) 

 

 

Figure 4.2. Transformation of the line, area and volume elements from the material Ω0 to the spatial Ω 

configuration [inspired in (Korelc and Wriggers 2016)]. 

 

As the deformation gradient is not a symmetric tensor, it is possible to introduce the right 𝐂 and left 

𝐛 Cauchy-Green deformation tensor in the material and spatial coordinates, respectively – Equations 

(4.14) and (4.15). These are symmetric and positive second order tensors which eases the development 

of the constitutive equations.  

𝐂 = 𝐅T𝐅 (4.14) 

𝐛 = 𝐅𝐅T (4.15) 

 

4.2.3 Polar Decomposition 

The polar decomposition refers to a decomposition of the deformation gradient 𝐅 to differentiate 

pure rotations from pure stretches. So, a rotational and a stretching part can be accounted. This 

decomposition is usually performed because the rotational part of the deformation imposed to a body 

does not have any contribution to the strain. 
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Using this terminology, three second order tensors can be defined: the rotation tensor 𝐐, which is 

orthogonal (𝐐T𝐐 = 𝐐𝐐T = 𝐈), and the right 𝐔 and left 𝐕 stretch tensors, which are positive and 

symmetric – Equations (4.16) and (4.17), respectively. 

𝐔 = √𝐅T𝐅 = √𝐂 (4.16) 

𝐕 = √𝐅𝐅T = √𝐁 (4.17) 

 

From the Equations (4.16) and (4.17), it is possible to see that 𝐂 and 𝐛 are deformation measures 

independent on the body’s rotation. 

The deformation gradient can be obtained either by stretching the body first and then rotating it, 

Equation (4.18), or the other way around – Equation (4.19). 

𝐅 = 𝐐𝐔 (4.18) 

𝐅 = 𝐕𝐐 (4.19) 

 

4.2.4 Strain Measures 

A body which undergoes deformation can stretch (the relative distance between the undeformed 

and deformed bodies changes), rotate (the relative distance between the undeformed and deformed 

bodies remains the same) or stretch and rotate at the same time. So, to quantify the relative motion of a 

particle in its neighborhood (related with pure stretches), strain measures can be used. Unlike 

displacements, the strain measures are merely conceptual unmeasurable quantities whose usage may be 

considered within some limits, but usually results only from mathematical convenience. 

The engineering strain tensor 𝛆 is used when infinitesimal deformations occur as the deformed and 

undeformed configurations are the same – Equation (4.20).  

𝛆 =
1

2
(∇𝚾 𝐮 + ∇𝚾 𝐮

T) =
1

2
(∇𝐱 𝐮 + ∇𝐱 𝐮

T) (4.20) 

 

When a body undergoes large deformations, the deformed configuration is largely different from 

the undeformed, meaning that they can no longer be considered equal. Moreover, as the strain measures 

imply deriving the displacement to the reference coordinates it is necessary to set a reference. In this 

context, two second order tensors can be introduced: the Green Lagrange 𝐄 (referent to the material 

configuration) and the Almansi strain tensor 𝐞 (referent to the spatial configuration) – Equations (4.21) 

and (4.22), respectively. 

𝐄 =
1

2
(∇𝚾 𝐮 + ∇𝚾 𝐮

T − ∇𝚾 𝐮
T ∇𝚾 𝐮) =

1

2
(𝐂 − 𝐈) (4.21) 

𝐞 =
1

2
(∇𝐱 𝐮 + ∇𝐱 𝐮

T − ∇𝐱 𝐮
T ∇𝐱 𝐮) =

1

2
(𝐈 − 𝐛−1) (4.22) 
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When the deformation gradient is small enough, the quadratic terms of the Equations (4.21) and 

(4.22) can be neglected and 𝛆, 𝐄 and 𝐞 are coincident – Equation (4.20). Comparing these three strain 

measures, it is possible to state that 𝛆 is not an exact measure of deformation, as it is affected by rigid-

body rotation. This should only be used if small strains are present and has the advantage of varying 

linearly with the displacement gradient. Both 𝐄 and 𝐞 are strain measures independent from the body’s 

rotation and may be used when a body endures large displacements. 

 

4.2.5 Velocity and Velocity Gradient 

In nonlinear problems, motion is a time-dependent quantity. Therefore, it is necessary to obtain 

some time derivatives of the kinematics quantities.  

The velocity of a particle 𝐯(𝚾, 𝑡) corresponds to the first derivative of the motion 𝓧(𝚾, 𝑡) in respect 

to time 𝑡 – Equation (4.23). Even though it is expressed in terms of material coordinates, velocity 𝐯(𝚾, 𝑡) 

is a spatial field. In the Equation (4.24), the velocity field is defined as a function of the spatial 

coordinates 𝐯(𝐱, 𝑡). 

𝐯(𝚾, 𝑡) =
𝜕𝓧(𝚾, 𝑡)

𝜕𝑡
 (4.23) 

𝐯(𝐱, 𝑡) = 𝐯(𝓧−1(𝐱, 𝑡), 𝑡) (4.24) 

 

The velocity gradient 𝐥 corresponds to the derivative of the velocity field with respect to the spatial 

coordinates – Equation (4.25). This can be decomposed into a symmetric part 𝐝 (rate of deformation 

tensor) and a skew part 𝐰 (spin tensor). 

𝐥 = ∇𝐱 𝐯 =
𝜕𝐯

𝜕𝐱
= 𝐝 +𝐰 (4.25) 

𝐝 = sy 𝐥 =
1

2
(𝐥 + 𝐥T) (4.26) 

𝐰 = sk w 𝐥 =
1

2
(𝐥 − 𝐥T) (4.27) 

 

4.3 Concept of Stress 

Stress is a direct consequence of the interactions between neighboring particles inside a body when 

it undergoes motion and deformation. Usually, it is defined as a force acting on an infinitesimal area. 

When analyzing large deformations, the infinitesimal area to be considered differs. Therefore, it is 

essential to distinguish the stress measures accordingly to the referential in which they are expressed. 

Considering an area element ∆s, with an outward normal 𝐧𝐨 in the spatial point p, the resulting 

force acting upon this area element is ∆𝐟 – Figure 4.3. Hence, it is possible to define the traction vector 
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𝐭 by the Equation (4.28). The traction vector 𝐭 is a function of the position vector 𝐱, of time 𝑡 and of the 

outward normal 𝐧𝐨.  

 

 

Figure 4.3. Stress vectors in the initial 𝛺0 and deformed 𝛺 configurations [inspired in (Holzapfel 2000)]. 

 

𝐭 = li 
∆s→0

∆𝐟

∆s
= 𝛔𝐧𝐨 (4.28) 

 

From the Equation (4.28), it is also possible to define the Cauchy stress tensor 𝛔, which is a 

symmetric second order tensor with six independent components (𝛔 = 𝛔𝐓), that can be divided into two 

contributions – a deviatoric 𝐬 (related to a change in shape) and a hydrostatic pressure 𝑝 (related to a 

change in volume): 

𝛔 = 𝐬 + 𝑝𝐈 = 𝐬 +
1

3
t  𝛔 𝐈 (4.29) 

 

The Cauchy stress tensor is often called true stress as it represents the force per unit area in the 

current configuration. However, when dealing with large deformations, using stress measures referent 

to the undeformed configuration can be more effective. 

Another symmetric stress tensor commonly used is the Kirchhoff stress tensor 𝛕, which is related 

to the Cauchy stress tensor through the Jacobian determinant 𝐽 – Equation (4.30). The Kirchhoff stress 

tensor is similar to the Cauchy stress tensor, but it refers to the undeformed configuration. This is widely 

used when isochoric deformations occur. 

𝛕 = 𝐽𝛔 (4.30) 

 

Using the same methodology considered to obtain the traction vector 𝐭 in the deformed 

configuration, it is also possible to obtain the traction vector 𝐓 in the undeformed configuration – 
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Equation (4.31). This depends on the position vector 𝐗, on time 𝑡 and on the outward normal 𝐍𝐨 – Figure 

4.3. 

𝐓 = li 
∆S→0

∆𝐟

∆S
= 𝐏T𝐧𝐨 (4.31) 

 

In the Equation (4.31), it is introduced the first Piola-Kirchhoff stress tensor 𝐏, which is an 

asymmetric second order tensor referred to the material configuration (it represents a force in the current 

configuration per unit area in the reference configuration). This can be related to the Cauchy stress tensor 

as: 

𝐏 = 𝐽𝛔𝐅−T (4.32) 

 

To develop the constitutive equations, symmetric tensors are preferred, a condition which 𝐏 fails. 

When the Equation (4.32) is multiplied by 𝐅−1 in the left-side, the second Piola-Kirchhoff stress tensor 

𝐒 can be obtained – Equation (4.33). This has now the advantage of being symmetric and defined in the 

material coordinates. However, 𝐒 does not have any relation to surface traction. 

𝐒 = 𝐅−1𝐽𝛔𝐅−T (4.33) 

 

Finally, it is possible to establish a relationship between 𝐒 and 𝛔. 

𝛔 =
1

𝐽
𝐅𝐒𝐅T (4.34) 

 

The Piola-Kirchhoff stress tensors are simply mathematical quantities and do not express the true 

stress in the deformed configuration. When small displacements and rotations are applied to a body 

(linear regime), the previously presented stress measures are coincident, as there is no difference 

between the initial and deformed configurations. 

 

4.4 Balance Principles 

Continuum Mechanics is based on fundamental relations which are valid for all bodies, no matter 

the materials used and the deformations applied. In this section, the spatial differential formulations of 

the balances of mass, linear momentum and angular momentum are presented. For problem solving, 

when these differential formulations are employed, it is said that a strong formulation is used (Reddy 

2006). 
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4.4.1 Balance of Mass 

In a deformation process, the mass 𝑚 of the system should be conserved, which means that the 

mass is the same in the undeformed Ω0 and in the deformed Ω configurations – Equation (4.35). The 

quantities 𝜌0 and 𝜌 are the densities in the current and deformed configurations, respectively. 

𝑚 = ∫ 𝜌0
Ω0

dV = ∫ 𝜌
Ω

dv (4.35) 

 

Therefore, the spatial formulation of the mass conservation can be expressed by: 

𝜌 div𝐱 𝐯 + �̇� = 0 (4.36) 

 

4.4.2 Balance of Linear Momentum 

The linear momentum 𝐋 is equal both in the initial and deformed configurations. 

𝐋 = ∫ 𝜌0𝐯
Ω0

dV = ∫ 𝜌𝐯
Ω

dv (4.37) 

 

In a continuous body, there are two types of external forces to be considered: surface traction 𝐭 

acting in the body surface ∂Ω, and volume forces 𝐛f acting in its volume Ω. The balance of linear 

momentum corresponds to the equality between the variation of the linear momentum in time and the 

sum of the external forces acting upon the body – Equation (4.38). 

�̇� = ∫ 𝐭
𝜕Ω

ds +∫ 𝒇
Ω

dv (4.38) 

 

The local balance of linear momentum referred to a volume Ω in the current configuration is given 

by the Equation (4.39), where 𝜌�̇� corresponds to the inertial forces. In a static analysis, 𝜌�̇� can be 

disregarded. 

div𝐱 𝛔 + 𝐛f = 𝜌�̇� (4.39) 

 

4.4.1 Balance of Angular Momentum 

The angular momentum 𝐉 acting on a particle with a position vector 𝐫 is equal in the initial and 

current configurations – Equation (4.40). 

𝐉 = ∫ 𝐫 × 𝜌0𝐯
Ω0

dV = ∫ 𝐫 × 𝜌𝐯
Ω

dv (4.40) 

 

The balance of angular momentum states that the variation in time of the angular momentum with 

respect to a point in space is equal to the moments resulting from the external forces acting upon the 
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body with respect to that same point – Equation (4.41). Finally, the balance of angular momentum results 

in the Cauchy’s stress tensor symmetry 𝛔 = 𝛔T. 

�̇� = ∫ (𝐫 × 𝐭)
∂Ω

ds +∫ (𝐫 × 𝐛f)
Ω

dv (4.41) 

 

4.5 Constitutive Equations 

Besides kinematics, stresses, and balance principles, the complete definition of a body requires the 

establishment of the constitutive equations that characterize its properties. The constitutive equations 

are responsible for defining the stress state at a given point and time. These should provide a close 

representation of the real behavior of a body under the studied conditions. 

 

4.5.1 Hyperelasticity 

The hyperelastic materials are examples of nonlinear materials. In these materials, the work done 

by stress during the deformation process is path independent, meaning that it depends only on the initial 

Ω0 and deformed Ω configurations. Therefore, it can be described by a strain energy function Ψ (defined 

per unit of undeformed volume) which illustrates the elastic strain energy stored in the body. 

If the continuum body is inhomogeneous, the strain energy function Ψ relies on the deformation 

gradient 𝐅 and on the position vector 𝚾: Ψ(𝐅, 𝚾). Regarding homogeneous materials, the distribution is 

assumed as uniform and the strain energy function Ψ depends only on the deformation gradient 𝐅: Ψ(𝐅).  

In an hyperelastic material, the first second Piola-Kirchhoff stress tensor 𝐏 can be rewritten based 

on this strain energy function – Equation (4.42). 

𝐏 =
∂Ψ(𝐅, 𝚾)

∂𝐅
 𝑜𝑟 𝐏 =

∂Ψ(𝐅)

∂𝐅
   (4.42) 

 

As the stain energy must stay constant under rigid body rotations, 𝐅 depends only on the stretch 

component 𝐔. Since 𝐂 = 𝐔2 and �̇� =
1

2
�̇�, Ψ can be expressed as functions of 𝐂 or 𝐄 – Ψ(𝐂, 𝚾) or 

Ψ(𝐄, 𝚾). 

Thus, the second Piola-Kirchhoff stress tensor 𝐒 and the Cauchy stress tensor 𝛔 can also be 

rewritten based on this strain energy function – Equation (4.43) and (4.34). 

𝐒 = 2
∂Ψ(𝐂, 𝚾)

∂𝐂
=
∂Ψ(𝐄, 𝚾)

∂𝐄
 𝑜𝑟 𝐒 = 2

∂Ψ(𝐂)

∂𝐂
=
∂Ψ(𝐄)

∂𝐄
 (4.43) 

𝛔 =
2

𝐽
𝐅
∂Ψ(𝐂, 𝚾)

∂𝐂
𝐅T 𝑜𝑟 𝛔 =

2

𝐽
𝐅
∂Ψ(𝐂)

∂𝐂
𝐅T   (4.44) 

 

From now on, the strain function is presented as independent from the position vector 𝚾, only for 

homogeneous materials.   
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4.5.2 Elasticity Tensor 

In nonlinear problems, the resolution of the equations should be based on an incremental solution 

of  ewton’s type. Instead of solving the entire nonlinear problem, this allows the determination of the 

solution by solving, in each iteration, a linear problem. To achieve the solution, the linearization (based 

on directional derivatives) of the equations is required.  

As in hyperelastic materials, the relation between stress and strain is nonlinear, so there is the need 

to linearize the constitutive equations. When taking the total differential of 𝐒 – Equation (4.45), a fourth-

order tensor ℂ, also known as Lagrangian elasticity tensor, arises. This characterizes the change in stress 

resulting from a variation in strain and can be written as dependent on 𝐂 or 𝐄 – Equation (4.46). 

d𝐒 = 2
∂𝐒(𝐂)

∂𝐂
:
1

2
d𝐂 = ℂ ∶

1

2
d𝐂 (4.45) 

ℂ = 2
∂𝐒(𝐂)

∂𝐂
=
∂𝐒(𝐄)

∂𝐄
 (4.46) 

 

For hyperelastic materials, ℂ can be derived from the energy function Ψ – Equation (4.47), and 

possesses major symmetries – Equation (4.48). 

ℂ = 4
∂2Ψ(𝐂)

∂𝐂∂𝐂
 (4.47) 

ℂ = ℂT    𝐶𝐴𝐵𝐶𝐷 = 𝐶𝐶𝐷𝐴𝐵 (4.48) 

 

To obtain the elasticity tensor in the spatial configuration 𝕔, it is only necessary to apply a push-

forward operation to ℂ - Equation (4.49). 

𝕔 = 𝐽−1 𝜒∗(ℂ)        𝑐𝑎𝑏𝑐𝑑 =
1

𝐽
𝐹𝑎𝐴𝐹𝑏𝐵𝐹𝑐𝐶𝐹𝑑𝐷𝐶𝐴𝐵𝐶𝐷 (4.49) 

 

4.5.3 Isotropic Hyperelasticity 

When referring to a material as isotropic, this means that its properties are identical in all material 

directions. Therefore, the strain energy function can be expressed in terms of the invariants I1, I2 and I3 

of 𝐂 – Equations (4.50), (4.51) and (4.52).  

I1(𝐂) = t  𝐂 (4.50) 

I2(𝐂) =
1

2
[(t  𝐂)2 − t (𝐂2)] (4.51) 

I3(𝐂) = d t 𝐂 = 𝐽
2 (4.52) 

 

However, as 𝐂 and 𝐛 have the same eigenvalues λ1
2
, λ2

2
 and λ3

2
, then I1, I2 and I3 are also the 

invariants of 𝐛 – Equations (4.53), (4.54) and (4.55). The quantities λ1, λ2 and λ3 are the eigenvalues of 

the right stretch tensor 𝐔 and are known as the principal stretches: 
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I1(𝐂) = I1(𝐛) = λ1
2 + λ2

2 + λ3
2
 (4.53) 

I2(𝐂) = I2(𝐛) = λ1
2λ2

2 + λ2
2λ3

2 + λ3
2λ1

2
 (4.54) 

I3(𝐂) = I3(𝐛) = λ1
2λ2

2λ3
2
 (4.55) 

 

Since the strain energy functions is dependent on the invariants of 𝐂 (Ψ(I1, I2, I3)), by applying the 

chain rule, the second Piola-Kirchhoff stress 𝐒 can be given by the Equation (4.56).  

𝐒 = 2
∂Ψ(I1, I2, I3)

∂𝐂
= 2∑

∂Ψ(𝐂)

∂Ii

∂Ii
∂𝐂

3

i=1

 (4.56) 

 

The derivatives of the invariants I1, I2 and I3 with respect to 𝐂 are:  

∂I1
∂𝐂

= 𝐈 (4.57) 

∂I2
∂𝐂

= I1 𝐈 − 𝐂 (4.58) 

∂I3
∂𝐂

= I3 𝐂
−1 (4.59) 

 

By rewriting the Equation (4.56), the second Piola-Kirchhoff stress 𝐒 can be obtained – Equation 

(4.60). Additionally, the Cauchy stress tensor can also be achieved by introducing 𝐒 written in terms of 

the invariants in the Equation (4.34) – Equation (4.61). 

𝐒 = 2 [(
∂Ψ

∂I1
+ I1

∂Ψ

∂I2
) 𝐈 −

∂Ψ

∂I2
𝐂 + I3  

∂Ψ

∂I3
 𝐂−1] (4.60) 

𝛔 =
2

𝐽
[(
∂Ψ

∂I1
+ I2

∂Ψ

∂I2
)𝐛 −

∂Ψ

∂I2
𝐛𝟐 + I3  

∂Ψ

∂I3
 𝐈] (4.61) 

 

4.5.4 Incompressible Hyperelasticity 

Incompressible hyperelastic materials are deformed without volume changes. They are constrained 

as their volume must remain constant during deformation: 𝐽 = 1. The strain energy function for 

incompressible hyperelastic materials can be given as: 

Ψ = Ψ(𝐅) − 𝑝(𝐽 − 1) (4.62) 

 

In the Equation (4.62), 𝑝 corresponds to a Lagrange multiplier, which is used to assure the 

incompressibility constrain and can be referred as hydrostatic pressure.  

The derivative of the Equation (4.62) to 𝐅 allows the establishment of the first Piola-Kirchhoff 

stress tensor 𝐏 – Equation (4.63), while the derivative in order to 𝐽 is the hydrostatic pressure 𝑝.  

𝐏 =
∂Ψ(𝐅)

∂𝐅
− 𝑝

∂𝐽

∂𝐅
=
∂Ψ(𝐅)

∂𝐅
− 𝑝𝐽𝐅T =

∂Ψ(𝐅)

∂𝐅
− 𝑝𝐅T (4.63) 
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Through the multiplication of Equation (4.63) by 𝐅−1 on the left side, the second Piola-Kirchhoff 

stress acquires a new formulation – Equation (4.64). 

𝐒 = 𝐅−1
∂Ψ(𝐅)

∂𝐅
− 𝑝𝐅−1𝐅−T = 2

∂Ψ(𝐂)

∂𝐂
− 𝑝𝐂−1 (4.64) 

 

Finally, by substituting 𝐒 in the Equation (4.34), the Cauchy stress tensor 𝛔 can also be defined:  

𝛔 =
∂Ψ(𝐅)

∂𝐅
𝐅T − 𝑝𝐈 = 𝐅(

∂Ψ(𝐅)

∂𝐅
)

T

− 𝑝𝐈 (4.65) 

 

4.5.5 Nearly Incompressible Hyperelasticity 

In constitutive models, dealing with incompressibility is not as easy as one may think, especially 

when nonlinearities, like large displacements, large strains, or contact, can occur. Even though it is 

impossible to obtain perfect incompressibility, it is possible to slightly relax the incompressibility 

restrain, which is referred as nearly incompressible hyperelasticity.  

While working with nearly incompressibility, it is useful to split the deformation into a volumetric 

(dilatational) and an isochoric (distortional) part. Firstly, this helps to reduce the numerical difficulties 

that arise from distinct mechanical behavior portrayed by different stiffness values: higher in dilatation 

and smaller in distortion. Additionally, to deal with nearly incompressibility numerically, mixed 

formulations, where pressure and displacements are independent variables, can be used.  

Therefore, the deformation gradient 𝐅 can be decomposed into a volume-changing 𝐅V part and a 

volume-preserving 𝐅 part – Equation (4.66). The same methodology can be applied to the right Cauchy-

Green deformation tensor – Equation (4.67). 

𝐅 = 𝐅V 𝐅  = [(d t 𝐅)
1
3 𝐈] [(d t 𝐅)

−
1
3 𝐅] = [𝐽

1
3 𝐈] [𝐽

−
1
3 𝐅] (4.66) 

𝐂 = 𝐂V 𝐂  = [(d t 𝐅)
2
3 𝐈] [(d t 𝐅)−

2
3 𝐂] = [𝐽

2
3 𝐈] [𝐽−

2
3 𝐂] (4.67) 

 

The strain energy function can be given as dependent on 𝐂 by the sum of the volumetric Ψvol(𝐽) 

and isochoric Ψiso(𝐂) elastic responses of the material. In the Equation (4.68), the bulk modulus κ is 

presented as a penalty number used to ensure incompressibility.  

Ψ(𝐂) = Ψvol(𝐽) + Ψiso(𝐂) =
1

2
κ (𝐽 − 1)𝟐 +Ψiso(𝐂) (4.68) 

 

The derivative of the Equation (4.68), with respect to 𝐽, is given by the Equation (4.69) , where the 

relationship between the hydrostatic pressure and the bulk modulus is established. The hydrostatic 

pressure is responsible for the volume change in materials. However, in incompressible materials, the 

volume remains the same when the pressure varies. If the restriction is relaxed, small variations of 

volume associated with high pressure might occur and they can be imposed using a large bulk modulus.  
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∂Ψ(𝐂)

∂𝐽
= κ (𝐽 − 1) = 𝑝 (4.69) 

 

The second Piola-Kirchhoff stress tensor may also be divided into a volumetric 𝐒vol and an 

isochoric 𝐒iso contribution – Equation (4.70). 

𝐒 = 2
∂Ψ(𝐂)

∂𝐂
= 𝐒vol + 𝐒iso = 2

∂Ψvol(𝐽)

∂𝐂
+ 2

∂Ψiso(𝐂)

∂𝐂

= 2
∂Ψvol(𝐽)

∂𝐽

∂𝐽

∂𝐂
+ 2

∂Ψiso(𝐂)

∂𝐂

∂𝐂

∂𝐂
 

(4.70) 

 

Understanding that 
∂𝐽

∂𝐂
=

𝐽

2
𝐂−1, it is possible to obtain the derivative of 𝐂 to 𝐂: 

∂𝐂

∂𝐂
=
∂(𝐽−

2
3𝐂)

∂𝐂
= 𝐽−

2
3 (𝕀 −

1

3
𝐂⊗ 𝐂−1) = 𝐽−

2
3ℙT 

(4.71) 

 

In the Equation (4.71), 𝕀 is the fourth-order unit tensor and ℙT is the fourth-order tensor that 

calculates the transpose of the projection tensor ℙ (referent to the material configuration). 

ℙ = 𝕀 −
1

3
𝐂−1⊗𝐂 (4.72) 

 

Finally, the second Piola-Kirchhoff is obtained, bearing in mind that 𝐒 is the fictious second Piola-

Kirchhoff stress. 

𝐒 = 𝐽𝑝𝐂−1 + 2𝐽−
2
3 (𝕀 −

1

3
𝐂−1⊗𝐂) :

∂Ψiso(𝐂)

∂𝐂
= 𝐽𝑝𝐂−1 + 𝐽−

2
3
 ℙ ∶ 𝐒 (4.73) 

 

For compressible isotropic hyperelastic materials, the constitutive law can be written in terms of 

the strain modified invariants I – Equation (4.74). However, as an isochoric transformation is subjected 

to a kinematic constrain (I3 = 1), there are only two independent invariants – I1 and I2. 

Ψ(𝐂) = Ψvol(𝐽) + Ψiso (I1(𝐂), I2(𝐂)) (4.74) 

 

The invariants I1, I2 and I3 are the invariants of 𝐂 and 𝐛 and can be obtained similarly to the 

invariants I1, I2 and I3. 

I1 = t  𝐂 = t  𝐛 (4.75) 

I2 =
1

2
[(t  𝐂)

2
− t (𝐂)

2
] =

1

2
[(t  𝐛)

2
− t (𝐛)2] (4.76) 

I3 = d t 𝐂 = d t 𝐛 (4.77) 
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As the strain energy function is dependent on the invariants of 𝐂, by applying the chain-rule, the 

fictitious second Piola-Kirchhoff stress 𝐒 becomes: 

𝐒 = 2∑
∂Ψ(𝐂)

∂Ii

∂Ii

∂𝐂

2

i=1

= 2 [(
∂Ψiso(I1, I2)

∂I1
+ I1

∂Ψiso(I1, I2)

∂I2
) 𝐈 −

∂Ψiso(I1, I2)

∂I2
𝐂] (4.78) 

 

Following a similar approach for the Cauchy stress tensor, it is possible to obtain: 

𝛔 = 𝛔vol + 𝛔iso = 𝑝𝐈 + ℙ ∶ 𝛔 = 𝑝𝐈 + ℙ ∶ [
2

𝐽

∂Ψiso(𝐛)

∂𝐛
𝐛] (4.79) 

 

4.5.6 Transversely Isotropic Hyperelastic Materials  

A composite is a heterogeneous material composed of a matrix and one or more families of fibers. 

In these conditions, since properties are dependent on the material’s direction, the material is considered 

anisotropic.  

When a composite material is made up of only one family of fibers arranged along a specified 

direction, the stiffness is superior in the fibers’ direction than it is in the orthogonal direction. This 

material is called transversely isotropic, because, in the orthogonal direction of the fibers, it is assumed 

to be isotropic. 

In these materials, the stress in a point of the material configuration 𝚾 is function of both the 

deformation gradient 𝐅 and the fibers’ orientation. Therefore, the unit vector field 𝐍(𝚾), defining the 

local fibers’ direction in the undeformed configuration, can be introduced. When motion is applied, 

𝐍(𝚾) deforms with the body. Under these conditions, the fibers’ direction is defined by the unit vector 

field 𝐧(𝐱, t). While deforming, the fibers present a length change – fiber stretch λ – that can be obtained 

by the Equation (4.80). 

λ 𝐧 = 𝐅 𝐍 (4.80) 

 

From the definition, 𝐧(𝐱, t) is a unit vector (‖𝐧(𝐱, t)‖ = 1). Thus, it is possible to establish the 

fibers’ stretch as dependent on the undeformed fibers’ direction 𝐍 and on the right Cauchy-Green 

deformation tensor 𝐂 – Equation (4.81). 

λ2 = 𝐅 𝐍 𝐅 𝐍 =  𝐍 𝐅T𝐅 𝐍 = 𝐍 𝐂 𝐍 (4.81) 

 

The strain energy function Ψ can be written as function of 𝐂 and the second order tensor 𝐍⊗𝐍:  

Ψ = Ψ(𝐂, 𝐍⊗𝐍) (4.82) 
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While an isotropic hyperelastic material can be defined by the invariants I1, I2 and I3, the fully 

description of a transversely isotropic material requires the additional definition of the invariants I4 and 

I5, which arise from the anisotropic behavior of the fibers’ reinforcement – Equation (4.83) and (4.84). 

I4(𝐂,𝐍) = 𝐍 𝐂 𝐍 = λ
2 (4.83) 

I5(𝐂,𝐍) = 𝐍 𝐂
𝟐𝐍 (4.84) 

 

Therefore, for a transversely isotropic hyperelastic material, Ψ can be expressed as: 

Ψ = Ψ(I1(𝐂), I2(𝐂), I3(𝐂), I4(𝐂,𝐍), I5(𝐂,𝐍)) (4.85) 

 

Finally, it is possible to obtain the second Piola-Kirchhoff and the Cauchy stress tensors: 

𝐒 = 2∑
∂Ψ(𝐂,𝐍⊗ 𝐍)

∂Ii

∂Ii
∂𝐂

5

i=1

 

= 2 [[
∂Ψ

∂I1
+ I1

∂Ψ

∂I2
] 𝐈 −

∂Ψ

∂I2
𝐂 + I3  

∂Ψ

∂I3
 𝐂−1 +

∂Ψ

∂I4
𝐍⊗𝐍+

∂Ψ

∂I5
(𝐍⊗ 𝐂 𝐍 + 𝐍 𝐂⊗ 𝐍)] 

(4.86) 

  

𝛔 =
2

𝐽
[[
∂Ψ

∂I1
+ I2

∂Ψ

∂I2
] 𝐛 −

∂Ψ

∂I2
𝐛𝟐 + I3

∂Ψ

∂I3
𝐈

+ I4 [
∂Ψ

∂I4
𝐍⊗𝐍+

∂Ψ

∂I5
(𝐍⊗ 𝐛 𝐍 + 𝐍 𝐛⊗ 𝐍)]] 

(4.87) 

 

4.6 Finite Element Method 

The boundary-valued problem has the goal of finding the displacement that fulfills the Equation 

(4.88), subjected to a displacement and a traction boundary conditions defined in ∂Ω𝐮 and ∂Ω𝛔, 

respectively. These conditions state that displacements and tractions should be the prescribed values 𝐮∗ 

and 𝐭∗. 

div𝐱 𝛔 + 𝐛f = 0, 

𝐮 = 𝐮∗, 

𝛔 ∙ 𝐧 = 𝐭∗, 

𝐱 ∈ Ω 

𝐱 ∈ ∂Ω𝐮 

𝐱 ∈ ∂Ω𝛔 

(4.88) 

 

As the Equation (4.88) should be met for every 𝐱 ∈ Ω, it is often called the strong formulation of 

the boundary-valued problem. The analytical solution of this problem can only be accomplished under 

very specific conditions, which clarifies the need for the implementation of numerical procedures, like 

the Finite Element Method. 

The FEM is a numerical method used to analyze an equilibrium problem through a division of the 

problem’s complex domain (Ω) into a set of smaller subdomains (Ωe) – finite elements – connected by 
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nodes. The idea is that a linear combination of interpolation functions for each element may approximate 

a continuous function and, so, represent the solution to the problem (Reddy 2006).  

 

4.6.1 Principle of Virtual Work 

When an approximation is used for the displacement field 𝐮𝒉, a residual 𝐑 is introduced in the 

Equation (4.88) – Equation (4.89). This can tend to zero if multiplied by a weighting or test function 𝛈 

and integrated over the domain Ω – Equation (4.90). 

div𝐱 𝛔 + 𝐛f = 𝐑 (4.89) 

∫ 𝐑
Ω

∙ 𝛈 dv = 0 ⟹ ∫ [div𝐱 𝛔 + 𝐛f] ∙ 𝛈
Ω

 dv = 0 (4.90) 

 

The Equation (4.91) can be obtained after applying the product rule to div𝐱 𝛔 ∙ 𝛈 and using the 

divergence theorem. 

∫ 𝛔 ∶ ∇𝐱 𝛈
Ω

 dv −∫ 𝐛f ∙ 𝛈
Ω

dv − ∫ 𝛔𝛈 ∙ 𝐧
∂Ω

ds = 0 (4.91) 

 

Knowing that 𝛈 must be zero at the displacement boundaries, the integral over the surface ∂Ω can 

be defined simply in ∂Ω𝛔, and the weak or variational form of the boundary-valued problem is obtained 

– Equation (4.92). Consequently, the difference between natural and essential boundary conditions is 

set, as the former are defined in ∂Ω𝛔 and the later in ∂Ω𝐮. 

∫ 𝛔 ∶ ∇𝐱 𝛈
Ω

 dv −∫ 𝐛f ∙ 𝛈
Ω

dv − ∫ 𝐭 ∙ 𝛈
∂Ω𝛔

ds = 0 (4.92) 

 

Considering the symmetry of 𝛔 and the variation of the Euler-Almansi strain tensor δ𝐞 (Equation 

(4.93)), it is possible to obtain the Principle of Virtual Work in the current configuration, if the virtual 

displacement field δ𝐮 is considered as weighting function – Equation (4.94).  

δ𝐞 = sy (∇𝐱 𝛈) =
1

2
[∇𝐱 𝛈 + (∇𝐱 𝛈)

T
] (4.93) 

∫ 𝛔 ∶ δ𝐞
Ω

 dv − ∫ 𝐛f ∙ δ𝐮
Ω

dv −∫ 𝐭 ∙ δ𝐮
∂Ω𝛔

ds = 0 (4.94) 

 

The Principle of Virtual Work is a variational principle which states that the virtual stress work 

(internal virtual work δWint) is equal to the work done by the body and traction forces (external virtual 

work δWext). 
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δWint(𝐮, δ𝐮) = ∫ 𝛔 ∶ δ𝐞
Ω

 dv (4.95) 

δWext(𝐮, δ𝐮) = ∫ 𝐛f ∙ δ𝐮
Ω

dv + ∫ 𝐭 ∙ δ𝐮
∂Ω𝛔

ds (4.96) 

 

4.6.2 Variational Principles and Incompressibility 

When restrictions are applied to the body’s deformation, as in incompressible hyperelastic 

materials, a single variational principle can lead to numerical difficulties, such as locking (system with 

over stiffening) and instability phenomena. To overcome these numerical problems, a mixed FEM 

should be used. This means it is preferable to apply a multi-field variational principle, where each field 

is handled as an independent variable.  

To address the volumetric locking for incompressible hyperelasticity, it is possible to use a two-

field variational principle. In this sense, the Lagrange multipliers method and the penalty methods are 

presented in this section. 

The potential energy Π of a system in the material configuration is given by the sum of the internal 

Πint and external Πext potential energy – Equation (4.97). 

Π(𝐮) = Πint(𝐮) + Πext(𝐮) (4.97) 

Πint(𝐮) = ∫ Ψ(𝐂)
Ωo

dV (4.98) 

Πext(𝐮) = −∫ 𝐭 ∙ 𝐮
∂Ωo𝛔

dS − ∫ 𝐛f ∙ 𝐮
Ωo

dV (4.99) 

 

To obtain the state of equilibrium correspondent to a stationary position of the functional Π, the 

directional derivative of Π, in respect to the virtual displacement δ𝐮, should be zero. By computing this 

directional derivative, it is possible to establish the weak form for the equilibrium in the material 

configuration, which is equivalent to the Principle of Virtual Work – Equation (4.100). 

Dδ𝐮Π(𝐮) = ∫ 𝐒 ∶ δ𝐄
Ωo

dV −∫ 𝐭 ∙ δ𝐮
∂Ωo𝛔

dS − ∫ 𝐛f ∙ δ𝐮
Ωo

dV = 0 (4.100) 

 

To enforce incompressibility, it is possible to add the Lagrange multiplier term to the functional 

Π(𝐮). Through this approach, the strain energy Ψ is only a function of the volume-preserving 𝐂, which 

changes the notation to Π(𝐮). The considered variational ΠL(𝐮, 𝑝) is now given by the Equation (4.101), 

where the displacement field 𝐮 and the hydrostatic pressure 𝑝 are independent field variables. 
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ΠL(𝐮, 𝑝) = Π(𝐮) + ∫ 𝑝(𝐽 − 1)
Ωo

dV 

= ∫ Ψ(𝐂)
Ωo

dV −∫ 𝐭 ∙ δ𝐮
∂Ωo𝛔

dS − ∫ 𝐛f ∙ δ𝐮
Ωo

dV +∫ 𝑝(𝐽 − 1)
Ωo

dV 

(4.101) 

 

Following the approach used to obtain the Equation (4.100), it is possible to find the stationary 

condition of ΠL(𝐮, 𝑝) with respect to 𝑝: 

Dδ𝑝ΠL(𝐮, 𝑝) = ∫ δ𝑝(𝐽 − 1)
Ωo

dV = 0 (4.102) 

 

Another approach to deal with incompressibility is through the usage of penalty methods that allow 

the elimination of pressure as a problem’s variable. The perturbed  agrangian penalty method can be 

traduced in a functional ΠP(𝐮, 𝑝), which results from the addition of a penalty term to ΠL(𝐮, 𝑝). This 

penalty term, containing the penalty parameter κ as the bulk modulus, relaxes the incompressibility 

constrain. So, the Equation (4.103) represents a nearly incompressible material. 

ΠP(𝐮, 𝑝) = ΠL(𝐮, 𝑝) − ∫
1

2κ
𝑝2

Ωo

dV, ΠP → ΠL 𝑎𝑠 κ → ∞ (4.103) 

 

The stationary condition of ΠP(𝐮, 𝑝) with respect to 𝑝 is given by: 

Dδ𝑝ΠP(𝐮, 𝑝) = ∫ δ𝑝 [(𝐽 − 1) −
𝑝

𝜅
 ]

Ωo

dV = 0 (4.104) 

 

4.6.3 Linearization of the Principle of Virtual Work 

As some problems lead to a nonlinear formulation of the equilibrium equations, the resolution of 

these equations should be based on an incremental/iterative solution. This allows to obtain approximate 

numerical solutions even with complex problems. One common method is the Newton-Raphson 

iterative solution, which, instead of solving the nonlinear problem, allows the determination of the 

solution by solving, in each iteration, a linear problem. So, in other words, to achieve the solution, the 

linearization (based on directional derivatives) of the equations is required.  

The linearization of the Principle of Virtual Work of the Equation (4.94) in the direction of an 

increment ∆𝐮 can be achieved in the Equation (4.105), where D∆𝐮δW(𝐮, δ𝐮) is the directional derivative 

of the virtual work δW with respect to ∆𝐮 – Equation (4.106). 

δW(𝐮, δ𝐮) + D∆𝐮δW(𝐮, δ𝐮) = 0 (4.105) 

D∆𝐮δW(𝐮, δ𝐮) = D∆𝐮δWint(𝐮, δ𝐮) + D∆𝐮δWext(𝐮, δ𝐮) (4.106) 
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The linearized internal virtual work in the spatial description can be obtained by the Equation 

(4.107). This formulation is often referred to as an updated Lagrangian formulation since the integrals 

are calculated over the spatial configuration. Contrarily, if the integrals were calculated over the material 

configuration, it would be called total Lagrangian formulation. 

D∆𝐮δWint(𝐮, δ𝐮) = ∫ [ ∇𝐱δ𝐮 ∶ ∇𝐱∆𝐮 𝛔 + ∇𝐱δ𝐮 ∶ 𝕔 ∶ ∇𝐱∆𝐮]
Ω

dv (4.107) 

 

With this incremental/iterative procedure, there are two contributions to be considered in the 

linearized formulation of the problem: the initial or geometrical stress contribution in each increment 

(∇𝐱δ𝐮 ∶ ∇𝐱∆𝐮 𝛔) and the material contribution (∇𝐱δ𝐮 ∶ 𝕔 ∶ ∇𝐱∆𝐮).  

In a purely static case analysis, the loads are independent from the body’s deformation and the 

correspondent term to the linearization of the external virtual work disappears, leading to: 

D∆𝐮δW(𝐮, δ𝐮) = D∆𝐮δWint(𝐮, δ𝐮) (4.108) 

 

4.6.4 Discretization 

To apply the FEM, the continuum must be divided into a set of smaller domains – finite elements. 

Therefore, it is necessary to discretize the kinematic measures and governing equations that describe the 

body.  

In the material configuration, the position vector 𝐗 can be obtained using shape functions Na 

defined for each of the   element nodes and the initial position of these nodes 𝐗a – Equation (4.109). 

When motion is applied, the position vector of a particle 𝐱 is defined by the current position of the nodes 

𝐱a – Equation (4.110). 

𝐗 =∑Na 𝐗a

n

a=1

 (4.109) 

𝐱 =∑Na 𝐱a(𝑡)

n

a=1

 (4.110) 

 

Considering an analysis based on isoparametric elements, the functions used to interpolate the 

elements geometry 𝐱 and its displacement field 𝐮 are the same. Therefore, the displacement field can be 

obtained in the Equation (4.111), where 𝐮a represents the nodal displacement field. The same approach 

can be applied for the virtual displacement field in the Equation (4.112).  

𝐮 =∑Na 𝐮a

n

a=1

 (4.111) 

δ𝐮 =∑Na δ𝐮a

n

a=1

 (4.112) 
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Moreover, the deformation gradient 𝐅 and the strain measures 𝐂 and 𝐛 are discretized as: 

𝐅 =∑𝐱a⊗∇𝐗Na 

n

a=1

 (4.113) 

𝐂 =∑(𝐱a ∙ 𝐱b) ∇𝐗Na⊗∇𝐗Nb

n

a,b

 (4.114) 

𝐛 =∑(∇𝐗Na⊗∇𝐗Nb) 𝐱a⊗𝐱b

n

a,b

 (4.115) 

 

Evoking the Equation (4.94), where the virtual work expression was presented, it is now possible 

to apply a discretization process to the kinematic measures δ𝐞 and δ𝐮. The virtual work per element ( ) 

and per node a (δW(e)) can be obtained by: 

δW(e) = ∫ 𝛔 ∶
Ω(e)

(δ𝐮a⊗∇𝐱Na) dv − ∫ 𝐛f ∙ (Na δ𝐮a)
Ω(e)

dv −∫ 𝐭 ∙ (Na δ𝐮a)
∂Ω𝛔

(e)
ds (4.116) 

 

Since the virtual displacement field is independent from the integration, it is possible to rearrange 

the Equation (4.116) and have δW(e) written as a function of the equivalent nodal forces – Equation 

(4.117). The internal 𝐅 inta
(e) and external 𝐅 exta

(e) equivalent nodal forces can be given by the 

Equations (4.118) and (4.119). 

δW(e) = δ𝐮a [∫ 𝛔 ∇𝐱Na
Ω(e)

dv − ∫ 𝐛f Na
Ω(e)

dv − ∫ 𝐭 Na
∂Ω𝛔

(e)
ds] = δ𝐮a [𝐅 inta − 𝐅 exta]

(e)
 (4.117) 

𝐅 inta
(e) = ∫ 𝛔 ∇𝐱Na

Ω(e)
 dv (4.118) 

𝐅 exta
(e) = ∫ 𝐛f Na

Ω(e)
dv +∫ 𝐭 Na

∂Ω𝛔
(e)

ds (4.119) 

 

Performing the assembly, the equivalent nodal forces 𝐅 inta and 𝐅 exta are obtained by considering 

all the elements which contain the node a. The virtual work in a finite element mesh δW can be achieved 

by considering the contribution of its   nodes.  

δW =∑δ𝐮a ∙  [𝐅 inta − 𝐅 exta]

n

a=1

= 0 (4.120) 

 

As the Equation (4.120) must be satisfied for any arbitrary virtual nodal displacement δ𝐮a, the 

nodal residual force 𝐑a in a node a should be zero and it is given by the Equation (4.121).  

𝐑a = 𝐅 inta − 𝐅 exta = 0 (4.121) 
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The equilibrium equations for a nonlinear problem can be given by the Equation (4.122) where 𝐑, 

𝐅 int and 𝐅 ext are the assembled residual, internal and external forces.  

𝐑 = [𝐅 int − 𝐅 ext] = 0 (4.122) 

 

The Equation (4.122) can be linearized using the expression present in the Equation (4.105), and it 

is transformed into:  

δW(𝐮, δ𝐮) + D∆𝐮δW(𝐮, δ𝐮) = δ𝐮
T𝐑+ δ𝐮T𝐊 𝐮 = 0 (4.123) 

 

The assembled stiffness matrix 𝐊 is obtained by performing the assembly of the nodal components. 

This can be divided into an initial stress component 𝐊σ,ab, a material component 𝐊c,ab and an external 

force component 𝐊p,ab. 

𝐊 =
∂∆𝛔 

∂∆𝛆 
= 𝐊σ,ab +𝐊c,ab − 𝐊p,ab (4.124) 

 

The Newton-Raphson algorithm can be summarized in the Figure 4.4 and it follows the Equation 

(4.125).  

𝐊 𝐮 = −𝐑(𝐱k);      𝐱k+1 = 𝐱k + 𝐮 (4.125) 

 

INPUT geometry and material properties 

SET t l  a c = 𝑡𝑜𝑙 and  ax _it  acti  s = 𝑚𝑎𝑥 

INITIALIZE 𝐱 = 𝐗, 𝐅 ext = 0, 𝐑 = 0, k = 1 

LOOP over load increments 

FIND ∆𝐅 ext – Equation (4.119) 

SET 𝐅 ext = 𝐅 ext + ∆𝐅 ext 

SET 𝐑 = 𝐑− ∆𝐅 ext 

DO WHILE (
‖𝐑‖

‖𝐅 ext‖
> 𝑡𝑜𝑙   AND  k > 𝑚𝑎𝑥) 

FIND 𝐊 – Equation (4.124) 

SOLVE 𝐊 𝐮 = −𝐑 – Equation (4.125) 

UPDATE 𝐱 = 𝐱 + 𝐮 – Equation (4.125) 

FIND 𝐅(e), 𝐛(e), 𝛔(e) – Equation (4.113) and (4.115)  

FIND 𝐅 int – Equation (4.118) 

FIND 𝐑 – Equation (4.122) 

SET k = k + 1 

Figure 4.4. Newton-Raphson algorithm (Bonet and Wood 2008). 
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CHAPTER 5  

5. MODELLING THE SMALL INTESTINE RESPONSE 

 

In this work, a modified version of the incompressible transversely isotropic hyperelastic model, 

proposed by Humphrey and Yin (1987), for the passive behavior of the cardiac tissue, is used to model 

the small intestine mechanical response. This was firstly introduced by the work of Martins et al. (1998) 

regarding the description of the active and passive behavior of skeletal muscles. The constitutive model 

is based on the one dimensional muscle model proposed by Hill (1938). 

 

5.1 Hill Model 

For a better understanding of the skeletal muscle’s activation process, Hill (1938) proposed a one-

dimensional (1D) model composed of a contractile element, an in-series elastic element and an in-

parallel elastic element – Figure 5.1.  

 

 

Figure 5.1. Hill’s muscle model with the contractile (CE), series (SE) and parallel (PE) elements [inspired in 

(Martins et al. 2006)]. 

 

Analyzing the model in detail, the contractile element (CE) describes the muscle’s activation (active 

part). In this element, the length may increase, but shorten during chemical stimulation. Regarding the 

two elastic elements, these are nonlinear springs. The series element (SE) is responsible for storing 

energy and for allowing a state change from inactive to active. The parallel element (PE) is responsible 

SE CE

 E

T T
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for the passive behavior of the stretched muscle when the contractile element is deactivated (Martins et 

al. 2006). 

From the Figure 5.1, it is possible to define the muscle force FM and length LM, using the force 

(FCE, FSE, FPE) and length (LCE, LSE, LPE) of each of its constituents. 

FM = FPE + FSE, FCE = FSE (5.1) 

LM = LCE + LSE, LM = LPE (5.2) 

 

When the muscle is fully activated with a constant length of LO
M (rest/optimal length of the muscle), 

a force FO
M (peak isometric muscle force) is induced – maximum force developed by the muscle in an 

isometric contraction. 

If the muscle is non-activated (FCE = FSE = 0), a force FPE, which is dependent on the muscle 

stretch λM, is induced in the parallel element. However, this force is null for a compressed muscle.  

FPE = {
FO
M fPE( λ

M) λM > 1 (st  tc  d   scl )

0 λM ≤ 1 (c  p  ss d   scl )
 (5.3) 

λM =
LM

LO
M

 (5.4) 

 

When activated, the muscle develops a force in the contractile element (FCE = FSE), dependent on 

the muscle stretch λM and on activation level α (varying from 0 to 1). The velocity of deformation of 

the contractile element also has an influence in FSE, but it is not considered for the purpose of this work. 

FSE = FO
M fSE(λ

M, α) (5.5) 

 

The function fSE(λ
M, α) is equal to a non-zero value if 0.5 < λM < 1.5 and it is equal to a zero 

value if otherwise. This means that no energy is produced by the muscle outside of these limits. 

fSE(λ
M, α)  = α {1 − 4(λ

M − 1)
2

f   0.5 < λM < 1.5

0  t   wis 
 (5.6) 

 

Dividing the forces FPE and FSE by the muscle’s physiological cross-sectional area AO, the 

nonlinear relations for the longitudinal first order Piola-Kirchhoff stresses are given by the Equations 

(5.7) and (5.8). The parameter TO
M is the muscle peak stress at isometric conditions and it differs from 

the studied muscle (Martins et al. 1998).  

TPE =
FO
M

AO
fPE(λ

M) = TO
M fPE(λ

M) (5.7) 

TSE =
FO
M

AO
fSE(λ

M, α) = TO
M fSE(λ

M, α) (5.8) 
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5.2  onstitutive Mo el for the Passive an   ctive Muscle’s  ehavior 

The Martins model, presented in the works of Martins et al. (1998), Martins et al. (2006) and 

Parente et al. (2009), considers the strain energy function Ψ divided into a volumetric contribution 

Ψvol(𝐽), an isotropic contribution Ψmat(I1), which represents the energy stored in the matrix, and an 

anisotropic contribution, describing the energy stored in the fibers Ψfib(λf, α) – Equation (5.9).  

Ψ = Ψvol(𝐽) + Ψmat(I1) + Ψfib(λf, α) (5.9) 

 

The volumetric contribution used to impose the incompressible constrain by a penalty method 

Ψvol(𝐽) can be given by the Equation (5.10) (Parente et al. 2009) or (5.11) (Ferreira et al. 2017). The 

constant D1 is related to the bulk modulus as D1 =
2

κ
. 

Ψvol(𝐽) =
1

D1
(𝐽 − 1)2 (5.10) 

Ψvol(𝐽) =
1

2D1
(𝐽2 − 1 − 2 l 𝐽) (5.11) 

 

The isotropic contribution of the matrix Ψmat follows an exponential form and depends on the first 

invariant I1 of the isochoric right Cauchy-Green tensor 𝐂.  

Ψmat(I1) = c [ 
b(I1−3) − 1] (5.12) 

 

The isochoric contribution of the energy stored in the fibers can be split into a passive contribution 

ΨPE and into an active contribution ΨCE.  

Ψfib = ΨPE +ΨCE (5.13) 

 

Considering a family of fibers along the non-deformed direction 𝐍, the passive component ΨPE is 

given by the exponential function in the Equation (5.14), where (A, a) are the material parameters of the 

fiber’s layer and λf is the fiber’s stretch along the non-deformed direction 𝐍. 

ΨPE = A [ 
a(λf −1)

2

− 1] (5.14) 

 

The strain energy function for the contractile behavior ΨCE is dependent on the fiber’s stretch ratio 

in the direction of the non-deformed fiber λf and on the activation level α. 

ΨCE(λf, α) = TO
M∫ fSE(λ

M, α)
λf

1

dλM (5.15) 

 

The second Piola-Kirchhoff stress tensor can be obtained by deriving the strain energy Ψ to 𝐂, 

according to the Equation (4.43). Each contribution can be further developed by applying the chain rule.  
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𝐒 = 2
∂Ψ

∂𝐂
=
∂Ψ

∂𝐄
=
∂Ψvol
∂𝐄

+
∂Ψmat
∂𝐄

+
∂Ψfib
∂𝐄

=
∂Ψvol
∂𝐽

∂𝐽

∂𝐄
+
∂Ψmat

∂I1

∂I1
∂𝐄

+
∂Ψfib

∂λf

∂λf
∂𝐄

 (5.16) 

 

In the Equations (5.17), (5.18) and (5.19), the first derivatives of Ψvol, Ψmat and Ψfib in order to 𝐽, 

I1 and λf, respectively, are presented.  

∂Ψvol
∂𝐽

=
2

D1
(𝐽 − 1) (5.17) 

∂Ψmat

∂I1
= bc [ b(I1−3)] (5.18) 

∂Ψfib

∂λf
= 2a(λf − 1)A [ 

a(λf−1)
2

] + TO
M fSE(λf, α) (5.19) 

 

The first derivatives of 𝐽, I1 and λf to 𝐄 are obtained in the Equations (5.20), (5.21) and (5.22). 

∂𝐽

∂𝐄
= 𝐽𝐂−1 (5.20) 

∂I1
∂𝐄

= 2𝐽−
2
3𝐈 −

2

3

1

𝐽
I1  
∂𝐽

∂𝐄
 (5.21) 

∂λf
∂𝐄

= 𝐽−
2
3
1

λf
(𝐍⊗ 𝐍) −

1

3

λf
𝐽

∂𝐽

∂𝐄
 (5.22) 

 

The Cauchy stress tensor can be obtained by applying a push-forward operation to the Equation 

(5.16). 

𝛔 =
1

𝐽
[𝐅
∂Ψvol
∂𝐽

∂𝐽

∂𝐄
𝐅T + 𝐅

∂Ψmat

∂I1

∂I1
∂𝐄

𝐅T + 𝐅
∂Ψfib

∂λf

∂λf
∂𝐄

𝐅T] (5.23) 

 

Recalling the Equation (4.46), the material stiffness matrix ℂ is given by the Equation (5.24). A 

detailed development of each contribution of ℂ is performed in the APPENDIX A. 

ℂ =
∂𝐒

∂𝐄
=
∂

∂𝐄
[
∂Ψvol
∂𝐄

+
∂Ψmat
∂𝐄

+
∂Ψfib
∂𝐄

] =
∂

∂𝐄
[
∂Ψvol
∂𝐽

∂𝐽

∂𝐄
+
∂Ψmat

∂I1

∂I1
∂𝐄

+
∂Ψfib

∂λf

∂λf
∂𝐄
] (5.24) 

 

5.3  onstitutive Mo elling the Small Intestine’s Wall with the Martins Mo el 

Even though the small intestine’s wall presents a multilayered structure (Chapter 3), Egorov et al. 

(2002). showed that the external loads applied to it are largely supported by the submucosa and 

muscularis externa. Therefore, having this into consideration, a decoupled form for the strain energy 

function can be used as motivated by the microstructure of the wall. In their work, Ciarletta et al. (2009) 

considered the mechanical behavior of the large intestine wall divided into an isotropic matrix and into 

an anisotropic fiber-reinforcement composed by collagen fibers in the submucosa and by muscle fibers 
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in the smooth muscle layers. Bearing this in mind and recalling the incompressible nonlinear behavior 

of the small intestine also present in the Chapter 3, the Martins model for incompressible transversely 

isotropic hyperelastic materials can be applied to the small intestine by disregarding the influence of 

collagen fibers.  

Considering two families of muscle fibers along the longitudinal and circumferential directions, the 

second Piola-Kirchhoff stress tensor and the material elasticity tensor can be obtained by the Equations 

(5.25) and (5.26), where the variables λl and λc are the stretches along the longitudinal and 

circumferential directions. 

𝐒 = 2
∂Ψvol
∂𝐽

∂𝐽

∂𝐂
+ 2

∂Ψmat

∂I1

∂I1
∂𝐂

+ 2
∂Ψfib

∂λl

∂λl
∂𝐂

+ 2
∂Ψfib

∂λc

∂λc
∂𝐂

 (5.25) 

ℂ = 2
∂𝐒

∂𝐂
= 2

∂

∂𝐂
(2
∂Ψvol
∂𝐂

+ 2
∂Ψmat

∂I1

∂I1
∂𝐂

+ 2
∂Ψfib

∂λl

∂λl
∂𝐂

+ 2
∂Ψfib

∂λc

∂λc
∂𝐂
) (5.26) 

 

5.4 Benchmark Examples 

The numerical simulations presented in this work (Chapter 7) were developed using the finite 

element software ABAQUS. This software models real engineering problems and analyzes the 

corresponding results. ABAQUS is widely employed due to a substantial range of materials. However, 

the constitutive models commonly used to model biological tissues are not integrated in the material 

database. Therefore, the ABAQUS ability to be tailored by user-defined subroutines written in a 

FORTRAN language is essential to model such materials.  

The presented Martins constitutive model, used to model biological tissues, can be integrated in a 

user-defined material subroutine UMAT where the stress-strain relationship is defined. The basis for the 

present work departs from an UMAT subroutine previously developed by Ferreira et al. (2017) for the 

Martins model. The organization of the UMAT subroutine and its link to the ABAQUS flowchart follow 

the diagram of the Figure 5.2. 

To implement the constitutive model in the ABAQUS UMAT subroutine, the Cauchy stress tensor 

(STRESS) and the stiffness matrix (DDSDDE) should be defined. In this software, the definition of 

the DDSDDE implies the use of the Jaumann rate of the Kirchhoff stress to ensure quadratic or nearly 

quadratic convergent in nonlinear problems. As 𝛔 = 𝛕/𝐽, the stiffness matrix DDSDDE can be obtained 

by adding the Jaumann rate of the Kirchhoff stress, written in terms of the Cauchy stress tensor, to the 

spatial elasticity tensor 𝕔 – Equation (5.27) (Stein and Sagar 2008).  

DDSDDE = 𝕔 +
1

2
[𝐈 ⊗ 𝛔 + 𝛔⊗ 𝐈 + 𝐈⊗ 𝛔 + 𝛔⊗ 𝐈] (5.27) 

 

In this subsection, the validation of this UMAT for the passive behavior and active isometric 

contraction is presented. This step is imperative to verify that the results obtained with the UMAT were 

equal to the analytical or literature solutions. 
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Figure 5.2. ABAQUS flowchart and link to the UMAT subroutine for the Martins constitutive model.  
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5.4.1 UMAT Validation for the Passive Behavior 

The UMAT’s validation for the passive behavior of an incompressible transversely isotropic 

material was performed based on the comparison between the analytical solution, and the solution 

obtained by the analysis of a C3D8H finite element (single 8-node linear brick hybrid, with constant 

pressure) in the software ABAQUS. This analysis was developed for the isochoric uniaxial, equibiaxial, 

biaxial and simple shear deformations. In the Table 5.1, the deformation gradient 𝐅 (Holzapfel 2000) 

and the respective deformation and boundary conditions in an unitary cube are presented for each of the 

cases. The boundary conditions for the uniaxial, equibiaxial and biaxial deformations set null nodal 

displacements according to the conditions:  (x = 0, y, z) = 0, v(x, y = 0, z) = 0 and w(x, y, z = 0) =

0. For the simple shear deformation, the boundary conditions are set in the nodes as:  (x, y = 0, z) = 0, 

v(x, y = 0, z) = 0, v(x, y = 1, z) = 0 and w(x, y, z = 0) = 0. 

 

Table 5.1. Deformation gradient, respective deformation and direction of a family of fibers in the unitary 

undeformed cube for the uniaxial, equibiaxial, biaxial and simple shear stress states. 

Stress State 
Deformation 

Gradient 𝐅 

Unitary Undeformed 

Cube 

 n eforme  Fiber’s  

Direction 𝐍 

Uniaxial 

[
 
 
 
 
λ 0 0

0
1

√λ
0

0 0
1

√λ]
 
 
 
 

 

  

𝐍 = {
c s θ
0

si θ
} 

Equibiaxial [

λ 0 0

0
1

λ2
0

0 0 λ

] 

  

𝐍 = {
c s θ
0

si θ
} 

Biaxial 

[
 
 
 
λx 0 0

0
1

(λxλz)
0

0 0 λz]
 
 
 
 

  

𝐍 = {
c s θ
0

si θ
} 

Simple 

Shear 
[
1 λ 0
0 1 0
0 0 1
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A family of fibers is considered in the unitary cube. The undeformed direction of the fibers 𝐍 is 

defined by an orientation angle θ positively defined in the Oxz plane for the uniaxial, equibiaxial and 

biaxial deformations and in the Oxy plane for the simple shear deformation – Table 5.1. To verify the 

evolution of the Cauchy stress with different orientations of the fibers, two sets of angles θ were defined: 

{0°, 90°} for the uniaxial deformation and {0°, 30°, 45°, 60°, 90°} for the others. 

To establish the comparison between the analytical and numerical results, a test material was used 

with the passive properties of the Table 5.2.  

 

Table 5.2. Material parameters selected for validation of the passive behavior with the mechanical properties 

defined in the UMAT subroutine. 

Material Parameters 𝐜 (𝐌𝐏𝐚) 𝐛 𝐀 (𝐌𝐏𝐚) 𝐚 

Values 1.0 0.1 1000.0 0.01 

 

The incompressible restrain in the ABAQUS unitary cube was ensured by setting a high value for 

the bulk modulus κ. For the uniaxial stress state, a bulk modulus of 1E6 M a was required to maintain 

a unitary Jacobian determinant, while in the other cases κ = 1000 M a was sufficient. In the analytical 

formulation, the Lagrange multiplier method was used with the strain energy function of the Equation 

(5.28). 

Ψ = c { b(I1−3) − 1} + A [ a(λf −1)
2

− 1] − 𝑝(𝐽 − 1) (5.28) 

 

The undeformed and deformed configurations for each of the load cases is present in the Figure 

5.3. 

 

 

                          (a) Undeformed configuration 

 
  

 

(b) Uniaxial stress state (c) Equibiaxial stress state (d) Biaxial stress state (e) Simple shear stress state 

    

Figure 5.3. Geometrical configuration of the unitary cube subjected to different load cases. 
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The evolution of the Cauchy stress, in the directions xx (σxx), zz (σzz) and xy (σxy) (depending 

on the deformation case), with the applied stretch shows agreement between the analytical and the finite 

element solution (obtained with the material defined by the UMAT subroutine). The results drawn in 

the Figure 5.4, Figure 5.5, Figure 5.6 and Figure 5.7 allow the validation of the UMAT subroutine for 

the passive behavior.  

 

 

 

Figure 5.4. Cauchy stress as a function of stretch for a C3D8H finite element with a family of fibers aligned along 

the directions 0° or 90° subjected to a uniaxial deformation. 

 

   

Figure 5.5. Cauchy stress as a function of stretch for a C3D8H finite element with a family of fibers aligned along 

the directions 0°, 30°, 45°, 60° or 90° subjected to an equibiaxial deformation. 
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Figure 5.6. Cauchy stress as a function of stretch (λx) for a C3D8H finite element with a family of fibers aligned 

along the directions 0°, 30°, 45°, 60° or 90° subjected to a biaxial deformation with λz = λxmin +
λx−λxmin

2
. 

 

  

Figure 5.7. Cauchy stress as a function of stretch for a C3D8H finite element with a family of fibers aligned along 

the directions 0°, 30°, 45°, 60° or 90° subjected to simple shear. 

 

5.4.2 UMAT Validation for the Active Behavior 

To validate the results obtained by the UMAT for the active behavior of an isometric contraction, 

a literature example was used (Martins et al. 2006). This example consists of a square membrane of 10 

mm with a thickness of 1 mm, discretized by 14x14 C3D8 elements, with its fibers aligned in the 

direction xx  – Figure 5.8. The square membrane is subjected to null nodal displacements, along the 

directions xx and yy, and to the activation function of the Figure 5.9. 
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Figure 5.8. Square membrane used for the UMAT validation for active behavior in an isometric contraction 

(Martins et al. 2006). 

 

 

Figure 5.9. Activation function for an isometric contraction (Martins et al. 2006). 

 

The material parameters used in the literature example (Martins et al. 2006) were obtained from 

(Humphrey and Yin 1987) – Table 5.3. 

 

Table 5.3. Material parameters selected for validation of the active behavior for an isometric contraction with the 

mechanical properties defined in the UMAT subroutine (Humphrey and Yin 1987). 

Material Parameters 𝛋 (𝐌𝐏𝐚) 𝐜 (𝐌𝐏𝐚) 𝐛 𝐀 (𝐌𝐏𝐚) 𝐚 𝐓𝐎
𝐌 (𝐌𝐏𝐚) 

Values 2E7 3.87E 4 23.46 5.84E 4 12.43 0.682  
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Looking into the results shown in the Figure 5.10, the validation of the UMAT for an isometric 

contraction is obtained. Moreover, it was possible to see that the evolution of the Cauchy stress along 

the fiber’s direction follows the shape of the activation function, due to an unchanged length of the 

membrane (Martins et al. 2006). 

 

 

Figure 5.10. Cauchy stress along the direction xx (σxx) as a function of time in the membrane subjected to an 

isometric contraction (Martins et al. 2006). 
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CHAPTER 6  

6. EXPERIMENTAL TENSILE TESTS OF THE SMALL 

INTESTINE 

 

The mechanical properties of the small intestine’s passive behavior were obtained during uniaxial 

tensile tests of the porcine duodenum and ileum, both along the circumferential (transverse) and 

longitudinal directions. The porcine small intestine was chosen for the analysis as it closely resembles 

the human intestine (Hoeg et al. 2000). In an adult porcine, the small intestine’s length ranges between 

16 and 21 m, where 0.70 to 0.95 cm corresponds to the duodenum, 14 to 19 m to the jejunum and 0.70 

to 1 m to the ileum (Masri et al. 2015). The results were compared with similar tests reported in the 

literature. By doing a statistical evaluation of the obtained results, it was possible to access the 

resemblance/disparity between mechanical properties and geometric dimensions (thickness) of the two 

sections/directions analyzed. A nonlinear least square fitting was used to find the passive constitutive 

parameters for the Martins model in the duodenum and ileum. 

 

6.1 Experimental Procedure 

6.1.1 Sample Preparation 

The small intestine of a female porcine was cleaned with running water after harvest and, then, 

frozen for latter uniaxial testing. The unfreezing procedure was carried out during a 24-hour-period in a 

Styrofoam box placed in a fresh environment to preserve the tissue’s integrity and mechanical 

properties.  

During the specimens’ preparation, localized zones of the tissue were found perforated or with ice 

burns resultant from the cleaning and freezing processes. These areas were considered unsuited for 

testing – Figure 6.1-a. Hence, extreme caution was paid while cutting 20 cm length portions of the tube 

to avoid these areas – Figure 6.1-b. In total, 6 tubular sections were cut: 4 from the initial portion of the 

intestine (duodenum) and 2 from its ending portion (ileum). 
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(a) (b) 

Figure 6.1. Small intestine tubular section (b) with the ice burned parts discarded (a). 

 

The tube was opened in the longitudinal direction with scissors and residual stresses were observed 

in the intestine – Figure 6.2. These can be identified by an undulation at the rectangular borders of the 

tissue section. 

 

 

 

(a) (b) 

Figure 6.2. Small intestine tube cut along the longitudinal (a) and straightened (b). The undulated edges in the 

straightened rectangular section are visible in (b).  

 

After being straightened, each rectangular portion was sectioned into 6 specimens: 3 along the 

longitudinal direction (L) and 3 along the transversal direction (T) (which corresponds to the 

circumferential direction of the small intestine’s tube) – Figure 6.3-a. A vertical technique for cutting 

the samples with the bistoury was used to reduce the tissue deformation (Ciarletta et al. 2009) – Figure 

6.3-b. The specimens were prepared to ensure that the central region would be located away from the 

edges, so that they could be generally assumed as homogeneous (Ciarletta et al. 2009). Once the cutting 

procedure was finished, the specimens were placed in towels, hydrated with physiological serum (to 

avoid dehydration), and saved into labeled containers.  
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(a) (b) 

Figure 6.3. Specimens’ configuration in the rectangular section (a) and cutting procedure (b). 

 

6.1.2 Uniaxial Tensile Tests 

The experimental setup for the uniaxial test was set. A load cell Mecmesin 100 N with 0.02 N of 

resolution was placed in the upper movable crosshead of a Multitest 2.5 machine to measure the applied 

force. This was connected to the software Vector Pro 2.1.0.0 used for data recording. A video camera 

was adjusted to be parallel to the setup, which allowed the measurement of the specimens’ width and 

length between clamps. 

The specimens were fixed in the machine with the help of tweezers. First, the sample was fixed in 

the upper clamp, and then in the lower clamp – Figure 6.4-a. Once the clamps enclosed the specimen, 

no adjustments could be performed. So, this process was executed with extreme attention to avoid tissue 

superposition and the specimen’s detachment from the machine. 

The crosshead was regulated until a small pre-load of 0.04 N. At this point, the displacement was 

considered null and the thickness of the specimen was measured (3 measurements) with a caliper. The 

uniaxial test was performed at a velocity of 10 mm/min until the specimen’s rupture – Figure 6.4-b.  

 

  

(a) (b) 

Figure 6.4. Fixation of the sample in the testing machine: initial (a) and deformed configurations (b). 

 

T T T
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6.2 Results 

For a simpler analysis of the results, each specimen was given a code: D 1L 2 or IL 2 for the 

duodenum D or ileum I samples cut in the longitudinal direction L, and D 1T 2 or IT 2 for the 

duodenum D or ileum I samples cut in the transverse direction T. The index  1 represents the proximity 

of the duodenum samples to the stomach ( 1 = 1 is closer to the stomach than  1 = 2) and the index 

 2 represents the sample number.  

Firstly, the specimens’ initial thickness t0, width w0 and length between clamps l0 is presented. 

Then, the results are plotted with the first Piola-Kirchhoff stress   (which represents the force per unit 

area of the reference configuration, as indicated in the Section 4.3) as a function of the stretch λ. This is 

obtained by converting the displacement ∆y versus force f results – Equations (6.1) and (6.2). 

λ =
l

l0
=
l0 + ∆y

l0
 (6.1) 

 =
f

w0t0
 (6.2) 

 

6.2.1 Duodenum 

The Table 6.1 and Table 6.2 show the geometrical parameters (thickness, width and length) of the 

porcine duodenum specimens. 

 

Table 6.1. Geometrical parameters for the porcine duodenum samples D1 (values in mm). 

D1 L1 L2 L3 L4 L5 L6 T1 T2 T3 T4 T5 

t0 1.50 1.66 1.70 2.38 1.56 1.74 2.23 1.73 2.16 1.42 1.74 

w0 12.00 12.67 11.67 12.67 12.67 11.00 14.00 13.33 12.33 12.00 12.67 

l0 34 57 39 63 38 44 33 36 49 48 54 

 

Table 6.2. Geometrical parameters for the porcine duodenum samples D2 (values in mm). 

D2 L1 L2 L3 L4 L5 L6 T1 T2 T3 T4 T5 T6 

t0 1.24 1.39 1.04 1.44 1.21 1.32 1.72 1.60 1.33 1.84 1.57 1.58 

w0 9.00 12.67 9.33 8.67 10.00 9.67 8.67 10.33 9.00 11.67 12.00 11.33 

l0 56 43 39 40 46 39 41 42 42 35 41 47 

 

In the Figure 6.5, the first Piola-Kirchhoff stresses  11 (obtained from tensile tests of the 

longitudinal samples) and  22 (obtained from tensile tests of the transverse samples) are plotted against 

the stretch for each sample. For the matter of this report, only the elastic regime was considered. For 

modelling purposes, the data (Figure 6.5-a and Figure 6.5-b) was limited to a maximum stretch of 1.2 

in the longitudinal direction and to a maximum of 1.4 in the transverse direction – Figure 6.5-c and 



Mariana Carvalho EXPERIMENTAL TENSILE TESTS OF THE SMALL INTESTINE 

57 

Figure 6.5-d. This consideration was taken since damage evaluation is out of the scope of this work. 

This strain limitation ensures that the tested samples would not likely endure damage within this range 

(Ciarletta et al. 2009). Lastly, the average curve for each direction was represented in the Figure 6.5-c 

and Figure 6.5-d. 

 

  

 

(a)  (c)  

  

 

(b) (d)  

Figure 6.5. Stress-stretch data for the porcine duodenum in the longitudinal (a, c) and transverse directions (b, d). 

In (c) and (d), the curves were limited by an upper stretch to avoid mechanical damage and the average curves 

were drawn. 

 

6.2.2 Ileum 

The Table 6.3 shows the initial geometrical parameters of the tested specimens of the porcine ileum.  
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Table 6.3. Geometrical parameters for the porcine ileum samples (values in mm). 

I L1 L2 L3 L4 L5 T1 T2 T3 T4 T5 T6 

t0 0.90 0.68 1.07 0.78 0.80 0.81 0.76 1.02 0.96 0.93 0.84 

w0 8.00 8.67 8.33 8.00 9.33 9.00 9.67 9.00 7.67 10.67 10.00 

l0 40 49 37 59 40 49 49 49 50 46 50 

 

In the Figure 6.6, the curves stretch versus first Piola-Kirchhoff stresses  11 and  22 are presented 

for the ileum portion. Once more, these curves were limited by a maximum stretch of 1.2 in the 

longitudinal direction and to a maximum of 1.4 in the transverse direction. In the Figure 6.6-c and Figure 

6.6-d, the averaged curves were plotted. 

 

  

 

(a) (c)  

  

 

(b) (d)  

Figure 6.6. Stress-stretch data for the porcine ileum in the longitudinal (a, c) and transverse directions (b, d). In 

(c) and (d), the curves were limited by an upper stretch to avoid mechanical damage and the average curves were 

drawn.  
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6.3 Statistical Analysis 

For the statistical analysis, t-tests for samples with different sizes were performed to compare the 

thickness and mechanical properties in the duodenum and ileum, as well as the mechanical properties 

in the longitudinal and transverse directions. 

Departing from a null hypothesis of equality of the evaluated parameter’s mean in the two 

independent samples and an alternative hypothesis of having different means, the t-test can be applied 

for different (va x > 2va y     va y > 2va x) or similar (0.5 < va x/va y < 2) variances. A p val   

lower than 0.05 was considered an indicator of statistically significant difference. 

 

6.3.1 Thickness 

From the t-test for different sample sizes and different variances with the null hypothesis of equal 

thicknesses between the duodenum and ileum, it was possible to conclude that the thickness between 

portions is indeed different – Table 6.4 and Figure 6.7. 

 

Table 6.4. Mean thickness and respective standard deviations for the duodenum and ileum. 

 𝐭𝐨 ± 𝐒𝐃𝐕 (𝐦𝐦) 𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐒𝐩𝐞𝐜𝐢𝐦𝐞𝐧𝐬 

Duodenum 1.61 ± 0.32 23 

Ileum 0.87 ± 0.12 11 

 

 

Figure 6.7. Bar plot indicating the statistically significant difference between the duodenum and ileum thicknesses 

( 𝑝∗∗∗ < 0.0005). 

  

 I
0

0. 

1

1. 

 

 . 

T
h

ic
 

n
e

ss
  

m
m

 

   

 I
0

0. 

1

1. 

 

 . 

T
h

ic
 

n
e

ss
  

m
m

 



Mariana Carvalho EXPERIMENTAL TENSILE TESTS OF THE SMALL INTESTINE 

60 

6.3.2 First Piola-Kirchhoff Stress 

In the Figure 6.8, the average first Piola-Kirchhoff stress versus stretch curves and respective 

standard deviations for the longitudinal and transverse directions in the duodenum and ileum are plotted. 

 

 

 

Figure 6.8. Averaged stress-stretch curves for the porcine duodenum and ileum in the longitudinal and transverse 

directions with respective standard deviations. 

 

As a way to compare the mechanical properties of the small intestine, each sample’s curve was 

fitted to a bilinear regression (with slopes E1 and E2) and the comparison was performed based on the 

slope of each of the lines. The point I, separating the bilinear regimes, corresponds to the point where 

the local slope is 50% of the maximum – Figure 6.9.  

 

 

Figure 6.9. Bilinear regression of the stress-stretch curves with the slopes E1 and E2. 

 

I

I

E1 DL

E2 DL

E1 DT

E2 DT
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The t-tests were performed to compare the E1 and E2 slopes to determine if either different 

directions of the small intestine (longitudinal and transverse) or different portions of the small intestine 

(duodenum and ileum) had equal or non-equal properties. The results are drawn in the Figure 6.10 and 

the statistically difference was represented by * (p < 0.05), ** (p < 0.005) or *** (p < 0.0005).  

 

 

Figure 6.10. Bar plot indicating the statistically significant difference between the longitudinal and transverse 

directions and between the duodenum and ileum for the slopes E1 and E2 (p∗ < 0.05, p∗∗ < 0.005, p∗∗∗ <

0.0005). 

 

6.4 Passive Properties of the Small Intestine 

To derive the parameters of the material model (Martins model) from the experimental data, the 

first Piola-Kirchhoff, along the longitudinal and transverse directions, was obtained by the Equation 

(6.3), where λfl and λfc are the fibers’ stretch along the non-deformed directions 𝐍l = [1 0 0]T 

(longitudinal muscle layer) and 𝐍c = [0 1 0]T (circular muscle layer). 

𝐏 = 𝐅
∂Ψvol
∂𝐽

∂𝐽

∂𝐄
+ 𝐅

∂Ψmat

∂I1

∂I1
∂𝐄

+ 𝐅
∂Ψfib

∂λfl

∂λfl
∂𝐄

+ 𝐅
∂Ψfib

∂λfc

∂λfc
∂𝐄

 (6.3) 

 

For the interpolation of the results, the nonlinear least square method was used and the root mean-

squared error RMSE was gathered to validate the model’s accuracy (Ciarletta et al. 2009). 

 

6.4.1 Duodenum 

The experimental results were fitted by the average stretch versus first Piola-Kirchhoff curves of 

the uniaxial test in the material described by the Martins model. The fitted parameters are presented in 

the Table 6.5. The quality of the fit is characterized by a RSME close to 0, which is attained as 

RMSEmax = 0.0261 – Figure 6.11.  
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Table 6.5. Fitted values for the constitutive parameters of the Martins Model for uniaxial traction in the porcine 

duodenum. 

Parameters 𝐜 (𝐤𝐏𝐚) 𝐛 𝐀 𝐋𝐌(𝐤𝐏𝐚) 𝐚𝐋𝐌 𝐀 𝐂𝐌(𝐤𝐏𝐚) 𝐚𝐂𝐌 

Fitted values 1.000 0.500 30.692 20.000 10.099 6.818 

 

Figure 6.11. Fitting comparison of the first Piola-Kirchhoff stress for the uniaxial tests in the longitudinal and 

circumferential directions in the porcine duodenum. 

 

6.4.2 Ileum 

The constitutive parameters obtained for the ileum are displayed in the Table 6.6. The model’s 

accuracy is validated by RMSEmax = 0.0160 – Figure 6.12. 

 

Table 6.6. Fitted values for the constitutive parameters of the Martins Model for uniaxial taction in the porcine 

ileum. 

Parameters 𝐜 (𝐤𝐏𝐚) 𝐛 𝐀 𝐋𝐌(𝐤𝐏𝐚) 𝐚𝐋𝐌 𝐀 𝐂𝐌(𝐤𝐏𝐚) 𝐚𝐂𝐌 

Fitted values 1.000 0.505 22.638 19.418 79.880 3.873 

 

Figure 6.12. Fitting comparison of the first Piola-Kirchhoff stress for the uniaxial tests in the longitudinal and 

circumferential directions in the porcine ileum.  

RMSE = 0.0261

RMSE = 0.0048

RMSE = 0.0160

RMSE = 0.0096
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6.5 Discussion 

The small intestine’s thickness has been reported to decrease in the distal direction in rats (Dou et 

al. 2003). The same tendency was found in the human small intestine, where the wall’s thickness of 

several healthy patients was measured via ultrasound. In the latter study, it was observed that the wall’s 

thickness in the duodenum was greater, with mean and standard deviation values of 1.6 ± 0.3  mm, 

contrasting with 0.9 − 1.2 ± 0.3  mm, obtained from the jejunum until the sigmoid colon (Nylund et al. 

2012).  

In the present study, the wall’s thickness was also found dependent on the axial direction, as the 

average thickness was different in the duodenum and ileum (p < 0.0005). The obtained mean thickness 

and standard deviations of 1.61 ± 0.32 mm in the duodenum and of 0.87 ± 0.16 mm in the ileum are 

close to the findings of Nylund et al. (2012). The decrescent thickness along the tract was initially felt 

to the touch during the cutting process and it became a major issue while fixing the specimens in the 

tensile machine. This happened because the ileum specimens were significantly thinner. Even though it 

was paid extreme caution to maintain the specimens hydrated, it is important to bear in mind that some 

dehydration may have influenced the thickness measurements. The ileum specimens might have been 

the most affected by this since they were the last to be tested. This problem could have been solved if a 

measurement of the thickness had also been performed during the sample preparation/cutting. This 

would result in a more accurate average of the wall’s thickness. Additionally, it would also allow the 

removal of dehydrated specimens from the analysis by comparing both measured thicknesses. 

In uniaxial tensile tests performed in the human small intestine by Egorov et al. (2002), the 

mechanical properties have been reported to vary with the circumferential and longitudinal directions, 

the latter being the stiffer. In the rat’s small intestine, the longitudinal direction was also found stiffer 

than the circumferential (Dou et al. 2003). However, in biaxial tests performed in the porcine small 

intestine in the work of Bellini et al. (2011), this difference was not consistent, as some samples 

presented a stiffer longitudinal direction while others presented a stiffer circumferential direction.  

The obtained experimental results for the uniaxial tests on the small porcine of the Figure 6.8 show 

that the longitudinal direction is stiffer than the circumferential in both tested sections. However, the 

specimens’ rupture was, in average, most likely to occur at a lower stretch level in the longitudinal 

direction. The statistical t-test analysis was able to reject the null hypothesis of equality between the 

tube’s directions, which led to the assumption of different mechanical behavior in the longitudinal and 

circumferential directions. 

In the rat’s small intestine, a significant axial gradient has also been reported for its mechanical 

properties. This gradient has been linked to the functions of each portion of the small intestine: the stiffer 

duodenum is subjected to the gastric emptying, acting as a capacitative resistor; and the ileum acts as a 

reservoir. The authors have indicated that the reduction of the transit distally may be explained by 

different chyme’s viscosities and by an increasingly compliant wall (Dou et al. 2003).  
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When comparing the stress-stretch curves obtained in the uniaxial tests between the duodenum and 

the ileum sections, this differentiation is not as clear as in the previously referred study. Even though 

they are stiffer than the ileum in the longitudinal direction, the duodenum specimens harvested along 

the circumferential direction have presented themselves as more compliant. Moreover, looking into the 

statistical t-test analysis, this has indicated statistically different (p < 0.05) slopes E1 and E2 between 

the duodenum and the ileum, both in the longitudinal and circumferential directions. However, as an 

exception, this was not the case for the longitudinal direction of the duodenum and ileum for small 

stretch levels. These findings lead to the conclusion that the small intestine sections under analysis are, 

in fact, different, so it is justified to perform an individual fitting procedure for the duodenum and ileum 

stress-stretch curves. Nevertheless, in inflation tests performed in the rat’s small intestine by Sokolis 

(2017), it was found that the mechanical properties of each individual section vary along the axial 

position. Therefore, the attribution of mechanical properties to the entire duodenum, jejunum and ileum 

is a mere simplification of the biomechanical behavior of the small intestine. 

Even though a thorough methodology was employed for the uniaxial tensile tests analysis, some 

problems might have affected the obtained results. Thus, it is important to look at these conclusions as 

the results of an experimental method that could be greatly improved.  

In the tensile tests of the porcine large intestine, reported by Ciarletta et al. (2009), a width/thickness 

ratio near to 10 ensured plane stress state in the sample’s center and a mechanical response less receptive 

to the thickness variation. Yet, in the present work, this was not precisely followed, as ratios between 5 

and 13 were accepted to generate the average curves. Additionally, the gripping procedure was 

dependent on the force generated by the spring controlling the gramps closure. This proved to be a 

source of stress concentration, which led to the rupture of several specimens near their ends. The latter 

problem was not as critical as it could be expected, since an analysis localized merely in the elastic 

regime was employed. To improve the results’ accuracy, disposable polymeric holders could have been 

used to fix the samples in between the clamps, like in the work of Ciarletta et al. (2009).  

The analysis of the fitted constitutive parameters (to the Martins model), related to the fibers’ 

behavior, supported the already-mentioned comparison between the duodenum and ileum in the 

longitudinal and circumferential directions. Moreover, it is possible to see that the fitted matrix stiffness 

was the same in the duodenum and in the ileum. Comparing the matrix stiffness to the work of Ciarletta 

et al. (2009) for the large intestine, this was of the same order (1 k a), though a different strain energy 

function has been employed. 
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CHAPTER 7  

7. SIMULATION ON THE ACTIVE CONTRACTION OF 

SMALL INTESTINE 

 

A biomechanical model of the small intestine was developed to study the chyme’s propulsion 

during a peristaltic event, resultant only from the contraction of the circumferential muscle fibers. 

Several preliminary cases were analyzed to evaluate the influence of the small intestine’s mechanical 

properties and boundary conditions, the activation method and the propulsive resistance. This allowed 

the establishment of the model under analysis. Finally, the propulsive capability of the small intestine 

was compared (i) between the duodenum and the ileum; (ii) between different chyme stiffnesses; and, 

(iii) between healthy patients and the ones with gastrointestinal limitations, such as SS or ulcers.  

 

7.1 Model 

To simulate the chyme’s propulsion in the small intestine, a model was developed using the finite 

element software ABAQUS. In this study, the virtual segment of the small intestine was considered as 

a quarter of a 100 mm long cylinder with an internal radius of 10 mm and a thickness of 2 mm – Figure 

7.1. This geometry is similar to other cylindrical models of the small intestine reported in the works of 

Bellini et al. (2017) and Sinnott et al. (2017). Even though the small intestine was considered for this 

analysis with a circumferential profile, its empty lumen may constitute an ellipsoidal transverse 

configuration (Tobergte and Curtis 2013). 
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Figure 7.1. Biomechanical model of the small intestine as a quarter of a deformable cylinder. 

 

To ensure the incompressible behavior, the cylinder was meshed by C3D8H finite elements (8-

node linear brick hybrid elements with constant pressure) with active degrees of freedom U1, U2 and 

U3. A structured mesh of 6400 elements was used and this was kept constant throughout the different 

simulations.  

In other works, the chyme has been modelled as a fluid. In the work of Sinnott et al. (2017), the 

duodenal luminal contents were considered as a stationary Newtonian fluid with the density of water 

(1000 k / 3) and viscosity of 0.01  a s. This seems like a reasonable approach, as the chyme consists 

of a mixture of partially digested food with the gastrointestinal secretions (Sinnott et al. 2017), which 

ends up granting it a semifluid appearance (Guyton and Hall 2006). However, as this work aims to 

establish a comparison between the propulsive behavior instead of carefully looking into the flow 

behavior of the chyme, it was simplified as a spherical body. 

For the presented model, two approaches were considered to model the chyme. It was assumed 

either as an analytical rigid sphere (Figure 7.2-a) or as a quarter of a deformable sphere (Figure 7.2-b) 

with a radius of 11 mm. The chyme’s radius was chosen in such a way that the contact would induce a 

small distension of the muscle fibers of the small intestine’s wall, as the fiber’s stretch leads to the 

initiation of the peristaltic activity (Koeppen and Stanton 2018). 

Another model was considered, with axial springs connected from built-in nodes placed along the 

cylinder’s axis to the reference point of the analytical rigid sphere. This intended to represent the 

chyme’s continuity along the tract and the resistance associated with it – Figure 7.2-c. 
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(a) 

 

(b)  

 

(c)  

 

 

  

Figure 7.2. Biomechanical model for the chyme propulsion in the small intestine with the chyme modelled as an 

analytical rigid sphere (a), as a quarter of a deformable sphere (b) and as an analytical rigid sphere connected by 

springs in its reference point (RP) to built-in points in the axial axis of the cylinder (c). 

 

The model was defined so that the initial contact (discretized by a node to surface approach) 

between the small intestine (slave surface) and the chyme (master surface) was established by an 

imposed axial displacement of the chyme. This node to surface approach was used because it tolerates 

some penetration of the master surface in the slave, but not the opposite way around. Besides this, it also 

defines the contact direction by the normal to the master surface. For the tracking algorithm, the finite-

sliding was used as it allows relative separation, sliding and rotation between the contact surfaces (Smith 

2009).  

The normal behavior of the contact interaction between the outer surface of the chyme and the inner 

surface of the small intestine is constrained, for non-penetration of the slave nodes in the master surface, 

by a penalty method with a hard pressure-overclosure. This tolerates a slight penetration degree with the 

contact force proportional to the penetration distance, which does not influence the results of the 

simulation since the stiffness of the small intestine’s wall is much smaller than the one considered for 

the chyme. Additionally, by implementing the penalty method, no Lagrange multipliers are used. So, 

with this approach, the decreased number of degrees of freedom and the loose in the non-penetration 
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constrain lead to faster running times of the simulation. Regarding the frictional behavior, a uniform 

friction coefficient was used and the penalty method was employed as it allows some relative motion 

between the surfaces. 

In the static’s steps definition, the geometric nonlinearities were considered by including the large-

displacements effect. Moreover, some instabilities were expected to occur in the model due to the 

contact algorithm, nonlinear behavior of the material and localized increase of the stiffness caused by 

the contraction of circumferential fibers. These made impossible to obtain a converged solution. To 

overcome such instabilities, automatic stabilization was included in the expected unstable increments. 

The automatic stabilization consists of adding artificial viscous forces to the static equilibrium of the 

Equation (4.122) to reduce the motion resultant from considerable stiffness changes. In the Equation 

(7.1), the artificial viscous forces are represented by ζ 𝐌∗𝒗 (where ζ is the damping factor, 𝐌∗ the 

artificial mass matrix and 𝒗 the vector of the nodal velocities). 

𝐑 = 𝐅 ext − 𝐅 int − ζ 𝐌
∗𝒗 (7.1) 

 

In this work, a small constant damping factor of 1E 7 Ns/   was used. Even though the 

introduction of these artificial viscous forces changes the stiffness matrix of the boundary-value 

problem, it largely speeds up the obtainment of a converged solution. The introduced error was verified 

by comparing the stabilization energy (ALLSD) with the total strain energy (ALLIE) of the model, as it 

is recommended to keep the ALLSD lower than 5% of the ALLIE (Smith 2009).  

 

7.2 Mechanical Properties of the Small Intestine 

The incompressible behavior of the small intestine was ensured throughout the simulations by a 

bulk modulus of 1000 M a. This was enough to have a unitary Jacobian determinant.  

As previously mentioned, the small intestine has two layers of smooth muscle cells, each aligned 

longitudinally or circumferentially. Since the smooth muscle cells usually have a main contractile 

direction (Kroon 2009), two families of fibers with passive and active mechanical response were 

considered along these directions. To represent the model’s anisotropy in the UMAT subroutine 

(Ferreira et al. 2017), previously presented in the Figure 5.2 of the Section 5.4, the fibers’ direction in 

each finite element was determined. A geometrical procedure was carried out to obtain the fibers’ 

orientation by following the longitudinal and circumferential directions of a cylinder – Figure 7.3. 
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(a) (b) 

Figure 7.3. Fibers aligned in the circumferential (a) and longitudinal (b) directions. 

 

Considering only the passive behavior of the small intestine, the constitutive parameters 

(c, b, ACM, aCM, ALM, aLM) obtained in the Section 6.4 for the porcine duodenum and ileum were used – 

Table 6.5 and Table 6.6. For the active properties, these were obtained from force-velocity curves in the 

work of Gregersen et al. (2007), for both healthy and SS patients. With these considerations, the muscle 

peak stress was obtained as TO
M = 76.2 k a, for normal patients, and TO

M = 31.7 k a, for SS patients. 

To test the influence of an ulcer and its size in the chyme’s propulsion, two different ulcers with 5 

and 10 mm were considered in the inner surface of the small intestine– Figure 7.4. In the biomechanical 

models, these elements were set without contractile activity – α = 0. 

 

 

 

 

Figure 7.4. Small intestine ulcers with 5 (top) and 10 mm (bottom) in the inner surface. 

 

The direction of the fibers and the ulcer elements (elements not activated) were read in the 

beginning of the analysis in an UEXTERNALDB subroutine and passed into the UMAT as a COMMON 

BLOCK variable (Smith 2009) – Figure 7.5. 
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Figure 7.5. Connection between the UEXTERNALDB where the fibers direction and ulcer elements are identified 

and the UMAT subroutine. 

 

7.2.1 Influence of the Mechanical Properties Diameter Reduction of the Constriction 

The influence of the constitutive parameters of the matrix, of the passive behavior of longitudinal 

fibers and of the active parameter – muscle peak stress –, in the occlusion level produced by the 

contraction of the circumferential fibers, was investigated.  

To test this influence, a sustained contraction of the circumferential fibers at half-length of the 

cylinder was accomplished. The cylinder was considered simply supported along the axial direction in 

the surfaces Z0 and Z100, and with symmetry along the planes Oyz and Oxz. The detailed description 

of the implemented activation function is described in the Section 7.3.  

The method used was to vary the matrix properties (c, b), the passive properties of the longitudinal 

fibers (ALM, aLM) and the active properties of the circumferential fibers (TO
M) around constitutive 

parameters found for the normal duodenum.  

The matrix stiffness was found to have a great influence in the reduction of the inner diameter 

(Figure 7.6-a). This means that a stiffer matrix inhibits the deformation of the cylinder due to the 

contraction of the circumferential fibers. The same effect of decreasing the reduction of the inner 

diameter was found with stronger longitudinal fibers – Figure 7.6-b. Additionally, the stronger 

longitudinal fibers induced a smoother constriction along the cylinder, with the relative inner diameter 

being smaller than 100% at the cylinder’s ends. In opposition to the previously analyzed cases, rising 

the muscle peak stress of the circumferential fibers leads to greater occlusion – Figure 7.6-c.  
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(a) 

  

(b) 

  

(c) 

 

Figure 7.6. Influence of the matrix properties (a), passive properties of the longitudinal fibers (b) and active 

properties of the circumferential fibers (c) in the variation of the lumen relative diameter along the normalized 

distance of a longitudinal path of the inner surface. 

 

This test was quite relevant as it helped understand how these constitutive parameters influence the 

constriction ring configuration before restricting the analysis to the mechanical properties found for the 

small intestine.  
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7.3 Activation 

The activation of the muscular fibers was set as a space and time-dependent variable. To represent 

this intrinsic property, it was used an ABAQUS USDFLD subroutine, which allows to define field 

variables as functions of time or material quantities. At each time increment, the activation follows a 

function similar to the Figure 7.7. The USDFLD routine is linked to the UMAT using COMMON 

BLOCKS that are called at the beginning of each increment for each finite element’s integration points. 

 

 

Figure 7.7. Activation function in each time increment. 

 

Two methods of applying the activation were used while writing the USDFLD subroutine: position 

dependent USDFLD and element dependent USDFLD. In the first approach, the finite element would 

be activated only if the spatial coordinates of its integration points were within the limits [Z1, Z2]. By 

setting a speed for the activation propagation W, the reference position ZREF would move all through 

the cylinder. The flowchart for the position dependent USDFD and its link to the UMAT subroutine is 

presented in the Figure 7.8. 

 

 

Figure 7.8. Flowchart of the position dependent USDFLD and its link to the UMAT subroutine.  
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The element dependent USDFLD defines the activation level based on the finite elements’ mesh. 

By using a structured mesh with a defined number of elements along the radial (NES ), circumferential 

(NCIRC), and longitudinal (NLRAD/NES ) directions, it was possible to identify a set of elements in 

each increment to be activated around a reference position defined by ZREF. The activation function 

followed the same shape as before – Figure 7.7. However, as it is now applied directly to the element’s 

integration points, the central constant activation (DZI) is followed by a linear decrease (dependent on 

the number of finite elements’ columns (NEL = DZ − DZI)) until the activation’s limits. The flowchart 

for the element dependent USDFD and its link to the UMAT subroutine is presented in the Figure 7.9. 

 

 

Figure 7.9. Flowchart of the element dependent USDFLD and its link to the UMAT subroutine. 

 

7.3.1 Influence of the  ctivation  evel  long the   lin er’s Thickness 

A test was performed to evaluate the variation of the activation level, defined by the previously 

presented USDFLD subroutines, in several node paths within the cylinder’s thickness – Figure 7.10. In 

order to allow free contraction of the circumferential fibers, the material (properties found for the normal 

duodenum) was considered an isotropic matrix embedded with circumferential fibers. The maximum 

activation level was set to αmax = 0.2. 
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(a) 

 
 

(b) 

 
 

Figure 7.10. Evaluation of the activation level along different paths of the cylinder’s thickness applied with the 

position dependent USDFLD (a) and with the element dependent USDFLD (b).  

 

Even though it is a reasonable approach to define the activation level, the position dependent 

USDFLD can bring some difficulties when conjugated with large displacements and rotations. Firstly, 

having the fixed limits [Z1, Z2] defined along the longitudinal direction of the cylinder leads to an 

irregular distribution of the activation level between the finite element layers – Figure 7.10-a. This 

problem is caused by the disregard of the variation of the limits [Z1, Z2] along the thickness when the 

rotation of the elements is induced by the fibers’ contraction. Moreover, by having the limits [Z1, Z2] 

fixed until the activation reaches its maximum value, variations of the cylinder’s length are not feasible. 

In this case, the coordinates of the integration points of the desired elements for activation could be 

placed outside the limits [Z1, Z2]. Otherwise, the coordinates of the integration points of the undesired 

elements for activation could be placed inside the limits [Z1, Z2]. Taking this into account, the position 

dependent USDFLD approach is only recommended for materials operating in the small deformations’ 

regime to define, for instance, running loads.  

Looking now at the Figure 7.10-b, where the element dependent USDFLD was used, it is possible 

to attain that the limitations found in the former approach were surpassed. In fact, the activation level 

was found constant along the layers of finite elements. Furthermore, any variation in the cylinder’s 
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length would not influence the distribution of the activation as this is dependent on the finite element 

instead of the axial position. While being the most logical method for defining the activation level in 

this case, it has some limitations of its own, like being highly dependent on the finite element’s mesh 

and on the orientation of the integration points within the element. Even though the subroutine is 

developed to allow a variation of the number of finite elements along the radial, circumferential, and 

longitudinal directions, any changes in the mesh stack orientation or in the orientation of the finite 

elements would require adjustments in the developed FORTRAN code. However, the multiple 

simulations performed in this work have held the mesh constant. So, this was not considered a critical 

drawback and the element dependent USDFLD was used to define the activation level of the 

circumferential fiber.  

 

7.3.2 Implementation of the Peristaltic Wave in the Element Dependent USDFLD 

A peristaltic wave like the one depicted in the Figure 3.2 (Wood 2004a), which considers the 

contraction of the circumferential (constriction ring) and longitudinal (lumen’s enlargement) fibers, was 

initially considered. However, because of the properties found for the small intestine (longitudinal fibers 

stronger than the circumferential) and of the incompressibility constrain, the lumen’s enlargement effect 

was unable to be obtained. Although the longitudinal fibers’ contraction led to a stronger shortening of 

the small intestine, a localized increased of the thickness occurred in both radial directions. These 

findings resulted in the overlook of the contribution of longitudinal fibers to the peristaltic event. So, 

the work developed contemplates only the propelling constriction ring.  

The characterization of the activation level for a peristaltic wave, in the element dependent 

USDFLD, considers three steps, similarly to the Figure 3.3 (where the visual parameters applied for the 

constriction ring were defined). Firstly, a fixed contraction, resultant from the linear increase of the 

activation level of the circumferential fibers (tc), starts at the initial reference’s position. Then, the 

chyme’s propulsion occurs, as it is subjected to the movable constriction of the small intestine (tp) 

along the propagation length of the wave (ZWAVE = 30   ). Finally, the activation level of the 

circumferential fibers drops linearly (tr) – Figure 7.11. In the present analysis, the total time of the 

peristaltic wave (twave) was equally distributed among the previously mentioned steps and the wave 

time was represented by the dimensionless quantity t∗ (indicating the wave time normalized between 0 

and 1) – Equation (7.2). The evolution of the reference’s position during a peristaltic contraction is 

drawn in the Figure 7.11 and detailed by the Equation (7.2). The reference position ZREF remains 

constant during tc and tr. During the wave’s propagation (tp), ZREF depends on the step time in the 

beginning of the increment t0
inc and on the time increment ∆t. 
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Figure 7.11. Evolution of the activation level (ACT) of the circumferential fibers and reference position (ZREF) 

during a peristaltic contraction with the time t. The evolution of the ZREF was represented for a cylindrical wedge i 

(i = 1,… , NCIRC), containing a NLRAD number of finite elements, each identified by a number J ranging between 

(i − 1)NLRAD + 1 and NLRAD ∗ i.  
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(7.2) 

 

The evaluated simulations of the chyme’s propulsion start with an enforced axial displacement of 

the chyme (45   ) towards the entrance of the virtual small intestine’s section (which can be viewed 

as resultant from the emptying of the stomach in the duodenum). This stretches the muscular fibers of 

the intestine’s wall, inducing the described peristaltic event. 

The boundary conditions applied to the chyme, specifically the ones applied along the axial 

displacement ( 3), vary with the wave normalized time. The chyme is blocked during the development 

of the contractile ring and released in the remaining steps, as the sphere is supposed to be dragged along 

the tube. If the springs are connected to the chyme, the axial displacement of the last step is null to 

prevent the oral movement of the chyme due to the springs’ force. The degrees of freedom left (1,2,4,5,6 

for the analytical rigid sphere and 1,2 for the deformable sphere) stay fixed and constant over time – 

Equation (7.3). 
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7.4 Selecting Initial and Boundary Conditions for the Small Intestine 

An analysis of the boundary conditions imposed to the small intestinal portion was performed since 

the occlusion level depends upon these. The same model used in the Section 7.2.1 and Section 7.3.1 was 

employed, with a maximum activation level of αmax = 1. Three boundary condition cases were 

considered for this preliminary analysis (Figure 7.12): both ends fixed along the longitudinal direction 

(Z00); surface Z0 fixed along the longitudinal direction and surface Z100 free (Z0F); and, finally, 

surface Z0 fixed along the longitudinal direction and surface Z100 fixed to the ground, using springs 

with a stiffness of 1E 5 N/   (Z0S).  

 

(a) 

 

 

(b) 

 

 

(c) 

 

 

Figure 7.12. Boundary conditions applied to the small intestine’s ends: fixed-fixed Z00 (a), fixed-free Z0F (b) and 

fixed-springs Z0S (c).  

 

The variation of the lumen’s relative diameter along the normalized distance of a longitudinal path 

of the inner surface is drawn in the Figure 7.13 for each of the cases. 
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Figure 7.13. Variation of the lumen relative diameter along the normalized distance of a longitudinal path of the 

inner surface for three sets of boundary conditions applied to the small intestine’s ends: fixed-free (Z0F), fixed-

springs (Z0S) and fixed-fixed (Z00).  

 

Firstly, the ends were considered fixed along the axial direction (Z00). This is consistent with an 

ex vivo lab preparation of the intestine for evaluation of the peristaltic reflex. Usually, in these 

experimental procedures, the ends are tied and fixed along the longitudinal direction (Sinnott et al. 

2017). As already pointed out in the Section 3.2, the fixed ends diminish the ability of the small intestine 

to reduce its diameter during the activation of the circumferential fibers (Tobergte and Curtis 2013). 

From the Figure 7.13, it is possible to conclude that the smaller internal diameter’s reduction (50.26%) 

was obtained with the Z00 boundary conditions. Additionally, this resulted in a smoother constriction 

ring and in a continuous reduction of the internal diameter along the entire path, which is caused by the 

longitudinal fibers.  

Then, a second set of boundary conditions was used with the surface Z100 free. This would allow 

free lengthening of the tube and a greater level of occlusion. This situation is closer to the in vivo 

behavior of the small intestine (Tobergte and Curtis 2013). In fact, from the Figure 7.13, it is possible 

to observe a diameter reduction of 52.52%, which corresponds to a slight increase. Furthermore, as the 

length is free to shorten, the diameter reduction is localized. This is far different from the distributed 

diameter reduction found with fixed-fixed ends.  

Even though the shape of the constriction ring was similar to the expected, another approach was 

used to define the boundary conditions of the small intestine. The last attempt considered the surface 

Z100 connected to the ground by springs associated with the longitudinal displacement. This showed a 

slight level of resistance to the small intestine’s shortening, because the in vivo Z100 surface was 

supposed to be connected to the remaining small intestine. However, the stiffness of the springs was set 

with a small value of 1E 5 N/  , in order to allow the same free shortening level as if the surface Z100 

was merely free.  
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Finally, the cylinder’s boundary conditions can be described by the Z0S case – Figure 7.14. In order 

to assure radial symmetry, all nodes in the planes Oyz and Oxz were fixed in the circumferential 

direction. 

 

  

(a) (b)  

Figure 7.14. Cylinder’s boundary conditions: fixed with springs along the longitudinal direction to the ground in 

the surface Z100 (a); simply supported along the longitudinal direction in the surface Z0 (b); symmetry along the 

planes Oyz and Oxz (a) and (b). 

 

7.5 Selecting Propulsive Resistance 

To select the propulsive resistance described in the model by the friction coefficient and by the 

stiffness of the springs connected to the chyme, an analysis of these parameters was accomplished.  

The lubrication mechanism of the internal layer (mucus secretion) of the small intestine has a large 

impact in the propulsive capability and in protecting the wall from possible injuries (Yoshida et al. 

2003). The friction coefficient depends on the amount of water of the surface, being reduced with a 

higher percentage of water in the inner layers (Yoshida et al. 2003).  

Therefore, the friction coefficient was set variable to evaluate its influence in the chyme’s 

propulsion. The analysis was performed using the springless model of the Figure 7.2-a for the normal 

duodenum, using four different values for the friction coefficient, varying from the frictionless case to 

a fiction coefficient of 0.1. In the Figure 7.15, it is possible to see that the chyme’s propagation decreases 

largely due to higher friction values. The larger friction coefficient values can be interpreted both as the 

result of: dehydration of the small intestinal wall; or the interaction of the small intestine’s surface with 

medical devices, like capsule endoscopes (μ = 0.08 − 0.2) (Guo et al. 2020). Taking this into 

consideration, the friction coefficient of 0.001 was chosen to be used in the following simulations, as it 

would not negatively influence the chyme’s propulsion.  
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Figure 7.15. Displacement induced in the chyme by the contraction of the circumferential muscle fibers with 

variable friction coefficient.  

 

The second parameter which defines the propulsive resistance, also chosen based on the normal 

duodenum, is the stiffness of the springs connected to the chyme – Figure 7.2-c. This was selected in a 

way that would have a slight influence over the chyme’s propulsion, but that would not induce the tract’s 

obstruction or the chyme’s free passage towards the oral direction. From Figure 7.16, the springs 

stiffness was chosen as 0.01 N/ .  

 

 

Figure 7.16. Displacement induced in the chyme by the contraction of the circumferential muscle fibers with 

variable spring’s stiffness. 

 

7.6 Variation of the Propulsive Capability with the Distal Direction 

In the Chapter 6, the mechanical properties of the small intestine were found to vary along the axial 

direction. Therefore, two sets of constitutive parameters were used to differentiate the duodenum and 

the ileum. In this section, these constitutive parameters were incorporated into the model of the Figure 

7.2-c and the propulsive behavior was compared.  
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The evolution of the chyme’s displacement, resultant from the peristaltic event, drawn in the Figure 

7.17, indicates a slim decrease in the propulsive capability. This is consistent with the already described 

functions for each section. By propelling the chyme faster over higher distances, the duodenum helps 

the gastric emptying, while the slower and shorter transit in the ileum helps the digestion and absorption 

of nutrients (Dou et al. 2003). 

 

 

Figure 7.17. Displacement induced in the chyme by the contraction of the circumferential muscle fibers 

considering an axial variation of the mechanical properties of the small intestine in the duodenum and ileum. 

 

In the Figure 7.18, the absolute value for the axial reaction in the chyme (measured in the reference 

point) is plotted for the second step of the analysis. As the Z100 surface is free to shorten, the reaction 

in the chyme results from the equilibrium between the force generated by the contraction of the 

circumferential fibers (Fcont), the force generated by springs connected to the chyme and the force 

induced in the sphere by the small intestine’s shortening (Fshort) (opposite direction to the movement). 

By performing the comparison between the duodenum and the ileum, it is possible to verify that the 

reaction force in the duodenum’s simulation is higher and the force Fcont overweighs the Fshort quicker 

than in the ileum’s. This higher force should allow the mixture and propagation of the larger volume of 

intake luminal contents from the stomach. 
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Figure 7.18. Axial reaction force (absolute value) in the chyme measured in the reference point during a 

contraction of the circumferential muscle fibers considering an axial variation of the mechanical properties of the 

small intestine in the duodenum and ileum. 

 

Finally, the distribution of the maximum principal stress along a longitudinal normalized path in 

the inner surface for t∗ =
1

3
 (after full fixed contraction of the circumferential fibers) was plotted in the 

Figure 7.19. The first peak of the maximum principal stress matches the contraction of the 

circumferential fibers. Even though the circumferential fibers are stiffer than in the duodenum (Figure 

6.8), the biomechanical model for the ileum section showed a smaller principal stress in the occluding 

segment. This is related, not to the influence of the circumferential fibers, but, instead, to the influence 

of its more compliant longitudinal fibers. The second peak results from the passive stretching of the 

muscle fibers within the wall by the chyme. Here, the stronger circumferential fibers may be held 

responsible for the maximum peak present in the ileum.  

 

 

Figure 7.19. Distribution of the maximum principal stress in a normalized axial path on the inner surface of the 

small intestine considering an axial variation of the mechanical properties of the small intestine in the duodenum 

and ileum for t∗ =
1

3
. 
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7.7 Influence of Chyme Stiffness in Propulsion 

Up until now, the influence of the chyme’s stiffness was disregarded, and the simulations were 

performed with an analytical rigid sphere to model the chyme. However, the influence of the chyme’s 

stiffness in the propulsive capability of the small intestine is relevant because the contraction of the 

small intestine’s wall may induce deformation in the luminal content.  

Consequently, the model of the Figure 7.2-b, for the springless normal duodenum, was used with 

the chyme casted as an incompressible hyperelastic neo-Hookean material with C10 = 1 k a. The value 

for the material parameter C10 was chosen to be of the same order of the small intestine’s matrix 

stiffness. The axial movement of the chyme, generated by the active contraction of the circumferential 

fibers of the wall for the rigid and soft cases, is outlined in the Figure 7.20.  

 

 

Figure 7.20. Displacement induced in the chyme by the contraction of the circumferential muscle fibers with 

variable chyme’s stiffness. 

 

The Figure 7.20 reveals that, when analyzing the same peristaltic wave, a softer chyme is propelled 

along a shorter distance than a more rigid one. In fact, the reason behind this reduced propulsive 

capability is associated to the chyme’s deformation by the small intestine wall (Figure 7.21). Since a 

part of the energy generated by the peristaltic contraction is used to deform the chyme, the conversion 

into kinetic energy is reduced.  

 

   
Figure 7.21. Distribution of the maximum principal logarithmic strain on the model of the chyme for t∗ = 1.   
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7.8 Influence of Gastrointestinal Limitations in the Chyme Propulsion 

To evaluate the influence of gastrointestinal limitations in the chyme propulsion, the duodenum of 

a healthy patient was compared to the duodenums of a SS patient and an individual with an ulcer of 

variable size (Figure 7.4). The results for the propulsive displacement of the sphere and axial reaction 

force (absolute value) measured in the reference point of the chyme are presented in the Figure 7.22. 

 

(a) 

 

(b) 

 

Figure 7.22. Displacement (a) and axial reaction force (absolute value) (b) in the chyme measured in the reference 

point during a contraction of the circumferential muscle fibers in a normal patient, a SS patient and a patient with 

an ulcer of variable size. 

 

While comparing the propulsive behavior in each of these cases – Figure 7.22 –, it is possible to 

observe that, due to the muscular atrophy (Gregersen et al. 2007), the SS small intestine is unable to 

generate the same force as a healthy intestine, during the circumferential fibers contraction. 

Consequently, this leads to the propulsion of the chyme over shorter distances. Furthermore, the energy 

generated by the wall is much smaller in a SS patient, which is easily understood by the Figure 7.23.  

Looking now into the behavior of a portion of the small intestine with an ulcer without active 

capability in its surface, it is possible to see that the size of the damaged area may have a considerable 

influence in the force generated for the chyme’s propulsion – Figure 7.22. In fact, in the light of these 

results, it is most likely that patients with larger (and perhaps with more) ulcers in the small intestine’s 
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surface will experience a decreased propulsive capability. These assumptions follow both the results 

found for the force generated during the contraction and the results found for the energy produced by 

the organ – Figure 7.23. The ulcer introduces a localized variation of the energy produced by the wall, 

which can be seen between t∗ ∈ [0,
1

3
]. This variation decreases the energy induced and it is as big as 

the ulcer’s size. Though differences have not been found in the distance travelled by the chyme, it is 

possible to hypothesize that, if the damaged area of the mucosa was located within the propagation 

length of the peristaltic wave, the propulsive behavior could be impaired. 

 

 

Figure 7.23. Temporal variation of the strain energy in the duodenum for a normal patient, a SS patient and a 

patient with an ulcer of variable size. 

 

Finally, by analyzing the distribution of the maximum principal stress in a longitudinal normalized 

path of the intestine inner surface (Figure 7.24), it is possible to see that the maximum peak resultant 

from the contraction of the circumferential fibers occurred at lower tension in the SS duodenum. This 

is, once more, an indicator of the muscular atrophy. The presence of the ulcer also lowered the peak, 

especially for larger diameters of the injury.  

 

 

Figure 7.24. Distribution of the maximum principal stress in a normalized axial path on the inner surface of the 

small intestine duodenum for a normal patient, a SS patient and a patient with an ulcer of variable size for t∗ =
1

3
.  
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7.9 Final Remarks 

In this chapter, the small intestine was simplified as a quarter of a deformable cylinder with two 

families of muscle fibers along the longitudinal and circumferential directions. Instead of looking into 

the flow patterns of the chyme in the small intestine, this work focused on the comparison of the chyme’s 

propulsion in patients with gastrointestinal limitations. For such purpose, the chyme was simplified as 

a spherical body. 

The chyme’s propulsion in the small intestine is promoted by peristaltic contractions, which, in this 

work, overlook the contribution of the longitudinal fibers contraction in front of the chyme. This resulted 

from the failure in promoting the lumen’s enlargement, probably due to the incompressible restrain, the 

chosen boundary conditions and the mechanical properties of the wall (as the longitudinal fibers are 

much stronger than the circumferential). The peristaltic wave was defined only by a constriction ring 

resultant from the contraction of the circumferential fibers in the oral side of the chyme. Their activation 

signal was set by a space and time dependent variable in a USDFLD subroutine. 

The small intestine was considered with a free end connected by longitudinal springs of small 

stiffness to the ground to enable the free shortening of the tube, while considering a slim resistance level 

(which represents the physiological range of the small intestine’s shortening). Furthermore, a propulsive 

resistance was considered. This was represented by (i) the friction level in the contact between the small 

intestine and the chyme (which depends on the water percentage in the inner layers of the organ); and 

by (ii) springs connected to the chyme to represent the chyme’s continuity along the tract. 

The mechanical properties found in the uniaxial test for the duodenum and ileum were used in the 

simulations. It was possible to find smaller propulsive capability, as well as smaller propulsive force, 

developed by the wall in the distal direction. This corroborates with the biological functions of each 

section of the intestine, as the duodenum must propel the chyme further and develop higher forces to 

propagate the large volume intake resultant from the stomach emptying, and the ileum should enhance 

the absorption of nutrients.  

The propulsive capability with a variable chyme’s stiffness was also evaluated. It was verified that 

softer luminal contents are subjected to higher deformations, which lower the propelled distance.  

Finally, the comparison between healthy individuals and patients with gastrointestinal limitations, 

like systemic sclerosis and peptic ulcers, was established. It was found that the force generated by the 

peristaltic contraction would be decreased in these patients and that the propulsive distance could also 

be reduced.  
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CHAPTER 8  

8. CONCLUSIONS AND FUTURE WORK 

 

8.1 Conclusions 

In this work, a detailed study of the peristaltic movements in the small intestine was performed, in 

order to develop the contractile ring responsible for the chyme’s propulsion. 

The small intestine was treated as an incompressible transversely isotropic hyperelastic material 

according to the Martins Model (Martins et al. 1998) and its mechanical behavior was described by an 

ABAQUS UMAT subroutine (Ferreira et al. 2017). A similar constitutive model, considering the 

decoupling of the mechanical behavior of the intestinal wall based on microstructure considerations, has 

been employed previously in the work of Ciarletta et al. (2009) for the large intestine. 

To obtain the constitutive parameters for the analysis, uniaxial tests were performed in the 

longitudinal and circumferential directions of the small intestine. From these tests, it was found that the 

mechanical behavior of the small intestine varies both distally (along the sections of the tract – 

duodenum, jejunum, ileum) and with the considered direction (longitudinal and circumferential).  

The constitutive parameters were included into a biomechanical model in the software ABAQUS, 

with the purpose of testing the propulsive behavior of the small intestine during a peristaltic contraction. 

The peristaltic contraction was defined by a space and time dependent activation level of the 

circumferential fibers, later integrated into a USDFLD subroutine.  

The peristaltic activity in the small intestine is quite complex and, even with the multiple studies 

of the peristaltic reflex in vitro, the response of the small intestine to this contractile mechanism in vivo 

is still not completely clear (Tobergte and Curtis 2013). Therefore, it is important to outline that the 

results obtained in this work are valid within the scope of the simplifications employed for the shape 

and propagation of the peristaltic contraction, for the geometry and boundary conditions of the small 

intestine and for the material and shape of the chyme.  

Regardless, this research allowed the evaluation of the small intestine’s propulsion capability and 

the comparison between healthy individuals and patients with gastrointestinal limitations. It was found 

that the force generated by the peristaltic contraction would be decreased in these patients and that the 
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propulsive distance could also be reduced. In ulcer patients, the latter remains a hypothesis based on the 

work developed. Additionally, the influence of the mechanical properties of the small intestine’s wall 

(by comparing the propulsive behavior along the tract) and the mechanical properties of the chyme (by 

considering variable stiffness for the luminal contents) were also investigated. 

 

8.2 Future Work 

Even though reasonable stress-stretch curves were found in the Chapter 6 to describe the small 

intestine’s behavior, as these were similar to the findings of Egorov et al. (2002) and Ciarletta et 

al.(2009), the present analysis could be improved if at least 5 different small intestines had been 

subjected to uniaxial tests. Apart from the improvements already mentioned in the Section 6.5 (thickness 

measurement after cutting to avoid dehydrated specimens and polymeric holders for fixation), to 

complement the uniaxial tests, two shear tests along the circumferential and longitudinal directions 

could be additionally performed like in Ciarletta et al. (2009). 

In this work, the viscoelastic behavior of the small intestinal wall, though recognized, was 

disregarded. Future improvements could be presented by adding viscoelasticity to the model. Also, as 

the smooth muscle contraction is a complex interdisciplinary phenomenon, using a constitutive model 

which represents both the mechanical and chemical processes engaged in the activation of the muscular 

fibers could benefit the analysis (Kroon 2009). 

Enhancements in the definition of the model could also add value to the analysis, such as 

considering the chyme as a fluid or changing the boundary conditions applied to the small intestine by 

adding the mesentery. As the mesentery attaches the intestine to the posterior abdominal wall, 

considering a free small intestine only connected along the longitudinal direction to the mesentery would 

likely allow the in vivo free shortening.  

The friction coefficient was set constant for the entire contact length between the chyme and the 

small intestine. However, the mucus secretion by the mucosa cells could be considered localized and 

different friction coefficients could be set within the small intestine’s length. Specifically, a lower 

friction could be added in front of the chyme to enhance the propulsion. 

By implementing some of the described changes in the future, this model can become a powerful 

tool to evaluate the effects of gastrointestinal limitations in the chyme’s propulsion and the influence of 

the peristaltic contractions in the movement of capsule endoscopes.  
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APPENDIX A  

A DEFINITION OF THE ELASTICITY TENSOR FOR THE 

MARTINS MODEL  

 

The material elasticity tensor ℂ is given by: 

ℂ =
∂

∂𝐄
[
∂Ψvol
∂𝐽

∂𝐽

∂𝐄
+
∂Ψmat

∂I1

∂I1
∂𝐄

+
∂Ψfib

∂λf

∂λf
∂𝐄
] (A.1) 

 

The detailed development of each of the components of the Equation (A.1) is presented in the 

Equations (A.2), (A.3) and (A.4). 
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The second derivatives of 𝐽, I1 and λf to 𝐄 are obtained in the Equations (A.5), (A.6) and (A.7). 

∂2Ψvol
∂𝐽2

=
2

D1
 (A.5) 

∂2Ψmat

∂I1
2 = b2c [ b(I1−3)] (A.6) 

∂2Ψfib

∂λf
2 = 2aA [ a(λf−1)

2

] [1 + 2a(λf − 1)
2
] + TO

M f′SE(λf, α) (A.7) 

 

Finally, the derivative f′SE(λf, α) can be defined by (Martins et al. 1998): 

f′SE(λf, α)  = α {
−8(λf − 1) f   0.5 < λf < 1.5

0  t   wis 
 (A.8) 

 


