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Abstract

The thesis describes the theoretical framework of Finite Element Method implementation
based on variational principles and, subsequently, analyzes and compares results of two
formulations based on di�erent variational principles.

Fisrt, the governing equations of linear elastostatics are introduced, based on which
the Minimum potential energy principle is described, followed by the Hellinger-Reissner
variational principle.

The subsequent chapter derives the Finite Element Method in the context of other ap-
proximation methods and proceeds to formulate the stepping stones of the method, such
as the discretization process and the de�nition of shape functions. Two elements are de-
�ned, the Q4 element based on the irreducible formulation and the Pian-Sumihara element,
based on the Hellinger-Reissner mixed-�eld variational principle. Possible disadvantages
of some Finite Element Method formulations are discussed with emphasis to the previously
described elements.

Finally, Finite Element Method implementation requirements are described and possi-
ble methods to validate implementations are shown.

In the second part of the thesis the algorithm of the Finite Element Method imple-
mented as a part of the thesis is discussed, followed by validation of the model in a form
of a patch test and comparion of results to data in literature.

Subsequently, the two elements (Q4 and Pian-Sumihara) are tested in various situations
and their response and di�erences are observed. Namely, the elements are tested in response
to distortion, pure bending behaviour, combined shear and bending, and near incompress-
ible material model combined with di�erent types of element distortion. Benchmark cases
found in literature are used and comparison to other elements results for the same cases is
drawn where possible.

The element based on two �eld variational principle shows better results in all the ex-
amples, with signi�cant di�erences between the two elements. The Pian-Sumihara element
shows better behavior in bending as well as better response to the element distortion. In
bending dominated situation coupled with shear the Q4 element produces highly underes-
timated results while the Pian-Sumihara element deliveres results of the same quality as
other advanced methods which were tested on the same problem.

Keywords
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�Essentially, all models are wrong,
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û vector of prescribed displacements (chapter 2), approximated solution

(chapter 3 and further)

xiii



xiv LIST OF TABLES

B matrix associating shape functions derivatives
C constitutive matrix in two dimensions
D matrix operator
E constitutive matrix
G transformation matrix of stress �eld
H matrix associating shape functions
J Jacobian matrix
K sti�ness matrix
Pn projection matrix

α angle of rotation
δ �rst variation
ζ third natural coordinate
η second natural coordinate
λi arbitrary function
λ Lamé parameter
µ shear modulus
ν Poisson's coe�cient
ξ �rst natural coordinate
τ shear stress
φi known function which is equal to zero where boundary conditions are

prescribed
ψ known function which satis�es boundary conditions
Γ boundary to the general problem where boundary conditions are de�ned
Π potential energy
Πint internal potential energy
Πext external potential energy
Ω domain of a known function
α vector of unknown stress parameters
ε strain �eld
σ stress �eld
τ matrix of unknown stress parameters

Abreviations

2D two dimensional
3D three dimensional
CPU central processing unit
DOF(s) degree(s) of freedom
FEM Finite Element Method
GP Gauss point
PS Pian-Sumihara element
Q4 bilinear isoparametric quadrilateral element
TC test case



Chapter 1

Introduction

The Finite Element Method is a highly popular tool of today for solving di�erential equa-

tions. As such, it can be encountered in number of commercial softwares where it is applied

on various problems, e. g. mechanical behavior of �uids or solids. In meachanics of solids,

its use spans from the design of large civil engineering structures to smaller components in

mechanical engineering. The method is particularly popular, among other reasons, for its

relatively easy software implementation and the possibility of it's application to any do-

main shape. In mechanics of solids, any domain translates to di�erently shaped structures,

allowing variablity of the structures to which the method may be applied.

The method is used as an approximation to mathematical models, which would be oth-

erwise unsolvable or solvable only with immense di�culties. Generally, to take advantage

of any mathematical model, it is essential to understand the assumptions which were made

upon it's formulation.

The thesis aims to describe both of these parts of design of solid structures and com-

ponents, the model and the method which is commonly used to solve it.

The �rst part of the thesis will describe the basic model of solid materials response to

loading, that is the governing equations of linear elastostatics in three dimensions. Possible

simpli�cation to two dimensions will be also discussed. The equations present a boundary

valued problem in strong form.

Naturally, alternative but equivalent forms of the governing equations also exist. The

basis for the alternatives, also called weak forms, of the equations are basic physical princi-

ples. In the thesis the derivation of these principles, namely the Minimum potential energy

principle, the principle of virtual work and an alternative mixed principle, from the strong

formulation of the model of linear elastostatics will be described.

The following part will describe the Finite Element method to details. It will be �rst

shortly discussed in a context of other approximation methods, only to proceed to the

essential step of discretization and the formulation of the shape functions, which create

the �nite elements based on which the method received its name and which are the cor-

nerstone of the method. Other steps to allow software implementation of the method will

1



2 Introduction

be discussed, followed by de�nition of two elements for idelized two-dimensional problems

of plane stress and plane strain with emphasis on the software implementation.

One of the most popular 2-D elements is the bilinear quadrilateral. The element ap-

proximates locally an unknown �eld and may be used for irreducible or mixed formulations.

The element is popular even in commercial software, however it is unable to obtain

converging results for certain class of problems. In bending dominated situations, the shape

of the element is not able to capture the deformation which results in occurence of spurious

shear stresses, and subsequently, in a sti�er behavior of the element and underestimated

displacements. Also in case of nearly incompressible material for which the Poisson's

coe�cient ν → 0.5, the element is not able to deform in a way which would allow to

preserve the volume, resulting as well in a sti�er behavior.

Underestimating the de�ection of a structure to loading is naturally undesirable in

the design process and so the existence of such cases has been studied in the literature,

resulting in development and possible remedies.

The goal of the thesis, apart from describing both the model and the method of solving

the problem, is the implementation of an element based on the mixed-�eld variational

principle, which approximates two �elds instead of one �eld as in case of the irreducible

formulation.

The second element which will be described is a quadrilateral element based on a

mixed a principle, as developed by Pian and Sumihara in [5]. The element uses parameters

to approximate two �elds, displacements and stresses independently. It is an alternative

element to overcome the issues of the displacement-based Q4 element.

To allow for a comparison between the two elements, �nite element method algorithm

will be developed as part of the thesis, with both elements implemented. To validate the

implementation, a patch test will be performed and the elements will be applied to problems

to simple problems from literature. Following the validation, the algorithm will be used

to solve a series of problems involving shear and volumetric locking to observe di�erences

between the two elements and their response to di�erent types of loading and/or distortion.



Chapter 2

Linear elastostatics

2.1 Governing equations / strong formulation

Finite element method (FEM) around which the thesis revolves is only one possible way

of (approximately) solving the governing equations of linear elasticity. Before formulating

the method, it is �rst necessary to properly introduce the problem to which a solution is

sought. Unless explicitly stated otherwise, the equations are taken from Applied mechanics

of solids by Bower [7].

In mechanics of solids, a typical problem may be described in a following manner:

a body positioned in a certain way undergoes a deformation as a result of internal and/or

external loading and/or prescribed displacements. The amount of deformation which is

induced and consequently the stress which occurs in the body as a result is of interest and

serves as a basis for design or further research.

When a body is subjected to deformation, the process is commonly mathematicaly

described in any point of the body (in the volume V of the body) by a displacement

vector u, strain tensor ε and stress tensor σ (three dimensional form of the vector and

tensors is showed in Figure 2.1). Internal load is de�ned by vector b in the volume V

of the body, loading acting on the surface St̂ is de�ned by traction vector t̂ and displacement

is prescribed by a vector û on a surface Sû.
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Figure 2.1: Description of state at a point in three-dimensional linear elasticity.

3



4 Linear elastostatics

Relationships between these variables may be of di�erent forms, for example partial

di�erential equations. However, they might be simpli�ed by limiting the scope of the equa-

tions to account only for certain type of material behavior or time dependency of loading.

By such simpli�cation, linear elasticity is de�ned as a model describing very small and

reversible deformation of a body, which does not depend on history of loading nor on

the rate of loading. Furthermore, it also assumes linear dependency between stress and

strain, which may or may not be the same in each direction (isotropic material, orthotropic

and anisotropic material respectively). In addition, only small deformations, displacements

and rotations are assumed.

By preserving the above written and considering equations de�ning relationships be-

tween variables to be valid in each point of the volume V or surface S, the so called strong

formulation is de�ned. It may be conveniently described by Tonti diagram [8] (Figure 2.2)

where relationships between variables are visualized along with the simpli�ed equations.

u
Displacement

t̂
Prescribed 
traction

σ
Stress

ε
Strain

û bPrimary boundary 
conditions

Constitutive
equations

Kinematic 
equations

Equilibrium 
equations

Traction boundary 
conditions

û
Prescribed 

displacement

ub
Body force

Figure 2.2: Strong formulation of linear elasticity described by Tonti diagram.

In the diagram, each rectangle represents a variable, with the yellow rectangle symbol-

izing entry data �eld and blue rectangle symbolizing unknown �elds. The formulation is

static, so it is also called a boundary value problem. Each link of the diagram is completed

with the name of the equation and the equation itself in a component notation. The same

equations may be found in Table 2.1 along with their matrix notation, which is often used

for its conveniency in computer implementation.



2.1 Governing equations / strong formulation 5

component matrix

notation notation

Kinematic equations u - ε in V εij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
ε = Du

Constitutive equations ε - σ in V σij = Eijklεkl σ = Eε

Equilibrium equations σ - b in V
∂σij
∂xj

+ bi = 0 DTσ+ b = 0

Displacement boundary conditions û - u on Sû ui = ûi û = u

Traction boundary conditions σ - t̂ on St̂ σijnj = t̂i Pnσ = t̂

Table 2.1: Governing equations of linear elasticity.

Solution to elastostatic problem is to �nd displacement u, strain ε and stress σ �elds

(see Tonti diagram in Figure 2.2) such that the boundary conditions and the governing

equations are satis�ed.

In three dimensions, displacement u is commonly represented by a vector

u = { u1 u2 u3 }T (Figure 2.1a). Strain tensor ε (Figure 2.1b) may be casted to a vector

containing only independent components as ε = { ε11 ε22 ε33 2ε23 2ε13 2ε12}T , be-
cause εij = εji. Relationship between displacements and strains is commonly referred to as

the kinematic equations, where strain (the amount of deformation) is given by the symmet-

ric gradient of displacement. In matrix notation, the gradient is represented by a matrix

operator D as in the following equations.

ε = Du

ε11

ε22

ε33

2ε23

2ε13

2ε12


=



∂
∂x1

0 0

0 ∂
∂x2

0

0 0 ∂
∂x3

0 ∂
∂x3

∂
∂x2

∂
∂x3

0 ∂
∂x1

∂
∂x2

∂
∂x1

0




u1

u2

u3


(2.1)

To ensure that the strains are integrable and it is hence possible to obtain displacements

from the tensor, so called compatibility equations have to be satis�ed. In component

notation, the equation is following:

∂2εij
∂xk∂xl

+
∂2εkl
∂xi∂xj

− ∂2εil
∂xj∂xk

−
∂2εjk
∂xi∂xl

= 0 (2.2)

Given a continuous body, satisfaction of these conditions means that there is a unique

solution to the integration. In case of non-continuous bodies, the solution may not be

unique.



6 Linear elastostatics

Similarly to the strain tensor, stress tensor (Figure 2.1c) may also be cast to a vector

as σ = { σ11 σ22 σ33 σ23 σ13 σ12 }T . The two are linked via constitutive equations.

Linear proportionality between stress and strain is given by the material matrix E, also

often denoted by C in literature. It contains parameters of the body's material, essentialy

de�ning the body's response to a given strain. The matrix E, describing Hooke's law,

may be simpli�ed due to its symmetry to an invertible [9] 6 by 6 matrix (Equation 2.4).

For isotropic material the matrix depends two independent elastic constants: modulus

of elasticity E and Poisson's coe�cient ν. The constitutive equation has the following

form:

σ = Eε

σ11

σ22

σ33

σ23

σ13

σ12


=

E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2ν
2 0 0

0 0 0 0 1−2ν
2 0

0 0 0 0 0 1−2ν
2





ε11

ε22

ε33

2ε23

2ε13

2ε12


(2.3)

ε = E−1σ (2.4)

Relationship between stress in the body σ to the body forces de�ned by the vector b =

{ b1 b2 b3 }T is de�ned by the equilibrium equations, where matrix DT is the transpose

of the matrix operator of the kinematic equations (Eq. 2.1).

DTσ+ b = 0


∂
∂x1

0 0 0 ∂
∂x3

∂
∂x2

0 ∂
∂x2

0 ∂
∂x3

0 ∂
∂x1

0 0 ∂
∂x3

∂
∂x2

∂
∂x1

0





σ11

σ22

σ33

σ23

σ13

σ12


+


b1

b2

b3

 = 0
(2.5)

Displacement boundary condition simply states that, on a given surface Sû, the re-

sulting displacement u has to be equal to the prescribed displacement û. Stress �eld and

prescribed traction are related by traction boundary condition. In component notation, nj

is an outward unit normal relating stress to the traction on a speci�ed surface St̂. In matrix

notation, stress is represented by a vector of six independent components and traction is

represented by t̂ =
{
t̂1 t̂2 t̂3

}T
. Relation between them is provided by the projection

matrix Pn.
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Pnσ = t̂

n1 0 0 0 n3 n2

0 n2 0 n3 0 n1

0 0 n3 n2 n1 0





σ11

σ22

σ33

σ23

σ13

σ12


=

t̂1t̂2
t̂3

 (2.6)

2.1.1 Plane stress and plane strain

Commonly, the three-dimensional description from the previous part may be further sim-

pli�ed. Typical examples of such simpli�cation are plane stress, plane strain states or

axisymmetrical idealization [1]. Only the �rst two are descibed in this section, since they

will be later applied in case analysis. Axisymmetric idealization is described for example

in [10].

For both plane stress and plane strain, the unknown displacements, strains and stresses

are related to two dimensions, while variables related to the third dimension are either

assumed to be equal to zero or made dependent. The displacement vector and the tensors

then have the form as written below.

u = { u1, u2}T

ε = {ε11, ε22, ε12 }T

σ = { σ11, σ22, σ12 }T

As the name suggests, in the case of plane stress all the stresses are parallel to one

plane. It is often used to model thin plates loaded in the central plane of longest dimension

of the plate. Strain in the third direction, ε33 is dependent on σ11 and σ22, while ε31 = ε32 =

0. Displacement in the third direction is directly proportionate to the third coordinate.

Components of the stress tensor related to the out-of-plane direction, in this case denoted

by index 3, are equal to zero: σ33 = σ13 = σ23 = 0, while the other stresses are independent

of the third coordinate. Figure 2.3 shows the non-zero components of plane stress states,

while Eq. 2.7 shows the constitutive equation of plane stress.


σ11

σ22

σ12

 =
E

1− ν2

1 ν 0

ν 1 0

0 0 1−2ν
2



ε11

ε22

ε12

 (2.7)
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3D linear elasticity
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(c) Non-zero components
of the stress tensor σ.

Figure 2.3: Plane stress.

In the case of plane strain, no displacement occurs in the third direction, implying

ε33 = ε13 = ε23 = 0. However, to achieve this, the stress component of the third direction

σ33 6= 0 and is a dependent variable, while σ13 = σ23 = 0. The non-zero components

are depicted in Figure 2.4. Equation 2.6 describes the constitutive relation of plane strain.

3D linear elasticity
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of the displacement vector u,

3D linear elasticity
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3D linear elasticity
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(c) non-zero components
of the tress tensor σ.

Figure 2.4: Plane strain.


σ11

σ22

σ12

 =
E

(1 + ν)(1− 2ν)

1− ν ν 0

ν 1− ν 0

0 0 1−2ν
2



ε11

ε22

ε12

 (2.8)
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2.2 Weak form of the governing equations

In the formulation described in the previous section, the governing equations (Table 2.1) are

satis�ed at every point of the body. Unless a speci�c case is being solved, it is not possible

to obtain analytical solution via the strong form of the equations [1].

One of the possible approaches to �nding a solution to a more general problem is

to relax some of the equations from Table 2.1 by transforming the strong links, represented

by equations which are to be satis�ed at each point, to weak links, which satisfy them in a

weak, average sense.

The relaxation is performed by multiplying the equation by a function λi, whose value

is arbitrary, except for the surface where essential boundary condition1 is applied, where

the value of the arbitrary function equals to zero [1]. The function may be interpreted

in multiple ways which will be discussed later when applied to a particular formulation.

The multiplied equation is then integrated over the domain where the equation is de�ned.

The resulting weak form thus has the form of a functional and is also called integral form

of a di�erential equation.

Example of a weak form of the equilibrium equation is given below.

strong form weak form
∂σij
∂xj

+ bi = 0
∫
V

(
∂σij
∂xj

+ bi

)
λi dV = 0

Table 2.2: Strong and weak forms of the equilibrium equation.

By assigning an arbitrary value to the function λi, the equation is satis�ed at every

point and the weak form is equivalent to the strong form [11].

Multiple interpretations of the function λi are found in literature, as well as notation

of the function. For example Tchonkova [12] writes about test function in the context of ir-

reducible displacement model (section 2.2.1) and about the Lagrange multiplier in context

of the mixed formulation (section 2.2.2). If displacement variation is used, the method is

dubbed virtual displacements method [13].

Besides transforming strong links to weak links, it is necessary in the solving process

to select one or more primary �elds from the unknown �elds (displacement, stress and

strain �elds, represented with blue background in Figure 2.2). The primary �elds will be

later varied and obtained �rst in the solving process, with the other, secondary, �eld(s)

being derived from the primary �eld(s). If only one �eld serves as the primary �eld,

the resulting formulation is also called irreducible, otherwise the term mixed formulation

is used for a multiple primary �elds formulation [1].

Multiple combinations of weak links and primary �eld(s) may be chosen to solve the gov-

erning equations, which may serve as a basis for a particular Finite Element method for-

mulation, however, some have proven to be more advantageous in solving the governing

equations than others for di�erent types of structures [7].

1Essential boundary conditions are enforced via strong links.
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One of the most widely used forms is the displacement-based formulation, where dis-

placement is the only primary variable. It leads to a displacement-based Finite Element

method technique, which is usually implemented in commercial FEM softwares, such as

Abaqus [14]. The formulation will be described in the subsequent section 2.2.1. By weak-

ening the equilibrium equation, the total potential energy variational principle may be

derived, which will also be demonstrated in the section.

Subsequently, a mixed formulation with two primary �elds will be presented in sec-

tion 2.2.2 as a potential alternative to the irreducible displacement model, leading to the Hellinger-

Reisner variational principle.

2.2.1 Displacement based formulation

As brie�y mentioned in the previous paragraph, displacement based form is a one primary

�eld, irreducible formulation. Strain and stress �elds are related to the displacement �eld

via strong links, which is re�ected by a slight change in notation by adding upper index u:

strain and stress �elds are denoted by εu and σu respectively. Due to their dependency on

the primary �eld they are also called secondary �elds. Equilibrium equation and traction

boundary condition are weakened via similar procedure to the one described previously.

The Tonti diagram of the displacement irreducible model is shown below, complemented

by a table summarazing the equations on the next page.

u
Displacement

t̂
Prescribed 
traction

σu

Stress

εu
Strain

û bPrimary boundary 
conditions

Constitutive
equations

Kinematic 
equations

Equilibrium 
equations

Traction boundary 
conditions

û
Prescribed 

displacement

ub
Body force

Figure 2.5: Displacement based formulation of linear elasticity as described by Tonti dia-
gram.

In case of the present formulation, the arbitrary three-dimensional function λi (whose

value is equal to zero where essential boundary condition is de�ned) may be interpreted as

a variation of the displacement �eld, which translates the procedure to a virtual displace-

ments method:
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λi = δui = {δu1, δu2, δu3 }T

Type Equation in

of link component notation

Kinematic equations u - εu in V strong εuij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
Constitutive equations εu - σu in V strong σuij = Eijklε

u
kl

Equilibrium equations σu - b in V weak
∫
V

(
∂σu

ij

∂xj
+ bi

)
δui dV = 0

Displacement
boundary conditions û - u on Sû strong ui = ûi

Traction
boundary conditions σu - t̂ on St̂ weak

∫
St̂

(σuijnj − t̂i) δui dSt̂ = 0

Table 2.3: Displacement based model of linear elasticity.

By weakening the equlibrium equation, an expression corresponding to the exact vari-

ation of the total potential energy of a system Π with respect to displacement is obtained

Π (u + δu) = δΠ, thus also justi�yng the interpretation of the function λi as a virtual

displacement.

In mathematical sense, a stationary form of the functional is acquired by vanishing

the �rst variation as:

δΠ = 0 (2.9)

In the present single �eld formulation, the only possible stationary form of the func-

tional Π is extremal: minimum of the total potential energy functional. As such the Equa-

tion 2.9 is also known as the minimum of the total potential energy principle.

The procedure of obtaining the principle from the equations listed in Table 2.3 above is

described in the following paragraph, based on the process shown in [9], where also a more

detailed account of the procedure may be found.2 The equation of total potential energy

along with interpretation of its terms is given at the end.

The minimum potential energy principle from weak formulation In the �rst part

of the process, the weak form of the equilibrium equation is used. To make orientation

in the equations better, concatenated index notation is used for partial derivatives so

2The process is also often described inversely as the weak form of the governing equations may be
derived from the minimum potential energy principle [11].
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∂σu
ij

∂xj
= σuij,j . Additionaly, in the subsequent equations, surface S is the union of surfaces

where boundary conditions are de�ned as S = St̂ ∪ Sû.

∫
V

(
σuij,j + bi

)
δui dV = 0 (2.10)

The �rst term of the equation may be altered in the following manner using the Gauss

divergence theorem [18].

∫
V
σuij,jδui dV =−

∫
V
σuijδui,j dV +

∫
S
σuijnjδui dS (2.11)

=−
∫
V
σuij

1

2
(δui,j + δuj,i) dV +

∫
S
σuijnjδui dS (2.12)

=−
∫
V
σuijδε

u
ij dV +

∫
S
σuijnjδui dS (2.13)

The Equation 2.13 may be deduced from Equation 2.12 because of the strong link

between displacements and strains. In this step the strain �eld is essential substituted for

the strong form of the kinematic equation.

Subsequently, it is possible to substitute the expression of Equation 2.13 into Equa-

tion 2.10, obtaining the expression:

−
∫
V
σuijδε

u
ij dV +

∫
S
σuijnjδui dS +

∫
V
biδui dV = 0 (2.14)

The surface integral over the united boundary condition surfaces may be separated for

each boundary condition type. The integral over Sû contains variation of displacement

δui. By de�nition, the variation is equal to zero where kinematic boundary condition is

applied, yielding the whole term equal to zero (Equation 2.15). Consequently, the equation

may be altered to Equation 2.16.

∫
S
σuijnjδui dS =

∫
Sû

σuijnjδûi dSû +

∫
St̂

σuijnjδui dSt̂ =

∫
St̂

σuijnjδui dSt̂ (2.15)

−
∫
V
σuijδε

u
ij dV +

∫
St̂

σuijnjδui dSt̂ +

∫
V
biδui dV = 0 (2.16)

From the weak form of traction boundary condition an equivalent form of the traction

surface integral may be obtained (Equation 2.17).

∫
St̂

(σuijnj − t̂i) δui dSt̂ = 0 −→
∫
St̂

σuijnj δui dSt̂ =

∫
St̂

t̂iδui dSt̂ (2.17)
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Substitution into the equation than conveniently introduces the traction vector t̂ into the ex-

pression. Resulting equation obtained by the substitution for the surface integral is

known as the weak form of the boundary value problem. The equivalency to the vari-

ation of the total potential energy of the system with respect to the displacement vector

Π (u + δu) = δΠ = 0 (Equation 2.18) is shown in the subsequent paragraph.

−
∫
V
σuijδε

u
ij dV +

∫
St̂

t̂iδui dSt̂ +

∫
V
biδui dV = 0 (2.18)

The minimum potential energy principle According to Washizu, the principle may

be stated as follows: �Among all the admissible displacements ui which satisfy the pre-

scribed geometrical boundary conditions, the actual displacements make the total potential

energy stationary.� [9, p. 28]

The total potential energy of a system Π consists of two parts: the internal potential

energy Πint and the external potential energy Πext:

Π = Πint −Πext

Πint =
1

2

∫
V
σuijε

u
ij dV

Πext =

∫
St̂

t̂iui dSt̂ +

∫
V
biui dV

The internal potential energy is essentialy the sum of the strain energy density stored

in the body U = 1
2σ

u
ijε

u
ij . The external potential energy describes the energy density

of the external forces, which are the traction t̂i applied on the surface St̂ and the body

force bi acting in the volume of the body V .

Both Πint and Πext describe the work which is done by the respective forces, whether

internal or external, by a potential of these forces. The combination of the two suggests

that the resulting displacement �eld places the system in a state of static equilibrium.

It was previously mentioned, that the variation with respect to displacement �eld is

called the virtual displacement method. Following the work interpretation of the potential

energy given above, the equation 2.18 may be also explained in a wider context as a speci�c

case of the principle of virtual work, the principle of virtual displacements. In this case,

the virtual work is done by applied (real) forces on the virtual displacements, which are

expressed in the mathematical formula as a variation of displacmenets δui.

Another one �eld variational principle often used is a total complementary energy prin-

ciple, also called Castigliani's principle [9]. Analogically to the irreducible displacement-

based model which was described in this section, Castigliani's principle is based on the stress

�eld as a primary variable, with respect to which the total potential energy is varied and
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base on which the strain �eld and displacement vector is obtained. The procedure is also

called the principle of virtual forces, where virtual work is computed as the work done

by virtual forces done real displacements, which is also speci�c example of the principle

of virtual work. According to Washizu [9], the total potential energy principle and the to-

tal complementary energy principle are: �reciprocal and equivalent to each other as far as

the small displacement theory of elasticity is concerned�.
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2.2.2 Hellinger-Reissner variational principle

The previous model has seen the variation of displacements as a means of obtaining the min-

imum of the total potential energy. As a possible extension to the procedure, the variation

of another �eld may be added, leading to a two-�eld variational principle. From a mathe-

matical point of view, the two �eld principle may be constructed by choosing any internal

�eld, that is displacement, strain, or stresses. One of the more widely known and used is

the Hellinger-Reissner variational principle, in which variation of stress and displacement

�eld is done [15].

As in the previous cases, the principle is represented by Tonti's diagram [8] in Figure

2.6.

u
Displacement

εu
Strain

û

b

Primary boundary 
conditions

Kinematic 
equations

Equilibrium 
equations

û
Prescribed 

displacement

ub
Body force

t̂
Prescribed 
traction

σ
Stress

εσ

Strain

Constitutive
equations

Traction boundary 
conditions

Figure 2.6: Tonti's diagram of the Hellinger-Reissner variational principle.

There are two primary �elds: displacement and stress �eld. Two slave �elds are present,

following the notation outlined in the previous section, the strain �eld εu is obtained via

kinematic equation and the strain �eld εσ is obtained by inverting the constitutive law

as in the context of linear elasticity, the material matrix E is invertible. Connection

between the two strain �elds is weak, created via the same method as in the previous

cases. As in the irreducible displacement-based formulation, the equilibrium equation and

the traction boundary condition remain in the weak form.

All of the equations are summarized in the Table 2.4.
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Type Equation in

of link component notation

Displacement
boundary conditions û - u on Sû strong ui = ûi

Kinematic equations u - εu in V strong εuij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
εu - εσ in V weak

∫
V

(
εuij − εσij

)
δσij dV = 0

Constitutive equations εσ - σ in V strong εσkl = E−1
ijklσij

Equilibrium equations σ - b in V weak
∫
V

(
∂σij
∂xj

+ bi

)
δui dV = 0

Traction
boundary conditions σ - t̂ on St̂ weak

∫
St̂

(σijnj − t̂i) δui dSt̂ = 0

Table 2.4: Equations of the Hellinger-Reissner variational principle.

The contribution of the weak links yields:

∫
V

(
εuij − εσij

)
δσijdV −

∫
V

(
∂σij
∂xj

+ bi

)
δui dV +

∫
St̂

(σijnj − t̂i) δui dSt̂ = 0 (2.19)

Following the alternations done in the previous sections in Equations 2.11 to 2.13, part

of the second term of Equation 2.19 may be altered as:

−
∫
V
σuij,jδui dV =

∫
V
σuijδε

u
ij dV −

∫
S
σuijnjδui dS (2.20)

By substituting back into equation 2.19, the volumetric integral terms (2.21) and

the surface integral terms (2.22) are following:

∫
V

(
εuij − εσij

)
δσijdV −

∫
V
biδui +

∫
V
σijδε

u
ij dV+ (2.21)∫

St̂

(σijnj − t̂i) δui dSt̂ −
∫
S
σijnjδui dS = 0 (2.22)

The variation of displacements δui is zero where kinematical boundary conditions are

applied and the variation of stresses δσij is zero where traction is prescribed.

As described in the previous paragraph, S = St̂ ∪ Sû and the function, in this case

variation of displacements δui, is equal to zero on Sû. By dividing the surface integrals,

subtracting and eliminating the zero terms on Sû, the following equations is obtained [12]:
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δHR =

∫
V

[(
εuij − εσij

)
δσij − biδui + σijδε

u
ij

]
dV −

∫
St̂

t̂i δui dSt̂ = 0 (2.23)

Which is the exact variation of the HR functional:

HR =

∫
V

[
σijε

u
ij −

1

2
σijE

−1
ijklσkl − biui

]
dV −

∫
St̂

t̂i ui dSt̂ = 0 (2.24)

In alternate notation as:

HR =

∫
V

[
1

2
σij(ui,j + uj,i)−

1

2
σijε

σ
ij − biui

]
dV −

∫
St̂

t̂i ui dSt̂ = 0 (2.25)

The �rst term contains the kinematic equation, while the second term is the com-

plementary energy density U* = 1
2σijε

σ
ij , which is calculated based on the stress master

�eld.

As in the minimum potential energy principle, the principle (Equation 2.25) may be

divided to the �internal� part, comming from deformation and the �external� part of applied

traction and body forces. As in the displacement based formulation, the functional �re�ects

an energy state�:

HR = HRint −HRext

HRint =

∫
V

[
1

2
σij(ui,j + uj,i)−

1

2
σijε

σ
ij

]
dV

HRext =

∫
V
biuidV +

∫
St̂

t̂i ui dSt̂

(2.26)

Mathematically, by variation of the HR functional δHR, a stationary point is obtained,

which is the solution to a boundary value problem. Contrary to the minimum potential

energy principle, where variation with respect to ui yields, as the name suggest, pure min-

imum, the mixed-�eld variation results is a saddle point, also called min-max problem

which requires special attention in ensuring stability of the formulation (see chapter 4) [1].

According to Tchonkova [12], one interpretation of the mixed formulation is that of a con-

strained minimization problem, where the contstraint is introduced via Lagrange multiplier

in the equilibrium equations.
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Chapter 3

Finite Element Method

In has been mentioned many times in the previous chapter, that weak formulation serve

as a basis for the development of the Finite Element Method (FEM). The formulations

have given possibilities to �nd an approximative solution to the boundary value problem.

However, in the form of di�erential or partial di�erential equations (and equivalent state-

ments), the weak forms are equivalent to that of the strong form and do not o�er solution

as of themselves [1]. The description of a deformation of a body is in this form continuous

and as such, is only solvable via mathematical manipulation. If solved in this manner,

the solution is exact, however, the exact solution many times may not even be obtainable

and furthermore, the need for analytical (closed-form) solution also limits the scope of ap-

plication for the required knowledge as well as the possibility of software implementation.

Althouth the present thesis is written only in the scope of small displacements, de-

formations and rotations, the same statement could be applied to solution of many other

mathematial models encountered in physics, such as �uid dynamics [16], electromagnetism

or heat conduction [8].

Alternative approach to the solution of the presented continuous equations is an e�ort

to sought an approximation to the exact solution. A summary of approximative methods is

given in the �rst section of the chapter for context. Subsequently followed by the description

of the Finite Element Method.

3.1 Approximation methods

3.1.1 Weighted residual method

The solution to a general problem described by ordinary or partial di�erential equations

may be approximated via linear combination of linearly independent functions de�ned over

the whole domain. By solving for the appropriate combination parameters an approximate

solution is obtained [1]. Unless stated otherwise, the de�nition was taken from [17].

Let us suppose that our problem is de�ned by an equation Au = f where A is a linear

di�erential operator, u is an unknown function de�ned in a domain Ω and f is a known

19
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function. Boundary conditions may be inscribed on part of the boundary Γ as Bu = r,

where r are the prescribed values, or on their variation as Bu = q, where q is the prescribed

value of a derivative.

The approximative solution û ≈ u to the problem may be represented as a set of linearly

independent functions (Equation 3.1), which satisfy the boundary conditions (Equation 3.2

and 3.3) as:

u ≈ û = ψ +

n∑
i=1

aiφi (3.1)

Bψ = r (3.2)

Bφi = 0 (3.3)

The function ψ is known and de�ned as any function which full�lls the prescribed values

of boundary conditions (Equation 3.2) while functions φi are known and equal to zero on Γ

where boundary conditions are prescribed (Equation 3.3). The latter are also often called

test functions.

There are certain requirements imposed on the set of the test functions so that qual-

ity approximative solution is obtained. The set should consists of linearly independent

functions, so that when the number of trial functions approaches in�nity n→∞, the ap-

proximative solution û converges to the exact one u.

Multiple methods has been formulated throughout the years to obtain the unknown

coe�cients. Zienkiewicz mentions in [1] for example the point collocation method, the sub-

domain method or the Galerkin method.

Galerkin method Among the approaches to solve for the unknown coe�cients in the weighted

residual method described in the previous paragraphs, the Galerkin method is often men-

tioned as the stepping stone to the Finite Element process of discretization [1].

Recalling the example of the previous paragraphs, a so-called residual to the approxi-

mative solution (Equation 3.1) may be formulated (Equation 3.4), which has the following

form after substituting the original equation [17]:

R = A û− f (3.4)

R = A ψ +

n∑
i=1

aiA φi − f (3.5)

Using similar technique to the creation of weak form of di�erential equations outlined

in section 2.2, the residual R may multiplied at each point by so-called weighing functions

Wi and be summed over the domain Ω, in a weak form of a functional [1] as:
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∫
Ω
WjRdΩ (3.6)

If the number of weighing functions Wj , m, is the same as the number of test func-

tions of the second term n, the equation permits to obtain the coe�cients ai via system

of equations Ka = f as:

Kij =

∫
Ω
WjA φidΩ (3.7)

fj =

∫
Ω
WjfdΩ −

∫
Ω
WjA ψdΩ (3.8)

To obtain the residual as the null function, the trial functions should be a complete

set [18].

3.2 Discretization in the FEM

The discretization process of the FEM utilizes a particular choice of the functions ψ and

φi, which are not de�ned over the whole domain, but instead only on parts of the do-

main. Additionaly, the integration performed to obtain the residual leading to the system

of equations is performed locally on the relevant part of the domain. The part of the do-

main where a particular function is de�ned is, in the framework of the method, called

element [1]. Since there is �nite number of such elements, it gave name to the method.

The points dividing the domain into segments (elements) are conventionally called

nodes, which in conjunction create the mesh [1].

It was already mentioned that to obtain a quality approximative solution which con-

verges to the exact solution upon increasing the number of the functions, the set of func-

tions should be a complete set [18]. Naturally, throughout the development of the method,

various types of functions has been employed, for example Fourier series in [19]. In con-

temporary software and implementations, often a polynomial functions are employed [14].

There are three requirements for the trial functions to ful�ll [1]:

1. continuity: each function has to be continuous on the domain,

2. completeness: the functions must be a complete set,

3. linear independence: none of the trial functions may be linearly dependent.

For illustration, and while re�ering to the same problem which was described in previous

pragraphs in one dimension (Equations 3.1 to 3.2), a set of simple polynomial functions

may be de�ned in a following manner [1]:
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φi = Ni =



0 x < xi−1

x−xi−1

xi−xi−1
xi−1 ≤ x < xi

xi+1−x
xi−1−xi xi < x ≤ xi+1

0 x > xi+1

(3.9)

This particular set of functions is continuous in x (C0, shown in Figure 3.1a), while their

derivatives are only continuous on the respective domain of the function with discontinuities

at nodes, that is piecewise continuous (Figure 3.1b). The functions are in the context

of FEM referred to as shape functions. Generally, the approximative solution is obtained by

addition of the shape function, while the same functions serve to obtain values in between

nodes via interpolation [1].

(a) C0 continuous polynomial functions. (b) Piecewise continuity of shape functions
derivatives.

Figure 3.1: Shape functions of one-dimensional Finite Element Method example, graphs
taken from [1].

The convergence of the solution was earlier conditioned by increase ofn the number

of shape function. Given the de�nition of shape functions and the discretization they

present, in the context of FEM it translates to increasing the number of nodes (and ele-

ments) in the mesh. The procedure is re�ered to as h-re�nement [20].

Alternatively, it is possible to increase the polynomial order of shape functions from p =

1 presented in Equation 3.9. As in the case of h-re�nement, with higher polynomial order

of the shape functions, the solution should converge to the exact solution. The procedure is

called p-re�nement [20]. The possibility of p-re�nement which might be easily implemented

is one of the advantages of the Finite Element Method [1].

As an example of such a re�nement to the above shown function may serve the following

graph, where shape functions for the bar element with polynomial order p = 2 are shown [2].
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(a) p = 1 shape functions. (b) p = 2 shape functions.

Figure 3.2: p-re�nement of the FEM, graphs taken from [2].

According to Zienkiewicz [1], one drawback of the procedure is the need of new com-

putation, since the p = 2 polynomial order requires the use of di�erent shape functions.

The shape functions are de�ned on the whole domain, but their value is non-zero only

in parts of the domain, on respective elements. So the functions may be used in local

coordinates for each element. The local coordinate system is often called natural with its

axes being denoted (in three dimensions) by ξ, η and ζ. In case of the above shown 1D

functions, in natural coordinate system they have the following form [17]:

d
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d

d

d

x

x

y

(a) I-th element in the global coordinate system.

d
d d

d

d

d

d

d

x
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y

(b) Shape functions in natural coordinates of the same element.

Figure 3.3

The approximation of the solution in the natural coordinates then takes the following

form [17]:

ûei (ξ) = N1(ξ)ue1 +N2(ξ)ue2, −1 ≤ ξ ≤ 1 (3.10)
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The superscript e denotes value in the local coordinate system. The values of shape

function N1(−1) = 1 and N1(1) = 0, in case of the shape function N2 the values are oppo-

site in a sense that N2(−1) = 0 and N2(1) = 1. Subsequently, the values of the unknown

coe�cients uei and uei+1 represent the value of function ûe in nodes which are obtained

via linear combination of the two terms, as in Equation 3.10. Consequently, the nodal

value of the approximatian in local coordinate system is equal to the global nodal values

as ûe(−1) = uei = ui and û
e(1) = uei+1 = ui+1 [17]. Last but not the least, the use of ξ

interval −1 ≤ ξ ≤ 1 facilitates the use of Gauss numerical integration, which may also be

performed locally in the natural coordinate system [4].

Linear elasticity is only one of the �eld in which Finite Element Method is used as an

approximation method [8]. The unknown parameters at nodes, here denoted by ue1 and ue2
in the local coordinates and by ui and ui+1 in the global coordinates can represent various

variables. In the context of the displacement based model of linear elasticity which was

presented in section 2.2.1, the unknown parameters are an approximation to displacements,

from which the strain and stress �elds are derived [1]. In case of the latter formulation based

on the Hellinger Reissner two-�eld variational principle, unknown parameters to represent

both displacement and stresses are present [5]. Speci�cs of the implementations will be

discussed in sections describing the particular elements: displacement based Q4 element

in section 3.3 and the mixed principle based Pian-Sumihara element in section 3.4.

Isoporametric elements are elements in which the same shape functions are used to in-

terpolate geometry between the nodes in global coordinates [1]. When mapping from

the local coordinate system and vice versa, a one-to-one relationship is established be-

tween the two [17]. Remembering Equation 3.11, the relationship may be described as:

xe = N1(ξ)xei +N2(ξ)xei+1 (3.11)

Generally, the two formulas for higher order polynomial shape functions might be

generalized as [1]:

ue ≈ ûe =
n∑
a

Na(ξ)ûa,

n∑
a

Na = 1 (3.12)

xe =

n∑
a

Na(ξ)xa (3.13)

The sum of shape functions equals to one, which is known as partition of unity [1].

In addition to the isoparametric formulation, there are also subparametric elements,

for which the functions for geometry interpolation are of a lower degree than those of nodal
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values approximation. Additionaly, the inverse may be used, giving rise to superparametric

elements [21].

Numerical integration is an integral part to the computational process, which allows

easy implementation to software solutions. Given the formulation of isoparametric elements

and the local (also called parent [1]) coordinate system, the integration may be done

in the local system instead of the global one [4].

In Finite Element Method, often a Gaussian quadrature is used because of it's straigh-

worward implementation [1]. This type of numerical integration is also used throughout

the thesis and is used interchangeably with the term numerical integration. Other types

of numerical integration are presented for example in [18].

The numerical integrations allows a transformation between the summation in integral

form and it's equivalent form, when function value in certain points is taken and multiplied

by weights, given coe�cients. In one dimension [21]:

∫ b

a
f(ξ)dξ ≈

∑
j

wjf(ξj) (3.14)

where f(ξ) is a function in the local coordinate system evaluated at a given point ξj , which

is also called Gauss point (GP). The boundaries a and b are ξ values in the natural coordi-

nate system. In the previously shown 1D element, a = −1 and b = 1, which is an advantage

of using the local coordinate system - one can work with convenient values for the inte-

gration [21]. The numerical integration may not produce the exact value of the integral,

hence the approximate sign ≈. According to Zienkiewicz [1], if used correctly, the accuracy

is su�cient for use in the Finite Element Method.

The obtained value needs to be transformed to the global coordinate system to be used

with other elements. Comming from the global formulation, the formula may be written

as:

∫ i+1

i
F(x)dx =

∫ 1

−1
F(ξ) |Je| dξ (3.15)

where the jacobian |Je| is derived from the one-to-one relationship between the geometry

of local and global coordinates [17]:

dx =

(
1

2
xei+1 −

1

2
xei

)
dξ (3.16)

The equivalent operation in two dimensions will be explained in the following section,

which describes a two-dimensional isoparametric element Q4.
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3.3 The Q4 element

The Q4 element is one of the most commonly used two-dimensional isoparametric element

in the Finite Element Analysis [1].

The shape functions are linear in both directions, so the element is bilinear. The element

has 4 nodes, when applied to 2D elasticity problems each has two degrees of freedom (DOFs)

assigned, so in a total of 8 DOFs. The unknown parameters are the displacements in each

node, in two directions. The global displacement �eld consists of displacements inside each

element, to which a structure is discretized. Per one element, the degrees of freedom are

denoted as:

ûT = { u1, v1, u2, v2, u3, v3, u4, v4 }T (3.17)

The element makes use of the previously described concept of isoparametric element,

so there is one-to-one relationship between the element in global coordinates and the local

coordinates. Both are described in the following �gures along with the degrees of freedom.
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(a) Q4 element in global coordinate sys-
tem.
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d
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(b) Q4 element in the parent, local coordi-
nate system [1].

Figure 3.4: The Q4 element.

The shape function are [1]:

N1 =
1

4
(1 + ξ) (1 + η )

N2 =
1

4
(1− ξ) (1 + η )

N3 =
1

4
(1− ξ) (1− η )

N4 =
1

4
(1 + ξ) (1− η )

(3.18)
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The relationship between the nodal values, whether of displacements (Equation 3.19) or

the geometry coordinates (Equation 3.20) is mapped via the same shape functions as [22]:

u =

n∑
a=1

Naua, v =

n∑
a=1

Nava (3.19)

x =
n∑
a=1

Naxa, y =
n∑
a=1

Naya (3.20)

In the weak, variational form of Equation 2.18, all terms contain �rst derivative of dis-

placements. Given the mapping between the global and local, natural coordinate system,

derivatives of the shape functions in both systems and their relationship has to be de-

�ned [10].

For any function, including the shape functions, a chain rule is applied as:

∂f

∂ξ
=
∂f

∂x

∂x

∂ξ
+
∂f

∂y

∂y

∂ξ

∂f

∂η
=
∂f

∂x

∂x

∂η
+
∂f

∂y

∂y

∂η

(3.21)

which might be written in matrix form as:

{
∂f
∂ξ
∂f
∂η

}
=

[
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

]{
∂f
∂x
∂f
∂y

}
(3.22)

The matrix is known as Jacobi matrix, which is invertible as:

∂f

∂ξ
= J

∂f

∂x
(3.23)

∂f

∂x
= J−1 ∂f

∂ξ
(3.24)

where η ≡ ξ2. The determinant of Jacobi matrix, the Jacobian was previously in one

dimension denoted by Je (Equation 3.15).

The general formula for numerical integration of any function in the natural 2D coor-

dinate system is the following [10]:∫ 1

−1

∫ 1

−1
f(ξ, η)dξdη =

n∑
j=1

n∑
k=1

f(ξj , ηk)wjwk (3.25)

Depending on the order of the polynomial function which is integrated, either a reduced

or a full integration may be done [10]. The order of the numerical integration pni is given by
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the number of points which are used in the integration. Full integration to obtain the exact

solution is done in case that the polynomial degree of the function p is p ≤ 2pni − 1. If

the degree of a polynomial is higher, the result of the numerical integration is not exact

and the procedure is re�ered to as reduced integration [10].

Given the interval for both ξ and η where−1 ≤ ξ ≤ 1 and−1 ≤ η ≤ 1 (see Figure 3.4a),

the coe�cients wj , also called weights, are given as:

order pni number of GP GPj weights wj note

1 1 [0, 0] 2 reduced integration

2 4 [± 1√
3
,± 1√

3
] 1 full integration

Table 3.1: Gauss points (GP) and weights for numerical integration of the Q4 element [1].

Reduced integration is an approach advantageous in certain aspects of Finite Element

computations which will be further discussed at the end of the chapter.

Matrix form of the presented formulas is essential in allowing computer implementation

of the Finite Element Method. The following section aims to give overview of the formulas,

speci�c for the 4-node bilinear isoparametric quadrilateral of 8 degrees of freedom and

derive the linear system of equations.

The uknown parameters of the system of equations are the approximated nodal dis-

placemenets of an element given by vector of displacements denoted as û, the other uknown

�elds obtained subsequently from the displacement �eld are strain ε and stress σ �elds,

written respectively:

û = { u1, v1, u2, v2, u3, v3, u4, v4}T (3.26)

ε = { εxx, εyy, γxy }T (3.27)

σ = { σxx,σyy, τxy }T (3.28)

In matrix form, shape functions and shape functions derivatives are associated in ma-

trices H and B, respectively:

Hi =

[
Ni 0

0 Ni

]
Bi =


∂Ni
∂x 0

0 ∂Ni
∂y

∂Ni
∂y

∂Ni
∂x

 (3.29)

Subsequently, it is possible to interpolate the nodal displacements u and obtain the strains

from nodal displacements as:
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u = Hû (3.30)

ε = Bû (3.31)

Stress at any point may be subsequently obtained via constitutive relation of plane

stress or plane strain (Equations 2.7 and 2.8 repectively), denoted by C, as:

σ = Cε (3.32)

The Equation 2.18 in 2D, where t is thickness of the structure equals to:

∫
S
tσuδεu dS =

∫
St̂

t̂tδu dSt̂ +

∫
S
tbδu dS (3.33)

where St̂ is the outline of the structure where traction t̂. After substituting Equa-

tions 3.30 to 3.32 and altering the expression [10]:

∫
S
tBTCB dS û =

∫
St̂

tHT t̂ dSt̂ +

∫
S
tHTb dS (3.34)

The last equation de�nes the system of equations, which is notoriously known in the Fi-

nite Element Method:

K û = f (3.35)

K =

∫
S
tBTCB dS (3.36)

f =

∫
St̂

tHT t̂ dSt̂ +

∫
S
tHTb dS (3.37)

Both matrix K and vector F are known, allowing to compute the unknown parameters,

which are in this case nodal displacements.

Matrix K is known as the sti�ness matrix, a symmetrical matrix describing the struc-

ture [23]. The order of the sti�ness matrix of an element is equal to the number of degrees

of freedom of the element, which is 8 for this particular element. The matrix is invertible

when assembled for the global structure. If not, the structure undergoes a rigid body

motion or is unconstrained [1].

Vector f is called load vector [1], through which, as the name suggests both traction

and body force enter the linear system of equations.
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Both sti�ness matrix and load vector are usually evaluated locally making use of the lo-

cal coordinate system along with the numerical integration and all their advantages, only

to be localized into global sti�ness matrix and load vector later on [1].

3.4 The Pian-Sumihara element

The previously described Q4 element is one of the simplest elements in two-dimensions.

Shape functions are linear in both dimensions and the formulation is irreducible as only

one primary �eld is present.

In situations where additional constraints are present, such as near incompressibility

of a material, it may be convenient to include additional primary �eld resulting in mixed

formulation (based on mixed principle principle as described in section 2.2.2) [10].

The Pian-sumihara element is based on the Hellinger-Reissner variational principle

(summarized by Equation 2.25) and the concept of added internal incompatible displace-

ments uλ [24]. The displacement �eld of an element uelement consists of nodal displacements

u and internal displacements uλ as [5]:

uelement = u + uλ (3.38)

After substituting the displacement �eld into the HR principle (Equation 2.25) in two

dimensions, one obtains in matrix notation [24]:

HR =

∫
S

[
t σ(Du + Duλ)− t 1

2
σεσ − t bu

]
dS −

∫
St̂

t t̂u dSt̂ = 0 (3.39)

The displacements u are interpolated from nodal displacements û via linear shape

functions in both directions, as is geometry:

ûT = { u1 v1 u2 v2 u3 v3 u4 v4 }T (3.40)

u =
n∑
a=1

Naua, v =
n∑
a=1

Nava (3.41)

x =

n∑
a=1

Naxa, y =

n∑
a=1

Naya (3.42)

The internal displacements are given by four terms as [5]:

uλ = λ1

(
1− ξ2

)
+ λ2

(
1− η2

)
vλ = λ3

(
1− ξ2

)
+ λ4

(
1− η2

) (3.43)
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The equations 3.43 may be substituted into the term containing the incompatible in-

ternal displacements of the HR functional (Equation 3.39)
∫
S tσDuλ dS. After evaluating

the integral in parent coordinates and further altering the expression (see [5] for full account

of the procedure).

Subsequently, tensor stress equation may be also obtained when the basis vectors of nat-

ural coordinates are used [5]:


τ11

τ22

τ12

 =

1 0 0 η 0

0 1 0 0 ξ

0 0 1 0 0




α1

α2

α3

α4

α5


=


α1 + η α4

α2 + ξα5

α3

 (3.44)

Normal stresses consist of constant and linear (bending) terms while shear remains

constant [1]. To convert the tensor stresses into global coordinate system and thus obtain σ,

Jacobi matrix J(ξ,η) evaluated in the center of an element J(0,0) is used [1]:

σ = JT(0,0)τ J(0,0) (3.45)

[
σxx τxy

τxy σyy

]
=

[
J11 J21

J12 J22

][
α1 + η α4 α3

α3 α2 + ξα5

][
J11 J12

J21 J22

]
(3.46)

Evaluating the matrices, one �nally obtains the expression for stress �eld as:


σxx

σyy

τxy

 =

 J2
11 J2

21 2J11J21 J2
11η J2

21ξ

J2
12 J2

22 2J12J22 J2
12η J2

22ξ

J11J12 J21J22 J11J22 + J12J21 J11J12η J21J22ξ




α1

α2

α3

α4

α5


(3.47)

According to Zienkiewicz [1], the transformation needs to be such that:

1. constant stresses can be preserved in the global coordinate system and the formula-

tion is stable,

2. the transformation is independent of the selected numbering of nodes in the global

coordinate system (invariance requirement).
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Matrix form of the formulation is again necessary to facilitate software implementa-

tion. The element is bilinear in its interpolation of geometry and nodal displacements, so

the same matrix H containing the shape functions is used as in the case of Q4 element:

û = { u1, v1, u2, v2, u3, v3, u4, v4 }T (3.48)

Hi =

[
Ni 0

0 Ni

]
(3.49)

u = Hû (3.50)

The strains may be also obtained from the nodal displacements using the derivatives

of shape functions grouped in matrix B as:

Bi =


∂Ni
∂x 0

0 ∂Ni
∂y

∂Ni
∂y

∂Ni
∂x


εu = Bû

(3.51)

Stresses are approximated independently via the basis vectors of the natural coordi-

nate system. The transformation of Equation 3.45 may be directly included in matrix G

to describe stresses as [1]:

α = {, α1, α2, α3, α4, α5, }T (3.52)

G =

 J2
11 J2

21 2J11J21 J2
11η J2

21ξ

J2
12 J2

22 2J12J22 J2
12η J2

22ξ

J11J12 J21J22 J11J22 + J12J21 J11J12η J21J22ξ

 (3.53)

σ = Gα (3.54)

Strains of the stress �eld may also be easily computed by inverting the constitutive

equation:

εσ = C−1σ (3.55)

Substituting expressions for u, εu, εσ and σ into the Equation 2.23 (δHR) one ob-

tains [1]:
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−
∫
S
tGTC−1G dSα+

∫
S
tGTBdSû +

∫
S
tBTG dSα =

∫
St̂

tHT t̂ dSt̂ +

∫
S
tHTb dS

(3.56)

In may be convinietly rewritten similarly to the already described system of linear

equations in case of Q4 element (Equation 3.35):

[
K11 K12

K21 0

]{
α

u

}
=

{
0

f

}
(3.57)

K11 = −
∫
S
tGTC−1G dS, K12 =

∫
S
tGTBdS, K21 = K12

T

f =

∫
St̂

tHT t̂ dSt̂ +

∫
S
tHTb dS

(3.58)

The integrals may be evaluated on element level in natural coordinates as previously

described. The system described by Equation 3.57 may be reduced by static condensa-

tion [25] on the element level as well, not signi�cantly burdening the computatioal process.

The displacement part of the vector of uknown parameters û is evaluated on the global

level, while the uknown stress parameters are subsequently evaluated on the element level:

−K12
TK11

−1K12 û = f (3.59)

K12
T α = f (3.60)

The shape functions of matrix H are still C0 continuous (continuous functions with not

continuous �rst derivatives), while functions of matrixG do not need to ful�ll the continuity

requirement [1].

3.5 Locking in Finite Element Method

There are particular situations in simulations where low order elements demonstrate exces-

sive sti�ness [26], resulting in the model returning undersetimated results or zero displace-

ments. The behaviour is, among other elements, associated to the bilinear Q4 element

which is an example of implemented low-order shape functions. Such behaviour is called

locking phenomena [10].

The behaviour occurs in particular in two speci�c cases which are explained in the para-

graph bellow.
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(a) Shear locking occurs when spurious transverse shear strains occur, rendering the el-

ement incapable of representing bending dominated or other shear free behavior [27].

The phenomena is particularly associated with low-order isoparametric elements,

because the deformation of an element is given by the elements geometry (Equa-

tions 3.19 and 3.20).

Figure 3.5 taken from [3] shows the mechanism of deformation in reality (Figure 3.5b)

and as it is approximated by the bilinear quadrilateral element (Figure 3.5c). The wrong

displacements result in spurious shear stresses and stresses in y direction (Figures 3.5d

and 3.5e respectively).

As a result, the simulation shows conservative results in a sti�er behavior of the struc-

ture and returns smaller values of displacements [28].

(a) Geometry, loading by bending moments and
normal stress of a bilinear quadrilateral element.

(b) Exact displacements. (c) Approximation by bilinear quadrilateral.

(d) Shear stresses occuring in the approximation
(error).

(e) Stresses in y direction.

Figure 3.5: Bending behavior approximation by quadrilateral bilinear element as taken
from [3].
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(b) Volumetric locking occurs when considering near incompressible material (that is

when the value of Poisson's ratio ν → 0.5), the volume of the element is constant

throughout the deformation. As such, no volumetric strain should be present, how-

ever, low order elements are not able to reproduce the non-existent volumetric strain,

resulting in an overestimation of the elements sti�ness and obtained displacements

close to zero [29].

The requirement of incompressibility may be also stated as an constraint to the so-

lutions, as it has to satisfy [6]:

div(u) = 0 (3.61)

which limits the space of admissible solutions only to the subspace of incompressible

deformation.

According to Babu²ka and Suri [30], in mathematical terms these problems are param-

eter dependent. In both cases, there is a physical parameter to the problem: in case (a)

it is a beam's depth or a membrane thickness t while in case (b) it is the Poisson's ratio.

The goal in developing mathematical formulations to solve the problems is to formulate

a robust method such that the stability of the method and, subsequently, the results as

well are parameter independent.

However, in low-order elements, locking occurs when the parameters value approaches

to a limiting value, t → 0 and ν → 0.5. The behavior will eventually disappear using

�ner mesh, which is what Babu²ka and Suri call �brute force� in [30]. Nevertheless, they

also state that the required level of h-re�nement may not always be feasible because of its

computational demands, so multiple alternative approaches have been developed to over-

come the phenomena [1]. The following paragraphs aim to summarize the methods for

both shear locking and volumetric locking, since the approaches are similar or overlapping

in many cases.

The locking phenomena is relevant primarily to the displacement based irreducible

model. One technique in particular has seen success as a locking remedy (both shear and

volumetric locking) and that is a selective reduced integration method.

It is possible to divide the consitutive matrix C into two parts, each describing di�erent

aspect to the deformation [4]:

C = CI + CII (3.62)

which subsequently allows to divide the sti�ness matrix integral as well. Equation 3.36

becomes:
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K =

∫
S
tBTCB dS (3.63)

=

∫
S
tBTCIB dS +

∫
S
tBTCIIB dS (3.64)

In case of shear locking, that would be a sti�ness matrix describing the shear from

Figure 3.5d as a separate term [3], in case of volumetric locking it would be the deviatoric

sti�ness matrix. Upon dividing the sti�ness matrix integral it is possible to apply full inte-

gration to the �rst term and reduced integration to the shear/deviatoric term, a procedure

dubbed as selective reduced integration (SRI) method. This approach has been successfuly

applied in both shear [28] and volumetric locking. It is often applied on the Q4 bilinear

element [4], However it may produce a sti�ness matrix with directional properties [3].

Apart from selective reduced integration, also fully reduced integration has been sug-

gested to calculate the complete term of sti�ness matrix. Although correct solution may

be obtained in certain cases, this approach leads to spurious kinematic zero energy modes,

also known as hourglassing. These have been observed in the selective reduced integration,

but to a smaller degree [26].

Another often mentioned remedy to locking is the use of mixed formulation [29] of mul-

tiple primary �elds or added degrees of freedom in the form of incompatible displace-

ments [26].

In the use of mixed/hybrid principles1, one of the more prominent mixed elements

in literature are based on the Hellinger-Reissner variational principle (described in sec-

tion 2.2.2, consisting of two primary variables) or Hu-Washizu principle (approximating

three �elds independently, described to detail for example in [1] or [9]).

According to de Veubeke [15], mixed formulations are subjected to so-called limitation

principle so the addition of stress variables does not necessarily improve the accuracy

of the model. In Zienkiewicz's words, the principle states that:

if the mixed formulation is capable of producing the same approximation of that

produced by direct displacement form then it will in fact reproduce that form

exactly and give identical and therefore not improved results [15, p. 289].

That is for example the case if the stress �eld is approximated by higher order polyno-

mials than the displacement �eld [1].

The incompatible modes method aims to enhance the displacement �eld with inter-

nal degrees of freedom which are incompatible between elements (Figure 3.6) and thus

allow better approximation of displacements [3]. The di�erence between compatible and

incompatible mapping is conveniently illustrated by Felippa [4] in Figure 3.6:

1Mixed elements approximate multiple internal �elds, while hybrid elements take one internal �eld and
other �eld on the boundary of an element [10].
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(a) Two elements in the natural
coordinate system.

(b) Compatible mapping (left) and incompatible mapping
(right) to the global coordinate system.

Figure 3.6: Compatible and incompatible mapping taken from [4].

The shape functions used to approximate both geometry and displacements are com-

patible in the Q4 element, as well as in case of the PS element. In the incompatible modes

method, the incompatibility is applied on additional degrees of freedom to the displace-

ment �eld [3]. In case of the Pian-Sumihara, the approximation of stress �eld may be

incompatible [1].

Another possible approach to alleviate shear and volumetric locking is the enrichement

of strain or stress internal �elds, dubbed as a enhanced strain method [31, 32]. According

to Simo and Rafai [33], the methods falls within the scope of mixed �eld methods, where

in assumed strains the matrix B is extended with enhanced strains resulting in B-bar

similar method and an example of enhanced stress element is the Pian-Sumihara element

based on displacement-stress mixed formulation.

Last but not the least, in the case of shear locking, higher order shape functions may

alleviate the behaviour without completely eliminating it [34]. However, such an approach

adds additional degrees of freedom on global level, increasing the CPU cost, in opposition

to the mixed-�eld, incompatible modes and enhanced strain approaches, where the degrees

of freedom may be eliminated on the element level by static condensation.
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Chapter 4

Stability of the Finite Element

Method and the patch test

In the Finite Element Method development throughout the years, an integral part to the ad-

vancement has been the validation and testing of the proposed solutions. According

to Ziekniewicz [1], a �nite element formulation should be such that both stability and

consistency requirement is ful�lled. The former translates to a necessity of a unique solu-

tion with no spurious modes present, which may also be done by ensuring that the sti�-

ness matrix K is �non-singular for all element assemblies� [1]. The latter requires that

for elements size approaching zero h → 0, the approximated discrete solution approaches

to the exact solution (in a weak sense at least [35]). Bathe adds that the fact that a par-

ticular formulation is based on a variational principle does not ensure neither stability nor

consistency [36].

Testing of a formulation should ensure that both of these requirements are ful�lled, but

should in addition serve to the following purposes as well, as it more generally ensures [1]:

(a) convergence of a �nite element formulation,

(b) assessment of a formulation's convergence rate,

(c) su�cient robustness of the implementation's algorithm,

(d) ensure correct formulation in case of incompatible modes elements,

(e) correct programming.

Throughout the years of FEM development, traditionally so-called patch tests have

been used in �nite element testing. First used by Irons in [37], the patch tests veri�es

that arbitrary assembly of �nite elements is able to reproduce exact results of linear elastic

body deformation upon loading by displacements consistent with constant straining [35].

Performing a patch test is a purely numerical procedure [38].

39
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According to Zienkiewicz [1], the patch test may be applied to an assembly of any

elements or to a single element, but there are certain elements which do not satisfy a single

element patch test but an assembly of these elements does. Particularly relevant to this

thesis is the applicability of the patch test to both irreducible and mixed methods.

It was mentioned in relation to the Hellinger-Reissner variational principle, that the mixed

variational principles result in a saddle point problem, as one of the internal �elds is essen-

tialy a constraint enforced by a Lagrange multiplier [12]. Mathematical study of the con-

vergence of such formulations has been done by Brezzi [39] and Babu²ka [40], resulting

in formulation of the Babu²ka-Brezzi criterium which was accepted as a �condition for

optimal performance of a method" [38].

In opposition to the patch test, the Babu²ka-Brezzi criterium is a theoretical framework

to the assessment of �nite element formulation, while the patch test is a test which may be

also applied 'on inspection' [1] having the advantage of more straightforward application.

Certain ambiguity between the two approaches has been mentioned in literature as

in some cases, the uniform inf-sup condition (the Babu²ka-Brezzi crierium) is not satis�ed

while the patch test is, for example in [38]. Babu²ka explains [38] that the criterium

ensures optimal performance of a formulation when applied to a well de�ned set of data

Λ. The inability of a method to satisfy the criterium doesn't exclude existance of a subset

to the input data Λ∗ where the patch test is satis�ed along with the BB criterium.

In the scope of the thesis only the patch test will be performed as it is a su�cient

condition to be met to assess formulation according to Ziekniewicz [1]. The following

section will give theoretical overview of the methodology.

4.1 Patch test of the irreducible formulation

By the standard procedure, one obtains system of linear equations Kû = f which returns

the approximated solution in the vector of unknown parameters û upon evaluation. As it

has been mentioned, the method leading to the system of equations should ensure both

convergence and stability.

That is in the �rst case, the approximated solution û obtained by the set of linear

equations should approach the exact solution u as the size of the elements approaches zero.

Mathematically [1]:

|u− û| = O(hq) ≤ Chq (4.1)

where h is the size of the element, C is a positive constant depending on the position and

q > 0, which is the order of convergence in the variable u.

Considering small domain of size 2h in two dimensions at point a, the solution u and

the derivatives may be expanded in may be expanded via Taylor series. It is required that:
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u = ua +

(
∂u

∂x

)
a

x+

(
∂u

∂y

)
a

y + ...+O(hp)

∂u

∂x
=

(
∂u

∂x

)
a

+ ...+O(hp−1)

∂u

∂y
=

(
∂u

∂y

)
a

+ ...+O(hp−1)

(4.2)

with p ≥ 2, so the approximation, as h→ 0, should result in the exact solution.

Taylor at al. [35] described two forms of the patch test to test the convergence. In form

A, one takes a problem for which the exact value(s) of the vector ûa is known and inserts

it to the linear system of equations, to verify that:

Kabûa − fb ≡ 0 (4.3)

in this case, vector f introduces body force if any is present. Visual representation

of the patch test may be in Figure 4.1a.

(a) Form A patch test. (b) Form B patch test.

Figure 4.1: Visual representation of the patch test as taken from [1].

Form B patch test, only values on the boundary of the assembly ub are inserted and

parameters in point a are obtained as:

û = K−1
aa (fa −Kabûb), a 6= b (4.4)

Visual description of the patch test taken from [1] is shown in Figure 4.1b.

For linear problems, where the uknown vector is obtained by û = K−1f the stability

condition translates to the necessity of sti�ness matrix K being non-singular for arbitrary

element assembly. Apart from the patch test, the stability condition (i.e. the sti�ness

matrix) may be also veri�ed separately [1]. This condition may be veri�ed by a generalized

patch test of form C, also described by Taylor et al. [35].
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In the thrid and �nal form of the patch test for irreducible elements, minimum essential

boundary conditions are applied to the assembly so that rigid body motion is eliminated

and natural boundary conditions in form of traction are applied at the boundary of the as-

sembly (see Figure 4.2). A solution at point a is obtained and compared to the exact

solution.

Figure 4.2: Generalized patch test of form C [1].

The vector f contains traction, the natural boundary conditions, so any singularity

may be observed [1].

The test applied on an assembly of elements may not, on occasion, reveal instabili-

ties, in opposition to the single-element patch test of the same form (Figure 4.3) which is

according to Zienkiewicz [1] �one requirement of a good �nite element formulation�. How-

ever, there are certain cases of well documented elements, such as bilinear element Q4 and

quadratic quadrilateral with 8 nodes (Q8), which are commonly used in the FEM [14] but

do not satisfy the single-element patch test (the patch test is satis�ed for the assembly of 2

and more elements).

Figure 4.3: Single-element patch test [1].

4.2 Patch test generalized to mixed formulations

In the mixed formulation, there is a necessary, although not su�cient condition concern-

ing the number of degrees of freedom in the vector of unknown parameters. Applied

to the mixed formulation of σ− u, where nα is the number of degrees of freedom (DOFs)

associated to stresses while nu is the number DOFs associated with displacements, the con-

dition states that [1]:
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nα ≥ nu (4.5)

The condition has to be satis�ed for a single element as well as for any assembly

of elements or the whole structure.

Recalling the Equations 3.48 and 3.52 and applying essential boundary conditions as

necessary supports to avoid rigid body motion nu = 8 − 3 = 5, nα = 5 as the stress

parameters are never constrained [41], so the above written equation is satis�ed.
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Chapter 5

Implementation and validation

The present section aims to �rst describe the implementation which was done in the context

of the thesis, namely the algorithm of Finite Element Method solver with two implemented

elements, followed by valiadtion of the implementation, a patch test and comparison of re-

sults of the present implentation to results obtained in literature.

5.1 Present implementation

For the purpose of the thesis a �nite element method procedure to solve idealized 2D linear

elasticity examples of plane strain or plane stress was developed in Python programming

language [42] using Numpy [43] library in the solver and Matplotlib [44] library in post-

processing. Flowchart of the script is shown below.

y

x

y

x

Input:
Structure

parameters

Q4 element definition

Global structure

Pre-processing

solver

Pian-Sumihara element definition

Post-processing
Output:
results

Figure 5.1: Flowchart of the implemented algorithm.

The structure is speci�ed in the input �le, including loading and boundary conditions.

Subsequently, the geometry is discretized into nodes creating mesh in the pre-processing

stage, which is then submitted to the solver. The implementation allows h-re�nement, that

is increasing the number of nodes to increase the model's accuracy, allowing to obtain con-

verging solution. The p-re�nement, that is increasing the order of shape functions [20],

45
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was not implemented. All the simulations are done with linear shape functions (of order

p=1) and full integration rule is used.

The solver incorporates two elements, the bilinear quadrilateral element described

in section 3.3 and the Pian-Sumihara element described in section 3.4. It computes lo-

cal sti�ness matrix depending on the chosen element, followed by a global sti�ness matrix

of the structure. Boundary conditions are applied in form of prescribed displacement

or traction in speci�c nodes and �nally, vector of unknown parameters is computed and

unknown vector / tensor �elds are obtained. The global and desired local results (such

as in a speci�c point) as well as desired graphic representation of the results are saved.

In the �nal stage, separate script is used in post-processing to compare results.

5.2 Patch test

First in a series of tests aiming to validate the implemented solution is a simulation

of a plate under uniaxial tension. Given that the displacement �eld in both directions

is constant, when loading the plate by prescribed displacement the exact nodal displace-

ment �eld is known beforehand and the patch test of form A as described in section 4.1

may be performed, assesing the di�erence of results obtained by the algorithm and the ex-

act solution. The constant distribution of displacements may be also observed in a graph.

The geometry of the patch test was chosen based on the patch test used by Nguyen and

Ibrahimbegovic in [45].

The primary aim of the test is the validation of implementation of both Q4 element

and Pian-Sumihara (PS) elements so the same test is applied to both. A plate of a given

geometry is subjected to uniaxial tension of a given magnitude while the mesh consists

solely of orthogonal elements. Subsequently, the mesh is distorted by a random factor

of a given interval, creating irregular mesh. Both regular and irregular elements are ex-

pected to yield the same linear dependence of displacements on position. The di�erence

between exact nodal displacements and computed results is assessed by obtaining standard

deviation of the di�erences and subsequently the distribution is also veri�ed in a graph.

Geometry of the plate and the material characteristics were selected following (in a con-

sistent system of units):

Regular mesh was chosen to be 10x10 elements, in total 100 elements (Figure 5.3a). For

second case, each inner nodal coordinate is changed randomnly as depicted in Figure 5.3b.

The element's length lel is multiplied by an arbitrary coe�cient c ∈ [−0.3, 0.3], which is

added to the original nodal coordinates in orthogonal mesh in each direction.

Four con�gurations were tested in total. Resulting displacement �elds are shown on

the following �gures, each linked to the respective case from the list.
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y

x

Figure 5.2: Geometry and material characteristics.

y

x

(a) Regular mesh.

y

x

(b) Example of a mesh disruption from regular
(grey node) to irregular.

Figure 5.3: Mesh of the present patch test.

(a) Q4 element with regular mesh (Figure 5.4),

(b) Q4 element with disturbed mesh (Figure 5.5),

(c) PS element with regular mesh (Figure 5.6),

(d) PS element with disturbed mesh (Figure 5.7).

For each of the four cases, the exact nodal displacement of each inner node (node

without prescribed displacement in considered direction) was obtained as:

un =
ux=1

b
xn, vn = −νux=1

h
yn (5.1)

where un and vn are the exact values of nodal displacement in x and y direction re-

spectively, ux=1 is the value of prescribed displacement at the right edge, ν is the Poisson's
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coe�cient, b and h are structure's dimensions and xn and yn are coordinates of the con-

sidered node.

Standard deviation (SD) is computed for the error between exact solutions un, vn and

obtained solutions ûn, v̂n in all inner nodes as [18]:

SDu =

√∑
(un − ûn)2

n
, SDv =

√∑
(vn − v̂n)2

n
(5.2)

where n is the number of inner nodes for which the standard deviation is obtained.

Following table summarizes the results for each of the four cases:

case (a) case (b) case (c) case (d)

Q4, regular mesh Q4, disturbed mesh PS, regular mesh PS, disturbed mesh

SDu 0.0 0.0 0.0 0.0

SDv 7.425e−16 5.135e−16 6.169e−15 9.298e−16

Table 5.1: Standard deviation of di�erences between exact solution un, vn and obtained
results ûn, v̂n.

In all case in the direction of prescribed displacement, the standard deviation is equal

to zero, or rather smaller than the limiting precision in Python programming language

which is e−18.

In the opposite direction in all cases the standard deviation of error is obtainable, how-

ever, values of order e−15 to e−16 may be attributed to machine precision and furthermore

are irrelevant in comparison to the magnitude of prescribed displacements. The patch test

may be considered as succesful.

Subsequent �gures show the distribution of displacements in both directions for all

cases.

(a) u displacements. (b) v displacements.

Figure 5.4: Resulting displacement �elds for regular mesh of Q4 elements.
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(a) u displacements. (b) v displacements.

Figure 5.5: Resulting displacement �elds for irregular mesh of Q4 elements.

(a) u displacements. (b) v displacements.

Figure 5.6: Resulting displacement �elds for regular mesh of PS elements.

(a) u displacements. (b) v displacements.

Figure 5.7: Resulting displacement �elds for irregular mesh of PS elements.

Irespectively of the regularity of the mesh or the type of element used, the same results

are obtained: linear dependence of displacements on position in the plate in both direc-
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tions. The distribution of strains as well as stresses are constant over the domain in both

directions, while shear components are zero.

The results shown above thus met the expectations and show the implementation to be

robust enough to succesfully obtain the correct results.

5.3 Uniaxial tension and bending

Upon proposal of the assumed stress element by Pian & Sumihara in [5], the element was

also tested in multiple situations to assess its behaviour in comparison to other incompatible

or hybrid elements. Also the Q4, as one of the most common quadrilateral elements, was

included.

To test the present implementation of both Q4 and PS elements in di�erent scenarios

than unixial tension, the same simulations were run and results compared. The test cases

(TC) along with results from in [5] and here obtained by the present implementation are

compared and assessed.

Two geometries with di�erent loading are tested as described on the following �gures

(dimensions and material characteristics are in a consistent system of units).

For the test case (a), horizontal displacement at point A uA is compared. In test case

(b), a vertical displacement of the same point vA is investigated. The console loaded by

bending moment of test case (c) as well as the same console loaded by traction of test case

(d) are compared based on the vertical displacement in point a vA and normal stress at

point B σx,B.

The obtained results are summarized in Table 5.2, where also the results published

in [5] are written. The table is completed by exact solution for each test case taken from

the same source.

TC(a) TC(b) TC(c) TC(d)

uA vA vA σx,B vA σx,B

Q4, [5] 6.00 -17.00 45.70 -1 761 50.70 -2 448

PS, [5] 6.00 -17.64 96.18 -3 014 98.18 -4 137

Q4, computed 6.00 -17.00 45.65 -1 761 50.96 -2 448

PS, computed 6.00 -17.64 96.18 -3 014 98.05 -4 073

exact solution [5] 6.00 -18.00 100.00 -3 000 102.60 -4 050

Table 5.2: Comparison of results.

For the �rst two cases, the obtained results do not di�er. TC(a) is a case of uniaxial

tension and results obtained with both elements are the exact solution. In TC(b) (bend-

ing) the results of the article and the obtained results are equal. The use of irreducible

displacement based model shows slightly worse results than those of the PS element, which



5.3 Uniaxial tension and bending 51

(a) Test case a: uniaxial tension. (b) Test case b: console loaded by a force induc-
ing bending.

(c) Test case c: console with one disturbed element along the second di-
mension loaded by bending moment.

(d) Test case d: console with one disturbed element along the second di-
mension loaded by traction.

Figure 5.8: Variants of the test case taken from [5].

is given by the added unknown stress parameters in the latter case. As a result, the PS

element shows better behaviour in bending in comparison to the Q4 element.

The same behavior may be observed with TC(c), where the di�erence between the re-

sults when comparing the two elements is even greater. While the results of PS element

for both displacement vA and stress σx,B are approaching to the correct solution, the Q4

element shows results nowhere near the correct ones. Interestingly enough, in the results

obtained by PS element, displacement vA is slightly underestimated while stress in point B

is computed slightly higher that the exact result, being on the safe side for design. The dif-

ference between results of di�erent elements are more prominent than the previous test case

(TC(b)) which also describes bending. One possible explanation is that in TC(b) there

are more elements along the height of the beam in one half of the beam, than in the ge-

ometry of TC(c). These elements of TC(b) are thus able to capture bending better and

subsequently show less of a di�erence in results between elements than in TC(c).

There are marginal di�erences between the computed results and those from [5] and as
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obtained by the present implementation. The di�erences are attributed to the rounding

error during computation, as both hardware and sotware used for the computation likely

di�eres signi�cantly.

The fourth test case TC(d) displays the same behaviour as in the previous TC. Slight

di�erences may be observed between the two implementations as before and PS element

shows much better behavior than the Q4 elements. The results are approaching the exact

solution in a similar manner, with stress σx,B being on the safe side.

As described above, only small di�erences may be observed between the results, con-

cluding test to be succesfull and validating the implementation by duplicating the results.



Chapter 6

Analysis of elements behavior

6.1 Distortion e�ect

Important part of any �nite element development is the assesment of element's sensitivity

to distortion [46]. The PS elements possesses higher number of DOFs than the Q4 element

(13 and 8 respectively), so it is desirable that the element would be e�ective for small

number of elements. Subsequently, it would be possible to keep the computational cost

low even though higher number of DOFs is present.

Possible test to see the e�ect of element distortion to the results was proposed by

Pian and Sumihara in [5]. The test consists of subjecting a console to bending, while

the mesh consists of two elements. These vary shape from rectangular to highly distorted

so the e�ect on the results may be observed. The amount of distortion is represented by

a parameter a, which is the dimension by which an element is distorted (that is the amount

by which a node is displaced), see Figure 6.1.

Figure 6.1: Geometry and material characteristics of the distortion e�ect test.

The geometry and loading are the same as in case TC2(c) of section 5.3, in a consis-

tent system of units. Full integration is implemented. Coarse mesh of two elements is

used. In this case, results are plotted as a percentage of the correct solution (0% error is

the correct solution). In absolute value the exact solution is vA = 100 (see Table 5.2).

Results of the analysis are displayed in Figure 6.2. Each color represents one type

of element. Dashed line is the result obtained by Pian and Sumihara in [5] while solid line

represents the result obtained by the present algorithm. The two di�er marginally, likely
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Figure 6.2: Results of the convergence analysis, dashed line represents results taken from
[5].

because of a low quality graph of the original published results (slight distortion in print).

The di�erence is considered insigni�cant.

The graph shows di�erences between the elements. While two rectangular elements

of the PS element are able to capture the bending precisely, the Q4 element shows about

error 70%. By starting to distort the element, there is a fall until a = 1 for both elements.

Subsequently, the e�ect of further distortion stabilizes in both cases for distortion greater

than a = 2.

While the behavior of the Q4 and the PS element is not comparable in terms of results,

the element's the distortion e�ect to both is largely similar. In both cases best results

are obtained by non distorted elements, followed by a decline and subsequent stabilization

of the quality of result for greater distortion.

It is worth noting, that the PS element is able to capture pure bending behaviour

of the beam extremenly well. With only two rectangular elements along the length

of the beam and one element along the depth of the beam, the exact solution is obtained.

6.2 Convergence analysis

Another important aspect of any �nite element is its e�ciency. The present anlysis was

done based on the analysis performed by Nguyen and Ibrahimbegovic in [45]. The aim is

to compare performace of the two elements in pure bending state and compare convergence

rate. Additionaly, in the analysis of Nguyen Q4 element is tested, so the analysis partly

serves for validation of the element implementation. PS element is added and further

analysis of strain �elds is done for elements to better understand behavior of the elements.
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The pure bending convergence is examined on a simply supported beam loaded by

bending moment at both ends. For the purpose of a comparison, vertical displacement

of the middle point on the upper edge vM [5,1] is of interest. Full integration is used.

The exact solution was taken from [45]. See the Figure bellow for geometry and material

characteristics in consistent system of units. The beam is modelled in plane strain with

thickness t = 1.
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x
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Q4 element definition
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Pian-Sumihara element definition

Post-processing
Output:
results

Figure 6.3: Geometry and material characteristics of the test case for convergence analysis.

In the �rst part, the following mesh density is tested (number of elements in x direction

and number of elements in y direction): 6x1, 12x6, 24x12, 36x12, 72x24. Exact solution is

equal to vM [5,1] = 1.522 Following results were obtained.

mesh elements 6x1 12x6 24x12 36x12 72x24

PS element 1.500 1.503 1.509 1.513 1.521

Q4 element 0.400 0.887 1.283 1.401 1.488

Table 6.1: Results of the convergence analysis, exact result of the vertical displacement is
equal to vM [5,1] = 1.522.

The graph in Figure 6.4 shows resulting displacement vM [5,1] for each mesh con�g-

uration of the two elements, numerical results are written in the Table 6.1 above. For

the coarsest mesh (6x1 elements), the displacement obtained with PS element is approach-

ing the exact solution. The Q4 element displacement obtained with Q4 element is equal to

vQ4,6x1 = 0.4. It clearly shows, that the mesh con�guration of Q4 element doesn't possess

enough degrees of freedom to capture the behavior of the beam.

By re�ning the mesh of PS elements, only minor improvement is obtained. the solution

of the coarsest mesh is already close to the exact solution so mesh re�nement doesn't

bring about signi�cant di�erence in the resulting displacement. Furthermore, the minor

improvement doesn't justify the added computational cost to the analysis.

In the case of Q4 element, mesh re�nement has signi�cant impact on the quality

of the model. Nevertheless, although the improvement is signi�cant and the solution

is converging (vQ4,6x1 = 0.400 ,vQ4,12x6 = 0.887, vQ4,12x24 = 1.283 and vQ4,12x24 = 1.401)
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Figure 6.4: Graph of the convergence analysis results.

only the solution obtained by the �nest mesh of 1728 elements vQ4,12x24 = 1.488 approaches

to the exact solution. The lack of DOFs in the element de�nition needs to be compensated

with large number of elements (thus increasing the overall number of DOFs), increasing

the computational cost rapidly.

However, even the �nest mesh of Q4 elements doesn't exceed the quality of solution

obtained by the coarsest mesh of PS elements.

Second part of the analysis aims to compare strain �elds of the elements. There are

three �elds to test for each mesh con�guration:

(a) εQ4: strain �eld obtained by the Q4 element,

(b) εu
PS
: strain �eld obtained by the PS element via kinematic equations from displace-

ment �eld,

(c) εσ
PS
: strain �eld obtained by the PS element via inverted constitutive equation from

stress �eld.

To allow numerical comparison of the results, instead of comparing the whole strain �eld

for each case, only speci�c sections of the structure are compared in a graph. These sections

were chosen to best represent possible deviations between the �elds in areas of the highest

tension / compression. Three sections are compared, each describing di�erent strain com-

ponent. The deformed shape is showed in Figure 6.5, followed by depiction of the sections,

which will be compared in Figure 6.6.

The following two graphs shows the strains obtained via di�erent �elds. Strains ob-

tained by the Q4 element (via displacement �eld) are depicted by solid lines, those obtained
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Figure 6.5: Deformed shape of the beam obtained with PS element and 36x12 mesh.
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(b) Section for εxx comparison.

Figure 6.6: Sections for strain �eld comparison.

by the PS element via displacement �eld are plotted with dashed line and those obtained

via stress �eld are dotted.

Figure 6.7: εyy comparison along the upper edge of the beam.
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In the �rst case, the upper edge is in compression in the y direction, so the graph shows

negative strains. There is a slight assymetricality to the results which may be attributed

to the supports and numerical errors in the solution.

In the middle section, all the solutions seems to converge to the same amount of com-

pression except for the Q4 element, which for the �rst two mesh con�gurations (6x1 and

12x6 elements), shows lower values along the length of the beam. Possible reason is the rel-

atively small number of elements in the x direction.

In the parts above supports, the otained values diverge, however, the strains obtained

with PS element from σ �eld show the highest strains, with the Q4 element steadily

obtaining strains lower strains. The strain obtained with PS element from u �eld show

values approximately in the middle of the two.

Figure 6.8: εxx comparison along the middle section of the beam.

The second graph shows the strains in x direction along the middle section. The values

of this particular section are crucial for design of beams in bending.

As expected the upper part of the section is subjected to tension while the lower part

is subjectedd to compression. Given that the beam is loaded by bending moment, neutral

axis goes through the middle of the section.

As in the previous case, the worst results were obtained by the coarsest mesh of the Q4

elements. Finer mesh of the same element subsequently converges to the values obtained

by the PS element. For the strains obtained by the PS element (both �elds) the solution

di�er only marginally. The solutions are similar both for the same mesh con�guration

and di�erent �elds strain, and for the di�erent mesh density of the same �eld strains.

Interestingly enough, the �rst similarity is in direct opposition to the element behaviour

observed in the previous case, where strains obtained by the two �eld di�ered considerably.
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The latter only con�rms the convergence analysis, which showed excellent results by the PS

element when only minimum number of elements is present.

6.3 Cook's membrane: nearly incompressible material

Cook's membrane is one of the common examples to test element's performance on a nearly

incompressible material [47, 48]. It consists of a tapered panel of nearly incompressible

material clamped at one side, loaded by traction (see Figure 6.9 further on). Response

of the structure combines shear and bending.

Two types of the analysis may be found in literature: (a) non-linear analysis using

�nite deformations with incompressible or nearly incompressible material [48, 47]), or b)

linear elastic analysis with nearly incompressible material, [49, 50, 6].

The second example will be done in the framework of the thesis. Based on the analysis

done by César de Sá & Natal [6], two cases of nearly incompressible material will be tested:

(i) ν = 0.4999, (ii) ν = 0.4999999. Modulus of elasticity for both equals to E = 240.565.

Full quadrature is used. See the geometry in consistent system of units in Figure 6.9).

The aim of the study is to analyze convergence of results for both elements with in-

creasing mesh density (elements per side) and subsequently compare the results with those

obtained by César de Sá & Natal. In their analysis, they o�er results for the following

elements:

� Qi5: element with two extra compatible deformation modes,

� Qi6: element inspired by Qi5 element where �an extra �eld of variables related to

the space derivatives of the displacement �eld is added�,

� SRI: element with selective reduced integration on the volumetric terms, where

the deviatoric part of the stifness matrix is fully integrated,

� QM6: incompatible modes element, equivalent to the element by Simo and Rafai

[33],

� B-bar method element which �avoides the necessity of reduced integration and in which

the shape function derivatives related to the volumetric response were replaced by

approximations resulting from a mixed formulation�.

Six mesh con�gurations are tested: (a) 1 element, (b) 2 elements per side, (c) 4 elements

per side, (d) 8 elements per side, (e) 16 elements per side, (f) 32 elements per side. Vertical

displacement in point A[48, 60] is compared.

Figure 6.11 shows result obtained for the nearly incompressible material of ν = 0.4999.

From the results obtained by César de Sá and Natal, all elements apparently converge to

the same solution. The Pian-Sumihara element shows convergence to the same result. How-

ever, when there are only few elements on the side of the membrane (approximately <5),
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Figure 6.9: Cook's membrane geometry and material properties [6].

(a) 1 element (b) 4 elements
(2 elements per side)

(c) 8 elements
(4 elements per side)

(d) 64 elements
(8 elements per side)

(e) 256 elements
(16 elements per side)

(f) 1024 elements
(32 elements per side)

Figure 6.10: Mesh con�gurations of Cook's problem.

the Pian-Sumihara element shows slightly better results than most of the other elements,

with the exception of the Qi6 element developed speci�cally for nearly incompressible ma-

terial [6]. The Q4 shows poor quality of results, however, certain improvement is detectable

as the number of elements per side rises. Nevertheless, the element still doesn't converge

to the same solution as the other elements.

In the case of the second material (Figure 6.12), which is closer to the incompressibility

limit with ν = 0.4999999, the Pian-Sumihara element also shows high quality results even

when compared to the other elements. Repeating the behaviour as in the case of the previ-

ous material, the element shows especially good results when the membrane is discretized

into fewer elements. Only the QM6 element shows slightly better results. As in the pre-
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Figure 6.11: Graph of the convergence analysis results for ν = 0.4999, dashed line results
were obtained from [6].

vious case, all the elements with the exception of the Q4 material converge to the same

solution.

The Q4 element results do not improve as more elements are added, suggesting that

volumetric locking is present and the element is not able to capture the membrane's de-

formation due to the near incompressibility of the material.

Figure 6.12: Graph of the convergence analysis results for ν = 0.4999999.
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6.4 Locking problem

In the last analysis, the elements are tested for locking in distortion based on an analysis

done by César de Sá & Natal in [6]. The basic geometry of the problem is displayed in Figure

6.13. It consists of a 2x2 mesh and three loads. Horizontal displacements of nodes 1, 7

and 9 are compared. Full integration is used.
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Figure 6.13: Non-distorted basic geometry of the test case described in [6].

Two types of distortions are tested with nearly incompressible material:

� displaced middle node,

� rotated inner elements edges.

The following paragraphs describe each case to more detail and show results.

Nearly incompressible material analysis with distorted mesh is done on the following

four cases with speci�c distortion with full integration implemented.
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Figure 6.14: Nearly incompressible material test cases with middle node distortion.

Each mesh is tested with rising ratio of Lamé's parameters λ and µ [10]. It transforms

to the Poisson's coe�cient in the following manner:

λ

µ
=

ν

2(1− 2ν)
(6.1)



6.4 Locking problem 63

In the analysis the term log(λ/µ) ranges from 1 to 15, where 1 corresponds to ν = 0.4878

and 15 limitly approaches to the incompressibility limit of ν = 0.5.

The �rst part compares the displacement of nodes 1 and 9 as the material approaches to

incompressibility and compares the distorted solution to the one obtain with regular mesh.

The �rst graph (Figure 6.15) shows displacements of nodes 1 and 9 for both elements

in the absolute values of the displacement. The absolute values are largely similar, as

the structure is loaded symmetricaly. As the Poisson's coe�cient rises, the Q4 element

locks and the values converge to zero, not giving any result. The PS element gives high

quality results until approximately log(λ/µ) = 13, then it is no longer able to capture

the deformation. There is a slight rise in the values at the beginning which can be attributed

to the rising Poisson's coe�cient. The change is not noticeable further on because the value

of ν limitly approaches to 0.5.

Figure 6.15: Resulting displacement of nodes 1 and 9 as obtained by regular mesh.

Figures Figures 6.14a to 6.14d than show the di�erence between the results obtained

by a regular mesh and the distorted mesh.

As in the case of previous mesh, in all four cases the Q4 element locks and gives zero

displacements. The PS element error corresponds to the amount of distortion, con�rming

the results obtained in section 6.1. The results are also dependent on the direction in which

the central node was distorted in relation to the observed nodes. Nevertheless, the error

of the PS element is not in�uenced by rise of the Poisson's coe�cient until approximately

log(λ/µ) = 12.5 in all four cases.
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(a) (b)

(c) (d)

Figure 6.16: Error in displacement of nodes 1 and 9 when mesh is distorted.

In the �nal analysis the near incompressible material is tested in combination with

inner mesh edges rotation as on the following Figure. The mesh is rotated by angle α ∈
〈−45◦, 45◦〉, while the incompressibility is kept at log(λ/µ) = 9.

Displacement of nodes 1 and 7 is observed. In non-distorded mesh, v1 = −0.395 while

v7 = 0. Figure 6.18 shows obtained displacements for both nodes depending on the rotation

angle.

Interestingly enough, the results show similar response by both elements to rotation

in both directions resulting in symmetrical graph. The displacement of node number seven

in regular and rotated mesh does not di�er. It is equal to zero for both types of elements.

In case of node 1, the displacement response to mesh rotation di�ers between the two

elements.

In case of the Q4 element, it appears to become less sti� with increasing rotation

of mesh, which results in higher displacements of the node. With increasing rotation,
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Figure 6.17: Nearly incompressible material test case with inner element edges rotation
around the central node.

Figure 6.18: Displacements of nodes 1 and 7 depending on mesh rotation.

the element o�ers better results, however, the results are underestimated in comparison to

the results o�ered by the PS element.

In case of the Pian-Sumihara element, the obtained displacement slightly rises until

about 35◦ of rotation in both clockwise and anticlockwise direction. After passing the 35◦

rotation, the displacement steeply falls back to the value obtained by regular mesh. In ei-

ther case, no locking is apparent.
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Chapter 7

Conclusion

Linear elasticity idealization of behavior of structures is a crucial stepping stone in ap-

proximating the behavior of solid parts or structures of various scales. However in order

to acquire quality results based on which it is possible to design a structure, it is necessary

to understand the context of the idealization and the method which is applied to obtain

results.

In light of the above written, the thesis aimed to provide both. To describe both the

idealization of a linearly deforming solid body in a static regime and to describe one of the

most widely used method of today to solve the equations, the Finite Element Method. One

of the simple popular elements has been described along with an alternative of mixed-�eld

formulation to account for possible shortcomings of the �rst formulation, with both being

implemented, validated and tested against well-known benchmark problems of literature.

In the �rst part, theoretical background to linear elasticity in strong form and sub-

sequently the derivation of equivalent variational weak forms as a possible basis to the

formulation of the Finite Element Method have been provided.

The second part described a general way of deriving the FEM as part of the weighted

residual methods in the beginning, followed by additional approaches and techniques which

are commonly used in the software implementation of the method. That is the concept of

shape functions, essential to the method as they create the elements. Subsequently, the

description of numerical integration via Gauss quadrature was described along with the

concept of isoparametric elements, which allows convenient use of the numerical integration

to evaluate integrals in a local, natural coordinate system.

The theoretical part was followed by description of two speci�c elements in the context

of software implementation, which included speci�c ways of building matrices of shape

functions and their derivatives.

The �rst implemented element is the plane stress/strain quadrilateral bilinear isopara-

metric element, called the Q4 element in literature. The element is based on the irreducible,

displacement-based variational principle described in the �rst section. It is one of the sim-

plest formulation, as only displacement �eld is obtained in the computation, with strain

67
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and stress �eld derived based on displacements.

The second implemented element is based on the Hellinger-Reissner variational princi-

ple. Two primary �elds are approximated independently, displacements and stresses. While

unknown parameters to the displacement �eld are nodal displacements, normal stresses in

both directions are approximated with linear and constant components and shear stress is

approximated by constant component only. The element was described as developed by

Pian & Sumihara in [5].

Subsequent section describes situations in which an element shows higher sti�ness and

thus endangers the outcome of the design process by providing wrong results on the danger-

ous side. This behavior, known as locking, is especially related to the bilinear Q4 element,

which in bending dominated situations and in case of near incompressible material shows

either sti�er behavior of zero displacements.

Last teoretical chapter describes requirements to Finite Element Method formulations

to deliver adequate results in application and provides di�erent tests the validate an im-

plementation.

Following the theoretical description, a Finite Element Method algorithm was devel-

oped with the two mentioned elements implemented, to be later applied in border-line

situations where the Q4 element tends to lock and/or in distortion which may in�uence

element performance. To apply the algorithm, a validation has been done by patch test

and comparison to results of four bending dominated cases from literature was done.

The �rst in the series of benchmark cases to test and compare both elements was an

analysis of distortion e�ect on structure consisting of two elements. Both types of elements

showed best results in non-distorted form, however, the Pian-Sumihara element show about

40% better results, whatever distortion is applied.

Next, a deformation of a beam in bending was obtained by both elements. A h-

re�nement was performed and convergence observed. In the analysis, the Pian-Sumihara

element provided near exact solution to the problem with only minimum elements present,

while the locking in Q4 element had to be compensated by computationally demanding

high number of elements for the solution to converge. Normal strains by the upper edge

and along middle vertical section were also compared to observe their dependency on the

primary �eld from which they were derived.

In the subsequent problem, bending dominated behavior with shear combined with

nearly incompressible material has been modeled in a classic problem, the Cook's mem-

brane. Convergence rate was tested and compared to other elements from literature which

also aimed to solve the locking problem and were tested against this particular problem.

As in the previous cases, performance of the Q4 element has been inferior to all other ele-

ments as it was showing locking. However, the Pian-Sumihara element showed comparable

behavior to the other elements, regarding the convergence rate.

The �nal analysis considered the distortion e�ect on a nearly incompressible material.

Firstly the elements were tested as the Poisson's coe�cient approaches the incompresibility
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limit. While the Pian-Sumihara element showed solid results, the Q4 element exhibited

locking early on. Subsequently, the elements were distorted and the di�erence to the

results obtained with regular mesh has been observed. While the Q4 element exhibited

locking, the Pian-Sumihara element showed error related to the amount of disturbence to

the regular mesh.

7.1 Limitations

Although linear elastostatics is widely used, one of the assumptions is that only small

deformations with regard to the overall dimensions of the structure occur. Neither the

theoretical part of the thesis nor the subsequent analysis of elements behavior adresses

large deformations, limiting the scope of the thesis and also the interpretation of results.

Similarly, elastic behavior is only applicable to certain materials, which restricts the appli-

cability of results.

The results were obtained presuming static behavior of applied forces and their e�ects,

not considering possible dynamic e�ects.

Last but not least, possible remedies for shear and volumetric locking were brie�y

described and one analysis was done considering alternative methods to the mixed-�eld

formulation as remedies, however, the comparison of two element formulations is not suf-

�cient to evaluate the element's e�ciency in context of other methods.

7.2 Future work

With regard to the limitations of the results following future research is proposed:

� Compare the Pian-Sumihara element to other elements developed speci�cally to ac-

count for locking behavior.

� Implement non-linear model of a plastic deformation based on the Hellinger-Reissner

principle.

� Extend the scope of the algorithm to �nite deformations.
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