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Abstract

Early diagnosis is the principal predictor of survival in lung cancer. Pulmonary nodules are
a common incidental finding in radiological scans. Althoughmostly benign, a small proportion
represents early-stage lung cancer, being a diagnostic challenge. 2-[18F]FDG PET/CT is useful
for further characterizationof pulmonary nodules andprevent an invasive diagnostic procedure
if the exam is negative. Deep learning algorithms have potential for improving the diagnosis
of pulmonary nodules and, in this way, reducing the proportion of patients that requires an
invasive procedure as well as reducing the false omission rate.

The main objectives of this research were to create an annotated database of pulmonary
nodules that included 2-[18F]FDGPET images, and develop a Convolutional Neural Network
model for binary classification of indeterminate solid pulmonary nodules.

A total of 113 participants met the eligibility criteria. The image data pre-processing in-
cluded coregistration, spatial resampling, manual detection of the nodules and cropping a cu-
bic region of interest. A final model was selected from a set of candidate models previously
trained, optimized and evaluated by 4-fold-cross-validation. That model was subsequently as-
sessed in a test set. Models of three types of 3D Convolutional Neural Networks architectures
were trained from random weight initialization (Stacked 3D CNN, VGG-like and Inception-
v2-like models) both in original and augmented datasets. Transfer learning, from ImageNet
with Resnet50, was also used.

The final model (Stacked 3D CNN model) obtained an area under the ROC curve of
0.8385 (95%CI: 0.6455 - 1.0000) in the test set. Themodel had a sensibility of 80.00%, a speci-
ficity of 69.23% and an accuracy of 73.91%, in the test set, for an optimized decision threshold
derived from the cross-validation that assigns a higher cost to false negatives.

In conclusion, a 3D Convolutional Neural Network model was successfully developed.
It was relatively effective at distinguishing benign from malignant pulmonary nodules in 2-
[18F]FDG PET images.

Keywords: Deep learning, Convolutional Neural Networks, Medical Imaging, Positron Emis-
sion Tomography, Pulmonary Nodules.
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Resumo

Odiagnóstico precoce é o principal preditor de sobrevivência no cancro de pulmão. Os nó-
dulos pulmonares são um achado incidental comum em exames radiológicos. Embora, a maior
parte seja benigna, umapequenaproporção representa cancrodopulmão emestadio inicial, tor-
nando-se um desafio diagnóstico. A 2-[18F]FDGPET/CT é útil para caraterização adicional de
nódulos pulmonares e evita umprocedimento diagnóstico invasivo, se o exame for negativo. Al-
goritmos de deep learning têm potencial paramelhorar o diagnóstico de nódulos pulmonares e,
dessa forma, reduzir a proporção de doentes que requer umprocedimento diagnóstico invasivo,
bem como reduzir a taxa de falsas omissões.

Os principais objetivos desta investigação foram criar uma base de dados anotada de nódu-
los pulmonares que incluísse imagens de 2-[18F]FDG PET, e desenvolver um modelo de Rede
Neuronal Convolucional para classificação binária de nódulos pulmonares sólidos indetermi-
nados.

Um total de 113 doentes preencheram os critérios de elegibilidade. O pré-processamento
dos dados de imagem incluiu co-registo, reamostragem espacial, deteção manual dos nódulos
e recorte de uma região cúbica de interesse. Um modelo final foi selecionado a partir de um
conjunto de modelos candidatos previamente treinados, otimizados e avaliados por validação
cruzada com 4 folds. Esse modelo foi posteriormente avaliado num conjunto de teste. Mod-
elos de três tipos de arquiteturas de Redes Neuronais Convolucionais 3D, foram treinados a
partir de inicialização aleatória de pesos (modelos Stacked 3DCNN, VGG-like e Inception-v2-
like), tanto no conjunto de dados original, como num conjunto aumentado. Transferência de
aprendizagem, a partir do ImageNet comResnet50, foi também usada.

O modelo final (modelo Stacked 3D CNN) obteve uma área sob a curva ROC de 0,8385
(IC 95%: 0,6455 - 1,0000) no conjunto de teste. O modelo teve sensibilidade de 80,00%, es-
pecificidade de 69,23% e exactidão de 73,91%, no conjunto de teste, para um limiar de decisão
otimizado derivado da validação cruzada que atribui um custo mais alto aos falsos negativos.

Em conclusão, um modelo de Rede Neuronal Convolucional 3D foi desenvolvido com
sucesso, tendo sido relativamente eficaz em distinguir nódulos pulmonares benignos de malig-
nos em imagens de 2-[18F]FDG PET.
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Chapter 1

Introduction

1.1 Motivation

Pulmonary nodules are a common incidental finding in imaging scans performed for vari-
ous indications, including lung cancer screening (Elia et al., 2019). Although most of them are
benign, a small proportion represents early-stage lung cancer (Elia et al., 2019).

The early diagnosis of lung cancer remains essential in reducing mortality of the leading
cause of cancer death worldwide, despite therapeutic progress in recent years (Woodard et al.,
2016; Sung et al., 2021). The broad overlapping of the attenuation andmorphological features
between early-stage lung cancer and some benign lesions in radiological imaging scans, such
as the X-ray Computed Tomography (CT), represents a challenge of image interpretation for
physicians (Elia et al., 2019).

2-deoxy-2-[18F]fluoro-D-glucose (2-[18F]FDG) Positron Emission Tomography/ Low dose
Computed Tomography (PET/CT) has become an indispensable tool in the evaluation of pul-
monary nodules, outperforming other imagingmodalities (Callister et al., 2015). Nevertheless,
it has well-known causes of false positives, which may lead to unnecessary interventions, and
false negatives that preclude its application in certain lesions (Callister et al., 2015).

2-[18F]FDGPET/CT interpretation by the physicians in the evaluation of pulmonary nod-
ules fundamentally lies in the intensity of 2-[18F]FDG uptake by the nodules, either qualita-
tively interpreting the images or extracting a quantitative feature, the maximum standardized
uptake value normalized by the body mass (SUVmax) of the lesion (Callister et al., 2015).

There is potential for application of advanced image analysis techniques capable of extract-
ing and analyzing more information from the PET/CT images and possibly integrating it with
other relevant clinical data in order to reduce the uncertainty associated with the decisionmak-
ing process (Castiglioni et al., 2019).

Artificial Intelligence has gained popularity in recent years inmany fields, including inMed-
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ical Imaging, due to the huge availability of data, improved computing power and advances in
algorithm development (Esteva et al., 2019). Deep learning algorithms have reached compara-
ble performance to physicians or even outperformed them in specific tasks, in areas as diverse as
dermatology (Esteva et al., 2017), ophthalmology (Kermany et al., 2018), pathological anatomy
(Ehteshami Bejnordi et al., 2017) or radiology (Rajpurkar et al., 2018).

The application of deep learning toNuclearMedicine imaging is in its early days. No study
about classification of indeterminate pulmonary nodules was published. The development of
machine learning-based decision support systems, namely with deep learning, has potential,
among other things, to allow fast, reproducible and effective decision making, especially in
complex cases, in an age where Nuclear Medicine physicians have to analyse large information
volumes in order to make decisions (Y. Yang et al., 2018).

1.2 Definition of the Problem

A pulmonary nodule is defined as a rounded opacity with a maximum diameter of 3 cm,
mostly surrounded by aerated lung, including contactwith pleura (Callister et al., 2015). When
it is not associatedwith atelectasis, lymphadenopathy or postobstructive pneumonia, it is called
a solitary pulmonary nodule (Patel et al., 2013). It can be classified as solid or subsolid nodule,
according to their morphology (Callister et al., 2015). The subsolid nodules are subdivided in
ground-glass and partially solid nodules (Callister et al., 2015).

CT is the first step for evaluation of pulmonary nodules, despite its relatively low specificity
due to the partial overlap ofmorphological characteristics betweenmalignant neoplasms and le-
sions of another nature, which in a population with low cancer prevalence causes a low positive
predictive value (Callister et al., 2015; MacMahon et al., 2017).

2-[18F]FDGPET/CT has a higher specificity than CT, but has lower spatial resolution and
is well-suited for the differential diagnosis of solid or partially solid pulmonary nodules, with
a mean diameter greater than 8-10 mm in the previous CT (Callister et al., 2015; MacMahon
et al., 2017). In case of the partially solid nodules, this dimension is for the solid component
(Callister et al., 2015; MacMahon et al., 2017). An example of a 2-[18F]FDG PET/CT exam is
in the figure 1.1.

A higher specificity of the 2-[18F]FDGPET/CT than the CT and the sequential diagnostic
approach results in a higher positive predictive value, which reduces the proportion of the un-
necessary invasive diagnostic procedures (Callister et al., 2015; MacMahon et al., 2017). This
is relevant because biopsies can may be a source of complications such as pneumothorax and
hemorrhage (Elia et al., 2019). Still, 2-[18F]FDG PET/CT is not free of false positives, being
inflammatory/infectious pathology a well-known cause of those (Ruilong et al., 2017). Nod-
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ules of small size (≤ 8mm) as well as ground-glass nodules or partially solid nodules with small
solid component which represent in situ or minimally invasive adenocarcinoma, respectively,
are known causes of false negatives and preclude the use of 2-[18F]FDG PET/CT in those sit-
uations (Callister et al., 2015). Others potential causes of false negatives are well-differentiated
invasive adenocarcinomas and carcinoid tumors (Reginelli et al., 2019).

A meta-analysis performed by Ruilong et al. (2017) showed a sensitivity of 82% (95% CI:
76%-87%), specificity of 81% (95%CI: 66%-90%) and area under the Receiver Operating Char-
acteristic (ROC) curve of 0.87 (95% CI: 0.84-0.90) for the 2-[18F]FDG PET/CT in this task.

PET/CT is ahybrid tomographic imaging technique. PositronEmissionTomography (PET)
measures the distribution of a positron (β+)-emitting tracer in the body. In this kind of ra-
dioactive decay, two 511 keV gamma rays are emitted almost exactly 180◦ apart from each an-
nihilation event between a positron and an electron of the matter, in this case, the patient body
(Bailay et al., 2015). Whenever two 511 keV photons reach the circular ring of detector of the
scanner in a time window of nanoseconds, it is assumed that they come from the same anni-
hilation event (true coincidence) (Bailay et al., 2015). The exact spatial point where the a de-
cay occurred is unknown and only can be assumed that it occurred in a line between the two
points of the detector system (line of response) (Bailay et al., 2015). The set of lines of response
and their angular projections obtained for every decay events during of a scanning period are
stored in multidimensional arrays known as sinograms (Bailay et al., 2015). These PET data
suffer several corrections before reconstruction in order to eliminate image artifacts and quan-
titative errors: normalization (understood here as compensation of variations in the sensitivity
of different lines of response), random coincidence correction, attenuation correction, scatter
correction, dead time correction (Bailay et al., 2015). The data acquired are reconstructed in
Three-dimensional (3D) imagesmost commonly using an iterative algorithm, theOrdered Sub-
set Expectation Maximization (Bailay et al., 2015). The reconstructed images store counts of
decay per voxel. In order to be compared to other related data they are converted in units of
absolute activity concentration such as becquerels per millilitre (Bailay et al., 2015). The 3D
images are saved as a sequence of adjacent 2D image transaxial slices through the patient body
in Digital Imaging and Communications inMedicine (DICOM) files (Bailay et al., 2015). Or-
thogonal or obliques slices can be calculated by rearranging the pixelmatrix (Bailay et al., 2015).
Finally, the pixel intensity can be transformed in a color space by a display system, in order to
produce an interpretable image for physicians (Bailay et al., 2015).

2-[18F]FDG PET/CTmeasures the body distribution of 2-[18F]FDG, an analog of glucose
(Bailay et al., 2015). So, an increased tracer uptake is observed in normal or abnormal tissues
with a high activity of the glycolytic metabolic pathways (E. Lin & Alavi, 2009). Tumors typ-
ically grow faster than normal tissues and use inefficiently the glucose, so mostly of them are
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2-[18F]FDG-avid (E. Lin & Alavi, 2009). The tracer concentration (Ci) depends not only of
the tissue, but also of the injected activity (A) and the tracer distribution volume (Bailay et al.,
2015). The patient weight (W ) is a surrogate measure of the distribution volume (Bailay et al.,
2015). So it was created a measure that considers these two factors, the standardized uptake
value normalized by the body mass (SUV) which is the widely used measure in PET imaging
(Bailay et al., 2015):

SUV (g/mL) =
Ci(kBq/mL)

A(kBq)/W (g)
(1.1)

It is assumed that the density of tissue is equivalent to 1.0 g/mL, such that the units effectively
cancel and the SUV becomes a dimensionless measure (Bailay et al., 2015). CT measures the
tissue attenuation and provides attenuation and morphological information of the tissues also
as multiple image slices of the body (Bailay et al., 2015). A low dose protocol is applied in this
context. CT is spatially registeredwithPETandused for attenuation correction and anatomical
location of PET images (Bailay et al., 2015).

Despite the advances in PET/CT instrumentation have resulted on improvement in image
quality, is possible that the information may be being explored in a limited extent in most of
publications and especially in clinical practice. Tracer uptake changes are usually visually de-
tected and qualitatively characterized, and the intensity subsequently quantitatively measured.
The same occurs in pulmonary nodules (Ruilong et al., 2017). Despite the success of this ap-
proach innumerous publications, in bothdiagnosis andprognosis, there are situations inwhich
its discriminant power remains limited (Hatt et al., 2019). In pulmonary nodules, the inte-
gration of PET/CT information with the remaining clinical risk factors is usually performed
through the clinical judgment (MacMahon et al., 2017). Scarce attempts to develop machine
learning-based predictive models using more information extracted from images and, possibly,
other relevant clinical features have been reported, but these are restricted to classical methods
(Herder et al., 2005; Y. Yang et al., 2018; S. Chen et al., 2019; Teramoto et al., 2019; H.-Y. Guo
et al., 2020).

Limitations of current methods in the diagnosis of lung cancer may be an opportunity
for deep learning, namely for reducing the rate of false positives without reducing sensitivity
(Y. Yang et al., 2018).

1.3 Objectives

1.3.1 Primary objectives

The primary objectives of the current dissertation are the following:
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Figure 1.1: Example a 2-[18F]FDG PET/CT exam of a patient with a nodule in the right lung.
The nodule is represented in three orthogonal slices (a - coronal; b - sagittal; c - axial) on low
dose CT, PET and image fusion (1, 2 and 3, respectively). A red mark was placed to identify
the nodule.

• Create an annotated database of pulmonary nodules. This database will have two main
types of datasets:

– a 2-[18F]FDG PET image dataset with cubic regions of interest of the nodules;

– a tabular dataset with clinical and image features;

• Develop aConvolutionalNeuralNetwork (CNN)model for classificationof pulmonary
nodules. This step encompasses training, evaluation, tuning of several models by cross-
validation. The best model will be selected to be evaluated in a disjoint set of unseen
images (test set).

1.3.2 Secondary objectives

The secondary objectives are the following:

• Determine the optimum decision threshold for converting the predictions of the model
into classes by threshold moving.
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• Test the hypothesis that the CNNmodel outperforms the SUVmax for classification of
pulmonary nodules. The SUVmax, togetherwith the visual interpretation, is the current
state-of-art for evaluation of pulmonary nodules in 2-[18F]FDG PET/CT images.

1.4 Structure of the Dissertation

This dissertation has six chapters: Introduction, Literature Review, Building a database of
pulmonary nodules, Classification of pulmonary nodules,Results andDiscussion.

In the chapter Introduction, the relevance of the topic is explained, the problem is defined
and the objectives of the dissertation are stated.

In the chapter Literature Review, an overview of the fundamentals of deep learning algo-
rithms is provided, with emphasis on CNN, as well as their applications in PET/CT images for
classification tasks.

In the chapter Building a database of pulmonary nodules are described the methods for
building an annotated database of pulmonary nodules that includes PET images and tabular
features. In this chapter, the target population and ground truth are defined, and the sampling,
data collection and image data pre-processingmethods are described. Descriptive statistics sum-
marizing the ground truth and tabular features is also provided.

In the chapterClassification of pulmonary nodules, the machine learning task is formulated
and the experimental setup for developing a deep learning model is described, which included
cross-validation and testing on unseen examples.

The chapterResults describes the results of the several candidate models in the cross-valida-
tion and the results of the final model in the test set. A comparison is performed between the
final model and the SUVmax measure.

In the chapter Discussion, the results of the classification models are interpreted and con-
textualized with the existing literature. The impact of the data quality on the predictive perfor-
mance of the models is also addressed. The limitations of the research are detailed. In the end,
several topics for future work are suggested.
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Chapter 2

Literature Review

2.1 Introduction

Deep learning is a subfield of machine learning and concerns a group of artificial neural
networks with several hidden layers (LeCun et al., 2015). Deep learning networks learn di-
rectly representations from raw data with no necessity of handcraft features being designed and
extracted, overtaking an important limitation of classical machine learning algorithms (LeCun
et al., 2015). The multiple layers allow to learn representations with a progressively higher level
of abstraction (LeCun et al., 2015).

Such as the classical machine learning methods, deep learning can be divided on supervised
and unsupervised depending on the existence or not of a target attribute (LeCun et al., 2015).
Supervised tasks require labeled examples and the aim is to minimize a loss function that mea-
sures the difference between the predicted and the true label (LeCun et al., 2015).

CNNs are one of the most used network architectures. The first works on CNNs were
done in the seventies (Litjens et al., 2017). The first successful network in a real-word applica-
tion was the LeNet (LeCun et al.,1998, as cited in Litjens et al., 2017), capable of hand-written
recognition. However, only in 2012, a network called AlexNet drew great attention from the
Artificial Intelligence community owing to have won the ImageNet challenge by a largemargin
(Krizhevsky et al., 2012, as cited in Litjens et al., 2017). This only was possible due to the con-
jugation of new techniques that made possible the efficient training of the deep networks and
the advances in core computing systems (Litjens et al., 2017).

The characteristics of deep learning algorithms make them the best methods for predictive
tasks in many fields, nowadays, like computer vision and natural language processing (LeCun
et al., 2015).

CNNs have become the most successfully algorithms for computer vision and numerous
variants of this type of networks have arisen in the last years, making themmore efficient (Khan
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et al., 2020).

2.2 Deep learning in Computer Vision

2.2.1 Image classification

In computer vision, several tasks can be done by machine learning algorithms, such as clas-
sification, detection or segmentation (Rawat & Wang, 2017). Image classification consists of
categorizing images into one of several predefined classes (Rawat & Wang, 2017). Instead of
classify a whole image, one can also classify an object within a region of interest (Litjens et al.,
2017), previously defined manually or by an automatic method.

Classification is a challenging task for machines because, among others, the viewpoint-de-
pendent and in-class object variability (Rawat & Wang, 2017). The classical approach needs
handcrafted features, which are used as input for a classifier (Rawat & Wang, 2017). This ap-
proach was highly dependent on the features extracted and requires domain expertise (Rawat
& Wang, 2017). Differently, CNNs receive raw images, requiring few pre-processing (Litjens
et al., 2017).

2.3 Fundamentals of Deep Learning Algorithms

2.3.1 Artificial Neural Networks

Artificial neural networks are the precursor of deep learning methods (Gu et al., 2018).
Neural networks are nonlinear models that can approximate any function without necessity of
assumptions about data distribution, being flexible for real world complex problems (Zhang,
2000). The basic computation unit of an artificial neural network is the neuron, in analogy
with the human brain (Rawat & Wang, 2017). A basic artificial neural network has an input
layer and an output layer. A multilayer feed-forward neural network has one or more hidden
layers (J. Han et al., 2011). The input layer is fed with the feature vector and passes them to the
following layer with no computation (J. Han et al., 2011). The hidden layers make successive
non-linear transformations of the feature vector (J. Han et al., 2011). The output layer emits
the predictions for each class, given the features vector (J. Han et al., 2011). Each neuron is a
nonlinear function that takes, as net input, the weighted sum of the outputs from the units in
the previous layer (J. Han et al., 2011).
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2.3.2 Convolutional Neural Networks

Basic Principles

TheCNN are a special type ofmultilayer feedforward networks. Its basic structure has sev-
eral convolutional and pooling layers grouped into modules, and one or more fully connected
layers (Rawat &Wang, 2017). In a conventional architecture, the pooling layers are placed be-
tween the convolutional layers and at the topof thenetwork lies the full connected layers (Rawat
&Wang, 2017; Gu et al., 2018).

The convolutional layer aims to learn feature representations from the inputs by using sev-
eral convolution kernels (Gu et al., 2018). The neurons in the convolutional layer are arranged
into feature maps, each neuron in a feature map receives the weighted sum of inputs from a
neighbourhood of neurons in the previous layer and the set of these operations over whole in-
put is a convolution (Gu et al., 2018). The size of neighbourhood is predefined and equal for
all neurons in a feature map, and corresponds to the size of the convolution kernel (Gu et al.,
2018). The set of trainable parameters is composed by the weights of a convolution kernel plus
a bias (Gu et al., 2018). They are shared by the all spatial locations of the input, which greatly re-
duces the network complexity (Gu et al., 2018). Over the input convolved is applied a nonlinear
function, resulting in a new non-linear feature map (Gu et al., 2018).

The pooling layers compute the maximum or the average value within a receptive field
(Rawat &Wang, 2017). They reduce the resolution of the feature map and create invariance to
small shifts and distortions, and merge semantically similar features (LeCun et al., 2015).

The output of the convolutional base may be flattened in a single vector of values and is
taken by the fully connected layer to generate global semantic information from the data (Gu
et al., 2018). The last layer is the output layer and contains an operator that depends on the
predictive task, which gives the probability of a label given an example (Goodfellow et al., 2016).
In classification is common to use softmax function (Gu et al., 2018).

The most common activation functions are the sigmoid, hyperbolic tangent and the recti-
fied linear unit, but the last one is the most popular because allows a faster learning in networks
with many layers and do not suffer from the vanishing gradient problem (LeCun et al., 2015;
Rawat &Wang, 2017).

Training of the network is a global optimization problem and is performed with the back-
propagation algorithm is the same way of the classical neural networks, through the stochastic
descendent gradient or other similar (Rawat &Wang, 2017). The backpropagation algorithm
calculates the gradient vector of a loss function with respect the weights and biases in order to
know the magnitude and direction of adjusting the weights in the network (Rawat & Wang,
2017).
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Main Recent Advancements

Numerous recent improvements have been proposed in order to reduce the computational
cost and increase the performance in different tasks.

Convolutional layer. At level of the convolutional layer, the tiled convolution, the trans-
posed convolution, the dilated convolution, the network in network and the inceptionmodule
are examples of improvement proposals of the standard convolution. In tiled convolution, sep-
arate kernels are learnt within the same layer, providing rotational and scale invariant features,
beyond the translational invariance (Le et al., 2010). The transposed convolution convert a sin-
gle input to multiple output activations; the dimension of the resulting feature map depends
of the stride (Gu et al., 2018). The dilated convolution is another variation that increase the
receptive field by inserting a gap of zeros between the values of the kernel in an order which
depends on a hyperparameter (dilation rate); it is used in tasks that need a large receptive field
(Yu & Koltun, 2016, as cited in Gu et al., 2018). The network in network replaces the linear
filter and the respective activation function of the convolutional layer by a micro-network able
to represent more abstract features (M. Lin et al., 2014). Inception modules drastically reduce
the number of parameters in the network by approximating an optimal local sparse structure
(Szegedy et al., 2014)

Pooling layer. At level of pooling layer, others kind of poolingmethodswere proposed. The
Lp pooling takes theweighted average of the activations (ai) within a pooling region (Rj), being
a trade-off between the average (p =1) and the max pooling(p =∞) (Rawat &Wang, 2017):

sj =

∑
i∈Rj

api

1/p

(2.1)

Mixed pooling combinesmax and average pooling, by randomly choosing either one or other at
each location of a feature map (Rawat &Wang, 2017). Stochastic pooling randomly takes the
activations within a pooling region according to amultinomial distribution, ensuring that non-
maximal activations are also picked (Gu et al., 2018). In fractional max pooling, the stochas-
tic nature lies in the selection of pooling regions, rather then the pooling operations (Rawat &
Wang, 2017). Spectral pooling converts the input featuremap into the frequency domain, then
crops the frequency representation by maintaining only the central submatrix of the frequen-
cies with the dimensions of the desired output, which is then converted into spatial domain
(Gu et al., 2018). Spatial pyramidal pooling can be placed on top of the last convolutional layer
to generate a fixed-length representation irrespective of the input size or scale, satisfying the size
constrain of the input vector for the full connected neural network; the pooling is done inmul-
tiple local spatial bins proportional to the image size (He et al., 2014). Themulti-scale orderless
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pooling extract activation features from both the whole image and the local patches of several
scales aggregated via vectors of locally aggregated descriptors (VLAD), then they are concate-
nated to form a new representation; this method captures fine-grained details and improves the
invariance to large-scale global deformations (Rawat &Wang, 2017). In transformation-invari-
ant pooling, new features are formulated fromapredefined set of possible transformations, such
that they are independent of any known nuisance variations of the input; over this set obtained
is applied the max operator (Rawat &Wang, 2017).

Activation function. The rectified linear unit (ReLU), f(x) = max(x, 0) is currently the
most popular activation function; it leads to faster convergence and does not suffer of vanishing
gradient problem of conventional non-linear functions (Rawat &Wang, 2017). However, the
gradient descent is unable tofine-tune theweights of notpreviously activatedunits because their
zero gradient (Lu et al., 2020). To compensate it, several variations of this activation function
were designed which have still more faster convergence and better performance, as shown in
the table 2.1 (Rawat & Wang, 2017). These variants of the ReLU compress the negative part
instead of cancel it, allowing a small, not null gradient when the unit is not activated (Rawat &
Wang, 2017).

Activation function Expression

Leaky ReLU
a = max(z, 0) + λmin(z, 0),
0 ≤ λ ≤ 1, λ is predefined

Parametric ReLU a = max(z, 0) + λkmin(zk, 0), λ is learnt
Randomized ReLU a = max(z, 0) + λmin(z, 0), λ ∼ U

Exponential Linear Unit
a = max(z, 0) +min(λ(ez − 1), 0),

λ is predefined

Table 2.1: Activation functions - Leaky ReLU, Parametric ReLU, Randomized ReLU and Ex-
ponential Linear Unit.

Two alternative nonlinear functions were also proposed. The Maxout is an universal ap-
proximator which outputs the maximum value across the feature maps of a layer at a given
position (Goodfellow et al., 2013). Probout output not the maximum, but one of the units
among the feature maps according to a multinomial distribution (Gu et al., 2018).

Loss function. The training of the network is performed by minimizing a loss function
(Q.Wang et al., 2020). Themost suitable loss function depends on themachine learning prob-
lem (Q.Wang et al., 2020). The softmax cross-entropy loss is themost commonly loss function
in multi-classification problems; it combines the softmax and the cross-entropy loss (Q. Wang
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et al., 2020). The softmax is placed in the last layer of the fully connected network and gives a
probabilistic output (Q. Wang et al., 2020). Examples of other loss functions for classification
problems are sigmoid cross entropy loss, logarithmic loss, exponential loss, hinge loss, ramp loss
and pinball loss (Q. Wang et al., 2020).

Regularization. Regularization includes any process that improves the model generaliza-
tion against unseen examples. A regularizing effect can be obtained from a quite variate number
of processes (Kukačka et al., 2017).

The model capacity can be adjusted to the complexity of the problem in order to prevent
underfitting or overfitting (Kukačka et al., 2017). Different network architectures and different
components (such as the type of convolutional or pooling layer or the activation function) can
have a greater or lesser regularizing effect (Kukačka et al., 2017). Defining an experimental setup
that includes a model selection step is a way of obtaining a model the best generalizes among
several trained models with different hyperparameter setting (Kukačka et al., 2017). Stopping
the training, as soon as the performance in validation set starts to get worse is another way to
reduce the overfitting (Prechelt, 2012). Complexity of the model can be penalized by adding a
regularization term to the empiric risk, the Lp norm regularization, where p typically assumes a
value of 1 or 2 (Kukačka et al., 2017).

The dropout is a method used to reduce the overfitting by averaging many variations of
the same fully connected network in an efficient way. A number of units is randomly omitted
according to a Bernoulli distribution at each time a training batch is presented to the network,
resulting a ”thinned” network. The probability of dropping an unit (p) can be set at 0.5 or
chosen from the validation set. On the other hand, in the test set, the unit previously dropped
is now present, but its value is multiplied by p. For a networkwithn units, a total of 2n thinned
networks with shared weights are possible (Srivastava et al., 2014). DropConnect is similar to
Dropout, but now randomly drops a subset of weights, according to a Bernoulli distribution
(Gu et al., 2018).

Regularization via data can be done in three different ways. The most intuitive approach
is gathering more data, but this is not always feasible. So the alternatives are to perform a pre-
processing that transforms the data to some representation, which simplifies the learning task
(Kukačka et al., 2017) or to perform data augmentation (Shorten & Khoshgoftaar, 2019).

Data augmentation entails a set of methods to artificially inflate the size of the training set
when this one is of limited size as, for example, in medical imaging (Shorten & Khoshgoftaar,
2019). It assumes that more information can be extracted by this way from the original dataset
and this improves themodel generalization (Shorten&Khoshgoftaar, 2019). It can also be used
for correction of imbalanced datasets (Shorten & Khoshgoftaar, 2019). Augmentation meth-
ods can be divided in oversampling and warping methods (Shorten & Khoshgoftaar, 2019).
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Oversampling consists in duplicating instances of theminority class at random or interpolating
new images for the existing k-Nearest Neighbors instances (SMOTE) (Shorten & Khoshgof-
taar, 2019). Oversampling is suitable for correcting data imbalances, but not warrants a reduc-
tion of the overfitting and may even worsen it (Shorten & Khoshgoftaar, 2019). Data warping
transforms the existing images while preserving the labels, and add them to the original dataset
(Shorten & Khoshgoftaar, 2019). It can be further divided in basic image manipulations, such
as geometric andphotometric transformations, noise injection, kernel filters,mixed images, ran-
dom erasing; deep learning approaches such as adversarial training, neural style transfer, genera-
tive adversarial networks-based augmentation; andmeta-learning-based augmentation (Shorten
& Khoshgoftaar, 2019).

Some of these methods are analyzed in more detail next. Geometric transformations in-
clude flipping, translation, rotation and cropping (Shorten&Khoshgoftaar, 2019). Geometric
transformations are good to avoid positional biases (Shorten & Khoshgoftaar, 2019). How-
ever, the label is not necessarily preserved and the domain where is being applied should be
taken into account when the transformation is designed and implemented (Shorten & Khosh-
goftaar, 2019). Noise injection is done using a noise matrix; it is a good procedure to help the
algorithm to learn more robust features (Shorten & Khoshgoftaar, 2019). Random erasing re-
moves certain patches from the input image, preventing the model from overfitting to certain
visual features in the image and enforcing it to pay attention to the entire image and to learn
other features also presents. (Shorten & Khoshgoftaar, 2019)

The augmentation can be performed on learned representations instead of in the input im-
ages (Shorten & Khoshgoftaar, 2019). Unsupervised representation learning models, such as
variational autoencoders or generative adversarial networks, offer a convenient way of learn-
ing useful representations for applying such transformations (Shorten &Khoshgoftaar, 2019).
Augmentation using adversarial attacks, although may not represent probable examples in test
set, they can improve weak spots in the learned decision boundary (Shorten & Khoshgoftaar,
2019). Generative adversarial networks-based augmentation creates artificial images which re-
tain similar features to the original dataset (Shorten & Khoshgoftaar, 2019). Variational au-
toencoder is another generative algorithmwhich learns a low-dimensional representation from
the data source and uses it for data augmentation (Shorten & Khoshgoftaar, 2019).

Regularization also can be achieved via optimization procedures. These techniques are de-
scribed next.

Optimization. CNNs produce models that are difficult to train because they usually have
millions of parameters and the loss function is non-convex (Rawat &Wang, 2017). The way as
the weights are initialized contributes to prevent vanishing or exploding gradient problem and
to promote fast convergence (Rawat & Wang, 2017). The main ways to initialize the weights
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include randomly, with orthogonal matrices, unsupervised pretraining and transfer learning.
Popularmethods of random initialization areXavier initialization andHe initialization (Glorot
& Bengio, 2010; He et al., 2015). The latter was specifically validated on rectifiers. The weight
initialization follows an uniform or Gaussian distribution in an neuron-specific interval that
maintains approximately constant the activation variance and back-propagated gradients vari-
ance along the different layers of the network (Glorot & Bengio, 2010; He et al., 2015).

Unsupervised learning algorithms (e. g. Restricted Boltzmann Machines, Auto-Encoders
or Convolutional Auto-encoders) can be used to initialize the weights of all layers or, in some
cases, only the first layer; the second phase corresponds to a supervised fine-tuning of the en-
tire network (ur Rehman et al., 2019). This method reduce the dependency of the data and
optimizes computation and convergence (ur Rehman et al., 2019).

Transfer learning is other option for when it is not possible to obtain a large labeled dataset
about the domain of the problem or we do not have the necessary computational resources
(Tajbakhsh et al., 2016). It consists in using aCNNthatwas previously trained in a large labeled
dataset from another domain, preferentially related, or from the same domain, but in another
task (Weiss et al., 2016). The convolutional network obtained from the source domain can be
used as a feature extractor or as base network for model on the target domain (Tajbakhsh et al.,
2016). When the transfer learning is used to create a feature extractor, the convolutional base
of the source network are preserved and their weights are retained, and the fully connected net-
work is replaced (Tajbakhsh et al., 2016). Thus, the extracted features from the target domain
by the convolutional base are used to train the new fully connected network or other classifier
(Tajbakhsh et al., 2016). When the transfer learning occurs for the whole network, the target
convolutional network are initialized with the weights of the pre-trained source network with
the same architecture (Tajbakhsh et al., 2016). Just the last fully connected layer is, if neces-
sary, modified to have the same activation units as the number of classes of the target domain
(Tajbakhsh et al., 2016). Theweights of the last fully connected layer are initialized by a random
method and the network is then fine-tuned in a layer-wise manner, starting by the last one; it is
not always necessary fine-tuning all the layers; the number of layers fine-tuned relies one the dis-
similarity between the source and the target domains (Tajbakhsh et al., 2016). The more layers
are fine-tuned, the larger the dataset should be.

The backpropagation algorithm and an optimizer are used together to train a CNN. The
gradient descent algorithm is a non-adaptive optimizer of widespread use (Ruder, 2017). It has
three variants, the batch gradient descent updates the parameters θ of the objective function
as θt+1 = θt − η∇θE[L(θt)], where η is the learning rate and the E[L(θt)] is the empiric
risk calculated over the full training data (Gu et al., 2018). The stochastic gradient descent is a
simplification, it does not calculate the exact value of the empiric risk and gives at each iteration
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an estimation of the gradient based on a single example randomly picked from the training set
(Gu et al., 2018). In practice, is used a mini-batch of examples instead of a single one in order
to reduce the variance of parameter update and get a more stable convergence (Gu et al., 2018).
Gradient descent does not guarantee convergence and the training may be terminated when
reached a predefined number of epochs or a value of the training loss, or a performancemeasure
stops improving in the validation set (Gu et al., 2018).

Adaptive optimization algorithms has recently arisen, such as RMSprop, Adam, Adagrad,
Ada-delta, AdaMax and Nadam (Ruder, 2017). They shorten the training time by avoiding
expensive tuning efforts of the optimizer (Curtis & Scheinberg, 2020).

The input distribution in a layer is affected by changes of parameters of the previous layers,
so as data crosses subsequent layers, changes of the distribution are amplified and the learning
ability is compromised, a phenomenon called internal covariate shift (Ioffe & Szegedy, 2015).
Batch normalization introduces a step of normalization that fixes the mean and the variance of
the input layers (Ioffe & Szegedy, 2015). The input normalized is then scaled and shifted for
enhanced representation, using learnable parameters (Ioffe & Szegedy, 2015).

Even though the improvements of the normalized initialization and the batch normaliza-
tion, they introduce a degradation problem on deepCNNswhich can be corrected by shortcut
connections (Gu et al., 2018). Highway networks use a learnable gating mechanism inspired
by long short-term memory recurrent neural networks for regulating information flow across
several layers without degradation (Gu et al., 2018). It uses gate functions to determine how
much of an activation is to be transformed or just pass through (Gu et al., 2018; Rawat&Wang,
2017). On the other hand, residual networks uses shortcut connections that perform identity
mapping, and their outputs are added to the outputs of the stacked layers (He et al., 2016).
Thus, they fit a residual mapping with reference to the layer inputs, instead of learning unref-
erenced functions, being easier to optimize (He et al., 2016). Densely Connected Convolu-
tional Networks connects each layer to every other layer in a feed-forward fashion (G. Huang
et al., 2016). This architecture allows to reduce to vanishing-gradient problem, strengthen fea-
ture propagation, encourage feature reuse, and substantially reduce the number of parameters
(G. Huang et al., 2016).
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2.4 ConvolutionalNeuralNetworks forClassification inPET
and Multimodal Imaging

2.4.1 Types of input and 2D/3D CNN

Most of research on CNNs has been performed on natural images stored in a 2D (gray
scale images) or a 3D (color images) tensor wherein the first two axes are the spatial dimensions
and the third axis stores the channels of the color system, being three for RGB. A filter of a
2D convolution will have the same depth as the input image and just moves along the two first
axes. The result is a feature map with two spacial dimensions, thus networks with these type of
convolutions are usually called are 2D CNN. A convolutional layer with several filters outputs
a feature map with a depth equal to the number of the filters in that layer (LeCun et al., 2015;
Dumoulin & Visin, 2016).

On PET or on CT images, the data enter in the CNN as raw data or data transformed
in a color space. The raw data are a 3D tensor with one channel. In case of PET, each voxel
stores a measure of radioactivity concentration adjusted to dose injected and body weight, the
SUV (Bailay et al., 2015). OnCT images, the voxels storeHounsfield units (Bailay et al., 2015).
Different approaches are described on the literature how to create CNNmodels with this type
of inputs. If the network receives a slice or a set of slices (volume), but 2D convolutions are
applied, this is a 2D CNN. When a volume enters a CNN that performs convolutions in 3
axes, this is a 3D convolution, and the network is called 3D CNN. One example of this type of
networks is V-Net (Milletari et al., 2016).

2.4.2 Systematic review

A systematic literature review was performed on Pubmed1 to find all papers about classifi-
cation tasks on PET or multimodal imaging involving PET (PET/CT and PET/MRI) using
CNN-based models. The search criteria were the following: ”convolutional neural network”
AND (positron emission tomographyORPETORPET/CTORPET/MRI). From the 54 papers
found, original papers respecting classification tasks (diagnostic or prognostic) were selected
and analyzed (n=16).

Five studies were performed on Alzheimer disease, 1 on Parkinson disease, 1 on cardiac sar-
coidosis, 2 on head and neck cancer, 3 on lung cancer, 2 on esophageal cancer, 1 on cervical
cancer and 1 on unspecified brain pathology. There was no study about classification of inde-
terminate pulmonary nodules.

1https://pubmed.ncbi.nlm.nih.gov/
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Thedescription of the different approaches is divided according to the network architecture
(2D or 3D).

2D CNN

Ypsilantis et al. (2015) sought to predict the response to neoadjuvant chemotherapy in pa-
tients with esophageal cancer from pre-treatment 2-[18F]FDG PET images by building tradi-
tional models based on radiomics and CNNs. The dataset had 107 patients. From a given
volume containing the tumor, all possible triplets of adjacent transaxial slices were extracted.
Each triplet was treated as a three-channel input for the CNN and was labeled. The CNN ar-
chitecture was composed of 4 convolutional and 4 max-pooling layers and a fully connected
network. This model had an accuracy of 73.4%.

A classification model was developed by H. Wang et al. (2017) for differential diagnosis of
2-[18F]FDGuptake inmediastinal lymphnodes in patientswith lung cancer. From168patients
were analysed 1397 lymph nodes. Six transaxial patches, 3 for PET and 3 for CT, were cropped
around the center of each lymph node and resampled. The patches were translated and rotated
for data augmentation, as such the sample of patches were extended by a factor of 729. The
architecture of the network is based on AlexNet, but constrained to 5 layers. ReLU activation
function, dropout regularization, categorical cross entropy loss function andAdadelta learning
were used. The output is a patch-based probability of malignancy. The model obtain an area
under the ROC curve of 0.9086 in the test set.

A CNNmodel for local staging of lung cancer on 2-[18F]FDG PET/CT images was devel-
oped byKirienko et al. (2018) from a datasetwith 472 patients. Themodel aimed to distinguish
between T1-T2 and T3-T4 tumors. The PET images were resampled in the CT space. Both
images were rescaled to interval 0-1. 3D bounding boxes were cropped around the lesion centre
in both images (128 × 128×Nslices). Data augmentation with rotational transformations was
performed. The algorithm was composed by two networks: a feature extractor and a classifier.
The 3D region of interest was decomposed in Nslices, which corresponds to 2D images. The
total of Nslices of all patients is the dataset that feeds the network. Therefore, each patch has
128× 128, and the PET andCT data were stored in separate channels. The feature extractor is
a 2DCNN.The classifier receives the inputmean of the second to last layer of features extracted
from all slices of a single patient in order to give a per patient prediction. The final model had
an area under the ROC curve of 0.68 in the test set.

Y. Han et al. (2021) built a classification model for differentiating histologic subtypes of
non-small cell lung cancer from fusion images of 2-[18F]FDG PET/CT. The dataset had im-
ages from 1419 patients. Data augmentation was applied. Ten classical machine learning mod-
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els and a VGG-16 model pre-trained on ImageNet were evaluated. The deep learning model
outperformed all classical machine learning models, having an area under the ROC curve of
0.903.

Prediction of local relapse and distant metastases was performed by Shen et al. (2019) in
cervical cancer patients. A total of 142 patients were included. A 3D region of interest cen-
tered on SUVmaxwas extracted and decomposed in slices for the 3 orthogonal axes. Rotational
transformations were performed for data augmentation. A total of 1562 set of slices for the 142
tumors was generated and labeled. The model consisted of a 2D CNN with 3 multilayer per-
ceptron convolution layers and 1 global average pooling. Batch normalization was performed.
The output is a slice-based probability, so this probabilitywas aggregated to obtain tumor-based
probabilities. The model had an accuracy of 89% for local relapse and 87% for distant metas-
tases.

Liu, Cheng, Yan, and the Alzheimer’s Disease Neuroimaging Initiative (2018) proposed a
model for diagnosis of Alzheimer disease from 2-[18F]FDG PET images based on combination
of 2D CNN and recurrent neural networks (RNNs). A total of 339 individuals have partici-
pated in the study. The volume of interest of the brain was decomposed in slices (2D images) in
the 3 orthogonal axes: 193 coronal slices, 153 sagittal slices and 163 transaxial slices. Addition-
ally, groups of 15 slices with an overlap of 6 slices were created to train a 2DCNN.A total of 20
deep CNNs in coronal, 17 CNNs in sagittal and 18 CNNs in axials were obtained to generate
intra-slice feature vectors for 3D 2-[18F]FDG PET images. The CNNs with low accuracy were
discarded. The features generated from 4 slices was fed into the inputs of Bidirectional Gated
Recurrent Unit (BGRU) in each axis. The output of each BCRU was concatenated to feed a
fully connected network. The final classification was performed by weighted averaging of the
predictions from the 3 axes. This method reached an area under the ROC curve of 0.953 to
distinguish Alzheimer disease from normal controls, and 0.839 to distinguish mild cognitive
impairment from normal controls.

Ding et al. (2019) proposed a CNN model based on 2-[18F]FDG PET for diagnosis of
Alzheimer disease. A total of 1002 participants and 2109 exams were included in the study.
They converted the volume of interest in a grid of uniformly spaced 4 × 4 transaxial slices.
This new 2D image is the input for theCNN.Data augmentationwas performedwith random
width and height shift and zooming. The architecture Inception-v-3 was used. The weights
were initialized with a network pre-trained on ImageNet. The model had an area under the
ROC curve of 0.98, outperforming human readers.

Nobashi et al. (2019) built models to distinguish between normal and pathological brain
2-[18F]FDG PET from a dataset with 289 participants. They converted data to .png format to
transform the raw data into a color system. The window was previously defined by the opera-
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tor. The imageswere analyzed in 3 differentwindows. For eachwindowwere obtained coronal,
sagittal and transaxial slices. Each slice was individually annotated e corresponded to an exam-
ple. A total of 9 models were built for the combination of windows and slice axis. The output
of the models was a probability of disease by slice. To obtain the probability for a patient, the
probability of the slices of the same axis and window was averaged. The architecture of the
network was based on ResNet-50. Ensemble models were created for windows and/or slice ori-
entations. The best model was the ensemble of the slices on 3-axes for the narrowwindow (area
under the ROC curve of 0.8405).

Togo et al. (2019) developed a model for diagnosis of cardiac sarcoidosis from 2D cardiac
polar maps generated from 2-[18F]FDG PET images. The dataset had 85 patients. They used
a pre-trained Inception-v3 network model in object recognition tasks as a high-level feature ex-
tractor. A 2048-dimensional feature vector was extracted from the pool3 layer. Because the fea-
ture extracted can be effective on the task of the source model, but not on classification tasks,
a ReliefF feature selection algorithm was used to select more suitable features for classification.
Finally, a linear Support Vector Machines was applied. The F1 score of the method was 0.854
in the test set.

3D CNN

Yee, Popuri, Beg, and the Alzheimer’s Disease Neuroimaging Initiative (2020) proposed a
3D CNNwith residual connections for diagnosis of Alzheimer disease with 2-[18F]FDG PET
imaging. A dataset with images from 1211 participants was used. This network takes as input a
volumeof the full brain appropriately pre-processed. Thenetworkhas a total of 8 convolutional
layers, 3 max pooling layers and two residual learning blocks to learn hierarchical features. The
top layers consist of a global average pooling layer, a 1× 1 convolutional layer and the softmax
activation rather than a fully connected layers in order to reduce the number of parameters.
Batch normalization anddropoutwere applied. Thismethodhad an area under theROCcurve
of 0.976 to distinguish Alzheimer patients from control individuals, in an independent set.

Choi and Jin (2018) sought to predict the development of Alzheimer disease in patients
withmild cognitive impairment through brain 2-[18F]FDGPET and 18F-florbetapir PET. The
dataset had images from 492 patients. A 3DCNNwas trained on dataset of Alzheimer disease
patients and normal controls and transferred to the target dataset without fine-tuning. Two
volumes of 2-[18F]FDG PET and 18F-florbetapir PETwere spatially co-registered and stored in
2 different channels. The model yielded an area under the ROC curve of 0.89, in the test set.

Y. Huang et al. (2019) propose CNN models based on single modality (2-[18F]FDG PET
or MRI) and multimodality (2-[18F]FDG PET/MRI) for diagnosis of Alzheimer disease. The
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dataset had images from 1378 participants. The CNNwas like VGG, being adapted to 3D im-
ages. OnMRI images, models derived from3 regions of interest were compared (hippocampus,
segmented hippocampus and hippocampal mask). On PET images, models trained from two
regions of interest were compared, a hippocampal and a bigger one including also the cortex.
Formodels ofmultimodal imaging, the PET imagewas rigid-registeredwith the respectiveMRI
image and the hippocampal interest region was cropped. Two types of approaches were evalu-
ated, in one of them, the PET/MRI was input to the network as a 4D tensor. The first 3 are
spatial dimensions and the fourth is the channelwhere the data of PETandMRIwere stored for
each spatial point. A CNNwas adapted to receive this type of input. In the second approach,
two separate convolutional/pooling bases from a VGG-11s were used to extract features from
the two image modalities and the features were then concatenated and received by a fully con-
nected network. This approach was further subdivided in two, being the weights either totally
independent or shared by the two convolutional/pooling bases. The PET 3D CNNwith hip-
pocampal region had the best area under theROCcurve (92.69%), whereas the PET/MRIwith
3D CNN and shared weights had the best accuracy (90.10%).

Manzanera et al. (2019) built a 3D CNN from 2-[18F]FDG PET images for diagnosis of
Parkinson disease. The dataset had images from 310 participants. A pre-processing with Scaled
SubprofileModelingusingPrincipalComponentAnalysiswasperformed inordermake amask,
selecting the voxels that include thepatterns of brainmetabolism related to thedisease. Over this
mask, 3 cubic regions of interest were cropped from different regions of the brain that provide
input to 3 different 3D CNNs, respectively, with identical configuration. The output of the 3
CNNs are concatenated and passed thought an output layer. Due the small size of the dataset
(n=310), the three different models created the CNN was shallow, having the 1 to 3 convolu-
tion layers. Batch normalization and dropout were applied. The best model had an area under
the ROC curve of 0.94 in the test set, for the approach with one convolutional layer.

C.-K. Yang et al. (2019) developed a 3D CNN-based model to predict survival at 1 year in
esophageal cancer from a 2-[18F]FDG PET imaging dataset of 1107 patients. They cropped a
volume that covered the body area from the hypopharynx to the stomach and included all of the
esophagus and the peri-esophageal regions. Data augmentation was performed with geometric
transformations and Gaussian noise injection. Data balancing with under- and over-sampling
was done. The 3D CNN was based on ResNet and had 34 layers, anisotropic max pooling,
Adam optimizer, batch normalization and a rectified linear unit. A pre-trained model was de-
rived fromamix of this datasetwith another one of lung cancer patients in a task of classification
esophageal/lung cancer. The final model had an area under the ROC curve of 0.738, in the test
set, to predict survival at 1 year.

First Zhou Zhou et al. (2018) as a preliminary result and then L. Chen et al. (2019) in an ex-
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tended sample, both from the same team, they predict the malignancy of regional lymph nodes
in patients with head and neck lung cancer. The dataset used by L.Chen et al. (2019) had 31 pa-
tients and 121 lymph nodes. A hybrid model was developed, combining a multi-objective Sup-
port Vector Machines model based on radiomic features and a 3D CNN from multimodality
imaging (2-[18F]FDG PET and CT). The output of the twomodels were combined by eviden-
tial reasoning. The input to the CNNmodel corresponded to patches of PET and CT that in-
cluded the lymph nodes and their surrounding voxels. These patches are co-registered and form
a4D tensor, or 2 3D images, one in each channel. Theminority classwas oversampledwith Syn-
thetic Minority Oversampling Technique (SMOTE). Data augmentation was performed with
rotational transformations. The architecture of the 3D CNN consisted of 12 convolutional
layers, 2 max-pooling layers and 2 fully connected layers. Each convolutional layer has rectified
linear units and batch normalization. Weights were initialized with Xavier initialization. The
area under the ROC curve was 0.95 on this task, in the test set.
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Chapter 3

Building a database of pulmonary nodules

A database of pulmonary nodules was constructed with data of patients referenced to the
São João University Hospital Centre, having a pulmonary nodule investigated by 2-[18F]FDG
PET/CT.

Once there are no PET facilities in that hospital, this imaging exam is currently supplied by
external providers.

In order to ensure the quality of the data for modeling, the first steps were to define a study
population, the ground truth and the sampling method. Individuals of the study population
share a set of eligibility criteria. These criteria allow to identify the individuals of the interest
and draw a sample as representative as possible using a samplingmethod, which is used to build
the dataset. The models trained and evaluated in this dataset only will be valid for classifying
pulmonary nodules of new individuals drawn from the same population, unless themodels are
subsequently validated in additional datasets built from other populations.

3.1 Target Population

Each participant cumulatively meets the following inclusion criteria:

• One or more indeterminate solid pulmonary nodules with more than 8 mm in average
diameter. The average diameter should not exceed the 30 mm, according to nodule def-
inition;

• The nodule detection was incidental or through screening;

• 2-[18F]FDG PET/CT was performed for clarification of the nodule(s) and the recon-
structed images are available in digital format;
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• The nodule was biopsied or excised and obtained a histopathological or cytopathological
examination, otherwise completed an imaging follow-up period.

Who meets at least one of the following criteria is excluded:

• History of lung cancer;

• History of other cancers, except:

– Non-melanoma skin cancer, localized prostate cancer, in situ cervical cancer, in
situ breast cancer, or superficial bladder cancer, which has been treated at least 6
months ago;

3.2 Definition of the ground truth

The ground truth corresponds to the definitive diagnosis of the pulmonary nodule, classify-
ing the nodule according to the best existing evidence, which is in this case the histopathological
or cytopathological examination, and/or the nodule behavior during the follow-up period with
CT.

The ground truth is thus defined as follows:

1. A nodule is classified as malignant if biopsied or excised during the initial diagnostic
workup or during the follow-up period, and the histopathological or cytopathological
examination shows a malignant neoplasm.

Malignant nodules can be further detailed, being grouped in seven categories: adenocar-
cinoma, squamous cell carcinoma, small cell lung cancer, large cell carcinoma, carcinoid
tumour, metastasis, other/uncertain tumor.

2. A nodule is classified as benign if

(a) Excised and the histopathological examination showed benign pathology;

(b) Biopsied, the biopsy was diagnostic and the histopathological or cytopathological
examination showed benign pathology;

(c) Neither excised nor biopsied, or biopsied but non-diagnostic and during follow-
up:

i. The nodule disappeared;

ii. The nodule decreased or kept the same size for, at least, two-year of follow-up;
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iii. the nodule increased in size and thereafter was biopsied or excised and the his-
tology was benign;

iv. Volume doubling time >600 days and <25% change in volume for, at least,
one year of follow-up.

Aminimum of two-year imaging follow-up is established for solid nodules when the mean
diameter of the nodule on twoperpendicular axes, obtained on axial slices, is used for follow-up.
When the follow-up period was between one- and two-year, the nodular volume was estimated
from the diameter on three orthogonal axes. These follow-up criteria are based on the doubling
time of malignant solid nodules and is recommended in the two main guidelines (Callister et
al., 2015; MacMahon et al., 2017) of pulmonary nodule management.

3.3 Sampling method

Every patient referred to São João hospital and who underwent 2-[18F]FDG PET/CT be-
tween 2010 and 2019 was consecutively selected if he/she belongs to the defined population.
If a patient underwent more than a PET/CT exam, only the first one was considered. If a pa-
tient has more than one nodule that fills the eligibility criteria, only the more suspicious was
included.

3.4 Ethical aspects and Data Protection

This research was approved by the São João University Hospital Centre, EPE (Project no.
371/19), including the retrospective collection and processing of clinical data, and modeling.
The project was approved by theHead ofNuclearMedicineDepartment, the Ethical Commit-
tee, the Responsible for Data Reuse, the Research Unit Coordinator and the Administration
Board. The informed consent of the participants was waived due to retrospective nature of the
research. The data were submitted to pseudonymization during the collection phase. After
completed this phase, the data were anonymized.

3.5 Evaluation of eligibility and selection of participants

Among 7130 PET/CT exam requests within the established time interval were selected
292 2-[18F]FDG PET/CT exams that aimed at clarifying the diagnosis of pulmonary nodules.
Then, the eligibility criteria were checked for those 292 by consulting the medical records and
the information of the histopathological/cytopathological examination, the standard-dose CT
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and the 2-[18F]FDG PET/CT. In the end, 113 participants met the eligibility criteria to be in-
cluded in the sample used to create a database. One nodule per participant was included.

A table (”amostragem”) in the database was created to record the verification of the eligibil-
ity criteria (A.1).

3.6 Data Collection and Preparation

The database is conceptually constituted by image and tabular data.

3.6.1 Image Data Collection

Building an image dataset required locating the digital image files of the study participants
in different sources and assemble them in a single directory of an external hard drive. The figure
3.1 makes an overview about the steps of collection e preparation of image data.

Before 2015, only the printed reports were being delivered to the hospital by the external
providers, as such the digital image data of 49 exams were directly requested to providers which
kindly provided them. The exams performed between 2015 and 2017, were stored in Com-
pact Disc (CD) in the clinical archive of the hospital, so a search in this archive was manually
conducted to find 60 exams. The remaining exams were located digital imaging database of the
institution - Picture Archiving andCommunication System (PACS), since after 2017, this kind
of exams were integrated there.

3.6.2 Initial Understanding of the Image Data

A 2-[18F]FDG PET/CT exam is composed by three types of images: PET images recon-
structed with attenuation and scatter correction, PET images reconstructed without attenua-
tion and scatter correction and CT images. These images have a field of view between the base
of the skull and the middle of the thighs and are acquired around 60 min after the tracer injec-
tion. Additional images may be acquired, for instance, at 120 min, which in this context are
usually from the thorax.

For the purpose of the current project were only used the PET images reconstructed with
attenuation and scatter correction acquired at 60min, hereinafter referred as reconstructedPET
images.

PET images are tomographic images, therefore represent volumes. These volumes are usu-
ally stored as series ofDICOMfiles of axial slices, each one identifiedwith its spatial coordinates.
The DICOM format is a standardized format file in medical imaging (Digital Imaging and
Communication inMedicine, n.d.). It has two parts, a header and a dataset encapsulated. The
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header is formally called of FileMeta Information, and is composed by a 128 byte File Preamble,
followed by a 4 byte DICOM prefix, followed by the File Meta Elements. It stores numerous
information, such as study date, department name, patient data, procedure and equipment de-
tails. The dataset may contain one or more 2D image frames. In case of PET images, one file
usually contains just one 2D image frame, therefore can be read as a data matrix that stores
information about the biodistribution of the 2-[18F]FDG inMBq/mL.

Evaluation of
eligibility and
selection of
participants

Location and
integration
of PET/CT
exams from

different sources

PET image data
preprocessing

PET image
data annotation

Figure 3.1: Flowchart for building the PET image dataset.

3.6.3 Image Data Preprocessing

In this section will be described the method of preprocessing of reconstructed PET images
to obtain an image dataset of pulmonary nodules.

Software

The image preprocessing was performed in the 3D Slicer 4.10.2 r28257 (3D Slicer, 2020
(accessed January 26, 2020)). 3D Slicer is a free, open-source software for analysis and visual-
ization of medical images (Fedorov et al., 2012).

Importing and reading data

Both reconstructed PETdata files and theCTfileswere imported for 3DSlicer. The images
were loaded with two plugins:

• DICOMScalarVolumePlugin - loads the data as scalar volumes;

• DICOMPETSUVPlugin - recalculates the voxel data to represent units of standardized
uptake value normalized by the body mass (SUV) rather thanMBq/mL.

Coregistration

The PET and CT data were corregistered with rigid registration using the Landmark Reg-
istration extension. That ensures the alignment of the different anatomical structures and the
proper location of the pulmonary nodule of interest in PET images through CT information
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when the nodule does not uptake 2-[18F]FDG, for subsequent cropping of the corresponding
volume of interest.

Parameters: Fixed volume: CT,Moved volume: PET, Local refinement method: local sim-
pleITK, Local SimpleITK mode: Simple, Registration: affine registration; Linear registration
- mode registration: rigid.

Image spatial resampling

ThePET/CTexamswere acquired in three different scanners, having each scanner different
voxel size and anisotropic spacing of the PET volumes. As such, the volumes were resampled
to have the save voxel size and isotropic voxels. The voxel side was defined as 1.5 mm which is
smaller than the smaller voxel side of the 3 scanners. Linear interpolation was used for spatial
resampling.

Nodule identification and region of interest cropping

The nodule was visually identified in the coregistered PET/CT images and a cubic region
of interest was drawn and cropped to include the entire nodule. The center of this subvolume
coincides with the center of the nodule. The subvolume has a side length of two times of the
maximum possible diameter of the nodule (30 mm), that is 60 mm x 60 mm x 60 mm, cor-
responding to a 216000 mm3. The cubic region of interest was cropped and saved in .nrrd
format. This format stores a header and a tensor of data with rank of 3 and shape of 40 x 40 x
40. The first axis is the left-right, the second one is the posterior-anterior, and the third one is
the superior-inferior. A directory was created to save the cropped images.

3.6.4 Tabular data collection

Several features related with lung cancer risk factors and handcrafted image features from
PET and low-dose CT were defined. The information about the age, sex, smoking habits, oc-
cupational carcinogens, pulmonary diseases, family history of lung cancer and nodules location
was collected from the clinical records. The information about the nodule morphology, nod-
ule multiplicity, lymphadenopathy was collected by visual analysis of the low-dose CT images.
The information about themaximum tracer uptake in the nodule and in possible adenopathies
(SUVmax) was collected from the reconstructed PET before cropping. The PET/CT scan-
ner model was automatically collected from the header of the DICOM files. A column with
the relative paths for the cropped images was also added. Furthermore, both binary and multi-
class target features were created from ground truth criteria by collecting information about the
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histopathological/cytopathological examination and/or the nodule behavior during the follow-
upperiodwith standard-doseCT.The binary targetwas later used to annotate the preprocessed
PET image dataset.

The table A.1 of the appendix A shows a description of the features defined, namely the
type, scale, encoding, and unit of measurement. The tabular data were organized in a MySQL
database (figure A.1). The features defined in the table A.1 were saved in the table ”datanod-
ules_1”. The criteria for ground truth definition and its resulting target variables are in the table
”amostragem”.

A thorough definition of the some features is described following in order tomake the table
A.1 easier to interpret. The patient age is the age at the time of the PET/CT scan. Pack-year is
a measure of person’s exposure to tobacco, taking into account how long a person has smoked,
and how much he/she has smoked. Pack years is the number of cigarettes smoked per day / 20
× number of years smoked. Occupational exposition to carcinogens is defined as exposition
to carcinogens causally associated with lung cancer (arsenic, chromium, nickel, asbestos, tar,
and soot) (Alberg et al., 2013). The nodule multiplicity intends to records the total number of
pulmonary nodules detected in a patient, including nodules that not filled the selection criteria
to the study, by visually analysis the low-dose CT scan. Family history of lung cancer is present
when the disease affects a first degree relative (de Groot et al., 2018). The nodule diameter
corresponds to the mean of the long-axis and the perpendicular axis, both measured in a axial
slice of the CT and rounded to the nearest unit.

Spiculation is a kind of appearance of the nodule contour in CT scan. Pleural indentation
consists of a linear opacity that extends from a peripheral nodule to the visceral pleura in CT
images. Mediastinal or hilar lymphadenopathy is defined as at least one enlarged non-calcified
lymph node in mediastinum or pulmonary hila. A lymph node is defined as enlarged when its
transaxial short-axis measures at least 10 mm in low dose-CT. The CT data are collected from
the low dose-CT scan performed as part of the protocol of the PET/CT scan.

3.7 Descriptive Statistics of the Dataset

3.7.1 Characterization and quality of the ground truth

The dataset has 113 participants. The number of participants selected per year is presented
in the chart A.2 of the appendix A. One nodule was included by participant. Fifty-one (45.1%)
malignant pulmonary nodules were found. The remaining were benign. The table 3.1 shows
the distribution of the nodules according to the type, detailing the histological type of the ma-
lignant nodules.
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The ways of obtaining the ground truth, that is the definitive diagnosis of the nodule, were
recorded in the table 3.2 as a quality measure. When the definitive diagnosis was obtained by
follow-up CT imaging, the median follow-up was 2.6 years (minimum: 1.3 years; maximum:
8.3 years); 85.4% of the participants had a follow-up time≥ 2 years.

Class Absolute frequency Relative frequency (%)

Adenocarcinoma 31 27.4
Squamous cell carcinoma 4 3.5
Small cell lung cancer 2 1.8
Large cell carcinoma 2 1.8
Carcinoid tumor 7 6.2

Metastasis 0 0.0
Other/uncertain cancer 5 4.4

Benign nodule 62 54.9

Table 3.1: Definitive diagnosis of the nodules.

Criterion Absolute frequency Relative frequency (%)

Histological diagnosis 71 62.8
Citological diagnosis 1 0.9
Follow-up imaging 41 36.3

Table 3.2: Ways of obtaining the ground truth.

3.7.2 Characterization of tabular data

In order to have an understanding of the profile of the participants whose nodes compose
the dataset, an univariate analysis of the different registered attributes was carried out. Qualita-
tive attributes were characterized by absolute and relative frequencies. The qualitative features
are in the tables 3.3 and 3.4. Quantitative attributes were characterized with central tendency,
dispersion and shape measures and are shown in the table 3.5.
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Feature Absolute frequency Relative frequency (%)

Sex

Male 76 67.3
Female 37 32.7

Smoking habits

No smoking history 34 30.1
Current or previous smoking history 79 69.9

Occupational exposition to carcinogens

No exposition 110 97.3
With exposition 3 2.7

Emphysema or pulmonary fibrosis

No disease 71 62.8
Disease is present 42 37.2

Family history of lung cancer

No familiar history 110 97.3
With familiar history 3 2.7

Nodule Multiplicity

Solitary nodule 71 62.8
Multiple nodules 42 37.2

Nodule location

Right upper lobe 35 31.0
Right middle lobe 11 9.7
Right lower lobe 23 20.4
Left upper lobe 19 16.8
Left lower lobe 25 22.1

Nodule spiculation

No spiculation 79 69.9
Spiculation is present 34 30.1

Pleural indentation

Absent 86 76.1
Present 27 23.9

Mediastinal or hilar lymphadenopathy

No lymphadenopathy 105 92.9
With lymphadenopathy 8 7.1

Table 3.3: Distribution of the patients according to sex, risk factors and imaging features. In
case of several nodules, the imaging features refer to the dominant nodule.
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Feature Absolute frequency Relative frequency (%)

Scanner model

Siemens Biograph 6 57 50.4
GE Discovery LS 42 37.2
GE Discovery IQ 14 12.4

Table 3.4: Distribution of the patients according to the PET/CT scanner model.

Mean Median SD Maximum Minimum IQR Skewness Kurtosis
Age 64.47 65.00 11.21 90.00 28.00 14.00 -0.45 0.36

Pack-year 45.33 40.00 43.46 258.00 0.00 66.00 1.36 3.78
Ex-smoker time 4.53 0.00 9.62 45.00 0.00 3.50 2.47 5.78
Nodule diameter 14.07 13.00 4.59 30.00 9.00 5.00 1.32 1.49
Nodule SUVmax 2.99 1.64 3.12 18.13 0.53 2.51 2.31 6.21

Adenopathy diameter 13.44 13.00 2.51 19.00 11.00 2.00 0.99 -0.07
Adenopathy SUVmax 4.70 4.30 2.87 13.55 0.89 2.52 1.49 2.67

Table 3.5: Description of tabular quantitative features. SD - standard deviation. IQR - in-
terquartile range.
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Chapter 4

Classification of pulmonary nodules

4.1 Formulation of the machine learning task

Two schemes of annotationof the pulmonarynoduleswere performed, resulting in a binary
and in a multiclass target. Although the latter details better the main pathological categories of
pulmonary nodules, the former was preferred because it simplifies the machine learning classi-
fication task.

The collected data are quite diverse in terms of data structure and type of information
stored, but for modelling purposes in the current dissertation, only the PET data will be used.
The remaining preprocessed data serve to contextualize the dataset and support future work.

Therefore, the supervised machine learning problem is a single classification task, single
label, binary classification problem that uses cubic regions of interest from PET in the format
of 3-axis tensors, as input data for a 3D CNN.

A mathematical formulation of the problem is stated as follows. Let X be a input tensor,
where X ⊆ Rd1×d2×d3×d4×d5 and d1 is an unknown value of size of the population. Xi ⊆
Rd2×d3×d4×d5 is the i instance of X in the population. d2, d3 and d4 are the shape of the
volume of interest, and d5 is the number of channels. Y is a vector of targets where each
Yi ∈ {benign nodule : 0,malignant nodule : 1} has a correspondence to each Xi. As-
suming thatn independent and identically distributed instancesXi were randomly drawn from
the population to create a training set S, having fixed and unknown distributions of P (X) and
P (Y |X). Let be fCNN (S) : X → Y , a function learned by a 3D CNN from S. fCNN (S) is
called classifier or hypothesis and belongs to a set of functions of the hypotheses spaceF . The
learning problem consists of choosing from the hypotheses space, the function f ∗

CNN (S) that
best maps each input Xi to each class of the target attribute, Y = f(X; θ), by discovering the
weights (θ) configuration that minimizes misclassification risk.

The true or functional risk R(fCNN(S)) cannot be directly computed because the true
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data distribution is unknown pdata := P (X, Y ) = P (X)P (Y |X). So, one can estimate the
pdata from the empirical distribution in the training set, p̂data, and determine the empirical risk
RE(fCNN(S)) by averaging the result of a loss function between each predicted target f(Xi; θ)

and the correspondent true target classYi of the training set (Vapnik, 1999), as follows:

RE = E(X,Y )∼p̂data [L(f(X; θ), Y )] =
1

n

n∑
i=1

L(f(Xi; θ), Yi) (4.1)

The result is known as structural risk, when a regularization term (R(...)) is added to the equa-
tion (Q. Wang et al., 2020).

Training aCNN is an optimization problem that aims to approximate the f ∗
CNN (S) bymin-

imizing the structural/empirical risk, a surrogate of the functional risk. Risk minimization on
the training set is prone to overfitting, so a dissociation between the true and the estimated risks
is expected to occur at some point during the training. An estimate of the functional risk can
only be obtained from a validation set and cannot be used for updating the model parameters,
but only to decide when the training should be halted (Goodfellow et al., 2016).

The empirical and structural risk are commonly referred to as training loss in the litera-
ture and, for the sake of simplification, the latter denomination will be henceforth adopted,
throughout this dissertation, unless expressly stated otherwise.

4.2 Computational resources

The experiments of training and evaluationwereperformed inR4.0.0-4.0.3 (RCoreTeam,
2019). Tensorflow for R 2.2.0 (Allaire & Tang, 2019) and Keras R 2.3.0.0 (Allaire & Chollet,
2019) packages provide an R interface to Tensorflow and Keras Python packages. Anaconda
Navigator 1.9.12 (Anaconda Software Distribution, 2020) (conda 4.9.2) was installed. An en-
vironment ”r-reticulate” with Python 3.7.8 was created to install Tensorflow. All experiments
were performed with Tensorflow 2.1.0, GPU version (Abadi et al., 2015). Keras comes pack-
aged with TensorFlow.

Tensorflow (Abadi et al., 2015; Allaire, n.d.) was originally developed by researchers and en-
gineers working on the Google Brain team. It is an open-source software library for numerical
computation using data flow graphs. It has a flexible architecture and allows deploying compu-
tation to one or more CPUs and GPUs with a single API. It is one of the most used ecosystems
for building and training deep learning models.

Keras (F. e. a. Chollet, 2015) is a high-level neural networks API capable of running on top
of TensorFlow, CNTK, or Theano. It is used for easy and fast prototyping, and for training
deep learning modes. Runs on CPU and GPU.
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A laptop with Intel(R) Core(TM) i7-8550UCPU@ 1.80GHz processor, 8.0 GB of RAM
memory and graphic cards NVIDIA GeForce MX150 and Intel(R) UHD Graphics 620 was
used for the experiments.

4.3 Input data organization for training and evaluation

Two approaches were used in the preparation of the image data before being presented to
the network. In the first case, image data files were combined in a single file which contains all
image data as a 4-axis tensor. In the second one, the image data files were organized on directo-
ries.

The first way allows a faster presentation of the input data to the network and is the ideal
approach to train models on the original dataset, but is no longer feasible on augmented data
because the size of the file would exceed the RAM limit of the computer used. The latter ap-
proach was preferred with data augmentation. It requires a batch generator which description
is detailed in the section 4.5.

Organizing data files on directories is following described. When the data was primary
stored as single data file, the data splitting was identical.

The data files were randomly split into 5 stratified partitions of similar size. The stratifi-
cation was performed by the target class in order to preserve the same class distribution of the
original data. Four partitions were used for 4-fold cross-validation and the fifth one was for
testing. The organization of the sub-directories can be consulted in figure 4.1. Therefore, strat-
ified 4-fold cross-validationwas used during the experimentation phase for training, evaluating,
comparing differentmodel configurations and, in the end, for choosing the bestmodel. In each
fold, three partitions were used for training and the fourth was for model evaluation, so the val-
idation partition was different at each fold, but two training partitions were shared between the
folds. Therefore, one can obtain evaluation metrics for each fold and the mean value of the
four models with the same hyperparameter configuration. This method was preferred because
it guarantees lower variance than the hold-out method. The number of folds was set to 4 in-
stead a higher value to obtain a lower computational cost and less biased evaluation metrics at
the expense of the higher variance (Kohavi, 1995).

Since tuning a model is a repetitive process, there is some leakage of information from the
validation partition into themodel, even it is not directly trained on it, resulting in overfitting of
themodel to the validation set and optimistic performancemetrics (F. Chollet&Allaire, 2018).
To get a model with unbiased performance estimates, a test set partition was used only once to
evaluate the best model selected among all ones trained and assessed during the cross-validation
phase.
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Figure 4.1: Image sub-directories for cross-validation and testing. There are 2 main sub-di-
rectories: cross-validation and test. The cross-validation sub-directory is additionally divided
into four sub-directories, which are the partitions (F1 to F4). Each partition has the image files
grouped by sub-directories of the target class: B - benign nodules andM - malignant nodules.

4.4 Exploratory analysis of the cross-validation dataset

An axial slice crossing approximately the centre of each PET volume (slice number 20) and,
therefore, the centre of each nodule of the cross-validation dataset was selected and visualized
as an image in order to obtain a characterization of the nodules. The test set was excluded to
avoid information leakage during the construction of themodels. Figures 4.2 and 4.3 represent
the PET axial images of the cross-validation dataset grouped by the target class. The images are
shown in a grey scale inverted, having a SUVwindowwith a range between 0 and 5. Therefore,
the image regions with a SUV equal or greater to 5 appear black.

The mean and standard deviation of the images (chosen axial slice) for the cross-validation
dataset, grouped by target class is represented in figure 4.4.

4.5 Batch generator, shuffling and data normalization

When the dataset is organized asmultiple image data files in a directory (and subdirectories),
batches of images are extracted from the directory and presented to the model for training and
/ or evaluation. This is usually done in the R Keras package by image data batch generators,
one for training and another for evaluation. However, the image data batch generator available
in Keras is not valid both for volumetric images and for the file format where images are stored,
requiring that a custom image batch generator for 3D CNNwas created.

36



Figure 4.2: Malignant pulmonary nodules in PET images

An image data batch generator is a kind of iterator that extracts batches of images indefi-
nitely from the selected directory. A Python iterator can be created from an R function with
the reticulate package (Ushey et al., 2020).

The customized generator returns objects as lists. Each list has two elements, the former is
a 5-axis tensor of input data and the latter is a vector encoding the target class for the batch of
instances. The input tensor has the following shape [batch size, left-right, posterior-anterior,
superior-inferior, channels] or [batch size, 40, 40, 40, 1]. It should be noted that each returned
batch is a tensor with one more axis (corresponding to the channels) than the original tensor in
order to be compatible with the network input.

Data were shuffled during the training which means that the order of the instances is ran-
domly permuted at each epoch.

The input data underwent min-max normalization to the range [0, 1]. When a batch gen-
erator is used this occurs during during the batch generation. The normalization consists of
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Figure 4.3: Benign pulmonary nodules in PET images

applying to each element a of the input tensor, the operation described in the equation 4.2:

anormalized =
a−min(XS(fold i))

max(XS(fold i))−min(XS(fold i))
(4.2)

max(XS(fold i)) and min(XS(fold i)) are the maximum and the minimum SUVs, respec-
tively, of the training set for a given fold. The normalization procedure occurs separately in
each fold. Training and validation sets of each fold were both normalized with values of the
training set of the respective fold. The test set was normalized with the maximum and the min-
imum values of the training set of each fold as described in the section 4.9.
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Figure 4.4: Mean and standard deviation of the cross-validation images (axial slice number 20)
grouped by the target class.

4.6 Loss function

The binary cross-entropy loss was the loss function used for training. It measures the dis-
tance between the true target class and the prediction of the class. The smaller the value of
cross-entropy, the closer the two probability distributions (Q. Wang et al., 2020). The binary
cross-entropy loss is a differentiable non-convex function, being the main term of the empiric
(and structural) risk. This is the amount to be minimized by an optimizer, enabling model pa-
rameters to be updated through back-propagation. It can be considered a combination of the
cross-entropy loss and the sigmoid function. Sigmoid function canbe seen as a particular case of
the softmax function andwas preferred because this is a binary classification problem (Q.Wang
et al., 2020).

The output layer of the CNN has a single unit that outputs a probabilistic prediction of
the reference class (y = 1) given the ith input image, P (y = 1|Xi; θ). Since the prediction
of the class y = 0 is the complement of P (y = 1|Xi; θ), a second neuron in this layer is not
necessary. A probabilistic output is achieved with a transformation of the net input (z(i)y=1 =

wT
y=1 · γ(i) + by=1) of that neuron for the ith image using the sigmoid function as activation

function (Q. Wang et al., 2020):

p
(i)
y=1 =

1

1 + e−z
(i)
y=1

(4.3)

The binary cross-entropy loss for the ith instance is

L(θ; (p(i), y(i)) = −(y(i) log2(p(i)y=1) + (1− y(i)) log2(1− p
(i)
y=1)) (4.4)
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The amount to be minimized during the training is the following

Rstructural = −
1

n

n∑
i=1

[
y(i) log2(p

(i)
y=1) + (1− y(i)) log2(1− p

(i)
y=1) +R(...)

]
(4.5)

The set of parameters θ that minimizes the structural risk is given by the equation 4.6 (Q.Wang
et al., 2020). In practice, the algorithm receives batches of images, an estimate of the structural
risk and respective gradient is computed at the batch level, and a correspondent update of pa-
rameters θ occurs. The structural risk at each epoch is the mean value over the batches.

θ̂ = argmin
θ∈R

Rstructural (4.6)

Binary cross-entropy is applied by defining the argument loss of the function compile of the
Keras package with binary_crossentropy.

4.7 Optimizer

The Adam optimizer was chosen for training the CNNs. Described by Kingma and Ba
(2017), it is an efficient algorithm for first-order gradient-based optimization that scales to large-
scale and high-dimensional machine learning problems. It calculates individual adaptive learn-
ing rates or, in other words, effective step sizes for different parameters of the network from
estimates of first (mean) and second (uncentered variance) moments of the gradients (g) which
are determined from exponential moving averages from g and g2, respectively. Equation 4.7
describes the update process of the parameters in the network:

θt ← θt−1 − α · m̂t√
v̂t + ϵ

(4.7)

where m̂t is the bias-corrected first-moment estimate:

m̂t =
1− β1

1− βt
1

·
t∑

i=1

βt−i
1 · gi (4.8)

and v̂t is the bias-corrected second-moment estimate:

v̂t =
1− β2

1− βt
2

·
t∑

i=1

βt−i
2 · g2i (4.9)

t is the timestep,α is the step size, also called learning rate, β1 and β2 are exponential decay rates
for the 1st and 2sd moment estimates, respectively, ϵ is a small quantity to prevent divisions by
zero.

Adam optimizer has the following properties (Kingma & Ba, 2017):
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• themagnitude of parameter updates are invariant to rescaling the gradient, whichmeans
if the gradient g is rescaled by a factor c, the term of parameters updating will be −α ·

c·m̂t√
c2·v̂t+ϵ

;

• The effective step size (∆t) is approximately bounded by the step size hyperparameter (α)
because in most of the cases

∣∣∣ m̂t√
v̂t+ϵ

∣∣∣ ≤ 1, but more commonly≈ 1;

• A stationary objective is not necessary;

• Sparse gradients do not prevent its use;

• It performs a form of step size annealing. The authors make an analogy of the m̂t√
v̂t
with

the signal-to-noise ratio, where the smaller the ratio, the greater the uncertainty about
the direction of the true gradient, and the smaller the∆t.

It has a low memory footprint, proper performance with sparse gradients and in on-line learn-
ing, and faster convergence than other optimizers (Kingma & Ba, 2017).

Adamoptimizerwas set in the algorithmby using theKeras function optimizer_adam as an
argument for compile function. The default value was kept for all hyperparameters, excepting
the step size argument, lr, being β1 and β2 the same as in original paper:

optimizer_adam(lr = {value}, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-07, decay = 0, ams-
grad = FALSE, clipnorm =NULL, clipvalue = NULL).

The step size hyperparameter was tuned by training the baseline model with values∈ {0.1,
0.01, 0.001, 0.0001, 0.00001, 0.000001}, then followed by amore detailed search in the inter-
val where the performance metric had a better result.

4.8 Criteria for selecting the best epoch during training

While typically the optimization of a CNNdoes not halt in a local minimum and the struc-
tural risk decreases throughout the optimizationprocedure, the validation loss saturates at some
point and starts to increase again. The validation loss is an estimate of the functional risk, which
cannot be directly used for model optimization, but can be used as a stopping criterion, ensur-
ing that the minimization of the structural risk does not occur beyond the point of best gen-
eralization, obtaining a regularizing effect (Mahsereci et al., 2017). An early stopping criterion
warrants the training is stopped before convergence to avoid overfitting (Prechelt, 2012).

In the experiments performed, the maximum number of training epochs was defined to be
100, after preliminary training runs. The stopping criteria were the following: the validation
loss was the measure to beminimized; the patience was set to be 10, that is the number of train-
ing epochs with no additional decreasing of the validation loss after which the training will be
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stopped; the training can also stop before a tolerance of 10 epochs if the epoch 100 is reached.
The trained model in the epoch with the lowest validation loss was saved. This procedure was
repeated for each fold of the 4-fold cross-validation.

The implementation of the early stopping was different depending on whether the original
or the augmented data were used. The implementation was trivial with the original data. A list
of two callbacks arguments was added to the functionfit(): one for early stopping and the other
for saving the best model.

In the augmented data, the training duration was set by a similar strategy to early stopping
aiming a regularizing effect, but with a workaround imposed by a known issue in the fit_gen-
erator function1 of the Keras package, at the moment the experiments were being performed,
which precluded model evaluation at the end of each epoch of training when a customized im-
age generator was used. Therefore, a fixed number of 100 epochs was set before training, then
a version of the model (and its parameters) was saved in format .hdf5 for every epoch, passing
the callback_model_checkpoint function was an argument of the fit_generator. At the end of
the training run, each version of the model is evaluated in the validation set and obtained the
validation loss. The bestmodel version of a training run is defined according the criteria already
described above. The best model was separately saved and the procedure was repeated for every
fold.

At the endof training, fourmodel versionswere obtainedduring the 4-fold cross-validation,
which have different values of parameters θ, but identical hyperparameter configuration.

4.9 Performance Metrics and Model Selection

The area under the ROC curve was the selected performance metric to evaluate models
with different hyperparameter configuration, in the validation partition of each fold of the 4-
fold-cross-validation, regarding to their ability to discriminate between benign and malignant
pulmonary nodules. So, the value of the area under the ROC curve for a given model on each
fold was recorded. Mean and standard deviation were determined. Models with different hy-
perparameter configuration were compared by their mean area under the ROC curve.

Models with different network architectures were trained and the hyperparameters were
optimized. The best model of each network architecture was retrained and evaluated again by
10 iterations on the 4-fold-cross-validation, to evaluate the reproducibility of the training and,
consequently, themodel performance. The average performancemetrics of the differentmodels
was compared and the best model was selected.

1https://github.com/rstudio/keras/issues/1090
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The best model obtained in the cross-validation was evaluated in a separate test set to de-
termine their generalization performance over unseen examples. The test set is a disjoint set
regarding the training and the validation set.

The best model has indeed four versions, each one with the same hyperparameters configu-
ration, but different value of parameters learned from the folds of the cross-validation. There-
fore, an ensemble classifier was built from the four versions of the best model derived in the 4-
fold-cross-validation, by averaging their output probabilities, weighted by the size of each train-
ing partition. This ensemble classifier was evaluated in the test set and the area under the ROC
curve was determined.

The normalization of the test set was specific of the version of the best model and used
information of the training set of the respective fold where each model version was trained.

Models which were trained on augmented data were also evaluated in original validation
and test sets.

The area under the ROC curve was chosen as the main metric to evaluate the models be-
cause it is invariant to priory class probabilities (Bradley, 1997) and this dataset has a slight
predominance of the positive class, it is decision threshold independent (Bradley, 1997), and
exhibits more discriminancy and consistency than the accuracy (Jin Huang & Ling, 2005).

The area under the ROC curve is equivalent to the probability that a randomly picked neg-
ative example will have a smaller probability of belonging to the positive class than a randomly
picked positive example (Jin Huang & Ling, 2005). The value of this metric was computed
with the trapezoidal rule from non-parametric ROC curves using the function auc available in
the package pROC (Robin et al., 2011).

The 95% confidence interval of the area under the ROC curve was determined for the test
set according to the method described by DeLong (DeLong et al., 1988).

Additional performance metrics were computed for the ensemble CNN classifier in the
test set: accuracy, sensitivity and specificity (Sokolova et al., 2006). The calculation of these
metrics depends on adecision threshold. Insteadofusing the standarddecision thresholdof 0.5,
an optimal decision threshold was determined. A decision threshold was determined for each
version of the best model in the respective validation partition. The four decision thresholds
were averaged (weightedmean by the size of each training partition) and the resulting threshold
was applied to convert the output probabilities of the ensemblemodel into classes, in the test set.
If the predicted probability was equal to or higher than the threshold, the nodule was classified
as malignant; otherwise, it was classified as benign.

The optimal threshold was determined according to two different approaches. In the first
one, the value of the optimal threshold was the posterior probability which maximizes the
Youden index, which combines of sensibility and specificity, Sensibility + Specificity − 1
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(López-Ratón et al., 2014).
In another scenario, the cost of a false negative was higher than the cost of a false positive.

Therefore, a minimum sensitivity was set to 95% and the cut-off point which maximizes the
specificitywas searched. Consequences are different for false negatives and false positives, which
could justify the use of thismethod for determining the threshold. Whereas amissedmalignant
lesion implies a delay in diagnosis and treatment, a false positive results in psychological distress
for the patient and a non-necessary biopsy associated with discomfort and potential adverse
effects.

The OptimalCutpoints package (López-Ratón et al., 2014) was used for determine the
thresholds.

4.10 3D CNNmodels

The network architecture of a 3D CNN can be viewed as a generalization of a 2D CNN.
This kind of architecture was proposed because the input data are volumes. 3D CNN differs
from2DCNNby performing 3D convolutions and 3Dpooling operations. Themathematical
formulation of a 3D convolution to obtain an output value γ at position (x, y, z) on the jth

feature map in the ith 3D convolutional layer is as follow (Rao & Liu, 2020):

γi
j,xyz = σ

bij +
M i−1∑
m=1

P i−1∑
p=0

Qi−1∑
q=0

Ri−1∑
r=0

wi
jm,pqrγ

i−1
m,(x+p)(y+q)(z+r)

 (4.10)

where σ is the activation function, bij is the common bias for the jth feature map,wi
jm,pqr is the

(p, q, r)th value of the 3D kernel for the jth feature map at ith layer associated to the mth feature
map in the (1 - i)th layer. Pi, Qi and Ri are the dimensions of the kernel in the ith layer.

This section explains theprocedures conducted tobuildCNNswithdifferent architectures.
Three principal groups of architectures were defined. When some detail of implementation is
shared among groups of CNN architectures, a more detailed explanation of its use is provided
the first time it appears in the text.

The resulting models were trained and evaluated primarily in the original dataset by cross-
validation. The best algorithm of each architecture was also trained by 4-fold-cross-validation
with augmented training sets which construction is described in section 4.11. Lastly, a pre-
trained model in a large dataset was fine-tuned and evaluated in the original dataset. This is a
2D CNN and is described in a separate section (section 4.12).

A list of the experiments performed is provided in the section 4.14.
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4.10.1 Stacked 3D CNNmodels

Network architecture

Differentmodelswere trainedusing several variations of a givennetwork architecturewhich
consists of convolutional and pooling layers alternately stacked and connected to a fully con-
nected network.

Firstly, a model with high capacity was obtained, then hyperparameter tuning and regular-
ization were performed in order to the match capacity of the model with the complexity of the
task. The number of layers, the kernel size and the number of filters were treated as hyperpa-
rameters; as such, a extensive experimentation with different combinations of these hyperpa-
rameters was made. The necessary number of layers to obtain a model with a high capacity was
determined by starting from the simplest model and adding successive layers until the model
overfits, being the number of layers finally tuned. Therefore, most of the training was focused
on models with three or four pairs of convolutional and pooling layers.

Regarding the kernel size, models were trained either using a fixed or a variable kernel size
in the convolutional layers. The following kernel sizes were evaluated: [3, 3, 3], [4, 4, 4] and
[5, 5, 5]. The kernel stride was 1 in the convolutional layers. Padding was not used unless two
convolutional layers were placed in sequence.

The number of filters was the same or increasing across the convolutional base, by duplicat-
ing or increasing 50% at each convolutional layer, having the first layer 4, 8 or 16 filters.

The max pooling was applied to pooling layers. The kernel size was set to [2,2,2], having a
stride of 2 and no padding.

A fully connected network with two or three layers was connected to the top of the convo-
lutional base. This network receives a one-dimensional tensor obtained by one of three ways:
either performing a proper combination of successive convolutional and pooling layers, flat-
tening or applying global average pooling on the output of the last layer of the convolutional
base.

Activation function

The same activation function was chosen for the units of the convolutional base and the
fully connected network (excluding the output layer).

Experiments were firstly conducted with Rectified Linear Unit (ReLU). ReLU was later
replaced by Leaky ReLU and additional experiments were performed. Leaky ReLU has the
advantage of allowing a small, non-zero gradient when an unit is not active and thus prevents
”dying ReLU” (Gu et al., 2018; Lu et al., 2020).
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Weight initialization

Part of the experiments was performed with the weight initialization scheme proposed by
Glorot and Bengio (2010), commonly known as Xavier initialization. Then, the initialization
schemewas changed toHe initialization (He et al., 2015) and additional experiments were con-
ducted.

TheXavier initialization (Glorot&Bengio, 2010) consists of initializing thebiaseswith zero
and the weights with a uniform distribution defined in a neuron-specific interval as follows:

W ∼ U

(
−

√
6

nj + nj+1

,

√
6

nj + nj+1

)
(4.11)

where nj is the number of incoming connections and nj+1 is the number of outgoing con-
nections. This scheme of initialization introduces a normalization factor that maintains ap-
proximately constant the activation variance and back-propagated gradients variance along the
different layers of the network, preventing problems of vanishing or exploding gradients, which
can slow down or even completely hinder the convergence process (Glorot & Bengio, 2010).

Although, Xavier initialization has been popularized, it was originally derived for sigmoid,
hyperbolic tangent and softsign activation functions, having assumptions that are not valid for
rectifiers (Glorot & Bengio, 2010).

A new scheme of initialization was meanwhile developed to specifically address the recti-
fiers, becoming known as He initialization (He et al., 2015). The biases are initialized with zero
and the weights according to equation 4.12.

W = N ∼

(
mean = 0, sd =

√
2

nj

)
(4.12)

Xavier and He initialization are implemented by default in Keras package (Allaire & Chol-
let, 2019). The models were recompiled every new fold of cross-validation so that the training
is started with random parameters according to the scheme selected.

Batch size

Full batch learningwas preferredwhen the original dataset when used. Mini-batch learning
with batch sizes of 8 or 16 was used with augmented data.

Regularization procedures

Besides tuning procedures to find an optimally sized network architecture and the early
stopping, L2 regularization and dropout were applied on some models. L2 regularization con-
sists of adding a regularizer term to the empiric risk that penalizes the model complexity. That
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term corresponds to the squared L2 norm of the weights, ∥w∥22. The relative contribution of
the penalty is given by the hyperparameter λ. As consequence, before each weights update, the
size of the weights is shrunk and hypothesis space is constrained (Goodfellow et al., 2016).

In some models, dropout was applied to the fully connect network of the CNN. Dropout
prevents the network, at least in this part of the CNN, from becoming too dependent on any
one of neurons. Units are randomly removedwith a probability of p, alongwith their incoming
and outgoing connections, on each training step (Srivastava et al., 2014).

Another type of regularization is data augmentation. Details of creation an augmented
dataset are in the section 4.11. More details about the stacked 3DCNNmodels trained can be
found in section 4.14.

4.10.2 VGG-like models

Models with symmetrical convolutions

VGG networks (Simonyan & Zisserman, 2015) have a simple and homogeneous architec-
ture based on stacked convolutional layers, some of them followed by a max-pooling layer, and
ending with a fully connected network on the top. The network width gradually increases
whereas the resolution of the feature maps decreases. The depth of the network and the ef-
ficient use of 3× 3 convolutions are prominent features that contribute to their high classifica-
tion performance in several domains.

The original 2D architecture of the VGGNet (Simonyan&Zisserman, 2015) is generalized
in the current research for a 3D network and its depth and width is adapted to the type of
problem and size of the training set.

Thus, networks with 7 to 9 layers of parameters were trained, instead of the 11 to 19 layers
of parameters of the original publication (Simonyan & Zisserman, 2015). Similarly, every con-
volutional layer has a very small kernel size (3 × 3 × 3). Blocks of two or three stacked 3× 3
× 3 convolutional layers without max-pooling between them are used rather than a single layer
with a higher kernel size (5× 5× 5 or 7× 7× 7, respectively), being a way to achieve the same
effective receptive field with a lower number of parameters. This operation is the same as that
performed in a 2DCNN, but now the receptive field has onemore axis. The decomposition of
a convolutional layer with a larger kernel size in several ones with a smaller kernel size imposes
a greater reduction in the number of parameters in a 3D than in a 2D network, and therefore a
greater regularizing effect.

Assuming an equal number of input and output characteristic maps, represented by m
and ignoring the number of biases, for a given block of n stacked k × k × k convolutional
layers, the number of weights can be determined by n(k3m2) (Simonyan & Zisserman, 2015).
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So, a stack of two 3× 3× 3 convolutional layers has 2(33m2) = 54m2 weights, whereas the
equivalent single 5× 5× 5 convolutional layer would have 53m2 = 125m2, which represents
a reduction of 57% of the number of weights. A similar implementation in a 2D CNN only
imposes a reduction of 28% of the number of weights. Replacing a 7 × 7 × 7 convolutional
layer by the equivalent stack of three 3 × 3 × 3 convolutional layers leads to a reduction of
the number of weights in 76%, whereas in a 2D CNN, that would lead to a reduction of 45%.
Furthermore, the addition of convolutional layers implies the incorporation ofmore non-linear
activation functions which could make the decision function more discriminative (Simonyan
& Zisserman, 2015).

Similarly to the VGGNet (Simonyan & Zisserman, 2015), padding is applied to the convo-
lutional layers for preserving the spatial resolution of the feature maps. Spatial resolution only
decreases at eachmax-pooling layer. Unlike in the original publication (Simonyan&Zisserman,
2015), overlapping max-pooling is applied since preliminary experiments have showed a slight
improvement with this type of pooling compared to non-overlapping max pooling. The estab-
lished hyperparameters for the operation were pool size of 3× 3× 3, strides of 2 and padding.
Overlapping pooling is a feature of the Alexnet model (Krizhevsky et al., 2012)

The output of the convolutional base is either flattened or suffers global average pooling
and serves as input for a fully connected network with 2- or 3- layers. In some models there is
only the output layer.

The activation function and the weight initialization schemewere those chosen for the pre-
viously described Stacked 3DCNNs (Leaky ReLU andHe initialization, respectively) because
of their demonstrated advantages. Besides early stopping, in some models regularization was
performed with L2 weight regularization, dropout and/or data augmentation.

Full batch training was preferred on the original dataset due to its small size. Training with
a batch size of 8 was performed with augmented data.

Models with asymmetrical convolutions

A variation of the models described behind has received a further inspiration from the In-
ception-v3 (Szegedy et al., 2015). Excepting the first convolutional layer, each one of the re-
maining 3×3×3 convolutional layers was replaced by two stacked asymmetrical convolutional
layers having a kernel size of 3×3×1 and 1×1×3, respectively. Two stacked asymmetrical con-
volutional layers have the same effective receptive field as a symmetrical 3×3×3 convolutional
layer, but are computationally much more efficient because the number of weights decreases
by around 44% or 56%, as assuming the number of feature maps increases by a factor of 2 or
is kept constant, respectively, and ignoring the biases. The relative reduction of the number of

48



weights (Relative change(wi1+2, wi)) by factorization of a symmetrical convolutional layer
i into two asymmetrical layers is determined for the case where the number of output feature
maps is double of the input feature maps in the first of a pair of asymmetrical layers. Being the
number of weights of a symmetrical convolutional layer, wi = k3 · min · 2min, and wi1 and
wi2 the number of weights of the asymmetrical convolutional layers, then

wi1 = k · k · 1 ·min · 2min (4.13)

wi2 = 1 · 1 · k · (2min)
2 (4.14)

wi1+2 = 2k ·m2
in (k + 2) (4.15)

Relative change(wi1+2, wi) = 2k−2 + k−1 − 1 (4.16)

The expansion of the feature maps occurs in the first convolutional layer after a pooling
layer. In the following convolutional layers of the same convolution block, the number of the
filters is the same. So, the relative reduction of the number ofweights achieved by implementing
asymmetrical convolutional layers can be determined as following in those layers:

wi1 = k · k · 1 ·m2 (4.17)

wi2 = 1 · 1 · k ·m2 (4.18)

wi1+2 = m2
(
k2 + k

)
(4.19)

Relative change(wi1+2, wi) = k−2 + k−1 − 1 (4.20)

The output of the convolutional base was flattened before the output layer. There is no
fully connected network. The remaining aspects of the training are similar to those described
for models with symmetrical convolutions.

More details about the VGG-like models can be found in the section 4.14.
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4.10.3 Inception-v2-like models

The introduction of inception modules in a CNN allows approximating an optimal local
sparse structure from dense components within the convolutional base, and by this way, build-
ing a computationally more efficient network (Szegedy et al., 2014). Greater computational
efficiency leaves resources available for escalation of the network width and depth according to
the needs of each problem (Szegedy et al., 2014).

Inception modules consist of blocks of several convolutional layers with different filter size
and a pooling layer that receive the same input, propagate the information in parallel and con-
catenate the output before passing it to the next layer. Much of the computational efficiency
is achieved by using 1× 1 convolutions to compute reductions of the number of feature maps
before expensive 3×3 and 5×5 convolutions as the Inception modules used in GoogLeNet
(Szegedy et al., 2014). Even more efficient versions of Inception modules were proposed for
the Inception-v2 and Inception-v3 (Szegedy et al., 2015)which replace convolutionswith larger
filter size by factorizing them in stacked 3×3 convolutions or in stacked asymmetrical convolu-
tions, ensuring the same receptive field. Inception networks consist of several stacked Inception
modules. The reduction of the feature map size is performed by an Inception module having
layers with stride of 2, rather than a max-pooling layer. In this reduction module, the feature
map size is reduced while their number is expanded, being an efficient way of feature map size
reduction and of avoiding a bottleneck representational.

Inception-v2-like models use a number of Inception building blocks adapted to the type of
problem and size of the training set. The Inception architecture is generalized in the current
problem for a 3D network since the inputs are volumes.

The Inception model proposed for this problem has four standard Inception modules as
represented in figures 4.5 and 4.6, wherein after the second and the fourth there is a modified
Inceptionmodule that reduces the featuremap size (figures 4.7 and 4.8). Inceptionmodules are
placed after a convolutional and amax-pooling layer. The architecture of the Inceptionmodules
is similar to that described in the (Szegedy et al., 2015). In the two first modules 5 × 5 × 5

convolutions are factorized in two stacked 3 × 3 × 3 convolutions. In the two last modules,
the 3 × 3 × 3 convolutions are additionally factorized in stacks of 3 × 3 × 1 and 1 × 1 × 3

convolutions. The output of the last reductionmodule is converted in a vector by global average
pooling and then is the input for the output layer of the network.

Weights were initialized according to the method described by (He et al., 2015). Leaky
ReLU was the activation function. The batch size was 16 in the original dataset and 8 in the
augmented dataset. L2 weight regularization was applied in all layers with parameters.

More details about the Inception models trained can be found in the section 4.14.
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Figure 4.5: 3D Inception module 1
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Figure 4.6: 3D Inception module 2
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Figure 4.7: 3D Inception reduction module 1; s=2 means strides of (2, 2, 2)
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Figure 4.8: 3D Inception reduction module 2; s=2 means strides of (2, 2, 2)

52



4.11 Data augmentation and class balancing

Offline data augmentation was performed with geometric transformations using as a start-
ing point the 4 partitions data of the original dataset, previously created for cross-validation.
Data augmentationwas done independently in eachpartition. Translations, rotations andnoise
injection were applied to the original images. Test set was not augmented. The augmented
dataset comprises original and augmented images, having around 4900 images. O size of the
augmented dataset was determined by the computational resources available for training mod-
els in a larger dataset.

During the cross-validation, there was an augmented training set on each fold where the
models were trained. The evaluation of themodels occurred in the validation set of the original
dataset.

The augmentation factor was class-specific in order to perform class balancing, being the
minority class augmented to a greater extent than the majority class.

4.11.1 Translations

The translated images were created by augmenting the images of the minority class (malig-
nant) by a factor of 20, and those of the majority class (benign) by a factor of 16.

The translations were random shifts between -10 and 10 pixels on any of the 3 axes. A
maximumamplitude of 10 pixels (15mm)was chosen to ensure that the nodules are notmoved
out of the tensor and the label is preserved, once the maximum diameter of the nodules is 30
mm and the cubic image tensors have 60 mm side. Background voxels were filled with 0.

Let a voxel be in the position (x, y, z) of an image tensor represented as a columnvector, and a
matrix for three-dimensional transformations. Both represented in a homogeneous coordinate
system. The translation operation can be theoretically represented as following (Comninos,
2006): 

x′

y′

z′

1

 =


1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1



x

y

z

1

 (4.21)

tx, ty and tz are the values of the translations in the x-, y- and z-axis, respectively.
Insteadof implementing theoperationsof three-dimensional translations inR fromscratch,

the function translate from package EBImage (Pau et al., 2010) was used which offers the pos-
sibility to carry out two-dimensional transformations. So, to achieve three-dimensional trans-
formations with two-dimensional transformation matrices a set of adaptations was made by
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building a function which, firstly, iterates slice by slice the x- and y-axes translations along the
z-axis and then iterates z-axis translations slice by slice along the x-axis over the previous tensor.

4.11.2 Rotations

Rotated images were created by augmenting the images of the minority class (malignant)
by a factor of 21, being a factor of 7 per axis, and the those of the majority class (benign) by a
factor of 15, being 5 per axis.

Each example was augmented by applying separately random rotations around the x-, y- or
z-axis so that each original example yields augmented examples with different rotation axes, but
each new augmented example has a rotation applied only around a given axis. The rotations
were performed randomly between -45° and 45°.

After the spatial transformation of the coordinates of the voxels, an intensity interpolation
with a bilinear interpolator was applied. Background voxels were filled with 0.

Following are represented the rotationmatrices in a right-handed homogeneous coordinate
system (Comninos, 2006):

1 0 0 0

0 cos(v) − sin(v) 0

0 sin(v) cos(v) 0

0 0 0 1

Around the x− axis (4.22)


cos(v) 0 sin(v) 0

0 1 0 0

− sin(v) 0 cos(v) 0

0 0 0 1

Around the y − axis (4.23)


cos(v) − sin(v) 0 0

sin(v) cos(v) 0 0

0 0 1 0

0 0 0 1

Around the z − axis (4.24)

As the rotations should be around an axis which runs through the centre of the tensor not
the origin, and the nodule is in the centre of the tensor. Thus, the rotations are not around
the axes of the coordinate system but indeed around parallel axes of them. So a composed op-
eration should be applied which translates the nodule so that rotation axis of the coordinate
system coincides with the parallel coordinate axis, then rotates the tensor around that axis and
finally translates again the nodule so that the rotation axis is moved back to its original position
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(Comninos, 2006). That operation can be describes thus for the voxel P of an image tensor
(Comninos, 2006):

Protated = T−1 ∗R ∗ T ∗ P (4.25)

Three-dimensional rotations of the image tensorswere performed by iterating two-dimensional
rotations along the perpendicular slices to each rotation axis. A new function was created to do
this, which integrates the rotate function from the EBImage package (Pau et al., 2010).

4.11.3 Gaussian noise injection

Gaussian noise injection was applied to create augmented images. The minority class was
augmented with this method by a factor of 20, while the majority class was augmented by a
factor of 16. The Gaussian noise injected had mean 0 and three different values of standard-
deviation (0.1, 0.3 and 0.5). The distribution of the standard deviation in the minority class
has the following 0.1 (7) and 0.3 (7) and 0.5 (6), while for the majority class was 0.1 (6) and 0.3
(5) and 0.5 (5).

The noise injection process is explained next. A tensor of Gaussian noise with the same
shape of the original images was created. This tensor was filled with random values with a nor-
mal distribution with mean 0 and the standard deviation specified using the function rnorm.
Lastly, this tensor was added to the original image tensor and an input image tensor with Gaus-
sian noise injection is created. The decision of adding Gaussian noise was made because the
noise in PET images can be modeled with a Gaussian distribution (Teymurazyan et al., 2013),
so the different augmented images simulate PET images with different levels of noise.

4.12 Transfer learning

Part of the convolutional base of theResnet50 (He et al., 2016), pre-trained in the Imagenet
dataset, was used as a feature extractor. A fully connected networkwith two layers was added to
its top and initialized with the He initialization. The ReLU activation was added to the former
layer of the fully connected network and sigmoid activation was added to the latter. Because
the dataset of the current problem is quite different from Imagenet dataset, only the earliers
layers of Resnet50 were used (until conv3_block1_out). Additionally, a few of the top layers
(from conv3_block1_1_conv) were fine-tuned with a very low learning rate. More details about
the training of this network can be found in table 4.1.

It is noteworthy that the Resnet50 is not a 3D CNN, but a 2D CNN. The convolutional
base only admits exactly 3 inputs channels, and the two first axes should be no smaller than 32.
Once the input of PET images is a tensor with [40, 40, 40], only the 3 central slices (19, 20 and
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21) of the third axis were used, being each one stored in a different channel. As the nodules are
at the centre of each volume, they are necessarily intersected by the selected slices.

Resnet50 pre-trained in Imagenet is available in Keras through the function application_-
resnet50 (Allaire & Chollet, 2019).

4.13 Reproducibility

In order to perform reproducible experiments, seeds were set for all sources of random-
ness throughout the pipeline. This is important to warrant that the difference among different
models are not random in nature in the dataset. Additionally, it allows reproduction of results
when a model is retrained under identical conditions. In spite of the efforts made, a source of
non-determinism persisted which was attributed to asynchronous floating point operations on
TensorflowGPU 2. In order to deal with the non-deterministic behavior ofTensorflow, the best
models were retrained 10 times under identical conditions as described in the section 4.9.

4.14 List of experiments on cross-validation

Table B.1 (appendix B) presents a list ofmodels trainedwith different architectures in either
the original or the augmented training set. It also includes a pre-trainedmodel. A description of
several hyperparameters is provided, such as batch size, type of layers, number of filters, kernel
size, activation function, weight initialization, learning rate and regularizers. Other characteris-
tics of the machine learning task remain unchanged and were already described in the previous
sections.

Although the list presented is intended to be representative of the experiments performed,
this is not an exhaustive list, so it does not include all the performed experiments.

Table 4.1 shows a selected list of models from table B.1, where is presented the best model
for each architecture and type of dataset (original or augmented).

4.15 Paired comparison between the CNN model and the
SUVmax

The ROC curve of the SUVmax in the nodule was derived from the test set. This measure
is widely used in clinical practice to assist in the interpretation of PET/CT images. As the SU-
Vmax is well validated and its use consolidated, a hypothesis test was performed to infer about a

2https://developer.nvidia.com/gtc/2019/video/s9911
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Table 4.1: Main models trained by cross-validation

Type
Batch
size

Architecture σ Initialization LR Regularizer

Stacked
3D

CNN
68

conv(8,3,3,3) + mpool +
conv(16,3,3,3) + mpool +
conv(32,3,3,3) + mpool +
conv(64,3,3,3) + flatten +

fcn(32,16,1)

LeakyReLU
(α=0.3)

He 0.001 L2(0.00098)

Stacked
3D

CNN
8

conv(8,3,3,3) + mpool +
conv(16,3,3,3) + mpool +
conv(32,3,3,3) + mpool +
conv(64,3,3,3) + flatten +

fcn(32,16,1)

LeakyReLU
(α=0.3)

He 0.0001
L2(0.03) and
data augmen-

tation

VGG-
like

68

conv(8,3,3,3) + overlap
mpool + conv(16,3,3,3) +
conv(16,3,3,3) + overlap
mpool + conv(32,3,3,3) +

conv(32,3,3,3) +
conv(32,3,3,3) + overlap
mpool + flatten + fcn(1)

LeakyReLU
(α=0.3)

He 0.0005 L2(0.002)

VGG-
like

8

conv(8,3,3,3) + overlap
mpool + conv(16,3,3,3) +
conv(16,3,3,3) + overlap
mpool + conv(32,3,3,3) +

conv(32,3,3,3) +
conv(32,3,3,3) + overlap
mpool + flatten + fcn(1)

LeakyReLU
(α=0.3)

He 0.0001
L2(0.06) and
data augmen-

tation

Inception-
v2-like

68

conv(8,3,3,3) + mpool +
Inception + Inception +
Reduction + Inception +
Inception + Reduction +

gap + fcn(1)

LeakyReLU
(α=0.3)

He 0.0005 L2( 0.0006)

Inception-
v2-like

8

conv(8,3,3,3) + mpool +
Inception + Inception +
Reduction + Inception +
Inception + Reduction +

gap + fcn(1)

LeakyReLU
(α=0.3)

He 0.0001
L2( 0.04) and
data augmen-

tation

ResNet50
pre-

trained
68

ResNet50 (base) + gap + fcn
(8,1)

ReLU He 5×10−7

Transfer
learning and
dropout(0.5)
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possible difference in the area under theROCcurve between theCNNensemblemodel and the
SUVmax in the population. The null hypothesis is that the areas under the curve of the CNN
ensemble model and the SUVmax are equals in the population. The alternative hypothesis is
that their areas under the curves are different. If the null hypothesis is rejected and the AUC
ROC curve is higher in the test set for the CNN ensemble model than for the SUVmax, this
argues for the superiority of the CNN ensemble model. The type I error (α) was predefined as
0.05.

H0: AUCROCCNN = AUCROCSUVmax

H1: AUCROCCNN ̸=AUCROCSUVmax

The non-parametric test developed by DeLong et al. (1988) which makes a paired compar-
ison of the area under the ROC curves, is applied if the area of one ROC curve is uniformly
higher that the other across all operating points, that is, the curves do not cross each other; oth-
erwise a hypothesis test based on the ROC shape proposed by Venkatraman and Begg (1996) is
applied.

The ROC curves and the hypothesis testing were performed using the pROC package
(Robin et al., 2011).

It should be emphasized that as this is a secondary objective of the dissertation, the test set
was not sized to ensure the desirable statistical power for the conducted statistical test; as such
the results should be interpreted with caution (Button et al., 2013) and considered as prelimi-
nary, deserving further confirmation by well-powered studies.
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Chapter 5

Results

This chapter shows the results of the trained models in the cross-validation and the results
of the best model evaluated on the test set.

5.1 4-fold cross-validation

This section presents the results for the best model obtained from each architecture and
type of dataset, using cross-validation (table 4.1). A more complete list of results about the
trainedmodels can be found in tables B.2 (validation loss) and B.3 (area under the ROC curve)
of appendix B.

5.1.1 Early stopping

The epoch with the minimum validation loss obtained by early training stopping is shown
in the table 5.1 for each fold of themain trainedmodels. Themodel obtained in that epochwas
saved.

5.1.2 Area under the ROC curve

Table 5.2 shows the area under the ROC curve for themainmodels, using cross-validation.
This measure is presented for each fold as well as the mean and standard deviation of all folds.

Themean area under the ROC curve has ranged from 0.8035 (model 28) to 0.8864 (model
12). The best performance was reached by a 3D stacked CNNmodel in the original dataset.

Regardless of the type of model, it was consistently found that the fold one yielded a per-
formance lower than the remaining folds, which corresponds to models trained in partitions
two, three and four, and evaluated in partition one of the cross-validation data. Additionally,
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Table 5.1: Minimum validation loss and respective epoch by fold for the main trained models
obtained by early stopping. V. Loss - Validation loss; Augm. - Data Augmentation; No. -
Number of the model according to the order on the table B.2.

F1 F2 F3 F4

Model (No.) Epoch V. Loss Epoch V. Loss Epoch V. Loss Epoch V. Loss

Stacked 3D CNN
(12)

1 1.0159 13 0.7510 10 0.7286 32 0.6241

Stacked 3D CNN
+Augm. (22)

78 0.8269 48 0.7109 23 0.6632 100 0.6013

VGG-like (19) 5 1.2068 19 0.9084 12 0.8852 33 0.8948

VGG-like +
Augm. (25)

34 0.8372 19 0.6767 15 0.5610 64 0.4629

Inception-v2-like
(21)

10 1.1227 28 0.8556 18 0.8627 41 0.8205

Inception-v2-like
+ Augm. (27)

34 0.8392 29 0.7389 71 0.6039 48 0.5697

ResNet-50 pre-
trained (28)

80 0.6910 49 0.6931 43 0.7001 66 0.6922

models trained on the original dataset performed better than those trained on the augmented
dataset.

The results of the retraining and evaluation over 10 iterations for the best model of each
network architecture (models 12, 19 and 21) for evaluating the reproducibility and selecting
the best model can be consulted in tables B.4, B.5 and B.6 of appendix B. ResNet-50 was not
retrained because its performance was much lower than other architectures. The mean area
under the ROC curve of the 3D stacked CNNmodel (model 12), VGG-like model (model 19)
and Inception-v2-like model (model 21) was 0.8822, 0.8760 and 0.8690, respectively.

The 3D stacked CNNmodel (model 12) showed consistently the best performance on the
iterated cross-validation. A random version (one of the 10 iterations) of this model was selected
to be evaluated on the test set. It is out of scope to prove the superiority of a model in relation
to the others in a population of individuals with pulmonary nodules. Therefore, hypothesis
testing was not performed. The superiority of the 3D stacked CNNmodel (model 12) should
be interpreted as strictly concerning the cross-validation dataset.

A visual representation of the best model is fiven in figure 5.2.
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Table 5.2: Area under the ROC curve on cross-validation for the main models

AUC ROC curve

Model (No.) F1 F2 F3 F4 Mean SD

Stacked 3D CNN (12) 0.7917 0.9000 0.8750 0.9790 0.8864 0.0772

Stacked 3D CNN+Augm. (22) 0.7333 0.8500 0.8417 0.9371 0.8405 0.0835

VGG-like (19) 0.7333 0.9250 0.9417 0.9161 0.8790 0.0977

VGG-like + Augm. (25) 0.7000 0.7833 0.8667 0.9301 0.8200 0.1001

Inception-v2-like (21) 0.7250 0.9083 0.8917 0.9650 0.8725 0.1032

Inception-v2-like + Augm. (27) 0.7333 0.8333 0.8417 0.8741 0.8206 0.0608

ResNet-50 pre-trained (28) 0.7167 0.8083 0.8500 0.7203 0.7738 0.0662

5.1.3 Learning curves

Thefigure 5.1 shows the evolutionof training for the bestmodel (Stacked3DCNN)during
the cross-validation. For each fold, the top chart shows the training loss and the validation loss.
The bottom chart presents the training and the validation accuracy. In the first fold, the model
suffers overfitting right after the first epoch. In the remaining folds, the overfitting starts later.

5.2 Evaluation on the test set

5.2.1 ROC curve

Since the bestmodel has actually four versions (one by fold of cross-validation), an ensemble
classifier was built and evaluated on test set. That ensemble classifier obtained an area under
the ROC curve of 0.8385, 95% CI: 0.6455-1.0000 (DeLong) on the test set. The ROC curve
is represented in figure 5.3.

5.2.2 Performance metrics

For a decision threshold that maximizes the Youden index

Adecision threshold of 0.5039was obtained on the cross-validation for the ensemblemodel
based on the criterion which maximizes the Youden index.

The confusion matrix for the test set is presented in the table 5.3. From 23 PET images of
pulmonary nodules, 4 were true positives, 13 were true negatives, 6 were false negatives. There
was no false positive. Therefore, the ensemble model had a sensibility of 40.0%, a specificity of
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(a) Fold 1 (b) Fold 2

(c) Fold 3 (d) Fold 4

Figure 5.1: Learning curves of the best model (Stacked 3D CNN) on cross-validation.

100.0% and an accuracy of 73.91% for this threshold, on test set.

Actual class
Malignant Benign

Predicted
class

Malignant 4 0
Benign 6 13

Table 5.3: Confusion matrix for the pulmonary nodules classification on test set by the ensem-
ble model based on a threshold that maximizes the Youden index

.
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Input

Conv(8@3x3x3)

Max pooling

Conv(16@3x3x3)

Max pooling

Conv(32@3x3x3)

Max pooling

Conv(64@3x3x3)

Flatten

Dense(32)

Dense(16)

Dense(1)

output

Figure 5.2: Network architecture of the best model. Each convolutional layer and the two first
dense layers has a leaky ReLU activation function. Convolutions are performed with strides of
(1, 1, 1) and no padding. Max-pooling layers have pool size of (2, 2, 2) and strides of (2, 2, 2).
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Figure 5.3: ROC curve of the ensemble model on the test set.

For a decision threshold that ensures a minimum sensitivity of 95%

A decision threshold of 0.3149, ensuring a minimum sensitivity of 95% on cross-validation
was derived from that dataset.

The corresponding confusionmatrix is on the table 5.4. From23PET images of pulmonary
nodules, 8 were true positives, 9 were true negatives, 2 were false negatives and 4 were false
positives. Therefore, the ensemble model had a sensibility of 80.00%, a specificity of 69.23%
and an accuracy of 73.91% for this threshold, on test set.

Actual class
Malignant Benign

Predicted
class

Malignant 8 4
Benign 2 9

Table 5.4: Confusion matrix for the pulmonary nodules classification on test set by the ensem-
ble model based on a threshold that ensures a minimum sensitivity of 95%

5.2.3 Comparison between the CNN ensemble model and the SUVmax

The figure 5.4 shows a comparison of the ROC curves between the bwSUVmax and the
CNN model. Since the ROC curves cross each other at various points, a paired comparison
with the Venkatraman test was applied to evaluate the equivalency of the curves rather than the
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area under the curve. The test statistic (E) was 22 and the two-side P-value was 0.7995, based
on 2000 permutations.

Figure 5.4: Comparison of the ROC curve between of the best CNNmodel and the SUVmax
on the test set.
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Chapter 6

Discussion

In this dissertation, a 3D CNN model for classification of solid pulmonary nodules was
developed from an annotated dataset of PET images specifically created for that purpose. This
classification task aimed to differentiate between benign and malignant nodules. To best of
my knowledge, this is the first study that addresses the creation of a deep learning model for
classification of indeterminate pulmonary nodules, using PET images as inputs.

The only attempts of using machine learning models for differential diagnosis of indeter-
minate pulmonary nodules addressed classical methods and handcrafted imaging features as
inputs, in some cases, combined with non-imaging risk factors (Herder et al., 2005; Y. Yang et
al., 2018; S. Chen et al., 2019; Teramoto et al., 2019; H.-Y. Guo et al., 2020).

Y. Han et al. (2021) trained several classical machine learning models and a 2D CNN pre-
trained (VGG16) for distinguishing the histologic subtype of pulmonary lesions in patients
already diagnosed with a lung cancer, from a dataset of 1419 PET/CT fusion images. The
deep learning model obtained a area under the ROC curve of 0.903. Despite the use of a deep
learning algorithm, it should be noted that the classification problem is not the same as in the
current dissertation because it only includesmalignant lesions. Additionally, the type of images
also includes the CT information, unlike the present work which only uses PET data.

The final model of the current dissertation yielded an area under the ROC curve of 0.8385
(95%CI: 0.6455-1.000) on the test set. Named as 3D stacked CNNmodel, it has four 3D con-
volutional layer, three 3Dmax-pooling layers and fully connected network with 3 layers. Its has
relatively simple architecture network when compared to recent types of networks published,
which are more complex and deeper (Khan et al., 2020). Since the inputs of the 3D CNN are
volumes, it receives information of whole nodule, unlike a 2D CNN that receives information
from some slices intersecting the nodule, for this reason a 3D CNNwas preferred. However, a
3DCNNhas the cost of a higher number of parameters and higher risk of overfitting. As such,
the capacity of the model was carefully adjusted to the problem and size of dataset. Several
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regularization methods were also applied, such as early stopping and L2 regularization.
Secondarily, the probabilistic predictions were converted in the target classes by determin-

ing an optimum threshold. Its determinationwas performed in the cross-validation rather than
in the test set to prevent overfiting to the latter and to simulate a real scenario of classification
with the test set. Two approaches were used. The Youden’s index and a preassigned value for
sensitivity of at least 95%, both yielding an accuracy of 73.91%. However, the sensitivity ob-
tained with the secondmethod in the test set was muchmore favourable (80% vs. 40%). This is
explained by the characteristics of eachmethod and by the variance associated to reduced size of
the test set (23 images). The specificity of the secondmethod of thresholdmoving was 73.91%.
Youden’s index is popular in Medicine. Originally, it was assumed that the resulting threshold
imposed equal costs for false positives and false negatives, but more recently was demonstrated
that the costs depends on the prevalence of disease and equal cost only occurs in a balanced
dataset (Smits, 2010). A threshold that maximizes the specificity, setting a minimum value sen-
sitivity of 95%, can be a more appropriate approach for the current problem because a greater
cost is placed on false negatives than on false positives, being assumed that the cost of missing a
malignant lesion is higher than the cost of additional investigations and psychological distress
caused by a false positive if the ultimate goal is to maximize the overall survival.

The performance of the 3D CNNmodel was compared with the SUVmax of the nodules.
The model had an area under the ROC curve higher than the SUVmax in the test set (0.8385
vs. 0.8038). However, the equivalency between the two ROC curves was not rejected by a hy-
pothesis test that compared their shape. Because the test set was not sized to ensure an adequate
statistical power to the applied test, this negative result requires confirmation in well-powered
studies.

Other types of 3D CNNs were also proposed, achieving a slightly lower area under the
ROC curve than the 3D stacked CNN in the cross-validation. These networks were inspired
by VGG16 and Inception-v2. They are deeper and have some features that make them more
efficient, such as factorization of convolutions, introduction of the sparsity in the network or
1× 1× 1 convolutions.

Transfer learning had a lower classification performance in cross-validation than the mod-
els trained with random weight initialization. This could be explained by difference between
the source domain were the CNN was pre-trained (ImageNet) and the target domain, by 2D
architecture requiring 2D inputs, or by the type of pre-trained network (ResNet).

Deep learningmodels usually need tobe trained in abigdataset toprevent overfitting. How-
ever, building an annotated dataset in medical imaging is a time-consuming and a labor-inten-
sive task. Furthermore, the particularity of the task and the imaging modality involved imply
that the number of cases available to be included may be limited. The dataset created in this
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dissertation is relatively small. Even though, a model was successfully trained and regularized.
The main factor that limited the size of the dataset was the number of eligible cases available to
be included, despite the efforts undertaken to select, gather, preprocess and annotate the data.

Data augmentation with translations, rotations and Gaussian noise injection was also an
approach applied with the aim of improving the generalization of the models. Data augmenta-
tion assumes thatmore information can be extracted from the original training dataset through
augmentations in order to reduce the difference between this dataset and validation or test set
(Shorten & Khoshgoftaar, 2019). However, the models trained with data augmentation had a
performance in the cross-validation consistently lower thanwhen trained in the original training
dataset. It was out scope of the phase of model selection to make statistical inference of differ-
ences between models in the cross-validation to the population, being unknown the meaning
of those differences. It is also unknown their cause. It is hypothesized that the size of original
dataset is insufficient for the augmentations to produce any effect, or the type or the parameters
of the transformations are not themost appropriate to lead to an improvement of classification
performance in this specific type of image data and problem, or the factor of augmentation is
insufficient. The effect of each type of transformation on the performance of the models was
not assessed, but the type of transformations applied was class-preserving.

High-quality and representative datasets are essential for developingmachine learningmod-
els and for ensuring they have acceptable generalizationperformance onunseen cases. Although
this is a retrospective study, the target population to participate in the study was accurately de-
fined by a set of objective criteria. As consequence, the model built is only valid in this popu-
lation unless a subsequent validation in others population occurs in future. That is, the model
built is valid for a population of individuals who underwent a 2-[18F]FDG PET/CT to clarify
an indeterminate solid pulmonary nodulewith > 8mmandno antecedent ofmalignant disease.
The performance of themodel is unknown in subsolid or≤ 8mmnodules, or in those patients
with antecedents of malignancy (excepting the cases referred to in section 3.1).

The quality of a dataset also depends on the quality of the ground truth. Predictive mod-
elling for diagnosis purposes follows the same principles of the diagnosis tests regarding obtain-
ing anunbiased ground truth (Moons et al., 2014). Aproof about the presence or absence of the
target disease should be obtainedwithout knowledge of the index test and vice-versa (Weinstein
et al., 2005; Moons et al., 2014). Similarly, the ground truth should not contain information
from the datawhere a predictivemodelwill be built, otherwise themodelwill have anoptimistic
performance (incorporation bias) (Moons et al., 2014). In the current study, the incorporation
bias was prevented by using the result of the histopathological or cytopathological examination
of a specimen obtained by biopsy or surgical excision or, alternatively, a follow-up period with
CT. Therefore, there was a differential verification of the disease status. The histopathological

69



characterization of the lesion was the main method to obtain the ground truth, representing
62.8% of the cases. The nodule status was determined by the cytopathological examination in
one case. The CT imaging follow-up was the method to obtain the definitive diagnosis in the
remaining cases, with 85% of the patients having a follow-up time of at least 2 years. Surgical
resection is the gold standard for definitive diagnosis of pulmonary nodules (Ricciardi et al.,
2020), that is an unbiased ground truth. The biopsy also provides a direct evidence of malig-
nancy, but there is a risk of non-specific benign changes are false negatives (Laurent et al., 2003).
To eliminate that risk of bias in the biopsy, only definitive evidence of a benign pathology was
consider (on first or repeated biopsies), otherwise the follow-up criterion was applied. Imaging
follow-up provides an indirect, but still strong, evidence of the status of the nodule, leading to
a low risk of bias in the ground-truth. The defined follow-up criteria ensured that a malignant
tumor is missed in < 1% of cases, according to the previous literature (Callister et al., 2015).

This study has some limitations. The model was built in a relatively small dataset. Despite
the efforts of regularization, it is unknown its performance in a larger dataset. Also, the test
set was small, so the generalization performance is highly dependent of the data split. One of
the three PET scanner only contributed with 14 images to the dataset. It is unknown how the
model generalize in a PET scanner basis and for new patients images to this scanner.

Because this is a retrospective study, the decision of performing a PET/CT examor a biopsy
or excision of the pulmonary nodule, as well as the duration of follow-up period was at the
discretion of the attending physician. The decision criteria may have changed over time, as
part of the evolution of knowledge in this area, and according to attending physician, resulting
in a selection and partial verification biases (Schmidt & Factor, 2013). This is inferred by the
growing number of patients who each year met the established criteria to be included in the
sample, being particularly evident when comparing the periods before and from 2016.

Whenmultiple nodules were present, the dataset only included themost suspicious nodule
each patient, instead of all the nodules, but in practice it is important to know the status of all
of them.

The input image data stores SUVby voxel. SUVhas been popularized, but another less used
measure was claimed to bemore accurate, the standardized uptake value normalized by the lean
body mass (SUL) (O et al., 2016), once the lean and the fat tissues have different metabolic
profiles. Image data were not recalculated to show SUL because the DICOM files from one of
the PET scanners did not have the height data recorded.

Themodel with the best average performance in the cross-validationmay not be the model
with the best generalization performance on unseen images because the high number of gen-
erated models may cause overfitting to the validation data. Therefore, if other than the best
model was selected during the cross-validation, namely by a method as proposed byNg (1997),
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a better generalization performance might have been reached.
The following proposals are suggested as future work:

• Evaluate the proposed model in a larger dataset, preferably collected prospectively from
multiple centres and PET/CT scanners, and eventually retrain it in those data;

• Train aCNNmodel that considers not only the PETdata, but also the low-doseCTdata
(obtained from the same exam) and non-imaging risk factors;

• Apply a method that handles potential overfitting to the validation set at the model se-
lection phase as that proposed by Ng (1997) or using nested cross-validation (Wainer &
Cawley, 2021);

• Characterize themodel performance according to the histopathological type of lung can-
cer;

• Approach the problem as amulti-class task by training a network that aims to predict the
histopathological type of the pulmonary nodule;

• Make the CNNmodel explainable, since clinical decision support systems need to make
traceable decisions to gain trust of the physicians (Singh et al., 2020);

• Predict probability estimates rather than the target class by calibrating a CNN, since this
can be useful for the clinical decision. Although the neural networks are known to be
poorly calibrated, there are post-processingmethods to alleviate this problem as the tem-
perature scaling (C. Guo et al., 2017).

In conclusion, all objectives proposed in this dissertation were reached. A 3DCNNmodel
for classification of indeterminate solid pulmonary nodules was successfully developed from an
annotated dataset of 2-[18F]FDG PET images that was created for that propose aiming to solve
a real-world problem.
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Appendix A

Supplemental material about the database
of pulmonary nodules

Table A.1: Tabular data

Feature Short name Type Scale Encoding / Measure

Pseudonymized
ID

id qualitative nominal —

Age age
numeric,
discrete

ratio years

Sex sex qualitative nominal 0 - male, 1 - female

Smoking habits smoking qualitative nominal

0 - no smoking
history, 1 - current

or previous
smoking history

Time since
quitting
smoking

exsmoking_time
numeric,
discrete

ratio years

Pack-year pack_year
numeric,
continuous

ratio pack-years

(Continued on next page)
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Table A.1 – continued from previous page

Feature Short name Type Scale Encoding / Measure

Occupational
exposition to
carcinogens

exposition qualitative nominal
0 - no exposition, 1
- with exposition

Emphysema or
pulmonary
fibrosis

lung_disease qualitative nominal
0 - no disease, 1- a
disease is present

Family history
of lung cancer

fam_lung_ca qualitative nominal
0 - no familiar
history, 1 - with
familiar history

Nodule
location

location_nod qualitative nominal

0 - right upper
lobe, 1 - right
middle lobe, 2

- right lower lobe, 3
- left upper lobe, 4
- left lower lobe

Nodule
diameter

diam_nod
numeric,
discrete

ratio millimeter

Nodule
spiculation

spiculation qualitative nominal
0 - no spiculation,
1 - spiculation is

present

Pleural
indentation

indentation qualitative nominal
0 - absent, 1
- present

Nodule
Multiplicity

nod_multiplicity
numeric,
discrete

Ratio dimensionless

(Continued on next page)
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Table A.1 – continued from previous page

Feature Short name Type Scale Encoding / Measure

maximum
standardized
uptake value
normalized by
the body mass
(SUVmax) of
the nodule

suvmax_nod
numeric,
continuous

ratio dimensionless

Mediastinal or
hilar lym-

phadenopathy
adenopathy qualitative nominal

0 - no
lymphadenopathy,

1- with
lymphadenopathy

Mediastinal or
hilar lym-

phadenopathy
diameter

diam_adenop
numeric,
discrete

ratio millimeter

SUVmax of the
more intense

lymphadenopa-
thy

suvmax_adenop
numeric,
continuous

ratio dimensionless

Scanner model scanner_model qualitative nominal

0 - Siemens
Biograph 6, 1 - GE
Discovery LS, 2

- GE Discovery IQ

Relative path
for cropped
PET images

path_crop_img qualitative text —

(Continued on next page)
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Table A.1 – continued from previous page

Feature Short name Type Scale Encoding / Measure

Multiclass
target

multiclass_target qualitative nominal

0 - benign, 1
- adenocarcinoma,
2 - squamous cell
carcinoma, 3
- small cell lung

cancer, 4 - large cell
carcinoma, 5

- carcinoid tumor,
6 - metastasis, 7

- other

Binary target binary_target qualitative nominal
0 - benign tumor, 1
- malignant tumor
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Figure A.1: Pulmonary nodules MySQL database for tabular data.
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Figure A.2: Patients selected to be included in the dataset per year.
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Appendix B

Supplemental tables with procedures and
results about the classification task

Table B.1: List of experiments
No. Batch size Architecture σ Initialization LR Regularizer

1 68
conv(8,5,5,5) + mpool +
conv(16,5,5,5) + mpool +
flatten + fcn(24,16,1)

ReLU Xavier 0.0005 —

2 68
conv(8,5,5,5) + mpool +
conv(16,5,5,5) + mpool +
flatten + fcn(24,16,1)

LeakyReLU
(α=0.3)

Xavier 0.0005 —

3 68
conv(8,5,5,5) + mpool +
conv(16,5,5,5) + mpool +
flatten + fcn(24,16,1)

LeakyReLU
(α=0.3)

He 0.0005 —

4 68
conv(8,5,5,5) + mpool +
conv(16,5,5,5) + mpool +
flatten + fcn(32,16,1)

LeakyReLU
(α=0.3)

He 0.0005 —

5 68
conv(8,3,3,3) + mpool +
conv(16,3,3,3) + mpool +
flatten + fcn(32,16,1)

LeakyReLU
(α=0.3)

Xavier 0.0005 —

6 68
conv(8,3,3,3) + mpool +
conv(16,3,3,3) + mpool +
flatten + fcn(32,16,1)

LeakyReLU
(α=0.3)

He 0.0005 —

7 68
conv(6,3,3,3) + mpool +
conv(16,3,3,3) + mpool +
flatten + fcn(24,16,1)

LeakyReLU
(α=0.3)

He 0.0005 —

(Continued on next page)
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Table B.1 – continued from previous page
No. Batch size Architecture σ Initialization LR Regularizer

8 68

conv(8,3,3,3) + mpool +
conv(16,3,3,3) + mpool +
conv(32,3,3,3) + mpool +
flatten + fcn(32,16,1)

LeakyReLU
(α=0.3)

He 0.0005 —

9 16

conv(8,3,3,3) + mpool +
conv(16,3,3,3) + mpool +
conv(32,3,3,3) + mpool +
flatten + fcn(32,16,1)

LeakyReLU
(α=0.3)

He 0.0005 —

10 68

conv(8,3,3,3) + mpool +
conv(16,3,3,3) + mpool +
conv(32,3,3,3) + mpool +
conv(64,3,3,3) + flatten +

fcn(32,16,1)

LeakyReLU
(α=0.3)

He 0.0005 —

11 68

conv(8,3,3,3) + mpool +
conv(16,3,3,3) + mpool +
conv(32,3,3,3) + mpool +
conv(64,3,3,3) + flatten +

fcn(32,16,1)

LeakyReLU
(α=0.3)

He 0.001 —

12 68

conv(8,3,3,3) + mpool +
conv(16,3,3,3) + mpool +
conv(32,3,3,3) + mpool +
conv(64,3,3,3) + flatten +

fcn(32,16,1)

LeakyReLU
(α=0.3)

He 0.001 L2(0.00098)

13 68

conv(8,3,3,3) + overlap
mpool + conv(16,3,3,3) +
conv(16,3,3,3) + overlap
mpool + conv(32,3,3,3) +

conv(32,3,3,3) +
conv(32,3,3,3) + overlap

mpool + flatten +
fcn(16,16,1)

LeakyReLU
(α=0.3)

He 0.0005
L2(0.004) and
dropout(0.5)

14 68

conv(8,3,3,3) + mpool +
conv(16,3,3,3) +

conv(16,3,3,3) + mpool +
conv(32,3,3,3) +
conv(32,3,3,3) +

conv(32,3,3,3) + mpool +
flatten + fcn(16,16,1)

LeakyReLU
(α=0.3)

He 0.0005
L2(0.004) and
dropout(0.5)

(Continued on next page)
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Table B.1 – continued from previous page
No. Batch size Architecture σ Initialization LR Regularizer

15 68

conv(8,3,3,3) + overlap
mpool + conv(16,3,3,3) +
conv(16,3,3,3) + overlap
mpool + conv(32,3,3,3) +

conv(32,3,3,3) +
conv(32,3,3,3) + overlap

mpool + flatten + fcn(16,1)

LeakyReLU
(α=0.3)

He 0.0005
L2(0.004) and
dropout(0.5)

16 68

conv(8,3,3,3) + overlap
mpool + conv(16,3,3,3) +
conv(16,3,3,3) + overlap
mpool + conv(32,3,3,3) +

conv(32,3,3,3) +
conv(32,3,3,3) + overlap
mpool + gap + fcn(16,1)

LeakyReLU
(α=0.3)

He 0.001
L2(0.002) and
dropout(0.5)

17 68

conv(8,3,3,3) + overlap
mpool + conv(16,3,3,3) +
conv(16,3,3,3) + overlap
mpool + conv(32,3,3,3) +

conv(32,3,3,3) +
conv(32,3,3,3) + overlap

mpool + flatten + fcn(8,8,1)

LeakyReLU
(α=0.3)

He 0.0005
L2(0.003) and
dropout(0.5)

18 68

conv(8,3,3,3) + overlap
mpool + conv(16,3,3,3) +
conv(16,3,3,3) + overlap
mpool + conv(32,3,3,3) +

conv(32,3,3,3) +
conv(32,3,3,3) + overlap

mpool + flatten + fcn(4,4,1)

LeakyReLU
(α=0.3)

He 0.002
L2(0.002) and
dropout(0.45)

19 68

conv(8,3,3,3) + overlap
mpool + conv(16,3,3,3) +
conv(16,3,3,3) + overlap
mpool + conv(32,3,3,3) +

conv(32,3,3,3) +
conv(32,3,3,3) + overlap
mpool + flatten + fcn(1)

LeakyReLU
(α=0.3)

He 0.0005 L2(0.002)

(Continued on next page)
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Table B.1 – continued from previous page
No. Batch size Architecture σ Initialization LR Regularizer

20 68

conv(8,3,3,3) + overlap
mpool + conv(16,3,3,1) +

conv(16,1,1,3) +
conv(16,3,3,1) +

conv(16,1,1,3) + overlap
mpool + conv(32,3,3,1) +

conv(32,1,1,3) +
conv(32,3,3,1) +
conv(32,1,1,3) +
conv(32,3,3,1) +

conv(32,1,1,3) + overlap
mpool + flatten + fcn(4,1)

LeakyReLU
(α=0.3)

He 0.0005 L2( 0.001)

21 68

conv(8,3,3,3) + mpool +
Inception + Inception +
Reduction + Inception +
Inception + Reduction +

gap + fcn(1)

LeakyReLU
(α=0.3)

He 0.0005 L2( 0.0006)

22 8

conv(8,3,3,3) + mpool +
conv(16,3,3,3) + mpool +
conv(32,3,3,3) + mpool +
conv(64,3,3,3) + flatten +

fcn(32,16,1)

LeakyReLU
(α=0.3)

He 0.0001
L2(0.03) and

data
augmentation

23 8

conv(8,3,3,3) + mpool +
conv(16,3,3,3) + mpool +
conv(32,3,3,3) + mpool +
conv(64,3,3,3) + flatten +

fcn(32,16,1)

LeakyReLU
(α=0.3)

He 0.0001
L2(0.01) and

data
augmentation

24 8

conv(8,3,3,3) + overlap
mpool + conv(16,3,3,3) +
conv(16,3,3,3) + overlap
mpool + conv(32,3,3,3) +

conv(32,3,3,3) +
conv(32,3,3,3) + overlap
mpool + flatten + fcn(1)

LeakyReLU
(α=0.3)

He 0.0001
L2(0.02) and

data
augmentation

(Continued on next page)
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Table B.1 – continued from previous page
No. Batch size Architecture σ Initialization LR Regularizer

25 8

conv(8,3,3,3) + overlap
mpool + conv(16,3,3,3) +
conv(16,3,3,3) + overlap
mpool + conv(32,3,3,3) +

conv(32,3,3,3) +
conv(32,3,3,3) + overlap
mpool + flatten + fcn(1)

LeakyReLU
(α=0.3)

He 0.0001
L2(0.06) and

data
augmentation

26 16

conv(8,3,3,3) + mpool +
Inception + Inception +
Reduction + Inception +
Inception + Reduction +

gap + fcn(1)

LeakyReLU
(α=0.3)

He 0.001
L2( 0.01) and

data
augmentation

27 8

conv(8,3,3,3) + mpool +
Inception + Inception +
Reduction + Inception +
Inception + Reduction +

gap + fcn(1)

LeakyReLU
(α=0.3)

He 0.0001
L2( 0.04) and

data
augmentation

28 68
ResNet50 (base) + gap + fcn

(8,1)
ReLU He 5×10−7

Transfer
learning and
dropout(0.5)
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Table B.2: Epoch with the minimum validation loss by fold for the different trained models
obtained by early stopping. Val. Loss - Validation loss

F1 F2 F3 F4
Model Epoch Val. Loss Epoch Val. Loss Epoch Val. Loss Epoch Val. Loss

1 10 0.6446 23 0.3992 22 0.4002 50 0.4372
2 8 0.6445 24 0.3563 21 0.4112 44 0.4132
3 3 0.6533 13 0.4083 7 0.3981 19 0.3567
4 3 0.6684 14 0.3648 7 0.4117 25 0.3564
5 17 0.6498 26 0.4145 28 0.4320 33 0.3902
6 3 0.6685 22 0.4660 12 0.3973 21 0.3505
7 3 0.6665 12 0.4122 8 0.3958 21 0.3666
8 13 0.6541 26 0.5010 28 0.3927 63 0.3294
9 3 0.6565 10 0.4961 9 0.3895 38 0.4013
10 3 0.6785 20 0.4693 18 0.4063 41 0.2893
11 1 0.6793 13 0.4289 10 0.4039 31 0.2883
12 1 1.0159 13 0.7510 10 0.7286 32 0.6241
13 43 1.8607 40 1.6354 58 1.5334 100 1.4203
14 43 1.8074 37 1.7258 50 1.5368 82 1.3931
15 5 1.8613 30 1.5219 20 1.4974 66 1.3220
16 22 1.2583 63 0.9716 44 1.0213 38 0.7917
17 29 1.5197 40 1.3042 51 1.1974 100 1.1235
18 56 0.9040 28 0.9644 62 0.6708 94 0.6830
19 5 1.2068 19 0.9084 12 0.8852 33 0.8948
20 6 1.2002 21 0.9245 20 0.9123 48 0.8748
21 10 1.1227 28 0.8556 18 0.8627 41 0.8205
22 78 0.8269 48 0.7109 23 0.6632 100 0.6013
23 23 1.4317 88 1.0219 38 0.9898 39 0.8546
24 10 1.1456 11 1.1024 17 1.1171 66 0.7851
25 34 0.8372 19 0.6767 15 0.5610 64 0.4629
26 7 0.8722 91 0.6840 15 0.5507 16 0.5710
27 34 0.8392 29 0.7389 71 0.6039 48 0.5697
28 80 0.6910 49 0.6931 43 0.7001 66 0.6922
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Table B.3: Area under the ROC curve on cross-validation for the different models. SD - stan-
dard deviation.

AUC ROC curve
Model F1 F2 F3 F4 Mean SD

1 0.6833 0.9083 0.8667 0.8881 0.8366 0.1036
2 0.6833 0.9250 0.8750 0.9161 0.8499 0.1131
3 0.6833 0.8833 0.8750 0.9510 0.8482 0.1151
4 0.6917 0.9167 0.8750 0.9371 0.8551 0.0970
5 0.6917 0.9083 0.8333 0.9161 0.8374 0.1040
6 0.6833 0.8417 0.8917 0.9510 0.8419 0.1148
7 0.6833 0.9083 0.8833 0.9441 0.8548 0.1170
8 0.7083 0.8583 0.8833 0.9650 0.8538 0.1071
9 0.6917 0.8667 0.8583 0.8881 0.8262 0.0905
10 0.7667 0.8583 0.8583 0.9720 0.8638 0.0841
11 0.7917 0.9000 0.8750 0.9720 0.8847 0.0744
12 0.7917 0.9000 0.8750 0.9790 0.8864 0.0772
13 0.7333 0.8750 0.8667 0.8881 0.8408 0.0722
14 0.7000 0.7833 0.8667 0.9161 0.8165 0.0951
15 0.6917 0.8333 0.8750 0.9231 0.8308 0.0997
16 0.7250 0.9000 0.7583 0.8601 0.8108 0.0827
17 0.7250 0.8917 0.8833 0.9021 0.8505 0.0840
18 0.7583 0.8583 0.9250 0.8741 0.8539 0.0698
19 0.7333 0.9250 0.9417 0.9161 0.8790 0.0977
20 0.7583 0.9000 0.8750 0.9371 0.8676 0.0772
21 0.7250 0.9083 0.8917 0.9650 0.8725 0.1032
22 0.7333 0.8500 0.8417 0.9371 0.8405 0.0835
23 0.6750 0.8417 0.8583 0.8462 0.8053 0.0871
24 0.7000 0.6750 0.8500 0.8182 0.7608 0.0862
25 0.7000 0.7833 0.8667 0.9301 0.8200 0.1001
26 0.6833 0.8417 0.8833 0.8252 0.8084 0.0869
27 0.7333 0.8333 0.8417 0.8741 0.8206 0.0608
28 0.7167 0.8083 0.8500 0.7203 0.7738 0.0662
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Table B.4: Area under the ROC curve of the best stacked 3D model (model 12) over 10 itera-
tions of cross-validation.

AUC ROC curve

Iteration F1 F2 F3 F4 Mean SD

1 0.7917 0.9000 0.8583 0.9790 0.8823 0.0784

2 0.7917 0.9000 0.8750 0.9790 0.8864 0.0772

3 0.7917 0.9000 0.8750 0.9650 0.8829 0.0717

4 0.7917 0.9000 0.8750 0.9650 0.8829 0.0717

5 0.7917 0.9000 0.8583 0.9720 0.8805 0.0756

6 0.7917 0.9000 0.8667 0.9720 0.8826 0.0749

7 0.7917 0.9000 0.8667 0.9720 0.8826 0.0749

8 0.7917 0.9000 0.8750 0.9720 0.8847 0.0744

9 0.7917 0.9000 0.8500 0.9720 0.8784 0.0765

10 0.7917 0.9000 0.8583 0.9650 0.8788 0.0728

Mean 0.7917 0.9000 0.8658 0.9713 0.8822 0.0748
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Table B.5: Area under theROCcurve of the bestVGG-likemodel (model 19) over 10 iterations
of cross-validation.

AUC ROC curve

Iteration F1 F2 F3 F4 Mean SD

1 0.7333 0.9250 0.9167 0.9371 0.8780 0.0968

2 0.7333 0.9250 0.9417 0.9091 0.8773 0.0969

3 0.7333 0.9250 0.9333 0.9231 0.8787 0.0970

4 0.7333 0.9250 0.9333 0.9301 0.8804 0.0981

5 0.7333 0.9250 0.9333 0.9161 0.8769 0.0960

6 0.7333 0.9250 0.925 0.8881 0.8679 0.0914

7 0.7333 0.9333 0.9167 0.9301 0.8784 0.0969

8 0.7333 0.9250 0.9083 0.9301 0.8742 0.0944

9 0.7333 0.9167 0.9333 0.9021 0.8714 0.0929

10 0.7333 0.9250 0.9167 0.9301 0.8763 0.0954

Mean 0.7333 0.9250 0.9258 0.9196 0.8760 0.0956
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Table B.6: Area under the ROC curve of the best Inception-v2-like model (model 21) over 10
iterations of cross-validation.

AUC ROC curve

Iteration F1 F2 F3 F4 Mean SD

1 0.7250 0.9083 0.8917 0.9510 0.8690 0.0992

2 0.7250 0.9083 0.8917 0.9650 0.8725 0.1032

3 0.7250 0.9083 0.8917 0.9650 0.8725 0.1032

4 0.725 0.9083 0.8917 0.9510 0.8690 0.0992

5 0.7250 0.9083 0.8917 0.9301 0.8638 0.0938

6 0.7250 0.9083 0.8917 0.9510 0.8690 0.0992

7 0.7250 0.9083 0.8917 0.9371 0.8655 0.0955

8 0.7250 0.9083 0.8917 0.9371 0.8655 0.0955

9 0.7250 0.9083 0.8917 0.9580 0.8708 0.1012

10 0.7250 0.9083 0.8917 0.9650 0.8725 0.1032

Mean 0.7250 0.9083 0.89170 0.9510 0.8690 0.0992
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