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Abstract

Impact of topography on rough contact
by computational homogenization

Keywords: Rough contact; Non-Gaussian rough surfaces; Real contact area; Weibull Dis-
tribution; Contact homogenization.

In many engineering problems, it is common to consider smooth surfaces in contact,
neglecting the effects of roughness on the micromechanical interactions. However, in the
current engineering scenario, roughness has been verified to impact several physical phe-
nomena such as friction, wear, adhesion, thermal and electric contact resistance, among
others. In the past decades, theoretical and numerical approaches to rough contact have
been made in the context of Gaussian surfaces, mainly due to the easier analytical treat-
ment of the normal distribution of topography heights. Nonetheless, experimental results
show that practical surfaces are often non-Gaussian with distinctive values of skewness
and kurtosis.

In this work, the impact of non-Gaussian height distribution in the elastic, non-adhesive
and frictionless contact between a self-affine topography and a rigid and flat plane is
addressed using a finite element method framework, equipped with the dual mortar con-
tact discretization. The non-Gaussian height distribution is modelled using the Weibull
probability distribution in its two shapes, namely, the Weibull Maximum and Weibull
Minimum, to assess both negatively and positively skewed surfaces, respectively. In the
first stage, a numerical study on the statistics of non-Gaussian rough surfaces was per-
formed recovering important quantities, namely the distribution of summits heights and
its curvatures. The results were then compared with analytical solutions of the Gaussian
case (Nayak’s theory) and the effect of the height distribution and the spectral properties
were extensively discussed.

In a second part, a finite element analysis of the non-Gaussian rough contact is ex-
plored, mainly in two-dimensional conditions due to computational limitations. An ini-
tial finite element study on the mesh convergence of the Representative Contact Element
(RCE) was done, defining the ideal mesh size for further studies. Second, a larger study
was performed to obtain insights about the contact area evolution of Weibull rough sur-
faces, also incorporating the analysis of the contact pressure distribution. The results
were compared to numerical and theoretical Gaussian results highlighting the main differ-
ences. Several different topography’s parameters were tested and the effects of each were
discussed connecting, whenever possible, with statistical insights previously obtained. A
final three-dimensional study supported some of the observations done in the previous
study.
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Resumo

Impacto da topografia no contacto rugoso
através de homogeneização computacional

Palavras-Chave: Contacto rugoso; Superfícies rugosas não-Gaussianas; Área real de con-
tacto; Distribuição de Weibull; Homogeneização computacional de contacto.

Em muitos problemas de engenharia é comum considerar-se superfícies lisas em con-
tacto, desprezando os efeitos da rugosidade nas interações micromecânicas. Contudo, no
panorama atual da engenharia, verifica-se que a rugosidade tem impacto em imensos
fenômenos físicos, tais como a atrito, o desgaste, a adesão, a resistência térmica e elétrica
no contacto, entre outros. Nas últimas décadas, abordagens teóricas e numéricas ao con-
tacto rugoso têm sido desenvolvidas no contexto de superfícies Gaussianas, sobretudo
motivado pelo fácil tratamento analítico da distribuição normal das alturas da topografia.
No entanto, resultados experimentais têm vindo a mostrar que superfícies de interesse
prático são frequentemente não-Gaussianas, possuindo valores distintos de assimetria e
curtose.

Neste trabalho, o impacto da distribuição de alturas não-Gaussiana no contacto elás-
tico, não-adesivo e sem atrito entre uma topografia auto-afim (self-affine) e um plano
rígido é estudado através do método dos elementos finitos com a formulação dual mor-
tar para a discretização do contacto. A distribuição de alturas é modelada através da
distribuição de Weibull nas suas duas formas, nomeadamente, Weibull Máximo e Weibull
Mínimo, para aproximar topografias com assimetrias negativas e positivas, respetiva-
mente. Numa primeira abordagem, foi realizado um estudo numérico sobre as estatís-
ticas de superfícies não-Gaussianas obtendo-se quantidades importantes tais como a
distribuição das alturas dos picos e das suas curvaturas. Os resultados foram compara-
dos com soluções analíticas para o caso Gaussiano (Teoria de Nayak) e foi discutido o
impacto da distribuição de alturas e das propriedades espectrais.

Numa segunda parte, uma análise por elementos finitos do problema de contacto foi re-
alizada, considerando, maioritariamente, casos bidimensionais devido a limitações com-
putacionais. Um estudo inicial foi realizado com o intuito de verificar a convergência de
malha de um Elemento de Contacto Representativo (ECR), tendo-se definido o tamanho
de malha mais conveniente. Foi realizado um segundo estudo de maior dimensão com o
intuito de observar o impacto e topografias modeladas com a distribuição de Weibull na
evolução da área real de contacto, incorporando também a análise da distribuição das
pressões de contacto. Os resultados obtidos foram comparados a soluções analíticas e
numéricas do caso Gaussiano evidenciando as principais diferenças verificadas. Vários
parâmetros de topografia foram testados e o seu impacto discutido, tendo-se incluído,
sempre que possível, a ligação com os resultados estatísticos obtidos inicialmente. Para fi-
nalizar, um estudo tridimensional ajudou a suportar algumas das conclusões observadas.
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z Nodal Lagrange multiplier vector

z Component of the nodal Lagrange multiplier vector

ξ Point in the element parameter space

Φ Shape function for the Lagrange multiplier

Numerical model and multiscale approach

Hsub Height of the rough block

Href Height of the refined mesh of the rough block

∆x Mesh spacing
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Chapter 1

Introduction

The purpose of this chapter is to provide an outline of the current dissertation as well as
give some context to the work. In this work, the impact of non-Gaussianity on self-affine
rough surfaces was studied, modelling the topography’s height distribution with two dif-
ferent versions of the Weibull probability distribution. An initial numerical study was
done on the surfaces statistics, where several statistical quantifiers of the summits were
obtained. In a second part, the numerical modelling of non-Gaussian rough contact was
done using the Finite Element Method (FEM), within a dual mortar contact formulation.
The contact between a rough deformable block and a flat rigid surface was simulated con-
sidering elastic, non-adhesive and frictionless conditions. In both studies, the influence
of the parameters that parametrize the topography was properly discussed.

1.1 Motivation

Contact constitutes one of the most fundamental and ubiquitous physical phenomena.
Several applications of modern society rely on solutions that imply contact interactions,
from the aerospace industry to nanotechnology applications. In this chapter, the motiva-
tion for this work is presented, highlighting the tribology context and importance, giving
some historical context on the contact mechanics field and finally introducing the rough
surfaces topic with the focus on non-Gaussian topographies.

1.1.1 Role of tribology
The engineering field typically devoted to the analysis of contact interfaces is commonly
nominated tribology. This parlance was first introduced by Jost (1966) and is derived from
the Greek word tribos, which means rubbing. In the current engineering scenario, tribol-
ogy faces problems with great economic importance, e.g. reliability, maintenance and
wear of technical equipment. Additionally, it also plays a crucial role in modern machin-
ery applications when sliding or rolling surfaces are required, such as brakes, clutches
and driving wheels. In the work from Tzanakis et al. (2012) it is reported that frictional
losses can cost 1% of the gross national product in several nations. Also, in the automo-
tive sector, it is reported that the power losses due to the tire-road interaction cost about
20-30% of the fuel consumption on a road vehicle (Nitsche, 2011). Recently, Holmberg
and Erdemir (2017) have stated that around 23% of the worldwide energy consumption
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comes from tribological contacts, of which 20% are addressed to overcome friction. The
research in the tribology field can lead to higher efficiency and performance in many en-
gineering applications as well as significant savings. Besides the heavy industry, tribology
is also present in many other applications like bioengineering and nanotechnology.

1.1.2 Historical note
The interest in contact, friction and wear are not only major concerns of today’s society,
where the industrial needs demand several complex engineering solutions. In fact, re-
ports on the awareness to contact and friction were found in ancient Egypt (circa 1880
BC) where it was found the use of lubricants on the transportation of large stone blocks
(Bhushan, 1999). The first scientific approach to friction is accredited to the renaissance
engineer–artist, Leonardo da Vinci (1452–1519), who have explored the sliding motion of
a rectangular block on a flat surface. Later works, by Guillaume Amontons (1663-1705)
and later by Charles-Augustin Coulomb (1736-1806) have cemented the fundamental laws
of friction. To the Swiss mathematician, Leonhard Euler (1707-1783), is attributed the first
analysis on the contact of rough surfaces, considering triangular asperities. One of the
most paramount works within the contact mechanics field was made by Heinrich Hertz
(1857-1894), who first introduced the theory of elasticity to frictionless contact in Hertz
(1882). This work is often considered the keystone of the modern contact mechanics with
several seminal analytical models built from its theory, e.g. the work of J. A. Greenwood,
J. B. P. Williamson, et al. (1966) on elastic frictionless contact of random rough surfaces
or K. L. Johnson et al. (1971) and Derjaguin et al. (1975) on the adhesive contact between
compliant or hard spheres, respectively.

In the last century, within the context of contact mechanics and alongside the Hertz
contact theory, several analytical models have been proposed. Despite providing impor-
tant conclusions, these models are commonly limited to very simple conditions, like elas-
tic frictionless contact, only considering small deformations. The lack of flexibility of the
analytical models in pair with the astonishing fast developments in computer hardware
has led the community to look forward to computational numerical methods. Tools like
the finite element method have become the engineering workhorse when the purpose
is to design or study complex engineering phenomena. Large deformations, multi-body
interactions, non-linear material models are easily tackled by the currently available FEM
frameworks. Within the friction modelling, the dual mortar methods applied to FEM
are the current state of the art, enabling a more robust and trustworthy response of the
simulations. The use of the numerical methods is also often supported by economic ad-
vantage, since empirical experiments are more expensive and, in a certain case, can even
be impossible to perform.

1.1.3 Rough surfaces
The aforementioned ability of the FEM to untangle complex contact phenomena have po-
tentiated the study of the micromechanical features, such as the contact between rough
surfaces. In fact, the contact at the roughness levels has been proven to influence mi-
croscopical contact phenomena in several ways. One of the most notable aspects is the
real contact area which tends to be smaller than the apparent area. Dieterich and Kilgore
(1994) have performed several experiments highlighting this occurrence (cf. Figure 1.1).
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The real contact area induced by roughness can have a significant impact on many phys-
ical phenomena. Many engineering systems with contact components like roller bear-
ings, tire/road and wheel/rail, gears, electrical components or even micro and nanome-
chanical systems might be severely affected by such micromechanical behaviour, inso-
far as the macroscopic behaviour of these parts can be significantly affected by electro-
thermo-chemico-mechanical relations at smaller scales. It has been extensively demon-
strated that roughness plays a paramount role in friction (Ben-David et al., 2010; Dieterich
and Kilgore, 1994), contact electrical resistance (Yastrebov, Cailletaud, et al., 2015), ther-
mal contact resistance (Anciaux and Molinari, 2013), adhesion (Fuller and Tabor, 1975;
Pastewka and Robbins, 2014), wear (Bowden and Tabor, 1951; Aghababaei et al., 2016)
and fluid motion in contact interfaces (Persson et al., 2004). For all these phenomena,
a precise determination of the real contact area for a given set of physical conditions is
required in order to better design and explore the systems.

The modelling of rough contact has been an active field of research in the last decades,
with several numerical and analytical models proposed in the literature. The first-class
of analytical models commonly named asperity-based models settles on the definition
of asperities, i.e., a summit on a rough surface. The first model formulated around this
concept is attributed to J. A. Greenwood, J. B. P. Williamson, et al. (1966), and several
other enhanced ramifications have emerged over the following years (Bush et al., 1975;
McCool, 1986; Thomas, 1998; J. Greenwood, 2006). These models base their principles
on the summits height distribution results that have been by obtained by Nayak (1971),
that extended the works of Longuet-Higgins and Deacon (1957a,b) A second class of
models was initiated by Persson (2001a,b) and are based on the notion of contact pressure
distribution with varying magnification. Nonetheless, all the currently available theories
rely on some approximations and cannot produce precise results on the contact area
evolution in more complex scenarios, thus opening that way for numerical analysis.

The above-presented models have one thing in common that is the assumption that
random rough surfaces are defined by a Gaussian distribution. From the statistical results
to the analytical contact models, all have assumed that the heights of a rough surface can
be modelled by a simple normal distribution. Despite several attempts to justify this
hypothesis by highlighting the apparent Gaussian behaviour of real surfaces, the main
reason can be attributed to the easier analytical treatment of this distribution, for the
most part. This fact has sustained the idea of Gaussian rough surfaces within the scientific
community with several works being published on the matter.

Actual engineering surfaces are in fact non-Gaussian as they tend to deviate from the
clear and symmetrical form of the Gaussian distribution. This type of topographies is
commonly characterized by means of skewness and kurtosis, two statistical quantifiers
that help to characterise the deviation from the Gaussian distribution. The majority of the
machining processes results in surfaces with non-Gaussian height distributions (Thomas,
1998). In Figure 1.2 and example of a real machined surface, resultant from a boring
process, is presented alongside the respective non-Gaussian height distribution. Also, in
Figure 1.3 provides a visual representation of the skewness and kurtosis resulting from
standard machining processes. It can be seen that while grinding, milling and honing
tend to produced negatively skewed surfaces, turning and EDM results in height distri-
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Figure 1.1: Photomicrograph by Dieterich and Kilgore (1994) showing the real contact
area between a surface of acrylic plastic and other of soda-lime glass, at different loading
states. With the load increase, the contact spots tend to expand as well as the number of
contact spots.

bution with a positive value of skewness. Additionally, several studies can also be found
highlighting the fact that Gaussian and non-Gaussian distribution may exhibit differences
in different tribology problems such as interface stiffness, the evolution of the real contact
area, adhesion, wear, plastic deformation and others (Pérez-Ràfols and Almqvist, 2019).
From a computational standpoint, numerical studies on non-Gaussian surfaces have also
been discouraged for two main reasons. First, the generation method of non-Gaussian
rough surfaces, up to recently, was a cumbersome process with only some inefficient
methods available. The second has to do with the characterization process of this type of
topographies that is far more complex than in the Gaussian case. One can characterize
the topography based on the skewness and kurtosis, resulting in an overwhelming range
of possibilities, or by choosing a probability distribution to model the heights.

1.2 Objectives

The main goal of this work is to analyse the impact of non-Gaussian height distributions
on the rough contact of self-affine surfaces. The problem under analysis is circumscribed
to Signorini-type problems, i.e., the contact between a deformable rough block and a flat
rigid surface, considering only elastic, non-adhesive and frictionless contact. To accom-
plish this an initial numerical routine is developed to obtain the topography statistics
of random rough surfaces, taking advantage of already available random rough surface
generation algorithms in the in-house numerical framework. With this tool at hand, sta-
tistical results on the geometry of non-Gaussian rough surfaces were obtained, giving a
background for understanding the contact area results to be analysed later. In a second
stage, simulations, using a FEM framework with dual mortar contact discretization, are
performed in both 2D and 3D settings, placing focus on the 2D case for computational
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(a) Bored machined surface experimentally measured.
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Figure 1.2: Example of a non-Gaussian surface obtained by a boring process—adapted
from K. J. Stout et al. (1990).
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Figure 1.3: Experimental values of skewness and kurtosis for surfaces produced by typi-
cally machining processes. EDM stands for Electrical Discharge Machining. Results from
Whitehouse (1994) adapted by Couto Carneiro (2019).

convenience. The results of real contact area evolution and contact pressure distribution
are analysed to highlight the effect of the parameters that parametrize the rough surface
on the micromechanical behaviour.

1.3 Outline

In sequence with the previous sections, where the motivation and objectives of this dis-
sertation were introduced, a brief description of the chapters found in this document is
presented in what follows.

Chapter 2 - Rough surface characterization

This chapter intends to give fundamental insights on the definition and characterization
of multiscale roughness. The principal tools used to describe roughness are introduced
from classical RMS parameters to the most important characterization method for the
present work, the so-called Power Spectral Density (PSD), as well as the associated spec-
tral moments. Also, the concepts of fractal surfaces and the definition of a self-affine
rough surface are introduced, showing the typical mathematical treatment of this class of
topographies. A more in-depth distinction between Gaussian and non-Gaussian surfaces
is also done with the introduction of the moments of the height distribution.

Chapter 3 - Numerical study on the statistical geometry of rough surfaces

This chapter is fully dedicated to the study of the geometry statistics of random rough
surfaces. As a starting point, the fundamental theory (Nayak’s theory) on the statistics
of random rough surfaces is introduced. The implemented numerical routine for the
analysis of the statistics of rough surfaces is presented as well as the method for the
generation of Gaussian topographies. The validation of the computational routine is done
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by comparing the analytical solutions with the numerical results. In the second part, non-
Gaussian topographies are addressed. The Weibull distribution is presented as well as the
underlying mathematical formulation, being the parameters of the function adapted to
values with engineering significance. A numerical study on the statistics of rough surfaces
is presented, discussing the effect of the heigh distribution and the shape parameter. This
chapter is closed with a final small study on the dependence of the spectral parameters.

Chapter 4 - Contact Modelling with the Dual Mortar Method

A presentation of the fundamental aspects of the FEM framework is provided, starting
with a brief introduction to the continuum solid mechanics for solving contact with a dual
mortar approach is done. Then the mortar-based finite element formulation is introduced
in a weak form, only considering the frictionless contact. To conclude the chapter, the
definition of the representative contact element is presented as well as the type of prob-
lem analysed in the current work. Further details are also given on the selected roughness
model, material properties, boundary conditions, meshing process and methodologies
for computing the real contact area.

Chapter 5 - Finite Element analysis of non-Gaussian rough contact

This entire chapter is dedicated to the simulation of the contact of non-Gaussian rough
surfaces and the discussion of results. A first study is performed with the intent of ex-
ploring the effect of mesh discretization in the convergence of the contact area fraction.
The convergence of the solution is analysed through different strategies for evaluating
the real contact area and a viable mesh size parameter is selected. A second study, the
larger and most relevant one, covers the evolution of the contact area with external pres-
sure considering a wide range of different properties that define the non-Gaussian rough
surface. The obtained results are then discussed extensively isolating the effect of each
parameter and interpreting the results in the light of the statistical results obtained in
Chapter 3. To end this chapter, a 3D application is examined with carefully selected due
to computational limitations.

Chapter 6 - Concluding remarks and future work

The fundamental conclusions of this work and the relevant observations are summarized
in this chapter. Future work suggestions within the topic of this dissertation are also
presented.

Appendix A - Numerical fit results in the numerical real contact area 2D FEM study

This appendix presents the results from the numerical fitting process presented in Chap-
ter 5.
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Chapter 2

Rough surface characterization

In several fields of science and engineering, it is common to describe bodies in a way that
eases the theoretical treatment of the underlying problem. For example, in the case of
engineering surfaces, it is often considered smoothness, in order to allow for a geometry
characterization based on analytical functions. In reality, however, it is virtually impos-
sible to find surfaces that match their nominal shape as the manufacturing processes
inevitably produce deviations relative to the desired shape. These deviations can be bro-
ken down in an abstract fashion, setting the foundation for the definition of roughness.
In today’s technological landscape, roughness plays an unquestionable role in several
applications of engineering, especially, involving mechanical contact.

2.1 Roughness concepts

It is common to conceptualize surfaces as flat, despising the fact that roughness is natu-
rally present. In nature, surfaces tend to be rough and roughness acts like a measure of
the disorder, i.e., entropy. Under the light of the Second Law of Thermodynamics entropy
can only be reduced with an external transfer of energy, and so is roughness. Thomas
(1998) illustrates this idea by noting that surfaces tend to be smoother for higher machin-
ing times. Apart from roughness being a tangible concept, since a rough surface can be
recognized by simply touching it with a finger, it is a scale-dependent property and distin-
guishes it from other intrinsic surfaces properties, such as colour. Similarly to hardness,
roughness depends on the techniques and scale used in the observation, meaning that it
is inherently more difficult to define (Thomas, 1998).

To better understand the concept of roughness, one can consider a real flat surface,
produced by a machining process, with some nominal geometry and dimensions cor-
rectly defined (cf. Figure 2.1). This process will produce a surface that fits the designated
requirements. However, deviations to the nominal shape are expected, which can be di-
vided and their effects and origins individually inspected, in the light of the principle of
superposition. First, one can consider that a flat surface with a slight slope is produced,
due to a tool misalignment during the machining process, for example. This constitutes
an error of form, as the surface does not match the nominal shape. Nevertheless, it does
not compromise its smoothness, as it remains perfectly flat. Secondly, problems with
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Nominal shape Error of form Waviness Roughness

Figure 2.1: Different sources of error on real life surfaces. Adapted from Couto Carneiro
(2019).

the machining tool, such as vibrations, may cause waviness, i.e., periodic defects on the
surface, typically in a form of a random type wave (Whitehouse, 2004). Once more, the
surface can still be considered smooth, as long as the wavelength is sufficiently large
when compared with the surface size. Finally, one can see that for increasingly smaller
values of wavelength the smoothness becomes compromised. In addition, the physical
phenomena associated with the process of material removal generate random errors of
high spatial frequency, which translates to short wavelengths defects. These constitute
the source of what is nominated roughness: at this point, the surface is now deemed
rough.

The presented example leads to a very simple description of a surface height h(x, y),
by simply superimposing the previously mentioned defects, i.e., the error of form e(x, y),
the waviness w(x, y) and the roughness z(x, y), viz.

h(x, y) = e(x, y)+w(x, y)+ z(x, y) . (2.1)

After this brief example, one can accept that the high-frequency variations are what
becomes understandable as roughness. This hypothesis is in agreement with the already
advanced concept of roughness as scale-dependent property. As an illustration of this
scale dependency, Thomas and King (1977) explores the effects of progressively smaller
wavelengths and amplitudes in physical systems, by creating an analogy with enlarge-
ments in a geographic map. In his work, he states that features as long as 10 m affect
aircraft suspensions when landing in a rough airstrip. Similarly, for wavelengths around
1 m, effects are felt in road car and rail vehicles suspensions. The later case comprises am-
plitudes from 10 to 100 mm. For wavelengths below 10 cm, the surface features became
responsible for the tyre-road interactions, such as skidding. For even shorter wavelengths,
one can enter the domain of machined surfaces, where amplitudes of 0.1 to 1 mm can be
responsible for drag increase due to hull friction. A step further into smaller wavelengths,
from 1 mm down to 1µm, roughness features may be associated with the origins of fric-
tion, wear, noise or even failure in bearings of different types. Finally, wavelengths below
1µm down to 10 nm assume importance in some physical properties such as reflection
and diffraction of electromagnetic radiation. The objective of this description is to point
out the importance of the scale in surface analysis. Therefore, in an engineering context,
one can state that the scale in which the surfaces are studied should be properly defined,
as well as in the measurement process, where this variable plays a key role.
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Figure 2.2: Classification of rough surfaces—adapted from Nayak (1971). The dashed
lines indicate the paths where the sub-divisions may continue, and the coloured boxes
the types of surfaces discussed in the current work. Adapted from Couto Carneiro (2019).

2.1.1 Classification of rough surfaces
The classification of surfaces is an important topic, as it allows to properly locate the re-
search area within the context of the current work. Traditionally, the surface classification
follows the typology shown in Figure 2.2 (Nayak (1971) and Bhushan (2013)). The first
branch distinguishes the surfaces based on how the properties vary along the surface. A
surface with a uniform distribution of geometrical features is classified as homogeneous,
otherwise, it is considered inhomogeneous. Homogeneous surfaces may be deterministic
or random, based on their stochastic nature. Roughness is obviously a random occur-
rence, despite some scenarios that may have predictable behaviour, such as on surfaces
produced by turning. (Thomas, 1998). One can further divide the randomness of surface
topography by looking at how the height distribution behaves. If one can use a normal
distribution to describe the heights on a surface, it may be nominated Gaussian, other-
wise, the surface is called non-Gaussian. The last sub-division refers to the directionality
of rough properties. If roughness is independent of the orientation, the surface is called
isotropic, alternatively, if one can clearly distinguish directions of different rough proper-
ties, a surface is called anisotropic.

The classification of rough surfaces is greatly associated with the process from which
it originates. Surfaces that result from processes such as shot-peening, lapping or elec-
tropolishing, are subjected to a continuous process of random and discrete local events,
producing a net effect that results in a Gaussian distribution of surface heights—a con-
sequence of the Central Limit Theorem (Bhushan, 2013). In contrast, processes like turn-
ing and milling may lead to non-Gaussian and anisotropic surfaces. The latter category
usually allow an easier visual identification, due to the presence of grooves along a pref-
erential direction.
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2.2 Roughness parameters

Historically, the characterization of surfaces has been sought with the so-called roughness
parameters, which describe and characterize the surfaces by evaluating their geometri-
cal features based on discrete data collected from experimentation. This approach is
fundamental to roughness studies as it provides a straightforward method for compar-
ing surfaces with different characteristics, for example, to compare the roughness state
before and after loading tests.

The calculation of these parameters can be carried out seamlessly for both profiles
and surfaces, as long as data is collected for the purpose. Commonly, the nomenclature
used for profile parameters is R(·), with a subscript depending on the specific parameter.
Similarly, the surface parameters are described by the symbol S(·). Both result in useful
values for roughness analysis, nonetheless, the profile parameters, despite being cheaper
and faster to execute, store inherently less information than surface parameters—this
point will be clarified in the following paragraphs. This difference can be highlighted,
with the following examples, and shown at in Figure 2.3, while introducing some common
nomenclature and concepts. Consider a generic profile obtained by the intersection of
a surface with an arbitrary plane parallel to xOz or yOz. The profile’s local maximum is
defined as the points where

∂z

∂x
= 0 or

∂z

∂y
= 0 , (2.2)

according to the plane considered, and is called a peak. For the surfaces case, the local
maximum is termed summit, and must satisfy 1

‖∇z‖ = 0 . (2.3)

Attending at the definitions presented (Equation (2.2) and Equation (2.3)), and consider-
ing that profiles are simply intersections of the surface with a plane of measurement, one
can see that peaks and summits may not occur at the same point, which ultimately may
lead to erroneous conclusions—cf. Figure 2.3.

2.2.1 Root mean square parameters
Within the context of the current work, the most important parameters are the so-called
root mean square parameters, typically abbreviated to RMS, from root mean square. These
parameters gained relevance due to their applications in micromechanical contact mod-
els and the important relations with other parameters (K. L. Johnson, 1985).

RMS heigh/roughness

The RMS height, also called commonly called RMS roughness, is a measure of the surface
height relatively to the mean plane. The continuous version of this parameter for a rough

1The operator ‖ ·‖ denotes the euclidean norm of vector and ∇(·) the gradient of a function.
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Figure 2.3: Distinction between peaks and summits. A profile peak may not coincide with
a real surface summit.

profile z(x) and a rough surface z(x, y) writes

zrms,x =
√

1

L

∫ L

0
z2(x) dx =

√
z2(x) ; (2.4a)

zrms,x y =
√

1

Lx Ly

∫ Lx

0

∫ Ly

0
z2(x, y) dydx =

√
z2(x, y) . (2.4b)

where (•) represents the spatial average operator. It is important to note that Equations 2.4
are very rare to apply, since in reality, one works with sampled surfaces and profiles, which
leads to the discrete version of the parameter. Therefore, consider a profile z(x), with
x ∈ [0,L], and with N sampled points, uniformly spaced. In the same way, for a surface
z(x, y), with (x, y) ∈ [0,Lx ]× [0,Ly ], and with a grid of N ×M equally spaced points. 2 3

One writes the RMS height as

zrms,x ≈ Rq =

√√√√ 1

N

N−1∑
n=0

z2
n ; (2.5a)

zrms,x y ≈ Sq =

√√√√ 1

M N

M−1∑
m=0

N−1∑
n=0

z2
m,n . (2.5b)

By definition, the RMS height quantifies the global height variation, providing a numer-
ical value that is sensible to surface height, especially the extreme values, namely valleys
and summits. Nevertheless, these contribute indistinctly to the computation of the pa-
rameter, since it considers only the real squared values. However, the RMS height is by no
means able to uniquely characterise a rough surface. To point out this aspect, two pro-
files with the same value of RMS height are shown in Figure 2.4. The profile of Figure 2.4a
has larger slopes than the profile of Figure 2.4b, and the latter has a smoother aspect.

2The operator [•,•]× [•,•] represents the Cartesian product.
3N and M refer, respectively, to the x and y directions.
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(b) Profile with small slopes.

Figure 2.4: Comparison between two profiles with the same value of RMS height Rq .
Adapted from Couto Carneiro (2019).

Both share the same RMS height, however different overall characteristics can readily be
identified, thus one can conclude that the RMS height is not sufficient to capture all the
information of a rough surface.

RMS slope

The RMS height limitation to distinguish surfaces with considerable different surfaces
characteristics, fosters the use of parameters associated with the slope. Similarly to the
previous parameter, one writes the RMS slope of a continuous profile and a continuous
surface as

z ′
rms,x =

√√√√(
dz(x)

dx

)2

; (2.6a)

z ′
rms,x y =

√
‖∇z(x, y)‖2 . (2.6b)

Once more, the discrete version must be employed to preform calculation on sampling
data, either from experimental measurement or from numeric generation. Unlike RMS
height, the RMS slope requires the numerical computation of derivatives. The ISO 25178
proposes the use of a first-order finite difference stencil, whereas, the ASME B46 recom-
mends the use of a sixth-order stencil. However, both techniques may introduce either
smoothing or artificially sharp corners, resulting in unwanted inaccuracies. An easier way
to calculate this derivatives is based on a forward finite-difference scheme (Bhushan,
1999). Using this method, one writes the discrete version of RMS slope as follows

z ′
rms,x ≈ R∆q =

√√√√ 1

(N −1)

N−2∑
n=0

( zn+1 − zn

∆x

)2
; (2.7a)

z ′
rms,x y ≈ S∆q =

√√√√ 1

(M −1)(N −1)

M−2∑
m=0

N−2∑
n=0

( zm,n+1 − zm,n

∆x

)2
+

(
zm+1,n − zm,n

∆y

)2

. (2.7b)

RMS curvature

The RMS curvature follows similar concepts as the aforementioned parameters. Once
again, there may exist surfaces with the same values of RMS slope, even though their
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curvature features are considerably different. This parameter goes one step further into
the derivation process, considering the second derivatives of the profile, and one writes
the continuous version for profiles and surfaces as

z ′′
rms,x =

√√√√(
d2z(x)

dx2

)2

; (2.8a)

z ′′
rms,x y =

1

2

√
[∇2z(x, y)

]2 . (2.8b)

For a better understanding on the concept of RMS curvature, one shall distinguish this
value from the classic definition of curvature. For a profile z(x), the geometric curvature
definition comes

κR = z ′′(x)
(
1+ [z ′(x)]2) 3

2

, (2.9)

where z ′(x) and z ′′(x), are the first and second derivatives in of the profile in order to x.
On the other hand, for a surface z(x, y), one writes 4

κS =

(
∂z

∂x

)(
∂2z

∂y2

)
−

(
∂z

∂y

)(
∂2z

∂x2

)

[(
∂z

∂x

)2

+
(
∂z

∂y

)2] 3
2

. (2.10)

In this case, the second-order partial derivatives of the surface are necessary. From these
equations (Equation (2.9) and Equation (2.10)), the difference between the continuous
definition of the RMS curvature can be emphasized. It is interesting to note that, the
profile’s curvature κR is only equal to the second derivative of the profile where the slope
is equal to zero, i.e, z ′(x) = 0, which coincides with profile peaks and valleys. This con-
sideration supports the fact that in contact theories for rough surfaces the interest is
frequently on the extreme values of the topography. As a result, the RMS curvature values
are commonly used as an approximation for the mean curvature (McCool, 1986).

Similarly to the RMS slope, the discrete version of the RMS curvature implies the nu-
merical computation of the derivative—second order in this case. In advance, one can
realise that for a point on a smooth surface, the curvature varies according to the direction
relative to which it is computed. At the same point, there are two orthogonal directions,
termed principal directions, along which one finds the maximum and minimum curva-
tures. For the calculation of the RMS curvature, the average value of these curvatures,
named mean curvature, is used. It can be proved that this mean value is equal for any
two orthogonal directions considered in the same point (Sokolnikoff, 1964). Therefore, a
well-suited formulation arises for the computation of the RMS curvature, along the x and
y directions of the sampled surfaces. Using a centred finite difference scheme (Bhushan,
1999), one writes the discrete version of RMS curvature as

4For the sake of clarity, the arguments x and y were omitted from the Equation (2.10), writing z instead
of z(x, y).
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z ′′
rms,x ≈ R∆2q =

√√√√ 1

(N −1)

N−3∑
n=0

(
zn+1 −2zn + zn−1

∆x2

)2

; (2.11a)

z ′′
rms,x y ≈ S∆2q =

[
1

(M −2)(N −2)

M−3∑
m=0

N−3∑
n=0

1

4

(
zm,n+1 −2zm,n + zm,n−1

∆x2 + (2.11b)

+ zm+1,n −2zm,n + zm−1,n

∆y2

)2] 1
2

.

2.2.2 Parameters limitations
To conclude, one must reinforce the fact that roughness is a general characteristic of sur-
faces, which implies a vast use of different techniques and methods for its evaluation, in
many different scientific and engineering problems. This fact, extended by years of re-
search, resulted in a large number of roughness parameters, with no significant scientific
increment in the theoretical and practical understanding of roughness. The parameters
exceeded hundreds and led to the satiric term parameter rash, originally introduced by
Whitehouse (1982) in his work. A complete overview of all parameters does not exist, and
it would be a potentially cumbersome task with a very small return on investment, since
many of the parameters are just different ways of describing the same properties, in a way
that some parameters are dependent on each other (Thomas, 1998). Naturally, over the
years only, a few parameters have received acceptance within the scientific community
(Mainsah et al., 2001). The roughness parameters included in this description could have
been a lot more. Even with the RMS parameters, the analysis could have gone further,
into third and fourth derivatives, yet, problems with the numerical computation would
probably arise, as well as lack of physical meaning within the surface roughness context.

One of the biggest limitations when working with parameters such as the ones pre-
sented before, is their scale dependency, and how the variations of sampling length, dis-
cretization methodology and measuring equipment and/or process, affect the results.
Experimental results in the field have consistently supported these statements. Sayles
and Thomas (1978) and Bhushan (1999) have shown that RMS height presents a very
sensible behaviour to the low cut-off wavelength, frequently decreasing for shorter val-
ues of this dimension. P. I. Oden et al. (1992) observed in his work that for decreasingly
smaller values of cut-off wavelength the RMS slope and curvature tend to increase. These
results are clear evidence that these parameters are scale-depend, which invalidates a
comprehensive characterisation of roughness purely based on scalar parameters.

2.3 Autocorrelation function

The drawbacks of the scale-dependent roughness parameters fostered the analysis based
on the random nature of rough surfaces—although, as it will be seen later in the text,
it revealed unfruitful in the search for scale-independency, This type of description is
based on established stochastic analysis concepts, that follow a rigorous mathematical
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description. Within the context of this work, a light version of this treatment suffices, and
only fundamental concepts are presented. The reader is referred to Bendat and Piersol
(2010) for a sound presentation on the characterization of a random process.

The surface height of a rough surface behaves as a stochastic or random process, and
is considered a random variable, represented by Z, with various realizations—z(k)(x),
for profiles, and z(k)(x, y), for surfaces. All the possible surfaces that can be obtained are
named the ensemble. For each realization there is a certain probability of the obtained
surface being similar to a previous know reference. The ensemble averages, are a set of
statistics, computed from K realizations, that ease the random surface description. The
ensemble mean value of Z is one of the ensemble averages and can be determined for a
point i of coordinates (xi , yi ), as

µz (xi ) = 1

K

K−1∑
k=0

z(k)(xi ) = 〈z(k)(xi )〉 , (2.12a)

µz (xi , yi ) = 〈z(k)(xi , yi )〉 , (2.12b)

where the operator 〈•〉 denotes the ensemble average, that represents the mean height of
the ensemble at a specific point (xi , yi ).

The autocorrelation function (ACF) comes as another important ensemble average and
is defined by

R(xi , xi +τ) = 〈z(k)(xi )z(k)(xi +τ)〉 ; (2.13a)

R(xi , yi , xi +τx , yi +τy ) = 〈z(k)(xi , yi )z(k)(xi +τx , yi +τy )〉 . (2.13b)

for the profile and surfaces cases, respectively. One shall note the ACF of a surface is
function of the point in which is calculated (xi , yi ) and the shift considered (τx ,τy ). This
quantity can be interpreted as the ensemble average of the product between a point and
shifted version of it, given by a vector (τx ,τy ). Ultimately, it can be associated with the

probability of existing a point (xi , yi ) with z(k)
i and another point (xi +τx , yi +τy ) with

z(k)
i+τ, in the same realization.

It is possible to simplify the presented ensemble averages attending to two different
aspects. On the one hand, rough surfaces are frequently assumed as stationary, i.e., the
ensemble averages became independent of (xi , yi ). Usually, the notion of the weak-sense
stationary properties is considered, from which the position independence of the ensem-
ble mean and ACF is assumed. On the other hand, rough surfaces are also considered er-
godic, meaning that a single sample has sufficient information about every other samples.
Ensemble averages can be rewritten in light of the stationary and ergodicity properties.
The first condition removes the position dependency and leads to a constant value of
the ensemble mean µz an to autocorrelation function (ACF) only dependent of the shift
(τx ,τy ). Moreover, the ergodicity property, states that the ensemble averages can be re-
placed by the sample averages. Taking this into account, Equations 2.12 are rewritten as

µz = z(x) , (2.14a)

µz = z(x, y) . (2.14b)
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where the superscript (k) was removed, as there is no need to refer to a particular realiza-
tion any-more. For the ACF, one must note that unless the surface is infinite or periodic,
the number of matching points decreases with the increase of the shift (τx ,τy ). Therefore,
considering a finite-length topography, by means of the ergodicity and the stationary
properties, Equations 2.13 can be rewritten as

R(τ) = 1

L−τ

∫ L−τ

0
z(x)z(x +τ) dx , (2.15a)

R(τx ,τy ) = 1

(Lx −τx )(Ly −τy )

∫ Lx−τx

0

∫ Ly−τy

0
z(x, y)z(x +τx , y +τy ) dydx . (2.15b)

These equations reveal further insights about the meaning of the ACF. One can see the
ACF as a measure of how similar a surface looks with a shifted copy of itself. Additionally,
since this parameter is a function of the shift τ and not just a single value, it holds more
information than pure roughness parameters, and has been a valuable tool for rough
surface analysis. Starting at a null value of shift, τ= 0, one can readily write the following
relations

R(0) = (zrms,x )2 = (z(x))2 =σ2
z , (2.16a)

R(0,0) = (zrms,x y )2 = (
z(x, y)

)2 =σ2
z , (2.16b)

where the σz is the standard deviation of topography heights. Equations 2.16 can be more
easily understood by taking a closer look into Equations 2.4. The ACF has a maximum
when no shift is applied since it corresponds to the integral of the product of the squared
heights—integral of positive values. Therefore, the ACF starts on the squared value of the
RMS heights and decreases from there on, since for increasing values of the shift, positive
and negative values of height are multiplied, ultimately leading to the ACF decay. This
decaying also stores information on the surface characteristics since, for a profile with
high-frequency variations, the ACF has a faster decay than for a smoother surface, with
more pronounced high-wavelength oscillations.

2.3.1 Exponentially decaying model
Whitehouse, Archard, et al. (1970) proposed a model that predicts an exponential decay
of the ACF with the position shift, that is classically written as follows

R(τ) = R2
q exp

(
−|τ|
β

)
, (2.17)

where β is the autocorrelation length (ACL), and it can be defined as the value of shift that
leads to a reduction of the ACF by a factor of e−1, which is approximately 36.8% of the
ACF value at the origin (R2

q ) (Whitehouse, Archard, et al., 1970; Panda et al., 2016). The
Figure 2.5 presents the evolution of the exponentially decaying ACF model for different
values of τ and β. For the same length L and RMS height, Figure 2.5 shows that the for
higher values of β the profile tends to be smoother, in the sense that high-frequency
contributions have a smaller amplitude.
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Figure 2.5: Effect of the shift τ and the ACL β in the exponentially decaying ACF model
and respective effects on rough profiles. Adapted from Couto Carneiro (2019).

One can extend the exponential decaying ACF model for surfaces, where two directions,
x and y , must be considered. To satisfy this condition, the autocorrelation lengths in both
directions are introduced (βx and βy ), which leads to the ACF model

R(τx ,τy ) = S2
q exp

(
−

√(
τx

βx

)2

+
(
τy

βy

)2
)

. (2.18)

In this fashion, the model allows the consideration of directional properties, that can
be used to represent the anisotropic behaviour of the surfaces. For different values of
ACL, one can obtain surfaces with notorious anisotropic properties. For instance, if βx

is smaller than βy , it means that along the y direction one sees a smoother behaviour
when compared with the orthogonal direction. For the particular case when βx =βy , the
surface is isotropic.

This model has been discussed in the work of Nayak (1971), stating that the exponential
model for the ACF does not allow the existence of slopes and curvatures, even though
experimental results were obtained by Whitehouse, Archard, et al. (1970)—it should be,
at least, fourth-order smooth at the origin. He justifies that based on the use of finite
sampling interval, as it works as a filter for small-wavelength features, which change the
ACF behaviour at the origin. Therefore, in the concluding remarks from Nayak’s works,
he states that the exponential ACF decaying may actually be verified, but not starting in
the origin.

2.3.2 ACF limitations
The ACF is a big step towards the accurate description of topographies and all the respec-
tive random features. As remarked in previous sections, it is capable of giving information
about the amplitudes and also the distribution of peaks and summits. However, some
works point out limitations to this method. For example, Zhang et al. (2014) and Panda
et al. (2016) verified experimentally that the ACL value varies with the sample size and
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frequency. Thomas (1998) also stated that ACF depends on the cut-off length. Ultimately
this leads to the conclusion that the ACF still fails in the full description of rough surfaces,
as it presents some scale-dependency, as similarly observed for the RMS parameters.

Remark 2.1 on the definition of autocorrelation function.
The autocorrelation function definition adopted in the current work is the one presented
in Equation (2.15). Within the bibliography dedicated to this topic, one may find differ-
ences in notation and designation. For example, in Thomas (1998) and Mainsah et al.
(2001) an equivalent definition to the presented in the current work is termed "auto-
covariance function", while the designation "autocorrelation function" stands for the
autocovariance normalized with the RMS height.

2.4 Power spectral density

In the endeavour to find a scale-independent way of describing rough surfaces, one finally
arrives at the Power Spectral Density (PSD)—arguably the most important characteriza-
tion method for rough surfaces. This function has its origins in signal processing theory,
which justifies its name. It measures the frequency content of a random signal, relat-
ing the frequency with the signal power (Panda et al., 2016). The PSD can be defined in
multiple ways, yet within the context of this work, and following the description already
advanced, the definition of PSD is presented via the ACF—the reader is referred to Bendat
and Piersol (2010) for a more detailed approach. The notation adopted for the PSD of a
surface is Φ and, in a same fashion, Φθ for a profile. From the Wiener-Khinchin theorem,
one defines the PSD as the Fourier transform of the ACF as

Φθ(k) =F {R(τ)} =
∫ +∞

−∞
R(τ)e−ikτ dτ , (2.19a)

Φ(kx ,ky ) =F
{
R(τx ,τy )

}=
Ï +∞

−∞
R(τx ,τy )e−i(kxτx+kyτy ) dτx dτy . (2.19b)

where F {•} denotes the Fourier transform, and i =
p
−1 stands for the imaginary number.

One can rewrite the Equations 2.19 in terms of ACF, making use of the inverse Fourier
transform, represented by the operator F−1 {•},

R(τ) =F−1 {Φθ(k)} = 1

2π

∫ +∞

−∞
Φθ(k)e ikτdk , (2.20a)

R(τx ,τy ) =F−1 {
Φ(kx ,ky )

}= 1

4π2

Ï +∞

−∞
Φ(kx ,ky )e i(kxτx+kyτy ) dkx dky . (2.20b)

A more in-depth understanding of the Equations (2.19) and (2.20), requires a few com-
ments on the notation and properties of such relations. For a one-dimensional case, the
Fourier transform can be interpreted as the superposition of sinusoidal waves, character-
ized by a frequency/wave-number k, amplitude and phase. The same holds for the two-
dimensional case, where two-dimensional waves are summed. In this scenario, each wave
has a particular combination of amplitude, phase, frequency and propagation direction—
in contrast with the one-dimensional case. The frequency and propagation direction are
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given by a wave vector k = (kx ,ky ), where kx and ky are the frequencies directions x
and y , respectively. The PSD must verify the so-called conjugate symmetry property, that
writes

Φθ(k) =Φθ(−k)∗ , (2.21a)

Φ(k) =Φ(−k)∗ . (2.21b)

This condition can be understood by observing that Equation 2.20a represents the re-
covery of the real-valued ACF from the PSD. Since the transformation process involves
the integration of complex-valued contributions of e ikτ, it is necessary to include nega-
tive frequencies with equal amplitude, but with antisymmetric phases. Finally, it is worth
to establish the relation between the surface and profile PSDs, as advanced in Equa-
tions (2.19). The relation has been derived in the work of Longuet-Higgins and Deacon
(1957b), wiriting

Φθ(k) =
∫ +∞

−∞
Φ(kx ,ky ) dl , (2.22)

with l =
√

k2
x +k2

y −k2. This relation states the fact that two-dimensional waves have a

one-dimensional projection along the profile defined by θ. Their projection contribute
to the profile PSD (Φθ), except if the θ is aligned with the direction of the wave vector k .

Remark 2.2 on the definition of Fourier transform.
In the current work, the definition for the one-dimensional Fourier transform adopted is

F (k) =F
{

f (x)
}=

∫ ∞

−∞
f (x)e−ikx dx ,

and, accordingly, the inverse Fourier transform definition comes

f (x) =F−1 {F (k)} = 1

2π

∫ ∞

−∞
F (k)e ikx dk .

Consequently, all the results evolving Fourier transforms implie these relations, and one
shall pay attention when comparing equations with other bibliographic sources.

2.4.1 Relation with height spectrum
The relation between the topography eight and its PSD plays a pivotal role in the de-
scription of rough surfaces. The autocorrelation theorem for Fourier Transforms states
that

Φ(k) = lim
Lx→∞
Ly→∞

∣∣F{
z(x, y)

}∣∣2

Lx Ly
, (2.23)

and, for the profile case,

Φθ(k) = lim
L→∞

|F {z(x)}|2
L

. (2.24)

If an inverse Fourier Transform is directly applied in the surface height z(x, y), one can
write

z(x, y) = 1

4π2

Ï +∞

−∞
Z (kx ,ky )e i(kx x+ky y) dkx dky . (2.25)
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where Z (kx ,ky ), has to be determined. From the Equation (2.23), results

|Z (kx ,ky )| =
√
Φ(kx ,ky )Lx Ly , (2.26a)

∠Z =φ(kx ,ky ) , (2.26b)

where, the Equation (2.26b) represents a random phase of a specific wave vector. With
this, an expression for the surface height z(x, y) as a function of the PSD emerges as 5

z(x, y) = 1

4π2

Ï +∞

−∞

√
Φ(kx ,ky )Lx Ly e i(kx x+ky y+φ(kx ,ky )) dkx dky . (2.27)

In a similar fashion, for a rough profile, it writes

z(x) = 1

2π

∫ +∞

−∞

√
Φθ(k)L e i(kx+φ(k)) dk . (2.28)

The previous equations establish a fundamental relation between the PSD of a rough
surface and the Fourier transform of its heights. When the inverse Fourier transform was
applied, it was possible to write z(x, y) as a function of PSD. It is worth mentioning that
the PSD gives information on the frequency content, discriminating the contribution of
each frequency by its amplitude. The concept of the PSD and their relation with a rough
profile is explored in the Figure 2.6. In this figure, the aforementioned symmetry of the
PSD, relative to the origin, highlights the conjugate symmetry property. One verifies that
the spectra in of Figure 2.6a and Figure 2.6 are represented by impulse functions δ(k),
since it results from finite frequency contributions. In Figure 2.6e a continuum spectrum
is presented together with a profile containing a continuous range of frequency content.

2.4.2 Spectral moments
The computation of the RMS parameters from the PSD holds another important step into
the construction of a robust framework for rough surface analysis. It was previously seen
that the RMS height can be computed from the ACF in the Equations (2.16). One can
apply the same procedure to the PSD, and from the Equations (2.20), it comes

R(0) = (zrms,x )2 = 1

2π

∫ +∞

−∞
Φθ(k) dk , (2.29a)

R(0,0) = (zrms,x y )2 = 1

4π2

∫ +∞

−∞

∫ +∞

−∞
Φ(kx ,ky ) dkx dky . (2.29b)

Similar relations can be obtained for the RMS slope and curvature by deriving the ACF in
order to τ, two and four times, respectively,

d2R(τ)

dτ2

∣∣∣∣∣
τ=0

=−(
z ′

rms,x

)2 =− 1

2π

∫ +∞

−∞
k2Φθ(k) dk ; (2.30)

d4R(τ)

dτ4

∣∣∣∣∣
τ=0

= (
z ′′

rms,x

)2 = 1

2π

∫ +∞

−∞
k4Φθ(k)dk . (2.31)

5The limit of the sample length to infity (Lx →∞ and Ly →∞) was dropped for the sake of clarity of the
formulation presented, yet without compromising the general meaning of the expression.
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Figure 2.6: Interpretation of the PSD and associate rough topography for increasing fre-
quency content. Adapted from Couto Carneiro (2019).

The aforementioned analysis motivates the definition of the spectral moments defined
by

mθp = 1

2π

∫ +∞

−∞
kpΦθ(k) dk ; (2.32)

mpq = 1

4π2

Ï +∞

−∞
kp

x kq
yΦ(kx ,ky ) dkx dky , (2.33)

for profiles and surfaces, respectively, with p and q being the order of the spectral mo-
ments. The notation used for mθ follows the same sense of the PSD for a profile (Φθ).
With this definition at hand, one can write the expressions that relate the spectral mo-
ments with the RMS parameters. A comparison between the Equation (2.32) and the
Equations (2.29a), (2.30) and (2.31) show that with a proper choice of the moment order
p, one can obtain an equivalence relation with the RMS height, slope and curvature of a
rough profile as follows

zrms,x =p
mθ0 , (2.34a)

z ′
rms,x =p

mθ2 , (2.34b)

z ′′
rms,x =p

mθ4 . (2.34c)
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Proceeding similarly, yet with a more time-consuming deduction, a similar set of equa-
tions is obtained for the surface case 6

zrms,x y =
p

m00 , (2.35a)

z ′
rms,x y =

p
m20 +m02 , (2.35b)

z ′′
rms,x y =

√
m40 +2m22 +m04

4
. (2.35c)

The particular case of isotropic roughness allows the establishment of relations be-
tween the spectral moments for profiles and surfaces, since, the direction does not in-
terfere anymore. Dropping the θ from the profiles moments, it is possible to prove that
(Nayak, 1971)

m00 = m0 ; (2.36a)

m20 = m02 = m2 ; (2.36b)

m11 = m13 = m31 = 0 ; (2.36c)

3m22 = m40 = m04 = m4 . (2.36d)

The spectral moments lead to the definition of arguably on of the most important
parameters for rough surface analysis, the so-called Nayak’s parameter α, defined as

α= m0m4

m2
2

. (2.37)

This parameter, stated after the acknowledged work of Nayak (1971), plays a paramount
role in rough contact mechanics and it measures the breadth of the surface spectrum.

2.5 Height distribution

Even though the PSD provides a comprehensive description of the spatial distribution
of roughness, by means of spectral decomposition, it holds no information whatsoever
about the statistical distribution of the surface heights. This statement can be understood
from Equations (2.25) and (2.26): the PSD is only associated with the amplitude of the
harmonics, but the phases dictate the actual distribution of heights. Therefore, to achieve
a complete characterisation of the topography, the PSD must be complemented with the
probability density of surface heights. In this analysis, one changes the attention from
the height of a surface z(x, y) (or a profile z(x)) to the heigh Probability Density Function
(PDF), represented by fZ (z). This quantity is defined as the probability of having height
values within an infinitesimal interval around a certain point z, viz.

fZ (z)dz = Pr(Z ∈ [z, z +dz]) . (2.38)

The height Cumulative Distribution Function (CDF), represented by FZ (z), indicates the
probability of having a value equal or less than a value z,

FZ (z) = Pr(Z ∈ [−∞, z]) =
∫ z

−∞
fZ (t ) dt . (2.39)

6A complete deduction of these relations is presented in the work of Couto Carneiro (2019).
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2.5.1 PDF moments
It is common practice to characterise the PDF with its central moments, in particular, the
moments of first, second, third and fourth orders. 7 The parameters that derive from the
central moments provide a simple characterization of the shape of the PDF. The central
moment of order i can be expressed as

µi =
∫ +∞

−∞
fZ (z)

(
z −µz

)i dz, for i = 2, ...,∞ , (2.40)

where µz is the value and it is the first-order non-central moment, calculated as

µz =
∫ +∞

−∞
fZ (z)z dz . (2.41)

The first order central moment is not included in the definition Equation (2.40). In turn,
the second order central moment µ2 gives information on the variations of the distribu-
tion relative to its mean value µz . Its value is equal to the variance of the distribution and
writes as

µ2 =
∫ +∞

−∞
fZ (z)

(
z −µz

)2 dz =σ2
z , (2.42)

where σz is the standard deviation of the heights.8 In this sequence, the description if one
normalizes the third central moment with the cube of the standard deviation σ3

z , a conve-
nient parameter, termed skewness, arises, represented by the symbol γ1 for a continuous
variable, as reads

γ1 =
µ3

σ3
z
= 1

σ3
z

∫ +∞

−∞
fZ (z)

(
z −µz

)3 dz . (2.43)

Since the skewness constitutes a moment of odd order, it gives a sensitive measure of how
the height distribution varies around the mean axis, i.e., it evaluates the symmetry of the
PDF. For instance, for a (symmetric) Gaussian distribution it comes γ1 = 0. The same idea
may be applied to the fourth central moment, normalizing it is by the standard deviation
to the fourth power, resulting in the kurtosis of the height distribution, represented by β2

and writes

β2 =
µ4

σ4
z
= 1

σ4
z

∫ +∞

−∞
fZ (z)

(
z −µz

)4 dz . (2.44)

This parameter measures the overall presence of the outliers in the PDF. For a Gaussian
distribution it verifies β2 = 3. It is also common to evaluate the deviation of the kurtosis of
a height distribution to the kurtosis of a normal distribution, termed the excess of kurtosis,
and writes

γ2 =β2 −3 . (2.45)

If γ2 has a positive value one calls the height distribution leptokurtic, otherwise the dis-
tribution is coined platykurtic.

7Central moments are defined as the moments of PDF about the mean of the height distribution.
8The symbol used for the standard deviation of the height distribution σz is the same used in Equa-

tion (2.16) for the standard deviation of the sample heights. Even though they are not exactly the same, if an
ergodic case is considered, it constitutes a good approximation.
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Figure 2.7: Effect of skewness and kurtosis on the shape of PDF. Adapted from Couto
Carneiro (2019).

Both kurtosis and skewness admit discrete versions, for computation from artificially
generated or measured profiles. The nomenclature adopted follows the one already intro-
duced in the Section 2.2: one denominates the profile and surface skewness respectively
Rsk and Ssk , and the kurtosis Rku and Sku .

The effect of these parameters on rough surface features can be assessed by looking
at their geometrical interpretation. Skewness, as it is an odd power of the distance to
the mean value, is sensible to the presence of summits and valleys, providing a biased
measure of theirs presence and magnitude. Positive skewness indicates a predominance
of summits over the valleys in the surface, and the converse applies for negative skew-
ness. In analogy, as kurtosis is the fourth power of the heights, it holds substantially more
information about extreme values that are larger than the average heights of the surface—
independently of being summits or valleys. The effects of skewness and kurtosis on the
PDF are presented on Figure 2.7. Skewness distorts the PDF of a surface to left or right,
depending on the sign. For γ1 = 0, the distribution is symmetric. In turn, the effect of the
kurtosis in the PDF is more evident in the tails. For larger values of kurtosis, longer and
higher tails are expected. To conclude, in Figure 2.8 four profiles, with different combina-
tions of skewness and kurtosis are presented, in order to illustrate the previously exposed
concepts.

2.5.2 Gaussian and non-Gaussian surfaces
The shape of the height distribution holds an important place in the rough surface charac-
terization, as previously shown in Section 2.1.1. Historically, normal height distributions
have frequently been favoured in research, due to the mathematical convenience the
Gaussian distribution entails (Thomas, 1998). J. Williamson et al. (1969) claimed that sur-
faces that result from several random processes may exhibit a Gaussian distribution, as
a result of the Central Limit Theorem. In fact, the analysis of Gaussian and isotropic sur-
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(a) γ1 = 0 and β2 = 3 (b) γ1 = 0 and β2 = 6

(c) γ1 =−1 and β2 = 4 (d) γ1 = 1 and β2 = 4

Figure 2.8: Effect of skewness and kurtosis on the topography of a rough profile. Adapted
from Couto Carneiro (2019).

faces eases the characterization of roughness and provided a simple tool for investigation
that, even though it may not be the most accurate in several scenarios, provides results
that are in agreement with experimentation (Sayles and Thomas, 1979). One of the major
problems when modelling surfaces as normally distributed is the loss of validity of this
height distribution at the tails, i.e., the extreme values. This phenomenon may have a
considerable impact on rough contact models as the surfaces summits are the first to
contact, which may lead to dubious results (Bhushan, 1999; Thomas, 1998).

A significant number of engineering surfaces exhibit a non-Gaussian behaviour, and
many machining surfaces resulting from different processes support this observation
(K. Stout, 1980; Whitehouse, 1994). For example, grinding processes typically originate
non-Gaussian height distributions, since the surface summits are removed leaving the
surface with a higher prominence of valleys, i.e. with a negative skewness value. The
characterization of surfaces with a non-Gaussian behaviour is commonly accomplished
with skewness and kurtosis, as they provide a satisfactory approach to fully describe the
PDF shape (Spedding et al., 1980). Altogether, they constitute a simple tool for directly
comparing height distribution with the Gaussian case, and are used not only in rough
measurement but on contact models as well (Tomota et al., 2019). Furthermore, some
works have suggested that these two parameters affect wear and friction as well (Wang
et al., 2006; Sedlaček et al., 2009; Kim et al., 2006a). Typical values of the skewness go from
−2 up to 2, and the kurtosis values commonly range between 2 and 10. Nonetheless, it
should be remarked that values of skewness of −6 and kurtosis high as −100 have already
been obtained by experimentation (Minet et al., 2010).

2.6 Self-affine rough surfaces and profiles

Surfaces and profiles are composed of a superposition of many geometrical features at
different scales. Their characterization is often strongly dependent on the scale, which
makes models such as the ACF exponential model (Section 2.3.2) limited when one wants
to achieve an accurate framework for surface description. One of the most accepted and
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well-established roughness models in the literature that enables a seamless treatment of
the concept of length-scale relies on the PSD characterisation. Sayles and Thomas (1978)
observed that, for several and distinct types of surfaces, the PSD shows a direct relation
with the measurement wavelength, in the sense that when the measurement wavelength
changes, the PSD remains constant relative to the previous coarse measurement—is only
extended. Experimentation allowed to postulate a power law for the power spectrum of a
rough profile that writes as

Φθ(k) = Bk−c , (2.46)

where B is named the surface topothesy, that despise from not having a properly defined
physical meaning or interpretation has a unique role on the statistical definition of the
features of a rough surface, since it is not dependent on the sampling length. The expo-
nent c is introduced to give a more general formulation to the Equation (2.46). It should
be remarked that in the original works of Sayles and Thomas (1978) a power law with
c = 2 has been observed.

2.6.1 Fractal theory concepts
The experimental validation of PSD of rough profiles as power-law has lead to the pos-
tulate that profiles are self-affine topographies. This type of curves follow the so-called
fractal theory originated from the paramount works of Benoît Mandelbrot, in (Mandel-
brot, 1967) and (Mandelbrot, 1982), that provided a way to deal and describe geometries
in which the classic Euclidean geometry framework. Fractals curves are distinguished
for being continuous and non-differentiable and for having an infinite perimeter (or sur-
face area), yet a finite and circumscribed area (or volume) (Mandelbrot, 1982; Thomas,
1998). They also exhibit a self-similar or self-affine behaviour, which can be described as
the property to look identical at different magnifications. For instance, it can be seen as
the curves result from the superposition of the same pattern but at different scales. This
curious behaviour is commonly found in a wide variety of examples, such as coastlines,
tectonic faults, ocean’s surfaces and in several engineering surfaces of interest (Yastrebov,
Anciaux, et al., 2015; Thomas, 1998).

One must distinguish the aforementioned self-similar and self-affine behaviours. To
this end, Figure 2.9 shows an example of a self-similar fractal, that is characterized by a
constant scaling in all magnifications. Therefore, for progressively higher magnifications
the fractal shows exactly equal shapes (cf. Figure 2.9). On the other hand, self-affine frac-
tals are a case of distorted self-similarity, where the scaling verified is not the same in all
directions. In Figure 2.10, a self-affine rough profile with increasingly large magnifications
is illustrated. First, it should be pinpointed that the fractal behaviour, in this case, must
not be understood in a pure geometrical sense, but rather in a statistical sense. Second,
the self-affine behaviour is shown as the observations at distinct levels of magnification
look scaled in the vertical directions, relative to each other. This is the fundamental con-
cept that fractal theory adds to the rough surface analysis. The concept of roughness
within roughness preceded the establishment of fractal theory, as it was first introduced
in the early works by Archard and Allibone (1957).

The fractal theory establishes the concept of fractal dimension, which provides a mea-
sure of how complex and detailed the fractal is at a specific scale. It differs from the
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Figure 2.9: Example of a self-similar fractal curve—the Koch snowflake. Adapted from
Couto Carneiro (2019).

Figure 2.10: Example of self-affine rough profile. The fractal behaviour is seen at different
levels of magnification. Adapted from Couto Carneiro (2019).

topological dimension as it admits different values for the same geometric entity. For in-
stance, while all the examples of Figure 2.9 have the same topological dimension, the
same does not apply to the fractal dimension. One represents the fractal dimension of
a self-affine profile as Dp ∈ [1,2]. In turn, a self-affine surface has a fractal dimension,
represented by Ds ∈ [2,3]. Not surprisingly, both dimensions are related for the case of
isotropic roughness by

Dp = Ds −1 . (2.47)

The fractal dimension leads to the definition one of the most commonly used parameters
within the research of rough surfaces and profiles called the Hurst roughness exponent,
or simply Hurst exponent, denoted by H . It is a different form to express the fractal di-
mension, and it is defined as

H = 2−Dp for profiles ; (2.48a)

H = 3−Ds for surfaces . (2.48b)

The physical meaning of the fractal dimension and the Hurst exponent becomes clearer
by inspecting the geometrical features of rough profiles and surfaces, for distinct values
of H . In Figure 2.11, both profiles and surfaces are illustrated for two values of the Hurst
exponent. For H = 0.3, both surface and profile, have a more space-filling geometry, which
is obtained by the contribution of higher frequencies to the profile. The profile with the
larger value the Hurst exponent (H = 0.8) has a smaller contribution of higher frequencies
to the spectrum and so a smoother shape is obtained. Both topographies have exactly the
same frequencies. However, the amplitude of the high frequencies for the lowest value of
H is amplified, leading to a more space-filling topography.
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(a) Profile: H = 0.3

(d) Surface: H = 0.8

(b) Surface: H = 0.3

(c) Profile: H = 0.8

Figure 2.11: Hurst effect on rough profiles and surfaces. Adapted from Couto Carneiro
(2019).

2.6.2 PSD of fractal surfaces and profiles
The fractal properties introduced in the previous section provide a valuable tool for assess-
ing the descriptions of self-affine isotropic rough surfaces. By making use of the fractal
dimensions and/or the Hurst exponent, one can write a variety of expressions for the
PSD, following a power-law, as stated earlier. For profiles and surfaces, respectively, the
PSD is commonly expressed as (Wu, 2000a; Russ, 1994; Yastrebov, Anciaux, et al., 2015):

Φθ(k) = G2Dp−2

k5−2Dp
= G2(1−H)

k1+2H
, (2.49a)

Φ(kx ,ky ) = g 2Dp−2

(
k2

x +k2
y
)3−Dp

= g 2Ds−4

(
k2

x +k2
y
)4−Ds

= g 2(1−H)

‖k‖2(H+1)
. (2.49b)

The constants G and g are the profile and surface, fractal scale constants, respectively,
which are a measure of the absolute scale of roughness.

Equations (2.49) imply that the fractal behaviour of surfaces extends all over the fre-
quency domain. However, real engineering surfaces cannot be fractal at all scales. For
instance, for very small scales, the fractal behaviour tends to cease, as the atomic scale
comes into play. Identically, rough surfaces are only fractal up to some large scale, typ-
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ically in the order of magnitude of the surface length. In practice, rough surfaces fre-
quently exhibit a power spectrum with two distinctive zones: one where the fractal be-
haviour dominates and another where it ceases and the PSD shows an approximately
constant value, as shown on Figure 2.12. The fractal zone is encompassed between a
high-frequency cut-off ks and the roll-off frequency kr . The frequency kr marks the tran-
sition to the constant PSD, called the plateau, that extends until the low-frequency cut-off
kl . For frequencies higher than ks and smaller than kl the PSD is zero, meaning that no
contributions of frequencies outside the range [kl , ks] exist in the rough topography. This
type of behaviour has been experimentally observed and characterized (Persson et al.,
2004; Vallet et al., 2009). For example, it can be seen in machined surfaces, since the ma-
jority of the high frequencies of the surfaces are kept while the lower are removed by the
manufacturing process. The formulation, conventionally adapted for this type of surfaces
comes as

Φθ(k) =





C ′
0 , kl ≤ k < kr

C ′
0

(
kr

k

)1+2H

, kr ≤ k ≤ ks

0 , elsewhere .

(2.50)

Φ(kx ,ky ) =





C0 , kl ≤ ‖k‖ < kr

C0

(
kr

‖k‖

)2(H+1)

, kr ≤ ‖k‖ ≤ ks

0 , elsewhere ;

(2.51)

where C0 and C ′
0, are scale constants. These expressions highlight the dependency of the

previously introduced Hurst exponent H on the fractal scale. One sees that in a log-log
scale, the slope of the curve is dictated by H , and for larger values of H the decay is faster
(cf. Figure 2.12).

logΦ(k)

logkl logkr logks log‖k‖

H1

H2

H3

H1 < H2 < H3

Figure 2.12: Typical PSD shape of an isotropic rough surface. The fractal part, i.e., be-
tween kr and ks is represented for various value of the Hurst exponent H , that character-
ize the slope of the PSD. The higher the Hurst exponent the decay of the PSD is faster.
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Chapter 3

Numerical study on the
statistical geometry of rough surfaces

Virtually all engineering surfaces are random to some extent, thereby tools for properly
describing roughness are necessary for a comprehensive understanding of this ubiqui-
tous phenomenon. The random nature of rough surfaces has already been carefully ad-
dressed in Section 2.1.1, together with an overview of characterisation techniques, walk-
ing towards a scale-independent portrayal of roughness. Complementing the introduced
models, the statistical description of the geometry rough surfaces constitutes an impor-
tant part of the understanding of their physical behaviour and is widely used for studying
their contact mechanics (wear, friction and adhesion). As detailed in the previous chapter,
the surface height distribution provides general information on the shape of the surface
features. For example, by computing the skewness and kurtosis, the non-Gaussianity of
the surface can be determined, giving a general sense of the distribution and presence
of summits and valleys. The summits of the topography are one of the most important
features of roughness since contact will always start at these locations. Exemplarily, the
summit height distribution has been used in many contact models for rough surfaces,
as the summits constitute the first contact spots. Thus, more than inspecting the global
height distribution, more in-depth statistical information can be obtained by looking ex-
clusively at the distribution of summit heights and respective curvatures. These statistical
parameters play a key role in the contact mechanics, especially, in the real contact area.

While the statistical description of the geometry of Gaussian rough surfaces is already
well-established since the seminal work by Nayak (1971), non-Gaussian rough surfaces
may exhibit very different mechanical responses (Pérez-Ràfols and Almqvist, 2021). This
calls for a better understanding of non-Gaussian topographies, by means of a proper sta-
tistical characterization and comparison. The central goal of the present chapter is to
extend the statistical description by Nayak into the realm of non-Gaussian topographies,
to provide novel and useful insights for contact models of non-Gaussian topographies.
The statistical description will be centred on the distribution of summit heights and cur-
vatures, extracted from discrete random topographies with controlled properties. First,
the study will focus on the Gaussian topographies, for the sake of validation, and then
transition to the non-Gaussian scenario, where the Weibull distribution will be used for
parametrising the height distribution. The statistics of rough surfaces can be directly
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measured in real surfaces using a stylus or optical devices. Nonetheless, such practice
is very time-consuming and does not allow a flexible characterization. An alternative
employed in this work, that comes with several convenient advantages, is the numerical
generation of rough surfaces. With this approach, one can obtain specific topographies
with predefined statistics and spectral properties, which can then feed parametric stud-
ies through the adjustment of the required properties. Moreover, this procedure also a
faster collection of large amounts of data, when compared with real surface measure-
ments. Roughness generation strategies are widely known, and different approaches can
be found in the literature for both Gaussian and Non-Gaussian topographies. Within this
work, discrete random Gaussian topographies will be generated with the algorithm pro-
posed in (Wu, 2000b), while the recent method proposed in (Pérez-Ràfols and Almqvist,
2019) will be used for the non-Gaussian case.

3.1 Gaussian topography

Before diving into the study of non-Gaussian topographies, the particular and well-known
case of Gaussian surfaces is analysed and used as a validation for the succeeding statis-
tical study. The key aspects of the statistical geometry of Gaussian topographies are first
outlined, together with the numerical technique employed for the generation of the ran-
dom topographies. Last, a numerical framework for studying the geometry statistics is
built and validated against the Gaussian benchmark.

3.1.1 Nayak’s theory
Following the works of Longuet-Higgins and Deacon (1957a,b) on the description of the
ocean moving surfaces, the paramount work of Nayak (1971) assumed a surface to be
stationary, random and with a Gaussian distribution of heights. With these considera-
tions, and basing the analysis around the PSD and the spectral moments, the geometry
statistics of both profiles and surfaces are obtained, depending uniquely on the previ-
ously introduced Nayak’s parameter α (Equation (2.37)). Within the context of this work,
only the results referring to surfaces are presented. For a complete description of Nayak’s
theory, the interested reader is referred to (Nayak, 1971) and (Rigazzi, 2014).

Typically, non-dimensional variables are used in the derivation of the statistics of rough
surfaces. One writes the normalized height z∗ as the ratio between the height and the
square root of the zeroth-order spectral moment m0. From the Equations (2.16a), (2.35a)
and (2.36a) it comes

z∗ = zp
m0

= z

σz
, (3.1)

where it can be interpreted as the normalisation of the heights by the respective standard
deviation. Bearing that in mind, the probability density of summits heights psum (z∗) is
defined as

psum
(
z∗)= Psum (z∗)

Dsum
, (3.2)

where Dsum is the density of summits per unit of area and Psum (z∗) is the probability dis-
tribution of summits per unit of area, which must be interpreted as a probability measure
of observing a summit with the given height, among all possible points—summits and
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non-summits. The density of summits is obtained by integrating the probability distribu-
tion of summits Psum (z∗) all over the domain, i.e.,

Dsum =
∫ ∞

−∞
Psum

(
z∗)

dz∗ . (3.3)

Considering the static and isotropic conditions of a Gaussian rough surface, Nayak (1971)
arrives to an analytical expression of psum (z∗) as

psum
(
z∗)=

p
3

2π
(Π1 +Π2 +Π3) , (3.4)

where Π1, Π2 and Π3 are auxiliary variables, introduced for the sake of clarity, defined as

Π1 = exp
(
−C1z∗2

)[
3(2α−3)

α2

] 1
2

z∗ , (3.5a)

Π2 =
3
p

2π

2α
exp

(
−1

2
z∗2

)[
1−erf

(
β
)]

(z∗2 −1) , (3.5b)

Π3 =
p

2π

[
α

3(α−1)

] 1
2

exp

[
αz∗2

2(α−1)

][
1+erf

(
γ
)]

, (3.5c)

and erf(•) denotes the error function

erf(x) = 2p
2π

∫ x

0
e−a2

da . (3.6)

A few auxiliary parameters were introduced in the analysis, alongside the already men-
tioned Nayak’s parameter α. All the parameters are dependent on α and write 1

C1 =
α

2α−3
, (3.7a)

C2 =C1

(
12

α

) 1
2

, (3.7b)

β=
[

3

2(2α−3)

] 1
2

z∗ , (3.7c)

γ=
[

α

2(α−1)(2α−3)

] 1
2

z∗ . (3.7d)

The probability density of summits height psum (z∗) is presented on Figure 3.1 for dif-
ferent values of α. Recall, that α is associated with the breadth of the PSD and for larger
values of it the spectrum gets broader, suggesting the presence of higher frequencies with
large amplitudes. It should be remarked that the results are limited by a lower value of
α, as it has been shown by Longuet-Higgins and Deacon (1957b) that α> 1.5 for random

1Even though the parameter C2 is not used is in the psum
(
z∗

)
, it will be introduced lately within the

definition of joint probability density for summits heights and mean curvatures, p ′
sum

(
z∗, t1

)
. It may be

advanced that the symbol (•)′ is reserved for quantities associated with p ′
sum

(
z∗, t1

)
.
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Figure 3.1: Probability density of summits heights psum (z∗) for different values of α.

and isotropic surfaces. From these results, one can observe that for a Gaussian distribu-
tion of heights, the summits height distribution is non-Gaussian. This asymmetry was
studied in the work by Yu and Polycarpou (2004b), where equations to quantify the skew-
ness and the kurtosis of this distribution were derived and compared against numerically
generated Gaussian surfaces. In fact, it can be seen that as the value of α decreases the
probability of having higher summits increases, and psum (z∗) progressively deviates from
the Gaussian. Otherwise, for larger values of α, the distribution becomes more similar
to a Gaussian case and, for a limit value, when α→ ∞, it becomes perfectly Gaussian.
This is a consequence of an infinitely broad spectrum, in which every point is a sum-
mit, ultimately leading to the case where the psum (z∗) matches the heigh distribution of
the rough surface. From psum (z∗), the cumulative density of summits qsum (z∗) can be
obtained, by integration, as

qsum
(
z∗)=

∫ z∗

−∞
psum

(
z∗)

dz∗ , (3.8)

which can be interpreted as the probability of having a value less or equal than z∗. This
quantity can be easily computed from Equation (3.4) and it is presented in Figure 3.2 for
different values of α. The results cement the conclusions previously seen for psum (z∗).
For the same normalized height z∗, one sees that the higher the α value, the higher the
cumulative density of summits becomes.

The theory by Nayak (1971) also encompasses the curvature values of the summits,
condensed in a proper set of analytical expressions. The mean curvature of a point is
introduced as the mean between the two principal curvatures κ1 and κ2. As has been
said for the case of the discrete version of the RMS curvature (Section 2.2.1), the sum of
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Figure 3.2: Cumulative density of summits heights psum (z∗) for different values of α.

curvatures in any two orthogonal directions equals the sum of the principal directions,
thus one can simply evaluate the curvature along the Cartesian directions, giving

κm = 1

2
(κ1 +κ2) =−1

2

(
∂2z

∂x2 + ∂2z

∂y2

)
, (3.9)

For the sake of non-dimensionalization, Nayak (1971) introduced the parameter t1, treated
as the equivalent mean curvature that is given by 2

t1 =
1

2

(
3

m4

) 1
2
(
∂2z

∂x2 + ∂2z

∂y2

)
=−

(
3

m4

) 1
2

κm , (3.10)

and that has a negative domain, i.e., t1 < 0, which means that higher mean curvatures
κm correspond to smaller equivalent mean curvatures t1. The result of Nayak’s approach
holds a form of a joint probability density function for summits with normalized height
z∗ and equivalent mean curvature t1 per unit area, denoted by psum (z∗) and given by

p ′
sum

(
z∗, t1

)=Π′
1Π

′
2Π

′
3 , (3.11)

where Π′
1, Π′

2 and Π′
3 are, once again, auxiliary variables that ease the algebraic treatment,

2In Nayak’s work the parameter t1 is introduced alongside other two parameters t2 and t3, that are used
in the analytical procedure but not for representation of a physical quantity. Within the context of this work,
there is no need of introducing them. The same nomenclature for t1 is adopted for convenience.



38 3.1. Gaussian topography

and come as

Π′
1 =

p
3C1

2π
exp

(
−C1z∗2

)
, (3.12a)

Π′
2 = t 2

1 −2+2exp

(
−1

2
t 2

1

)
, (3.12b)

Π′
3 = exp

[
−1

2

(
C1αt 2

1 +C2αt1z∗)]
. (3.12c)

This result is presented in Figure 3.3 for a value of α= 5, and show a clear non-Gaussian
behaviour for both normalized height z∗ and equivalent mean curvature t1. A convenient
quantity for the analysis of p ′

sum (z∗, t1), also introduced by Nayak (1971), is the expected
value of the mean curvature for summits of height z∗, represented by κ̄m , and written as

κ̄m
(
z∗)=

(m4

3

) 1
2
∫ 0

−∞
t1p ′

sum

(
z∗, t1

)
dt1

∫ 0

−∞
p ′

sum

(
z∗, t1

)
dt1

. (3.13)

Nayak (1971) obtains a complete analytical solution for the Equation (3.13), yet it is ex-
cluded from the current text due to his intricate analytical definition—and also to the
fact that its numerical computation is straightforward. This quantity can be interpreted
as the mean value of the mean curvatures for a given value of normalized height z∗.
The dimensionless expected mean curvature κ̄m/

p
m4 is presented in Figure 3.4 for dif-

ferent values of α. From this figure, one sees that, with increasing height, the summits
become sharper, i.e., possess higher mean curvature values. Also, the expected mean cur-
vatures are larger for smaller values of α, relative to the measure of the overall surface
curvature. For progressively higher values of α, the curvature progression with the height
tends to reduce until the point where it becomes a constant value, i.e., for α→ ∞. In
this particular case, considering that an infinite spectral content is observed, the higher
frequency corresponds to a wave with an infinitesimally short wavelength. For this har-
monic contribution, the mean curvature, calculated with the second-order derivatives (cf.
Equation (3.9)), would give an infinite curvature and so the expected mean curvature κ̄m

for any value of z∗. Additionally, one should note that the fourth-order spectral moment
can be obtained from the Nayak’s parameter through Equation (2.37), from where it is
postulated that for an infinite α, m4 is also most likely infinite. Thus, the constant value of
non-dimensional mean curvature κ̄m/

p
m4 is justified, being given by κ̄m/

p
m4 = 8/3

p
π,

in the sense that all summits look alike—infinitely sharp—independently of their height.
Another way to look at these results is attending to the fact that m4 provides a measure
of the global curvature behaviour of a rough surface (cf. Equation 2.35c). This means
that κ̄m/

p
m4 measures, for each value of normalized height, the deviation relative to

the average curvature of the surface, which explains why for α→∞ a constant value of
κ̄m/

p
m4 is verified: the deviation of the summit curvature relative to the surface global

curvature is identical at all heights. In lower limit of α = 1.5, it comes that the relation
between the average mean curvature and summit height is linear, κ̄m/

p
m4 =

p
2/3z∗, as

can be seen in Figure 3.4. Again, this establishes that the higher the summit, the larger
the mean curvature, on average.
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Figure 3.3: Joint probability distribution of normalized summits heights z∗ and equiva-
lent mean curvature t1 for a value of α= 5.
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3.1.2 Generation of Gaussian rough surfaces
For the numerical generation of Gaussian and non-Gaussian rough surfaces, the in-house
code named LINKS-RC (Module for Rough Contact Modelling) was used (Figure 3.5). This
code, written in Python, is developed by CM2S (Computational Multi-Scale Modelling of
Solids and Structures) at the Faculty of Engineering of University of Porto, and constitutes
a module of pre- and post-processing of LINKS, a Fortran finite element code for implicit
small and large strain analysis, that will be introduced later in section Section 4.4.5. The
framework for rough surface generation was initially developed in Couto Carneiro (2019).

Figure 3.5: LINKS-RC logo

The generation of random rough Gaussian topographies performed by LINKS-RC is
based on the algorithm proposed by Wu (2000b). This method uses discrete Fourier trans-
forms, in particular the Fast Fourier Transform (FFT) and the Inverse Fast Fourier Trans-
form (IFFT), to generate an artificial rough surface from a prescribed power spectrum. It
encompasses the generation of both profiles and surfaces with Gaussian height distribu-
tions, yet only the surface case will be covered. The flowchart of the algorithm for surface
generation is presented in Figure 3.6. It should be mentioned that even though Figure 3.6
also shows the algorithm for a prescribed ACF, only the generation from a given PSD is
relevant. The algorithm is based on the idea of a discrete random rough surface zm,n as
a superposition of waves with certain values of frequency, amplitude and phase, viz.

zm,n = 1

M N

M−1∑
p=0

N−1∑
q=0

√
M NΦ̂p,q e i(2π(qm/M+pn/N )+φp,q ),

{
m = 0,1, ..., M −1

n = 0,1, ..., N −1
. (3.14)

In Equation (3.14), M and N represent the number of sampled points in the directions
y and x, respectively, that are uniformly distributed along the sample length in each
direction. Equation (3.14) implies the use of Φ̂p,q , which is the discrete estimate of the
real power spectrum Φ(kx ,ky ) and φp,q is used for denote the random phases. If the real
prescribed PSD has a limit on the frequency domain, i.e. has a frequency above which
the spectrum is null (bandwidth limited), and considering that the Nyquist frequency is
higher than the limit of PSD, the discrete PSD writes

Φ̂p,q = 1

lsx lsy

Φ
(
kx = q

N
Ωsx , ky =

p

M
Ωsy

)
,

{
p =−M/2+1, ..., M/2

q = 0,1, ..., N /2
, (3.15)

where lsx and lsy are the sampling wavelengths in each direction (point spacing), and
Ωsx = 2π/lsx and Ωsy = 2π/lsy are respective sampling frequencies. The discrete power

spectrum Φ̂ verifies a periodic behaviour in both directions, and due to the conjugate
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symmetry property it shall hold

Φ̂p,q = Φ̂M−p,N−q ,

{
p = 0, ..., M −1

q = 0, ..., N /2
, (3.16)

meaning that only half of the frequency space needs to be defined as the input.

The next step is to obtain the random phases φp,q , which will give the random nature
to the rough surface, as the process from which the amplitudes were obtained was fully
deterministic. The random phases should be generated by a random number generator,
following a uniform distribution, and must obey the conjugate symmetry

φm,n =−φM−m,N−n ,

{
p = 0, ..., M −1

q = 0, ..., N /2
. (3.17)

The conjugate symmetry property and the periodicity of the discrete Fourier Transform
also lead to the following relations

φ0,0 =φ0,N /2 =φM/2,0 =φM/2,N /2 = 0 ; (3.18a)

φm,0 =−φM−m,0, m = 0, ..., M/2 ; (3.18b)

φ0,n =−φ0,N−n , n = 0, ..., N /2 . (3.18c)

Finally, after getting the amplitudes from the input PSD and having generated uniform
random phases φp,q , is possible to compute a discrete rough surface from Equation (3.14).
By making use of IFFT, one obtains

zm,n = IFFT

(√
M NΦ̂p,q e iφp,q

)
. (3.19)

It should be pointed out that the Gaussian distribution of heights of the artificial dis-
crete surface is obtained by the superposition of the height of each wave at every point.
Since, the height is an independent random variable, from the central limit theorem, one
should expect the Gaussian behaviour of the generated surface.

3.1.3 Summit detection and curvature evaluation
To perform the computation of the numerical statistics, some processing needs to be
made on the generated data, namely the detection of summits and the collection of their
height and curvature. When performing peak detection on profiles, the methodology is
pretty straightforward, since a three-point scheme can detect a peak with good preci-
sion, unless the distance between sampled points is too large. For surfaces, some works
propose a five-point stencil to perform the detection of summits (Whitehouse, Phillips,
et al., 1982, 1978). However, as stated by J. A. Greenwood and K. L. Johnson (1984), this
method may not always detect a summit. To overcome this pitfall, a nine-point stencil is
employed, as shown in Figure 3.7. If a point zi , j is larger than the 8 neighbouring points,
it is classified as a summit. In Figure 3.8 an example of the summit detection is shown,
giving a visual representation of the summit distribution on a Gaussian rough surface.
Shedding some light over the previous discussion on the summit height distribution, one
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Figure 3.6: Flowchart of the Gaussian random rough surface generation algorithm.
Adapted from Couto Carneiro (2019).
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Figure 3.7: Nine-point stencil method used in the current work for summit detection. If
a point zi , j is larger than the 8 neighbouring points, it it considered a summit.

sees that the majority of the summits has positive height (the mean height is zero), and
it is a consequence of the low-frequency content of the generated topography. For higher
frequency content surfaces it would be expected to have more summits at low levels of
height.

With respect to the curvature evaluation, the mean curvature κm is calculated using a
central finite difference scheme along each direction, viz.

∂2z

∂x2 = zm,n+1 −2zm,n + zm,n−1

∆x2 , (3.20a)

∂2z

∂y2 = zm+1,n −2zm,n + zm−1,n

∆y2 . (3.20b)

3.1.4 Numerical validation
As mentioned previously, the numerical study starts with the Gaussian case, as the statis-
tical results have been extensively studied in Nayak’s theory, introduced in Section 3.1.1.
This way, one can compare directly the statistics obtained with the analytical model from
Nayak (1971), allowing to infer on the global validity of the framework and to foresee
problems in the non-Gaussian study. The numerical generation of random topographies
was performed by prescribing the aforementioned fractal PSD, neglecting the non-fractal
plateau, that is, kl = kr —cf. Figure 2.12. Under these conditions, one rewrites the equa-
tion Equation (2.51) as

Φ(kx ,ky ) =





C0

(
kr

‖k‖

)2(H+1)

, kl ≤ ‖k‖ ≤ ks

0 , elsewhere .
(3.21)

At this point, the power spectrum of a rough surface is determined by the limit frequen-
cies, i.e., kl and ks , and the Hurst exponent—the scale factor is not considered here, since
the representations are inherently non-dimensional. For simplicity, the Hurst exponent
was fixed at a unique value, and by setting kl = 1, one can look at the ratio λl /λs as the
controllable input parameter. The properties of the studied cases are presented in Ta-
ble 3.1, where the Nayak’s parameter for each case is also shown. This value is calculated
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Figure 3.8: Detected summits, with the implemented routine, on a random Gaussian
surface, with H = 0.8 and λl /λs = 8.

numerically with Equation (2.37) using the discrete spectral moments, computed from
the discrete surfaces. Additionally, the topography size is also controlled by the parameter
L/λl , where L is the length of the topography with area L×L. In turn, the discretization
of the numerically generated surface is controlled by λs/∆x, where ∆x is the uniform
spacing between points. If very high values of these parameters are used, the surface
discretisation and representativeness is greatly improved, but the computational time of
the generation process is significantly increased. This fact naturally has to be taken into
account and convenient values should be considered. Following some works on the topic,
such as Yastrebov, Anciaux, et al. (2012) and Couto Carneiro et al. (2020), the parameters
L/λl = 8 and λs/∆x = 8 are a good compromise between computation time and accuracy,
and have been employed in the current study. 3 To cope with the randomness effects in-
herent to the topography generation, several realizations have to be generated to obtain
good representative results. For each case represented in Table 3.1, 1000 realizations were
analysed, the summits were identified and processed, and the results of all realizations
were assembled to evaluate the probability distributions.

Starting with the probability density of summit heights psum (z∗), the obtained results
are presented on Figure 3.9, for all the cases tested. In this figure, both numerical and

3Later on this work, in Section 4.4.1, the parameters required to, representatively, obtain a random rough
surface will be better explored, within the definition of RCE (Representative Contact Element).
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Table 3.1: Properties of the generated Gaussian surfaces studied for assessing the validity
of the framework, for numerical statistics computation.

λl /λs H α

8 0.8 5.34

16 0.8 11.89

32 0.8 29.11

64 0.8 75.88

128 0.8 206.45

analytical results are shown, in a form of a histogram and a continuous curve (similarly to
Figure 3.9), respectively. From the first graph, one sees that the numerical results match
very closely the analytical solution. To highlight the discrete results, a zoomed version is
presented, where one sees that the histogram recovers the theoretical results, in dashed
lines, with a high degree of correlation. The joint probability density function of the nor-
malized summit heights and the equivalent mean curvature p ′

sum (z∗, t1) was also recov-
ered, as shown in Figure 3.10. Both theoretical and numerical results are presented side
by side to ease visual inspection of the accuracy of the numerical results, which accurately
resembles the analytical predictions.

The results for the expected value of mean curvature for summits heights are shown
in Figure 3.11 for the different tested cases. The results evidence interesting aspects that
motivate further discussion. A good correlation between the numerical and the analytical
results is seen, yet the smoother results are restricted to the fractions of z∗ where the
probability density of summits height is higher. One sees that for z∗ <−0.5 the numerical
results of α = 5.34 become less smooth than the other curves. This is a result of the
small probability of psum (z∗) for this range, as can be seen in Figure 3.9, which ultimately
results in fewer curvature observations in this range. For smaller values of z∗, the same
is seen for increasingly values of α. To overcome this lack of representativeness more
realizations could be used to completely recover the results, however, it also implies more
computation time. Nevertheless, with the current number of realizations, the relative
tendency of the results is perfectly captured.

For z∗ > 1, a loss of smoothness due to small probability is also observed, addition-
ally the numerical results tend to have increasing values of the expected mean curvature
when compared with the theoretical counterpart. This difference is larger for the topogra-
phies with less spectral content. These deviations may have different justifications and
may be a result of a superposition of several errors that have been inspected. First, the
Nayak’s parameter of each topography, calculated from the discrete PSD, is an approxima-
tion of the real α value, with the numerical value overestimating the analytical solution.
This problem may be overcome by a finer discretization of the topographies, yet, once
more, a compromise needs to be established to compute the results in useful time. It
should be noted that this error alone is not sufficient to justify the distance between the
numerical and the theoretical curves, as verified by the authors during the investigation.
An alternative source of error in this computation may be associated with the error in
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Figure 3.9: Probability density of summit heights psum (z∗) recovered from the numerical
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Figure 3.10: Joint probability density function of the normalized summit heights and
the equivalent mean curvature p ′

sum (z∗, t1), recovered from the numerical generated re-
sults for the different test case. Both numerical (right) and theoretical (right) result are
presented side by side to ease the comparison process.
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Figure 3.11: Dimensionless expected mean curvature of summits heights κ̄m recovered
from the numerical generated results, for the different test cases.

the numerical evaluation of derivatives. To investigate the impact of space discretization
in the computation of the second-order derivatives, tests with a more discretized topog-
raphy were performed. However, the results did not provide meaningful information, as
the curves obtained were very similar. In fact, for finer discretization, the curvatures tend
to be higher, meaning that a coarse discretization would approximate the numerical re-
sults to the analytical curves. The influence of the generated topography’s size was also
assessed with no relevant conclusions. One hypothesis also advanced was the height dis-
tribution of the generated topographies imposed tends to distort the expected Gaussian
distribution in the tails. However, the authors verified that the Gaussian heigh distribu-
tion is recovered with great accuracy in the generated topographies, even in the tails. The
lack of explanations for this problem led to the investigation on the effect of the number
of realizations. It was observed that for an increasing number of realizations, the curve
tends to get closer to the analytical results, however with a slow progression, which sug-
gests that a significantly large number of realizations would be needed to completely fit
the Gaussian result.

Following the conclusions from Nayak’s theory, one sees that for small spectral content
the theory predicts higher deviations between the summits expected mean curvature and
the surfaces effective mean curvature (cf. Figure 3.11). This suggests that the summits are
sharper than the global curvature of the topography. For higher spectral content, i.e. for
higher values of α, more summits arise at all height levels, including for lower values of z∗,
therefore contributing to a more similar value between the expected mean curvature and
the mean curvature of the topography. To better understand this concept, the Figure 3.12
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is introduced. In this figure two Gaussian topographies used in the current study, with
λl /λs of 8 and 64, are shown in Figures 3.12a and 3.12c, respectively. One can readily
see the difference in the spectral content of the surfaces, however, an easier method for
evaluating the features of a rough surface is by simply looking into a profile extracted from
the rough surface. This is seen in Figures 3.12b and 3.12, where the highlighted profile is
presented. This constitutes the concept of a trace of a rough surface. By inspecting the
profile with higher spectral content Figures 3.12d, it can be seen that summits are more
likely to happen at lower heights, unlike what is seen in Figures 3.12b, for a small value
of λl /λs .

(b) Profile: λl /λs = 8

(c) Surface: λl /λs = 64 (d) Profile: λl /λs = 64

(a) Surface: λl /λs = 8

Figure 3.12: Effect of the spectral content on the topography of a rough topography. For
each surface (Figures 3.12a and 3.12c the highlighted profile is represented, introduc-
ing the concept of the trace of a surface, which constitutes an easier way to assess the
topography characteristics.

3.2 Non-Gaussian topography

The statistical study discussed previously is extended to the realm of non-Gaussian to-
pographies in the following sections. The same outline will be adopted, with the excep-
tion that the summit identification will not be repeated here, as it remains valid from
Section 3.1.3. Instead, a more detailed presentation of the non-Gaussian modelling ap-
proach based on the Weibull distribution will be introduced. Then, the algorithm em-
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ployed for the generation of non-Gaussian topographies is outlined, followed by the nu-
merical study.

3.2.1 Weibull distribution
The non-Gaussian behaviour of rough surfaces is commonly characterized by means of
skewness and kurtosis. Both parameters provide a feasible tool and have been used in
many in various scientific works on the field (G. Yang et al., 2014; Manesh et al., 2010;
Kim et al., 2006b). However, one of the drawbacks of modelling surfaces with only these
two parameters is that the topography cannot be controlled by only one parameter and
therefore difficulties arise when modelling and parametrizing topography’s features. Addi-
tionally, a characterization based on skewness and kurtosis does not entail robust results
for building a solid framework such as the one existing for the Gaussian surfaces. For
Gaussian surfaces, the normal distribution can be used for modelling the height distribu-
tion of the topography, allowing to use of the well-established properties of such function
to produce several analytical results, ranging from topography statistics (Longuet-Higgins
and Deacon, 1957a,b; Nayak, 1971) to the micro-contact behaviour of rough surfaces (J. A.
Greenwood, J. B. P. Williamson, et al., 1966). Such approach, i.e., using a probability dis-
tribution to model the height distribution of non-Gaussian surfaces, has been an active
research topic in the field, and several works have tried to settle the problem.

A remarkable first work on modelling non-Gaussian rough surfaces with a probability
distribution function was made by Adler et al. (1981). In this work, a χ2 distribution func-
tion was used for modelling the non-Gaussianity of asperity heights. Two functions were
proposed in order to achieve both positive and negative skewness values. For positive
values of skewness a scaled version of the χ2 distribution, with two parameters, was pro-
posed, whereas for negative skewness surfaces an inverted version of the χ2 distribution,
with three parameters, was used. The mean number of maximum and minima values are
derived in this work, as well as the conditional density of the curvature at the maxima
and minima, for both profiles and surfaces.4

The Weibull distribution was introduced for modelling the height distribution by Mc-
Cool (1992) due to its flexibility for approximating several practical cases, from closer to
Gaussian up to more outlier-heavy cases, with significant values of skewness. The repro-
ductive property under the addition of the Weibull distribution was assessed and McCool
(1992) stated that, despite being non-reproductive, the sum of Weibull variables may be
approximate by another Weibull distribution with the same mean and variance of the
sum resultant distribution. This property is quite interesting, since it allows to approxi-
mate the reproducive property of the Gaussian surfaces with a non-Gaussian distribution,
thenceforth constituting a more robust approach for dealing with real engineering prob-
lems.

McCool (2000) also extended the work of J. A. Greenwood, J. B. P. Williamson, et al.
(1966) on rough contact modelling, by taking into account the asymmetry of the height
distribution measured by the skewness of the Weibull distribution. A later work of Yu
and Polycarpou (2001) used the Weibull distribution to model the distribution of heights

4For the surface case, the maxima expressions are not deducted nor presented, only the problem is
mentioned.
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which was introduced in the micro-contact elastoplastic model proposed by W. R. Chang
et al. (1987)—an extension of J. A. Greenwood, J. B. P. Williamson, et al. (1966)—to obtain
values of the contact load, the real area of contact and the number of contact asperities. A
more recent work from the same authors extended the previous results to encompass the
contact between two rough surfaces with Gaussian or non-Gaussian height distributions,
with the latter case being modelled by a Weibull distribution function (Yu and Polycarpou,
2004a). L. Chang and Jeng (2013) also used the Weibull distribution to study the impact
of negative skewness surfaces for both frictional and frictionless contacts. More recently
Pérez-Ràfols and Almqvist (2019) validated their non-Gaussian topography generator with
a Weibull distribution of heights. Taking advantage of the novel generation method, the
same authors have studied the stiffness of rough surfaces with non-Gaussian height dis-
tributions using a Weibull distribution, as well. The typical linear relation obtained in the
contact of Gaussian surfaces was not recovered and a power-law function was proposed
instead. The effect of the Hurst exponent on the results was also mentioned, conclud-
ing that, unlike the Gaussian case, the Hurst exponent is not irrelevant anymore in the
contact’s stiffness, and it has an impact on the stiffness evolution.

In this work, only the most important aspects of this distribution will be covered and
for a more complete description, the interested reader is referenced to N. L. Johnson
et al. (1994) and Rinne (2008). Different parametrizations of this distribution can be de-
fined. The most classical is the usually termed two-parameter Weibull distribution and
the associated probability density function writes

fW (z) = C

A

( z

A

)C−1
exp

[
−

( z

A

)C
]

, z > 0 , (3.22)

where C > 0 is the shape parameter and A > 0 is the scale parameter. A three-parameter
version can be also considered by adding a parameter B , responsible for shifting the func-
tion horizontally, however for the sake of clarity only the two-parameter distribution will
be considered in the following exposition. The CDF of the PDF given in Equation (3.22)
is written as

FW (z) = 1−exp

[
−

( z

A

)C
]

, z > 0 . (3.23)

Looking into the moments of the distribution, one can write the mean of the PDF of the
Weibull distribution as

µW = A ·Γ
(
1+ 1

C

)
, (3.24)

where Γ(•) is the Gamma function defined by

Γ(x) =
∫ ∞

0
ax−1 exp(−a)da . (3.25)

The variance can also be also be computed from the PDF parameters and comes

σ2
W = A2Γ

(
1+ 2

C

)
− (µW )2 . (3.26)
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Finally, the third-order moment normalized by the cube of the standard deviation, i.e.,
the skewness, comes

γ1W =
A3Γ

(
1+ 3

C

)
−3µWσ2

W −µ2
W

σ3
W

, (3.27)

and the kurtosis

β2W =
−A4Γ

(
1+ 4

C

)
−4γ1WµWσ3

W −6µ2
Wσ2

W −µ4
W

σ4
W

. (3.28)

One should note that the Weibull distribution as written in Equation (3.22) assumes the
shape of a exponential distribution if C = 1, and a Rayleigh distribution if C = 2 (N. L.
Johnson et al., 1994). One of the most interesting aspects of using the Weibull distribu-
tion to model the topography heights is that it allows controlling the shape of it adjusting
only one parameter, the shape parameter C . In fact, neither the scale parameter A nor
the shift parameter B are relevant when looking into the surface characteristics. This is
a well-known property and has been used in several studies and commonly the scale pa-
rameter A is fixed by setting a unitary value for the RMS height (Ciavarella and Afferrante,
2016; Pérez-Ràfols and Almqvist, 2019, 2021)—in other words, the scale can be applied a
posteriori. In this work, since numerically generated topographies from a prescribed PSD
are employed, the RMS height is automatically set, which implicitly defines the scaling
parameter A, as well. Therefore, one can simply interpret Equation (3.22) by setting A = 1.
Moreover, by definition, the topographies have zero mean, so the offset parameter B is
also tacitly defined from this condition.

Equation (3.22) only allows to model surfaces with positive values of skewness, while
several works have pointed out that surfaces tend to be generally negatively skewed (Mc-
Cool, 1992). This can be simply accommodated by imposing a negative argument (−z)
in Equation (3.22). This results in two different equations to model the height distribu-
tion, one with positive skewness and other with negative skewness. As it will be later
mentioned in Section 3.2.3, where the generation of non-Gaussian surfaces is explained,
the computational framework employed in this work makes use of the SciPy package to
model the probability distributions. In this package, both negative and positive skewed
versions of the Weibull distribution are available under the designation of Weibull Mini-
mum and Weibull Maximum extreme value distributions, respectively. Henceforth, these
distributions will be only called Weibull Minimum distribution (or just Weibull Min.) of
the positively skewed and Weibull Maximum distribution (or just Weibull Max.) for the
negatively skewed. The PDF of the Weibull Minimum distribution thus writes

f Mi n.
W (z) =C zC−1 exp(−z)C , z > 0 , (3.29)

and for the Weibull Maximum comes

f M ax.
W (z) =C (−z)C−1 exp

(− (−z)C )
, z < 0 . (3.30)

In Figure 3.13 both distributions are plotted for several values of the shape parameter C .
One sees that the distributions can change in form significantly, from an exponential to
a near Gaussian distribution. The distributions are plotted as they were parametrized in
Equations 3.29 and 3.30 with A = 1, therefore the zero mean is not observed in this figure.
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Figure 3.13: Behaviour of the Weibull Maximum (left) and Weibull Minimum (right)
for several values of the shape parameter C . The distributions are shown as they are
parametrized on Equations 3.29 and 3.30 with A = 1.

3.2.2 Selection of the shape parameter
The ability of the Weibull distribution to approximate real-life surfaces has already been
demonstrated in several scientific works (McCool, 1992; Pérez-Ràfols and Almqvist, 2021).
Yet, to perform a parametric study on the effect of the height distribution, one has to
explore the influence of the unique independent parameter, C , and select appropriate
values that resemble topographies found in practical scenarios. Still to this day, skewness
and kurtosis are convenient approaches to condense the information on the shape of
PDF and several works can be consulted to obtain reference values for these parameters
(K. J. Stout et al., 1990; Whitehouse and Whitehouse, 2011). Both skewness and kurtosis of
the Weibull distribution can be directly computed from the equations Equation (3.27) and
Equation (3.28), attending to the necessary modifications to accommodate the Weibull
Maximum and Weibull Minimum variants.

To establish the connection between the more theoretically-flavoured Weibull distribu-
tions and the practice-oriented skewness and kurtosis, Figure 3.14 shows the evolution of
the skewness and kurtosis of both Weibull Minimum and Weibull Maximum distributions
for different values of the shape parameter C . Since there is only one independent param-
eter, the region of the skewness-kurtosis space that can be modelled is represented by a
curve symmetric to the zero skewness axis, where each branch corresponds to the Weibull
Min. and Max. variants. For each value of kurtosis, two symmetric values of skewness can
be obtained, one for each variation of the PDF. The shape of the height distribution goes
from a near to Gaussian case and extends to greater levels of kurtosis and skewness. The
nearly Gaussian case can be modelled with the Weibull distribution for C ≈ 3.602 where
the skewness is 0 and the kurtosis is close to 3—the Weibull Maximum and Weibull Min-
imum intersect at this point. Moreover, C = 3.602 can also be considered the maximum
value of the shape parameter, due to the asymptotic evolution of the skewness and kur-
tosis. In Figure 3.14 some experimental results of skewness and kurtosis of machined
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Figure 3.14: Evolution of skewness and kurtosis of the Weibull distribution (Weibull Max-
imum and Weibull Minimum) as a function of the shape parameter C . Experimental val-
ues of skewness and kurtosis of machining processes obtained and adapted from White-
house (1994) are also plotted to give a visual integration of the capability of the Weibull
distribution to describe real shapes. The five values of the C shape parameter used to
perform the statistical studies are also highlighted.

surfaces are also plotted, according to the data provided in Whitehouse (1994). It can be
seen that the Weibull distribution has a great potential for approximating and describing
real-life surfaces, especially the Weibull Max. branch (negative skewness), which further
motivates the selection of this PDF in the current work. To endorse this approach sev-
eral ranges of skewness and kurtosis for different types of machining processes are also
presented in table Table 3.2 (K. Stout, 1980), where it is seen that the majority of the
cases of skewness and kurtosis can be recovered by topographies modelled with Weibull
distribution.

To perform the numerical study and infer the impact of the height distribution on the
topography statistics by adjusting the shape parameter C , specific values must be chosen.
From the experimental results presented in Figure 3.14 and in Table 3.2, one sees that
the Weibull Maximum shows more similarity to practical results since machined surfaces
tend to be negatively skewed. To be able to represent a significantly wide range of skew-
ness and kurtosis values with practical relevance, the shape parameter is chosen from
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Table 3.2: Skewness and Kurtosis of the height distribution of surfaces resultant from
several machining process. Adapted from K. Stout (1980).

Process
Skewness Kurtosis

min. max. min. max.

Turning +0.2 +1.0 2 4

Milling -1.6 +0.2 2 10

Grinding -0.8 +0.0 2 6

Reaming -1.0 -0.5 3 8

Honing -1.0 -0.5 3 10

EDM 0.0 +1.2 2.5 4

Sand blasting 0.0 +1.4 2.5 3

Table 3.3: Skewness and Kurtosis value for each value of C selected to perform the nu-
meric statistical study—for both Weibull Maximum and Minimum distributions.

C
Weibull Max. Weibull Min.

Kurtosis Skewness Kurtosis Skewness

1 9 -2.00 9.00 2.00

1.2 6.24 -1.52 6.24 1.52

1.5 4.39 -1.07 4.39 1.07

2 3.25 -0.63 3.25 0.63

3.602 2.72 0.00 2.72 0.00

the list C ∈ {1, 1.2, 1.5, 2, 3.602}. The selected values are also illustrated in Figure 3.14,
showing a good coverage of the experimental measurements. Even though the Weibull
max. shows better correlation with experimental measurements, for each value of C , both
versions of the distribution shall be considered, from here on. Additionally, in Table 3.3
for each study point, the computed values of skewness and kurtosis are presented as well.
Finally, the resultant height distribution for each C is presented in Figure 3.15, consid-
ering a zero mean set and a RMS height value of 1. This figure reinforces the idea of
symmetry between distributions and also the tendency for lower values of C being more
distinct from the Gaussian case. Also, it can be reiterated that for C = 3.602 the approx-
imate Weibull distributions are very close to the Gaussian case and, therefore, similar
results are expected for both versions.

3.2.3 Generation of non-Gaussian rough surfaces
The generation of non-Gaussian surfaces performed by LINKS-RC is based on the method
proposed by Pérez-Ràfols and Almqvist (2019). One of the most interesting features of
this method, when compared to others, is that it allows the generation of surfaces with a
prescribed PSD and height distribution, in an independent way. This characteristic gives
great flexibility and extension to the non-Gaussian surfaces generator since one can sepa-
rate the frequency content from the shape of the height PDF, allowing for a more suitable
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Figure 3.15: Height probability distribution of both Weibull Maximum and Minimum
distributions for each C parameter value. A zero mean set and an RMS height value of 1
were considered for the computation of the distributions. The Weibull Minimum cases
are represented by a dashed line whereas the solid line is used for the Weibull Maximum.
The Gaussian case for the same values of mean and standard deviation is also represented
(dotted line).

representation of real surfaces. The height distribution can be modelled using any type
of statistical distribution, but the current work focuses on the Weibull distribution, which
was implemented using the SciPy package. The flowchart that resumes the generation
process is presented on Figure 3.16.

The first step of the algorithm is the generation of a Gaussian topography z0
s with the

prescribed PSD. This step can be achieved using any of the well-known Gaussian surface
generators available and described in the literature. For convenience, in the current work,
the Gaussian surface, with a specific PSD, was generated using the previously described
algorithm (Section 3.1.2), proposed by Wu (2000b). Secondly, a set of random numbers,
following the target height distribution and with size M × N must be generated. The
obtained set must be interpreted as random topography z0

h that has the correct height
PDF but a wrong PSD. Apart from the prescribed height distribution, the topography z0

h
should have zero mean, by definition, and has to be scaled to standard deviation given
by the prescribed PSD of z0

s . With the two initial topographies generated z0
s and z0

h ,
the iteration process of the algorithm starts, from i = 0, until convergence is observed,
measured by the computed errors for each iteration, as will be seen shortly. Each iteration
i +1 starts by computing a new topography zi+1

s , with the correct PSD, by correcting the
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Figure 3.16: Flowchart of the non-Gaussian random rough surface generation algorithm.
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power spectrum of zi
h , i.e.

zi+1
s = IFFT

(
Z i

h

|Z i
s |

|Z i
h |

)
. (3.31)

After the IFFT is computed the obtains a surface zi+1
s with a correct PSD, yet with a height

distribution different from the prescribed. To overcome this, a new topography zi+1
h with

the correct height PDF is computed by sorting the topography zi
h , with respect to the

order of zi+1
s . The sorting process consists of the replacement of the kth largest value

of zi+1
s by the kth largest value of zi

h , in a process called rank ordering. This leads to a

topography zi+1
h that has a correct distribution of heights but with an incorrect spectrum.

For each iteration the obtained topographies zi+1
s and zi+1

h are evaluated at the light of
three different type of errors that dictate if the iteration loop continues or stops. The
first error evaluates the deviation of the height distribution by assessing the difference
between the histogram of zi+1

s with the histogram of zi+1
h , which has the correct height

PDF. This error is computed by

εh =
nb∑

c=1
|nc

h −nc
s |wc (3.32)

where nb is the number of bins of the histogram and wc being the width of each bin, both
computed through Scott’s rule.5 The parameters nc

h and nc
s are the normalized count

of the topographies zi+1
h and zi+1

s , respectively, for the bin c. The second error is used

to evaluate the non-null PSD values of zi+1
h relative to the topography with the correct

spectrum zi+1
s . It writes

εs =

√√√√√√
1

Ns

∑
p,q

Φ̂p,q>0

(
Φ̂h

p,q − Φ̂s
p,q

Φ̂s
p,q

)2

, (3.33)

where Ns is the number of frequencies with a non-null PSD value. Finally, the third and
last error evaluates the difference on the null PSD values of zi+1

h relative to zi+1
s

εs0 =
√√√√√

1

Ns0

∑
p,q

Φ̂p,q=0

(
Φ̂h

p,q

)2/ 1

Ns

∑
p,q

Φ̂p,q>0

Φ̂s
p,q , (3.34)

where Ns0 is the number of frequencies with a null PSD value. After the computation
of all three errors, the values obtained are compared with the tolerance values, i.e., the
maximum value of each error allowed to finish the iteration process. Therefore, if εh < εtol

h ,

εs < εtol
s and εs0 < εtol

s0 , the iteration cycle stops and advances to the final step, otherwise
the loop continues for the next iteration. When the convergence is reached the final
topographies zi+1

s and zi+1
h are very identical and the values of the prescribed parame-

ters should be very similar to the correct ones. In the current work, the implementation
adopted instructed to choose zi+1

s , as it would satisfy the wanted power spectrum exactly.

5The Scott’s rule computes the width of histogram as: wc = 3.49σz / 3pNz , where σz is the standard
deviation of the height distribution and Nz = M ×N the number of points of the discrete surface.
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Overall the algorithm shows good convergence properties, yet, if very tight tolerances
are taken, i.e., for values of εtol

h , εtol
s or εtol

s0 smaller than 10−3, the algorithm may need a
large number iterations, due to the fact that the PSD usually covers a wide range of orders
of magnitude. To increase the algorithm performance, whenever the convergence is de-
tected and the iterative process is stuck in a value near to the tolerance, the implemented
routine uses the already near value as the final one, which is equivalent to use a larger
convergence tolerance.

Figure 3.17 shows two examples of surfaces generated with the exposed method. The
surface height distribution is modelled using the Weibull distribution, in both maximum
and minimum versions, allowing to obtain negatively and positively skewed surfaces,
respectively. The topographies present very distinctive features, with the one from Fig-
ure 3.17a having a lot more predominance of summits in contrast with the surface from
Figure 3.17b. The height distributions for both topographies are presented in Figure 3.18,
where the numerical results are compared with the prescribed curve, and showcasing the
accuracy of the method in obtaining the prescribed PDF. To conclude, Figure 3.19 shows
exemplary non-Gaussian random topographies generated with the previous algorithm
for each shape parameter C selected in Section 3.2.2.

(a) Weibull Maximum: C = 1.3. (b) Weibull Minimum: C = 1.3.

Figure 3.17: Examples of non-Gaussian surfaces generated using the method proposed
by Pérez-Ràfols and Almqvist (2019), and modelled with the Weibull distribution, with a
shape parameter C = 1.3 and for both Maximum and Minimum cases—Figures 3.17a and
3.17b, respectively.

3.2.4 Numerical study
The numerical study on the statistics of non-Gaussian surface modelled with the Weibull
distribution follows the same lines of the previous Gaussian study (Section 3.1.4). This
time, the studied cases result from the combination of the four variables considered,
i.e, the Weibull distribution type, the shape parameter C , the Hurst exponent H and the
wavelength ratio λl /λs . The shape parameter values have been defined previously in Sec-
tion 3.2.2, where the following values were carefully selected C ∈ {1, 1.2, 1.5, 2, 3.602}. To
assess the influence of the spectral content on the topography statistics, both the Hurst
exponent and the ratio λl /λs were also chosen as degrees of freedom of the study. In
this case, large values of λl /λs lead to much greater numerical generation times, relative
to the Gaussian scenario, due to the inherently iterative character. For this reason, the
bandwidths λl /λs ∈ {8, 16} were selected. Regarding the Hurst exponent H , the values
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Figure 3.18: Comparison between the prescribed and the numerical heights distributions
of the of two examples of non-Gaussian surfaces generated using the method proposed by
Pérez-Ràfols and Almqvist (2019). Modelled using the Weibull distribution, with a shape
parameter C = 1.3 and for both Maximum and Minimum cases—Figures 3.17a and 3.17b,
respectively.

Table 3.4: Variables considered for the statistical study on non-Gaussian rough surfaces
modelled with the Weibull distribution. The studied cases result from a combination of
the exposed variables.

Height Distribution C λl /λs H

Weibull Maximum

Weibull Minimum

1

8

16

0.2

0.8

1.2

1.5

2

3.602

H ∈ {0.2, 0.8} were considered. Table 3.4 shows the cases outlined for the present study,
constituting a total of 40 distinct combinations. For each particular study case, 1000 re-
alizations with a self-affine behaviour restricted to the fractal part (cf. Equation (3.21))
were generated and evaluated. The length of the topography L and sampling space ∆x
were kept the same since no major problems arose from the Gaussian validation pro-
cess (cf. Section 3.1.4), i.e., L/λl = 8 and λs/∆x = 8. The results obtained are discussed
in the following sections, in terms of the probability measures of summit heights and
mean curvatures. The analysis is divided considering the effect of the shape of the height
distribution and the influence of the spectral content.
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(a) Weibull Maximum: C = 1

(c) Weibull Maximum: C = 1.2

(e) Weibull Maximum: C = 1.5

(g) Weibull Maximum: C = 2

(i) Weibull Maximum: C = 3.602

(b) Weibull Minimum: C = 1

(d) Weibull Miniimum: C = 1.2

(f ) Weibull Minimum: C = 1.5

(h) Weibull Minimum: C = 2

(j) Weibull Minimum: C = 3.602

Figure 3.19: Examples of non-Gaussian surfaces, modelled with the Weibull distribution,
with the different shape parameter C values, considered for the numerical study.
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Influence of the height distribution and the shape parameter

The statistical results obtained may be analysed in the light of the type of height distribu-
tion considered and the shape of the height distribution, which for the Weibull distribu-
tions has an attractive simplicity, since one can simply see how the results are affected
by the shape parameter C . Hence, by fixing a pair of the Hurst exponent H and the wave-
length ratio λl /λs , resulting in a distinctive value of the Nayak’s parameter α, one can see
how C influences the results for both Weibull Maximum and Minimum distributions.

Probability density of summit heights First off, the probability distribution of the nor-
malized summit’s height psum (z∗) will be analysed and discussed. The results for the four
combinations of H and λl /λs and presented from Figure 3.20 to Figure 3.23. In these
figures, both Weibull Maximum and Minimum histograms are plotted individually, to
privilege the visual inspection of the results. Also, the same vertical and horizontal scales
are kept the same for all the results, in order to make the comparison between plots more
convenient. Furthermore, profiles extracted from a realization with the characteristics
in study are plotted below the histograms, facilitating the understanding of the results
obtained, cf. Figure 3.12. For each case, the Nayak’s solution of psum (z∗) is computed
from Equation (3.4) with the α value obtained numerically from the generation process—
unique for each pair of H and λl /λs . For the sake of graphical representation, the vertical
axis represents the logarithm with based 10 of one plus the PDF of the normalized sum-
mit heights—log10

(
psum (z∗)+1

)
.6 This option can be justified by looking at the plots

referring to the Weibull Max. distribution, where extremely high peaks of probability are
easily identified. The application of this change of variable heavily attenuates the values
of the probability peaks and allows for a more easy comparison between all the plots.

One can start by analysing, for instance, the case where H = 0.2, depicted in Figures 3.20
and 3.21 since the general impact of the height distributions has been verified in this
study to be uncorrelated with the spectral properties of the surface. The analysis is di-
vided between each of the height distributions to better systematize the process of results
discussion.

Weibull Maximum Starting with the Weibull Maximum results, one verifies that, like
the height distribution, also the summits heights distribution has left-skewed histograms,
which is a direct consequence of having heights concentrated near a positive height (cf.
Figure 3.15). Additionally, these distributions also evidence huge differences in shape and
magnitude compared with the Gaussian case—especially for lower values of C . In fact,
while the Gaussian distribution tends to look like a slightly skewed normal distribution,
the Weibull Maximum’s histograms resemble an exponential distribution, with significant
modal probability density. 7 Such trend on the distributions can be justified by the re-
sults from Nayak’s theory (Section 3.1.1), where it was seen that, in a Gaussian surface,
summits are more likely to happen at positive values of height (cf. Figure 3.1). The same
effect is verified in non-Gaussian surfaces, with the addition that in topographies with a

6The vertical labels are written as log10 psum
(
z∗

)+1 for the sake of readability.
7One should recall that the relations between the differences between the histograms are moderately

softened by the vertical logarithm operation.
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significant concentration of positive heights, the effect translates into even higher con-
centrations of summits. A substantial degree of dependence on the shape parameter C is
also observed. For lower values of C , the distribution tends to have a progressively higher
probability of having summits around the same height value. Yet, this maximum height,
at which the mode is located, also tends to be increasingly smaller, causing a left-shifting
in the histogram. This phenomenon can be better perceived if one looks after the height
distribution of such topographies (cf. Figure 3.15). From what has been seen before, as
a general statement, it can be postulated that the trend in the skewness of the topog-
raphy height distribution and summit height distribution is identical. Nonetheless, the
summit distribution is also sensitive to the heigh distribution’s limits since there can be
no summits above the maximum value of height. For instance, in Figure 3.15, it is seen
that, for C = 1, the heigh distribution is limited at a maximum value of z ≈ 1, whereas for
C = 1.5, the probability of having heights at the value of z = 1 is lower yet, the distribution
extends its upper bound up to z ≈ 1.5. These features are directly conveyed to the summit
heights distribution, Figure 3.21, where one sees that C = 1 has a higher concentration
of summits around z ≈ 1, while C = 1.5 possesses a more spread out summit heights dis-
tribution, with smaller mode values—in the latter case, the histogram is flattened and
spreads to the right. This can be clarified by taking a look into the profiles of a representa-
tive topography presented in Figure 3.21. One sees that for C = 1, the heights have almost
the same value—around zero since it is a zero-mean set—with some deep outlier valleys.
Thus, it justifies why there is a large concentration of summits around high height values.
With the increase of C , the profiles’ heights become less concentrated around a single
value, and the negative outliers become less deep. This evolves up to the point where an
almost Gaussian topography is obtained, i.e., when C = 3.602. In this case, the PDF of
the normalized summit heights is very near the Gaussian case and this is proven by the
similarity to the theoretical curve plotted by a black dotted line.

Weibull Minimum In turn, the Weibull Minimum presents a right-skewed distribu-
tion, and this is in line with what was advanced previously, i.e., the summits heights dis-
tribution captures the shape of the height distribution of the topography (cf. Figure 3.15).
Another aspect of interest is the fact that the order of magnitude of probability density
does not differ much from the Gaussian case. 8 In this case, one gets less abrupt distri-
butions, when compared with the Weibull Maximum distribution that acuminates into
a large mode value. The reason for these results is once more justified by Nayak’s theory.
Since the summits tend to be more frequent at high values of height, in a distribution with
predominant lower height values, a concentration of summits around a specific height is
not trivially expected. Even so, summits with low height values are still dominant, as the
height distribution imposes it.

As for the outliers values of the topography height distribution, it is verified that they
add a superior contribution to psum (z∗) when compared with the outlier values of the
Weibull Maximum distribution. Fundamentally, this means that substantially high sum-
mits can be found in the topographies with more probability than in the Gaussian case.

8This fact is slightly hidden by different vertical scales adopted for each Weibull distribution yet, if a
closer look is taken, one verifies that Weibull Minimum’s distributions would fit in less than one-seventh of
the vertical scale of the Weibull Maximum’s cases.
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The shape parameter C has also a preponderant influence on the summit heights distri-
bution. One sees that for C = 1 the distribution of the summit heights has an exponential-
like shape, yet with a not so emphasised mode value and with the increase of C the
distributions approximate to the Gaussian case. A look into the profiles helps to realize
these characteristics. For C = 1 one also verifies that several of a higher concentration
of heights around zero, similarly to what was seen in Weibull Maximum distribution. Al-
though, the outlier values are summits rather than valleys, counterbalancing the tendency
of summits to only occur at lower heights—reasons why this type of topographies have
more stable summits distributions around the same probability density values. Increas-
ing the shape parameter and an expected approximation to the Gaussian topography
occurs, with heights progressively more distributed in the height range, moving the sum-
mits from lower values up to higher ones. The psum (z∗) becomes closer to the Gaussian
distribution and, once again, a pretty close similarity is seen for C = 3.602.

The cases with H = 0.8 are presented in Figure 3.22 and Figure 3.23 and the results cap-
ture similar tendencies in terms of the influence of the height distribution. The Weibull
Maximum’s psum (z∗) show a really close shape with slightly lower probability density
around the mode. In turn, the Weibull Minimum case has some interesting results for
lower C values indicating an interesting influence of the spectral properties in the summit
heights distribution. Both cases will be commented on later when assessing the influence
of the spectral content.

Joint probability density of summit heights and curvatures Following the same lines
of the numerical results of the Gaussian case, the joint probability distribution function of
the normalized summit heights and the equivalent mean curvature p ′

sum (z∗, t1) was also
obtained for all the non-Gaussian studies. This quantity provides a feasible way to assess
the effect of non-Gaussian height distributions in the summits curvatures, a feature that
holds an important role in micromechanical contact phenomena of rough surfaces, such
as in the real contact area evolution.

In Figure 3.24, the two-dimensional numerical histograms are presented for the par-
ticular case of H = 0.2 and λl /λs = 8—for the same value of normalized height value z∗,
summits with with different curvature values t1 can occur. Only one spectral scenario
(a pair of H and λl /λs) is considered, since here the focus is on the effect of height dis-
tribution and the shape parameter, and the conclusions drawn can be extended to the
other cases. At first sight, one can immediately notice that the shapes of the joint distribu-
tions are very distinctive from the ones obtained for Gaussian topographies. The Weibull
Maximum’s histograms exhibit a less spread distribution, with a more restricted height
domain that tends to expand with the increase of C . For increasing values of C , the joint
PDF expands towards larger heights, until it becomes distributed with a similar shape to
the Gaussian case—when C = 3.602.

In turn, the Weibull Minimum’s histograms present more spread out distributions with
higher levels of probability for lower values of heights, which is in tune with what was ad-
vanced in the psum (z∗) results. These histograms also evidence that the higher the value
of z∗ the smaller the equivalent mean curvature t1, in an average sense. This translates
to the fact that higher summit heights will tend to have higher summits curvatures. One
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must remember that the domain of the equivalent mean curvature t1 is negative which
means that lower values of t1 actually correlate to higher values of mean curvature κm .

Expected mean curvature The evaluation of the p ′
sum (z∗, t1) is an important step, how-

ever, its analysis is not very simple and becomes more difficult to condense and com-
pare the results, and are not as comprehensible as the expected mean curvature of sum-
mit heights κ̄m , which holds information on how curvatures evolve with the normalized
height. One should note that the expected mean curvature condenses the information of
p ′

sum (z∗, t1) by averaging the curvatures for each value of z∗. Therefore, it can be seen as
a "mean value" of the mean curvature for a certain value of z∗. It is not a complete de-
scription like p ′

sum (z∗, t1) yet it provides a useful trend-line with important information
of the topographic features. In Figure 3.25 and Figure 3.26 the expected mean curvatures
normalized by the square root of the fourth-order moment are shown, for both Weibull
Maximum and Minimum distributions. For each pair of H and λl /λs the different values
of C are plotted, fostering the inspection of the influence of this parameter. Additionally,
the Gaussian result is also presented for the computed value of Nayak’s parameter α. The
results were trimmed for the values with probabilistic significance, by visually inspecting
p ′

sum (z∗, t1).

Weibull Maximum Starting with the Weibull Maximum distribution values of expected
mean curvature (Figure 3.25) one sees that a non-linear behaviour is captured, with a very
distinctive evolution when comparing with the Gaussian result. While for Gaussian sur-
faces, increasingly values of height translate into higher values of curvature, the same
does not apply for Weibull Maximum’s curves. In fact, the opposite behaviour is verified
with the curvatures decreasing with the increase of z∗. This means that in surfaces with
negatively skewed height distributions the higher summits tend to have lower values of
curvature. This can be justified in knowing that in these topographies the majority of
the heights distribute over a plateau of positive heights where shallow summits and val-
leys occur, with a more emphasised behaviour for lower C values. Thus, on this plateau
there is not much space for pronounced summits to stand out as heights are limited to a
maximum value, for a given prescribed RMS height. Consequently, summits with smaller
curvatures emerge, a fact that is also accentuated for lower values of C . An interesting
aspect of these curves is that they have a turning region (z∗ ∈ [0.0, 0.5]) where changes
in C have the opposite impact in the evolution of the expected mean curvature, inde-
pendently of the spectral content. The behaviour of these curves can be divided into two
distinct areas, before and after the turning region, starting at the higher value of z∗ and
going down to lower values. Before the turning region, i.e., for the surface’s higher heights,
a steep increase in curvature with decreasing height is verified for all values of C . In this
region the increase of the shape parameter C increases the value of the expected mean
curvature κ̄m/

p
m4. After the turning point, for lower heights, the curvature increase rate

suffers a slowdown, which corresponds to the region of the outlier summits, with less
representativeness, as can be seen by the noise in the curves in this region—recall that
summits at low heights are less probable in the Weibull Maximum topographies. Here the
shape parameter has the opposite effect, i.e., the mean curvature decreases with C , and
it is verified that the maximum values of relative mean curvature are obtained for lower
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values of the C . One can also verify that for larger values of C the curves become flattered,
which indicates that the summits are identical at all height levels in this region. In turn,
for C = 3.602 as z∗ decreases, κ̄m values also decrease, matching the theoretical results
from Nayak (1971)—the deviations occur for large heights specially due to the inherent
deviations between the Weibull distribution and the standard Gaussian distribution, even
for C = 3.602. Last, it should be remarked that the previous observations apply to all levels
of spectral content analysed.

Weibull Minimum The Weibull Minimum expected mean curvatures (Figure 3.26) dif-
fer significantly from the previous case. These curves present near to linear behaviour
with a curvature growth trend that follows the Gaussian result. It is seen a progressive in-
crease in curvature, that recover the Gaussian results of higher summits having higher ex-
pected mean curvature—however, with distinct growth rates. These curves also present an
inversion region, where the curves of different C values intersect each other and change
their relative position. In this case, one should assess the results from lower to higher
values of z∗, i.e., in from left to right in the graphs of Figure 3.26. Before the turning
point (lower height values) one verifies that the larger the value of C the closer is the ex-
pected mean curvature to the mean surface curvature for the same z∗—walking towards
the Gaussian case. The reasons for this occurrence are explained in the same fashion as
the Weibull Maximum case since one can consider that for surfaces with a right-skewed
height distribution a plateau of lower height value is formed, where summits tend to
have lower values of curvature. This effect is lost for higher values of C since the heights
become more spread out and so do the summits. From the turning point up to higher
values of z∗ the curves keep growing yet the higher the C the more similar is the κ̄m

value relative to the surface’s mean curvature value, measured by
p

m4. Being this region
dominated by outlier values, the lower the C the higher and sharper the outliers sum-
mits become, justifying in this way, their superior curvature values. One can look into the
Weibull Minimum’s profiles of Figures 3.20 to 3.23 to better comprehend this behaviour.
For lower C values the larger the height of the peak, the sharper it tends to be.
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Figure 3.20: Influence of the shape parameter C on the probability density of summit
heights psum (z∗) for both Weibull distributions with H = 0.2 and λl /λs = 8. For C value a
profile of the generated surface is presented giving a visual comprehension of the surfaces
characteristics. The Gaussian results from the Nayak’s Theory is presented by a dotted-
black-line.
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Figure 3.21: Influence of the shape parameter C on the probability density of summit
heights psum (z∗) for both Weibull distributions with H = 0.2 and λl /λs = 16. For C value a
profile of the generated surface is presented giving a visual comprehension of the surfaces
characteristics. The Gaussian results from the Nayak’s Theory is presented by a dotted-
black-line.
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Figure 3.22: Influence of the shape parameter C on the probability density of summit
heights psum (z∗) for both Weibull distributions with H = 0.8 and λl /λs = 8. For C value a
profile of the generated surface is presented giving a visual comprehension of the surfaces
characteristics. The Gaussian results from the Nayak’s Theory is presented by a dotted-
black-line.
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Figure 3.23: Influence of the shape parameter C on the probability density of summit
heights psum (z∗) for both Weibull distributions with H = 0.8 and λl /λs = 16. For C value a
profile of the generated surface is presented giving a visual comprehension of the surfaces
characteristics. The Gaussian results from the Nayak’s Theory is presented by a dotted-
black-line.
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Figure 3.24: Influence of the shape parameter C in the joint probability density func-
tion of the normalized summit heights and the equivalent mean curvature p ′

sum (z∗, t1),
recovered numerically obtained for a fixed valued H = 0.2 and λl /λs = 8
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Influence of the spectral content

Another relevant way to look at the results obtained is to study how the spectral content
affects the geometry statistics in the non-Gaussian scenario. One can aggregate both the
Hurst exponent H and the wavelength ratio λl /λs to characterize the surface spectral
content—each pair of the previous variables corresponds to one value of Nayak’s parame-
ter. By fixing a value of C for each Weibull distribution and varying the spectrum-related
variables it is possible to visualise the results along a distinct dimension and drawn dif-
ferent conclusions.

Probability density of summit heights The one-dimensional histograms of the proba-
bility density of summits heights are present from Figure 3.27 to Figure 3.31, from the
value of C = 3.602 down to C = 1. The results are presented in a descending order of C
as it eases the analysis. Unlike the previous section, the vertical scales are now adjusted
to each particular C value in order to favour a relative comparison between curves with
different spectral properties.

Weibull Maximum The impact of the spectral content on the Weibull Maximum’s
histograms can be more easily perceived if one starts from the near to Gaussian case and
goes into more left-skewed height distributions (lower values of C ). By looking at the case
of C = 3.602 (Figure 3.27), the classical behaviour predicted by Nayak (1971) is verified
and one sees that as α increases, the mode shifts to the left and the peak probability
density reduces—cf. Figure 3.1. In general, it can be said that the higher the value of the
Nayak’s parameter the closer to the surface’s height distribution psum (z∗) gets. The same
behaviour is seen for other shape parameters as well, even though a wide range of α could
not be explored, due to excessive computational cost. The C = 2 case (Figure 3.28) shows
the same relation, with a more evidenced predominance of summits at the higher height
levels—a consequence already discussed above. This effect is amplified by the decrease
of the C until it reaches the lower value of C = 1. Globally speaking, one verifies that
Nayak’s parameter α has a strong influence on psum (z∗). On the one hand, it is verified
that the histogram with α= 3.76 is the one with higher mode value and also the most left-
skewed, for any C case—possibly with the exception of C = 1 where it comes in second yet
with only a small difference. On the other hand, independently of the shape parameter,
the histogram of α = 11.89 is the one that shows the less left-skewed distribution with
a small mode value. This case is also the one that presents more similarity with the
height distribution, as presented in Figure 3.15. Contrary to the Gaussian case, where the
topography statistics are only dependent on α, here the Nayak’s parameter appears to be
insufficient to fully characterise the statistical geometry of the rough surfaces, especially
for lower C values. This can be seen, for example, in Figure 3.31, as the curves for two
identical Nayak’s parameter values (α= 5.61 and α= 5.34) are distinct.

Weibull Minimum For the Weibull Minimum summit heights distributions, similar
results are captured yet with the opposite tendency, with more predominant values of
probability for lower values of height, as was already observed in the previous section.
Starting with C = 3.602 (Figure 3.27), the detected relations are also close to the Gaussian
case with the distributions being placed according to Nayak’s theory. With the increase
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of the shape parameter and the distribution starts to get more right-skewed due to the
presence of more summits at lower heights alongside higher outliers. Additionally, the
Gaussian case tendency for having larger probability density in higher summits with the
decrease of α is also verified. At the same time, the probability density of low-height
summits increases with the increase of α. For instance, if one looks at the case where
C = 1.5 (Figure 3.29), it is possible to see that α= 3.76 shows smaller probability of having
lower summits heights, while α= 11.89 showcases higher probability density for smaller
heights. This is explained because the higher the α the more summits will occur at all
heights—ultimately leading to the case where the summits heights distribution fits the
height distribution of the topography. Since, summits are more likely to happen at higher
heights, increasing the spectral content makes possible the occurrence of summits for
lower height values thus pushing the summits height distribution to the left—the pres-
ence of summits with lower heights in the topography grows. In this case, a characteri-
zation solely based on Nayak’s parameter may be insufficient, since dependence on the
Hurst exponent can be observed. For example, when C = 1.2 and C = 1 (Figure 3.30 and
3.31), the histogram shapes can be distinguished by Hurst value, even when α is identical.
While for H = 0.2 the distribution is smooth, for H = 0.8 it has a prominent maximum
value of probability towards small heights. This indicates that higher values of H lead to
surfaces with a higher concentration of lower height summits, despite the Nayak param-
eter similar value.

Expected mean curvature In the previous section it was seen that, despite being an im-
portant result to have at hand, the joint probability distribution of normalized height and
respective equivalent mean curvature p ′

sum (z∗, t1) does not provide an easier method to
assess the summits’ curvature response. The expected mean curvature κ̄m , computed
from p ′

sum (z∗, t1), was used as a much more simple tool to analyse the curvature results.
Therefore, in what follows, the p ′

sum (z∗, t1) was omitted, for the sake of clarity, and the
results based on κ̄m/

p
m4 are presented instead. In Figure 3.32 and Figure 3.33 the nor-

malized expected mean curvature curves are shown for the shape parameter cases up to
C = 2.

Weibull Maximum Starting by the Weibull Maximum (Figure 3.32), one verifies that
the non-linear behaviour previously advanced is seen yet, for larger C values, the curves
become flattered with a smaller tendency for curvature increasing for lower values of
z∗. For higher heights one verifies that the α still play an important role, with higher
κ̄m/

p
m4 values being achieved by the α= 3.76 curve. This means that topographies with

lower α tend to have higher expected mean curvatures, relatively to the surfaces global
curvature value, measured by

p
m4. However, this relation is affect by the combination

between the spectral properties as one verifies that the curve of α = 5.61 has a greater
κ̄m/

p
m4 value than α= 5.34, contradicting the exclusive α dependence hypothesis. This

happens because of the different H values, which might play a more influential role in
this type of non-Gaussian topographies. It is seen, for higher height summits, the curves
with the same value of H tend to become closer, contradicting the ordering of the curves
by α value. For lower heights, the relative position of the curves is inverted, i.e, the higher
the α the higher the value of κ̄m/

p
m4. Nonetheless, due to the lack of representation of
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lower height summits in these types of topographies the relations between the curves
become less explicit, especially for lower values of C .

Weibull Minimum One can then look into the Weibull Minimum results of expected
mean curvature κ̄m . By grouping, the curves for the same C values the linear behaviour is
even more evidenced. For the lower values of height, proximity between all the different
curves is obtained, suggesting a small dependency on the spectral content in this region.
The opposite is verified as z∗ increases, where the spectral content becomes relevant with
H getting particular importance in the behaviour, as explained in the ongoing paragraph.
One sees that surfaces with higher spectral content tend to have larger deviations to the
global mean curvature of the rough surface—the summit curvature grows faster with
summit height. Furthermore, the changes in the expected mean curvature with varying
spectral content increase with the decrease of C . The reason underlying this behaviour
has to do with the increase of the frequency content, which tends to produce more sum-
mits at all heights with large curvatures, relatively to the surface global curvature. The
presented curve seems to not be only dependent on Nayak’s parameter as it is seen in
Gaussian topographies. In fact, both wavelength ratio λl /λs and the Hurst exponent H
seem to interact with each other different, creating different results that do not always
seem to be in tune with the α value. For instance, one verifies that for higher values
of z∗, curves with the same H tend to become closer and, for a given value of λl /λs , a
notable variation in the curvatures is seen if the H value is changed. To illustrate this
phenomenon in Figure 3.34 the C = 1.2 case is explored in detail, plotting the results of
the combination of wavelengths ratios λl /λs of 8 and 16 with the Hurst exponents of
0.2, 0.5 and 0.8. 9 One sees that for a particular value of λl /λs the Hurst exponent can
increase or decrease the slope of the curves. Additionally, it is seen that apart from the
maximum α= 11.89 and the minimum α= 3.76, the curves do not have a clearly defined
order, with several curves intersecting each other. In fact, if one considers the regions
of the curves with the same value of λl /λs , it is seen that both λl /λs = 8 and λl /λs = 16
areas also intersect, highlighting the more intertwined relation of the spectral variables.
Finally, one should also note that, in Figure 3.33, an approximation of the curves with the
increase of the C value is also observed. Such behaviour occurs due to a larger similarity
between the summits heights distribution (cf. Figure 3.28, for example), approximating
the expected mean curvature at each z∗.

9The H = 0.5 was generated in particular for this example to add some more information.
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Figure 3.27: Influence of the spectral properties (λl /λs and H) on the probability density
of summit heights psum (z∗) for both Weibull distributions with a shape parameter of
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Figure 3.28: Influence of the spectral properties (λl /λs and H) on the probability density
of summit heights psum (z∗) for both Weibull distributions with a shape parameter of
C = 2. For each pair of λl /λs and H a profile of the generated surface is presented giving
a visual comprehension of the surfaces characteristics.
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Figure 3.29: Influence of the spectral properties (λl /λs and H) on the probability density
of summit heights psum (z∗) for both Weibull distributions with a shape parameter of
C = 1.5. For each pair of λl /λs and H a profile of the generated surface is presented
giving a visual comprehension of the surfaces characteristics.
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Figure 3.30: Influence of the spectral properties (λl /λs and H) on the probability density
of summit heights psum (z∗) for both Weibull distributions with a shape parameter of
C = 1.2. For each pair of λl /λs and H a profile of the generated surface is presented
giving a visual comprehension of the surfaces characteristics.
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Figure 3.31: Influence of the spectral properties (λl /λs and H) on the probability density
of summit heights psum (z∗) for both Weibull distributions with a shape parameter of
C = 1. For each pair of λl /λs and H a profile of the generated surface is presented giving
a visual comprehension of the surfaces characteristics.
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Density of summits

An additional interesting quantity to analyse is the previously introduced density of sum-
mits Dsum (cf. Equation (3.3)). This parameter gives the number of summits per unit of
area and has an independent influence on physical phenomena involving rough contact.
More summits may originate more contact clusters that might influence the way the real
contact area evolves with the and external force. The computation of this quantity is
trivial since it consists in storing the number of summits detected per surface and divid-
ing by the sum of the areas of all the inspected topographies. The procedure was done
for each of the 40 cases studied and the results are present in Figure 3.35. In this figure,
the density of summits Dsum is present as a function of the shape parameter for both
Weibull distributions and all the spectral cases studied. One verifies that Weibull Maxi-
mum topographies tend to have more summits per area than the opposite case Weibull
Maximum. This difference is augmented by lower values of the shape parameter, where
the discrepancies between both Weibull distributions are higher. It can also be observed
the number of summits tends to decrease with the increase of the shape parameter C .
Furthermore, the spectral content seems to play have a meaningful impact on Dsum. With
the increase of the wavelength ratio, λl /λs an increase in the number of summits is ver-
ified, which is an expected result since with the addition of higher frequencies to the
topography more summits are likely to happen. Similarly, the decrease of the Hurst expo-
nent value is seen to increase the number o summits per unit of area. This can also be
simply explained by the fact that lower values of H means that a bigger preponderance
is given to the higher frequencies on the PSD, which directly translates to a more fulfilled
surface, where summits are more expected to happen (cf. Figure 2.11).
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Figure 3.35: Density of summits per unit of area as a function of the shape parameter C
for both Weibull distributions in all the spectral scenarios.
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3.2.5 On the Nayaks’s parameter accuracy for characterizing the statistics of
non-Gaussian rough surfaces

In the previous section, it was seen that the topography statistics are strongly affected by
the spectral content. The approach pursued characterizing the spectral properties were
the Hurst exponent H , the wavelength ratio λl /λs and the ensuing Nayak’s parameter
α. For Gaussian surfaces, the topography statistics are only dependent on α, as it was
obtained by Nayak (1971) and presented in Section 3.1.1. This result is very convenient
yet as it allows the characterization based on only one parameter that aggregates all
the information on the rough surface power spectrum. The previously discussed results
showed some intriguing aspects that suggest the possibility of non-Gaussian statistics not
being fully characterized by just one parameter—in addition to the PDF parameterisation,
here by means of C . It was observed that for similar values of α, the statistics obtained
may be significantly different. This behaviour has raised the question if is the Nayak’s
parameter is sufficient for describing rough surfaces, or if the Hurst exponent and spectral
bandwidth have independent effects on the topography statistics. Therefore, for testing
the validity of the Nayak’s parameter α as a unique parameter for characterizing the
statistics of rough surfaces, a study on the impact of the Hurst exponent for a fixed value
of α was carried out. The goal is to investigate how the Hurst exponent may affect the
statistical geometry of non-Gaussian topographies that are characterized by the same
value of α.

One should start by relating the spectral properties that characterize a random rough
surface, and therefore an analytical expression for the Nayak’s parameter α may be recov-
ered. The power spectral density of a self-affine rough surface, given by Equation (2.51),
can be written in its discrete version as

Φ̂
[

k =
( q

M
Ωsy , k = p

N
Ωsx

)]
=





Ĉ0 , kl ≤ ‖k‖ < ks

Ĉ0

(
kr

‖k‖

)2(H+1)

, kr ≤ ‖k‖ ≤ ks

0 , elsewhere ,

(3.35)

being Ĉ0 the discrete surface scale constant. The discrete version of the PSD relates with
the continuous one by

Φ̂[p, q] = 1

lsx lsy

Φ
( q

N
Ωsx ,

p

M
Ωsy

)
,

{
p = 0,1, ..., M/2

q = 0,1, ..., N /2
. (3.36)

Using this result with the spectral moment definition (Equation (2.33)), the analytical
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expressions for rough surfaces spectral moments and Nayak’s parameter come

m00 =
lsx lsy Ĉ0k2

r

2π

(
1−ξ2

2
+ 1−ζ−2H

2H

)
; (3.37a)

m20 =
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)2
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One should note that when only the fractal part of the spectrum is considered, i.e, when
kr = kl , one can rewrite the ratios as ξ= 1 and ζ=λl /λs and the analytical expressions for
Nayak’s parameter of profiles and surfaces can be simplified and the ratio ξ is dropped
from Equation (3.37d). Following the study of surfaces’ statistics one can write the final
relation between the α, H and λl /λs

α= 3

2

(
1− (λl /λs)−2H

H

)(
(λl /λs)4−2H −1

2−H

)/(
(λl /λs)2−2H −1

1−H

)2

. (3.38)

This expression can then be used to compute α as a function of H and λl /λs . In Fig-
ure 3.36 this relation is plotted, showing that α increase with the increase of both H and
λl /λs . The evolution has an exponential-like character starting with a soft growth fol-
lowed by a steep rise of α for higher values of both variables. From this representation, it
can also be deduced that for each value of α there is an infinite number of combinations
of H and λl /λs that result in a given α.

In this study, the effect of the Hurst exponent H for a given α on the statistics of the to-
pography is examined. By numerically solving the Equation (3.38) in order to λl /λs , one
can obtain the complementary value that for a given H corresponds to the prescribed
Nayak’s parameter. With this procedure values of H and α can be defined to perform a nu-
merical study on the topography’s statistics response. Here, three different values of each
were chosen. The respective λl /λs computed for each pair of α and H are presented in
Table 3.5. The rapid growth of λl /λs for lower values of H should not be overlooked, since
surfaces with large bandwidth require more computational time. The same discretization,
length and number of realizations were kept the same as in the former numerical studies.
In the previous section, it was seen that the relative behaviour of the spectral properties
is very similar for a certain value of the shape parameter C —cf. Figure 3.32 as an exam-
ple. For this reason within this study, only one value of C was studied for both Weibull
Maximum and Minimum distribution. Since the concern is on the characterization of the
spectral content of non-Gaussian surfaces the extreme value C = 1 was selected.

The captured results follow the same structure as the previous sections. Starting with
the probability density of the summit heights psum (z∗) the obtained results are presented
in Figure 3.37 and Figure 3.38 for both Weibull Maximum and Minimum distributions,
respectively. The Weibull Maximum histograms show some interesting differences that
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Figure 3.36: Influence of the Hurst exponent H and the wavelength ratio λl /λs on the
Nayak’s parameter α, for self-affine rough surfaces with kr = kl .

Table 3.5: Studied values of Hurst exponent H and the Nayak’s parameter α, and respec-
tive computed wavelength ratio λl /λs .

HH
HHHHH

α
5 10 15

0.4 9.751 23.058 37.921

0.6 8.308 16.538 24.126

0.8 7.669 14.163 19.661

may indicate the influence of the Hurst exponent. For α = 5, the lower the value of H
the higher is the probability of having higher heigh summits. This means that a power
spectrum with a higher frequency contribution translates into a larger summits concen-
tration for higher values of z∗. The Hurst influence is also observed in the decaying of
psum (z∗). When decaying for a higher value of z∗ the lower H has a predominance, mean-
ing that topographies with lower H present even higher summits (with a value of height
above the mode value). Otherwise, when decaying to lower values of height, the higher
the Hurst the higher the probability of having summits in this region, i.e., lower H values
translate into a higher concentration of lower heigh summits. The discussed characteris-
tics are seen for all the α values yet their magnitude seems to be lost with the increase
of α, becoming more and more similar. This might indicate that higher values of λl /λs

the effect of the Hurst exponent in psum (z∗) might be irrelevant. On the other hand, the
Weibull Minimum distribution shows that higher values of H result in a higher concen-
tration of lower height summits. One sees that for α= 5 the histogram of H = 0.8 has the
highest probability for the values around mode when comparing with the other Hurst
cases. This effect is kept for all values of α, even knowing that the concentration of lower
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height summits tends to increase with α, as it was previously seen. It can be interpreted
as topographies with lower high-frequency contributions are more likely to have a higher
concentration of lower heigh summits. The decaying process into higher heights verifies
that the lower the H the higher the concentration of summits.

The effect of Hurst on the curvatures of the topography was studied as well, compar-
ing the normalized expected mean curvatures for the different cases. In Figure 3.39 and
Figure 3.40 the curves of different Hurst exponents are present for the three α values
in study, concerning Weibull Maximum and Minimum cases, respectively. The Weibull
Maximum’s curves (Figure 3.39) show a very similar relation among the different α values.
In this case, for the same α, smaller values of H predict larger mean curvatures across
all heights. In turn, the Weibull Minimum’s curves (Figure 3.40) show very near results
for values of small heights as expected from Figure 3.33. Progressively larger values of H
increase the curvature growth rate for the same α. These results suggest that the spectral
breadth α and Hurst roughness exponent H have independent influences on the statis-
tical geometry of the rough surfaces, especially in the evolution of curvatures at distinct
heights.

To conclude, it might be said that, at a first sight, the results presented in Figures 3.37
and 3.38 may not present the clearest and most evident results. However one has to note
that the current results have origin in a small auxiliary study where a high computational
power was not allocated. For a more complete study of the effect of the spectral proper-
ties, a wider range of properties and hypotheses should have been studied. For example,
the effect of the wavelength ratio should also be addressed by fixing a value of α and
λl /λs and computing the respective H value. Moreover, to better highlight the effect of
properties a higher number of realizations may have to be considered. Finally, it might
be said that despite not highlighting some notable differences in the topography statis-
tics, the effect of the spectral properties on physical phenomena evolving rough surfaces
might be meaningful.
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Figure 3.37: Influence of the Hurst exponent H on the probability density of summit
heights psum (z∗) for the Weibull Maximum distribution, with a shape parameter of C = 1,
and plotted for 3 different values of α. The value of λl /λs was calculated so to match the
prescribed values of H and α.
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Figure 3.38: Influence of the Hurst exponent H on the probability density of summit
heights psum (z∗) for the Weibull Minimum distribution, with a shape parameter of C = 1,
and plotted for 3 different values of α. The value of λl /λs was calculated so to match the
prescribed values of H and α.
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Figure 3.39: Influence of the Hurst exponent H on the on the expected normalized mean
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m4 of the Weibull Maximum distribution, with a shape parameter of C =

1, and plotted for 3 different values of α. The value of λl /λs was calculated so to match
the prescribed values of H and α.
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Figure 3.40: Influence of the Hurst exponent H on the on the expected normalized mean
curvature κ̄m/

p
m4 of the Weibull Minimum distribution, with a shape parameter of C = 1,

and plotted for 3 different values of α. The value of λl /λs was calculated so to match the
prescribed values of H and α.
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3.3 Closing comments

In this chapter, a study on the topography’s geometry statistics was presented. A first ap-
proach was done by looking at the available analytical solutions for Gaussian topographies—
Nayak’s theory (Nayak, 1971). This solution has provided some useful insights on the char-
acterization of rough surfaces that were later used for analysing the non-Gaussian results.
A routine for numerically obtaining the statistics of random rough surfaces was devel-
oped and, taking advantage of Nayak’s analytical solution, the framework was validated
for the Gaussian case.

The approach to non-Gaussian topographies started with the introduction of the Weibull
distribution, overviewing the principal research works on the topic and introducing the
mathematical formulation of this function. It was verified that Weibull distribution can
hold two different shapes from which one can model both negatively and positively
skewed distributions. The values of the shape parameter C were selected based on skew-
ness and kurtosis values of practical engineering surfaces emphasizing the pertinence of
Weibull distribution in the study of non-Gaussian topographies.

A numerical study on the surface statistics of non-Gaussian rough surfaces was done
using the Weibull distribution. This study intended to recover the observed statistics
for Gaussian surfaces and to analyse the impact of the new heigh distributions. Several
parameters were tested within this study yet, the extension to higher values of the wave-
length ratio λl /λs was restricted due to computational limitations. With the increase of
the PSD’s bandwidth the topography discretization increases, thus meaning an increase
in the time required to perform the summits detection as well as more available storage
to store the discrete topography data. Additionally, the algorithm for the generation of
rough surfaces (Pérez-Ràfols and Almqvist, 2019) iterates over a previous generated Gaus-
sian surface to obtain the desired height distribution and PSD, requiring considerable
more computational time. Nonetheless, the obtained results were sufficient to discuss
and explore several characteristics of this type of topographies.

The shape of the distribution of the summit heights psum (z∗) is seen to be dependent
on the height distribution and on the tendency for summits to happen on higher heights.
This leads to Weibull Maximum surfaces with significant concentrations of higher height
summits, which contrasts with the Weibull Minimum that has a predominance of lower
height summits but with a much smaller magnitude. Relatively to curvature results, while
Weibull Maximum seems to have lower curvatures values for higher height summits, rela-
tively to the Gaussian solution, the opposite is verified for Weibull Maximum. The shape
parameter has a regulator effect and it can control how far the results are from the Gaus-
sian case. The spectral properties were seen to also influence the summit heigh distribu-
tion with global trends being dependent on the Nayak’s parameter. For instance, it was
seen that Weibull Maximum follows the Gaussian trend of having a higher concentration
of higher height summits for lower α values, while in Weibull Minimum topographies
higher α translates into a higher concentration of lower height summits. Nevertheless,
the results were not very clear and might have highlighted a certain dependence on the
wavelength ratio and the Hurst exponent, rather than the Nayaks’s parameter. To clarify
this hypothesis, a small study on the dependence of the Nayak’s parameter was done
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with the focus on the effect of the Hurst exponent for the same α. It was verified that
very small differences may occur in the summit height distribution and on the curvature
results. Weibull Minimum topographies are more affected having higher concentrations
of lower height summits for higher Hurst values. An extension of this study should be
made in order to obtain more sound conclusions.
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Chapter 4

Contact modelling
with the dual mortar method

Heretofore, the focus of the work was placed on the characterization of random rough
surfaces and their statistics. The results addressed in the previous chapter are undoubt-
edly very useful sources of information, as they provide a deeper understanding of how
different parameters affect the topography features. Moreover, the statistical character-
isation, in particular the one concerned with Gaussian topographies, have been widely
used in micromechanical models of rough surfaces, which provides a simple and concise
approach to the evolution of the real contact area with the load. Models such as the GW-
McCool (proposed by J. A. Greenwood, J. B. P. Williamson, et al. (1966) and later enhanced
by McCool (1986)) or the BGT (proposed by Bush et al. (1975)) make use of the joint prob-
ability distributions of summits and curvatures of Gaussian surfaces. Nonetheless, this
type of model possesses some limitations and are restricted to very simple conditions
like frictionless and elastic contact. If one extends the problem to non-Gaussian rough
surfaces, the problem of modelling micromechanical contact becomes even more chal-
lenging, with very few research works trying to approach this topic.

With the increasing computational capacity over the last few decades, numerical meth-
ods, such as the Finite Element Method (FEM), have gained a lot of popularity for solving
mechanical problems as rough contact, for instance. This method gives an incompara-
ble flexibility level to the rough contact problems and allows to simulate several types
of boundary conditions or include other important physical phenomena such as plas-
ticity, wear, thermal effects and large deformations. Despite being the most general tool
for solving engineering problems, there are other alternative methods to FEM that are
well suited for solving rough contact problems, like the Boundary Element Method (BEM).
This method is well known for its low computational cost, since it only requires discretiza-
tion of the surfaces in contact, being the bulk modelled with a set of fundamental ana-
lytical solutions. Being such a lightweight method, it allows to drastically increase the
degrees of freedom (when compared with FEM) of the problem in analysis, and still be-
ing capable of dealing with the problem (Campañá et al., 2008). One of the drawbacks of
this model is still its limitation to elastic and frictionless problems. The interested reader
is referred to Vakis et al. (2018) for a review of the numerical methods for solving rough
contact problems explored in the last years.
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Remark 4.1 on the numerical method used for solving the rough contact problem.
Within the context of this work, only frictionless and elastic contact of self-affine ran-
dom rough surfaces is analysed. A FEM framework is used in what might seem a not so
appropriate decision since the BEM provides a way more reliable method for this type of
problem. It should be mentioned that a complete FEM framework was available for the
execution of the current work. Therefore, since the present work has a pioneering objec-
tive of studying the influence of non-Gaussian heigh distributions in rough contact, the
most convenient solution became the one that most quickly allowed the beginning of the
study. Additionally, one must note that the FEM framework is based around a nonlinear
FE implementation and is equipped with a dual-mortar contact algorithm. Such tools
provide greater robustness for treating geometric non-linearities and provide an incom-
parable precision in contact phenomena. This comes at the cost of greater computational
expense, yet ensure great modelling accuracy and robustness.

This chapter aims to present the fundamental aspects on which the FEM framework
used is based. It starts with a fundamental introduction to the continuum solid mechan-
ics for solving contact based on a dual mortar approach. Then the FE discretization is
presented as well as the required solution algorithm for solving such type of problems.
After the FEM framework used in the current work is presented, details are given on the
definition of the Representative Contact Element (RCE), roughness model, material prop-
erties, boundary conditions, meshing process and the methodologies for computing the
real contact area.

Remark 4.2 on the FEM framework for contact modelling concepts.
In the following sections, only the most important ideas of the FEM contact modelling
with the dual mortar method are introduced. For a more in-depth review of the concepts
the interested reader is referred to the following references:

• Nonlinear continuum mechanichs — Holzapfel (2000), Bonet and Wood (2008)
and Chaves (2013);

• Contact mechanics — Laursen (2003), Wriggers (2006) and Wriggers and Laursen
(2010);

• Finite element method — Wriggers (2008) and Zienkiewicz et al. (2013);
• Dual mortar methods for contact problems — Popp (2012) and Carvalho (2018).

4.1 Continuum mechanics

The classical continuum mechanics approach is considered in the current work, starting
with the description of motion and deformation kinematics, as lustrated in Figure 4.1. As-
suming that a body can accept an infinite number of configurations it should be defined,
by analysis convenience, the reference configuration. It is considered that all the configu-
rations hold the same Cartesian coordinate system. A deformable body in the reference
configuration is defined by the Lipschitz open set Ω0 ⊂Rd , being a generic point P ∈Ω0

defined as X . The spatial dimension of the problem is given by d , that for the current
framework assumes the value d = 2,3. To relate the reference configuration with a current
configuration, after a deformation, a bijective nonlinear deformation mapping function
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Figure 4.1: Reference and current configuration of a deformable body. Adapted from
Couto Carneiro (2019).

ϕ is used, viz.
x =ϕ(X , t ). (4.1)

for each time instant t . This function ϕ maps the material points between configurations
univocally not allowing the superposition nor the opening of gaps inside the material.
The displacement vector field u(X , t ) comes written as

u(X , t ) = x(X , t )−X (t ) . (4.2)

In this description of motion the X is considered the independent variables, whereas
x is the dependent variable as it a function of the displacement field u. One can then
write the position occupied by X in the current configuration through the Equation (4.2)
as the addition to the reference configuration X (t ) of the displacement field u(X , t ). If
one assumes the Lagrangian description the reference configuration is considered and
than the attention is given to X . Alternatively, the Eulerian description is associated to
the current configuration tacking a specific point x .

In the reference configuration the boundary of a deformable body is denoted by ∂Ω0

and encompasses to open disjoint subsets: the Neumann partition Γσ and the Dirichlet
partition Γu . The disjointness property is written as

Γσ∪Γu = ∂Ω0 , (4.3a)

Γσ∩Γu =; . (4.3b)

The analogue partitions in the current configuration are represented by γσ and γu .

An quintessential quantity in the deformation of continuum media is the deformation
gradient, hereafter represented by F . It is a second-order two-point tensor that gives a
fundamental measure of the deformation and strain of the body, mapping the vectors
from the reference configuration to the current configuration. One writes F as the par-
tial derivative between the the position in the current configuration x to the one in the
reference configuration X , viz.

F =
∂x(X , t )

∂X
= I +

∂u(x , t )

∂X
, (4.4)
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where the second-order identity tensor is given by I . The Cartesian components of the F
are given by

Fi j =
∂xi

∂X j

= δi j +
∂ui

∂X j

, (4.5)

where δi j is the Kronecker delta. An important measure given by the deformation gradi-
ent is its determinant denominated the Jacobian J , given by

J = detF . (4.6)

The Jacobian represent the volume change of a particle, i.e., the ratio between the volume
on the current and reference configurations,

dV = JdV0 . (4.7)

The Jacobian in the reference configuration must satisfy J = 1, and during the defor-
mation it should be observed J > 0. For a deformation where J = 1 the the volume is
preserved and it is named isochoric.

4.1.1 Strain measures
From the deformation gradient tensor F alternative strain measures can be derived. One
can split the effects of F in two components: a shape-change component (stretching and
shearing) and a rotation component, that does influence the body deformation. There-
fore, the polar decomposition theorem allow to write the deformation gradient as

F = RU =V R , (4.8)

where R is the local rotation tensor and U and V are, respectively, thee right and left
stretch tensors—symmetric positive definite tensors. 1 Two common strain measures are
the so called right and left Cauchy-Green strain tensors, denoted by C and B , respectively.
One can write these tensors as a function of F

C = F TF , (4.9a)

B = F F T , (4.9b)

that can be related to the stretch tensors by

U =
p

C , (4.10a)

V =
p

B . (4.10b)

The right Cauchy-Green tensor possesses two particularly interesting features. On the
one hand, it only depends on the reference configuration, whereas F is dependent on
both reference and current configurations. On the other hand, being related to U it is
a practical measure of the body deformations as it despises rigid body rotations. If one
wants to ensure that a zero strain rate occurs at the reference configuration, the Green-
Lagrange strain tensor E may be defined as

E = 1

2
(C − I ) . (4.11)

A similar formulation can be applied to the current configuration using the left Cauchy-
Green tensor B .

1The stretch tensors are related by the rotation tensor: V = RU RT
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4.1.2 Stress measures
Similarly to the strain measures, several stress measures can be defined within the context
of nonlinear mechanics. One of the most common is the Cauchy stress tensor σ, which
relates the surface tension in the element area, of the current configuration, to the real
internal force of the body,

d f =σ ·dAn , (4.12)

where n represents the normal vector to the current configuration’s element area dA.
Alternately, the first Piolla-Kirchoff tensor P relates the surface element area in the refer-
ence configuration to the true internal force in the current configuration, i.e.,

d f = P ·dA0N , (4.13)

where N represents the normal vector to the current configuration’s element area dA0.
This tensor is related to the Cauchy stress tensor by

P = Jσ ·F−T . (4.14)

While the Cauchy stress tensor is a symmetric (σ=σT), the same does is not verified for
the first Piolla-Kirchoff tensor. To overcome this fact the second Piolla-Kirchoff tensor S
is introduced, recovering the symmetry property, yet with a less clear interpretation,

S = F−1 ·P = JF−1 ·σ ·F−T . (4.15)

4.1.3 Constitutive laws
The relations between the strain and stress measures are named constitutive laws. The
strain energy function Ψ, or Helmholtz free-energy function, is often used to define the
constitutive laws of different types of hyperelastic materials. This function should be
defined ensuring that it is independent from rotation and it verifies the second law of
thermodynamics. For hyperelastic laws, a pivotal relation enabled by the strain energy
function is that one established between the second Piola-Kirchoff stress tensor S and
the Green-Lagrange strain tensor E ,

S =
∂Ψ

∂E
. (4.16)

The relation for each increment of stress and strain is given by a fourth-order constitutive
tensor CCC , written as

CCC =
∂S

∂E
. (4.17)

Both S and CCC are dependent on the model adopted and the type of problem in consider-
ation (eg. hyperelasticity and viscoelasticity).

4.1.4 Fundamental conservation principles
In parallel with the previous continuum mechanics description, the mechanical frame-
work is also described by the equilibrium conditions, namely the conservation of mass,
the equilibrium of linear and angular momentum and the energy balances, given by
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the fundamental laws of thermodynamics. One should not that the equilibrium of an-
gular momentum only reduces to the symmetry conditions the Cauchy and second Piola-
Kirchoff stress tensors. Since in this work the thermal phenomena can be neglected (only
considering pure mechanical systems), the energy balances are redundant relative to-
gether with the linear momentum equilibrium.

Conservation of mass

The conservation of mass dictates that any given particle in the reference configuration
must be conserved into the current configuration, even if volume changes are verified.
The classic conservation o mass writes

dm

dt
=

d

dt

∫

Ω0

ρ0 dV0 =
d

dt

∫

Ωt

ρ dV = 0 . (4.18)

where ρ0 and ρ are the body density in the reference and current configuration, respec-
tively, and m is represents the mass of the body. Since, the body density is independent
of time , through the Reynold’s transport theorem one can write

ρ̇+ρdivu̇ = 0 , (4.19a)

ρ̇0 = 0 , (4.19b)

where the operator (•̇) is the total time derivative, and div(•) is the divergence of a vector
that for the vector field u̇ writes

divu =
∂u̇1

∂x1

+
∂u̇2

∂x2

+
∂u̇3

∂x3

. (4.20)

Equilibrium of linear momentum

In this work, since the analysis is focused on quasi-static problems, the linear momentum
is null. Therefore, Newton’s second law, which relates the linear momentum with the
external forces applied to a body, is reduced to the equilibrium of the external forces.
The forces acting on body are divided in body forces b (forces per unit of volume in the
current configuration) and the surfaces traction, denoted by t (forces per unit of boundary
area in the current configuration). The equilibrium condition comes

∫

Ωt

b dV +
∫

∂Ωt

t dA = 0 , (4.21)

Considering the Gauss divergence theorem, the Equation (4.21) can be rewritten into the
local formulation of the equilibrium

divσ+b = 0 , (4.22)

where 0 denotes the null vector—recall that the divergence of a second-order tensor
results in a first-order tensor.
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4.1.5 Strong form of the continuum solid mechanics problem
Up to now, the presented concepts, namely the Neummann and Dirichlet partition, the
continuum mechanics formulation and the conservation principles, allow to formulate
the strong form of the Initial Value Boundary Problem (IBVP), for solids under finite
deformations. This formulation is established for a solid sub-domain in the current con-
figuration Ωi

t , in a time domain comprised between 0 and T , where it must be verified:

Problem 4.1 (Strong form of the IBVP of nonlinear solid mechanics).
On each sub domain Ωi

t , the momentum balance and the boundary conditions of the
problem (Neumann and Dirichlet) is defined by

divσi +bi = 0, in Ωi
t × [0,T ], (4.23a)

ui = ūi , in γi
u × [0,T ], (4.23b)

σi ni = t̄ i , in γi
σ× [0,T ], (4.23c)

In Equations (4.33) ūi and t̄ i are the prescribed displacements and surface tractions,
respectively. The previous description is expressed over time as a quasi-static system,
since rate-dependent phenomena like plasticity may also be considered.

Remark 4.3 on the formulation of continuum frictional contact.
In the following section the fundamental equations that describe a finite deformation
contact problem are introduced, considering both normal and tangential contact con-
straints. Even knowing that the numerical simulations performed assumed a frictionless
contact scenario, the following section aims to formulate a more generic problem, since
the simplifications required to consider just normal contact constraints are straightfor-
ward.

4.2 Continuum contact mechanics

The previous description was only concerned with nonlinear phenomena arising from
the continuum deformation of solid bodies (geometry and constitutive laws). Since both
Neumann and Dirichlet are established in advance, neither the prescribed displacements
or the surface traction act as a source of nonlinearity. Instead, the possibility of contact
interactions introduces additional nonlinear phenomena to the continuum mechanics
formulation. Several different contact problems can be identified from a mathematical
formulation point of view, such as the Signorini problem (contact between a rigid surface
and an elastic body), self contact and contact between multiple bodies. In this work the
general formulation of contact between two deformable bodies is assessed, allowing to
introduce the fundamental concepts of the contact modelling characteristics employed
in the used framework.

The general problem of two deformable bodies in unilateral contact is presented in Fig-
ure 4.3. The superscripts s and m stand for non-mortar and mortar bodies, respectively. 2

2The notation s and m follows that classical contact mechanics denomination of surfaces in contact,
namely, slave and master surfaces.
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Figure 4.2: Two deformable bodies in unilateral contact and the reference and current
configuration. Adapted from Carvalho (2018).

Considering that all bodies are under potential contact, a new domain boundary is intro-
duced — the denominated potential contact boundary, and represented by Γc and γc, in
the reference and current configuration, respectively. (cf. Figure 4.3). The Equations (4.24)
can be rewritten to encompass this new domain, viz.

Γi
σ∪Γi

u ∪Γi
c = ∂Ωi

0 , (4.24a)

Γi
σ∩Γi

u = Γi
σ∩Γi

c = Γi
c ∩Γi

u =; . (4.24b)

The equations apply for both bodies in unilateral contact—i ∈ [s,m]. One must distin-
guish the potential contact surface form the active contact surface Γa ⊆ Γc. It is considered
that regions that belong to the potential contact surface, but not to the active contact
surface to be part of the Neumann boundary—Γc \Γa ⊂ Γσ.

4.2.1 Contact kinematics
The potential interaction between surfaces contact bodies is defined by means of kine-
matic quantities. For reference, one of the potential contact surfaces should be used to
define such quantities. In the following description, the non-mortar potential contact
boundary γs

c has been selected o parameterise the contact kinematics—as a prelude to
the mortar-based discretisation. The fundamental measure of proximity between contact
bodies is the so-called gap function g , defined as the distance between a point xs ∈ γs

c

and its projection to the mortar side. The projection is determined along the unit normal
of the non-mortar surface η(xs, t ), resulting in the projected point x̂m ∈ γm

c , in the mortar
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Figure 4.3: Graphical representation of the gap function. Adapted from Carvalho (2018).

surface—thus, adopting a ray-tracing approach. One can define mathematically the gap
function as

g (xs, t ) =−η(xs, t ) · [xs − x̂m(xs, t )
]

. (4.25)

whereas the gap vector comes

g (xs, t ) = xs − x̂m(xs, t ) . (4.26)

Another kinematic quantity used in the description of the unilateral contact is the
relative tangential velocity. This variable has the purpose to allow the characterization of
the tangential contact. Using the difference of material velocities, the relative tangential
velocity vτ is defined as the projection of the time derivative of the gap vector ġ in the
tangential direction

vτ = (
I −η⊗η)

ġ , (4.27)

where (•)⊗ (•) is the dyadic operator that for a first order tensor writes η⊗η=η ·ηT. The
definition of Equation (4.27) is only applicable for points in contact.

4.2.2 Contact constraints
Contact conditions can be established, based on the previous defined kinematic quanti-
ties. In advance, the establishment of the contact constraints requires a compatible math-
ematical description to encompass both kinematic quantities and forces in the same
fashion. Therefore, the contact tractions are decomposed in a normal a tangential com-
ponents. For the contact traction vector acting in the current non-mortar contact region
γs

c

t s
c(xs, t ) = pηη+ tτ , (4.28)

where pη represents the contact normal pressure and tτ the tangential contact traction —
that is null for a frictionless contact setup. The linear conservation of momentum gives,
that the surface traction on the mortar side has to be the inverse of the analogue quanti-
ties in the non-mortar side, i.e.,

t m
c (x̂m, t ) =−t s

c(xs, t ) . (4.29)
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Normal contact constraints

In the normal direction the contact constraints make sure that the geometrical condition
of non-penetration is accomplished and that the interaction between surfaces has only a
compression nature (non-adhesive contact). One can look at Equation (4.25) and verify
that, due to sign convention, non-contact points hold a positive gap value g > 0 and shall
verify pη = 0. Whereas for points in contact (active contact boundary) the gap assumes
an expected null value g = 0 and the contact pressure pη < 0. This considerations lead to
the definition of the so-called Karush-Kuhn-Tucker (KKT) conditions, also refered to as
the Hertz-Signorini-Moreau (HSM) conditions, which write

g (xs, t ) ≥ 0 , (4.30a)

pη(η, t s
c) ≤ 0 , (4.30b)

pη(η, t ) g (xs, t ) = 0 . (4.30c)

These conditions apply to the points throughout the non-mortar domain xs ∈ γs
c. The

first relation guarantees the non-penetration assumption and the second imposes the ex-
istence of only negative stresses coming from contact. The third condition, often named
complementary condition, maintains the aforementioned relation between g and pη, i.e.,
for contact the pressure is necessarily negative and for a non-contact situation the contact
pressures are not verified. In Figure 4.4a a graphical representation of the KKT conditions
is shown.

Frictional contact constraints

To encompass the frictional contact in the unilateral contact case the Coulomb’s friction
law is often used. This classical approach can be used to defined the contact constraints
by introducing the coefficient of friction µ. The resultant constraint conditions can be
stated as follows

ψ(tτ, pη)) ≡ ‖tτ(xs, t )‖−µ|pη(xs, t )| ≤ 0 , (4.31a)

vτ(xs, t )+βtτ(xs, t ) = 0 , (4.31b)

β≥ 0 , (4.31c)

ψ(tτ, pη)β= 0 . (4.31d)

In this conditions two new quantities were introduced: the slip function, denoted by
ψ(tτ, pη), and the β as a scalar parameter. The Equation (4.31a) imposes that the tangen-
tial contact traction tτ is limited by a maximum value defined as the product between the
coefficient of friction µ and the contact pressure pη. From this condition and taking into
consideratio the complementary condition given by Equation (4.31d), the slip function
value splits the frictional contact formulation in two difference scenarios:

• Stick condition — ψ(tτ, pη) < 0

The tangential contact traction tτ is smaller than the limit by µpη and, from te
complementary condition, β = 0. Therefore, at the light of Equation (4.31b) the
there is no relative tangential velocity as vτ = 0.

• Slip condition — ψ(tτ, pη) = 0
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In this scenario the tangential contact traction tτ has matched the limiting value
µpη. Also, the complementary condition in pair with Equation (4.31c) imposes that
β can assume values greater zero, meaning that the Equation (4.31b) allows the
tangential relative motion to occurs, i.e., vτ > 0.

The graphical representation of the Coulomb’s friction law for one dimensional slid-
ing is show on Figure 4.4b. It should be noted that both KKT and Coulomb’s conditions
describe non-smooth and multivalued constraints at the origin.

g

pη

(a) KKT conditions

µpη

vτ

tτ

(b) Coulomb’s friction law

Figure 4.4: Graphical representation of the contact constrains in normal and tangential
directions, i.e., Karush-Kuhn-Tucker conditions and Coulomb’s friction law, respectively.
Adapted from Carvalho (2018).

4.2.3 Strong form of the finite deformation frictional contact
At this point, one can extend of equations defined on Section 4.1.5, for the generic IBVP
of continuum solid mechanics, to encompass the finite deformation frictional contact.
Therefore, for each sub-domain Ωi

t of the current configuration, the deformed solution
of this problem is stated by:

Problem 4.2 (Strong form of the IBVP of finite deformation frictional contact).
On each sub domain Ωi

t , the momentum balance and the boundary conditions of the
problem (Neumann and Dirichlet) are defined by

divσi +bi = 0, in Ωi
t × [0,T ], (4.32a)

ui = ūi , in γi
u × [0,T ], (4.32b)

σi ni = t̄ i , in γi
σ× [0,T ], (4.32c)

and the contact constraints in the normal and tangential directions,

g ≥ 0 , pη ≤ 0 , pη g = 0 , in γs
c × [0,T ] , (4.33a)

ψ≤ 0 , vτ+βtτ = 0 , β≥ 0 , ψβ= 0 , in γs
c × [0,T ] . (4.33b)
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4.2.4 Weak form of the contact formulation
The following section aims to obtain the weak formulation of the frictional contact prob-
lem, following the logical process to the final finite element model derivation. One shall
first define the solution space Ui and the weighting space Vi defined as

Ui ≡
{

ui ∈
[

H 1
(
Ωi

t

)]d
| ui = ūi in γi

u

}
, (4.34)

Vi ≡
{
δui ∈

[
H 1

(
Ωi

t

)]d
| δui = 0 in γi

u

}
, (4.35)

where H 1
(
Ωi

0

)
defines the Sobolev space, which is the space of all square integrable func-

tions on a given domain. The notation shorthand U≡Us ×Um and V ≡Vs ×Vm is em-
ployed in what follows. The application of the Principle of Virtual Work (PVW) to the
momentum balance equations (4.33) and with a virtual displacement field δu, results in

δΠint (u,δu)−δΠext (δu)+δΠc (u,δu) = 0 , ∀δu ∈V , (4.36)

where δΠint and δΠext denote the internal and external virtual work, respectively. The
symbol δΠc represents the virtual work of contact forces. All these quantities are defined
as

δΠint (u,δu) =−
∑

i∈{s,m}

[∫

Ωi
t

σi : ∇x

(
δui

)
dΩi

t

]
, (4.37a)

δΠext (δu) =−
∑

i∈{s,m}

[∫

Ωi
t

bi ·δui dΩi
t +

∫

γi
σ

t i ·δui dγi
σ

]
, (4.37b)

δΠc (u,δu) =−
∫

γs
c

t s
c

(
δus −δûm)

dγc . (4.37c)

In Equation (4.37a) the operator (•) : (•) denotes the tensor double contraction, that for a
two generic second-order tensors A and B writes

A : B ≡
∑

i

∑
j

Ai j Bi j . (4.38)

In turn, the spatial gradient of a virtual displacement vector field ∇x (•) is obtained by

∇x (δu) =
3∑

i=1

3∑
j=1

∂δu j

∂xi

ei ⊗e j . (4.39)

The symbol δûm used in Equation (4.37c) represents the virtual displacement of the
projected point in the mortar side.

Enforcement of the contact constraints

The mortar finite element method for contact often pursues a Lagrange multiplier-based
approach to enforce the contact constraints. This technique is applied to the current
problem by defining the Lagrange multiplier vector λ as the negative contact traction on
the mortar side,

λ=−t s
c . (4.40)
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Similarly to the decomposition of the traction vector into a normal and a tangential com-
ponents (cf. Equation (4.28)), the Lagrange multiplier vector λ can also be decomposed
in a same fashion,

λ=ληη+λτ . (4.41)

Equation (4.40) allows to rewrite the Equation (4.37c), i.e., the virtual work due to contact
interactions as

δΠc (u,δu) =
∫

γs
c

λ
(
δus −δûm)

dγc . (4.42)

In order to formulate the weak form of a mortar-based frictional contact problem, an
appropriate solution space for the Lagrange multiplier has to be defined. Denoting the
solution space of the Lagrange multiplier vector λ as M(λ) it is defined as the dual space
of the restriction of the solution space Us to the potential contact boundary γs

c, con-
strained to ensure the non-penetration and frictional constraints in a weak sense. The
interested reader is referred to Hüeber (2008) for a complete mathematical definition of
the solution space of λ. Being the contact constraints imposed as variational inequities
3, one can write the weak form of IBVP for frictional contact as follows:

Problem 4.3 (Weak form of the IBVP of finite deformation frictional contact).
The solution for the kinematically admissible displacement field u ∈U and the Lagrange
multiplier vector λ ∈M(λ), for all t ∈ [0,T ], must verify the PVW

δΠint (u,δu)−δΠext (δu)+
∫

γs
c

λ
(
δus −δûm

)
dγc = 0 , ∀δu ∈V , (4.43)

∫

γs
c

g
(
δλη−λη) dγs

c ≥ 0 , ∀δλ ∈M (λ) , (4.44)

∫

γs
c

vτ · (δλτ−λτ) dγs
c ≤ 0 , ∀δλ ∈M (λ) . (4.45)

Remark 4.4 on the simplification of the finite element formulation.
As mentioned in Remark 4.3 the previous description was focused on a more generic
contact problem formulation, with both normal and tangential contact constraints. In
the following section, the finite element approximation is introduced considering only
the normal contact constraints, since the numerical works only focus on such case.

4.3 Finite element approximation

Having derived the weak form of the finite deformation contact problem one can dis-
cretize such formulation in the light of the finite element method. The description shall
focus only on the fundamental concepts of the mortar-based FEM for contact problems
and the interested reader is referred to one of the sources presented in Remark 4.2 for
more comprehensive treatments. The finite element discretization generally concerns ob-
taining an approximate solution for the displacement field (the primary value). With this

3The reader is referred to Kikuchi and J. T. Oden (2001) to a more in-depth approach of the topic.
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approxmation, the finite dimensional spaces for both displacement and virtual displace-
ment fields came denoted by Uh ⊂U and Vh ⊂V. 4 The FEM approximation implies the
division of the domain Ω=Ωs

t ∪Ωm
t in ne subdomains Ωe ⊂Ωh , that verify

Ω≈Ωh ≡
ne⋃

e=1
Ωe . (4.46)

The solutions should be found at discrete points that correspond to the nodes that con-
nect with each other forming a finite element mesh. The finite dimension subsets Uh

and Vh are composed by basis functions with compact support and meet the differentia-
bility requirements required by the weak form, cf. Equation (4.43). This approximation
functions, also called interpolation or shape functions, are expressed in a element basis,
being mapped to the parameter space:

ξ= (ξ1, ...,ξd ) . (4.47)

Using an isoparametric approach, it dictates that these functions are used to parametrize
both displacement solution and the geometry in each subdomain Ωe . One shall men-
tion that throughout this work the mortar approach is completely independent of the
remaining quantities (eg. internal loads and external forces).

The field variables and boundary geometry are interpolated using shape functions of
dimensions d−1. Contact interactions are evaluated at γi

c, which means that a convenient
relation can be established between the finite element discretization and the contact
interface elements. One writes the boundary geometry interpolation as

xs ≈ {
xs}h

∣∣∣
{γs

c}h =
ns∑

k=1
N s

k

(
ξs)xs

k , (4.48a)

xm ≈ {
xm}h

∣∣∣
{γm

c }h =
nm∑
l=1

N m
l

(
ξm)

xm
l , (4.48b)

and in a same fashion the field variables

us ≈ {
us}h

∣∣∣
{γs

c}h =
ns∑

k=1
N s

k

(
ξs)ds

k , (4.49a)

um ≈ {
um}h

∣∣∣
{γm

c }h =
nm∑
l=1

N m
l

(
ξm)

dm
l . (4.49b)

In this formulation, ns and nm represent the number of nodes in the non-mortar and

mortar sides, accordingly. The symbol
{
γi

c

}h
denotes both discretized subdomains (mor-

tar and non-mortar). The shape functions are denoted by N (ξi ) and x and d, the nodal
coordinates and displacements, respectively. In the current work, the Lagrange multi-
plier vector λ is approximated based on the Lagrange multiplier space Mh ⊂M , and is
obtained by interpolation on the non-mortar side, writing

λ≈λh =
nλ∑
j=1
Φ j

(
ξs)z j , (4.50)

4Henceforth, the superscript h will be used to represent a FE discretized variable.
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where Φ j denotes the Lagrange multiplier interpolation function, nλ is the number of
nodes on the non-mortar side with additional degrees of freedom due to the Lagrange
multiplier, and z j si the nodal values of the Lagrange multipliers.

By introducing the finite element mortar discretization in the weak form of the problem
(Equation (4.43)), two fundamental entities of the mortar methods arise: the so-called
first mortar coupling matrix D and the second mortar coupling matrix M. The matrix
elements are defined as follows

D j k =
∫

{γs
c}h
Φ j (ξs)N s

k (ξs) dγs
c , for j = 1, ...,nλ , k = 1, ...,ns ; (4.51)

M j l =
∫

{γs
c}h
Φ j (ξs)N m

k (ξ̂m) dγs
c , for j = 1, ...,nλ , l = 1, ...,nm . (4.52)

It should be noted that the first mortar coupling matrix D is only related to the non-
mortar quantities, whereas the second matrix M involve terms of both non-mortar and
mortar sides. The evaluation of these mortar integrals requires the application of intricate
numerical integration schemes and some examples can be found in Popp (2012), Farah
et al. (2015) and Carvalho (2018). In the particular problem setup considered in this work,
the element-based integration of the mortar integrals exhibits superior computational
advantage without severely impinging upon the accuracy (Farah et al., 2015)

Remark 4.5 on the applicability of the second coupling matrix.
In the numerical studies performed within the context of this work, only the non-mortar
side has Lagrange degrees of freedom to be determined (node displacements and La-
grange multipliers values), since the non-mortar side is considered to be flat and rigid.
With this in mind, the second mortar coupling matrix M does not have to be computed
since it encompasses the Lagrange multiplier values on the mortar side. This simplifi-
cation introduces a significant improvement in computational performance. One can
look at the mortar Lagrange multiplier values at the mortar side as prescribed quantities
since one knows in advance their value—zero.

4.3.1 Dual Lagrange multipliers and discrete constraints

The discrete Lagrange multiplier space Mh has to be properly defined. Due to the in-
tricate mathematical formulation, the current section only aims to present the general
ideas. The classical approach to the choice of Lagrange multipliers is the standard La-
grange multipliers where the boundary displacement interpolation functions N s

j are used
as Lagrange multiplier interpolation function Φ j . This option generates global couplings
between displacements and Lagrange multipliers. An alternative approach, proposed by
Wohlmuth, 2000, is to use the dual Lagrange multipliers. This method relies on the so-
called bi-orthogonality condition, that writes

∫

{γs
c}h
Φ j (ξs)N s

k (ξs) dγs
c = δ j k

∫

{γs
c}h

N s
k (ξs) dγs

c . (4.53)

This approach introduces two main advantages. First, the first coupling mortar matrix
D becomes diagonal, localizing the coupling conditions. Second, normal contact con-
tstraints of the weak form Equation (4.44) becomes decoupled, that becomes a set of
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point-wise conditions for all nodes in the non-mortar side — j = 1, ...,ns. It writes

g̃ j ≥ 0 , (4.54a)

zηj ≥ 0 , (4.54b)

g̃ j zηj = 0 . (4.54c)

The discrete weighted gap, denoted by g̃

g̃ j
(
ξs)=

∫

{γs
c}h
Φ j

(
ξs)g h (

ξs) dγs
c . (4.55)

The simplification of the contact problem only to normal contact constraints implies that
the tangential component of the Lagrange multiplier vector λτ becomes null.

Even though the application of the dual interpolation functions in the definition of the
weighted gap leads to the popular pointwise decoupling of the contact constraints, it is
often useful to employed distinct weighting functions, due to the positivity-requirement
classical in computational contact mechanics. In this work, a Petrov-Galerkin approach
is pursued in the definition of the weighted gap, by using the standard shape functions as
gap weighting functions. This permits avoiding the negative part of the dual interpolation
functions and thus eliminate the possibility to detect false positive active contact nodes
(Popp et al., 2013).

4.3.2 Primal-Dual active set strategy
The previous formulation for the normal contact problem has additional sources of non-
linearities when comparing with the classic non-linear solid mechanics problem, due to
the contact inequality constraints. This adversity is treated by reformulating these nodal
constraints using the Nonlinear Complementary (NPC) function. For a frictionless contact
the NPC function in the normal direction is defined as Hüeber and Wohlmuth (2005)

Cη

j (d, z) = zηj −max
{

0, zηj − cηg̃ j

}
, cη > 0 . (4.56)

where cη is the normal complementary parameter, which proves to have influence in the
convergence rate and not in the precision of the method. Therefore, the NPC function
can be used to replace the Equations (4.54) into a more convenient form, i.e., by verifying
the following

Cη

j = 0, j = 1, ...,ns . (4.57)

In Figure 4.5 the NPC function is presented, where one sees that its is equivalent to
the KKT conditions. One can also easly distinguish between active and inactive contact
branches. The biggest advantage of this type of constraints imposition is that it allows
treating the KKT conditions as non-linear equations, passable to be soaked into a loop
that leads with all sources of non-linearities of the problem.

4.4 A contact homogenisation approach to rough contact

This section outlines the computational contact homogenisation approach to rough con-
tact, based on the dual mortar-based finite element implementation described earlier.
This strategy relies on the definition of the Representative Contact Element to be pre-
sented in detail in the next sections.
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Figure 4.5: Nodal complementarity function Cη

j for the normal contact constraints (with

cη = 1.). Adapted from Carvalho (2018).

4.4.1 Representative Contact Element
The modelling of micromechanical contact problems with the Finite Element Method
requires the definition of the so-called Representative Contact Element (RCE). The RCE
shall be chosen such that it is capable represent the macro behaviour of the system in
study. Therefore, parameters and dimensions have to be established in order to obtain
an RCE with statistical representativeness.

RCE Geometry

One must start by defining the geometry of the RCE. The class of contact problems stud-
ied in this work are encompassed by the same class the Signorini type of problems. These
simplify the contact problem to two bodies in contact where one of them is considered
rigid and the other deformable and elastic. The deformable body (RCE) is considered to
be the one that possesses the rough surface and contacts against a rigid flat surface. The
RCE assumes a form of a parallelepiped for the tridimensional case or a rectangle in a
bi-dimensional problem, with a rough boundary in one of the faces. The dimensions of
RCE will be defined ahead. A schematic representation of the RCE for both 2D and 3D
cases is presented in Figure 4.6.

RCE parameters

A representative element for rough contact has to be established in order to perform
numerical studies with the guarantee that results can be representative of the case in
study—at least on average. Some studies on the representativeness of a rough element
have been made in the past years, yet only concerning Gaussian topographies. Yastrebov,
Anciaux, et al. (2012) have performed numerical studies on a representative element
for rough surface contact problems, yet concerning a Boundary Element Method (BEM)
framework, resulting in the definition of Representative Self-affine Surface Element (RSSE).
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Figure 4.6: Numerical model setup used for simulation the RCE with the FEM, in two and
three dimensions. Adapted from Couto Carneiro (2019).
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Within the context of FEM, up to recently, only studies concerning the influence of the
height of the RCE blocks have been made (Temizer and Wriggers, 2008; De Lorenzis and
Wriggers, 2013). More recently in the work of Couto Carneiro (2019), posteriorly extended
in Couto Carneiro et al. (2020), the definitions of a statistically representative contact
element have been assessed with focus on 2D RCEs.

The goal of the previous works was to define a set of parameters, such that they can
consistently give the response of the prescribed system, defined by the wavelength ratio
λl /λs and Hurst exponent H , considering fractal-only surfaces with a Gaussian heigh
distribution. The parametric studies focused on the convergence with mesh size, length,
height and number of realisations. All the numerical procedures are conveniently de-
scribed in both works and the interested reader is referred to them for more details. In
short, it resulted in the definitions of a set of rules of thumb that intent to describe a
complete 2D RCE, in the case of Gaussian profiles considering only the elastic behaviour
and subjected to normal, frictionless and non-adhesive contact:

λs/∆x ≥ 8 ; (4.58a)

L/λl ≥ 8 ; (4.58b)

Hsub/σz ≥ 160 ; (4.58c)

Hr/σz ≥ 40 ; (4.58d)

Number of realizations ≥ 20 . (4.58e)

The first condition (4.58a) refers to the mesh size of the RCE and is presented in terms
of the smallest wavelength λs since this is the most affected by the discretization of the
mesh. The condition states that the mesh should be such that mesh increment ∆x is at
least 8 smaller than λs . The following conditions (4.58b) and (4.58c), refer to the length L
and height of the substrate Hsub of the 2D RCE, respectively. The length size is measured
in relation to the longest wavelength and it is proposed that it must be equal or superior
in 8 times the λl value. In turn, the height of the substrate is referred in order to the stan-
dard deviation of heights or RMS height, if one recalls that zrms,x =σz . The height of a fine
resolution near the contact interfaces Hr is also defined in relation to the RMS height—to
resolve the high-stress gradients. One must remember that from Equation (2.16a) and
(2.34a) the standard deviation of height can be written as σz =p

m0—this nomenclature
is also used is works on this field, such as in Couto Carneiro et al. (2020). Finally, a mini-
mum number of 20 realizations is considered to be sufficient to overcome the effects of
randomness in each individual realisation.

Remark 4.6 on RCE parameters for non-Gaussian rough surfaces.
As it has been recurrent in this research topic, past experiments have been made consid-
ering Gaussian surfaces. Due to the lack of studies on the field of non-Gaussian rough
surfaces, one should accept the Gaussian results as a decent approximation of the RCE
parameters in this case. In this study, Weibull rough surfaces are considered and then it
is believed that no loss of representativeness should be seen for values near the Gaussian
case, such as C = 3,602 and C = 2. If extreme cases are considered, like C = 1 representa-
tiveness may be lost, yet the relative behaviour of the surfaces is still captured, fulfilling
the main goal of the study.
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4.4.2 Boundary conditions
In order to obtain a feasible set of boundary conditions to the RCE a few considerations
have to be made—the further advances should be read with the help of Figure 4.6. Within
the dual mortar methodology, the rough boundary is picked as the non-mortar boundary
while the mortar side is set as the rigid flat boundary. This definition allows to explicitly
obtain the values of the Lagrange multipliers for the rough contact, thus directly leading
with the pressure distribution due to contact. In order to follow the concept of the RCE,
periodic conditions have to be assigned to the faces of the deformable block. This princi-
ple is valid inasmuch as the micromechanical problem continues relatively small to the
macroscopic situation that is trying to replicate. The periodicity must also be guaranteed
in the rough surface, keeping the consistency of the imposed boundary conditions—a
condition that is already satisfied by the nature of the topography generation process
based on FFT. Finally, the periodic condition implies, in the boundaries of the deformable
block, denoted by ∂Ωs

+ and ∂Ωs
−, for positive and negative boundaries, respectively, tthe

following conditions for displacements

u(x−) = u(x+), for x+ ∈ ∂Ωs
+, and x−(x+) ∈ ∂Ωs

− , (4.59)

and for the surfaces tractions it must be verified

t (x−) =−t (x+), for x+ ∈ ∂Ωs
+, and x−(x+) ∈ ∂Ωs

− . (4.60)

Relatively to the top boundary of the deformable block, here denominated ∂Ωs
ext the

same amount of vertical displacement ū3 must be verified in all nodes on this domain.
To avoid rigid body motions in planar directions, that can occur in certain less stable
force balances, an arbitrary node xfix ∈ ∂Ωs

ext is considered to be only able to move verti-
cally (perpendicularly to the contact interface). The rough block is loaded by a uniform
pressure p0 also at the top boundary, which is incrementally added to the model during
the solving stage. For each increment, the equilibrium of the model is founded and the
solutions for a certain fraction of p0 determined—this incremental procedure is funda-
mental for obtaining the area-pressure curves, as it will be further investigated on the
numerical studies discussion. The contact condition requires that, at least, one node is
in contact in the initial configuration. Such condition is imposed when pre-processor the
realization, imposing that at least a bit portion of the rough surface is penetrating the
flat boundary—several strategies can be used, for instance, a certain fraction of the RMS
heigh or a fraction of the maximum summit/peak of the topography. The 2D simulations
follow the same conditions here exposed with the additional plane strain condition—
one of the dimensions is considered greater than the others, e.g. the case of a strong
anisotropic topography.

4.4.3 Materials
Due to the nature of the Signorini problem only the deformable body has a material
assigned. In this work, only the elastic domain was considered and in order to keep a
practical application of the results the conventional properties of the steel were consid-
ered. Note that, in Chapter 2 both Figure 3.14 and Table 3.2 the skewness and kurtosis
values were analysed for machined surfaces, where steel as a predominance. The elastic
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properties of the deformable body are presented in Table 4.1. Within the nonlinear finite
element implementation employed in the present work, elasticity is modelled by means
of the Hencky material model. To the rigid body no material needs to be assigned as the
rigid condition implies the consideration of infite stiffness to the contact problem.

Table 4.1: Elastic properties of the rough block used throughout the tests.

Material E /GPa ν

Steel 210 0.3

4.4.4 Roughness properties
As it was seen in Chapter 2 the topographies in the study are considered to be self-affine
being the fractal features of the surface assigned through the Hurst exponent H and the
wavelengths that limit the PSD, i.e., the large and short cut-off wavelength λl and λs and
the roll-off frequency λr —cf. Figure 2.12 for a recall on these quantities. In the previous
numerical studies of the statistics of non-Gaussian rough surfaces, a very convenient
simplification was done in order to reduce the degrees of freedom of the studies: it was
considered only the fractal part of the PSD. This simplification allows to use the wave-
length ratio λl /λs as an input parameter the second input parameter to define the PSD
of a rough surface. The ratio λl /λs can also be used to define specific properties of a
rough topography like the RMS slope, which has a crucial role in controlling the overall
smoothness of the surface. This parameter has a crucial importance on the convergence
of the FE mesh. A common procedure is to prescribe a certain value of the RMS slope
and to compute the scaling factor that satisfies it through the spectral moments. The ex-
pression required for the surfaces’ case have been already exposed in Section 3.2.5, from
Equations (3.35) to (3.37). In a similar fashion, for a rough profile, the power spectral
density of a self-affine, given by Equation (2.50), can be written in its discrete version as

Φ̂θ
[

k = p

N
Ωs

]
=





Ĉ ′
0 , kl ≤ k < ks

Ĉ ′
0

(
kr

k

)1+2H

, kr ≤ k ≤ ks

0 , elsewhere .

(4.61)

where Ĉ ′
0 is a discrete scale constant. One should note that the discrete PSD is obtained

by sampling the continuous version and dividing it by the sampling length ls . Therefore,
for a aliasing free samples it follows

Φ̂θ[q] = 1

ls
Φθ

( q

N
Ωs

)
, q = 0,1,2, ...., N /2 . (4.62)

Using this relation in the definition of the spectral moments (Equation (2.32)) one can
obtain the analytical expressions of the zeroth, second and fourth order moments, needed
to compute α, as it was written in Equation (2.37). The spectral moments and the Nayak
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Figure 4.7: LINKS logo.

parameter come written for a rough profile as

m0 =
lsĈ ′

0kr

π

(
1−ξ+ 1−ζ−2H

2H

)
; (4.63a)

m2 =
lsĈ ′

0k3
r

π

(
1−ξ3

3
+ ζ2−2H −1

2−2H

)
; (4.63b)

m4 =
lsĈ ′

0k5
r

π

(
1−ξ5

5
+ ζ4−2H −1

4−2H

)
; (4.63c)

α=
(
1−ξ+ 1−ζ−2H

2H

)(
1−ξ5

5
+ ζ4−2H −1

4−2H

)/(
1−ξ3

3
+ ζ2−2H −1

2−2H

)2

. (4.63d)

In this equations the wavelengths are arranged in a form of wavelength ratios being
ξ = λr /λl and ζ = λr /λs . One verifies from these equations that, despite being used for
the computation of the parameters, both the scaling factor Ĉ ′

0 and the sampling length ls

are not contained in the α analytical expression, being written only as a function of the
wavelengths ratios and the Hurst exponent H . Recent studies have used surfaces with
RMS slope of 0.1, verifying good physical results (Pei et al., 2005; Yastrebov, Anciaux, et al.,
2012, 2015), being this value also employed in the numerical studies of this work.

4.4.5 Numerical framework for rough contact analysis
In this section, the focus is placed on the fundamental aspects of the FEM modelling of
rough contact based on the dual mortar approach introduced previously. The numerical
studies were based on two different tools that combined together provide a feasible and
versatile framework for such class of problems. The FEM calculation process is carried out
by the Fortran in-house code denominated LINKS (Large Strain Non-Linear Analysis of
Solids Linking Scales) (Figure 4.7) developed by the research group CM2S (Computational
Multi-Scale Modelling of Solids ans Structures)—details on this code can be found in Reis
(2014) and Lopes (2019), for instance. This code can robustly deal with several advanced
computational problems, such as contact, and is equipped with an implicit solver for
small and large strains, capable of modelling general constitutive models. The rough
contact problem is specifically treated with a pre- and post-processor named LINKS-RC,
and implemented in Python—for details on the implementation the reader is referred to
Couto Carneiro (2019). This tool has already been introduced in Section 3.1.2 where the
generation of Gaussian and non-Gaussian rough topographies was tackled. In fact, the
topography generation process constitutes a pre-processing stage per si, yet additional
steps are required for setting up the model, as will be described in the current chapter.



4. Contact modelling with the dual mortar method 119

Numerical generation
of rough topography

Finite element
mesh generation

Writing of LINKS
input files

Post-processing

Numerical simulation

Nodal output variables
and contact area

LINKS-RC

LINKS

Figure 4.8: General framework of numerical tools used to process rough contact.

An overview of the framework for rough contact is schematically shown in Figure 4.8.
As seen, the process starts with the LINKS-RC module where the numerical generation
of random rough surfaces is done, being followed by a FEM mesh generation process.
The LINKS input file can be then generated for several configurations with different to-
pography properties. Is also possible to obtain different realizations for the same rough
topography set of features, allowing to overcome the random character of these prob-
lems. After the numerical solution is obtained with LINKS, both contact area fraction and
a list of nodal output variables are recovered and can be then treated with LINKS-RC’s
post-processing features.

4.4.6 Meshing process
Micromechanical contact of rough surfaces, due to its dependence on the geometric
details, requires particular attention to the mesh generation process. In this type of phe-
nomenon, the majority of the interesting mechanical behaviours occurs in a thin bound-
ary layer near the contact interface, therefore requiring a really fine discretization in order
to capture the most interesting results. Nevertheless, the mesh does not have to be as
fine throughout all the RCE height as the one used to discretise the rough features. To
embrace these requirements and reduce the computational cost, as a more discrete mesh
also translates into a more expensive numerical study, the mesh should get coarser as
one moves away from the rough boundary. Different strategies can be employed to per-
form such size reduction. One can simply apply a gradient on the element characteristic
length reducing this dimension along with the height of the block. Alternatively, struc-
tured mesh transitions are typically applied to this type of problems, such as the ones
used in Stupkiewicz (2007) and Yastrebov (2013). These transitions take advantage of
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compacting schemes techniques merging a certain number of elements to a single one,
adopting different configurations according to the element implemented.

In the current work, two different strategies are used to optimize the transition scheme
having in mind two main goals. On one hand, the reduction of transitions layers, i.e., the
capacity to transition the number of elements in the small number of layers possible. On
the other hand, the reduction of the overall number of elements used in the transition,
thus reducing the computation cost. For the 3D simulations a transition scheme 9 to 1
was used, based on 3 different type of elements. The transitions layer is constituted by:

• 8-node hexahedral element (HEXA8-FBAR) — 1 element;

• 5-node pyramidal element (PYRA5) — 4 elements;

• 6-node wedge element (WEDGE6) — 4 elements.

The remaining elements of the 3D mesh are also the hexahedral ones (HEXA8-FBAR). In
the 2D case, the transition scheme is 3 to 1 yet with a more simple methodology since only
one type of element is used. The 2D mesh is completely made out of 4-node quadrangular
bilinear elements (QUAD4-FBAR). In Figure 4.9 two examples of the FE meshes generated
for both 2D and 3D cases are presented. The type of elements employed in each mesh
is depicted as well as the transition scheme. The 3D FE transition scheme is detailed in
Figure 4.10.

It should be noted that F-bar elements in order avoid the occurrence of volumetric
locking, which is more likely to happen for large strains in low order standard finite el-
ements, ensuring more precise results. The F-bar techniques consists in splitting the
deformation gradient in a volume-preserving component (isochoric) and a purely dilata-
tional component (volumetric). While the isochoric component is computed in the Gauss
point where the stress tensor will be established, the volumetric component is computed
at the centroid of the element. One should also resemble that the problems appointed
before could have been also solved if high order elements were considered. Nonetheless,
the computational cost associated with this option is considerable and the more simple
approach of linear elements favours the selected choice.

Finally, one should mention that the FE mesh in the rough boundary has to be the
smoothest as possible to favour the good application of the numerical method. Yet, one
cannot refine the generated surface by increasing the number of elements, neither by
interpolating more points in between the generated ones, since it would not preserve
the surfaces imposed PSD. A consistent discretization has to be employed during the
numerical framework and therefore the smoothness of the mesh is defined in the surface
generation process.

4.4.7 Computation of the real contact area
A fundamental aspect of the FE methodology for analysing the mechanical behaviour
of rough contact is how the real contact area is evaluated. To obtain the evolution of
the real contact area as a function of the external load applied to the RCE its value has
to be calculated for each load increment. A first approach to the real contact area is
that the real contact area can be computed as the fraction of the nodes that have non-
zero pressure, for a given increment. Despite being a geometrically correct approach it
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(a) 2D FE mesh

(b) 3D FE mesh

Figure 4.9: Illustrative examples of the finite element meshes generated by the LINKS-RC
module for both 2D and 3D cases.



122 4.4. A contact homogenisation approach to rough contact

(a) 1 element HEXA8-FBAR (b) 4 elements PYRA5 (c) 4 elements WEDGE6

Figure 4.10: Finite elements employed in the mesh transition.

is highly dependent on how refined the rough boundary is. Two different strategies can
be used to compute the numerical real contact area. The first one relies on summing all
the boundary areas of the nodes that are in contact, i.e., belong to the active set, such
that the contact area fraction is the proportion of active nodes relative to the total num-
ber of rough nodes. This area value is commonly called node-based, being also referred
as upper bound area. The second strategy for computing the real contact area is the so-
called element- or segment-based and states that the area of an element is summed only
if all the nodes of the element belong to the active set. This methodology tends to un-
derestimate the real contact area, justifying the parlance lower bound. To illustrate both
methodologies the Figure 4.11 is introduced, where one can see that both techniques
can lead to significatively different values of area. A practical measure to obtain a more
accurate value is by simply average the upper and lower bound. This methodology that
was implement in this work due to is simplicity and applicability. One must note that
further developments in this topic, namely, the work of Yastrebov, Anciaux, et al. (2017a),
a correction to the node-based area is proposed. Denoting the node-based area by Anode,
the discrete contact perimeter by Sd and the grid spacing (equal in both directions) by
∆x, the correct area Acor comes as

Acor = Anode −
π−1+ ln2

24
Sd∆x . (4.64)

In the previous equation, the contact perimeter Sd is computed as the product between
∆x and the number of transitions between active and inactive nodes in both directions of
the contact mesh. This strategy strongly accelerates the convergence of the real contact
area, yet is only applicable to 3D problems.
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Real contact area incrementInactive NodeActive Node

Node-based

Upper Bound

Segment-based

Lower Bound

Figure 4.11: Strategies for computation of the real contact area. In this example the
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Chapter 5

Finite element analysis
of non-Gaussian rough contact

In the previous chapter, a review on the FEM approach to rough contact adopted in the
present work was presented. The particular problem to be analysed was also carefully
addressed, highlighting the principal characteristics of the contact problem to solve, in-
troducing the notion of RCE, meshing techniques and area computational strategies. The
required conditions to perform FE studies on the elastic and frictionless rough contact
were depicted, as well. The current chapter aims to address the numerical work that has
been done on the characterization of the micromechanical behaviour of non-Gaussian
rough surfaces, using the FEM framework. The results obtained are discussed around the
real contact area evolution and the contact pressure distribution. For this reason, an ini-
tial section is dedicated to the introduction of the phenomena based on the well-known
Gaussian results. The focus is then allocated to the numerical studies, starting with the
initial mesh convergence study to validate the framework, and delving into more specific
studies to explore the effects on non-Gaussianity and the topography’s parameters.

5.1 Contact area evolution and contact pressure distribution

When to rough surfaces first get in contact, only a few regions on the interface are actually
in touch. Consequently, the observed real contact area is smaller than the apparent, or
nominal, contact area. For several applications, the knowledge of the real contact area is
crucial, therefore it is important to characterize its relation with applied external pressure.
It is known that the contact between two elastic Gaussian rough surfaces under friction-
less and non-adhesive conditions can be reduced to the contact of an equivalent rough
surface with a rigid flat plane (K. L. Johnson, 1985). In the past decades, the modelling of
rough contact has attracted several concerted efforts, with many authors focusing on this
topic. Since the contact of rough surfaces is inherently three-dimensional, the majority of
the analytical solutions are proposed in 3D, as well. Also, the majority is concerned with
Gaussian rough surfaces, and do not contemplate other types of height distributions. The
first class of analytical models, named asperity-based models have started with the work
of J. A. Greenwood, J. B. P. Williamson, et al. (1966), commonly named Greenwood and
Williamson model (GW), that assumed summits as spherical asperities with the same
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radius of curvature. Using Hertz’s theory, the contact area and load, between surfaces
and reference plane, can be obtained as a function of the separation. This work was en-
hanced by McCool (1986) (GW-McCool model) to incorporate the results from Nayak’s
theory (Nayak, 1971) and to more accurately compute other relevant quantities. The work
of Bush et al. (1975) (BGT) proposed the most general asperity-based model, which has
taken into account the change of curvatures of the asperities with the height, by mod-
elling the summits as elliptic paraboloids. A simplification to this model was introduced
by J. Greenwood (2006), originating the Greenwood-Williamson Simplified Elliptic model
(GW-SE), by approximating the asperities as spheres with an effective average curvature.
All these models are only able to predict area values on a small range of lower pressures,
in a region known as light-contact. In Figure 5.1 the contact area evolution predicted by
the introduced models is presented, for three different values of Nayak’s parameter α. In
this figure, one verifies the typical linear behaviour associated with Gaussian topogra-
phies that only remains true within very small ranges of external pressure. This linearity
is commonly associated with the superposition of the contact of the asperities since it is
known from Hertz’s theory that a single asperity in contact does not have a linear contact
area evolution. However, within a rough surface and for very small pressure increments
the balance between the contribution of all asperities in contact results in an approxi-
mately linear evolution. One also sees that the contact area evolution curves are strongly
associated with the value of α, with higher area values being predicted for lower α for
the same normalised external pressure. This effect is strongly related to the distribution
of the summit heights distribution, as was seen in Figure 3.1. This is a classical result of
asperity-based models of Gaussian surfaces and has been proved numerically (Yastrebov,
Anciaux, et al., 2015).

Despite relying upon several approximations, one of the drawbacks of this type of mod-
els is not being capable of modelling full-contact conditions, i.e., the contact area evo-
lution up to the nominal value of area is achieved. The Perssons’s model, introduced
in Persson (2001a,b), is the most acknowledged model inside the contact fractal models.
This model has the ability of modelling multi-scale roughness features and does not rely
on Hertz’s theory for point contact. It is based on the evolution of the contact pressure
distribution with increasing magnification and despite the criticism on the original for-
mulation, the model gives an appropriate trend on the contact evolution on a Gaussian
rough surface. In Figure 5.2 the evolution of the contact area is depicted up to full-contact
alongside state-of-the-art numerical results from Yastrebov, Anciaux, et al. (2017b). One
verifies that a certain underestimation of the real contact area is associated with this
model, yet the evolution trend is almost perfectly captured. The evolution of Gaussian
topographies up to full-contact in Gaussian topographies is represented by a non-linear
behaviour, verifying a reduction in the area growth rate with the increase of the exter-
nal pressure. This can be easily seen by looking at the asymptotic evolution of Persson’s
model that requires almost half of the external pressure to reach full contact conditions
when comparing with the original model curve.

The Persson’s model can also predict the contact pressure distribution for a given value
of external pressure. The quantity gives important information on the behaviour of the
surfaces in contact and should reflect the area at a given value of external pressure. In
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Figure 5.3 the contact pressure distribution for a given value of four different values of
external pressure is presented. It is seen that with the increase of the external pressure,
the integral of the probability density of contact stresses increases and tends to move
towards higher stress values. In fact, the higher the external pressure the more similar to
a normal distribution the contact pressure distribution becomes, as it tends to reproduce
the shape of the height distribution.
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Figure 5.1: Comparison of the real contact area evolution between different asperity-
based models for different values of Nayak’s parameter α, in the light-contact region.
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Figure 5.2: Comparison of the real contact area evolution between Persson’s model and
numerical results from Yastrebov, Anciaux, et al. (2017b), in the full-contact region.
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5.2 Mesh convergence study on the 2D FEM Analysis

The first 2D FEM study targets the mesh convergence of the real contact area fraction of
non-Gaussian surfaces. Despite the purpose of the current work is not the definition of
an RCE for analysing non-Gaussian rough surfaces, the mesh discretization has some ca-
pacity of changing previous observations (Couto Carneiro et al., 2020). This thesis comes
especially due to the fact that surfaces with positively skewed height distributions (as the
ones produced by the Weibull Minimum distribution) tend to have higher summits (with
higher curvatures), that may suffer large deformation and in which the poor discretiza-
tion of the mesh may be significant. In addition, is also paramount to verify that the
framework for FE analysis shows convergence with mesh refinement, under the present
circumstances. 1 Therefore, as a starting point for the numerical studies, the evaluation
of the effect of the mesh discretization was assessed by means of the parameter λs/∆x.
Within this type of numerical studies, two distinct blocks can be outlined to describe the
study setting. The first block is concerned with the roughness model of the surface, i.e.,
the properties that completely define the PSD and the height distribution of the rough
surface. In turn, the second block is dedicated to the definition of the RCE in use and
it contains the properties that have been shown in Section 4.4.1. These two blocks con-
stitute the conditions of the 2D numerical study on the mesh convergence and for this
study were set to: 2

Study 5.1 (Conditions of the convergence 2D FEM study).
Roughness Model

RMS slope: z ′
rms,x = 0.1

Wavelength ratio: λl /λs = 8

Hurst exponent: H = 0.8

Height distribution: Weibull Max. and Min.

Shape parameter: C = 1

RCE parameters

Mesh: λs/∆x ∈ [4, 8, 16, 32, 64]

Length: L/λl = 8

Substrate height: Hsub/σz = 500

Fine mesh height: Hr/σz = 40

Number of realizations: = 30

Starting with the roughness model block, one verifies that the RMS slope was set to
a value of 0.1 as was stated in Section 4.4.4. The value of the wavelength ratio λl /λs

was set to 8 since, in the work of Couto Carneiro et al. (2020), it was proved that the
smaller the spectra bandwidth the higher the tendency for different mesh sizes to di-
verge. Respectively, to the Hurst exponent the value was defined for a value of H = 0.8
for numerical convenience (cf. Remark (5.1). The height distribution was modelled using

1This consideration may be better understood if ones revisits Figure 3.19.
2This scheme type for the definition of the simulation conditions will be followed in the current work.
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the Weibull function in both Maximum and Minimum forms, as previously introduced
(cf. Section 3.2.1). The shape parameter C was carefully selected to reproduce the more
distinct case relative to the Gaussian scenario, thus the value of 1 was defined.

Remark 5.1 on the applicability of the Hurst value for the convergence study.
As mentioned, the Hurst value was defined to the value of H = 0.8, for numerical conve-
nience. It should be noted that in the work of Couto Carneiro et al. (2020) it was verified,
for Gaussian rough surfaces, that lower values of H tend to have slower convergence
rates. This means that a choice for a lower value of the Hurst exponent would probably
constitute a better scenario for a mesh convergence study. Nonetheless, it should be kept
in mind that the goal of this study is not the definition of an RCE for non-Gaussian
surfaces. Furthermore, the chosen value of H, despite not being the critical case for mesh
convergence, allows obtaining good results from which conclusions on the mesh conver-
gence can be drawn.

Regarding the definition of the RCE parameters the values are chosen are in tune with
the results previously presented in Section 4.4.5. The parameter λs/∆x was varied be-
tween 4 and 64 in order to verify its influence of the final results. In Figure 5.4 three
examples of meshes with different values of λs/∆x are shown. Moreover, the substrate
height was set to a value of Hsub/σz = 500 to guarantee the modelling of the bulk, and by
the fact that it does not represent a meaningful increase in the computational time. Also,
the number of realizations was increased to 30 allowing for a better representation of the
convergence results. These conditions have resulted in RCEs with a significantly different
number of nodes and elements, as depicted in Table 5.1. The number of nodes increases
exponentially with the mesh discretization which is also reflected in the computational
time required. The average time of each case is presented in Table 5.2. Considering the 30
realizations for each case, the total simulation time was about 275 hours (around 11 days).
To massively reduce the computation time, multiple realisations are solved in parallel in
a desktop workstation. A reduction in the computational time can be obtained by using
multiple cores yet memory usage requirements also increase creating a limitation on the
maximum number of simulations running in parallel.

Table 5.1: Number of elements and nodes per each RCE, for each value of λs/∆x consid-
ered in the 2D FEM convergence study.

λs/∆x No. Nodes No. Elements

4 2854 2700

8 10647 10340

16 39003 38418

32 150963 149796

64 593763 591432
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Table 5.2: Average computational time (in minutes) required to perform a 2D FEM con-
vergence study.

Height Distribution λs/∆x Average computational time / min

Weibull Maximum

4 ≈ 1

8 ≈ 3

16 ≈ 10

32 ≈ 48

64 ≈ 239

Weibull Minimum

4 ≈ 1

8 ≈ 2

16 ≈ 9

32 ≈ 40

64 ≈ 197

5.2.1 Discussion of results
The results of this numerical study are very interesting and show some important details,
which will be discussed hereafter. Firstly, the analysis places focus on the results up to the
full contact region, i.e., considering the evolution of the area from 0 almost up to 100% of
relative area fraction—the ratio between the real contact area Ac and the nominal contact
area A. In addition, the evolution of the area is evaluated by both methods refereed in
the Section 4.4.7, namely the node-based (upper-bound) and the segment-based (lower-
bound), and therefore ensuring a more methodized framework. Figures 5.6 and 5.6 show
the results of the numerical study on the convergence of the mesh for both Weibull Maxi-
mum and Weibull Minimum cases. The curves of both distributions show convergence
with the mesh refinement, i.e., with the increase the value of λs/∆x. Also, both strategies
for area evaluation seem to be in tune with what was advanced in Section 4.4.7. While the
upper-bound area seems to overestimate the real contact area and the refinement of the
mesh results in lower values of the real contact area, the inverse is verified for the lower
area where a fine mesh increases the value of the area, indicating the underestimation of
this method.

A straightforward method to evaluate the convergence is by computing the error rela-
tive to the most refined case—λs/∆x = 64 case. By doing so, one obtains a easier visual-
ization of the convergence results as it is seen in the inset graphs of Figures 5.6 and 5.6.
Regarding the Weibull Maximum’s curves (Figure 5.6) the convergence of the results is
once again highlighted. It is seen that the curve with λs/∆x = 4 presents the largest value
of relative error and stands out particularly for the upper-bound area. The remaining
results verify smaller differences, emphasising the asymptotic convergence towards the
case λs/∆x = 64 . On the other hand, Weibull’s minimum results show less smooth error
curves with increasing pressure, yet without impinging upon the overall convergence at
any time. In order to explore the lack of smoothness of these results, one must first note
that for both heigh distribution cases the errors tend to reduce with the increase of the
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(a) λs /∆x = 4

(b) λs /∆x = 8

(c) λs /∆x = 16

Figure 5.4: Illustrative examples of different mesh sizes used in the convergence study.

external pressure. For lower values of normalized external pressure, approximately up to
p0/E∗pm2 ≈ 0.2, it is verified that relative errors are significatively with maximum val-
ues above the 10% limit, that tend to be even higher for the lower the external pressure.
The sources of error, in this case, can be well-identified beforehand. The first error con-
cerns the spatial approximation error associated with the FEM, which decreases for finer
meshes. A second source of error, and probably the one that affects the most in lower-
pressure areas, is the resolution from which the real contact area is computed. During the
low pressure stage, the RCE has a restricted number of nodes in contact making this re-
gion very sensitive to variations on the number of nodes in contact. Thus small variations
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in the number of active nodes ensure large area errors. Additionally, from the statistical
studies of Chapter 3, it is known that Weibull Minimum have the outliers located at higher
heights, which constitute the first regions to contact. In such cases the errors are even
larger due to the lack of o contact nodes, being the reason why the error curves of the
Weibull Minimum distribution possesses amplified errors with less a smooth progression.
The decaying behaviour of the errors curves is then justified by the increasing number of
contact nodes, which tends to mitigate the area resolution issues.

Although the full contact results already show mesh convergence, the analysis on the
light contact region is also very important from an engineering point of view—the region
concerning the first micromechanical contact phenomena where low values of real con-
tact area fraction are verified (approximately up to 20%). In this region, the real contact
area evolution must also verify mesh convergence, as it constitutes an important domain
of numerous contact problems and several works have tried to model such behaviour.
Therefore, further numerical studies on non-Gaussian rough surfaces should also verse
on the light contact region, especially taking into account that approximate analytically
inspired solutions can be derived. The light contact region of this study is presented on
Figure 5.7, for both upper- and lower-bound areas, following the same scheme as the pre-
vious results. Both Weibull distributions are presented on the same graph. 3 These plots
reiterate the previously taken conclusion before since all the cases show convergence and
the convergence direction is in tune with area evaluation methodology. A detail that is
more noticeable in this case is that convergence of the average contact area fraction is
not monotonic, insofar as decreasing the mesh size does not necessarily imply exclusively
increasing or decreasing area.

So far, two different techniques have been used to evaluate the real contact area, and it
was verified that the real contact area values end up being over or underestimated, if one
considers the node-based or the segment-based methodology, respectively. A practical
way to deal with this problem is by averaging upper and lower area values, thus correcting
both errors. This technique has already been employed in the works of Couto Carneiro
(2019) and Couto Carneiro et al. (2020) constituting a feasible approach to real contact
area computation even when comparing with Yastrebov’s method (cf. Section 4.4.7) (Yas-
trebov, Anciaux, et al., 2017a). The real contact area evolution computed through the
average area method is presented in Figure 5.8 up to full contact, being the light con-
tact region highlighted in Figure 5.9. In the full contact representation, the numerical
curves are almost superimposed, being difficult to track a mesh convergence tendency.
Nonetheless, if ones looks into the representation of the error, one verifies that by averag-
ing the results one obtains astonishing improvements, even for coarser meshes such as
λs/∆x = 4. It can be seen that by using the average technique one is increasing the rate at
which the results converge with mesh size. Therefore, by using this methodology one can
relax the refinement conditions without a loss of physical meaning to the global problem,
strongly reducing the computational cost. The results on the light contact region also
highlight these conclusions. One verifies that Weibull Maximum curves tend to converge
faster than Weibull Minimum’s. This may not only be justified by the proper characteris-

3In Figures 5.6 and 5.6 the light contact region is highlighted by a grey rectangle, so one can easily identify
the region that Figure 5.7 is showing.
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tics of the topographies but also by the lack of nodes in contact for lower pressures that
increase the errors for such domains—as it was previously described.

In summary, the presented convergence study has led to some important conclusions.
A first objective, which was the validation of FEM framework for analysing contact of
non-Gaussian rough surfaces, was accomplished with success, paving the way for broader
spectrum studies. 4 Secondly, the mesh convergence was verified for the selected case
being analysed a wide range of the parameter λs/∆x. One also has concluded that by
averaging both area computation methods one obtains the convergence faster and com-
pensates the errors. For this reason, one can use a lower discretization guaranteeing a
good compromise between the representativeness of the contact phenomena and com-
putational time. It was determined that the value proposed in the work of Couto Carneiro
et al. (2020) for Gaussian surfaces can be also employed for non-Gaussian surfaces with
great confidence— λs/∆x = 8 (cf. Section 4.4.1).

Remark 5.2 on the applicability of the convergence study.
When studying mesh convergence, the common procedure constitutes of considering
just one topography realization and analysing it under mesh refinement. This way, one
could capture the mesh convergence independently of the realization considered, with
the proviso that different realizations would probably lead to different real contact area
values—yet it would remain strictly valid for the sake of mesh convergence. In the current
work, however, the convergence study was made taking into account the randomness of
rough surfaces, thus 30 realizations were generated for each λs/∆x considered. At first
glance, this procedure may seem unnecessary and entails additional computational costs.
However, due to the implementation of the non-Gaussian surface’s generation algorithm
and the fact the mesh discretization is defined when generating the topographies (cf.
Section 4.4.6), surfaces with the same random seed (the number used to initialize the
generation of the Gaussian rough surface) originate different realizations for different
mesh sizes. To overcome this issue, a different approach could have been pursued. In
order to guarantee the same non-Gaussian realization at different mesh discretization, a
refined mesh (with high λs/∆x ) would need to be generated. After that, by systematically
merging elements, one could obtain coarser meshes, yet with the same realization and
spectral properties. Such process, even knowing its simplicity, would result in a laborious
task with a not so considerable benefit. For this reason and due to the fact that the main
focus of the work is not the definition of an RCE, the aforementioned procedure involv-
ing the average of multiple realisations was contemplated with all the acknowledged
vulnerabilities.

4Studies with non-Gaussian rough surfaces have never been done with the FEM framework (LINKS and
LINKS-RC) up to the current work.
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Figure 5.5: Influence of the mesh refinement on the contact area fraction Ac /A evolution
up to full contact of a Weibull Maximum height distribution, for a value of the shape
parameter C = 1, evaluated for both upper-bound and lower-bound values of area. The
error of the curves relatively to to the most refined case, λs/∆x = 64, are presented on the
insetted graph.
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Figure 5.6: Influence of the mesh refinement on the contact area fraction Ac /A evolution
up to full contact of a Weibull Minimum height distribution, for a value of the shape
parameter C = 1, evaluated for both upper-bound and lower-bound values of area. The
error of the curves relatively to to the most refined case, λs/∆x = 64, are presented on the
insetted graph.
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Figure 5.7: Influence of the mesh refinement on the contact area fraction Ac /A evolution
in light contact of a both Weibull height distributions, for a value of the shape parameter
C = 1, evaluated for both upper-bound and lower-bound values of area.
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Figure 5.8: Influence of the mesh refinement on the contact area fraction Ac /A evolution
up to full contact of both Weibull height distributions, for a value of the shape parameter
C = 1, evaluated by the average value of area. The error of the curves relatively to to the
most refined case, λs/∆x = 64, are presented on the insetted graph.
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Figure 5.9: Influence of the mesh refinement on the contact area fraction Ac /A evolution
in light contact of both Weibull height distributions, for a value of the shape parameter
C = 1, evaluated by the average value of area.

5.3 Study on non-Gaussian rough contact of 2D topographies

After the preliminary study for assessing the overall validity of the framework under
mesh convergence, the major goal of the work is to inspect the behaviour of random
non-Gaussian rough topographies under purely elastic contact. With this study, it was in-
tended to initially characterize the behaviour of non-Gaussian rough surfaces, specifically
by looking at the evolution of the real contact area and the contact pressure distribution.
Thus, following the same approach has in Chapter 3, where a numerical investigation
on non-Gaussian rough surfaces statistics was performed, the results are analysed at the
light of the properties used to parametrize the final topography. For computational con-
venience, the study is undertaken in a 2D setting with rough profiles, yet knowing that the
results for pure 3D rough surfaces have an intrinsically higher value. This study intends
to cover a wide range of properties and thus creating a proper set of conclusions on non-
Gaussian rough surfaces, enabling opportunities for further studies and developments
on the topic. The parameters considered as input variables to combine are presented in
Table 5.3. A total value of 80 cases resulting from the combination of all the parameter
values have been considered.

Since in the previous section Section 5.2 one has verified good convergence properties
for the given parameters with the mesh refinement λs/∆x = 8 being adequate if one
considers the average area, the same set of conditions was employed. Only, the number
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Table 5.3: Variables considered for the 2D FE study on non-Gaussian rough surfaces
modelled with the Weibull distribution. The studied cases result from a combination of
theses variables, making a total of 80 different cases.

Height Distribution C λl /λs H

Weibull Maximum

Weibull Minimum

1 8

16

32

64

0.2

0.8

1.2

1.5

2

3.602

of realizations was decreased in order to diminish the computational cost and therefore
extend the study to more parameters. The presented numerical setup resulted in 1600
different RCEs that were properly generated and simulated. 5 In sum, the conditions of
the 2D FEM study on non-Gaussian rough surfaces are written as

Study 5.2 (Conditions of the numerical 2D FEM study).
Roughness Model

RMS slope: z ′
rms,x = 0.1

Wavelength ratio: λl /λs ∈ [8, 16, 32, 64]

Hurst exponent: H ∈ [0.2, 0.8]

Height distribution: Weibull Max. and Min.

Shape parameter: C ∈ [1, 1.2, 1.5, 2, 3.602]

RCE parameters

Mesh: λs/∆x = 8

Length: L/λl = 8

Substrate height: Hsub/σz = 500

Fine mesh height: Hr/σz = 40

Number of realizations: = 20

These conditions have resulted in different mesh sizes of the RCEs, which were also
reflected in the computation time required as presented in Table 5.4. For the sake of
clarity, the different values of the shape parameter were averaged for each pair of λl /λs

and H , since the spectral properties have a more meaningful impact on computational
time. An exponential increase with λl /λs is verified as it is associated with the mesh size
(L/λl = 8), yet it is also worth noting that the topographies with higher Hurst exponent
tend to require more computational time. In total, the computational time allocated was

5In truth, a total number of 2000 cases were simulated in this study since, in the initial setup, a wavelength
ratio of λl /λs = 128 was also considered. Nevertheless, some of the realizations with this bandwidth failed
during the contact simulations, reducing the total number of realizations available for each case. Hence, it
was preferred to omit these results rather than draw conclusions from results with possible low representa-
tiveness.
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about 583 hours (around 24 days). The true computation time is significantly shorter, due
to the execution of multiple parallel calculations.

Table 5.4: Average computational time (in minutes) required to perform a 2D FEM study—
averaged for each pair of λl /λs and H .

Height Distribution λl /λs H Average computational time / min

Weibull Maximum

8
0.2 2

0.8 3

16
0.2 5

0.8 8

32
0.2 11

0.8 27

64
0.2 29

0.8 102

Weibull Minimum

8
0.2 2

0.8 2

16
0.2 4

0.8 7

32
0.2 11

0.8 23

64
0.2 27

0.8 87

In the following sections, the obtained results will be extensively discussed. Each of the
parameters considered in this study (cf. Table 5.3) are depicted by means of real contact
area evolution and the contact pressure distribution. The discussion starts with the dis-
tinction between different Weibull topographies under rough contact, being followed by
the effect of the shape parameter. Then, the impact of the spectral properties, wavelength
ratio λl /λs and the Hurst exponent, is analysed.

5.3.1 General behaviour of Weibull rough surfaces
As a first step into the analysis of the results, one can start by analysing the overall impact
that different height distributions have on contact behaviour. Therefore, both Weibull
Maximum and Minimum distributions will be analysed in terms of the evolution of the
real contact area and the contact pressure distribution for a single combination of spectral
and height distribution properties.

Real contact area fraction

In Figure 5.10 the real contact area evolution Ac /A as a function of the normalized exter-
nal pressure p0/E∗pm2 is presented for both height distributions, considering the shape
parameter C = 1. The option for this shape parameter value relies on the fact that is the
one that most evidence the difference between the distributions since it is the value that
produces a higher absolute skewness value. To clarify and isolate the effect of the height
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distributions only a pair of spectral properties was considered (λl /λs = 16 and H = 0.8)
when plotting the results—the same conclusions can be achieved with any other com-
bination of properties. In addition to the two Weibull curves, also two distinct Gaussian
results are also presented in the Figure 5.10. The first one is simply the result of a similar
numerical simulation with a Gaussian topography obtained with the same conditions
of the current study. Secondly, Persson’s model is also presented as it is an exemplarily
model capable of predicting the behaviour of a rough surface up to full contact. The dif-
ferences between the numerical and the theoretical model are expected and it is well
known that Perrson’s model underestimates the area values for lower values of external
pressure (Pei et al., 2005; Hyun et al., 2004; C. Yang and Persson, 2008). The first graph
(top) shows the full evolution of the real contact area, almost up to 100%, whereas the
second (bottom) shows a detail of the first, concerning the evolution on the lower values
of area and external pressure.

One should first start by analysing the Gaussian case and from there analyse the other
results. Despite being slightly different, the Gaussian results (numerical and Persson’s
model) show that for light contact a nearly linear relation is recovered. One must note
that at the onset of the contact area evolution, the phenomenon is dominated by the
increasing number of contact clusters and the growing area of existing clusters. While for
light external forces the contact increase with the increase of contact zones, for higher
values of pressure the phenomenon becomes more complex, with the area evolution
being due to the expansion and coalescence of the existing contact areas. This is why at
the first stage the evolution is faster with several clusters entering in contact, whereas for
higher values of pressure the area increase requires more pressure to reach the regions of
the topography.

The Weibull distributions case show interesting area evolutions that points out some
of the features of these type of topographies. For the Weibull maximum distribution, one
verifies a very fast growth in area for lower values of pressures, following a nonlinear de-
pendence with the external pressure. Looking at the statistical results from Chapter 3 one
gets support and justification for these observations. This type of topographies is domi-
nated by a significant proportion of positive heights, which lead to several summits with
high topography height—the so-called plateau. During light contact, a substantial num-
ber of summits will immediately come into contact and with the increase of the external
pressure even more contact clusters appear. Additionally, one has seen that the higher
height summits tend to have lower curvatures (cf. Figure 3.25). The superposition of these
two aspects leads to the fast-paced growth of the area, which is substantially superior to
the Gaussian case. However, when in almost full contact conditions it is seen that growth
rate severely reduces being the curve overtaken by the Gaussian curve at some point. This
is due to the already mentioned outliers of this specific type of distribution (deep valleys),
which have even lower heights, then requiring more pressure to reach full contact.

On the other hand, the Weibull Minimum distribution shows a slower increase in area
in the light contact region being these values below the Gaussian. Similarly to the Weibull
Maximum, also these results can be analysed in light of the conclusions from Chapter 3.
One has seen that in this type of topographies the majority of the heights have low val-
ues, therefore meaning the first contact spots are in fact outliers values—steep peaks.
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In addition, the scarce higher height summits also tend to have higher curvatures (cf.
Figure 3.25) which reduces the contact area growth with increasing pressure even more.
However, with the increase of external pressure, the growth rate starts to change as more
contact spots—the bottom plateau, with progressive lower curvatures, enter in contact.
It goes up to a point where the majority of the heights are in contact and where a fast
increase in area is verified, due to the substantial increase in the number of contact spots.
This evolution in the area is so dramatic that Weibull Minimum overtakes Weibull Maxi-
mum for the same value of normalized external pressure. It then decelerates once more,
requiring progressively additional force to increase the contact area.

Contact pressure distribution

One can assess and compare the contact distribution numerical results from two different
perspectives: by a fixed value of external pressure or by a fixed value of real contact area.
In Figure 5.11 two different curves of contact area evolution of both Weibull distributions
are presented, with the same conditions (C = 1, λl /λs = 64 and H = 0.2). This graph
intends to depict the points from which the contact pressure will be analysed and the
distributions compared. Whereas top graph shows in these curves several points with
same value of normalized external pressure (p0/E∗pm2 ∈ [0.06,0.2,0.4,0.7]), the bottom
graph shows points with approximately the values of area (Ac /A = [20,40,70,90]%). The
resultant contact pressure distributions are presented in Figure 5.12 and in Figure 5.13 for
fixed value of external pressure and a fixed value of area fraction, respectively. Additional
distributions with C = 1.2 are included to endorse the conclusions in different formats of
the height distribution. Only non-zero values of the contact pressure are considered, such
that the integral of the probability distribution including the Dirac delta at zero pressure
is equal to one. Also, in this Figure 5.12 (fixed external pressure) the Persson’s model
pressure distribution is presented (black dotted-line) as well as the external pressure
value (gray dashed-line).

Starting by analysing the results for a fixed value of external pressure (Figure 5.12), one
must denote that the contact pressure distribution should reflect the contact area at each
pressure increment. Bearing this in mind, the external pressure values have been chosen
to highlight this fact. When p0/E∗pm2 = 0.06 one sees that Weibull Maximum presents a
much more developed contact pressure distribution, with a considerable amount of lower
pressures values, showing the superior area fraction—recall that the integral of the curve
excluding the zero must be equal to the contact area fraction. In this case, the Weibull
Maximum already has a significant number of contact clusters that possess several sum-
mits in contact thus having much more expression of the contact pressure distribution. In
turn, Weibull Minimum has just a few contact spots, having a more spread contact pres-
sure distribution. For p0/E∗pm2 = 0.2, Weibull Minimum distribution approximates the
Weibull Maximum case and a more developed contact pressure distribution is verified,
yet with still noticeable less area. In this case, the Gaussian result becomes less similar to
the Weibull contact pressure probability density function, a signal that reflects the effect
of non-Gaussianity in this type of distribution. The histogram of p0/E∗pm2 = 0.4 has
been chosen to highlight a pressure value where area fractions are very similar in both
Weibull cases (cf. Figure 5.11). A visual inspection of the distributions allows validating
the hypothesis of similar contact area fractions. For the last value of external pressure,
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p0/E∗pm2 = 0.7, one expects the Weibull Minimum to demonstrate a superior area, as
seen on Figure 5.11, yet it is visually hard to do so and the reasons are twofold. First, the
relative differences in area fraction for this value of external pressure are not as large as
in the first pressure values (cf. Figure 5.11). Second, Weibull Minimum distribution tends
to have higher outliers contact pressures values, thus having superior probability density
in the extremely high-pressure values not depicted in the figures under analysis.

The following expresses some general observations that are evidenced by these results.
The contact pressure distribution graphs verify a right shift that is proportional to the
increase of the external pressure. It is a well known and logical result (Persson’s model
predicts it for the Gaussian case) since the equilibrium on the RCE should be kept, there-
fore meaning that contact pressure values should compensate the increase of the external
force. An interesting aspect of the Weibull contact pressure distributions is that they ver-
ify different mode values, which are located to the right or left of the external pressure,
depending on whether one is referring to Weibull Maximum or Weibull Minimum. It is
seen that contact pressure distribution intersect each other on a point of pressure very
similar to the external pressure value. While Weibull Maximum has a great portion of
contact stress above the average, Weibull Minimum verifies the opposite yet may counter-
balance this effect by the existence of outlier higher contact pressure values. It is a quite
intriguing behaviour with a not so obvious answer and that might be a topic for further
investigations.

The same contact distributions can be now explored for the same value of area frac-
tion by looking at Figure 5.13. The first two values of area fraction (Ac /A ≈ 20% and
Ac /A ≈ 40%) highlight curious differences in the contact pressure distributions. While
for Weibull Maximum a large fraction of lower contact pressures are verified, the Weibull
Maximum distribution has a wider range of contact pressures that extend up to higher
values of topography height, and the probability of observing these very large pressure is
greater. This might indicate several particularities in the deformation procedure of such
antagonistic height distributions. It is tempting to justify this type of phenomena with
some physical intuitions however, it should be left to future work. The higher values of
area fraction (Ac /A ≈ 70% and Ac /A ≈ 90%) indicate that for higher values of the exter-
nal pressure the contact pressure distributions are increasingly more symmetric in the
analysed pressure range, as previously observed. This is endorsed by the observation that
in full contact, the contact pressure distribution is highly correlated with the full height
distributions—which are symmetric for the Weibull Minimum and Maximum scenarios
discussed in the present work.



5. Finite element analysis of non-Gaussian rough contact 145

Remark 5.3 on convergence of the distribution to zero.
One must note that phenomenologically speaking contact pressure distributions should
verify a trend toward zero for higher and lower values of contact pressure. This type
of behaviour of the contact pressure distributions is evident and is observable in Pers-
son’s model. However, on the previously presented results, Figures 5.12 and 5.13, the his-
tograms do not verify this effect for lower values of pressure. For certain external pres-
sure values the mode value can even be the value nearest to zero—cf. Figure 5.11 for
p0/E∗pm2 = 0.06. The reason for this imprecision might have a few different origins.
With the current framework, it was verified that mesh refinement has a significant im-
pact on it, meaning that more refined mesh improves the results of the contact pressure
distribution. However, in general terms, the contribution to the final results was not that
great meaning for the purpose of the current work the mesh size considered is enough
to capture trends and inspect how non-Gaussianity affects the contact pressure distribu-
tion.
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Figure 5.10: Comparison of the contact evolution curve for different Weibull distributions
(Weibull Maximum and Minimum), for the particular case of C = 1, λl /λs = 16 and H =
0.8. Gaussian results are also plotted— numerical result and Persson’s model



5. Finite element analysis of non-Gaussian rough contact 147

Figure 5.11: Fixed values of the normalized external pressure p0/E∗pm2 and the contact
area fraction Ac /A, presented in the contact evolution curve for different Weibull distri-
butions (Weibull Maximum and Minimum), for the particular case of C = 1, λl /λs = 32
and H = 0.2.
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Figure 5.12: Comparison between the contact pressure distribution of the Weibull Max-
imum and Minimum cases, over four different values of normalized external pressure
p0/E∗pm2, and for two different shape parameter C cases. The Gaussian result is pre-
sented through Persson’s model solution and the value of the increment is presented as
a vertical and grey dashed-line.
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Figure 5.13: Comparison between the contact pressure distribution of the Weibull Maxi-
mum and Minimum cases, over four different values of contact area fraction Ac /A, and
for two different shape parameter C cases.



150 5.3. Study on non-Gaussian rough contact of 2D topographies

5.3.2 Influence of the shape parameter
One can isolate the effect of the shape parameter C for each on the Weibull distributions
considered and verify how this parameter affects both area evolution curves and contact
pressure distribution. Specific spectral properties are chosen to evidence only the effect
of C , however, all the conclusions can be extended to other spectral combinations.

Real contact area evolution

In Figure 5.14 and 5.15, the influence of the shape parameter C on the evolution of the
area fraction is depicted for Weibull Maximum and Weibull Minimum, respectively. The
results are shown for different values of the wavelength ratio λl /λs but only consider-
ing a Hurst exponent value of 0.2. The Perssons’s model theoretical curve is plotted for
reference.

Starting with the Weibull Maximum cases, one verifies that the shape parameter has a
significant impact on the area fraction evolution. Generally speaking, the lower the value
of C the higher the contact area fraction is for any value of external pressure. This is seen
in the light contact region since the lower values of C reflect more left-skewed height
distributions. The statistical results from Chapter 3 also justify these results, since lower
C values mean more concentration of higher summits (cf. Figure 3.20) that directly trans-
late into more contact clusters and therefore a higher value of the area for initial external
pressure values. The curvature of the asperities also give useful information and from Fig-
ure 3.25 one has seen that topographies whit lower C values, tend to have lower expected
mean curvatures when comparing with the topography global curvature value. The in-
fluence of the shape parameter is not uniform, insofar as C leads to distinct changes in
the area fraction for different values of external pressure. It is seen that from the start the
shape parameter effect tends to progressively dilate the difference in the area in the light
contact region, a phenomenon that is dominated by the previously mentioned topog-
raphy characteristics. However, from a certain value of external pressure, this divergent
trend of the different curves tends to cease and convergence of the curves starts to be
observed. The reason for this has already been addressed and has to do with the outlier
heights that tend to be deeper for lower C values. It means that topography with a lower
C value will need a higher external force to reach the full contact condition. This condi-
tion even leads to a slight inversion of the curves relative position that in the presented
case occurs near to p0/E∗pm2 = 0.8. Overall, the decrease of C hastens the area fraction
evolution at small pressures due to the high concentration of summits, but hinders it at
larger pressures because of the deep valleys that need to be flattened. These observations
are verified for any spectrum bandwidth tested, which show no evident influence in this
type of distribution. It is surprising that the area fraction of this non-Gaussian topography
can easily be overestimated by a factor of two (or even more), relative to the nearly Gaus-
sian case C = 3.602. This observation stresses the need for an accurate characterisation
of the height distribution of rough topographies, in order to achieve relatively accurate
predictions of the contact area-related behaviour.

One can now look into the Weibull Minimum area evolution curves (Figure 5.15). The
more complex behaviour of this type of curves is well evidence highlighting an interesting
dependence of the shape parameter C but also on the wavelength ratio λl /λs—a topic
which will be discussed later in this work. For very light contact conditions, one verifies
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that the lower the C the lower the area fraction. In this region, the contact evolution is
almost totally dependent on the outlier values of the Weibull Minimum distribution as
they are responsible for the first contact cluster to form. It is known that the more right-
skewed the height distribution the more prominent, scarcer and sharper the summits
are—cf. Figure 3.26. This translate into lower values of the area and slow growth in the
first external pressure increments. However, in the light contact region, there can be ob-
served a point where the contact area evolution accelerates strongly and grows to larger
area fractions relative to higher C values. For the same bandwidth ratio, this inflection
point seems to occur for smaller pressures. Moreover, it seems to be heavily dependent on
the bandwidth ratio, with larger ratios producing earlier inflections and steeper growths.
This is in great contrast with the Weibull Maximum, where a monotonic dependence of
the contact area with C was observed in the light contact region, whereas for the Weibull
maximum this is not strictly verified. With the increase of the external pressure, the area
evolution becomes affected by the lower heights range where the majority of heights of
this type of topographies are located. It was seen that the lower the C the more compact
are the heights at the lower values therefore, when in contact, the more concentrated are
the heights the more quickly the area will evolve when the compression stage reaches
these regions.

The light contact region of the area evolution curve is paramount in this study and
engineering practice. An interesting aspect that was raised by the previous results is that
the shape parameter does not affect in the same magnitude the contact area evolution
of both height distribution types. In fact, the previous results highlight a more dominant
influence of the shape parameter C for the Weibull Maximum rather than the Weibull
Minimum version. To inspect this hypothesis, in Figure 5.16 the contact evolution of both
Weibull distributions up to a value of pressure of p0/E∗pm2 = 0.10 are presented—the
spectral properties considered are λl /λs = 32 and H = 0.2. When looking at the results
of both distributions in the same graph, the previous advanced statement is even more
emphasized. The shape parameter seems to have visually more effect on the Weibull
Maximum than in the Weibull Minimum. A different way to inspect this premise is by
seeing how the area fraction evolves with the shape parameter for a specific value of
external pressure. This type of approach is presented in Figure 5.17 for three different
values of external pressure (p0/E∗pm2 ∈ [0.04,0.06,0.08] ) in the same spectral conditions
of Figure 5.16. With this representation, the evolution trends with the C shape parameter
become much more evident. While Weibull Maximum presents a more abrupt decay that
slows down with the increase of C , Weibull Maximum has a softer nearly linear increase
with C . The explanation for different degrees of impact on light contact seems to be
well supported by the topographies statistics explored in Chapter 2. In a light contact
region, the features associated with the higher heights of the topography are the ones
that play a major role in this phenomenon. For Weibull Maximum it is seen that both the
heigh distribution and the summits height distribution are severely affected by the shape
parameter, a reason why the evolution of real contact area come also affected in a major
significance. On the contrary, in the Weibull Minimum cases, higher heights are basically
dominated by outlier values that, even though being affected by the shape parameter, do
not produce considerable changes on the area evolution curve. Actually, it is seen for the
Weibull Minimum that the shape parameter has a major degree of influence for higher
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values of external pressure and area (cf. Figure 5.15), since it is the region where the lower
heights of the topographies have a remarkable impact.

Contact pressure distribution

Relatively to the contact pressure distribution, one can get a sense of the impact of the
shape parameter C by looking at Figure 5.18. In this figure the contact pressure distribu-
tions, for a fixed spectral case (λl /λs = 64 and H = 0.2) of both Weibull cases are plotted
for four different values of external pressure—(p0/E∗pm2 ∈ [0.05,0.1,0.4,0.6]). Only three
different values of the shape parameter C are presented to give a better visual perception
of the results. Apart from past observations on the individual behaviour of Weibull Max-
imum and Minimum surfaces, these results highlight the difference in area and how it
is reflected on the contact pressure distribution. In the histograms with the lower value
of external pressure, p0/E∗pm2 = 0.05, one verifies that Weibull Maximum has a more
developed contact pressures distribution, with the histograms for different C values re-
flecting their relation in area, i.e., the lower the shape parameter the higher the area. In
turn, the Weibull Minimum has contact pressure distribution less developed due to a
small number of contact nodes, which makes the distribution harder to visualize and
interpret, yet one verifies that the histogram of C = 3.602 has a superior area which is in
tune with the previous area evolution results.

In the remaining values of external pressure, the shape parameter seems to have a
similar impact for both types of topographies. For instance, lets focus on the C = 1 and
C = 1.2 histograms. The mode of both cases occurs for a very similar value of contact
stress, yet has a significant difference in frequency that, inasmuch as the growth in the
area is accompanied by a higher concentration of contact stresses around the mode. This
hypothesis is verified for both Weibull Maximum and Minimum cases in the regions of
higher concentration of contact stresses. Another interesting aspect to mention is that
for C = 3.602 the contact pressure distribution is very close to theoretical results for the
Gaussian case.

In the previous section (Section 5.3.1) it was advanced that the outliers of the contact
pressure distributions might also have a particular role on the contact pressure distribu-
tion, specially for Weibull Minimum topographies. To explore the existence and effect of
the outliers and also how they are affected by the shape parameter C one can use the
moments of a PDF. The first central order moment, i.e., the mean does not provide any
new information since the mean of the contact pressure due to equilibrium conditions
is directly related to the external pressure applied on the RCE. In turn, the standard de-
viation of the topography also does not provide any interesting information to this type
of analysis. Therefore, one is typically left with the skewness and kurtosis of the contact
pressure distribution that are presented in the Figures 5.19 and 5.20 as a function of
the external pressure for the different Weibull distributions and values of the shape pa-
rameter. It must be noted that these graphs are not intended to represent an accurate
evolution of the skewness and kurtosis with the external pressure, but only a relative com-
parison between height distributions and different C values is intended—focus is placed
on comparing the moments for different shape parameters at different pressures and not
to analyse the evolution of the moments with pressure Both quantities seem to express
similar conclusions on the role of the heigh distribution and the shape parameter. By
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comparing both Weibull Maximum and Minimum cases, one concludes that the latter
has a much greater predominance of outlier values on the contact pressure distribution,
due to the substantially larger skewness and kurtosis. Additionally, the effect of the shape
parameter seems to be equal for both cases: the lower the C the higher the presence
and influence of the outliers in the distribution. Nevertheless, the shape parameter has a
smaller influence for Weibull Maximum when compared with Weibull Minimum, as can
be seen in Figure 5.21. In this figure, the kurtosis of the contact pressure distribution is
plotted as a function of C for two different values of normalized external pressure. It is
clearly evidenced that the presence of outliers in the Weibull Minimum case possesses a
larger dependency of the shape parameter, whereas for Weibull Maximum a decreasing
trend is verified with the increase of C . Finally, one must note that, while skewness gives
a measure of how the distribution is spread relatively to a mean axis, the kurtosis is more
sensible to the outlier values as it is a fourth-order moment. However, in these results,
the outliers seem to have a significant weight (the kurtosis values reaches large values)
that camouflages the real measure provided by the skewness and makes it also sensitive
to the tails of distributions. This largely explains why both moments give similar results
about the contact distribution shape.
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Figure 5.14: Comparison of the real contact area evolution of Weibull Maximum topogra-
phies for different shape parameter C values.



5. Finite element analysis of non-Gaussian rough contact 155

0

20

40

60

80

100

A
re

a
Fr

ac
ti

o
n

A
c
/A

[%
]

Weibull Minimum
H = 0.2

0

20

40

60

80

100

A
re

a
Fr

ac
ti

o
n

A
c
/A

[%
]

0

20

40

60

80

100

A
re

a
Fr

ac
ti

o
n

A
c
/A

[%
]

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Normalized External Pressure p0/E∗pm2

0

20

40

60

80

100

A
re

a
Fr

ac
ti

o
n

A
c
/A

[%
]

C = 1.0
C = 1.2
C = 1.5
C = 2.0
C = 3.602
Persson

0

5

10

15

20

25

λl /λs = 8

0

5

10

15

20

25

λl /λs = 16

0

5

10

15

20

25

λl /λs = 32

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Normalized External Pressure p0/E∗pm2

0

5

10

15

20

25

λl /λs = 64

Figure 5.15: Comparison of the real contact area evolution of Weibull Minimum topogra-
phies for different shape parameter C values.
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Figure 5.16: Comparison of the real contact area evolution of Weibull Maximum and Min-
imum topographies for different shape parameter C values on the light contact region.
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Figure 5.17: Evolution of the real contact area as function of the shape parameter C for
three different value of external pressure—for both Weibull cases.
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Figure 5.18: Comparison of the contact pressure distribution for different values of the
shape parameter C , in both Weibull cases and over four different values of normalized
external pressure p0/E∗pm2. The Gaussian result is presented through Persson’s model
solution and the value of the increment is presented as a vertical and grey dashed-line.
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Figure 5.19: Comparison of the skewness of the contact pressure distribution (computed
for each pressure increment) of the different shape parameter C values for both Weibull
cases.
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Figure 5.20: Comparison of the kurtosis of the contact pressure distribution (computed
for each pressure increment) of the different shape parameter C values for both Weibull
cases.
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Figure 5.21: Comparison between the evolution of the kurtosis of the contact pressure
distribution with the shape parameter C , for the Weibull Maximum and Minimum, com-
puted for two different values of the external pressure.
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5.3.3 Influence of the wavelength ratio
Moving on to the spectral properties, one can start by analyse the influence of the wave-
length ratio λl /λs , also referred as the bandwidth of the PSD. Keeping the consistency
of the previous sections, in the current the effect of λl /λs on contact are evolution and
contact pressure distribution is isolated and discussed.

Real contact area evolution

In Figures 5.22 and 5.23 the contact area evolution for different wavelength ratios is shown
for both Weibull Maximum and Minimum, respectively. Different values of the shape pa-
rameter are considered, then the effect can be verified over different height distributions.
A fixed value of the Hurst exponent is chosen, being the one that better highlights the
impact of λl /λs .

Starting with the Weibull Maximum, at a first glance, the area evolution curve does
not seem to severely affected by the wavelength ratio λl /λs , however, the results present
some interesting features that require proper discussion. One must start by recalling the
summit height distribution for a Gaussian case, that was presented in Section 3.1.1 and
can be directly seen for several values of α in Figure 3.1. From this theory, one has seen
that lower α (and consequent lower values of λl /λs and H) lead to a higher concentration
of higher summits. When in contact this characteristic means that surfaces with lower α
tend to have higher contact area fractions. This result is captured in the well-known asper-
ity based models (Carbone and Bottiglione, 2008) and also on several numerical studies
such as Yastrebov, Anciaux, et al. (2017b). It was seen the summit height distribution of
Weibull Maximum topographies reflects this aspect of the Gaussian theory, yet with a
marked emphasis in higher height summits. For instance, in Figure 5.22, for C = 2, one
verifies that this is still applicable for lower values of pressure, which is in agreement with
the results presented in Figure 3.28. In these conditions, the differences between different
curves are very small and tend to remain that way throughout all the external pressure
values. However, it is verified that, for higher values of external pressure, curves with a
higher wavelength ratio tend to have higher contact area fractions. With the decrease of
C , the advanced hypothesis is even more evidenced. It is seen that in lower values of the
shape parameter (C = 1 or C = 1.2, for example) the contact area fraction of the largest
λl /λs is higher—in contrast with the results expected for Gaussian topographies. The rea-
son for this might be related to the density of summits of the topographies. As it was seen
in Figure 3.35 the spectral properties have a huge influence on the density of summits
with the increase of λl /λs severely increasing the density of summits on the topographies.
With this in mind, it can be understood that more summits lead to more contact clusters
that, in the last instance, contribute to a higher area in these circumstances. The mean
curvature results, previously shown in Figure 3.32, also express that lower values of λl /λs

tend to have lower expected mean curvatures values when comparing with the global cur-
vature of the topography, for higher summit heights. This can add a slight contribution
to the final response and sustain the superiority in the area of higher values of λl /λs .

The influence of the wavelength ratio λl /λs on the Weibull Minimum topographies
is depicted in Figure 5.23. For this type of topographies, the effect of λl /λs is more evi-
dent. During the first increments of pressure, it is seen that the lower the bandwidth the
higher the contact area. In these regions, the Gaussian logic seems to be well applied, as
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the more frequency exists in the summits in contact the lower the area will be. The use
of the statistical results on the initial increments, for this type of height distribution, is
always a dubious task, since a poor statistical representation is obtained. However, this
relation is kept not just for a small external pressure but is also influenced by the shape
parameter. The closer the height distribution is to the Gaussian case (higher C ) the wider
is the region of external pressure where the lower value of λl /λs has a dominant value of
area. At a certain point, an inversion of the relative position of the curves with different
λl /λs values is observed. One sees, that higher values of λl /λs become dominant in the
medium contact area range, being this effect augmented by the shape parameter—lower
C induces higher differences for distinct values of λl /λs . The reasons for this might not be
so simple and interpretable since, during the deformation process, several micromechan-
ical phenomena occur that are not easily explained with a statistical approach. The trend
of higher values of λl /λs having higher area fraction is kept up to full contact conditions.

To evidence the impact of the wavelength ratio λl /λs on the contact area, in Figures 5.24
and 5.25 the evolution Ac /A is plotted as function of λl /λs for fixed values of the normal-
ized external pressure, for both light and full contact condition, respectively. The Hurst
value is kept from the previous results and the shape parameter C is considered to be 1
to represent the most contrasting result. In Figure 5.24 three different external pressure
values under the light contact regime are considered (p0/E∗pm2 ∈ [0.01,0.02,0.03]). The
tendency for Weibull Maximum to increase the area with the increase of λl /λs is well
captured, as well as the opposite for Weibull Minimum. In Figure 5.25, the growing trend
is once more presented, however, the main observation is concerned with the impact of
λl /λs on both Weibull cases. As it was seen before, but it is now clearly demonstrated,
the wavelength ratio has a stronger impact on Weibull Minimum topographies.

Contact pressure distribution

The impact of the bandwidth λl /λs in the contact pressure distribution is depicted in
Figure 5.26 for both Weibull Maximum and Minimum cases. Four different values repre-
senting the normalized external pressure are considered. For the sake of clarity, only the
extreme value of the wavelength ratio are plotted, i.e., λl /λs = 8 and λl /λs = 64. A single
value of the shape parameter is consider (C = 1) as well as the Hurst exponent (H = 0.2).
It can be generally stated that the increase in the roughness spectrum bandwidth is as-
sociated with a higher concentration of contact pressure around the mode. It was seen
that the contact pressure PDF is differently skewed according to the type of height dis-
tribution. Therefore, with the increase of λl /λs the contact pressure distribution tend
to become closer to the external pressure value. For instance, in the Weibull Maximum
case, the increase in λl /λs slight moves the distribution to the left, whereas in Weibull
Minimum the mode seems to move to the right.

The effect of λl /λs on the outliers on the contact pressure distribution can be assessed
through the kurtosis, as it was done in the previous section. In Figure 5.27 the kurtosis
values, computed for the different values of λl /λs , at each increment of the external pres-
sure, are shown. The considered properties are the same as in Figure 5.26. It can be seen
that the higher the bandwidth λl /λs the higher the presence of the outlier values on the
contact pressure distribution. This impact is really meaningful in the Weibull Minimum
case as it is seen that kurtosis reaches values over 250.
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Figure 5.22: Comparison of the real contact area evolution of Weibull Maximum topogra-
phies for different values of the wavelength ratio λl /λs .
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Figure 5.23: Comparison of the real contact area evolution of Weibull Minimum topogra-
phies for different values of the wavelength ratio λl /λs .
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Figure 5.24: Evolution of the real contact area as a function of the wavelength ratio λl /λs

for three different external pressure values in the light contact domain—for both Weibull
cases.
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Figure 5.25: Evolution of the real contact area as function of the wavelength ratio λl /λs

for two different external external pressure values—for both Weibull cases.
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Figure 5.26: Comparison of the contact pressure distribution for two different values of
the wavelength ratio λl /λs , in both Weibull cases and over four different values of nor-
malized external pressure p0/E∗pm2. The Gaussian result is presented through Persson’s
model solution and the value of the increment is presented as a vertical and grey dashed-
line.
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Figure 5.27: Comparison of the kurtosis of the contact pressure distribution (computed
for each pressure increment) of the different wavelength ratio λl /λs values for both
Weibull cases.
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5.3.4 Influence of the Hurst exponent
Finally, one can finish the analysis of the results with the effect of the Hurst exponent H .
Both spectral properties are independently analysed to give a more in-depth analysis of
their impact however, some of the conclusions and effects might be shared. The same
scheme of the evolution of the area fraction and the contact pressure distribution is
followed.

Real contact area evolution

The impact of the Hurst exponent H on the evolution of the real contact area is isolated
in Figure 5.28 and Figure 5.29, for both Weibull Maximum and Minimum scenarios, re-
spectively. Different values of the shape parameter are considered yet only a wavelength
ratio is presented (λl /λs = 64) to better inspect the effect of H .

The Weibull Maximum results (Figure 5.28) highlight a similar dependence on the Hurst
exponent as it is for the wavelength ratio λl /λs . From the classical Gaussian results, it is
known that higher values of H lead to lower values of Ac /A since the α also increases.
In fact, this result was obtained for the nearly Gaussian case (C = 3.602) in the numeri-
cal simulations performed. However, with the addition of non-Gaussianity to the height
distribution (a negative skewness in this case), the Hurst exponent starts to have the
opposite effect. Only for the initial pressure increments, the Gaussian conclusions are
applied. One sees that in the case of C = 2 the curves of different H already become re-
ally close, but if one considers even lower values of the shape parameter like C = 1.2 or
C = 1.5 it is verified that, except the very initial increments, the larger the Hurst exponent
the higher the contact area fraction. The dominance in the area for the higher value the
Hurst exponent is kept up to full contact. Similarly to the wavelength ratio, one can argue
that the density of summits might play an important role in this case. As seen in Fig-
ure 3.35, higher values of the Hurst exponent lead to higher concentrations of summits
which ultimately leads to a situation where the area tends to grow faster.

The opposite case, the Weibull Minimum distribution, shows also an evident depen-
dency on the Hurst exponent, as presented in Figure 5.29. In light contact conditions, one
verifies that the lower the Hurst exponent the higher the contact area fraction, which is
in line with the results relative to Gaussian topographies. The initial contact on this type
of topographies is dominated by higher height summits, whose contact area is severely
affected by the predominance of higher frequencies. From a certain value of external
pressure, an inversion on the Hurst curves is seen, with the H = 0.8 becoming the one
with a higher value of contact area fraction. A possible justification for this dominance in
the area might become also from the higher concentration of summits for topographies
with higher Hurst values as seen in 3.35.

It is interesting to note that in this type of topographies the Hurst exponent can have
a significant impact, yet it does not come in the same proportion in both Weibull cases.
When comparing Figures 5.28 and 5.29, it is seen that Weibull Minimum tend to show
higher deviations between the different Hurst values. To better explore the impact of H
on the different height distributions in Figure 5.30 the absolute difference between curve
of H = 0.8 and the curve with H = 0.2 is plotted for different values of C and considering
λl /λs = 64. In the Weibull Maximum case, one verifies that the biggest difference for a
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relatively lower value of external pressure with the maximum difference in the area being
around 6% when C = 1. However, it is in the Weibull Minimum that the differences are
more meaningful. The first part of these curves is concerned with the region where the
curve H = 0.2 has a superior area and where the deviations tend to be smaller. The second
part has bigger a longer (external pressure domain) impact, being reached difference
values as high as 12%, for topographies with C = 1.

Contact pressure distribution

The effect of the Hurst exponent on the contact pressure distribution is presented in Fig-
ure 5.31 for both Weibull distributions. In this figure, the distributions of contact stress
are plotted for four different values of external pressure, selected to cover a wider and
representative range. The remaining properties were chosen in order to better highlight
the influence of the Hurst exponent—C = 1 and λl /λs = 64. The analysis of these results
flows into the same conclusions of the previous sections. The area has to be depicted
on the contact pressure distributions and with the different Hurst values, this fact is ap-
plied. For instance, when p0/E∗pm2 = 0.1 in the Weibull Minimum case, it is verified
that H = 0.2 has a more developed contact pressure distribution which is tune with the
results seen in Figure 5.28. The light contact in these conditions is slightly dominated by
lower Hurst values, yet it is known that this fact only holds for small external pressures.
For the remaining histograms, in both Weibull distributions, it is seen a dominance of the
higher Hurst value (H = 0.8). This means that a higher area is translated into the contact
stress distribution with a higher concentration of stresses around the mode value. One
should note that unlike the previous properties (shape parameter C and wavelength ratio
λl /λs) the higher concentration of stress for higher H is accompanied by a slight skew
towards the direction of the heigh distribution—right for Weibull Maximum and left for
Weibull Minimum. To complete the analysis of the distributions one has to inspect the
effect of H in tails of the stress distributions. In Figure 5.32 the computed value of kur-
tosis for each pressure increment is presented for the two values of the Hurst exponent,
considering both Weibull cases. While in Weibull Maximum no clear evidence can be
obtained between the different H values, in the Weibull Minimum it is seen that higher
Hurst have higher kurtosis values which is a signal of the higher predominance of high
contact pressure values.
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Figure 5.28: Comparison of the real contact area evolution of Weibull Maximum topogra-
phies for different values of the Hurst exponent H .
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Figure 5.32: Comparison of the kurtosis of the contact pressure distribution (computed
for each pressure increment) of the two different Hurst exponent H values for both
Weibull cases.
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5.3.5 Modelling the real contact area evolution
The effect of the different properties that parametrize a non-Gaussian self-affine topog-
raphy has been extensively discussed in the present chapter, yet no analytical treatment
has been done to the obtained data in order to model the studied phenomena. In fact,
the scope of the work is not o obtain a theoretical or numerical model to the evolution
of the contact area on non-Gaussian topographies, but to study the resultant effects of
this type of topographies and pave the way for future investigations. Nonetheless, fit-
ting the obtained data to a proper selected function constitutes an effortless yet fruitful
task, from where some additional observations on the results can be taken. In the fitting
procedure, only the light contact portions of the results were considered, since the con-
sideration of all the domains would lead to a more complex fitting function. Additionally,
the light contact region is the more dominant domain on Gaussian contact models like
the multiasperity models and standard engineering problems. The results were then trun-
cated up to a maximum value of approximately p0/E∗pm2 ≈ 0.12 to incorporate both
Weibull Maximum and Minimum results. From the Gaussian results, it has been seen
through the past research work that in very initial contact conditions the behaviour is
almost linear (Carbone and Bottiglione, 2008; Yastrebov, Anciaux, et al., 2017b). In this
work for example Figure 5.16, it has been also appointed that when the shape parame-
ter is C = 3.602 a near-linear behaviour is obtained. Even so, the majority of the results
have shown strongly non-linear behaviour with some results highlighting a concave down
form, like the Weibull Maximum, or a concave up shape as in Weibull Minimum. Taking
these considerations into account, a power-law function to model the contact evolution
of both Weibull type of topographies has been chosen, that writes

Ac

A
= a

(
p0

E∗pm2

)b

, (5.1)

were a and b are the fitting parameters. This function has great potential for modelling
the current area evolution cases as one can obtain the linear case for b = 1, or both
concave up and down if b is bigger or smaller than 1, respectively.

The fitting procedure was made using the Python3 package SciPy that easily performs
the numerical regression using the non-linear least squares method. The power-law func-
tion (Equation (5.1)) resulted in impressive accurate results with every case being well
modelled by such function—an average coefficient of determination R2 of 0.9995 was ob-
tained. The computed parameters a and b as well as the coefficient of determination R2

values can be consulted Appendix A. A comparison between the numerical FEM results
and the fitting function obtained is presented in Figure 5.33 were the precise fit can bee
seen for both Weibull distributions—a particular spectral case was chosen (λl /λs = 8 and
H = 0.2). In this graph, the region of external pressure and contact area fraction consid-
ered in this fitting process is also depicted. To ease the discuss around these results, a
visual representation of the fitting parameters is showed in Figure 5.34 and Figure 5.35.
Both graphics tend to highlight the different variables on which the contact area evolu-
tion is dependent, being the Figure 5.34 concerned with the dependency with the shape
parameter C and Figure 5.35 with the influence of λl /λs . The two graphs on top depict
the Weibull Maximum cases while the two graphs on the bottom depict the Weibull Min-
imum. In turn, the different values of the Hurst exponent are presented in the columns,
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i.e., the right side graphs show the results for H = 0.2 whereas the left side H = 0.8. These
plots essentially compress the results and analysis presented in great detail in the previ-
ous sections.
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Figure 5.33: Comparison of the numerical FEM results and the power-law fitting function
for the contact area evolution.
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5.4 Study on non-Gaussian rough contact of 3D topographies

The main topic on debate thought this work has been the impact of non-Gaussian height
distributions on the contact of self-affine rough surfaces, which is a naturally 3D prob-
lem. Only in very peculiar conditions, its dimension size can be reduced, like extremely
anisotropic topographies—even though it is possible to define a so-called equivalent pro-
file of a given surface, in principle. However, due to computational limitations, 2D rough
contact simulations still hold an important role on FE studies as they allow a fast a reliable
method for obtaining important qualitative and quantitative information. The previous
chapters have addressed several 2D simulations and, despite not providing a complete
interpretation of the 3D rough contact phenomena, the study allowed to obtain a proper
set of solid conclusions which must hold for the 3D case, in general. With the 3D analysis
of rough contact, it is possible to obtain more useful and precise results that can be used
to compare to the vast majority of the theoretical models and numerical data available
in the literature. Additionally, a more direct relation with the topographies statistics, as
studied in Chapter 3, is also obtained. Nonetheless, it also comes with a higher computa-
tional cost that tends to scale very quickly, particularly with the increase of the spectral
content of the PSD—higher wavelength ratios λl /λs .

To complete the current study some 3D simulations were performed. This last study
should be seen as an application of the 3D rough contact of non-Gaussian rough surfaces
and act as a validation of some of the conclusions previously presented. The limitations of
the 3D case only allow to select a very strict number of cases to simulate and even the RCE
parameters have to be carefully chosen. Additionally, simulating topographies up to full
contact conditions requires a considerable amount of computational requirements. For
this reason, only the light conditions were explored in this study. Being paramount to test
both Weibull distributions, two different shape parameter values were chosen—C = 1.2
and C = 2. These values have been selected with the goal on real engineering applications
and, as one can see in Figure 3.14, they allow to cover a decent range of skewness and
kurtosis values, thus retaining a practical interest. For the spectral parameters, one has to
kept λl /λs = 8 and H = 0.8, since the higher the maximum frequency the more refined has
to be the generated topography which translates into a more expensive simulation. The
variables considered in this study are summarized in Table 5.5 where one sees that only a
total of 4 cases were studied. Equally important is the definition of the RCE that have also
to be cautiously selected. Both mesh size, the conditions on the length, discretisation and
height of the substrate of the RCE have been relaxed to avoid high computation times.
For the same reason, the high-resolution region has been defined as 5 times the spatial
discretisation, comprising 5 layers of fine mesh near the rough boundary. To preserve a
proper representativeness of the results, the number of realizations was kept in 20. The
summary of the 3D FE study conditions is presented in Study 5.3.

These conditions have resulted in a 3D RCE with a total of 205579 nodes and 202400
elements. The average time of each simulated case is presented in Table 5.6, where it is
seen that for each realization more than 10 hours were required to compute the final
solution. Since for each case 20 realization were considered a total computational time
of 1033 hours (around 43 days) was required. Once again, for practical considerations,
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several cases are solved simultaneously to shave off the computation time down to rea-
sonable practical values. When comparing these results with the 2D cases (cf. Table 5.4)
it becomes clear the difference in the order of magnitude of 3D FE simulations.

Table 5.5: Variables considered for the 3D FE study on non-Gaussian rough surfaces
modelled with the Weibull distribution. The studied cases result from a combination of
theses variables, making a total of 4 different cases.

Height distribution C λl /λs H

Weibull Maximum 1.2
8 0.8

Weibull Minimum 2

Study 5.3 (Conditions of the numerical 3D FEM study).
Roughness Model

RMS slope: z ′
rms,x = 0.1

Wavelength ratio: λl /λs = 8

Hurst exponent: H = 0.8

Height distribution: Weibull Max. and Min.

Shape parameter: C ∈ [1.2, 2]

RCE parameters

Mesh: λs/∆x = 7

Length: L/λl = 3

Substrate height: Hsub/σz = 300

Number of fine mesh layers: = 5

Number of realizations: = 20

Table 5.6: Average computational time (in hours) required to perform a 3D FE simulation.

Height distribution C Average total time / h

Weibull Maximum
1.2 ≈ 16

2 ≈ 14

Weibull Minimum
1.2 ≈ 11

2 ≈ 11

5.4.1 Discussion of results
After the simulations were performed the results were analysed and the area evolution
curves were recovered. The area was computed using the method proposed by Yastrebov,
Anciaux, et al. (2017a) as written in Equation (4.64). In Figure 5.36, the area evolution
results are presented and compared to three different Gaussian solutions. The first one is
obtained from the work of Yastrebov, Anciaux, et al. (2017b), which has available several
numerical solutions and from where the curve with the same spectral properties of the
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current study has been retrieved. This result has a particular interest since it has been
obtained using the same area computation strategy and using a BEM framework, which
has allowed the authors to employ more refined topographies on the study. Second, two
theoretical models are shown: the already used Persson’s model and the well know BGT
multiasperity model (Bush et al., 1975), being used in its asymptotic form. Additionally
to the area evolution curves also the derivative of these curves is depicted, which is a
common procedure that allows a more sound characterization of the results.

The simulation area curves truly resemble the 2D results obtained in 5.3. One veri-
fies that, in Weibull Maximum topographies, the typical behaviour is characterized by
a concave down curve that has a very steep initial gain in area that progressively tends
to slow down. The derivative curves are very useful to depict these variations as one
clearly sees that in the initial pressure increments the derivative assumes really large val-
ues that quickly decrease and tend to stabilize with the pressure increase. The Weibull
Maximum results are also in accordance with the statistical data obtained and discussed
in Chapter 3. Similar observations can be drawn for the Weibull Minimum area evolution
curves. The low probability of higher height summits and the respective high curvature
in this type of topographies corresponds to small values of area for the initial pressure
increments. With the increase of pressure, growing derivate values are captured which
emphasizes the concave-up curve type. The effect of the shape parameter is preserved
for both Weibull cases, i.e., while for Weibull Maximum lower C values lead to higher area
values, Weibull Minimum topographies of lower C tend to have the lower values of area.
Comparing both Weibull cases some significant differences area captured. For instance,
if one considers the curves of C = 1.2 it is verified that Weibull Minimum requires almost
four times more external pressure value to reach the contact area fraction value of 20%

Regarding the comparison with the Gaussian solutions, it can be seen, that while Weibull
Maximum topographies possess higher area values, Weibull Minimum tends to have infe-
rior contact area, which is in tune with all the statistics observed here—this observation
is better understood if the results from Yastrebov, Anciaux, et al. (2017b) are considered.
The linear behaviour commonly associated with Gaussian rough contact analysis is in-
adequate for describing non-Gaussian topographies accurately. If the area curves are
not enough to prove this point, a look into the derivatives (Figure 5.36b) evidence this
fact. Despite not being constant, the derivate curves experience abrupt variations with
pressure, which does not agree with the numerical Gaussian solution from Yastrebov, An-
ciaux, et al. (2017b). Surprisingly, the Weibull Minimum with C = 2 topographies exhibit
the behaviour nearest to the linear evolution of the contact area with pressure, with an
approximately constant throughout the loading range.

To end this analysis, one can also look at the contact pressure distribution results. In
Figure 5.37 histograms of the contact pressure distribution of both Weibull cases as pre-
sented for several external pressure increments. As seen, the results in area should trans-
late the contact area at the pressure increment that area analysed. This fact is seen in both
Weibull topographies, with the histogram of C = 1.2 being the more dominant and well
developed for Weibull Maximum and, in opposition, the less prominent for the Weibull
Minimum case. Additionally, a visual representation of contact stresses is depicted, for
the same values of external pressure of Figure 5.37 and considering C = 2, in Figures 5.38
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and 5.39. By looking at these figures one can get some additional clear interpretations
of the contact phenomena of this type of topographies. It is seen that the increase in
pressure does not just increase the spatial frequency of the contact stresses but also their
magnitude. The relation between the contact pressure distribution and the area is clearly
seen as one can easily get an idea of how the area evolves with the increase of external
pressure. Comparing both Weibull distributions it is also verified that, for the same pres-
sure increment, Weibull Maximum has much more distributed contact pressure while
in Weibull Minimum the equilibrium has to be done in smaller contact clusters. This is
the reason why in Weibull Minimum topographies the magnitude of the contact stresses
tends to be vastly superior.



186 5.4. Study on non-Gaussian rough contact of 3D topographies

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Normalized External Pressure p0/E∗pm20 +m02

0

10

20

30

40

50

C
o

n
ta

ct
A

re
a

Fr
ac

ti
o

n
A

c
/A

[%
]

Weib. Max. C = 1.2

Weib. Max. C = 2

Weib. Min. C = 1.2

Weib. Min. C = 2

Yastrebov [2017]

Persson

BGT Asymptotic

(a) Contact evolution curves.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Normalized External Pressure p0/E∗pm20 +m02

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
o

rm
al

iz
ed

D
er

iv
at

iv
e

E
∗p

m
20
+

m
02
∂

(A
c
/A

)/
∂

p
0

Weib. Max. C = 1.2

Weib. Max. C = 2

Weib. Min. C = 1.2

Weib. Min. C = 2

Yastrebov [2017]

Persson Asymptotic

BGT Asymptotic

(b) Normalized derivative of the contact area curves.

Figure 5.36: Results for the real contact area and respective derivative from the 3D FEM
study and comparison with three different Gaussian results.
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Figure 5.37: Comparison of the contact pressure distribution for different values of the
shape parameter C , in both Weibull cases and over four different values of normalized
external pressure p0/E∗pm20 +m02. The Gaussian result is presented through Persson’s
model solution and the value of the increment is presented as a vertical and grey dashed-
line.
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Figure 5.38: Visual representation of the distribution of the contact stresses for the
Weibull Maximum case with C = 2.
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Figure 5.39: Visual representation of the distribution of the contact stresses for the
Weibull Minimum case with C = 2.
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5.5 Closing comments

This chapter started with a mesh convergence study on a non-Gaussian 2D RCE, in order
to test the framework and to select the most appropriate mesh size value. The results
obtained have shown that both area computation strategies verify convergence and that
the rate of convergence is increased if an average area value is considered. The value of
λs/∆x = 8 was chosen with a good compromise between representativeness and compu-
tational cost.

The second part of this chapter was dedicated to the 2D FEM study of non-Gaussian
rough surfaces, where the parameters that describe the topographies were individually
studied. One has seen that Weibull Maximum and Weibull Minimum topographies have
very distinctive area values between each other and also when comparing to the Gaussian
case. In the light contact conditions, Weibull Maximum is seen to have superior values
while Weibull Minimum has a slow growth rate. However, with the increase of the exter-
nal pressure, the Weibull minimum starts a steep increase in area, ultimately overtaking
its counterpart. In this evolution, the shape parameter acts as a regulator approximating
or moving away from the curves. For C = 3.062 very similar results to the Gaussian case
are obtained. When comparing with Gaussian results these effects highlight various dif-
ferences in shape and form of the area evolution curves at different regimes of external
pressure. This sustains the importance of studying the contact of non-Gaussian rough
surfaces since the Gaussian approximation might bring some unwanted errors into play.
Furthermore, the spectral properties also provide some intricate results that are not con-
sistent with Gaussian theories. For example, for Weibull Minimum topographies in light
contact, for lower shape parameter values, the contact area increases with λl /λs and H .
This is the opposite result of the Gaussian case where higher α are expected to have lower
values of the area. The analysis of contact pressure distributions was important to verify
the consistency of the results. It was seen that while Weibull Maximum tends to have a
mode value higher than the external pressure value, the opposite is verified in Weibull
Minimum. The increase in area is often verified by an increase in the contact pressure val-
ues around the mode value. In addition, it is seen that Weibull Minimum have a greater
tendency for having higher pressure values, a fact that is accentuated by lower C , higher
λl /λs and higher H . Some of the conclusions drawn in the 2D study were emphasized by
the 3D FE application presented at the end of this chapter.

The numerical studies were performed using the Finite Element Method equipped with
a dual mortar contact algorithm. This method is often considered the one of the most ad-
vanced and robust formulation to deal with contact problems (Popp, 2012). Also, it proves
to be particularly good for solving contact problems with large deformations and so it is
believed to be particularly interesting to solve rough contact of positively skewed rough
surfaces (Weibull Minimum case), that contains steep summits that experience severe
deformations in full contact conditions. Nonetheless, by using such a strategy the compu-
tational cost of the simulations gets incredible high, particularly for 3D contact problems,
which constitutes a major drawback on this type of studies. For further investigations on
the topic of elastic, non-adhesive and frictionless rough contact the hypothesis of using
different numerical strategies should be addressed.
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Chapter 6

Concluding remarks and future work

In this work, a contact homogenisation FEM approach to the elastic and frictionless con-
tact of non-Gaussian rough surfaces was presented. Topographies modelled with Weibull
distributions were extensively studied in terms of statistical features inspecting the ef-
fect of the topography’s parameters. FE simulations were performed to characterize the
micromechanical behaviour, focusing on the real contact area evolution and the con-
tact pressure distribution. The main conclusions of this dissertation are presented in the
following section, followed by an overview of interesting future works.

6.1 General conclusions

A first approach to non-Gaussian rough surfaces has focused on the comprehension
of the statistics of this type of topographies. Taking advantage of the well known Gaus-
sian case, a first overview of the statistic of Gaussian surfaces was done by looking at
Nayak’s theory (Nayak, 1971). From this work, the probability density of summits heights
psum (z∗), joint probability density function p ′

sum for summits with normalized height z∗

and equivalent mean curvature t1 were acknowledged as relevant topography descriptors.
Important results from this theory were also remarked, such as the dependency of only
one parameter α, the tendency of topographies with lower spectral content to have a
higher concentration of higher height summits and the increasing trend on summits cur-
vature with the height of summits. A numerical routine was built to numerically recover
the statistics of sample topographies generated by using the algorithm proposed by Wu
(2000b), available in the LINKS-RC framework. These numerical results obtained were
validated by comparison with Nayak’s analytical solutions.

The non-Gaussian topographies were assessed by means of the Weibull distribution
due to its versatility to model several different types of topographies. Due to its formu-
lation, it can be simply reduced to a one-parameter function which controls the shape
of the probability function. This distribution can be assessed in two forms, one able to
produce negatively skewed surfaces, Weibull Maximum, and the opposite case, Weibull
Minimum. The range of skewness and kurtosis capable of being modelled with this dis-
tribution was depicted in Figure 3.14 where the validity of this function to model several
practical non-Gaussian engineering surfaces were endorsed. A numeric study on the
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statistics of non-Gaussian topographies was performed, modelling the heights distribu-
tions with the Weibull distribution, employed the numerical generation algorithm pro-
posed by Pérez-Ràfols and Almqvist (2019) and the aforementioned geometry detection
routine. The parameter range of this study was constrained by practical computational
limitations. The non-Gaussian topography generator is more expensive when compared
to the Gaussian method since it has to iterate multiple times over a normally distributed
topography to obtain the final surface. Higher values of bandwidth λl /λs lead to a rapid
increase in the computation time.

The numerical results were assessed in a similar fashion to the Gaussian case, creating
an interesting environment for comparing results. The impact of the height distribution,
the shape parameter and the spectral properties (λl /λs , H and α) was extensively dis-
cussed. It was seen that the distribution of summits heights (psum (z∗)) tends to be domi-
nated by two main factors: the tendency for summits to occur in higher heights and the
shape of the heigh distribution. This results in Weibull Maximum topographies having im-
pressive higher concentrations of higher height summits, much larger than the Gaussian
case, while Weibull Minimum topographies tend to have more summits at lower heights,
yet without the magnitude verified in its counterpart. The shape parameter C acts as reg-
ulator of this effect going from extremely deviating topographies, like C = 1, to near the
Gaussian case C = 3.602. For Weibull Maximum surfaces, it was shown that the curvature
tends to decrease with the height (the opposite result of Gaussian topographies). On the
other hand, Weibull Minimum topographies show summits with an average curvature
growth trend with height, having considerable higher values of κ̄m than the Gaussian
case, for higher height summits. The impact of the spectral properties on the statistical
properties was less clear, yet some important trends have been figured out. It was seen
that Weibull Maximum topographies tend to follow the Gaussian relation, i.e., the ten-
dency for lower α to have a higher concentration of higher height summits. In Weibull
Minimum the results captured were different since the majority of the summits is located
at lower heights and higher α tend to lead to higher concentrations of lower height sum-
mits. Relatively to the influence on the curvatures, the most relevant observations are
concerned with the curvature values at higher heights. While in Weibull Maximum the
lower the α the higher the κ̄m/

p
m4 the opposite is verified for Weibull Minimum. To end

this study an analysis of the density of summits Dsum was performed, where one has seen
that Weibull Maximum topographies tend to have a higher concentration of summits es-
pecially for lower C values. Both spectral properties also play an important role, with
Dsum increasing with λl /λs but decreasing with H . These simple yet hard to assimilate
results have proved to be extremely important by giving a much deeper knowledge about
this type of topographies, from which very few characteristics were known. Knowledge
obtained in this study was later applied in the Chapter 5.

To conclude Chapter 3, a small study on the dependence of the non-Gaussian topog-
raphy statistics on the Nayak’s parameter was done. This study was motivated by obser-
vations on the previous study that highlighted that topography statistics might not be
fully defined by the α value, and that both wavelength ratio λl /λs and Hurst exponent
H might have independent influences. Despite the short bandwidth range of the study,
some small differences were verified in both summits height distribution and expected
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mean curvature. While in Weibull Maximum summits height distribution the differences
were small and with a tendency to decrease for higher α, Weibull Minimum have shown
different concentrations of lower height summits that tend to increase with α. These
results suggest further work on this topic as it will be proposed in the next section.

The second part of this work was dedicated to the FE analysis of the non-Gaussian
rough contact—Chapter 5. Taking advantage of the FE framework equipped with a con-
tact discretization using a dual mortar approach, several numerical contact simulations
were performed. A first initial 2D study was done in order to verify mesh convergence
and to properly choose the mesh size, given by λs/∆x. Several mesh sizes were studied
for both Weibull Maximum and Minimum cases and the mesh convergence was verified
by both upper and lower bound area computation strategies. With these results it was
also verified that by averaging both area values the convergence rate is rapidly increased
and coarse meshes can be used, reducing the computational cost. A mesh size value of
λs/∆x = 8 was defined as appropriate for the remaining simulations.

The second and larger study was performed for a total of 80 different cases in order the
extensively explore the behaviour of non-Gaussian rough surfaces under contact. The sim-
ulations results were analysed in the real contact area evolution and the contact pressure
distribution and, when relevant, compared to Gaussian solutions, like Persson’s model. A
systematic analysis of the parameters was done by isolating the effect in the study. The
first discussion focussed on the general behaviour of the different types of Weibull sur-
faces and comparing with the Gaussian results. It was seen that the area is completely
dominated by Weibull Maximum surfaces in light contact regions. The predominance
of higher heights in this type of distribution makes the contact area to grow faster with
external pressure. For increasing values of pressure, one verifies that the initial slow pro-
gression of Weibull Minimum rapidly vanishes and a steep increase is verified overtaking
Weibull Maximum in contact area value. Both shape and magnitude of contact evolution
of Weibull distributions differ significantly from the Gaussian, highlighting the pertinence
of studying this type of topographies. The comparison between contact pressure distri-
bution has shown that mode values of Weibull Maximum tend to be higher than the
normalized external pressure while in Weibull Minimum tend to be smaller. The shape
parameter has once again shown its regulatory character, as it controls the deviation from
the Gaussian results—smaller C larger deviations from the Gaussian case. It was seen that
Weibull Maximum topographies for lower values of pressure are much more affected by
the shape parameter, as it plays with the concentration of higher heights, therefore being
crucial in light contact conditions in this case. It was also verified that higher pressure
values are more likely to happen in Weibull Minimum topographies, especially for a lower
value of C .

Regarding the spectral properties, some interesting new observations were found in
this study. It was seen that in Weibull Maximum topographies the trends observed in
Gaussian results cannot be blindly applied. While in Gaussian topographies, in light con-
tact, lower values of α result in higher areas, it was seen that maximum values of area we
obtained for both λl /λs = 64 and H = 0.8, i.e., for large values of α. This observations is
even more expressive when C = 1 and is kept up to full contact conditions. On the other
hand, Weibull Minimum topographies show a more evidenced dependency on the spec-
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tral properties when compared with its counterpart. In the initial pressure regime, the
larger area fractions are associated with lower λl /λs and H , yet with the increase in pres-
sure topographies, the contact area for higher bandwidths rapidly grows. The statistical
evidence of these results is not very clear however, it was postulated that the contribu-
tions of Dsum and curvatures might play central role. To conclude the analysis of this
set of 2D results, a simple fitting procedure was done in order to summarize the results.
It was seen that the typical Gaussian linear behaviour in low-pressure regions normally
associated with asperity-based models is not recovered in Weibull topographies. Instead,
concave forms are typically found which has encouraged the use of a power-law fitting
function (Equation (5.1)). The fitting procedure, applied in the light contact region, was
successful, insofar as the computed parameters allow to capture the trends with high
accuracy.

Finally, a last three-dimensional application of the non-Gaussian contact problem was
performed, which constitutes the ultimate goal of this type of study. Due to computa-
tional limitations, only a small number of cases was tested, yet the results obtained high-
light several of the conclusions drawn from the 2D study, validating the main approach
considered in this work.

6.2 Future work

During this work, several aspects were appointed to future work and developments. Some
conclusions required further clarifications and further investigations. Additionally, since
the majority of the work on the rough contact of non-Gaussian surfaces constitutes origi-
nal contributions, several new research purposes can be envisioned.

• Extension of the statistical study on non-Gaussian topographies. In Chapter 3 the
numerical study on non-Gaussian was carried out for a limited range of spectral
properties considering only two values of the wavelength ratio (λl /λs ∈ [8,16]) and
two values of the Hurst exponent (H ∈ [0.2,0.8]). This combination of properties
only has allowed reaching a Nayak’s parameter α value of 11.89, which in this con-
text may be regarded as a low value. For example, reference numerical studies like
Yastrebov, Anciaux, et al. (2017b) have studied topographies with α larger than 200.
As seen, the increase of the bandwidth severely increase the computational cost,
yet it might be beneficial to extend the value of λl /λs to clarify some issues that
were not so self-evident. Additionally, the number of realizations considered might
have to be augmented in order to obtain more representative statistical values. A
study on the convergence of the statistics with the number of realizations would
also be interesting in order to ease future numerical studies.

• Testing different types of height distributions using the non-Gaussian topogra-
phies generator. In the current work, the non-Gaussian self-affine rough surfaces
were modelled using two versions of the Weibull probability distribution. This
choice has relied on previous works on the topic that justified the use of this dis-
tribution for several engineering applications, such as McCool (1992), Yu and Poly-
carpou (2001, 2004a) and Pérez-Ràfols and Almqvist (2021). However, one of the
advantages of the used non-Gaussian topography generator method (Pérez-Ràfols
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and Almqvist, 2019) is that it allows obtaining topographies with any different prob-
ability distribution. One can then test different types of probability distributions
that might suit specific engineering applications. For example, surfaces that arise
from a multiprocess manufacturing process often exhibit bimodal height probabil-
ity distribution (Pawlus, 2008).

• Study the accuracy of the Nayak’s parameter for characterizing the statistics of
non-Gaussian rough surfaces. It was advanced in this work that the statistics of
non-Gaussian rough surfaces might not be completely dependent the Nayak’s pa-
rameter, a quantity that for Gaussian topographies holds all the information of the
spectral content. A small study on the impact of the Hurst exponent was done on
Section 3.2.5 by comparing statistics of topographies with the same Nayak’s param-
eter value but different combinations of both λl /λs and H . An extension of this
study can be done by focusing on the impact of λl /λs rather than the Hurst expo-
nent. Different shape parameters values might also be taken, but most importantly
an additional effort should be employed on the number of realizations. The ten-
uous differences observed on the summits height distributions may require extra
samples to clarify the behaviours and better understanding the physical phenom-
ena. An extension of this study to the 2D or 3D simulation of RCE should also be
done allowing to infer the capability of α to describe real contact area evolution on
elastic frictionless contact.

• Extend the study to 3D using a faster numerical method. The current study of
the impact of non-Gaussian height distribution on the elastic frictionless contact
was carried out using mainly 2D FE simulations, with only some 3D applications.
As mentioned during the work, for this type of problem there are some numer-
ical methods, namely the BEM, that can analyse the contact in a 3D rough sur-
face with a great reduction in computational cost. A well-established numerical
method in rough contact is the FFT-BEM, which showcases exceptionally efficient
computation times (Rey et al., 2017). Additionally, a recent open-source package,
named Tamaas, which incorporates the aforementioned method have been publicly
released (Frérot, Anciaux, et al., 2020), which can be incorporated in the current
LINKS-RC framework to extend the current results to 3D.

• Extension to the contact of two rough surfaces. In this dissertation, only contact
of an RCE with a flat rigid surface was considered. However, in many engineering
applications, both surfaces in contact might be rough and with very distinctive
features. Thus, studying the real contact area between two RCEs with the same
or different characteristics would be an interesting contribution to this research
topic. In addition, while it is known that Gaussian surfaces are reproducive under
addition, meaning that the contact between two rough surfaces can be treated as
the contact between an equivalent surface and rigid flat boundary, the same does
not apply for the non-Gaussian. Some authors, like McCool (1992), have advanced
that the contact between two Weibull rough surfaces can be approximated by an
equivalent surface with the distribution parameters computed to match specific
conditions. Therefore, the extension to the contact of two rough surfaces can also
incorporate the evaluation and/or validation of this type of simplification.
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• Definition of a Representative Contact Element for analysing non-Gaussian rough
surfaces. In this work the 2D RCE parameters considered were the same as defined
in Couto Carneiro et al. (2020) for a Gaussian case. The results obtained did not
highlight particular problems with the RCE definition adopted however, the consid-
ered parameters should be validated with a proper study. These investigations can
also be extended to the definition of a 3D RCE of a non-Gaussian surface.

• Extension to other problems of interest within the context of non-Gaussian rough
surfaces. The study has focused only on the elastic frictionless contact, which
is only one of the several topics that can be studied within the context of non-
Gaussian rough surfaces. Further investigations on the topic can include features
like elasto-plastic material models, rough surfaces with anisotropy or even the evo-
lution of contact under cycling loading.

• Validation with experimentation. Although the FEM is a robust tool with a high
degree of reliability and correlation with real applications, there are always some
uncertainty associated with the numerical studies performed. Therefore, experi-
mentation is vital to validate numerical works and to tune and enhance the frame-
works developed. For instance, the contact area evaluation might be performed
with many different strategies. If one could define which methodology is the best
or improve one of the methods, by experimental evidence, more precise area evo-
lution prediction could be obtained.
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Appendix A

Numerical fit parameters for the
contact area curves in the 2D FEM study

In Section 5.3.5 a numerical fitting process of the area evolutions curves was presented. A
power-law function was fitted to the numerical results using the non-linear least squares
method through the SciPy package. The computed parameters a and b as well as the
coefficient of determination R2 are presented below from Table A.1 to Table A.4. For the
sake of clarity and concision, the results are grouped by the type of the height distribution
and the Hurst exponent value.



198 Appendix A

Table A.1: Power law fitting parameters a and b and respective coefficient of determina-
tion R2 for the Weibull Maximum case and H = 0.2.

λl /λs C a b R2

8 1 1.6586 0.6320 0.9991

8 1.2 1.5240 0.6287 0.9991

8 1.5 1.4271 0.6535 0.9995

8 2 1.4386 0.7122 0.9998

8 3.602 1.4304 0.7953 0.9999

16 1 1.6270 0.6055 0.9992

16 1.2 1.5337 0.6264 0.9995

16 1.5 1.4368 0.6543 0.9997

16 2 1.4312 0.7095 0.9999

16 3.602 1.4994 0.8169 0.9999

32 1 1.6322 0.5959 0.9994

32 1.2 1.5470 0.6236 0.9997

32 1.5 1.4395 0.6473 0.9996

32 2 1.4245 0.7057 0.9999

32 3.602 1.4948 0.8149 1.0000

64 1 1.6095 0.5846 0.9990

64 1.2 1.5699 0.6215 0.9995

64 1.5 1.4959 0.6629 0.9997

64 2 1.4520 0.7179 0.9999

64 3.602 1.5580 0.8395 0.9999
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Table A.2: Power law fitting parameters a and b and respective coefficient of determina-
tion R2 for the Weibull Maximum case and H = 0.8.

λl /λs C a b R2

8 1 1.8117 0.6327 0.9983

8 1.2 1.6705 0.6312 0.9986

8 1.5 1.5218 0.645 0.9994

8 2 1.4549 0.6964 0.9993

8 3.602 1.3933 0.8005 0.9998

16 1 1.8475 0.6167 0.9980

16 1.2 1.6990 0.6164 0.9983

16 1.5 1.5067 0.6357 0.9990

16 2 1.4331 0.6993 0.9994

16 3.602 1.3997 0.8175 0.9997

32 1 1.8602 0.5991 0.9970

32 1.2 1.6749 0.6151 0.9989

32 1.5 1.5647 0.6551 0.9991

32 2 1.4912 0.7216 0.9996

32 3.602 1.5412 0.8811 0.9999

64 1 1.9271 0.6063 0.9977

64 1.2 1.7943 0.6189 0.9985

64 1.5 1.6375 0.6653 0.9988

64 2 1.5515 0.7350 0.9994

64 3.602 1.5937 0.9067 0.9998
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Table A.3: Power law fitting parameters a and b and respective coefficient of determina-
tion R2 for the Weibull Minimum case and H = 0.2.

λl /λs C a b R2

8 1 1.7311 1.0090 0.9998

8 1.2 1.6068 0.9594 0.9999

8 1.5 1.4449 0.8970 0.9999

8 2 1.4343 0.8496 0.9998

8 3.602 1.5112 0.8102 0.9999

16 1 2.2369 1.1128 0.9996

16 1.2 1.8895 1.0309 0.9999

16 1.5 1.5843 0.9361 0.9999

16 2 1.5291 0.8889 0.9999

16 3.602 1.5555 0.8274 0.9999

32 1 3.5598 1.2806 0.9992

32 1.2 2.4694 1.1335 0.9998

32 1.5 1.8871 1.0086 0.9999

32 2 1.6695 0.9255 1.0000

32 3.602 1.5591 0.8290 0.9998

64 1 6.2468 1.4411 0.9994

64 1.2 3.4045 1.2330 0.9997

64 1.5 2.2283 1.0689 0.9999

64 2 1.826 0.9673 1.0000

64 3.602 1.6216 0.8537 0.9999
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Table A.4: Power law fitting parameters a and b and respective coefficient of determina-
tion R2 for the Weibull Minimum case and H = 0.8.

λl /λs C a b R2

8 1 1.8664 1.0631 0.9999

8 1.2 1.5590 0.9864 0.9998

8 1.5 1.4545 0.9267 0.9996

8 2 1.4312 0.8861 0.9998

8 3.602 1.4654 0.8136 0.9996

16 1 2.3519 1.1570 0.9998

16 1.2 1.9594 1.0890 0.9998

16 1.5 1.7382 1.0241 0.9999

16 2 1.5707 0.9508 0.9998

16 3.602 1.5347 0.8518 0.9996

32 1 3.2637 1.2914 0.9999

32 1.2 2.7671 1.2485 0.9999

32 1.5 2.0977 1.1307 0.9999

32 2 1.9160 1.0630 0.9999

32 3.602 1.6856 0.9151 0.9996

64 1 4.6348 1.3816 0.9999

64 1.2 3.2103 1.2597 0.9999

64 1.5 2.5045 1.1832 0.9999

64 2 2.0017 1.0738 0.9998

64 3.602 1.7309 0.9434 0.9997
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