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Abstract

Cloud Computing democratised access to large scale computation resources, offering on-demand
solutions to deploy applications at vast scales and featuring service models with different degrees
of abstraction. These models, such as Platform and Function as a Service (PaaS and FaaS), differ
in billed costs, user response time, and level of abstraction in the resources managed, each having
different strengths and drawbacks.

Models that offer less degree of abstraction, such as PaaS, are known to feature higher compu-
tational capabilities and a better cost per unit of computation, while their counterparts with higher
degrees of abstraction, such as FaaS, are more widely geographically distributed and inherently
scale horizontally. Although it is possible to use the best each has to offer, deployments featuring
multiple service models (hybrid deployments) are typically not popular since they pose a number
of implementation and management challenges.

Our literature review shows that these challenges exist in terms of system observability, mon-
itoring, traffic routing, reconfiguration, infrastructure distribution decision, and others. Existing
work and studies in these hybrid deployments are either entirely manual (high development effort),
lacking in terms of flexibility (working only with specific services of particular cloud providers),
or only focused on specific software systems.

We believe that, given that PaaS and FaaS provide complementary benefits for web applica-
tions, developers can leverage them to optimise their applications. As such, we set ourselves to
demonstrate that:

PaaS and FaaS provide complementary benefits for web applications. Developers can
leverage them to optimise their applications, by (1) partitioning their applications to
be deployed to the best service model for each functionality, (2) using a dynamic
routing strategy to forward requests to the proper resource, and (3) allow the appli-
cation to dynamically reconfigure itself by moving code between PaaS and FaaS (and
vice-versa) in a way that optimises infrastructure costs, client latency, and response
time.

To do so, we (1) conceive a set of techniques for dynamic routing between PaaS and FaaS,
with the aim of minimising the resulting client latency, which are empirically validated through
load testing, and (2) demonstrate their validity by engineering a reference implementation of a
plugin prototype that facilitates the programmatic partitioning of web applications into PaaS and
FaaS and their deployment to the cloud.

The evaluation process of the conceived routing techniques shows that moving the routing
service to the FaaS layer results in the optimal configuration due to this model’s wider geograph-
ical distribution. Additionally, we successfully partition and hybrid-deploy two open-source web
application projects using our reference plugin implementation with minimal development effort,
thus demonstrating the validity of this solution. Finally, we contribute to the state of the art of
software engineering and cloud computing by preparing our conclusions for publication, as well
as to the web development community by open sourcing our plugin.
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Resumo

A Computação em Cloud democratizou o acesso a recursos computacionais de grande escala,
proporcionando o acesso a soluções mediante solicitação para distribuir aplicações a larga escala,
contando com modelos de serviço com vários níveis de abstração. Estes modelos, tal como Plat-
form e Function as a Service (PaaS e FaaS), diferem a nível de custos cobrados, tempo de resposta
ao utilizador, e nível de abstração dos recursos geridos, com diferentes vantagens e desvantagens.

Modelos que oferecem menor grau de abstração, tal como PaaS, contam com maior capaci-
dade computacional e um menor custo por unidade de computação, enquanto que modelos com
maior grau de abstração, tal como FaaS, estão mais amplamente geograficamente distribuidos e
escalam horizontalmente de forma inerente. Apesar de ser possível utilizar o melhor que cada
modelo oferece, deployments que incluam vários modelos de serviço (deployments híbridos) não
são tipicamente populares, visto que apresentam diversos desafios de implementação e gestão.

A nossa revisão de literatura mostra que estes desafios existem em termos de observabilidade,
monitorização, roteamento, reconfiguração, decisão de distribuição de infraestrutura, entre outros.
Estudos existentes relativamente a deployments híbridos mostram soluções ou totalmente manuais
(elevado esforço de desenvolvimento), com falhas a nível de flexibilidade (funcionando apenas
com serviços ou fornecedores de cloud específicos), ou apenas orientadas a sistemas específicos.

Acreditamos que, dado que PaaS e FaaS proporcionam benefícios complementares para o
desenvolvimento de aplicações web, os programadores podem geri-los a fim de otimizar as suas
aplicações. Desta forma, propomos demonstrar que:

PaaS e FaaS proporcionam benefícios complementares para aplicações web. Os pro-
gramadores podem geri-los a fim de otimizar a sua aplicação (1) através da sua
partição para serem deployed para o modelo de serviço mais adequado para cada
funcionalidade, (2) utilizando uma estratégia de roteamento dinâmico para encamin-
har pedidos para os serviços corretos, e (3) permitindo que a aplicação se reconfig-
ure dinamicamente movendo partes de si entre PaaS e FaaS (e vice-versa) de forma a
otimizar custos de infraestrutura, latência do cliente e tempo de resposta.

Para tal, (1) concebemos um conjunto de técnicas de roteamento dinâmico entre PaaS e FaaS,
com o objetivo de minimizar a latência do cliente, que são empiricamente validadas através de
testes de carga (load testing), e (2) demonstramos a sua validade através de uma implementação
de referência de um plugin que permite, programaticamente, a partição de aplicações web em PaaS
e FaaS, bem como o seu deployment para a cloud.

O processo de avaliação das técnicas de roteamento mostra que a alocação do serviço de
roteamento à camada FaaS resulta na configuração ótima devido à distribuição geográfica mais
ampla deste modelo de serviço. Adicionalmente, efetuamos a partição e deployment híbrido de
projetos web publicamente abertos utilizando o nosso plugin com um esforço de desenvolvimento
mínimo, demonstrando assim a validade desta solução. Finalmente, contribuímos para o estado da
arte da engenharia de software e de computação em cloud, preparando as nossas conclusões para
publicação, e publicando abertamente o nosso plugin para a comunidade de desenvolvimento web.
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Chapter 1

Introduction

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 General Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

This chapter introduces the problem under study, describing its motivation and context, as well as

the general goals we aim to achieve. Firstly, Section 1.1 describes the context of this work. Then,

Section 1.2 explains the motivation of the proposed work. Section 1.3 elaborates upon the problem

under study and its details, followed by an enumeration of the general goals we aim to achieve in

Section 1.4. Finally, Section 1.5 describes how this document is structured.

1.1 Context

Cloud Computing democratised access to large scale computation resources, offering developers

an on-demand solution to deploy their applications at vast scales (often across multiple regions),

with guaranteed flexibility and Quality of Service (QoS) [105]. This computing model was popu-

larised in 2007 by Google and IBM — although AWS had already introduced their Elastic Com-

pute Cloud (EC2) [8] in the previous year [5], and its origins in cluster and grid computing date

back to the 1980s [25] — contrasting to more traditional on-premise architectures.

Cloud solutions are available through multiple service models, such as Infrastructure and Plat-

form as a Service (IaaS and PaaS), which is introduced in Chapter 2 (p. 5). They differ based

on the level of resources that is managed by the Cloud provider, and each has its own perks and

drawbacks. However, there is no “silver bullet” when it comes to Cloud service models.

Function as a Service (FaaS), which is commonly interchangeably referred to as Serverless

in the literature, is a Cloud Computing execution model that became popular throughout the past

1



2 Introduction

decade due to the architectural shift of enterprise systems towards containerisation and microser-

vices [19]. In FaaS, the Cloud provider executes computational tasks (functions), which are more

geographically distributed than in the other models, and automatically manages scalability, which

has brought a few advantages over the other models.

These computing models differ in billed costs, user response time, and levels of abstraction

in the resources managed. Depending on the specific scenario, one model may be more adequate

than another. If this is the case, there should be a way to make use of the best of each one, within

the same system.

1.2 Motivation

Cloud Computing has been consistently growing throughout the past decade, mainly due to the

progress of computing hardware and subsequent cost lowering, an increasing number of related

Information Technology (IT) research trends [101], and the wide range of applications.

Even though the leading Cloud providers — Microsoft Azure, Amazon Web Services (AWS),

Google Cloud Platform (GCP), and IBM — currently retain most of the market share in the Cloud

Computing services industry [6], the need for a variety of new architectures that can accommodate

recent research trends (such as the growth of IoT, fog and mobile Edge Computing, and Serverless

Computing) is ever-changing. [101].

With the addition of more layers of abstraction for developers, single-unit tasks (functions) can

be executed when requested without the need for the pre-allocated infrastructure to be running at

all times, and abstracting every infrastructure management aspect from the developer, except for

the function’s source code. This Cloud Computing model is known as FaaS, and provides several

advantages, such as its detailed level of management granularity — functions.

That being said, every Cloud Computing model features strengths and weaknesses. It would be

ideal if web applications could benefit from deployments with multiple service models and using

the best of each model, that is, hybrid deployments. However, due to technical challenges and lim-

itations (such as cumbersome infrastructure setup and management), these types of deployments

are not a common practise.

Thus, it would be ideal if an engineer could define parts of the application that could move

among different models at runtime (automation at compile-time has already been explored in the

literature [82]) and, with this in mind, this work intends to take the first steps towards practical

hybrid deployments.

1.3 Problem

The different Cloud Computing models follow a pay only for what you use philosophy that only

utilises the amount of resources necessary to satisfy the levels of demand in a scalable and cost-

efficient way. However, they differ in the level of granularity of the billed computational unit:

whereas in IaaS it is typically a Virtual Private Server (VPS), in FaaS it is a single function.
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Cloud models such as IaaS and PaaS feature higher computational capabilities and a better cost

per unit of computation. On the other hand, FaaS solutions inherently scale horizontally [46] and

are more widely geographically distributed, which results in the improvements of metrics such as

latency and availability. Nevertheless, FaaS can suffer from cold starts, execution time deviations

and state management issues [19, 74].

However, to reach a state where a given system (or parts of it) can be moved from IaaS/PaaS

to FaaS and vice-versa, engineers must redesign the architecture of their application. This process

is hard to assess since (1) it is hard to estimate the required effort to redesign the application, (2) it

is hard to ensure that it will result in improvements, (3) it requires significant manual development

effort, and (4) it is troublesome to revert, due to the architectural changes applied to the application

[71, 59].

Additionally, deploying projects with multiple levels of service models (such as hybrid de-

ployments featuring PaaS and FaaS) is not a trivial task. It poses issues and challenges in terms

of observability, monitoring, traffic routing, reconfiguration, infrastructure distribution decision,

et cetera. Although we believe that numerous advantages arise from these hybrid deployments

by benefiting from the strengths of each cloud service model, the aforementioned cumbersome

factors may be the origin of these deployments not being a popular choice.

With this research, we set ourselves to explore how an engineer can programmatically define

parts of their web application that should run and be deployed to different cloud service model

layers (such as FaaS and PaaS), which would result in significantly less development effort. The

problem under study is thoroughly formalised in Chapter 4 (p. 33).

1.4 General Goals

Although all the challenges presented in Section 1.3 (p. 2) are relevant to be explored, this work

focuses on the partitioning and operation of web applications leveraging FaaS and PaaS, by in-

vestigating techniques that facilitate the programmatic partitioning of web applications into these

service models and their deployment to the cloud:

Manage traffic routing in hybrid web applications:
Routing traffic among different service model layers is not a trivial task, since it may lead

to issues such as communication delays and bottlenecks. Additionally, different routing

architectures may lead to different advantages and drawbacks. We intend to conceive and

experiment upon a set of distinct routing techniques, with the aim of minimising the result-

ing routing latency;

Study the requirements to operate and leverage hybrid web applications:
In hybrid scenarios, when there are multiple providers or different types of services being

used, an application’s deployment is a cumbersome task. We want to understand how we

can manage these deploys whilst minimising development effort, and thus abstracting most

configuration from developers;



4 Introduction

Investigate how to programmatically partition applications at the source code level:
The process of refactoring a system and redesigning its architecture for its deployment to

the cloud is a demanding endeavour. We believe that, by identifying partitioning sections

using annotations at the source code level, developers would have an expeditious way to

tackle this task, in a way that significantly decreases development effort;

Provide a reference implementation plugin that facilitates the above tasks:
Implementing a plugin that addresses these goals would both provide a reference imple-

mentation for the studied methods and techniques, and contribute to the web development

community with a tool that facilitates hybrid web application management and deployment.

1.5 Document Structure

This document is composed of seven chapters, structured as following:

• Chapter 1 (p. 1), Introduction, introduces the problem under study, as well as its motivation,

goals and validation process;

• Chapter 2 (p. 5), Background, explores the background’s key concepts that are needed to

fully understand this work;

• Chapter 3 (p. 15), State of the Art, describes the literature review process and the current

state of the art on the topic of this dissertation;

• Chapter 4 (p. 33), Problem Statement, formalises the problem under study, and elaborates

upon the scope and main focus of this work;

• Chapter 5 (p. 39), Techniques for Dynamic Routing between PaaS and FaaS, details the

implementation and validation of the dynamic routing techniques that were conceived in

this work;

• Chapter 6 (p. 59), Reference Implementation, discusses the various aspects of the imple-

mentation, experimentation and validation of the reference plugin prototype;

• Chapter 7 (p. 71), Conclusions, summarises the developed work, its main contributions,

and discusses the possibilities of future work.
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On the previous chapter we introduce this dissertation. This chapter reviews the key concepts

used throughout this work. Firstly, Section 2.1 introduces the main concepts of Cloud Computing,

describing its origin and characteristics, as well as its deployment and service models. Then,

Section 2.2 discusses the use of source code annotation to add metadata to programs. The concept

of reflection of a system is defined in in Section 2.3. Finally, Section 2.4 summarises the key

concepts that characterise this work’s background. This chapter may be skipped by readers which

are familiar with web application development and their operation with cloud computing.

2.1 Cloud Computing

Cloud Computing is an on-demand computing model that is defined by National Institute of Stan-

dards and Technology (NIST) [80] as:

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand net-

work access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned and re-

leased with minimal management effort or service provider interaction”

This model was popularised in 2007 by Google and IBM [5] (although AWS had already

introduced their EC2 solution [8] in the previous year), democratising access to large scale com-

putation resources by offering developers an on-demand solution to deploy their applications at

vast scales. It features a set of main characteristics (described in Subsection 2.1.1), four service

models (detailed in Subsection 2.1.2, and four deployment models (discussed in Subsection 2.1.3).

5
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2.1.1 Characteristics

Cloud Computing features a set of characteristics that may be regarded as conceptional, technical,

business-related or even user-experience-related [80, 47].

• On-demand self services allow clients to automatically use computing resources (e.g.,

server time and storage space) without the need for direct human contact with the Cloud

provider;

• Broad network access indicates that computing resources are available over a network,

being heterogeneously accessible by different types of client-platforms;

• Resource pooling stipulates that the Cloud provider’s resources are simultaneously acces-

sible by multiple clients, (re)assigning the physical/virtual resources according to demand.

The infrastructure’s control and details (e.g., location) are abstracted from the client;

• Rapid Elasticity means that resources can be, automatically or not, scaled according to

clients’ demand by means of releasing or provisioning additional resources;

• Cloud providers typically offer a Measured Service, monitoring and controlling resources’

usage, thus providing service transparency for both the client and the Cloud provider;

• Cloud Computing is also conceptually Service-oriented. Through means of abstraction and

virtualisation, clients can access resource service models, classified as IaaS (Infrastructure

as a Service), PaaS (Platform as a Service) and SaaS (Software as a Service);

• Services are Loosely Coupled. Cloud infrastructure is physically or logically separated,

and clients connect loosely with servers/Cloud providers, which results in low levels of

control-dependency among Cloud services.

This set of characteristics offer clients flexibility, both technical and business-related, one of

the main reasons for its popularity.

2.1.2 Service Models

The Cloud service models separate the client’s and the Cloud provider’s managing responsibilities

at different abstraction levels, in opposition to a traditional on-premise model where the client

manages everything (from the application itself to the networking layer). The differences in ab-

straction levels are illustrated in Figure 2.1 (p. 7).

2.1.2.1 IaaS - Infrastructure as a Service

In this model, the networking, server, storage and virtualisation parts are abstracted for the client,

being managed by the Cloud provider [80]. The client is able to expand/reduce the amount of

resources of the underlying infrastructure on demand.
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Figure 2.1: Comparing On-Premise, IaaS, PaaS, FaaS, and SaaS service models (adapted from
[55]). From left to right, there is an increasing management responsibility by the cloud provider,
and thus an increasing level of abstraction for the user.

It offers the ability to create a Virtual Machine (VM) to the client, who controls everything

from the Operating System (OS) level to the application itself. The network tasks such as load

balancing, routing and firewalls are managed by the Cloud provider, and IaaS often offers au-

tomatic scaling [23]. This model often results in cost reduction both in hardware and human

resources.

However, the environment’s security (from the application to the OS layer) is managed by the

client. Attending to this responsibility is crucial since IaaS is prone to a set of security threats such

as (1) attack in virtualisation, (2) attack based on the life-cycle of the VM, and (3) data loss and

leakage (directly related to sharing data in public Clouds, which are described in Subsection 2.1.3).

Examples of IaaS solutions offered by market-leading Cloud providers are Google’s Compute

Engine [51] and Amazon’s Elastic Compute Cloud (EC2) [8].

2.1.2.2 PaaS - Platform as a Service

In this model, besides the layers of abstraction provided by IaaS solutions, the OS and runtime

execution are also managed by the Cloud provider. It supports the complete life-cycle of a software

application, allowing clients to develop and test services directly on the PaaS Cloud [35].

The client still has over the application itself and its data, as well as the application’s envi-

ronment configuration. Security is supplied by the Cloud provider (featuring recovery and backup
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mechanisms), and clients are offered the flexibility of installing tooling alongside their platform(s),

according to their requirements [23].

Nonetheless, adopting a PaaS solution results in dependability towards the vendor and the

specific software they offer (often known as vendor lock-in). Moreover, migrating from one PaaS

Cloud provider to another is a difficult task.

Examples of PaaS solutions offered by market-leading Cloud providers are Google’s App En-

gine [48] and Amazon’s Elastic Beanstalk [9].

2.1.2.3 SaaS - Software as a Service

In this model, the capabilities offered to the client are the usage of the provider’s application(s),

which are running on their Cloud infrastructure [80].

A SaaS application can be run by multiple clients at the same time (one-to-many basis [23]),

and this model removes any responsibility from the client’s side. SaaS applications can often be

customised via an API.

It is worth mentioning that, given the fact that the application’s data is managed by the Cloud

provider, there are challenges in terms of client authentication and identity management, as well

as in data integrity, privacy, availability and accessibility [23].

Examples of SaaS solutions are Google Docs [52] and Dropbox [36].

2.1.2.4 FaaS - Function as a Service

This model fits between PaaS and SaaS in terms of which layers are managed by the Cloud

provider and the client. Although it is very similar to PaaS in degree of abstraction, in FaaS

the platform may not be running at all until the invocation of a function to be executed, whereas

in PaaS the application is typically running in at least one server at all times [19]. Clients provide

the source code of typically short functions, defining triggers and events [74] for executing these

functions.

However, due to the entire infrastructure being managed by the Cloud provider, issues may

arise regarding (1) state management, (2) unpredictable execution time deviations, (3) delays when

executing functions (also known as cold start), and (4) high dependability towards the specific

chosen Cloud provider (also known as vendor lock-in) [19, 74].

Examples of FaaS solutions are Amazon’s AWS Lambda Functions [10], Google’s Cloud

Functions [49], and Microsoft’s Azure Functions [15]. Listing 1 (p. 9) features an example of

a Python AWS Lambda Function. The developer provides the function’s code itself to the Cloud

provider, and can configure settings such as the runtime programming language version and the

name of the function handler, as well as environment variables. On execution, the function may

access details about the event that triggered its action, as well as its context. The developer may

then monitor the execution details, accessing output and error logs. In AWS Lambda, the devel-

oper has the option of managing their functions in a user-friendly way using the AWS Console web

dashboard, or in a programmatic way using the AWS Command-line interface (CLI).
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def lambda_handler(event, context):
message = 'Hello {}!'.format(event['name'])
return {

'statusCode': 200,
'message' : message

}

Listing 1: AWS Lambda Function code example. The function itself is the only source code
created by the user. It receives request’s details via parameters, and its return operation defines the
returned response.

It is worth mentioning that there are other options to use FaaS. An example is OpenFaaS [84],

a framework for building serverless functions that makes use of Docker and Kubernetes.

2.1.2.5 Comparing FaaS to IaaS and PaaS

The different Cloud Computing service models follow a pay only for what you use philosophy that

only utilises the amount of resources necessary to satisfy the levels of demand in a scalable and

cost-efficient way. However, they differ when in the level of granularity of the billed computational

unit: whereas in IaaS it is typically a Virtual Private Server (VPS), in FaaS it is a single function

[19].

IaaS and PaaS options offer higher levels of performance than FaaS. Malla and Christensen [75]

developed a comparative study on the performance of the IaaS and FaaS models, in the context

of HPC (high-performance computing, which frequently features workloads of multiple tasks that

may be run independently). The study focused on the GCP provider, using the IaaS Google Com-

pute Engine [51] (GCE) and FaaS Google Cloud Function [49] (GCF) services. Their results show

that although GCF was is less expensive (14% to 40%) than GCE for similar performance levels,

it shows high performance variation levels. Moreover, GCE better higher levels of performance,

computing similar workloads about 1.65x faster.

In a study involving the migration of a monolithic web application firstly into microservices

and secondly into a Serverless architecture, Villamizar et al. [104] explored the infrastructure cost

efficiency of deploying the application using the AWS Cloud provider. In the first instance, the

web application was deployed into a set of VPS machines, using the IaaS AWS EC2 [8] services,

and cost estimations showed reductions of up to 13.42%. In the second instance, the application

was deployed using an AWS-based Serverless architecture (cf. Subsection 3.6.1, p. 27), which

includes the FaaS AWS Lambda Functions [10] services. This deployment version showed an

infrastructure cost reduction of about 77%, due to the granularity of the billed computation unit.

Finally, in the context of deployment of mobile applications based on microservices, Albu-

querque et al. [2] carried out a comparative study on PaaS and FaaS services based on the AWS

Cloud provider. The study was aimed at understanding the impacts of performance, scalability, and

infrastructure-related costs, comparing deployment versions using PaaS AWS Elastic Beanstalk [9]
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and FaaS AWS Lambda Functions [10] services. Their results showed equivalent levels of per-

formance, although FaaS exhibited irregular results due to cold starts and unexpected execution

times. Regarding cost efficiency, the resulting values were inconclusive and highly dependant on

the workload types, varying according to the amount of read/write database operations. Lastly,

FaaS showed more efficient scalability, presenting a granular and linear allocation of resources

according to demand, unlike PaaS where the scaling process occurred in resource jumps.

2.1.2.6 Cloud providers Solutions

The market-leading Cloud providers offer Cloud solutions across all service models. Table 2.1

synthesises the IaaS, PaaS and FaaS services offered by AWS, Azure, GCP and IBM.

Table 2.1: IaaS, PaaS and FaaS solutions offered by market-leading Cloud providers. Each
provider features services in all cloud service model layers.

Cloud provider IaaS PaaS FaaS
AWS Elastic Compute Cloud (EC2) [8] Elastic Beanstalk [9] Lambda Functions [10]
Azure Azure IaaS [16] App Service [14] Azure Functions [15]
GCP Compute Engine [51] App Engine [48] Cloud Functions [49]
IBM Cloud Infrastructure [63] Cloud Platform [64] Cloud Functions [62]

2.1.3 Deployment Models

A Cloud deployment model is defined by the location of the deployment infrastructure and by who

has control over that infrastructure. These deployment models are categorised as follows [80, 35]:

• Private Cloud, the Cloud infrastructure is used by a single organisation and their compris-

ing consumers. The Cloud may exist either in or off premises, and can be managed by either

the organisation itself or by a third-party entity;

• Community Cloud, the Cloud infrastructure is used by a community of consumer organisa-

tions that share the same infrastructure, policies and concerns. Similarly to private Clouds,

it can be owned or managed either by a third-party entity or by any of the community’s

organisations;

• Public Cloud, the Cloud infrastructure is open for use by the general public. It may be

owned, managed, and operated by any organisation (or group of organisations), and exists

on the premises of the Cloud provider;

• Hybrid Cloud, the Cloud infrastructure consists of a combination of at least two of the

aforementioned distinct types of Clouds. They remain unique entities but are bound together

by standardised/proprietary technology that enables data and application portability.

The chosen deployment model consists of a critical decision, given that it impacts the overall

infrastructure security, accessibility, as well as the business itself [90].
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2.2 Source Code Annotations

Source code annotations, often referred to as attribute-oriented programming or attribute-enabled

programming (AEP) in literature, is a programming technique that allows enriching program ele-

ments (e.g., variables, methods, classes, and packages) with metadata [99]. These have been used

to manage inheritance on Object-oriented Programming (OOP) languages, identify parallelisation

opportunities, declare elements as deprecated, among others.

Due to its general-purpose flexibility, this technique became popular in various programming

languages (e.g., Java and Python). It consists of adding custom structured and parsable declarative

tags to annotate elements without directly changing the source code’s semantics.

Annotations may, however, pose difficulties when being interpreted and maintained [27]. Sulir

et al. [99] formalised source code annotations by analysing the syntax and semantics aspects of the

language, hypothesising a correlation between source code annotations and conventional formal

languages. They propose the definition of the annotation-based language term to “describe a

given set of annotations that are processed by the same reference implementation with the same

goal".

The following Subsections demonstrate the use of annotations under different scenarios and

for different purposes.

2.2.1 Parallelisation

Dig et al. [34] suggested the use of source code annotations to identify sections that should run

in parallel when refactoring sequential programs for performance. Although their work focuses

on a multitude of refactoring approaches towards parallelism, they propose an integration with the

IDE (integrated development environment) to expand annotations and see the parallel code that

resulted from the programmer’s annotation (e.g., in a loop structure).

This concept is used by the Intel Advisor [65] tool to identify places in serial program (in

programming languages such as C, C++, and Fortran) sections that should execute in parallel

with the need for synchronisation, in a way very similar to the OpenMP [28] framework.

2.2.2 Preserving Design Patterns

A design pattern is a formalised solution to a problem that frequently occurs when designing soft-

ware [45]. To ensure that their application is preserved throughout the development process, Sabo

and Poruban [91] proposed a way of preserving design patterns through means of using source

code annotations. With the goals of both improving traceability and ensuring the pattern’s correct

application in a given scenario, they annotate code constructs (e.g., classes and methods) to ex-

plicitly identify and represent design patterns, providing feedback to the programmer if the pattern

is not followed correctly. Listing 2 (p. 12) provides an example of a concrete implementation of

an annotated Abstract Factory design pattern.
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@AbstractFactory(role=Role.CONCRETE_FACTORY, id=3)

public class AfricanFauna extends ContinentalFauna {

private static int lionCount = 0;

@Override

@AbstractFactory(role=Role.CONCRETE_METHOD, id=3)

public Carnivore createLion() {

lionCount++;

return new Lion();

}

}

Listing 2: Java annotated Abstract Factory concrete implementation (based on [91]). The CON-
CRETE_FACTORY and CONCRETE_METHOD annotations are used to indicate the class and
method roles in the Abstract Factory design pattern implementation.

Meffert [79] also proposed a methodology to annotate design patterns with the intent of docu-

menting their usage. In this work, they focus on the semantics of the pattern, proposing annotations

to indicate the pattern’s intent, problem, drawbacks and needs.

2.2.3 Web Frameworks and Services

Several popular web frameworks use annotations to declare networking details (e.g., Spring, Flask,

and Django). Listing 3 features an example of an @action annotation in the Django framework

to make a method routable, through the use of a Python decorator. The annotations are used

to specify how a web service’s logic is accessible, and, at compile or execution time, these are

analysed to generate the required mechanisms to expose the functionality [77].

class ViewSet(viewsets.ModelViewSet):

@action(detail=True, methods=['post'])

def set_password(self, request, pk=None):

# ...

return Response({

'status': 'Password set.'

})

Listing 3: Django ViewSet @action annotation. The @action decorator is used to specify which
HTTP methods should be routed the function.

On the frontend side, Heinrich et al. [58] proposed a set of source code annotations to improve

the development of collaborative web applications. The annotations introduce lightweight mech-

anisms to control concurrency, working on top of the Knockout web framework, and their study
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shows a 40% effort reduction when incorporating collaboration capabilities into web applications.

2.2.4 Annotated Code Quality

The quality of the code annotations should, similarly to the source code itself, be taken into ac-

count. However, a number of anti-patterns (or “bad smells" [31]) often arise in annotation-based

frameworks.

Correia et al. [31] proposed a set of strategies to detect and mitigate these anti-patterns, as well

as an open-source tool to automate this process. They evaluate the annotated source code based

on several metrics (e.g., number of annotated lines and annotation line length), labelling annotated

constructs with detected “bad smells" (e.g., the Crowded Party anti-pattern consists of a class with

a large number of annotation lines, which results in low readability and high complexity). Finally,

they suggest refactoring paths for each identified problem.

2.2.5 Serverless

Although source code annotations have been used in the context of platforms to build Serverless

solutions, their use to leverage Serverless usage has not yet been explored.

Crucial is a system to program concurrent Serverless applications proposed and created by

Barcelona-Pons et al. [20]. It provides annotation-based abstractions to identify code sections

according to their degree of isolation (with the aim of managing state). They proposed an archi-

tecture with three layers, with (1) a FaaS computing layer, (2) a distributed shared memory layer

and (3) the application itself. The solution was validated and evaluated using AWS Lambda Func-

tions [10], supporting fine-grained support for mutable state and synchronisation with less than

3% of source code differing from a conventional solution.

Hendrickson et al. proposed OpenLambda [60], an open-source platform for building Server-

less web services and applications. By comparing solutions based on AWS Lambda Functions

[10] and AWS EBS [7], this work proposes solutions to various Serverless research problems (e.g.,

execution engines, data aggregation, load balancing, debugging, and language support), such as

web application modularisation and partitioning. They refer the opportunities of framework-aware

tools to automate this process, suggesting the usage of source code annotations to associate end-

points with handler functions. However, their proposed solution does not explore these mecha-

nisms.

2.3 Reflection

Given that we intend to explore web applications’ reconfiguration at runtime, it is important to

understand the concept of Reflection in software engineering. Bobrow et al. [22] define reflection

as:

“Reflection is the ability of a program to manipulate as data something representing

the state of the program during its own execution.”
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A system/application with this property can change its behaviour and composition by manipu-

lating data that represents its own state [38]. Bobrow et al. distinguish this manipulation between

introspection, the ability to observe and reason about its own state, and intercession, the ability to

alter its own execution state, or its interpretation or meaning.

Cazzola [26] classifies this ability as either structural reflection, which is the ability of a lan-

guage to reify its own execution and abstract data types, or behavioural reflection, which is the

ability of a language to reify its own semantics and data used to execute the program.

2.4 Summary

This chapter describes Cloud Computing, FaaS, and source code annotations, representing key

concepts to the understanding of this work.

Section 2.1 (p. 5) defines Cloud Computing, detailing its main characteristics, service mod-

els (providing examples of specific Cloud providers’ solutions), and deployment models. Cloud’s

characteristics may be regarded as conceptional, technical, business-related or even user-experience-

related, such as its on-demand capabilities, broad network access, and measured services [80, 47].

Cloud solutions are available in different service models (e.g., IaaS, PaaS, FaaS, and SaaS) which

differ in the set of computing layers that are managed by the Cloud provider [23, 80] (cf. Fig-

ure 2.1, p. 7). A Cloud deployment model is defined by the location of the deployment’s infras-

tructure and by which entity has control over that infrastructure, and the Cloud may be regarded

as private, community, public, or hybrid [80, 35].

Section 2.2 (p. 11) discusses a few of the uses of source code annotations to add metadata

to programs, as well as their common anti-patterns. It is a programming technique that allows

enriching program elements (e.g., variables, methods, classes, and packages) with metadata [99].

Due to its general-purpose flexibility, this technique has been applied to domains such as paralleli-

sation [34, 65], design patterns preservation [79, 91], and web frameworks and services [77, 58].

The application of this concept in Cloud and Serverless computing has also been explored with

the aim to improve state management [20].

Finally, Section 2.3 (p. 13) introduces the concept of reflection of a system — “Reflection is

the ability of a program to manipulate as data something representing the state of the program

during its own execution.” — distinguishing this property between introspection (the ability to

observe and reason about its own state) and intercession (the ability to alter its own execution

state, or its interpretation or meaning) [22, 38].

On the following chapter we discuss the current state of the art on the domain of this disserta-

tion.
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On the previous chapter we review the background key concepts used throughout this work. This

chapter details the state of the art for refactoring partitioned applications at runtime and FaaS

leveraging. Section 3.1 describes the methodology used in the research process. Then, Section 3.2

introduces the techniques used to partition systems. Section 3.3 explores approaches to inspect

and refactor applications at runtime, and Section 3.4 discusses topics related to dynamic routing

between FaaS and PaaS. Subsequently, Section 3.5 describes the known challenges in hybrid de-

ployments, followed by the description of the methodologies used to leverage the usage of FaaS

in Section 3.6. Finally, Section 3.7 summarises the main findings on the aforementioned topics.

3.1 Methodology

To study the current state of the art of this dissertation’s domain, an iterative literature review

methodology was followed. It consisted of defining a group of search queries, which were adapted

(that is, by changing the search engine’s specific operators, e.g., NOT, AND, OR) accordingly to

the used databases.

The search queries were aligned with the sections defined throughout this document, to support

the investigation of the domain’s background and state of the art. Although no specific inclusion

or exclusion criteria was directly applied, the selection of relevant articles followed an exploratory

analysis that was influenced by (a) number of citations, prioritising the most cited publications,

15
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(b) publish date, prioritising the most recent publications, and (c) domain similarity, evaluated by

analysing the article’s title, abstract and conclusions.

The literature results obtained from the search queries were complemented by means of snow-

balling — analysing the references of each result to identify other works of interest, as well as

relevant terms, topics and concepts in the domain.

3.1.1 Databases

The search process included the usage of IEEE Xplore, ACM Digital Library, Scopus, Science

Direct, and Research Gate.

The researched literature consists of conference papers, journal and survey articles, as well as

popular reference books. Moreover, it also included technical reports and grey literature, consist-

ing of web articles and Cloud providers’ official documentation.

3.1.2 Research Questions

To guide the literature review process, the following literature research questions (LRQs) were

taken into account:

LRQ1: How should traffic be dynamically routed between different cloud service models?
Focusing on PaaS and FaaS, it is important to understand the advantages and disadvantages

of different routing architectures, in terms of robustness, latency efficiency, and others;

LRQ2: What trends and practises exist within hybrid deployments?
Deployments that utilise different service models in their architecture feature additional

challenges, which makes them usually not a popular choice. We aim to understand what

these challenges are and how to mitigate them;

LRQ3: How should the use of FaaS and PaaS be leveraged?
It is important to understand both the theoretical advantages and drawbacks of each of these

service models, as well as analyse existing works and case studies that include practical

evidence of them;

LRQ4: How do applications refactor themselves at runtime?
Understanding how applications can inspect themselves and, based on the gathered opera-

tional data, reconfigure their architecture at runtime (e.g., moving parts of themselves among

different cloud services) is crucial for the automation-related goals of this work;

LRQ5: What techniques have been used to partition software systems?
We want to understand the different approaches on partitioning systems, with main focus on

web applications, including both automatic and manual methodologies.
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3.1.3 Process

A bottom-up approach was used to find the studied literature. It consisted of iteratively executing

the following steps:

1. Given a survey research question, build a set of queries that express the information need;

2. Submit the queries, refining them based on the obtained results (e.g., include synonym ex-

pressions and keywords);

3. Identify the retrieved documents as relevant or non-relevant based on their similarity to the

domain by analysing their title, abstract, and conclusions;

4. Analyse the relevant documents in detail, filtering false positives. Among the relevant, in-

spect their references (snowballing) to identify missing relevant terms, topics and concepts;

5. Accommodate the newly identified terms, topics and concepts in the search queries, repeat-

ing the process.

Within the results obtained in each search query, the most recent and cited (as well as the com-

bination of both) were considered for thorough analysis. However, the various submitted queries

were not captured, which results in the replication of this literature review process not being trivial.

Notwithstanding that, an exemplification of part of the process is depicted in Appendix C (p. 81).

3.2 System Partitioning

In order to migrate part of an application to FaaS, that part of the application must be expressed as

a stateless function — otherwise, there must be system state stored externally to the FaaS function

or functions [44]. Thus, the process of partitioning an application to a set of microservices by

determining its boundaries is a necessary step towards that goal.

3.2.1 Automatic Techniques

The literature features approaches that combine model-driven, static analysis, and dynamic analy-

sis techniques to address this task in an automatic/semi-automatic manner [18].

It is worth mentioning that this process does not necessarily aim to grant a system (or its parts)

the capacity of being migrated to FaaS, but to partition a monolithic system to achieve the benefits

of better scalability, shorter release cycles, and better maintainability [78].

3.2.1.1 Model-driven Techniques

This technique uses design elements as input (such as business data-flow diagrams, function/non-

functional requirements and domain entities), and consists of iteratively (1) analysing the domain’s
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architecture, (2) extracting the candidate microservices, (3) verifying that data-related dependen-

cies are consistent with the candidate partitioning, and (4) reorganising and refactoring the code-

base [88].

It is often combined with the reusing of knowledge of migration patterns [18]. Although

not systematic and dependant on human intervention, it is a popular ad-hoc way of achieving a

microservices architecture.

3.2.1.2 Static Analysis Techniques

This technique uses source code itself as input [88]. Through its analysis, the coupling levels and

dependencies (e.g., imports and method invocations) among components (e.g., packages, modules

or classes) are evaluated, aiming to discover partitioning sections [78]. Understanding dependen-

cies among components often depends on programming languages and frameworks, as well as on

the environment itself.

The system and its components can be modelled as a graph, where nodes represent components

and edges represent dependencies. The edges are weighted according to the dependency level

between two node components [78, 57].

3.2.1.3 Dynamic Analysis Techniques

This technique analyses a system’s behaviour and functionalities at runtime [88]. By doing so,

operational data is gathered, which provides insight on how dependencies among components are

exercised while executing [78]. Together with results from static analysis, this information may

be used to formulate new dependency values among components.

Groups of tightly coupled components (having a high degree of dependency among each other)

may be grouped into clusters by using a clustering algorithm. Given that clusters are loosely

coupled among each other, they are good candidates to become isolated services [78].

3.2.2 Manual Techniques

Although the automatic techniques that were introduced in the previous subsection have proven to

achieve decent results (it is worth mentioning that even certain automatic approaches may rely on

manual steps [29]), several works have used ad hoc manual techniques to achieve microservices-

like architectures, due to their focus being on the resulting system and not on the decomposition

process itself.

With the aim of understanding and evaluating how a Serverless architecture would scale and

speedup a FinTech document processing system, Goli et al. [46] partitioned a monolithic manually

based on their business knowledge of the architecture, packaging low-coupled parts of the system

as Docker containers.

In a work that discusses decomposition into microservices and its influence on a system’s

elasticity, Kecskemeti et al. [70] suggest the annotation of software with dependency information

as a way to identify partitioning sections. The usage of source code annotations to associate
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independent section with handler functions is also suggested by Hendrickson et al. [60] in the

context of web application modularisation and partitioning.

3.2.3 Summary

The process of partitioning a system (typically a monolith) to a set of microservices by determining

its boundaries has been explored in multiple research works [18, 57, 78, 88].

Automatic approaches typically involve using a combination of techniques:

• Model-driven techniques [18, 88] are generally iterative, and use design elements (e.g.,

business data-flow diagrams, function/non-functional requirements, and domain entities),

often reusing knowledge of known migration patterns;

• Static Analysis techniques [57, 78, 88] examine the system’s source code to understand

dependencies (e.g., imports and method invocations) among components (e.g., packages

and classes);

• Dynamic Analysis techniques [78, 88] observe the system’s behaviour at runtime, gathering

operational data on how dependencies among components are exercised while executing.

Manual approaches have also been used or referred to in several research works [46, 60, 70],

consisting of ad hoc techniques that are often non-systematic. They are typically used not by their

strategic value per se, but as a mean towards an end when the partitioning process is not the main

focus. This subject is discussed in Section 4.2 (p. 34).

3.3 Runtime Application Refactoring

For an application to change its execution behaviour (intercession) at runtime, it must be able to

inspect itself (introspection) (cf. Section 2.3, p. 13).

3.3.1 Monitoring and Self-Inspection

Monitoring is the process of a system inspecting itself at runtime to gather operational data that

results from its activity. Monitoring strategies and tools should not directly affect the system being

monitored, and thus should not be intrusive or introduce overheads resulting from their action [56].

3.3.1.1 Techniques

Several runtime monitoring and self-inspection approaches have been proposed and developed,

differing in purpose, methodology and application domain. Rabiser et al. [89] presented a com-

parison among 32 different approaches, evaluating them based on the application context (e.g.,

domain and architectural style), usage (e.g., needed skills and user guidance level), content (e.g.,

usage language and data/event manipulation) and validation process. Their results revealed key
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differences in aspects such as temporal behaviour (supporting occurrence, logging and ordering of

runtime events).

The system dynamic analysis technique that was introduced in Subsection 3.2.1.3 as a step for

partitioning monolithic systems may also be applied to runtime self-inspection. It allows gather-

ing operational data that indicates how the system behaves at runtime [78]. This technique has

been applied in several domains, such as behaviour monitoring for security assessment of web

applications [61] (to assist security software testing techniques such as fault injection and SQL

injection), and system scalability monitoring (to analyse web application API requests processing

details, such as memory usage and response time).

3.3.1.2 Web Applications

These techniques have also been applied to leverage Cloud resources. Vasar et al. [102] proposed

a framework for monitoring and testing scalability and QoS of Cloud-based web applications.

This framework focuses on both self-inspection and Cloud resources management and allocation

policies (by adapting the number of running AWS EC2 [8] virtual server instances). It analyses

metrics such as average response time to requests, average memory and CPU usage, uptime, in-

frastructure costs and percentage of successfully handled requests. These metrics are measured

using the sysstat [100] utility and monitoring package, making the analysed information available

via a Java web service TCP endpoint. The introduced overhead for this approach is minimal, with

statistics loads averaging at 330 bytes. The MediaWiki web application was used to validate this

solution, using several workload patterns to simulate different scenarios. Although the dynamic

analysis techniques allowed to identify application bottlenecks and insights on future traffic arrival

rates, this technique lacks automation and requires significant manual effort, especially if multiple

machines in the target Cloud are being analysed.

Web application frameworks often feature profiling tools that can be used to gather runtime

operational data. Silk [69] is a runtime profiling and self-inspection tool for the Django [42]

framework. It intercepts and stores data from API requests and database queries, providing insight

such as request rates, request processing time, and the number of database accesses. The tool

allows accessing the gathered operational data in both a web user interface and programmatically.

This tool has been used for dynamic analysis purposes, by Matias et al. [78], in a case study aiming

to determine microservice boundaries.

3.3.2 Dynamic Refactoring

Fowler [43] defines refactoring as follows:

“Refactoring is a controlled technique for improving the design of an existing code-

base. Its essence is applying a series of small behaviour-preserving transformations,

each of which "too small to be worth doing". However, the cumulative effect of each

of these transformations is quite significant.”
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This concept has been redefined over the years by different authors, being first introduced by

Opdyke [83] in 1992. The goals of the internal structure improvements may reside in improving

the system’s extensibility, reusability, and efficiency [73]. Refactoring may occur at various levels,

such as a specific function, a class, or the system’s architecture itself. Additional challenges arise

when a system is refactored at runtime while maintaining its availability (that is, without halting

the system’s execution).

In a work exploring strategies of refactoring applications’ architectures for the Cloud, Zim-

mermann [107] emphasises the difference between “architectural refactoring of the system” and

“code refactoring of programs”, referring that the former (which is the one that is related to this

work) is not as commonly practised as the latter.

Although it is possible for a system to adapt itself using programming language features (e.g.,

conditional expressions, environment-based parameterisations, and exceptions), this approach in-

troduces design and maintainability issues, low flexibility, and does not scale. Thus, this responsi-

bility should be delegated to an application-independent middleware that focuses solely on refac-

toring and adapting the underlying application [41].

A set of approaches that rely on describing a system’s architectures as models have been pro-

posed for this purpose. The techniques feature a middleware layer to apply refactoring operations

on the system’s components at runtime.

Lan et al. [73] introduced an approach to refactor several parts of a system at runtime. Their

solution relies on a MOF-based (meta-object facility, which is a meta-model architecture) def-

inition of bad/good patterns in the application using a meta-model. Then, a middleware layer

automatically detects, removes, and updates components based on the predefined patterns. They

distinguish different types of meta-models, such as hosts, services, components, methods, and

their invocations.

On a different approach, Irment et al. [66] proposed a methodology for runtime adaptation of

components in SOAs (service-oriented architectures).

Figure 3.1: SOA service publishing and discovery (adapted from [66]). Providers publish service
descriptions on a Registry. Then, requesters search the registry, choosing a service provider based
on its description.
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These architectures feature a service provider that publishes a service description (service

interface, functional and non-function properties) to a registry. Then, requesters search the registry,

choosing a service provider based on its description — this process is visible in Figure 3.1 (p. 21).

To ensure that availability is not impacted when a service is updated, all instances of the

outdated service remain active until all requests prior to the update are fulfilled, as shown in the

UML sequence diagram in Figure 3.2.

Figure 3.2: SOA service updating UML sequence diagram (adapted from [66]). Instances of
the outdated service remain active until all requests prior to the update are fulfilled, to ensure
availability is not negatively impacted.

3.3.3 Summary

Monitoring is the process of a system inspecting itself at runtime to gather operational data that

results from its activity. These strategies should not be intrusive to the system itself [56]. Moni-

toring and self-inspection techniques differ in aspects such as application context, usage language,

data/event manipulation, and temporal behaviour.

Dynamic analysis techniques, which may also be used for system partitioning purposes (cf.

Subsection 3.2.1.3, p. 18), can be used to gather operational data that indicates how the system

behaves at runtime [78]. In the context of web applications, such operational data consists of

requests’ response time, memory usage, database accesses, and API request rates [102]. This can

be done through the usage of runtime profiling and self-inspection tools such as Silk [69] (a tool

for the Django web framework).
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This information can then be used to refactor a system’s architecture (improving the system’s

structure without impacting its external behaviour) [43, 83]. Although the change in behaviour

can result from primitive techniques (e.g., conditional expressions in the source code), these are

often difficult to maintain, inflexible and do not scale [41].

The runtime refactoring/adapting process can be delegated to an application-independent mid-

dleware layer. This layer relies on a representation of the system it is going to adapt [41] (e.g.,

meta-object and meta-model representations [73]). These techniques should not impact the sys-

tem’s availability. Refactoring techniques have also been applied to service-oriented architectures,

updating components at runtime without impacting the system’s availability [66].

3.4 Dynamic Routing Between FaaS and PaaS

The subject of using resources and services from multiple clouds has been explored in the liter-

ature for over a decade. It is commonly named as Multi-Cloud (or Multiple-Clouds), although a

number of publications refer to this topic as Cloud Federation, Inter-Cloud, or Cloud-of-Clouds

[86]. Even though the primary concerns around this subject are usually about the challenges of

integrating and managing multiple cloud providers in the same context, the used resources are

often distributed among different service levels (i.e., IaaS, PaaS, FaaS, ...). In a work that explores

multi-cloud architectures migration, Jamshidi et al. [68] present a pattern-based approach profile

and migrate cloud resources. Although their proposed solution can result in “parts of the appli-

cation ... deployed on PaaS, IaaS or both” (with some detail being provided on the orchestration

of these resources), they do not discuss traffic routing or communication details among the cloud

resources.

In Multi-Cloud, the same abstractions within each cloud are used to deploy various parts of an

app, typically to achieve redundancy. However, in this work we explore the possibility of given a

specific microservice, making it possible for it use the best abstractions (possibility within multiple

clouds) to be optimised — that is, in a way, facilitating the separation of a microservice in two,

aiming to obtain the resulting advantages of this separation (in both its FaaS and PaaS parts) in a

transparent manner.

In the IoT (Internet of Things) domain, the orchestration of local resources with cloud compu-

tational resources has also been explored. In a work examining the Dynamic allocation of server-

less functions (FaaS) in IoT environments, Pinto et al. [87] propose the creation of a fog layer that

leverages resources between the local IoT devices network (the edge layer) and the cloud functions

(the cloud layer).

By introducing a proxy between the function execution requester and the aforementioned lay-

ers (cf. Figure 3.3, p. 24), they are able to forward execution to the cloud or to the local network,

based on the evaluation of the available runtime environments (estimating time taken to execute

the function in these environments). This type of architecture also represents a relevant approach

to be used for dynamic routing in the cloud.
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Figure 3.3: IoT and Cloud Proxying Architecture (Adapted from [87]). The proxy component
forwards requested function’s execution to either the local network of IoT devices or to the Cloud.

Regarding the usage of multiple service models within the same context, Jain et al. [67] pro-

posed a system called SplitServe, a system that manages the execution of Apache Spark workloads

between IaaS virtual machines and FaaS cloud functions, using AWS resources. Although this

work does not detail how the workloads traffic is routed within the system, their solution fea-

tures a stateful layer which manages the load in all the available virtual machines (IaaS layer,

EC2 elastic compute cloud instances), creating cloud functions (FaaS layer, Lambda function in-

stances) and moving any new or on-going workloads to them when desirable (either in terms of

cost-management of computational performance).

Although certain studies (such as the aforementioned one) propose techniques that automati-

cally manage infrastructure at different service models layers and move workloads among them,

there have also been manual-driven attempts to tackle this task. For example, in a comparative

study on FaaS and PaaS, Albuquerque et al. [3] manually partitioned and deployed a web applica-

tion using AWS cloud resources. Their system features an AWS API Gateway that, based on setup

configurations, routes traffic to microservices that are either deployed in AWS Elastic Beanstalk

(PaaS) or running in AWS Lambda Functions (FaaS). However, this study focuses mostly on eval-

uating metrics such as performance, error rates and cost-efficiency, and does not explore the impact

of different routing techniques on the resulting latency.

Thus, since different studies aim to investigate the usage of multiple cloud service models to

optimise distinct metrics (e.g., performance and cost-efficiency), it is of interest to explore tech-



3.5 Hybrid Deployments 25

niques to dynamically route traffic among cloud resources deployed at different service models,

namely PaaS and FaaS.

3.5 Hybrid Deployments

Deploying projects with multiple levels of service models (such as hybrid deployments featuring

PaaS and FaaS) is not a trivial task. It poses issues and challenges in terms of observability, mon-

itoring, traffic routing, reconfiguration, infrastructure distribution decision, et cetera. Although

we believe that numerous advantages arise from these hybrid deployments (e.g., lower client la-

tency), the aforementioned cumbersome factors may be the origin of these deployments not being

a popular choice.

In terms of observability (having knowledge of the system’s internal state at any point in

time [85]) and monitoring (that actions involved in observing a system), deploying a service at

multiple levels (possibly in different providers) makes it more difficult to perform typically trivial

tasks such as accessing integrated execution logs, errors and performance information, due to this

data being more scattered among different cloud services.

It is also difficult to assess and decide which parts of a system should be deployed at each layer,

since many variables (e.g., user load, performance, cost management, latency) must be taken into

account (cf. Section 3.6). Moreover, the optimal deployment architecture often changes over time

(as the aforementioned variables fluctuate), which results in the need of system reconfiguration.

This is also a challenging task since parts of the system may not be ready to be reconfigured

(cf. Section 3.3, p. 19), and may need human intervention and development effort. Additionally,

routing traffic among these cloud service layers may result in communication delays, which may

ultimately result in bottlenecks that affect the whole system.

3.6 Leveraging FaaS

FaaS is commonly interchangeably referred to as Serverless in the literature. This Cloud Com-

puting execution model became popular throughout the past decade due to its unit of computation

granularity.

The motivation for using FaaS lies in the user convenience when compared to traditional Cloud

solutions: It abstracts the complex management of infrastructure from the user, with automatic

scaling elasticity and its granular function unit of computing [44]. However, FaaS is not in itself a

“silver bullet”, resulting in both advantages and drawbacks (cf. Subsection 2.1.2.4, p. 8). Thus it

is imperative to leverage its usage.

When it comes to pricing, costs are computed based on each function’s execution time and

memory usage. The fact that only active compute time is charged is highly beneficial for applica-

tions that rely on massive parallelism [92]. Barga [21] identifies other domains that benefit from

this computing model, such as IT (Information Technology) automation, Chatbots, IoT (Internet

of Things), Big Data, and web applications (which is the focus of this work).
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Aiming to study the economic, business and architectural impacts of migrating web appli-

cations into FaaS, Adzic and Chatley [1] studied the migration of two applications using AWS

Lambda Functions [10]. By migrating (1) parts of an Heroku platform (PaaS), and (2) a monolith-

like system that made use of AWS EC2 (IaaS), the first company achieved a cost reduction of 66%

in the following year, while the second achieved a monthly cost reduction of 95%, and increasing

the number of production releases in more than 10x with an engineering team of the same size,

due to the business agility provided by the service-oriented architecture.

When it comes to scalability, it is completely elastic, automatic and managed by FaaS provider

— the number of function instances executing for a given task is scaled horizontally based on de-

mand. Goli et al. [46] migrated a FinTech document processing system from a monolithic archi-

tecture to Serverless. The system was partitioned manually, migrated to a Cloud-like architecture,

and deployed using GCP Cloud Run [50]. By comparing the processing of 400,000 documents us-

ing both architectures, they achieved a speedup of 93x due to the service’s horizontal scaling in the

new architecture. Even though their estimation showed that costs would double with the migra-

tion, the assumption that Serverless functions would continuously be running makes the monetary

estimation inaccurate.

FaaS solutions also benefit from their geographical distribution, which results in improvements

in client latency [103], since providers feature a wide distribution of computing machines in mul-

tiple cities across different regions. In a work proposing an architecture for deploying FaaS plat-

forms in hybrid clouds (featuring both public and private clouds) composed by multiple providers,

Vasconcelos et al. [103] focus on infrastructure global distribution to allow the execution of re-

quests as geographically close to the client as possible (aiming to reduce latency). Their proposed

architecture features a FaaS Cluster, which contains all the computing nodes, and a FaaS Proxy,

which offers the same interface as a regular FaaS gateway (cf. Subsection 3.6.1, p. 27). How-

ever, instead of processing requests directly, this component redirects traffic to different services

according to factors such as the location of the client’s request and available servers.

Nonetheless, due to FaaS being a somewhat recent Cloud Computing model, it still features a

set of business and technical issues that make it an unattractive solution for particular use-cases.

Cloud providers that offer FaaS solutions only provide Service-level agreements (SLAs) for

availability. This lack of assurance may result in these solutions not being considered adequate

for data and performance-sensitive applications in specific domains (e.g., Government, Banking,

Military, and Healthcare) [44]. Due to this lack of SLAs, even FaaS solutions from the market-

leading Cloud providers often result in unexpected startup latency and irregular function execution

times [92].

The function startup latency, often referred to as cold starts, is an inherent problem of virtuali-

sation techniques [76]. Since functions are executed in containers, it experiences a latency period

when the container is initialised prior to the execution. However, there are strategies to mitigate

this issue from both the provider and client sides:

• From the provider side, to enhance performance, containers are not shut down immediately.

This allows for subsequent executions of a function to use the warm execution environment
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of an existing container [76];

• From the client side, the strategy of periodically "pinging" the function (even if there is

no task that needs to be executed) pre-warms the function instances, preventing them from

shutting down and, thus, reducing cold starts [74]. However, this technique results in addi-

tional costs and contradicts the “scale to zero” FaaS principle (no resources are allocated or

billed when there is no demand [19]).

Given that networking, virtualisation and runtime are managed by the Cloud provider, FaaS

architectures are often highly dependent on the specific provider’s ecosystem without having an

expeditious way to migrate to a different one (a problem known as vendor lock-in). Although

the adoption of standards (e.g., messaging and configuration standards) to mitigate this issue and

support the easy movement of business logic among different providers has been debated [44],

there is no evidence that such standards have been developed and adopted.

Due to the stateless nature of FaaS, issues with state management also arise. Hellerstein

et al. [59] discussed Serverless issues, pinpointing common failures in Serverless architectures

based on several case studies. They describe issues related to both orchestration (e.g., state man-

agement) and function execution itself (e.g., lifetime limitations, and I/O and storage bottlenecks),

concluding that although current FaaS solutions are suitable to handle workloads of independent

tasks, the challenges related to function orchestration and composition result in these architectures

being inadequate for numerous use cases.

Although most Cloud providers offer FaaS solutions to their clients, as referenced in Subsec-

tion 2.1.2.4, the aforementioned lack of standards and SLAs results in substantial differences in

the existing solutions. Kritikos and Skrzypek [71] reviewed a set of popular Serverless provision-

ing and abstraction frameworks (e.g., Fission, Kubeless, Spart, and Fn). In this work, they focus

on frameworks that rely on Kubernetes, Docker Swarm, or specific Cloud provider solutions (e.g.,

AWS Lambda Functions [10] and Azure Functions [15]), evaluating their design, development, de-

ployment, testing, execution, monitoring, and security aspects, concluding that there is no solution

that delivers optimal results in all the aforementioned characteristics.

3.6.1 Serverless Architectures

The FaaS/Serverless Cloud Computing execution model features significant architectural changes

when compared to traditional monolithic systems. Serverless architectures alleviate developers’

need to explicitly manage servers, appointing that responsibility to Cloud providers [32, 72].

At its core, a FaaS/Serverless platform consists of an event processing system. It manages

a group of functions, receiving requests and events (typically sent over HTTP) sent by a User

Interface (UI) or another service. Events are dispatched to different service/function instances

via an API Gateway, that acts as a reverse proxy to the Serverless functions. After the event is

received and processed, a set of execution logs are produced, and the response is made available

to the requesting entity [19].
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However, since most of the architecture’s components are managed by the Cloud provider,

these architectures often lead to vendor lock-in issues (technical and business dependability to-

wards the provider). Figure 3.4 features an example of a fully AWS-based Serverless architecture

for a web application [13].

Figure 3.4: AWS-based Serverless architecture for a web application (based on [72, 13]). S3
Bucket manages static assets storage, Cognito manages user authentication, API Gateway manages
routing and load balancing, Lambda manages the cloud functions execution, and DynamoDB is
the storage database.

3.6.2 Programmatic FaaS Function Management

FaaS solutions offered by Cloud providers typically feature user interfaces (e.g., web page dash-

boards) that allow managing function configurations and observe usage statistics. However, to

deploy and remove a system’s function without the need for human intervention at runtime, pro-

grammatic interfaces are needed.

These interfaces are commonly available as language-specific libraries or packages, and as

Command-line Interfaces (CLIs). A few examples are the AWS CLI [11], used to manage AWS

Lambda functions, and the GCP gcloud [53], used to manage GCP Cloud functions.

3.6.3 Programming Languages and Technologies supported in FaaS

The number of technologies and programming languages to develop systems such as web appli-

cations is quite vast. Thus, even the market-leading Cloud providers (such as AWS, GCP, Azure

and IBM) do not offer FaaS support for every available language, as visible in Table 3.1 (p. 29).

Among these providers, IBM offers support to the largest number of languages (eight). More-

over, they claim to support any given language if provided the Docker Container for the function

(through means of virtualisation) [62].

Even though popular languages such as Python, Java and NodeJS are supported by all these

Cloud providers, they may highly differ in both performance and costs. Bortolini and Obel-

heiro [24] investigated performance and cost variations in the AWS, GCP and IBM FaaS platforms.

They evaluated these metrics based on (1) the allocated memory for the cloud function, (2) the pro-

gramming language used in the cloud function, and (3) the FaaS Cloud provider, comparing over
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Table 3.1: Programming Languages and Technologies available for FaaS solutions offered by
market-leading Cloud providers. IBM claims to support the most languages and technologies,
while GCP supports the least.

Language/Technology AWS Lambda Functions [12] GCP Cloud Functions [54] Azure Functions [17] IBM Cloud Functions [62]
Python X X X X
Java X X X X
Javascript/NodeJS X X X X
Ruby X X - X
C# X - X -
F# - - X -
Go X X - X
.NET - X - X
TypeScript - - X -
PowerShell X - X -
Swift - - - X
PHP - - - X

45 testing configurations. The provider comparison showed differences of about 67x in costs and

8.5x in performance, and the language comparison showed differences of 67.2x in costs and 16.8x

in performance. The observed results reflect the function inconsistency that results from the lack

of SLAs discussed in the beginning of the present section.

3.6.4 Summary

FaaS is not in itself a “silver bullet”. On the one hand, there are a set of advantages and key

features that popularised the usage of FaaS [1, 21, 44, 74, 92]:

• On-demand execution of resources, which provides a "pay-as-you-go" pricing model to

the client instead of paying for a continuously running platform;

• Horizontal scaling of resources according to demand, given that every function is an iso-

lated computational unit;

• Deployment simplicity, since the client needs only to supply the function’s source code;

• Providers may serve a large number of clients without the need for large infrastructure

resources;

• Supports iterative development, allowing to get applications up and running in an agile

manner (which results in a product’s faster time to market).

On the other hand, the degree of abstraction of FaaS comes with a set of restrictions, which

may negatively impact some architectures [19, 44, 59, 74, 76, 92]:

• Most FaaS solutions do not allow retaining state between consecutive invocations;

• There are often unpredictable execution time deviations, since the infrastructure is man-

aged by the Cloud provider;

• There may be a delay when executing a function, given that the platform may not be

running (also known as cold starts);
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• Vendor lock-in, there is high dependability towards the specific chosen Cloud provider.

Several strategies may be used to mitigate the aforementioned problems. Cold starts may

be alleviated by periodically "pinging" the function (ignoring the produced workload) to reduce

latency in other requests [19]. However, this does results in an increase in costs and is far from

ideal [74]. Regarding state management, functions should be stateless, and the application’s state

should be externalised and persisted in data stores [59].

When compared to its IaaS and PaaS peer models, FaaS shows better and more granular scal-

ability, which results in more efficient resources allocation that often reduces costs. However, its

peers show higher levels of performance, being able to compute similar workloads faster.

Using FaaS has a meaningful impact in a system’s architecture, alleviating the need for de-

velopers to manage infrastructure. However, since most of the architecture’s components are

managed by the Cloud provider, these solutions may lead to vendor lock-in issues [19, 74] that,

together with the lack of SLAs [44], may make FaaS an unfeasible approach. Moreover, different

providers show differences of about 67x regarding costs and about 8.5x regarding performance,

with similar differences regarding distinct programming languages.

Finally, to leverage FaaS, it is essential to move and remove parts of an application from this

model. To do so, Cloud providers offer a set of options for developers (e.g., CLI tools and libraries)

to perform this task in a programmatic way.

3.7 Summary

Section 3.1 (p. 15) introduces the methodology used to perform the literature review on the topic

of this work. First, the reasoning behind the developed search queries and the criteria to select

relevant literature is described. Then, the databases used are enumerated, as well as the types of

reviewed literature documents. The iterative process used to answer the research questions is then

outlined and discussed.

Section 3.2 (p. 17), which focuses on LRQ5, elaborates upon techniques to partition systems,

exploring both automatic and manual techniques, as well as providing practical examples where

these approaches have been used in previous literature works. Automatic approaches typically

involve combining a set of techniques — in this section we explore (1) model-driven techniques,

which make use of system design elements and known migration patterns, (2) static analysis tech-

niques, which examine source code to understand dependencies among components, and (3) dy-

namic analysis techniques, which observe the system to understand how dependencies are exer-

cised at runtime. Manual approaches are typically ad hoc and non-systematic and tend to be used

as a mean towards an end when the partitioning process is not the main focus.

Section 3.3 (p. 19), which focuses on LRQ4, describes methodologies for system monitoring

and self-inspection, exploring different techniques and their usage in the context of web applica-

tions, as well as approaches for dynamic refactoring. System monitoring aims to gather opera-

tional data of a system’s execution at runtime, without negatively affecting its performance and
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behaviour. Dynamic analysis techniques allow gathering operational data of web applications such

as requests’ response time, memory usage, data accesses, and API request rates. This informa-

tion can then be used to refactor a system’s architecture, without impacting its external behaviour.

Although primitive techniques can be used for this purpose (e.g., conditional expressions in the

source code), they are difficult to maintain, inflexible and do not scale. Thus, techniques based on

application-independent middleware layers that adapt the system at runtime without impacting its

availability have been explored.

Section 3.4 (p. 23), which focuses on LRQ1, discusses topics related to dynamic routing be-

tween FaaS and PaaS. Multi-Clouds explore the usage of resources distributed among difference

service levels (i.e., IaaS, PaaS, FaaS). Although typically the same abstractions within each cloud

are used to usually achieve redundancy, it is possible to apply this concept to the deployment of

a specific microservice, making it possible for it to use the best available abstractions (possibly

within multiple clouds) to be optimised. Routing a function’s execution among different abstrac-

tion levels has also been explored in the IoT domain, in which functions can either be executed

locally in a network of IoT devices or be routed for cloud execution. There have also been case

studies of projects deployed using different cloud service models, both manually and with some

degree of automation.

Section 3.5 (p. 25), which focuses on LRQ2, describes the main challenges in hybrid deploy-

ment scenarios (that is, featuring multiple service models, such as PaaS and FaaS), which results

in these not being a very popular approach. These deployments pose challenges in terms of ob-

servability and monitoring — which makes it more difficult to perform typically trivial tasks such

as accessing integrated execution logs, errors and performance information — as well as in terms

of system reconfiguration and infrastructure distribution decision.

Finally, Section 3.6 (p. 25), which focuses on LRQ3, discusses the importance of leverag-

ing the usage of FaaS. The different advantages and drawbacks of traditional Cloud-based web

application and FaaS approaches are debated, supported by results of practical case studies and

comparative research. FaaS was popularised by its inherent horizontal scaling capabilities, de-

ployment simplicity, and on-demand execution of resources. However, it is not a “silver bullet”

and has issues related to state management, cold-starts, and unpredictable execution time devia-

tions. A comparison between the IaaS/PaaS and FaaS models showed that the former can achieve

higher levels of performance, while the latter features more granular scalability of resources that

often results in cost reduction. The dependability towards the Cloud provider (vendor lock-in) to-

gether with the lack of SLAs in this model make it an unattractive approach for certain scenarios,

with providers showing differences of about 67x regarding costs and about 8.5x regarding perfor-

mance, and similar differences regarding distinct programming languages. FaaS has a meaningful

impact on a system’s architecture and provides a number of programmatic ways for developers to

deploy functions.

Thus, based on the gaps identified in this literature review, on the following chapter we thor-

oughly describe and formalise the problem under study.
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On the previous chapter we discuss the current state of the art on the domain of this dissertation.

This chapter thoroughly describes and formalises the problem under study. Firstly, Section 4.1

describes the current issues and open problems in the domain of this dissertation. Secondly, Sec-

tion 4.2 identifies the scope and focus of this work. Then, Section 4.3 defines the set of desiderata

we intend to address in this work. Section 4.4 presents the main hypothesis we aim at validating,

followed by the main research questions that guide this work in Section 4.5. The methodology that

is used to validate and evaluate the obtained results is outlined in Section 4.6. Finally, Section 4.7

provides an overview of the topics addressed in this chapter.

4.1 Current Issues and Open Problems

In Chapter 3 (p. 15) we present the current state of the art on a variety of topics related to lever-

aging FaaS, hybrid deployments features PaaS and FaaS, as well as techniques to partition and

dynamically refactor applications. However, there are still a number of open challenges and issues

on these topics, given that most research works operate on very specific assumptions, scenarios,

and restrictions.

Firstly, deployments featuring multiple cloud service models (hybrid deployments) showed

not to be a popular deployment decision. Although each service model features its own strengths

and, ideally, the best of each of them can be used to optimise the deployment context of a given
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application, they pose challenges in terms of observability, monitoring, traffic routing, reconfig-

uration, distribution decision, among others. Additionally, existing hybrid deployment scenarios

either require mostly manual configuration, which leads to elevated development effort, or can

only operate with particular services of specific cloud providers. Thus, there is a lack of ways to

automate hybrid deployments in a way that is agnostic to the cloud provider.

Additionally, to reach a state where a system can be deployed to the cloud, engineers must

redesign its architecture. This process is hard to assess since (1) it is hard to estimate the required

effort to redesign the application, (2) it is hard to ensure that this step will be successful, (3) it

requires substantial manual effort, and (4) it is troublesome to revert, due to the architectural

changes applied to the application. There is a lack of programmatic methodologies to declare

these separation points at the source code level, which would mitigate most of the aforementioned

points.

Within the previously described hybrid deployments, there is also a lack of research on spe-

cific dynamic techniques for routing traffic between service model layers, namely PaaS and FaaS.

The optimisation of these techniques towards goals such as minimising client latency when ac-

cessing the cloud resources, or saving infrastructure-related costs, could be a step towards the

popularisation of cloud hybrid deployments.

Finally, we believe there are several gaps regarding the ability of cloud-deployed applications

to maximise their operational efficiency through runtime inspection and self-reconfiguration. Data

gathered on self-inspection at runtime should be used to decide if parts of the system should

be migrated to different cloud layers (e.g., from PaaS to FaaS, and vice-versa) with the aim of

optimising metrics such as latency or infrastructure-related costs.

4.2 Scope

Based on the literature shortcomings and current issues identified in the previous subsection, this

dissertation aims to investigate strategies to facilitate the programmatic partitioning of web ap-

plications into PaaS and FaaS and their deployment to the cloud, thus improving the software

development process for engineers. Additionally, this work explores techniques for dynamic rout-

ing between PaaS and FaaS in hybrid deployment scenarios.

Thus, the scope of this work includes the implementation of a plugin prototype that utilises

and facilitates the aforementioned tasks.

Even though that self-inspection and runtime infrastructure reconfiguration is considered wor-

thy of being investigated, it is not be the main focus of this work, and any advances towards that

goal are secondary.

4.3 Desiderata

As discussed in the previous section, this work includes the implementation of a plugin that fa-

cilitates the partition and cloud deployment of a web application. With its implementation, we
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propose to achieve the following desiderata (Ds):

D1: Provide an interface to annotate where resources are deployed and executed, so that de-

velopers can programmatically declare in which cloud service model (PaaS or FaaS) a web

application’s resource should run;

D2: Deploy the annotated web application resources to the cloud, so that the annotated re-

sources from D1 can quickly be deployed without effort, in a way that is agnostic to the

used cloud providers;

D3: Manage the deployed web application cloud resources, so that it is possible to eliminate,

re-deploy, and change the location of deployed resources;

D4: Efficiently route traffic between PaaS and FaaS, in a way that ensures that user requests

are routed to the correct resource location (PaaS or FaaS) as fast as possible (with minimal

latency);

D5: Automatic reconfiguration of annotated resources at runtime, that is, moving annotated

resources from PaaS to FaaS, and vice-versa, at runtime (based on efficiency metrics such

as user load, memory usage, ...) to minimise user latency and costs.

The main priority consists of fulfilling desiderata D1, D2, D3, and D4. Progress towards D5
is secondary.

4.4 Main Hypothesis

We can summarise our desiderata in the following hypothesis:

PaaS and FaaS provide complementary benefits for web applications. Developers can

leverage them to optimise their applications, by (1) partitioning their applications to

be deployed to the best service model for each functionality, (2) using a dynamic

routing strategy to forward requests to the proper resource, and (3) allow the appli-

cation to dynamically reconfigure itself by moving code between PaaS and FaaS (and

vice-versa) in a way that optimises infrastructure costs, client latency, and response

time.

Providing web developers with interfaces to partition their application can significantly reduce

development effort. We believe that programmatically declaring in which service model layer a

functionality should be deployed and executed, in a way that is agnostic to the cloud provider,

avoids manual infrastructure management and its cumbersome configuration, allowing developers

to focus on choosing the best service model for each functionality.

For this to be possible, it is imperative to use a dynamic routing strategy that guarantees that

requests are routed to the correct resource. We believe this process should be crafted in a way that
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optimises its robustness and routing efficiency when forwarding traffic between Paas and FaaS, by

minimising latency when forwarding requests to the proper resources.

Finally, it should be possible to optimise the execution context of a deployed application, in

a way that optimises infrastructure costs, client latency, response time, and others, by allowing it

to inspect itself at runtime. The operational data gathered on self-inspection should allow it to dy-

namically reconfigure itself by moving code between PaaS and FaaS (and vice-versa), thus making

use of the best each service model has to offer based on the application’s runtime necessities.

It is worth pointing out that the hypothesised premises 1 and 2 are a requirement and step

towards premise 3. Thus, this dissertation primarily focuses on these first two premises.

4.5 Research Questions

To validate the presented hypothesis and to achieve the proposed goals, the following five research

questions (RQs) were identified to guide this work:

RQ1: Can we use source code annotations to identify parts of the application that should be
executed/deployed in PaaS and FaaS?
Refactoring a system and redesigning its architecture for its deployment to the cloud is

a demanding endeavour. Identifying partitioning sections using annotations at the source

code level would provide an expeditious way to tackle this task, in a way that significantly

decreases development effort;

RQ2: Can we deploy a programmatically partitioned web application to the cloud in a way
that is entirely provider-agnostic to the developer?
A cumbersome part of deploying a web application to the cloud, especially if there are

multiple providers or different types of services being used, is coping with provider-specific

configurations and details. Can we abstract this effort from developers?

RQ3: How can we optimise the routing of traffic between PaaS and FaaS? What techniques
can be used for this purpose?
Routing traffic between PaaS and FaaS is not a trivial task and can introduce communication

delays and bottlenecks. Thus, it is important to conceive and experiment with different

routing techniques in order to minimise client latency and routing robustness;

RQ4: How can a system self-inspect, refactor and migrate parts of itself at runtime?
Gathering operational data and adapting an application’s codebase and structure at runtime

poses a number of challenges. Thus, it is important to identify ways of addressing these

tasks, investigating the best approaches and strategies to execute them;

RQ5: What techniques have been used to leverage FaaS and with what results?
The different cloud models have distinct advantages and drawbacks. Moving parts of a web

application to/from FaaS should optimise a set of metrics. What policies have been used for

this purpose? How have they impacted these metrics?
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4.6 Validation and Evaluation

In a work on “Experimental Models for Validating Technology” [106], Zelkowitz and Wallace

defined the following four general categories for experimental models (quoted from their publica-

tion):

Scientific Method: Scientists develop a theory to explain a phenomenon; they propose a hypoth-

esis and then test alternative variations of the hypothesis. As they do so, they collect data to

verify or refute the claims of the hypothesis.

Engineering Method: Engineers develop and test a solution to a hypothesis. Based upon the

results of the test, they improve the solution until it requires no further improvement.

Empirical Method: A statistical method is proposed as a means to validate a given hypothesis.

Unlike the scientific method, there may not be a formal model or theory describing the

hypothesis. Data is collected to verify the hypothesis.

Analytical Method: A formal theory is developed, and results derived from that theory can be

compared with empirical observations.

The validation and evaluation process of this dissertation are separated into two phases, which

use both the Engineering and Empirical methods of validation.

In the first phase, a set of techniques for dynamic routing between PaaS and FaaS are im-

plemented and evaluated, using load testing techniques to simulate typical real-world use case

scenarios. To do so, a cluster of machines is set up to create simulated users that execute web

requests to the routers implemented in each technique. These machines should be geographically

distributed around the globe to simulate usage from multiple regions. Each technique is evaluated

in terms of their latency performance (how long they take to fulfil users’ requests) and their ro-

bustness (that is, their ability to fulfil requests without failing). This phase follows an Empirical
Method approach of validation — data on the latency performance and robustness of the proposed

routing techniques is gathered to validate the hypothesis.

Then, in the second phase, the routing technique that shows the best results is applied in

the implementation of the plugin PoC itself — this way, the plugin itself serves as a reference

implementation of the proposed optimal routing technique. The plugin is experimented by using

it to programmatically partition and deploy two open-source web application projects. Then, the

validity of the resulting deployments are verified by accessing all the deployed resources URLs

and confirming they are routed executed in the correct service model, PaaS or FaaS. This phase

follows an Engineering Method approach of validation — the reference implementation plugin

is developed to test the solution we engineered for the hypothesis.

The complete experimentation process, the obtained results, and instructions on how to repli-

cate all its steps on both phases are available in Section 5.2 (p. 48) and Section 6.2 (p. 66).
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4.7 Summary

The current issues and open problems in the domain of this dissertation are described in Sec-

tion 4.1 (p. 33). We believe there are several gaps in the literature regarding the use of hybrid

deployments, especially related to their automation and ease of utilisation. There are challenges

associated with its use, as well as in the routing between service model layers within these hybrid

deployments.

In Section 4.2 (p. 34) we define the scope and focus of our work. It consists of investigating

strategies to facilitate the programmatic partitioning of web applications into PaaS and FaaS and

their deployment to the cloud, and features the implementation of a plugin prototype to facilitate

these tasks.

Section 4.3 (p. 34) details the desiderata we propose to achieve with the implementation of

the aforementioned plugin prototype. This desiderata is then summarised into the main hypothesis

(cf. Section 4.4, p. 35) we propose to validate, which lies in the belief that PaaS and FaaS comple-

mentary benefits can be achieved through their use in hybrid deployments, that can be facilitated

by allowing developers to (1) partition their applications, (2) use dynamic routing strategies to for-

ward requests to the proper resources, and, ultimately, (3) by the automation of the reconfiguration

process of these deployments.

Section 4.5 (p. 36) lists the main research questions that guide this work. These lie in the

investigation of methodologies to partition web applications programmatically, their deployment

to different service models (PaaS and FaaS) based on the identified partitioning points, and the

optimisation of traffic routing between these service models after deployment. Additionally, we

intend to investigate ways of automating migration between these service models, based on self-

inspection, with the aim of optimising a set of performance metrics.

Finally, Section 4.6 (p. 37) discusses the validation process of this dissertation. It is separated

into two phases, which consist of (1) evaluating a set of conceived and implemented techniques

for dynamic routing between PaaS and FaaS using load testing techniques, and (2) experimenting

the implemented plugin (using the technique that showed the best results in the previous phase) in

public open-source web application projects, demonstrating its validity by verifying the success

of the resulting deployments.

On the following chapter we discuss the implementation and validation of the techniques for

dynamic routing between PaaS and FaaS that were conceived in this work.
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On the previous chapter we describe and formalise the problem under study. This chapter discusses

the implementation and validation of the techniques for dynamic routing between PaaS and FaaS

that were conceived in this work. Firstly, Section 5.1 explores the considerations and implementa-

tion process of each technique. Section 5.2 describes the evaluation and validation process of these

techniques, as well as their results and replication instructions. Finally, Section 5.3 summarises

these topics.

In this work, we provide a reference implementation of a plugin for a web framework (cf.

Chapter 6, p. 59). However, as a step towards this goal, it is imperative to study distinct techniques

for dynamic routing between different cloud service models, namely PaaS and FaaS, with the aim

of minimising the client latency that results from routing traffic between these models. With the

evaluation and validation of the conceived and implemented routing techniques, the best perform-

ing technique is selected to be included in the reference plugin implementation. This chapter’s

work provides progress towards research question RQ3 (cf. Section 4.5, p. 36).

5.1 Implementation

As observed in Section 3.4 (p. 23), routing traffic between PaaS and FaaS is not a trivial task and

poses a set of already identified challenges. With the aim of addressing them, we define a set of

techniques that are able to route traffic between PaaS and FaaS.

These techniques aim to achieve desiderata D4 (cf. Subsection 4.3, p. 34), thus intending to

minimise client latency when accessing hybrid deployed web applications in a robust manner.
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Additionally, they were conceived with the aim of exploring routing in different cloud service

layers, using both existing services (such as web proxies, e.g., Nginx or Apache) and existing

protocols (such as DNS). With that in mind, this worked focused on the following four routing

techniques (RTs):

RT1 — Proxy Server: A proxy web server (such as Nginx or Apache) instance routes incoming

requests to either PaaS or FaaS based on a configuration file;

RT2 — Cloud Function Router: A cloud function routes incoming requests to either PaaS or

FaaS based on the requested resource;

RT3 — Cloud Function Router + Web Server: A cloud function either routes incoming requests

to a PaaS instance or executes and answers to the request locally, based on the requested re-

source;

RT4 — DNS Routing: Web requests are resolved into PaaS or FaaS instances based on DNS

configurations, as opposed to having a device responsible for routing traffic as in the afore-

mentioned techniques.

It is worth mentioning that although these techniques are designed for routing for PaaS and

FaaS, they can be applied to other service models.

Figure 5.1: RT1, RT2, and RT3 redirect UML sequence diagram. The router evaluates received
requests, redirecting the user to the appropriate FaaS or PaaS resource location.
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Techniques RT1, RT2, and RT3 follow a similar procedure to route traffic (RT4 operates in

a different way, which is detailed further ahead in the present section). Firstly, they rely on the

existence of a set of rules that dictate which resources (identified by URLs) should be redirected

to PaaS or FaaS. After a web request is received on the router service, the requested resource is

evaluated, and a redirect response is returned together with the location of the remote resource that

should be accessed (either in PaaS or FaaS). Then, the user who created the original request repeats

it to the correct destination it was redirected to. This process is illustrated by Figure 5.1 (p. 40).

Additionally, this scenario closely resembles the “Service Discovery” design pattern described by

Sousa et al. [33, 93, 94, 95, 96, 97, 98] which abstracts the details of the service network (in this

case, the PaaS and FaaS services) by relying on an external mechanism (the router, in either RT1,

RT2, or RT3) to route traffic.

As for the redirects themselves, they can be of the temporary or permanent type. They differ on

their permanency, that is, on how long the location of the resource that the request was redirected

to is cached. Although these are not fixed, temporary redirected are usually cached for very short

periods of time (or not cached at all), while their permanent counterparts are usually cached for

future requests. They offer both advantages and drawbacks [40].

On the one hand, permanent redirects (“301 Moved Permanently” and “308 Permanent Redi-

rect”) aim to reduce request latency. Since requests subsequent to the first one are accessed directly

without visiting the original resource, this period of time is saved in future requests. However, they

pose challenges when the redirect resource location changes, a problem known as “Cache Invali-

dation”, which is cumbersome in scenarios where a system needs to reconfigure itself.

On the other hand, temporary redirects (“302 Found” and “307 Temporary Redirect”) avoid

these reconfiguration issues. Yet, typically the original resource in the redirecting process must be

visited in all requests, which introduces communication delays.

With this in mind, in this work we opted to study scenarios using temporary redirects. Even

though system reconfigurability is not focused on this work, this type of redirects is more suited

to accommodate those requirements in further work on this topic.

5.1.1 RT1 - Proxy Server

This routing technique relies on a device hosting a proxy web server (such as Nginx or Apache)

receiving incoming requests and forwarding them to either PaaS or FaaS. The UML deployment

diagram on Figure 5.2 (p. 42) illustrates this technique’s architecture.

The proxy server configurations used to route incoming traffic to the different available cloud

resources can be dynamically generated by inspection of an application’s source code, or based on

other metrics such as usage rates and cost prediction (although the latter was not explored in this

study).

It is worth mentioning that, since user requests need to be routed to the proxy server instance

before being routed to cloud functions, which are generally closer to the user, the router in this

architecture may be a system bottleneck (e.g., latency, system failure).
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Figure 5.2: RT1 — Proxy Server UML deployment diagram. The proxy web server evaluates and
redirects incoming requests to the appropriate PaaS or FaaS resource location.

Furthermore, updating the routing configurations may imply the need to restart the proxy in-

stance, which may result in system downtime.

http {

# ...

server {

# ...

location <%=ENV['PAAS_REGEX']%> {

rewrite ^/(.*) <%=ENV['PAAS_URL']%>/$1 redirect;

}

location <%=ENV['FAAS_REGEX']%> {

rewrite ^/(.*) <%=ENV['FAAS_URL']%>/$1 redirect;

}

}

}

Listing 4: RT1 — Nginx configuration file snapshot. Requests are evaluated and redirected to
either PaaS or FaaS using regular expression matching on the requested URL.
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To implement this routing technique, an Nginx proxy server was used, which was deployed

using the free tier Heroku Nginx platform. By evaluating the requested resource’s URL using

regular expressions, the service redirects incoming requests to either PaaS or FaaS, as illustrated

in the configuration snapshot in the configuration present in Listing 4 (p. 42).

The Heroku Nginx platform allows the specification of a ruby template file as the proxy config-

uration file. In the aforementioned figure, a set of environment variables are used in the configura-

tion, which facilitated experimentation since it was possible to make configuration modifications

without changing the source code file itself. The environment variables were set on Heroku’s

service dashboard directly.

5.1.2 RT2 - Cloud Function Router

This routing technique relies on an HTTP-triggered cloud function device receiving incoming

requests and forwarding them to either PaaS or FaaS. The UML deployment diagram on Figure 5.3

illustrates this technique’s architecture.

Figure 5.3: RT2 — Cloud Function Router UML deployment diagram. A cloud function evaluates
and redirects incoming requests to the appropriate PaaS or FaaS resource location.

Similarly to RT1, the configurations used to route incoming traffic to the different available

cloud resources can be dynamically generated.

However, in contrast to RT1, these configurations may be dynamically updated over time with-

out the need to restart the system (without downtime). Additionally, on the one hand, the client

latency that may occur in RT1 from redirecting traffic from the PaaS to FaaS is eliminated since

the routing process is, in this architecture, present in the FaaS layer itself.
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On the other hand, a new latency from redirecting traffic from FaaS to PaaS is introduced —

however, given that FaaS services are more geographically distributed and generally closer to any

user location, this latency is expected to be significantly smaller than the former.

To implement this routing technique, the Azure cloud function service was used. Similarly to

RT1, the router function evaluates the requested resource’s URL using regular expressions, and

then redirects received requests to either PaaS or FaaS. The routing cloud javascript function is

illustrated in Listing 5.

module.exports.route = async function (context, req) {

const segment = req.params.segments || "";

if (process.env.PAAS_REGEX.test(segment)) {

context.res

.status(302)

.set("location", `${process.env.PAAS_URL}/${segment}`)

.send();

} else if (process.env.FAAS_REGEX.test(segment)) {

context.res

.status(302)

.set("location", `${process.env.FAAS_URL}/${segment}`)

.send();

} else {

context.res.status(400).send();

}

};

Listing 5: RT2 — Azure router cloud function. Requests are evaluated and redirected to either
PaaS or FaaS using regular expression matching on the requested URL.

The cloud function is triggered by incoming HTTP requests, matching any routes, and verifies

whether the request should be redirected to PaaS or FaaS. In the case no match is found, an error

response is returned. The deployment of this function was facilitated by the usage of the Serverless

framework, which allowed creating the function with minimal additional configuration. Addition-

ally, the environment variables used for the URL matching were defined via a configuration file.

5.1.3 RT3 - Cloud Function Router + Web Server

This routing technique is very similar to RT2 in the sense that requests are always received in FaaS.

However, besides the routing function, the web application’s functions are also deployed in the

FaaS layer. In the case that requests can’t be fulfilled locally in the FaaS layer, these are redirected

to the PaaS layer by the routing function. The UML deployment diagram on Figure 5.4 (p. 45)

illustrates this technique’s architecture.
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Figure 5.4: RT3 — Cloud Function Router + Web Server UML deployment diagram. A cloud
function evaluates incoming requests and either (a) fulfills the request locally if the requested
resource is available, or (b) otherwise, redirects the request to the PaaS resource location.

Despite offering almost the same advantages and drawbacks as RT2, this technique altogether

removes the latency of routing traffic to remote cloud functions FaaS instances by having these

resources available locally. For that reason, although this can result in larger amounts of storage

and memory being needed to host the router function, this technique aims to be an improvement

on RT2 in terms of latency optimisation.

Similarly to the previous one, the Azure cloud function service was used to implement this

routing technique. The router function evaluates the requested resource’s URL using regular ex-

pressions, and if the requested resource is locally available, then it executes the request and returns

the answer. If not, the received request is redirected to PaaS. The routing cloud python function is

illustrated in Listing 6 (p. 46).

Like in RT2, the cloud function’s execution is triggered by incoming HTTP requests and the

deployment was facilitated by the usage of the Serverless framework. To allow the execution of

web server functions locally, we used the AzureFunctionsWsgi [30] package. It facilitates the

execution of web application requests inside python azure functions by providing a middleware

for WSGI (Web Server Gateway Interface) applications.
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def main(req: func.HttpRequest, context: func.Context) -> func.HttpResponse:

match = re.match(urlAndSegmentsRegex, req.url, re.M|re.I)

segments = match.groups()[-1]

if re.search(os.environ.get('PAAS_REGEX'), segments, re.M|re.I):

return func.HttpResponse(

status_code = 302,

headers = {

"location": f"{os.environ.get('PAAS_URL')}/{segments}"

}

)

elif re.search(os.environ.get('FAAS_REGEX'), segments, re.M|re.I):

return AzureFunctionsWsgi(application).main(req, context)

else:

return func.HttpResponse(status_code = 400)

Listing 6: RT3 — Azure router cloud function. Requests are evaluated using regular expression
matching on the requested URL and either the request is (a) locally fulfilled if the requested re-
source is available, or (b) otherwise, redirected to the PaaS resource location.

5.1.4 RT4 - DNS Routing

Instead of featuring a device that is responsible for routing traffic as in the three aforementioned

techniques, this technique relies on domain name resolution to route traffic to different service

models. The UML deployment diagram on Figure 5.5 illustrates this technique’s architecture.

Figure 5.5: RT4 — DNS Routing technique UML deployment diagram. The requests’ domain
named is resolved to either PaaS or FaaS based on the DNS configuration.
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To implement this technique, the tese.ruialves.me subdomain was used. This technique relies

on the following DNS configuration:

1. A CNAME record to resolve f aas.tese.ruialves.me to the FaaS cloud functions;

2. A CNAME record to resolve paas.tese.ruialves.me to the PaaS web server;

3. A CNAME record, with a TTL value of 300 seconds, to resolve tese.ruialves.me to either

of the previous names

To route traffic, the web requests are made to tese.ruialves.me and requests are resolved to

either FaaS or PaaS by updating the aforementioned record 3. It is worth pointing out that this

record should have a low TTL value, so that it is possible to reconfigure it in an expeditious way,

whilst avoiding the risk of DNS caches becoming outdated — the selected value of 300 seconds

was enforced due to the available service’s limitations.

The implementation steps of this technique included configurations at a PaaS Heroku web

server, a FaaS Azure function app, and Cloudflare domain management.

Firstly, regarding PaaS configurations, the Heroku web dashboard was accessed to add a cus-

tom domain. Adding the custom domain ∗.paas.tese.ruialves.me resulted in the creation of a

Heroku DNS target, which can be used to create a CNAME record for DNS resolution.

Secondly, regarding FaaS configurations, the Azure web dashboard was accessed to configure

the FaaS custom domain. Creating the custom domain f aas.tese.ruialves.me resulted in the cre-

ation of an Azure DNS target, which can be used to create a CNAME record for DNS resolution,

and in a custom domain verification ID string, which must be used to create a TXT record for

domain ownership confirmation.

Then, the necessary DNS configurations were created using Cloudflare domain management

dashboard. These DNS records are depicted in Table 5.1. The paas.tese entry resolves to the DNS

target previously created on Heroku. The f aas.tese entry resolves to the DNS target previously

created on Azure, and the asuid. f aas.tese entry contains the domain verification ID created on

Azure for ownership confirmation purposes. Finally, the tese record is updated to resolve to either

the PaaS or FaaS names, thus routing incoming traffic by DNS resolution.

Table 5.1: RT4 — Cloudflare DNS records. A CNAME record resolves paas.tese to the PaaS
server, a CNAME and a TXT record resolve f aas.tese to the FaaS cloud functions, and a final
CNAME record resolves tese to either paas.tese or f aas.tese.

Type Name Content
CNAME paas.tese hidden-baboon-7ltuxj23r6rx3vo8z4l85k4x.herokudns.com
CNAME faas.tese sls-weur-dev-serverless-framework-app.azurewebsites.net
TXT asuid.faas.tese 82BA3A98D17291BD832288F19EF0C711C6541B8FCC0A53...
CNAME tese paas.tese or faas.tese

However, this technique lacks the ability to control where traffic is routed to based on, for

example, the requested resource URL — the only way of indicating to where the domain should
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be resolved to is by changing a DNS address (A or AAAA, if pointing to a specific IPv4 or IPv6,

respectively) or canonical name (CNAME, if point to another domain) records. Moreover, these

record changes take time to propagate based on the record’s TTL (time to live) and, even if the

TTL value is minimal, some DNS servers fail to acknowledge TTL values below a given threshold.

5.2 Evaluation and Validation

5.2.1 Methodology

To evaluate the traffic routing latency that results from each of the routing techniques that were

presented in the previous chapter it is important to analyse their behaviour, both in terms of per-

formance and robustness, when accessed by different loads of users throughout a period of time.

In order to do so, we use load testing techniques to generate web traffic in a set of different

experiments — a number of simulated users are generated, and each of them periodically executes

requests to the router.

Additionally, given that the latency performance is a key factor in evaluating performance, the

simulated users should be widely geographically distributed across the globe. With that in mind,

a cluster of machines (their infrastructure details are specified in Subsection 5.2.3) was used to

generate traffic, and distributed in various regions of the world — Europe, Asia, North America,

South Africa, and Middle-East.

This cluster features a total of six computation nodes, with one of them (located in Europe)

serving as the master node, which orchestrates the load testing procedure among the worker nodes

(including itself).

For evaluating the performance and robustness of each routing technique, it is important to

capture and take into account the following metrics throughout each load test:

Total Number of Requests: indicates the total amount of traffic that was received in the router;

Total Number of Failed Requests: indicates the total number of times the routing failed (regard-

less of the failure reason);

Request Failure Rate: derived from the aforementioned metrics, which indicates the robustness

of the routing technique;

Average, Minimum, Q1, Median, Q3, and Maximum Response Times: to understand the la-

tency performance of the routing technique;

Request Failure Reason: only captured on failed requests, for qualitative evaluation purposes.

To facilitate the load testing process, the Locust1 open-source load testing framework was

used, given that it features a small learning curve, capabilities for setting up tests using a cluster

1Locust — An open-source load testing tool, https://locust.io/

https://locust.io/
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of machines, vast community support (due to its open-source nature), and a simple programmatic

interface using python, as visible in the locust test configuration present in Listing 7.

class User(HttpUser):

wait_time = between(0.5, 2)

@task(1)

def paas_request(self):

self.client.get(url=os.environ.get('PAAS_URL'), timeout=10.0)

@task(1)

def faas_request(self):

self.client.get(url=os.environ.get('FAAS_URL'), timeout=10.0)

Listing 7: Locust test configuration. Each generated user periodically executes a task with equal
probability (each has a priority weight of 1). These tasks consist of performing a request to either
the PaaS or FaaS resource.

Regarding the tests, in each test the cluster nodes periodically generate web requests to the

routing device, depending on the technique being evaluated. Each request features a timeout

period, in which if no response is received, the request is deemed as failed (timeout failure). The

user load is evenly distributed among all the cluster machines and, since the number of users

may be high in various tests, a startup period is taken to generate the simulated user workers —

data gathered during this startup period is not considered, and results start being gathered and

the test phase begins after all the simulated users are created. Moreover, the user requests are

approximately evenly distributed between FaaS and PaaS, with each model receiving about half

the requests. The experiments were done under the following configurable parameters:

Duration: each test run took a period of 200 seconds;

Number of Users: constant in each specific test. Ranged from 500 to 2000 (the reasoning for

these values is provided in Subsection 5.2.4), with an increment of 500 users per test;

User Request Periodicity: each user generated a new request every 0.5 to 2 seconds, following

a uniform distribution probability between these two values;

User Timeout Period: each user timed out (resulting in a timeout failure) after a 10 seconds

period without receiving a response.

We chose values that aim to represent gradual traffic growth throughout a given period of time

for these parameters. However, their optimisation towards a specific scenario is out-of-scope of

this work, and thus was not explored.

These tests were repeated 5 times for each routing technique, and the average results for each

metric were taken into account. Furthermore, the scripts used to automate these tests and the full
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results data (as well as instructions on how to replicate this process) are available in this work’s

replication package [4].

5.2.2 Test Web Application

A simple web application was developed with the purpose of being used in the routing techniques

test sets. The application features a REST API and serves a simple website, and uses an SQL

database to persist data.

The web application closely resembles the sample web app from the Django Writting your

first Django app tutorial2, and its source code, as well as its setup instructions, are available on

this work’s replication package [4].

5.2.3 Cloud Infrastructure Details

The load testing cluster was deployed using 6 Azure VMs, and its deployment diagram is illus-

trated in Figure 5.6.

Figure 5.6: Load Testing Cluster— VMs architecture. Yellow associations represent load testing
orchestration communication, while black associations represent HTTP requests.

2Django Project — Getting started documentation guide, https://docs.djangoproject.com/en/3.2/intro/

https://docs.djangoproject.com/en/3.2/intro/
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The clusters featured 6 virtual machine (VM) instances, located in Europe (one in Europe

West and another in Europe North), America East (United States), Asia Pacific (Japan West),

Africa (North of South-Africa) and Middle-east (United Arab Emirates). The VMs consisted of

Azure B1s instances, featuring 1 vCPI, 1 GiB of RAM, 2 SSD datadisks, and a maximum caps of

320 IOPS. The VM located in the Europe West region was used as the orchestrator machine.

As for the VMs networking, each of the machines was set up to allow inbound HTTP/HTTPS

traffic, to allow communication in the Locust cluster. However, since each of the VMs belonged

to a different deployment region, it was not possible to include them in the same network. For

that reason, a gateway subnetwork was added to the address space of each of the machines in the

cluster, together with a VPN gateway to communicate with machines in other regions. Then, a

VNet-to-VNet (Virtual Network) connection was created for each orchestrator-cluster VM region

pair, thus allowing communication among all the cluster machines. The resulting network setup

in illustrated in Figure 5.7.

Figure 5.7: Load Testing Cluster — Networking Setup. Each of the associations represents a
VNet-to-VNet connection.

As for the routers, each routing technique was deployed as follows:

RT1: Heroku PaaS Nginx instance, featuring 1 vCPU, 512 MiB of RAM, and an SSD datadisk;

RT2: Azure Cloud Function App services;

RT3: Azure Cloud Function App services (both the router function and the web application);

RT4: CloudFlare was used for domain management.

Additionally, the test web application was deployed in both PaaS and FaaS. As for PaaS, it

was deployed in a Heroku instance (featuring 1 vCPU, 512 MiB of RAM, and an SSD datadisk) in
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the Europe region. The database used by the application was also deployed in Heroku (featuring 1

shard and 1GiB of storage capacity), in the Europe region. As for FaaS, the web app was deployed

using Azure python cloud functions.

However, since a free-tier Heroku instance with only 512MiB of RAM is being used to deploy

the test web application in PaaS, the machine is likely to crash after a certain load threshold is met,

given that the free-tier does not feature resources scaling. Thus, given this infrastructure limitation,

it is important to discover the user threshold that the web server PaaS machine can handle — this

threshold can then be used as a baseline for future load tests.

5.2.4 PaaS User Threshold Discovery

A set of load tests were made to find the PaaS machine threshold that was introduced in the

previous subsection. These tests were also made using the Locust framework, and the same Azure

VM cluster was used to perform the tests in a distributed manner, thus simulating traffic from

multiple regions of the globe.

The tests consisted of progressively increasing the number of incoming user requests until a

given average response time threshold was met. Each test run took 150 seconds, and the number

of simulated users ranged from 100 to 2400, with an increment of 100 users per test. Each of these

users generated a new request every 0.5 to 2 seconds, following a uniform distribution probability

between these two values, and timed out (resulting in a timeout failure) after a 10 seconds period

without receiving a response. These tests were executed a total of 5 times, and the average value

of the various captured parameters was taken into account for analysis purposes.

Figure 5.8: Response time Average, lower quartile Q1 to upper quartile Q3 area, and expected
growth linear regression based on number of users.
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Considering an average response time maximum threshold of 10 seconds, the limit of the PaaS

machine under study was reached at the value of 1900 users, as illustrated in Figure 5.8 (p. 52),

which indicates a maximum capacity (on average) threshold of 1800 users.

Thus, for the routing tests purposes, this value can be used as a baseline, and a number of users

values ranging from comfortable loads (e.g., 25% of this threshold, that is, about 500 users) to

above-capacity loads (e.g., 110% of this threshold, that is, about 2000 users) would be interesting

to explore.

Although the response time tends to fluctuate in spikes as the number of users increases (as

visible in the figure), it shows an overall tendency to grow (as expected). Even though a total of

5 test sets were executed, the response time to number of users ratio is expected to stabilise as

the number of executed tests increases — the average response time linear regression in the figure

illustrates the overall expected growth rate.

The scripts used to automate these tests and the full results data (as well as instructions on

how to replicate this process) are available in this works replication package [4]. Additionally, the

collected raw results are available in Appendix A (p. 75).

5.2.5 Results

The response time metrics were used to evaluate the techniques’ quality and the failure rate was

used to evaluate the techniques’ robustness. Additionally, in a qualitative perspective, the failure

cause (e.g., timeout and server error) was also considered.

Figure 5.9: Average response time based on the number of users for each routing method.
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The results obtained for the average response time based on the number of users for each

routing method is visible in Figure 5.9 (p. 53). Although differences are not significant for a small

number of users values, the average response times grow at a lower rate (with the increasing of

the number of users) with the techniques that perform the routing task at the FaaS level, that is,

techniques RT2 and RT3.

Figure 5.10 depicts a more detailed view of the results obtained for user loads greater than 1500

users. RT1 and RT4 consistently showed larger response times than their FaaS-level counterparts

(with RT4 showing the worse results), and RT3 showed even lower response times, which was

expected since this technique removes the latency of routing traffic to remote cloud functions that

exists in RT2 by having the web application resources available locally. It’s worth mentioning

that the maxima obtained for each scenario was not included in the plot, given that all results

were similar (around the 10 seconds timeout threshold). The complete results for these tests are

available in Appendix B (p. 77).

Figure 5.10: Response time for each routing method box plot on user loads greater than 1500
users. Each plot box features, from bottom to top, the minima, lower quartile Q1, average, and
upper quartile Q3.

When it comes to failure rates, techniques RT1, RT2, and RT3 showed values close to zero,

with the reason of these vestigial failures being request timeout. However, technique RT4 showed

a failure rate close to 21%. After closer examination, the vast majority of these failures (nearly

100%) seemed to be caused by server error on the DNS resolution process (as observed in locust

report logs). These occurred throughout the whole testing process, both in the beginning and end.

However, the root cause for these failures could not be identified.
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Furthermore, it is of interest to inspect the average response time that was spent on requests

redirected to FaaS and PaaS in each routing technique, keeping in mind that the number of requests

was divided between them approximately evenly (cf. Figure 5.11).

Figure 5.11: PaaS vs FaaS response time Box Plot for each routing method. Each plot box features,
from bottom to top, the minima, lower quartile Q1, average, and upper quartile Q3.

The RT1 technique showed lower response times in PaaS than in FaaS, which was expected

since both the proxy server and PaaS test web server were deployed on Heroku while sharing the

same region. RT4 showed similar values for each service model, since this technique does not

feature a deployed router device per se. When it comes to RT2, it showed similar PaaS response

times to RT1, but much lower FaaS response times (given that both the router function and the

FaaS web application were deployed in the FaaS layer). Finally, RT3 showed PaaS response times

similar to RT2, but lower FaaS response times, due to the fact that the router function itself could

access the web application locally, as previously explained.

It is noteworthy to point out that the maxima obtained for each scenario was not included in

Figure 5.11 given that all results were similar (around the 10 seconds timeout threshold). More-

over, FaaS showed more consistent response times, as can be observed by the smaller Q1 to Q3

box plot area than its PaaS counterpart. The FaaS layer techniques, cf. RT2 and RT3, were also

able to achieve the fastest response times (lower minima). The complete results for these tests,

separated between PaaS and FaaS, are available in Appendix B (p. 77).

Although it would be interesting to compare other metrics such as routing deployment costs of

each technique, this was not possible since the available Azure student subscription did not feature

access to detailed costs billed for each resource. Notwithstanding that RT2 and RT3 showed similar

results, the difference between these techniques response times is expected to increase with the
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growth of the number of users. That being said, the RT3 technique showed the overall best results

in terms of response time, as well as a failure rate close to zero.

Finally, the results obtained in this experimentation phase demonstrate the second premise of

our hypothesis. We show that moving the routing service to the FaaS layer results in the opti-

mal configuration, due to this service model’s wider geographical distribution, minimising client

latency when accessing these cloud resources and, thus, optimising the web application in itself.

5.2.6 Threats to Validity

The infrastructure-related constraints and limitations that were present in this validation process

pose a set of external (if there is threat that the results can’t be generalised the scope of this work)

and internal (if there is threat that the results are caused by internal treatment anomalies) threats

to validity [37]:

The PaaS machines’ performance may influence the results (external threat)
The available cloud infrastructure resources consisted of an Azure student subscription with

100$ worth of credits, Heroku free PaaS instances, and Cloudflare free tier domain manage-

ment. Not only did these limitations pose difficulties throughout the development process,

the fact that only low budget infrastructure was used in the experimentation and valida-

tion phases may influence the results, since machines with higher performance levels could

present different results — especially when it comes to the PaaS machines used that, unlike

the FaaS functions, did not scale, neither horizontally nor vertically, due to tier limitations;

The lack of distinct testing scenarios may influence the results (external threat)
Not enough credit was available to introduce different types of user load distributions (such

as user load spikes, that is, high-stress conditions), which is a common pattern in real sce-

narios, and which would provide valuable insight on the quality of each of the considered

routing techniques;

The limitation on captured metrics may influence the decision process (external threat)
The available infrastructure also limited the collection of metrics such as memory consump-

tion and the detailed costs billed for each resource used. The absence of these metrics does

not allow us to include criteria such as cost-efficiency in the evaluation of the techniques,

which would allow more informed and possibly different conclusions;

The DNS resolution process error on RT4 was not identified (internal threat)
Given that the root cause of the server errors that resulted from the DNS resolution process

on RT4 was not identified, there could be configuration errors that are negatively influencing

this routing technique’s behaviour and results.
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5.2.7 Replication Package

To allow the full replication of the various experiments and validation steps presented in this

chapter, as well as to detail the instructions on how to replicate them, an experiments replication

package [4] was built, featuring the following content:

Routing Techniques: Source code and a comprehensive guide of their deployment;

Heroku PaaS machine threshold discovery tests: Results, tests automation scripts, and a com-

prehensive guide on how to use them;

Routing Latency tests: Results, tests automation scripts (for both single-machine and cluster

modes), and a comprehensive guide on how to use them.

5.3 Summary

In this chapter, a set of four techniques were conceived and implemented, along with an analysis

of their main strengths and pitfalls.

RT1 uses a proxy web server to route traffic, deployed in PaaS, operating with minimal config-

uration although prone to be a system bottleneck in terms of either failure or latency introduction.

RT2 aims to improve upon RT1 by removing the latency of routing traffic from PaaS to FaaS,

moving the routing task to a cloud function. However, a new latency from redirecting traffic

from FaaS to PaaS is introduced — although this is expected to be significantly smaller than the

former, given that FaaS services are more geographically distributed and generally closer to any

user location.

RT3 emerges as an improvement to RT2, aiming to remove the latency of routing traffic to

remote cloud functions FaaS instances by having these resources available locally. If the requested

resource is not available locally, the request is still redirected to PaaS, similarly to the previous

technique.

RT4 relies on domain name resolution to route traffic to different service models, instead of

featuring a device that is responsible for routing traffic as in the three aforementioned techniques.

However, when compared to the other techniques, it can’t provide the same level of detail when

specifying which resources should be redirected to each layer.

Then, the performance of the four implemented techniques for dynamic routing between PaaS

and FaaS was studied. Using load testing techniques, a cluster of six machines geographically

spread throughout the globe was used to test each of the routing techniques. The latency perfor-

mance and robustness of each technique’s router was evaluated when routing traffic to a test web

application that was deployed in both Heroku PaaS and Azure FaaS.

The results showed that RT3 achieved the best performance in terms of minimising user re-

sponse time, while showing a robust behaviour (a failure rate close to null), thus demonstrating

the second premise of our hypothesis. The results obtained may also be consulted in Appendix A
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(p. 75) and Appendix B (p. 77), and a comprehensive guide on how to replicate the deployment of

each of the presented routing techniques can be found in this work’s replication package [4].

On the following chapter we discuss the implementation and validation of the reference plugin

prototype.
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On the previous chapter we discuss the implementation and validation of the techniques for dy-

namic routing between PaaS and FaaS that were conceived in this work. This chapter discusses the

various aspects of the reference plugin prototype. Firstly, Section 6.1 provides the implementation

details of the plugin, as well as the key architectural decisions in its creation. Then, Section 6.2

discusses the plugin’s experimentation on open-source web projects, together with the validation

of the resulting deployments. Finally, Section 6.3 summarises these topics.

The previous chapter shows that routing technique RT3 (cf. Chapter 5, p. 39) achieved the best

results when it comes to minimising client latency, while maintaining the system’s robustness.

Thus, in this chapter, we provide a reference implementation for this technique, while working

towards research questions RQ1 and RQ2 (cf. Section 4.5, p. 36).

6.1 Implementation

The plugin intends to facilitate the programmatic partitioning of web applications into PaaS and

FaaS and their deployment to the cloud, for a given web development framework. The developed

work was directed to the Django python web framework, given that it consists of one of the most

popular development frameworks.

Moreover, the plugin software was implemented and packaged as a python Django package1.

Although it could have been implemented as an external software component, a python package

makes it easier to programmatically access a Django project’s configuration, since the plugin and

the Django project share the same language (python). Besides that, a python package simplifies

the plugin’s installation and configuration.
1Django Cloud Deployer package, available on Pypi: https://pypi.org/project/django-cloud-deployer/
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Although the plugin intends to facilitate the deployment of a web application into FaaS and

PaaS in a way that is agnostic to the cloud provider being used, the available cloud infrastructure

limited the number of implemented supported providers. Given that the Heroku platform free tier

and Azure student subscription were available, these providers were adopted as PaaS and FaaS

(respectively) implementation targets throughout this work.

Additionally, although the number of available providers was limited due to infrastructure

availability restrictions, we chose to use the Serverless framework to facilitate configuration and

deployment, given that it abstracts a large part of provider-specific configuration steps.

6.1.1 Deployment Infrastructure

The resulting cloud infrastructure of a deployment using the implemented plugin — which closely

resembles the architecture of RT3 (cf. Figure 5.4, p. 45) — is illustrated in the UML deployment

diagram present in Figure 6.1.

Figure 6.1: Django Cloud Deployer — Infrastructure UML Deployment Diagram. Routing rules
are generated by the plugin based on the annotated source code URLs, and router cloud function
redirects traffic to either PaaS or FaaS.

6.1.2 Architecture

The plugin provides two programmatic interfaces to facilitate the cloud deployment and routing:

(a) a routing annotations API, which operates at the source code level, and that allows a developer
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to indicate through the use of two functions — runInPaaS and runInFaaS — which resources,

identified by their respective URLs, should be deployed and routed to PaaS or FaaS (respectively),

and (b) a CLI interface that features a set of commands to manage, deploy and delete deployments

and infrastructure.

Figure 6.2: Django Cloud Deployer — Architecture UML Component Diagram. The system
features five key components and exposes a command-line interface and a programmatic URL
PaaS/FaaS annotation interface.

The components architecture that was conceived and implemented for the plugin is depicted

in Figure 6.2. Besides the aforementioned interfaces, the plugin features five main modules:

Deployer: Exposes the command-line interface, validating requested commands execution and

received input by the user. Additionally, manages the execution of the existing commands,

managing exceptions, errors and user feedback;

URLs Annotator: Exposes the programmatic interface to annotate which resources, identified by

their URLs, should run in either PaaS or FaaS. Crawls through and explores which URLs

are available in the Django project;

Configs: Manages Django settings and configurations, validating modules and settings such as

environment variables. Moreover, manages the creation and loading of configuration files

generated by the plugin;
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Provider: Set of Provider classes, which handle direct communication with the cloud providers

(e.g., resources deployment and destruction). Features a Provider interface class that spec-

ifies the functionality set that each provider (e.g., HerokuProvider and AzureProvider)

should implement;

Command Runner: Executes system command and invokes external tools (e.g., cloud providers’

CLIs).

As for the Provider module, the Provider interface class was conceived with the intent of

both normalising and specifying the set of functionalities that each cloud provider, either PaaS

or FaaS, should implement in order for it to be possible for the plugin to execute the existing

commands. With this object-oriented architecture, new providers can be added to the plugin with

minimal development effort, thus making it simple for the plugin to be extended. To support

the cloud providers used in this work, the AzureProvider (which facilitates managing the Azure

provider) and HerokuProvider (which facilitates managing the Heroku provider) classes were

created, implementing the aforementioned Provider interface. Figure 6.3 illustrates how these

classes associate with one another, as well as the methods that provider implementations should

offer.

Figure 6.3: Django Cloud Deployer — Provider UML Class Diagram. The Provider interface
specifies the required cloud provider functionalities, and the HerokuProvider and AzureProvider
classes implement this specification.

6.1.3 Implemented Commands

The plugin features three commands: (a) the deploy command, (b) the destroy command, and

(c) the check_deploy command.

The deploy command is used to, after annotating the Django project resource URLs with

their target service model layer (PaaS or FaaS), deploy the project. This command takes two

arguments, which are (a) the PaaS provider and (b) the FaaS provider, that must be available on

the supported providers list. Moreover, this command expects the user to be logged in to both
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the chosen providers (using their command-line interfaces) — if not logged in, the user will be

requested to log in beforehand.

After verifying if the Django project is correctly configured (all setting required settings are

defined), the plugin setups the Django project. This allows programmatically accessing Django’s

URL resolver, and to verify which resources were configured to be deployed in PaaS or FaaS.

Then, both providers configuration files are created, based on template configuration files with

placeholder values (the Mustache template rendering system was used for this purpose). Finally,

the Django project is deployed to both PaaS and FaaS, and the deployment details are persisted in a

configuration file (cf. Subsection 6.1.4, p. 64). This process is thoroughly illustrated in Figure 6.4.

Figure 6.4: Django Cloud Deployer — Deploy Command UML Activity Diagram. The commands
executes five main activities before a deployment is completed.
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The destroy command is used to delete all infrastructure and configurations that were created

in a previous deployment using the plugin. Similarly to the deploy command, it expects the user to

be logged in to both the chosen providers (using their command-line interfaces) — if not logged

in, the user will be requested to log in beforehand.

In this command, the plugin simply parses the configuration file (cf. Subsection 6.1.4) that was

created on a previous plugin deployment, and deletes the deployed resources using the providers’

command-line interface tools, as depicted in Figure 6.5.

Figure 6.5: Django Cloud Deployer — Destroy Command UML Activity Diagram. The com-
mands executes three main activities before the deployed resources are deleted.

Finally, the check_deploy command works as a “dry run” of the deploy command by setting

up the Django project, accessing Django’s URL resolver, and reporting to the user which resource

URLs were annotated to be deployed and executed in PaaS or FaaS. This process is illustrated in

the steps that precede the “3. Cloud Providers CLI login verification” activity in Figure 6.4 (p. 63).

6.1.4 Configuration Management

After the plugin successfully completes a deployment, a set of configuration variables are persisted

in a JSON (JavaScript object notation) configuration file:

• The name of the project;
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• The PaaS provider name, unique resource identifier, and the deployed resource URL;

• The FaaS provider name, unique resource identifier, and the deployed resource URL.

The configuration file should be stored, and can be used to delete the created cloud resources

at a later stage by using their unique resource identifier.

6.1.5 Annotation Methodology

Although there are a multitude of ways that resource URLs could be annotated to signal that

they should be deployed and executed in PaaS or FaaS, two methodologies were selected for

implementation: (a) using source code line comments, and (b) update the source code itself using

python wrapper functions (instead of using metadata annotations).

In the first implementation stage, source code line comments were used. This methodology

allows a developer to add a single line comment on the line of the resource URL, indicating

whether it should be deployed and executed in PaaS or FaaS (using the cloud.paas or cloud. f aas

comment strings, respectively), as illustrated in Listing 8.

urlpatterns = [

path('', views.index, name='index'), # cloud.faas

path('<int:pk>/', views.detail, name='detail'),

path('info/', include('info.urls')), # cloud.paas

]

Listing 8: Django Cloud Deployer — Resource URLs annotations with Comments. The first
and third URL path definitions are annotated with a comment that specifies whether the resource
should be deployed and executed in FaaS or PaaS, respectively.

With this annotation methodology, the various Django URLs files were statically analysed,

and the annotated URLs were extracted using regular expression matching. However, given that

these URL patterns could be declared in a multitude of ways, it is cumbersome to ensure that the

regular expression matching would work in any given case.

urlpatterns = [

runInFaaS(path('', views.index, name='index')),

path('<int:pk>/', views.detail, name='detail'),

runInPaaS(path('info/', include('info.urls'))),

]

Listing 9: Django Cloud Deployer — Resource URLs target indication using Wrapper Functions.
The first and third URL path definitions are wrapped with a function that specifies whether the
resource should be deployed and executed in FaaS or PaaS, respectively.
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Thus, in the second implementation stage, the use of python wrapper functions on the declared

URLs was explored, as depicted in Listing 9 (p. 65). These wrapper functions, runInPaaS() and

runInFaaS() — which indicate whether the resource should be deployed and executed in PaaS or

FaaS, simply store the wrapped targets when the Django project is setup. Then, by accessing the

Django’s URL resolver, it is possible to traverse the full URLs tree (given that a URL entry can

link to another list of various URL entries) without the need to identify and statically analyse all

URL source code files. Although this technique does not use metadata annotations to indicate the

deployment targets, it achieves the same goal through source code.

It is worth mentioning that in both of the explored methodologies, the lack of a comment

annotation or wrapper function indicates that the resource should be deployed and executed in

FaaS.

6.2 Evaluation and Validation

The experimentation and validation of the implemented plugin was divided into two distinct

phases.

6.2.1 Plugin Experimentation

The plugin was experimented through the deployment of a simple test Django project and two

Django open-source projects:

MeetHub: An event management system open-source project2;

Spirit: A forum open-source project3;

Django Polls App (DPA): A simple project developed for testing purposes4.

Each of the projects was analysed and partitioned between PaaS and FaaS, using the plugin’s

programmatic interface to indicate which resources should be deployed and executed in either

service model. The partitioning process was made in an ad hoc manner, in a way that seemed to

produce a logical separation of resources, and is detailed in Appendix D (p. 83).

The resulting deployments of each project can be accessed in each of the subdomains of the

thesis.ruialves.me domain, as visible in Table 6.1 (p. 67).

The partitioning, configuration and deployment process of each of the aforementioned pro-

cesses is thoroughly explained and described in this work’s replication package [4].

2MeetHub + Django Cloud Deployer, available on GitHub: https://github.com/xRuiAlves/meethub
3Spirit + Django Cloud Deployer, available on GitHub: https://github.com/xRuiAlves/Spirit
4Django Polls App + Django Cloud Deployer, available on GitHub: https://github.com/xRuiAlves/dpa

https://github.com/xRuiAlves/meethub
https://github.com/xRuiAlves/Spirit
https://github.com/xRuiAlves/dpa
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Table 6.1: Web Applications deployed using the implemented Plugin. Each deployed project
features a subdomain, together with its own specific FaaS and PaaS subdomains.

Project Deployed Application FaaS part PaaS part
MeetHub mhub.thesis.ruialves.me faas.mhub.thesis.ruialves.me paas.mhub.thesis.ruialves.me
Spirit spirit.thesis.ruialves.me faas.spirit.thesis.ruialves.me paas.spirit.thesis.ruialves.me
DPA dpa.thesis.ruialves.me faas.dpa.thesis.ruialves.me paas.dpa.thesis.ruialves.me

6.2.2 Plugin Validation

A plugin’s resulting deployment is deemed as valid and successful if (a) every resource was cor-

rectly deployed to its specified service model (PaaS or FaaS), and (b) if traffic is being properly

routed and requests are being executed in its specified service model.

Thus, to validate if the plugin operated successfully in each of the aforementioned deploy-

ments, every resource URL of each project was iteratively accessed, verifying if the requests were

routed to the expected PaaS or FaaS targets. This validation is automated by a script that receives

the testing rules through a configuration file, as visible in Listing 10.

{

"domain": "basedomain.example.org",

"paasDomain": "paas.basedomain.example.org",

"faasDomain": "faas.basedomain.example.org",

"paasTargetUrls": [

"sample/paas/url/1",

"sample/paas/url/2",

"sample/paas/url/3"

],

"faasTargetUrls": [

"sample/faas/url/1",

"sample/faas/url/2",

"sample/faas/url/3"

]

}

Listing 10: Plugin validation script input testing rules JSON configuration. It features a list of
URLs that should be redirect to PaaS, and a list of URLs that should be redirect to FaaS.

Then, for each of the specified target URLs, a set of requests is made to the base domain,

appended with the resource URL. If the request is redirected to the expected resource, the test case

is deemed as successful (and vice-versa), as visible in Listing 11 (p. 68).
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{

"domain": "basedomain.example.org",

"paasDomain": "paas.basedomain.example.org",

"faasDomain": "faas.basedomain.example.org",

"successRate": "98.50%",

"results": [

{

"url": "http://basedomain.example.org/url/1/",

"expectedDomain": "faas.basedomain.example.org",

"obtainedDomain": "faas.basedomain.example.org",

"success": true

},

{

"url": "http://basedomain.example.org/url/2/",

"expectedDomain": "faas.basedomain.example.org",

"obtainedDomain": "paas.basedomain.example.org",

"success": false

},

...

]

}

Listing 11: Plugin validation script output results JSON report. Each result entry features a success
status, that represents whether the obtainedDomain matches the expectedDomain for that tested
URL. The rate of successful tests results in the overall successRate.

The results showed a 100% success rate in all three deployments, and the scripts used to

automate these tests and the full results data, as well as a comprehensive guide on how to replicate

this process, are available in this work’s replication package [4].

Finally, the results obtained in this phase demonstrate the first premise of our hypothesis. We

show that the implemented plugin allows the partitioning of a web application to be executed and

deployed in PaaS or FaaS, thus allowing the optimisation of the web application without significant

development effort or infrastructure manual configuration.

6.2.3 Threats to Validity

The infrastructure-related constraints and limitations that were present in this validation process

pose a set of external (if there is threat that the results can’t be generalised the scope of this work)

and internal (if there is threat that the results are caused by internal treatment anomalies) threats

to validity [37]:
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The number of experimented projects may influence the results (external threat)
The plugin’s experimentation was limited to a small number of Django projects (only three).

Although this consists of a qualitative evaluation process that does not necessarily require a

large number of samples, it is not clear if the plugin would achieve valid results in projects

of a different nature, featuring other software versions or distinct dependencies.

The selected application partitioning may influence the results (internal threat)
Although the way that each project was partitioned does not directly influence the validity

of the resulting deployments, it is worth pointing out that, since their partitioning was made

in an ad hoc manner that did not include the thorough analysis of the project, the chosen

partitioning could influence the achieved results.

6.2.4 Replication Package

To allow the full replication of the experimentation and validation steps presented in this chapter,

as well as detailed instructions on how to replicate them, an experiments replication package [4]

was built, featuring the following content:

Django Cloud Deployer plugin: Source code, usage instructions and its documentation;

Plugin-deployed open-source Django projects: Source code, a comprehensive guide on how to

replicate the deployments, the automation scripts used to validate the deployments, and their

results reports.

6.2.5 Desiderata Revisited

The implemented plugin achieves most of the desiderata proposed in Section 4.3 (p. 34), pro-

viding an interface to annotate where resources are deployed and executed (D1), deploying the

annotated web application resources to the cloud (D2), having commands to manage the deployed

web application cloud resources (D3), and featuring capabilities to traffic between PaaS and FaaS

(D4).

However, due to limited time constraints, the plugin does not feature automatic reconfiguration

of the cloud resources, thus not achieving the last identified desiderata D5. That being said, this

improvement has been identified as future work in Section 7.4 (p. 74).

6.3 Summary

This chapter describes the implementation of a plugin, which consists of a python package that

facilitates the deployment of Django web applications to both PaaS and FaaS simultaneously.

After deployed, the RT3 routing technique (cf. Chapter 5, p. 39) is used to route traffic between

PaaS and FaaS.



70 Reference Implementation

The plugin was developed with a flexible architecture to allow its extension to multiple cloud

providers with minimal development effort. This plugin offers both a routing annotations API and

a CLI interface to manage the Django application cloud deployment.

The routing annotations API allows developers to indicate through the use of two functions

— runInPaaS and runInFaaS — which resource should be deployed and executed in PaaS or

FaaS, respectively. As for the CLI interface, it features a set of commands (deploy, destroy, and

check_deploy) that can be used to manage plugin deploys. In this work, support for the Heroku

and Azure cloud providers was implemented.

Firstly, with regards to the plugin’s experimentation and validation, the plugin was used to

deploy a test project and two open-source Django projects (MeetHub and Spirit). In each of these

deployments, the plugin was also used to partition the application between FaaS and PaaS, as

detailed in Appendix D (p. 83). Secondly, to validate the success of the plugin deployments, every

resource URL of each project was iteratively accessed, verifying if the requests were routed to the

expected PaaS or FaaS targets — the results showed a 100% success rate in all three deployments.

Thus, in this chapter we demonstrate the first premise of our hypothesis.

Finally, the results, automation scripts, source code, as well as replication and usage guides

were comprised in a replication package [4] for future usage. Additionally, a comprehensive guide

on how to install, set up, and use the plugin can also be found in the replication package.

On the following chapter we describe the key conclusions and final remarks of the work de-

veloped in this dissertation.
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On the previous chapter we discuss the implementation and validation of the reference plugin

prototype. This chapters describes the key conclusions and final remarks of the work developed

in this dissertation (cf. Section 7.1). The contributions of this work are described in Section 7.2.

Then, the main difficulties that arose during the course of this process are listed in Section 7.3.

Finally, Section 7.4 identifies the possible opportunities for future work.

7.1 Conclusions

Cloud Computing democratised access to large scale computation resources, offering developers

an on-demand solution to deploy their applications at vast scales (often across multiple regions),

with guaranteed flexibility and Quality of Service (QoS). It provides different types of service

models, such as PaaS and FaaS, each with its own set of advantages and drawbacks.

The ability of leverage the complementary benefits of each of these models leads to the op-

timisation of web applications and their deployment. However, these types of deployments that

feature multiple service model layers (hybrid deployments) are not popular, since they feature a

multitude of challenges.

The literature review showed that these challenges lie in managing deployed systems’ ob-

servability, monitoring, reconfiguration, distribution decision, and others. Additionally, there are

shortcomings in allowing developers to partition their applications without significant develop-

ment effort, and there is a lack of investigation on using dynamic strategies to route traffic within

these hybrid deployments.

71
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In this dissertation, we address these shortcomings by conceiving and implementing a set of

techniques for dynamic routing between PaaS and FaaS, and validating them with a reference

implementation of a plugin prototype that facilitates the programmatic partitioning of web appli-

cations into PaaS and FaaS and their deployment to the cloud. This implemented work, validated

through its experimentation on open-source web projects, aims at demonstrating our hypothesis:

PaaS and FaaS provide complementary benefits for web applications. Developers can

leverage them to optimise their applications, by (1) partitioning their applications to

be deployed to the best service model for each functionality, (2) using a dynamic

routing strategy to forward requests to the proper resource, and (3) allow the appli-

cation to dynamically reconfigure itself by moving code between PaaS and FaaS (and

vice-versa) in a way that optimises infrastructure costs, client latency, and response

time.

The implemented plugin shows that the source code level annotations, through the use of

wrapper functions, allow the partitioning of the web application between PaaS and FaaS in a

programmatic and effortless way (answering RQ1), while also allowing its subsequent deployment

to the cloud in a completely provider-agnostic manner (answering RQ2), thus demonstrating the

first premise of the hypothesis.

Additionally, the evaluation process of the conceived routing techniques showed that moving

the routing service to the FaaS layer results in the optimal configuration, due to this model’s wider

geographical distribution (answering RQ3), minimising client latency when accessing the hybrid

application, and thus demonstrating the second premise of the hypothesis.

The plugin implementation also fulfills the identified desiderata from D1 to D4 (cf. Sec-

tion 4.3, p. 34).

However, due to research and development time constraints, we did not demonstrate the last

premise of our hypothesis, which is related to the application’s optimisation through dynamic

reconfiguration based on runtime self-inspection. Moreover, although the developed work does

not fully answer research questions RQ4 and RQ5, the literature review we present in Chapter 3

(p. 15) provides a good basis towards their response. This shortcoming has also been identified as

a possibility for future work (cf. Section 7.4, p. 74).

Finally, we believe that Django Cloud Deployer is a valuable contribution towards practical

hybrid deployments, since it addresses a multitude of open problems on this subject. Although

the automation of dynamic system reconfiguration was not addressed, the literature review we

presented, together with the various implementation aspects of this work, is considered to be a

strong basis towards this step.

7.2 Contributions

The work developed in this dissertation resulted in the following contributions to the software

engineering state of the art, and the web application development communities:
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Pseudo-systematic Literature Review on Cloud Computing and FaaS Leveraging: An inves-

tigation was performed to the state of the art of cloud computing, applications refactoring

and partitioning, FaaS leveraging, and dynamic routing in the cloud (cf. Chapter 3, p. 15);

Investigation on Dynamic Routing Strategies: We conceived a set of strategies for dynamic

traffic routing between PaaS and FaaS, and presented the achieved conclusions and results

from their validation and evaluation, together with comprehensible deployment and replica-

tion guidance.

Reference Implementation: We implemented Django Cloud Deployer, a plugin that facilitates

the programmatic partitioning of web applications into PaaS and FaaS and their deployment

to the cloud, which was published on the Pypi python package public repository1;

Publishable Contribution: The parts of this dissertation that focused on the techniques for dy-

namic routing between PaaS and FaaS, together with the plugin’s reference implementation,

were synthesised into a paper, that will be submitted to a domain-related conference in the

near future.

7.3 Challenges

Throughout this work, we came across a set of roadblocks that made progress more challenging

and, although some were overcome or mitigated, others could not be alleviated or solved, and were

identified as future work.

To begin with, there was a lack of cloud provider resources. In the beginning of this work, mul-

tiple attempts were made to receive sponsorship from AWS and GCP — however, these attempts

proved to be unsuccessful. Although AWS, which is the leader when it comes to the documenta-

tion of the offered services, offers a free student subscription, it proved to be quite limited and did

not allow any kind of programmatic management of resources. As a result, we used Azure in the

course of this work, given that it was the only market-leading provider that offered an amount of

credits that could suffice the infrastructure needs.

However, Azure proved to have quite a lot of limitations. Even though the web management

dashboard lacked documentation resources and was not intuitive to navigate, most of the chal-

lenges arose from the lack of programmatic support of basic functionalities such as DNS and

network interface management.

Finally, even though it didn’t have a significantly negative impact on the progress of this work,

the Serverless framework lacked official documentation for integration with Azure, which led to

various steps of its utilisation relying on “trial and error” techniques.

1Django Cloud Deployer package, available on Pypi: https://pypi.org/project/django-cloud-deployer/

https://pypi.org/project/django-cloud-deployer/


74 Conclusions

7.4 Future Work

In the routing techniques presented in this work, we used temporary redirects (“302 Found” and

“307 Temporary Redirect”). However, the exploration of permanent redirects (“301 Moved Per-

manently” and “308 Permanent Redirect”), which aim to reduce request latency, was not a part of

this work. In permanent redirects, since requests subsequent to the first one are accessed directly

without visiting the original resource, this period of time is saved in future requests. Even though

they pose challenges when the redirect resource location changes, a problem known as “Cache

Invalidation”, which is cumbersome in scenarios where a system needs to reconfigure itself, there

are known strategies that may be used to reset permanent redirects [81]. Thus, this could be a path

towards optimising the routing techniques presented in this work.

It would be of interest to expand the implemented plugin with the support of more providers

— Although the available infrastructure constraints led to the plugin supporting only Heroku PaaS

and Azure FaaS, supporting more providers would be helpful for the Django web development

community.

The lack of access to performance metrics and detailed billing costs (which resulted from the

limitations of the available Azure student subscription) limited the metrics used for the evalua-

tion process of the studied routing techniques - repeating the experiments with access to these

performance metrics

would provide valuable insights that could weigh on the evaluation of each of the considered

routing techniques.

Finally, provided that access to the previously mentioned metrics is available, it would prove

interesting to make use of real-time performance analysis to automate moving parts of a deployed

web application from PaaS to FaaS, with the aim of optimising the deployment — either in terms

of cost-efficiency, client latency, or others.
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PaaS Machine Number of Users
Threshold Discovery Results

Table A.1: PaaS machine number of users threshold discovery — Average response time results
from 5 experiment trials.

Users Reqs. Fails F. Rate
Response Time (ms)

Avg Min Q1 25% Med Q3 - 75% Max
100 9893 0 0.00% 258 116 120 180 220 5602

200 16116 0 0.00% 597 119 130 350 580 7086

300 12076 0 0.00% 2347 157 300 1800 2700 10002

400 16518 0 0.00% 2388 452 900 2000 2600 13918

500 15767 0 0.00% 3428 546 2100 3000 3600 13349

600 15513 0 0.00% 4489 1454 1700 3900 5000 10594

700 15512 0 0.00% 5472 2188 2200 4800 6900 10886

800 20790 0 0.00% 4483 2064 3000 4000 4500 12883

900 21807 0 0.00% 4890 2472 3400 4600 5400 7801

1000 23769 0 0.00% 4944 2917 3900 4700 5200 9440

1100 21805 0 0.00% 6297 3724 5700 6300 6700 11937

1200 46313 0 0.00% 2566 1152 1900 2500 2800 5601

1300 19622 4 0.02% 8550 5035 5800 8400 9700 15555

1400 21462 2 0.01% 8460 5419 5900 7800 8800 15765

1500 46595 0 0.00% 3425 2072 2800 3300 3600 5964

1600 22881 0 0.00% 9084 6004 7800 8900 9600 13753

1700 49909 0 0.00% 3714 2240 3100 3600 3900 5927

1800 48179 1 0.00% 4224 65 2500 3800 4500 7767

1900 21419 0 0.00% 12117 8408 8000 11000 13000 19486

2000 21305 0 0.00% 12544 8641 10000 12000 13000 18027
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2100 21717 2851 13.13% 13135 57 11000 13000 14000 22320

2200 22210 2485 11.19% 13329 65 12500 13000 14000 30272

2300 23720 4840 20.40% 13093 60 11000 13000 14000 27709

2400 23117 6664 28.83% 13658 55 12000 13000 16000 37701



Appendix B

Routing Techniques Response Time
Results

B.1 Response Time including both PaaS and FaaS results

Table B.1: Routing Techniques — Average response time results from 5 experiment trials.

RT Users Reqs. Fails F. Rate
Response Time (ms)

Avg Min Q1 25% Med Q3 - 75% Max

RT1

500 60144 2 0.00% 430 113 115 230 590 17095

1000 121957 1 0.00% 399 119 120 340 600 10152

1500 180849 2 0.00% 425 124 120 370 620 10188

2000 205520 2 0.00% 696 128 430 600 770 10810

RT2

500 64861 0 0.00% 310 40 80 310 540 2365

1000 124231 2 0.00% 374 42 210 380 550 10950

1500 182768 0 0.00% 404 45 250 410 570 7667

2000 223221 29 0.01% 527 44 410 540 670 10941

RT3

500 65310 0 0.00% 299 25 110 270 430 10957

1000 123445 1 0.00% 384 31 190 360 530 10482

1500 181111 9 0.00% 425 35 240 410 580 10925

2000 236684 0 0.00% 439 40 310 440 570 9784

RT4

500 63602 6 0.01% 330 9 40 230 420 1994

1000 126470 9 0.01% 343 48 200 240 440 4962

1500 157035 390 0.25% 683 27 320 600 880 4114

2000 189742 39691 20.92% 874 26 660 880 1100 6144
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B.2 Response Time including PaaS results only

Table B.2: Routing Techniques — PaaS Average response time results from 5 experiment trials.

RT Users Reqs. Fails F. Rate
Response Time (ms)

Avg Min Q1 25% Med Q3 - 75% Max

RT1

500 30284 0 0.00% 338 126 150 160 590 1970

1000 61234 0 0.00% 341 127 160 170 590 5668

1500 90297 0 0.00% 360 127 210 230 590 2458

2000 102009 0 0.00% 486 128 400 500 640 7271

RT2

500 32394 0 0.00% 291 50 60 240 540 2225

1000 61957 0 0.00% 299 52 60 250 540 2292

1500 91002 0 0.00% 331 53 30 290 550 4547

2000 111608 13 0.02% 465 54 320 460 600 10941

RT3

500 32688 0 0.00% 334 53 20 270 550 10957

1000 61294 0 0.00% 390 54 140 360 580 6277

1500 90420 4 0.00% 422 59 230 420 610 10003

2000 118081 0 0.00% 455 64 300 460 620 8139

RT4

500 31536 4 0.01% 331 9 40 230 420 1994

1000 63238 2 0.00% 342 56 100 240 440 2271

1500 78255 171 0.22% 683 27 320 600 880 2841

2000 95176 20026 21.04% 871 26 640 870 1100 6144
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B.3 Response Time including FaaS results only

Table B.3: Routing Techniques — FaaS Average response time results from 5 experiment trials.

RT Users Reqs. Fails F. Rate
Response Time (ms)

Avg Min Q1 25% Med Q3 - 75% Max

RT1

500 29860 2 0.01% 523 113 130 240 600 17095

1000 60723 1 0.00% 458 119 180 420 660 10152

1500 90552 2 0.00% 489 124 210 450 690 10188

2000 103511 2 0.00% 903 130 510 720 930 10810

RT2

500 32467 0 0.00% 328 40 120 330 540 2365

1000 62274 2 0.00% 449 42 260 440 620 10950

1500 91766 0 0.00% 477 45 300 480 660 7667

2000 111613 16 0.02% 590 44 490 610 730 10188

RT3

500 32622 0 0.00% 265 25 130 260 390 9798

1000 62151 1 0.00% 379 31 240 360 480 10482

1500 90691 5 0.01% 428 35 270 400 530 10925

2000 118603 0 0.00% 422 40 320 420 520 9784

RT4

500 32066 2 0.01% 328 45 50 230 420 1816

1000 63232 7 0.01% 344 48 50 240 440 4962

1500 78780 219 0.28% 682 28 320 600 880 4114

2000 94566 19665 20.80% 876 26 660 880 1100 4818
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Appendix C

Literature Review Process
Exemplification

This appendix intends to provide an exemplification of the iterative process used for selecting

literature of interest for this work. The exemplification includes the iterative process steps for a set

of queries that were conceived in regards to LRQ2 — How do applications refactor themselves
at runtime?

Table C.1: Literature Review Process Exemplification — Results for the query set 1 for SQR2.

Iteration Query Results Captured Keywords
1 system dynamic refactoring [43, 83, 73] runtime

2
system (dynamic OR runtime)

refactoring
[43, 83, 73, 107]

reformulation,

reconfiguration

3
system (dynamic OR runtime)

(refactoring OR reformulation

OR reconfiguration)

[43, 83, 73, 107, 41, 66] ...

Table C.2: Literature Review Process Exemplification — Results for the query set 2 for SQR2.

Iteration Query Results Captured Keywords

1 system self-inspection [89, 100]
monitoring,

application

2
(system OR application)

(monitoring OR self-inspection)
[89, 100, 102]

dynamic analysis,

introspection

3
(system OR application)

(monitoring OR self-inspection OR

introspection OR dynamic analysis)

[89, 100, 102, 78, 69] ...

It is worth pointing out that, depending on the research databases used, additional iterations

and specific fine-tuning were added in each query set.
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Appendix D

Test Web Applications Partitioning

This appendix intends to detail how each of the Django web applications used for the plugin’s

experimentation (cf. Section 6.2, p. 66) was partitioned for deployment.

D.1 Spirit

Partitioned for deployment in PaaS:

• user/∗

• topic/∗

• comment/∗

Partitioned for deployment in FaaS:

• admin/∗

• category/∗

• search/∗

D.2 MeetHub

Partitioned for deployment in PaaS:

• comments/∗

• event/∗

• password/∗

Partitioned for deployment in FaaS:
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• admin/∗

• auth/∗

• category/∗

• noti f ications/∗

• accounts/∗

• f ilebrowser/∗

D.3 Django Polls App

Partitioned for deployment in PaaS:

• polls/ : id/results/

• in f o/contacts/∗

Partitioned for deployment in FaaS:

• in f o/hel p/∗

• polls/∗
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