
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Real-Time user-based coverage of a
sports event: A Web Application for the

modern football fans

Ângelo Miguel Tenreiro Teixeira

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Prof. João Correia Lopes

Second Supervisor: Eng. Marco Sousa

July 15, 2021

Real-Time user-based coverage of a sports event: A Web
Application for the modern football fans

Ângelo Miguel Tenreiro Teixeira

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Prof. António Miguel Pontes Pimenta Monteiro

External Examiner: Prof. Maria Benedita Campos Neves Malheiro

Supervisor: Prof. João Correia Lopes

July 15, 2021

Abstract

Today, millions of users follow their teams’ games online to keep up-to-date regarding the events
of a match. Some of those had a special connection to their hometown team, but since it plays in
way lower leagues and without much exposure, the users end up missing information and losing
the passion they once had for the hometown team. There is, however, a specific group of users
that keeps following the games of the smaller teams, and most importantly: sharing updates about
them.

Platforms that allow game commentary sharing enable the most passionate fans who still watch
the smaller leagues to share what is going on in the game, report the events, and build the game’s
history, totally community-driven.

Tools for this already exist but are either somewhat outdated or do not completely let the users
get involved in the commentary, restricting them to a more passive role, hence the opportunity to
build something better.

This work involved creating a Real-Time web application that allows users to publish event
updates for any event, increasing their connection to the lower leagues as it already happens in
the upper echelons. Additionally, as stadiums internet connectivity is often poor, the application
allows users to post while offline, syncing when the internet comes back, and featuring a conflict
resolution functionality to improve user experience (UX). Early research points towards a positive
influence of automatic conflict resolution on the user experience, even though conflicts were not
many during the experiments. All inquired users responded positively to the application, mention-
ing that they would use the application again, after their first usage, and journalists using the tool
to cover official matches professionally collectively agreed that it represents an user experience
boost when compared to the existing tool.

Keywords: Real-Time, Web, Sports, Conflict Resolution, Reputation systems

i

ii

Resumo

Hoje em dia milhões de utilizadores mantêm-se a par dos jogos das suas equipas online, de forma a
estar a par dos eventos ao longo destes, caso não possam assistir diretamente. Alguns tinham uma
ligação especial à equipa local, mas jogando em ligas de escalão inferior sem grande cobertura
televisiva ou até mesmo jornalstica, acabam por perder interesse e a paixão que sentiam outrora.
Ainda assim, ainda existe um grupo de utilizadores que continua a seguir os jogos das equipas
mais pequenas, e mais importante que isso: a partilhar atualizações sobre estes.

Plataformas que permitam o comentário ao longo dum jogo permitem aos fãs mais apaixon-
ados que ainda seguem as equipas locais partilhar o que vai acontecendo ao longo do evento,
reportando o que se passa e construindo a história do jogo, num esforço totalmente comunitário.

Ferramentas como estas já existem, contudo estão obsoletas, ou não permitem completamente
aos utilizadores o envolvimento no comentário do jogo, restringindoos a um papel mais passivo,
daí a oportunidade de criar algo único e inovador.

Este trabalho resultou na criação de uma Aplicação Web que permite aos utilizadores a par-
tilha de atualizações de um evento desportivo em tempo-real, aumentando a ligação às ligas mais
inferiores, da mesma forma que acontece com os escalões superiores. Adicionalmente, e uma vez
que a ligação à internet nos estádios é geralmente instável, a aplicação permite aos utilizadores
interagir enquanto estão em modo offline, sincronizando assim que a ligação seja restabelecida,
incluindo uma funcionalidade de resolução de conflitos de forma a melhorar a experiencia do uti-
lizador. Resultados iniciais demonstram que a resolução de conflitos automática tem influência
positiva na experiencia de utilizador, ainda que o numero de conflitos não tenha sido significativo.
Todos os utilizadores questionados responderam positivamente em relação à aplicação, afirmando
que a usariam novamente após o primeiro uso. Jornalistas que usam a ferramenta para relatar
jogos oficiais de forma profissional concordaram no facto desta aplicação representar um incre-
mento significativo em termos de experiência de utilizador, quando comparada com a ferramenta
anterior.

iii

iv

Acknowledgments

First, I would like to express my appreciation towards my supervisor Prof. João Correia Lopes for
guiding me throughout this journey, correcting my wrongs and helping me learn throughout the
writing of this document. I would also like to thank Eng. Marco Sousa, Eng. Pedro Dias and Eng.
Vasco Ribeiro from the ZeroZero team, who allowed me to contribute to this project, learn about
their challenges and contribute to them along the way.

I would also like to thank my parents, who led me by example and shaped the basis of what
I am today, and my sister, whom I am supposed to lead by example — and hopefully in some
years will be producing a document just like this of her own. I’d also like to give an “honorable
mention” to my grandmother who naively thinks I am becoming a Doctor after completing this
Masters’ Thesis, which in itself gives a special kind of encouragement. Moreover, I would like
to extend my gratitude towards my friends, many of which have crossed this bridge with me,
providing support and many good memories.

Finally, a message of appreciation to everyone that allowed me to extend my knowledge and
shape my character to what it is today.

Ângelo Teixeira

v

vi

“There are four types of problems in life. Those that need urgent attention, those that can be
resolved later, and those that require no real resolution. The fourth is the problem of knowing

which is which.”

Ângelo Teixeira

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 1
1.3 Goals . 2
1.4 Document Structure . 3

2 Background and Literature Review 5
2.1 Background . 5
2.2 Offline Availability . 8
2.3 Conflict Resolution . 11
2.4 Reputation System . 17
2.5 Similar Platforms . 21
2.6 Similar Work . 21
2.7 Summary . 22

3 Problem Statement 23
3.1 Key Domain Concepts . 23
3.2 Problem Definition . 23
3.3 Technical Requirements . 25
3.4 Hypothesis . 25
3.5 Research Questions . 25
3.6 Summary . 26

4 Architecture and Implementation 27
4.1 General Services Architecture . 27
4.2 Reverse Proxy . 29
4.3 CouchDB . 30
4.4 Conflict Handling . 31

4.4.1 Conflict Detection . 31
4.4.2 Conflict Handler . 33
4.4.3 Base Conflict Resolution Strategies . 34
4.4.4 Conflict Handling Orchestrator . 39

4.5 Reputation Service . 40
4.6 Web Application (Frontend) . 43
4.7 Time Synchronization . 49
4.8 Summary . 49

ix

x CONTENTS

5 Evaluation and Analysis 51
5.1 Methodology . 51
5.2 The Journalist Use-Case . 52
5.3 The Casual User Use-Case . 52
5.4 Summary . 56

6 Conclusions 57
6.1 Contributions . 57
6.2 Results . 58
6.3 Difficulties . 58
6.4 Future Work . 58

References 61

A ZeroZero API events list 67

B ZeroZero Live Frontend Interfaces 71

List of Figures

2.1 HTTP protocol example interactions . 6

4.1 Architecture design of the zerozero.live system 29
4.2 Resolving a conflict by keeping both revisions 33
4.3 Document revision history — CouchDB model 34
4.4 Synchronization of events from ZeroZero API into ZeroZero Live database . . . 38
4.5 Comments page for a match in zerozero.live . 44
4.6 Comments page for a match in zerozero.live — Mobile version 45
4.7 ZeroZero Live — Input interface . 46
4.8 ZeroZero Live — Conflicts interface . 47
4.9 Sequence diagram representing the flow when inserting an event without conflicts 48
4.10 Sequence diagram representing the flow when inserting an event with conflicts . . 48

5.1 Conflicts over game time (C1) . 55
5.2 Conflicts resolution time over game time (C1) 55

B.1 Login page of zerozero.live . 71
B.2 Homepage of zerozero.live . 72
B.3 Search page of zerozero.live . 72
B.4 History page of zerozero.live . 73
B.5 Team selection for a match in zerozero.live . 73
B.6 Comments page for a match in zerozero.live . 74

xi

xii LIST OF FIGURES

List of Tables

4.1 CouchDB document schema . 32
4.2 Reputation service constant values . 43

5.1 Relation between number of events, participants and generated conflicts 53
5.2 Conflict resolution times and user perception 54
5.3 Manual conflict resolution user evaluation . 54
5.4 User evaluation of the platform . 55

A.1 ZeroZero API events list (some fields were omitted for better reading purposes) . 67

xiii

xiv LIST OF TABLES

Listings

4.1 docker-compose.yml file — Docker services definition 28

xv

xvi LISTINGS

Abbreviations

API Application Programming Interface
CRDT Conflict-free Replicated Data Type
CRUD Create, Read, Update, Delete
CSS Cascading Style Sheets
CmRDT Commutative Replicated Data Type
CvRDT Convergent Replicated Data Type
DNS Domain Name System
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
JS JavaScript
MO Multi-version Operations
NMO Non-Multi-version Operations
OT Operational Transformation
PPR Personalized PageRank
REST Representational State Transfer
TCP Transmission Control Protocol
UI User Interface
UX User Experience

xvii

Chapter 1

Introduction

1.1 Context

Today, millions of users follow their teams’ games online to keep up-to-date regarding the events

of a match1. Some of those had a special connection to their hometown team, but since they play

in way lower leagues and without much exposure, the users end up missing information and losing

the passion they once had for the hometown team.

There is, however, a specific group of users that keeps following the games of the smaller

teams, and most importantly: sharing updates about them. One platform that allows users to do

that, as of today, is zerozero.pt, from ZOS. This enables the most passionate fans who still watch

the smaller leagues to share what is going on in the game, report the events, and build the game’s

history, totally community-driven.

1.2 Motivation

Even though such a tool exists, it is somewhat outdated, and is extremely hard to use on a mobile

environment, as is the norm when watching a live match. Hence the opportunity to build something

better, including automatic conflict resolution, offline mode and a mobile-friendly interface out of

the box. There is technology currently that allows the development of such a tool, that was not

possible in the past — when ZeroZero was created, in 2003, it would still take 4 years for the

first iPhone to be released, let alone having the possibility of storing entire databases on browser

storage, in order to allow offline applications on the web.

Additionally, the fact that a user base already exists — in this context of ZeroZero — will allow

studying their interaction with the system, enabling user experience studies which will related

certain features to their influence on the application usage patterns.

1https://www.facebook.com/business/news/insights/the-changing-profile-of-
sports-fans-around-the-world

1

https://www.facebook.com/business/news/insights/the-changing-profile-of-sports-fans-around-the-world
https://www.facebook.com/business/news/insights/the-changing-profile-of-sports-fans-around-the-world

2 Introduction

1.3 Goals

The goal is to allow multiple users to report the incidents in a sporting event, which will be shown

to everyone following that match in real-time. As internet connectivity is often poor inside stadi-

ums, the tool must allow offline work, synced whenever possible. This can generate many data

inconsistencies, which must be handled by the tool.

Parallel to this, we want to provide the best possible User Experience, since inconsistencies

can seem confusing for users. For this, different alternatives will be measured and tested, in order

to elicit what is the desired experience.

This project will provide an approach to this problem, and the following sections provide more

details on the project’s key objectives.

Offline Availability

As previously stated, internet connection in stadiums is poor most of the time. Thus, the users

must have the option to interact with the application and synchronize once possible. This will

obviously lead to data consistency issues (i.e., two users report a goal, changing the result to “1-0”

for example, but one of them is offline, so when it finally synchronizes, the result is already “3-2”,

and it should not be overwritten.)

More information on this topic is presented in Section 2.2.

Conflict Resolution

Another objective of the tool is to provide users with automatic conflict resolution when possible.

Some strategies are depicted in the State of the Art section, in Chapter 2.3. Here, it is important to

preserve the truth and the most up-to-date versions of data. In this scenario, there might not be a

source of truth present to verify and validate all inputs, so other strategies must be used, such as

agreement-based implicit voting — if nobody questions a user’s input, it must be true until stated

otherwise.

Additionally, the tool can use different strategies to solve conflicts automatically, thus improv-

ing the user experience (UX). More on this topic is available in Section 2.3.

Reputation System

The third key-objective of the application will be the reputation system. Currently, there already

exists a ranking concept, and a “trusted” user, which is the equivalent to the maximum reputation

and should be considered the source of truth in case of conflict.

But what about the cases where two “non-trusted” users’ inputs conflict, or even the case of

two “trusted” users? Who should win? To resolve conflicts, an answer to these conundrums is fun-

damental. Ergo a new reputation system is required, and more details are available in Section 2.4.

1.4 Document Structure 3

1.4 Document Structure

In Chapter 2, a comparison with a similar project is made, as well as a State of the Art exploration

on the multiple scopes of this project. Chapter 3 defines the problem as well as the main hypothesis

and research questions. Implementation details are presented in Chapter 4 and the evaluation and

analysis of the work is done in Chapter 5. Conclusions are present in Chapter 6.

4 Introduction

Chapter 2

Background and Literature Review

This chapter will dive deep into previously done work related to this project. First, a Background

is provided for the reader to have context on some relevant work and information that precedes

the findings present in the following sections. Second, since the goal is to develop a complete

application, there will be an analysis of the specific problems and how they have been solved

in the literature. Then, there will be a comparison between a similar work and similar existing

applications.

2.1 Background

Since this project is intended for general use, the easiest and most common client available to users

is the web client, also known as a web browser. In the early stages of the web, the applications

followed a server-client architecture where the client had little to no work: it just rendered some

previously compiled HTML and CSS on the page, and the user made the interaction with the server

through HTML forms. Later on, JavaScript usage increased, and the pages started to be a bit more

dynamic [52]. Still, it wasn’t until more performant and portable devices such as the iPhone were

available to the public that web applications started to tilt their focus to the client-side.

More recently, we start to see “Single Page Applications”, which harness the client-side

JavaScript capabilities to simulate legacy web interactions such as changing to another page or

view without actually reloading the page, trading client-side work for network load [38] [19] [45]

[44]. In this architecture, there still exists a server and clients (the web browsers). However, the

server usually serves a REST API (Representational State Transfer Application Programming In-

terface) and a bare-bones HTML document, which serves as a base for the clients to render the

rest of the document with JavaScript (JS), based on API calls results. There is also a mixed op-

tion: The server handles some logic, usually related to session management or localization, and

responds with an HTML document that already has some information to prevent the client-side

from taking too much time on each request. On the web, some frameworks allow this more recent

5

6 Background and Literature Review

Client Server

SYN

SYN-ACK

ACK
TCP Handshake

Request

Response

Request

Response

HTTP Request

HTTP Request

FIN

ACK TCP Close

Figure 2.1: HTTP protocol example interactions

architecture, such as React1, Vue2 and Angular3.

Since the web uses the HTTP Protocol [23] [13], it is quite hard to achieve real-time behavior

with good performance, due to the protocol’s design [53]. As shown in Figure 2.1, every data

transfer starts with a request and ends with a response. It is therefore tied to this two-step process,

which limits its potential.

To allow a more performant way of data transmission between client and server, similar to

the well-known data sockets available in Operating Systems used for bi-directional data transfer

in real-time, there exist Web Sockets [21]. Web Sockets serve the same purpose as Operating

Systems Sockets and allow Web Applications to send real-time updates to the clients without

them needing to request them, which would only be possible otherwise using techniques such as

polling (i.e., the client keeps asking the server for updates periodically), and even here, the client

is actually asking for updates, only in fast succession.

When developing a Web Application, one of the most important aspects is User Experience

(UX). It is even more relevant than User Interface (UI) because, even though they impact one

another, an application with a good UI but poor UX is just a nice painting the users can look at

and be amazed, but with no interaction whatsoever.

1https://reactjs.org/
2https://vuejs.org/
3https://angular.io/

https://reactjs.org/
https://vuejs.org/
https://angular.io/

2.1 Background 7

According to Tullis and Albert [58], UX involves a user, that user’s interaction with the inter-

face, and the interest in observing or measuring their experience when using the interface. A more

common concept is usability, which is usually considered to be the ability of the user to use the

interface to execute a task successfully.

In order to have a good UX, an application cannot require too much thinking from the user, it

should be intuitive [30]. The application should be self-explanatory and “nothing important should

be more than two clicks away”. This involves link naming, placement, colors, and more, hence its

connection to the UI.

Even though some components have specific rules (e.g., links should be clickable and look

like it), others require further examination to understand how users are interacting with them. This

is done manually in usability tests, where actual human users are recruited and product owners

can see directly how they execute some requested action, and feedback is provided directly; or

automatically, through UX metrics.

UX metrics can be of different types [58]: performance, usability, self-reported (i.e., satisfac-

tion / ease-of-use rating given by the user) and behavioral/psychological.

Performance metrics include measuring task success ratios, timing tasks (i.e., how much time

does it take for a user to do something) and error collection. Usability metrics rely on the users

reporting of issues they encounter when using the application. Self-reported metrics are small

questionnaires filled in by users, usually at the end of an interaction/session, which give a more

complete information about what the experience felt like for the user. Behavioral/Psychological

metrics take advantage of sensors in order to measure reactions via eye-tracking and heart rate

monitoring, for example.

As with any software application, there must exist some sort of tests in place, in order to

guarantee a minimal quality standard. In the interface domain, tests rely more on simulating user

actions, such as clicking on components, inputting text, submitting forms, etc., and asserting the

results of those actions on the web page. To develop unit-tests following this model, there are

libraries such as Testing Library4 which allow for page changes assertions in multiple frameworks

— such as React, Vue or Angular, mentioned above, and more. For more complex tests, relying

on the full application — including the server — which simulate the complete interaction of a

user with the application, also called end-to-end tests, there are alternatives like Selenium5 and

Puppeteer6, which simulate actions on an actual browser, not only on a simulated web page, thus

allowing that browser to dynamically change based on the server behavior and on interaction with

other clients, rendering it very useful when testing multi-user applications.

4https://testing-library.com/
5https://www.selenium.dev/
6https://pptr.dev/

https://testing-library.com/
https://www.selenium.dev/
https://pptr.dev/

8 Background and Literature Review

2.2 Offline Availability

As stated in [42], even though people complete interrupted tasks in less time with no quality

drop, interruptions make users work faster to compensate for it, increasing stress and frustration.

The lack of offline interaction would force users to interrupt their task of inputting the desired

information. That would increase stress when they connect again, as they would try to do it fast

while that information still has relevance. Indeed, a real-world application was tested in both

scenarios — with offline mode and without it — for which the basic version obtained a user

satisfaction score of 66.5. In contrast, the offline-tolerant version had a score of 95.5 out of 100

points, proving that having an offline mode improves the user experience in a web application

substantially [41].

Marco [39] exposes the interrupted internet connectivity problem applied to e-learning appli-

cations. It proposes creating a modeling tool to create interruption-resilient web applications by

defining the possible operations and how they should behave in case of interruption. This model

was presented later [5], proposing the Offline Model, which defines a taxonomy for interruptions

on web applications. It further analyzes some properties of web applications in the presence of

interruptions, such as scheme and offline support, which depend on the application and the task

being performed.

Marco further specifies rules regarding adapting basic web applications into offline-tolerant

ones [41]. On the Application Domain Level, the data model of the application should not be mod-

ified to support as many applications as possible. Regarding the Hypertext Level, the navigation on

the application could be slightly modified or adapted, regarding pages within the web application,

depending on the connectivity status. On the Presentation Level, the user interface (UI) should be

adapted according to policies specific to each page element as the interaction with those elements

would change depending on the connectivity status.

Therefore, it is necessary to establish which components of the web application will be avail-

able in offline mode and how. To specify the navigation, they propose the notation presented by

Albertos et al. [40], representing the web pages as nodes, with edges meaning navigation within

the web application. Each node has attributes referring to policies about the behavior of the com-

ponents in offline mode and the mechanism to create the local copy. To specify the interface

behavior in offline mode, the following policies are described:

Hide The element should be hidden, preventing user interaction;

Disable The element should be shown, but interaction should not be possible;

Save Save elements locally so that they can be accessed in offline mode (such as images or text

documents);

Update For elements that can be interacted with when in offline mode, they should be updated —

synchronized — when connectivity is regained.

2.2 Offline Availability 9

Yang [63] presents a mechanism to support offline collaborative work in a web application.

Due to the publication’s age, most of the used tools are now obsolete, but the general ideas still

apply. It proposes the existence of local storage to every client so that operations done in offline

mode are kept. Then, once the user comes back online, the work saved in the local storage is

synchronized with the online storage, where conflict-resolution algorithms take place in order to

minimize said conflicts.

Kleppmann, Wiggins, Hardenberg et al. [29] propose ideals for local-first software, being the

idea that the data on users’ local machines is the primary when compared to servers, not the other

way around, as it often happens in web applications:

“No spinners” / No loading Data is changed locally, and synchronization occurs quietly in the

background;

• A workaround pattern is mentioned — Optimistic UI — which consists of showing

the changes immediately, while sending them to the server, which would need to be

reverted in case of error, for example;

Multi-device support Users should be able to work everywhere;

Optional network Since local-first applications store the primary copy of their data in each de-

vice’s local file system, the user can read and write this data anytime, even while offline.

It is then synchronized with other devices sometime later, when a network connection is

available;

Seamless Collaboration Real-Time collaboration should be possible with conflict resolution when

necessary;

Data Forever The data is independent of the company or service provider, since it is stored lo-

cally; it should therefore last forever;

Secure and Private by default By having the data on each user’s device locally, database tam-

pering is not as harmful, as you’ll have many backed up replicas. Moreover, by using

end-to-end encryption, the server can only save encrypted data, thus making it private, as it

can only be decrypted by the users who are allowed to do so;

Ownership The user owns the data, the provider cannot block the access in any form since the

data is local.

The authors further compare multiple applications in the way they handle the local-first ideals,

such as Files and Email attachments, or Google Docs7 as well as technologies to implement said

ideals, such as Web Applications, Mobile Applications, CouchDB8 — a multi-master database

that allows each node to mutate the database and synchronize the changes with other nodes, meant

7https://www.google.com/docs/about/
8https://couchdb.apache.org

https://www.google.com/docs/about/
https://couchdb.apache.org

10 Background and Literature Review

to run on servers — and PouchDB9 — with the same goal of CouchDB, but meant to run on the

end-user devices.

It also mentions CRDT (Conflict-Free Replicated Data Types) as a foundational technology

to achieve the local-first ideals. As explained in the next section, CRDT are general-purpose

data structures similar to common lists and maps, but built for multi-user environments from the

beginning. CRDT merge changes from multiple users when possible; however, it does not handle

changes to the same element in the structure. In that case, it keeps track of the conflicts for

the application to deal with them, allowing for custom conflict resolution techniques. CRDT

are generic enough to synchronize over any communication connection like server, peer-to-peer

networks, Bluetooth, and others. The paper further presents Automerge10 as a JavaScript (JS)

CRDT implementation. Furthermore, the authors built some prototypes with Electron, JavaScript,

and React, using CRDT to verify that its usage was viable to build local-first software for the

web and desktop applications. The main conclusions were that CRDT worked reliably while

integrating easily with the other tools and seamlessly merging data. Also, they verified that the

user experience was splendid, as it allowed for offline work and sync when possible, giving the

feeling of “data ownership” to the user. Finally, they state that this technology combines well with

Functional Reactive Programming (FRP), a paradigm that renders the view based on a function

that receives data. If the data changes, it “reacts” and redraws. A popular framework enabling this

paradigm is React, but there are others such as Vue or Flutter11. With such a tool, by syncing the

data with a CRDT and reacting to UI changes, a real-time experience is achieved.

Finally, they added that CRDT might have a performance problem if used to save many

changes (since they essentially save all the history). That is something that must be taken into

account when using that technology and designing the system.

Zawirski, Preguiça, Duarte et al. [66] proposes a way of supporting many client-side appli-

cations by sharing a database of objects that they can read and update under a convergent causal

consistency model, with support for application-specific conflict resolution. It relies on fast local

writes, and possibly stale data reads to achieve better speeds. It allows updates to thousands of

clients using only three data centers, leveraging client buffering and controlled staleness, absorb-

ing the cost of scalability, availability, and consistency.

Kao, Lin, Yang et al. [28] proposes a system to allow mobile applications to run in a web

container, joining the benefits of both: being able to run offline and being cross-platform.

In order to make it possible for users to work while they are not connected to the internet, there

must be a way of storing their actions locally so that they can be synchronized when they regain

internet connectivity. Currently, HTML5 exposes multiple local storage APIs, which can be used

for this effect.

Liu [37] discusses multiple web client storage technologies, comparing their advantages and

disadvantages:

9https://pouchdb.com/
10https://github.com/automerge/automerge
11https://flutter.dev/

https://pouchdb.com/
https://github.com/automerge/automerge
https://flutter.dev/

2.3 Conflict Resolution 11

Cookies Small piece of data that included in every HTTP request (limit of 4 kB per cookie [12]).

They can be managed by the server as well as the client and are mostly used to keep state in

between HTTP requests, for use cases such as user sessions or keeping track of user activity.

They are very popular and widely used, but at the same time they have little capacity and

can be insecure, due to their presence in the HTTP communication with the server [59] [31];

localStorage Can be used to implement cross-page communication (in the same domain) by stor-

ing data and having the web application listen for storage events, all pages of the same

domain will have the updated data in the respective section of localStorage. It can be faster

than cookies since no interaction with the server is needed. The data is stored in key-value

pairs and is partitioned by domain, with no risk of inter-domain data corruption. It can be

read and modified using JavaScript and all values are strings.

sessionStorage Works in the exact same way as localStorage, but the data only lasts until the

browser is closed, i.e., the session;

UserData Older technology, specific to Internet Explorer, and has since been deprecated, it had

only 128 kB of capacity;

Web SQL Databases Uses a table-structured format to store the local data. In Google Chrome,

it uses the SQLite DB. The interactions are made as if there was a normal SQL database

running, by using the executeSql() or transaction() APIs. It is not supported by all browsers

nor is it part of W3C standard12;

Indexed Database Uses a NoSQL DB to store the data. It is event-based, so it is asynchronous

by default. Often used together with a Promise-based wrapper [3] such as idb13.

Jemel and Serhrouchni [27] presents some vulnerabilities that can arise from using the HTML5

Local Storage API as is. It also introduces a way of securing data stored using the local storage

API, based on the user, not only the domain the data belongs to.

Liu further concludes that localStorage is the most compatible among web browsers. In sum-

mary, for session id tracking or for small data storage, one should use Cookies; up to 5 MB,

localStorage delivers a solution across all common browsers14; for more space, Indexed Database

is recommended.

2.3 Conflict Resolution

Conflict resolution is a problem that has been studied extensively in the literature, with publications

dating as far back as 1986 [25]. Still, it was not until 1989 that the first algorithm was proposed to

deal with this problem by Ellis and Gibbs [20].

12https://www.w3.org/TR/webdatabase/
13https://www.npmjs.com/package/idb
14https://www.w3.org/TR/webstorage/

https://www.w3.org/TR/webdatabase/
https://www.npmjs.com/package/idb
https://www.w3.org/TR/webstorage/

12 Background and Literature Review

In that paper, they define groupware systems as multi-user (i.e., composed of two or more

users) computer systems that allow development on a common task, providing an interface to a

shared environment. They propose an algorithm to solve the groupware real-time concurrency

problem called Operational Transformation (OT) which allows concurrent editing without the

need for locks, increasing responsiveness. Response time is defined as the time required for the

user’s action to be reflected on their screen. Notification time is defined as the time required for

the user’s action to be propagated to all other participants.

Real-time groupware systems have the following characteristics:

Highly interactive Short response times;

Real-time Notification times should be close to the response times;

Distributed They should work even if the participants are connected in different machines and

networks on the internet;

Volatile Participants may enter and leave the session at any time;

Ad Hoc Participants don’t follow a script, it is therefore impossible to know what is the informa-

tion they are trying to access beforehand;

Focused generally users will be trying to access the same data, generating a high degree of access

conflicts;

External Channel participants are often connected among them via an external channel such as

an audio or video communication tool.

A groupware system model is then defined as being formed by a set of sites and operators.

Sites consist of a site process (i.e., a user’s unique session), a site object (i.e., the data being read

and modified), and a unique site identifier. Operators are the set of operations available for users

to apply to the site objects. The goal is to maintain consistency among all the site objects at all

times. The site process performs three kinds of activities: operation generation, where the user

generates an operation to be applied to the site objects. The site will then encapsulate the action

in an operation request to be broadcast to all other sites; operation reception, where an operation

is received from another site; operation execution, where an operation is executed on the local

site object. The model further assumes that the number of sites is constant, messages are received

exactly once, without error, and that it is impossible to execute an action before it is generated.

The paper further specifies the following definitions regarding the groupware system:

• Given two operations a and b, generated at sites 1 and 2, respectively, a precedes b iff:

– a = b and the generation of a happened before the generation of b, or

– a 6= b and the execution of a on site 2 happened before the generation of b;

2.3 Conflict Resolution 13

• The Precedence Property states that if an operation a precedes another operation b, then at

every site the execution of a happens before the execution of b;

• A groupware session is quiescent iff all generated operations have been executed at all sites;

• The Convergent Property states that site objects are identical at all sites at quiescence;

• A groupware system is correct iff the Convergent Property and the Precedence Property
are always satisfied.

The proposed algorithm uses four auxiliary data structures: State vector, Request, Request

Queue, Request Log and a predefined, semantics-based Matrix of Transformations.

State Vectors are based on the partial ordering definition [32] and the concept of vector clocks

[36] [22], store the amount of operations done per site, i.e., the i’th component of the vector

represents how many operations from site i have been executed in the current site. It is therefore

possible to compare two state vectors si and s j:

• si = s j if each component of si is equal to the corresponding component in s j;

• si < s j if each component of si is less than equal to the corresponding component in s j and

at least one component of si is less than the corresponding component in s j;

• si > s j if at least one component of si is greater than the corresponding component in s j.

Requests are tuples in the form < i,s,o, p > where i is the originating site’s identifier, s the

originating site’s state vector, o is the operation and p is the priority associated with o. From the

request state vector, a site can determine if the operation to execute can be executed immediately,

or wait for needed updates from other sites, enforcing the precedence property. The Request Queue

is a list of requests pending execution. Even thought the term “queue” is used, it does not imply

first-in-first-out order. The Request Log stores at site i the executed requests at that site, in insertion

order.

The Transformation Matrix defines, for every operation type pair, a function T that transforms

operations so that given two operations oi and o j, with priorities pi and p j, instances of operators

Ou and Ov, respectively and

o′j = Tuv(o j,oi, p j, pi)

o′i = Tvu(oi,o j, pi, p j)

then T is such that

o′j ◦oi = o′i ◦o j

where ◦ means composition of operations.

The algorithm has an initialization section, a generation section, a reception section, and an

execution section. In the initialization section, the site’s log and request queue are set to empty, and

the state vector is initialized with all values being 0 since no operations have been done. The next

14 Background and Literature Review

section specifies that whenever a local operation is received, a request is formed, and it is added to

the local queue and broadcast to other sites. In the reception section, when a request is received,

it is simply added to the request queue. Finally, the execution section specifies how to apply the

operations, handling conflicts. First, it checks the request queue to retrieve any request (with state

s j) that can be executed, si being the state in the local site i, and there are three possibilities:

1. s j > si: The request cannot be executed since there are changes done in site j that were not

executed yet at site i, therefore the request must be left in the queue for later execution;

2. s j = si: The two states are equal, therefore the request can be executed immediately without

operation transformation

3. s j < si: The request can be executed, but the operation must be transformed, since site i has

executed requests that are preceded by request j, r j. Site i’s log Li is examined for requests

that were not accounted for by site j (i.e., the requests that were executed in i but not on j

prior to the generation of r j. Each such request is then used to transform o j in o′j, according

to the Transformation Matrix. o′j is then executed and the state vector is incremented.

Some changes were later proposed to the state vector technique [33] [6] to allow dynamic

entries instead of a constant number of concurrent participants. Ellis and Gibbs [20] mentioned

this in the OT definition and addressed it, noting that participants can enter and leave every time

the system is quiescent since the Request Logs can be reset, and it should function as a checkpoint

on each site.

Nichols, Curtis et al. [46] build another algorithm on top of the existing OT, presented in [20]

that uses a server managing the collaboration, instead of being peer-to-peer like the former. This

reduces the need for the request priority fields in the requests for tie-breaking since the server can

use a different strategy such as a reputation system, which the next section will develop upon. By

removing the need for multicasting, since the server orchestrates the process and the communi-

cation is done in server-client pairs only, there is no need for message reordering logic, since a

message transport protocol such as TCP [49] can be used instead, ensuring message delivery in

the correct order before reaching the application layer, thus reducing the clients’ workload.

Wang, Bu, and Chen [60] propose a multi-version approach to resolving conflicts in a real-

time multi-user graphic designing system. It is a Compatible-Precedence approach since, unlike

a Conflict-Precedence approach where the objects are locked for resolution by users in case of

conflict, in this case, the conflict resolution is made by the system. It proposes a classification of

operations in one of two types: Non-Multi-version Operations (NMO) and Multi-version Oper-

ations (MO). The first are operations that, when in conflict, can be resolved by choosing one of

them. The latter are better suited to be decided by the users; hence keeping both versions of the op-

eration history is necessary. To represent this model, it uses a left-subtree-child and right-subtree-

sibling binary tree. The left-subtree represents the continuous conflict-resolved operations. Each

node will have a right-child representing a conflicting operation, thus creating a different branch

2.3 Conflict Resolution 15

with its own history by adding left children to it. Finally, it proposes a set of algorithms to insert

operations depending on their category — NMO or MO — and undo operations.

Citro, McGovern, and Ryan [15] present an algorithm to handle both exclusive and non-

exclusive conflicts. Exclusive conflicts are those in which operations leading to it neither can

be realized at the same time nor can be executed in a specific order since the operations leading to

the conflict overwrite each other, so it is impossible to define an order for them to execute main-

taining the intention of both users. Non-Exclusive conflicts are those in which the operations can

be realized simultaneously, being handled using conventional consistency management techniques

such as operational transformation [20].

The paper builds on top of existing techniques such as operational transformation and multi-

versioning to handle both types of conflicts, exclusive and non-exclusive, more effectively. Addi-

tionally, it does not suffer from a “partial intention” problem, since it allows delayed post-locking,

based on the post-locking of objects technique proposed by Xue et al. [62]. With this technique,

users can fully express their intentions on the object, allowing for a more informed decision when

manually resolving the conflict; it also does not require a group leader or other conflict resolution

roles in order to resolve conflicts.

Over the years, more implementations were published, each with its own advantages and com-

promises, but for the sake of keeping the focus of this document in a more general view of existing

alternatives, the reader is redirected to the OT Wikipedia article, which has a good summary ta-

ble15 of most of the alternatives and their characteristics. Additionally, Sun, Chengzheng provides

a FAQ page16, serving as a knowledge base about the topic. This being a popular algorithm, many

tools implement it and can be included in an application, such as TogetherJS17, based around what

they call the hub: a server that everyone in the session connects to which echoes messages to

all the participants using WebSockets, or ShareDB18, a real-time database backend supporting OT.

The default implementation of ShareDB is an in-memory, non-persistent database with no queries.

It is possible, however, to create connectors for other databases and connectors are provided for

MongoDB19 and PostgreSQL20.

ShareDB is horizontally scalable using a publish and subscribe mechanism, making it rela-

tively future-proof. Since it uses Express.js for the server, it is possible to use middleware to hook

into the server pipeline and modify objects as they pass through ShareDB, adding flexibility.

Conflict-free Replicated Data Types (CRDT) are a different approach to the real-time coor-

dination of inputs problem in a groupware system [51]. They can be operation-based [35] [10],

similar to OT, or state-based [11] [7]. Operation-based CRDT are also called commutative repli-

cated data types, or CmRDT. CmRDT replicas propagate state by transmitting only the update

operation, similarly to OT. Replicas receive the updates and apply them locally. The operations

15https://en.wikipedia.org/wiki/Operational_transformation#OT_control_
(integration)_algorithms

16https://www3.ntu.edu.sg/scse/staff/czsun/projects/otfaq/#_Toc321146200
17https://togetherjs.com
18https://github.com/share/sharedb
19https://www.mongodb.com/
20https://www.postgresql.org/

https://en.wikipedia.org/wiki/Operational_transformation#OT_control_(integration)_algorithms
https://en.wikipedia.org/wiki/Operational_transformation#OT_control_(integration)_algorithms
https://www3.ntu.edu.sg/scse/staff/czsun/projects/otfaq/#_Toc321146200
https://togetherjs.com
https://github.com/share/sharedb
https://www.mongodb.com/
https://www.postgresql.org/

16 Background and Literature Review

are commutative. However, they are not necessarily idempotent. Therefore, the communications

infrastructure must ensure that all operations on a replica are delivered to the other replicas, with-

out duplication, but in any order. State-based CRDT are called convergent replicated data types,

or CvRDT. In contrast to CmRDT, CvRDT send their full local state to other replicas, where the

states are merged by a function that must be commutative, associative, and idempotent. The merge

function provides a join for any pair of replica states, so the set of all states forms a semilattice.

The update function must monotonically increase the internal state, according to the same partial

order rules as the semilattice. Kleppmann, Martin provides good presentations21,22 on the CRDT

topic. Similarly to OT, CRDT also has available libraries and tools to be used in applications.

Riak23 is a distributed NoSQL key-value data store based on CRDT. Bet365 is an example of

a large system using Riak24. Another example of CRDT implementation is Facebook’s Apollo

database25, showing that CRDT can be used at scale as well.

A third and more recent alternative to the conflict resolution problem is Differential Synchro-

nization [24] [2]. It provides an alternative to OT, being a symmetrical algorithm, as it has nearly

identical code in both client and server; state-based, thus not requiring a history of edits to be kept

by clients; asynchronous, since it does not block user input while waiting for the response over

the network; network resilient, convergent, suitable for any content for which semantic diff and

patch algorithms exist; and highly scalable. A working example of this algorithm can be seen in

MobWrite26.

As it can be noted, real-time applications usually apply a replicated architecture, where each

client has its own replica, a user may directly edit its own version, realizing its effect immediately.

The effects are then propagated to other clients. Propagation can be operation-based [47] [55]

[54] [61] or state-based [24]. Chengzheng, David, Agustina et al. [14] state that most real-time

co-editors, including those based on OT and CRDT, have adopted the operation propagation ap-

proach for communication efficiency, among others. It continues by comparing both solutions.

Firstly, CRDT solutions have significantly higher time and space complexities than OT solutions,

as revealed in [56]. Secondly, CRDT has a higher initialization cost since it needs to represent

initial characters on the document, whereas OT’s data structures start empty. This can have a big

impact on session management and handling users that enter mid-session. Thirdly, OT does not

have any additional time or space cost for non-concurrent operations. The operations buffer can be

emptied with garbage collection — as was previously mentioned, the system can reset some data

structures every time it is quiescent. CRDT, on the other hand, will have similar time and space

costs regardless of handling concurrent or sequential operations, as all operations will be applied

in the internal object sequence, which can never be emptied unless the document itself is emptied.

Finally, OT does not have any additional time or space cost for local operations, as they will never

21https://www.infoq.com/presentations/crdt-distributed-consistency/
22https://gotocon.com/berlin-2016/presentations/show_talk.jsp?oid=7910
23https://riak.com/introducing-riak-2-0/
24https://bet365techblog.com/riak-update
25https://dzone.com/articles/facebook-announces-apollo-qcon
26https://code.google.com/archive/p/google-mobwrite/

https://www.infoq.com/presentations/crdt-distributed-consistency/
https://gotocon.com/berlin-2016/presentations/show_talk.jsp?oid=7910
https://riak.com/introducing-riak-2-0/
https://bet365techblog.com/riak-update
https://dzone.com/articles/facebook-announces-apollo-qcon
https://code.google.com/archive/p/google-mobwrite/

2.4 Reputation System 17

be concurrent with any operation in the Requests Log. CRDT, on the other hand, will have similar

time and space costs regardless of handling local or remote operations, as all operations will be

applied in the internal object sequence. The longer time the local operation processing takes, the

less responsive the co-editor is to the local user. Herron [1] also compares OT to CRDT, looking

at the implementation in a final application, revealing some examples and problems that can arise,

such as the unwanted cursor movement.

In a more general way, Sun et al. [57] present different types of conflict resolution in a cre-

ative editing system. The preventive resolution prohibits concurrent work on two same objects,

avoiding conflicts altogether; eliminative resolution eliminates both operations when in conflict,

eliminating the operations’ history; arbitrative resolution elects one of the operations to be kept;

preservative resolution keeps both options in different versions, so that the users can choose an

alternative later; creative resolution produces a new operation, combining the two conflicting

operations.

It further elaborates on the basic structure of a creative conflict resolution. There are three

main components layered on top of each other. On the base, there is a conflict detector that simply

detects if there are conflicts between operations. Next, there is a conflict synthesis component that

creates the new operations based on the conflicts. Finally, there is the conflict management User

Interface (UI), which is responsible for notifying users about conflicts and allowing them to select

the desired conflict resolution strategy.

As important as the algorithm for solving conflicts themselves, the testing structure is also

relevant. And in this scenario, creating relevant tests is more complex since they do not depend

solely on a user’s inputs and output assertions. Yu et al. [65] propose a language to define test

suites based on actors and a timeline of actions portrayed by them. This allows the developer to

completely specify the actions of all the participants and their interactions in one place, asserting

effects more clearly.

In summary, there are three alternatives for the conflict resolution in real-time problem: OT,

CRDT, and Differential Synchronization, the latter having less development in the industry and

not much use in production. The two main strategies are operation synchronization (OT) and

state synchronization (CvRDT). Operation synchronization broadcasts operations to be replicated

among peers, whereas state synchronization broadcasts the state updates directly. These can be

used for the automatic merge of conflicting operations, however, multi-versioning and creative

resolution are techniques that can be applied for specific conflicts.

2.4 Reputation System

There are multiple examples of how reputation can be used in multi-user systems and how it

can affect group dynamics. Many refer to it as a solution to “Group Recommendations”, which

are based in trust among participants, whereas others mention its ability to induce cooperation.

Haveliwala [26] shows how the PageRank algorithm can be personalized so that each link among

nodes has a different weight in order to express a dynamic preference among nodes. Andersen et

18 Background and Literature Review

al. [8] demonstrates multiple trust-based recommendation systems and how they comply with a set

of relevant axioms. Most importantly, it shows how the aforementioned personalized PageRank

(PPR) algorithm can be used to simulate a trust network among peers by linking users with differ-

ently weighted connections. The greater the weight, the more a user trusts another, and the most

likely it is for the Random Walk algorithm to choose that “path of trust”. The latter also shows

that PPR satisfies three out of five relevant axioms: Symmetry, Positive Response, Transitivity,

but not Independence of Irrelevant Stuff and Neighborhood Consensus.

Symmetry Isomorphic graphs result in corresponding isomorphic recommendations (anonymity),

and the system is also symmetric;

Positive response If a node’s recommendation is 0 and an edge is added to a + voter, then the

former’s recommendation becomes +.

Transitivity For any graph (N, E) and disjoint sets A,B,C⊆N, for any source s, if s trusts A more

than B, and s trusts B more than C, then s trusts A more than C;

Independence of Irrelevant Stuff A node’s recommendation is independent of agents not reach-

able from that node. Recommendations are also independent of edges leaving voters;

Neighborhood consensus If a nonvoter’s neighbors unanimously vote +, then the recommenda-

tion of other nodes will remain unchanged if that node instead becomes a + voter.

Dellarocas [18] shows examples of how multiple platforms handle their user reputations mech-

anisms. It also states that reputation systems can prevent badly intended users and deter moral

hazard by acting as sanctioning devices. If the community punishes users that behave poorly

and if the punishment compensates the “cheating” profit, then the threat of public revelation of a

user’s cheating behavior is an incentive for users to cooperate instead. It further elaborates on the

reputation dynamics of a multi-user application:

Initial Phase Reputation effects begin to work immediately and in fact are strongest during the

initial phase, as users try and work hard to build a reputation on themselves. Reputation

effects may fail, however, when short-run users are “too cautious” when compared to the

long-run ones and therefore update their beliefs too slowly in order for the long-run user to

find it profitable to try to build a reputation;

Steady state (or lack thereof) In their simplest form, reputation systems are characterized by an

equilibrium in which the long-run user repeatedly executes the safe action, also known as

the Stackelberg action, and the user’s reputation converges to the Stackelberg type (always

collaborating and no cheating).

These dynamics have important repercussions for reputation systems. Dellarocas goes on to

say that if the entire feedback history of a user is made available to everyone and if a collaborator

stays on the system long enough, once they establish an initial reputation for honesty, they will be

2.4 Reputation System 19

tempted to cheat other users sometimes. In the long term, this behavior will lead to an eventual

collapse of his reputation and, therefore, of cooperative behavior.

Bakos and Dellarocas [9] present a model for a reputation system that explores the ability

of online reputation mechanisms to efficiently induce cooperation when compared to contractual

arrangements relying on the threat of litigation. It concludes that the effectiveness of a reputation

mechanism in inducing cooperative behavior depends on the frequency of transactions that are

affected by this mechanism, reminding that a minimum degree of participation is required before

reputation can induce a significant level of cooperation. After this threshold is reached, however,

the power of reputation manifests itself, and high levels of cooperation can be supported.

Dellarocas [17] concludes that reputation mechanisms can induce higher cooperation and ef-

ficiency if, instead of publishing updated ratings as soon as they are available, they only update a

user’s public reputation every n transactions, meaning a summary statistic of a user’s last ratings.

In settings with noise, infrequent updating increases efficiency because it decreases the adverse

consequence of artificial negative ratings. At the same time, however, infrequent updating in-

creases a user’s short-term gains from bad behavior and thus the minimum future punishment

threat that can sustain cooperation.

Tests were made in order to understand the reputation issues for users [4]. These were made

in Waze, a navigational driving assistant with crowd collaboration for road events. Even though

this and zerozero.live are somewhat different, some parallelisms can be made, and some gathered

information still applies. They concluded that it was hard for users to recognize where the infor-

mation came from and if it was reliable at all. Furthermore, users did not care much about their

reputation when submitting information (i.e., if they heard about some road event, they would pub-

lish it without verifying it), maybe this is somewhat different from our use-case of sporting events,

as users are either actually watching the game, or following it from a reliable source. Additionally,

when users knew the source of data, they tended to trust people in their close circle (e.g., family

and friends), and the main conclusion is that the app needed to convey the reputation of the source

better to let the consumers know how much they can or should trust the source.

Resnick et al. [50] elaborate about reputation systems and their generic importance on the web.

It is more geared towards e-commerce examples where people investigate the reputation before

interacting with each other. It mentions three important properties reputation systems should have:

• Long-lived entities that inspire an expectation of future interaction. If the entities are short-

lived, their reputation matters little;

• Capture and distribution of feedback about current interactions (such information must be

visible in the future);

• Use of feedback to guide trust decisions.

In the zerozero.live case, it might be hard to get expressive feedback from users regarding other

users. Therefore, it is important to have some implicit voting in place. Additionally, users are

more inclined to express feedback when they disagree than when they agree, which means that the

20 Background and Literature Review

lack of negative feedback must be considered positive feedback to balance the system. Besides,

users won’t see the reputation of other users beforehand in order to decide to interact or not, as

they simply enter the event without knowing who is also there, so it is important that they can see

the reputation, or a variant of it (i.e., some relative reputation based on the current group of users)

while they are at the event (e.g., showing it next to the user’s name).

Melnikov, Lee, Rivera et al. [43] present a dynamic interaction based reputation model, which

is further evaluated in [64]. They present a method to measure reputation as a function of user

interaction frequency, also contemplating a reputation decay if the users stop contributing to the

platform.

The aforementioned method is also present in [16], where the authors present a way to harness

the “wisdom of the crowds”, very much in line with what is required in zerozero.live, since there

is no express authority during the event. It presents an example of a document sharing system

and the approach to rank the documents based on the number of readers, the author’s reputation,

the time dynamics of reader consumption, and the time dynamics of documents contributed by

the user. This last one manifests indirectly but is still relevant: it means that if a user has less-

frequent readers on their documents, their reputation will decrease, so the contribution to the main

document’s reputation — the one they are reading now — will be smaller. Reputation values scale

between 0 and 1, and they stick to the following rules:

1. Every time a user consumes a document from an author, the author gains reputation accord-

ing to:

newRep = oldRep+(1−oldRep)∗ repReward (2.1)

repReward is a constant between 0 and 1 and should consider the number of entities in

the system. As the paper states: “If the number of expected consumers is in the order

of hundreds or thousands, then an overly high value of repReward will potentially cause

popular content to quickly converge towards 1 making it difficult to differentiate between

similarly popular content”.

2. Every time a user consumes a document, the document gains “reputation” — meaning pop-

ularity in this case — according to the same formula of 2.1;

3. In order to take time dynamics into account, reputation should decrease over time, so that a

“rich-get-richer” paradigm can be avoided. This is achieved by the following equation (both

for users and for documents):

newRep = oldRep∗decayCoe f f k (2.2)

decayCoe f f represents how much the reputation will change, and k is the amount of time

units that have passed since the last reputation update, i.e., for a time unit of “days”, k will

be 0 in the first 24h, 1 in the next day, 7 in a week, and so on. This decouples the algorithm

from the logistics, since the algorithm can now run in a fixed frequency, independently of

the time units, and every time it re-calculates, it will give an accurate value. However, if for

2.5 Similar Platforms 21

example the time unit is “day”, and the algorithm updates every week only, there will be an

offset of 6 days in which the value will be outdated.

4. Users with higher reputation matter more when calculating the document reputation changes:

newRep = oldRep∗ repConsumer ∗B (2.3)

B is a constant within [0, 1] representing to what extent the user reputation repConsumer

will influence the document’s reputation.

This system can be adapted and applied in zerozero.live if we map user inputs in an event

as documents. However, we will be ranking users instead of inputs — “documents” in the

analogy — even though they will also have reputation values.

2.5 Similar Platforms

On a basic level, this is a sporting-event following app. A similar platform would be 365scores.com27,

which offers the following of events in real-time; however, it does not offer the community-input

feature of this proposed work.

Another platform that enables live viewing of sporting events is mycujoo.tv28. This enables

the teams to live stream the game with video and mark specific events as they happen so that the

viewers can revisit those moments in the video. It, too, lacks the community input feature when

inserting the events; it is more geared towards the clubs sharing ability rather than the fans’.

This leaves zerozero.live as a singular app that will allow fans to contribute game events in

real-time, increasing engagement, which can be complemented with the enormous football-related

database which can provide real-time statistics about the game.

2.6 Similar Work

Castro [48] has developed an application with the same goal as a Master’s Thesis as well. However,

this work will not be a continuation of Castro’s work or use any of its code. It will benefit solely

from the insights it can give, being a work with the same goal, with high importance in terms of

literature review.

Castro’s work focused mainly on the reputation system as a conflict resolution strategy (i.e.,

the user with the most reputation wins an argument over the user with less reputation). While this

is a valid approach to start with, it has many limitations such as highly-reputed users abusing their

power in the real world. Further discussion about reputation systems in the literature is shown

in Section 2.4. However, this work intends to apply a different technique that, while harnessing

the advantages of a reputation system, aims to prevent the problems that could arise when used

by real users. One of them would be using different conflict resolution strategies, depending on

27https://www.365scores.com/pt/pages/about
28https://mycujoo.tv/en/about-us

https://www.365scores.com/pt/pages/about
https://mycujoo.tv/en/about-us

22 Background and Literature Review

the conflict (i.e., a conflict in the game score is way more important and thus cannot be solved by

blindly applying a reputation comparison than, say, a mistake on the player substitution). The way

of solving conflicts in terms of User Experience is also a matter of study. The application won’t

fact-check every user input, disturbing every other user experience with it, while at the same time

guaranteeing the truest story possible. Finally, this work will have an “Offline Availability” goal

as well, which is of great relevance in the real world, as the connectivity is not always the best,

and many consistency problems result from it; thus, it is only fair that it is included in the areas of

study regarding this application.

2.7 Summary

From the literature review, it is possible to realize that in order to achieve a real-time effect on

the Web, one needs to use a real-time communication protocol such as WebSockets. To main-

tain work progress while offline, the application needs to store the interactions locally, through

WebStorage tools, such as localStorage. Conflict resolution is a highly researched topic with two

main solutions: OT and CRDT. These are available through multiple tools and libraries such as

TogetherJS29, ShareDB30 CouchDB31, PouchDB32, Automerge33 and GUN34. Finally, regarding

reputation systems, it was found relevant for the reputation to be time-dependent, as well as rep-

utation dependent, in the way that highly reputed users influence others’ reputation more. It is

also important for users to know who they are interacting with, in terms of reputation, as they can

better filter the information given and defy it when appropriate.

In the next chapter, the problem is presented in more detail. Chapter 4 presents the solution to

these problems, based on the information in this chapter.

29https://togetherjs.com
30https://github.com/share/sharedb
31https://couchdb.apache.org/
32https://pouchdb.com/
33https://github.com/automerge/automerge
34https://gun.eco/

https://togetherjs.com
https://github.com/share/sharedb
https://couchdb.apache.org/
https://pouchdb.com/
https://github.com/automerge/automerge
https://gun.eco/

Chapter 3

Problem Statement

This chapter describes the problem tackled in this work, including the planned features and the ex-

pected result. Section 3.1 provides some key concepts used throughout the document, Section 3.2

presents the features to be developed in User Story format, some additional technical require-

ments are presented in Section 3.3. Later, in Section 3.4, this work’s hypothesis is presented and

in Section 3.5, some research questions are specified, for which this work aims to provide answers.

The implemented solution for this problem is presented in the next chapter.

3.1 Key Domain Concepts

There are some key concepts that will be mentioned throughout this document which are relevant

to distinguish, regarding the platforms related to this work.

ZeroZero the ZeroZero website (zerozero.pt), which currently is used by users to follow and by

journalists to cover matches;

ZeroZero API the API that powers the ZeroZero website; it provides teams and players informa-

tion, as well as match details, so it will also be used by ZeroZero Live;

ZeroZero Live used interchangeably with zerozero.live — the domain through which it can be

accessed — is the new application, to be developed in this work.

3.2 Problem Definition

The project’s goal is to develop a web application that allows users to follow a sporting event

in a real-time chat-like environment where everyone can input game events. For users that are

just following, it would work as live coverage of the event; for contributors, it should be resilient

to network failures due to stadiums’ Wi-Fi limitations. Due to the above goal, some necessary

features start to surface, such as real-time conflict resolution and the inherent reputation system

for tie-breaking when necessary.

23

24 Problem Statement

A prototype that allows event submission is already available, and since it is using React,

which is an appropriate technology for this task, it will be kept. Some features still need to be

polished, but most of the UI is already done, which will allow a bigger focus on the actual real-

time conflict resolution problem.

The features of the prototype are described as follows, in User Story format1:

US1 As a user, I want to be able to join a sport event channel, where I can see details about

the event in real-time (either pre-filled or contributed by other users), so that I have

information about what is happening in the event.

US2 As a user, I want to be able to post event updates while on an event channel, in a

chat-like interaction, so that I can easily contribute in an input experience I recognize.

• Event updates include: Starting players, Goals, Fouls, Set-Pieces, Cards, Sub-

stitutions, Game-Time information, and generic match information

US3 As a user, I want to be able to use the application while in offline mode, and have

it synchronize once the connection is resumed, so that I don’t lose information nor

focus when my connection drops.

US4 As a user, I want to see a value representing the reputation of other users in a given

event channel, so that I have a basis on which to decide if I trust them.

US5 As a user, I want to be able to delete inputted events, so that I can let others know that

they might not be true and manifest my intention to change it.

US6 As a user, I want to be able to see if there are any pending conflicts to be resolved, so

that I can clearly see if I need to solve any conflicting information.

US7 As a user, I want to be able to resolve any pending conflicts, so that I can keep the

event’s history clean and understandable.

US8 As a user, I want to be able to join an event channel mid-session, being able to see

the previous information, so that I have more flexibility, not losing context if I arrive

some time late.

US9 As a user, I want to be able to see the events generated on the ZeroZero platform (not

ZeroZero Live), so that I can follow the game even if don’t want to comment about it.

US10 As an official ZeroZero reporter, I want to be able to input events on the old platform,

and have them synced to ZeroZero Live, so that I can use other tooling that depends

on it to provide statistics, and still be able to comment manually on ZeroZero Live.
1In software development and product management, a user story is an informal, natural language description of

one or more features of a software system. User stories are often written from the perspective of an end-user or user of
a system.

3.3 Technical Requirements 25

3.3 Technical Requirements

Apart from the functional requirements above, the tool should adhere to the following technical

requirements:

TR1 The system should use the authentication API from ZeroZero in order to authenticate

users and provide session functionality;

TR2 Changes and updates to the application should not require total outages of service;

TR3 There will be sufficient logging to quickly identify system problems;

TR4 The tool should be available as a web application, able to work on any browser (desk-

top, tablet or mobile);

TR5 The application may require an internet connection on setup, but should be resilient

to network failures mid-session;

TR6 The system should be horizontally scalable as the number of users grows;

3.4 Hypothesis

This work is done to test the following hypothesis:

“A conflict-resolution system improves the user experience in a real-time multi-user

crowdsourcing environment.”

User Experience can mean many things. In this work, it will be coupled with satisfaction

of use, and willingness to keep using the product. In order to verify this hypothesis, an existing

prototype for the ZeroZero Live web application was extended in order to include the real-time,

offline tolerance, and conflict resolution features. By exposing this version to journalists and

common users, it was possible to measure their interactions and how they felt with regards to the

application. That analysis is present in Chapter 5.

3.5 Research Questions

Given the hypothesis proposed above and the problem definition provided above (Section 3.2), the

main research question of this work is:

RQ Does an high number of conflicts impact the User Experience in a collaborative web

platform?

Additionally, an since this question is too generic, there are a few more research questions:

RQ1 How is the number of inputs related to the number of conflicts?

RQ2 How is the number of collaborators related to the number of conflicts?

26 Problem Statement

3.6 Summary

In summary, we intend to research the impact of conflict resolution on a real-time, offline-tolerant

crowdsourcing environment. To verify that, a multi-user real-time application allowing the cov-

erage of sporting events with offline tolerance will be developed. That entails the existence of

conflict resolution strategies, as well as a reputation system, which should take time into con-

sideration, making reputation more dynamic. All of this should be integrable with the existing

ZeroZero system, and use modern strategies to solve the technological challenges.

Chapter 4

Architecture and Implementation

This chapter presents the solutions to the problems exposed previously. It explains the rationale

behind them, as well as why they were preferred over their alternatives.

First, the general architecture is described, presenting the multiple components of the appli-

cation. Afterward, each component is described in more detail, regarding its functionality and

implementation.

4.1 General Services Architecture

This section describes the general architecture of the system. It is composed of multiple microser-

vices, each handling a specific part of the problem. The main services are the ones dealing with

the frontend application — the web application itself —, the conflict handling, and the user re-

putation. Additional services are built in order to achieve a functional whole, and they will be

described below. Figure 4.1 shows the system architecture design and how the services connect to

one another. Listing 4.1 contains all the configured services, including proxies and helper services.

All of these services are managed using Docker1. Each service is built within a Docker Con-

tainer, allowing it to be easy deployed and replicated across machines for scalability and fault

tolerance. It also ensures that every deployment is identical, no matter the host machine and envi-

ronment it is deployed on.

Additionally, Docker Compose2 is used to define how the different containers in a multi-

container application should interact with each other, allowing us to start the application as one

entity, instead of multiple isolated containers. It conveniently provides an internal DNS so that

containers can reach each other by their service name. Listing 4.1 shows the configuration file for

the different docker services. Each service has a unique name, e.g., “apacheproxy”, “frontend”,

and fields configuring its deployment. The build property specifies the location of the Dockerfile

associated with the service image; the ports are defined in <Host Port>:<Container Port>

format, and map to which port on the host — i.e., the machine that is running docker — the

1https://www.docker.com/
2https://docs.docker.com/compose/

27

https://www.docker.com/
https://docs.docker.com/compose/

28 Architecture and Implementation

services should listen. Additional properties such as “restart” configure the behavior on failure,

and storage containers, such as the “couchdb” and “mongo”, are configured to have data volumes,

so that when the container is shut down the data is preserved on the host machine, so that it can be

recovered later when it restarts. The “depends_on” property makes sure that the service on which

some service depends, is running when the dependent service is running.

1 version: ’3.1’

2 services:

3 apacheproxy:

4 build: apache-reverse-proxy/

5 restart: always

6 ports:

7 - "80:80"

8 frontend:

9 build: .

10 ports:

11 - "5000:80"

12 apiproxy:

13 build: api/

14 ports:

15 - "5001:80"

16 conflicthandlerservice:

17 build: conflict-handler-service/

18 restart: always

19 ports:

20 - "5002:80"

21 depends_on:

22 - couchdb

23 reputationservice:

24 build: reputation-service/

25 restart: always

26 ports:

27 - "5003:80"

28 depends_on:

29 - mongo

30 couchdb:

31 build: couchdb

32 environment:

33 - COUCHDB_USER=***

34 - COUCHDB_PASSWORD=***

35 ports:

36 - "5984:5984"

37 volumes:

38 - ./couchdb-data:/opt/couchdb/data

39 mongo:

40 image: mongo

41 ports:

42 - "27017:27017"

4.2 Reverse Proxy 29

43 volumes:

44 - ./mongodb-data:/data/db

Listing 4.1: docker-compose.yml file — Docker services definition

Finally, a microservice architecture promotes isolation and independence of services, which in

turn allows for easier development and testing. Different teams can work on each service, which

has a single purpose, and they only need to agree on the interface and how they can communicate.

«component»
ZeroZero API

«component»
ZeroZero Live Webserver

(Frontend)

«component»
Reputation Service

«component»
Conflict Handling Orchestrator

«component»
Conflict Handler

«component»
LevelDB Database

«component»
MongoDB Database

«component»
CouchDB Database

Match Information

Teams Information

Start Handler for Match

Start Live Match

ReadWrite

Update Reputation Get User Reputation

Read Write

Write

Read

Figure 4.1: Architecture design of the zerozero.live system

4.2 Reverse Proxy

In the zerozero.live deployment, only the 443 — HTTPS — port is exposed to the internet, thus,

to expose multiple services, it cannot be done in multiple ports, at least not from the outside. Due

to this, a reverse proxy is required to map each service — and its specific port — to an endpoint

on the main domain zerozero.live:

• / Redirects to the client application — the application’s frontend;

• /api Redirects to a small proxy that communicates with the ZeroZero API;

30 Architecture and Implementation

• /db Redirects to the CouchDB, holding the match events in real time;

• /manager Redirects to the conflict handling services orchestrator, which monitors the con-

flict handlers for each match;

• /reputation-manager Redirects to the reputation service, which registers the interactions

and calculates the reputation updates for users.

The following sections will dive deeper on the purpose and implementation details of each

aforementioned service, which compose the whole application

4.3 CouchDB

CouchDB is a document-oriented, multi-master database, which allows for easy replication be-

tween nodes. This enables data to flow seamlessly from web browsers to the database and vice

versa, powering offline-first applications while being developer friendly, since the API that inter-

acts with the local database — powered by PouchDB — is the same that interacts with the remote

database — CouchDB.

When compared to the previously analyzed alternatives, namely ShareDB and CRDT solu-

tions such as Automerge, CouchDB is older and thus more battle tested than the rest, while also

having frequent releases — the latest stable to date is from September, 2020. ShareDB has also

been around for some time, since 2013, however, it offers a lower level alternative to conflict res-

olution using OT. It allows integration with any database and offers similar features to CouchDB,

but it was difficult to program custom conflict resolution strategies, very much important to this

work. From the three, Automerge is the youngest (2017), and it relies on a different approach to

conflict resolution, based on CRDT. As it does not require a central server, it merges documents

automatically and there could not be found a way to add custom resolution of conflicts, which led

to the CouchDB alternative.

It is based on documents which are JSON objects with at least an id and a revision identifier.

CouchDB then uses this to detect conflicts — if it has the same id, it may conflict — and to

resolve them. It works by creating a tree of documents, where the leaf nodes are the current

winners, branches represent conflicting revisions, which are kept to be resolved by the application

if needed. CouchDB will choose a winner automatically and deterministically, so that every client

has the same version of the data. However it is possible to resolve the conflicts afterwards, by

choosing a conflicting version as the winner, which appends a new node to the tree, after the

previous winner, making the previously conflicting document the new leaf node, and thus the new

winner for that document id.

Finally, this has the advantage of having a browser version, powered by PouchDB, which repli-

cates the database to the browser’s IndexedDB, and its API is the same as CouchDB’s. This makes

the application offline first, since all the changes are made to the local database, and continuously

synchronized to the remote database.

4.4 Conflict Handling 31

4.4 Conflict Handling

Conflict handling is divided into two separate parts. One for the conflict handling of a single

match, which is responsible to handle the conflicts themselves on the match level, and another for

the orchestration of handlers themselves, which is responsible for the launching and orchestration

of the match conflict handler processes. But first, it is important to set some concepts regarding

conflict detection and documents’ structure.

4.4.1 Conflict Detection

As events are introduced by users, conflicts may arise. The conflicting events are the ones whose

documents share the same _id. If we want documents to conflict, they cannot have unique ids, so

the following structure was defined for each event _id:

eventMinute− eventMinuteExtra− eventCategory (4.1)

By having this structure, when any event from the same category is inserted, referring to the

same game minute as another, they will conflict. Event categories are defined in such a way that

events from different categories do not conflict. Some category examples include goal related

events (Goal, Own Goal, Big Scoring Opportunity, etc.), card related events (Yellow Card, Red

Card), or time events (Start Whistle, End of 1st Half, Final Whistle, etc.)

This will ensure that we have a basic conflict detection, however it can easily be noticed that

even in the same category there may be events on the same minute: There can be a Big Scoring

Opportunity immediately followed by a Goal, or even two Yellow Cards for two different players,

or even the same one which will wrongly conflict.

To improve the experience, a conflict handler is needed, in order to automatically solve con-

flicts as best as possible.

There are two concepts to understand: events, and documents. Events are instances of events,

as used by the ZeroZero API, such as a Goal, Own Goal, or Big Scoring Opportunity. These

include the event type id, their category, some template text and a representative image to be ren-

dered associated with it, among other fields. The complete list of events is present in Appendix A.

Documents are a wrapper on the API events, in order to be stored in the CouchDB database, and

used on the ZeroZero Live exclusively. Their schema is defined in Table 4.1.

Regarding conflict resolution, the main fields to take into account are the _id and _rev. A more

detailed explanation is presented below on how these fields are used to detect and resolve conflicts

between two documents.

32 Architecture and Implementation

Table 4.1: CouchDB document schema

Field Description
_id the document id, used to detect conflicts, as explained above
_rev the document’s revision, in order to provide the history level of the

changes tree of this document _id
timestamp a UNIX timestamp to help sorting the events that are generated for the

same match minute
id the id of the corresponding event on the ZeroZero API, received on

insert, and required to edit or delete this event from the API
fk_jogo the match id
equipa the respective team’s id
fk_user id of the user that generated the event
fk_jogador id of the player the event refers to
fk_jogador_out id of the secondary player the event refers to (used in the substitution

event)
minuto the match minute
minuto_extra the extra minute, in case the event happened during injury time
texto the event’s text (after template interpolation)
event_id the event type id
fk_live_tpevent the same as event_id
ignore_minuto 1 if the minute should be ignored, 0 otherwise
categoria the event’s category
vodafone_clock_time a timestamp indicating the video mark when the event can be visual-

ized
insert flag indicating if the event should be inserted to the ZeroZero API
synced_from_api flag indicating if this document came from a synchronization from the

ZeroZero API, instead of being inserted by a user manually

4.4 Conflict Handling 33

4.4.2 Conflict Handler

As previously noted, the Conflict Handler will help resolve some existing conflict automatically,

based on the conflicting events and the match context, in order to only rely on users to resolve

pending conflicts as a last resource.

This is a Node.js process that will use PouchDB to connect to the remote CouchDB and listen

for changes. It has two main responsibilities:

• If the document does not have conflicts sync with ZeroZero API, by inserting, editing or

deleting the event from their database, depending on the operation;

• If the document has conflicts, try to resolve them according to the specified rules, by either

deleting the conflict and keeping the current winner, deleting the conflict and adding it after

the previous winner, to choose it as winner, or keeping both documents, by deleting the

conflict and adding a replicated document with a unique suffix added to the id so that it

won’t conflict again (See Figure 4.2).

1-a

2-a 2-b

3-b

_deleted=true

1-a (same as 2-b, different document _id)

Figure 4.2: Resolving a conflict by keeping both revisions — “2-a” conflicts with “2-b” initially,
then “2-b” is deleted, and a new document with a unique _id is inserted (on the right), same as the
deleted revision “2-b”

As it was mentioned earlier, all CouchDB documents have an _id and a _rev (as in revi-

sion). When putting a document — CouchDB has a put operation that allows insertions, edits and

deletions, depending on the given argument — if there is already an object with the same _id,

CouchDB will try to update it, however if the _rev does not match, a conflict is generated. For

insertions, it only requires an object with at least an _id field. For edits, it requires the object with

an _id, referring to the document to be edited, and a _rev, corresponding to the current revision

of the document to be edited. For deletions, it requires the _id, _rev and a _deleted field with

a value of true, which is a special case of the edit operation. The deleted documents are not re-

ally removed from the database until a compaction operation3 is performed to clean the deleted

documents and older revisions are stripped, leaving only the necessary data required for conflict

resolution operations.

Document revisions have two components: a number indicating their level in the tree of up-

dates of that document, and a unique identifier. When a document is inserted, the generated
3https://docs.couchdb.org/en/stable/maintenance/compaction.html

https://docs.couchdb.org/en/stable/maintenance/compaction.html

34 Architecture and Implementation

revision starts with 1, and every time it updates, the successive revisions will have consecutive

values e.g., 2, 3, and so on. This means that, considering two users are synchronized with the

remote database which has a document with a revision of “1-xyz”, if they both want to update

that document at the same time, they will both try to put a document with “1-xyz” as its parent

node. When CouchDB receives the requests, it will generate a revision for each, starting with 2,

since their parent node revision starts with 1. One of them will be chosen as winner, and the other

will conflict, since there are two documents on the same level: 2. The winner is automatically and

deterministically chosen by CouchDB, so that every replica of the database is consistent, and it

will store the conflicts for each document as well, then it is up to the application layer to resolve

the conflict as needed. Figure 4.3a shows the history of a document’s revisions, it starts on the re-

vision level 1, then an edit generates the level 2 revision, and on the third level, there is a generated

conflict, since two users tried to update it, by specifying the same root revision: “2-a”. CouchDB

automatically chose revision “3-b” as the winner, but it still kept the “3-a” revision in memory.

Figure 4.3b shows the same scenario, but adds the conflict resolution process, which works by

deleting the revision we want to discard — “3-b” in this case — and since revision “3-a” becomes

the only non-deleted leaf revision, it automatically becomes the winner and will be returned when

someone fetches this document latest revision. The primary focus of this work starts here, by ap-

plying automatic conflict resolution strategies between the automatic CouchDB winner selection

and the manual user conflict resolution that may happen afterwards.

1-a

2-a

3-a 3-b

automatic winner

(a) Document revision history (conflict)

1-a

2-a

3-a

winner, after resolution

3-b

4-b

_deleted=true

(b) Document revision history (conflict) with conflict
resolution

Figure 4.3: Document revision history — CouchDB model

4.4.3 Base Conflict Resolution Strategies

A base set of operations was defined in order to help solve conflicts. As per design, every conflict

is resolved individually, i.e., if there are three documents conflicting, the conflict resolution will

take place two times, one for each conflict pair (current winner, conflict). They all receive the

pre-selected winner and conflict documents as arguments:

4.4 Conflict Handling 35

Leave Conflict This is the most basic resolution operation. It does nothing and leaves the conflict

in the database, so that it can be resolved later in the frontend application;

Ignore Conflict This is another basic resolution operation. It simply deletes the conflicting revi-

sion, basically agreeing with the automatic decision done by CouchDB;

Choose a Winner This operation deletes the document passed as conflict and inserts a new revi-

sion as the winner;

Keep Both This operation resolves conflicts by keeping both documents. Since there can’t be

two documents with the same id in CouchDB, otherwise they would conflict, it first deletes

the conflicting revision, creates a new revision for the current winner, and inserts a new

document equal to the conflicting one, but with a UUID4 appended to its default id. This

ensures that it won’t conflict with the existing document, however it has the downside that it

won’t conflict with anything ever again. While the initial document remains in the database,

there will always be a “representative” of that set of ids, that will trigger conflicts every time

a new document with that id is inserted. If that document is deleted, there is a workaround

in place that selects a document from those with the same base id, and removes the random

suffix, so that there is always some event to detect the conflicts for future inserts;

Additionally, there are specific resolutions that are triggered on the frontend — not automat-

ically —- if the user resolves a conflict by choosing a winner or by keeping all conflicting docu-

ments:

Choose One — Frontend When choosing a winner, since there may be multiple conflicts at the

same time, it needs to delete them all to fully resolve the conflict. However, if multiple users

select different winners by each resolving the conflict differently, in the end they would

end up deleting all documents. In order to avoid this, after deleting the loser documents,

a new revision for the winner is inserted, so that if those multiple users select different

winners locally, their choices will still conflict with each other after each “round” of conflict

resolution.

Keep All This operation is similar to the Keep Both operation in concept, but applied to n docu-

ments at a time, not only 2 documents. It does so by first deleting all conflicts corresponding

to a document id, then inserting new documents equal to the deleted conflicts, but with a

UUID appended to the id, to make them unique, and avoid the conflict;

4.4.3.1 Composite conflict resolution strategies

By leveraging the aforementioned strategies, it is possible to create complex rules that apply to

different event types that conflict with each other, provided that they happen in the same match

minute and belong in the same event category.

4A UUID (Universally Unique Identifier) is a random 128-bit identifier. [34]

36 Architecture and Implementation

Force Winner By Event Id Chooses as winner the document that has a given event id;

Highly Conflicting; Ignore if same player If the player is the same, ignore conflict; Otherwise

leaves the conflict intact to be resolved by the user;

Goal vs. Own Goal In case a user reports a goal from team A, but another reports own goal from

team B, they are both referring to the same goal, so the own goal event is chosen as winner,

since it is more specific. Otherwise, leave the conflict to be resolved by the user;

If same player, keep the one with given event id If the events refer to the same player, choose

as winner the one that has the given event id; Otherwise leave the conflict to be resolved by

the user;

If different player, use reputation; Otherwise ignore If the referred players are different, choose

as winner the event whose user has the highest reputation; Otherwise, ignore conflict;

If same player, use reputation; Otherwise, keep both If the referred players are the same, choose

as winner the event whose user has the highest reputation; Otherwise, keep both documents;

If same player, ignore conflict; Otherwise, keep both If the referred players are the same, ig-

nore the conflict; Otherwise, keep both documents;

If same player, ignore conflict; Otherwise use reputation If the referred players are the same,

ignore the conflict; Otherwise, choose as winner the event whose user has the highest repu-

tation;

Substitution Handler If the involved players are the same, ignore the conflict; If there are in-

tersecting players, i.e., an event mentions player A out for player B, and the other event

mentions player A out for player C, the conflict is left intact to be resolved by the user, later.

Finally, if the involved players are different, keep both documents;

Minute based resolution Receives a minuteCondition function that takes the documents’ minute

as argument, a resolution function to execute if true, and a resolution function to execute if

false. If minuteCondition returns true, the first function is called, otherwise the second one

is called;

Choose biggest reputation Choose as winner the event whose user has the highest reputation;

4.4.3.2 Synchronization with ZeroZero API

In order to fulfill User Stories US9 and US10, specific logic was implemented to fetch missing

events from the API, and to add them after consensus is reached on the ZeroZero Live platform

i.e., there are no conflicts.

That being said, on the same loop that listens for changes and verifies if there are conflicts to

resolve, the handler also has two more branches of action: when the event is being synced from

the API into CouchDB, and when the event has no conflicts and was not synced from the API.

4.4 Conflict Handling 37

Starting with the latter, the handler needs to know which operation was done regarding each

event, in order to call the correct ZeroZero API. Each document comes as if a CouchDB’s “put”

call was received, meaning that it is not known explicitly if it was an insert, edit or delete. In

order to know if it is a delete operation, we can check for the _delete field. As was mentioned

earlier, this field is true when the document is deleted. Regarding the distinction between inserts

and edits, it is not as simple. On a first approach, revisions were used: if the revision level was

1, it was obviously an insert, otherwise it would be an edit to some existing document. This

seemed rational, and it works to some extent, but not always. Recalling CouchDB delete behavior

explained above, documents are not really deleted until the compaction operation is run. That

means that if a document is deleted, another with the same id can be inserted afterwards, but since

the first was not really erased from the database, the revision level of the newly inserted event

will actually be different than 1, since the history for that document id is still there. In this case,

this approach would consider some inserts as edits which would cause multiple events from being

synchronized to the API correctly. In order to fix this, a special flag was added to each document,

meaning if the document was meant to be inserted or not. On the client side, every event creation

would generate a document with the insert flag with a value of true. Whenever the handler inserted

a document, it would edit it — create a new revision — setting the insert flag back to f alse, so

that it was not inserted every time there were changes to it. The final approach was then to check

for the insert flag in order to distinguish from insert and edit operations.

Regarding the synchronization from the ZeroZero API — their internal storage of events, man-

aged by the older platform, and used to show the match events on their website — into ZeroZero

Live, it is a bit more complex. First it shouldn’t be continuous, or it would easily cause problems,

since we would be adding events there and immediately receiving them back would probably cause

some unwanted conflicts. With this in mind, every time there is a match page load — on first visit,

or on page refresh — for every event that is on the ZeroZero API that has no correspondent doc-

ument on CouchDB, there will be a synchronization attempt in order to add it to the CouchDB

database. The reason because this is not as simple as inserting every event that is currently not in

the ZeroZero live database yet, is because of potential conflicts: Events already on the ZeroZero

side, should not conflict with each other, and they should not conflict with CouchDB documents,

on the synchronization phase, at least.

Every time there is an insert of a document on ZeroZero Live, and it is synchronized to the

ZeroZero API — as per the logic described above — the API returns an id for that event, that is

different from the document’s _id. That id is used identify the event on the ZeroZero side, allowing

for edit and delete API calls on the events. When the CouchDB document is synchronized to the

ZeroZero API — the insert API is called —, the document is edited to set the insert flag to false,

as mentioned above, but it also sets the id field, meaning that the document has a ZeroZero’s event

counterpart.

Based on this, for every event coming from the ZeroZero API, it can be checked if there is

a CouchDB document with a corresponding id, if there isn’t, that event needs to be inserted into

CouchDB.

38 Architecture and Implementation

For those that need to be synchronized, they are inserted as normal documents, as if they were

inserted by the user, however, the document _id has an appended “synced_from_api” suffix, so

that the handler will know to use the synchronization algorithm, instead of simply inserting the

event.

start

end

No

Yes

Are there any documents
starting with the same

base _id?

Delete
"synced_from_api"

document

No

Add new
document equal

to the synced
one, but with
_id=base _id

Yes

No

Is there any document
with the same id?

Delete
"synced_from_api"

document

Yes

No

Was there any document
with the same base _id,

but with id=""?

Delete
"synced_from_api"

document

Delete
"synced_from_api"

document

Add new document equal to
the synced one, but with

_id=base _id+uuid

Yes
Conflict on

insert?
Fetch document

with same base _id

Yes

No

Conflicting
document has

same id?

Add new document equal to
the synced one, but with

_id=base _id+uuid

Figure 4.4: Synchronization of events from ZeroZero API into ZeroZero Live database

Figure 4.4 shows the flowchart relative to the algorithm of synchronization of events into

CouchDB. It first checks if there are documents starting with the same base _id. The base _id

is the eventMinute− eventMinuteExtra− eventCategory string used to identify documents and

allow for conflict detection. Due to custom resolutions like Keep Both or specific document types

that never conflict — such as comments — some documents will have a base _id followed by a

unique part, in UUID format, thus it is important that it is ignored, otherwise some events would

never be caught by the synchronization algorithm. It is also important to note that even if there is

4.4 Conflict Handling 39

a document with a same base _id, they may not refer to the same event, and not even correspond

to the same event type, it just means they happened at the same minute, and belong to the same

event category. The only way there is to know if a synchronization candidate — i.e., the one with

“synced_from_api” appended to the _id — is the same as an existing document, is by comparing

their ids, not _ids, as that value comes from the ZeroZero API.

First, if there are no documents in the CouchDB database that have a same base id, we can

know for sure that that event is not in the CouchDB database yet, thus, the “synced” document is

deleted, and a clone is inserted with the correct _id — i.e., the base _id — so that it can conflict

in the future with other events. However, imagine that while this is happening, someone inserts

an event at the same minute with the same category. That will prevent us from inserting the

new version of the “synced” document, so there is a check in place that verifies the conflicting

document and if it has the same id, the algorithm stops, since the event is already there, otherwise,

it will add it, but with a unique UUID suffix, so as to avoid the conflict on insertion.

If there are any documents with the same base _id, however, it will try to find out if among

those there is some that has the same id. If so, it will simply delete the “synced” document, it

is already synchronized. If not, and if among the searched documents there’s some that have an

empty id — meaning they are in the middle of the process of getting one, after the insert call —

the algorithm will delete the “synced” document as a preemptive measure, hoping it will be there

in the future. The next time this algorithm runs, that document will already have an id, and the

check above can be done.

Finally, if there were documents with the same base _id, but none had the same id nor had

empty ids, the synchronization candidate is not present, but must be added with an unique suffix,

to prevent insertion conflict.

4.4.4 Conflict Handling Orchestrator

In order to have multiple handlers at once, which is needed as there may be multiple matches

happening at the same time, one needs to have a controller that handles their initialization, manages

their status and stops them once they are not needed anymore.

That is the responsibility of the Conflict Handling Orchestrator. It is a simple Node.js appli-

cation that exposes an HTTP API, that initializes a conflict handler for a given match, list active

handlers, stop a conflict handler for a given match, and kill any zombie handler references left open

after a crash. The state of the handlers is kept in a LevelDB5 database, which is a simple key-value

database. Each record will have the match id as the key and the value is an object containing

the PID of the handler process for that match, as well as the timestamp of when the handler was

started.

Even though the orchestrator is the parent process of the conflict handlers, in case the conflict

handler process fails, the orchestrator won’t terminate. If the orchestrator itself fails for some

reason, it is built to auto-restart instead of making the docker container restart, which would make

5https://github.com/google/leveldb

https://github.com/google/leveldb

40 Architecture and Implementation

it lose context and terminate all other processes, including child conflict handlers. This is why

information about the handlers is kept in a separate database, instead of in-process memory, so

that the orchestrator can recover all of it in case of failure.

POST /initConflictHandler/:matchId This endpoint launches a child process running a con-

flict handler for the specified match, as described in the previous subsection. It is made in such a

way that it won’t allow the launch of multiple handlers for the same match simultaneously. After

a specified timeout, the child process is killed, to avoid wasting resources on finished matches.

POST /stopConflictHandler/:matchId This endpoint terminates a process associated with the

given match.

GET /active-handlers This endpoint returns a list of active match conflict handlers, together

with their respective PIDs.

POST /cleanup-zombies This endpoint will verify that every stored match handler is actually

running. If not, it will update the database. This is important because after some failure, conflict

handlers might not be running as the database shows, and this endpoint will restore the truth.

4.5 Reputation Service

In order to aid the automatic conflict resolution, in many cases, the reputation of the users will be

used to determine which event to choose as the conflict winner. This is only done for conflicts that

are not critical. For any important conflict — such as Goal from team A vs. Goal from team B —

it is left for users to resolve manually on the UI.

The Reputation System is based on the fact that people that input conflicting events disagree

with each other, as well as who edits or deletes an event. Every time a user receives an event

from someone, they implicitly agree with it, until they act to mark disagreement, executing any

of the actions described before. Finally, users can explicitly agree with each other, by inputting

conflicting events, that are exactly the same i.e., if two users report a goal from team A at the

same time, they are not disagreeing with each other, but rather agreeing. This is considered a

more powerful agreement, since they both explicitly inputted the event, instead of just waiting for

someone to do it and passively reading it. These are the three interaction types that are registered

by the reputation service.

The Reputation Service is a Node.js microservice that exposes an HTTP API, and uses a

MongoDB database to persistently store data. It has endpoints to register interactions between

users and inputs and another endpoint to calculate reputation updates after a specific match in-

teractions. MongoDB was chosen due to its good horizontal scaling ability, which is useful for

future-proofing the application, without losing too much performance currently. Additionally,

4.5 Reputation Service 41

there’s a lack of relationships between the collections, thus an SQL-based alternative is not neces-

sary.

The database will store the interactions, which are documents containing the matchId, eventId,

userId, eventOwnerId, isProcessed and interactionType fields. matchId, eventId, and userId

uniquely identify an interaction and are used to prevent the same user from registering multiple

interactions for the same event. Additionally, there are checks in place so that a user cannot

register interactions for an event they have inserted. isProcessed is a boolean flag that marks the

interaction as processed by the reputation calculation, so that it is not used multiple times when

calculating reputation updates. Finally, the interactionType defines the type of interaction, which

affects the reputation update calculation, e.g., Agree, Disagree, ExplicitAgree

Additionally, the database has another collection to store the user and their respective reputa-

tions, to be used in the conflict resolution. Each document has userId, reputation and updatedAt

fields. The reputation represents the numerical value of the reputation of the user with id userId,

and the updatedAt field is used to calculate the reputation decay — the more time passes after the

previous reputation calculation, the more its reputation will decay due to inactivity.

GET /:userId/reputation This endpoint returns the current reputation for the given user.

POST /:matchId/:eventId/:eventOwnerId/:userId/agree This endpoint is called every time a

user receives an event in their local database. It means that they implicitly agree with that input,

since they haven’t yet done something else to manifest any intention on the contrary. Like the other

interactions, it does not allow self-voting, and is overwritable, meaning of course that once a user

wants to disagree with some input, the previous implicit agreement will be nullified. Finally, it

cannot overwrite any existing interaction on the same input, since this endpoint is made to be called

automatically, it can be done without worrying about overwriting any other explicit interactions.

POST /:matchId/:eventId/:eventOwnerId/:userId/disagree This endpoint is called every time

a user edits or deletes an event, or when there is a conflict. It means that the user implicitly explic-

itly disagrees with that input, since they have done something to manifest any intention. Like the

other interactions, it does not allow self-voting, but it is not overwritable, meaning that once a user

disagrees with some input, that disagreement is forever. Finally, it can overwrite any existing in-

teraction on the same input, since this endpoint is made to be called explicitly, after any automatic

interactions may have been recorded.

POST /:matchId/:eventId/:eventOwnerId/:userId/explicit-agree This endpoint is called ev-

ery time a user inserts and event that conflicts with another event that is essentially the same. It

means that, even though the events conflict, they are the same, so both users are explicitly agreeing

with each other. Like the other interactions, it does not allow self-voting, but it is not overwritable,

meaning that once a user explicitly agrees with some input, that agreement is forever. Finally, it

42 Architecture and Implementation

can overwrite any existing interaction on the same input, since this endpoint is made to be called

explicitly, after any automatic interactions may have been recorded.

POST /:matchId/updateRep This endpoint calculates and updates the reputation of the users

involved in a specific match. It runs the reputation algorithm that uses the stored interactions

to calculate a new reputation for each user. The algorithm is based on the ideas presented in

Section 2.4, as it takes into account the different types of interactions as well as a reputation decay

over time.

First, for every user involved in the match, it will calculate a reputation decay multiplier based

on the last time the reputation was calculated for that user — users that stay inactive for longer get

a bigger penalty.

newUserRep = oldUserRep∗decayCoe f f icienttimeSinceLastU pdate (4.2)

Then, for every recorded interaction, it will calculate the set of deltas that corresponds to the

effect of a specific interaction on a specific input. Different interactions result in different deltas.

For agreements:

deltaA = baseInputRep∗maxRepReward ∗userRep∗userRepIn f luence (4.3)

For disagreements:

deltaD =−baseInputRep∗ (1− (maxRepReward ∗userRep∗userRepIn f luence)) (4.4)

For explicit agreements:

deltaEA = (deltaAgreement)∗ (1+ explicitAgreementBonus) (4.5)

After calculating all the deltas for each interaction, they are marked as processed, to avoid

being used mutiple times when calculating reputation updates. Users’ reputations are then updated

according to the average of the deltas of their concerning interactions:

repIncrement = (1−userRep)∗avgDeltas; (4.6)

The used constant values are defined in Table 4.2. With this configuration, it takes approxi-

mately one month — 4 weeks — for a user to lose half of their reputation.

4.6 Web Application (Frontend) 43

Table 4.2: Reputation service constant values

Constant Value
Initial User Reputation 0.2
Base Input Reputation 0.01
Maximum Input Reputation Reward 0.05
Maximum Input Reputation Punishment 0.1
User Reputation Influence 0.2
Explicit Agreement Bonus 0.2
Reputation Decay Coefficient 0.85

4.6 Web Application (Frontend)

The last component, and arguably the most important — How would users use the application

otherwise? — is the frontend web application. For browsers, it is a set of HTML, CSS and

JavaScript files being served by an Nginx web server. Many web applications have this setup, but

let us dive deeper on the process that happens before the generation of those files to be served.

The application is built with React and is essentially a Single Page Application (SPA), but

regardless of the nomenclature, the application provides multiple interfaces, or pages. It doesn’t

work like the usual multi-page web application, since there is indeed only one page being served

— index.html — however, the JavaScript, namely the React Router package, handles the routing

and the URLs, by rendering different component trees based on the URL, and thus emulating a

multi-page setup.

The majority of the frontend application was already built before. Figures B.1, B.2, B.3, B.4

represent interfaces that were mostly untouched during the development of this work, as they are

of no interest to the real-time multi-user collaboration problem this work addresses. Figure B.5

shows the interface to pick the roster of each team. There were no major changes to it apart from

fixing an issue where users could not change pages too fast, as it might not submit their information

correctly.

Figures 4.5 and 4.6, desktop and mobile interfaces, respectively, represent the page where

most of the work was focused: the match commentary. It feature the match information on top,

the events list at the middle, as well as the input area on the bottom. It purposefully resembles a

chat application, so that it is intuitive for users how to use the application.

It executes some operations in order to present the events to the user. First, it initializes a

local PouchDB database, or connects to it if it already exists, and does the same with the remote

CouchDB database, except that it doesn’t try to create it if it doesn’t exist, that is a responsibility

of the respective conflict handler. After connecting to both databases, it loads any existing events

on the local database to the UI, to promote the offline-first behavior. The user will always see

anything the already have locally first. Then it starts the replication listener, in order to listen

for remote changes and replicate those to the local database, so that the user can get the remote

updates and see the other events on their timeline.

44 Architecture and Implementation

Figure 4.5: Comments page for a match in zerozero.live

Then, it tries to sync any pending information that is stored locally to the remote database,

which may happen when the connection is lost.

At the same time, it will load the match information from the ZeroZero API, including the

selected rosters, available event types, score, match time and state and substituted players. This

is important to load the players correctly when choosing the player for the inputted event. This

information is refreshed every 30 seconds.

As was previously mentioned, a big part of this project is the synchronization with the ZeroZero

API events. On startup, the application will check which event are on the API registry that are cur-

rently not on the ZeroZero Live database. If it finds any, it will try to synchronize them by inserting

them in the local PouchDB database, and then replicating to the remote database. The complete

algorithm is mentioned in more detail above, on Section 4.4.3.2.

Regarding the event operations, namely insert, edit, and delete, the process is similar. A

document is pushed to the local database, which makes it show on the UI for the user. Then, it

is synchronized to the remote database which, due to the replication listener will make it show

on other users’ machines as well, as soon as it replicates to their local databases. It may happen

that during these replications a conflict arises. In those cases, the conflict icon is shown on the

event (see Figure 4.8a), and the user can resolve the conflict after clicking there and examining

the solution candidates. Figure 4.8b shows the conflict resolution interface, where the user can

select a “winner” event, or choose to keep all events in the match. The resolutions strategies were

already discussed above, in Section 4.4.3.

Figure 4.9 shows the sequence of operations when an event is inserted on the frontend (Browser),

when there is no conflict. First the document is created on the local database, which is then repli-

4.6 Web Application (Frontend) 45

Figure 4.6: Comments page for a match in zerozero.live — Mobile version

cated to the remote database. Once the remote database receives a document, it will emit events

for any listener, including the clients and the conflict handler which, when receiving a document

without conflicts, will try to synchronize it to the ZeroZero API, by inserting it in this case. As

was previously mentioned, it will then update the document by setting its “insert” field to f alse.

That change will once again be propagated to all listening clients.

In the case of conflicts, Figure 4.10 shows that the sequence of operations is slightly different

when the conflict handler receives the conflicting document. It will resolve it first, before trying to

synchronize anything. One thing to note is that the UI will receive the conflicting event while it is

being resolved. For the users, it is as if someone is resolving a conflict really fast, as they might see

the conflict appear and quickly be resolved, since the changes are always replicated to all listening

clients. After resolving the conflict and receiving the updated document back, the conflict handler

will behave like the previous example and synchronize the documents accordingly.

46 Architecture and Implementation

(a) Event selection (b) Event’s player selection

Figure 4.7: ZeroZero Live — Input interface

4.6 Web Application (Frontend) 47

(a) Event with a conflict pending resolution (b) Event conflict resolution interface

Figure 4.8: ZeroZero Live — Conflicts interface

48 Architecture and Implementation

Replicate Changes

CouchDB
(Remote DB) Conflict HandlerBrowser

Insert Document
Locally

Notify Changes

Sync to API

Notify Changes

Update Documents

Notify Changes Notify Changes

Update Local DB
and UI

Update Local DB
and UI

User inserts event

Figure 4.9: Sequence diagram representing the flow when inserting an event without conflicts

Replicate Changes

CouchDB
(Remote DB) Conflict HandlerBrowser

Insert Document
Locally

Notify Changes (with conflict)

Sync to API

Notify Changes (with conflict)

Update Documents

Update Local DB
and UI

Notify Changes Notify Changes

Resolve Conflict
Update Documents

Notify Changes Notify Changes

Update Local DB
and UI

Update Local DB
and UI

User inserts event

Figure 4.10: Sequence diagram representing the flow when inserting an event with conflicts

4.7 Time Synchronization 49

4.7 Time Synchronization

An important part of a real-time application is the time synchronization between users and the

server itself. In this application this is done by clients fetching the game start time from the

ZeroZero API, and calculating the game time locally. It has a big problem, as we eventually

found out, since clients may not be synchronized with the server themselves. A similar scenario

happened inside ZOS, while we were testing the application. Some of the computers in the office

had their clocks offset by a couple minutes in relation to the server serving the application. This

resulted in a shift on the match minute they were seeing. This happened since the match clock is

calculated based on the start time specified on the server and the current client time. In order to

fix this problem, and any similar issues that can happen for users in different timezones, an offset

correction value was added. The clients now send their local time when requesting the match

information, and the server will return an offset in relation to its own time, which clients can use

to fix the clock calculation, and make sure all are synchronized, independently of their local times.

4.8 Summary

In summary, a microservice architecture was used to build the application to solve the problem

defined in Chapter 3. In order to organize the deployment and treat the whole system as a unit

instead of managing all the microservices individually, Docker Compose was used. To allow

multiple services to be reached through the same domain, a reverse proxy service was developed,

which routed the requests to the different services based on the used endpoint. When dealing

with conflicts detection and resolution, CouchDB was used, which has these features built-in to

its design, while allowing an easy replication and offline usage, by using its local counterpart,

PouchDB. Additionally, a reputation HTTP server was developed to handle the user reputation,

which takes into account the users’ reputations to have a dynamic influence on each others’ inputs,

as well as a decay of reputation over time, if users become inactive. All of these features are visible

to the user through the web application frontend, which allows for match coverage, by selecting

the teams’ rosters and events inputting, describing what is happening in real time. It further allows

manual conflict resolutions when the automatic resolver chooses not to resolve the conflict.

50 Architecture and Implementation

Chapter 5

Evaluation and Analysis

There are two types of target users in this platform. The first are the current ZeroZero’s sports

journalists who cover matches professionally, and have a platform where they do that already.

They rely on it to update the match details on the ZeroZero platform. The second are casual

people who like to follow lower division matches, due to the lack of coverage. With this in mind,

different experiments were made, depending on the type of users and their use cases.

5.1 Methodology

In order to understand how the user is interacting with the application and pinpoint some aspects

that might be worth improving, some aspects of the interaction were measured. Next are the used

metrics, relevant to this study.

1. Performance metrics:

(a) Number of automatically-unsolved conflicts during an event per user

(b) Number of total generated conflicts

2. Self-Reported metrics, asked in the form of a Likert scale1, when appropriate:

(a) The tool allowed the user to narrate the game without issues

(b) The user considered the number of conflicts...

(c) The user believed the events to correspond to the match’s truth

(d) The conflicts were easily to locate

(e) The conflicts were easy to solve

1A typical item in a Likert scale is a statement to which respondents rate their level of agreement. The statement
may be positive (e.g., “The terminology used in this interface is clear”) or negative (e.g., “I found the navigation options
confusing”). Usually a five-point scale of agreement like the following is used: 1. Strongly disagree 2. Disagree 3.
Neither agree nor disagree 4. Agree 5. Strongly agree

51

52 Evaluation and Analysis

(f) The user has used another mean of communication with friends while following the

match in order to discuss it (*)

(g) The user would use the tool again in the future (*)

(h) Open answer to allow users to give whatever feedback they might have

(*) Yes or No questions

5.2 The Journalist Use-Case

When covering a match, journalists usually work alone, as they are assigned different matches to

cover. As such, they rarely face conflicts, but they also rely on the API synchronization feature

heavily, as it is literally their job to keep the events they are covering up to date on the ZeroZero

platform. This means they are an excellent feedback source on how the application works, overall.

They provide the software verification feedback, but also validation.

Over the course of about five weeks, as soon as there was a usable product, they used it in

production, pin-pointing issues and suggestions on how to make it better for their use-cases. There

was a constant “deploy, feedback, adapt” loop, which allowed for a faster discovery of problems

and their solutions. As of today, the ZeroZero Live platform as been used to cover more than 7

Euro2020 matches in production.

In those coverages, most of the times the events’ count surpassed the 100th mark. However,

as mentioned earlier, not many conflicts happened, since there was only one user per game. When

asked about the number of conflicts, journalists classified the number as very low, as expected.

They, also as expected, believed the events corresponded to the match’s truth. Finally, they were

able to cover the matches without problems and would use the tool again, according to the ques-

tionnaires.

This validates the product on the journalist use-case. The tool allows CRUD2 operations and

synchronizes to and from the ZeroZero’s API, allowing them to insert, edit and delete events

regarding a live match, which can be followed both on ZeroZero and on ZeroZero Live.

5.3 The Casual User Use-Case

Casual users have a slightly different use-case. While they too rely on CRUD operations in order to

insert, edit and delete events, it is expected that they don’t rely as much on ZeroZero API synchro-

nization, as they will follow the game directly on ZeroZero Live. Additionally, a bigger difference

relies on the number of participants per match, which is expected to be higher, contributing to the

crowdsourcing nature of the tool. This raises the probability of event conflicts happening, which

adds relevance to this work, regarding the automatic conflict resolution. In this section, the system

will be evaluated in that regard.

2CRUD stands for Create-Read-Update-Delete, the four basic data-related operations a system can provide

5.3 The Casual User Use-Case 53

Table 5.1: Relation between number of events, participants and generated conflicts

Metric C1 E1 E2
Number of Events 35 39 36
Number of Participants 4 5 3
Number of Conflicts3 3 1 0

In order to prepare this type of experiments, a clone of ZeroZero Live was used. This clone was

different in terms of features in order to focus on the conflict resolution. It also had no connection

to the ZeroZero API, in terms of inserting events or making any changes to the teams for example.

Additionally, authentication was not required which allowed for and experiment on a live relevant

match, with no side effects on the ZeroZero platform. The chosen match was Portugal vs. France

on the 23rd of June, regarding the Euro2020 group stage. Being a game involving Portugal’s team,

a long time rival as France, and the last match of the group stage, which Portugal could fail to pass,

it was very important and many people would watch it, which meant many people to cover it and

experiment the tool.

A total of 12 participants were included in the experiment. They were divided into 3 groups,

which consisted of a control group (C1) and two experimental groups (E1 and E2). The control

group had no automatic conflict resolution in place, whereas the other two groups had the auto-

matic conflict resolution feature active. The application recorded the following metrics in order to

help the analysis:

Conflicts Every time a conflict occurred, it was stored as a metric entry. When it was resolved,

the entry was updated in order to know the conflict resolution time;

Number of Events The total number of events in a match, as perceived by each user;

Number of Participants The number of participants in a match (not necessarily participating

actively)

In order to record these metrics, a new microservice was developed to record them. It exposed

a simple HTTP API and reused the same existing MongoDB instance used for the reputation

system, creating a new collection to store the metrics, for easy inspection.

Table 5.1 shows the relation between the number of events, participants and generated con-

flicts. It is possible to see that the number of events does not vary much among the experiments.

This can be explained by the fact that all participants were inexperienced in using the application,

and watching the same match. For comparison purposes, the journalist that was covering the same

match officially produced a total of 149 events, more than 3.8 times the most commented match

(E1). We can also verify that the number of events does not scale with the number of participants,

since E1 had two more participants than E2 (67% increase), but only an 8.3% increase in the

number of events.
3The conflict on E1 was automatically resolved by the application.

54 Evaluation and Analysis

Table 5.2: Conflict resolution times and user perception

Metric C1 E1 E2
Number of Conflicts 3 1 0
Average conflict resolution time (s) 92.7 0.7 0
Average perceived level of conflicts (1-5) 2 1.25 1

One can also note that the number of conflicts is higher on the environment where there was

no automatic conflict resolution, as expected. However is not as high as expected — only 8.6% of

the events conflicted. This can be explained by two factors: first, all users were watching the game

remotely, i.e., on the television or through some video stream on the internet. These transmissions

are subject to variable delays, when compared to the game happening in real time, which resulted

in different users watching the game out of sync compared to each other. Additionally, although

no user had any prior experience with the application, different users have different times to insert

events. All of this results in some users inputting events slower than others, and if someone

inputs the same event earlier — which would result in a conflict — they end up stopping their

input and avoiding the conflict altogether. Another phenomenon that happened, still due to the

reasons outlined above, was that the slower users would input the events after someone did, and

inadvertedly overwrite them, since they had already received them at the moment of insertion,

bypassing the conflicts.

As it can be seen from the data on Table 5.2, in experiment C1 — the control, where no auto-

mated conflict resolution was present — there were 3 reported conflicts, which took, on average,

92.7 seconds to resolve. As expected, according to the questionnaire, the users perceived a higher

amount of conflicts, although they still reported the level of conflicts to be only 2 points out of

5. On the other experiments, this value is lower — 1 being the minimum — which makes sense

considering the amount of conflicts — there was only a conflict in experiment E1, and it was

automatically resolved by the platform, resulting in a resolution time of only 0.7 seconds.

On Figure 5.1, one can notice that all of the conflicts happened on the first half, and most of

them before the 30th minute. This confirms the idea that users are more active at the beginning of

the match, especially considering that this match had many important events on the second half,

including two goals, penalties and substitutions, which didn’t lead to conflicts.

Figure 5.2 shows the resolution time of conflicts over match time. Ideally the value should

be much lower — no more than 10 seconds — however it always exceeded the 40 seconds mark,

which is confirmed by the average "Easiness of conflict location" and "Easiness of conflict resolu-

tion" metrics being lower in C1, when compared to E1 and E2, according to Table 5.3.

Table 5.3: Manual conflict resolution user evaluation

Metric (1-5) C1 E1 E2
Average "Easiness of conflict location" 4 4.75 5
Average "Easiness of conflict resolution" 3.5 4.75 5

5.3 The Casual User Use-Case 55

0 10 20 30 40 50 60 70 80 90

0.9

1

1.1

1.2

Match Minute

N
um

be
ro

fC
on

fli
ct

s

Figure 5.1: Conflicts over game time (C1)

0 10 20 30 40 50 60 70 80 90

50

100

150

200

Match Minute

C
on

fli
ct

re
so

lu
tio

n
tim

e
(s

)

Figure 5.2: Conflicts resolution time over game time (C1)

Table 5.4: User evaluation of the platform

Metric C1 E1 E2
Average "The platform allowed me cover the match without issues" (1-5) 3.5 5 4.7
% "Would use again" 100% 100% 100%

56 Evaluation and Analysis

Finally, Table 5.4 shows the metrics used to evaluate the UX. As expected, the environment

where conflicts were not automatically resolved, the users reported a lower satisfaction value —

3.5 out of 5 — nevertheless, all of them answered yes when questioned if they would use the

application again. This might be due to the application purpose and idea itself, and not so much

on the current implementation or issues.

It is also worth to note that these experiments were not made with a significant amount of

users, so the results may be biased towards this specific match or set of users, and this evaluation

should take this into account.

5.4 Summary

In summary, we can say that the application reached a minimum level of quality in order to reach

the production staged, and it was use to cover some important matches such is the case of the

Euro2020 Group Stage. Journalists found it to be an improvement in UX when compared to the

older platform, which was one of the goals. When considering casual users, where the real-time

and conflict handling features are more relevant, we noted that the experience improved with the

conflict resolution feature, when compared to an environment without it. The conflict resolution

times were still too high, which may be due to the fact that the users covering the match were

not as involved as a professional journalist would be, and would take longer to detect a conflict

in the UI, since they would be watching the match instead, as the quality of the coverage is not

their main focus. This confirms the hypothesis that “A conflict-resolution system improves the

user experience in a real-time multi-user crowdsourcing environment”, however, there are still not

enough users to validate it strongly.

Chapter 6

Conclusions

This chapter is divided into various sections. Section 6.1 outlines the contributions made during

this work. An overview on the achieved results is present in Section 6.2. Section 6.3 details the

difficulties faced during the development and realization of this work. Finally, Section 6.4 will

delineate future paths for this work, which can bring value to the product and research.

6.1 Contributions

The implementation of a web application to solve the problems identified in Chapter 3 was suc-

cessfully completed, resulting in a minimal production-ready product, which is, at the moment of

writing, used to cover Euro2020 matches by official ZeroZero journalists. It features the real-time

coverage of a match, together with the conflict resolution required to keep the data consistent. It

features offline resilience, by synchronizing pending information as soon as possible. Addition-

ally, a reputation system was developed, in order to aid the conflict resolution algorithm in case

of tie. All of this was build by using a microservice architecture which was comprised of the

following services:

Reverse Proxy Routes requests for the respective service, based on the requested endpoint;

ZeroZero API Proxy A mini-proxy that routes requests for the ZeroZero API, hiding secret val-

ues such as the API Key;

Conflict Handlers Orchestrator Manages the active handlers for each live match, and provides

endpoints to start, stop and cleanup stale handlers;

Conflict Handler Controlled by the orchestrator, listens to changes to the respective match CouchDB

database, and resolves conflicts, according to the specified rules;

Reputation Service Manages the users reputation, calculated based on the interactions during

live matches on ZeroZero Live;

Web Application (Frontend) Frontend for users to interact with the application, by allowing

them to follow a match passively, or cover it by inserting events, on real-time;

57

58 Conclusions

CouchDB The document database used for ZeroZero Live’s events storage, allowing conflict

detection and resolution;

MongoDB The database to store user reputation information.

6.2 Results

The research goal of this work was to study the impact of automatic conflict resolution on the user

experience regarding a real-time multi-user crowdsourcing environment. Early research showed

that users find that the user experience is better on environments that have automatic conflict

resolution, when compared to an environment that does not have it. Research also showed that

conflicts are not as common as expected, when following a game through a video stream — TV or

over the internet, not live. Nevertheless, users were content with the application and would use the

application again, independently of the automatic conflict resolution feature being active or not.

The fact that the application is currently being used in production validates its use case and entails

a minimum level of quality and usability. Finally, it was shown that the product has two types

of users, with different use cases: while the journalists require API synchronization and stability

as they input a higher number of events, the casual users are more vulnerable to conflicts and

rely more on an easier input experience, due to their lack of knowledge over the range of existing

events.

6.3 Difficulties

During the development of this project, some difficulties appeared and were tackled as best as

possible. Some were solved, and others are left as future work in Section 6.4. Regarding the

big picture of the project, the COVID-19 pandemic meant that there were not many live matches

to cover in person, which caused barriers in executing experiments with casual users. Those

were mitigated by researching during TV-transmitted games, to mitigate the lack of live in-person

coverages. Regarding the project itself, the synchronization with the existing ZeroZero API, in

terms of storing match events was one of the hardest problems to solve, as it meant the application

had two sources of truth, that must be consistent with one another at all times. Currently, that

consistency is only guaranteed from ZeroZero Live to ZeroZero API — insert, edit and delete

operations on ZeroZero Live are reflected on ZeroZero — but only insert operations on ZeroZero

API will be propagated to ZeroZero Live.

6.4 Future Work

Due to the core design of the conflict detection, some types of conflicts are not detected. Such

is the case with different minute conflicts. It is very plausible for users to input the same event

on consecutive minutes, but currently, since the generated documents’ _ids will be different, they

6.4 Future Work 59

won’t conflict. This type of check must occur on insert, and the handler must check for events

with the minute within a delta. If they are similar enough, or follow some to be defined criteria,

they will be classified as conflicts (by re-inserting them as a document with the same id as some

pivot document, regardless of the document’s original minute). Regarding the reputation system,

not enough tests were conducted in order to attest which is the best configuration in terms of con-

stant values. That research would improve the system and provide insights on generic reputation

systems’ behavior. Finally, more tests should be done in order to fully validate the hypothesis

that conflict resolution really benefits the user experience on a real-time multi-user crowdsourcing

environment.

60 Conclusions

References

[1] Building real-time collaboration applications: OT vs CRDT. Accessed 27 Jan 2021.
https://www.tiny.cloud/blog/real-time-collaboration-ot-vs-crdt/.

[2] Neil Fraser: Writing: Differential Synchronization. Accessed 27 Jan 2021.
https://neil.fraser.name/writing/sync/.

[3] Promise API JS MDN. . Accessed 27 Jan 2021. https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Promise.

[4] Orlando P. Afonso, Luciana C.de C. Salgado, and José Viterbo. User’s understanding of
reputation issues in a community based mobile app. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), volume 9742, pages 93–103. Springer Verlag, 2016.

[5] Felix Albertos-Marco, Victor M.R. Penichet, Jose A. Gallud, and Marco Winckler. A model-
based approach for describing offline navigation of web applications. Journal of Web Engi-
neering, 16(1-2):1–38, mar 2017.

[6] Paulo Sérgio Almeida, Carlos Baquero, and Victor Fonte. Interval Tree Clocks. In Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), volume 5401 LNCS, pages 259–274. Springer, 2008.

[7] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Efficient State-based CRDTs by
Delta-Mutation. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 9466:62–76, oct 2014.

[8] Reid Andersen, Christian Borgs, Jennifer Chayes, Uriel Feige, Abraham Flaxman, Adam
Kalai, Vahab Mirrokni, and Moshe Tennenholtz. Trust-based recommendation systems: An
axiomatic approach. In Proceeding of the 17th International Conference on World Wide Web
2008, WWW’08, pages 199–208, 2008.

[9] Yannis Bakos and Chrysanthos Dellarocas. Cooperation Without Enforcement? A compara-
tive analysis of litigation and online reputation as quality assurance mechanisms. Technical
report, 2003.

[10] Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. Making Operation-Based CRDTs
Operation-Based. In Proceedings of the First Workshop on Principles and Practice of Even-
tual Consistency, PaPEC ’14, New York, NY, USA, 2014. Association for Computing Ma-
chinery.

[11] Carlos Baquero and Francisco Moura. Using structural characteristics for autonomous oper-
ation. Operating Systems Review (ACM), 33(4):90–96, 1999.

61

62 REFERENCES

[12] A Barth. HTTP State Management Mechanism. RFC 6265, RFC Editor, 2011.

[13] M Belshe, R Peon, and M Thomson. Hypertext Transfer Protocol Version 2 (HTTP/2).
Technical Report 7540, RFC Editor, may 2015.

[14] S. U.N. Chengzheng, S. U.N. David, N. G. Agustina, C. A.I. Weiwei, and C. H.O. Bry-
den. Real differences between OT and CRDT under a general transformation framework
for consistency maintenance in co-editors. Proceedings of the ACM on Human-Computer
Interaction, 4(GROUP):1–26, jan 2020.

[15] Sandy Citro, Jim McGovern, and Caspar Ryan. Conflict management for real-time collabo-
rative editing in mobile replicated architectures. In Conferences in Research and Practice in
Information Technology Series, volume 62, pages 115–124, 2007.

[16] Elizabeth M. Daly. Harnessing wisdom of the crowds dynamics for time-dependent repu-
tation and ranking. In Proceedings of the 2009 International Conference on Advances in
Social Network Analysis and Mining, ASONAM 2009, pages 267–272, 2009.

[17] Chrysanthos Dellarocas. How often should reputation mechanisms update a trader’s reputa-
tion profile? Information Systems Research, 17(3):271–285, 2006.

[18] Chrysanthos Dellarocas and R. Smith. Reputation Mechanisms. 2005.

[19] Anna Derezińska and Krzysztof Kwaśnik. Evaluation and Improvement of Web Application
Quality – A Case Study. In Advances in Intelligent Systems and Computing, volume 1173
AISC, pages 187–196. Springer, 2020.

[20] C. A. Ellis and S. J. Gibbs. Concurrency control in groupware systems. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, volume Part F1301, pages
399–407, New York, New York, USA, jun 1989. Association for Computing Machinery.

[21] I Fette and A Melnikov. The WebSocket Protocol. RFC 6455, RFC Editor, 2011.

[22] C Fidge. Timestamps in Message-Passing Systems That Preserve the Partial Ordering. 1988.

[23] Roy T Fielding, James Gettys, Jeffrey C Mogul, Henrik Frystyk Nielsen, Larry Masinter,
Paul J Leach, and Tim Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616,
RFC Editor, 1999.

[24] Neil Fraser. Differential Synchronization. In DocEng’09, Proceedings of the 2009 ACM
Symposium on Document Engineering, pages 13–20, 2 Penn Plaza, Suite 701, New York,
New York 10121-0701, 2009.

[25] Irene Greif, Robert Seliger, and William E Weihl. Atomic Data Abstractions in a Distributed
Collaborative Editing System. In Proceedings of the 13th ACM SIGACT-SIGPLAN Sympo-
sium on Principles of Programming Languages, POPL ’86, pages 160–172, New York, NY,
USA, 1986. Association for Computing Machinery.

[26] Taher H. Haveliwala. Topic-sensitive pagerank: A context-sensitive ranking algorithm for
web search. IEEE Transactions on Knowledge and Data Engineering, 15(4):784–796, jul
2003.

[27] Mayssa Jemel and Ahmed Serhrouchni. Content protection and secure synchronization of
HTML5 local storage data. In 2014 IEEE 11th Consumer Communications and Networking
Conference, CCNC 2014, pages 539–540. IEEE Computer Society, 2014.

REFERENCES 63

[28] Yung Wei Kao, Chiafeng Lin, Kuei An Yang, and Shyan Ming Yuan. A web-based, offline-
able, and personalized runtime environment for executing applications on mobile devices.
Computer Standards and Interfaces, 34(1):212–224, jan 2012.

[29] Martin Kleppmann, Adam Wiggins, Peter Van Hardenberg, and Mark McGranaghan. Local-
first software: You Own Your Data, in spite of the Cloud. In Onward! 2019 - Proceedings
of the 2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, co-located with SPLASH 2019, pages 154–178.
Association for Computing Machinery, Inc, oct 2019.

[30] Steve Krug. Don’t make me think, revisited: A common sense approach to web usability.
New Riders Publishing, Upper Saddle River, NJ, 3 edition, 2013.

[31] Hyunsoo Kwon, Hyunjae Nam, Sangtae Lee, Changhee Hahn, and Junbeom Hur. (In-
)Security of Cookies in HTTPS: Cookie Theft by Removing Cookie Flags. IEEE Trans-
actions on Information Forensics and Security, 15:1204–1215, 2020.

[32] Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Commun.
ACM, 21(7):558–565, 1978.

[33] Tobias Landes. Dynamic Vector Clocks for Consistent Ordering of Events in Dynamic Dis-
tributed Applications. pages 31–37, 2006.

[34] P Leach. A Universally Unique IDentifier (UUID) URN Namespace. RFC 4122, RFC Editor,
2005.

[35] Mihai Leţia, Nuno Preguiça, and Marc Shapiro. Consistency without concurrency control in
large, dynamic systems. In Operating Systems Review (ACM), volume 44, pages 29–34, apr
2010.

[36] Barbara Liskov and Rivka Ladin. Highly Available Distributed Services and Fault-Tolerant
Distributed Garbage Collection. In Proceedings of the Fifth Annual ACM Symposium on
Principles of Distributed Computing, PODC ’86, pages 29–39, New York, NY, USA, 1986.
Association for Computing Machinery.

[37] Wen Tao Liu. Research on offline storage of web page. In Applied Mechanics and Materials,
volume 518, pages 305–309, 2014.

[38] Hector M. Lugo-Cordero and Ratan K. Guha. A secured distribution of server loads to
clients. In Proceedings - IEEE Military Communications Conference MILCOM, volume
2015-Decem, pages 372–377. Institute of Electrical and Electronics Engineers Inc., dec
2015.

[39] Félix Albertos Marco. Supporting offline interaction with web sites resilient to interruptions
applied to E-learning environments. In Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume
8295 LNCS, pages 310–314, 2013.

[40] Félix Albertos Marco, José Gallud, Victor M.R. Penichet, and Marco Winckler. A model-
based approach for supporting offline interaction with web sites resilient to interruptions. In
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), volume 8295 LNCS, pages 156–171, 2013.

64 REFERENCES

[41] Félix Albertos Marco, Víctor M.R. Penichet, and José A. Gallud. User interaction with
offline web applications: A case study. In ACM International Conference Proceeding Series,
volume 07-09-Sept. Association for Computing Machinery, sep 2015.

[42] Gloria Mark, Daniela Gudith, and Ulrich Klocke. The cost of interrupted work: More speed
and stress. In Conference on Human Factors in Computing Systems - Proceedings, pages
107–110, 2008.

[43] Almaz Melnikov, Jooyoung Lee, Victor Rivera, Manuel Mazzara, and Luca Longo. Towards
Dynamic Interaction-Based Reputation Models. In 2018 IEEE 32nd International Confer-
ence on Advanced Information Networking and Applications (AINA), volume 2018-May,
pages 422–428. IEEE, may 2018.

[44] Ali Mesbah. Ajaxifying classic web applications. In Proceedings - International Conference
on Software Engineering, pages 81–82, 2007.

[45] Ali Mesbah and Arie Van Deursen. Migrating multi-page web applications to single-page
AJAX interfaces. In Proceedings of the European Conference on Software Maintenance and
Reengineering, CSMR, pages 181–190, 2007.

[46] David A. Nichols, Pavel Curtis, Michael Dixon, and John Lamping. High-latency, low-
bandwidth windowing in the Jupiter collaboration system. In UIST (User Interface Software
and Technology): Proceedings of the ACM Symposium, pages 111–120, New York, New
York, USA, 1995. ACM.

[47] Gérald Oster, Pascal Urso, Pascal Molli, and Abdessamad Imine. Data consistency for P2P
collaborative editing. In Proceedings of the ACM Conference on Computer Supported Co-
operative Work, CSCW, pages 259–268, New York, New York, USA, 2006. ACM Press.

[48] João Pedro Sousa Castro. Mobile application for online monitoring and collaboration of a
sporting event. PhD thesis, Faculdade de Engenharia da Universidade do Porto, sep 2020.

[49] Jon Postel. Transmission Control Protocol. STD 7, RFC Editor, 1981.

[50] Paul Resnick, Richard Zeckhauser, Eric Friedman, and Ko Kuwabara. Reputation systems.
Communications of the ACM, 43(12):45–48, dec 2000.

[51] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free replicated
data types. In Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), volume 6976 LNCS, pages 386–
400. Springer, Berlin, Heidelberg, oct 2011.

[52] Leon Shklar and Rich Rosen. Web Application Architecture: Principles, Protocols and Prac-
tices. Wiley, Chichester, UK, 2 edition, 2009.

[53] Spero and S. E. Analysis of HTTP Performance problems.
http://www.w3.org/Protocols/HTTP/1.0/HTTPPerformance.html, 1994.

[54] Chengzheng Sun, David Chen, Xiaohua Jia, Yanchun Zhang, and Yun Yang. Achieving
Convergence, Causality Preservation, and Intention Preservation in Real-Time Cooperative
Editing Systems. ACM Transactions on Computer-Human Interaction, 5(1):63–108, mar
1998.

REFERENCES 65

[55] Chengzheng Sun and Clarence Ellis. Operational transformation in real-time group editors.
In Proceedings of the 1998 ACM conference on Computer supported cooperative work -
CSCW ’98, pages 59–68, New York, New York, USA, 1998. Association for Computing
Machinery (ACM).

[56] David Sun, Chengzheng Sun, Agustina Ng, and Weiwei Cai. Real Differences between
OT and CRDT in Correctness and Complexity for Consistency Maintenance in Co-Editors.
Proceedings of the ACM on Human-Computer Interaction, 4(CSCW1):1–30, may 2020.

[57] David Sun, Chengzheng Sun, Steven Xia, and Haifeng Shen. Creative conflict resolution in
realtime collaborative editing systems. In Proceedings of the ACM Conference on Computer
Supported Cooperative Work, CSCW, pages 1411–1420, New York, New York, USA, 2012.
ACM Press.

[58] Thomas Tullis and William Albert. Measuring the User Experience, Second Edition: Col-
lecting, Analyzing, and Presenting Usability Metrics. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2nd edition, 2013.

[59] Sai Lahari Velagapudi and Himanshu Gupta. Privacy, Security of Cookies in HTTP Trans-
mission. In 2019 4th International Conference on Information Systems and Computer Net-
works, ISCON 2019, pages 22–25. Institute of Electrical and Electronics Engineers Inc., nov
2019.

[60] Xueyi Wang, Jiajun Bu, and Chun Chen. Research on Conflict Resolution and Operation
Consistency in Real-Time Collaborative Graphic Designing System. In Proceedings of the
International Conference on Computer Supported Cooperative Work in Design, volume 7,
pages 145–150, 2002.

[61] Stéphane Weiss, Pascal Urso, and Pascal Molli. Logoot: A scalable optimistic replication
algorithm for collaborative editing on P2P networks. In Proceedings - International Confer-
ence on Distributed Computing Systems, pages 404–412, 2009.

[62] Liyin Xue, Kang Zhang, and Chengzheng Sun. An integrated post-locking, multi-versioning,
and transformation scheme for consistency maintenance in real-time group editors. In Pro-
ceedings - 5th International Symposium on Autonomous Decentralized Systems, ISADS 2001,
pages 57–64. Institute of Electrical and Electronics Engineers Inc., 2001.

[63] Y. Yang. Supporting online Web-based teamwork in offline mobile mode too. In Proceedings
of the 1st International Conference on Web Information Systems Engineering, WISE 2000,
volume 1, pages 486–490. Institute of Electrical and Electronics Engineers Inc., 2000.

[64] Ekaterina Yashkina, Arseny Pinigin, Joo Young Lee, Manuel Mazzara, Akinlolu Solomon
Adekotujo, Adam Zubair, and Luca Longo. Expressing Trust with Temporal Frequency of
User Interaction in Online Communities. In Advances in Intelligent Systems and Computing,
volume 926, pages 1133–1146. Springer Verlag, 2020.

[65] Lian Yu, Wenping Xiao, Changyan Chi, Lin Ma, and Hui Su. Test case generation for
collaborative real-time editing tools. In Proceedings - International Computer Software and
Applications Conference, volume 1, pages 509–516, 2007.

[66] Marek Zawirski, Nuno Preguiça, Sérgio Duarte, Annette Bieniusa, Valter Balegas, and Marc
Shapiro. Write fast, read in the past: Causal consistency for client-side applications. In

66 REFERENCES

Middleware 2015 - Proceedings of the 16th Annual Middleware Conference, pages 75–87.
Association for Computing Machinery, Inc, nov 2015.

Appendix A

ZeroZero API events list

Table A.1: ZeroZero API events list (some fields were omitted for better reading purposes)

Event Id Event Name Category
8 Estatísticas 6

16 Tempo Adicional 6

24 Info Jogador 6

26 Classificação 6

29 Outro Resultado 6

43 Lance polémico 6

52 VAR 6

64 Estatísticas Jogo 6

78 Fora de jogo 6

79 Castigado 6

80 Árbitros 6

81 Apresentação VAR 6

83 Canto 6

3 Comentário 5

19 Informação 5

20 Lesão grave 5

22 Homem do Jogo 5

31 Informação R. 5

32 Onzes Definidos 5

36 Info Pré-Jogo 5

42 Opinião 5

46 Antevisão 5

47 Rescaldo 5

49 Atualização de Resultado 5

67

68 ZeroZero API events list

Event Id Event Name Category
50 Suplentes 5

54 Espetadores 5

55 Lesão 5

5 Substituição 4

9 Apito Inicial 3

10 Fim 1ª Parte 3

11 Início 2ª Parte 3

12 Fim 2ª Parte 3

13 Apito Final 3

14 Início Prolong. 3

15 Fim Prolong. 3

56 Fim 1ª Parte Prolongamento 3

57 Início 2ª Parte Prolongamento 3

2 Cartão Amarelo 2

4 Cartão Vermelho 2

1 Golo 1

6 Oportunidade Grande 1

7 Auto-Golo 1

17 Penalti Marcado 1

18 Penalti Falhado 1

23 Penalti Assin. 1

35 Penálti falhado 1

44 Golo invalidado 1

53 Oportunidade Pequena 1

67 Bola à barra 1

68 Bola ao poste 1

84 Assistência 1

25 Estatisticas 11 0

27 Estatísticas Nac 0

28 Vídeo 0

30 Fotos 0

34 Penálti marcado 0

37 Info Pós-Jogo 0

38 JOG - Golos na Seleção (Único) 0

39 EQ - Resultados 0

41 Sondagem 0

45 Curiosidade PM 0

48 Fim de Relato 0

ZeroZero API events list 69

Event Id Event Name Category
51 Bola ao ferro 0

58 Opinião com Foto 0

60 5.ª falta 0

61 Time-out 0

62 Livre 10m assinalado 0

63 Cincos definidos 0

65 5x4+GR 0

66 Faltas (Futsal) 0

69 Livre 10m Falhado 0

70 Livre 10m marcado 0

71 Livre direto assinalado 0

72 Livre direto marcado 0

73 Livre direto falhado 0

74 10.ª falta 0

75 15.ª falta 0

76 20.ª falta 0

77 Cartão Azul 0

70 ZeroZero API events list

Appendix B

ZeroZero Live Frontend Interfaces

Figure B.1: Login page of zerozero.live

71

72 ZeroZero Live Frontend Interfaces

Figure B.2: Homepage of zerozero.live

Figure B.3: Search page of zerozero.live

ZeroZero Live Frontend Interfaces 73

Figure B.4: History page of zerozero.live

Figure B.5: Team selection for a match in zerozero.live

74 ZeroZero Live Frontend Interfaces

Figure B.6: Comments page for a match in zerozero.live

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Goals
	1.4 Document Structure

	2 Background and Literature Review
	2.1 Background
	2.2 Offline Availability
	2.3 Conflict Resolution
	2.4 Reputation System
	2.5 Similar Platforms
	2.6 Similar Work
	2.7 Summary

	3 Problem Statement
	3.1 Key Domain Concepts
	3.2 Problem Definition
	3.3 Technical Requirements
	3.4 Hypothesis
	3.5 Research Questions
	3.6 Summary

	4 Architecture and Implementation
	4.1 General Services Architecture
	4.2 Reverse Proxy
	4.3 CouchDB
	4.4 Conflict Handling
	4.4.1 Conflict Detection
	4.4.2 Conflict Handler
	4.4.3 Base Conflict Resolution Strategies
	4.4.4 Conflict Handling Orchestrator

	4.5 Reputation Service
	4.6 Web Application (Frontend)
	4.7 Time Synchronization
	4.8 Summary

	5 Evaluation and Analysis
	5.1 Methodology
	5.2 The Journalist Use-Case
	5.3 The Casual User Use-Case
	5.4 Summary

	6 Conclusions
	6.1 Contributions
	6.2 Results
	6.3 Difficulties
	6.4 Future Work

	References
	A ZeroZero API events list
	B ZeroZero Live Frontend Interfaces

