
 

 

 

 

Angela da Costa Carapito 

 

 

 

Volatilome for the detection of bladder cancer in urine using 

gas chromatography-mass spectrometry 

 

 

 

Dissertation thesis for the master’s degree in Analytical, Clinical and Forensic Toxicology 

from the Faculty of Pharmacy, University of Porto.  

 

Work elaborated under supervision of Doutora Maria Paula Guedes de Pinho and co-

supervision of Doutora Joana Isabel Monteiro Pinto and Professora Doutora Maria de 

Lourdes P.A.S. Bastos. 

 

 

 

December 2020 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

É AUTORIZADA A REPRODUÇÃO PARCIAL DESTA TESE, APENAS PARA EFEITOS 

DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO INTERESSADO, QUE A 

TAL SE COMPROMETE 

 



iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This work was financed by FEDER (COMPETE 2020–POCI) and Portuguese funds (FCT) 

in the framework of the project POCI-01-0145-FEDER-030388-PTDC/SAU-

SER/30388/2017. 



iv 

Abstract 

 

Introduction: Cancer represents one of the biggest causes of death worldwide, being 

bladder cancer (BCa) the 10th most common cancer worldwide, with higher incidence and 

mortality rates specially in men. While many diagnostic tests are available and currently 

practiced today, such as urine cytology, cystoscopy, and imaging tests, some of those 

methods are invasive, expensive and present low sensitivity to detect cancer in its early 

stages. Considering these struggles, metabolomic analysis based on the detection of 

volatile organic compounds (VOCs) has been presented as an important approach in 

many investigation studies of new diagnostic methods about cancer in the last years.  

Aim: The aims of this work were to investigate the potential of VOCs, in general, and 

volatile carbonyl compounds (VCCs) for BCa detection in urine by headspace solid-phase 

microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS). 

Methods: A total of 120 patients were included in this study, 60 BCa patients, being 17 

women and 43 men; and 60 cancer-free individuals (controls). The extraction of VOCs 

and VCCs from urine samples of BCa and cancer-free individuals was performed by HS-

SPME. Statistical analysis included both multivariate, like principal component analysis 

(PCA) and partial least square discriminant analysis (PLS-DA) and univariate tests. Area 

under the curve (AUC), sensitivity, specificity and accuracy were calculated through 

receiver operating characteristics (ROC).  

Results: The volatile profile of urine (VOCs and VCCs) was able to discriminate BCa 

patients from controls. Statistically significant alterations were observed in the levels of 30 

metabolites, demonstrating an AUC of 0.924, 85% sensitivity, 82% specificity and 83% 

accuracy for BCa detection. The main classes of the discriminant compounds were 

aldehydes, alkanes, ketones and aromatic hydrocarbons. Considering the discrimination 

of different BCa stages, namely stages II, III and IV compared with stage 0a, statistically 

significant alterations were also identified, demonstrating an AUC of 0.830, 50% 

sensitivity, 82% specificity and 80% accuracy.    

Discussion/Conclusions: This work was able to demonstrate the important role of 

metabolomic analysis for the detection of BCa in urine samples. Some of the identified 

compounds were also found on previous works presented on the literature which proves 

that a panel of biomarkers for BCa detection can be established in the future as a 

diagnostic tool. Several challenges still exist regarding the clarification of metabolic 

pathways associated with the release of volatile compounds in cancer patients and 
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controls. More studies using urine samples of BCa and controls are necessary to 

elucidate VOCs metabolism as well as its potential applicability in portable medical 

devices. In that way, it will be possible to ensure an earlier diagnosis, with a more adapted 

treatment and less costs.    

 

Keywords: Bladder cancer (BCa); volatile organic compounds (VOCs); volatile carbonyl 

compounds (VCCs); metabolomics; headspace solid-phase microextraction coupled with 

gas chromatography-mass spectrometry (HS-SPME/GC-MS). 
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Resumo 

 

Introdução: O cancro representa uma das maiores causas de morte no mundo, sendo o 

cancro da bexiga (BCa) o 10º cancro mais comum, com elevada taxa de incidência e 

mortalidade especialmente em homens. Embora existam vários testes de diagnóstico 

disponíveis e atualmente praticados, como por exemplo a citologia urinária, cistoscopia e 

testes imagiológicos, alguns destes métodos são invasivos, dispendiosos e apresentam 

baixa sensibilidade para detetar cancro nos seus estadios mais precoces. Considerando 

estas dificuldades, as análises metabolómicas baseadas na deteção de compostos 

orgânicos voláteis (VOCs) têm sido apresentadas nos últimos anos, como uma 

importante abordagem em vários estudos de investigação de novos métodos de 

diagnóstico associados ao cancro.      

Objetivo: Os objetivos deste trabalho consistiram em investigar o potencial de VOCs, em 

geral, e de compostos carbonílicos voláteis (VCCs) para a deteção de BCa na urina por 

cromatografia gasosa acoplada a espetrometria de massa através de microextração em 

fase sólida por headspace (HS-SPME/GC-MS). 

Métodos: Um total de 120 pacientes foram incluídos neste estudo, 60 pacientes com 

BCa, sendo 17 mulheres e 43 homens; e 60 pacientes sem cancro. A extração de VOCs 

e VCCs das amostras de urina dos pacientes com BCa e dos pacientes sem cancro foi 

realizada através de HS-SPME. Os testes estatísticos incluíram ambas as análises 

multivariadas tais como as análises de componentes principais (PCA) e as análises 

discriminantes pelo método de mínimos quadrados parciais (PLS-DA) e testes 

univariados. A área sob a curva (AUC), sensibilidade, especificidade e exatidão foram 

calculadas através da curva característica de operação do recetor (ROC).  

Resultados:  O perfil volátil da urina (VOCs e VCCs) permitiu discriminar pacientes com 

BCa de pacientes controlo. Diferenças estatisticamente significativas foram observadas 

ao nível de 30 metabolitos, demonstrando uma AUC de 0.924, uma sensibilidade de 85%, 

especificidade de 82% e exatidão de 83% para a deteção de BCa. As classes principais 

dos compostos identificados foram essencialmente aldeídos, alcanos, cetonas e 

hidrocarbonetos aromáticos. Considerando a discriminação dos diferentes estadios de 

BCa, nomeadamente o estadio II, III e IV comparativamente ao estadio 0a, também foram 

identificadas alterações estatisticamente significativas, demonstrando uma AUC de 0.830, 

sensibilidade de 50%, sensibilidade de 82% e exatidão de 80%.      
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Discussão/Conclusões: Este trabalho demonstra o importante papel das análises 

metabolómicas para a deteção de BCa em amostras de urina. Alguns dos compostos 

identificados foram também encontrados em trabalhos anteriores presentes na literatura, 

provando assim que um painel de biomarcadores para a deteção de BCa pode ser 

estabelecido no futuro como meio de diagnóstico. Diversos desafios ainda existem 

relativamente à clarificação das vias metabólicas associadas à libertação de compostos 

voláteis em pacientes com cancro e controlos. Mais estudos usando amostras de urina de 

pacientes com BCa e controlos são necessários por forma a elucidar o metabolismo de 

VOCs assim como a sua potencial aplicabilidade em dispositivos médicos portáteis. 

Desta forma, será possível assegurar um diagnóstico mais precoce, com um tratamento 

mais adaptado e menos custos.    

Palavras-chave: Cancro da bexiga (BCa); compostos orgânicos voláteis (VOCs); 

compostos carbonílicos voláteis (VCCs); metabolómica; cromatografia gasosa acoplada a 

espetrometria de massa através de microextração em fase sólida por headspace (HS-

SPME/GC-MS). 
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Chapter 1. Introduction  

 

Cancer represents one of the biggest causes of death every year around the 

world. The Cancer Research UK reported that there were 17 million new cases of cancer 

in 2018, while the most common types have been lung, female breast, bowel and prostate 

cancer (Cancer Research UK, 2018). Regarding the mortality rate, in 2018 it was 

estimated that 9.6 million deaths were associated with cancer worldwide, for which lung, 

stomach and bowel were the most common causes of cancer deaths (Cancer Research 

UK, 2018). In Portugal, cancer mortality accounts for 253.7 deaths per 100.000 of malign 

tumours, being prostate, lung and bowel the most frequent cancers in men, and breast, 

bowel and thyroid the most frequent cancers in women (Bento, 2010).  

The National Cancer Institute defines cancer, as a collection of diseases in which 

abnormal cells can divide and spread to nearby tissue (National Cancer Institute, 2018b). 

Statistical data from 1975 to 2015 has registered some differences toward cancers 

incidence while some tend to decrease through the years like stomach, larynx, ovary, 

Hodgkin lymphoma and oesophageal squamous cell carcinoma, others have been 

increasing, namely liver and intrahepatic bile duct, melanoma, thyroid and myeloma 

cancer (National Cancer Institute, 2018b). These results can be explained by two main 

reasons, namely aging and population growth which, consequently, is related with cancer 

incidence and deaths, once the majority of cancer deaths occur in people over 50 years 

old (Roser and Ritchie, 2018). 

Several studies have been developed over the years to elucidate the causes and 

mechanisms of cancer itself, the way it develops, grows, and metastasizes. In terms of 

cancer diagnosis, several techniques have been applied like blood tests, imaging tests (X-

ray, magnetic resonance imaging, computed tomography), colonoscopy and 

mammography, but some of these techniques are invasive, expensive and require skilled 

technicians for its management (Sun et al., 2016). Besides that, the fact that many 

cancers do not present any type of symptoms for long periods of time and are only 

detected in its advanced stage, makes the early diagnosis more difficult to establish and 

consequently delays the onset of necessary treatments (Roser and Ritchie, 2018). 

Despite the increase of global cancer deaths, a decreasing tendency has been observed 

for several cancers due to earlier detection, improved treatment strategies and more 

informed population about risk factors (Roser and Ritchie, 2018). Still, more research is 

needed, particularly to discover more accurate, specific and cost effective methods that 

can detect cancer in the early stages thus enhancing treatment effectiveness and survival 

rate (Rodrigues et al., 2018). 
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1.1. Bladder cancer  

 

1.1.1. Incidence and risk factors 

 

Bladder cancer (BCa) is the tenth most common form of cancer worldwide and the 

thirteenth with the highest mortality rate worldwide, consisting of about 4% of visceral 

cancers in developed countries. It affects 3 to 4 times more males than women, with a 

bigger incidence in those aged with 55 years and older (Saginala et al., 2020). In 2018, 

according to the Globocan database, BCa accounted for 199.922 deaths worldwide 

(Manzi et al., 2020). However, even if the cancer-related mortality has decreased for 

women, it still remains unchanged for men (DeGeorge et al., 2017). 

There are several risk factors associated with BCa, such as older age, smoking, 

pelvic radiation, chronic bladder infection caused by Schistosoma haematobium, family 

history of BCa, among others (Inamura, 2018; Richters et al., 2020). Besides that, the 

statistics show that white individuals have more probability to develop BCa than African or 

Hispanic Americans (American Cancer Society, 2019c). Regarding smoking, this risk 

factor represents one of the most important in BCa, since smoking increases the risk of 

developing BCa by 3 times compared with non-smokers (American Cancer Society, 

2020).      

 

 

1.1.2. Classification and diagnosis 

 

BCa can be classified into carcinoma and sarcoma. Bladder carcinoma can be 

classified into transitional cell carcinoma (TCC) or urothelial carcinoma (UC), which are 

the most frequent, representing 90% of bladder carcinoma. In these types of cancers, the 

epithelial cells are the main cells in the origin of cancer. Another type of bladder 

carcinoma is the squamous cell carcinoma (SCC) accounting for 1 to 2% of all BCas (in 

the US, but can change depending on countries), in which cells can develop in response 

to inflammation and become cancerous (American Cancer Society, 2016; Health Engine, 

2004). Adenocarcinoma represents a rare type of bladder carcinoma accounting for 1% of 

all BCas. Sarcoma are the rarest types of BCas that begins in the muscle layers of the 

bladder (American Cancer Society, 2019c; Cancer.net, 2019). 
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Symptoms of BCa include mainly microscopic haematuria without pain, that can 

exacerbate with the higher stage of malignancy, urinary voiding associated with irritation 

and reduced bladder capacity. However, establishing a diagnosis based on such 

symptoms can be challenging once the amount of blood in the urine might be reduced or 

not present in the moment of collection and therefore, not visible in urine tests. In those 

cases, a confirmation by other complementary exams is required and includes tests like 

urine cytology with microscopic examination, cystoscopy, biochemical/molecular tests, 

and imaging of upper urinary tract by computed tomography (CT) (Oeyen et al., 2019; 

Razmaria, 2015). However, BCa diagnosis is challenging once symptoms only appear 

when the disease is already in its advanced stages. The difficulties associated with some 

diagnostic methods are due to invasiveness and difficulties on interpretation or even its 

high costs are also important barriers to BCa diagnosis (Oeyen et al., 2019). For example, 

cystoscopy, besides having a general good sensitivity, (75 to 100%), is an invasive 

method that might require anaesthesia in some cases, and misses certain types of 

tumours as well as it presents risks of infection and urethral damage (Zhu et al., 2019).  

On the other hand, urine cytology can be performed non-invasively with an 

associated low cost and high specificity (73 to 100%), but it presents low sensitivity (20-

40%) for low stages of urothelial tumours, and can be affected by different instrumentation 

artifacts (Goodison et al., 2013; Oeyen et al., 2019; Zhu et al., 2019). In addition, some 

existing conditions like renal calculi and urinary tract infections can lead to false-positive 

results in urine cytology tests (DeGeorge et al., 2017).  

Biochemical and/or molecular tests include urine marker-based tests, for instance, 

UroVysion test, ImmunoCyt test or NMP-22 test, that consist on the identification of 

certain chemical compounds, proteins and modifications in chromosomes in urine can 

also be used (e.g., detection of aneuploidy for chromosomes 3, 7, and 17). These tests 

present a wide range of sensitivity (45 to 100%) and can detect low grade tumours. 

However, the high cost, invasiveness and inter-individual variations are some 

disadvantages of these techniques (Goodison et al., 2013; Zhu et al., 2019).   

Imaging techniques, such as magnetic resonance imaging (MRI), are employed 

specially for the establishment of staging. MRI presents no prejudice since no radiation is 

involved, however it is a high cost technique and the process might sometimes cause 

some discomfort to the patient (Zhu et al., 2019).      

CT, just like MRI, is commonly employed for staging when BCa has already been 

diagnosed. This method presents very high specificity (78 to 100%), as well as a viewing 

ability of multiple planes. The inconvenient rely on the exposure to radiation and possible 

allergic reactions associated with the contrast agent (Zhu et al., 2019).    
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1.1.3. Staging 

 

Based on diagnostic, BCa staging is most often based on the American Joint 

Committee on Cancer (AJCC) TNM (tumour, nodes and metastasis) system (Figure 1) 

(Dana-Farber Cancer Institute, 2019). TNM comes from tumour, nodes and metastasis 

and intends to describe how far and whether the tumour has grown through the bladder, 

how lymph nodes near the bladder have been affected and how distant cancer has 

metastasized to other organs. Besides that, this information is also complemented by 

stage grouping that goes from stage 0 to stage IV (American Cancer Society, 2019a). The 

stage 0 or carcinoma in situ (CIS) consists of cancer cells present in the most superficial 

layer of the mucosa and is considered non-invasive. On the stage I or non-muscle-

invasive bladder cancer (NMIBC), the cancerous cells are already present in the deeper 

layers of the mucosa which constitutes around 50 to 70% of the cases. In the stage II or 

muscle-invasive bladder cancer (MIBC), that comprehends 10 to 20% of the cases, the 

cancer cells have already invaded the muscle layer (Inamura, 2018; Manzi et al., 2020). In 

stage III, the cancerous cells have spread to the closest organs from the genitourinary 

tract like the prostate, the seminal vesicles, the uterus, or vagina. Lastly, in the stage IV 

(metastatic phase), the tumour already spread to the further organs such as lymph nodes, 

bone, lung, liver and peritoneum (DeGeorge et al., 2017; Instituto CUF de Oncologia, 

2017).  

 

 

 

Figure 1 - Classification of BCa according to its staging [Reprinted from Dana-Farber 

Cancer Institute, 2019]. 
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Another type of classification is adapted by the Surveillance, Epidemiology, and End 

Results (SEER) database that groups cancer into 3 different categories based on how far 

the cancer has spread (National Cancer Institute, 2018a). Those categories are: 1) 

localized, which considers that cancer has not spread outside the bladder; 2) regional, 

when cancer has spread from the bladder to closed organs; and 3) lymph nodes and 

distant, in which cancer has spread to more distant organs (American Cancer Society, 

2019b). In situ cancer stages represent the biggest percentage of cases with 51%, being 

the distant stages and the non-classified or unknown stages the ones with the smallest 

percentage of cases going from 3 to 5%. The 5-year relative survival rate can be 

calculated by the percentage of patients with BCa alive, five years after diagnosis, divided 

by the percentage of the general population of corresponding sex and age alive after five 

years. Considering this 5-year relative survival rate, the in situ stage (95.8%) and the 

localized stage (69.5%) represent the highest rates of survival, contrary to the regional 

(36.3%) and the distant stage (4.6%) (Table 1) (National Cancer Institute, 2018a). The 

correct establishment of staging is crucial to plan and initiate the appropriate treatment 

and consequently a good prognosis.  

 

 

Table 1 - Percentage of cases and 5-year relative survival by stage at diagnosis of BCa 

based on SEER database [Adapted from National Cancer Institute, 2018a]. 

 

 

1.1.4. Treatment  

 

Treatment of BCa is established based on the staging of the disease which means 

that the sooner it is diagnosed, the better are the chances to treat and consequently the 

prognosis. When the cancer is still on the first stages (stage 0 and I) and has not invaded 

Stage Percent of cases (%) 5-year relative survival rate 

In situ 51 95.8 

Localized 34 69.5 

Regional 7 36.3 

Distant 5 4.6 

Unknown 3 47.3 
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the muscle layers, the removing of the tumour is possible through cystoscopy, followed by 

intravesical immunotherapy (with bacilli Calmette-Guérrin – BCG) or chemotherapy 

(mitomycin C, epirubicin or doxorubicin) that allows to eliminate any remaining cancerous 

tissue and prevent any recurrence or progression. If cancer already invaded the muscle 

layers, the common treatment employed is complete cystectomy with chemotherapy 

(cisplatin-based neoadjuvant) and lymphadenectomy. However, for some patients, the 

practice of chemotherapy and radiation might be a solution rather than bladder removal. 

For patients with metastatic disease or unresectable BCa, chemotherapy is the treatment 

employed using a wide range of combination or isolated drugs like gemcitabine, cisplatin, 

methotrexate, vinblastine and/or doxorubicin (DeGeorge et al., 2017; Razmaria, 2015).  

A solution for the substitution of the bladder consists of an ileal conduit, which will 

introduce an artificial opening (stoma) in the abdominal wall. That conduit will carry urine 

through the ureters until an external bag attached to the skin (urostomy). Another solution 

consists on the employment of a portion of intestine to create a “new” bladder capable to 

contain urine (neobladder) (DeGeorge et al., 2017; Razmaria, 2015). Once BCa has a 

high rate of recurrence, follow-up after treatment is essential.  

Although many diagnostic methods are employed for the detection of BCa, with 

overall good results, it is clear that it still exists a lack of biomarkers for the establishment 

of an earlier diagnosis of this type of cancer. For this reason, the study of volatile organic 

compounds (VOCs) has demonstrated to be a promising approach as diagnostic markers 

which will be reviewed in the next chapters.  

 

1.2. From smell perception to disease recognition  

 

Since ancient times, men started to establish methodologies that allow to identify the 

presence of multiple pathologies. In the middle age, urine became a highly studied matrix 

used as the base of many diagnostics. Hippocrates formulated, in the fourth century BC 

(before Christ), the humoral theory (blood, phlegm, yellow bile and black bile), which 

considered that illness had a natural cause and that the achievement of a health state 

consisted in an equilibrium of those humours. His theory has last for centuries. From 100 

BC, 20 different types of urine were described, and some ancient Chinese doctors and 

Hindu cultures found out that ants were attracted by some urine of patients that presented 

a sweet flavour (known today as diabetes mellitus). In the 12th and 13th century, 

physicians started to formulate “urinary charts” (at first only in latin) (Figure 2) based on 

the characteristics of urine, like colour, taste and smell, and related these organoleptic 

characteristics with diseased patients and healthy individuals. Practice of “uroscopy” was 
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a guide for physicians during thousands of years, meanwhile, the technological advances 

have given rise to better approaches over time. This term has changed in the mid-17th-18th 

century becoming called by urinalysis and practiced in our days as a more efficient way to 

make diagnosis (Armstrong, 2007; Banday et al., 2011; Lagay, 2002). 

 

 

 

 

 

 

 

 

 

 

Figure 2 - Two versions of charts used to urine in the 12th and 13th century. [Reprinted 

from Armstrong, 2007; Cahill, 2015]. 

 

Due to their extremely accurate sense of smell, dogs’ capacities have been used in 

hunting and a variety of inspection and security procedures especially by operational 

teams in the detection of explosives, drug traffic like narcotics, finding missing people in 

rescue missions and other situations. The ability of dogs to detect VOC concentrations at 

one part per trillion (ppt) has enhanced the curiosity of many investigators in relation to the 

possibility to detect diseases (Angle et al., 2016). One of the first reports about dog 

detection of cancer was published in 1989 when a dog apparently “sniffed at a mole on 

the leg of the dog handler” which turn out to be a melanoma (Teodoro-Morrison et al., 

2014). In other studies where dogs were trained for cancer detection, they were able to 

identify in different samples, like breath and stool, distinct cancer types (e.g., colon, breast 

and lung) with impressive sensitivity and specificity going from 88% (minimum) to 99% 

(maximum) (Angle et al., 2016; Petry et al., 2015). Besides that, other investigators also 

verified that apart from detecting cancer, dogs could also detect other diseases like 

Clostridium difficile infections (Teodoro-Morrison et al., 2014). These studies have 

demonstrated that dogs and specially trained dogs present a great ability to detect 

different kinds of VOCs with high levels of confidence for diagnostic purposes (Angle et 

al., 2016). Furthermore, other animals like rats and pigs have been pointed in the 
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literature for their olfactory sensitivity, especially used to detect landmines in the case of 

rats but also detection of food poisoning, as well as pigs that can localize truffles 

underground (Teodoro-Morrison et al., 2014). However, dogs present some advantages 

over other animals regarding medicine and healthcare purposes, based essentially on 

social acceptance and relative ease of training. Besides that, laboratory equipment 

capable to detect VOCs is not liable to be transported to the field and consequently, the 

analysis of those compounds in real time and from its source becomes an obstacle (Angle 

et al., 2016; Teodoro-Morrison et al., 2014). Although these findings and studies present 

good results, it is important to keep in mind the difficulties and potential misleading’s of 

animals in such activities. 

In this way, VOCs analysis has been presented as a potentially promising diagnostic 

tool, being the focus of many cancer research studies in the last years (de Boer et al., 

2014; el Manouni el Hassani et al., 2018; Schmidt and Podmore, 2015a; Shirasu and 

Touhara, 2011). It has been shown that patients with cancer tended to exhibit different 

and specific VOC patterns which were different from cancer free individuals. These 

findings suggested that VOCs can be used to detect cancer in its early stages (Jin, 2018).  

 

 

1.2.1. Potential of volatile organic compounds as diagnostic 

markers 

 

VOCs are molecules with relatively low molecular weight (50-1500 Da) and high 

vapor pressure (50 to 260 °C) that can be originated from cells (Berenjian et al., 2012; 

Fleming-Jones and Smith, 2003; Sun et al., 2016). The all set of VOCs produced by an 

organism is called volatilome (Dragonieri et al., 2016; Shirasu and Touhara, 2011).  

The study of VOCs brings great potential for diagnosis of cancer in general, as well 

as for BCa, since cancerous cells have a different metabolism compared to normal cells, 

thus producing different compounds that can be released for example by exhaled breath 

or urine. However, it must also be noted that the study of VOCs might present some 

confusion effects, for example, in the body, VOCs are emitted naturally and tend to suffer 

variation depending on diet, gender, environmental influence, lifestyle and physiological 

modifications. VOCs are released from cells in part as a result of metabolic processes, but 

not all of them are related to metabolism. The presence of bacteria in different parts of the 

organism such as mouth, lungs and digestive tract can also produce VOCs (Angle et al., 
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2016). The analysis of these compounds offers a perspective of the physiological and 

pathophysiological mechanisms that occur in healthy and diseased individuals (Jin, 2018). 

 

1.2.2. Metabolomics applied to VOCs profiling  

 

Metabolomics is one of the most representative research fields on the analysis of 

VOC biomarkers. This “omic” approach comprehends the analysis of all metabolites 

involved in the metabolic networks of living organisms and their response to 

pathophysiological conditions or other stimuli (Nicholson et al., 1999). Metabolomic 

studies can, in general, be developed using several techniques like nuclear magnetic 

resonance (NMR), liquid chromatography (LC) and gas chromatography (GC) coupled to 

mass spectrometry (LC-MS and GC-MS), and Capillary Electrophoresis (CE). For VOC 

profiling, GC-MS is one of the most used analytical techniques due to its characteristics 

and advantages, namely high-efficient separations, low limits of quantification and high 

specificity, as well as the identification of sample constituents through the use of mass 

spectral databases (Fiehn, 2016; Mastrangelo et al., 2015). The identification of sample 

constituents by its mass spectra is obtained by breaking molecules, using electron impact 

(EI) and chemical ionization (CI) techniques, leading to the identification of compounds. 

The equipments used for these analysis are GC-MS with single and/or a triple quadrupole 

(Chauhan et al., 2014).  

 

1.2.2.1. Metabolomics strategy  

 

The metabolomics workflow (Figure 3) includes a variety of steps starting by 

choosing the biological sample for analysis, that can be blood, urine, exhaled breath or 

any other biological sample. The next step is focused on the selection of the analytical 

method to be used, being GC-MS the more appropriated for VOCs detection (Alonso et 

al., 2015). GC-MS presents high sensitivity and an easy metabolite identification due to 

the several databases available, however, it’s a destructive technique with low 

reproducibility (Bujak et al., 2014). This method will traduce information through spectral 

data that consequently has to be pre-processed in order to manage some corrections 

inherent to matrix and equipment such as baseline correction, noise filtering, peak 

detection, deconvolution, alignment and normalization (Alonso et al., 2015).  
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The aim of data filtering consists to remove noise or non-informative variables in a specific 

data set. Baseline correction intends to identify and remove those variables that are very 

small (above the detection level) or close to zero (Chong et al., 2019). Another way of 

data filtering focus on the removal of variables with high relative standard deviation 

(RSD=SD/mean), which can be detected by comparing analysis with the quality control 

(QC) samples (Chong et al., 2019). Following data filtering, normalization is required in 

order to minimize any systematic bias and promote the consistency of data. Normalization 

procedures will adjust samples to allow possible comparison with each other. These 

procedures can be made by different methods whose main ones are: 1) normalization by 

sum which consists on the division of the area of each peak in the chromatogram by the 

total sum of all peaks; 2) normalization by reference sample and 3) normalization by 

reference feature which consist on choosing a specific characteristic like, for example, 

creatinine in the case of urine samples, to adjust metabolite concentrations due to the 

inherent variation of dilution among different samples (Chong et al., 2019; Wu and Li, 

2016). After that, data scaling is necessary to promote comparability between variables, 

which can be: 1) auto scaling or unit variance scaling, that gives equal importance to all 

peaks, however this means that peaks with values close to the level of detection or the 

baseline will present the same weight as those with higher peaks, which can lead to 

consider noisy signals and non-informative features, as relevant as the interesting ones; 

2) pareto scaling aims to give a relative importance to the different chromatographic peaks 

taking into account the mean-centered data and 3) range scaling that tends to give most 

importance to the highest peak areas. However it happens that in some techniques like 

GC-MS, the peak area is sometimes not proportional to the concentration of the 

compound, which means that peaks with a smaller area but biologically more significant 

can be ignored (Sussulini, 2017).      
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Figure 3 - Analysis workflow in untargeted metabolomic studies. [Reprinted from Alonso 

et al., 2015] 

After sample pre-processing, a huge quantity and complex analytical data is obtained 

which represents the need to use methods of data analysis. There is a large number of 

methods for data analysis, like multivariate that can be divided into unsupervised and 

supervised. With the information obtained by multivariate analysis, it is possible to start to 

elect biomarkers and elaborate classification models that can lead to further investigations 

and facilitate metabolite identification (Alonso et al., 2015). Metabolite identification is a 

very important step in biomarker discovery, which consists on comparison of spectral data 

with spectral databases created with standard compounds. Thus, spectral databases are 

essential and vary on the quality of the stored data and the quantity of metabolite spectra 

available (Alonso et al., 2015). Finally, pathway and network analysis are usually used to 

understand the dysregulations occurring in metabolic pathways. Pathway analysis 

employs a prior knowledge about the metabolite identification and analyse metabolite 

patterns. On the other hand, network analysis takes the correlation existing between the 

set of measured metabolites and characterizes the complex relationship existing between 

them (Alonso et al., 2015).  

These strategies are highly applied in general metabolomic studies, but also for VOCs 

profiling. For VOCs identification, the National Institute of Standards and Technology 

(NIST) database has been widely used. In addition, new databases have emerged due to 

the increasing number of studies reporting alterations in VOCs related with cancer, 

namely the cancer odour database (COD) (Janfaza et al., 2019b). The aim of COD is to 

provide information about volatile organic metabolites of cancer (VOMC) that can turn into 
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a significant tool for cancer diagnosis, research, and investigation. This information 

comprehends the collection of results presented in more than 1000 scientific publications 

which are evaluated and gathered into a structured database. So far, this database 

includes 446 different compounds and 15 different types of cancer, as well as many other 

features associated with chemical properties of volatiles, sample matrices, cancer type, 

among others (Janfaza et al., 2017, 2019b). Currently, other teams are also working in the 

development of databases with additional information on the VOC profiles, namely for 

lung cancer, using exhaled breath, colorectal cancer (CRC) and heart failure as well (Jin, 

2018). All these strategies aim to achieve a last step that converges in biological 

interpretation establishing the dysregulated pathways to improve understanding of 

oncologic processes at metabolic levels (Alonso et al., 2015). 

 

1.2.2.2. Biological matrices used in metabolomics 

 

The detection of VOCs can be performed, as previously discussed, in a variety of 

samples and body fluids like blood, urine, exhaled breath, faeces, sweat, among others. 

Each one presents some advantages and disadvantages that must be considered in 

terms of accessibility, ease of analysis, interfering compounds and complexity, and type of 

cancer (Nakhleh et al., 2017; Sun et al., 2016). 

VOCs are present in different body fluids/matrices like exhaled breath, urine, skin, 

saliva, faeces, blood and milk. For instance, in a review from Broza et al., 34% of VOCs in 

a total of 2577 compounds measured in all types of sources (e.g., breath, saliva, faeces, 

saliva and blood), were  identified in exhaled breath, followed by skin with 20% and blood 

representing the lowest percentage with 6% (Figure 4) (Broza et al., 2015). In another 

review from Lacy Costello et al., a total of 1840 VOCs has been measured, where breath 

also represents the matrix with the bigger number of identified VOCs (872), followed by 

skin (532), faeces (381), saliva (359), urine (279) and blood (154) (De Lacy Costello et al., 

2014; Filipiak et al., 2016). 
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Figure 4 - Percentage of VOCs measured in different biological matrices based on 

collected data from cancer-free individuals. [Adapted from Broza et al., 2015] 

 

Exhaled breath is composed by many constituents like oxygen, carbon dioxide, 

nitrogen, water, inert gases and over 3000 different VOCs  (Fernandes et al., 2015; Li et 

al., 2017). Some of those VOCs expelled through breath are basically aromatic, aliphatic 

and chain hydrocarbons (Fernandes et al., 2015; Oguma et al., 2017). In the past, the 

different smells of exhaled breath were indicators of many diseases, namely fruity smell 

was indicative of diabetes or fish-like smell associated with kidney diseases (Fernandes et 

al., 2015). With the technologic advancement, new methods for collection of breath arisen, 

making exhaled breath as a non-invasive and accessible sample with low complexity, 

safer to manage, and suitable for different age groups (Fernandes et al., 2015; Nakhleh et 

al., 2017; Sun et al., 2016).  

Most works developed in the last years are based on exhaled breath as the sample of 

choice for several cancer detection studies (Jalal et al., 2018). Analysis of exhaled breath 

can be performed with different types of techniques and equipments, such as electronic 

nose (e-nose/EN) exclusively, e-nose and GC-MS, and GC-MS exclusively (Krilaviciute et 

al., 2015). Altomare et al. compared exhaled breath samples of CRC patients and healthy 

individuals, analysed by GC-MS, and obtained results of sensitivity and specificity of 86% 

and 83%, respectively, with accuracy levels of 76% (de Boer et al., 2014). From a 

systematic review elaborated by Krilaviciute et al., the best diagnostic performance was 

reported in studies on head and neck cancers, malignant mesothelioma and gastric 

cancer (Krilaviciute et al., 2015). Additionally, breath testing has also been the object of 

other applications such as urea breath tests for detection of Helicobacter pylori and nitric 
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oxide breath concentrations for evaluation of bronchial asthma severity (Bernabei et al., 

2008).  

Skin secretions/sweat, for example, account with a wide variety of 532 VOCs 

including compounds of hydrocarbons, alcohols, esters, amines, ketones, among others. 

Studies on skin volatiles are applied to different fields like cosmetics, clinical diagnostics, 

ecology associated to insect vectors, and forensics (Duffy and Morrin, 2019). Besides the 

great quantity of VOCs, studies on skin volatiles require techniques with high sensitivity 

and pre-concentration steps to concentrate the sample and consequently allow the 

detection of the compounds. Additionally, the site of sampling collection, the patient age 

and daily care products can reveal differences in volatile compounds, thus, methods for 

sample collection and development of more exhaustive studies should be done to 

minimize potential interferent factors (Duffy and Morrin, 2019; Gallagher et al., 2008; 

Jadoon et al., 2015).  

Studies on faeces headspace have also been developed, while less than urine or 

exhaled breath. VOCs detection in faeces has become a very promising approach for 

early CRC detection. Identification of VOCs in this sample has yet to be carried out once 

many volatiles associated to CRC are also present in other types of samples like blood, 

breath, and urine. Thus, as this specimen is the result of processes associated to 

digestion and are influenced by the gut microbiome, it is necessary to understand in which 

way volatiles are the result of changes associated with CRC (Chan et al., 2016).  

Other samples like saliva have also been the object of some studies for VOCs 

detection (Jalal et al., 2018; Soini et al., 2010). However, this matrix presents few volatiles 

compared to exhaled breath or sweat, once it can suffer changes due to several factors 

associated with diet or consumption of drugs. While saliva is a non-invasive sample to 

collect, challenges related with this sample focus on distinguishing between endogenous 

and exogenous compounds, obtain a suitable amount of it, which can be difficult in certain 

population groups like infants or geriatric patients, or those who have reduced or absent 

production of saliva. Additionally, the methodology used to collect saliva can also 

influence the VOC analysis (Jalal et al., 2018; Soini et al., 2010).  

Urine has been used since the beginning of times as an attempt to diagnose diseases 

presenting several utilities and advantages. Through the capacity of kidney filtration, urine 

is produced and accumulates several residues from blood and other components from 

distant organs, giving to this sample potential for the development of new diagnostic 

methodologies. Regarding its advantages, urine is easy to obtain and in large amounts, 

and it does not require invasive methods for its collection (Bax et al., 2018). Additionally, 

urine presents a greater diversity of VOCs from different classes (heterocyclic 

compounds, alcohols, ketones, amines, aldehydes, organic acids and distinct 
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hydrocarbons) comparing with other matrixes like exhaled air or blood (Jalal et al., 2018; 

Mazzone et al., 2015). Studies have suggested that it exists high variability among 

individuals including gender, age, diet, lifestyle and hormonal status (Bax et al., 2018; 

Mazzone et al., 2015).  

Some specific studies based on blood volatiles have also been performed, for 

example, for CRC, once VOCs are released primarily into de bloodstream before passing 

to the alveoli and be exhaled (Jalal et al., 2018; Wang et al., 2014). Other studies also 

intended to evaluate the relation between blood concentrations of VOCs and its 

correlation with the rate of exhalation once VOCs from exhaled breath should be similar to 

the ones present in blood, however, exhaled breath can suffer variation in certain cases 

specially in those patients affected with lung pathologies or having smoking habits 

(increase of benzene and toluene levels) (Jalal et al., 2018; Jia et al., 2019). Although, 

blood is an invasive sample to collect, it can give further information about metabolic 

changes that occur in the organism associated with tumorigenic processes in such 

specific situations (Jalal et al., 2018; Wang et al., 2014).  

 

 

 

1.2.2.3. Analytical techniques and data analysis 

 

In this section, both analytical techniques and data analysis for the determination of 

volatile compounds will be presented, considering techniques like headspace solid-phase 

microextraction, GC-MS and data analysis like pre-processing, multivariate and univariate 

analyses. 

 

 

Headspace solid-phase microextraction (HS-SPME) 

Once some sample matrices (e.g., urine) present a small concentration of VOCs, it is 

necessary to employ some extraction and pre-concentration techniques to enrich 

metabolites and facilitate its detection and quantification. HS-SPME is the most used 

technique for VOCs extraction once samples or volatile compounds can be efficiently 

partitioned into the headspace (HS) gas volume from either a liquid or solid matrix 

(Chromacademy, 2019b; Schmidt and Podmore, 2015b). The volatile metabolites present 

in the sample are released into the HS by heating and agitating processes, as well as the 

addition of a salt (e.g., NaCl) that will promote the salting out of compounds, until reaching 

an equilibrium state. Then, a fused silica fiber coated with an absorbent polymer is 
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introduced into the sample container where it will adsorb the VOCs present into the HS, 

which will be transferred into the GC injector for analysis (Chromacademy, 2019b; Harvey, 

2000). 

 

 

Gas chromatography coupled with mass spectrometry (GC-MS) 

GC-MS is a very widely used technique in metabolomic studies for VOC analysis 

(Harvey, 2000). GC-MS is constituted by a sample injector, a stationary phase (columns 

that can be variable), a mobile phase (carrier gas), a MS detector and a computational 

data system (Figure 5). Processing of samples is made by injecting the pre-treated 

sample into the equipment where it is volatilized and the representative portion (VOC 

content) is carried onto the column by a carrier gas (usually helium) (Chromacademy, 

2012). Once in the column, the sample components are separated by differential 

partitioning and eluted depending upon the chemical affinity of the metabolite for the 

stationary phase and the analyte vapor pressure. The metabolites are then, carried into 

the MS ion source where they are submitted to an electron bombardment and fragmented 

into molecular ions (usually electron impact ionization) by using electric fields in the 

vapour phase. Ions formed in the previous step are conducted to the MS detector where 

they are separated and detected depending on their mass-to-charge (m/z) ratio 

(Chromacademy, 2019a). This signal is then amplified and sent to the computational 

system where chromatograms are constructed (Chromacademy, 2012). 

 

 

Figure 5 – Scheme of GC-MS components. [Reprinted from Emwas et al., 2015] 

 

 

As previously mentioned, GC-MS presents several advantages such as, low limit of 

detection (LOD) and quantification (LOQ) with high resolution separation as MS also 

provides qualitative and structural information that can help to identify the analytes 

(Harvey, 2000; Want et al., 2005). On the other hand, the main limitations are long 
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analysis time, requirement of sample pre-treatment, high costs and need of trained 

professionals (Harvey, 2000; Want et al., 2005). 

 

Data analysis: pre-processing, multivariate and univariate analyses 

The analytical techniques generate a large amount of data, especially when it comes 

from GC-MS which are very complex. For that reason, methods of pre-processing 

followed by multivariate and univariate analysis are necessary for better understanding. 

Pre-processing includes several steps like, 1) peak detection and deconvolution; 2) 

alignment; and 3) gap filling (Karaman, 2017). 

Peak detection consists on the detection of each measured metabolite in a sample 

and its attribution to the corresponding m/z and retention time (RT). In this step, for the 

deconvolution of the chromatogram peaks, characteristics like the baseline and noise are 

considered (Karaman, 2017).  

The aim of alignment consists on grouping the detected peaks concerning a specific 

m/z and RT window which are next integrated as peak height or peak area and attributed 

to a feature. Alignment is necessary since the process of chromatographic separation 

generates some RT shifts that can occur due to mobile or stationary phase, changes in 

temperature and pressure, or even effects associated with the sample (Karaman, 2017).  

After alignment, the data table obtained will comprise missing values in some samples. 

This happens as a result of poorly shaped peaks or peaks with low intensity. In that way, 

gap filling algorithms will be employed to search those peaks in the raw data based on the 

defined m/z and RT window (Karaman, 2017).   

Analytical results obtained from VOCs determination and quantification presents 

several confounding factors. Those factors include sample composition or complexity as 

well as characteristics associated with the patient, like age, gender, smoking/drug habits, 

lifestyle, among others. Besides that, other factors linked to the sample collection such as 

humidity and temperature can influence the results, thus, the use of multivariate statistical 

analysis (MVA) can help to determine their influence (Gromski et al., 2014). There are 

several methods of MVA, which intends to rearrange data, promoting correlation between 

variables and underlying significant information that appear as a result of metabolomic 

changes, into a more interpretable and easy set of information (Lubes and Goodarzi, 

2017). Such methods can be differentiated into regression or classification. Regression 

methods can also be separated into linear or non-linear methods. In terms of classification 

methods, these can be divided into supervised or unsupervised techniques, however, 

some of those methods can be included in more than one group (Elmasry et al., 2012).  

Unsupervised analysis gives information through identification of tendencies, sample 

grouping and recognition of possible outliers. By the other hand, supervised analysis 
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promotes classification of groups and enhances potential markers (Mastrangelo et al., 

2015). Principal component analysis (PCA) and partial least square discriminant analysis 

(PLS-DA) are the most commonly used unsupervised and supervised methods, 

respectively, in metabolomic studies (Engel, 2019).  

PCA is considered a fast computing technique that works as a linear unsupervised 

method, which means that data is assembled and managed that only the most relevant 

analytical information is obtained, reducing the dimension of data sets (Chen et al., 2013). 

This method is also used to demonstrate which features originate the greatest variances 

in the dataset, without considering class labels (Capelli et al., 2016; Weber et al., 2011). 

Another example of an unsupervised method is the hierarchical clustering analysis (HCA) 

that can detect non-linear trends in the data that are not conveniently covered by PCA 

(Alonso et al., 2015). 

PLS-DA has also been widely used in medical applications (Zhu et al., 2018b). This 

technique intends to maximize the covariance between a variable X and its corresponding 

Y, allowing to manage highly co-linear and noisy data and providing separation of groups 

into easily interpretable results (Gromski et al., 2015). Besides that, PLS-DA is mostly 

applicable to modelling high-dimensional data. PLS-DA is also more flexible than other 

linear discriminant analysis for example, since it does not assume the data to follow a 

particular distribution (Lee et al., 2018). Another example of a supervised method is the 

support vector machines (SVMs), which is able to manage the presence of non-linear 

relations between the metabolomic data and the variable of interest (Alonso et al., 2015).  

Univariate analyses are important when we want to analyse one variable at a time 

among a group of many others that are measured. The mainly aim of this methodology 

intends to minimize a possible large number of measured analytes, into one that 

demonstrates a strongest response under the conditions of the experiment. Examples of 

univariate methods used include t-test and analysis of variance (ANOVA) (Bartel et al., 

2013; Saccenti et al., 2014).  

 

1.3. VOCs as potential biomarkers of bladder cancer: state of the 

art 

 

In the last years, several works have been developed using urine as a sample for 

cancer detection studies related to BCa. Studies started by employing trained sniffer dogs 

to evaluate if volatile biomarkers for BCa existed in urine headspace (Willis et al., 2010). 

Next, other studies using more advanced techniques like GC-MS conducted both in vitro 

and ex vivo experiments to bring knowledge about VOC biomarkers (Cauchi et al., 2016; 
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Jobu et al., 2012; Khalid et al., 2013; Rodrigues et al., 2018; Spaněl et al., 1999). Then, in 

the beginning of the 21st century, some groups started to apply the knowledge of 

metabolomics and its applicability in sensors as a future promising approach for 

biomedical devices (Bernabei et al., 2008; Heers et al., 2018; Horstmann et al., 2015; van 

de Goor et al., 2017; Weber et al., 2011; Zhu et al., 2018a) (Table 2). 
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Table 2 - State of the art of BCa biomarker discovery studies focused on VOCs analysis. 

Cohort 
Sample 

type 
Analytical technique 

Data 

treatment 
Results Ref. 

Dogs 

TCC patients (n=30); Controls differentiated 

into 3 groups (C1 - subjects < 33 years, 

healthy individuals, with no urine abnormality 

on dipstick analysis; C2 - subjects < 33 

years, with any non-cancerous non-urological 

condition or disease (e.g., psoriasis), and/or 

one or more positive dipstick finding(s) of a 

minor nature; C3 - hospital patients of any 

age with confirmed noncancerous urological 

disease, with or without urine abnormalities 

(n=180) 

Urine 4 Trained dogs 

Multilevel 

logistic 

regression 

Highest sensitivity 73% and 64% 

when evaluated as a group; 92% 

specificity when evaluated individually 

(C1) and 56% specificity for older 

patients with non-cancerous 

urological disease.  

(Willis et al., 

2010)  

Metabolomics (GC-MS) 

BCa (n=14); 

PC (n=24); 

Healthy controls (n=14) 

Urine SIFT-MS ANOVA 

Higher levels of formaldehyde in the 

urine of BCa patients (mean 85ppb), 

followed by PC patients (mean 

25ppb) and healthy controls (mean 

11ppb) 

(Spaněl et 

al., 1999) 
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Cohort 
Sample 

type 
Analytical technique 

Data 

treatment 
Results Ref. 

BCa (n=9); 

Healthy controls (n=7) 
Urine GC-MS PCA 

Ethylbenzene, nonanoylchloride, 

dodecanal, (Z)-2-nonenal and 5-

dimethyl-3(2H)-isoxazolone were 

identified as potential BCa biomarkers 

(Jobu et al., 

2012) 

BCa (n=24); 

Controls (n=74) 
Urine 

GC coupled to a sensor 

detection system (metal 

oxide) 

LDA; PLS-DA 

90% accuracy for BCa and control 

detection (for PLS-DA); 93% 

accuracy for BCa and control 

detection (for LDA) 

(Khalid et 

al., 2013) 

TCC of the bladder differentiated into 3 

groups (TCC1 – low grade or well 

differentiated; TCC2 – moderately 

differentiated; TCC3 – high grade or poorly 

differentiated) (n=72); Control differentiated 

intro 3 groups (C1 – no urine abnormality on 

dipstick analysis; C2 – any non-urological 

non-cancerous condition or disease, and/or 

one or more positive dipstick findings of a 

minor nature; C3 – confirmed non-cancerous 

urological disease, with or without urine 

dipstick abnormalities (n=205) 

Urine GC-MS 

PCA; PLS-

DA; HCA; 

RF; SVM 

88% accuracy for PLS-DA (C2 vs 

TCC); 89% accuracy for SVM; 4-

heptanone was decreased and 3-

hidroxyanthranilic acid increased (C3 

vs TCC) 

(Cauchi et 

al., 2016) 



22 

Cohort 
Sample 

type 
Analytical technique 

Data 

treatment 
Results Ref. 

BCa cell lines (Scaber, J82 and 5637); 

Normal cell lines (SV-HUC-1) 
Cell lines HS-SPME/GC-MS 

PCA; PLS-

DA; OPLS-

DA 

2-pentadecanone, γ-dodecalactone 

and dodecanal seem to be 

particularly important compounds for 

BCa detection 

(Rodrigues 

et al., 2018) 

Sensors 

BCa (n=25); 

PC (n=12); 

BPH (n=29); 

Other urological pathologies (n=33); 

Control (n=18) 

Urine 

Electronic nose (based 

on eight QCM gas sensor 

coated by sensing layers 

of metalloporphyrins) 

PCA; PLS-

DA 

100% correct classification between ill 

and healthy group; 100% correct 

classification between BCa and PC; 

100% post-surgery samples 

recognized as healthy samples 

(Bernabei et 

al., 2008) 

TCC patients (n=30); 

Control subjects (n=59) differentiated into 3 

groups (C1 - individuals aged 18–31, with no 

urine abnormality on dipstick; C2 – subjects 

aged 18-32, with any non-cancerous 

condition or disease, and/or one or more 

positive dipstick finding; C3 - aged 24-89, 

with confirmed noncancerous) urological 

disease, with or without urine dipstick 

Urine 

e-nose (12 MOS sensors 

and an array of 10 

individual MOSFET 

sensors together with a 

capacitance-based 

humidity sensor and an 

infrared-based CO2) 

PLS-DA; 

PCA 

65% accuracy, 60% sensitivity and 

67% specificity 

(Weber et 

al., 2011) 
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abnormalities) 

Cohort 
Sample 

type 
Analytical technique 

Data 

treatment 
Results Ref. 

Clinical suspicion of primary or recurrent BCa 

(n=15); 

Patients without BCa but benign urological 

conditions (n=21) 

Urine 

Metal oxide gas sensor 

chip with 3 thin oxide 

layers 

PCA; 

discriminant 

analysis 

Sensitivity 75%, specificity 86% 
(Horstmann 

et al., 2015) 

HNSCC patients (n=100); 

BCa patients (n=40); 

CC patients (n=28) 

Exhaled 

breath 

Aeonose (3 different 

micro-hotplate metal 

oxide sensors) 

ANN 

HNSCC vs CC: sensitivity 79%, 

specificity 81%; HNSCC vs BCa: 

sensitivity 80%, specificity 86%; CC 

vs BCa: sensitivity 88%, specificity 

79% 

(van de 

Goor et al., 

2017) 

Patients with cystoscopically confirmed TUR-

BT (n=30); Patients with no known disease of 

the urinary tract (control group, n=30) 

Urine Cyranose 320 LDA 

93% sensitivity and 87% specificity 

after sample storage at -20°C; 93% 

sensitivity and specificity after storage 

at -80°C 

(Heers et 

al., 2018) 

BCa patients (n=5); 

Control group (n=5) 
Urine 

Fluorescence gas-sensor 

arrays (3 porphyrins, 2 

fluorescence dyes, 2 

solvatochromic dyes and 

1 pH indicator) 

 CDA; PLS-

DA 

31/48 samples were correctly 

detected as BCa (sensitivity 78%, 

specificity 93%); Potential BCa 

biomarkers identified ethylbenzene, 

hexanal, laurie aldehyde and 

nonanoyl chloride 

(Zhu et al., 

2018a) 



24 

Abbreviations: TCC – Transitional cell carcinoma; BCa – bladder cancer; PC – prostate cancer; SIFT-MS – selected ion flow tube mass spectrometry; 

GC-MS – gas chromatography mass spectrometry; PCA – principal component analysis; ANOVA – analysis of variance; LDA – linear discriminant analysis; 

PLS-DA – partial least square discriminant analysis; HCA – hierarchical component analysis; RF – random forest; SVM – support vector machine; OPLS-DA 

– orthogonal partial least square discriminant analysis; HS-SPME – headspace solid phase microextraction; QCM – quartz crystal microbalance; BPH – 

benign prostatic hypertrophy; MOS – metal oxide semi-conductor; MOSFET – metal oxide semi-conductor field-effect transistor; ANN – artificial neural 

network; HNSCC – head and neck squamous cell carcinoma; CC – colon cancer; TUR-BT – transurethral resection of bladder tumour; CDA – canonical 

discriminant analysis.   
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In 2010, Willis et al. published an article study that aimed to evaluate the sensitivity 

and specificity which can be achieved by a group of four trained dogs for BCa detection. 

The experience consisted of 30 double-blind test runs where one urine sample (from 30 

patients with recurrent TCC of the bladder) of BCa was placed alongside six control 

samples (from 180 control subjects differentiated into 3 different groups) (Willis et al., 

2010). Results of sensitivity ranged 73% for the best performing dog and 57% for the 

worst, while specificity ranged from 92% for the best performing dog, correctly identifying 

control 1, and 56% for the worst performing dog identifying control 3 samples. An 

important consideration based on the results achieved in other studies, is that accuracy 

rates were higher for different tumour types (such as ovarian carcinoma and colorectal 

cancer) other than BCa. One of those reasons focus on the choice of the sample which, 

on other studies were breath samples and watery stool samples, comparatively to this 

study where the sample used was urine (Willis et al., 2010).  

In 1999, Spaněl et al., performed a study to analyse the presence of formaldehyde in 

the headspace of urine from patients with BCa and prostate cancer (PC) by using a 

selected ion flow tube mass spectrometer (SIFT-MS). In this work, the authors included 14 

patients with BCa, 24 patients with PC and 14 healthy individuals (controls). The results 

revealed that the concentrations of formaldehyde were higher in the urine headspace of 

BCa patients (mean 85 ppb) and lower in the urine headspace of controls (mean 25 ppb), 

being that formaldehyde was present in 13 out of 14 urine samples from BCa patients and 

absent from the majority of the urine samples from controls (Spaněl et al., 1999). 

Concerning the urine headspace of PC patients, formaldehyde was present at an 

intermediate level between BCa and controls. However, the authors also highlight that the 

patients from BCa and PC groups had tumours at different stages of the disease and that 

might influence, with great certainty, the formaldehyde concentrations in the urine of those 

patients (Spaněl et al., 1999).       

Later in 2012, Jobu et al. studied the biochemical profiles of volatile compounds in 

urine of BCa patients using GC-MS. This study included 9 patients with BCa and 7 non-

BCa patients (controls) (no age or gender was referenced). The urine was collected at two 

different moments, 3 days before surgery and 3-7 days after surgery (enucleation or 

transurethral resection of bladder tumour – TURBT) (Jobu et al., 2012). The results of the 

chromatograms showed 12 peaks that was confirmed based on the NIST database of 

which 5 were detected on BCa patients (ethylbenzene, nonanoyl chloride, dodecanal, (Z)-

2-nonenal and 5-dimethyl-3(2H)-isoxazolone). Also, compared with urine cytology, an 

evident separation was present between controls and pre-operative patients and 7 out of 

9 patients presented distinct score plots when PCA was applied (Jobu et al., 2012).          
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Another study developed by Khalid et al., that combined a GC-sensor device with a 

statistical model, with the aim of identifying BCa from urine samples, included 24 BCa 

patients (aged 27-91, mean 71) and 74 controls (aged 29-86, mean 64) (Khalid et al., 

2013). The sensor device consisted of a conventional GC oven with a capillary column 

and a heated metal oxide sensor employed as the detector. The leave-one-out cross 

validation (LOOCV) was used as statistical validation of robustness and performance 

within samples, and linear discriminant analysis (LDA) for between groups comparison in 

order to identify specific differences that can be highly present in those profiles. After that, 

PLS-DA was employed as a two-group classifier (BCa and controls) (Khalid et al., 2013). 

The identification proved to be correct in 24/24 BCa samples and 70/74 controls (Khalid et 

al., 2013).  

Later in 2016, a study made by Cauchi et al., aimed to identify BCa from urine 

headspace by using GC-MS. Their work included 72 patients with TCC of the bladder, 

both new or recurrent which has donated their urine before surgery, and 205 controls 

(Cauchi et al., 2016). Regarding the exploratory analysis, the results obtained for both 

PCA and HCA showed that cancer do not have an influence on class differentiation and 

thus, are not responsible for the major part of the variance (Cauchi et al., 2016). Overall, 

88.5% of the cancer patients and 88.2% of controls were correctly classified when using 

as classifiers TCC urine samples and samples from the healthy group having other 

diseases like urinary tract infections (C2) (Cauchi et al., 2016). Some compounds were 

found to be decreased in controls compared to TCC group like 2-pentanone, 2,3-

butanedione, 4-heptanone, dimethyl disulphide, 2-propanol, acetic acid, piperitone and 

thujone while others were found to be increased like hexanal, benzaldehyde, 

butyrophenone, 3-hydroxyanthranilic acid, benzoic acid, trans-3-hexanoic acid, cis-3-

hexanoic acid and 2-butanone (Cauchi et al., 2016).  

Another work using GC-MS has been developed by Rodrigues at al., which intended 

to study the volatile metabolomic signature of BCa cell lines. For this purpose the authors 

have used  BCa cell lines being J82 (TCC; grade III/IV, stage pT3), Scaber (SCC; grade 

III/IV, stage pT4) and 5637 (TCC; grade II), and non-tumorigenic cell lines like SV-HUC-1 

(Rodrigues et al., 2018). A clear separation in the metabolome profile has been noticed 

between the Scaber lines and the SV-HUC-1 lines (Q2=0.969). The performance was 

calculated by receiver operating characteristics (ROC) curves, showing very good results 

(area under the curve, AUC=1) for several compounds such as 2-pentadecanone, α-

terpineol, 2-methylbutan-2-ol, and 1-phenylethanol (Rodrigues et al., 2018). When 

comparing J82 with SV-HUC-1, 40 VOCs has been identified, being 4-

methylbenzaldehyde, cyclohexanone, and 2-pentadecanone (AUC=1). At the same 

conditions, 5637 and SV-HUC-1 lines were also compared, being identified 42 VOCs like 
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nonanal, 1-phenylethanol, 4-methylnonane, dodecane, and γ-dodecalactone, and 

unknowns 10 and 24 (AUC=1).  

When analysing the significantly altered compounds present in the cancer cell lines, it 

was possible to find that compounds like 2-nonanone, 4-methylheptan-2-one, dodecane 

2,3-dimethylhexane, hexadecane and tetradecane were increased in cancer cells medium 

compared to SV-HUC-1 medium, and compounds like 2-phenylpropanol and isopentanol 

were decreased in cancer cells medium (Rodrigues et al., 2018). The main VOCs found in 

BCa cell lines belong to the classes of ketones and alkanes, while alcohols representing 

the class with more decreased VOCs in BCa cell lines (Rodrigues et al., 2018). In this 

study the authors also made a comparison between VOCs released in low grade and 

high-grade cancer cell lines, concluding that there is effectively an influence on VOCs 

released according to grade. Compounds that were found to have an impact for 

discrimination were cyclohexanone, methyl isobutyl ketone, styrene, dodecane, nonanal 

and benzaldehyde (Rodrigues et al., 2018). Another experience has been made to 

evaluate VOCs levels between the two subtypes of BCa (TCC and SCC), concluding that 

there are also differences of VOCs among the two. The compounds found to have 

influence on discrimination were nonanal, 2-pentadecanone, n-butyl acetate, 

cyclohexanone, and phenol (Rodrigues et al., 2018).      

 In 2008, a study developed by Bernabei et al., intended to detect urinary tract 

cancers from a group including, BCa (n=25), PC (n=12), benign prostatic hypertrophy 

(BPH) (n=29) and various urological pathologies (n=33), with an electronic nose based on 

eight quartz crystal microbalances (QCMs) gas sensors coated by sensing layers of 

metalloporphyrins (Bernabei et al., 2008). When comparing data from ill patients and 

healthy controls, 100% of the samples were correctly classified (with PLS-DA). Prior to 

that, the authors concluded that discrimination between the two cancers were not 

complete but sort of gradual (Bernabei et al., 2008). When analysing all the data set and 

including the group of BCa post-surgery patients (with PCA), the investigators obtained 

results where all samples from BCa post-surgery patients were recognized as healthy 

samples, which were initially not expected, once many of the individuals were affected by 

BPH and the removal of the tumour do not eliminate this condition, and second, some 

patients were evaluate in an early phase after treatment (1 week) or even after a longer 

time (3 months) (Bernabei et al., 2008).  

Weber et al. developed a study in 2011 to characterize VOCs content of urine from 

TCC of the bladder, based on e-nose technology and elaborated with different sensors 

(Weber et al., 2011). This study involved the participation of 30 individuals (aged 50-88) 

with TCC and 59 controls divided into 3 categories depending on age and other urological 

conditions. First results obtained by PCA showed that the presence of cancer did not 
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contribute to the separation and so it does not represent a major part of the variance 

(Weber et al., 2011). When comparing the most distinct groups (C1 and TCC), the best 

results were obtained showing 70% of cancer patients and non-cancerous patients 

correctly identified, however, the results obtained from patients with other non-cancerous 

urological disease accounted for an accuracy of 65%, sensitivity of 60% and 67% of 

specificity. As mentioned in other studies, individuals with a more advanced stage of the 

disease were in general more difficult to classify (Cauchi et al., 2016; Weber et al., 2011). 

Later in 2015, Horstmann et al., revealed their first results of a pilot study made with 

an electronic nose system to detect BCa in urine. This work included 15 individuals with 

clinical suspicion of primary of recurrent BCa (8 confirmed correctly by histopathology) 

and 21 individuals without BCa (28 confirmed correctly by histopathology) but with other 

benign urological conditions (Horstmann et al., 2015). The sensor used consisted on a 

metal oxide gas sensor chip with three thin oxide layers. The data analyses performed 

involved PCA and discriminant analysis. Regarding the results obtained by the e-nose, 6/8 

BCa patients were correctly identified and 2/8 were non-identified (stage pTa) accounting 

for a sensitivity of 75%. From the group without BCa, 24/28 were correctly identified 

showing a specificity of 86% (Horstmann et al., 2015).     

Other authors like Van de Goor et al., studied the viability of using e-nose technology 

for discriminating different cancer types like head and neck, bladder, and colon 

carcinomas through exhaled breath. This study included 100 patients with primary 

HNSCC, 40 patients with BCa, and 28 with colon cancer (CC). The device used consisted 

on a Aeonose composed of three different micro-hotplate metal oxide sensors (van de 

Goor et al., 2017). Results concerning sensitivity, specificity and accuracy were obtained 

by double cross-validation and AUC (AUC=0.83 for HNSCC and CC; AUC=0.85 for 

HNSCC and BCa) (van de Goor et al., 2017). When differentiating HNSCC and CC the 

results showed a sensitivity of 79%, specificity of 81%, and an accuracy of 81%. When 

differentiating HNSCC and BCa the results showed a sensitivity of 80%, specificity of 

86%, and an accuracy of 84%. And finally, when differentiating BCa and CC the results 

showed a sensitivity of 88%, specificity of 79%, and an accuracy of 84% (van de Goor et 

al., 2017).  

Another pilot study with an e-nose has been developed more recently by Heers et al., 

with the aim of detecting bladder tumours through VOCs. A total of 30 patients with 

bladder tumours and 30 patients without diseases of the urinary tract (controls) were 

included in this study (Heers et al., 2018). The device used consisted of a Cyranose 320 

e-nose which contains 32 polymer sensors, trained throw the measurement of several well 

categorised samples (Heers et al., 2018). With samples stored at -20°C, the LDA correctly 

identified 28/30 patients with BCa and 26/30 as non-tumour samples (Heers et al., 2018). 
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As for sensitivity and specificity, the e-nose results obtained were 93.3% and 86.7% 

respectively. When samples were stored at -80°C, the results were similar, correctly 

identifying 28/30 BCa patients and 28/30 control samples. Results based on sensitivity 

and specificity were both 93.3%. The cross-validation value (CVV) showed close results 

for both temperatures, being 55% for samples stored at -20°C and 53% for samples 

stored at -80°C. There were no significant differences between high and low grades of 

tumour, as well as for the smoking habits or other confounding factors (Heers et al., 

2018).  

Finally, Zhu et al., also came out with a study in 2018 with the aim of detecting BCa 

VOCs biomarkers by using an optic fluorescence sensor. Based on a review of the 

literature, the authors chose five compounds as biomarkers for urinary BCa, namely 

ethylbenzene, hexanal, laurie aldehyde, and nonanoyl chloride (Zhu et al., 2018a). This 

study included 5 patients with BCa and 5 control patients as a first attempt to test the 

device. As statistical data tests, the canonical discriminant analysis (CDA) was performed 

instead of PCA which is more suitable for sensor arrays. For the prediction model, PLS-

DA and then LOOCV was used to evaluate the performance. The analyses performed a 

sensitivity of 77.75% and a specificity of 93.25% (R2=0.97, Q2=0.83) (Zhu et al., 2018a).    

 

 

1.4. Aims of this thesis 

 

Although many diagnostic methods are employed in our days for the detection of 

BCa, with overall good performances, not many advances have been made in this field. 

Actual methods of diagnostic include urine cytology, cystoscopy, imaging techniques like 

MRI and CT or even biochemical tests (Antunes et al., 2018). However, these tests 

present some limitations such as invasiveness, low sensitivity especially for detection of 

low grade tumours, high costs and the need of specialized physicians for interpretation of 

results. Thus, the development of new techniques and tools for earlier detection of BCa  is 

required (Antunes et al., 2018). Hence, metabolomics has arisen as a promising approach 

for the diagnosis of cancer, since it is noninvasive, requires small amounts of sample for 

analysis and presents high analytical sensitivity. The study of metabolites already present 

in the organism or released in response of a disease like cancer will allow to better 

understand metabolic processes in the body and even the pathological dynamism and its 

response to the tumour, promoting an earlier diagnosis and more appropriate treatment 

(Antunes et al., 2018). So far, only a few studies have been developed concerning BCa 
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metabolomics, especially concerning VOCs as potential biomarkers. First studies on that 

field can be initiated by using in vitro cell lines, which present a lower complexity in terms 

of experimental techniques and are not affected by confounding factors such as diet, 

lifestyle or presence of diseases comparing to other types of samples but still can provide 

initial information on the metabolic changes that can happen in the organism when BCa is 

present. However, as the major goal of this work is to develop a strategy that will allow to 

detect BCa in its early stage and promote the onset of treatment as soon as possible, it is 

important to start by choosing the most appropriated biological samples since the future 

diagnostic methodology will be applied to this chosen sample. 

The main aims of this thesis are: 

1) To evaluate the performance of volatiles (VOCs) in general, and volatile carbonyl 

compounds (VCCs) in particular, for discrimination of urine samples collected from 

BCa patients and cancer-free individuals (controls), by headspace solid-phase 

microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS). 

2) To identify candidate biomarkers for BCa detection and staging in urine.   

3) To define the volatilome alterations occurring in BCa, thus contributing to a better 

insight into the pathophysiological alterations associated with this type of cancer.  
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Chapter 2. Experimental methods 

 

2.1. Chemicals 

 

Thymol (≥98.5%), benzaldehyde (≥99.5%), 2-butanone (≥99%), cyclohexanone 

(≥99%), 2-decanone (≥98%), 2,5-dimethylbenzaldhyde (≥99%), heptanal (≥92%), 4-

heptanone (≥97%), (E,E)-2,4-hexadienal (≥95%), hexanal (≥98%), 2-hexanone (≥98%), 3-

methylbutanal (≥97%), 5-methyl-2-furfural (≥99%), methylglyoxal (40% aqueous solution), 

nonanal (≥95%), 2-nonanone (≥97%), 2-octanone (≥98%), 3-penten-2-one (≥70%), 3-

phenylpropionaldehyde (≥95%), 2-pentanone (≥99.5%), 2-heptanone (≥99%), 1-decanol 

(≥99.9%), acetaldehyde (≥99%), benzene (≥99.9%), 2,4-dimethylheptane (≥98%), decane 

(≥99.8%), carvone (≥98.5%), 1-dodecanol (≥98%), propanal (≥98%), isobutanal (≥97%), 

furfural (≥98.5%), heptanal (≥95%), trans-2-heptenal (≥97%), m-tolualdehyde (≥97%), 

trans-2-nonenal (≥95%), dimethylglyoxal (≥98%), 2,4-decadienal (≥94%), 2-methyl-1-

butanal (≥90%), 2-butenal (≥99%), octanal (≥99%), nonanal (≥95%), decanal (≥95%), 

(E,E)-2,4-nonadienal (100%), PFBHA (≥98%), and phenylacetaldehyde (≥90%), were 

purchased from Sigma–Aldrich (Madrid, Spain). Glyoxal (≥95%) was purchased from 

Fluka (Madrid, Spain). Sodium chloride was obtained from VWR (Leuven, Belgium). 

 

2.2. Subjects  

 

Urine samples of BCa patients and cancer-free individuals (controls) were collected in 

the morning (without fasting), at the Portuguese Institute of Oncology of Porto (IPO Porto), 

and frozen at -80°C until analysis. The experimental study was approved by the local 

Ethics Committee and all subjects signed an informed consent prior to participation.  

A total of 120 individuals were included in this study, comprising 60 BCa patients and 

60 cancer-free individuals (controls), matched for sex. A match of age was not possible 

due to the difficulty in finding cancer-free individuals with more than 65 years old. 

However, this potential confounding factor was considered in the results. Most of the BCa 

patients were diagnosed in the stage 0a, followed by stage I and only a few at later stages 

(II, III and IV) (Table 3).   
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Table 3 - Data obtained from both BCa and control patients. 

Features 
Nº of 

subjects 
Males Females 

Min./Max. 

age 

Mean age ± SD 

(years) 

Cancer free 

individuals 
60 43 17 45/66 51.8 ± 5.1 

BCa patients 60 43 17 43/87 68.2 ± 10.6 

Stage 0a 30 22 8 43/87 68.9 ± 10.5 

Stage I 19 12 7 53/83 70.4 ± 9.7 

Stage II 3 3 - 57/69 63.5 ± 5.5 

Stage III 4 2 2 43/78 60.3 ± 14.3 

Stage IV 5 5 - 51/80 64.6 ± 10.1 

 

The use of quality control samples (QCs) in metabolomics is essential since many 

processes that result from the equipment analysis, associated with the injector or the 

column for example, can affect the detection of metabolites. The QC samples will 

minimize any false results as well as promoting the reliability and reproducibility of the 

data obtained to meet the predefined criteria.   

The QC samples used were prepared of a pool of urine samples and separated in aliquots 

and injected between the real samples.  

 

2.3. Sample preparation 

 

Urine samples of BCa, controls and QC were thawed at room temperature. For VOCs 

analysis, 2 mL of urine were added to a 10 mL glass vial containing 0.54 g of NaCl and 30 

μL of thymol (2 mg/L) used as internal standard (IS). Thymol was also used to verify and 

control any possible problems of injection.  

For VCCs analysis, 250 μL of urine were added to a 10 mL glass vial with 7.5 μL of 

the derivatizing agent PFBHA (40 g/L in ultrapure water). 

For both VOCs and VCCs analysis, all samples were randomly injected and the QC 

samples were analysed on every 10 samples.  
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2.4. GC-MS analysis 

 

The analytical conditions regarding VOCs and VCCs extraction is detailed in Table 4.  

For VOCs extraction, the autosampler used consisted of a Combi-PAL autosampler type 

(Varian Pal Autosampler, Switzerland).   

For the VCCs extraction, the autosampler consisted of a Bruker CTC PAL-xt (Bruker 

Daltonics). The chromatograph used consisted of a Scion 436-gas which was coupled to a 

Bruker single quadrupole (SQ) mass spectrometer and additionally equipped with a Scion 

SQ ion trap mass detector, and as a workstation software Bruker Daltonics version 8.2.1 

and a column Rxi-5Sil MS (30 m× 0.25 mm internal diameter × 0.25 μm) from Restek 

Corporation (U.S., Bellefonte, Pennsylvania).  

As for VCCs analysis, the chromatograph consisted of a 436-GC model coupled to a 

EVOQ triple quadrupole mass spectrometer (Bruker Daltonics) and as a workstation 

software Bruker MS version 8.2.1.  
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Table 4 - Analytical conditions for VOCs and VCCs extraction. 

Analytical conditions VOCs analysis VCCs analysis 

HS-SPME   

Fiber type 

50/30 μm           

divinylbenzene/carboxen/ 

polydimethylsiloxane 

(DVB/CAR/PDMS) 

65 μm 

polydimethylsiloxane/divinylbe

nzene (PDMS/DVB) 

Incubation (time / 

temperature / stirring) 
11 min/ 44°C 6 min/ 62°C 

Extraction (time / 

temperature / stirring) 
30 min/ 44°C/ 250 rpm 51 min/ 62°C/ 250 rpm 

Desorption (time / 

temperature) 
4 min/ 250°C 5 min/ 250°C 

GC-MS   

Column 

Rxi-5Sil MS (30 m× 0.25 

mm internal diameter × 

0.25 μm) 

 Rxi-5Sil MS (30 m× 0.25 mm 

internal diameter × 0.25 μm) 

Carrier gas (flow rate) helium C-60/ 1 mL/min helium C-60/ 1 mL/min 

Oven temperature 
40°C for 1 min/ 250°C 

for 5 min/ 300°C 

40°C for 1 min/ 250°C 

for 5 min/ 300°C for 1 min 

Transfer line 

temperature 
250°C 260°C 

Ion source temperature 260°C 270°C 

Manifold temperature 41°C 41° 

Energy level of electron 

ionization (EI) 
70 eV 70 eV 

Mode Full scan Full scan 

Mass range 40–400 m/z 35–600 m/z 

Scan time 500 ms 250 ms 
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The metabolite identification was achieved by comparing MS spectra with standards, 

that were injected in the same conditions, whenever they were commercially available. 

The comparison with the MS data obtained was performed by accessing the National 

Institute of Standards and Technology (NIST v2.2, 2014) database spectral library, and by 

comparing the experimental and theoretical Kovats index as well as the reverse match (R-

match) and their retention time. Metabolites with variable importance to the projection 

(VIP) values greater than one were considered discriminants. 

As a way to “identify” metabolites with a certain level of confidence, the Chemical 

Analysis Working Group of the Metabolomics Standards Initiative (MSI) has developed a 

method of classification which comprehends 4 levels of confidence, being included on 

level 1 (L1) all “identified metabolites” meaning that those are identified based on RT, 

accurate mass and fragmentation data or even by using a pattern; levels 2 and 3 (L2 and 

L3) which are “putatively annotated compounds” and “putatively characterised compound 

classes” respectively, relates to those which can be identified through public or 

commercial libraries like NIST database for example; finally level 4 (L4) or “unknown”, 

concerns those metabolites that can be detected and quantified but cannot be qualified by 

none of these methods (Viant et al., 2017).   

 

2.5. Data pre-processing 

 

Before statistical analysis, the data were first pre-processed using MZmine-2.52 

(Pluskal et al., 2010), including filtering, peak detection, chromatogram builder, 

deconvolution and alignment. The parameters used for VOCs and VCCs pre-processing 

are summarized in Table 5. The artefact peaks from the chromatographic column (e.g., 

siloxanes, cyclosiloxanes and phthalates) were manually removed from the final data 

matrix.  
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Table 5 - Pre-processing parameters for VOCs and VCCs analysis. 

Pre-processing parameters VOCs VCCs 

Filtering (RT range / m/z 

range) 
2-34 min / 50-250 9.8-46 min / 50-300 

Peak detection (noise level) 1x104 1x105 

Chromatogram builder 

(intensity threshold / m/z 

tolerance) 

5x104 / 0.07 5x106 / 0.1 

Deconvolution (peak range / 

baseline level) 
0.03-0.5 min / 1x104 0.03-0.5 min / 5x105 

Alignment (m/z tolerance / 

RT tolerance) 
0.07 / 0.2 0.1 / 0.2 

 

 

 

Finally, the data matrix was normalized by the total area of the chromatograms and 

then scaled to pareto. In addition, a variable selection method was applied to remove any 

irrelevant variables using a Mann-Witney test. After obtaining the data matrix by those 

methods, all variables with a p-value > 0.05 were removed. 

 

2.6. Statistical analysis 

 

Both multivariate and univariate statistical tests were used for VOCs and VCCs data 

analyses. MVA was applied using PCA and PLS-DA using SIMCA-P software (version 15, 

Umetrics, Sweden). The robustness of the PLS-DA models was confirmed through 7-fold 

cross validation and permutation test (1000 random permutation of Y-observations, 2 

components) specifically R2 and Q2 (SIMCA-P software version 15, Umetrics, Sweden). 

The R2 represents the percentage of variation, measuring how well the model fits the data. 

In general, the closest the R2 is to 1, the better is the model, however that might not 

always happen. A good value of R2 will be influenced by a poor reproducibility and high 

levels of noise. The Q2 also represents the percentage of variation, however this 

parameter is predicted according to cross-validation and shows how good the model 

estimates new data. The closest the Q2 value gets to 0.5, the better is the predictivity. 

Those results might be influenced by the presence of noise or existence of outliers.   
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For validation, ROC, AUC, sensitivity, specificity, and accuracy were performed for 

PLS-DA models of VOCs and VCCs, using MetaboAnalyst. After employing MVAs, the 

metabolites with a VIP>1 were submitted to univariate analysis and a Shapiro-Wilk 

normality test to visualize if the data followed a Gaussian distribution. When data 

presented a normal distribution (both BCa and control samples present normal 

distribution), an unpaired Student’s t-test with Welch correction was used. On the other 

hand, when data presented a non-normal distribution (at least one group of BCa or control 

samples present a non-normal distribution), an unpaired Mann-Whitney test was used. 

Parameters like the effect size (ES) and the standard error were also calculated by 

applying mathematical formulas in which the ES can be calculated as the standardized 

mean difference (ESsmd) between the two group means divided by their pooled standard 

deviation (Spooled) (BCa and control) (Equation 1). Being that, Spooled and the degrees of 

freedom (dƒ) are calculated through Equation 2 and Equation 3. Next, to calculate the 

confidence interval for the standardized mean difference it is necessary to calculate its 

variance (Vsmd), as found in Equation 4. Through this result it is possible to calculate the 

standard error of the standardized mean difference (SEsmd) by applying the square root of 

its variance (Equation 5). Finally the 95% confidence interval surrounding the 

standardized mean differences is calculated through Equation 6 (Berben et al., 2012). 

The identified compounds were considered statistically significant when p-value < 0.05 

(confidence level 95%), which was corrected by the method of false discovery rate (FDR). 

Those p-values and FDR adjusted p-value intends to determine if a result is statistically 

significant (p<0.05), however they can be influenced by the sample size which is more 

relevant with larger group samples than smaller group samples (Berben et al., 2012).  

The normalized areas of the metabolites were computed using GraphPad Prism 

version 6 (GraphPad Software, San Diego, CA, USA). 

 

 

      Equation 1 

 

 Equation 2 

 

     Equation 3 

 

             Equation 4 
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    Equation 5 

 

        Equation 6 

 

To calculate sensitivity, specificity, and accuracy a confusion matrix can also be 

obtained which allow to identify a true class and a hypothesized class and so, true 

positives (TP) and negatives (TN) as well as false positives (FP) and negatives (FN) 

(Figure 6). With these results, it is possible to calculate throw mathematical formulas, the 

sensitivity, specificity and accuracy (Fawcett, 2006). The percentage of sensitivity, 

specificity and accuracy are calculated just like described in Equation 7, Equation 8, and 

Equation 9 respectively.   

 

  True classes 

  0 1 

P
re

d
ic

te
d

 

c
la

s
s
e

s
 0 TN FN 

1 FP TP 

 

1 = Positive; 0 = Negative; TN – true negatives; FN – false negatives; FP – false positives; TP - 

true positives.  

Figure 6 - Confusion matrix and performance metrics (sensitivity, specificity, and 

accuracy) calculated. [Adapted from Fawcett, 2006] 

 

   Equation 7 

 

   Equation 8 

 

   Equation 9 

 



39 

Chapter 3. Results 

 

3.1. Identification of VOCs and VCCs present in urine 

 

The aim of this work was to investigate the potential of VOCs, in general, and VCCs 

for BCa detection in urine by HS-SPME/GC-MS. A representative chromatogram of VOCs 

and VCCs is shown in Figure 7. The list of all identified compounds is described in Table 

A1 and Table A2 (see in appendix). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 - Representative HS-SPME-GC/MS full scan chromatograms of (A) VOCs and 

(B) VCCs present in urine. 1) 2-pentanone; 2) Hexanal; 3) 2-heptanone; 4) 4-methyl-2-

heptanone; 5) 1,2,4-trimethylbenzene; 6) Nonanal; 7) α-terpineol; 8) 2,5-

dimethylbenzaldehyde; 9) Formaldehyde; 10) Acetaldehyde; 11) Acetone; 12) 2-

Butanone; 13) 3-methylbutanal; 14) 4-heptanone.  

Concerning the identification of VOCs, a total of 103 compounds has been identified 

being 17 formally identified (L1) and 53 putatively identified (L2). The major class 

compounds were aldehydes, ketones, aromatic hydrocarbons, alkanes and alcohols, with 

minor class compounds being monoterpenes, fatty acids, phenols, aromatic 

(A) VOCs profile 

(B) VCCs profile 

1 2 

3 

4 
5 

6 

7 
8 

9 
10 

11 

12 13 14 
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hydrocarbons, sulfones and imidazoles. However, no formal or putative identification was 

possible for 33 compounds, which were classified as “unknown” (L4).   

Regarding VCCs identification, a total of 107 compounds (being 16 in common with 

the previous VOCs protocol) has been identified being 53 formally identified (L1) and 15 

putatively identified (L2). The major class compounds were aldehydes and ketones, with 

minor class compounds being alcohols, fatty acids, phenols and esters. Thus, 39 

compounds were not able to identify and have been classified as “unknown” (L4).   

 

 

3.2. Volatile profile of urine of BCa patients vs. cancer-free 

controls 

 

Next step was to evaluate the volatile profile of urine of BCa patients and cancer-free 

controls to determine the presence and differences concerning the metabolites in both 

groups. To verify the reproducibility of the method, a pool of samples was analysed (QCs). 

All the BCa (n=60) and control samples (AC) (n=60) were included on the PCA as well as 

QC samples (n=30) which were closely clustered and centred in the PCA score scatter 

plot (Figure 8), demonstrating the reproducibility of the method.  

 

 

 

 

 

 

 

 

 

Figure 8 - PCA scores scatter plots obtained for (A) VOCs and (B) VCCs profiles of urine 

of all subjects included in this study (controls n=60 and BCa n=60, ●) and QCs (n=30, ●).  

 

After PCA, a variable selection method was established for both VOCs and VCCs 

analysis to enhance the prediction power. In Figure 9 it is possible to visualize the 

discriminant capability of the PLS-DA models, especially concerning VOCs (VOCs model 

A B 
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– LV=2; R2X= 0.268; R2Y= 0.492; Q2= 0.218. VCCs model - LV=2; R2X= 0.347; R2Y= 

0.437; Q2= 0.250). Figure 9b shows the permutation testing that was used to confirm the 

model robustness. The ROC curve obtained for both VOCs and VCCs is demonstrated in 

Figure 9c as well as the results concerning the AUC, sensibility, specificity and accuracy 

(VOCs model: AUC=0.853; sensitivity=72%; specificity=90%; accuracy=81%. VCCs 

model: AUC=0773; sensitivity=72%; specificity=77%; accuracy=74%).   
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AUC= 0.773 
Sens.= 72 % 
Spec.= 77 % 

Accuracy= 74 % 

AUC= 0.853 
Sens.= 72 % 
Spec.= 90 % 

Accuracy= 81 % 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 - (a) PLS-DA scores scatter plots obtained, after variable selection, for (A) VOCs 

and (B) VCCs profiles of urine of controls (n=60, ●) and BCa patients (n=60, ●); (b) 

Permutation plots obtained for the PLS-DA model of VOCs and VCCs; (c) ROC curves 

obtained for VOCs and VCCs profiles.  

 

LV=2  R2X= 0.268  R2Y= 0.492  Q2= 0.218 

 

LV=2  R2X= 0.347  R2Y= 0.437  Q2= 0.250  

A B 

(a) 

(b) 

(c) 
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Then, VIPs higher than 1 in PLS-DA models were considered as relevant for group 

discrimination. Of the 1071 variables of VOCs, 193 had a VIP>1. Based on the NIST mass 

spectra library and comparison with standards it was possible to identify formally 5 

compounds (L1), to identify 5 compounds putatively (L2), and 6 compounds were 

unidentified being classified as “unknown 1,2,3…” (L4). Of the 3113 variables of VCCs, 

668 had a VIP>1. Based on the NIST mass spectra library and comparison with standards 

it was possible to identify formally 8 compounds (L1) and 8 compounds were unidentified 

being classified as “unknown 1,2,3…” (L4). 

Next, the AUC of all compounds was also calculated as well as the ES and the 

standard error. As a result, 12 compounds were found increased in BCa compared to 

controls, such as benzaldehyde, 2,4-dimethylhexane, 2-methylnonane, 1-

methylnaphthalene, 2-methylnaphthalene, and 4-methylphenol (along with other 6 

unknown compounds), while 18 were found decreased in BCa compared to controls such 

as, 2-furaldehyde, formaldehyde, glyoxal, hexanal, methylglyoxal, phenylacetaldehyde, 2-

butanone, 2-pentanone, 4-heptanone, and carvone (along with other 8 unknown 

compounds) (Table 6).  

Figure 10 represents the boxplots of the 11 compounds the most statistically 

significant for discrimination established as a biomarker panel for control vs BCa. 
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Table 6 - Metabolites that were found to be statistically significant for discrimination, present in urine of BCa patients 

and controls. 

 

Chemical name 

(IUPAC) 

p-value 

original 

p-value 

(FDR) 
AUC 

Effect 

size 

Standard 

error 
Variation 

Identification 

level 
Metabolic pathways 

Aldehydes  

2-Furaldehyde 0.0001 0.0001 0.792 -0.67 0.37  L1 - 

Benzaldehyde 0.0440 0.0460 0.607 0.41 0.36  L1 - 

Formaldehyde 0.0009 0.0041 0.675 -0.60 0.37  L1 - 

Glyoxal 0.0063 0.0150 0.601 -0.17 0.36  L1 
Peroxidation of polyunsaturated 

fatty acids 

Hexanal 0.0055 0.0150 0.647 -0.55 0.36  L1 Steroid hormone biosynthesis 

Methylglyoxal 0.0430 0.0430 0.608 -0.40 0.36  L1 
Pyruvate metabolism; glycine, 

serine and threonine metabolism 

Phenylacetaldehyde 0.0450 0.0460 0.606 -0.46 0.36  L1 Phenylalanine metabolism 

Alkanes  

2,4-Dimethylhexane 0.0001 0.0005 0.702 0.74 0.37  L2 - 

2-Methylnonane 0.0300 0.0400 0.615 0.54 0.36  L2 - 

Aromatic hydrocarbon  

1-Methylnaphthalene 0.0092 0.0160 0.638 0.60 0.37  L2 - 

2-Methylnaphthalene 0.0140 0.0220 0.631 0.59 0.37  L2 - 

4-Methylphenol 0.0001 0.0005 0.706 0.51 0.36  L1 - 
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Chemical name 

(IUPAC) 

p-value 

original 

p-value 

(FDR) 
AUC 

Effect 

size 

Standard 

error 
Variation 

Identification 

level 
Metabolic pathways 

Ketones         

2-Butanone 0.0270 0.0290 0.617 -0.31 0.36  L1 
Fatty acid and carbohydrate 

metabolism 

2-Pentanone 0.0240 0.0280 0.620 -0.32 0.36  L1 Fatty acid metabolism 

4-Heptanone 0.0001 0.0012 0.708 -0.30 0.36  L1 Fatty acid metabolism 

Monoterpene  

Carvone <0.0001  0.0001 0.735 -0.64 0.37  L1 - 

Unidentified  

Unknown 5 0.0025 0.0050 0.660 -0.45 0.36  L4 - 

Unknown 8 0.0290 0.0400 0.615 0.41 0.36  L4 - 

Unknown 9 <0.0001 0.0001 0.730 0.70 0.37  L4 - 

Unknown 16 0.0004 0.0012 0.689 0.40 0.36  L4 - 

Unknown 39 0.0190 0.0260 0.624 -0.45 0.36  L4 - 

Unknown 40 0.0230 <0.0001 0.620 -0.47 0.36  L4 - 

Unknown 43 0.0180 0.0260 0.626 -0.42 0.36  L4 - 

Unknown 19 0.0010 0.0027 0.674 0.67 0.37  L4 - 

Unknown 45 0.0200 0.0260 0.623 0.42 0.36  L4 - 

Unknown 21 0.0022 0.0050 0.662 0.64 0.37  L4 - 

Unknown 51 0.0120 0.0230 0.633 -0.56 0.36  L4 - 

Unknown 64 0.0068 0.0150 0.643 -0.53 0.36  L4 - 
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Chemical name 

(IUPAC) 

p-value 

original 

p-value 

(FDR) 

AUC Effect 

size 

Standard 

error 

Variation Identification 

level 

Metabolic pathways 

Unknown 65 0.0007 0.0041 0.681 -0.59 0.37  L4 - 

Unknown 72 0.0001 <0.0001 0.745 -0.96 0.38  L4 - 

 

L1 – identified compounds, through comparison with a chemical reference standard. L2 – putatively annotated compounds identified through 

the comparison with public or commercial libraries. L4 – unknown compounds that can be detected and quantified but cannot be identified by 

either the previous methods.   
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Figure 10 - Boxplots of the compounds the most statistically significant for discrimination (n=11) established as a biomarker panel for control 

(n=60, ●) vs BCa (n=60, ●). 

B e n z a ld e h y d e

N
o

r
m

a
li

z
e

d
 p

e
a

k
 a

r
e

a
 (

A
U

)

C
o

n
tr

o
l 
(n

=
6
0
)

B
C

 (
n
=
6
0
)

-0 .0 0 1

0 .0 0 0

0 .0 0 1

0 .0 0 2

0 .0 0 3

0 .0 0 4

0 .0 0 5 *

4 -M
e

th
y lp

h
e

n
o

l

N
o

rm
a
li
z
e
d

 p
e
a
k
 a

re
a
 (

A
U

)

C o n tro l (n = 6 0 )

B C  (n = 6 0 )

-0 .05

0 .00

0 .05

0 .10

0 .15

****

4
-M

e
th

y
lp

h
e
n

o
l

N
o

rm
a
li
z e

d
 p

e
a
k
 a

re
a
 (

A
U

)

C o n tro l (n = 6 0 )

B C  (n = 6 0 )

-0
.0

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

****

P h e n y la c e ta ld e h y d e

N
o

r
m

a
li

z
e

d
 p

e
a

k
 a

r
e

a
 (

A
U

)

C
o

n
tr

o
l 
(n

=
6
0
)

B
C

 (
n
=
6
0
)

0 .0 0 0 0

0 .0 0 0 5

0 .0 0 1 0

0 .0 0 1 5

0 .0 0 2 0 *

4 -M
e

th
y lp

h
e

n
o

l

N
o

rm
a
li
z
e
d

 p
e
a
k
 a

re
a
 (

A
U

)

C o n tro l (n = 6 0 )

B C  (n = 6 0 )

-0 .05

0 .00

0 .05

0 .10

0 .15

****

4
-M

e
th

y
lp

h
e
n

o
l

N
o

rm
a
li
z e

d
 p

e
a
k
 a

re
a
 (

A
U

)

C o n tro l (n = 6 0 )

B C  (n = 6 0 )

-0
.0

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

****

4 -M
e th

y lp
h

e n
o

lN
o

rm
a
li
z
e
d

 p
e
a
k
 a

re
a
 (

A
U

)

C o n tro l (n = 6 0 )

B C  (n = 6 0 )

-0 .05

0 .00

0 .05

0 .10

0 .15

****

4
-M

e
th

y
lp

h
e
n

o
l

N
o

rm
a
li
z e

d
 p

e
a
k
 a

re
a
 (

A
U

)

C o n tro l (n = 6 0 )

B C  (n = 6 0 )

-0
.0

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

****

F o r m a ld e h y d e

N
o

r
m

a
li

z
e

d
 p

e
a

k
 a

r
e

a
 (

A
U

)

C
o

n
tr

o
l 
(n

=
6
0
)

B
C

 (
n
=
6
0
)

0 .0 0 0

0 .0 0 1

0 .0 0 2

0 .0 0 3

0 .0 0 4 ***

H e x a n a l

N
o

r
m

a
li

z
e

d
 p

e
a

k
 a

r
e

a
 (

A
U

)

C
o

n
tr

o
l 
(n

=
6
0
)

B
C

 (
n
=
6
0
)

0 .0 0 0 0

0 .0 0 0 1

0 .0 0 0 2

0 .0 0 0 3

0 .0 0 0 4 **

4 -M
e th

y lp
h

e n
o

l

N
o

rm
a
li
z
e
d

 p
e
a
k
 a

re
a
 (

A
U

)

C o n tro l (n = 6 0 )

B C  (n = 6 0 )

-0 .05

0 .00

0 .05

0 .10

0 .15

****

4
-M

e
th

y
lp

h
e
n

o
l

N
o

rm
a
li
z e

d
 p

e
a
k
 a

re
a
 (

A
U

)

C o n tro l (n = 6 0 )

B C  (n = 6 0 )

-0
.0

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

****

M e th y lg ly o x a l

N
o

r
m

a
li

z
e

d
 p

e
a

k
 a

r
e

a
 (

A
U

)

C
o

n
tr

o
l 
(n

=
6
0
)

B
C

 (
n
=
6
0
)

0 .0 0 0

0 .0 0 2

0 .0 0 4

0 .0 0 6

0 .0 0 8 *

4 -M
e

th
y lp

h
e

n
o

l

N
o

rm
a
li
z
e
d

 p
e
a
k
 a

re
a
 (

A
U

)

C o n tro l (n = 6 0 )

B C  (n = 6 0 )

-0 .05

0 .00

0 .05

0 .10

0 .15

****

4
-M

e
th

y
lp

h
e
n

o
l

N
o

rm
a
li
z e

d
 p

e
a
k
 a

re
a
 (

A
U

)

C o n tro l (n = 6 0 )

B C  (n = 6 0 )

-0
.0

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

****

G ly o x a l

N
o

r
m

a
li

z
e

d
 p

e
a

k
 a

r
e

a
 (

A
U

)

C
o

n
tr

o
l 
(n

=
6
0
)

B
C

 (
n
=
6
0
)

-0 .0 0 5

0 .0 0 0

0 .0 0 5

0 .0 1 0

0 .0 1 5

0 .0 2 0 **

4 -M
e th

y lp
h

e n
o

l

N
o

rm
a
li
z
e
d

 p
e
a
k
 a

re
a
 (

A
U

)

C o n tro l (n = 6 0 )

B C  (n = 6 0 )

-0 .05

0 .00

0 .05

0 .10

0 .15

****

4
-M

e
th

y
lp

h
e
n

o
l

N
o

rm
a
li
z e

d
 p

e
a
k
 a

re
a
 (

A
U

)

C o n tro l (n = 6 0 )

B C  (n = 6 0 )

-0
.0

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

****

4 -H e p ta n o n e

N
o

r
m

a
li

z
e

d
 p

e
a

k
 a

r
e

a
 (

A
U

)

C
o

n
tr

o
l 
(n

=
6
0
)

B
C

 (
n
=
6
0
)

-0 .0 0 1

0 .0 0 0

0 .0 0 1

0 .0 0 2

0 .0 0 3 ****

4 -M
e th

y lp
h

e n
o

l

N
o

rm
a
li
z
e
d

 p
e
a
k
 a

re
a
 (

A
U

)

C o n tro l (n = 6 0 )

B C  (n = 6 0 )
-0 .05

0 .00

0 .05

0 .10

0 .15

****

4
-M

e
th

y
lp

h
e
n

o
l

N
o

rm
a
li
z e

d
 p

e
a
k
 a

re
a
 (

A
U

)

C o n tro l (n = 6 0 )

B C  (n = 6 0 )

-0
.0

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

****

2 -B u ta n o n e

N
o

r
m

a
li

z
e

d
 p

e
a

k
 a

r
e

a
 (

A
U

)

C
o

n
tr

o
l 
(n

=
6
0
)

B
C

 (
n
=
6
0
)

0 .0 0 0 0

0 .0 0 0 2

0 .0 0 0 4

0 .0 0 0 6

0 .0 0 0 8 *

4 -M
e

th
y lp

h
e

n
o

l

N
o

rm
a
li
z
e
d

 p
e
a
k
 a

re
a
 (

A
U

)

C o n tro l (n = 6 0 )

B C  (n = 6 0 )

-0 .05

0 .00

0 .05

0 .10

0 .15

****

4
-M

e
th

y
lp

h
e
n

o
l

N
o

rm
a
li
z e

d
 p

e
a
k
 a

re
a
 (

A
U

)

C o n tro l (n = 6 0 )

B C  (n = 6 0 )

-0
.0

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

****

4 -M
e

th
y lp

h
e

n
o

l

N
o

rm
a
li
z
e
d

 p
e
a
k
 a

re
a
 (

A
U

)

C o n tro l (n = 6 0 )

B C  (n = 6 0 )

-0 .05

0 .00

0 .05

0 .10

0 .15

****

4
-M

e
th

y
lp

h
e
n

o
l

N
o

rm
a
li
z e

d
 p

e
a
k
 a

re
a
 (

A
U

)

C o n tro l (n = 6 0 )

B C  (n = 6 0 )

-0
.0

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

****

2 -P e n ta n o n e

N
o

r
m

a
li

z
e

d
 p

e
a

k
 a

r
e

a
 (

A
U

)

C
o

n
tr

o
l 
(n

=
6
0
)

B
C

 (
n
=
6
0
)

-0 .0 0 0 5

0 .0 0 0 0

0 .0 0 0 5

0 .0 0 1 0

0 .0 0 1 5

0 .0 0 2 0 *

4 -M e th y lp h e n o l

N
o

r
m

a
li

z
e

d
 p

e
a

k
 a

r
e

a
 (

A
U

)

C
o

n
tr

o
l 
(n

=
6
0
)

B
C

 (
n
=

6
0
)

-0 .0 5

0 .0 0

0 .0 5

0 .1 0

0 .1 5 ****

4
-M

e
th

y
lp

h
e

n
o

l

N
o

rm
a
li
z
e
d

 p
e
a
k
 a

re
a
 (

A
U

)

C o n tro l (n = 6 0 )

B C  (n = 6 0 )

-0 .05

0 .00

0 .05

0 .10

0 .15

****

4
-M

e
th

y
lp

h
e
n

o
l

N
o

rm
a
li
z e

d
 p

e
a
k
 a

re
a
 (

A
U

)

C o n tro l (n = 6 0 )

B C  (n = 6 0 )

-0
.0

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

****

C a r v o n e

N
o

r
m

a
li

z
e

d
 p

e
a

k
 a

r
e

a
 (

A
U

)

C
o

n
tr

o
l 
(n

=
6
0
)

B
C

 (
n
=

6
0
)

0 .0 0

0 .0 5

0 .1 0 ****

4 -M
e
th

y lp
h

e
n

o
l

N
o

rm
a
li
z
e
d

 p
e
a
k
 a

re
a
 (

A
U

)

C o n tro l (n = 6 0 )

B C  (n = 6 0 )

-0 .05

0 .00

0 .05

0 .10

0 .15

****

4
-M

e
th

y
lp

h
e
n

o
l

N
o

rm
a
li
z e

d
 p

e
a
k
 a

re
a
 (

A
U

)

C o n tro l (n = 6 0 )

B C  (n = 6 0 )

-0
.0

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

****



48 

To investigate if the identified compounds had a relation with age of the patients, a 

Spearman correlation was computed and detailed in Table 7. The results showed a poor 

correlation with a |r| ≤ 0.43 which means that age has no significant correlation with the 

metabolites found altered in BCa compared to controls.   

Table 7 - Spearman’s correlation indexes and corresponding p-values obtained for age 

with the set of metabolites found altered in BCa compared to controls. 

Compound r p 

2-Furaldehyde -0.43 <0.0001 

Benzaldehyde 0.18 0.054 

Formaldehyde -0.27 0.003 

Glyoxal -0.24 0.0078 

Hexanal -0.19 0.0355 

Methylglyoxal -0.21 0.0207 

Phenylacetaldehyde -0.18 0.0505 

2,4-Dimethylhexane 0.37 <0.0001 

2-Methylnonane 0.2 0.0325 

1-Methylnaphthalene 0.25 0.0063 

2-Methylnaphthalene 0.21 0.0232 

4-Methylphenol 0.27 0.003 

2-Butanone -0.22 0.0164 

2-Pentanone  -0.19 0.0333 

4-Heptanone -0.31 0.0006 

Carvone -0.39 <0.0001 

Unknown 5 -0.39 <0.0001 

Unknown 8 0.15 0.0969 

Unknown 9 0.3 0.0008 

Unknown 16 0.26 0.0046 

Unknown 19 0.34 0.0001 

Unknown 21 0.31 0.0005 

Unknown 39 -0.31 0.0006 

Unknown 40 -0.19 0.0385 

Unknown 43 -0.43 <0.0001 

Unknown 45 -0.28 0.0021 

Unknown 51 -0.15 0.1001 

Unknown 64 -0.27 0.0027 

Unknown 65 -0.25 0.0058 

Unknown 72 -0.31 0.0006 
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The ROC curve, from both VOCs and VCCs, found to be statistically significant for 

discrimination was also calculated, obtaining an AUC of 0.924, a sensitivity of 85%, a 

specificity of 82%, and an accuracy of 83% (Figure 11A). The predictive class 

probabilities (Figure 11B) and the confusion matrix was also calculated (Figure 11C). 

These results are calculated based on formulas from the literature as described previously 

on chapter 2.6.  

 

 

 

 

 

 

 

 

 

 

 True classes 

  0 1 

P
re

d
ic

te
d

 

c
la

s
s
e

s
 0 49 9 

1 11 51 

 

 

Figure 11 - ROC analysis. A) ROC curve from both VOCs and VCCs found to be 

statistically significant for discrimination (identified n=16; unknowns n=14), with calculated 

sensitivity (85%), specificity (82%) and accuracy (83%). B) Predicted class probabilities of 

each samples across 100 cross validations. C) Confusion matrix. 
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To establish a correlation comparison between the 30 statistically significant 

compounds found altered in BCa compared with controls, a Spearman’s correlation 

coefficient was employed for all the statistically significant compounds with a |r| ≥ 0.5 and 

represented in a heatmap (Figure 12). Considering the results, it was possible to identify 

a strong correlation between the compound Unknown 39 (RT 19.61 m/z 71) and 

methylglyoxal, as well as the compound Unknown 9 (RT 12.16 m/z 57) with 2-

methylnonane, 1-methylnaphtalene, 2,4-dimethylhexane and 2-methylnaphtalene, which 

suggests a possible relationship between these compounds in terms of biochemical 

pathways.  

 

 

Figure 12 - Heatmap spearman correlation of the statistically significant compounds with 

a |r| ≥ 0.5 from the comparison of BCa patients and controls. 
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3.3. Volatile profile of urine of BCa patients with different stages  

 

Additionally, MVAs was used to know the profile of VOCs and VCCs for the different 

stages of BCa. A PLS-DA was employed from a matrix including stage 0a (n=29), stage I 

(n=19) and stage II, III and IV all gathered in the same group (n=12) (Figure 13). The 

results showed that when comparing the stage 0a, stage I and stages II, III and IV the 

PLS-DA analyses showed negative values of Q2 for both VOCs and VCCs which means 

that the established model does not have a predictive relevance. 

 

 

 

 

 

 

 

 

 

Figure 13 - A) PLS-DA scatter plot for VOCs analysis by comparing stage 0a (n=29, ●), 

stage I (n=19, ●), and stages II, III and IV (n=12, ●) of BCa. B) PLS-DA scatter plot for 

VCCs analysis by comparing stage 0a (n=29, ●), stage I (n=19, ●), and stages II, III and 

IV (n=12, ●) of BCa.  

 

 

Next, a pairwise comparison was performed by comparing stage 0a vs stage I, stage 

0a vs stage II, III and IV, and stage I vs II, III and IV. However, a group separation was 

only found for VOCs concerning stage 0a vs stage II, III and IV (Figure 14). 
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52 

 

 

 

 

 

 

 

 

 

Figure 14 - A) PLS-DA scatter plot for VOCs analysis by comparing stage 0a (n=29, ●) vs 

stage II, III and IV (n=12, ●). B)  ROC curve of VOCs by comparing stage 0a vs stage II, 

III and IV with calculated AUC (0.868), sensitivity (75%), specificity (93%) and accuracy 

(88%). 

 

 

After PLS-DA, a VIP superior to 1 was considered as relevant for group 

discrimination. It was possible to identify a total of 13 compounds, being 3 formally 

identified metabolites (L1), 7 putatively identified (L2) and 2 unidentified compounds 

defined as “unknown 1,2,3…” (L4). A univariate t-test was also employed to obtain p-

values and FDR adjusted p-value, as well as the ES (Table 8).  
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Table 8 - Metabolites that were found to be statistically significant for discrimination between stage 0a vs stage II, III and IV 

present in urine of BCa patients (n=13). 

 

Chemical name (IUPAC) 
p-value 

original 

p-value 

(FDR) 
AUC 

Effect 

size 

Standard 

error 
Variation 

Identification 

level 
Metabolic pathways 

2,4-Dimethylheptane <0.0001 0.0002 0.888 1.82 0.78  L2 - 

1,3-Dimethylheptane <0.0001 0.0002 0.888 1.40 0.74  L2 - 

Decane 0.0006 0.0019 0.830 1.32 0.73  L1 - 

Undecane 0.0260 0.0290 0.733 1.28 0.73  L1 - 

1,2,4-Trimethylbenzene 0.0230 0.0270 0.727 0.71 0.69  L2 - 

1,2,3-Trimethylbenzene 0.0340 0.0340 0.713 0.69 0.69  L2 - 

1,3-Dimethyl-2-ethylbenzene 0.0062 0.0160 0.770 1.04 0.71  L2 - 

1,2,4,5-Tetramethylbenzene 0.0082 0.0180 0.761 1.05 0.71  L2 - 

2,5-Dimethylbenzaldehyde 0.0130 0.0240 0.658 -0.68 0.69  L2 
Alcohols and fatty acids 

metabolism 

Benzene-like compound 0.0210 0.0270 0.730 0.88 0.70  L3 - 

Carvone 0.0180 0.0260 0.736 -0.51 0.68  L1 - 

Unknown 7 0.0150 0.0250 0.741 1.01 0.71  L4 - 

Unknown 9 0.0006 0.0019 0.830 1.34 0.73  L4 - 

L1 – identified compounds, through comparison with a chemical reference standard. L2 – putatively annotated compounds identified through 

the comparison with public or commercial libraries. L3 – putatively characterised compound classes identified based on spectral and/or 

physicochemical properties consistent with a particular class of organic compounds. L4 – unknown compounds that can be detected and 

quantified but cannot be identified by either the previous methods. 
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The ROC curve from the 13 discriminant VOCs (11 identified metabolites and 2 

unknowns) that were found to be statistically significant for discrimination by comparing 

stage 0a vs stage II, III and IV is presented in Figure 15A, as well as the predicted class 

probabilities (Figure 15B) and the confusion matrix (Figure 15C). 

Figure 16 represents the boxplots of the 10 compounds the most statistically 

significant for discrimination established as a biomarker panel for stage 0a vs stages II, III 

and IV. 
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Figure 15 - ROC analysis. A) ROC curve of the discriminant VOCs that were found to be 

statistically significant for discrimination (11 identified metabolites and 2 unknowns) by 

comparing stage 0a (n=29) vs stage II, III and IV (n=12) with calculated AUC (0.830), 

sensitivity (50%), specificity (93%) and accuracy (80%). B) Predicted class probabilities of 

each samples across 100 cross validations. C) Confusion matrix.  
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Figure 16 - Boxplots of the compounds the most statistically significant for discrimination (n=10) established as a biomarker panel for stage 0a 

(n=29, ●) vs stages II, III and IV (n=12, ●).
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Chapter 4. Discussion 

 

This work unveiled the potential of HS-SPME/GC-MS to evaluate the presence of 

discriminant VOCs and VCCs on the urinary headspace of BCa patients compared to 

cancer-free individuals (Cauchi et al., 2016; Jobu et al., 2012). A total of 103 VOCs and 

107 VCCs (16 in common) were identified in urine being mainly aldehydes, ketones, 

aromatic hydrocarbons, and alkanes.  

Considering the study of the correlation between the age of patients and the volatiles 

present in BCa and controls, the data obtained in this work demonstrated a poor 

correlation comparing the two groups. Some studies employing other matrices like breath, 

found that the levels of aldehydes had no association with both age and gender (Janfaza 

et al., 2019a). A study developed by Lima et al., also showed that the age of the patients 

had no significant influence to discriminate between PC patients and controls (Lima et al., 

2019). In a study from Monteiro et al., the results obtained through the identification of a 

potential VOC-biomarker panel in the urine showed that there were only a small effect on 

the differences on age to the classification of RCC samples, which might be even 

negligible or a possible bias (Monteiro et al., 2017).  

The comparison of metabolites present in urine of BCa patients between the stages 

0a vs stages II, III and IV showed a set of 13 statistically significant compounds obtaining 

a sensitivity of 50%, specificity of 82% and accuracy of 80%. To our knowledge, it is the 

first time that a comparison of volatile urinary profile is performed for the different stages 

of the disease. However, some studies found that, for instance, benzaldehyde was one of 

the compounds that contributed for the discrimination between high grade and low grade 

cancer cell lines (Rodrigues et al., 2018).    

Compared to other studies using the same or similar techniques (Jobu et al., 2012; 

Khalid et al., 2013; Spaněl et al., 1999), our study was made with an appreciable sample 

size (BCa samples, n=60; control samples, n=60) which represents a  strong point of this 

work.  Multivariate and univariate analyses enabled to establish a candidate biomarker 

panel of 30 volatile compounds present in urine of BCa patients compared to controls, 

unveiling a sensitivity of 85%, specificity of 82% and accuracy of 83%. These results were 

similar to the results obtained by Cauchi et al. (sensitivity 88.5%, specificity 88.2% and 

accuracy 88.4% with PLS-DA) and better than the ones obtained by Jobu et al. (55.5% 

were correctly identified with BCa), even though the sample size in this study was smaller 

(BCa samples, n=9; control samples, n=7) (Cauchi et al., 2016; Jobu et al., 2012).  
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Different processes occur in the body as a result of cancer, one of them is lipid 

peroxidation, polyunsaturated fatty acids present in the phospholipid membrane underlies 

oxidation reactions, both enzymatic (like cytochrome P450 – CYP450) and non-enzymatic 

(Janfaza et al., 2019a; Lima et al., 2019; Medeiros, 2019). Such events tend to produce 

phospholipid compounds that can decompose into electrophilic derivatives like aldehydes. 

Additionally, the decomposition of lipid hydroperoxides can also generate radical and non-

radical products like alkanes, ketones and other compounds (Medeiros, 2019). 

An aldehyde that has been found altered in urine of patients with several cancer types 

is hexanal, being correlated with 8 different cancer types, which proves that it can be a 

potential biomarker for cancer detection (e.g., lung cancer and renal cancer) (Dator et al., 

2019; Janfaza et al., 2019a; Rocha, 2019). In a study developed by Cauchi et al. the 

authors identified that hexanal was increased in BCa urine samples compared with 

controls (Cauchi et al., 2016). These results are in contrast with our study, where hexanal 

was found to be decreased in BCa samples. Moreover, Cauchi et al. found benzaldehyde 

as being increased in BCa samples, which has also been identified as being increased in 

our BCa samples (Cauchi et al., 2016). A study developed by Rodrigues et al., also found 

benzaldehyde significantly increased within the cancer cells medium in comparison to the 

non-tumorigenic medium (Rodrigues et al., 2018).  

Another compound found in our work and already associated to BCa is formaldehyde. 

This compound has been the target of a study developed in 1999 by Spaněl et al. where 

its levels were found increased in the headspace of urine of BCa patients compared with 

controls, and also at higher levels when compared with PC patients (Spaněl et al., 1999). 

Though, in our work, formaldehyde was found to be decreased in BCa samples compared 

with controls. A possible explanation mentioned by Spaněl et al. is that both patients with 

BCa and PC were at diverse stages of the disease and some of them were already in 

remission, which might have influenced the concentrations of formaldehyde in the urine of 

the patients (Spaněl et al., 1999).  

In the present study, the aldehydes that were found to change in BCa for the first time 

included 2-furaldehyde, glyoxal, methylglyoxal and phenylacetaldehyde unveiling down-

regulated levels in BCa compared to controls. 

Despite being identified for the first time in this work as candidate biomarkers of BCa, 

some compounds like glyoxal and methylglyoxal have already been found to be 

decreased, in other types of cancers like renal and prostate (Lima et al., 2019; Rocha, 

2019). As for phenylacetaldehyde, this compound has also been associated to PC, being 

significantly increased in urine of cancer patients compared with controls, which is in 

contrast with this work, where it was found decreased (Lima et al., 2019).  However, it has 

also been reported that the concentration of aldehydes can be both reduced or increased 
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in association with cancerous diseases. In some studies, done with cells, it has been 

noticed that the aldehydes present around the cancer cells were decreased compared 

with the control medium, suggesting that those aldehydes can be consumed by the 

cancerous cells. Another explanation for decreased aldehyde levels might be due to 

higher activity of aldehyde dehydrogenases (ALDH) in cancer cells since it has been 

associated with different types of cancer cells like lung cancer and oesophageal cancer 

(Lima et al., 2019).     

The association of BCa and the smoking habits of patients was not conducted 

however, it is known that cigarette smoke contain carcinogenic products for example 

acetaldehyde, formaldehyde, benzene and naphthalene derivatives which represent many 

of the compounds found in this work (American Lung Association, 2020) However, 

concerning aldehydes, more studies are necessary to understand its formation in several 

types of cancer. Part of this is due to the fact that some aldehydes like formaldehyde and 

acetaldehyde can originate from exogenous sources like environment of even being a 

product of metabolism processes like the generation of acetaldehyde from ethanol by the 

gut flora (Janfaza et al., 2019a). In this work, compared to the literature, most of the 

discriminant aldehydes were found decreased in BCa compared to controls, except for 

benzaldehyde which was also found increased in other types of cancers like lung cancer 

and breast cancer, and tends to increase as reactive oxygen species (ROS) rise as a 

result of inflammation and oxidative stress (Janfaza et al., 2019a; Rodrigues et al., 2018; 

Woollam et al., 2019; Zimmermann et al., 2007). Besides that, the decreased 

concentrations of aldehydes found in this work might also be the result of their low 

concentrations, in general, in biological samples as long as they have propensity to rapidly 

react with other compounds (Janfaza et al., 2019a).   

Alkanes or saturated hydrocarbons can be originated from lipid peroxidation. 

However, their presence might be associated with their solubility in the different biological 

matrices. A possible explanation for the increased levels of alkanes and methylated 

alkanes in cancer, can be related with the variable activity of CYP450. Yet, the origin of 

these compounds is not clearly understood since some authors consider it as secondary 

products of oxidative stress while others assume that it can originate from the mevalonic 

acid pathway of cholesterol synthesis (Janfaza et al., 2019a; Silva et al., 2011). The 

alkanes found in this work, namely 2,4-dimethylhexane and 2-methylnonane, were both 

up-regulated in BCa samples compared with controls and associated with BCa for the first 

time in this work. 

Aromatic hydrocarbons, such as benzene derivatives, specially found significantly 

altered at more advanced stages of the disease in this work, were also found increased in 

the headspace of cancerous cells of lung cancer as mentioned in other studies (Schmidt 
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and Podmore, 2015a). The origin of some other compounds, like the ones derived from 

naphthalene, is not fully understood, possibly being associated to processes that originate 

from the degradation products of steroids (Silva et al., 2011). Nevertheless, it must also 

be considered that such compounds are ubiquitously present in the environment, having 

strong carcinogenic effects, and being associated to several types of cancers such as 

lung, breast, stomach, colon, bladder cancer, and others (Rengarajan et al., 2015). In this 

study these compounds included 1-methylnaphtalene, 2-methylnapthalene and 4-

methylphenol, which were all up-regulated in BCa samples compared with controls and 

were found to change in BCa for the first time.  

The existence of cancer also takes the organism to produce ketones and alcohols, 

this happen due to the local hypoxia, that generates over-proliferation of cells, which leads 

to anaerobic respiration that in its turn, will promote the release of these compounds 

through the glycolytic pathway (Amor et al., 2019). Some very common ketones already 

associated to BCa are 2-butanone, 2-pentanone and 4-heptanone. The work developed 

by Cauchi et al. also found that compounds like 2-pentanone (also associated to CRC) 

and 4-heptanone was found to be decreased in BCa samples as in our work. By the 

contrary, 2-butanone was found to be increased in the author’s work, which do not happen 

in our work, where this compound was found to be decreased (Cauchi et al., 2016). Still, 

another work developed by Rodrigues et al., found that 2-pentanone was increased in the 

Scaber cell line (representing SCC and high-grade BCa) compared with the non-

tumorigenic SV-HUC-1 cell line (Rodrigues, 2016). Apart from being already associated 

with BCa, compounds like 2-butanone and 2-pentanone have already been found in other 

types of cancers like PC; 2-pentanone was also found to be present in BCa cell lines 

(Lima et al., 2019; Woollam et al., 2019); and 4-heptanone was already associated to 

RCC (Wang et al., 2016). 

Some compounds found, namely the unknown compounds, also were considered 

responsible for group discrimination. Among these, 6 compounds were found to be 

increased in BCa samples compared with controls and 8 were found to be decreased. 

Urine can represent a very complex matrix to analyse, since it corresponds to the 

reservoir of all end up products of metabolism and its composition is influenced by several 

exogenous sources like food intake, environment, smoking habits, and others (Gao and 

Lee, 2019). For this reason, it is expectable to find several compounds that cannot be 

identified in a first approach, however, an attempt of identification of these compounds is 

possible by using NMR and/or MS techniques (Boiteau et al., 2018). This identification 

can be achieved by comparison of peaks and its m/z and RT values by considering the 

unknown compound and a commercial standard considered similar. Nevertheless, it is 

important to consider that these methods used for the correct identification of an unknown 
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compound are costly and require time and effort, for that reason, other approaches have 

been developed (Bowen and Northen, 2010). One of those approaches focus on the 

combination of MS and NMR called SUMMIT MS/NMR, which combines data obtained by 

both techniques and chemical informatics, and attempt to reduce the time of identification 

and be suitable for a variety of complex mixtures (Leggett et al., 2020).  Another approach 

relies on the application of MS/MS to find a more rightful standard for identification. Also, 

implementation of isotopic marking or chemical derivatization can help to confirm 

metabolite structures based on the changes in mass in particular fragments or even 

create associations of metabolic pathways (Boiteau et al., 2018; Bowen and Northen, 

2010). Additionally, the heatmaps of correlation allow us to identify compounds that are 

biochemically similar or involved in the same pathways.    
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Chapter 5. Conclusions and future perspectives 

 

This work showed the importance and the applicability of HS-SPME/GC-MS on the 

evaluation of the presence of discriminant VOCs and VCCs in the urine of BCa patients 

compared with cancer-free controls. The results obtained demonstrated a satisfactory 

overall performance of the PLS-DA models to discriminate BCa patients from controls, 

enabling the definition of a set of 30 candidate biomarkers (85% sensitivity, 82% 

specificity and 83% accuracy) that can be used in the future as a non-invasive tool for 

BCa detection. A stage comparison was performed for the first time in this study and a 

discrimination between advanced stages and early stages was accomplished based on 

the alterations observed in the levels of 13 volatile metabolites (50% sensitivity, 82% 

specificity and 80% accuracy). The identification of the unknown compounds still 

represents a challenge in metabolomic studies. Its correct identification is necessary since 

it will allow a better understanding of biochemical pathways as well as their role in 

mechanisms associated with cancer.  

Future studies should rely on the selection of a smaller panel of candidate biomarkers 

for both BCa detection and staging, as well as the validation of these results in a larger 

cohort. Besides that, a possible applicability of these results into clinics using a volatile 

sensor-based approach may help to improve cancer related mortality and more effective 

therapies.  
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Table A1 - List of all identified VOCs obtained from the chromatograms by using HS-SPME/GC-MS analysis. 

Compounds 
Retention 

time 
m/z CAS# 

Experimental 
KI 

KI from 
literature 

R-
match 

Level 
identification 

2-Butanone 2.20 57/72 78-93-3 598 - 942 L1 

Benzene  2.57 78/77/51/50/52/79/74/76  71-43-2 654 - 938 L1 

2-Pentanone 3.03 58/71/86 107-87-9 685 - 939 L1 

Pentanal 3.17 58/57 110-62-3 699 - 858 L2 

2-Methyl-2-pentanol 3.72 59/87/69 590-36-3 694 - 791 L2 

4-Methylpentan-2-one 3.80 58/85 108-10-1 735 - 862 L2 

Pyrrole 3.99 52/67 109-97-7 755 - 917 L2 

2,3-Dimethylhexane  4.16 55/70 584-94-1 760 - 927 L2 

4-Methylheptane 4.28 70/71/55/57/84/85/114 589-53-7 767 - 901 L2 

3-Methylheptane 4.41 57/85 589-81-1 773 - 909 L2 

3-Hexanone 4.63 71/100 589-38-8 784 - 922 L2 

2-Hexanone  4.73 58/57/100 591-78-6 790 - 885 L1 

Unknown 1 4.80 59/71/57/55/70/84 - - - - L4 

Hexanal 4.97 56/57/72/55/99 66-25-1 800 803 918 L1 

2,4-Dimethylheptane 5.47 57/71/85/91  2213-23-2 821 823 918 L1 

Unknown 2 5.77 57/85/114 - - 834 - L4 

2,2-dimethyl-3-pentanone 5.90 57/114/56/85/58 564-04-5 843 839 915 L2 

2,4-Dimethyl-1-heptene 5.93 55/70/83/69 19549-87-2 836 840 902 L2 

2-Methyl-cyclopentanone 6.13 69/83/98 1120-72-5 846 848 829 L2 

2,3-Dimethylheptane 6.33 57/71/84 3074-71-3 855 856 896 L2 

4-Methyloctane 6.53 57/71/85/98/128 2216-34-4 863 863 909 L2 

4-Heptanone 6.72 50/58/71/86/99/114 123-19-3 871 871 941 L1 
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2-Heptanone 7.20 58/71 110-43-0 891 889 893 L1 

Xylene 7.29 91/106/105/77 /51/92/7/65/103  95-47-6 887 891 856 L2 

Unknown 3 7.43 133/151 - - 898 - L4 

Heptanal 7.55 55/70/81 111-71-7 901 902 907 L1 

Dimethyl sulfone  7.94 79/94 67-71-0 922 915 854 L2 

Unknown 4 8.43 55/69/59/71/58/56/75 - - 932 - L4 

4-Methyl-2-heptanone 8.56 58/85 6137-06-0 943 936 926 L2 

Unknown 5 8.73 72/82/100 - - 942 - L4 

Unknown 6 9.09 77/91/119 - - 954 - L4 

3-Ethylcyclopentanone 9.18 55/70/83/112 10264-55-8 962 957 916 L2 

Benzaldehyde 9.28 51/77/105 100-52-7 962 960 889 L1 

2-Methylnonane 9.42 57/98/71/56/70/55  7146-60-3 964 964 871 L2 

1-Octen-3-ol 9.86 57/72 3391-86-4 980 979 757 L2 

1,2,4-Trimethylbenzene 10.26 51/105/120 95-63-6 990 993 877 L2 

Decane 10.49 57/71 124-18-5 1000 1000 925 L1 

Octanal 10.55 57/69/84 124-13-0 1003 1002 956 L1 

Unknown 7 10.85 57/91 - - 1012 - L4 

1,2,3-Trimethylbenzene 11.07 51/105/120 526-73-8 1013 1019 932 L2 

2,6-Dimethylnonane 11.15 85/113 17302-28-2 1018 1022 885 L2 

1-Isopropyl-3-methylbenzene 11.21 91/119/134 535-77-3 1023 1024 899 L2 

2-Ethylhexan-1-ol 11.31 57/70/98 104-76-7 1030 1027 918 L2 

Eucalyptol 11.44 55/81/108/139 470-82-6 1032 1032 923 L2 

3,5-Octadien-2-ol 11.58 55/97/111/126 69668-82-2 1038 1036 811 L2 

Phenylacetaldehyde 11.77 91/65/92/120/51/63/50/89 122-78-1 1045 1043 891 L1 

Unknown 8 11.98 68/105/116/69/61/134 - - 1049 - L4 

Unknown 9 12.15 57/71/85/70/56/55/84/69 - - 1055 - L4 

Unknown 10 12.31 71/85/113 - - 1060 - L4 
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Unknown 11 12.41 77/105/120 - - 1063 - L4 

1-Octanol  12.58 56/69/70/84 111-87-5 1071 1069 885 L2 

4-Methylphenol 12.67 51/63/68/77/90/107 106-44-5 1077 1071 950 L2 

1,3-Dimethyl-2-ethylbenzene 12.99 119/134/91/77 934-74-7 1080 1083 904 L2 

2-Methoxyphenol 13.01 53/81/109 90-05-1 1090 1083 877 L2 

Unknown 12 13.11 95/110/55/67/57/85/111/83 - - 1086 - L4 

2-Nonanone 13.19 58/71 821-55-6 1092 1089 886 L2 

1-Methyl-4-isopropenylbenzene 13.19 132/91/117/115/92/63/131 1195-32-0 1090 1089 796 L2 

Linalool 13.47 71/80/93/121 78-70-6 1099 1098 887 L2 

Undecane 13.51 57/71/85 1120-21-4 1100 1100 800 L2 

Nonanal 13.60 57/70/82/98/114 124-19-6 1104 1103 892 L1 

1,2,4,5-Tetramethylbenzene 14.05 119/134/91 95-93-2 1116 1118 901 L2 

Unknown 13 14.84 91/109/119 - - 1145 - L4 

trans-(-)-p-Menthan-3-one 15.15 112/69/55/139/70/97/154/111  14073-97-3 1148 1155 916 L2 

Unknown 14 15.24 55/93/121/136 - - 1158 - L4 

p-Mentha-1,5-dien-8-ol 15.59 59/94/79/91/93/77/119/92/65  1686-20-0 1167 1170 819 L2 

Levomenthol 15.78 55/81/95/123 2216-51-5 1175 1177 946 L2 

Terpinen-4-ol 15.87 59/ 93/ 121/ 136/ 67/81/68/79/91 562-74-3 1177 1180 835 L2 

Naphthalene 15.97 51/102/128 91-20-3 1182 1183 890 L2 

α-Terpineol 16.28 59/67/93/121 98-55-5 1189 1193 894 L2 

Unknown 15 16.44 84/91/121/93/119/83/79/57  - - 1199 - L4 

Unknown 16 16.57 135/164/91/55/136/79/77  - - 1203 - L4 

2,5-Dimethylbenzaldehyde 16.84 51/105/133 5779-94-2 1208 1213 915 L2 

4-Isopropylbenzaldehyde 17.38 77/119/148 122-03-2 1239 1232 790 L2 

Carvone 17.66 54/82/93/ 108/ 107/ 53/ 106 99-49-0 1242 1242 923 L1 

Nonanoic acid 18.26 60/115/158 112-05-0 1273 1264 896 L2 

1-Decanol 18.45 70/69/83 112-30-1 1273 1270 867 L1 
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2-Methylnaphthalene 19.11 142/141/115/143/139/71/63/70/57 9-1-57-6 1298 1295 846 L2 

Unknown 17 19.24 82/96/138 - - 1299 - L4 

 2-Methoxy-4-vinylphenol 19.46 77/89/107/135 7786-61-0 1317 1307 862 L2 

1-Methylnaphthalene 19.53 142/141/115 90-12-0 1307 1311 848 L2 

4-Hydroxy-3-
methylacetophenone 

19.92 77/105/135/150 876-02-8 1323 1324 850 
L2 

Unknown 18 20.37 193/95/109/138/83/57/137/124/67/110 - - 1341 - L4 

Eugenol 20.60 55/77/103/149/164 97-53-0 1357 1349 905 L2 

n-Decanoic acid 20.85 60/129 334-48-5 1373 1359 789 L2 

Unknown 19 20.95 115/145/160 - -- 1363 - L4 

Unknown 20 21.02 58/117/181 - - 1366 - L4 

Unknown 21 22.58 91/119/147/162 - - 1426 - L4 

Unknown 22 22.64 91/161/176 - - 1428 - L4 

1-Dodecanol 23.73 55/83/111 112-53-8 1473 1472 883 L1 

2-Benzyl-4,5-dihydro-1H-
imidazole   

23.87 91/131/159 59-98-3 1477 1478 702 
L2 

Unknown 23 24.03 55/93/91/77/105/79/145/80/121/92 - - 1484 - L4 

Unknown 24 24.37 79/107 - - 1497 - L4 

Unknown 25 24.62 67/96 - - 1508 - L4 

4βH,5α-Eremophila-1,9,11-
triene 

24.78 119/161/202 5090-61-9 1511 1515 751 
L2 

Unknown 26 25.09 55/56/191/57/69/112/83/84/68 - - 1528 - L4 

Unknown 27 25.66 115/139 - - 1552 - L4 

Benzophenone 27.35 105/77/182/51/50/181/106/76/183/78  119-61-9 1635 1626 894 L2 

Unknown 28 27.66 132/91/133/77/145/119/115/105/55 - - 1637 - L4 

Unknown 29 27.83 83/153/156/96/132/69/67/82 - - 1643 - L4 

Unknown 30 28.13 119/121/191/149/107/159/109/57/147 - - 1658 - L4 

Unknown 31 29.22 149/135/55/83/69/91/53/107/94 - - 1706 - L4 
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Unknown 32 29.74 125/55/69/81/115/171/57/133/97 - - 1730 - L4 

Unknown 33 30.10 83/54/101/67/82/111/56 - - 
1746 

- 
L4 

 

L1 – identified compounds, through comparison with a chemical reference standard. L2 – putatively annotated compounds identified through 

the comparison with public or commercial libraries. L4 – unknown compounds that can be detected and quantified but cannot be identified by 

either the previous methods.   
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Table A2 - List of all identified VCCs obtained from the chromatograms by using HS-SPME/GC-MS analysis. 

Compounds 
Retention 

time 
m/z Standard Original CAS# CAS# 

Experimental 
KI 

KI from 
literature 

R-match 
Identification 

level 

Pentafluorobenzaldehyde 6,88 167/196 - 
benzaldehyde 
100-52-7 

653-37-2 943 876 827 
L2 

2,3,4,5,6-Pentafluorobenzyl 
alcohol 

9,82 99/177 - 
benzyl alcohol 
100-51-6 

440-60-8 911 978 932 
L2 

Formaldehyde, O-
[(pentafluorophenyl)methyl]ox
ime 

9,92 
99/117/161/181/
195 

- 
formaldehyde 
50-00-0 

- 1041 981 952 
L2 

Acetaldehyde oxime, o-
[(pentafluorophenyl)methyl]- 

12,85 
181/182/209/161
/117/195/99/167/
93/119 

yes 
acetaldehyde/e
thanal 75-07-0 

- 1112 1078 925 
L1 

Acetaldehyde oxime, o-
[(pentafluorophenyl)methyl]- 

13,00 
181/182/209/161
/117/195/99/167/
93/119 

yes 
acetaldehyde/e
thanal 75-07-0 

- 1112 1082 932 
L1 

Unknown 34 13,12 75/143/163/181 - - - - 1086 - L4 

Acetone, (O-
pentafluorobenzyl)oxime 

14,56 161/181/206 - 
acetone 67-64-
1 

- 1167 1135 929 
L2 

Levomenthol 15,02 
123/81/ 71/ 95/ 
55/ 67/ 82/ 69/ 
57 

- - 2216-51-5 1175 1151 899 
L2 

Propionaldehyde, (O-
pentafluorobenzyl)oxime, (Z) 
or (E)- 

15,14 181/195/236 yes 
propanal 123-
38-6 

- 1193 1154 881 
L1 

Propionaldehyde, (O-
pentafluorobenzyl)oxime, (Z) 
or (E)- 

15,33 181/195/236 yes 
propanal 123-
38-6 

- 1193 1161 864 
L1 

Isobutanal O-
pentafluorophenylmethyl-
oxime 

16,25 181/195/250 yes 
isobutanal 78-
84-2 

- 1293 1192 861 
L1 

2-Butanone oxime, o-
[(pentafluorophenyl)methyl]- 

16,61 56/181/250 yes 
2-butanone 78-
93-3 

- 1335 1205 764 
L1 
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2-Butanone oxime, o-
[(pentafluorophenyl)methyl]- 

16,70 56/181/250 yes 
2-butanone 78-
93-3 

- - 1208 833 
L1 

Unknown 35 17,55 
181/239/117/182
/168/119/74 

- - - - 1238 - 
L4 

Nonanoic acid 17,67 60/115/57/73 - - 112-05-0 1273 1242 891 L2 

3-Methyl-2-butanone oxime, 
o-
[(pentafluorophenyl)methyl]- 

17,86 58/181/253 yes 
3-methyl-2-
butanone 563-
80-4 

- 1370 1249 758 
L1 

Unknown 36 18,47 
181/260/72/161/
70/55/182/56  

- - - - 1271 - 
L4 

Butanal, 2-methyl-O-
[(pentafluorophenyl)methyl]ox
ime 

18,64 57/181/239 yes 
2-methyl-1-
butanal 96-17-
3 

- 1393 1277 833 
L1 

2-Methoxy-4-vinylphenol 18,67 51/77/107 - - 7786-61-0 1317 1278 928 L2 

2-Pentanone oxime, o-
[(pentafluorophenyl)methyl]- 

18,76 72/100/181/253 yes 
2-pentanone 
107-87-9 

- 1434 1281 875 
L1 

5-Methoxy-2-pentanone 
oxime, o-
[(pentafluorophenyl)methyl]- 

18,87 45/72/181/253 - 
5-methoxy-2-
pentanone 
17429-04-8 

- 1609 1285 769 
L2 

3-Methylbutanal oxime, o-
[(pentafluorophenyl)methyl]- 

18,90 181/195/239 yes 
3-
methylbutanal 
590-86-3 

- 1328 1287 856 
L1 

3-Methylbutanal oxime, o-
[(pentafluorophenyl)methyl]- 

19,11 181/239 yes 
3-
methylbutanal 
590-86-3 

- 1328 1294 830 
L1 

Unknown 37 19,16 
181/135/150/77/
72/107/51/253 

- - - - 1295 - 
L4 

Crotonaldehyde O-
pentafluorophenylmethyl-
oxime 

19,25 181/250 yes 
2-butenal 123-
73-9 

- 1339 1299 779 
L1 

Crotonaldehyde O-
pentafluorophenylmethyl-
oxime 

19,32 181/250 yes 
2-butenal 123-
73-9 

- 1339 1302 726 
L1 

Unknown 38 19,50 
181/57/161/182/
99/195/362/117/
69 

- - - - 1308 - 
L4 
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Unknown 39 19,61 
181/71/226/182/
161/195/99/117 

- - - - 1313 - 
L4 

Unknown 40 19,79 
181/253/ 72/ 71/ 
55/ 182/ 254 

- - - 1393 - - 
L4 

unknown 41 19,97 
181/57/268/69/2
39/87 

- - - - 1326 - 
L4 

Pentanal oxime, o-
[(pentafluorophenyl)methyl]- 

20,14 
181/239/182/100
/57/281/195/266 

- Pentanal - 1369 1332 822 
L2 

Unknown 42 20,20 
181/60/73/55/57/
69/246  

- - - - 1335 - 
L4 

Unknown 43 20,63 
181,56,264,67,5
3,182  

- - - - 1351 - 
L4 

3-Penten-2-one oxime, O-
[(pentafluorophenyl)methyl]- 

20,79 
181,56,264,67,5
3,182  

yes 
3-penten-2-
one 625-33-2 

- 1442 1357 616 
L1 

Unknown 44 20,92 
181/59/195/99/5
7/75/79/161 

- - - - 1362 - 
L4 

2-Hexanone oxime, o-
[(pentafluorophenyl)methyl]- 

20,99 72/181/253 yes 
2-hexanone 
591-78-6 

- 1533 1364 612 
L1 

Unknown 45 21.02 58/117/161/181 - - - - 1366 - L4 

Unknown 46 21,13 
181/58/71/161/1
82/117/99/195 

- - - - 1370 - 
L4 

Unknown 47 21,26 
181/58/57/55/24
0/56 

- - - - 1375 - 
L4 

4-Heptanone oxime, o-
[(pentafluorophenyl)methyl]- 

22,01 128/181/195/309 yes 
4-heptanone 
123-19-3 

- 1633 1403 851 
L1 

unknown 48 22,20 
181/55/72/85/36
2/161/56/57 

- - - - 1411 - 
L4 

n-Hexanal, o-
[(pentafluorophenyl)methyl]ox
ime 

22,34 114/181/239 yes 
hexanal 66-25-
1 

- 1460 1416 838 
L1 

n-Hexanal, o-
[(pentafluorophenyl)methyl]ox
ime 

22,47 114/181/239 yes 
hexanal 66-25-
1 

- 1460 1422 702 
L1 

3-Methylpentanal oxime, o-
[(pentafluorophenyl)methyl]- 

22,67 
181/61/57/85/23
9/55/56 

- 
3-
methylpentanal 
15877-57-3 

- 1492 1430 768 
L2 
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2-Heptanone oxime, o-
[(pentafluorophenyl)methyl]- 

22,91 72/181/253 yes 
2-heptanone 
110-43-0 

- 1633 1439 706 
L1 

2-Furaldehyde O-
pentafluorophenylmethyl-
oxime 

23,16 
83/117/181/248/
291 

yes 
furfural 98-01-
1 

- 1510 1449 955 
L1 

Unknown 49 23,51 
181/161/117/182
/167/93/195/180/
99/162  

- - - - 1463 - 
L4 

2-Furaldehyde O-
pentafluorophenylmethyl-
oxime 

23,63 83/117/248/291 yes 
furfural 98-01-
1 

- 1510 1468 947 
L1 

Unknown 50 (não 
derivatizado) 

23,80 
67/55/96/57/53/8
3/69/81  

- - - - 1474 - 
L4 

Cyclohexanone oxime, o-
[(pentafluorophenyl)methyl]- 

24,11 82/112/181 yes 
cyclohexanone 
108-94-1 

- 1635 1487 803 
L1 

3,3-Dimethylbutanal oxime, o-
[(pentafluorophenyl)methyl]- 

24,36 
57/181/239/55/1
82/280/82 

- 
3,3-
dimethylbutana
l 2987-16-8 

- 1472 1497 700 
L2 

4-Hydroxy-2-butanone oxime, 
o-
[(pentafluorophenyl)methyl]- 

24,50 
181/57/86/182/7
2/56/58  

- 
4-hydroxy-2-
butanone 590-
90-9 

- 1577 1502 699 
L2 

n-Heptanal, o-
[(pentafluorophenyl)methyl]ox
ime 

24,61 181/239 yes 
heptanal 111-
71-7 

- 1558 1507 767 
L1 

 2-Methyl-3-hexanone oxime, 
o-
[(pentafluorophenyl)methyl]- 

25,01 
86/181/128/309/
281/70/69/100 

- 
2-methyl-3-
hexanone 
7379-12-6  

- 1569 1524 604 
L2 

2-Octanone oxime, o-
[(pentafluorophenyl)methyl]- 

25,24 
181/253/72/55/1
42/69/57 

yes 
2-octanone 
111-13-7 

- 1588 1534 682 
L1 

2,4-Hexadienal oxime, o-
[(pentafluorophenyl)methyl]- 

25,53 69/110/181/276 yes 142-83-6 - 1599 1546 - 
L1 

2,4-Hexadienal oxime, o-
[(pentafluorophenyl)methyl]- 

25,74 69/110/181/276 yes 
(E,E)-2,4-
hexadienal 
142-83-6 

- 1599 1551 - 
L1 

5-(Hydroxymethyl)Furfural O-
pentafluorophenylmethyl-
oxime 

25,84 
79/94/97/181/30
5 

yes 
5-methyl-2-
furfural 620-
02-0 

- - 1559 - 
L1 
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5-(Hydroxymethyl)Furfural O-
pentafluorophenylmethyl-
oxime 

26,02 
79/94/97/181/30
5 

yes 
5-methyl-2-
furfural 620-
02-0 

- - 1566 - 
L1 

trans-2-heptenal, o-
[(pentafluorophenyl)methyl]ox
ime 

26,34 181/250 yes 
trans-2-
heptenal 
18829-55-5 

- 1522 1580 670 
L1 

n-Octanal, o-
[(pentafluorophenyl)methyl]ox
ime 

26,82 181/239 yes 
octanal 124-
13-0 

- 1654 1601 760 
L1 

n-Octanal, o-
[(pentafluorophenyl)methyl]ox
ime 

26,89 69/181/239 yes 
octanal 124-
13-0 

- 1654 1604 651 
L1 

Unknown 51 27,16 54/72/181/253 - - - - 1615 - L4 

Benzaldehyde, o-
[(pentafluorophenyl)methyl]ox
ime 

27,46 181/225/271/301 yes 
benzaldehyde 
100-52-7 

- 2285 1628 840 
L1 

Unknown 52 27,58 85/98/181/264 - - - - 1633 - L4 

Unknown 53 28,24 
181/264/87/85/6
1/71/67 

- - - - 1663 - 
L4 

Unknown 54 28,41 
181/67/53/68/18
2/139/161/70  

- - - - - - 
L4 

Phenylacetaldehyde O-
pentafluorophenylmethyl-
oxime 

28,46 
65/91/117/181/2
97 

yes 
phenylacetalde
hyde 122-78-1 

- 1832 1672 895 
L1 

Phenylacetaldehyde O-
pentafluorophenylmethyl-
oxime 

28,64 
65/91/117/181/2
97 

yes 
phenylacetalde
hyde 122-78-1 

- 1832 1680 709 
L1 

n-Nonanal, o-
[(pentafluorophenyl)methyl]ox
ime 

28,97 110/181/239 yes 
nonanal 124-
19-6 

- 2047 1694 835 
L1 

2-decanone oxime, o-
[(pentafluorophenyl)methyl]- 

29,07 72/181/253 yes 
2-decanone 
2548-87-0 

- 1383 1698 - 
L1 

Unknown 55 29,14 
181/61/75/146/2
46/71 

- - - - 1702 - 
L4 

Unknown 56 29,23 
181/55/67/54/83/
82/57  

- - - - 1706 - 
L4 
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m-Tolualdehyde O-
pentafluorophenylmethyl-
oxime 

30,05 
181/ 
315/77/91/182/6
5/79/285/78/89 

yes 
m-
Tolualdehyde 
620-23-5 

- 1721 1743 - 
L1 

3-Phenylpropionaldehyde O-
pentafluorophenylmethyl-
oxime 

30,57 
181/91/104/105/
117/77/103/65/2
71/130 

yes 

3-
Phenylpropion
aldehyde 104-
53-0 

- 1931 1767 600 

L1 

trans-2-nonenal oxime, o-
[(pentafluorophenyl)methyl]- 

30,68 181/250 yes 
trans-2-
nonenal 
18829-56-6 

- - 1773 - 
L1 

Isopropyl myristate (não 
derivatizado) 

30,75 60/73/102/228 - - 110-27-0 1827 1776 798 
L2 

Unknown 56 30,93 
181/278/54/52/5
3/75/69 

- - - - 1784 - 
L4 

n-Decanal, o-
[(pentafluorophenyl)methyl]ox
ime 

31,01 
181/239/170/182
/55/57/69/240 

yes 
n-Decanal 
112-31-2 

- 2143 1788 670 
L1 

(E,E)-2,4-nonadienal 31,70 181/276/333 yes 6750-03-4 - - 1822 - L1 

1-Hexadecanol 31,89 69/97/224 - - 
36653-82-

4 
1880 1832 930 

L2 

Unknown 58 32,01 
181/182/195/99/
117/161/167/177
/198  

- - - - 1837 - 
L4 

(E,E)-2,4-nonadienal 32,19 181/276/333 yes 6750-03-4 - - 1846 - 
L1 

2,5-Dimethylbenzaldehyde O-
pentafluorophenylmethyl-
oxime 

32,31 

181/ 132/ 77/ 
117/ 329/ 91/ 
103/ 130/ 148/ 
131/ 329 

yes 

2,5-
Dimethylbenza
ldehyde 5779-
94-2 

- 1959 1853 837 

L1 

Glyoxal (Glycoldial), bis-O-
pentafluorobenzyloxime 

32,75 181/235 yes 
glyoxal 107-
22-2 

- 1935 1875 971 
L1 

Glyoxal (Glycoldial), bis-O-
pentafluorobenzyloxime 

32,84 
181/182/161/195
/167/117/99/448/
93/119 

yes 
glyoxal 107-
22-2 

- 1935 1879 921 
L1 

Glyoxal (Glycoldial), bis-O-
pentafluorobenzyloxime 

32,91 
181/182/161/195
/167/117/99/448/

yes 
glyoxal 107-
22-2 

- 1935 1883 938 
L1 
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93/119 

Methylglyoxal bis-(O-
pentafluorophenylmethyl-
oxime) 

33,02 181/265/432 yes 
methylglyoxal 
78-98-8 

- 2174 1888 912 
L1 

Methylglyoxal bis-(O-
pentafluorophenylmethyl-
oxime) 

33,21 181/265/432 yes 
methylglyoxal 
78-98-8 

- 2174 1899 912 
L1 

Methylglyoxal bis-(O-
pentafluorophenylmethyl-
oxime) 

33,52 181/265/432 yes 
methylglyoxal 
78-98-8 

- 2174 1915  938 
L1 

Unknown 59 33,83 
181/70/250/182/
161/195/167/99/
117 

- - - - 1930 - 
L4 

Unknown 60 33,97 
181/182/161/279
/195/167/117/99/
81  

- - - - 1937 - 
L4 

Dimethylglyoxal dioxime, 
O,O'-
bis[(pentafluorophenyl)methyl
]- 

34,06 99/181/279 yes 
dimethylglyoxa
l 431-03-8 

- 1344 1942 829 

L1 

2,4-decadienal 34,17 55/181/276 yes 
2,4-decadienal 
25152-84-5 

- - 1948 - 
L1 

2,4-decadienal 34,31 55/181/276 yes 
2,4-decadienal 
25152-84-5 

- - 1955 - 
L1 

Unknown 61 34,41 
181/250/70/182/
161/195/99/167/
117  

- - - - 1960 - 
L4 

Unknown 62 34,49 
181/250/70/182/
161/195/99/167/
117  

- - - - 1964 - 
L4 

Unknown 63 / Isopropyl 
palmitate? 

34,65 
60/57/181/55/61/
73/69/102 

- - - 2013 1972 726 
L4/L2 

Unknown 64 34,95 
181/87/182/311/
161/268/195/99/
117/295 

- - - - 1988 - 
L4 

Unknown 65 35,78 
181/182/57/161/
195/99  

- - - - 2032 - 
L4 
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Unknown 66 36,18 
181/55/96/69/19
5/117/93/68 

- - - - 2053 - 
L4 

Unknown 67 37,45 
181/182/195/117
/99/161/167/197/
54 

- - - - 2122 - 
L4 

Unknown 68 37,54 
181/278/348/55/
79/67/351/80 

- - - - 2127 - 
L4 

Unknown 69 37,84 
181/250/69/182/
195/161/167/119 

- - - - 2145 - 
L4 

Unknown 70 38,18 
181/182/161/195
/99/117/52/167/5
1 

- - - - 2163 - 
L4 

Unknown 71 38,40 
181/182/161/195
/99/69/117/82/16
7 

- - - - 2175 - 
L4 

Unknown 72 38,62 
181/182/195/161
/197/471/167/99/
117 

- - - - 2188 - 
L4 

 

L1 – identified compounds, through comparison with a chemical reference standard. L2 – putatively annotated compounds identified through 

the comparison with public or commercial libraries. L4 – unknown compounds that can be detected and quantified but cannot be identified by 

either the previous methods.  


