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Abstract: Transthyretin (TTR) amyloidoses (ATTR amyloidosis) are diseases associated with
transthyretin (TTR) misfolding, aggregation and extracellular deposition in tissues as amyloid.
Clinical manifestations of the disease are variable and include mainly polyneuropathy and/or
cardiomyopathy. The reasons why TTR forms aggregates and amyloid are related with amino acid
substitutions in the protein due to mutations, or with environmental alterations associated with aging,
that make the protein more unstable and prone to aggregation. According to this model, several
therapeutic approaches have been proposed for the diseases that range from stabilization of TTR,
using chemical chaperones, to clearance of the aggregated protein deposited in tissues in the form of
oligomers or small aggregates, by the action of disruptors or by activation of the immune system.
Interestingly, different studies revealed that curcumin presents anti-amyloid properties, targeting
multiple steps in the ATTR amyloidogenic cascade. The effects of curcumin on ATTR amyloidosis will
be reviewed and discussed in the current work in order to contribute to knowledge of the molecular
mechanisms involved in TTR amyloidosis and propose more efficient drugs for therapy.

Keywords: curcumin; transthyretin; amyloidosis; protein aggregation; protein misfolding;
drug discovery

1. General Introduction

Transthyretin (TTR) is a plasma protein that functions mainly as a transporter for thyroid
hormones, in particular thyroxine (T4) and retinol (vitamin A) in complex with retinol binding
protein (RBP) [1]. TTR is also known to interact with other protein ligands and small molecules,
either natural or synthetic compounds. In plasma, TTR interacts with apolipoprotein AI (apo A-I) [2],
with the receptor of advanced glycation end-products (RAGE) [3] and with metallothionein [4]. In the
cerebrospinal fluid (CSF), TTR interacts with neuropeptide Y (NPY) [5] and with amyloid-β (Aβ)
peptide, indicating a neuroprotective role for TTR in the central nervous system [6,7].

Concerning small ligands, TTR binds various types of compounds [8] besides T4 and retinol.
It binds pterins [9], halogenated polyphenols [10] and pharmacologic agents, such as some non-steroid
anti-inflammatory drugs (NSAIDS) [11] and natural polyphenols of plant origin [12–15].

In humans and rodents, TTR is mainly synthetized by the liver and the choroid plexus of the
brain [16,17] and is secreted to the plasma and cerebrospinal fluid, respectively [18]. In minor amounts,
TTR is also synthesized in other tissues, such as the retinal pigmented epithelium, intestine, pancreas,
and meninges [19,20].
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At the molecular level, TTR is composed of four identical subunits of 127 amino acids forming
a tetramer [21,22]. Each polypeptide chain is organized in eight segments with a β-chain structure and
only a very small segment of alpha helix. The four monomers in the tetramer interact with each other
through non-covalent bonds, establishing a strong interaction between two monomers, forming dimers
that assemble as a tetramer originating a central hydrophobic channel limited by amino acids from
both dimers. This channel has two similar binding sites for thyroxine molecules [23]. The binding sites
can also accommodate other small TTR ligands that might occur in plasma as a result of metabolism,
diet origin, or even compounds administered for therapeutic purposes. For an extensive review of
TTR-ligand complex X-ray crystal structures, see a review by Pallaninathan et al. [24].

The predominance of the β-chain structure in the polypeptide chains of the TTR tetramer, and its
organization as β-sheets contribute to the intrinsic amyloid potential of the protein, leading to
aggregation, fibril formation, and deposition under specific conditions, originating transthyretin
amyloidosis (ATTR amyloidosis).

2. ATTR Amyloidosis

ATTR amyloidosis is a systemic amyloidosis of hereditary or non-hereditary origin. The hereditary
forms of the disease are due to mutations in the TTR gene that originate variants with a single amino
acid substitution [25,26] (Available online: amyloidosismutations.com). In the non-hereditary forms,
the main component of the amyloid fibrils is the wild type protein. In both cases, for different
reasons, namely amino acid alterations and/or environmental conditions, TTR becomes less stable
and dissociates into monomers that are partially unfolded and present a high tendency to aggregate
and form fibrils that deposit in the extracellular space. More than 120 TTR variants have been
described until now, related with different hereditary forms of ATTR (ATTRv). Though these are
mainly systemic forms of the disease, the most affected tissues or organs where amyloid gets deposited
are the peripheral nerves, gastro intestinal system, kidney, heart, carpal tunnel, eye, and in less cases
the meninges [27]. The non-hereditary form of the disease is mainly associated with cardiomyopathy
of aged people, over 80 years old, and the deposits are composed of wild type protein (ATTR wt) [28].
The most frequent TTR variant is TTR V30M that causes ATTRV30M amyloidosis (formerly designated
familial amyloid polyneuropathy (FAP)) [29]. The disease occurs in several foci in the world, the biggest
ones located in Portugal, Sweden, Japan, Brazil, Italy, France, and USA [30]. Concerning the hereditary
forms of the disease, TTR V122I is also a very frequent variant, in particular, in the Black American
population, being this variant related with a predominant involvement of the heart [31,32], now
designated as ATTR amyloidosis with cardiomyopathy [33].

The clinical expression of the disease is highly heterogeneous in ATTR amyloidosis. In particular
the age of onset of the disease is variable for different variants and even for patients with the same
TTR variant, namely TTR V30M, in which the onset can vary from the 2nd to the 6th decade of
life [34,35]. Early onset cases are mainly characterized by predominant loss of small-diameter nerve
fibers, severe autonomic dysfunction, and cardiac conduction alterations, resulting in peripheral
neuropathy leading to loss of sensation, to pain and heat, lower and upper members muscle atrophy,
gastro-intestinal disturbances, and cardiomyopathy. In contrast, late onset TTR V30M patients
show loss of both small and large fibers, less severe polyneuropathy, mild autonomic dysfunction
and frequent cardiomegaly [36]. Among different TTR variants, there is also high variability of
predominance of polyneuropathy or cardiomyopathy as main clinical manifestations in ATTRv
amyloidosis (reviewed in Reference [26,37]).

3. Inhibitors of TTR Aggregation: Pharmacologic and Natural Inhibitors of TTR Amyloidosis

Since plasma TTR is mainly synthesized by the liver, liver transplant has been one of the first
therapeutic approaches proposed and found effective for the disease [38]. However, as expected,
liver transplant is an invasive therapy, not suitable for all patients and with several limitations and
risks [39]. In addition, recently, it was found that after liver transplant, some patients develop TTR
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cardiomyopathy due to deposition of wild-type TTR in their heart [40–42]. This supports the need for
alternative therapeutic approaches that aim to stabilize TTR using small molecules that, by binding to
TTR, stabilize it and inhibit its aggregation and deposition [43]. The first evidence of TTR stabilization
through binding of small compounds came from the fact that when TTR is bound to T4 it is less
prone to aggregation. In addition, T4 binding sites in TTR are mostly unoccupied due to the high
TTR/T4 ratio in plasma, allowing TTR stabilization by binding of small compounds to TTR with high
affinity [44].

Several nonsteroidal anti-inflammatory drugs (NSAIDs), have been known for a long time
to compete with T4 for the binding to TTR, such as salicylates, diclofenac, flufenamic acid and
diflunisal [45]. Among these, diflunisal was one of the most promising compounds due to its affinity
and specificity to bind TTR. In addition, several diflunisal derivatives have been synthetized to improve
its affinity and selectivity to bind TTR in plasma [46,47]. Diflunisal is still one of the compounds in
use for ATTR amyloidosis therapy in countries where Tafamidis has not yet been approved [48,49].
Tafamidis, diclorofenol benzoxazole carboxylic acid, is a more recent and widely-used drug that binds
to TTR and stabilizes it [50,51]. Tafamidis is highly safe and tolerable and has been found efficient in
slowing disease progression and preserving quality of life of TTR V30M patients [52]. Meanwhile,
other strategies for ATTR amyloidosis therapy have also been pursued, namely targeting different
steps in the cascade of amyloid formation, fibril disruption, and clearance [53]. An example of such
strategies is to use compounds that bind to TTR and block its polymerization or disrupt the amyloid
fibrils formed, such as molecular tweezers (CLR01) and doxycycline, respectively [54,55].

4. Natural Inhibitors—Polyphenols

In the search for compounds of therapeutic interest, presenting very low toxicity and structural
similarities to other TTR ligands, several polyphenols of plant origin have been studied as inhibitors of
TTR amyloidogenesis. Some polyphenols were previously reported as inhibiting protein aggregation
and amyloid formation in neurodegenerative diseases, such as Alzheimer’s and Parkinson’s
disease [56]. One of the most studied polyphenols is resveratrol. In vitro studies using the AC16
cardiomyocyte cell line demonstrate that resveratrol is able to stabilize the native TTR tetramer,
preventing the formation of cytotoxic species and promoting aggregation of monomeric into non-toxic
species [12]. Furthermore, administration of resveratrol to Alzheimer’s disease (AD) mice revealed
an increase in TTR levels in plasma that does not result from higher expression of the protein, but,
instead, might be related with increased TTR stability and longer half-life in circulation [57]. However,
resveratrol seems to have not only these direct effects on TTR but also other properties namely those
involving protection against oxidation, which is difficult to discern.

Other polyphenols, like nordihydroguaiaretic acid (NDGA), rosmarinic acid, caffeic acid and
epigallocatechin gallate (EGCG), have also been investigated in vitro for their interaction with
TTR [58–62]. Contrary to most polyphenols, EGCG did not compete with T4 for binding to TTR,
revealing that it binds at a different binding site in the molecule [62]. Indeed, the crystallographic
structure of the complex of TTR with EGCG revealed that it binds at different regions at the surface of
the molecule and not at the T4 binding sites [63]. In a subsequent structure–activity study, the galloyl
moiety has been highlighted as a key structural feature of EGCG by greatly enhancing its anti-amyloid
chaperone activity of TTR [61].

When administered to a model mice expressing human TTR V30M, EGCG inhibited TTR
deposition in the gastrointestinal tract and in the dorsal root ganglia (DRG), the main sites of aggregated
TTR deposition in this animal model for the disease [64]. In addition, when administered to old mice,
EGCG treatment resulted in a decrease of TTR deposits in tissues, indicating a disruptive effect
on aggregated TTR deposits. A small pilot study with EGCG administration to human carriers of
amyloidogenic TTR mutations including TTR V30M revealed a reduction of myocardial mass in the case
of cardiomyopathy, indicating an inhibitory effect of EGCG on TTR amyloid fibril formation [65,66].
The reported studies show improvement in the cardiac function without increase of the patient’s
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survival. The low toxicity and high tolerability to EGCG, confirmed in these studies, encourage
continuation of treatment with EGCG [67].

Among the polyphenols studied in vitro, curcumin revealed a particular behavior suggesting
different mechanism of inhibition of ATTR amyloidosis [58].

5. In Vitro Studies with Curcumin

5.1. Curcumin Binds to TTR and Increases Its Resistance to Dissociation

A decade ago, Pullakhandam and colleagues first reported curcumin interaction with TTR [68].
Using Scatchard analysis of fluorescence quenching, the authors showed that curcumin binds to
wild-type TTR with a molar ratio of 1.2:1 and Kd of 2.3 × 10−6 M [68]. In addition, curcumin was found
to dose-dependently displace 1-anilino-8-naphalene sulfonate (ANS) at pH 7.2 from TTR’s central
ligand-binding channel, to which various ligands are known to bind [68].

Shortly after, we further detailed the interaction between curcumin and TTR by unequivocally
showing that curcumin competed with radiolabeled T4 ([125I]T4) for its binding to wild-type and
V30M mutant TTR, both in vitro and in whole human plasma [58]. These observations were later
corroborated by the crystal structures of TTR complexes with curcumin and also its degradation
product, ferulic acid, [15], and other curcumin-like compounds [69], showing that curcumin interacts
with Ser 117 and Lys15 and with Val 121 and Thr123 through a water molecule [15]. By filling the
largely unoccupied T4 binding pockets at the weaker dimer–dimer interface, curcumin increases
TTR tetramer resistance to dissociation in non-native monomers as shown by isoelectric focusing
(IEF) studies in semi-denaturing conditions (4 M urea) [58]. This, together with selective binding of
curcumin to TTR over other plasma proteins, resulted in a 25% increase of the tetramer/total TTR ratio
in plasma from controls and TTR V30M heterozygote carriers [58].

5.2. Curcumin Redirects TTR Aggregation into “Off-Pathway” Oligomers and Disaggregates Pre-Formed TTR
Amyloid Fibrils

Despite its inability to prevent the acid induced aggregation of TTR wild-type [68], we have
shown that curcumin robustly inhibits aggregation of the highly amyloidogenic Y78F variant under
physiological conditions (phosphate buffered saline, pH 7.4, 37 ◦C) [58]. This supports the hypothesis
that protonation and isomerization of the phenolic and enolic hydroxyl groups of curcumin at low
pH might impair interaction with TTR [68]. Under transmission electron microscopy (TEM) and
dynamic light scattering (DLS), curcumin redirected the TTR Y78F amyloid formation pathway into
a monodispersed, highly stable population of “off-pathway” oligomers with approximately 80 nm in
hydrodynamic diameter (dH) [58]. In addition, we found that Schwann cells exposed to TTR Y78F
aggregates incubated with curcumin presented significantly reduced endoplasmic reticulum (ER)
stress and were protected from entering into the apoptotic signaling pathway [70], highlighting that
curcumin-induced oligomers are less toxic than untreated “on-pathway” aggregate intermediaries.
Moreover, dot–blot analysis of conditioned medium from Rat Schwannoma (RN22) cells expressing
TTR L55P incubated with curcumin revealed almost complete inhibition of TTR aggregation (90%). This
variant is associated with an aggressive form of ATTR amyloidosis, further supporting the protective
role of curcumin on the early stages of TTR aggregation, either by inhibiting tetramer dissociation
and/or redirecting pathological misfolding and aggregation into more innocuous counterparts [58].
Similar observations were later reported relative to different aggregation-prone proteins associated
with neurodegeneration, including Aβ [71], tau [72] and α-synuclein [73].

Beyond sharing many structural similarities with classical amyloid-binding dyes, such
as Thioflavin-S, Congo red, and crysamine-G, curcumin showed specific labeling of amyloid
deposits [74–76]. Although the precise atomic-detailed characteristics underlying the ability of
curcumin to break down β-sheet rich aggregates remain unclear, solid-state NMR studies have
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highlighted the structural importance of the aromatic carbons adjacent to the methoxy and/or hydroxy
groups of curcumin in its binding with Aβ fibrils [77].

Overall, multiple lines of evidence favor the hypothesis that the non-specific modulatory role of
curcumin on amyloid formation and toxicity in vitro depends on aggregate-related conformational
structure rather than protein primary sequence.

6. In Vivo Studies with Curcumin

6.1. Curcumin Reduces TTR Load and Degrades Amyloid Deposits in Tissues

In recent years, an increasing amount of evidence supporting the anti-amyloidogenic role of
curcumin in different proteins prone to misfolding have paved the way to preclinical trials in transgenic
animal models [78].

With regard to ATTR amyloidosis, we have shown that chronically feeding young transgenic mice
for human TTR V30M with curcumin (2% w/w) results in micromolar steady-state levels of curcumin
in plasma (21.4 ± 3.6 µM) [79]. Selective competition of curcumin with T4 (42%) for the binding to TTR
in plasma significantly reduced tetramer dissociation into non-native monomeric intermediaries under
semi-dissociating conditions [79]. Beyond stabilizing TTR native fold, curcumin supplementation
alleviated TTR load and associated biomarkers in the gastrointestinal tract, the primary target organ in
this mouse model [79]. Dietary intake of curcumin was well-tolerated and non-toxic to animals and
the treatment did not interfere with TTR plasma levels in vivo [79].

In a later study, we evaluated the effect of curcumin in aged mice expressing the TTR V30M
variant on an Hsf-1 heterozygous background (hTTR V30M/Hsf), in which deposition of aggregated
TTR coexists with birefringent congophilic material in tissues. We found that curcumin intake not only
reduced non-fibrillar extracellular TTR burden in both gastrointestinal tract and dorsal root ganglia,
but also remodeled pre-existing congophilic amyloid material in tissues [70].

Our findings are in close alignment with recent observations made by others showing that
curcumin promotes remodeling of existing amyloid deposits and counteracts the formation of new
amyloid deposits, or even reduce the amount of remaining deposits [72,76,78,80].

6.2. Other Neuroprotective Mechanisms of Curcumin

Although we hypothesize that curcumin alleviates TTR extracellular burden most likely due
to its ability to directly interact and modify multiple partners of the TTR amyloid cascade, as
summarized in Figure 1, we speculate whether the pleiotropic therapeutic actions of curcumin [78]
might synergistically potentiate its efficacy in vivo.
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Figure 1. Proposed mechanism for TTR aggregation pathway modulation by curcumin. Rate-limiting
tetramer dissociation of TTR into partially unfolded monomers precedes the formation of toxic
oligomeric intermediates that evolve into β-sheets enriched mature fibrils. Curcumin modulates TTR
cascade by directly interacting with different binding partners: (a) Curcumin interaction with TTR at the
T4 binding pockets stabilizes the tetrameric fold and blocks its dissociation into unfolded monomeric
species [15,58,68]; (b) Curcumin interaction with partially misfolded non-native monomers redirects
TTR aggregation into “off-pathway” unstructured oligomers innocuous to cells [58,68]; (c) Curcumin
breaks down and remodels β-sheet rich TTR fibrils in smaller amorphous aggregates in in vitro [58]
and in vivo [70].

Recently, increasing relevance has been attributed to endothelial abnormalities associated with
ATTRv amyloidosis and in particular ATTR V30M [81,82]. It has been suggested that TTR variants
may affect endothelial cells function even before amyloid fibril formation. Thus, microangiopathy
could play an important role in an initial lesion leading to organ damage [83]. Interestingly, curcumin
appears to improve endothelial cell function and, though its mechanisms of action are not completely
known, it seems that by lowering the expression of pro-inflammatory molecules, and by reducing
levels of reactive oxygen species, such as Nox-2 in endothelial cells, curcumin not only decreases
trans-endothelial monocyte migration, but also maintains adequate NO levels for the proper function
of cells [84].

Accumulating evidence has linked autophagy impairment to neurodegeneration and neuronal cell
death [85,86]. Given that stimulation of autophagy can potentially enhance degradation of aggregation
prone-proteins, development of autophagy-inducing therapies, in which toxic misfolded proteins are
used as autophagy substrates, might be a valuable pharmacological approach for neurodegenerative
diseases, including ATTR amyloidosis [85,86].

In preclinical studies performed with TTR V30M transgenic mice, curcumin has been shown
to effectively reverse accumulation of p62, a key cargo receptor involved in selective autophagy,
re-establishing the autophagic flux and mitigating apoptosis [87]. Nevertheless, since curcumin can
mediate crosstalk between different signaling pathways [88,89] it remains unclear to which extent
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restoration of the autophagic flux in vivo occurs because: (i) curcumin promotes autophagy or (ii) its
anti-amyloid activity prevents TTR “on-pathway” aggregation reaching a critical threshold beyond
which the autophagic machinery would be overwhelmed and irreversibly damaged.

In recent years, macrophage-mediated clearance of amyloid by a variety of phagocytic and
digestive mechanisms has been receiving increasing attention in the literature [90]. Several
small-molecules, including derivatives of curcumin, have been found to promote phagocytosis of
Aβ by macrophages [91–93]. Similarly, we have shown that pre-treatment of macrophages isolated
from aged FAP mice with physiologically achievable doses of curcumin, improves phagocytic uptake
and degradation of extracellular TTR aggregates, supporting that curcumin restores the inefficient
macrophage TTR clearance characteristic of pathological conditions [70].

7. Final Remarks

Several lines of evidence suggest that curcumin has neuroprotective properties in many
protein-misfolding disorders, including Alzheimer’s and Parkinson’s diseases and ATTR
amyloidosis [78]. Curcumin is a biologically well-tolerated polyphenol, with a long established
safety history [94]. According to JECFA (The Joint United Nations and World Health Organization
Expert Committee on Food Additives) and EFSA (European Food Safety Authority) guidelines,
the recommended allowable daily intake (ADI) amount of curcumin is 0–3 mg/kg body weight [94].
Nonetheless, some minor undesired side effects have been reported in a single dose escalation study
where healthy subjects were given increasing doses from 0.5 to 12 g of curcumin [95].

Despite its well-documented therapeutic efficacy, the poor absorption and rapid metabolism
of curcumin, has hindered its progress as a prospective pharmacological agent. To increase its
bioavailability, a wide array of novel formulations have been developed, including nanoparticles,
liposomes, micelles, and phospholipid complexes, which increase the bioavailability of curcumin by
providing longer circulation, enhanced permeability, and resistance to metabolic degradation and
excretion [78].

Presently, numerous disease-modifying targeted therapies for TTR amyloidosis are being
tested in human clinical trials, including TTR stabilizers (diflunisal, tafamidis), fibril disruptors
(doxycycline/TUDCA) and the most recent gene therapies to block TTR expression (small interference
RNAs (siRNAs) and antisense oligonucleotides therapy (ASOs)) [26,37,96,97]. Although development
of these strategies greatly improved the perspectives in ATTR amyloidosis, the complex nature of
the disease, in which several pathways are known to contribute to the pathology, prompts to seek
multi-stage interventions that not only block TTR synthesis and/or misfolding, but also suppress
inflammation and oxidative damage and enhance cellular protein degradation systems. Taken together,
the pleiotropic activities of curcumin provide multiple ways to tackle TTR pathophysiology, either
through direct interaction of curcumin with TTR, or indirect effects affecting signaling pathways
associated with TTR amyloid fibril formation and clearance. Accordingly, the works here reviewed,
and summarized in Figure 2, demonstrate interaction of curcumin with TTR through binding at the
thyroxine binding sites, resulting in TTR tetramer stabilization and consequent modulation of the TTR
misfolding cascade inhibiting aggregation and /or inducing formation of non-toxic aggregates. This
leads to restoring the autophagy flux and improving phagocytic uptake and clearance of extracellular
TTR. Curcumin also appears to directly induce disaggregation of TTR pre-formed fibrils and to promote
clearance of TTR aggregates through endocytose by fibroblasts and macrophages. Concomitant with
these effects, curcumin presents several non-specific effects counteracting common pathogenic events
in amyloidosis, such as oxidative stress, inflammation, apoptosis and extracellular matrix dysregulation
within a range of dosing with proven safety.
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Figure 2. The pleiotropic effects of curcumin on the molecular pathways associated with ATTR
amyloidosis. Curcumin exerts neuroprotective effects on ATTR amyloidosis by modulating TTR
abnormal aggregation and counteracting TTR tissue deposition (left panels, 20× magnification)
immunohistochemistry (IHC) analysis of TTR in dorsal root ganglia (DRG) from mice expressing human
TTR V30M (hTTRV30M mice) treated with curcumin and age-matched controls [70]), re-establishing the
autophagic flux by reversing p62 accumulation (center panels, 20× magnification), IHC analysis of p62,
in duodenum samples from hTTRV30M mice treated with curcumin and age-matched controls [87])
and improving the phagocytic uptake and degradation of extracellular TTR aggregates by macrophages
(right panels, 63× magnification), double immunofluorescence labeling for TTR, in green, and F4/80,
in red, of primary macrophages from hTTRV30M mice that were pre-incubated in presence of curcumin
or its absence (control), before addition of TTR aggregates to cell culture medium [70]). Nevertheless,
other well-known neuroprotective properties of curcumin, such as its anti-inflammatory, anti-apoptotic,
and anti-oxidative activities [78,94], might potentiate its in vivo effects.

In conclusion, in this context, curcumin remains a promising scaffold for the development of
potent multi-stage disease-modifying drugs for the treatment of TTR amyloidosis.
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