
Development of a microcontroller based system for measuring
environmental conditions

Oleksandra Sidlovska

Master Thesis Dissertation

Supervisor: Prof. Dr. Joaquim Gabriel Magalhães Mendes
Co–supervisor: CEng. Pedro Bastardo

	

Master in Mechanical Engineering

Specialization of Automation

June 2018

The work presented in this dissertation was performed at the
Laboratory of Automation, Instrumentation and Control,
Department of Mechanical Engineering
Faculty of Engineering
University of Porto
Porto, Portugal
and at
Bosch Security Systems
Ovar, Portugal.

Oleksandra Sidlovska
E-mail: up201303807@fe.up.pt

Faculdade de Engenharia da Universidade do Porto
Departamento de Engenharia Mecânica
Rua Dr. Roberto Frias s/n
4200-465 Porto
Portugal

Abstract

The detection of fire in a building uses a fire detectors network that may include several
sensors (thermal, optical, chemical) whose signals are constantly analysed by algorithms
to reduce the occurrence of false alarms.

This dissertation was performed as a part of collaboration between Bosch Security
Systems (ST) – Ovar, a company of German origin specialized in video surveillance, com-
munication and fire detection systems and the Faculty of Engineering of the University of
Porto.

The aim of this project is to use the fire detector infrastructure to integrate an environ-
mental monitoring system (temperature, humidity, pressure and VOCs – Volatile Organic
Compounds).

It was developed a system based on a microcontroller (ESP8266) connected to a multi–
parameter sensor (BME680) using SPI communication and to the fire detector FCP–320
through the base detector MS 400 terminals.

The information acquired by ESP8266 is made available in a website, using an open
channel on ThingSpeak platform. When air quality is poor or a fire situation occurs, an
extra measurement is performed and a SMS alert is sent to the user.

Finally, a functional prototype was built which included a PCB and a new part man-
ufactured by 3D printing which is attached to the fire detector. Thus in a simple way, the
fire network sensors can be upgraded to include environment monitoring.

Keywords: Fire Alarm, Environmental Sensor, ESP8266, BME680

i

Resumo

A deteção de um incêndio num edif́ıcio usa uma rede de detetores de incêndio que devem
incluir vários sensores (térmico; ótico; qúımico) cujos sinais são constantemente analisados
por algoritmos para diminuir a ocorrência de falsos alarmes.

Esta dissertação foi realizada no âmbito de uma colaboração entre a Bosch Security
Systems (ST) – Ovar, uma empresa de origem alemã especializada em sistemas de videovig-
ilância, comunicação e deteção de incêndio e a Faculdade de Engenharia da Universidade
do Porto.

O objetivo deste projeto é usar a infraestrutura do detetor de incêndio para integrar
um sistema de monitorização ambiental (temperatura; humidade; pressão e COVs – Com-
postos Orgânicos Voláteis).

Foi desenvolvido um sistema baseado em microcontroaldor (ESP8266) conetado à um
sensor multiparamétrico (BME680) usando a comunicação SPI e ao detetor de incêndio
FCP–320 através dos terminais da base do detetor de incêndio MS 400.

A informação adquirida pelo ESP8266 é disponibilizada no website, usando um canal
aberto na plataforma ThingSpeak. Quando a qualidade de ar é má ou quando ocorre uma
situação de incêndio, uma medição extra é realizada e o utilizador é notificado através de
uma SMS.

Finalmente, foi constrúıdo um protótipo funcional que inclúıu um PCB e foi fabricada
uma peça por impressão 3D que por sua vez foi ligada ao detetor de incêndio. Assim, de
uma forma simples, os sensores da rede de incêndio podem ser atualizados para incluir a
monitorização do ambiente.

Keywords: Alarme de Incêndio, Sensor Ambiental, ESP8266, BME680

iii

To my Parents and my Sister

v

�Íå ïiääàâàòèñü.�

�Ñiäëîâñüêèé Â. Ô.

vi

Acknowledgements

I would like to express my sincere gratitude to all the people who guided me during this
dissertation.

From the Faculty of Engineering of the University of Porto:

To my supervisor, Professor Joaquim Gabriel Magalhães Mendes, for the support,
motivation, patience, and knowledge which helped me throughout this entire work.

To all the teachers who shared with me their knowledge.
To all the friends that became part of my life and with whom my time at FEUP was

enjoyable.

From Bosch Security Systems Ovar:

To my co–supervisor, Engineer Pedro Bastardo, whose guidance, ideas, knowledge
and support have helped to improve this task.

To Engineer Andrea Cannizzaro, for all the help in electronics which was essential to
perform this assignment.

To Engineer Carlos Ribeiro, for explaining the operation of the fire detector and its
manufacture.

To Engineer Álvaro Matos, for sharing his knowledge of LSN and microcontrollers and
for all the support.

To Engineer Joaquim Gomes, for sharing his knowledge of PCB layout and for helping
with the PCB construction.

To Engineer Carlos Azevedo, for helping me to understand and implement the C–Point
on detector base.

To Engineer Francisco Moreira, for welcoming me to the ENI section from Bosch Se-
curity Systems Ovar.

Last but not least:

To my grandfather Volodymyr, my grandmothers Lyudmila and Tamara, my uncle
Sergiy, my aunt Oksana and my cousine Rostislav for being always present even with
more than 4000 km of distance.

To my friend Jéssica, for the unique friendship and for all the support.
To my sister Margarita, for being my happiness and for cheering me daily.
To my boyfriend Bruno, for giving me his love, support and patience.
To my parents: Larysa and Yevhen, for the support and effort in guaranteeing me the

best personal and academic formation.

vii

Contents

Abstract i

Resumo iii

Acknowledgements vii

List of Figures xiii

List of Tables xv

Nomenclature xvii

1 Introduction 1

1.1 The Bosch Group . 1

1.2 Project Background . 2

1.3 Aim and Objectives . 2

1.4 Thesis Outline . 2

2 State-of-the-art 3

2.1 Smart Buildings . 3

2.2 Standards . 4

2.3 Fire Detectors . 7

2.3.1 Twinguard by Bosch Smart Home 7

2.3.2 AVENAR 4000 . 7

2.3.3 FCP–320 . 8

2.4 Summary . 8

3 Architecture of the Proposed System 9

3.1 AVENAR 4000 . 9

3.1.1 Microcontroller MSP430 . 11

3.1.2 Detector Base MS 400 . 11

3.2 Architecture change . 12

3.3 FCP–320 / FCH–320 Conventional Automatic Fire Detector 13

3.4 Adafruit Feather HUZZAH ESP8266 . 13

3.5 BME680 – Environmental Sensor . 14

3.5.1 Adafruit BME680 Development Board 16

3.5.2 First Calibration . 17

3.6 Communication and connection . 18

3.6.1 ESP8266 – BME680 . 18

3.6.2 ESP8266 – FCP–320 . 19

ix

CONTENTS

3.6.3 ESP8266 – Website . 20

3.7 Summary . 20

4 Software Design 23

4.1 Arduino IDE . 23

4.1.1 Interrupt . 25

4.1.2 Sleep mode . 26

4.2 ThingSpeak . 27

4.2.1 Code to send data . 28

4.3 Twilio . 29

4.4 Configuration of SMS sending . 30

4.5 MATLAB Analysis . 33

4.6 Results . 34

4.6.1 ThingSpeak channel . 34

4.6.2 ThingView – ThingSpeak viewer . 35

4.6.3 Alarm detection . 35

4.6.4 Poor air quality detection . 36

4.7 Summary . 37

5 Prototype Development 39

5.1 PCB development . 39

5.1.1 Development steps . 39

5.1.2 Components . 40

5.2 New part design . 42

5.2.1 Construction . 42

5.2.2 Plastic injection molding . 44

5.3 Final Prototype . 46

5.3.1 Project Costs . 48

5.4 Summary . 48

6 Conclusions and Future Works 49

6.1 Conclusions . 49

6.2 Future Works . 49

References 51

A Schematics 55

A.1 ESP8266 Schematic . 55

A.2 BME680 Schematic . 56

A.3 Schematic of the designed PCB . 57

B MS 400 59

B.1 MS 400 wire connection . 59

C Arduino Code 61

C.1 Programming code . 61

C.2 bsec serialized configurations iaq.h . 67

C.3 bsec serialized configurations iaq.cpp . 68

C.4 MATLAB Analysis . 69

x

CONTENTS

D Current calculation 71
D.1 Average current calculation . 71

E Technical draw 73
E.1 Technical draw of the new mechanical part 73

xi

List of Figures

1.1 Bosch Security Systems S.A., in Ovar [2] . 1

2.1 Automatic Fire Detection and Alarm Systems [7] 6

2.2 Twinguard [8] . 7

2.3 AVENAR 4000 [9] . 7

2.4 FCP-320 [10] . 8

3.1 Dual Ray Technology [5] . 9

3.2 Intelligent Signal Processing [4] . 10

3.3 Block Diagram [11] . 11

3.4 MS 400 [14] . 12

3.5 Proposed solution . 13

3.6 ESP8266 [15] . 13

3.7 BME680 [17] . 14

3.8 Resistance of metal oxide sensor [18] . 15

3.9 IAQ classification and colour–coding [16] . 16

3.10 Adafruit BME860 [19] . 17

3.11 IAQ Accuracy indicator [20] . 17

3.12 First calibration . 17

3.13 SPI connections [21] . 18

3.14 Wire connections among ESP8266 and BME680 19

3.15 Use of an external LED . 19

3.16 Use of a photocoupler . 20

4.1 Available BSEC configuration[20] . 24

4.2 Interrupt routine . 25

4.3 Filled fields to create a channel on ThingSpeak [30] 28

4.4 Twilio Information [31] . 30

4.5 SMS usage [31] . 30

4.6 ThingHTTP App – Alarm . 31

4.7 React App – Alarm . 32

4.8 TimeControl App . 33

4.9 Channel view . 34

4.10 Charts of the measured parametres on smartphone 35

4.11 Alarm detection . 36

4.12 Fields results . 36

4.13 Received SMS – IAQ . 36

5.1 PCB . 40

5.2 Final PCB . 40

xiii

LIST OF FIGURES

5.3 Power circuit . 41
5.4 PC123 Photocoupler [35] . 41
5.5 Schematic of the connectors . 41
5.6 Rules to design the plastic bosses [36] . 43
5.7 New part . 44
5.8 First draft analysis . 45
5.9 Final draft analysis . 45
5.10 New part with drafts and rounds . 46
5.11 Final prototype - 3D model . 46
5.12 PCB 3D model . 47
5.13 New part obtained by 3D additive manufacturing 47
5.14 Final prototype . 47

xiv

List of Tables

3.1 Current consumption of BME680 [16] . 15
3.2 Wi–Fi stadards [21] . 20

4.1 Files’ content [26] . 23
4.2 Sleep modes of ESP8266 [27] . 26

5.1 Dimensions for plastic bosses with gussets [36] 43
5.2 Price of purchased components . 48

xv

Nomenclature

Acronyms

ABS Acrylonitrile Vutadiene Styrene

ADC Analog to Digital Converter

AFDS Automatic Fire Detection and Alarm Systems

API Application Programming Interface

APP Application Software

BIS Building Integration System

BSEC Bosch Software Environmental Cluster

BT Building Technologies

CAN Controller Area Network

CPU Central Processor Unit

DAC Digital to Analog Converter

EEPROM Electrically–Erasable Programmable Read-Only Memory

FAP Fire Addressable Photoelectric

FEUP Faculty of Engineering of the University of Porto

GPIO General Purpose Input/Output

HTTP Hypertext Transfer Protocol

I2C Inter–Integrated Circuit

IAQ Indoor Air Quality

IC Integrated Circuit

IDE Integrated Development Environment

IIR Infinite Impulse Response

IoT Internet of Things

IP Internet Protocol

xvii

NOMENCLATURE

ISO International Organization for Standardization

ISP Intelligent Signal Processing

JST Japan Solderless Terminal

JTAG Joint Test Action Group

LED Light Emitting Diode

LGA Land Grid Array

LSN Local Security Network

MCU Microcontroller Unit

MMS Multimedia Messaging Service

NEMA National Electrical Manufacturers Association

OPC Open Platform Communications

PC Personal Computer

PCB Printed Circuit Board

RH Relative Humidity

RTC Real–Time Clock

SMS Short Message Service

SPI Serial Peripheral Interface

ST Security Systems

TCP Transmission Control Protocol

ULP Ultra Low Power

URL Uniform Resource Locator

USB Universal Serial Bus

VOC Volatile Organic Compound

xviii

Chapter 1

Introduction

This study results from the collaboration between an academic and industrial environment
that involves three interested parties: the student, Mechanical Engineering Graduate, the
teaching institution, Faculty of Engineering of the University of Porto (FEUP), and the
company, Bosch Security Systems (ST) Ovar.

It depicts different tasks performed at FEUP and at Bosch so as to share scientific and
industrial information.

1.1 The Bosch Group

The Bosch Group is an important global supplier of technology and services which employs
approximately 402, 000 associates worldwide with business divided into four sectors:

� Mobility Solutions;

� Industrial Technology;

� Consumer Goods;

� Energy and Building Technology [1].

The Bosch Group came to the Portuguese market in 1911 and has currently five locations:
two in Lisbon, Braga, Ovar and Aveiro. Bosch Building Technologies – Ovar belongs
to the Building Division which produces video cameras, monitors, digital recorders and
accessories for security systems.

Figure 1.1. Bosch Security Systems S.A., in Ovar [2]

1

1. Introduction

Seeing that Bosch is a leading Internet of Things (IoT) company, it consequently offers
innovative solutions for smart homes, smart cities with connected mobility and manufac-
turing.

Bosch Building Technologies (BT) supplies video surveillance, intrusion, fire–alarm
and voice–alarm systems, access control systems and management software [3].

1.2 Project Background

This work is included in an innovative project under a consortium created by Bosch and
the University of Porto. It is a project focused on creating solutions to Safe Cities and in
Industry 4.0.

1.3 Aim and Objectives

The main objective of this work is to implement an environmental sensor inside the fire
detector, in order to monitor the air quality and detect the fire simultaneously. The
environmental sensor indicates when the air quality is poor and consequently prevents
health problems and help increase people productivity. To achieve this objective, several
intermediate tasks were defined:

� Study fire detectors and their interfaces;

� Selection and purchase of the components for the project – microcontroller and
environmental sensor;

� Programming the microcontroller and design a Printed Circuit Board (PCB);

� Communication with a website;

� Design of a mechanical part to contain the system;

� Final assembly of the prototype and test.

1.4 Thesis Outline

Chapter 2: State-of-the-art according to Smart Cities from Bosch which contain Smart
Buildings, describes the existing fire alarm systems and the most important standards.

Chapter 3: Architecture of the Proposed System presents the used architecture, from
the proposed solution to the final solution, justifying the relevant options that were taken.
All the used components and the connections between them are covered.

Chapter 4: Software Design presents the implementation of the programming code
and the construction of the different functionalities. Moreover, sending information to a
web page and alert messages are defined.

Chapter 5: Prototype Development The main stages of prototype construction are
described: creating a PCB and a new part where it can be placed.

Chapter 6: Conclusions and Future Works presents the conclusions of this thesis as
well as suggested future works.

2

Chapter 2

State-of-the-art

This State-of-the-art reviews the main issues concerning the automatic detection of fire
in Smart Buildings. Moreover, it considers the most significant standards referring to
automatic fire detectors. Finally, some products related to automatic fire detection are
mentioned to offer a view of current market offers.

2.1 Smart Buildings

The Connected Building Solution joins building equipment, like fire, intrusion alarm and
access control systems which are inside commercial buildings. Bosch provides different
solutions for buildings in order to guarantee internal networking connection, security and
safety.

Fire Alarm System assures safety of people and their property. Nowadays, buildings
have a lot of technical infrastructures which increase electromagnetic pollution and its
impact on a fire detector is often unknown. The AVENAR 4000 has an eSMOG (electro-
magnetic emission) feature which provides robustness against electromagnetic pollution
and prevents false fire alarms. The causes of electromagnetic interference can be: defects
in installed devices like lamps and loudspeakers; incorrect installation of electrical devices;
unsuitable cable route (especially in older buildings) and electromagnetic radiation in fre-
quencies which have not been tested. Consequently AVENAR’s hardware and software
contains measures to avoid these electromagnetic interferences [4].

Bosch has high–quality Fire Alarm System which includes panels and peripherals to
provide flexibility and early fire detection such as intelligent detectors, interface modules,
manual call points and sounders.

FPA–5000 Modular Fire Panel has modular configuration and allows easy extension,
thus it is possible to be connected to 32 Panel Controllers, Remote Keypads and OPC
(Open Platform Communications) servers, also connected to the Building Integration Sys-
tem (BIS).

The 5000 Series is certified according to current European standards including the lat-
est updated version of EN54–2 and EN54–4. EN54 stipulates the requirements, methods
of testing and performance criteria for every component of fire detection and fire alarm
systems installed inside and outside buildings. Standard EN54–2 relates to the controlling
and indicating equipment while EN54–4 concerns the power supply equipment.

By using external CAN (Controller Area Network) and Ethernet interfaces, intercon-
necting numerous Panel Controllers and Remote Keypads is possible. The combination
of CAN and Ethernet enables the use of more flexible network topologies with greater

3

2. State-of-the-art

number of panels. Furthermore, the Ethernet interface makes possible the connection to
a Building Management System like BIS, via an OPC server.

The Modular Fire Panel 5000 Series can be equipped with multiple interfaces for an
extended range of applications which can be interfaced to voice evacuation and fire mon-
itoring systems and Ethernet/OPC can be integrated in building management including
third party systems.

The Local Security Network (LSN) bus system by Bosch, joins fire and intrusion alarm
systems which enables the network be set up as specified: loop, tee–off or a mix of both
configurations. Therefore, the digital transmission is bidirectional, allowing sensors and
control panels to exchange data among them. Information flows between the control panel
and the LSN elements via a single two–wire connection which also supplies power to the
detectors. All devices are initialized, controlled and identified from the control panel which
displays precise and easy to read information on each detector [5].

2.2 Standards

The subject of fire in buildings, particularly in high buildings and public locations such as
hotels, shopping centres, schools and theatres, or even industrial areas, has given engineers
significant motivation to develop fire detectors. Currently, standards concerning fire de-
tection and fire alarm systems have been developed to guarantee the correct installation,
maintenance and inspection of this essential equipment.

This section mentions the most important standards regarding fire detectors, namely,
European Standard EN54 by CEN – European Committee for Standardization and por-
tuguese Technical Note N◦12 by Autoridade Nacional de Proteção Civil.

The EN54 whose title is“Fire Detection and Fire Alarm Systems”is divided in following
parts:

1 Introduction.

2 Control and indicating equipment.

3 Fire alarm devices – Sounders.

4 Power supply equipment.

5 Heat detectors – Point detectors.

7 Smoke detectors – Point detectors using scattered light, transmitted light or
ionization.

10 Flame detectors – Point detectors.

11 Manual call points.

12 Smoke detectors – Line detectors using an optical light beam.

13 Compatibility assessment of system components.

14 Guidelines for planning, design, installation, commissioning, use and mainte-
nance.

15 Point detectors using a combination of detected phenomena.

16 Voice alarm control and indicating equipment.

4

2.2. Standards

17 Short-circuit isolators.

18 Input/output devices.

19 Aspirating smoke detectors.

21 Alarm transmission and fault warning routine equipment.

22 Line-type heat detectors.

23 Fire alarm devices – Visual alarms.

24 Components of voice alarm systems – Loudspeakers.

25 Components using radio links.

26 Point fire detectors using carbon monoxide sensors.

27 Duct smoke detectors.

28 Non-resettable line-type heat detectors.

29 Multi-sensor fire detectors – Point detectors using a combination of smoke and
heat sensors.

30 Multi-sensor fire detectors – Point detectors using a combination of carbon
monoxide and heat sensors.

31 Multi-sensor fire detectors – Point detectors using a combination of smoke, car-
bon monoxide and optionally heat sensors [6].

The Techinical Note N◦12 defines the Automatic Fire Detection and Alarm Systems
(AFDS) which are a technical installation that registers the beginning of the fire without
human intervention and then transmits the information to the signalling and controlling
centre. The AFDS ensures the safety of the people who are in the building and it has the
components presented in Fig. 2.1 [7].

5

2. State-of-the-art

Figure 2.1. Automatic Fire Detection and Alarm Systems [7]

A Automatic Detector

B Manual Detector

C Primary Power Supply

D Secondary Power Supply

E Panel

F Alarm Organisation

G Intern Alarm

H Internal Signalling – Failure

I External Alarm – Fault Signal

J Interconnection

K Building Automation

L Commands in case of fire

M Remote Signalling

O Commands in case of fire

P Remote Signalling (controlled directly by the detection Centre)

6

2.3. Fire Detectors

2.3 Fire Detectors

This section mentions three Bosch fire detectors available in the market: Twinguard by
Bosch Smart Home which is interesting because of its Wi–Fi, AVENAR and FCP–320
which are used in industrial applications.

2.3.1 Twinguard by Bosch Smart Home

Bosch Smart Home provides Twinguard which is a smoke detector with an air quality
sensor and Wi–Fi connection to be used at home (Fig. 2.2). It provides warnings in the
event of smoke or impure air and has a connection to the smartphone by the Twinguard
app (application software). The air quality sensor BME680 measures temperature, relative
humidity and the concentration of Volatile Organic Compounds (VOC) indoors. It is
powered by alkaline batteries that normally last for two years [8].

Figure 2.2. Twinguard [8]

2.3.2 AVENAR 4000

FAP–425 (Fire Addressable Photoelectric) or AVENAR 4000 features an excellent ac-
curacy and swiftness in fire detection (Fig. 2.3). Its strength against electromagnetic
pollution and information about dangerous environmental conditions allow the system to
recognize and resolve this situation much quicker thus saving time and money [5].

(a) FAP–425–DOTC–R (b) AVENAR 4000 Components

Figure 2.3. AVENAR 4000 [9]

The represented components are:
1 – Smoke measurement chamber with optical sensor.
2 – Thermal sensor.

7

2. State-of-the-art

3 – Chemical sensor.
4 – Individual display with two colour LEDs (Light Emitting Diode) (red and green).
5 – PC (Personal Computer) board with evaluation electronics.
6 – MS 400 / MS 400 B Detector Base.
This fire detector is powered up by the LSN bus and the communication to the fire panel
is also made by LSN.

2.3.3 FCP–320

This automatic fire detector has optical, thermal and chemical sensors and an intelligent
evaluation electronics which continuously analyses all sensor signals (Fig. 2.4). It prevents
false alarms because of good speed and accuracy of detection such as AVENAR. The
biggest difference between these two detectors is that the FCP-320 does not use the LSN
system and is not programmed, it is powered up with 24 V DC, whose operating voltage
is 8.5 V DC – 30 V DC. There are two variant with 820 Ω alarm resistor and 470 Ω alarm
resistor.

Figure 2.4. FCP-320 [10]

The last two fire detectors are the most interesting for industrial applications, specially
AVENAR 4000 because of its technology, therefore it will be described in more detail in
next chapter.

2.4 Summary

This chapter presented some of Bosch fire alarm system which detects fire efficiently, its
components and how it works.

The following Chapter 3 describes the used fire detector as well as the other compo-
nents used in this work and their hardware and software connections.

8

Chapter 3

Architecture of the Proposed System

This chapter explores the architecture used in this project. The solution is based on the
use of a microcontroller (µC) that communicates with an environmental sensor, indicates
the state of the fire detector and sends the information to a website. The following sections
describe the components and define the connections among them.

3.1 AVENAR 4000

This section describes in detail the AVENAR fire detector, its components and function-
alities. It includes three different sensors:

� Optical sensor (smoke sensor) uses the scattered–light method, that is, a LED
transmits light to the measuring chamber. If there is a fire, smoke enters the mea-
suring chamber and the ligt is scattered by the smoke particles and hits the photo
diodes which convert the quantity of light into a proportional electrical signal [9].
The Dual–Ray technology consists of using two optical sensors with different wave-
lengths – one infrared and one blue (Fig. 3.1). This technology allows to distinguish
real smoke from disturbances such as light smoke, steam or dust, by comparing the
intensity of scattered light emitted by various particles, resulting in less false alarms
because of better size differentiation [5].

Figure 3.1. Dual Ray Technology [5]

The represented components are:

9

3. Architecture of the Proposed System

1 – Blue LED.
2 – Infrared LED.
3 – Scattered light.
4 – Photo Diode.

� Thermal sensor (temperature sensor) is a thermistor. An alarm is triggered when
the temperature is higher than 69 ◦C (thermal maximum) or if the temperature
reaches a defined value within a specified time (thermal differential).

� Chemical sensor (CO gas sensor) detects the carbon monoxide (CO) which results
from fire, hydrogen (H) and nitrous monoxide (NO). The sensor signal value and
the concentrarion of gas are proportional [9].

The sensors are self–monitoring and the fire panels indicate the following errors:

� Fault indication in the event of the failure of the detector electronics.

� Continuous display of the contamination level during service.

� Fault indication if heavy contamination is detected (in the place of false alarm).

The integrated dividing elements maintain the functional security of the LSN loop in the
event of wire interruption or short–circuit. In the event of an alarm, the fire panel receives
the individual detector identification. The detector alarm indication is a red flashing LED
which is easily 360 ◦ visible [5].

Intelligent Signal Processing (ISP) contributes to faster recognition of fires and min-
imises the occurrence of false alarms because all sensor signals are processed continually
by smart algorithms using neuronal network (Fig. 3.2) [4].

Figure 3.2. Intelligent Signal Processing [4]

Fig. 3.3 shows the block diagram of the fire detector which has a LSN chip, microcon-
troller, sensors, LED, C–Point and power supply.

The LSN chip functions are:

� Power supply;

� Handling of rotaries which address the detectors;

10

3.1. AVENAR 4000

� Communicate with the microcontroller;

� Communicate with the Panel;

� Handling of indicator LEDs [11].

The versions for automatic and manual address setting have three rotary switches on the
bottom of the detector. These rotaries are used to select automatic and manual address
allocation with or without auto–detection. The versions without rotaries are automati-
cally addressable only [9].

Figure 3.3. Block Diagram [11]

3.1.1 Microcontroller MSP430

The microcontoller inside the AVENAR is a MSP430F2272 from Texas Instruments. It
is an ultra–low power microcontroller which was introduced in the late 90s. Its typical
application is on fire and smoke detectors because of it ultra–low power aspects, cost op-
timization and small size [12].

This microcontroller is programmed using a 38–pin Target Development Board: MSP–
TS430DA38. This Development Board uploads the programme through the Joint Test
Action Group (JTAG) interface or the Spy Bi–Wire (2–wire JTAG) protocol [13].

3.1.2 Detector Base MS 400

The fire detector head is installed in the Detector Base MS 400 which is used in surface–
mounted and flush–mounted cable feed (Fig. 3.4).

This base has seven terminal screws which allow the connection to the fire detector:
a1/a2, b1, b2, c, 0V, +V and ground. The power supply connections are 0V and +V, the
LSN contacts are a1/a2, b1 and b2. Additionally, there is the C–Point connection which
consists of measure the voltage between terminals b1 or b2 and c [14].

11

3. Architecture of the Proposed System

(a) MS 400 (b) Technical Drawing of MS 400

Figure 3.4. MS 400 [14]

3.2 Architecture change

The initial idea was to use the AVENAR microcontroller to communicate to the environ-
mental sensor BME680 and send its data to a website, including the data from its sensors.

AVENAR is programmed via a PC connected to the fire panel through FSP–5000–
RPS (Remote Programming System) and powered via LSN–bus which is in the fire panel.
This system makes it possible to programme the sensors individually, send commands and
execute different functions. Unfortunately, the Modular Fire Panel and the programming
system were not available to perform this task.

Another problem concerns the communication protocol LSN, that is Bosch proprietary,
that makes difficult the connection with the environmental sensor.

To overcome these problems, it was decided to use the conventional fire detector FCP–
320 and ESP8266 microcontroller which already contains a Wi–Fi module. This conven-
tional detector is powered by 24 V DC source. To supervise the FCP–320 state, the so
called C–Point in the detector base is used. The voltage between b1 or b2 and c is 0V in
normal use and it increases to 24V in case of an alarm. The microcontroller communicates
to the environmental sensor and reads the fire detector state using C–Point. Fig. 3.5
shows the defined architecture.

The following sections describe the components: the conventional fire detector, the
microcontroller and the environmental sensor.

12

3.3. FCP–320 / FCH–320 Conventional Automatic Fire Detector

Wi-Fi

SPI

C-Point
Website

ESP8266

BME680

MS 400

FCP-320

Figure 3.5. Proposed solution

3.3 FCP–320 / FCH–320 Conventional Automatic Fire De-
tector

As previously mentioned, FCP–320 is a conventional fire detector which combines three
different sensors. An alarm is automatically triggered if a sensor signal combination corre-
sponds to a fire condition. These detectors work perfectly in areas with light smoke, dust
or steam. The FCP–320 series has three sensors (optical, thermal and chemical) equal to
AVENAR sensors.

Detectors FCP–OC–320, FCP–O–320, FCP–OT–320 and FCH–T320 have both mod-
els with 470 Ω and 820 Ω [10].

3.4 Adafruit Feather HUZZAH ESP8266

The Adafruit Feather HUZZAH ESP8266 is an Arduino compatible Wi–Fi development
board and it has 32 MBit of memory (Fig. 3.6). It is clocked at 80 MHz and the power
supply is 3.3V. The ESP8266 can be used to control devices with two types of communi-
cation: Inter–Integrated Circuit (I2C) and Serial Peripheral Interface (SPI). The Adafruit
Feather HUZZAH ESP8266 will be called as ESP8266 hereforth.

Figure 3.6. ESP8266 [15]

There are two different ways to power this feature: micro USB (Universal Serial Bus) cable
or 4.2/3.7 Lithium Polymer (Lipo/Lipoly) or Lithium Ion (Lilon) battery to the Japan

13

3. Architecture of the Proposed System

Solderless Terminal (JST) jack. The board converts the 5V USB down to 3.3V. When the
ESP8266 is powered by the USB and the battery is connected, it automatically switches
to USB power and charges the battery at 100mA. Appendix A.1 shows the ESP8266
pin–out configuration and its schematic.

The ESP8266 is programmed with Arduino IDE (Integrated Development Environ-
ment). There are some rules to properly install the ESP8266 Board Package into Arduino
IDE software so it is essential to define some configurations such as Central Processor Unit
(CPU) Frequency at 80MHz, Upload Speed at 115200 and install the right USB driver for
the CP2104 USB–to–Serial chip [15].

3.5 BME680 – Environmental Sensor

The BME680 is a digital 4 in 1 sensor which measures gas, humidity, pressure and tem-
perature (Fig. 3.7). The sensor module is inside a compact metal–lid Land Grid Array
(LGA) package with the dimensions 3.0 mm x 3.0 mm x 0.93 mm. The main supply
voltage range is between 1.71 and 3.6V. Some of its applications are indoor air quality,
home automation and control, IoT and weather forecast [16].

Figure 3.7. BME680 [17]

It has three different power modes: sleep, normal and forced. In normal mode, the sensor
changes automatically between a measurement and a standby period. In forced mode, the
sensor executes a single measurement on request and then goes back to sleep mode. This
mode is used in applications that need a low sampling rate. Tab. 3.1 shows its current
consumption. The existing digital interfaces are I2C (up to 3.4 MHz) and SPI (3 and 4
wire, up to 10 MHz) [16].

14

3.5. BME680 – Environmental Sensor

Table 3.1. Current consumption of BME680 [16]

Current consumption Conditions

2.1 µA at 1 Hz humidity and temperature

3.1 µA at 1 Hz pressure and temperature

3.7 µA at 1 Hz humidity, pressure and temperature

0.09–12 mA for p/h/T/gas depending on operation mode

0.15 µA in sleep mode

The measurement period includes temperature, humidity and pressure measurement with
selected oversampling. Additionally, it contains a heating phase for the gas sensor hot
plate to a target temperature, typically between 200 ◦C and 400 ◦C, then it is maintained
for a certain duration of time to measure the gas sensor resistance. The measurements of
pressure and temperature pass through the Infinite Impulse Response (IIR) which filters
a short–term disturbances caused by external factors such as blowing into the sensor or
slamming a door. In case of humidity and gas sensors, this filter is not needed because
these values do not oscillate quickly.

The gas sensor is a metal oxide–based which detects VOCs by adsorption and then ox-
idation/reduction on its sensitive layer. It detects the VOCs from paints, lacquers, paint
strippers, cleaning supplies, furnishings, office equipment, glues, adhesives and alcohol.
The output signal is a resistance value which changes with the variation of VOC con-
centration: the higher the concentration of reducing VOCs, the lower the resistance and
vice versa. It means that if air quality is bad, the concentration of VOCs is high so the
resistance will decrease. The raw signal is transformed to an Indoor Air Quality (IAQ)
index by smart algorithms inside Bosch Software Environmental Cluster (BSEC) [16].

When air quality is good, oxygen is absorbed by the surface of the metal oxide and
attracts free electrons within this surface, forming a potential barrier. This barrier pre-
vents the flow of electrons and increases resistance (Fig. 3.8a). In the presence of VOCs,
oxygen reacts with the reducing gases and the potential barrier is not formed. Thus, there
is free flow of electrons and resistance decreases (Fig. 3.8b).

(a) Clean air – high resistance (b) Bad air – low resistance

Figure 3.8. Resistance of metal oxide sensor [18]

BSEC software is engineered to work with the four integrated sensors inside the BME680.
It is based on an intelligent algorithm which provides an IAQ output. This output has

15

3. Architecture of the Proposed System

values between 0 (clean air) and 500 (heavily polluted air) with a resolution of 1 to indicate
and quantify the quality of the air available nearby (Fig. 3.9).

Figure 3.9. IAQ classification and colour–coding [16]

Gas sensor specification

Response time (τ33− 63%) is less than 1 s and power consumption is less than 0.1 mA in
ultra–low power mode. Its parametres are inferred by lab measurements under controlled
environmental conditions compliant to the International Organization for Standardization
(ISO) 16000–29 standard “Test methods for VOC detectors”.

Humidity sensor specification

Response time (τ0-63%) is approximately 8 s, accuracy tolerance is ± 3% Relative Humid-
ity (RH), hysteresis is ± 1.5% RH, operating range is 0 – 100% RH and the resolution is
0.008 RH.

Pressure sensor specification

Operating range is 300 – 1100 hPa and resolution of output data is 0.18 Pa. As previously
mentioned, it is used an IIR filter to decrease the impact of external disturbances.

Temperature sensor specification

Operating range is from -40 to +85 ◦C and output resolution is 0.01 ◦C. Temperature data
is also filtered by the IIR filter [16].

3.5.1 Adafruit BME680 Development Board

It was used the Adafruit BME680 Environmental Sensor Development Board that includes
the Bosch’s sensor placed on a PCB with a 3.3 V regulator and level shifting (Fig. 3.10).
Adafruit BME680 Development Board will be called as BME680 hereafter. This board can
be used with 3.3 V or 5 V microcontrollers so it is perfectly compatible with ESP8266. The
dimensions are 16.0 mm x 11.0 mm x 2.8 mm [19]. Appendix A.2 shows the BME680
schematic.

16

3.5. BME680 – Environmental Sensor

Figure 3.10. Adafruit BME860 [19]

3.5.2 First Calibration

There is an IAQ Accuracy indicator which varies between 1 and 3 (Fig. 3.11). This
indicator shows the state of the calibration of the sensor which is executed automatically
in the background after any reset.

Figure 3.11. IAQ Accuracy indicator [20]

The first sensor calibration can take several days and it takes several minutes to reach
accuracy of 1 for the first time. It is possible to accelerate the calibration process (only
for testing purpose) after reaching 1 by manually introducing “bad air” to the sensor
for a few seconds. It can be put in a box with an open permanent marker or perfume
which contains alcohol. A box with an open permanent marker was used to accelerate the
calibration (Fig. 3.12).

Figure 3.12. First calibration

17

3. Architecture of the Proposed System

This method can only be used for evaluation purposes since it is common for the sensor
to take a long time to calibrate. Once the sensor has been calibrated for the first time, it
takes about 20 minutes to achieve IAQ Accuracy 3 when used after.

3.6 Communication and connection

3.6.1 ESP8266 – BME680

Both ESP8266 and BME680 have two types of communications: I2C and SPI. The first
one is used to interconnect ICs (Integrated Circuits) on a PCB. It was created by Philips
Semicondutors, it is cheap, simple and widely used and provides four data rates: 100, 400
kb/s, 1, 3.4 Mb/s.

The second one is used in chip–to–chip connection in a PCB or between PCBs. Ad-
ditionally, SPI establishes the communication between microcontrollers and peripheral
devices like memory chips, Analog to Digital Converter (ADC), Digital to Analog Con-
verter (DAC) and sensors. It was created by Motorola and the data rate is unspecified,
normally 20 Mb/s up to about 100 Mb/s [21].

When it was thought to use AVENAR, the used communication protocol between LSN
chip and MSP430F2272 was analysed which is SPI, so it was decided to keep the same
communication.

In order to establish SPI communication, four connections are necessary (Fig. 3.13):

� MISO – Master In Slave Out – the Slave line for sending data to the Master.

� MOSI – Master Out Slave In – the Master line for sending data to the peripherals.

� SCLK – Serial Clock.

� SS – the pin on each device that the Master can use to enable and disable specific
devices.

Figure 3.13. SPI connections [21]

18

3.6. Communication and connection

It is also necessary to power the BME680 with the ESP8266 energy. Fig. 3.14 shows the
wire connections which have energy and communication lines.

Figure 3.14. Wire connections among ESP8266 and BME680

3.6.2 ESP8266 – FCP–320

It has already been mentioned in Section 3.2 that the ESP8266 reads the fire detector
state using the C–Point. It consists of measuring the voltage between b1 and c on the
Detector Base MS 400, in normal use the voltage is 0 V and in case of an alarm, it is 24
V.

In an initial phase, it was used one external LED signal and a push button to simulate
the fire detector behaviour (Fig. 3.15). When the button was pressed, the led turned on
and this meant an alarm situation, so ESP8266 indicated 1.

Figure 3.15. Use of an external LED

Then the fire detector was connected to the ESP8266 using the C–Point. Appendix B
shows the wire connection on the detector base. The voltage at b1 is always 24 V and a1
is ground. Voltage at c changes according to the situation of alarm or non–alarm:

� Voltage at c is 24 V – normal situation.

� Voltage at c is 0 V – alarm situation.

In order to read the voltage at c, a PC123 photocoupler was used to adjust the voltage
levels while 510 Ω and 10 kΩ resistors were used to convert 24 V to 3.3 V (Fig. 3.16).
In this case, the output voltage of the photocoupler is 3 V in a normal state and 0 V in a

19

3. Architecture of the Proposed System

fire situation thus ESP8266 reads 1 in a normal situation and 0 in a fire situation.

Figure 3.16. Use of a photocoupler

3.6.3 ESP8266 – Website

To send the information about the environmental sensor and the fire detector to a website,
the chip that has the Wi–Fi antenna included in the ESP8266 is used. Wi–Fi is a wireless
interface used in the Internet of Things connectivity. ESP8266 has the following Wi–Fi
standards: 802.11 b/g/n (Tab. 3.2).

Table 3.2. Wi–Fi stadards [21]

Standard
Frequency
/GHz

Maximum Data Rate
/Mb·s−1 Range /m

802.11 b 2.4 11 100

802.11 g 2.4 54 100

802.11 n 2.4/5 600 100

The communication protocol to send data from ESP8266 to the website is Hypertext Trans-
fer Protocol (HTTP). It defines rules which allow information transfer on the World Wide
Web and runs on top of the Transmission Control Protocol/Internet Protocol (TCP/IP)
[22].

An HTTP session consists of a sequence of network request–response transactions
where a client starts a request by establishing a TCP connection to a specific port, usually
port 80. A server listener on that port waits for a client request message and when is
received, a status line and a message with a requested resource is sent nack [23]. The
latest version of HTTP is 1.1 which accesses web pages more quickly and decreases web
traffic [24].

3.7 Summary

This chapter explained, in detail, the components used when carrying out the proposed
task and the connections among them. The reasons to not use AVENAR have been men-
tioned and an alternative solution which consists of using the conventional fire detector

20

3.7. Summary

FCP–320 and ESP8266 microcontroller were presented. The environmental sensor infor-
mation and the state of the fire detector are sent through the HTTP protocol to a web
page.

The programming code in Arduino IDE, the definition of sending data to a web page
and the configuration of an alert message are covered in the next Chapter 4.

21

Chapter 4

Software Design

This chapter describes software design, including the programming code, sending infor-
mation to a website and sending Short Message Service (SMS) to a phone number in case
of an alarm and detection of poor air quality.

4.1 Arduino IDE

Chapter 3 has already mentioned that ESP8266 is programmed using the Arduino IDE.
The extension of the file is .ino, the programming language is C++ and the structure is
divided in setup() and loop(). The setup() function is called when a sketch starts but it
only runs once, after each power up or reset of the board. Inside setup() variables and
pin modes are initiated as well initial values set. While the loop() function is looping
consecutively, allowing the programme to change and respond.

BSEC has a library to use in Arduino IDE which allows higher–level signal processing
for the BME680 [25]. There is a BME680 Application Programming Interface (API) and
this driver package includes two header files (.h) and one source file (.c) (Tab. 4.1) [26].

Table 4.1. Files’ content [26]

File Content

BME680 defs.h Constants, macros and datatype declaration.

BME680.c Declaration of the sensor driver APIs.

BME680.h Definition of the sensor driver APIs.

BSEC library is supported in 32, 16 and 8 bit Microcontroller Unit (MCU) platforms and
it is compatible with ESP8266 using xtensa–1x106–elf–gcc compiler.

In this task, one example of BSEC Software Library with additional functions is used:
read the BME680 values, read the status of the FCP–OT320 and send the information to
a website.

The used example from BSEC Software is basic config state ulp plus.ino which in-
cludes three libraries: EEPROM.h, bsec.h and bsec serialized configurations iaq.h.

The EEPROM.h (Electrically-Erasable Programmable Read–Only Memory) library
allows read and write to the non–volatile memory of ESP8266. BSEC state is saved when
IAQ accuracy reaches 3 for the first time. Next time the programme is started, it will be
read the EEPROM state of ESP8266.

23

4. Software Design

Header file bsec.h has the definitions for the library and it includes a list of everything
that is inside such as other necessary libraries.

bsec serialized configurations iaq.h configures solutions to specific needs. There are
three different parametres which can be chosen: supply voltage of BME680, maximum
time between values reading and time to background calibration. Fig. 4.1 shows the
possible configurations of BME680.

Figure 4.1. Available BSEC configuration[20]

Supply voltage can be 1.8 V or 3.3 V and can influence the self–heating of the sensor. The
maximum time between two measurements is 3 s in normal mode and 300 s in Ultra Low
Power mode (ULP), in this mode the system sleeps for 300 s (5 min) to minimize power
consumption. The history of BSEC is considered for the automatic background calibration
of the IAQ in days. So, if there are changes in this time period, it will influence the IAQ
value. BSEC can consider the last 4 or 28 days of operation for automatic background
calibration.

File bsec serialized configurations iaq.cpp contains the chosen BSEC configuration.
The selected configuration is generic 33v 300s 4d because the supply voltage from ESP8266
to the sensor is 3.3 V, the time between two measurements is 300 s and it was chosen to
consider the last 4 days of operation for the automatic background calibration.

General Purpose Input/Output (GPIO) 15 of ESP8266 is the slave select so the
function to define the SPI communication between BME680 and ESP8266 is: iaqSen-
sor.begin(15, SPI). To read the state of FCP–320, it is necessary to choose a pin which
will be the input, in this case, GPIO 5 of ESP8266 was chosen. As previously mentioned,
ESP8266 reads 1 in a normal situation and 0 in a fire situation thus in programming code
the DigitalRead function which reads the state of pin 5 is inverted using ! symbol. When
the state of this pin changes from 1 to 0, it runs the interrupt which performs an extra
measurement and a SMS alert is sent.

The mains steps of the code are below:

� Include the necessary libraries;

� Define the function declarations;

� Create an object of the class Bsec;

� Define the apiKey from the ThingSpeak;

� void setup:

– Connects to Wi–Fi;

– Setup the pin which reads the fire detector state;

– SPI configuration;

24

4.1. Arduino IDE

� void loop:

– Digital read of the pin which reads the fire detector state;

– Print the output data;

– Send the output data to website;

� Define the function declarations;

The programming code, bsec serialized configurations iaq.h and bsec serialized configurations iaq.cpp
files are attached in Appendices C.1, C.2 and C.3, respectively.

4.1.1 Interrupt

As previously mentioned, when the pin which reads the state from the fire detector, changes
from 1 to 0 (falling), the interrupt routine runs once and then goes back to the main code
(Fig. 4.2). In other words, ESP8266 is working normally and when the input pin 5
triggers from high to low, the normal routine is interrupted, then the interruption routine
is executed and returns to normal routine.

Figure 4.2. Interrupt routine

The interrupt routine is defined as follows:

1 void setup () {
2 /* Setup pin that reads f i r e de t e c t o r s t a t e and execute s the i n t e r r up t ...

*/
3 pinMode (5 , INPUT) ;
4 a t ta ch In t e r rup t (d i g i t a lP inTo In t e r rup t (5) , a l a rm s i tua t i on , FALLING) ;
5 }
6
7 void loop () {
8 i n t alarmState = ! d ig i t a lRead (5) ; // Reads the value from input pin 5
9 }

10
11 /* I n t e r rup t i on that occurs when there i s an alarm s i t u a t i o n */
12 void a l a rm s i tua t i on ()
13 {
14 i n t alarmState = ! d ig i t a lRead (5) ;
15 S e r i a l . p r i n t l n (”Alarme ”) ;
16 b s e c v i r t u a l s e n s o r t s e n s o rL i s t [1] = {
17 BSEC OUTPUT IAQ ESTIMATE,
18 } ;
19

25

4. Software Design

20 iaqSensor . updateSubscr ipt ion (s en so rL i s t , 1 , ...
BSEC SAMPLE RATE ULPMEASUREMENT ON DEMAND) ;

21 checkIaqSensorStatus () ;
22 }

4.1.2 Sleep mode

ESP8266 and BME680 have sleep modes with lower energy consumption than in a normal
operation mode. The equipment executes the routine and then falls asleep for a certain
amount of time. After that, it wakes up to run the code again and goes back to sleep.

The BME680 current consumption was presented in Tab. 3.1. It was implemented
the ultra–low power mode which features an update rate of 300 seconds (5 minutes) and
has an average current consumption of 0.1 mA.

ESP8266 has three different sleep modes which allow to disable, or not, the following
functions:

� Wi–Fi connection;

� System clock which transmits a steady high–frequency signal to synchronize all the
internal components;

� Real–Time Clock (RTC) which keeps track of the current time;

� CPU which performs the programming code.

Tab. 4.2 defines the existing ESP8266 sleep modes.

Table 4.2. Sleep modes of ESP8266 [27]

Item Modem–sleep Light–sleep Deep–sleep

Wi–Fi OFF OFF OFF

System clock ON OFF OFF

RTC ON ON ON

CPU ON Pending OFF

Current 15 mA 0.4 mA 20 µA

The deep–sleep mode was implemented and noticed that the programme ran once, then
the ESP8266 fell asleep for a defined time, restarted to run the code and feel asleep again.
This way, the environmental sensor could not achieve IAQ Accuracy 3 because there was
not enough time for a stable reading (20 minutes) so ESP8266 was set to work at full power.

Current measurement

Current measurements were made in two operating states: normal and alarm. The average
values were calculated and are presented in Appendix D.

FCP–320 without the additional electronics consumes 99.56 µA in normal mode and
29.24 mA in alarm situation. The red LED turns on when a fire situation is detected
thus the current increases. FCP–320 with the additional electronics consumes 26.41 mA
in normal mode and 61.29 mA in alarm situation.

26

4.2. ThingSpeak

4.2 ThingSpeak

To send the environmental sensor data and the state of FCP–320, it is used an IoT platform
named ThingSpeak. This platform enables to collect, store, analyse and visualize data
from sensors. It works with different hardware including Arduino, so it was possible to
use ESP8266.

The main element of ThingSpeak activity is the channel which contains data fields,
locations fields and a status field. The data is sent to the channel and then processed. The
data can be visualized using a MATLAB code as well as generate tweets and alerts based
on the processed information [28].

The microcontroller starts collecting the data from the environmental sensor BME680
and from the fire detector which indicates if there is or not a fire situation. The second step
is to analyse the data, for example, calculate the average temperature or the maximum
humidity. Finally, it is possible to act when the fire starts by sending a SMS alert to a
defined phone number.

ThingSpeak has Analytics and Actions Apps which transform and visualize data or
trigger an action. In Analytics there are MATLAB analysis to explore and transform data,
MATLAB Visualization to visualize data in MATLAB plots and Plugins that displays data
in gauges, charts or custom plugins. In Actions there is ThingTweet to connect a device
to Twitter and send alerts, TweetControl to listen to the Twitterverse and react in real
time and TimeControl which automatically executes actions at predetermined times with
ThingSpeak Apps. React when channel data meets certain conditions, TalkBack to queue
up commands for the device and ThingHTTP to simplify device communication with web
services and APIs [29].

To create a channel in ThingSpeak, it is necessary to indicate some information:

� Channel Name – a unique name for the ThingSpeak channel.

� Description – a description of the ThingSpeak channel.

� Field # – check box to enable the field, and enter a field name. Each ThingSpeak
channel can have up to 8 fields.

� Metadata – information about channel data, including JSON, XML, or CSV data.

� Tags – keywords that identify the channel.

� Latitude and Longitude – the position of the sensor or thing that collects data in
decimal degrees.

� Elevation – the position of the sensor or thing which collects data in meters.

� Link to External Site – Uniform Resource Locator (URL) of a website which contains
information about the ThingSpeak channel.

� Video URL – the full path of the YouTubeTM or Vimeo® video URL which displays
the channel information.

Not all fields are required, Fig. 4.3 shows the filled fields. Only the name of the channel
and the name of the fields were indicated. There are seven fields which corresponds to
microcontroller readings: information from BME680 (Temperature, Pressure, Humidity,
Gas Resistance, IAQ Estimate and IAQ Accuracy) and the fire detector state.

The created channel has Write API Key and Read API Key. In this case, it is used

27

4. Software Design

the Write API Key in .ino file to write the information to ThingSpeak channel. The Read
API Key is used to allow other people to view the private channel feeds and charts.

(a) Fields to fill (b) Fields to fill (cont)

Figure 4.3. Filled fields to create a channel on ThingSpeak [30]

4.2.1 Code to send data

The programming code includes the routine of the Wi–Fi connection and the routine to
send the information to the ThingSpeak channel. The code responsible for these two
functions is as follows:

1 /* Replace with your c h a n n e l s th ingspeak API key*/
2 St r ing apiKey = ”DK50Q5TQUJYK7HIZ” ;
3 const char * s s i d = ”Optimus4G 2510 ” ;
4 const char * password = ”8BF5E79AE68” ;
5 const char * s e r v e r = ”api . th ingspeak . com” ;
6
7 void setup () {
8 /* Wi- Fi connect ion */
9 WiFi . begin (s s id , password) ;

10
11 S e r i a l . p r i n t l n () ;
12 S e r i a l . p r i n t l n () ;
13 S e r i a l . p r i n t (”Connecting to ”) ;
14 S e r i a l . p r i n t l n (s s i d) ;
15
16 WiFi . begin (s s id , password) ;
17
18 whi le (WiFi . s t a tu s () != WLCONNECTED)
19 {
20 de lay (500) ;
21 S e r i a l . p r i n t (” . ”) ;
22 }
23 S e r i a l . p r i n t l n (””) ;

28

4.3. Twilio

24 S e r i a l . p r i n t l n (”WiFi connected ”) ;
25 }
26
27 void loop () {
28 /* Send data to ThingSpeak */
29 f l o a t t = iaqSensor . rawTemperature ;
30 f l o a t p = iaqSensor . p r e s su r e ;
31 f l o a t h = iaqSensor . rawHumidity ;
32 f l o a t gr = iaqSensor . ga sRes i s tance ;
33 f l o a t i aqe = iaqSensor . iaqEst imate ;
34 f l o a t iaqa = iaqSensor . iaqAccuracy ;
35 f l o a t f i r e = alarmState ;
36
37 i f (c l i e n t . connect (se rver , 8 0)) // ”184 . 1 06 . 1 53 . 1 49” or api . th ingspeak...

. com
38 {
39 St r ing pos tSt r = apiKey ;
40 pos tSt r +=”&f i e l d 1=” ;
41 pos tSt r += Str ing (t) ;
42 pos tSt r +=”&f i e l d 2=” ;
43 pos tSt r += Str ing (p) ;
44 pos tSt r +=”&f i e l d 3=” ;
45 pos tSt r += Str ing (h) ;
46 pos tSt r +=”&f i e l d 4=” ;
47 pos tSt r += Str ing (gr) ;
48 pos tSt r +=”&f i e l d 5=” ;
49 pos tSt r += Str ing (i aqe) ;
50 pos tSt r +=”&f i e l d 6=” ;
51 pos tSt r += Str ing (iaqa) ;
52 pos tSt r +=”&f i e l d 7=” ;
53 pos tSt r += Str ing (f i r e) ;
54 c l i e n t . p r i n t (”POST /update HTTP/1.1\n”) ;
55 c l i e n t . p r i n t (”Host : ap i . th ingspeak . com\n”) ;
56 c l i e n t . p r i n t (”Connection : c l o s e \n”) ;
57 c l i e n t . p r i n t (”X-THINGSPEAKAPIKEY: ”+apiKey+”\n”) ;
58 c l i e n t . p r i n t (”Content -Type : app l i c a t i on /x -www- form - ur lencoded \n”) ;
59 c l i e n t . p r i n t (”Content - Length : ”) ;
60 c l i e n t . p r i n t (pos tSt r . l ength ()) ;
61 c l i e n t . p r i n t (”\n\n”) ;
62 c l i e n t . p r i n t (pos tSt r) ;
63 }
64 c l i e n t . stop () ;
65 } e l s e {
66 checkIaqSensorStatus () ;
67 }
68 }

4.3 Twilio

When the fire starts, the alarm state changes from 0 to 1 and a SMS is sent using the
cloud communication platform Twilio which allows making and receiving phone calls as
well as sending and receiving SMS.

There are several steps to be performed in order to create the service to send SMS when
the fire starts. Firstly, it was created a new project with programmable SMS service. When
the project is created, Account SID and Auth Token are automatically generated and this
information is used to create a ThingHTTP App (Fig. 4.4) [31].

29

4. Software Design

Figure 4.4. Twilio Information [31]

It is also possible to observe a chart with the incoming and outgoing information (Fig.
4.5).

Figure 4.5. SMS usage [31]

4.4 Configuration of SMS sending

In order to send a SMS message it is necessary to use two ThingSpeak Actions Apps:
ThingHTTP and React. ThingHTTP allows communications between devices, websites
and web services without implementing the protocol on the device level. The actions are
specified in ThingHTTP and the triggering is defined on TweetControl, TimeControl or
React Apps. React can be used with ThingHTTP, ThingTweet and MATLAB Analysis
to achieve actions when channel data reaches a certain condition.

To create a ThingHTTP App, it is necessary to fill the following fields although not
all are required (Fig. 4.6).

� Name – a unique name for ThingHTTP request.

� API Key – auto generated API key for the ThingHTTP request.

� URL – the address of the website which is requesting data from or writing data to
starting with either http:// or https://.

� HTTP Auth Username – if the URL requires authentication, enter a username for
authentication to access private channels or websites.

30

4.4. Configuration of SMS sending

� HTTP Auth Password – if the URL requires authentication, enter a password for
authentication to access private channels or websites.

� Method – the HTTP method required to access the URL.

� Content Type – the MIME or form type of the request content.

� HTTP Version – the version of HTTP on the server.

� Host – if the ThingHTTP request requires a host address, enter a domain name.

� Headers – if the ThingHTTP request requires custom headers, enter the information.
The name of the headers and a value must be specified.

� Body – message which is required to be included in the request.

� Parse String – the exact string to look for in the response data, if it is necessary to
parse the response.

Figure 4.6. ThingHTTP App – Alarm

It was indicated the name and the URL which contains the Account SID from Twilio, the
HTTP Auth Username corresponds to the Account SID from Twilio and the HTTP Auth
Password is the Auth Token from Twilio (Fig. 4.4). The used method is post because
the information from ESP8266 is processed and then posted on ThingSpeak channel. The

31

4. Software Design

field body contains the number which sends the SMS, the number which receives it and
the sent text: “Alarme”.

Finally, to create a React App, it is necessary to fill the following fields (Fig. 4.7).

� React Name – a unique name for React App.

� Condition Type – a condition type corresponding to the data. A channel can hold
numeric sensor data, text, strings, status updates, or geographic location informa-
tion.

� Test Frequency – whenever the condition is tested, every time data enters the channel
or on a periodic basis.

� Condition – select a channel, a field and the condition for the React.

� Action – select ThingTweet, ThingHTTP, or MATLAB Analysis to run when the
condition is met.

� Options – when the React runs, run action only the first time the condition is met
or run action each time condition is met.

Figure 4.7. React App – Alarm

It was indicated the name of the React App, the condition type is numeric because the
alarm state is 0 or 1, the frequency test is on every data insertion because it is necessary to

32

4.5. MATLAB Analysis

analyse every measure. The defined condition is on Channel “Tese”, whenever the number
on the field with Alarm State is 1, an action has to be taken. This action is the defined
ThingHTTP which sends the SMS.

Additionally, it was defined other SMS when the IAQ Estimate is greater than 200
which means that the air quality is worse according to Fig. 3.9. It was created another
ThingHTTP and React Apps to send this SMS.

4.5 MATLAB Analysis

MATLAB Analysis calculates average of data contained on the fields from a channel.
It was created another channel which receives the average measurement from the first
channel.

This channel contains the average values of Temperature, Pressure, Humidity, Gas
Resistance and IAQ Estimate. MATLAB Analysis App contains a MATLAB Code which
reads the values from channel “Tese”, calculates the averages and writes these values on
the respective fields on a new channel. This MATLAB Code is presented in Appendix
C.4. Moreover, it was added the Time Control App which schedules when MATLAB
Analysis App should be executed (Fig. 4.8).

Figure 4.8. TimeControl App

It is necessary to fill the following fields:

� Name – a unique name for TimeControl.

� Time Zone – according to location.

� Frequency – when TimeControl should run.

� Recurrence – specification of week, day, hour or minute.

33

4. Software Design

� Time – time at which TimeControl should run.

� Fuzzy Time – minutes around a scheduled time to run TimeConrol.

� Action – to be trigger when specified parametres are met. It can be MATLAB
Analysis, ThingHTTP, ThingTweet or TalkBack.

It was defined to execute the MATLAB Analysis “Calculate and display average” daily at
midnight.

This channel can be accessed through the link: https://thingspeak.com/channels/512784.

4.6 Results

This section shows the obtained results: the channel view on the website and on the
ThingView app. Additionally, the received SMS in case of an alarm detection and in poor
air quality are presented.

4.6.1 ThingSpeak channel

The created ThingSpeak channel is presented in Fig. 4.9 and it can be accessed through
the link: https://thingspeak.com/channels/490337.

Figure 4.9. Channel view

34

4.6. Results

4.6.2 ThingView – ThingSpeak viewer

ThingView is a free app for mobile phones which makes it possible to observe the infor-
mation contained in a ThingSpeak channel, it is only necessary to introduce the channel
ID (Fig. 4.10).

(a) Temperature (b) Pressure

(c) Humidity (d) Gas Resistance

(e) IAQ Estimate (f) IAQ Accuracy

(g) Alarm State

Figure 4.10. Charts of the measured parametres on smartphone

4.6.3 Alarm detection

As previously stated in Section 3.6.2, it was used one external LED to simulate the signal
coming from the fire detector. To turn on the LED, it is necessary to press the button.
When the button is pressed, the LED turns on and an extra measurement occurs, sending
the data to ThingSpeak and a SMS to the mobile phone indicating the alarm situation.

Fig. 4.11a shows the received SMS alert and Fig. 4.11b shows the field of Alarm
State on ThingSpeak channel.

35

4. Software Design

(a) Received SMS – Fire Alarm (b) Alarm State

Figure 4.11. Alarm detection

4.6.4 Poor air quality detection

To simulate poor air quality IAQ higher than 200, the sensor was placed in a box with an
open permanent marker which contains alcohol, similar conditions which were used in the
first sensor calibration (Fig. 3.12).

Fig. 4.12 shows the fields of Gas Resistance and IAQ Accuracy on ThingSpeak, note
that when IAQ Accuracy is high, it means that the quality of the air is not good so the
value of the gas resistance is low. Fig. 4.13 shows the received SMS alert.

(a) Gas Resistance (b) IAQ Accuracy

Figure 4.12. Fields results

Figure 4.13. Received SMS – IAQ

36

4.7. Summary

4.7 Summary

This chapter covered the programming code which includes the routine to connect to Wi–
Fi and send data to ThingSpeak. It was explained the creation of ThingSpeak channel and
the configuration of the use of Apps and MATLAB Analysis. Moreover, it was presented
the received SMS in case of an alarm and in poor air conditions.

The next step is to create a PCB which includes electronic components and to place
it into the fire detector. These are presented in the next Chapter 5.

37

Chapter 5

Prototype Development

This chapter explains the construction of a PCB which contains ESP8266 and BME680.
Additionally, it describes the new part design where these electronic components fit.

5.1 PCB development

A PCB board was produced where ESP8266 and BME680 were placed. This PCB con-
tains tracks which connect the different pins in order to establish communication between
the µC and the environmental sensor. It also has the track which connects the FCP–320
signal to the µC to read the fire detector state.

ESP8266 is powered up by FCP–320, so it is necessary to convert the 24 V DC to 3.3
V DC which is done by a DC/DC converter.

5.1.1 Development steps

The software used to create a PCB board was Altium Designer. Firstly, the components
and their pins were defined and added to the library. Then, two connectors , one photo-
coupler and two capacitors were added. The next step was to design a PCB layout which
connects these components and the tracks (Fig. 5.1a, Fig. 5.1b).

Afterwards, another software called CircuitCAM was used which permitted the cre-
ation of gerber files with the description of bottom and top layers of the PCB and the
contained holes. Additionally, gap zones to perform a better cut were added, the zone
where the machine has to cut the PCB board and the areas where the copper should be
removed around the tracks were defined.

The CircuitCAM files were converted by Board Master ProtoMat C30 software which
communicates to the printing machine in order to manufacture the PCB board.

The PCB was wiped with the steel wool to become brighter and an adequate lacquer
was used to prevent PCB oxidation (Fig. 5.1c, Fig. 5.1d).

The copper alloy rivets were manually placed on the PCB with the help of tweezers,
automated punch with the stamp and anvil. The rivets are used to connect the circuits
of both sides of the board. The produced PCB is double–sided which has wiring patterns
on both sides of the insulating material, this is, the circuit pattern is available on the
components side and the solder side [32].

39

5. Prototype Development

(a) Top layer in Altium (b) Bottom layer in Altium

(c) Top layer (d) Bottom layer

Figure 5.1. PCB

The PCB material is FR–4 which is a National Electrical Manufacturers Association
(NEMA) name for glass-reinforced epoxy laminates. It is an electrical insulator, a flame
retardant, and has a good strength–for–weight ratio [33]. The PCB layers are copper,
FR–4 and copper.

The final step was to solder all the components to the PCB (Fig. 5.2).

(a) Top layer (b) Bottom layer

Figure 5.2. Final PCB

Appendix A.3 shows the schematic of the connections between all the components pre-
sented on the PCB.

5.1.2 Components

This section identifies and characterizes the components used in the PCB construction.
As previously mentioned, it were used a DC/DC converter, photocoupler, capacitors and
connectors.

DC/DC converter

The used DC/DC converter is THL 3 WI from Traco Power. The input voltage is between
9 and 36 V DC, being 24 V the nominal voltage while the output voltage is 3.3V and the
maximum output current is 600 mA [34].

There are two capacitors of 47 µF in the input and in the output of the DC/DC
converter (Fig. 5.3). The capacitors filter the signal and guarantee the constant voltage,

40

5.1. PCB development

this is, they absorb the eventual voltage peaks and ripple.

Figure 5.3. Power circuit

Photocoupler

As previously mentioned in section Section 3.6.2, it was used a photocoupler to read the
C–Point voltage (Fig. 5.4). This component adjusts the voltage levels of 24 V circuit
from FCP–320 and 3.3 V from ESP8266.

(a) Photocoupler (b) Internal Connections Diagram

Figure 5.4. PC123 Photocoupler [35]

Connector

It was used two connectors each with two positions, one to provide the power supply to
the microcontroller and other to provide the signal which contains the fire detector state,
both having the ground line (Fig. 5.5).

Figure 5.5. Schematic of the connectors

41

5. Prototype Development

5.2 New part design

The produced PCB should be included in the fire detector. There is no available space
inside the FCP–320 and MS 400, so it is necessary to create a new part with enough space
to include the PCB.

There are three different possibilities:

� Create a part between FCP–320 and MS 400.

� Modify MS 400 to include the PCB.

� Create a part which is assembled to MS 400 and includes the PCB.

The first possibility implies producing a new part which geometry has to be compatible
with FCP–320 and MS 400. In other words, it must have the feature to fix to FCP–320
and to MS 400 simultaneously. It is difficult because of the way that the FCP–320 fits on
MS 400, the fire detector has to rotate to engage the base. It also is necessary to design
a new part with the same terminals to fix the fire detector and the equivalent terminals
to fix the base. This solution is very complex because it has to simultaneously satisfy the
connection to FCP–320 and to MS 400.

The second option implies increasing the internal size of the base to fit the PCB. It is
necessary to keep the base terminals to connect the fire detector and redesign the base to
fix to the fire detector. This redesign appears to be complicated because it is necessary to
modify an existing base.

The third option has a single requirement which is to mount to base. It is easier and
more flexible in terms of design, so this solution was selected.

5.2.1 Construction

This section is dedicated to explain the steps in the construction of the new part. It was
decided to construct the new part with similar geometry of the detector base. It has a
truncated cone shape with free space inside to assemble the PCB. The dimensions are 160
× 23 × 160 mm.

It has two holes for the cables to pass similar to the detector base, two holes to fix it
with M6 × 13 screws to the surface, two big plastic bosses to fix it to the detector base
with M4 × 14 screws and four little plastic bosses to fix the PCB with M2 × 4.5 screws.
The screws that are placed on the plastic bosses are self–tapping. Fig. 5.6 shows the
rules to design the plastic bosses and Tab. 5.1 shows the recommended dimensions and
the chosen dimensions for the plastic bosses.

42

5.2. New part design

Figure 5.6. Rules to design the plastic bosses [36]

Table 5.1. Dimensions for plastic bosses with gussets [36]

Recommended dimensions Big Plastic Boss Little Plastic Boss

w = 0.5t – 0.8t w = 1.25 mm w = 1.25 mm

h = 2.0D – 2.5D h = 15 mm h = 6.0 mm

θ = 0.5 ◦ – 2.0 ◦ θ = 0.5 ◦ θ = 0.5 ◦

r = 0.13 mm – 0.20 mm r = 0.20 mm r = 0.20 mm

D = 2.5d – 3.0d D = 7.2 mm D = 4.0 mm

c ≤ 0.95h c = 13.7 mm c = 5.0 mm

b = 0.3c – 1.0c b = 4.3 mm b = 1.5 mm

The surface thickness t is 2.5 mm and with this dimension is possible to stipulate the
other ones. The dimension d is according to the used self–tapping screw. The dimension
D in the bigger plastic boss is lower than what is advisable to decrease the thickness of
the wall, because of this the dimension w will not be the recommendable. In the other
plastic boss, the dimension h is smaller to fit the height of the PCB and not to touch the
base detector.

The software used to design the part is by Creo Patametric. Fig. 5.7 shows the
designed part and Appendix E shows its technical drawing.

43

5. Prototype Development

(a) Front view (b) Right section view

(c) Top view (d) ISO view

Figure 5.7. New part

This part was made by 3D additive manufacturing, PolyJet technology, which produces
prototypes with a precision of 16 µm and allows the production of complex geometries [37].
The material of this new part is Acrylonitrile Butadiene Styrene (ABS) and the resolution
is 30 µm.
In 3D additive manufacturing, the dimensions θ and r are not important so they were
not designed. If the manufacturing process was by plastic injection molding, it would
be necessary to have several design consideration. The following section shows the main
consideration and the implemented changes to satisfy the injection requirements.

5.2.2 Plastic injection molding

Plastic injection molding consists of injecting molten plastic material into a mold under
high pressure. Then, the material is cooled, solidified and released by opening the two
halves of the mold.

There are several design rules:

� Wall thickness rule – compliance with similar wall thickness, typical for plastic.

� Curvature rule – curvature of corners and edges.

� Draft rule – all surfaces that lie in the demolding direction are provided with a draft.

� Undercut rule – avoid undercuts.

The wall thickness is 2.5 mm and it is similar in all the part. The created part does not
have undercuts so the first and the last rules were satisfied. The curvature rule was also

44

5.2. New part design

satisfied by rounding the corners and the edges. It was used the radius of 0.50 mm on the
internal geometries and 1.0 mm on external walls.

Creo Parametric has the functionality to analyse the draft situation which was used
to understand which surfaces did not satisfy the draft rule. It has a colour scale that
indicates the existence or not of drafts.

The blue colour means that the surface which is lying in the demolding direction has
a draft, the pink colour means that the surface which is lying in the opposite demolding
direction has a draft and the grey colour means that the surface does not have drafts (Fig.
5.8). In order to fulfil this rule, 3◦ drafts have been added to the grey surfaces according
to their demolding direction.

(a) View 1 (b) View 2

Figure 5.8. First draft analysis

With all the drafts added, the final result of draft analysis is presented in Fig. 5.9. The
3D model of the new part satisfies the plastic injection molding rules is presented in Fig.
5.10.

(a) View 1 (b) View 2

Figure 5.9. Final draft analysis

45

5. Prototype Development

(a) Front view (b) Right section view

(c) Top view (d) ISO view

Figure 5.10. New part with drafts and rounds

5.3 Final Prototype

This section showed the obtained prototype, firstly it is presented the assembly of the final
3D model (Fig. 5.11) and the 3D model of the PCB in Creo (Fig. 5.12).

(a) Front view (b) Right section view

(c) Top view (d) ISO view

Figure 5.11. Final prototype - 3D model

46

5.3. Final Prototype

Figure 5.12. PCB 3D model

The represented components in Fig. 5.11d are:
1 – FCP–320.
2 – MS 400.
3 – New part.
The obtained new part by 3D additive manufacturing is presented in Fig. 5.13 and the
final prototype is presented in Fig. 5.14.

(a) New part (b) New part with PCB

Figure 5.13. New part obtained by 3D additive manufacturing

Figure 5.14. Final prototype

47

5. Prototype Development

5.3.1 Project Costs

This project had associated costs because it was necessary to buy some equipment. The
FCP–320 and the MS 400 were not purchased because they are Bosch products. Moreover,
PCB construction was performed at the Bosch Ovar and the used capacitors, resistors and
photocoupler exist at the plant. So, it was purchased the MSP–TS430DA38 Development
Board at the beginning when the decision to work with AVENAR microcontroller was
considered. The BME680 Shuttle Board from Bosch was bought which was only used at
the beginning while waiting for the arrival of the Adafruit BME680 Development Board.
Tab. 5.2 summarizes the purchased components used in the PCB and associated costs.

Table 5.2. Price of purchased components

Component Quantity Price

Adafruit Feather HUZZAH ESP8266 1 10.34 e

Adafruit BME680 Development Board 1 18.45 e

DC/DC Converter 1 13.52 e

3D printing of the new part 1 205.80 e

Total 4 248.11 e

5.4 Summary

This chapter focused on the main stages of PCB development which includes ESP8266,
BME680, one photocoupler, two capacitors, two connectors and one DC/DC converter.
The construction of a new part and the rules used to design it are stated. Additionally,
it was explained the necessary modifications to be taken into account if the new part
was made by plastic injection molding. Finally, the prototype and its operations were
presented.

48

Chapter 6

Conclusions and Future Works

6.1 Conclusions

The aim of this project was to implement an environmental sensor inside a fire detector to
construct a 2 in 1 product which detects fire and simultaneously measures the air quality.

The state of the art explained the concept of Smart Buildings, mentioned the most
important standards concerning to fire detection systems and presented some fire detectors
available in the market.

After designing the architecture of the proposed system, it was noted that instead of
using the AVENAR fire detector, it would be used a conventional fire detector FCP–320
because it was not possible to establish communication between AVENAR microcontroller
and the environmental sensor. Additionally, it was decided to use ESP8266 microcontroller
to read the values from environmental sensor and the fire detector state.

It was implemented SPI communication between ESP8266 and BME680 and C–Point
was used to read the fire detector state. Programming was done on Arduino IDE software.
Moreover, it was configured to send this information to a website and sent a SMS alert in
case of an alarm or poor air quality detection.

The PCB development board was designed using Altium and CircuitCAM software
which contains all the necessary components and connections. Additionally, a new part
was constructed to fit this PCB. It was designed with Creo software and produced by 3D
printing. In conclusion, the prototype was successfully obtained and it is fully functional.

6.2 Future Works

As future projects, it would be interesting to perform the following tasks:

� Implement the environmental sensor inside AVENAR as initially thought, in order to
use LSN communication. Programme AVENAR microcontroller which consumes less
current than ESP8266 microcontroller. Additionally, redesign AVENAR to include
the environmental sensor without having to use the new part.

� Measure the electromagnetic interference caused by the Wi–Fi antenna on the fire
detector.

� Use this study in the innovative project that should be signed between Bosch and
the University of Porto.

49

References

[1] Bosch, “Bosch annual report,” Dec. 2017, last accessed on 22.05.2018. [On-
line]. Available: https://assets.bosch.com/media/global/bosch group/our figures/
pdf/bosch-annual-report-2017.pdf

[2] ——, “Bosch global,” last accessed on 22.05.2018. [Online]. Available: https:
//www.bosch.com/

[3] ——, “Bosch security systems to become bosch building technologies,” 2018, last
accessed on 22.05.2018. [Online]. Available: https://www.boschsecurity.com/xc/en/
news/press-room/2018/bosch-building-technologies/

[4] B. S. Systems, “Avenar detector 4000 - maximize your detection performance,” 2017.

[5] B. I. Docupedia, “Smart office buildings,” Sep. 2017.

[6] EN 54, European Committee for Standardization Std.

[7] NOTA TÉCNICA Nº 12 - Sistemas automáticos de detecção de incêndio,
Autoridade Nacional de Proteção Civil Std., Dec. 2013. [Online]. Avail-
able: http://www.prociv.pt/bk/SEGCINCENDEDIF/Normas%20Tecnicas/12
NT-SCIE-SISTEMAS%20AUTOM%C3%81TICOS%20DE%20DETE%C3%87%
C3%83O%20DE%20INC%C3%8ANDIO.pdf

[8] B. S. Home, “Twinguard starter set,” last accessed on 05.06.2018. [Online]. Avail-
able: https://www.bosch-smarthome.com/uk/en/products/smart-single-solutions/
twinguard-starter-set

[9] Bosch, “Avenar detector 4000 - operation manual,” 2018.

[10] ——, “Conventional automatic detectors fcp-320 | fch-320,” 2017.

[11] B. S. Systems, “Bosch fire detectors - hardware,” 2011.

[12] T. Instruments, “Msp430f2272,” last accessed on 05.06.2018. [Online]. Available:
http://www.ti.com/product/MSP430F2272

[13] ——, “Msp-ts430da38 - 38-pin target development board,” last accessed on
05.06.2018. [Online]. Available: http://www.ti.com/tool/MSP-TS430DA38

[14] B. S. Systems, “Ms 400 detector bases,” Mar. 2012, last accessed on 05.06.2018.
[Online]. Available: http://resource.boschsecurity.com/documents/MS 400 Data
sheet enUS 1260707595.pdf

[15] Adafruit, “Adafruit feather huzzah esp8266,” Sep. 2016.

51

https://assets.bosch.com/media/global/bosch_group/our_figures/pdf/bosch-annual-report-2017.pdf
https://assets.bosch.com/media/global/bosch_group/our_figures/pdf/bosch-annual-report-2017.pdf
https://www.bosch.com/
https://www.bosch.com/
https://www.boschsecurity.com/xc/en/news/press-room/2018/bosch-building-technologies/
https://www.boschsecurity.com/xc/en/news/press-room/2018/bosch-building-technologies/
http://www.prociv.pt/bk/SEGCINCENDEDIF/Normas%20Tecnicas/12_NT-SCIE-SISTEMAS%20AUTOM%C3%81TICOS%20DE%20DETE%C3%87%C3%83O%20DE%20INC%C3%8ANDIO.pdf
http://www.prociv.pt/bk/SEGCINCENDEDIF/Normas%20Tecnicas/12_NT-SCIE-SISTEMAS%20AUTOM%C3%81TICOS%20DE%20DETE%C3%87%C3%83O%20DE%20INC%C3%8ANDIO.pdf
http://www.prociv.pt/bk/SEGCINCENDEDIF/Normas%20Tecnicas/12_NT-SCIE-SISTEMAS%20AUTOM%C3%81TICOS%20DE%20DETE%C3%87%C3%83O%20DE%20INC%C3%8ANDIO.pdf
https://www.bosch-smarthome.com/uk/en/products/smart-single-solutions/twinguard-starter-set
https://www.bosch-smarthome.com/uk/en/products/smart-single-solutions/twinguard-starter-set
http://www.ti.com/product/MSP430F2272
http://www.ti.com/tool/MSP-TS430DA38
http://resource.boschsecurity.com/documents/MS_400_Data_sheet_enUS_1260707595.pdf
http://resource.boschsecurity.com/documents/MS_400_Data_sheet_enUS_1260707595.pdf

REFERENCES

[16] B. Sensortec, “Bme680 - low power gas, pressure, temperature & humidity
sensor,” Jul. 2017. [Online]. Available: https://ae-bst.resource.bosch.com/media/
tech/media/datasheets/BST-BME680-DS001-00.pdf

[17] ——, “Bme 680,” last accessed on 05.06.2018. [Online]. Available: https:
//www.bosch-sensortec.com/bst/products/all products/bme680

[18] Figaro, “Operating principle,” last accessed on 30.05.2018. [Online]. Available:
http://www.figaro.co.jp/en/technicalinfo/principle/mos-type.html

[19] Adafruit, “Adafruit bme680 environmental sensor development board,” last
accessed on 22.05.2018. [Online]. Available: https://pt.mouser.com/pdfdocs/
adafruit-bme680-humidity-temperature-barometic-pressure-voc-gas.pdf

[20] B. Sensortec, “Integration guide bosch software environmental cluster (bsec),” Nov.
2017.

[21] L. Frenzel, Handbook of Serial Communications Interfaces: A Comprehensive
Compendium of Serial Digital Input/Output (I/O) Standards. Elsevier Science,
2015. [Online]. Available: https://books.google.pt/books?id=wnGDBAAAQBAJ

[22] “Http (hypertext transfer protocol),” last accessed on 09.06.2018. [Online]. Available:
https://searchwindevelopment.techtarget.com/definition/HTTP

[23] “Hypertext transfer protocol - wikipedia,” last accessed on 09.06.2018. [Online]. Avail-
able: https://en.wikipedia.org/wiki/Hypertext Transfer Protocol#Request methods

[24] “Http 1.1,” last accessed on 09.06.2018. [Online]. Available: https:
//searchmicroservices.techtarget.com/definition/HTTP-11

[25] Bosch, “Bosch sensortec environmental cluster (bsec) software,” last accessed on
23.05.2018. [Online]. Available: https://www.bosch-sensortec.com/bst/products/all
products/bsec

[26] B. Sensortec, “Bme680 sensor driver,” last accessed on 23.05.2018. [Online]. Available:
https://github.com/BoschSensortec/BME680 driver

[27] Espressif, “Esp8266 low power solutions,” 2016, last accessed on 05.06.2018.
[Online]. Available: https://www.espressif.com/sites/default/files/9b-esp8266-low
power solutions en 0.pdf

[28] Mathworks, “Thingspeak support from desktop matlab,” last accessed on 05.06.2018.
[Online]. Available: https://www.mathworks.com/hardware-support/thingspeak.
html

[29] ThingSpeak, “Apps,” last accessed on 05.06.2018. [Online]. Available: https:
//thingspeak.com/apps

[30] ——, “New channel,” last accessed on 28.05.2018. [Online]. Available: https:
//thingspeak.com/channels/new

[31] Twilio, “Dashboard,” last accessed on 05.06.2018. [Online]. Available: https:
//www.twilio.com/console

52

https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME680-DS001-00.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME680-DS001-00.pdf
https://www.bosch-sensortec.com/bst/products/all_products/bme680
https://www.bosch-sensortec.com/bst/products/all_products/bme680
http://www.figaro.co.jp/en/technicalinfo/principle/mos-type.html
https://pt.mouser.com/pdfdocs/adafruit-bme680-humidity-temperature-barometic-pressure-voc-gas.pdf
https://pt.mouser.com/pdfdocs/adafruit-bme680-humidity-temperature-barometic-pressure-voc-gas.pdf
https://books.google.pt/books?id=wnGDBAAAQBAJ
https://searchwindevelopment.techtarget.com/definition/HTTP
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods
https://searchmicroservices.techtarget.com/definition/HTTP-11
https://searchmicroservices.techtarget.com/definition/HTTP-11
https://www.bosch-sensortec.com/bst/products/all_products/bsec
https://www.bosch-sensortec.com/bst/products/all_products/bsec
https://github.com/BoschSensortec/BME680_driver
https://www.espressif.com/sites/default/files/9b-esp8266-low_power_solutions_en_0.pdf
https://www.espressif.com/sites/default/files/9b-esp8266-low_power_solutions_en_0.pdf
https://www.mathworks.com/hardware-support/thingspeak.html
https://www.mathworks.com/hardware-support/thingspeak.html
https://thingspeak.com/apps
https://thingspeak.com/apps
https://thingspeak.com/channels/new
https://thingspeak.com/channels/new
https://www.twilio.com/console
https://www.twilio.com/console

REFERENCES

[32] R. Khandpur, Printed Circuit Boards: Design, Fabrication, Assembly and
Testing. Tata McGraw-Hill, 2005, last accessed on 08.06.2018. [Online]. Available:
https://books.google.pt/books?id=VY8iBAAAQBAJ

[33] S. Circuits, “Fr-4 pcb materials,” last accessed on 11.06.2018.
[Online]. Available: http://www.sunstone.com/pcb-manufacturing-capabilities/
detailed-capabilities/pcb-materials/fr-4-material

[34] T. Power, “Dc/dc converter,” Jun. 2016, last accessed on
08.06.2018. [Online]. Available: http://www.farnell.com/datasheets/
2547150.pdf? ga=2.137648114.315590080.1529396976-902483060.1516205962&
gac=1.227876463.1528102654.Cj0KCQjwxtPYBRD6ARIsAKs1XJ7NzS4NvDlby

LpgI5HaAryfLX40vniylJPCI6prBM78T48-Bv3Mi8aAhrCEALw wcB

[35] Sharp, “Pc123xnnsz0f series,” Sep. 2006, last accessed on 08.06.2018. [On-
line]. Available: http://www.sharp-world.com/products/device/lineup/data/pdf/
datasheet/pc123xnnsz e.pdf

[36] S. C. U. E. D. Center, “Boosting structural integrity with ribs,” last accessed
on 08.06.2018. [Online]. Available: http://www.dc.engr.scu.edu/cmdoc/dg doc/
develop/design/part/33000003.htm

[37] CODI, “Addictive manufacturing,” last accessed on 08.06.2018. [Online]. Available:
https://www.codi.pt/en/addictive-manufacturing/

53

https://books.google.pt/books?id=VY8iBAAAQBAJ
http://www.sunstone.com/pcb-manufacturing-capabilities/detailed-capabilities/pcb-materials/fr-4-material
http://www.sunstone.com/pcb-manufacturing-capabilities/detailed-capabilities/pcb-materials/fr-4-material
http://www.farnell.com/datasheets/2547150.pdf?_ga=2.137648114.315590080.1529396976-902483060.1516205962&_gac=1.227876463.1528102654.Cj0KCQjwxtPYBRD6ARIsAKs1XJ7NzS4NvDlby_LpgI5HaAryfLX40vniylJPCI6prBM78T48-Bv3Mi8aAhrCEALw_wcB
http://www.farnell.com/datasheets/2547150.pdf?_ga=2.137648114.315590080.1529396976-902483060.1516205962&_gac=1.227876463.1528102654.Cj0KCQjwxtPYBRD6ARIsAKs1XJ7NzS4NvDlby_LpgI5HaAryfLX40vniylJPCI6prBM78T48-Bv3Mi8aAhrCEALw_wcB
http://www.farnell.com/datasheets/2547150.pdf?_ga=2.137648114.315590080.1529396976-902483060.1516205962&_gac=1.227876463.1528102654.Cj0KCQjwxtPYBRD6ARIsAKs1XJ7NzS4NvDlby_LpgI5HaAryfLX40vniylJPCI6prBM78T48-Bv3Mi8aAhrCEALw_wcB
http://www.farnell.com/datasheets/2547150.pdf?_ga=2.137648114.315590080.1529396976-902483060.1516205962&_gac=1.227876463.1528102654.Cj0KCQjwxtPYBRD6ARIsAKs1XJ7NzS4NvDlby_LpgI5HaAryfLX40vniylJPCI6prBM78T48-Bv3Mi8aAhrCEALw_wcB
http://www.sharp-world.com/products/device/lineup/data/pdf/datasheet/pc123xnnsz_e.pdf
http://www.sharp-world.com/products/device/lineup/data/pdf/datasheet/pc123xnnsz_e.pdf
http://www.dc.engr.scu.edu/cmdoc/dg_doc/develop/design/part/33000003.htm
http://www.dc.engr.scu.edu/cmdoc/dg_doc/develop/design/part/33000003.htm
https://www.codi.pt/en/addictive-manufacturing/

Appendix A

Schematics

A.1 ESP8266 Schematic

10
K

 =
 1

00
m

A
5.

0K
 =

 2
00

m
A

2.
0K

 =
 5

00
m

A
1.

0K
 =

 1
00

0m
A

G
N

D
G

N
D

G
N

D
G

N
D

V
B

U
S

V
B

A
T

MBR120

V
B

U
S

V
B

A
T

G
N

D

JS
T

P
H

V
B

A
T

G
N

D

O
R

A
N

G
E

G
N

D
G

N
D

V
B

U
S

V
B

A
T

3.3V

G
N

D

3.
3V

3.
3V

G
N

D

3.
3V

KMR2

G
N

D

RED3.
3V

3.
3V

3.
3V

C
P

21
04

20
32

9
G

N
D

G
N

D
G

N
D

V
B

U
S

G
N

D

m
m

bt
22

22

m
m

bt
22

22

3.
3V

U
2

S
P

X
38

19

IN
1

O
U

T
5

E
N

3

G
N

D
2

P
4

4

D4

JP
1

12345678910111213141516

X
1

12

JP
3 1 2 3 4 5 6 7 8 9 10 11 12

V
D

D
4

S
TA

T
1

V
B

A
T

3

P
R

O
G

5

V
S

S
2

U
3

M
C

P
73

83
1T

-2
A

C
I/O

T

C
H

G

R
E

S
E

T
1

A
D

C
2

C
H

_P
D

3

G
P

IO
16

4

G
P

IO
14

5

G
P

IO
12

6

G
P

IO
13

7

V
C

C
8

G
N

D
9

G
P

IO
15

10
G

P
IO

2
11

G
P

IO
0

12
G

P
IO

4
13

G
P

IO
5

14
R

X
D

15
T

X
D

16

CS 17

GPIO10 19

CLK 20

DI 21

GPIO9 22

DO 18

SW2

AB
B' A'

D3

R
I

1

G
N

D
2

D
+

3

D
-

4

V
IO

5

V
D

D
6

R
E

G
IN

7

V
B

U
S

8

#R
S

T
9

N
C

10

G
P

IO
3

11
G

P
IO

2
12

D
C

D
24

D
T

R
23

D
S

R
22

T
X

D
21

R
X

D
20

R
T

S
19

C
T

S
18

S
U

S
P

E
N

D
17

V
P

P
16

#S
U

S
P

E
N

D
15

G
P

IO
0/

T
X

LE
D

14

G
P

IO
1/

R
X

LE
D

13

IC
1G

$1

X
4

D
+ D
-

V
B

U
S

G
N

DID
T

H
E

R
M

A
L

P
A

D

IC
1G

$2

Q
1

Q
2

S
J1

2
1

R
E

S
E

T

RESET

R
E

S
E

T

R
E

S
E

T

A
D

C

A
D

C

C
H

_P
D

CH_PD

C
H

_P
D

G
P

IO
16

G
P

IO
16

G
P

IO
15

GPIO15

G
P

IO
15

G
P

IO
0

GPIO0

G
P

IO
0

G
P

IO
0

R
X

D

R
X

D

T
X

D

T
X

D

T
X

D
R

T
S

R
T

S

D
T

R

D
T

R

E
N

E
N

G
P

IO
5/

S
C

L

G
P

IO
5/

S
C

L

G
P

IO
4/

S
D

A

G
P

IO
4/

S
D

A

G
P

IO
2

GPIO2

G
P

IO
2

G
P

IO
14

/S
C

K

G
P

IO
14

/S
C

K

G
P

IO
14

/S
C

K
G

P
IO

13
/M

O
S

I

G
P

IO
13

/M
O

S
I

G
P

IO
13

/M
O

S
I

G
P

IO
12

/M
IS

O

G
P

IO
12

/M
IS

O

G
P

IO
12

/M
IS

O

USB_RX

U
S

B
_R

X

P
O

W
E

R
 A

N
D

 F
IL

T
E

R
IN

G
R

E
S

E
T

U
S

B
 T

O
 S

E
R

IA
L

C
O

N
V

E
R

T
E

R

LI
P

O
 C

H
A

R
G

IN
G

LE
D

E
S

P
82

66
 M

O
D

U
LE

 +
 A

U
T

O
R

E
S

E
T

o

A
da

fr
ui

t E
S

P
82

66
 F

ea
th

er

04
/0

4/
20

18
 1

0:
49

20
15

C
IS

S
U

E

D
R

A
W

N

C
H

E
C

K
E

D

D
A

T
E

A
D

A
F

R
U

IT
 IN

D
U

S
T

R
IE

S

K
T

O
W

N

>
C

H
E

C
K

E
D

>
D

A
T

E

>
D

R
G

N
O

B

A B C D

1
2

3
4

5
6

A B C D

1
2

3
4

5
6

M
C

P
73

83
1/

2
LI

P
O

 C
ha

rg
er

Te
m

p:
-4

0-
85

°C
V

D
D

:
3.

75
-6

V

C
P

21
04

U
S

B
/U

A
R

T
 B

R
ID

G
E

V
IO

: 1
.8

-V
D

D
O

p.
 T

em
p:

 -
40

~
85

°C

55

A. Schematics

A.2 BME680 Schematic

F
or S

P
I set C

S
B

 low
 at startup

S
D

O
=

M
IS

O
, S

D
I=

M
O

S
I, S

C
K

=
S

C
K

, C
S

B
=

C
S

/S
S

E
L

F
or I2C

 leave C
S

B
 pulled high (default value)

S
D

I=
S

D
A

, S
C

K
=

S
C

L

LE
V

E
L S

H
IF

T
IN

G
 (5V

 <
-->

 3V
)

G
N

D

G
N

D

G
N

D

B
M

E
280

3.3V
3.3V

G
N

D
G

N
D

3.3V

3.3V

1N
4148

3.3V
3.3V

2N7002D

2N7002D

3.3V
3.3V

V
IN

V
IN

V
IN

V
IN

3.3V

U
2

M
IC

5225-3.3

IN
1

O
U

T
5

E
N

3

G
N

D
2

P
4

4

JP
21234567

U
1G

N
D

1*2

S
D

O
5

V
D

D
IO

6
V

D
D

8

S
C

K
4

S
D

I
3

C
S

B
2

D
2

Q1G$1

21
6

Q1G$2

54
3

S
D

I_3V

S
D

I_3V

S
C

K
_3V

S
C

K
_3V

C
S

_3V

C
S

_3V

S
D

O
/A

D
R

S
D

O
/A

D
R

S
D

O
/A

D
R

S
D

O
/A

D
R

S
D

I/S
D

A

S
D

I/S
D

A

S
C

K
/S

C
L

S
C

K
/S

C
L

C
S

C
S

B
M

E
x80 D

igital
E

nviron. S
ensor

V
D

D
:

1.8-3.6V
Tem

p:
-40~

85°C

ABCD

1
2

3
4

5
6

ABCD

1
2

3
4

5
6

G

S
D

56

A.3. Schematic of the designed PCB

A.3 Schematic of the designed PCB

11

22

33

44

D
D

C
C

B
B

A
A

1

Bo
sc

h
Se

cu
ri

ty
 S

ys
te

m
s

Si
st

em
as

 d
e

se
gu

ra
nç

a
SA

EN
 1

09
/IC

1,
 Z

I d
e

O
va

r
Lu

ga
r

da
 P

ar
da

la
38

11
-7

28
 O

va
r

1

Sc
he

m
at

ic
 -

Th
es

is
O

le
ks

an
dr

a
Si

dl
ov

sk
a

1
03

-0
7-

20
18

10
:0

0
Sc

he
m

at
ic

.S
ch

D
oc

Ti
tle

Si
ze

:
N

um
be

r:

D
at

e:
Fi

le
:

R
ev

is
io

n:

Sh
ee

t
of

Ti
m

e:
A

4

D
ra

w
n

B
y:

Jo
aq

ui
m

 G
om

es

R
ST

/1
1

3V
3

2

N
C

3

G
N

D
4

A
D

C
/2

5

N
C

6

N
C

7

N
C

8

N
C

9

N
C

10

IO
14

/S
C

K
/5

11

IO
13

/M
O

SI
/7

12

IO
12

/M
IS

O
/6

13

IO
3/

R
X

/1
5

14

IO
1/

TX
/1

6
15

C
H

PD
/3

16
IO

4/
SD

A
/1

3
17

IO
5/

SC
L/

14
18

IO
2/

11
19

IO
16

/4
20

IO
0/

12
21

IO
15

/1
0

22
IO

13
/M

O
SI

/7
23

IO
12

/M
IS

O
/6

24
IO

14
/S

C
K

/5
25

V
B

U
S/

U
SB

26
EN

27
V

BA
T

28

PR
O

C
1

ES
P8

26
6

Vi
n

1

3V
o

2

G
N

D
3

SC
K

4

SD
O

5

SD
I

6

CS
7

SN
1

B
M

E6
80

10
K

R
2

51
0R

R
1

G
N

D
G

N
D

D
et

et
or

 In
ce

nd
io

1 2

JP
1

PO
W

ER

G
N

D

24
V

24
V

3V
3

1 2

JP
2

D
trI

nc

D
et

et
or

 In
ce

nd
io

G
N

D

47
uF

C
1

47
uF

C
3

G
N

D
G

N
D

-V
in

1

R
em

 O
n/

O
ff

2

+V
in

16
+V

ou
t

9

-V
ou

t
10

U
1

TH
L

3W
I

3V
3

1 2
34

O
PC

1

PC
12

3X
N

N
SZ

0F

24
V

G
N

D

3V
3

PIC101 PIC102
COC

1
PIC301 PIC302

COC
3

P
I
J
P
1
0
1

PI
JP

10
2 COJ

P1

P
I
J
P
2
0
1

P
I
J
P
2
0
2
 COJ

P2

P
I
O
P
C
1
0
1

P
I
O
P
C
1
0
2

P
I
O
P
C
1
0
3

P
I
O
P
C
1
0
4
 CO
OP

C1

PI
PR
OC
10
1

PI
PR
OC
10
2

PI
PR
OC
10
3

PI
PR
OC
10
4

PI
PR
OC
10
5

PI
PR
OC
10
6

PI
PR
OC
10
7

PI
PR
OC
10
8

PI
PR
OC
10
9

PI
PR
OC
10
10

PI
PR
OC
10
11

PI
PR
OC
10
12

PI
PR
OC
10
13

PI
PR
OC
10
14

PI
PR
OC
10
15

PI
PR
OC
10
16

PI
PR
OC
10
17

PI
PR
OC
10
18

PI
PR
OC
10
19

PI
PR
OC
10
20

PI
PR
OC
10
21

PI
PR
OC
10
22

PI
PR
OC
10
23

PI
PR
OC
10
24

PI
PR
OC
10
25

PI
PR
OC
10
26

PI
PR
OC
10
27

PI
PR
OC
10
28

CO
PR

OC
1

PI
R1

01

PI
R1

02

COR
1

PIR201 PIR202 COR
2

P
I
S
N
1
0
1

P
I
S
N
1
0
2

PI
SN

10
3

PI
SN

10
4

P
I
S
N
1
0
5

P
I
S
N
1
0
6

P
I
S
N
1
0
7
 CO
SN
1

P
I
U
1
0
1

P
I
U
1
0
2

P
I
U
1
0
9

P
I
U
1
0
1
0

PI
U1

01
6 COU

1

PIC302

PI
PR
OC
10
2

PIR202

P
I
S
N
1
0
1

P
I
U
1
0
9

PIC102

P
I
J
P
1
0
1

PI
R1

01

PI
U1

01
6

P
I
J
P
2
0
1

P
I
O
P
C
1
0
2

PIC101
PIC301

PI
JP

10
2

P
I
J
P
2
0
2

P
I
O
P
C
1
0
3

PI
PR
OC
10
4

PI
SN

10
3

P
I
U
1
0
1

P
I
U
1
0
1
0

P
I
O
P
C
1
0
1

PI
R1

02

P
I
O
P
C
1
0
4

PI
PR
OC
10
18

PIR201

PI
PR
OC
10
1

PI
PR
OC
10
3

PI
PR
OC
10
5

PI
PR
OC
10
6

PI
PR
OC
10
7

PI
PR
OC
10
8

PI
PR
OC
10
9

PI
PR
OC
10
10

PI
PR
OC
10
11

PI
PR
OC
10
25

PI
SN

10
4

PI
PR
OC
10
12

PI
PR
OC
10
23

P
I
S
N
1
0
6

PI
PR
OC
10
13

PI
PR
OC
10
24

P
I
S
N
1
0
5

PI
PR
OC
10
14

PI
PR
OC
10
15

PI
PR
OC
10
16

PI
PR
OC
10
17

PI
PR
OC
10
19

PI
PR
OC
10
20

PI
PR
OC
10
21

PI
PR
OC
10
22

P
I
S
N
1
0
7

PI
PR
OC
10
26

PI
PR
OC
10
27

PI
PR
OC
10
28

P
I
S
N
1
0
2

P
I
U
1
0
2

57

Appendix B

MS 400

B.1 MS 400 wire connection

59

Appendix C

Arduino Code

C.1 Programming code

1 /*...
**...

2 BME680 ESP8266
3 1 (VIN) 3v3
4 2 (GND) GND
5 3 (SCK) SCK
6 4 (SDO) MISO
7 5 (SDI) MOSI
8 6 (CS) 15
9 **...

*/
10
11 #inc lude <EEPROM. h>
12 #inc lude ”bsec . h”
13 #inc lude ” b s e c s e r i a l i z e d c o n f i g u r a t i o n s i a q . h”
14 #inc lude <ESP8266WiFi . h>
15
16 #de f i n e STATE SAVE PERIOD UINT32 C(360 * 60 * 1000) // 360 minutes - 4 ...

t imes a day
17
18 // Helper f unc t i on s d e c l a r a t i o n s
19 void checkIaqSensorStatus (void) ;
20 void errLeds (void) ;
21 void loadState (void) ;
22 void updateState (void) ;
23
24 // Create an ob j e c t o f the c l a s s Bsec
25 Bsec iaqSensor ;
26 u in t 8 t bsecState [BSEC MAX STATE BLOB SIZE] = {0} ;
27 u in t16 t stateUpdateCounter = 0 ;
28 u in t32 t mi l l i sOver f l owCounter = 0 ;
29 u in t32 t lastTime = 0 ;
30
31 St r ing output ;
32
33 // C h a n n e l s ThingSpeak API key and Wi- Fi parameters
34 St r ing apiKey = ”DK50Q5TQUJYK7HIZ” ;
35 const char * s s i d = ”Optimus4G 2510 ” ;
36 const char * password = ”8BF5E79AE68” ;
37 const char * s e r v e r = ”api . th ingspeak . com” ;

61

C. Arduino Code

38 WiFiClient c l i e n t ;
39
40 // Entry po int f o r the example
41 void setup (void)
42 {
43 EEPROM. begin (BSEC MAX STATE BLOB SIZE + 1) ; // 1 s t address f o r the ...

l ength
44 S e r i a l . begin (115200) ;
45
46 WiFi . begin (s s id , password) ;
47
48 S e r i a l . p r i n t l n () ;
49 S e r i a l . p r i n t l n () ;
50 S e r i a l . p r i n t (”Connecting to ”) ;
51 S e r i a l . p r i n t l n (s s i d) ;
52
53 WiFi . begin (s s id , password) ;
54
55 whi le (WiFi . s t a tu s () != WLCONNECTED)
56 {
57 de lay (500) ;
58 S e r i a l . p r i n t (” . ”) ;
59 }
60 S e r i a l . p r i n t l n (””) ;
61 S e r i a l . p r i n t l n (”WiFi connected ”) ;
62
63 /* Setup button i n t e r r up t to t r i g g e r ULP plus */
64 pinMode (5 , INPUT) ;
65 a t ta ch In t e r rup t (d i g i t a lP inTo In t e r rup t (5) , a l a rm s i tua t i on , FALLING) ;
66
67 /* I n i t i a l i z e the LED BUILTIN pin as an output */
68 pinMode (LED BUILTIN , OUTPUT) ;
69
70 iaqSensor . begin (15 , SPI) ; /*Dig i t a l pin used as chip s e l e c t */
71 output = ”\nBSEC l i b r a r y ve r s i on ” + Str ing (iaqSensor . v e r s i on . major) + ”...

. ” + St r ing (iaqSensor . v e r s i on . minor) + ” . ” + St r ing (iaqSensor
ve r s i on . major bugf ix) + ” . ” + St r ing (iaqSensor . v e r s i on . minor bugf ix)...
;

72 S e r i a l . p r i n t l n (output) ;
73 checkIaqSensorStatus () ;
74
75 iaqSensor . s e tCon f i g (b s e c c o n f i g i a q) ;
76 checkIaqSensorStatus () ;
77
78 loadState () ;
79
80 b s e c v i r t u a l s e n s o r t s e n s o rL i s t [7] = {
81 BSECOUTPUTRAWTEMPERATURE,
82 BSEC OUTPUT RAW PRESSURE,
83 BSEC OUTPUT RAW HUMIDITY,
84 BSEC OUTPUT RAW GAS,
85 BSEC OUTPUT IAQ ESTIMATE,
86 BSEC OUTPUT SENSOR HEAT COMPENSATED TEMPERATURE,
87 BSEC OUTPUT SENSOR HEAT COMPENSATED HUMIDITY,
88 } ;
89
90 iaqSensor . updateSubscr ipt ion (s en so rL i s t , 7 , BSEC SAMPLE RATE ULP) ;
91 checkIaqSensorStatus () ;
92
93 // Pr int the header

62

C.1. Programming code

94 output = ”Timestamp [ms] , raw temperature [C] , p r e s su r e [hPa] , raw ...
r e l a t i v e humidity [%] , gas [Ohm] , IAQ, IAQ accuracy , temperature [...
C] , r e l a t i v e humidity [%] , Alarm State ” ;

95 S e r i a l . p r i n t l n (output) ;
96 }
97
98 // Function that i s looped f o r e v e r
99 void loop (void)

100 {
101 i n t alarmState = ! d ig i t a lRead (5) ; // pin 5 reads the Fi re Detector State
102 i f (i aqSensor . run ()) { // I f new data i s a v a i l a b l e
103 output = St r ing (m i l l i s ()) + ” [ms] ” ;
104 output += ” , ” + St r ing (iaqSensor . rawTemperature) + ” [C] ” ;
105 output += ” , ” + St r ing (iaqSensor . p r e s su r e) + ” [hPa] ” ;
106 output += ” , ” + St r ing (iaqSensor . rawHumidity) + ” [%] ” ;
107 output += ” , ” + St r ing (iaqSensor . ga sRes i s tance) + ” [Ohm] ” ;
108 output += ” , ” + St r ing (iaqSensor . iaqEst imate) + ” IAQ Index ” ;
109 output += ” , ” + St r ing (iaqSensor . iaqAccuracy) ;
110 output += ” , ” + St r ing (iaqSensor . temperature) + ” [C] ” ;
111 output += ” , ” + St r ing (iaqSensor . humidity) + ” [%] ” ;
112 output += ” , ” + St r ing (alarmState) ;
113 S e r i a l . p r i n t l n (output) ;
114 updateState () ;
115 d i g i t a lWr i t e (LED BUILTIN , LOW) ;
116 de lay (1000) ;
117 d i g i t a lWr i t e (LED BUILTIN , HIGH) ;
118 de lay (1000) ;
119 // send data to ThingSpeak
120 f l o a t t = iaqSensor . rawTemperature ;
121 f l o a t p = iaqSensor . p r e s su r e ;
122 f l o a t h = iaqSensor . rawHumidity ;
123 f l o a t gr = iaqSensor . ga sRes i s tance ;
124 f l o a t i aqe = iaqSensor . iaqEst imate ;
125 f l o a t iaqa = iaqSensor . iaqAccuracy ;
126 f l o a t f i r e = alarmState ;
127
128 i f (c l i e n t . connect (se rver , 8 0)) // ”184 . 1 06 . 1 53 . 1 49” or api . th ingspeak...

. com
129 {
130 St r ing pos tSt r = apiKey ;
131 pos tSt r +=”&f i e l d 1=” ;
132 pos tSt r += Str ing (t) ;
133 pos tSt r +=”&f i e l d 2=” ;
134 pos tSt r += Str ing (p) ;
135 pos tSt r +=”&f i e l d 3=” ;
136 pos tSt r += Str ing (h) ;
137 pos tSt r +=”&f i e l d 4=” ;
138 pos tSt r += Str ing (gr) ;
139 pos tSt r +=”&f i e l d 5=” ;
140 pos tSt r += Str ing (i aqe) ;
141 pos tSt r +=”&f i e l d 6=” ;
142 pos tSt r += Str ing (iaqa) ;
143 pos tSt r +=”&f i e l d 7=” ;
144 pos tSt r += Str ing (f i r e) ;
145 c l i e n t . p r i n t (”POST /update HTTP/1.1\n”) ;
146 c l i e n t . p r i n t (”Host : ap i . th ingspeak . com\n”) ;
147 c l i e n t . p r i n t (”Connection : c l o s e \n”) ;
148 c l i e n t . p r i n t (”X-THINGSPEAKAPIKEY: ”+apiKey+”\n”) ;
149 c l i e n t . p r i n t (”Content -Type : app l i c a t i o n /x -www- form - ur lencoded \n”) ;
150 c l i e n t . p r i n t (”Content - Length : ”) ;
151 c l i e n t . p r i n t (pos tSt r . l ength ()) ;

63

C. Arduino Code

152 c l i e n t . p r i n t (”\n\n”) ;
153 c l i e n t . p r i n t (pos tSt r) ;
154 }
155 c l i e n t . stop () ;
156 } e l s e {
157 checkIaqSensorStatus () ;
158 }
159 }
160
161 // Helper func t i on d e f i n i t i o n s
162 void checkIaqSensorStatus (void)
163 {
164 i f (i aqSensor . s t a tu s != BSEC OK) {
165 i f (i aqSensor . s t a tu s < BSEC OK) {
166 output = ”BSEC e r r o r code : ” + St r ing (iaqSensor . s t a tu s) ;
167 S e r i a l . p r i n t l n (output) ;
168 f o r (; ;)
169 errLeds () ; /* Halt in case o f f a i l u r e */
170 } e l s e {
171 output = ”BSEC warning code : ” + St r ing (iaqSensor . s t a tu s) ;
172 S e r i a l . p r i n t l n (output) ;
173 }
174 }
175
176 i f (i aqSensor . bme680Status != BME680 OK) {
177 i f (i aqSensor . bme680Status < BME680 OK) {
178 output = ”BME680 e r r o r code : ” + St r ing (iaqSensor . bme680Status) ;
179 S e r i a l . p r i n t l n (output) ;
180 f o r (; ;)
181 errLeds () ; /* Halt in case o f f a i l u r e */
182 } e l s e {
183 output = ”BME680 warning code : ” + St r ing (iaqSensor . bme680Status) ;
184 S e r i a l . p r i n t l n (output) ;
185 }
186 }
187 }
188
189 void errLeds (void)
190 {
191 pinMode (LED BUILTIN , OUTPUT) ;
192 d i g i t a lWr i t e (LED BUILTIN , HIGH) ;
193 de lay (100) ;
194 d i g i t a lWr i t e (LED BUILTIN , LOW) ;
195 de lay (100) ;
196 }
197
198 void loadState (void)
199 {
200 i f (EEPROM. read (0) == BSEC MAX STATE BLOB SIZE) {
201 // Ex i s t ing s t a t e in EEPROM
202 S e r i a l . p r i n t l n (”Reading s t a t e from EEPROM”) ;
203
204 f o r (u i n t 8 t i = 0 ; i < BSEC MAX STATE BLOB SIZE; i++) {
205 bsecState [i] = EEPROM. read (i + 1) ;
206 S e r i a l . p r i n t l n (bsecState [i] , HEX) ;
207 }
208
209 iaqSensor . s e tS t a t e (bsecState) ;
210 checkIaqSensorStatus () ;
211 } e l s e {
212 // Erase the EEPROM with z e r o e s

64

C.1. Programming code

213 S e r i a l . p r i n t l n (”Eras ing EEPROM”) ;
214
215 f o r (u i n t 8 t i = 0 ; i < BSEC MAX STATE BLOB SIZE + 1 ; i++)
216 EEPROM. wr i t e (i , 0) ;
217
218 EEPROM. commit () ;
219 }
220 }
221
222 void updateState (void)
223 {
224 bool update = f a l s e ;
225 i f (stateUpdateCounter == 0) {
226 /* F i r s t s t a t e update when IAQ accuracy i s >= 1 */
227 i f (i aqSensor . iaqAccuracy >= 3) {
228 update = true ;
229 stateUpdateCounter++;
230 }
231 } e l s e {
232 /* Update every STATE SAVE PERIOD minutes */
233 i f ((stateUpdateCounter * STATE SAVE PERIOD) < m i l l i s ()) {
234 update = true ;
235 stateUpdateCounter++;
236 }
237 }
238
239 i f (update) {
240 iaqSensor . g e tS ta t e (bsecState) ;
241 checkIaqSensorStatus () ;
242
243 S e r i a l . p r i n t l n (”Writing s t a t e to EEPROM”) ;
244
245 f o r (u i n t 8 t i = 0 ; i < BSEC MAX STATE BLOB SIZE ; i++) {
246 EEPROM. wr i t e (i + 1 , bsecState [i]) ;
247 S e r i a l . p r i n t l n (bsecState [i] , HEX) ;
248 }
249
250 EEPROM. wr i t e (0 , BSEC MAX STATE BLOB SIZE) ;
251 EEPROM. commit () ;
252 }
253 }
254
255 /* !
256 @br ie f In t e r rup t handler f o r p r e s s o f a ULP plus button
257
258 @return none
259 */
260 void a l a rm s i tua t i on ()
261 {
262 /* We c a l l b s e c upda t e sub s c r i p t i on () in order to i n s t r u c t BSEC to ...

perform an extra measurement at the next
263 p o s s i b l e time s l o t
264 */
265 i n t alarmState = ! d ig i t a lRead (5) ;
266 S e r i a l . p r i n t l n (”Alarme ”) ;
267 b s e c v i r t u a l s e n s o r t s e n s o rL i s t [1] = {
268 BSEC OUTPUT IAQ ESTIMATE,
269 } ;
270
271 iaqSensor . updateSubscr ipt ion (s en so rL i s t , 1 , ...

BSEC SAMPLE RATE ULPMEASUREMENT ON DEMAND) ;

65

C. Arduino Code

272 checkIaqSensorStatus () ;
273 }

66

C.2. bsec serialized configurations iaq.h

C.2 bsec serialized configurations iaq.h

1 #inc lude ” b s e c s e r i a l i z e d c o n f i g u r a t i o n s i a q . h”
2
3 const u i n t 8 t b s e c c o n f i g i a q [3 0 4] =
4 {0 , 6 , 4 , 1 , 61 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 24 , 1 , 0 , 0 , 40 , 0 , 1 , 0 , 137 , 65 ,
5 0 ,63 ,0 ,0 , 64 ,63 ,205 ,204 ,76 ,62 ,0 ,0 , 225 ,68 ,0 , 192 ,168 ,
6 71 , 0 , 0 , 0 , 0 , 0 , 80 , 10 , 90 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 21 , 0 , 2 , 0 , 0 , 244 ,
7 1 , 225 , 0 , 25 , 10 , 144 ,1 , 0 , 0 , 112 ,65 , 0 , 0 , 0 , 63 , 16 , 0 , 3 , 0 , 10 ,
8 215 ,163 ,60 ,10 ,215 ,35 ,59 ,10 ,215 ,35 ,59 ,9 , 0 , 5 , 0 , 0 , 0 , 0 , 0 ,
9 1 ,51 ,0 ,9 ,0 ,10 ,215 ,163 ,59 ,205 ,204 ,204 ,61 ,225 ,122 ,148 ,

10 62 ,41 ,92 ,15 ,61 ,0 , 0 , 0 , 63 ,0 , 0 , 0 , 63 ,154 ,153 ,89 ,63 ,154 ,153 ,
11 25 ,62 ,1 , 1 , 0 , 0 , 128 ,63 ,6 , 236 ,81 ,184 ,61 ,51 ,51 ,131 ,64 ,12 ,0 ,
12 10 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 131 , 0 , 254 , 0 , 2 , 1 , 5 , 48 , 117 , 100 , 0 , 44 ,
13 1 ,151 ,7 ,132 ,3 ,197 ,0 , 144 ,1 , 64 ,1 , 64 ,1 , 48 ,117 ,48 ,117 ,48 ,
14 117 ,48 ,117 ,100 ,0 ,100 ,0 ,100 ,0 ,48 ,117 ,48 ,117 ,48 ,117 ,100 ,
15 0 ,100 ,0 ,48 ,117 ,100 ,0 ,100 ,0 ,100 ,0 ,100 ,0 ,48 ,117 ,48 ,117 ,48 ,
16 117 ,100 ,0 ,100 ,0 ,100 ,0 ,48 ,117 ,48 ,117 ,100 ,0 ,44 ,1 , 44 ,1 ,44 ,1 ,
17 44 ,1 , 44 , 1 , 44 , 1 , 44 , 1 , 44 , 1 , 44 , 1 , 44 , 1 , 44 , 1 , 44 , 1 , 44 , 1 , 255 ,255 ,
18 255 ,255 ,255 ,255 ,255 ,255 ,255 ,255 ,255 ,255 ,255 ,255 ,255 ,255 ,255
19 ,255 ,255 ,255 ,255 ,255 ,255 ,255 ,255 ,255 ,48 ,117 ,0 ,0 , 0 , 0 , 240 ,156 ,0 ,0} ;

67

C. Arduino Code

C.3 bsec serialized configurations iaq.cpp

1 #inc lude <s t d i n t . h>
2
3 extern const u i n t 8 t b s e c c o n f i g i a q [3 0 4] ;

68

C.4. MATLAB Analysis

C.4 MATLAB Analysis

Average calculation of Temperature, Pressure, Humidity, Gas Resistance and IAQ Esti-
mate.

1 % Read temperature , pres sure , humidity , gas r e s i s t a n c e and IAQ
2 %est imate over the past 24 hours from a ThingSpeak channel and wr i t e
3 % the average to another ThingSpeak channel .
4
5 % Channel 490337 conta in s data from the BME680 senso r .
6 %The data i s c o l l e c t e d once every f i v e minutes .
7 %F i e l d s : 1 - temperature ; 2 - p r e s su r e ; 3 - h imid i ty ; 4 - gas r e s i s t a n c e ; ...

5 - IAQ est imate .
8
9 % Channel ID to read data from

10 readChannelID = 490337;
11 % temperature F i e ld ID
12 temperatureFie ldID = 1 ;
13 % pre s su r e F i e ld ID
14 pre s sureF i e ld ID = 2 ;
15 % humidity F i e ld ID
16 humidityFieldID = 3 ;
17 % gas F i e ld ID
18 gasFie ldID = 4 ;
19 % IAQ Fie ld ID
20 IAQFieldID = 5 ;
21
22 % Channel Read API Key
23 % I f your channel i s pr ivate , then ente r the read API Key between the ' ' ...

below :
24 readAPIKey = ' ' ;
25
26 % Get data f o r the l a s t day from the channel .
27
28 temperature = thingSpeakRead (readChannelID , ' F i e l d s ' , temperatureFie ldID , '...

NumMinutes ' ,1440 , 'ReadKey ' , readAPIKey) ;
29 p r e s su r e = thingSpeakRead (readChannelID , ' F i e l d s ' , p res sureFie ld ID , '...

NumMinutes ' ,1440 , 'ReadKey ' , readAPIKey) ;
30 humidity = thingSpeakRead (readChannelID , ' F i e l d s ' , humidityFieldID , '...

NumMinutes ' ,1440 , 'ReadKey ' , readAPIKey) ;
31 gas = thingSpeakRead (readChannelID , ' F i e l d s ' , gasFie ldID , 'NumMinutes ' ,1440 , '...

ReadKey ' , readAPIKey) ;
32 IAQ = thingSpeakRead (readChannelID , ' F i e l d s ' , IAQFieldID , 'NumMinutes ' ,1440 , '...

ReadKey ' , readAPIKey) ;
33
34 % Calcu la te the average temperature
35 avgtemperature = mean(temperature) ;
36 d i sp l ay (avgtemperature , 'Average temperature ') ;
37
38 % Calcu la te the average p r e s su r e
39 avgpres sure = mean(pr e s su r e) ;
40 d i sp l ay (avgpressure , 'Average pr e s su r e ') ;
41
42 % Calcu la te the average humidity
43 avghumidity = mean(humidity) ;
44 d i sp l ay (avghumidity , 'Average humidity ') ;
45
46 % Calcu la te the average gas
47 avggas = mean(gas) ;

69

C. Arduino Code

48 d i sp l ay (avggas , 'Average gas ') ;
49
50 % Calcu la te the average IAQ
51 avgIAQ = mean(IAQ) ;
52 d i sp l ay (avgIAQ , 'Average IAQ ') ;
53
54 f p r i n t f (['Note : To wr i t e data to another channel , a s s i gn the wr i t e channel...

ID \n ' , . . .
55 ' and API Key to ' 'writeChannelID ' ' and ' 'writeAPIKey ' ' va r i a b l e s

Also \n ' , . . .
56 'uncomment the l i n e o f code conta in ing ' ' thingSpeakWrite ' ' \n ' , . . .
57 ' (remove ' '%%' ' s i gn at the beg inning o f the l i n e .) ']) ;
58
59 % To s t o r e the c a l c u l a t ed average temperature , wr i t e i t to a channel other
60 % than the one used f o r read ing data . To wr i t e to a channel , a s s i gn the
61 % wr i t e channel ID to the 'writeChannelID ' var i ab l e , and the wr i t e API Key
62 % to the 'writeAPIKey ' va r i ab l e below . Find the wr i t e API Key in the r i gh t
63 % s i d e pane o f t h i s page .
64
65 % Replace the [] with channel ID to wr i t e data to :
66 writeChannelID = 512784;
67 % Enter the Write API Key between the ' ' below :
68 writeAPIKey = ' 8QQV6JTMRO33U2ZE ' ;
69
70 % Learn more about the THINGSPEAKWRITE func t i on by going to the ...

Documentation tab on
71 % the r i gh t s i d e pane o f t h i s page .
72
73 thingSpeakWrite (writeChannelID , [avgtemperature , avgpressure , avghumidity ,...

avggas , avgIAQ] , ' writekey ' , writeAPIKey) ;

70

Appendix D

Current calculation

D.1 Average current calculation

Normal Mode
FCP-320 FCP-320 and PCB

Current [µA] Current [mA]

99,5451 26,3788

99,6358 26,4008

99,5487 26,4063

99,6012 26,3702

99,5418 26,4956

99,5206 26,3804

99,6225 26,4156

99,5049 26,5596

99,4985 26,3948

99,5554 26,3255

Average 99,55745 Average 26,41276

Fire Situation
FCP-320 FCP-320 and PCB

Current [mA] Current [mA]

29,9986 61,1601

29,0078 61,384

29,0406 61,1955

29,043 61,5036

29,0447 61,1678

29,0482 61,2789

29,0546 61,1531

29,0567 61,3758

29,0568 61,1805

30,058 61,548

Average 29,2409 Average 61,29473

71

Appendix E

Technical draw

E.1 Technical draw of the new mechanical part

I
n
d
. C
h
a
n
g
e
/
A
e
n
d
.

Y
Y
Y
Y
M
M
D
D

D
r
a
w
n
/
G
e
z
.

C
h
e
c
k
e
d
/
G
e
p
r
.R
e
l
e
a
s
.
/
F
r
e
i
g
. B
W
N

R
e
s
p
.

d
e
p
t
.
/
V
e
r
a
n
t
w
.

A
b
t
.
A
d
d
.

i
n
f
o
.
/
Z
u
s
.

I
n
f
o
.

S
i
z
e
/
G
s
t
.

M
i
s
s
e
d

d
e
t
a
i
l
s
/
F
e
h
l
e
n
d
e

A
n
g
a
b
e
n

T
r
e
a
t
m
e
n
t
/

B
e
h
a
n
d
l
u
n
g

M
a
t
.
/
S
t
o
f
f

F
r
o
m
/
A
u
s

R
e
p
l
.

f
o
r

D
o
c
.
t
y
p
e

S
h
e
e
t
/
B
l
.

I
n
d
.

D
P
/
T
D

R
e
p
l
.

b
y

F
o
r
m
a
t

M
N
R

S
c
a
l
e
/
M
.
s
t
a
b

M
a
t
.
m
e
e
t
s
/
S
t
o
f
f
e

s

C
r
i
t
.

P
.

L
a
n
g
.
/
S
p
r
.

W
g
h
t
.
/
G
e
w
.

S
y
s
t
.

DCB E F

4
3

2
1

5
6

9
8

© Robert Bosch GmbH. Alle Rechte vorbehalten, auch bzgl.
jeder Verfuegung, Verwertung, Reproduktion, Bearbeitung,
Weitergabe sowie für den Fall von Schutzrechtsanmeldungen.

© Robert Bosch GmbH. All rights reserved, also regarding
any disposal, exploitation, reproduction, editing, distribution,
as well as in the event of applications for industrial property rights.

7
1
0

1
1

1
2

4
3

2
1

5
6

9
8

7
1
0

1
1

1
2

A G H

DCBA E F G H

3
0
0
7

62.5
7
4

34

120

140

160

155

125.27

1
3
.
4
5

4.3

1
.
5

1

1
5

6 5

30

1
5

4

2

9
6

4.35
1
0

R2

R2

8.13

9

8

1
9

6
.
5

7
.
2

2
.
5

4
.
5

9
.
5

2
.
5

1
2
0
1
8
0
6
1
3

O
S
7
9
O
V
R

C
E
I
L
I
N
G

M
O
U
N
T

1
/
1

D
R
W

0
0
1
1

A
2

P
E

A
-
A

D

B
-
B

C
H
A
M
F
E
R

1
.
5
x
4
5
�
$
�

C
H
A
M
F
E
R

1
x
4
5
�
$
�

C
-
C

D
2
:
1

A

C

C

A
�
|
�
B

A
�
|
�
B
�
|
�
C

B

73

	Abstract
	Resumo
	Acknowledgements
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	The Bosch Group
	Project Background
	Aim and Objectives
	Thesis Outline

	State-of-the-art
	Smart Buildings
	Standards
	Fire Detectors
	Twinguard by Bosch Smart Home
	AVENAR 4000
	FCP–320

	Summary

	Architecture of the Proposed System
	AVENAR 4000
	Microcontroller MSP430
	Detector Base MS 400

	Architecture change
	FCP–320 / FCH–320 Conventional Automatic Fire Detector
	Adafruit Feather HUZZAH ESP8266
	BME680 – Environmental Sensor
	Adafruit BME680 Development Board
	First Calibration

	Communication and connection
	ESP8266 – BME680
	ESP8266 – FCP–320
	ESP8266 – Website

	Summary

	Software Design
	Arduino IDE
	Interrupt
	Sleep mode

	ThingSpeak
	Code to send data

	Twilio
	Configuration of SMS sending
	MATLAB Analysis
	Results
	ThingSpeak channel
	ThingView – ThingSpeak viewer
	Alarm detection
	Poor air quality detection

	Summary

	Prototype Development
	PCB development
	Development steps
	Components

	New part design
	Construction
	Plastic injection molding

	Final Prototype
	Project Costs

	Summary

	Conclusions and Future Works
	Conclusions
	Future Works

	References
	Schematics
	ESP8266 Schematic
	BME680 Schematic
	Schematic of the designed PCB

	MS 400
	MS 400 wire connection

	Arduino Code
	Programming code
	bsec_serialized_configurations_iaq.h
	bsec_serialized_configurations_iaq.cpp
	MATLAB Analysis

	Current calculation
	Average current calculation

	Technical draw
	Technical draw of the new mechanical part

