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Abstract

The world around us is in a state of constant change, with lots of variables and factors impacting
our daily lives. As time progresses, we humans tend to gain further interest in being able to
predict these changes in state in every single domain, no matter how mundane it may be. As
such, when we record a system’s state over some time period, we create a time-series: a collection
of observations recorded sequentially over time. This data can then be used to predict the
upcoming unobserved state in this system. We call this process time-series forecasting. From
predicting visitors to some restaurant for stock management and staff allocation, to predicting
item sales in a certain shop, time-series allow us to bring some predictability to this, at first
sight, unpredictable world.

The time-series forecasting field is a rich research area. The literature ranges from works
solely focused on algorithms for better forecasting, to algorithms designed for better information
extraction from time-series, as well as works exploring methods for reconstructing time-series, in
case there are missing observations.

However, when we talk about forecasting, we usually assume we have observations about
some system or entity recorded at regular time intervals. Let us say we have daily data about
some restaurant’s visitors. These observations are recorded at a frequency of 1 day. If we are
registering the yearly evolution of a country’s population, then the frequency is 1 year. In case
some observations are missing, common state-of-the-art methods tend to simply “fill in the
blanks”, or in other words, reconstruct or alter the time-series so that observations become evenly
spaced in time. But what if, in some domains, the irregularity of the temporal spacing between
observations is valuable information about the domain itself?

In this dissertation, we create an automated framework focused on feature engineering for
time-series with unevenly spaced observations, called irregular time-series. We study how valuable
this information is by integrating it in an automated time-series forecasting workflow. We also
investigate how it compares to state-of-the-art methods for regular time-series forecasting, and
how it may complement such methods by providing a different approach for feature extraction.

We contribute by providing a novel framework that tackles feature engineering for time-series
from an angle previously vastly ignored. We show that our approach has the potential to further
extract more information about time-series that aids significantly in the forecasting process.
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Resumo

O mundo à nossa volta encontra-se num estado de constante alteração, com diversas variáveis e
fatores a impactar o nosso quotidiano. Há medida que o tempo passa, nós humanos tendemos
a ganhar um maior interesse em prever estas alterações de estado em qualquer domínio,
independentemente do quão mundano seja. Como tal, quando gravamos o estado de um
sistema durante um período de tempo, estamos a criar uma série-temporal: uma coleção de
observações registadas sequencialmente no tempo. Estes dados podem então ser usados para
prever o “próximo” estado não-observado do sistema. Chamamos a este processo forecasting.
Desde prever visitantes de um determinado restaurante, a prever vendas de um produto numa
loja, séries temporais ajudam-nos a trazer alguma previsibilidade a um mundo, à primeira vista,
imprevisível.

A previsão de séries temporais é um campo de investigação muito rico e popular na
literatura, com diversas contribuições. Estas são diversamente variadas, desde trabalhos focados
singularmente em criar um melhor algoritmo, otimizado para forecasting, até métodos para
extração de informação, e até mesmo métodos para melhor reconstrução de séries temporais na
eventualidade de existirem observações em falta.

No entanto, quando falamos de prever séries temporais, é comum assumir que temos a nosso
dispor observações acerca de um determinado sistema ou entidade, registadas em intervalos de
tempo regulares. Digamos que temos dados diários sobre visitantes de um restaurante, então a
frequência das observações seria 1 dia. Caso estejamos a registar a evolução anual da população
de um determinado país, teríamos observações consecutivas separadas no tempo por 1 ano. No
caso de existirem observações em falta, a grande maioria dos métodos na literatura consiste
em simplesmente “preencher os espaços em branco”, ou seja, reconstruir ou modificar a série
temporal para que as observações passem a estar igualmente espaçadas no tempo. Mas e se, em
certos domínios, a irregularidade do espaçamento temporal entre observações seja informação
valiosa sobre o domínio em si?

Nesta dissertação, nós criamos uma framework automatizada focada na extração de informação
(feature engineering) a partir de séries temporais com observações espaçadas irregularmente,
chamadas séries temporais irregulares. Estudamos o quão valiosa esta informação será ao
integrá-la num workflow automatizado para forecasting de séries-temporais. Na mesma linha,
investigamos como o nosso método se compara a métodos na literatura e como é possível
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complementá-los ao fornecer uma nova abordagem para extração de informação.

As nossas contribuições incluem uma nova framework que aborda feature engineering para
séries temporais a partir de um ângulo previamente quase inexplorado. Nós mostramos, também,
que a nossa abordagem é capaz de potenciar o processo de extração de informação sobre séries
temporais que ajuda significativamente no processo de forecasting.
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Chapter 1

Introduction

1.1 Context

In everyday life, human beings are constantly making predictions. Whether we are estimating
if the train will arrive on time or how long it will take to cook dinner, our brain will always
attempt to make fast, accurate guesses as to how the environment around us will behave. Along
this line, humans have come to take a growing interest in finding more complex patterns that
aid us in understanding complicated real-life processes. Couple this with fast-growing computer
processing power and the machine learning field becomes ever more prevalent.

Machine learning can be translated as the “process of learning from data”. In other words,
by having a set of data regarding a real-world phenomenon, we wish to learn the underlying
structure of the phenomenon to be able to understand its behaviour better, and possibly even
predict future actions. In a traditional machine learning setting, the sequence of observations in
a data set is irrelevant as it provides no additional information. However, sometimes the data
contains information about a certain event recorded over time and the order of events becomes
highly informative as we may intend to use this information to forecast a value or an action
in a certain time frame. This work fits into this setting as it is geared towards handling and
forecasting using temporal data.

1.2 Problem definition

In a standard time-series forecasting problem, the data is composed of two core elements:
timestamps, which mark the point in time to which the observation refers, and a target variable,
which is usually a numeric value (hence forecasting is commonly a regressive problem). A
regular time-series is one where every consecutive observation is equally spaced in time with
some temporal frequency f and many state-of-the-art methods assume a time-series with such
characteristics. Some even go as far as to discard the timestamps completely making the
assumption that the time-series is regular even stronger. This may be unwise as temporal

1
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information may be useful to infer seasonality.

To put it more formally, if a regular time-series has frequency f , a set of timestamps T , target
variable Y and N observations, then, for α ∈ N:

|tj − ti| = α.f,∀ti, tj ∈ T

With that being said, the goal of forecasting is, when presented with the aforementioned
setting, to predict a set of values [yN+1, ..., yN+h], with h > 0 being the forecasting horizon, or,
in other words, the length of time into the future for which we forecast the time-series behaviour.

But how do we proceed when the timestamps are not evenly spaced? Figure 1.1 displays a
regular time-series on the left where observations were recorded in intervals of size 1. On the
right, however, we have the same time-series with some omitted values. We need a strategy to go
about forecasting this time-series and we can not simply omit the timestamps. A simple strategy
would be to group the data by resampling it, that is, make our time-series regular. For instance,
if we were to resample the data to frequency 2, and average the values in the time intervals,
we would get Y = [2, 2, 4, 4, 2] and T = [1, 3, 5, 7, 9] (omitted values are “missing” hence do not
count for the average). This time-series is now regular with f = 2.
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Figure 1.1: A regular time-series where observations are evenly spaced with frequency 1 and the
same time-series with unevenly spaced observations due to some omitted values.

Yet the prior approach may not be the best. The irregularity of the time-series could itself
be crucial information, for instance, when dealing with reservations made to a restaurant. Fewer
reservations within a time period would imply less demand. Hence, a customer wanting to make
a reservation may relax a bit more since there is probably a table available. By grouping the
observations and tackling the problem as if it were a regular time-series from the start, we could
be losing important information. As such, in this work, we will explore the process of extracting
features and important information from the irregularity present in some time-series and study
if, by emphasizing the uneven temporal spacing between observations, we can achieve a better
understanding of the time-series and improve forecasting results.
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A more complex problem arises when the time-series relates not to just the single behaviour
of an entity over time, but several. In certain domains, we are presented with sets of entities, each
with its evolution in time, but belonging to a common greater entity in the problem setting. This
could lead to a common structure to the entities’ evolution to arise. To put it more practically,
let us say we have a set of restaurants belonging to a well-known restaurant chain, as seen
in Figure 1.2. We are then presented with a dataset containing reservations made to those
restaurants, with every restaurant meshed together. With this in mind, the data has 3 attributes:

• Entity id: The restaurant where the reserve was made.

• Timestamp: The date of the reserve.

• Target: For how many people.

In this setting, instead of treating each restaurant as its own separate time-series, i.e,
separating each restaurant’s observations and forecast each time-series individually, can we
process all entities simultaneously and extract a global pattern related to the reservations over
time in restaurants of this chain? For example, can conclusions like “when there is a football
match, more reservations will be made to the restaurants” be extracted from this information?
This is the approach taken by the so-called global forecasting models [52].

+
1 RESERVES

+
2 RESERVES

3

+
RESERVES

Football match 
= 

More reserves!!

Figure 1.2: Illustration of an example of a time-series constituted by different entities (restaurants).
In this setting, we are presented with several restaurants belonging to the same chain, and
their reservations over time (inherently irregular). Can we extract global patterns from each
restaurants evolution over time? That is, can we use different local time-series together and
extract common global behaviours.

In summary, we pose the following research question:

RQ1. Can we improve a model’s performance by extracting information about a time series
irregularity?

This research question is evaluated using two datasets that represent two scenarios with
different complexity. The first dataset consists of a simple sequence of measurements over time
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from a single entity. The second dataset contains sequences by multiple distinct, yet related
entities, each with its own measurements over time. In the latter case, the additional challenge is
to build a forecasting model able to capture both local and global dynamics.

We evaluate our results under two perspectives. On the one hand, we study whether explicitly
modelling the irregularity of the time-series leads to better forecasting performance. On the other
hand, we assess the ability of the models to generalize to new observations, i.e, their applicability
in practice.

1.3 Methodology

With this dissertation, we intend to take a new approach to automated feature engineering for
time-series forecasting. When studying the contributions to this filed in the literature, we find
it to be lacking when specifically handling irregular time-series. However, we still carry out a
deep and comprehensive study of the available methods regarding general automated feature
engineering for different types of data (Chapter 3).

After analysing the literature, we search for datasets that represent the types of problems
we want to solve and may validate our approach. The only requirement was for them to be an
irregular time-series where the time-stamps are explicitly stated as a feature. In the end, we
base our approach on two datasets:

• Recruit Restaurant Visitors 1: A relational dataset containing information about reserva-
tions and visitors in a wide range of restaurants. In the Kaggle competition, we are to use
reservation and visitation data to predict the total number of visitors to a restaurant for
future dates. However, we will discard most of the data and focus on predicting reservations
for a certain period using only the past ones. These reservations are irregular, as there are
lots of days without any, and the number of reservations in a day varies as well as the time
of the day.

• Vostok Ice Core: Data containing a historical isotopic temperature record from the Vostok
ice core, in Antarctica, presented in Petit et al. [61]. The dataset contains CO2 concentration
levels in the ice core across thousands of unevenly spaced years (spanning 420 000 years).

After carefully analysing the datasets in Chapter 4, we get a clear overview of the difficulties
we may encounter in the problem settings we want to tackle. We can then move on to implement
our framework (Chapter 5). We design 3 algorithms:

• AutoFITS: The proposed approach for automated feature engineering for irregular time-
series.

1https://www.kaggle.com/c/recruit-restaurant-visitor-forecasting/overview
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• AutoFV: An attempt to complement standard time-series feature engineering methods by
allying them with AutoFITS. We chose to adapt VEST introduced in Cerqueira et al. [13].

• Baseline: AutoFITS without feature creation. In other words, a method that goes through
the entire pipeline, but does not create new features. This method is used to validate the
significance of the new features added by AutoFITS.

The final step is to evaluate how AutoFITS complements and stands against other feature
engineering methods. We carefully study the different performance of all models on the chosen
datasets, evaluate feature importance and investigate how a common user may attempt to
improve results by tinkering with the framework and its parameters (Chapters 6 and 7).

1.4 Contributions

Our contributions involve an overview of the state-of-the-art for forecasting irregular time-series
and the introduction of an automated feature engineering framework capable of complementing
standard feature engineering approaches for time-series by attempting to extract information
from a previously less-explored point of view. Not only that, but it is also a framework with its
foundations laid out to eventually evolve and become an automated forecasting framework.

We also contribute by making available a Python software package for anyone interested in
extending our work and experiment with it themselves. It is available on our GitLab2 page.

1.5 Dissertation outline

This dissertation is organized as follows: in Chapter 2, we explain the core concepts in machine
learning and time-series forecasting. By exploring our take on a machine learning workflow, we
present an overview of the standard tasks in supervised, unsupervised and reinforcement learning,
the most common data pre-processing steps and what model validation/selection encompasses.
Since time-series forecasting can be seen as a form of regressive task, this is more of a general
machine learning overview, as the concepts and operations are also analogously applied in
forecasting.

In Chapter 3, we explore the literature in different domains of automated feature engineering
and time-series forecasting. We believe that, by looking into different types of automated feature
engineering for specific types of data, we can gain valuable knowledge to apply in our take on
automated feature engineering for irregular time-series.

Then, in Chapter 4, we explore two datasets that represent the types of problems we want
to address. By analysing the different aspects of each dataset, we aim to provide a better

2https://gitlab.com/pcosta2111/autofits
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understanding of how our framework should be designed, as well as provide further insight
regarding the difficulties we encountered in the development of this work,

Chapter 5 outlines the core inner-workings of the proposed framework. We dive into the
different steps in the AutoFITS pipeline and emphasize the features created in the feature
construction stage. We then present a practical example of how to use AutoFITS.

To validate our approach, in Chapter 6, we describe the experimental setting and how we
will prove that AutoFITS packs relevant contributions to its field. We also expose our obtained
results and briefly discuss them.

In the last chapter, Chapter 7, we present a summary of the work done and delineate some
interesting research questions to be explored in the future, either to fix some limitations in
AutoFITS or to overall increase its performance.



Chapter 2

Background

Time-series forecasting can be framed as a machine learning (regression) task. As such, there
are a lot of intricate steps in a workflow. Going from raw data representing a time-series to
forecasting is a complex process.

In this chapter, we will give an overview of machine learning as a whole by first formally
explaining what is a machine learning task and then explaining every step in these types of
workflows and also briefly explain what constitutes automated machine learning. By exploring
the key concepts in machine learning, we are able to gain further insight into what the forecasting
process entails.

2.1 Machine learning

Machine learning is defined as a sub-area of artificial intelligence. At its core, it can be simply
seen as an automatic process to learn from data. Machine learning algorithms analyse each
available observation – entries in the data provided to it – and continuously extract and refine
knowledge about the process that generated the data.

There are a plethora of machine learning methods available for all kinds of real-world problems.
Such methods can be divided into three approaches:

• Supervised learning: When the data contains the input and desired output.

• Unsupervised learning: When no output or labelling of the input is provided and it is
intended for the algorithm to infer some structure underlying the data.

• Reinforcement learning: When the algorithm interacts with an environment over time and
tries to refine its performance by navigating the problem space.

7
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2.1.1 Supervised learning

In supervised learning, we supply the learning algorithm with examples containing both the
input and corresponding output. Formally speaking, we have a set of N training examples
{(x1, y1), ..., (xN , yN )}, with xi being a feature vector [x1

i , ..., x
k
i ], and, for each xi, we have a

corresponding label yi. The goal of supervised learning is to learn a function f : X → Y such
that f represents the relation between the input space, X, and the output space, Y , as accurately
as possible.

When approximating f , one has to take into account that our model must be able to handle
never before seen data, that is, data not used in the training process. Therefore, we want to
avoid overfitting our model, which means it performs really well on training data, but it does
not generalize well enough to be able to accurately perform predictions on unseen observations.
On the other end of the spectrum, we are underfitting our model when it is too simple to even
capture patterns in the data.

In this work, we will only focus on supervised learning, mainly, supervised time series
forecasting.

2.1.1.1 Classification and regression

Classification and regression are the most common tasks in the field of machine learning and
belong to the supervised learning category.

In classification, each example has a corresponding categorical label, or class, i.e., Y represents
a nominal variable and every xi has a corresponding class yi. We distinguish between binary
classification and multi-class classification. In a binary setting, each yi may only assume 1 of two
possible categorical values, usually referred to as a negative and positive class, for instance “yes”
or “no” and “true” or “false”. In a multi-class setting, this cap on the number of classes in our
problem no longer exists, thus increasing its complexity. Yet, we can transform any multi-class
classification problem into a binary classification one. Let us say that each yi can assume k > 2
different values. To convert this to a binary setting, we can combine several binary classifiers.
There are some different approaches to this, but the most basic one and easiest to comprehend
would be to create k binary classifiers, one for each class. Each model would then solve the “yes
or no” problem of “does xi belong in class kj?”.

The structure of a regression task is analogous to classification. The key difference resides in
the fact that the target variable becomes numerical, i.e, yi ∈ R, ∀yi ∈ Y . Another distinguishing
aspect in regression lies in the implicit ranking between observations. Since the target is a
number, there exists an order which can be used to differentiate between greater or smaller values.
Considering this, many regression algorithms are designed to perform under a ranking setting
where the output is not a single value, but an ordered ranking of the best or most suitable values.
Concerning time series analysis, regression is widely used in forecasting.
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2.1.1.2 Bias-variance trade-off

As already stated, we have to be wary of our model overfitting or underfitting our data. It is
crucial for it to be able to adapt well to the problem setting by learning from the training data,
but not too well to the point where it models noise present in the data and, therefore, overfits.
As it was first discovered by Geman et al. [27], what is known as the bias-variance trade-off is
the property that states that as the complexity of a model increases, the variance also increases
whilst the bias decreases, as illustrated in Figure 2.1. The bias-variance dilemma is the problem
of finding the optimal compromise between variance and bias, where the error is minimized. This
represents a central problem in supervised learning. To comprehend what it entails, we first must
define what variance and bias actually represent.

In statistics, variance is the expected squared deviation of a random variable from its mean.
In other words, it measures the average offset of a set of numbers compared to the mean. In
supervised learning, this can be seen as measuring how sensitive a model is to fluctuations in the
data. Having a high variance means that our model is most likely modelling random noise in the
training data, and consequently, overfitting.

On the other end, bias error (or simply bias) describes the difference between the expected
value of an estimator and the true value of the observation (in supervised learning). Having a
high bias is undesirable as it implies that our model is not able to accurately model f and, as
such, it is underfitting.
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Figure 2.1: Bias-variance trade-off.

2.1.2 Unsupervised learning

With regards to unsupervised learning, the learning algorithm is only provided with unlabelled
training examples, as opposed to supervised learning. Now, the set of training examples is in the
form of {x1, ..., xN} (without knowing Y ), and the goal of the learning algorithm is to uncover
an underlying structure or information present in the training set.
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2.1.2.1 Clustering

The most famous approach to unsupervised learning is called clustering. A clustering algorithm
aims to create clusters of observations that obey a common rule, that is, it creates sets of
examples that appear to have a similar structure or are related in some way.

The cluster creation follows a distance rule that calculates how distant two points (or
observations) are in the feature space. Two points being closer means greater similarity between
two observations. Euclidean distance and Manhattan distance represent two of the most commonly
used metrics, with Minkowski distance being the generalization of the two. These three metrics
are defined as such:

deuc(A,B) =

√√√√ n∑
j=1

(Aj −Bj)2

dman(A,B) =
n∑
j=1
|Aj −Bj |

dmin(A,B) = (
n∑
j=1
|Aj −Bj |p)

1
p

From these three definitions, it becomes clear that Euclidean distance is equal to Minkowski
with p = 2 and, when p = 1, we get Manhattan distance. Besides these three, another common
distance metric is the cosine similarity:

dcos(A,B) =
∑n
j=1AjBj√∑n

j=1A
2
j

√∑n
j=1B

2
j

As for the classification of clustering techniques and methods, the literature is rich, yet
somewhat divisive. Due to the sheer number of methods available, it becomes increasingly hard
to straightforwardly categorise each method into separate categories. Berkhin [7] attempts to
define such categorization, and we consider it to be adequate to demonstrate the different types of
approaches that exist in literature. It states that clustering methods can be broadly described as
being partitional and hierarchical, with the first one representing methods that try to divide the
data into several groups, directly learning the clusters. Hierarchical clustering methods, however,
attempt to create a cluster hierarchy. These methods can be further divided into two categories:
agglomerative (bottom-up) - where the learning algorithm starts with as many clusters as points
in the feature space and iteratively merges “similar enough” clusters - and divisive (top-down) -
when the learning algorithm starts with one big cluster encompassing all points in the feature
space and iteratively divides it into separate clusters until a stopping criterion is met. Berkhin
also mentions 6 other major categories, but we consider it to be unnecessary to expand more on
this theme so, for a deeper look into the subject, we refer to his work.
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2.1.2.2 Dimensionality reduction

Dimensionality reduction is a transformation applied to a dataset to reduce the number of
variables. Although the general intuition is “more data” equals “better results”, we must take
caution because “more data” also equals “larger computational costs”.

As such, some methods exist to perform this task that fall into the category of unsupervised
learning, such as Principal Components Analysis (PCA). This algorithm attempts to produce a
low dimensional representation of a dataset by identifying a set of linear combinations of features
that have maximum variance and are mutually uncorrelated. This falls into the unsupervised
category since we do not need any sort of information regarding the target variable. Hence, this
algorithm can be applied in a supervised and unsupervised setting.

2.1.3 Reinforcement learning

As it was previously stated, a reinforcement learning algorithm interacts with an environment
over time and refines its performance accordingly to maximize a certain “reward”. The learner
is not told which action to take but instead must act in a way that yields the biggest reward
(either immediate or delayed). This trial-and-error search and reward aspect constitute the two
most important features of reinforcement learning [67].

Considering that in supervised the training process happens all at once with the supplied
training set, reinforcement learning differs in the sense that it learns from interaction, making it
suitable for dealing with interactive problems, where one has to learn from experience and it is
often impractical to obtain examples of desired behaviour that are both correct and representative
of how the learning agent is supposed to act. It is also different from unsupervised learning,
where the learner is trying to find some hidden structure in the data, because it attempts to
maximize a certain reward. For a deeper look into the subject, Sutton and Barto [67] provides a
good introduction to reinforcement learning.

2.1.4 The machine learning workflow

Now that we have explained what a machine learning task is, we are now able to explain all the
steps involved in a typical workflow. Usually, going from a set of raw data to a well-performing
model takes a lot of work and lots of tuning and data analysis.

For this work, we define a machine learning workflow as a six-step procedure (illustrated
graphically in Figure 2.2):

1. Data pre-processing: Handling of missing values, handling of duplicate entries, data leakage
detection, standardization, encoding of categorical variables, etc.

2. Feature engineering: Feature selection and feature construction.



12 Chapter 2. Background

3. Model selection: Algorithm selection and model training.

4. Hyper-parameter optimization: Optimise algorithm parameters.

5. Model validation: Evaluate the model on a set of metrics.

6. Predictions: Predict values for unseen entries.

.. .

Figure 2.2: Understanding of a machine learning workflow to be followed throughout this thesis.

It is also relevant to take a look at other, more general, frameworks. In Fayyad et al [73], the
general concept of KDD (Knowledge Discovery in Databases), amongst other things, is introduced.
As stated in Ana Azevedo and M.F. Santos [4], "the KDD process (...) is the process of using
data mining methods to extract what is deemed knowledge according to the specification of
measures and thresholds, using a database along with any required pre-processing, subsampling,
and transformation of the database." More succinctly, the KDD process consists of five steps:

1. Selection: The data collection/sampling/creation stage.

2. Pre-processing: Data cleaning and pre-processing.

3. Transformation: Data transformation methods (dimensionality reduction for instance).

4. Data Mining: Searching for patterns/information underlying to the data.

5. Interpretation/Evaluation: Interpretation and evaluation of the obtained results.

Besides KDD, Azevedo and Santos [4] also give an overview of the SEMMA (Sample, Explore,
Modify, Model and Assess) and CRISP-DM (Business Understanding, Data Understanding, Data
Preparation, Modelling, Evaluation and Deployment) standards. The workflow followed in this
thesis aims to simplify the whole process and clearly separate stages in a machine learning task
so that its respective automation becomes more direct.
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2.1.5 Automated machine learning

Automated machine learning (AutoML), as the name suggests, consists of the automation of a
machine learning workflow, minimizing user interaction and making machine learning tasks more
accessible to the everyday user, since it diminishes the level of expertise necessary to achieve
satisfactory results in such tasks. In Thornton et al [71], the Auto-WEKA system is introduced.
In this paper, a definition for a CASH (Combined Algorithm Selection and Hyperparameter
optimization) problem is introduced and formally defined as: when given a set of algorithms
A = A(1), ..., A(k) with associated hyperparameter spaces Λ(1), ...,Λ(k), we define the combined
algorithm selection and hyperparameter optimization problem (CASH) as computing:

A∗λ∗ ∈ arg min
A(j)∈A,λ∈Λ(j)

1
k

k∑
i=1
L(A(j)

λ ,D(i)
train,D

(i)
valid).

When it comes to actually solve a CASH problem, C. Thornton et al take on a Bayesian
optimization approach, more specifically, Sequential Model-Based Optimization (SMBO), first
introduced in F. Hutter et al [34]. SMBO tackles the problem of automatically finding an
optimal algorithm configuration in parameter space by extending a previously explored idea of
constructing regression models to describe the dependence of the target algorithm performance
on parameter settings, for general algorithm configuration problems, allowing many categorical
parameters and optimization for sets of instances.

Following Auto-WEKA’s example, Feurer et al [22] introduced Auto-sklearn: an automated
machine learning system that improves on previously existing AutoML methods, by taking into
account past performance on similar datasets, and by constructing ensembles from the models
evaluated during the optimization. In this paper, the approach to solving an AutoML problem
the authors follow is summarized in the following way:

“First, we reason across datasets to identify instantiations of machine learning
frameworks that perform well on a new dataset and warm start Bayesian optimization
with them. Second, we automatically construct ensembles of the models considered
by Bayesian optimization. Third, we carefully design a highly parameterized machine
learning framework from high-performing classifiers and pre-processors implemented
in the popular machine learning framework scikit-learn. Finally, we perform an
extensive empirical analysis using a diverse collection of datasets to demonstrate
that the resulting Auto-sklearn system outperforms previous state-of-the-art AutoML
methods (...)”

To find good instantiations of machine learning frameworks, Feurer et al make use of meta-
learning - the study and use of past experience to derive knowledge about algorithm performance.
With meta-learning, we can create models that predict algorithm performance on an unseen
dataset. They achieve this by, in an ensemble of training datasets, registering performance metrics
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on each one of them, extracting each dataset’s corresponding meta-features (data regarding the
dataset itself), and training a machine learning model on top of that. In other words, contrary
to traditional base-learning - learning focused on accumulating experience on a specific learning
task - the goal of meta-learning involves accumulating experience on the performance of multiple
applications of a learning system [9].

2.2 Data pre-processing

We have talked about data pre-processing, but we have yet to summarise some operations
commonly applied in the data mining field. This section will cover steps 1 (data pre-processing)
and 2 (feature engineering) from the defined workflow in section 2.1.4.

2.2.1 Dataset types

Before diving into the specific commonly applied pre-processing steps on a dataset, we first must
define different types of data. Depending on the structure of the data (or lack of) and where
it came from, i.e its origin, there exist several processes specifically tailored to handle it and
solve the problem at hand. These operations are more effective since they specialize in solving a
single “type” of problem, instead of being general purpose. We will only mention four types of
data: structured, semi-structured, unstructured and time-series (or temporal data). Of course,
all data has some underlying structure, and one could say some types of time-series may fit into
one of the previously mentioned categories. However, for this project, if our data contains any
sort of time-stamped information that varies over time, we consider it to fit into the “time-series”
category regardless if it is structured, semi-structured or unstructured.

Structured data differs from unstructured data since it is organized according to a pre-defined
data model. This model constitutes the backbone of the data and should not be violated. For
instance, relational data represents structured knowledge as information is stored in a tabular
way with concise, pre-defined relationships between entities. If one table has n columns (or
features), one can not have an entry with n+1 features in the said table. All data must follow the
pre-defined model. Contrary to this, unstructured data does not have any underlying pre-defined
model, nor does it follow any sort of structure. Text data, or information logs, are examples of
this type of data.

Lying in between unstructured and structured data is semi-structured data. These types of
data are seen as being ones that do not reside in relational databases but follow some sort of set
of organizational properties that make it easier to analyse. XML data is an example of such.

Time-series, or temporal data, is data recorded over time and time-stamped. It is a
representation of an ordered sequence of events that happened within a time frame. The
standard task revolving around temporal data aims at answering a simple question: “What
will happen next?”. This task is called time-series forecasting. For a great introduction to
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time-series, their characteristics and forecasting methods, we refer to the book by Hyndman and
Athanasopoulos [35].

2.2.2 Handling of missing values

It is not unusual for a dataset to contain missing (or “null”) values. This can happen due to
many different factors. For example, if the data is being automatically collected by a group of
sensors, and some malfunction, the rest of the data should not have to be thrown away. Maybe
there was an error when sampling data or maybe some important files were deleted. A data
scientist must have an effective strategy to deal with such values. We could delete entries or
feature containing missing values, or we could try to guess which value suits an observation the
most. There exists a wide range of strategies available for missing value imputation.

On the one hand, the simplest method is a naive one: imputing constant values. By imputing
a default value, the mean, mode, median etc, we can rapidly fill these “holes” in our data and
that is precisely its advantage - low computational costs. Its main disadvantage, however, lies in
its poor predictive performance. For time-series forecasting, however, “forward-filling”, that is,
propagating the last valid observed value, is usually a good strategy due to the assumption that
a system is more likely to have remained in the same state during some time, rather than it has
changed.

On the other hand, we could train models to predict these missing values. A common
approach uses K-Nearest-Neighbours (KNN) - an algorithm that works with ‘feature similarity’
to predict the values of any new data points. This means that the new point is assigned a
value based on how closely it resembles the points in the training set. This strategy has the
advantage of being much more accurate than constant value imputation, however, it is much
more computationally expensive.

The methods above are just some fish in a sea of possibilities. There are a few algorithms
that try to refine this imputation task so that the performance of a model is maximized such as
MICE [12], MissForest [66] and DataWig [8].

2.2.3 Encoding of categorical values

Many machine learning algorithms perform better when dealing with numerical values instead of
categorical ones. Because of this, it is common practice to encode categorical values.

The most common encoding technique is called One-Hot encoding. Fundamentally, this
technique takes a categorical variable with n observations and d distinct values, and transforms
it into d binary variables with n observations each. In Figure 2.3 we can observe an example of
this transformation. Here, we have a variable Car with distinct values “Nissan”, “Toyota” and
“Mazda”, so, when we apply One-Hot encoding, we get 3 binary variables with each representing
a car brand.
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Figure 2.3: An example of One-Hot encoding being applied.

Ordinal encoding, when we simply assign numerical values to categorical values, is another
encoding technique. This method, however, is not as popular since this integer substitution adds
an implied order between values that did not exist initially.

Other encoding methods worth mentioning involve Dummy encoding [1], Effect encoding [2]
and feature hashing [74].

2.2.4 Feature scaling

It is common for datasets to contain multiple numeric variables, each with its distribution, range,
scale, etc. With this in mind, data scientist have grown accustomed to applying a technique
called feature scaling (or normalization). In a lot of tasks, numeric variables, obtained from all
kinds of sources, have different dynamic ranges, hence some algorithms tend to attribute greater
weight to variables with large ranges at the expense of variables with smaller ranges. With that
being said, feature scaling aims to equalize these ranges across features.

The most commonly used technique is called Z-Score normalization (or Standardization) -
it normalizes values to zero mean and unit variance. Let x and σ represent the mean and the
standard deviation of some feature x with N values. x and σ are calculated using:

x = 1
N

N∑
j=1

xj

σ2 = 1
N − 1

N∑
j=1

(xj − x)2

The Z-Score normalized feature is then given by:

x̂j = xj − x
σ

A simpler method of feature scaling is called Min-Max normalization. With this technique,
the data is scaled to a fixed range (usually 0 and 1, or -1 and 1). The general formula for
Min-Max scaling a feature to an interval [0, 1] is:
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x̂j = xj −min(xj)
max(xj)−min(xj)

And when we generalize this formula for any interval [a, b], we get:

x̂j = a+ (xj −min(xj))(b− a)
max(xj)−min(xj)

The choice between using Standardization or Min-Max normalization is based on problem-
specific characteristics. As a rule of thumb, normalization is usually applied when we know
that the distribution of our data follows a Gaussian distribution, and standardization otherwise
(although this does not necessarily have to be true). However, due to standardization not having
a bounding range, even if we have outliers (data points that differ significantly from other
observations in our data) they will not be affected by feature scaling.

2.2.5 Data leakage

As defined in Kaufman et al. [40], data leakage is essentially the introduction of information
about the target variable in a data mining task, which should not be legitimately available to
mine from. In other words, it is the usage of data in the model training phase that should not
be included in the training set and is directly related to the target. This leads models to heavily
favour said data, which in practice will not be available during predictions. Kaufman et al. [40]
mentions a trivial example that is quite effective at illustrating such a situation, and that

“(...) would be a model that uses the target itself as an input, thus concluding for
example that “it rains on rainy days”.

2.2.6 Time delay embedding

In time-series forecasting, it is a common occurrence to reconstruct the time-series by applying
a time delay embedding based on Taken’s embedding theorem [69]. The core idea defended
by Taken’s theorem is that, under certain conditions, a chaotic dynamical system can be
reconstructed as a sequence of observations regarding its state.

Taking this into account, when processing a time-series for forecasting, one can transform
this predictive task into a multiple regression problem. Let us say we have a time-series
T = [y1, y2, y3, ..., yn]. Reconstructing this time-series by applying a time delay embedding,
would return a set of observations in the form (X,Y ) where each xi ∈ X is a sub-sequence
[yi, yi+1, ..., yi+l−1] from T , yi ∈ Y is the value we intend to predict and l is a “lag size”. This
implies we are modeling each yi based on its recent past of size l. In summary, a time-series T of
size n, with lag size l is transformed into a set of observations D such as:
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D[n,l] =



y1 y2 ... yl yl+1

y2 y3 ... yl+1 yl+2
...

...
...

...
...

yi yi+1 ... yi+l−1 yi+l
...

...
...

...
...

yn−l yn−l+1 ... yn−1 yn



2.2.7 Feature engineering

Feature engineering is defined as applying transformations to our features in a dataset to generate
new ones or alter existing ones. After this generation/transformation process, we can apply
feature selection to reduce our dimensionality by removing possible relatively irrelevant variables.
Feature engineering is usually a very manual, ad-hoc task. It takes a lot of domain knowledge to
understand which transformations to apply to our data. It is said that this is the stage in a data
science workflow where data scientists spend the most time. With that being said, automating
such a process presents a major problem in automated machine learning.

The operations applied to features can be simple arithmetic operations. By applying these
transformations, we can bring out an otherwise hidden relationship in our data and, as such,
help our learning algorithm better understand the underlying structure of our data.

2.2.8 Feature selection

There is a term often used in data science called “the curse of dimensionality”. Data scientists
use this expression to refer to the problems arising when a dataset has too many features. The
major issue arising from this lies in the fact that, by having a high-dimensional dataset, we
are increasing the danger of overfitting our model and making it harder for the algorithm to
determine which ones are more important. Also, by increasing the set of variables used by the
learning algorithm, we are increasing the required computational costs since the learner now has
a bigger feature space where searching for the optimal model for our problem becomes harder.

Hence comes feature selection. In this stage, as the name suggests, we select which features
we want to use to train our model. It may seem counter-intuitive to decrease the amount of
information given to our learner, but sometimes the trade-off in performance makes it worthwhile.
Some features are just so irrelevant, that we might as well discard them.

Information gain (or sometimes called mutual information) is a popular and simple technique
for feature selection. It essentially measures how much knowledge about the behaviour of a
random variable we can learn, by observing another random variable’s behaviour, and it is based
on Kullback–Leibler divergence [45]. By analysing the information gain of each feature, we can
construct a ranking and select only those that, in theory, provide us with a better understanding
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of the behaviour of the target variable.

Guyon and Elisseeff [29] presents a good summary of some feature selection methods.

2.3 Model selection and Hyper-parameter optimization

Besides data processing, it is important to make a careful choice when deciding which algorithm
to use. There exists a lot of learning algorithms in machine learning, each with its advantages
and disadvantages. This choice may also come even before tinkering with our data so that we
carefully plan our transformations with the learner’s strengths and weaknesses in mind.

RandomForest [10] is a popular algorithm. It fits several decision trees on various sub-samples
of the dataset and uses averaging to improve the predictive accuracy and control overfitting.
This, however, might be overkill if our data is linearly separable and a simple linear or logistic
regression works decently enough. We mainly have to take into account the properties of our
data and time and accuracy constraints. On the one hand, if we are trying to train a model so
that we can accurately predict whether a mole on a patient’s skin is indicative of cancer or not,
we should give greater focus to achieving great accuracy on our model at the expense of time
spent on training. On the other hand, if our problem setting does not find a great difference in a
5% accuracy difference on our model, then maybe we do not need to spend hours (or maybe
days!) training our model.

There have been many steps in automating this process. Some approaches have been
mentioned already in section 2.1.5.

After selecting our algorithm and processing our data, we usually train our model. However,
every machine learning algorithm has a set of parameters: simple variables that help better guide
the search for the optimal model. This set of parameters is called hyper-parameters and the
process of finding the best ones is called hyper-parameter optimization.

When searching for the best hyper-parameters for our algorithm, one would naively immedi-
ately think of doing a simple trial-and-error exhaustive search, but this may lead to our search
taking enormous amounts of time since the search space grows exponentially. This naive approach
is called grid search: where we try every single combination of hyper-parameters available. An
optimization of grid search is called random search. As opposed to grid search, randomized search
randomly samples a fixed number of parameter settings from the hyper-parameter distributions
and searches this reduced space. This might not give us the optimal result, but a trade-off in
performance is worth it in many situations.
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2.4 Forecasting

For forecasting time-series, one of the simplest methods is the Autoregression (AR) method that
attempts to model a time-series by learning how its sub-sequences behave. It essentially consists
of a regression on the time delay embeddings of the time-series (see section 2.2.6). When used
together with the Moving Average (MA) method, one that models the next step in the sequence
according to the residual errors from prior time steps, we get the Autoregressive Moving Average
(ARMA) method. Building on this, the Autoregressive Integrated Moving Average (ARIMA)
method adds a differencing pre-processing step of the sequence to make the sequence stationary,
called integration (I). A stationary time series is one whose properties do not depend on the
time at which the series is observed. Hence, by calculating the difference between consecutive
observations, we find stationarity.

Another common method for forecasting time-series is the Simple Exponential Smoothing
(SES) method. SES models the next time step as an exponentially weighted linear function of
observations at prior time steps. In other words, each value is modelled using a weighted average
of its past. These weights decrease exponentially as the time step is located further in the past.
Holt [33] built upon the SES method by allowing forecasting of time-series with a trend (when
there is a long-term increase or decrease in the data) - Holt’s linear exponential smoothing (HL).

2.5 Model validation

There are two main methods of validating a model: holdout and cross-validation. The first one
consists of splitting the data into a training set and a validation (or test) set. This means that
we’ll use a subset of our data to train our model, then use the remaining to evaluate our model’s
predictions. It is standard to use around 70% of the data for training, and the remaining 30%
for validation, though this is highly dependent on the problem at hand. The second method
essentially consists of several repetitions of the first method using different parts of the data for
testing and training.

The aforementioned evaluation is performed using some specified metric. A common metric
for classification is accuracy - the ratio between correct predicted classes and the total number
of predictions. But this metric can be a bad representation of our actual model performance.
Imagine a classification problem where we have two classes: A and B. We then have a “model”
which is simply a statement return A;. We then have a test set that consists of 99 class A
observations and 1 class B observation. If we were to test our “model” on this set, we would
get 99% accuracy, but in reality, our model would not be doing any predictions at all as it was
just returning a constant result. To combat this, a new metric arises: balanced accuracy. Before
explaining what balanced accuracy is, it is easier to first explain what a confusion matrix is. A
confusion matrix allows visualization of the performance of an algorithm. Each row of the matrix
represents the instances in a predicted class while each column represents the instances in an
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actual class (or vice versa). An example of this matrix is illustrated in Figure 2.4, where we only
have two classes: positive or negative.

Figure 2.4: Standard confusion matrix for binary classification

With this in mind, accuracy is defined as being

Accuracy = TN + TP

TN + TP + FN + FP

... and balanced accuracy (BA) is

BA = ( TP

TP + FP
+ TN

TN + FN
)/2

Besides accuracy and balanced accuracy, we can also measure precision ( TP
TP+FP ), recall/True

Positive Rate ( TP
(TP+FN)) and specificity/True Negative Rate ( TN

TN+FP ). To conclude on classific-
ation metrics, it is worth mentioning other commonly used ones such as:

• F1-score: Used when we want to have a model with both good precision and recall.

F1 = 2 ∗ precision ∗ recall
precision+ recall

• Logarithmic loss: used when the output of a classifier is prediction probabilities.

LogLoss = −1
N

N∑
i=1

M∑
j=1

yij ∗ log(pij)

N Number of observations
M Number of classes
yij Equal to 1 if the observation i is in class j, 0 otherwise
pij Probability of our classifier predicting class j for an observation i

• AUC (Area Under ROC Curve): Scale-invariant metric that measures how capable the model
is of distinguishing between classes. It is equal to the area under a ROC curve (Receiver
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Operating Characteristic curve), a graph showing the performance of a classification model
at all classification thresholds. As shown in Figure 2.5, this curve plots two parameters:
True Positive Rate (TPR) and True Negative Rate (TNR).

ROC Curve

TPR

TNR

AUC

Figure 2.5: Graphic illustration of the AUC metric.

When it comes to regression, we have a considerable amount of metrics based on error
calculation, i.e the result of subtracting the predicted value for the observation to the real
value. Let yi be the real target value for an observation and yi the value returned by a
model. We can then define some of these error-based metric such as mean absolute error
(MAE = 1

N

∑N
i=1(yi − yi)), mean squared error (MSE = 1

N

∑N
i=1(yi − yi)2), mean squared log

error (RMSLE =
√

1
N

∑N
i=1(log(yi + 1)− log(yi + 1))2). R2 (pronounce R-squared) is another

metric, and it measures the level of explained variability in the dataset. This metric is confined
between -1 and 1 (the closer to 1, the better). The general intuition regarding this variable is
that it explicitly measures how well the model “actually learns” the underlying structure to the
data
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State of the art

In this chapter, we will present some state of the art techniques for automated feature engineering
as well as forecasting methods for time-series. Although not all feature engineering techniques
are directly related to time-series, we believe these projects are relevant to the problem at hand
due to the possibility of being paralleled to the time-series domain.

3.1 Automated feature engineering for relational data

Most applications that deal with datasets that are structured in knowledge bases, such as relational
databases, take benefit from the mining of extra knowledge from the entity relationships present
in the data. As such, some systems have already been proposed that try to increase the predictive
ability of a model by exploring existing relationships in the data and constructing new features
based on said relationships.

Cheng et al. [14] presents a framework for constructing semantic features from a given
knowledge base organized as entity-relationship-entity triples. To do so, users must specify what
type of feature they intend to obtain using a SPARQL 1 query, which in turn implies that users
must have some sort of domain knowledge before constructing new features. Paulheim and
Fürnkranz [59] later introduced an open-source toolkit based on Weka [30] called FeGeLOD,
which attempts to fix the background knowledge requirement from Cheng et al. [14] by working
in an unsupervised way, i.e, it constructs features without the user explicitly specifying any sort
of domain knowledge.

In [38], Kanter and Veeramachaneni propose a system called Data Science Machine (DSM)
for automatically deriving features from raw data, by taking advantage of an algorithm proposed
and developed by them - Deep Feature Synthesis (DFS). DFS works with relational datasets by
following the relationships in the data and applying consecutive mathematical functions. This
stacking of functions creates a sort of “feature tree” with each new feature having a certain depth.
The authors also employ two feature selection methods to reduce the great number of features

1https://www.w3.org/TR/rdf-sparql-query/

23
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generated by DFS. In the end, it is said that this system proved itself competitive against human
performance in data science competitions.

Following the DSM, Chen et al. [47] introduce the One Button Machine (OneBM). This
system, like the DSM, focuses on the discovery of new features in relational databases. OneBM
presents itself as being an extension of the Data Science Machine that aims at fixing its major
flaw - its incapability of handling unstructured data. As it was presented, the DSM does not
support automatic feature discovery in unstructured data, such as sets, sequences, series, text
and so on. The authors state that the features created by the DSM are nothing more than simple
statistics, hence they can be ineffective when data scientists intend to bring out more complex
patterns in the data.

OneBM performs feature engineering in a relational database in three main steps: data
collection, data transformation and feature selection. The main distinguishing factor from DSM
resides in the data transformation stage where OneBM has several pre-defined transformations
for different structured and unstructured data types.

In our approach, contrary to the works mentioned in this section, we will focus on working
with tabular data, since relational datasets can always be converted to a tabular format, and we
will be tackling the problem of time series forecasting.

3.2 Automated feature engineering for tabular data

When it comes to automating feature engineering for tabular data, the literature has been getting
richer in the past years. We see this setting as being the most explored in the field of automated
feature engineering, as we will see in this section.

Firstly, Markovitch and Rosenstein [55] introduces a general framework for feature construction
called FICUS. This approach relied on the existence of some background knowledge from the
user, which the algorithm would use in the process of defining feature construction specifications.
The framework would then iteratively apply a set of functions (called operators) to generate new,
possibly relevant, features. These so-called operators were input by the user using a “feature
specification language” (FSS), which could also be used to specify constraints on the features to
be generated, and supply information on data types of the default feature set. In each iterative
step, the feature set would be filtered using a variant of beam search. Smith and Bull [65] present
a different approach by employing genetic programming as a feature constructor and a genetic
algorithm as a feature selector to create what would be the input to decision trees.

Lim et al. [49] takes on the task of distinguishing between Chinese characters and presents
an explanation-based feature construction method. Being explanation-based means that prior
domain knowledge is constantly incorporated into the learning process by explaining training
examples. For instance, the authors mention the fact that it is previously known that not all
pixels in an input image of Chinese characters are equally relevant. This knowledge is then
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dynamically used in the process of feature construction.

Piramuthu and Sikora [62] take an iterative approach to feature construction that exhaustively
creates new features using a set of mathematical operators, which are filtered in the end using the
X 2 (chi-squared) feature selection method [23]. This, however, is unwise because exhaustively
searching the feature space leads to combinatorial explosion, something which we tend to want to
avoid. FEADIS by Dor and Yoram [18] follows a similar strategy when it comes to the generation
of new features, however, it has available a larger set of mathematical functions and operators.

Fan et al. [20] propose a framework called FCTree (Feature Construction Tree). This approach
relies on the use of decision trees built by sequentially applying transformations on the original
feature set and the new features. These transformations do not rely on any sort of domain
knowledge, hence this approach is fully unsupervised. Later, Khurana et al. [42] introduced
Cognito. This system generated new features by non-exhaustively hierarchically exploring
the feature construction choices. Briefly explained, Cognito creates a “transformation tree”
where the root represents the original dataset, each node represents a transformed dataset and
each edge an operation. Each node contains information associated with its accuracy score
obtained by cross-validating a model on the corresponding dataset. The problem of feature
construction is then reduced to the problem of exploring the tree and finding the node with
the best performance. The authors also implemented some optimisations to avoid exhaustive
exploration of the transformation tree.

ExploreKit by Katz et al. [39] is another automated feature generation framework created
to automatically improve the performance of a classifier. It works by first generating a set
of candidate features derived from the original ones using a set of common operators. These
generated features are then ranked using a novel machine learning approach that predicts the
usefulness of a feature, thus avoiding evaluating all candidate features. The ranking process
follows a meta-learning methodology where a previously trained meta-model predicts a feature’s
relevance by analysing its extracted meta-features. As for the final step, ExploreKit evaluates the
top-ranked features and selects the best ones. On the same line as ExploreKit, Kaul et al. [41]
propose AutoLearn, a regression-based feature learning algorithm. However, AutoLearn does
not use pre-defined operators (as most of the previous works in literature), as it instead uses
regression to discover underlying patterns by the way features pairs are related to each other.
In other words, for every correlated feature pair, two types of features are generated: a feature
containing predicted values by regressing one feature on the other, and a feature containing the
prediction errors, that is, the difference between the value returned by the regression model and
the actual value.

In the dissertation by Guilherme Reis [17], is it presented a meta-learning approach aimed at
evaluating if a feature generation process will be useful in a certain context. More specifically, it
studies if it is possible for a meta-learning approach to predict if a method for automatic feature
generation will lead to better predictive models, as well as if it is possible to predict if individual
features will have a positive impact on the performance of a predictive model. In the end, it is
shown that this approach had satisfactory results when predicting if a method for the systematic
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generation of features leads to better predictive models.

Finally, we’ll briefly mention some other works, which may treat subjects a little too distinct
from our work, but we consider them worth mentioning nonetheless. For instance, for image
classification and pattern recognition, Lowe et al. [50] introduce SIFT (Scale-Invariant Feature
Transform): a feature detection algorithm in computer vision to detect and describe local features
in images. With the advances in computing power in recent years, came deep learning models,
which have been very successful in areas such as computer vision, speech recognition, natural
language processing, etc., outperforming SIFT based models. Deep learning implicitly applies
automatic feature construction and selection. However, these types of models have little to no
interpretability as it is very hard to understand why some transformations happen. Our work
will not handle image classification, but structured temporal data, nor will it use deep learning
as we intend to make our approach as interpretable as possible.

As it was previously mentioned, our work will be focusing on handling tabular data, however,
we intend it to be used in the task of time-series forecasting. The works mentioned in this section
are unable to effectively tackle this specific task, as they are geared towards more general-purpose
machine learning tasks.

3.3 Time-series feature extraction

In this section, we will discuss the literature in the area of time-series forecasting, namely,
automated feature engineering techniques created to help in this endeavour.

Now that we have discussed the common time-series forecasting models in the literature, we
take a look at several works in this area that use meta-learning to aid in model selection, by first
extracting meta-features from a time-series and then using these to determine which method
would be more appropriate to forecast an input series. Prudêncio and Ludermir [64] present
two case studies. In the first one, they focus on the problem of selecting models for forecasting
stationary time-series, where they first extract a set of 10 descriptive features related to the series,
which are then used by a meta-learner to select one of two models to use for forecasting: simple
exponential smoothing model (SES) or time delay neural network (TDNN). In the second one, the
authors study the selection of models to forecast the yearly time-series of the M3-Competition [53].
To do so, they extract a set of 5 features from the time-series and feed it to a meta-learner, which
in turn selects one of 3 models: random walk (RW), Holt’s linear exponential smoothing (HL)
and autoregressive model (AR). Lemke and Gabrys [48] also studied the meta-learning approach
for the time-series forecasting problem. The authors used a set of features describing not only
the time-series but also the pool of available methods. The aim was “to link problem-specific
knowledge to well-performing forecasting methods and apply them in similar situations”. In
Kang et al. [37], the authors extract 6 features from each time-series in a collection to represent
them as points in a feature space. With this representation, they can identify unusual time-series
within the set (i.e, those with very distinctive combinations of features) and they can bring out
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clusters and other structures in the feature space, displaying potential subgroups of time-series
and regions containing many similar ones. They showed that some forecasting methods end
up performing better in certain regions in the feature space. Hence, it is possible to use meta-
learning to infer which learner has better forecasting performance by taking into account where a
time-series resides within the feature space. Finally, we also have the work of Montero-Manso et
al. [56], where the authors introduce the framework FFORMA (Feature-based FORecast Model
Averaging). Contrary to previous approaches, where the meta-learner existed to determine which
learner adapted better to the time-series in hand, Montero-Manso et al. [56] presents a framework
that uses meta-learning to calculate weights for all available learners (the meta-learner receives as
input a set of about 42 time-series features). This means that all candidate forecasting methods
will be applied, but the calculated weights will be used as means of combining each forecast
returned by every candidate method. This approach ended up achieving second place in the
recent M4-competition [54].

When it comes to time-series classification, Fulcher and Jones [24] (2014) introduced a method
that extracts a set of thousands of time-series features and constructs a feature-based classifier
based on this set. Christ et al. [15] later extended this work by proposing FRESH (Feature
Extraction based on Scalable Hypothesis tests). This system built upon its previous work by
implementing a highly parallel feature filtering. FRESH first generates a large set of features
that characterizes the time-series, as well as some additional meta-features. In a second phase,
FRESH evaluates the relevance of each feature according to the predictive task at hand using
the Benjamini-Yekutieli procedure [6]. Fulcher and Jones [25] (2017) attempted to refine their
previous work and presented hctsa: a MATLAB-based implementation of their methodology.
This work, however, still generated thousands of features (over 7,700 as stated in the original
paper). Although it did help researchers improve their analysis and understanding of time-series
behaviour and structure, Lubba et al. [51] showed that it is possible to reduce the set of generated
features from 4791 (using a filtered version of the hctsa library) to just 22, with only an average
decrease of 7% in accuracy scores. Thus, they were able to achieve a 1000-fold reduction in
computational time.

VEST by Cerqueira et al. [13] is a framework that attempts to produce an optimal time-series
representation for forecasting tasks. This is achieved in 3 steps: a transformation step - where
the time series is transformed into several different representations; a summarization step - where
each representation is summarized using statistics and a selection phase - where feature selection
is applied to reduce the high number of features generated in the previous steps. VEST has a set
of 8 transformation functions available and 32 summarization functions, which results in a set of
256 extracted features for feature selection.

A simplified summary of all cited approaches can be seen in Table 3.1. Our work differs
from those due to the way it extracts information. These works assume that we are handling
regular time-series or, in case we are not, we transformed an irregular time-series to a regular
one, discarding the particular aspects of the irregularity. Our framework aims to evaluate the
series’ irregularity as a relevant point of information retrieval.
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Table 3.1: Simple overview of works in time-series feature engineering/forecasting literature

#Extracted features Purpose Candidate methods (meta-learning)

Prudêncio and Ludermir #1 [64] 10 Model selection SES
TDNN

Prudêncio and Ludermir #2 [64] 5 Model selection
RW
HL
AR

Montero-Manso et al. [56] 42 Model weighting 9 methods (forecast [36] package in R)

Kang et al. [37] 6 2-dimensional space representation
(Possible) model selection

-

Fulcher and Jones [24] (2014) >9000 Time-series classification -
Christ et. al [15] 111 Time-series classification and regression -

Fulcher and Jones [25] (2017) >7700 Time-series classification, analysis and visualization -
Lubba et al. [51] 22 Time series classification -

Cerqueira et al. [13] 256 Time series regression -

3.4 Irregular time-series forecasting

We now move on to present works in the literature that handle time-series with unevenly spaced
observations. These may also be called “irregular” time-series or “intermittent time-series”.

When it comes to forecasting time-series with unevenly spaced observations, most work done
in this area attempts to translate this into a regular time-series forecasting problem and proceed
from there. This process is called “time-series reconstruction” and it is not something new by
any means. In fact, signal reconstruction is a rich field of investigation with many contributions
in the past decades. In areas such as astronomy, where received signals are affected by factors
such as weather conditions, day-night cycles, etc., a lot of research has been made to effectively
reconstruct them for posterior analysis. Heck et al. [32] distinguishes between two families of
algorithms to achieve this: Fourier transformation-based and non-parametric techniques derived
from the θ-criterion inspired by Lafler and Kinman [46], where a method for calculating the
period of the RR Lyrae star from a set of observations is presented. On the same line, in a
survey from 1995, Adorf [3] presents several interpolation techniques aimed at irregularly sampled
time-series. It not only discusses the techniques mentioned before, but also talks about several
other such Matrix Inversion [44] techniques, Least-square Estimation [5] [21], Autoregressive
Maximum-Entropy Interpolation [19] [11], Polynomial Interpolation [28], and so on.

However, our work does not focus on signal analysis. We intend to create a feature engineering
method capable of extracting information about such irregularity. As we discussed before, a lot
of techniques rely on some sort of heuristic to interpolate the data to evenly spaced sampling
times. The simplest heuristic would be to just ignore the sampling times and treat the values
as a standard time-series, yet this may signify losing valuable information about the behaviour
of the time-series. With that being said, we take a look at works in the literature that take
direct advantage of irregularity. We do not find it relevant if the time-series is reconstructed or
resampled in the forecasting process, as long as information about its irregularity is extracted,
maintained and taken advantage of.

Back in 1972, Croston [16] introduced the Croston method: a forecasting strategy for products
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with intermittent demand. In other words, we have at our disposal historical data about the
demand/sales of a product and we want to forecast future values. This can be seen as forecasting
a regular time-series with daily frequency, where we register daily product sales and, when there
is no registered sale, we get 0 sales. However, Croston attempts to extract information from
the previous time periods where there was demand. This is inherently irregular and, based
on that, we consider Croston’s method to fit into the irregular time-series forecasting domain.
In summary, Croston’s method consists of splitting the original time-series into two separate
sequences: non-zero values and time interval between non-zero values. Then, through exponential
smoothing, both time-series are forecast and the original time-series’ forecast is defined as a ratio
of the forecasts of the other two series. A lot of adaptations of Croston’s method have surged in
the literature such as Syntetos and Boylan [68], Prestwich et al. [63], and Teunter et al. [70].

Willemain et al. [76] proposes a method based on bootstrapping (a statistical technique
involving random sampling with replacement) on previous observations of non-zero demand. The
authors claim to have significantly improved over SES and Croston’s method, yet Gardner and
Koehler [26] believe this work had dubious results.

Temporal aggregation is a technique that attempts to forecast an irregular time-series by
grouping observations into time periods. Nikolopoulos et al. [57] introduces an Aggregate -
Disaggregate Intermittent Demand Approach (ADIDA) to forecasting. Briefly explained, after
aggregating the observations, any standard forecasting method can be applied such as simple
exponential smoothing. The forecast should then be disaggregated into time periods of the
original size, using some sort of heuristic. This “original time period size” may be confusing
since we are dealing with irregular time-series, however, we note that, in the context of product
demand, an irregular time-series is a series with regular frequency and lots of zeroes representing
“no demand”. Since most of these methods tend to focus more on the period with non-zero
demand, almost considering zero demand a “missing” observation, we believe they fit into the
irregular time-series forecasting domain.

We set ourselves apart from methods created towards solving intermittent demand problems
by allowing our framework to be able to be used with any irregular time-series. We provide
flexibility to the user to be able to extract information in any sort of domain effectively and
intuitively and, despite the main focus being feature engineering and information extraction
about the series’ irregularity, we integrate our features into a simple automated time-series
forecasting workflow that takes advantage of such features.





Chapter 4

Exploratory Data Analysis

Before diving into the technical aspects of our framework, we first must highlight what types
of datasets we will be handling. It is of utmost importance to have a clear vision of what sort of
problems we intend to solve and, in this chapter, we analyse 2 different datasets and how they fit
into our problem setting. This exploratory analysis will also prove itself useful when handling
these datasets in a practical use-case environment, as it allows us to find more hidden details
about some data’s structure.

In summary, each analysis of a dataset is split into 3 parts:

1. Data visualisation: We plot a set of graphs to help better understand how variables evolve
and extract conclusions regarding their behaviour.

2. Data summarization: We summarize the dataset in more of a “numerical” way, by extracting
statistics about the features, percentage of missing values and other relevant information.

3. Correlation analysis: We analyse the possible existing correlation between features in
the dataset, as well as the auto-correlation in the target variable for different time lags.
Although most datasets contain essentially two attributes (the target and the corresponding
timestamps), we nevertheless should look into the correlation between variables, and, as
it is standard in time-series analysis, plot the auto-correlation of the target attribute for
different time lags.

4.1 Vostok Ice Core

This first dataset is the Vostok Ice Core dataset. From the paper by Petit et al. [61], it refers to
historical data recorded in Vostok, East Antarctica. At this remote location, it was possible, by
studying the composition of the ice core composition, to obtain an accurate historical record
about the atmosphere throughout thousands of years, since air bubbles get trapped in the ice.
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The temperature changes were mainly due to the variation of CO2 concentration levels in the
atmosphere. Although this data only refers to Vostok, it was proven in [58] it could be paralleled
to every other location on Earth (provided we did some smoothing to the data), as the whole
world cooled and warmed together throughout the different periods in our history.

To sum up, as shown in Table 4.1, this dataset contains two features:

• age (yrs bp): The “timestamp feature” presented in years Before Present (BP) (it is
common practice to use January 1st 1950 as the epoch of the age scale). Marks the time at
which the observation refers to.

• co2: The target variable. Measures the CO2 concentration levels (ppm) at a certain point
in time.

Table 4.1: Vostok Ice Core dataset head (first 10 entries).

age (yrs bp) co2

2342 284.7
3634 272.8
6220 262.2
7327 254.6
8113 259.6
10123 261.6
11013 263.7
11719 238.3
13405 236.2
13989 225.3

... ...

4.1.1 Data visualisation

We start by simply plotting the target variable to observe its behaviour over time. Figure 4.1
clearly shows that, although some smoothing would be required, the target variable appears to
follow a pattern over the years.

However, as shown in Figure 4.2 where we analyse the time difference between consecutive
observations in the dataset, this data is recorded in irregular intervals, which implies simple
state-of-the-art forecasting methods for regular time-series will not suffice.
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Figure 4.1: Simple plot of CO2 concentration levels in the Vostok Ice Core data.
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Figure 4.2: Analysis of time difference between consecutive observations in the Vostok Ice Core
dataset.

4.1.2 Data summarization

Pandas [75] has a convenient function that is used to present statistical information about a
dataset, namely the central tendency, dispersion and shape of its distribution, excluding null
values. Calling this function returns what can be observed in Table 4.2. This table also serves as
a way to inform us that, for instance, the co2 variable tens to have values confined within a
small interval and that the timestamps have a great order of magnitude by being in the hundreds
of thousands scale.

Next, we make sure to check for missing values in the dataset and any wrongfully typed
attributes. We used Pandas’ [75] DataFrame.info() function and got as output what is
presented in Table 4.3. As far as conclusions obtained, we learn that there are no missing values,
so imputation is not necessary, and both attributes seem to be typed correctly. Regarding
memory costs and the dataset length, we learn that the Vostok Ice Core dataset has a relatively
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Table 4.2: General statistics about the Vostok Ice Core dataset returned by Pandas [75]
DataFrame.describe() function

age (yrs bp) co2

count 252 252
mean 211284.62 232.14
std 105971.09 28.30
min 2342 182.2
25% 122444.75 207.7
50% 223794 231.8
75% 298293.25 254.75
max 414085 298.7

small number of observations and memory usage.

Table 4.3: Missing values, attribute types and other relevant meta-data about the Vostok Ice
Core dataset returned by Pandas [75] DataFrame.info() function

<class ’pandas.core.frame.DataFrame’>
RangeIndex: 252 entries, 0 to 251

Data columns (total 2 columns):
# Column Non-Null Count Dtype

0 age (yrs bp) 252 non-null int64
1 co2 252 non-null float64
dtypes: float64(1), int64(1)
memory usage: 4.1 KB

4.1.3 Correlation analysis

Regarding the correlation between the two attributes, Figure 4.3a clearly shows that there is no
existing correlation. Since we used Pearson’s coefficient, a value as close to 0 as 0.2 signifies no
apparent correlation between the two variables.

The most interesting result lies in Figure 4.3b, which implies that the co2 attribute is
strongly auto-correlated, with over 90% correlation at 15 time lags. However, we know that
this time-series is irregular, which means the time difference between consecutive observations
is not always equal. This simple fact makes it so the auto-correlation plot can not be trusted
completely, as each time lag is different. For instance, let us say we want to forecast the next
value yn+1 in the series, i.e., the next reading on the CO2 concentration levels. No matter what
value yn+1 assumes, it would be hard to interpret “when” it will happen. Since observations are
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unevenly recorded we can not say for sure what is the tn+1 that corresponds to yn+1. If this
time-series was regular with observations recorded every, let us say, 1000 years, forecasting yn+1

would be more enlightening as we know tn+1 = tn + 1000.
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Figure 4.3: Correlation analysis of the Vostok Ice Core dataset: general Pearson correlation and
target variable auto-correlation.

4.2 Recruit Restaurant Visitors

This dataset, originally made public in a Kaggle competition1, collects data concerning visitors
and reservations in a variety of restaurants to create a predictive model capable of forecasting
the total number of visitors to a restaurant for future dates. The data is originally in a relational
format and is structured as the diagram presented in Figure 4.4.

In this thesis, we work with this dataset using only the Air Reserve table. There are two
main reasons behind this:

1. We want to assess the value of the features generated by our approach when there is
minimal information about the problem setting.

2. This table represents a time-series where sample times vary greatly. In tables like
Air Visit Date, sample times also vary, but in a more controlled way since missing
observations are related to weekends, and other rare days when the restaurant is closed.
Hence, the difference between observations is usually under 3 days. Considering that Air
Reserve contains information about visitors with a reservation, the data is subjected to
more factors that make it so it varies quite sporadically.

One important aspect that sets apart this dataset from the Vostok Ice Core one lies in the
fact that we now do not have a single entity evolving over time in the time-series. Previously, we

1https://www.kaggle.com/c/recruit-restaurant-visitor-forecasting/overview
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Figure 4.4: Relational diagram of the Recruit Restaurant Visitors dataset. This dataset is divided
into data collected from two separate websites: Hot Pepper Gourmet (HPG) and AirREGI /
Restaurant Board (Air). For each website, we have information about reservations made to a
restaurant as well as general data characterizing the genre and type of food of the restaurant. In
the case of the data collected from the Air website, we have available simple historical visit data
to Air restaurants. An auxiliary table establishes the relation between the restaurant identifiers
in the HPG website and the Air website. To aid in forecasting efforts, one has an available table
with information about holidays in Japan over the course of a year, since all restaurants are
located there.

had data about the atmospheric composition over time, something which only related to one
entity - the Earth’s atmosphere. Now, we are presented with information about several distinct
restaurants’ visitors over time.

The target variable Y is reserve_visitors and we use visit_datetime as the cor-
responding timestamps. The reasoning behind using this feature as timestamps instead of
reserve_datetime lies in the fact that it relates to the time in the future where the visit will
occur. reserve_datetime, however, indicates the time when the reservation was created.

4.2.1 Data visualisation

Since this dataset, contrary to Vostok, is the result of different time-series related to several
different entities (restaurants), more effort should be put into understanding how distinct
restaurants behave over time and their structure. One would think it is not very useful to plot
the target variable evolution as timestamps are not unique anymore, considering that different
entities may have observations about the same point in time. Or, more formally, each observation
i has 3 main attributes: the target variable yi, the corresponding timestamp ti, but also the
entity, or restaurant, ei to which this observation relates to. In this setting, it is valid to have
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two observations i and j with ti = tj as long as ei 6= ej . Nonetheless, Figure 4.5 manages to
supply us with valuable information. When we plot the reserve visitors for all restaurants, we
learn that there is a gap in time in which barely any observations were recorded, at around the
start of August and the end of October 2016. With this in mind, we only use observations from
the end of October 2016 henceforth, as we want to avoid any error biases originating from the
older observations.
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Figure 4.5: Plot of restaurant visitors for all restaurants, where we learn there is a gap in time
in which barely any observations were recorded, at around the start of August and the end of
October 2016.

In Figure 4.6, we plot the reserve visitors over time for 4 random restaurants in the dataset.
It does not seem to exist a clear, distinct structure as to how the number of visitors evolves.
All 4 restaurants have very different behaviours, making it almost impossible to immediately
establish a connection between one another.
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Figure 4.6: Plot of restaurant visitors over time for 4 random restaurants in the dataset. This plot
serves to display the sporadic behaviour for all different restaurants when treated as individual
time-series.

Even the scale varies slightly for each restaurant, as we have a considerable amount of
restaurants averaging values between as low as 2 visitors per reservations, all the way to 9, with
some exceptions outside this interval, as we can see in Figure 4.7.
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Figure 4.7: Distribution of average restaurant reserve visitors for all restaurants in the dataset,
displaying how there is a clear variation to the average number of reserve visitors per restaurant.

Finally, we plot the histogram of the time difference between consecutive observations. As
Figure 4.8 shows, this is subject to great variance from restaurant to restaurant.
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Figure 4.8: Distribution of time difference between consecutive observations for 4 random
restaurants.

4.2.2 Data summarization

We once again rely on Pandas [75] functions to summarize this dataset. As seen previously in
Figure 4.4, there are 4 attributes in the Air Reserve table: 2 DateTime attributes (one of
which being the timestamps), a string entity identifier and an integer target variable.

Table 4.4 summarizes the dataset’s missing values, attribute types as well as some relevant
meta-data. As it stands, when we read the dataset in Pandas, we get that visit_datetime
and visit_visitors are typed as objects. Yet we know they are date type attributes, so it is
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necessary to cast it to DateTime64 object. Furthermore, we can see that the dataset is now a
lot larger than Vostok with 76200 entries when compared to the previous 252 so that will bring
larger temporal costs to our framework. It is also worth noting that there are no missing values
in the dataset.

Table 4.4: Missing values, attribute types and other relevant meta-data about the Recruit
Restaurant Visitors dataset returned by Pandas [75] DataFrame.info() function.

<class ’pandas.core.frame.DataFrame’>
Int64Index: 76200 entries, 16178 to 92377

Data columns (total 4 columns)::
# Column Non-Null Count Dtype

0 air_store_id 76200 non-null object
1 visit_datetime 76200 non-null object
2 reserve_datetime 76200 non-null object
3 reserve_visitors 76200 non-null int64
dtypes: int64(1), object(3)
memory usage: 2.9+ MB

For a deeper look into each attribute, some statistics are shown in Table 4.5. Regarding the
air_store_id, it is worth highlighting the fact that there are 302 different restaurants in this
setting and the one with the most reservations is “air_cf5ab75a0afb8af9”.

For the date attributes, we learn that the date/time with the most reservations is on the
24th of December 2016, at 7 pm, or, in other words, Christmas’ eve at 7 pm. We also get
to know how far ahead one could make a reservation in a restaurant, as the minimum date
in the visit_datetime attribute is in the 26th of October, while the minimum date in the
reserve_datetime is at the 2nd of January. This implies there exists at least 1 reservation
made almost 10 months ahead of time!

4.2.3 Correlation analysis

We take a look at the general Pearson correlation between the attributes in the dataset. For
this purpose, we first have to convert the date attributes to integers and encode the categorical
variable air_store_id since this type of operation requires numerical attributes. We use
standard ordinal encoding, as we do not want to create any new attributes. The result of this
operation is as shown in Figure 4.10.

The only noteworthy conclusion is the fact that the two date attributes are strongly correlated.
After further looking into the dataset, we come to know that clients tend to make a reservation
only some hours ahead of time.
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Table 4.5: General statistics about the Recruit Restaurant Visitors dataset returned by Pandas [75]
DataFrame.describe() function. Since there are three different types of attributes in this
dataset (string, date and integer), a lot of cells are marked with “-”.

air_store_id visit_datetime reserve_datetime reserve_visitors

count 76200 76200 76200 76200
unique 302 2976 5032 -
top air_cf5ab75a0afb8af9 2016-12-24 19:00:00 2016-11-24 18:00:00 -
freq 1758 255 106 -
first - 2016-10-26 13:00:00 2016-01-02 00:00:00 -
last - 2017-05-31 21:00:00 2017-04-22 23:00:00 -
mean - - - 4.51
std - - - 4.99
min - - - 1
25% - - - 2
50% - - - 3
75% - - - 5
max - - - 100

air_store_id visit_datetime reserve_datetime reserve_visitors
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Figure 4.9: Person correlation between the attributes in the Recruit Restaurant Visitors dataset.

To analyse the auto-correlation of the target variable, we take caution to not plot it using
the whole set of values in a single plot but instead use 4 subsets related to 4 random restaurants.
Figure 4.10 clearly shows how these 4 restaurants have very distinct auto-correlations, proving
even further proofs that the restaurants have very different behaviours. On the one hand, id
“air_0e1eae99b8723bc1” appears to only have its auto-correlation decay as we increase the lag
size. On the other hand, the remaining 3 restaurants appear to show some light periodicity,
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albeit not at clearly defined lag sizes.
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Figure 4.10: Autrocorrelation for 4 random restaurants in the Recruit Restaurant Visitors
dataset.

4.3 Summary

By analysing these two datasets, we believe to have made clear the types of problems we want to
tackle with this work. Datasets like the Vostok Ice Core one represent the simplest (but still
challenging) setting we want to deal with. Considering that we have minimal information in the
data, with it being constituted only by the timestamps and the target variable, this dataset will
provide a good opportunity to evaluate the capability of our framework (AutoFITS) of extracting
relevant information about the time-series, namely, regarding its irregularity.

The Recruit Restaurant Visitors dataset is also an interesting problem to solve. Can we find
a global structure common to all restaurants in this chain and how does the irregularity relate to
said global structure? We want to answer this question. We have seen how, at first glance, each
singular restaurant evolves differently in time. With this in mind, can we, by extracting features
about each entity, learn how the restaurants behave globally?

In the following chapter, we move on to explain how AutoFITS, our proposed approach to
automated time-series feature engineering, works and how it can be used to complement standard
feature engineering methods by presenting a model that does so.





Chapter 5

AutoFITS framework

By having a clear image of what datasets to handle and their general characteristics, we may
move on to implement our approach to automatic feature engineering for time-series, especially,
irregular time-series. In this chapter, we present an overview of our framework and dive into the
more technical implementation aspects.

5.1 The AutoFITS architecture: A bird’s eye view

We shall now discuss the architecture implemented in AutoFITS (Automatic Feature Extraction
from Irregular Time-Series). In this section, we provide a bird’s eye view on the workflow of
AutoFITS, while also outlining the aspects that set apart all models presented in this thesis:

• AutoFITS: Our novel approach to automated feature engineering and forecasting for
irregular time-series.

• AutoFV (AutoFITS-VEST): A model that attempts to combine the strengths of AutoFITS
and VEST, from Cerqueira et al. [13].

• BaselineFITS: Same model as AutoFITS, but without any feature creation process.

Although we have a preset configuration, our framework is highly parameterized and provides
some liberty of configuration to the user. The data pre-processing and feature engineering stages
are automatic, but some parameters exist that allow the user to tinker with this process. The
forecasting step is also automatic since we immediately forecast the next value in the time-series
after training the model.

5.1.1 Data pre-processing

By creating an automated framework, the main goal is to always decrease the required user
inputs as much as possible, without sacrificing functionality. Although there exist some standard
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guidelines as to what usually works the best for handling time-series for forecasting purposes,
the steps to follow when processing datasets are highly dependent on the problem setting. We
attempt to standardize some procedures while leaving room for the user to process the data
however desired. The diagram in Figure 5.1 summarizes the data pre-processing stage.

Raw data
Null imputation
MODE

Numeric: int / float 
Categorical: string
Date: datetime*
Timestamps: datetime* 

Type casting 

Sub-series: Ordinal
Other: One-hot

*from NumPy

Categorical 
encoding 

Except timestamps!

Split date features
DD/MM/YY HH:mm:SS  : date

day, month, year
hour, minute, second

: int

Resampling
&

Time delay 
embedding

Resampled
time delay 
embedding

Original
observations

Figure 5.1: Diagram of the data pre-processing steps taken in the AutoFITS framework. AutoFITS
first applies standard machine learning data pre-processing procedures such as null imputation,
casting variables to their respective types, encoding categorical variables and processing date
type features. The final step involves resampling the data to a regular frequency and creating
the time delay embedding representation. In the end, we obtain to datasets, both used for the
feature extraction process: the resampled data (a regular time-series) and the processed original
observations (an irregular time-series).

Upon being fed a raw dataset, the first step is to handle missing values. As a default, our
framework imputes the mode. If the user desires another imputation method, it may do so before
feeding the dataset to the framework. When the data has no null values, we cast each feature to
its respective type. Since the framework requires the user to feed a dictionary with keys being
feature names and the values their respective types (called schema), we know beforehand to
what type features should be cast. In a schema, a feature may have one of 3 types:

• “numeric”: The feature is cast to integer or float.

• “categorical”: The feature is cast to string.

• “date” or "timestamp": The feature is cast to a datetime64 or timedelta64 object
from the NumPy [31] library.

A schema may also have a feature with the value “sub_series_column”. This indicates that
the data contains different entities (time-series) belonging to the same problem setting. The
feature named as such will be treated as an identifier for each time-series in the domain.

After casting each variable to each respective type, we encode categorical variables. We apply
One-Hot encoding for all categorical features, except the “sub_series_column”, where we apply
Ordinal encoding because we want to maintain this feature as a single column.

Following the handling of categorical variables, we process dates other than the timestamps.
For these dates, we simply split each one into its singular components, creating several integer
features. For instance, let us say we have a date feature called f_date, with its entries being
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in the format “DD-MM-YYYY HH:mm:SS”. f_date would then be split into 6 new integer
features: f_date_year, f_date_month, f_date_day, f_date_hour, f_date_minute
and f_date_second.

The final step in data pre-processing, resampling and time delay embedding representation,
is presented in more detail in section 5.2.

5.1.2 Model selection and hyper-parameter optimization

Model selection and hyper-parameter optimization steps are left to the will of the user. As a
default, our framework fits a Least Absolute Shrinkage and Selection Operator (LASSO) [72]
model due to its popularity and ability to handle high-dimensional data with a strong regulariza-
tion process. The workflow is implemented to handle algorithm implementations like those from
the popular Python machine-learning library Scikit-learn [60].

In a problem setting with multiple entities, we also allow the user to choose from 2 prediction
strategies:

• Standard prediction strategy: Simply fits the pre-processed data to a model and uses this
model for predictions.

• Ensemble prediction strategy: Focuses on attempting to take advantage of similarities
between entities. This processed is summarized as follows:

1. Compute meta-features for each entity.

2. Fit a learner for each entity.

3. To forecast an entity ei:

(a) Select top-k entities most “similar” to ei.
(b) Return a weighted average of the forecasts obtained from the models belonging

to the most similar entities.

Hyper-parameter optimization is also up to the user. It is possible to run the most popular
algorithms for this purpose (Grid Search and Randomized Search for instance) to find the most
optimal set of parameters for the learning algorithm, as well as the framework as a whole.

All 3 presented models share the same model selection and hyper-parameter optimization
process.

5.1.3 Model validation

Model validation is done automatically in the framework, and the process is the same for all
3 models (for ease of comparison). We note that depending on if we are dealing with a single
entity or multiple entities, the validation process differs slightly.
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For the context of both research questions, we implement the holdout method. The way both
settings differ is in the way the test set is constructed.

If there is only one entity in the time-series, we use, as default, 90% of the observation
for training, and the remaining 10% for validation. If there are multiple entities, we intend to
validate our model on all entities present in the dataset. As such, for the observations of each
entity, we apply the holdout method using the logic explained previously and append the results
to the training and test sets. Figure 5.2 exemplifies the train/validation set creation process for
both settings.

Val.
10%90%

Train

Val.Train

Val.Train

Val.Traine3

e2

e1
90%

90%

90%

10%

10%

10%

RQ1

RQ2

Figure 5.2: Example of the train/validation set creation process, where we create a validation
set with the last 10% observation (in chronological terms, so in that sense, we extract the 10
“earliest” observations). When dealing with multiple entities, we extract a subset of observations
from each entity’s entries and create the train/validation set by appending these subsets.

In terms of evaluating the performance of the model, we use two regression metrics: Mean
Absolute Error (MAE) and R2. The first one is so that we can get a simple and understandable
view of the range of values the model is forecasting. The second one serves to inform of the
ability of the model to actually learn the time-series behaviour.

5.1.4 Forecasting

In terms of forecasting, the AutoFITS framework aims to be able to forecast the next value in
the time-series. This value is dependent on the set frequency, as it is representative of a value
recorded at a time interval of duration f . This is more easily comprehensible with an example.
Let us say we feed AutoFITS a dataset with observations recorded from January 1 until January
10. We use “1 day” as frequency and the arithmetic sum as a resampling strategy. In this setting,
the framework would forecast a value for t =January 11, representing the sum of the target
variable from January 11 to January 12. If we were dealing with visitors to a restaurant, this
value would signify the total number of visitors during that day.

In case we are dealing with multiple entities, the forecasting will be constituted by multiple
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forecasts, one for each entity (provided each entity has enough observations, otherwise it is
ignored). These forecasts may have different timestamps as not all entities’ observations might
not be confined within the same timestamp range.

5.2 Feature extraction from irregularity

In this section, we present the feature extraction process implemented in AutoFITS. We describe
the final step in pre-processing the time-series and how it ties itself to the feature extraction
process.

5.2.1 Resampling and time delay embedding representation

The final pre-processing step involves resampling the data to a regular time frequency and creating
the time delay embedding dataset. Figure 5.3 illustrates what the resampling process entails. In
summary, we transform our data so it is recorded at regular intervals, by aggregating observations
according to some resampling strategy (arithmetic sum, mean, mode, etc.). However, we want
to extract information regarding the original series’ irregularity, so we preserve the indexes of
the original observations that fell within a resampled time-interval for posterior information
extraction in the feature creation process (hence the “Original observations” return in Figure 5.1).

1 Jan : 50

2 Jan : 21

4 Jan : 92

7 Jan : 13

9 Jan : 14

10 Jan : 3

Resampling
f = 2 days

5

1 Jan : 7[0,1]

3 Jan : 9[2]

5 Jan : 0[]

7 Jan : 1[3]

9 Jan : 4[4,5]

INDEX TIMESTAMP: VALUE INDEXES TIMESTAMP: VALUE

SUM

Figure 5.3: Resampling of a set of timestamped observations to a regular interval. Originally,
we have a set of 6 observations starting on January 1 and ending on January 10, recorded at
unevenly spaced time intervals, each with a reported value. We then resample the data to a
frequency f equal to 2 days, meaning the timestamps will now represent “time intervals” with
its length being 2 days. We apply a sum resampling strategy, implying that observations that
fall within a time interval will have their values summed. This transformation results in what
is shown on the right, where, for instance, observation 0 and 1 were grouped since they lay in
the interval ranging from January 1 and January 2, and their respective registered values were
summed. We do not have any observation for January 5 and 6, hence an “empty” observation is
added on January 5.

At the same time the data is being resampled, we also create the time delay embeddings. This
means we intend to learn how the series behaves by extracting knowledge from sub-sequences
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of observations. Figure 5.4 extends the previous example and creates a time delay embedding
dataset with l = 2.

1 Jan : 7[0,1]

3 Jan : 9[2]

5 Jan : 0[]

7 Jan : 1[3]

9 Jan : 4[4,5]

Time delay 
embedding

l=2

INDEXES TIMESTAMP: VALUE

1 Jan : 7[0,1] 3 Jan : 9[2] 5 Jan : 0[]

7 Jan : 1[3]

3 Jan : 9[2] 5 Jan : 0[]

5 Jan : 0[]

7 Jan : 1[3]

9 Jan : 4[4,5]

Figure 5.4: Creating time-lags from a set of observation, with lag size l = 2. In this example, a
set of 5 observations is transformed into a set of 3 observations modelled after their recent past
of size 2.

5.2.2 Feature engineering

The feature engineering step is what sets our approach apart from most in the literature and is
the main point of research in this thesis. We split the feature engineering step into two stages:
feature construction and feature selection.

Our main goal is to extract information about the time-series’ irregularity. As such, in
the feature construction process, we create features that extract statistics, as well as apply
mathematical functions, to the timestamps in the data, emphasising the time difference between
consecutive observations. We believe this may bring out relevant information about the behaviour
of the time-series.

AutoFITS also creates a small set of features not necessarily related to the irregularity of
the time-series as these can also help with forecasting efforts. We take care to evaluate the
importance of features related to irregularity and standard features in Chapter 6, because good
results in performance metrics may be due to the standard features, instead of the features based
on irregularity - our main focus.

Furthermore, we can divide features into two categories: features created before the resampling
process and features created on the data obtained by the resampling process, with some being
created based on data both before and after.

In summary, we classify the features created by AutoFITS in two levels:

• Regularity: If the created feature extracts information from the irregularity of the time-
series. A feature is based on the time-series’ irregularity if it extracts direct or indirect
information from the timestamps and their distribution.

• Resampling: If the feature based on the resampled data or the original observations.
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In Table 5.1 (last page of this chapter), we display all features created by AutoFITS. We
describe them based on the characteristics stated previously: if they are calculated based
on the data before/after resampling and if they extract information from the time-series’
irregularity. In the features’ description, we note that whenever a feature is calculated based on
“embeddings” we are referring to the time-delay embeddings in a previous step. For instance,
feature “ENTROPY_Y” measures the entropy of the embeddings. In other words, if we have a
time delay embedding xi = [yi, ..., yi+l−1], that is, the recent past of size l of yi+l, we calculate
the entropy of xi.

We extract information that directly models the frequency of observations by calculating
statistics about the temporal difference between consecutive observations in the original data
(“T_DIF_STATS”). Features ‘T_Y_AVG_MUL” and “T_Y_AVG_DIF_MUL” also indirectly
serve this purpose as they calculate some tendency in the evolution of the timestamps and the
target variable by calculating the average over the application of some mathematical operations.
We apply these operations due to how we saw previously in Chapter 3 that state-of-the-art
methods have shown that we can extract relevant information simply by applying common
mathematical operations over the original features.

To bring out information about the time interval where observations were recorded and the
scope of the observed values, we create features such as “2D_SPACE_AREA”, “MIN_MAX_T_DIF”
and “MIN_MAX_T_DIF_F”.

Another important perspective when modelling irregularity relies on evaluating how “chaot-
ically” distributed the timestamps might be. Following that, we create features such as
“REL_DISP_T” (measuring the relative dispersion using the coefficient of variation, given by
rdisp = std_dev

mean ) and the entropy of the timestamps (“ENTROPY_T”). “MISSING_T_COUNT”
may also provide some hints about this distribution by emphasizing “slow periods”, i.e., intervals
in the resampled time that do not have any corresponding observations on the original data.

To model the recent past and attempt to explain the evolution in the target variable we
create features such as “MOV_AVG” (the basis for moving average models) and “REG_MOD”
(as a way of assessing how easily can two regression algorithms model the recent past).

Finally, the reason we create certain features based on both the resampled and the original
data lies in the fact that, technically speaking, each feature is generated with a corresponding
function in an auxiliary class. As such, some features can be effortlessly created both using the
original and resampled data by simply changing a function parameter. The same train of thought
can be applied to features such as “ENTROPY_Y” or “REL_DISP_Y”: features originally
created to model irregularity (when applied using the timestamps) that may also be used for
other purposes to bring out some information that might be proven useful.

After generating all features, we select the top ones based on a mutual-information [43]
measure. As a default, we select the top 80%, but that value may be configured by the user.
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5.2.3 Summary: AutoFITS, BaselineFITS and AutoFV

In the previous sections, we presented the AutoFITS architecture. All 3 presented models follow
this architecture minus some aspects.

To sum up, AutoFITS is an automated feature engineering and forecasting framework for
irregular time-series. In a nutshell, it works by first applying some simple and standard pre-
processing techniques to the raw dataset (in case the user has not already). It then proceeds
to resample the dataset to a regular frequency and create a large set of features extracting all
kinds of information mainly about the series’ irregularity. After creating these features, a feature
selection process based on mutual information regression [43] is run. When we are done feature
engineering and pre-processing the dataset, we move on to train a machine learning model. If we
have multiple entities in the dataset, we may choose one of two techniques for training the model:

• Simple: Simply fitting a machine learning model to the data.

• Ensemble: Creating an ensemble of models (one for each entity) and, for some entity ei,
forecast ei using the top-k most similar entities’ models in the ensemble using a weighted
average based on a similarity measure.

After training the model, we validate it using a simple holdout method. If we have multiple
entities, we attempt to extract at least 1 observation from each entity for validation.

BaselineFITS differs from AutoFITS simply because it does not create any features. It applies
all pre-processing techniques AutoFITS does and creates the time-delay embeddings accordingly.
It is a model created solely to assess AutoFITS value as a feature engineering framework.

AutoFV is a model created to attempt to benefit from feature engineering frameworks for
both irregular and regular time-series. It merges features created by AutoFITS with features
created by VEST from Cerqueira et al. [13] on the resampled dataset. It is also useful for
measuring the importance of the features created by AutoFITS by posteriorly analysing the
feature importance and compare it to features from VEST.

5.3 A practical walkthrough AutoFITS

In this section, we present the AutoFITS framework more technically. We first go through how
the main class is structured, mainly its parameters and methods, and how they tie together to
create the workflow in our approach. We then move on to give a brief practical example of how
we can go from a simple raw dataset to forecasting values.
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5.3.1 The AutoFITS class

The AutoFITS framework was designed to be highly parameterized, offering automation, in case
the user wants a quick output, and tunability, so that users may work a little harder and get
improved results. Figure 5.5 presents an overview of the AutoFITS class. We purposely omitted
private attributes and methods, as they are mostly additional variables and functions created to
make the code cleaner, easier to comprehend and faster.

The class provides a plethora of parameters capable of tuning the performance of the
framework. The only mandatory parameters (the ones without any default values) are the
“schema” and “frequency” parameters, and we have already explained their purpose. Next is
the “method” which defines what type of model we are building using this class: AutoFITS or
BaselineFITS. Since these models share a common pipeline, except the feature engineering step,
we allow the user to cache the processed dataset previous to the feature engineering step. This
way, the comparison of models becomes faster as we avoid repeating steps in the pipeline.

The target variable is “None” by default, meaning that, when the user does not specify which
feature is the target, we select the rightmost feature by default. We then offer the ability to
tune the learning algorithm, by allowing the user to specify which model, model parameters and
prediction strategy (ensemble or simple) with the “learning_algorithm”, “learning_params” and
“prediction_strategy” parameters. The “k” parameter controls the top-k models for predictions
if we use the “ensemble” prediction strategy.

To tinker with the data pre-processing and feature engineering process, the user may select
which resampling and imputation strategy to use, the lag size for creating the time delay embed-
dings, as well as the percentile to use for feature selection (parameters “resampling_strategy”,
“imputation_strategy”, “lag_size” and “percentile” respectively). The last parameter, “test_size”,
controls which portion of the data to use for validation.

 AutoFITS
+schema      : dict
+frequency     : string
+method      : string = ‘fits’
+target       : string = None
+learning_algorithm  : Type = Lasso
+learning_params   : dict = None
+resampling_strategy  : string = ‘sum’+resampling_strategy  : string = ‘sum’
+imputation_strategy  : string = ‘zero’
+percentile     : int = 80 
+lag_size      : int = 6
+cache_data     : bool = False
+prediction_strategy  : string = None
+k         : int = 10
+test_size      : float=0.1+test_size      : float=0.1

+reset_cached_data() : void 
+process_data(X, y)  : DataFrame*, Series*
+fit(X, y)      : AutoFITS
+forecast(ids=None)  : list

*from Pandas

Figure 5.5: Diagram summarizing the AutoFITS class, where private parameters and methods
are omitted.

Regarding the class methods, we attempt keep the count low and simple. Excluding the
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additional method “reset_cached_data()” (that does exactly what the name suggests), the
AutoFITS class has 3 main public methods that encompass the main stages in the time-series
forecasting workflow:

1. Data pre-processing and feature engineering: “process_data(X, y)”.

2. Model selection and validation: “fit(X, y)”.

3. Forecasting: “forecast()”.

5.3.2 A use-case example: Vostok Ice Core dataset

We now present a simple use-case example, going from a raw dataset (Vostok Ice Core dataset)
to forecasting the next value in the series. Our framework is freely available on our GitLab 1

page under an Apache 2.0 license.

AutoFITS is designed to be of simple and direct use. As such, it only requires 3 function calls
to go through the entire pipeline and obtain forecasts, as seen in Figure 5.1. The first step one
must take is to define the schema and frequency to use for the dataset. In this example, we opt
for using a frequency of 3500 hours. We do not use “years” as a measure of time due to a technical
aspect of NumPy’s Timedelta and Datetime classes (used by Pandas). These objects can
represent either one of two things: timestamps (an actual date like 01-01-1970 11:30:00) or
an “amount” of time (eg. 16 hours). Internally, they represent time as a single integer either
signifying Epoch time (seconds/nanoseconds since Unix epoch, or 01-01-1970 00:00:00) or a
“quantity” of seconds (eg. 16 hours is represented as 57600 seconds or 5.76 ∗ 1013 nanoseconds).
Considering that, representing a number of years in the order of hundreds of thousands leads to
overflows. In summary, we make a simple and direct conversion from years BP to “hours since
01-01-1950” as what matters the most is the relative temporal spacing between observations, not
the time unit itself. In the end, to convert the timestamps back to their original format, all we
need is some very basic math. The fact that we opt for using 3500 as frequency is later made
clearer in section 6.1, where we analyse how different frequencies may perform better on this
dataset.

After setting the schema and frequency, we should instantiate the AutoFITS object. We leave
most of the parameters to their default values, except the resampling strategy and imputation
strategy, where we set them to “mean” and “ffill” (forward-fill) respectively. Again, this choice is
further explained in section 6.1.

Once we have instantiated our AutoFITS object, we may simply fit the data and the
framework will take care of all the workflow. Afterwards, we can call the forecast() function
and obtain predictions about the next value in the time-series and its respective timestamp.

The framework will then output a forecast for the time-series, as seen in listing 5.2. Since the
1https://gitlab.com/pcosta2111/autofits
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� �
import pandas as pd

from workflows.auto_fits import AutoFITS

df = pd.read_csv(’vostok.csv’)

df[’age (yrs bp)’] = df[’age (yrs bp)’].apply(lambda d: pd.Timestamp(1950, 1,

1) + pd.DateOffset(hours=d))

target = ’co2’

schema = {’age (yrs bp)’: ’timestamp’,

’co2’: ’numeric’}

frequency = ’3500H’

af = AutoFITS(schema,

frequency=frequency,

target=target,

resampling_strategy=’mean’,

imputation_strategy=’ffill’)

y = df[target]

X = df.drop(target, axis=1)

af.fit(X, y)

af.forecast()� �
Listing 5.1: AutoFITS usage example.

data was resampled to a time frequency, Y represents a value registered during a time interval,
instead of an instant. Let us consider the Vostok Ice Core dataset, and an observation stating that,
at 100,833 BP, the CO2 concentration levels in the atmosphere were at 230.9ppm. Imagining
we resample the dataset using 2000 years as a frequency, the arithmetic mean as a resampling
strategy and, as a consequence, we get 100,000 BP and 102,000 BP as timestamps. The initial
observation would be “contained” in this interval. Considering we aggregated observations with a
mean strategy, the timestamp 100,000 BP and its corresponding target value would now represent
the average CO2 concentration levels over the course of 2000 years - from 100,000 to 102,000 BP.
AutoFITS outputs a time interval together with the forecast to provide better interpretability
for the user.� �

R2: 0.8076042832543822

MAE: 5.688022281784522

Median AE: 5.237672109215993

Forecast : [287.4581584]

Time window: (Timestamp(’1997-05-19 08:00:00’), Timestamp(’1997-10-12

04:00:00’))� �
Listing 5.2: AutoFITS output example.
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Table 5.1: Summary of features created by AutoFITS.

Name Description Irregular
Resampled

data

REL_DISP_T Relative dispersion of the timestamps. Yes Both
T_Y_AVG_MUL Average of the multiplication between

the timestamps and the embeddings.
Yes Both

T_Y_AVG_DIF_MUL Average of the multiplication between
the timestamps’ time difference and
the embeddings difference between con-
secutive observations.

Yes Both

2D_SPACE_AREA Time difference between the oldest and
newest timestamp multiplied by the
difference between the maximum and
minimum embedding.

Yes Both

MISSING_T_COUNT Number of timestamps missing, i.e,
observations in the resampled data
that have no corresponding original
observations.

Yes Yes

T_DIF_STATS Statistics about time differences
between consecutive timestamps,
namely arithmetic mean, standard
deviation, variance, sum, median,
interquartile range (IQR), minimum,
maximum and relative dispersion.

Yes No

MIN_MAX_T_DIF Time difference between the oldest and
newest timestamp.

Yes No

MIN_MAX_T_DIF_F Time difference between the oldest
and newest timestamp divided by the
resampling frequency.

Yes No

ENTROPY_T Entropy of the timestamps. Yes No
ENTROPY_Y Entropy of the embeddings. No Both
REL_DISP_Y Relative dispersion of the embeddings. No Both
MOV_AVG A moving average over the embeddings.

The default window size is 3, but it can
be configured.

No Yes

REG_MOD Results of applying a LASSO [72] and
LinearRegression model to the avail-
able data. Y is the embeddings and
X is the rest of the original features.
We train a model on n−1 observations
and attempt to predict yn. The errors
and the prediction itself result in the
new features.

No Yes



Chapter 6

Experiments

In this chapter, we discuss our experimental setup and present the obtained results. We intend
to validate the value of the features created in the AutoFITS framework, as well as evaluate how
well it may complement state-of-the-art forecasting methods.

We first analyse resampling strategies for the 2 datasets we have already explored: Recruit
Restaurant Visitors and Vostok Ice Core. After this analysis, we establish what experiments
we make and what answers they may provide. In the end, we present and briefly discuss our
obtained results.

6.1 Resampling analysis

We first study the best method for resampling the datasets. As we have mentioned before, even
though our framework extracts information from the time-series irregularity, it still applies a
temporal aggregation technique.

To this end, we must set three parameters for each time-series:

• Frequency: The intended frequency for the observations (temporal spacing) achieved when
resampling. We consider it important to find a middle-ground where we do not overly
smooth the data, but also do not impute a great number of values.

• Resampling strategy: How to aggregate the observations. We consider 2 strategies: the
arithmetic sum and mean.

• Imputation strategy: Which value to impute when there are missing observations. We
consider three strategies: zero-imputation, arithmetic mean and forward-fill imputation (last
valid observed value). In time-series forecasting problems, it is common to use forward-fill
as a strategy.

55
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6.1.1 Recruit Restaurant Visitors

Regarding imputation and resampling strategy, in the Recruit Restaurant Visitors dataset, we
opt for imputing zeros due to how this fits into the problem setting (since missing observations
mean there were 0 reservations made, it is clear that there were also 0 visitors with reservations),
and we sum observations in each time interval to represent the total amount of reserve visitors.

We already saw previously in Figure 4.8 that the time difference between consecutive
observations for each restaurant varies greatly. As such, it is hard to find a “one fits all”
frequency to use when resampling. With this in mind, we experiment with frequencies ranging
from 1 day to 31 days, in steps of 1, and attempt to find the best compromise.

6.1.2 Vostok Ice Core

The Vostok Ice Core dataset has timestamps in the years BP format. This means each observation
is recorded as being, in terms of “present time”, t years before January 1st 1950.

In section 4.1.1, we concluded that most of the times, the year difference between consecutive
observations is below 4000, with the most common values lying between 1000 and 2000. So, to
observe which frequency works the best for this dataset, we plot the resampled target variable
with a frequency between 500 and 4500 in steps of 500 years in Figure 6.1.

By interpreting the results in Figure 6.1, we get a clear overview of how the time-series
evolves. In frequencies above 2500 years, the resampling manages to smooth the data with a
small number of imputed zeroes. This may imply that those frequencies are more adequate to
use in the resampling process.

However, these zeros might not be the best imputing strategy, and since the dataset is so
small in size, we simply experiment using BaselineFITS with 3 imputation strategies: zeros, mean
and forward-fill. We evaluate the performance by looking into the R2 and MAE. The results
are in Figure 6.2. Forward-fill is the best strategy to assume, as the performance is significantly
better than the remaining strategies, having the lowest MAE in all frequencies, and the highest
R2 except at frequency 4000 and 4500.

Not only that, but, in this setting, it would not make sense to impute 0 as that would signify
that CO2 levels would plummet to non-existent, only for them to eventually rise significantly, or
the mean, as it may also imply a drastic shift in values, instead of a slow evolution. In conclusion,
forward-fill makes the most sense for this problem setting.

In regards to the resampling strategy, we use the arithmetic mean for the target variable
and impute using a forward-fill strategy when there are no original observations in a certain
time frame. Since Y represents CO2 concentration levels in the atmosphere in a certain year,
when we resample the data, since we are now looking at “time intervals” instead of “instants”,
this problem setting makes it so the mean would represent the average CO2 concentration levels
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Figure 6.1: Resampling of the Vostok Ice Core dataset to different frequencies using a “mean”
aggregating strategy. Whenever there are no observations in the dataset corresponding to a
specific time frame, an entry with yj = 0 is imputed, so that we get a clearer view of how many
values needed to be imputed. As we can see, smaller frequencies, like f = 500Y , have a large
number of sudden decreases in the CO2 concentration levels. In fact, any frequency below 2500
years contains a great percentage of zeros, due to the great number of imputed observations.
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Figure 6.2: Evaluation of different imputation strategies for the Vostok Ice Core dataset.

over the span of f years. We could not use, for instance, the sum, as that would return overly
large values that would provide no valuable information about the atmospheric composition in a
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certain time frame.

6.2 Core experimental set-up

To provide an answer to RQ1, we run 4 models on the Vostok Ice Core dataset: AutoFITS,
BaselineFITS, AutoFV and VEST. All these models share the same data pre-processing steps,
but differ in the feature engineering step, since AutoFITS focuses mostly on irregular features
while creating a very small set of regular features; BaselineFITS does not create any features
(aside from time delay embeddings); VEST only creates regular features, and AutoFV merges
features created by AutoFITS and VEST. We run all models for frequencies ranging from 250
years to 4500 years (in steps of 250 years) and analyse how the errors, MAE and R2, evolve.
The parameters related to data resampling are as explained in section 6.1 and we test 2 basic
learning algorithms: LASSO and RandomForest. Due to the size of the dataset, we consider it
to be adequate to set l = 7 for the time delay embeddings.

To approach forecasting with multiple entities, we adapt VEST to be able to handle these
settings. VEST was initially constructed towards feature engineering for univariate time-series, so
our adaptation consist in splitting the pre-processed dataset into several subsets of observations
for each entity. We then run VEST for each dataset, concatenating the results in the end, along
with an additional feature specifying the entity id. In other words, for some pre-processed dataset
D(X,Y ), the feature engineering is summarized as:

D(X,Y )→
S = [De=0(X,Y ),De=1(X,Y ), ...,De=k(X,Y )]→

S = [V EST (De=0(X,Y )), V EST (De=1(X,Y )), ..., V EST (De=k(X,Y ))]→
Concat(S)

We experiment with frequencies ranging from 1 day to 31 days. However, to decide which
value of l is most suited for each frequency, we must run an additional experiment. Since as we
increase the lag size, we are effectively reducing the number of observations in the dataset, we
should decrease l as we increase f . With this in mind, we experiment with l = 1, 2, 3, 4, ..., 10 for
frequencies 1, 7, 14, 21 and 28 days (each representing 0, 1, 2, 3 and 4 weeks) by preliminary
running BaselineFITS. These frequencies will act as a sort of “threshold”, meaning the lag size
that works the best for each one will also be used on greater frequencies until the next “week”
starts. For instance, if l = 5 performs the best for f = 7, then frequencies f = 7, 8, 9, ..., 13 will
also run with l = 5.

In regards to learning algorithms, we test using the same as in the previous experiment:
LASSO and RandomForest. The resampling parameters are as stated previously in section 6.1.

For AutoFITS and AutoFV, we analyse the value of the irregularity-based features by
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comparing the former to BaselineFITS and looking into feature importance using an information
gain measure for the latter.

In summary, we divide our experiments into 3 steps:

1. l-analysis for the Restaurant Recruit Visitors dataset: Study which lag size may
work the best for a set of frequencies, by running BaselineFITS and annotating R2 scores.

2. Practical experimentation with 4 methods: Running AutoFITS, BaselineFITS, VEST
and AutoFV on 2 datasets: Vostok Ice Core and Restaurant Recruit Visitors dataset.

3. Added value analysis: Through mutual information gain, examine the added value of
AutoFITS irregularity features and how relevant they are in the training process of a model.
In the case of AutoFV, compare AutoFITS’s and VEST’s features importance.

6.3 l-analysis: Restaurant Recruit Visitors

We run our baseline model, BaselineFITS, to study the impact of different lag sizes for the
time-delay embedding representation in the Restaurant Recruit Visitors dataset. In Table 6.1,
we display the performance of BaselineFITS under these conditions, by showing the R2 metric
values for each (l, f) pair, as well as the amount of modelled restaurants. The reason why we
look at the modelled restaurants is that, as we increase l and f , we are effectively increasing
the “demand” for observations for each restaurant. In other words, as the frequency increases,
more observations will be aggregated and, as the time delay embedding size increases, each
subsequence of the time-series will be larger. As such, if a restaurant does not have sufficient
observations to create this representation, it will be discarded. In conclusion, there is a trade-off:
by using a larger l or f , we see a tendency for the R2 score to increase, though that comes at a
cost regarding the number of modelled restaurants.

Our criterion for selecting l is as follows: for some frequency f and a set of modelled
restaurants according to l, we select the lag size with the highest R2 that models at least 250
restaurants. We use this threshold merely because we do not want to discard a lot of restaurants
(otherwise we would end up modelling the “easy” restaurants only - the ones with a lot of
recorded observations) and 250 seems like a good compromise to provide some liberty to the
lag size selection process (by allowing a greater range of values). In both Table 6.2 and 6.3 we
highlight in bold the resulting best values of l. We open an exception for frequency 1 day where
we actually select the third-best value because, since l = 1 has the highest R2 followed by l = 2.
It would not be very wise to use such low values considering that, with frequency 1 day, we can
model a lot of restaurants and keep a relatively higher number of observations. As such, common
sense would dictate that a large lag size would be more effective for modelling the time-series. In
conclusion, we use for frequencies between 1 and 13 days, l = 10; between 14 and 20 days, l = 7;
between 21 and 27 days, l = 3 and for frequencies above or equal to 28 days, l = 2.
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Table 6.1: Left: R2 score obtained by running BaselineFITS with varying frequencies f and
lag sizes l on the Restaurant Recruit Visitors dataset. Right: Number of different modelled
restaurants. As l and f increase, restaurants with fewer observations become impossible to
model since there is not enough data to create the time-delay embedding representation. Table
entries with “-” signify there was an error in the pipeline, caused by a significantly low number
of observations for each restaurant.

Table 6.2: Modelled restaurants

l

f 1D 7D 14D 21D 28D

1 278 277 275 273 271
2 278 275 271 268 265
3 278 273 268 260 256
4 277 271 265 256 245
5 277 271 260 247 235
6 277 268 256 244 209
7 277 266 251 234 -
8 277 265 245 209 -
9 277 260 244 112 -
10 277 260 235 - -

Table 6.3: R2

l

f 1D 7D 14D 21D 28D

1 -0.220 -8.472 -1.418 -3.204 -4.206
2 -0.266 -7.953 -1.886 -3.543 -3.911
3 -0.723 -2.882 -1.768 -2.466 -4.671
4 -0.340 -1.121 -1.325 -2.677 -5.224
5 -0.295 -1.180 -1.384 -2.060 -3.914
6 -0.332 -1.537 -1.340 -1.873 -1.090
7 -0.390 -0.995 -1.146 -1.020 -
8 -0.278 -0.543 -0.946 -0.155 -
9 -0.300 -0.447 -0.738 -2.030 -
10 -0.270 -0.205 -0.540 - -

6.4 AutoFITS vs BaselineFITS vs VEST vs AutoFV

We now present our experimental results obtained by running AutoFITS, BaselineFITS, VEST
and AutoFV on the Vostok Ice Core and Recruit Restaurant Visitors dataset.

6.4.1 Vostok Ice Core

First, we run all models with LASSO as a learning algorithm and we plot the evolution of the
MAE (6.3a) and R2 (6.3b) as we increase timestamp frequency in Figure 6.3. In both plots, it is
clear that AutoFITS and AutoFV have the best performance, by having the best score in almost
all frequencies.

Regarding the mean-absolute-error, Figure 6.3a draws a clear line between the performance
of models that take advantage of the series’ irregularity - AutoFITS and AutoFV - and models
that do not - BaselineFITS and VEST. In total, we ran 4 models for a set of 18 frequencies.
From those experiments, AutoFITS and AutoFV had the lowest MAE in 9 (50%) and 8 (44%)
cases respectively, while VEST did so in 1 case (11%). It is worth noting how AutoFV performed
the best in a significant amount of cases, bringing further credibility to the idea that AutoFITS
can help improve standard forecasting methods.

In the R2 plot, it becomes even more evident how much better AutoFITS and AutoFV
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perform against VEST and BaselineFITS. In almost all cases, we get R2 ≥ 0.6 for both models
that learn from irregularity. Moreso, BaselineFITS and VEST tend to have it R2 decrease rather
quickly as the frequency increase, yet both AutoFITS and AutoFV seem to somewhat “keep”
a good R2 as the frequency increases. Moreover, we further reinforce the theory that merging
features created by VEST and AutoFITS adds value to a forecasting model, due to AutoFV also
having the largest R2 in 8 cases.
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Figure 6.3: MAE and R2 evolution with timestamp frequency and a LASSO learning algorithm -
Vostok Ice Core dataset.

With a RandomForest learning algorithm, we get an overall increased MAE and decreased
R2 and it appears that this algorithm might not be the best for this dataset when compared
to LASSO. In terms of R2, AutoFITS still outperformed all other models in 7 (39%) cases,
with VEST coming in second place by having the largest score in 6 (33%) cases. However, if
we consider only the cases where R2 > 0, we come to know that, for 5 different frequencies, no
model manages to achieve a positive R2: 3000, 3250, 3500, 4000 and 4500. Curiously, in 4 of
those, AutoFITS has the highest R2, so by rejecting negative scores, VEST becomes the clear
winner by having the largest positive R2 in 6 out of 13 cases (46%).
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Figure 6.4: MAE and R2 evolution with timestamp frequency and a RandomForest [10] learning
algorithm - Vostok Ice Core dataset.
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For a listing of all metric values obtained for this dataset, refer to appendix A.

6.4.2 Recruit Restaurant Visitors

With the Recruit Restaurant Visitors dataset, we once again run the 4 models both with a
LASSO and RandomForest learning algorithm. However, for each case, we also attempt both
prediction techniques available on our framework for time-series with multiple entities: standard
prediction and ensemble strategy (previously explained in 5.1.2).

6.4.2.1 Standard prediction

In Figure 6.5 we observe the obtained MAE and R2 for the Recruit Restaurant Visitors dataset
with a standard prediction strategy and a LASSO learning algorithm. From 6.5b, we learn that
all 4 models were unable to achieve a positive R2 in all cases, except at frequencies 1 and 2.
This, allied with what is seen in 6.5a where all errors seem to be extremely similar, allows us to
conclude that LASSO does not seem to be indicated to handle this dataset.
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Figure 6.5: MAE and R2 evolution with timestamp frequency, a LASSO learning algorithm and
standard prediction - Recruit Restaurant Visitors dataset.

The previous conclusion becomes even more apparent when we look at the metrics obtained
from using a RandomForest learning algorithm in 6.6. Contrary to Vostok, RandomForest is the
best performer in this case. While with LASSO we are unable to draw meaningful conclusions
regarding the Mean Absolute Error (MAE) and get negative R2 for pretty much all cases, with
RandomForest we can have a positive (although extremely close to 0) R2 for a lot of frequencies
under 21 days with AutoFITS and AutoFV - both that explicitly model and extract information
from irregularity. We are aware that positive R2 values as close to 0 as these imply our learner is
not being able to perceive most variability in the dataset. Yet, we want to highlight the difference
in performance between AutoFITS/AutoFV and BaselineFITS/VEST. There is a clear difference
between the performance of both pairs of models either in MAE or R2. Although this essentially
means upgrading from a “really bad” model to a “not-so-good” one, we still find it a testament
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to some value AutoFITS may bring to the table with its features.
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Figure 6.6: MAE and R2 evolution with timestamp frequency, a RandomForest learning algorithm
and standard prediction - Recruit Restaurant Visitors dataset. Standard

In appendix B, we present the actual values of the results for this dataset.

6.4.2.2 Ensemble strategy

When implementing the ensemble strategy, we hoped for optimizing the process of finding global
patterns by taking advantage of possible similarities between entities. To evaluate said similarities,
for every two entities, we compute meta-features for each entity’s time-series and calculate the
cosine similarity between each vector of meta-features.

Unfortunately, we were unable to improve the previous results. We had already seen how
LASSO is not a good performer for this dataset and that poor performance is even more apparent
when plotting the metric values for the ensemble strategy. In Figure 6.7, we plot the obtained
results using a LASSO learning algorithm and the ensemble prediction strategy. Since VEST
and BaselineFITS achieved extremely bad R2 results, we ended up having to convert the graph
to a log-scale to make it readable. Still, all values were below zero for all models and frequencies.
The MAE plot in 6.7a does not add much of value besides the fact that AutoFV manages to
have the lowest MAE most of the times alongside BaselineFITS.

In Figure 6.8, we have “more readable” results as we use the apparently more adequate
learning algorithm - Random Forest. On the one hand, the MAE graph shows that all models
tend to achieve similar error and that they are all significantly lower than before when we used
LASSO. On the other hand, the R2 plot in 6.8b tells us that all models have negative and, most
of the times, lower than -1 R2 values. This would imply that our model is not learning effectively,
but it is still worth noting that AutoFITS and AutoFV have generally the highest R2, though
the difference is very small.

In summary, it appears the ensemble strategy only made things worse. We still consider it
may be salvageable, provided we do some improvements we have in mind, though this will be
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Figure 6.7: MAE and R2 evolution with timestamp frequency, a LASSO learning algorithm and
ensemble prediction strategy - Recruit Restaurant Visitors dataset.
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Figure 6.8: MAE and R2 evolution with timestamp frequency, a RandomForest learning algorithm
and ensemble prediction strategy - Recruit Restaurant Visitors dataset.

discussed in more detail in the next chapter. Once again, a listing of all metric values obtained
for this dataset and using this strategy are present in appendix C.

6.5 AutoFITS value: feature importance analysis

To validate the added value of the features from AutoFITS, we measure the feature importance
using a mutual information metric regarding the features used by AutoFV in different frequencies
for both of the previous datasets. To further validate our results, we also look at the feature
importance when using only AutoFITS.

We establish a comparison between the importance of 3 types of features:

• Irregular features: Features that directly or indirectly extract information about the series’
irregularity. In other words, most of AutoFITS’s features.
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• Regular features: Standard features created by either AutoFITS or VEST that do not
handle irregularity.

• Embeddings: The time-delay embeddings. These are expected to have the most importance
as they represent actual values in the time-series.

6.5.1 Vostok Ice Core feature importance

We chose to evaluate the feature importance in 3 cases where AutoFV outperformed both
AutoFITS and VEST: at frequencies 2000, 2500 and 4000 years with a LASSO learning algorithm.
We could extend this analysis to all frequencies where AutoFV is the best performer, but we
figure this sample is enough to validate the value of AutoFITS as a feature engineering framework.
We refer back to Table 5.1 for any questions about what each feature might represent. For
each case, we plot the importance of the top-30 features (out of over 70) and, for each feature
calculated, we annotate by having its name end in“AR” (After Resample). Figure 6.10 displays
the top-30 features in terms of mutual information gain used by AutoFV in those frequencies.
AutoFITS’s features are highlighted in purple, VEST’s in green and the time embeddings are in
red.

In all three cases, excluding time embeddings, the two top features belong to AutoFITS, with
them being the result of averaging the multiplication between the timestamps and the target
variable, before and after resampling. When calculated before resampling, this feature extracts
direct information about the series irregularity, so it being ranked so high is a positive indicator
regarding the value of AutoFITS. Moreover, we observe that a lot of irregular features exist in
all top-30s.

In Table 6.4, we summarize the top-30 features for all 3 frequencies by displays counts for
the 3 types of features established before: irregular/regular features and time-embeddings. What
follows is that irregular features have a clear presence and importance in the learning process.
Excluding time-embeddings, irregular features constitute 29%, 28% and 17% of the created most
important features for frequencies 2000Y, 2500Y and 4000Y respectively.

Table 6.4: Summary of top-30 features for 3 frequencies using AutoFV: Vostok Ice Core.

Frequency (Y)
Feature type

Irregular Regular Time-embedding

2000 7 17 6
2500 7 18 5
4000 6 21 3

At 2000Y, we have high-ranked features created by extracting statistics about the tem-
poral difference between timestamps, such as the maximum (“FITS_t_diff_MAX”), minimum
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(“FITS_t_diff_MIN”), median (“FITS_t_diff_MEDIAN”) and average (“FITS_t_diff_AVG”)
temporal difference. These are features that work with irregularity in possibly the most direct
way possible. Furthermore, other apparently important irregular features include the number
of missing timestamps (“FITS_missing_t_count”), the average of the multiplication between
the timestamps’ time difference and the embeddings difference between consecutive observations
(“FITS_t_y_avg_dif_mul”).

At frequency 2500Y, the important irregular features change slightly. Compared to 2000Y,
the number of missing timestamps and the median of the temporal difference between consecutive
observation exit the top-30 in favour of the entropy of the timestamps (“FITS_entropy_t”) and
the feature generated by multiplying the time difference between the oldest and newest timestamp
by the difference between the maximum and minimum embedding (“FITS_2d_space_area”).

Finally, at 4000Y, we learn that the IQR of the difference between consecutive timestamps
(“FITS_t_dif_stats_IQR”) is more important and that the minimum and average time difference
between consecutive timestamps do not belong to the top-30 features anymore.

Another important observation to note lies in the fact that the features from AutoFITS
represent the majority of the most important ones for all 3 cases. Excluding time-embeddings,
at 2000Y, 67% of created features in the top-30 were created by AutoFITS. On the same line, at
2500Y, AutoFITS generated 64% of the top features and, at 4000Y, 52%.

Nonetheless, we should analyse how AutoFITS’s irregular features performs gains its regular
ones. To this end, we plot in Figure 6.9 the feature importance for the AutoFITS model at
frequency 2750Y, for the top-20 features (out of 39). From those 20 features, 5 are irregular
features (“t_y_avg_mul”, “t_dif_stats_MIN”, “t_dif_stats_MAX”,“t_dif_stats_MEDIAN”
and “t_y_avg_dif_mul”), 7 are time-embeddings and 8 are regular features. Although irregular
features are the minority, we believe these are good results as they are clearly fulfilling their
main purpose: complementing standard features.
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Figure 6.9: Top-20 features from AutoFITS in terms of mutual information gain, in the Vostok
Ice Core dataset at frequency 2750Y

We see these findings as being proof that irregularity can have a role to play in the feature
engineering process, but should not be the absolute main focus. And we never intended for it to
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be so. At least, in the Vostok Ice Core dataset, it appears AutoFITS can be a good complement
to standard feature engineering methods.
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Figure 6.10: Top-30 features from AutoFV in terms of mutual information gain, in the Vostok
Ice Core dataset at frequencies 2000, 2500 and 4000Y
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6.5.2 Recruit Restaurant Visitors feature importance

We also take a look at the feature importance in the Recruit Restaurant Visitors dataset, at
frequencies 1, 7, 14, 21 and 28D.

We plot the feature importance for the first 3 frequencies (1,7 and 14D) in Figure 6.11.
From these three rankings, we learn that there exists a significant presence of irregular features.
At f = 7D, we have the smallest number of irregular features standing at 4: timestamps
entropy (“FITS_entropy_t”) and four statistics about the time difference between consecutive
observations, namely the average, IQR, median and maximum (“FITS_t_dif_stats_AVG”,
“FITS_t_dif_stats_IQR”, “FITS_t_dif_stats_MEDIAN” and “FITS_t_dif_stats_MAX”).
Nonetheless, three of these features are present in all 3 rankings with them being the timestamps
entropy and the IQR and average of the time difference between consecutive observations. In
short, we can see a clear presence of the features obtained by extracting statistics about the
timestamp difference (average and IQR in all 3 frequencies, median and maximum in 7D and
14D, and the sum solely at 14D). This, paired with the presence of other irregular features such
as the timestamp entropy, the difference between the maximum and minimum timestamp in each
time-delay embedding (“FITS_min_max_t_dif_div_f” and “FITS_min_max_t_dif_days”)
and the average of the multiplication of the timestamps and target (“FITS_t_y_avg_mul”),
indicates that irregular features have a potentially big part to play in forecasting in settings such
as this.

In Figure 6.12, we plot the feature importance for frequencies 21 and 28D. At 21 days,
12 out of 30 features in the top-30 are irregular features. At 28 days, we get 11. This is a
significant increase, compared to the 8 irregular features at frequency 14 days (the previous
maximum). As for features that were not present in any of the previous rankings for this dataset,
we have 2: the relative dispersion of the timestamps (“FITS_rel_disp_t”) and the average of
the multiplication between the timestamp difference and the target variable difference between
consecutive observations (“FITS_t_y_avg_dif_mul”).

Finally, what stands out the most when compared to the feature importance for the Vostok
Ice Core dataset is the fact that AutoFITS appears to dominate more the top-30 features, by
representing (excluding time embeddings and the entity identifier column “air_store_id”) 68%
of generated features for frequencies 1D and 7D and 100%, 77% and 78% for frequencies 14,21
and 28D respectively.

To end the feature importance analysis for this dataset, we must look at the importance of
AutoFITS by itself to compare irregular and regular features. We plot the feature importance for
the top-20 features (out of 32) in Figure 6.13. From these 20 features, 11 are irregular features,
with 4 being in the top-10 features (“t_dif_stats_AVG”, “entropy_t”, “t_dif_stats_IQR” and
“t_dif_stats_MEDIAN”). Once again, we consider these to be great indicators of the possible
relevance irregularity can have in certain problem settings.
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Figure 6.11: Top-30 features from AutoFV in terms of mutual information gain, in the Recruit
Restaurant Visitors dataset at frequencies 1, 7 and 14D
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(a) 21D
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Figure 6.12: Top-30 features from AutoFV in terms of mutual information gain, in the Recruit
Restaurant Visitors dataset at frequencies 21 and 28D
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Figure 6.13: Top-20 features from AutoFITS in terms of mutual information gain, in the Vostok
Ice Core dataset at frequency 21D



Chapter 7

Conclusion

In this work, we introduced AutoFITS: an automated feature engineering framework for irregular
time-series that aims to extract knowledge from irregularity. It takes some key concepts in
literature and extends them to approach a popular research field (feature engineering) from an
unusual point of view (irregularity).

Although AutoFITS is coded as an automated time-series forecasting framework, our focus is
solely on feature engineering. We do not intend to compete with existing methods, but rather
complement them. Nonetheless, we studied how AutoFITS fares against a method for time-series
feature engineering in the literature (VEST [13]) and how it may help complement it.

7.1 Key findings

To recap, we posed the following research question:

RQ1. Can we improve a model’s performance by extracting information about a time series
irregularity?

Also, we decided to evaluate this research question under 2 scenarios: one where the dataset
(time-series) consists of a simple sequence of measurements over time from a single entity and a
second one where the dataset contains sequences by multiple distinct, yet related entities, each
with its own measurements over time. For both settings, we evaluate if our results indicate that
the built models can be applied in practice by generalizing well to new observations.

From the results obtained from the Vostok Ice Core dataset, we can confidently state that
irregularity can be a good source of information from a time-series. Our results have shown that
not only AutoFITS can perform better than standard forecasting methods, but it can also be a
good complement for them. With that being said, we can state that, for when handling a single
entity, we are able to provide a positive answer in regards to RQ1. AutoFITS and AutoFV not
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only performed better than their counterparts by modelling irregularity, but also achieved good
scores on all performance metrics, indicating a capable learning model was built.

When handling multiple entities, the obtained results showed that irregularity managed to
improve results as AutoFITS and AutoFV achieved significantly better performance than both
BaselineFITS and VEST. However, this improvement still resulted in a model with a negative
or close to zero R2 score, which is undesired as the model does not appear to be generalizing
well to new observations. Nonetheless, we further reinforced that irregularity has value from a
feature extraction standpoint so, in that sense, we bring further credibility to a positive answer
for ??. Even though from the perspective of building a model capable of being applied in practice
we were unsuccessful, we were able to prove that the aspects of the irregularity of the different
entities’ time-series is relevant. We believe this topic has the potential for further study and
investigation from an academic standpoint.

In conclusion, in both datasets, we saw irregularity being present with quite the importance
and see this as a point in favour of AutoFITS and we think we made some valuable contributions
to the time-series research field. Not only we created an automated framework capable of
extracting relevant information about a time-series, but also packaged it in a fully distributable
software package1.

7.2 Future work

We believe AutoFITS has the potential to evolve even further. As such, we outline some
improvements that could be made, but were not, namely due to time constraints.

For once, as we have already stated, AutoFITS is constructed in such a way that can be
directly transformed into a quite capable automatic time-series forecasting framework. By
improving on the model selection stage (maybe a meta-learning approach for automatically
detecting the best learning algorithm) and investigating how we may be able to automatically
infer which frequency works the best for a time-series, we can manage to automate the two steps
that make the most difference in results when using AutoFITS (as we have seen in chapter 6).
We also think it is possible to extend the number of features generated: by being more creative in
how we extract information, we may be able to extract better information about the irregularity
of the time-series that may help in the forecasting process.

Finally, we consider that more work should be put into building a model with better practical
applicability when handling multiple entities. In the future, we will attempt to apply this
approach to other case studies and investigate new ways to take advantage of the information
generated by AutoFITS in these problem settings. By tinkering with the prediction strategy and
adding features purposely built towards these types of problem settings, we believe good results
may be obtained. The ensemble prediction strategy has lots of room for improvement. When

1https://gitlab.com/pcosta2111/autofits
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implementing the meta-feature extraction process, we used a general-purpose Python library.
However, by researching and designing meta-features more related to this type of problem setting,
we think this strategy can improve significantly.





Appendix A

Vostok Ice Core results

A.1 LASSO

A.1.1 MAE

Table A.1: MAE obtained by running 4 models on the Vostok Ice Core dataset with a LASSO
learning algorithm (see section 6.4.1).

Frequency AutoFITS BaselineFITS VEST AutoFV

250Y 7.881667 3.331068 3.153648 6.788097
500Y 3.714171 3.768402 3.628500 3.379524
750Y 10.052318 5.705273 4.619073 7.440327
1000Y 10.815488 4.641085 4.916439 8.877390
1250Y 6.309803 5.791091 5.302682 5.983970
1500Y 6.281414 5.882500 6.074963 6.811222
1750Y 11.874514 11.261572 9.144043 10.403341
2000Y 11.437892 12.252600 12.035600 12.342317
2250Y 10.930384 14.855537 12.218060 10.480537
2500Y 7.017156 10.036896 7.851292 8.021714
2750Y 10.459926 15.544682 16.718024 16.404700
3000Y 12.882355 15.124531 14.265011 15.776019
3250Y 12.056463 14.721775 13.367968 14.285800
3500Y 15.430244 15.667035 16.931344 16.278697
3750Y 14.926765 12.468000 12.392912 14.520264
4000Y 19.140970 16.166973 17.121798 19.749248
4250Y 13.226524 18.227022 11.157515 12.760000
4500Y 17.390917 17.708589 19.048589 19.910839
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A.1.2 R2

Table A.2: R2 obtained by running 4 models on the Vostok Ice Core dataset with a LASSO
learning algorithm (see section 6.4.1).

Frequency AutoFITS BaselineFITS VEST AutoFV

250Y 0.972396 0.968406 0.969657 0.972402
500Y 0.944331 0.927265 0.934530 0.944352
750Y 0.906887 0.879077 0.920044 0.909679
1000Y 0.878307 0.827273 0.860848 0.875654
1250Y 0.848820 0.742935 0.820029 0.847513
1500Y 0.774510 0.684672 0.729748 0.785622
1750Y 0.727913 0.629450 0.591289 0.702159
2000Y 0.740809 0.518275 0.535630 0.787509
2250Y 0.627416 0.582547 0.663064 0.773069
2500Y 0.596289 0.544225 0.518549 0.769806
2750Y 0.722231 0.419334 0.140822 0.585982
3000Y 0.606198 0.310208 0.235430 0.408255
3250Y 0.755770 0.097831 0.224979 0.741823
3500Y 0.807604 0.307689 0.377906 0.758878
3750Y 0.539034 0.265066 0.379378 0.631487
4000Y 0.498959 -0.094209 0.117624 0.645678
4250Y 0.651835 -0.071618 -0.008525 0.642705
4500Y 0.589297 -0.149384 0.079646 0.441354
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A.2 Random Forest

A.2.1 MAE

Table A.3: MAE obtained by running 4 models on the Vostok Ice Core dataset with a Random
Forest learning algorithm (see section 6.4.1).

Frequency AutoFITS BaselineFITS VEST AutoFV

250Y 1.227592 1.307923 1.196324 1.190822
500Y 1.752177 2.541613 2.178993 1.745780
750Y 2.698165 3.614487 2.529538 2.649822
1000Y 3.347583 4.582247 3.820799 3.429039
1250Y 3.562234 5.533319 4.266030 3.925160
1500Y 5.129977 6.265919 5.925940 4.949972
1750Y 5.406469 6.557040 7.057511 5.863933
2000Y 5.869981 7.962337 7.732591 5.414515
2250Y 6.906897 7.414525 6.342215 5.501083
2500Y 7.944402 8.161220 8.655245 5.310864
2750Y 6.328312 9.615090 12.302390 7.659493
3000Y 7.223396 10.474484 10.882208 8.571446
3250Y 4.619415 10.734519 9.779030 5.300622
3500Y 5.688022 10.701787 9.904705 6.550680
3750Y 8.765576 11.671485 10.443932 8.813153
4000Y 8.514273 12.481037 11.508645 6.770208
4250Y 7.453534 13.524126 13.113714 6.757612
4500Y 7.377254 13.825825 12.153421 8.048952
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A.2.2 R2

Table A.4: R2 obtained by running 4 models on the Vostok Ice Core dataset with a Random
Forest learning algorithm (see section 6.4.1).

Frequency AutoFITS BaselineFITS VEST AutoFV

250Y 0.443862 0.918316 0.920014 0.500917
500Y 0.859540 0.896553 0.887684 0.889363
750Y 0.196295 0.784418 0.847671 0.651997
1000Y 0.158859 0.825897 0.819304 0.430128
1250Y 0.652743 0.732703 0.771465 0.748390
1500Y 0.515009 0.678019 0.671289 0.589634
1750Y 0.048904 0.002932 0.411422 0.274215
2000Y 0.170369 -0.128211 0.121477 0.104363
2250Y 0.220290 -0.606775 0.068402 0.326055
2500Y 0.670859 0.275208 0.555488 0.587091
2750Y 0.379764 -0.717674 -0.666422 -0.632260
3000Y -0.042902 -0.495430 -0.347995 -0.574024
3250Y -0.144871 -0.873515 -0.521051 -0.682843
3500Y -0.255234 -0.536259 -0.874516 -0.690015
3750Y -0.227489 -0.070775 0.129946 -0.146715
4000Y -1.419203 -0.729927 -0.882600 -1.402285
4250Y -0.145983 -1.132756 0.209653 -0.012194
4500Y -1.011684 -1.180982 -1.399115 -1.664462



Appendix B

Recruit Restaurant Visitors results :
Standard prediction

B.1 LASSO

B.1.1 MAE

Table B.1: MAE obtained by running 4 models on the Recruit Restaurant Visitors dataset
with a LASSO learning algorithm and standard prediction technique - frequencies 1 to 16D (see
section 6.4.2.1).

Frequency AutoFITS BaselineFITS VEST AutoFV

1D 4.558795 4.921001 4.628623 4.466889
2D 8.053424 8.650726 8.370133 8.266672
3D 11.456358 11.662542 11.589512 11.736601
4D 15.589886 16.141730 16.228955 16.295677
5D 19.331210 19.443335 19.441681 19.822390
6D 20.015804 18.252872 19.481043 19.324260
7D 21.103065 18.679428 18.622114 20.585073
8D 22.343225 21.410261 21.488287 22.545395
9D 25.447599 24.004838 25.985078 26.282829
10D 29.304190 28.803023 29.578331 30.176794
11D 28.464622 28.532131 29.611528 30.502396
12D 33.885859 36.025171 39.406562 37.405629
13D 32.690828 34.019227 37.449981 36.513249
14D 39.831781 39.322354 40.348959 40.926554
15D 44.265238 45.537616 45.441288 45.645761
16D 51.274663 50.918447 52.643732 52.995029
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Table B.2: MAE obtained by running 4 models on the Recruit Restaurant Visitors dataset with
a LASSO learning algorithm and standard prediction technique - frequencies 17 to 31D (see
section 6.4.2.1).

Frequency AutoFITS BaselineFITS VEST AutoFV

17D 50.826463 50.570870 54.271649 55.186504
18D 62.339111 63.176996 69.781363 70.936430
19D 64.684211 66.750182 65.390085 63.894925
20D 62.906167 61.887013 56.803818 54.887169
21D 78.576090 80.874278 83.044888 80.183124
22D 86.525191 90.404203 97.276589 96.677848
23D 92.232097 96.343951 103.857731 99.872957
24D 92.187565 95.149125 98.071633 97.117339
25D 94.844032 101.342384 110.291554 104.424117
26D 100.485806 97.813936 101.988142 108.332096
27D 115.123095 109.416490 113.191157 119.874719
28D 120.082764 111.615100 123.744293 122.014143
29D 104.971611 111.831844 122.903666 115.744828
30D 130.059017 133.279879 140.042698 138.840022
31D 153.141685 140.232762 151.148331 152.085764
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B.1.2 R2

Table B.3: R2 obtained by running 4 models on the Recruit Restaurant Visitors dataset with a
LASSO learning algorithm and standard prediction technique (see section 6.4.2.1).

Frequency AutoFITS BaselineFITS VEST AutoFV

1D 0.063598 0.059666 0.061011 0.063042
2D 0.028258 0.045220 0.032887 -0.000586
3D -0.084931 -0.040670 -0.088748 -0.137294
4D -0.266143 -0.241001 -0.285851 -0.279157
5D -0.459693 -0.460275 -0.553663 -0.535675
6D -0.300659 -0.149973 -0.263877 -0.242641
7D -0.402940 -0.253462 -0.257362 -0.385448
8D -0.169107 -0.129302 -0.134590 -0.182624
9D -0.472971 -0.419772 -0.510138 -0.519733
10D -0.876460 -1.092431 -0.957448 -0.853590
11D -0.408355 -0.674032 -0.604169 -0.526005
12D -0.685362 -1.273943 -1.506469 -0.786225
13D -0.785313 -1.036792 -1.161305 -1.065002
14D -1.223139 -1.259088 -1.065307 -1.117739
15D -1.614969 -2.298423 -2.294392 -1.725609
16D -1.517298 -1.809217 -1.871405 -1.675604
17D -1.777140 -1.989650 -2.266244 -2.231854
18D -2.178775 -2.390637 -2.953322 -2.845372
19D -2.791579 -3.215907 -2.515697 -2.360417
20D -2.197178 -2.159136 -1.339779 -1.252589
21D -3.011684 -2.734026 -3.473542 -3.143166
22D -3.754254 -3.717370 -5.029731 -5.542494
23D -2.588931 -2.438205 -3.279848 -3.220099
24D -3.250154 -3.081499 -3.980741 -3.725465
25D -3.375902 -4.312547 -5.425572 -4.647300
26D -4.606231 -4.046765 -4.295471 -5.702320
27D -4.162674 -3.497886 -3.644269 -4.409466
28D -4.199544 -3.624267 -5.491814 -5.672878
29D -3.450571 -3.393021 -4.956781 -4.634937
30D -6.442892 -5.663040 -6.520028 -7.293012
31D -4.367543 -3.732574 -4.617549 -5.380731
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B.2 Random Forest

B.2.1 MAE

Table B.4: MAE obtained by running 4 models on the Recruit Restaurant Visitors dataset with
a Random Forest learning algorithm and standard prediction technique (see section 6.4.2.1).

Frequency AutoFITS BaselineFITS VEST AutoFV

1D 4.773157 4.761664 5.795324 5.737854
2D 8.206641 8.371165 9.657142 9.160792
3D 11.020589 11.070862 15.390528 14.023371
4D 15.182236 16.235938 16.400707 13.304350
5D 17.812955 17.493813 18.967000 12.961407
6D 17.820844 17.866994 18.460471 12.255705
7D 17.880947 18.425573 19.777471 12.467516
8D 13.693307 19.942090 20.054000 14.356471
9D 13.617608 23.075031 23.043328 14.301116
10D 14.428040 26.262134 25.988122 14.266408
11D 16.431306 27.718624 28.739020 16.905837
12D 16.884735 30.466084 33.374549 17.109160
13D 17.212521 30.409339 34.259617 17.915872
14D 20.121574 34.116723 34.047911 19.829111
15D 19.022591 41.192955 42.586367 19.449347
16D 27.154612 49.989714 55.155761 27.806543
17D 24.000735 46.611265 54.139538 23.427437
18D 30.922172 67.549959 74.380726 31.410598
19D 33.001429 58.695126 62.193289 31.765482
20D 35.568085 63.045574 62.357306 31.470046
21D 35.355769 72.554858 76.346133 37.514570
22D 46.416115 82.972557 87.318980 47.533216
23D 40.254538 88.496692 96.272520 46.525079
24D 80.934192 93.684528 98.883571 82.811230
25D 51.561615 92.018680 103.289800 50.426880
26D 46.502218 98.376533 105.683790 49.341935
27D 105.376342 117.882062 122.781741 106.865304
28D 71.636830 105.137193 114.640117 76.415273
29D 51.850038 104.575603 114.071882 52.484157
30D 56.149466 130.964387 136.260078 61.269176
31D 143.264654 144.459515 150.914882 148.797047
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B.2.2 R2

Table B.5: R2 obtained by running 4 models on the Recruit Restaurant Visitors dataset with a
Random Forest learning algorithm and standard prediction technique (see section 6.4.2.1).

Frequency AutoFITS BaselineFITS VEST AutoFV

1D -0.005682 -0.287436 -0.416171 -0.701413
2D 0.018379 -0.038029 -0.533069 -0.124444
3D -0.130281 -0.084386 -3.121789 -3.031249
4D -0.474981 -1.815292 -0.587756 -0.701788
5D -0.406172 -0.415942 -0.373775 0.053918
6D -0.153610 -0.165158 -0.134204 0.189455
7D -0.185936 -0.231951 -0.304848 0.073462
8D 0.138930 -0.090317 -0.084095 0.108753
9D 0.069027 -0.377040 -0.333909 0.046755
10D 0.084322 -0.555448 -0.529976 0.089462
11D 0.060144 -0.346891 -0.451792 0.054372
12D 0.163570 -0.527888 -0.591517 0.145514
13D 0.093437 -0.532547 -0.665936 0.084083
14D 0.093669 -0.592050 -0.551624 0.081685
15D 0.148426 -1.122270 -1.232263 0.134343
16D -0.026013 -1.346263 -1.664406 -0.050449
17D 0.150599 -1.380172 -1.808050 0.168961
18D -0.055741 -2.703370 -3.074632 -0.035297
19D -0.097064 -1.906773 -2.310780 -0.110040
20D 0.039401 -1.700746 -1.268087 0.235360
21D 0.106330 -2.409600 -2.712223 -0.003484
22D -0.579480 -3.557286 -4.116393 -0.588645
23D 0.184931 -2.406807 -2.909259 0.047902
24D -2.666076 -3.743419 -4.056742 -2.894993
25D -0.848916 -3.753653 -4.796010 -0.700604
26D -0.165765 -4.953934 -5.257223 -0.352423
27D -3.931626 -4.812051 -4.949239 -3.725462
28D -1.215406 -3.917266 -4.619369 -1.525845
29D -0.372884 -3.906636 -4.548467 -0.355002
30D -0.624452 -7.073404 -7.319758 -0.975848
31D -4.830184 -4.980514 -5.517464 -5.176281





Appendix C

Recruit Restaurant Visitors results :
Ensemble prediction

C.1 LASSO

C.1.1 MAE

Table C.1: MAE obtained by running 4 models on the Recruit Restaurant Visitors dataset with
a LASSO learning algorithm and ensemble prediction technique - frequencies 1 to 16D (see
section 6.4.2.2).

Frequency AutoFITS BaselineFITS VEST AutoFV

1D 6.898701 5.689049 7.006474 7.251914
2D 12.982498 10.729492 14.918071 17.075388
3D 20.022140 14.892026 26.319945 28.176492
4D 70.458784 21.171789 36.456846 76.379886
5D 33.675892 27.552419 58.096581 50.717655
6D 45.902616 30.054820 53.824792 46.881631
7D 70.394262 37.269119 47.497005 44.174304
8D 61.658191 52.169185 47.455856 52.219687
9D 89.876478 89.934437 43.998252 79.511625
10D 52.181960 99.165101 46.526409 48.159947
11D 52.013060 56.234357 49.133540 64.634993
12D 53.107191 55.697841 53.784586 55.032221
13D 74.778409 70.145524 69.338488 70.629550
14D 101.296723 83.820025 79.517148 84.774056
15D 76.167804 95.877565 77.047423 69.009068
16D 56.164656 71.104448 65.582153 56.677705
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Table C.2: MAE obtained by running 4 models on the Recruit Restaurant Visitors dataset with
a LASSO learning algorithm and ensemble prediction technique - frequencies 17 to 31D (see
section 6.4.2.2).

Frequency AutoFITS BaselineFITS VEST AutoFV

17D 89.803107 88.389644 83.223854 138.362864
18D 92.664974 101.421212 98.170919 91.421732
19D 164.178787 114.879135 109.910972 171.553594
20D 208.657304 129.312848 120.576863 188.315169
21D 142.536780 116.186270 253.420379 126.058469
22D 158.541939 144.038816 257.907915 144.608554
23D 191.312706 193.142589 247.307313 172.643025
24D 145.993102 187.562190 190.014936 125.819609
25D 178.652698 202.738363 226.019399 164.499461
26D 200.820941 255.423848 303.908426 170.898470
27D 167.965748 284.976993 198.822122 161.226830
28D 272.918641 166.039336 361.131986 209.886451
29D 260.842258 162.162915 476.515054 259.297250
30D 289.416797 200.823294 688.705036 233.643741
31D 200.152622 223.335902 272.788359 193.838353
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C.1.2 R2

Table C.3: R2 obtained by running 4 models on the Recruit Restaurant Visitors dataset with a
LASSO learning algorithm and ensemble prediction technique (see section 6.4.2.2).

Frequency AutoFITS BaselineFITS VEST AutoFV

1D -3.192635 -0.023284 -2.578512 -2.352182
2D -1.044131 -0.198412 -2.131153 -4.111786
3D -4.525514 -0.441396 -11.989765 -7.392633
4D -17.446289 -0.997520 -7.780758 -23.347814
5D -2.714080 -1.883320 -15.505341 -8.218004
6D -6.472403 -1.316628 -7.280337 -4.938703
7D -12.864300 -2.173171 -4.485937 -3.608360
8D -7.766586 -5.892478 -3.150093 -3.223747
9D -16.095427 -38.382815 -2.662184 -9.909681
10D -3.142277 -26.073307 -2.544775 -2.723589
11D -3.733295 -4.575117 -3.271723 -6.532668
12D -2.215520 -2.785801 -2.434132 -3.833721
13D -8.353979 -4.965872 -4.793456 -7.563907
14D -16.665573 -6.627477 -5.906584 -9.194186
15D -6.642793 -12.391153 -6.763684 -5.010639
16D -2.283501 -5.186267 -3.733866 -2.282243
17D -6.590403 -7.044404 -6.044683 -16.558059
18D -8.274340 -8.965943 -6.770650 -8.271625
19D -148.387036 -8.885369 -8.053653 -157.520746
20D -44.270782 -7.677464 -6.661373 -34.203068
21D -16.045730 -7.505220 -150.328452 -13.890563
22D -23.154380 -15.337018 -149.154536 -18.689866
23D -30.398695 -30.180070 -116.001317 -23.210143
24D -15.134161 -27.434539 -43.728462 -7.296883
25D -23.232622 -30.398521 -142.016157 -20.268603
26D -29.725024 -63.589620 -783.942323 -24.885604
27D -13.108429 -217.620275 -29.875196 -11.931659
28D -62.784334 -11.257345 -723.371278 -24.539042
29D -68.444662 -11.118553 -1313.113045 -70.128322
30D -119.850451 -19.895268 -4461.497667 -28.716108
31D -9.826536 -19.932312 -28.614066 -8.218900
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C.2 Random Forest

C.2.1 MAE

Table C.4: MAE obtained by running 4 models on the Recruit Restaurant Visitors dataset with
a Random Forest learning algorithm and ensemble prediction technique (see section 6.4.2.2).

Frequency AutoFITS BaselineFITS VEST AutoFV

1D 8.654785 6.135583 8.519936 8.944408
2D 14.197250 12.383860 15.131624 15.101044
3D 20.140618 18.356009 20.166381 20.544904
4D 25.102789 24.119773 25.040590 24.958046
5D 30.181498 31.621157 30.275584 29.165656
6D 28.514129 30.408167 29.517609 28.263708
7D 30.703974 33.406143 31.970756 29.666925
8D 31.930443 34.415110 33.361464 32.575309
9D 36.678764 38.825790 38.476736 37.003652
10D 42.145317 44.687932 42.863590 41.925640
11D 47.364619 51.189554 50.676940 48.546860
12D 55.818864 60.797566 57.081987 55.335226
13D 61.582900 65.561242 63.245978 61.232702
14D 67.553977 71.779930 69.912105 66.882282
15D 70.603752 77.026597 73.409110 70.796600
16D 77.880243 82.164696 78.551326 77.941672
17D 83.995886 89.877985 87.195662 83.286598
18D 93.777471 97.895224 94.503135 91.919911
19D 100.680166 104.092775 99.716999 98.918805
20D 111.014330 113.017739 111.896159 109.691267
21D 96.250440 100.359655 98.628625 96.865334
22D 110.091619 115.924265 114.387494 110.321018
23D 113.095811 119.164869 116.365631 113.448467
24D 116.823261 121.270324 117.202282 115.119681
25D 123.217500 127.194738 123.608848 121.744988
26D 137.001532 142.710635 139.728806 136.039581
27D 140.008378 139.722314 135.778885 136.129408
28D 139.323329 145.005660 142.360252 138.470222
29D 142.651068 147.002142 146.010180 141.354625
30D 162.356483 169.524229 166.971440 161.099277
31D 163.564895 168.251641 164.705462 162.221572
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C.2.2 R2

Table C.5: R2 obtained by running 4 models on the Recruit Restaurant Visitors dataset with a
Random Forest learning algorithm and ensemble prediction technique (see section 6.4.2.2).

Frequency AutoFITS BaselineFITS VEST AutoFV

1D -2.673956 -0.305121 -1.628615 -2.277935
2D -0.932330 -0.538561 -2.004628 -0.977645
3D -1.880466 -1.251184 -1.895729 -2.043998
4D -1.464084 -1.672716 -1.293246 -1.484160
5D -1.796234 -5.159571 -1.681768 -1.489737
6D -0.929009 -1.181867 -0.991964 -0.858993
7D -1.001881 -1.330199 -1.144241 -0.900828
8D -0.554902 -0.753139 -0.646289 -0.556201
9D -1.158084 -1.381288 -1.280144 -1.176398
10D -1.421036 -1.663866 -1.464175 -1.411950
11D -1.807882 -2.214770 -2.111159 -1.907400
12D -2.127467 -2.732555 -2.219254 -2.013510
13D -2.867155 -3.458722 -3.066019 -2.843595
14D -3.021871 -3.536190 -3.355250 -3.023282
15D -3.427746 -4.313636 -3.662761 -3.387722
16D -3.410477 -3.876391 -3.430819 -3.409046
17D -4.087266 -4.872678 -4.466833 -3.951362
18D -4.811791 -5.438707 -4.899464 -4.587828
19D -5.299197 -5.789372 -5.349016 -5.336691
20D -5.051201 -5.319767 -5.186134 -4.921309
21D -3.974991 -4.511040 -4.336613 -4.086485
22D -5.726638 -6.805168 -6.549178 -5.780714
23D -3.446569 -4.023423 -3.740359 -3.455110
24D -4.512222 -4.911532 -4.646461 -4.401911
25D -5.393389 -6.084542 -5.681914 -5.366814
26D -7.367315 -8.304771 -7.827433 -7.238863
27D -5.148641 -5.179346 -4.865495 -4.866818
28D -5.958395 -6.697566 -6.504623 -5.941167
29D -6.197885 -6.829309 -6.840713 -6.152412
30D -8.645589 -9.791554 -9.412867 -8.493004
31D -5.170975 -5.648011 -5.310414 -5.093032
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