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Abstract

The world is living the fourth industrial revolution, Industry 4.0; marked by the increasing intelli-
gence and automation of manufacturing systems. Nevertheless, there are types of tasks that are too
complex or too expensive to be fully automated, it would be more efficient if the machines were
able to work with the human, not only by sharing the same workspace but also as useful collabo-
rators. A possible solution to that problem is on human-robot interactions systems, understanding
the applications where they can be helpful to implement and what are the challenges they face.

In this context a better interaction between the machines and the operators can lead to multiples
benefits, like less, better, and easier training, a safer environment for the operator and the capacity
to solve problems quicker. The focus of this dissertation is relevant as it is necessary to learn
and implement the technologies which most contribute to find solutions for a simpler and more
efficient work in industry. This dissertation proposes the development of an industrial prototype
of a human machine interaction system through Extended Reality (XR), in which the objective is
to enable an industrial operator without any programming experience to program a collaborative
robot using the Microsoft HoloLens 2.

The system itself is divided into two different parts: the tracking system, which records the
operator’s hand movement, and the translator of the programming by demonstration system, which
builds the program to be sent to the robot to execute the task. The tracking system is executed by
the Microsoft HoloLens 2, using the Unity platform and Visual Studio to program it. The robots’
translators for programming by demonstration system’s core was developed in Robot Operating
System (ROS). The robots included in this interface are Universal Robots UR5 (collaborative
robot) and ABB IRB 2600 (industrial robot). Moreover, the interface was built to easily add other
robots.

Keywords: Programming by Demonstration, Augmented Reality, Collaborative Robots, Indus-
trial Robots
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Resumo

O mundo está a viver a quarta revolução industrial, a Indústria 4.0; marcada pela crescente in-
teligência e automação dos sistemas industriais. No entanto, existem tarefas que são muito com-
plexas ou caras para serem totalmente automatizadas, seria mais eficiente se a máquina pudesse
trabalhar com o ser humano, não apenas partilhando o mesmo espaço de trabalho, mas como
colaboradores úteis. O foco da investigação para solucionar esse problema está em sistemas de
interação homem-robô, percebendo em que aplicações podem ser úteis para implementar e quais
são os desafios que enfrentam.

Neste contexto, uma melhor interação entre as máquinas e os operadores pode levar a múltiplos
benefícios, como menos, melhor e mais fácil treino, um ambiente mais seguro para o operador e
a capacidade de resolver problemas mais rapidamente. O tema desta dissertação é relevante na
medida em que é necessário aprender e implementar as tecnologias que mais contribuem para
encontrar soluções para um trabalho mais simples e eficiente na indústria. Assim, é proposto o
desenvolvimento de um protótipo industrial de um sistema de interação homem-máquina através
de Realidade Estendida, no qual o objetivo é habilitar um operador industrial sem experiência em
programação, a programar um robô colaborativo utilizando o Microsoft HoloLens 2.

O sistema desenvolvido é dividido em duas partes distintas: o sistema de tracking, que regista
o movimento das mãos do operador, e o sistema de tradução da programação por demonstração,
que gera o programa a ser enviado ao robô para que ele se mova. O sistema de tracking é executado
pelo Microsoft HoloLens 2, utilizando a plataforma Unity e Visual Studio para programá-lo. A
base do sistema de tradutores para a programação por demonstração foi desenvolvida em Robot
Operating System (ROS). Os robôs incluídos nesta interface são Universal Robots UR5 (robô
colaborativo) e ABB IRB 2600 (robô industrial). Adicionalmente, a interface foi construída para
incorporar facilmente mais robôs.

Keywords: Programação por Demonstração, Realidade Aumentada, Robôs Colaborativos, Robôs
Industriais
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Chapter 1

Introduction

This chapter is divided into five sections. First, Section 1.1 contextualises the theme of the disserta-

tion, more specifically, using Extended Reality in Human-Robot Interaction systems, and Section

1.2 presents the motivations that led to the thesis definition. Section 1.3 establishes the specific

objectives that were intended to achieve with this dissertation. As an effort to clarify the project’s

development, Section 1.4 presents an overview of the developed system and an introduction to the

used technologies. Lastly, section 1.5 defines the structure of this document.

1.1 Context

Automation, the keyword that represents the evolution that our world is experiencing. If we look

back a few decades, the factories had big lines of operations where repetitive work was made by

humans. Most of these workers had injuries or deceases because they had to perform the same

movement thousands of times a day. Now, this hazardous work is made by machines with high

accuracy, which allow humans to perform tasks that demand critical judgment [8].

The world is living the fourth industrial revolution, called Industry 4.0. This is marked by the

increasing intelligence of manufacturing systems and decentrally connected cyber physical sys-

tems. The term intelligence refers to adaptability, autonomy and flexibility through decentralised

decision making and an increased data generation and processing [4].

Nevertheless, there are types of tasks that are too complex or too expensive to be fully auto-

mated, it would be more efficient if the machines were able to work with the humans, not only

by sharing the same workspace but also as useful collaborators [9]. A possible solution to that

problem is on human-robot interactions systems, understanding the applications where they can

be helpful to implement and what are the challenges they face.

In this context a better interaction between the machines and the operators can lead to multiples

benefits, like less, better, and easier training, a safer environment for the operator and the capacity

1



Introduction 2

to solve problems quicker. For this purpose, Extend Reality can be a possible solution to explore

in order to improve the effectiveness of tasks execution in the industry environment.

1.2 Motivation

The increasing need in automation at the industrial environment is due to the markets becoming

more fast-moving and complex. This reduces the product’s life cycle and increases the product

variety, particularly, being more relevant in assembly tasks [10]. Although many factories already

transformed their lines to automated instead of manual, some tasks have to be developed by hu-

mans as it was explored in section 1.1. So, here come the collaborative robots, which are able

to perform tasks in collaboration with the human operator. This enables the human to perform

critical tasks that demand reasoning and reflection and the robot performs the repetitive and heavy

ones. But, programming this collaborative robot can be a complex task that demands an expert in

robot programming. For the company, this reflects in spending more money and time finding the

right person for the job. So, what if an operator, without any knowledge of robot programming,

could in fact program the robot?

This dissertation proposes a solution for this problem, which is an operator being able to

program a collaborative or industrial robot having in mind that he/she has no knowledge in robot

programming. The idea is to use Augmented Reality to teach the robot what tasks it must perform,

enabling the operator to program by demonstration while using AR technology. For this interface

it will be used the Microsoft HoloLens 2, a head-mounted device which the operator could wear.

For programming the robot, the operator would have to perform the desired task and then the robot

would replicate.

The focus of this dissertation is relevant as it is necessary to learn and implement the tech-

nologies which most contribute to find solutions for a simpler and more efficient work in industry.

Therefore, the field operators could program the robot without having any robot programming

knowledge. This way, the companies can save time and money finding a specialist to do it.

1.3 Objectives

This dissertation proposes the development of an industrial prototype of a human-machine interac-

tion system through Extended Reality (XR), whose the objective is to enable an industrial operator

without any programming experience to program a collaborative robot using natural language. In

order to accomplish this goal, it is presented below a list with the detailed and specific objectives.

• To estimate the accuracy and repeatability of the tracking of Virtual Reality and Augmented

Reality systems, in order to determine in what type of application the developed system can

be used.
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• To implement a sensory feedback. The use of Extended Reality will be an essential factor

for the immersion of the user and it will allow receiving sensory feedback through visual

and audible data.

• To specify the case study. In the case study to be performed, programming by demonstration

using XR, the system will record the positions of virtual objects, as well as the operator’s

hands, while the he/she executes the task.

1.4 System Overview

The methodology which was implemented to solve the problem of programming by demonstration

using Augmented Reality started by a familiarization with the development technologies and the

respective equipment and development tools setup. Then, repeatability and accuracy tests were

performed to evaluate the HoloLens 2 tracking system. These results were compared to the ones

acquired by a precision motion capture system (OptiTrack) and to the HTC Vive, a virtual real-

ity device. The system development was divided into two parts: the development of the tracking

system, and the development of the translators for programming by demonstration system of in-

dustrial robots using Augmented Reality. After the development phase was completed, some tests

to validate the system developed were performed.

In order to accomplish all the objectives proposed in Section 1.3, it was drawn a high-level

mock-up of the whole system to be able to program a robot by demonstration using Augmented

Reality. Figure 1.1 represents the system overview.

• Hand movements are captured by the HoloLens 2 (HL2), using the platforms Unity and

Visual Studio to program the application, and then the data is properly transmitted through

a Robot Operating System (ROS) topic;

• In ROS, there are nodes that are able to subscribe the data received in the specific topic and

translate the list of coordinates acquired to the robot language before sending to the robot;

• Finally, the ROS node connects to the Robot via a socket and the generated program is sent

to the robot, which executes the previously recorded movement.

Figure 1.1: System’s Overview.



Introduction 4

1.5 Structure of the Document

This document is divided into seven chapters. Following Chapter 1 (Introduction), the document

is organized as follows:

• Chapter 2 presents the literature review for Human-Robot Interaction and Augmented Real-

ity in production systems;

• Chapter 3 presents a study on the accuracy and repeatability of the Microsoft’s HoloLens

2 (Augmented Reality device) and HTC Vive (Virtual Reality device) using an OptiTrack

system as ground truth;

• Chapter 4 explains the development of the tracking system, which the main objective is to

provide a simple and smooth interface to record movements that will later be performed by

a robot;

• Chapter 5 demonstrates how the system is able to translate the user’s hand coordinates to

the robot’s language, so that it can replicate the operator’s movement properly;

• Chapter 6 reveals the performed tests to the system developed and its validation;

• Chapter 7 gathers the conclusion of this project and makes suggestions on possible future

work to be developed in order to enhance the system.



Chapter 2

Literature Review

This Chapter presents the literature review on human-robot interaction systems. First, Section 2.1

presents an introduction on human-robot interaction systems, including the human-robot interac-

tion through collaborative robotics, the main applications of industrial collaborative robots, and

then each application is investigated in detail. Furthermore, Section 2.2 specifies the main areas

to explore in this dissertation: Augmented Reality and Programming by Demonstration, since the

problem that this thesis is trying to solve is Programming by Demonstration using Augmented

Reality.

2.1 Human-Robot Interaction Systems

Fang et al. [11] define Human-Robot Interaction (HRI) as "the process that conveys the human

operators’ intention and interprets the task descriptions into a sequence of robot motions comply-

ing with the robot capabilities and the working requirements". This interaction can also be defined

as a situation where humans and robots work as a team in order to reach a common goal. Each

application of HRI demands a different level of interaction, such level is identified depending on

two principles [11]:

• Autonomy degree of the robotic system;

• Proximity of human and robot during operation.

It is also important to define if the contact between the human and the robot is desired or is

to avoid at all cost. For that the operators need better and more intuitive interfaces for industrial

robots so that their jobs would not get more complicated than it already is.

Wang et al. [12] classified the HRI into four different categories according to the perspectives

of workspace, direct contact, working task, simultaneous process and sequential process, namely:

• Human-Robot Coexistence;

5
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• Human-Robot Interaction;

• Human-Robot Cooperation;

• Human-Robot Collaboration.

Sharing the same workspace means working in the same working area without any physical or

virtual fences to separate the human and the robot. Contact specifies if the robot and the operator

have direct contact or not. If both agents work in the same operation towards reaching the same

goal, it means that they share the same working task. Simultaneous process indicates that both are

working at the same time, but not on the same task; on the other hand, sequential process means

that the human and the robot perform operations one after another in the temporal scale, without

overlapping operations [12]. Figure 2.1 presents a simple overview of the different types of HRI

enunciated.

Figure 2.1: Human-Robot Interaction classification (adapted from [1])

HRI can be defined in Coexistence if the human and the robot work simultaneously but in

different workspaces [12]. Although, they do not share the same goal, they work independently

of one another on different tasks. They do not have contact neither require coordinated actions,

generally the only interest is avoiding collisions [13].

Wang et al. [12] considers the relationship between the human and the robot as Interaction if

the task is performed sequentially, in the same workspace, with direct physical contact between

the two agents and working to reach the same goal. Moreover, when the human and the robot

work in the same workspace, at the same time and inserted in a sequential process, the interaction

is classified in Human-Robot Cooperation [1]. The Cooperation requires more advanced technolo-

gies for sensing force-feedback and collision detection and avoidance [13]. For example, KUKA

in collaboration with Durr, developed a smart automation process for Ford in Saarlouis. They used

Human-Robot Cooperation for fog-lamp adjustment. The human and the robot work together to

achieve the same goal but do not have contact between them. In this case, while the human does

the adjustment of the headlamp, the Cobot KUKA LBR iiwa performs the fog-lamp adjustment

[14].

Finally, Human-Robot Collaboration (HRC) occurs when the workspace, working time, aim

are the same and exists contact between the robot and the human [1]. According to De Luca

et al. [15], the direct human interaction can be divided into two modalities: physical collabora-

tion (where there is a direct contact with forces exchange between the robot and the human) and
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contactless collaboration (where coordinated actions are followed from the exchange of informa-

tion: via direct communication, like gestures and voice commands, or indirect communication, by

recognizing intentions). For example, KUKA implemented the first HRC system at BMW in Din-

golfing. That enabled the car manufacturer to set bevel gears sensitive joining easily and quicker

with the help of the robot, they work together to reach the same goal. In this case, the interaction

is made by physical collaboration, the operator presses a button when finishes performing the task,

so that the robot knows that can proceed [14].

2.1.1 Collaborative Robotics

Industrial robots are large, heavy and rigid machines that, usually, perform tasks which are difficult

to a human, like moving heavy loads for example. Normally, they are isolated from the human

workspace. In contrast, to facilitate the Human-Robot Interaction, the collaborative robots (also

called cobots) are designed to share the workspace of humans and work alongside them as co-

workers [16][17]. These cobots incorporate numerous advantages when compared to industrial

robots [18]:

• Much lighter in weight, which provides great mobility and makes it easier to move them

around the factory where they are installed;

• Easily programmable and offer great computing capabilities, essential features that allow

them to work alongside humans safely. This is due the fact that they have been developed

more recently; soon the same characteristics are expected to be available in all manipulators.

On the other hand, there are also some disadvantages, such as, being slower than industrial

robots and the fact that the supported payload is also inferior.

An industrial collaborative robot is constituted by the manipulator (made by links - rigid bodies

- and joins - articulations that allow relative motion), that moves the end-effector, which is the tool

to interact with the environment (it can be, for example, a two or three finger gripper, a vacuum

gripper, a welding torch or a sander); the teaching pendant (device to teach and supervise the

tasks); the controller, that provides power, performs motion control and enables integration of

additional hardware and, finally, external sensors to perceive the environment.

The number of collaborative robots’ applications for Human-Robot Interaction is increasing

in the workplace, more specifically in hospitals, warehouses, welding, construction, assembling

and recycling [18], some examples are shown below.

• Hospitals: in order to assist surgeons, the medical field is using collaborative robots to help

them overcome the challenging tasks, because they are able to control the trajectory, depth

and speed of the movements with great precision [19];

• Recycling: collaborative robots solved the problem of e-waste where fully manually opera-

tions were prohibitive and, because of the variety of devices disposed, full automation was

not appropriate [20];



Literature Review 8

• Industry: by the integration of cobots in automotive assembly plants are now able to adapt to

market trends, decrease the cycle time and improve the working environment by decreasing

the ergonomic load on the operator [21].

2.1.1.1 Cobots timeline

The first cobot was developed in 1996 by Northwestern University professors J. Edward Colgate

and Michael Peshkin for direct physical interaction between a person and a computer-controlled

manipulator [22]. But the first cobot to go to the market was KUKA’s LBR3 robot in 2004. It

allowed direct human-robot interaction without safety barriers, which was news at that time [23].

Universal Robots launched its first cobot in 2008: UR5 [24]. These two companies where the

pioneers in cobots manufacturing; but, due to the potential of the technology, the list increased

rapidly and nowadays there are more than fifty cobot manufacturers [25]. Table 2.1 shows a

timeline of the main cobot releases over the years, since its invention until now.

Table 2.1: Cobots timeline

Year Robot Company Country Ref.
1996 Cobotics LLC USA [22]
2004 LBR3 Kuka Germany [23]
2008 UR5 Universal Robots Denmark [24]

LBR4 Kuka Germany [26]
2012 UR10 Universal Robots Denmark [27]

Baxter Rethink Robotics Germany [28]
2013 LBR iiwa Kuka Germany [26]

Gen2 Kinova Canada [29]
2015 YuMi ABB Switzerland [30]

UR3 Universal Robots Denmark [31]
Sawyer Rethink Robotics Germany [32]
CR-35iA Fanuc Japan [33]

2016 TM5 Techman Robot China [34]
Franka Emika Panda Franka Emika Germany [35]
Aubo-i5 Aubo Robotics USA [36]

2018 Aubo-i10 Aubo Robotics USA [37]
HC10DT Yaskawa Japan [38]
TM12 Techman Robot China [39]
TM14 Techman Robot China [39]
Gen3 Kinova Canada [40]
E-series Universal Robots Denmark [41]

2019 UR16 Universal Robots Denmark [42]
HC20DT Yaskawa Japan [43]
Aubo-i3 Aubo Robotics USA [37]
Aubo-i7 Aubo Robotics USA [37]

2020 CRX-10iA Fanuc Japan [44]
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2.1.2 HRI in Industrial Collaborative Applications

Hentout et al. [2] defines HRI in industrial collaborative applications into different categories and

sub-categories which is presented in figure 2.2. Although there is not yet an established method

[45], this proposed classification was the base for the classification adopted in this study. In this

section, these categories will be explored and described.

Figure 2.2: HRI in industrial collaborative applications (adapted from [2])

2.1.2.1 Hardware and software design of collaborative robotic systems

A collaborative robot is designed to work alongside or in collaboration with a human worker.

Because of the proximity between them and the physical interaction the robots need to be able

to move effectively in their workspace while facing unexpected events [46]. In order to respond

efficiently to those events, like avoid obstacles or singularities, cobots are generally defined with

a number of degrees-of-freedom (DOF) to assure that, in average around six. Ferragutti et. al [47]

compares the cobots from KUKA, Universal Robots and Frank Emika. Universal Robots UR5 has

6-DOF, while KUKA LBR iiwa and Frank Emika Panda have 7-DOF. In fact, Kuhlemann el. al

[48] studied this additional degree-of-freedom (the 7th DOF) and concluded that it enhances the

average dexterity by 16.8% (the study was made with KUKA LBR iiwa and KUKA KR10).

An industrial cobotic system may include several configurations [7], such as:

• One human - one cobot;

• One human - cobot team;

• One human - multiple cobots;

• Human team - one cobot;

• Human team - cobot team;

• Human team - multiple cobots;

• Multiple humans - one cobot;

• Multiple humans - cobot team.
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In the interaction between one human and a team of cobots, the human gives a command to

the team of cobots and then they coordinate which parts of the command are done by each cobot.

They are able to divide tasks in order to optimize time and effort to complete the command given.

On the other hand, if the interaction is between multiple cobots, that means that each cobot will

receive from the human a specific command to follow and does not have interaction with the rest

of the team [49].

In order to characterize a cobotic system, it is necessary to consider the humans and cobots

involved, the tasks to perform and the system interactions. In fact, Moulières-Seban et. al [50]

developed an approach for designing cobots that can be adapted to most cobotic situations. The

method is based on several stages: activity analysis, basic design, detailed design and execution.

Experts from ergonomics for the analysis of the task variability, cognitive engineering to design

HRI and robotics were also included in the study.

2.1.2.2 Safety in industrial cobotics

Asimov in his book "Runaround" [51], debates about the Three Laws of Robotics:

1. A robot may not injure a human being or, through inaction, allow a human being to come to

harm.

2. A robot must obey the orders given by human beings except where such orders conflict with

the First Law.

3. A robot must protect its own existence as long as such protection does not conflict with the

First or Second Laws.

Although it is fiction, this can reflect to the real world, meaning that, in any case, safety is the

foremost consideration factor. As it was discussed in section 2.1, cobots are able to work alongside

humans and collaborate in different tasks to reach a common goal. With this evolution, the robots

no longer have a safety fence to protect the human workers. The robots are able to move their arms

and bodies freely and may deal with sharp tools. This represents a threat to the human workers

that work alongside these robots.

According to ISO 15066 [52] the general safety standards of Human-Robot Collaboration can

be classified into four collaborative modes:

• "Safety-rated monitored stop"

In this mode the robot stops when a human enters its workspace and continues developing

its tasks when it becomes free again.

• "Hand guiding"

In this mode the movements of the robot are controlled by the human worker (the operator

uses a hand-operated device to transmit the motion commands to the robot).

• "Speed and separation monitoring"

In this mode the robot and the human worker can move concurrently in the collaborative

workspace.
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• "Power and force limiting"

In this mode there are contact forces between the human operator and the moving robot, but

are limited to a safe level (it is possible to occur physical contact between the robot and the

human worker, either intentionally or not).

The interaction between the human worker and the robot may experience some risks that

can harm either the human or the robot. Khalid et al. [6] identifies these potential hazards and

divides them into three categories: hazards from the robot during collaboration, hazards from the

industrial process during collaboration and hazards from robot control system malfunction during

collaboration. Table 2.2 enumerates some of the hazards identified from each source.

Table 2.2: List of potential hazards from HRI during collaboration (adapted from [6])

Type of hazards Sources

From the robot

• Hazards from robot characteristics (speed, force, torque,
acceleration, momentum, power, etc.);
• Operator dangerous location of working under heavy

payload robot;
• Hazards from end-effector and work part protrusions;
• Mental stress to operator due to robot characteristics (for
example: speed, inertia, etc.);
• Hazard from tight safety distance limit in the collabora-
tive workspace.

From the industrial
process

• Ergonomic design deficiency for operation and mainte-
nance;
• Time duration of collaboration in the process;
• Potential hazards from the industrial process (tempera-
ture, loose parts, etc.);
• Mental stress to operator due to collaborative industrial
process;
• Hazards due to task complexity.

From robot control
system malfunction

• Hazards from operator during reasonably foreseeable
misuse of the system;
• Hazards from control layer malfunction and misuse of

collaborative system by attacker under a cyber-attack in a
connected environment;
• Physical obstacles in front of active sensors used in the
collaborative workspace (obstacle in front of camera);
• Hazard created due to wrong perception of industrial

process completion by the robot.

In order to accomplish a safe and effective Human-Robot Interaction, collaborative robots

should be able to understand and predict the movements and intentions of the human worker in

the collaborative workspace. For that to be possible, the robot should be equipped with integrated

programs and additional sensors that will allow them to analyse and study the human actions [7].
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Galin et al. [7] also explored methods for improving safety in HRI during collaboration either

before and after collision. Before collision or pre-collision control methods consist in detecting

the danger before the collision by monitoring the human, the robot or both. After collision or

post-collision control methods consist in quickly detecting the collision after the HRI contact and

minimize the harm to both intervening. The proposed approaches are presented in table 2.3.

Table 2.3: Methods for better safety in HRI during collaboration (adapted from [7])

Method Approaches

Pre-collision

Quatitive limits:
• Limiting a variety of parameters.

Speed and separation monitoring:
• Safety zones and separation distance;
• Non-intrusive, real-time measurement.

Potential field methods:
• Human factors;
• Robot features.

Post-collision

Collision detection, localization and reaction:
• Non-collaboration contact;
• Collaborative contact;
• Evaluation.

Interactive control methods:
• Detection of collaborative intent;
• Interaction strategies.

In order to ensure safety in Human-Robot Collaboration, the industry world established three

golden rules to follow in order to prevent unnecessary risks that are stated below.

1. If the robot is not moving, do not assume that it will not move;

2. If the robot is repeating a pattern, do not assume that it will keep repeating it;

3. Maintain respect for what the robot is and what it can do.

2.1.2.3 Cognitive human-robot interactions

In order to have a safer, better and more effective HRI in industrial environment, the robot must

be able to understand and predict human behaviour [53]. For example, recognize voices, gestures

and faces. Hentout et al. [2] divides cognitive human-robot interactions into five different sub-

categories:

• Human actions recognition;

• Gestures recognition;

• Faces recognition;

• Voice commanding.



2.1 Human-Robot Interaction Systems 13

Human actions recognition has been one of the themes in HRI that the researches are focused

on; in fact, there have been published several studies on that matter [54]. Wang et al. [55], in order

to recognize assembly actions in Human-Robot Collaboration (HRC), used a traditional neural

network (AlexNet) as image classification algorithm. But the fact that the images had only two

dimensions, made the method ambiguous and not accurate. Wen et al. [54] focused on the problem

of human actions recognition using 3D Convolutional Neural Networks. They concluded that the

algorithm behaved well in traditional human action recognition, but not so well in assembly task

recognition. One of the reasons enumerated was the fact that the background of the assembly line

and the products themselves were always the same.

Head nodding, hand gestures and body postures are the main gestures used for an effective

communication between the human worker and the robot in collaborative task execution [56].

Mitra et al. [57] classified the gestures into three categories:

• Hand and arm gestures: recognition of hand poses, sign language and entertainment appli-

cations (to interact with virtual environments);

• Head and face gestures: nodding or head shaking, direction of eye gaze, raising the eyebrows

or opening the mouth to speak are a some examples;

• Body gestures: in this case the full body is considered, for example, two people interacting

with each other or interpret the movements of a specific task.

Faces recognition has an important role in building efficient HRI that allow the interaction

between the two agents (the human and the collaborative system) to be more fluent and natural

[2]. In fact, Reyes et al. [58] studied the identification of the anger expression in collaborative

human-robot interaction. This feature can be useful to conduct the interaction, for example, if an

angry face is detected, it can be initiated a process of analysis and diagnosis.

Voice is the fastest and more effective way of communication in society. Moreover, in industry

if the operator has the hands full holding some equipment, voice commands are the more practical

solution to communicate with the robot. Wang et al. [12] studied HRC enabled by voice command

recognition using Convolutional Neural Networks. Before entering the data in the algorithm it was

necessary to transform the dataset into spectrograms of two dimensions by Fast Fourier transform.

The voice commands used in the HRC were labelled as: left, right, on, off, up and down.

2.1.2.4 Robots programming approaches

There are several programming approaches that can be adopted according to each situation. Con-

figuring and programming robots is a difficult task that takes time [59], and today there are various

tasks, highly customized and dynamic. The main approaches used in the industry context were

summarized and are listed below:

• Extended Reality programming;

• Constraint-based programming;
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• Skill-based programming;

• CAD based programming;

• Programming by demonstration.

Considering Extended Reality programming, Filaretov et al. [60] used the operator interface

implemented on a virtual environment as a new approach to the automated generation of the in-

dustrial robot tool trajectory. Through computer vision analysis, the system is able to display a

three dimensional model of the robot’s workspace. This approach is able to simplify and accel-

erate the process of robotic programming in industry environments. Ostanin et al. [61] presented

a mixed-reality approach to control the robotic manipulator and mobile platforms. The hardware

and software used were the Microsoft HoloLens (Mixed Reality glasses used with the game engine

Unity and the Mixed Reality Toolkit), the Robot Operating System (to connect the glasses to the

robot), the industrial robotic manipulator (KUKA iiwa LBR 14) and the PLATO mobile platform.

By performing a sensor fusion algorithm between the HoloLens point cloud and Lidar sensor, the

study showed good results and it was concluded that the proposed system was helpful, intuitive

and convenient, although not very precise. The average learning time was eleven minutes, which

demonstrates how easy is teaching with the system.

As for Constraint-based programming, Murín and Rudová [62] proposed a constraint program-

ming model for the problem related to transportation of components for jobs between machines

including the processing by mobile robots; in other words, scheduling with mobile robots. This

solution is specially interesting for smart factories where real-time computation is needed. In fact,

with this approach it was possible to solve forty-two problem instances within one second. Tirmizi

et al. [63] proposed a framework that had the purpose to make programming of cobots faster, user-

friendly and flexible for assembly tasks. This approach integrates the cobot with a constraint-based

robot programming paradigm and takes speech recognition and computer vision as inputs from the

operator. After testing this implementation, it was concluded that the framework is a good solution

for the main goal of achieving flexible assembly in factories by making programming faster and

intuitive.

In light of Skill-based programming, Heuss and Reinhart [59] address the challenging prob-

lem of time-consuming of robot programming by integrating autonomous task planning into re-

configurable skill-based industrial robots. There are two requirements needed in order to enable

industrial robots to handle tasks independently: autonomous task planning and self-configuration.

Taking into consideration CAD based programming, Neto et al. [64] presented a human-robot

interface which enabled non-experts users to teach a robot in a similar way to how humans teach

each other. To achieve that intuitive robot programming system, they used 3D CAD drawings

to generate robot programs offline. The results showed that it was possible to generate a robot

program from a common CAD drawing and run it without a careful calibration or CAD model

accuracy because the sensor feedback allowed the robot to adjust to the environment.

Programming by demonstration allows non-expert people from the robotics field to program

intuitively and easily the robot without having experience on the matter [65]. Luu-Duc and Miura
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[66] added demonstration to the feature selection method to help the robot achieve a certain task

and concluded that the robot could select the relevant features and execute the task correctly.

But it is necessary that the robot has a good set of demonstrations, otherwise it can take a long

time learning to refine the features subset. Alchakov et al. [67] proposed an approach based of

programming by demonstration and Supervised Learning (machine learning algorithm) which the

prime objective was to build the control of an anthropomorphic manipulator. This way it was

possible to build a method of developing a control system for complex robotic systems using a

learning algorithm. Pinto et al. [68] explored the idea of taking advantage of the skills of an expert

operator without programming knowledge to program a robot (for example, to program painting

robots). The proposed system was based on 6D Mimic with an IMU sensor to enable the system

to tolerate temporary occlusions of the 6D Marker. Even though the selected IMU was a low-

cost model, the developed algorithm was able to produce high quality estimations during short

time occlusions. Ferreira et al. [69] presented a system based on a luminous marker built with

high-intensity LEDs which were then captured by a set of cameras. The acquisition technique was

robust enough against lighting conditions, so there was no need for an environment preparation.

The robot was automatically programmed from the demonstrated task and was able to perform in

real time, which allows the robot to be ready as soon as the demonstration is complete. This system

was applied to a spray painting application and the tests showed that the system successfully

transferred to the machine the human ability of manipulating a spray gun.

Conversely, Cunha et al. [70] proposed an alternative to programming by demonstration. The

method is based on neural dynamics, it is a fast learning system in which the collaborative robot

memorize the information from one single demonstration by the operator.

2.1.2.5 Human-robot tasks allocation

Human-robot tasks allocation is an important issue that needs addressing. The human can easily

adapt and perform tasks that require various skills, but the robot can not perform all those tasks

and sometimes needs additional equipment to do it [71]. Therefore, it is very important to perform

a balanced human-robot tasks allocation for collaborative work between the two agents. Malik

and Bilberg [3] presented a method to evaluate if an assembly task should be performed by a

human operator, a robot or both. They start by dividing the evaluation process into three parts:

Part (material integrated into a sub-assembly), Process and Workspace. After that each category

is divided into different attributes and factors, as it is shown in Figure 2.3. Then, each factor

(bottom level of the hierarchy) is given a rating from zero to one, where one represents the potential

for a fully automated task. The mean of all factors’ ratings evaluates the potential of the task,

if it is higher than 50 % recognizes the task as recommended for automation, otherwise it is

recommended to be performed by a human operator.

Karami et al. [72] used the extended FlexHRC framework [73], also called ConcHRC, that

allowed the human operator to interact with multiple collaborative robots at the same time to

perform a given task. This framework allocates concurrently tasks to either operators or robots

dynamically. The use case performed was related to the inspection of product defects and involved
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Figure 2.3: Assembly task and its components for HRC evaluation (adapted from [3])

a human operator, a dual-arm Baxter manipulator and a Kuka youBot mobile manipulator. They

verified a general robustness of the HRI flow related to the object grasping and manipulation and

recognition of the human actions.

Riedelbauch and Henrich [74] proposed a method where the robot is able to dynamically select

operations that contribute to the common goal from the given task. For that it was necessary to

construct a world model, with an eye-in-hand camera images, so that the task progress could be

evaluated. But, as the workspace observations are not reliable over time, they used a human-aware

world model that maintains a measure for trust in the objects that had recently a human near and

the previous task progress. The results identified some weaknesses in narrow workspaces and

scenarios with a lot of human motion.

2.1.2.6 Extended Reality

Augmented Reality (AR), Virtual Reality (VR) and Mixed Reality (MR) are well-known technolo-

gies applied in different areas with different purposes. Game environments, educational contents,

medicine are some of the applications. Augmented Reality is when virtual objects and information

are overlaid on the real world. In Virtual Reality, in contrast to AR, the users experience a world

completely virtual, they are fully immersed in a simulated digital environment. The technology

that integrates last two is called Mixed Reality, where digital and real objects co-exist and can

interact with each other in real time [75]. Extended Reality (XR) is the term used that includes all

the immersive technologies. It has already been applied not only in games and entertainment, but

also in industry (to train and display information to the operator), healthcare (more specifically in

performing surgeries), real state (layout scenarios), marketing (the costumer is able to try before

buying).

One interesting feature that can be implemented in AR is to project on the headset an arrow

indicating which will be the robot’s next movement. This would enable the operator to anticipate

possible reactions and be more comfortable alongside the robot. Recent improvements in the

technologies suggest that they can be a good interface for mediating Human-Robot Interactions
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[76]. In fact, Xue et al. [77] used an Augmented Reality system prototype on the idea of safe

human-robot teleoperation. For example, one of the solutions explored was an early collision

detection in order to ensure smooth trajectories. The simulated results showed that the method can

still be improved by the implementation of image registration.

Liu et al. [78] evaluate the usability of using Virtual Reality interfaces to control drones. The

usability questions explored were: if the users could easily tell the possible actions; if the users

could easily perform specific tasks and if the users could easily tell if the system was in the desired

state. The results showed that the developed prototype could be improved by enhancing the clarity

of users’ status and add more controls in order to reduce users’ confusion.

William et al. [79] explored the effectiveness of Mixed Reality deictic gestures by studying

the human perception of videos simulating those gestures, in which the robots circle their targets

in users’ sight. The obtained results proved the communication strategy used to be effective, in

terms of accuracy and subjective perception.

As this topic is one of the main focuses of this dissertation, it will be explored more extensively

in section 2.2.

2.1.2.7 Study of physical interactions between humans

An important factor to study with the integration of a robot in manufacturing, working with a

human worker, is the possibility to understand the people’s behaviour and interactions [80].

In her studies, Ogorodnikova [81] concluded that the distance that the humans desire to be

from the robot is the same as if the actors were both humans who did not know each other (around

0.5 to 0.9 meters - personal space). However, if the interaction demands physical contact between

the two agents, this distance decreases for numbers around 0.2 to 0.3 meters. Additionally, it was

concluded that a safe and comfortable distance between the human and the agent would be around

0.2 to 0.9 meters, this way the human would have time to react in case of danger.

Sauppé and Mutlu [80] performed an ethnographic field study at three different factories, lo-

cated in the United States of America: a small family-owned business of about forty employees

(production of plastic for different clients); a small business of about fifty employees (production

of electrical components); and a large international company with thousands of employees located

in different facilities (production of office furniture). Each company owned a robot for four to

eight months before the study was performed. After analysing the results they found four main

themes of interest:

1. Operator-Robot relationship: the human workers developed a close and social relationship

with the collaborative robot;

2. Attribution of human characteristics: there were attributed human characteristics (positive

and negative) to the robots;

3. Social interactions with the robot: the human workers had various social interactions with

the robot not only for coordinating work but also for troubleshooting;
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4. Responses to the robot’s design: the robot’s design was pleasant to the workers and made

them feel safe, its eyes provided insights about its status and the next action to be performed.

2.1.2.8 Fault tolerance

Zhang and Jiang [82] defined a fault control system as one able to maintain the system stability

and a satisfactory performance when a failure or an unexpected situation occurs. These systems

should have implemented some principles in order to reach those objectives:

• Fault Detection: detects if a fault occurred and if something is wrong with the system;

• Fault Isolation: identifies which component contains the fault and locates it in the system;

• Fault Identification: identifies the type of fault and its severity;

• Fault Recovery: finds a way to adapt the system so that it can continue to function properly

and maintain stability of the system although the fault occurrence.

Crestani et al. [83] proposed a solution to solve the problem that mobile robots, generally, are

not prepared to deal with failures and unexpected situations. So, the authors presented an approach

that integrates fault tolerance principles into the design of a robot real-time control architecture.

This approach was used in a Pioneer 3DX mobile robot. The results obtained were satisfactory,

as the approach adopted was successfully validated on a mobile robot for a delivery mission. The

system was able to detect and diagnose the possible faults and find a recovery solution in order to

complete the task despite the fault occurrence.

2.2 Augmented Reality in Production Systems

The fourth industrial revolution is marked by interoperability (connected over Internet of Things

and Internet of Services), virtualization (need of digital version of technical documentation), de-

centralization (provide just the exact procedure to accomplish), real-time capability (technical doc-

umentation updated in real time), service orientation (maintenance processes should be organized

as a service) and modularity (the integration of new procedures and new technologies should be

easy to accomplish) [84]. Industry 4.0 is focused on improving the productiveness and to enhance

the user experience, key features of AR. Human-Robot collaboration, Maintenance-Assembly-

Repair, Training, Products Inspection and Building Monitoring are the main application areas of

AR in industry at the moment [85][86].

Before the term "Augmented Reality" existed, the first Head-Mounted display system was

invented in 1968: The Sword of Damocles. Only twenty-two years later the term was introduced

to the world. Table 2.4 shows a timeline of the main Augmented Reality milestones over the

years, since its invention until now. In the upcoming years Apple will launch its own AR headsets,

followed by smart glasses (2022). Around 2025 AR cloud based experience are expected to gain

prominence, supported by 5G networks. According to GlobalData forecasts, by 2030, AR will be

a $76 billion market [87].
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Table 2.4: Augmented Reality milestones timeline

Year Milestone

1968 The first Head-Mounted Display was created: The Sword of Damocles.

1975 Myron Krueger established an AR lab: Videoplace.

1990 Thomas P Caudell (researcher from Former Boeing) created the term "Aug-
mented Reality".

1992 The US Air Force’s Research Lab developed a fully immersive AR system.

1998 NASA’s X-38 spacecraft used AR in practical field navigation.

2000 ARQuake game was created.

2005 Nokia introduced AR-based two-player game: AR Tennis.

2008 BMW ran AR-based print advertisements.

2009 ARToolkit (web-based design tool) was made available in Adobe Flash.

2010 Microsoft introduced the Kinnect motion sensing input devices.

2013 Volkswagen launched MARTA (AR service support system);

Google Glass prototype entered the market.

2014 Google launched Tango (AR computing platform).

2015 Microsoft HoloLens headset was announced and went on sale on 2016.

2016 Pokémon Go was launched by Niantic and Nintendo;

Snap unveiled its smart glasses: Spectacles.

2017 Apple introduced the ARKit SDK for iOS devices;

Camera Effects platform (Spark AR) was launched by Facebook.

2018 Google introduced the ARCore SDK for Android devices;

Magic Leap One became available in the market.

2019 Microsoft introduced the HoloLens 2 headset.

Egger and Masood [4] explored the basic components of an AR system which are the visu-

alization technology, a sensor system, a tracking system, a processing unit and the user interface

(Figure 2.4). The visualization technology can be Hand-Held Devices (HHDs), Head Mounted

Devices (HMDs), projector or static screen; with the purpose of visualize the information. The

user interface establishes the communication with the user: input and feedback; and can have

different technologies: audio feedback, gesture recognition, speech or input hardware. To orient

the data relative to the physical world, the tracking system can be marker-based or marker-less

tracking. The process unit processes the input data, feedback calculation, visual rendering and

data transfer. The sensor system gathers information about the environment with different tech-

nologies: camera, ultrasonic/infrared depth perception, gyroscope and accelerometer.

Based on a study by Masood et al. [88], the most relevant success factors of an AR system are

ergonomics, efficiency improvement, usability of user interface, user acceptance and visibility of



Literature Review 20

Figure 2.4: AR system (adapted from [4])

information. In order to improve comprehension, usability and situation awareness, it was studied

which visualization method is able to support remote teleanalysis of industrial plants. It was

concluded that AR environment performed significantly better than VR and video implementation;

but VR was better in situation awareness [89].

The most common Industrial Augmented Reality (IAR) applications are for assembly pro-

cesses and it has been demonstrated that IAR reduces significantly the number of errors and de-

creases time and mental workload in respect to other approaches. In fact, some of the main IAR

applications are reliability (robust, provide fall-back alternatives and is accurate), user-friendly

(easy to use and configure) and scalability (reproduce and distribute easily and in large quantities)

[90]. More specifically, in the Shipyard 4.0 some of the use cases studied were quality control,

assistance in manufacturing process, visualization of the location of products and tools and man-

agement of warehouses [91].

AR is already being used in smart factories environment mainly in assistance systems. The ap-

proaches used to display AR information were video-through, optical-through and projection. The

selection of the appropriate visualization technique depends on the task, the user, the environment

and the hardware capabilities. Although the work is only in its first steps, it is already showing that

AR is a very promising user interface concept [92]. Another application for AR techniques which

is showing strong indications to be very helpful is collaborative setting (based on a comparison

study between human factors for AR supported single-user and collaborative repair operations of

industrial machines) [93].

The pandemic that it is currently dominating the world (Covid-19) accelerated the evolution

of AR and VR and the worldwide spending on these technologies is expected to grow from $12.0

billions on 2020 to $72.8 billion in 2024 [94]. According to the International Data Corporation,

the five-year compound annual growth rate will be 54%.

The main fields where Augmented Reality in industry is applied are listed below and described

in more detail in the following sections.

• Maintenance, assembly and repair;

• Training;
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• Product control quality;

• Programming by demonstration.

These categories were chosen based on the studies made by Bottabni and Vignali [86], De

Pace et al. [85] and Egger and Masood [4]. The category Programming by demonstration was

added to the list because of its importance in the development of this dissertation, despite those

authors not considering it as one of the main applications.

2.2.1 Maintenance, Assembly and Repair

Cost reduction on production is one of the main concerns of many industries, reason why this is a

strategic research field for AR. In fact, one of the problem existing now is the lost of attention of

an operator when switching from the device involved in the procedure and the user manual [85].

Interactive Electronic Technical Manuals were implemented to solve the problem of having stacks

of paper manuals to consult and replaced them with a single mobile computer whose user interface

is linked to multiple sources of information into a single application [95]. But it is still separated

from the device involved in the procedure.

Henderson and Feiner [96] did an experiment for maintaining and repairing a portion of a mil-

itary vehicle where they compared the same task to be executed with the help of a head-mounted

display that provided text and graphics, augmenting its view, and a laptop-based documentation

that was implemented at that moment in the factory. The results were favorable to the Augmented

Reality method, the time execution of the tasks decreased and, in some instances, resulted in less

overall head movement.

The most used assets in AR applications for maintenance and repair include audio tracks with

instructions, animated 3D models which describe visually the procedure and textual labels pro-

viding details on the task to be performed. The graphical assets are placed in strategic places next

to the machine to perform the procedure, this way the technicians can work easily [85]. It is also

possible to incorporate a telepresence system in theses applications so that the operator as support

from an expert when needed.

Manuri et al. [97] proposed a technology that consists of a computer vision algorithm that

evaluates each step of an operator in a maintenance procedure and checks if the user completed

correctly the assigned task or not. The results obtained are satisfactory and show that the system

can effectively help the user in detecting and avoiding errors during the process.

2.2.2 Training

In the industry domain, the AR technology resources are used mainly in tasks related to mainte-

nance, assembly and repair, because they are usually the object of learning for the user. Through-

out the years is has been verified a great effort from the researchers to improve the traditional

learning approaches into new methods that would enhance the learning experience and to develop

innovative learning and training paths [85].
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The main reasons that companies are investing in AR technologies to support their business

and training needs are the reduction of operating costs, the availability of low-cost technologies

with much higher operating speeds and to balance the lack of qualified skilled workers to fill open

positions [98].

Bosch Car Service did a field study on the usage of Augmented Reality in workshops and it

was verified a significant time saving, an average of 15% per step [99]. In fact, the AR technology

helped the mechanics see hidden components and the instructions for special tools were available

on the real image. This way it was possible to save not only time, but also money. Therefore, in

Bosch, AR technologies have been applied for technical training for workshop employees.

The German company RE’FLEKT GMBH, in collaboration with Bosch, designed an AR ap-

plication that helps the operator to visualize internal wiring, sensors, connections and fittings

inside a Jaguar Land Rover car. Using this technology, the operator only needs to point to the

dashboard and he/she will be able to see what is hidden behind the panel. The diagrams displayed

by the application allow the instructors to perform actual training on the vehicle without opening

the engine or panel [100].

2.2.3 Product Control Quality

Quality control procedures are very important tasks in industry applications and, generally, include

repetitive tasks with the operator intervention. In the last few years, Augmented Reality has been

a good bet in industry scenarios by the companies. But most of the developed systems only

display information to the operator, they do not validate the operator’s work in real-time. However,

Alves et al. [101] proposed an AR-based tool to guide users by overlaying information in a video

stream while performing real-time validation in quality control procedures. They explored how

a validation procedure mechanism and virtual content authoring could speed up the tasks and

make the creation of new guides easier using step-by-step instructions. They concluded that it was

possible to reduce the task time to less than half while guiding the operator through the several

repetitive steps. This way it was possible to avoid errors, additional movements and keyboard

interactions.

Another example of an AR system used in quality control in an industrial environment is

proposed by Ramakrishna et al. [102]. They developed an AR based re-configurable framework

that analyses a printer using Android devices (Google Glass, Google Cardboard and Tablet) that

are able to retrieve information about the object by scanning a QR code attached to the printer.

After studying all the results and post-experiment informal discussions they concluded that from

all the tested devices, the Tablet was the preferred inspection mode, due to its simplicity, inspection

turnaround time and wide screen.

2.2.4 Programming by Demonstration using AR

Programming by demonstration can be a very important tool for an operator that does not have

experience or knowledge with programming at all. This way they would be able to program the
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robot just by doing the task themselves and then the robot would to the same.

Aleotti et al. [103] proposed a visuo-haptic Augmented Reality system for manipulating ob-

jects and task learning from human demonstration. In this proposal it is used a haptic device for

object interaction and a desktop AR setup. The manipulators of the haptic device are located

remotely, not in environment where the real objects are presented. The object recognition and

registration are performed automatically by a moving laser scanner mounted on a robot arm. The

results obtained with the experiments performed show that the learned task can be successfully

executed by the robot system.

Araiza-Illan et al. [104] proposed a system to re-program robot packing intuitively through

simple hand gestures and information gathered by the Augmented Reality device (HoloLens). The

experiment setup was composed by a UR10 robot, a multi-finger suction gripper, a wrist Robotiq

camera, two types of objects (sugar sachets, and coffee pods), two trays with distinct QR markers

and the HoloLens device. The wrist camera was added to increase the accuracy of the information

acquired. In the AR interface the operator matches each object to the corresponding tray with

hand gestures and the resulting pick-and-place program is sent to the robot. The robot was able to

execute the task by placing the objects of a certain type on the respective tray and then repeating it

for the other type of objects. If new objects were added after completion, the robot would continue

the task until the objects were all organized. This way it was possible to quickly re-configure the

packing application without having previous robot programming knowledge.

Rudorfer et al. [105] presented an intuitive drag-and-drop programming method using Aug-

mented Reality that could be performed by an operator without robot programming knowledge. In

the implementation the devices used were the Microsoft HoloLens and the UR5 robot, integrated

into a framework of web services. The main objective was the user to pick a recognized object and

place it in a desired location, so that the robot could imitate. The robot started by acquiring the im-

age, then it recognized the object and its pose. After recognizing all the objects, the objects were

displayed in the AR device, overlaying the real ones. Then the robot control module extracts the

initial and final coordinates of the desired locations and performs the referential transformations

from the camera referential to the robot referential. Finally, the pick and place task can be exe-

cuted. The results obtained by the prototype developed where successful but the robot’s accuracy

was unsatisfactory.

Blankemeyer et al. [10] developed an Augmented Reality application for HoloLens and the

prime objective was to enable operators to program a pick-and-place task in an industrial robot

by linking real and virtual objects. For that the user had to move the virtual object to the desired

position. Then the coordinates of the start and end points had to be transformed from the internal

coordinate system of the HoloLens into the robot’s base coordinate system. Finally, the trajectory

planning was carried out directly by the robot controller. The results to the tests performed showed

that the robot was able to complete the tasks with two components, but the researches assured that

the same can be expected when adding more components.
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2.3 Summary

Human-Robot Interaction is more and more present in industrial environments, representing a

great field of research in terms of ways to improve this interaction optimizing time and saving

money. In the recent years there was an explosion in terms of launching collaborative robots,

more and more companies are betting in these solutions.

Augmented Reality systems have also been expanding in the industry world and companies

are starting to explore its functionalities. The main applications where these systems are applied

in industry are maintenance, assembly and repair, training and product control quality. Although

programming by demonstration is not one of the main applications of AR in industrial systems

yet, there are already some studies exploring it. The results obtained are promising and show

that it is possible for an operator without any robot programming knowledge to program a robot

by teaching it the desired task. One of the problems found in these researches was the lack of

accuracy experienced by the robot picking and place task. In this dissertation, repeatability and

accuracy will be one of the focuses comparing the obtained results with a precision software and

other Extended Reality devices.



Chapter 3

Accuracy and Repeatability Tests

In order to understand which applications this system could be applied to, several experiments

were performed to test its repeatability and accuracy. Therefore, this Chapter presents the study

made on the accuracy and repeatability of the Microsoft’s HoloLens 2 (Augmented Reality de-

vice) and HTC Vive (Virtual Reality device) using an OptiTrack system as ground truth due to its

submillimeter accuracy. Although this dissertation has as its main focus the Augmented Reality,

the Virtual Reality device was also tested as an effort of comparison, and for future reference.

3.1 Methodology

This Section describes the methodology used to perform the experiments, namely, the used setup

in each software and hardware (OptiTrack, HoloLens 2 and HTC Vive), the data synchronization

techniques, the data analysis methods and the description of each experiment. Figure 3.1 rep-

resents an overview of the system developed for these tests, the data acquired by the Extended

Reality devices and the OptiTrack system are sent to Robot Operating System (ROS), where they

are synchronized. After that, in MATLAB, the data is analysed and the accuracy, repeatability and

possible delays are calculated. Additionally, some plots to illustrate the results are drawn.

3.1.1 Ground Truth Setup

The OptiTrack system used was composed by 6 Flex3 InfraRed cameras, four of them forming the

vertices of a rectangle and the other two in the center of the largest edges (Figure 3.2a). All the

cameras were set up in the same plane (approximately 2.75 meters high) and covered a total area

of 22 squared meters. Although some spots in that area are only covered by one or two cameras,

which prevents a good accuracy on the readings, thereby the used area to avoid occlusions was

about 12 squared meters. The cameras were oriented to the center of the rectangle, which allowed

a common ground between all the cameras and minimized the markers occlusions. Additionally,

25
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Figure 3.1: Overview of the system developed for the tests.

a full calibration using the OptiTrack software (Motive1) and hardware tool (Figure 3.2b) was

performed. From that resulted a mean 3D reprojection error of 0.791 millimeters.

After calibration, the ground plane was set using OptiTrack plane calibration tool (Figure

3.2c). This object has the shape of a squared triangle with three markers, one in each vertex, so

that the system could identify the desired coordinate frame. One of the markers corresponds to the

frame’s origin and the other two to points in the x and z axis. This way the referential is defined

taking into account that the y axis points upwards.

OptiTrack markers are small reflective spheres with 14 millimeter diameter (observable in

Figure 3.2c). It is possible to acquire data from different types of assets: rigid body, skeleton

and unlabelled markers. For the specific case of this study, it would be ideal to stream data from

unlabelled markers, because it would only be necessary to place one marker on the user’s hand.

But this method is not reliable because the probability of the system losing track of it was very

high, so the asset used was rigid body for being more accurate and trustworthy.

The system broadcasts the rigid body pose through the Virtual-Reality Peripheral Network

(VRPN) streaming engine. To process the data, it was used the software framework ROS. The

ROS package used to receive the data from OptiTrack was vrpn_client_ros. The message received

from OptiTrack was in PoseStamped2 format, which contains a header with timestamp and the

position and orientation of the rigid body. For this study the orientation was not considered.

3.1.2 HoloLens 2 Setup

As the position reference is a rigid body from OptiTrack system, it was necessary to print a 3D

structure to hold the OptiTrack markers. The point considered for the HoloLens 2 measures was

the tip of the index finger, therefore a rigid body was built so that its center was in the same place.

There were some concerns in the construction of the rigid body, which are listed below:

• It should not be symmetrical because the OptiTrack system could be confused in some

orientations;
1https://optitrack.com/software/motive/
2http://docs.ros.org/en/melodic/api/geometry_msgs/html/msg/PoseStamped.html

https://optitrack.com/software/motive/
http://docs.ros.org/en/melodic/api/geometry_msgs/html/msg/PoseStamped.html
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(a) OptiTrack setup.

(b) Calibration tool. (c) Ground plane tool.

Figure 3.2: OptiTrack system.

• The minimum number of markers was three but it was opted to insert four, increasing the

robustness of the rigid body detection, this way if one was hidden the system would continue

tracking;

• The markers could not be close to each other, otherwise the system would not be able to

track it properly.

Taking all these limitations into consideration, the piece built had the shape of a cross, three of

the markers formed a scalene triangle and the forth marker was placed in the center of the cross,

Figure 3.3a. Additionally, the forth edge had the purpose of supporting the index finger (secured

by two rubber bands), resulting in its tip touching the center marker of the rigid body. The resulting

rigid body is represented in Figure 3.3b.

The HoloLens 2 defines automatically a coordinate system when the application is launched.

So, in order to be able to compare directly the coordinates from OptiTrack and HL2, it was neces-

sary to define a different referential to match the one from OptiTrack. Because the HL2 software

does not allow to define a secondary referential, it was necessary to do some workarounds. The

simplest way found was to place an object (a cube in this specific case) in the origin of the co-

ordinate system and then calculate the hand coordinates in relation to that object. To define the

cube’s position and orientation, it was used the OptiTrack instrument for ground plane definition
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(a) Rigid body dimensions. (b) Rigid body on the user’s hand.

Figure 3.3: Rigid Body for tracking the user’s index finger.

so that the coordinate systems would be exactly the same. To define the coordinate system in the

HoloLens 2 application, it was used the user’s right index finger tip, as it is explained below.

1. First, in order to define the cube’s origin position, the user clicks on the interface button,

suggesting that is ready to start defining the referential.

2. After clicking the button, the user has five seconds to place the right index finger tip at the

OptiTrack coordinate system origin (Figure 3.4a). When that time is up, the system will

save the coordinates where the right index finger tip is, as the cube’s point of origin.

3. Then, the user clicks the button again and has five seconds to place the finger at the second

point, which defines the point in the X axis (Figure 3.4b).

4. The same happens with the third point (Figure 3.4c).

5. Lastly, the user clicks in the button again to confirm that the referential is correctly set and

the cube appears at the defined origin with the specified orientation.

(a) Step 1. (b) Step 2. (c) Step 3.

Figure 3.4: Referential definition on the HoloLens 2 application.

This method of matching both coordinate systems can impose some millimetric errors, due to

errors in detecting the user’s hand. Nevertheless, it was considered the most adequate one.
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The HL2 application to stream the hand position was built in Unity3 using the Microsoft’s

Mixed Reality Toolkit (MRTK4). In order to establish a connection with ROS, it was used the

ROS#5 libraries. To be able to compare directly the message from HL2 and OptiTrack, the appli-

cation streams to a ROS topic a PoseStamped message containing the timestamp and the position

of the user’s index finger tip, the orientation was set to zero because it was not used in this study.

3.1.3 HTC Vive Setup

The HTC Vive6 is a Virtual Reality headset that has a set of two hand controllers. The HTC

Vive system has two base stations to capture the optical signals from the controllers so that they

can be tracked. These base stations were positioned in opposite corners with a 5 meters distance

from one another, and connected with a sync cable. So, instead of using the user’s hand, one of

the controllers was the tracking object to evaluate the accuracy and repeatability of the system.

Furthermore, it was necessary to print a 3D structure, like in the HoloLens 2 application, that

would represent the rigid body to track in OptiTrack. The main part of the piece was identical

to the one described before, but instead of having a support to place the finger, it fitted in the

controller’s center hole.

The origin of the controller’s reference frame is represented in Figure 3.5. The orange ‘x’

in the figure illustrate the desired point to consider as the controller’s center for more accurate

measures. The rigid transformation between the frames was estimated using the controller’s CAD

model (0.0; 0.030986; 0.01946 meters) and implement trough MRTK Solver7 system.

Figure 3.5: Coordinate system.

Similarly to HoloLens 2, the coordinate system definition was set also by three points using the

OptiTrack plane calibration tool. However, instead of placing the index finger on the marker, it was

placed the controller, more specifically the center of the controller’s toroid pointing downwards.

3https://unity.com/
4https://github.com/microsoft/MixedRealityToolkit-Unity
5https://github.com/siemens/ros-sharp
6https://www.vive.com/us/
7https://docs.microsoft.com/en-us/dotnet/api/microsoft.mixedreality.toolkit.

utilities.solvers.orbital?view=mixed-reality-toolkit-unity-2020-dotnet-2.7.0

https://unity.com/
https://github.com/microsoft/MixedRealityToolkit-Unity
https://github.com/siemens/ros-sharp
https://www.vive.com/us/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.mixedreality.toolkit.utilities.solvers.orbital?view=mixed-reality-toolkit-unity-2020-dotnet-2.7.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.mixedreality.toolkit.utilities.solvers.orbital?view=mixed-reality-toolkit-unity-2020-dotnet-2.7.0
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To make the measurements well grounded, it was printed a piece that fitted the toroid’s cavity and

in the center was an empty space that had the exact size to fit the reflective marker, Figure 3.6a.

(a) Calibration setup. (b) Tracking setup.

Figure 3.6: HTC Vive controller.

Figure 3.7 shows the sequence in which the application coordinate system is defined in HTC

Vive, first defining the origin point, then the point in the X axis and, finally, the point in the Z axis.

The list below describes this process in more detail:

1. First, in order to define the cube’s origin position, the user clicks with the controller on the

interface button, suggesting that is ready to start defining the referential.

2. After clicking the button, the user has five seconds to place upside down the right controller

at the OptiTrack coordinate system origin (Figure 3.7a). When that time is up, the system

will save the coordinates where the controller is, as the cube’s point of origin.

3. Then, the user clicks the button again and has five seconds to place the controller at the

second point, which defines the point in the X axis (Figure 3.7b).

4. The same happens with the third point (Figure 3.7c).

5. Lastly, the user clicks in the button again to confirm that the referential is correctly set and

the cube appears at the defined origin with the specified orientation.

After the coordinate frame definition, the above mentioned rigid body was fixed in the con-

troller (Figure 3.6b), and the system was properly set to begin tracking.

The data streaming was done identically as in HoloLens 2, using the ROS# library developed

by Siemens.

3.1.4 Data Synchronization

There were performed several tests, which can be divided into two categories: the ones with mo-

tion and the ones without motion. The data synchronization for the tests without motion were

made using the ROS library message_filters8. This filter subscribes to both topics (from the Opti-

Track data and from the HL2 or HTC data) and synchronizes them accordingly to their timestamp
8http://wiki.ros.org/message_filters

http://wiki.ros.org/message_filters
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(a) Step 1. (b) Step 2. (c) Step 3.

Figure 3.7: Referential definition with the HTC Vive controller.

that is included in the header. The policy used for synchronization was ApproximateTime because

the rates of sampling were different, therefore the timestamps could not be directly matched. The

data was then exported to a csv file for further analysis.

From the data acquired it was noted that the timestamp from HoloLens 2 had a small delay

(less than one second). So, for the tests that involved movement, the synchronization through

timestamp would not work. For this reason, the tracking data was saved into a cvs file, and

synchronization performed a posteriori in Matlab. Figure 3.8 shows the signals representation

of the OptiTrack and HoloLens 2 position (the represented position is referring to the z axis, as

the subject only moved in that direction). To synchronize the data, the method used was to find

the peaks (Figure 3.9a, maximum and minimum), and then, calculate the difference between the

corresponding points in the temporal axis (horizontal). Then, the delay calculated was the mean

of those differences. According to the delay calculated, the signals were readjusted (Figure 3.9b),

and then, the accuracy was calculated. In the graph, it is also possible to verify some differences

in the vertical axis between both signals, which indicates some errors in the position measures, as

it will be discussed in section 3.2.

3.1.5 Data Analysis

The data analysis was performed using MATLAB. For the tests without motion, the algorithm

calculated the accuracy and the repeatability of each test.

The accuracy calculates the difference between the measured coordinates (xH ,yH ,zH) from

HL2/HTC and the ground truth (measures from OptiTrack: xOT ,yOT ,zOT ). The equations to calcu-

late the accuracy were based in ISO 9283 [106] and are represented in (3.1). Where n represents

the number of samples, and ex, ey and ez refer to the coordinates errors in the reference frame.

As =
1
n

n

∑
i=1

√
ex2

i + ey2
i + ez2

i (3.1)
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Figure 3.8: Position signals of OptiTrack (red) and HoloLens 2 (blue).

5 6 7 8 9 10

time (sec)

0.55

0.555

0.56

0.565

0.57

0.575

0.58

0.585

0.59

0.595

0.6

p
o
s
it
io

n
 (

m
)

OT

OT
max

OT
min

H

H
max

H
min

(a) Original data.
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(b) Synchronized data.

Figure 3.9: Comparison between original and synchronized data.
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where,
ex = xH − xOT

ey = yH − yOT

ez = zH − zOT

(3.2)

According to ISO 9283, the repeatability (Rs), also called precision, determines the variance

of the measured points and it is calculated using distance between the measured values (from

HL2/HTC) and their mean value (l), and the standard deviation (σl), as shown in (3.3). x,y,z are

the mean of the measures of each axis, and xi,yi,zi are the measures of each axis in sample i [10].

Rs = l +3σl (3.3)

where,

l =
1
n

n

∑
i=1

li (3.4)

li =
√

(xi − x)2 +(yi − y)2 +(zi − z)2 (3.5)

σl =

√
∑

n
i=1(li − l)2

n−1
(3.6)

For the experiments that required motion of the user’s hand, the MATLAB algorithm first

performed a synchronization, considering the time origin as the moment that ROS started receiving

data and counting the time from that point. Because the sampling rate of OptiTrack was higher

than HL2 and HTC, it is necessary to perform a data interpolation in these last two datasets. After

the interpolation, both datasets are properly synchronized, have the same length, and it is possible

to start the data analysis.

The data analysis for the motion experiments was focused on the accuracy (as in the previous

tests) and delay calculation. It was verified that in HoloLens 2 the device had a small delay

detecting the hand movement: the hand’s hologram delay can be seen while moving the hand.

Therefore, the algorithm calculated first the delay (as explained in Section 3.1.4), readjusts the

vectors and then calculates the accuracy.

3.1.6 Experiments

The purpose of this study was to analyse the accuracy and repeatability of the HoloLens 2 hand

tracking and the HTC Vive controller tracking. Therefore, several experiments were conducted to

evaluate the tracking system’s in different situations, such as:

• When the tracking object was stationary;

• When the tracking object was moving at different velocities;

• When the HTC Vive system was measuring the controller’s position with only one base

station;
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• When using HL2 the user was always moving his/her head around;

• When measuring the HL2 hand tracking outside the center of the field vision;

• When tracking hands from different people (different hand size and shape);

• When using the left hand to track instead of the right.

Tables 3.1 and 3.2 describe in detail the objectives and the conditions of the experiments

performed in HTC Vive and HoloLens 2, respectively.

Table 3.1: HTC Vive Experiments

# Objective Conditions

1
Measure accuracy and repeatability with-
out motion

Controller always in the same position
(on top of a table)

2
Analyse the influence of the base stations
when working individually

Controller in the same position (as in #1)
with only one base station

3
Measure the influence of the orientation
of the controller in relation to the base
stations

With the controller always on the same
spot, rotate it 45º at a time until it reaches
the starting point

4
Analyse the system’s accuracy when the
controller is moving slowly

Controller moving at a slow speed (aver-
age of 9 cm/s)

5
Analyse the system’s accuracy when the
controller is moving moderately

Controller moving at a medium speed
(average of 16 cm/s)

6
Analyse the system’s accuracy when the
controller is moving rapidly

Controller moving at a fast speed (aver-
age of 29 cm/s)

3.2 Results and Discussion

This section presents the results obtained with the experiments performed and a discussion is

elaborated in order to draw conclusions. First there are presented the results for HTC Vive and

then for Microsoft HoloLens 2.

3.2.1 HTC Vive

The results achieved in the experiments for HTC Vive were quite satisfactory (Figure 3.10). For the

stationary experiment (#1), the accuracy obtained was of 3.5 mm and the repeatability of 2.5 mm.

When the measures were being acquired by only one base station (#2), it was verified that the error

increased significantly (in Figure 3.10a this experiment is divided in 2_a and 2_b which represent

the use of base station A and B, respectively). For one of the base stations, it increased almost by

more than six times in accuracy (resulting in 23.76 mm), but the increase in repeatability was not

significant (1.84 mm). On the other hand, when the same experiment was done by the other base

station, the accuracy only increased by 2 times (7.31 mm), but the repeatability was almost 4 times
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Table 3.2: HoloLens 2 Experiments

# Objective Conditions

7
Measure accuracy and repeatability with-
out hand motion

Right hand in the same position (at the
center of the vision field)

8
Analyse the influence on the measures
when moving the head

Right hand in the same position and
move the head constantly in various di-
rections

9
Measure the influence of hand tracking
at the vertices of the projection’s vision
field

Right hand in the top right corner of the
projection’s vision field (no movement)

10
Measure the influence of hand tracking
at the vertices of the projection’s vision
field

Right hand in the bottom right corner of
the projection’s vision field (no move-
ment)

11
Measure the influence of hand tracking
at the vertices of the projection’s vision
field

Right hand in the bottom left corner of
the projection’s vision field (no move-
ment)

12
Measure the influence of hand tracking
at the vertices of the projection’s vision
field

Right hand in the top left corner of the
projection’s vision field (no movement)

13
Analyse the system’s accuracy when the
hand is moving slowly

Right hand moving at a slow speed (av-
erage of 7 cm/s)

14
Analyse the system’s accuracy when the
hand is moving moderately

Right hand moving at a medium speed
(average of 13 cm/s)

15
Analyse the system’s accuracy when the
hand is moving rapidly

Right hand moving at a fast speed (aver-
age of 27 cm/s)

16
Analyse the influence of different hand
sizes and shapes without hand motion

Right hand in the same position (at the
center of the vision field) but from differ-
ent people

17
Analyse the influence of different hand
sizes and shapes with hand motion

Right hand moving at a slow speed (aver-
age of 7 cm/s) but from different people

18
Analyse the influence of right and left
hands without motion

Left hand in the same position (at the
center of the vision field)

19
Analyse the influence of right and left
hands with motion

Left hand moving at a slow speed (aver-
age of 7 cm/s)
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higher (8.10 mm). The deterioration of the results agreed with our expectations, as HTC Vive was

designed to be used with both base stations working simultaneously. These tests were performed

in order to discover what the system’s reaction would be in case of a temporary occlusion of one

of the base stations. The results from experiment #3 (Figure 3.10b) which measured the influence

of the controller’s angle with the base stations, were also expectable. It was verified that indeed

some variation was noted not only in the accuracy but also in the repeatability. Nevertheless, the

maximum variation observed in both was around 3 mm. From these results, it can be concluded

that the controller’s orientation has some influence in the errors, but it is not significant. The

different orientations were allocated through a full rotation of the hand controller, turning 45º

each time until reaching the 360º, in total there were 8 different orientations and always the same

position.

In the experiments with motion (#4,#5,#6), the accuracy obtained was worse than when the

controller was stationary, but the variation was not linear, i.e., when the velocity increased the

error did not increase accordingly. This set of experiments was done more than one time and the

results were quite inconsistent. For example, sometimes the test with medium velocity had the

best accuracy (5.6 mm) while in other experiment sets the worst (13.4 mm). In all the velocity

tests performed, it was verified that the HTC Vive system does not have a significant delay in the

measures acquisition when compared to the OptiTrack.

(a) HTC Vive accuracy results. (b) Experiment #3 accuracy results.

Figure 3.10: Accuracy graphs for all of the experiments performed on HTC Vive.

3.2.2 Microsoft HoloLens 2

The results obtained with HoloLens 2 were significantly worse in comparison with the HTC Vive

(Figure 3.11). But it was expected, since HL2 depends on an algorithm to recognize the hand

while the HTC Vive uses the inherited system controller with two base stations acquiring the

infrared signals emitted by the controllers. For the experiment #7, right hand stopped in the center

of vision field, the accuracy obtained was around 18.3 mm and a repeatability of 5.8 mm. While

using the device, it is possible to verify that the hologram of the user’s hand is not exactly aligned

with the hand and it has some variation, turning out to be consistent with the results obtained. To

analyse the influence of moving the head while tracking the hand, experiment #8 revealed a small

improvement in the accuracy of about 13% and the repeatability doubled. Therefore, the main
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conclusion retrieved from these experiments was that the head movement has some influence

on the measures but not significantly enough so that it would be mandatory to have the head

completely still during experiments.

The experiments #9 to #12 confirmed the supposition that errors are lower when the hand is

positioned in center of the field of vision. The accuracy of the four experiments (corresponding to

the four corners of the vision field) was between 23.9 and 26.3 mm, and the repeatability between

5.9 and 7.2 mm. These results point out that the hand’s place in relation to the projection vision

field may influence the measures accuracy and repeatability.

The velocity experiments (experiments #13, #14, #15) had a delay of 65 milliseconds on av-

erage, which is observable while using the glasses: the hand’s hologram is behind the real hand

when moving. The accuracy estimated in these motion experiments are also not linear in response

to speed variations. In fact, the results did not had a significant change, being around the 30 mm

for the three velocities.

To analyse the influence of different hand sizes and shapes, experiments #16 and #17 were

conducted with six different volunteers. The results obtained were quite interesting (Figure 3.11b),

observing a significant variation in the accuracy results. The best one had an accuracy around 10

mm, while the worst had an accuracy around 37.5 mm. Reaching the conclusion that the hand size

and shape have an interference in the measures, the person that performed the best experiment

had the biggest hand of the participants, and the worst accuracy result’s hand was the smallest.

The motion experiments confirmed this conclusion, verifying also a difference of about 25 mm

between the two extreme results.

Finally, experiments #18 and #19 showed some difference, although not significant, between

the right and left hand (about 2.5 mm in accuracy when the hand was stopped), being the right

hand the best result. In contrast to that result, in the movement experiment, the left hand presented

the best result (20.9 mm against 31.2 mm of the right hand). In conclusion that right and left hands

can have a small influence in the results, but it is neither linear nor predictable.

(a) HoloLens 2 accuracy results. (b) Experiments #16-17 results.

Figure 3.11: Accuracy graphs for all of the experiments performed on HoloLens 2.



Accuracy and Repeatability Tests 38

3.3 Summary

This research presented the study of accuracy and repeatability in HoloLens 2 and HTC Vive

systems in comparison with OptiTrack system that was considered as reference. In the first one,

the method used was hand tracking, while in the second one the object tracked was its controller.

After performing a series of tests, it was concluded that both devices show great potential for a vast

number of applications in various area fields. However, HTC Vive presented better performance

results, indicating that it would be more suitable than HoloLens 2 for applications that require high

accuracy.

As a general rule, it can be concluded that HoloLens 2 would be more suitable for tasks that

would not require high accuracy to achieve a good performance such as detection of intrusion in

security areas, gesture recognition, and some painting applications. HTC Vive, on the other hand,

would be also suitable for applications higher accuracy, such as tighten a screw on a car engine or

arc welding metal pieces.

HTC Vive has already been used to improve the learning experience of medical students [107],

and in a rehabilitation training program for upper limbs, where the patient would manipulate

the controller according to the task requirements [108]. Flueratoru et al. [109] also claimed

that HTC Vive could be used to acquire baseline measurements for the Ultra-wide-band system,

whose accuracy and precision are in the range of centimeters. Kharvari and Hohl [110] tested

the hypothesis of using VR in architectural education for studying precedents and found that it

motivated the students to deepen their learning on the subject because of its interactivity.

As for HoloLens 2, it has already been used in industry to program industrial robots by demon-

stration, as it was mentioned in Subsection 2.1.2.4. But it is important to notice that not all robot

applications would be suitable for this type of programming due to its limited accuracy. For ex-

ample, it could be suitable for a pick and place application. Sharma et al. [111] were able to

improve building evacuation time and eradicate injuries and fatalities during emergencies, thanks

to a HoloLens application that provided visual representation of a building on campus in 3D space.

HoloLens has also entered the field of Nuclear Power Engineering helping maintenance workers

get tasks done faster by providing them with content of plant layout and key equipment as holo-

graphic images [112].

Lastly, this study was a significant step and the base of the project of developing a human-robot

interface to program by demonstration an industrial robot using Augmented Reality.



Chapter 4

Augmented Reality based Robot
Programming System

The system developed to program robots using Extended Reality was divided in two different

subsystems, as explained in Section 1.4: the one where the path data is acquired and the one

responsible to translate the hand coordinates to the robot’s language and send it to the robot. This

Chapter explains the development of the first subsystem, which the main objective is to provide

a simple and smooth interface for an industrial operator without programming experience to be

able to program a robotic manipulator. For that to be possible, the interface has to be intuitive

and cannot contain any distractions, otherwise the operator can be confused with the excessive

information.

4.1 Device and Development Platform

This section explains the reasons behind the choices of the devices, software and platforms used

in this project. Additionally, it will be mentioned the method used to communicate between the

development platform and the application device.

4.1.1 Microsoft HoloLens 2

The device chosen to integrate the tracking system was the Microsoft HoloLens 2, Mixed Reality

Smartglasses. As Figure 4.1 shows, this device provides an ergonomic structure that an operator

could easily wear during his/her operations, as it does not imply any wires attached to it and

weights about 566 grams. This headset has five different types of sensors, in which each has a

specific purpose: for the head tracking, it has four visible light cameras; for eye tracking, it has

two infrared cameras; for depth, it has a 1-MP depth sensor; an Inertial Measurement Unit (IMU)

that includes accelerometer, gyroscope, magnetometer; and a Camera with 8-MP. In addition to

that, it also includes a microphone array with five channels and speakers, and provides WiFi,

39
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Bluetooth and USB connection. Furthermore, its operating system is very similar with the ones

that people have on their smartphones and computers, which surpasses one possible barrier that

could emerge. In that sense, the tracking system will be integrated in an application that will be

installed in the HoloLens 2, and can then be executed by the user at any time.

Figure 4.1: Microsoft HoloLens 2.

4.1.2 Unity

The platform used to create and program the application for the tracking system was the game

engine Unity1, created by Unity Technologies. This environment is used for the creation of multi-

ple games and applications in 2D and 3D, which for this project was a good fit, as the application

needed a 3D environment. For the development of this application, the Unity version used was

the 2019.4.2f1. Unity already has some plugins and packages to integrate Mixed Reality without

the programmer needing to build everything from scratch. The plugins used for this project were

integrated in the Mixed Reality Toolkit (MRTK2) developed by Microsoft for Unity. The MRTK-

Unity project is compatible with several platforms and devices that include not only Microsoft

HoloLens (1 and 2), but also other devices like HTC Vive, Oculus Quest, and mobile applications

for iOS and Android. For this project, the packages of MRTK used were Foundations and Tools.

A project in Unity is constituted by scenes, which can be similar to each other or completely

different, they do not work in an inherited way. Each scene then is composed by several Game

Objects that can be interacted with in the application by creating scripts and associating them to

those Game Objects. In those scripts the user can program several actions, for example, activate

and deactivate the objects, making them appear or disappear in the scene, change their location,

orientation and color. It is not mandatory for the scripts to be associated to a physical Game

Object, it is possible to create an empty one and associate scripts to it and, as long as it is active,

the scripts will run. All those scripts and possible material created are saved in the Assets folder

of the project and can be seen in the Project tab in the Unity environment. Those assets can be

1https://unity.com/
2https://github.com/microsoft/MixedRealityToolkit-Unity

https://unity.com/
https://github.com/microsoft/MixedRealityToolkit-Unity
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inserted in the scene by dragging them from the project tab to the Hierarchy tab. To edit each

object, the object name in the Hierarchy needs to be clicked and then go to the Inspector tab

to make the appropriate changes. Additionally, there is one important tab, the Console, which

displays the errors and warnings of the project and can be used for debugging the code created.

4.1.3 Prerequisites

In order to successfully use the Unity software and the HoloLens 2 application, some prerequisites

need to be installed and are shown in the list below.

1. For the Unity installation, it is recommended to install Unity Hub.

2. Unity (the version used in this project was 2019.4.6f1) with the following modules attached:

• WebGL Build Support;

• Microsoft Visual Studio Community 2019;

• Universal Windows Platform Build Support;

• Windows Build Support (IL2CPP);

• Documentation.

3. Windows 10 SDK (version 10.0.18362.0 or higher), as it provides the latest headers, li-

braries, metadata and tools.

4. The RosSharp3 library provides already implemented methods to communicate with Robot

Operating System (ROS), which will be needed in later steps.

5. The Unity Main Thread Dispatcher4 script is a thread-safe class which works like a buffer,

holding a queue with actions to execute on the following Update() method.

6. Mixed Reality Toolkit (MRTK) packages, more specifically the following ones:

• Microsoft.MixedReality.Toolkit.Unity.Foundation.2.4.0.unitypackage

• Microsoft.MixedReality.Toolkit.Unity.Tools.2.4.0.unitypackage

4.2 Application Overview

This section has the purpose of introducing an overview of the tracking application developed in

Unity to integrate the HoloLens 2 headset, which will then be used by the operator. Figure 4.2

represents a schematic to simplify its functionalities. In other to successfully record the operator’s

movement which will be reproduced by the robot later, some steps have to be followed:

1. First, the user has to choose the robot that wants to program.

3https://github.com/siemens/ros-sharp
4https://github.com/PimDeWitte/UnityMainThreadDispatcher

https://github.com/siemens/ros-sharp
https://github.com/PimDeWitte/UnityMainThreadDispatcher


Augmented Reality based Robot Programming System 42

2. Secondly, the user has to define the coordinate system, so that it matches the robot’s refer-

ence frame. This definition was optimized as much as possible so it would be simpler for

the user. In that sense, the coordinate system definition is made with just two points.

3. After the coordinate system is defined, the application projects the hologram of the robot’s

workspace, accordingly to the characteristics of that specific robot. The idea is that the user

only records movements that the robot can reproduce.

4. At this point the user can record the movement with his/her right index finger tip. While

the user is recording the trajectory, a hot pink line marks its path to highlight what is being

recorded. When the path is finalized, the user can confirm that the movement was correctly

recorded and it is sent to the translator. Otherwise, the movement is erased and the user can

start the recording again

5. Finally, the application publishes the data acquired, namely, the list of the hand coordinates,

to a ROS topic.

Figure 4.2: Tracking application overview.

The interaction with the user had the main purpose of being as simple as possible. So the

method chosen to perform it was to use popup windows (a MRTK object called Dialog). This way

they always appear in the middle of the user’s field of view and are not anchored in the same place

like it would happen with buttons, which could induce some confusion into the user. Additionally,

when these popup windows appear, they produce a sound, warning the user that the application

state has changed.

The following sections will explain and describe how each of the those application fragments

work. The first three (Robot to Program Selection, Coordinate System Setup and Workspace Draw-

ing) are included in Section 4.3, Workspace Setup, as they are part of the initial configurations;

while the Movement Recording and Data Transmission are illustrated in Sections 4.4 and 4.5,

respectively.
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4.3 Workspace Setup

This section details the application interface and how it was assembled. The interface was divided

into three different parts; the first one is where the user chooses what robot it is going to be

programmed, the second part is where the robot’s coordinate system is defined, and the third

defines the robot workspace.

4.3.1 Robot to Program

For the purpose of this dissertation, two different types of robots were chosen to test the developed

system, a collaborative and a normal industrial robot. The collaborative one was the Universal

Robots UR5 (Figure 4.3a), a flexible collaborative robot arm which has 6 rotating joints, a payload

of 5 kg, weights 18.4 kg, and has a reach of 850 millimetres. Every joint has a motion range of

±360º and a maximum speed of ±180º/sec.

In contrast, the usual industrial robot was the ABB IRB 2600 (Figure 4.3b), which also has

6 rotating joints but weights 272 kg and has a payload of 20 kg. As it is possible to infer by the

robot’s weight, this industrial robot is much bigger than the UR5, and is able to reach 1.65 meters.

The idea was to integrate two different types of robots and verify that it was possible to apply

the developed system to program not only collaborative robots, but also larger industrial robots.

Therefore, simplifying the operator’s work in the plant floor.

(a) Universal Robots UR5. (b) ABB IRB 2600.

Figure 4.3: Robots to Program.

In order to differentiate the type of robot that the user wants to program, when the tracking

application is launched, a popup dialog (a MRTK object called Dialog) shows up asking the user

to choose the type of robot. In the development of this project, only two robots were integrated,
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however the application was built to easily add others. And the key part for it is this popup window,

where the user chooses the robot to use and the rest of the application will adapt accordingly. In

this case, the user can opt by the ABB IRB 2600 (ABB) or the Universal Robots UR5 (UR5), as

shown in Figure 4.4.

Figure 4.4: Popup dialog to choose the robot to program.

This choice will influence the future configurations of the application. As the robots have

completely different characteristics, the robot workspace hologram will need to adapt accordingly

(explained in more detail in section 4.3.3).

4.3.2 Coordinate System Setup

To be able to program the robot correctly, the coordinate system of the robot and from the HoloLens

2 device have to match. The HoloLens 2 coordinate system is defined when the application is

initiated at a specific distance from the headset, and it is different every time the application is

launched. In order to solve this problem, a manual coordinate system has to be define by the user.

The HoloLens 2 software does not allow to define a second coordinate system, so the method

found to work around this problem was to place an object with the desired pose and then estimate

the hand coordinates in relation to that object and not in relation to the headset. The object chosen

was the Unity’s Game Object Gizmo, which represents a three-axis referential and can verify if the

coordinate system was correctly defined, as shown in figure 4.5.

Figure 4.5: Unity’s Game Object Gizmo.

As it was previously referred, the referential has to be set by the user, so the objective was to

make it as simple as possible. The interface chosen to give the instructions to the user was a popup
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dialog (a MRTK object called Dialog) because it is always placed in the center of the projected

image and the user can move freely without loosing track of the window. If there were used fixed

buttons instead, the user would be fixed in the position the application was launched and it would

be restrictive.

The Dialog gives the instructions that the user has to follow and it is resumed in placing the

right index finger in the position indicated there (in section 4.4 it will be explained how the system

is able to locate the index finger tip). To define the specific point, after clicking in the Dialog but-

ton, the user has five seconds to place the finger in that position. When those five seconds are up, a

new dialog will appear with the new instructions. To increase the user perception of the coordinate

definition, when the 5 seconds are up and the coordinate is set, the following instructions window

appears with a sound to highlight its appearance. There are two points that the user has to define,

the first one is the referential frame origin and the second one the Z axis orientation. Figure 4.6

presents a sequence of images taken from the HoloLens camera to clarify the coordinate system

definition process. Initially, there were used 3 points to define the referential, but then it was possi-

ble to optimize the system to calculate it with just 2 points, because the HoloLens 2 has an Inertial

Measurement Unit (IMU) that defines the Y-axis always pointing upwards (despite the orientation

in which the application is launched).

Summing up, the coordinate system is defined by placing the Gizmo in the position of the

first point defined by the user and applying it a rotation defined by a quaternion constituted by

the vector that connects the first and second points and an input which says the Y-axis is pointing

forward. This way, the coordinate system defined in the interface is the one where the Y-Z plane

matches the robot’s base plane and the X-axis pointing upwards. When building the program

to send to the robot, a homogeneous transformation will have to be applied because the robot’s

coordinate system has the Z-axis pointing upwards instead of the X-axis (further details will be

explained in Section 5.1).

4.3.3 Robot Workspace

At the beginning, one of the problems that emerged was the fact that the operator could record

movements outside the robot’s reach, what would make the program invalid and could eventually

lead the robot to perform unwanted movements. As an effort to prevent this situation, it was

projected the robot workspace in the application. When the movement is being recorded and the

user exits that area, the recording is stopped and a warning shows up in form of a Dialog informing

the user that he/she has to start over and always stay inside the robot workspace. Summarizing,

the application projects a visual assistance to help the user in the path drawing, and also monitors

the user’s hand to assure that it remains inside the workspace.

The robot workspace is adapted accordingly to which robot the user defined, namely, the

dimensions of the objects that limit the working area. The workspace is projected when the user

finalizes the coordinate system definition and the object’s materials are green (Figure 4.7a), only

when the user is recording and the limits are violated, the materials turn red (Figure 4.7b), returning

to green after confirming in the Dialog that another recording has to be performed.
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(a) Step 1 - Instructions for the origin definition. (b) Step 2 - Finger marking the origin’s place.

(c) Step 3 - Instructions for the referential frame
orientation’s point definition.

(d) Step 4 - Finger marking the point that will
define the referential frame orientation.

(e) Step 5 - Instructions for the path recording. (f) Step 6 - Setup finished.

Figure 4.6: Coordinate system definition sequence.
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(a) Robot’s original workspace. (b) Robot’s warning workspace.

Figure 4.7: Robot’s original workspace in the application.

For the Universal Robots UR5, the robot’s workspace was quite straightforward to draw (Fig-

ure 4.8). So it was used a cylinder inside a sphere to create the workspace. The sphere had the

diameter of 1.7 meters, as it was the recommended reach, and the cylinder had a diameter of 0.151

meters and a total height of 1.621 meters. The available space to record the movement was the

one which intersected the area outside the cylinder and inside the sphere.

Figure 4.8: UR5 workspace [5].

The user exits the robot’s workspace when his/her right index finger tip has a distance from the

Gizmo (calculated as in Equation 4.1) higher than 0.85 meters (radius of the sphere) or a distance

from the Gizmo (calculated as in Equation 4.2) lower than 0.0755 meters (radius of the cylinder).
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The calculation to see if the user entered the cylinder is done only with the x and z measurements

because, as the object is a cylinder, the height will be limited with the sphere restriction.

Sphere_distance =
√

x2
Gizmo + y2

Gizmo + z2
Gizmo (4.1)

Cylinder_distance =
√

x2
Gizmo + z2

Gizmo (4.2)

where, xGizmo, yGizmo, zGizmo are the coordinates of the user’s right index finger tip in relation

to the Gizmo.

The ABB IRB 2600 workspace is not so simple as UR5, Figure 4.9a shows its lateral view. In

order to simplify the drawing of the 3D object representing the workspace, the robot’s workspace

was approximated by two spheres, one inside the other, as represented in Figure 4.9b - the robot’s

working area is represented in blue. The diameters of the spheres were set to 2.90 meters for the

maximum limit and 0.94 meters for the minimum limit.

(a) ABB IRB 2600 workspace [113]. (b) Application workspace (adapted from [113]).

Figure 4.9: Lateral view of the ABB IRB 2600 workspace.

The method used to verify if the user was recording the movement within the robot’s workspace

was similar to the one used for UR5, but, as in this case the workspace is constituted by two

spheres, the equation used to calculate the maximum and minimum distance was Equation 4.1. It

is worth urging the fact that this design is an approximation of the robot’s model, as the 3D object

drawing is not the core of this dissertation.

4.4 Path Recording

This section has the purpose of explaining how the user’s movement is recorded by the application

installed in the HoloLens 2. For that, this section was divided into two parts, the first one where
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it is explained how the gestures recognition was implemented and a second one with the objective

of demonstrating how the finger tracking was done.

4.4.1 Gestures Recognition

As previously explained, the objective of this application is to be as simple and flexible as possible.

In that sense, the use of buttons was avoided because it could cause some confusion to the operator,

because he/she had to find the button location to start recording. Therefore, the use of gestures

instead of buttons was preferred.

The HoloLens 2 software has already some build in methods which recognize specific gestures

and actions to navigate in the device, namely, Touch, Hand Ray, Gaze, Air Tap, and Air Tap and

Hold. Having in mind the simplest application possible, the gesture chosen was the Air Tap.

This movement begins with the hand opened, then touching the thumb with the index finger and,

finally, pointing the index finger straight up toward the ceiling again. This sequence of movements

is shown in Figure 4.10 to clarify.

(a) Step 1. (b) Step 2. (c) Step 3.

Figure 4.10: Air tap gesture execution.

In order for the application to recognize the gesture, it was necessary to call some functions

and methods, the list below explains how it was done.

• First, it was initiated a Gesture Recognizer (new GestureRecognizer());

• Then, to the gesture recognizer object, it was associated the desired gesture, the Tap, using

the method SetRecognizableGestures() and passing as argument the GestureSettings.Tap;

• At every tap event, the function GestureRecognizer_TappedEvent was called, by increment-

ing it to the object’s method TappedEvent;

• Finally, to start capturing the gestures and to stop it, there are already methods implemented:

StartCapturingGestures() and StopCapturingGestures(), respectively, that can be associated

to the recognizer object and implemented in desired places in the code.

This code should be executed when the application is initiated. In that sense, it is advisable to

insert it in the Start() function of the script which is being used. This algorithm is able to recognize
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Air Tap gestures from both hands (right and left), so the user can choose the preferred one. This

gestures is used in the application to start and stop the recording. It is recommended to stop the

recording with the left hand, otherwise the tap movement will also be sent to the robot. As for the

starting gesture, it is indifferent which hand is used, because the system will start recording only

after the tap movement.

Following that logic of using the same movement for starting and stopping the recording, the

logic implemented in the code was to add a counter which was incremented with every tap. When

it was an odd number, it meant that the recording should begin; in contrast, when it was an even

number, it meant that the recording should stop.

4.4.2 Finger Tracking

The Mixed Reality Toolkit (MRTK) has already implemented algorithms to track the position of

the user’s hand. In fact, it is able to identify several points in the hand, such as, the distal joint, the

knuckle, the metacarpal and the tip of each finger, and also the palm and the wrist. The method

needed for that identification is the TryGetJointPose() from the class HandJointUtils.

The method TryGetJointPose() needs two inputs which are the hand joint to locate and the

type of hand (left or right), and it gives as output the position desired (pose). In this case, the hand

joint to locate is the index tip so it is passed as the first argument TrackedHandJoint.IndexTip, and

the right hand so it is passed as the second argument Handedness.Right. The method returns the

value true when it is able to find the position desired and a false value otherwise. Therefore, it

is recommended to surround the line of code above with an if statement and then, inside it, place

the code which uses that information. The output given by the method, pose, has the structure of

MixedRealityPose, which includes not only a vector with the x, y, and z axis coordinates, but also

a quaternion representing the rotation. But for the purpose of this project, only the position will

be considered.

In an effort to simplify the user’s perception of the system’s state, it was added a small sphere

in the right index finger tip; and it is red when the system is not recording and turns green while

it is recording. To accomplish that, the sphere position should be equalized to the pose.Position

returned by the method TryGetJointPose(), explained previously. To change the color of the object,

when the recording starts, in other words, at every tap, the component renderer material needs

changing. Figure 4.11 shows the finger tracking, red when is not recording (Figure 4.11a) and

green when recording (Figure 4.11b).

Additionally, to increase the perception of the movement recorded, while the user performs

the movement, the systems draws a line representing the movement. This way, when the user

finishes the recording, he/she is able to verify if the movement was done correctly and is ready

to be send to the robot, or if it is not and needs to be repeated. At each reading of the hand

position when the user is recording, the UpdateLine() function is called, with the coordinate read

as a parameter which is then added to the line rendered which draws the line, and the line renderer

position counter is incremented. At the beginning of the recording, the line needs to be created,

calling the function CreateLine(), implemented to initialize the object.
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(a) Red sphere - not recording. (b) Green sphere - recording.

Figure 4.11: Finger tracking.

The material of the drawn line had to contrast with the possible industry environments, so, the

color chosen was hot pink. The Figure 4.12 shows an example of a recorded movement, where it

is possible to see the line drawn.

Figure 4.12: Example of a recorded path.

As previously explained in Section 4.3.2, the coordinates to send to the translator are not the

same as the ones used to draw the movement’s line. Those coordinates are absolute ones, which

have the headset as reference. The correct coordinates to send to the robot are the ones where the

reference frame is the Gizmo object, placed in the specific pose where the robot is supposed to be.

For that, a function was created to perform that transformation. There were needed two arguments

as inputs, the Gizmo transform and the position vector to transform, and the return was a vector

with the coordinates relative to the Gizmo.

The function developed to perform the transformation was getRelativePosition(). The first

step was to calculate the distance vector between the absolute coordinate (point2trans f orm) and

the Gizmo position (originGizmo_ f rame) - Equation 4.3. Then, as shown in Equation 4.4, the rela-

tive position (relative_coordinates) was calculated by the product of the rotation transformation

matrix (RGizmo_ f rame) of the Gizmo’s referential frame and the vector_distance, plus the Gizmo’s

translation vector (TGizmo_ f rame). It is worth mentioning that the HoloLens 2 coordinate system is

left-handed, whereas the one used in the robot is right-handed. So, one of the axis was inverted by
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multiplying it by −1; this way the application referential resulted in a right-handed one.

vector_distance = point2trans f orm−originGizmo_ f rame (4.3)

relative_coordinates = RGizmo_ f rame · vector_distance+TGizmo_ f rame (4.4)

These returned coordinates are then added to the list of coordinates and, after the movement is

confirmed by the user, sent to the robot. In case the user does not confirm the recording and wants

to repeat it, the list is erased and a new one is created.

4.5 Data Transmission

After collecting the movement coordinates, the idea was to send them to Robot Operating System

(ROS), to increase the level of abstraction and compatibility, since ROS drivers already exist for

several robot models. Thereafter the data would be analysed and a program built to send to the

robot. In order to facilitate the communication between the HoloLens 2 application and ROS, it

was used as base the ROS# library5.

To accomplish that, some scripts had to be programmed in the Unity application. Namely, the

Unity Main Thread Dispatcher script that was previously added to the Assets folder, had to be

added as a component to the RosConnector object. This script is a thread-safe class which holds

a queue with actions to execute on the following Update() method callback. Thereafter, a new

component must be added, the RosConnector script from ROS#. However, this script needs some

changes in order to function well with the application developed.

Two additional functions needed to be added to the scripts, with the objective of locking the

queue as well as adding the IEnumerator to the queue of the Unity Main Thread Dispatcher:

• DispatchToMainThread_RosConnectionSuccess() - called when the ROS connection is suc-

cessful;

• DispatchToMainThread_RosConnectionDisconnected() - called when the ROS connection

is closed;

Finally, in the OnConnect() and OnClosed() functions, it is necessary to call the dispatcher’s

function of the ROS connected and disconnected, respectively. Surrounded by a try - catch state-

ment, in the first function it must be called the DispatchToMainThread_RosConnectionSuccess();

whereas in the second one the DispatchToMainThread_RosConnectionDisconnected().

At this point, the Ros Connector Script is correctly altered and it is only missing the correct

inputs in the Unity’s interface. The inputs which show up to be modified are: timeout, serializer,

protocol, Ros bridge server IP address and Ros bridge server port. Figure 4.13 shows the inputs

that should be inserted in the interface so that the connections work correctly. The IP address and

5https://github.com/siemens/ros-sharp

https://github.com/siemens/ros-sharp
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port should be the ones of the computer where the ROS package is running and not the ones shown

in the image.

Figure 4.13: Ros Connector script interface inputs.

After these connections are all set up, what is missing is a script that sends the information to

ROS. To do that, a new script was added as a component to the Ros Connector object. That class

belonged to RosSharp.RosBridgeClient.Publisher with the type of message which is desired to

send, in this case is Vector3, because the system will only send the position coordinates (x, y and

z) and not the orientation quaternion. To initiate the publisher, in the Start() method, the function

base.Start() must be called (to initialize the publisher to the topic defined by the programmer in

the Unity’s interface) and the message to send initiated.

Additionally, it was created a function that receives as an argument the list of coordinates to

send to the robot and, while that list is not empty, publishes the first coordinate on the list and

removes it from the list. This way, the whole list is covered until it does not have more elements.

By this point, when the user confirms that the recorded movement is ready to send to the

robot, the HoloLens 2 starts the list transmission. Then, the published list can be viewed in the

ROS environment at the respective topic which the programmer defined in the Unity’s interface.

Furthermore, in order to set the beginning and end of the recorded movement, so that the

translator was then able to generate the file and close it, the application publishes to ROS the

status of the program in specific key moments. For that, a script was added (StatusPublisher) with

a function that sends a standard string message to the ROS topic /HLstatus. This function is called

when the user confirms that the movement was correctly recorded, indicated that the movement

has started, and then the application sends the list of coordinates as explained previously. After

that, a dialog appears in the application for the user to indicate that the robot can start moving, and

then the program status sent to ROS specifies that the file can be sent to the robot.

4.6 Summary

This Augmented Reality application had the purpose of providing the user a simple way to record

a movement which the robot would later reproduce. In order to accomplish that, the game engine

Unity was used to develop it alongside the Mixed Reality Toolkit, which already had some build-

in functions to simplify the usability. The general idea of this tracking system is that the AR

application records the movement and sends it to a ROS node, so that it can be then sent to the

robot.
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The recording of the movement in the application consisted in five different stages, where

the first was the user choosing the robot to program. For the purpose of this project, two robots

were chosen, a collaborative and an industrial (Universal Robots UR5 and ABB IRB 2600). It

is worth to mention that the application was built to easily integrate other robots. The second

stage was the coordinate system definition, because it was necessary to identify one that would

match the robot’s referential, not only for precision, but also for the user to better understand

where he/she was recording. In that sense, the user has to define two points, the referential origin

(that defines the robot’s origin) and the referential orientation. After these two points are set up,

the application places a Gizmo at the defined point and orientation, and the hand coordinates will

then be calculated in relation to that object, obtaining a matching coordinate system to the robot’s.

One of the problem that emerged was the possibility of the user recording movements outside the

robot’s reach. As an effort to solve this problem, after the referential definition, the application

draws the robot workspace using 3D geometric solids according to each robot specifications. If

it happens that the user’s hand steps out of the allowed zone while recording, the recording is

stopped and a warning appears on the screen informing the user to repeat the movement inside the

robot’s workspace. The following stage is the movement recording, where the application draws

a line showing the movement that the user is performing for clarification. The recording is started

and stopped with an air tap movement, avoiding the usage of buttons, and when the movement is

stopped, the user can choose to repeat the movement or to send it to ROS. To be able to make the

connection between the HoloLens 2 and ROS, the library ROS# was used, enabling AR headset to

publish in the ROS topics.

With this, the AR application is only responsible to record and publish the recorded move-

ment to ROS, making it simpler so that it can process the whole list of coordinates faster. The

system responsible to send that coordinates list to the robot using the specific robot languages was

developed ROS package.



Chapter 5

Robots’ Translators for Programming
by Demonstration

This Chapter has the purpose of explaining the development of the translators that transform the

received hand coordinates into the different robot programming languages. As the robots used

for the implementation were the Universal Robots UR5 and the ABB IRB 2600, the translators

developed can generate code for the languages URScript and RAPID. It was opted to develop

these translators in Robot Operating System (ROS).

5.1 Translators

Chapter 4 described how the HoloLens 2 sends the hand coordinates of the recorded movement to

a ROS node, which consists in publishing a vector in a specific topic (/HLposition). Additionally,

the application publish in the ROS topic /HLstatus the program status. This way it is possible

to know when the document needs to be initialized and closed. Therefore, all the information

needed to create the robot programs is being published in two different topics. In that sense, a

ROS package was created to host the translators’ programs.

Two different programs were implemented, one for each robot programming language which

needed to be generated (URScript and RAPID). Although the structure of both has some similar-

ities, two subscribers for each topic and the corresponding callback were created. One subscribes

to the program status, which receives a string message from the ROS package std_msgs, and then

initiates or closes the file. On the other hand, the second one subscribes to the topic that receives

the hand coordinates, which receives a Vector3 message from the ROS package geometry_msgs.

This coordinates then need to be translated to the robot programming language. There was one

additional adjustment to be done to the coordinates, because in HoloLens 2 application the coor-

dinate system was defined to have the X axis pointing upwards (Figure 5.1a), whereas the robots’

coordinate system have the Z axis pointing upwards (Figure 5.1b). Thereby, the coordinates were

55
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matched as shown in Equation 5.1, where a rotation matrix is applied between both referentials

(Figure 5.1 represents that matching graphically).xrobot

yrobot

zrobot

=

0 1 0

0 0 1

1 0 0


xHoloLens

yHoloLens

zHoloLens

 (5.1)

(a) AR application coordinate system. (b) Robots’ coordinate system.

Figure 5.1: Coordinate system comparison.

Figure 5.2 represents the sequence of steps that the C++ programs follow to translate the co-

ordinates into the robot programming language. First, when the ROS topic /HLstatus receives

the value start_doc, the document is initialized in the C++ ROS node. Then, when the topic

/HLposition starts receiving the hand coordinates recorded, the program adds them to the docu-

ment with the adjustments explained previously. Finally, when the topic /HLstatus receives the

value send_doc, the document is finalized and closed. This document generation has some minor

differences according to the robot that is programming, which will be explained in the following

sections.

Figure 5.2: Document generation sequence.

5.1.1 Universal Robots UR5

Firstly, to demonstrate the concept of this project, the program was developed for the Universal

Robots UR5, for being a collaborative robot. The robot has a teaching pendant (Figure 5.3) which

works as the interface for the user. In fact, through that the robot can be initiated, manipulated,

programmed (through an implemented program or by the user teaching it) and disconnected. For
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the teaching method there is a button behind it that, when clicked, the user is able to manipulate

the robot freely.

Figure 5.3: UR5 teaching pendant.

It is possible to control this robot through different levels, namely, the Graphical User-Interface

Level, the Script Level and the C-API Level [114]. The method chosen was the Script program-

ming because it would enable the connection between ROS and the UR5 controller through a

TCP/IP socket. Therefore, the host name and port had to be specified, the first is the IP address

shown in the robot’s teaching pendant, while the second was 30002. The programming language

used was URScript, and the program needs to be declared as a function without parameters.

As the desired process was to move the robot’s end-effector to the received coordinates, repli-

cating the user’s hand movements, the function used in the URScript program was movel. This

function moves the end-effector to the specified position linearly in tool-space, and it takes the

following variables as arguments:

• Target pose, which is constituted by the x, y and z coordinates in meters and the rotations in

those axis (rx, ry and rz). As in this project the orientation was not considered, the values

chosen for the rotations were ones that resulted in a straight position on the end effector,

being 2.2, 2.2 and -0.3, respectively. While the position coordinates were the ones received

in the /HLposition topic, but with the adjustments explained previously.

• Tool acceleration, in meters per squared seconds.

• Tool speed, in meters per second.

• Time, which is movements duration and is represented in seconds. This parameter was not

used for this application.

• Blend radius, which is the tolerance in which the robot’s control assumes that the end-

effector reached its location, and is represented in meters. This feature enabled the robot’s

movement to be smoother, because it was not required a high level of precision so it did



Robots’ Translators for Programming by Demonstration 58

not need to stop at every point. The value used in this parameter was 0.01 meters, but it is

dependable of the application in which the robot will be working.

When using this function, the programmer can either choose to define the end-effector’s ve-

locity or the time in which the movement must be executed. In this case, it was opted to use

the velocity instead of the time. All the parameters’ values can be adapted for the application in

which the robot is going to work, this way the robot’s movement can be adjusted and its speed

increased or decreased accordingly. Appendix A.1 shows an example of a program generated by

the ROS nodes with the coordinates recorded by the AR application to program UR5, using the

programming language URScript.

5.1.2 ABB IRB 2600

The industrial robot ABB IRB 2600, like it was previously mentioned in Section 4.3.1, is heavier

and bigger in comparison to UR5. Moreover, as it is not a collaborative robot, it does not have

strength and pressure safety sensors. One of the critical issues was controlling the robot’s speed,

as it is much faster than a collaborative robot. The controller mode of the robot was defined

as semi-manual, meaning that the speed would be automatically reduced to half and the robot

would only move when the user was pressing a button on its teaching pendant; the moment the

user let loose the button, the robot would stop. Additionally, when executing the program, in the

teaching pendant, the speed was defined to be 50%, consequently, in total the speed was 25% of

its programmed value. These security measures were necessary for the testing steps, but when the

programs are correctly verified, the robot’s velocity can be increased accordingly to the application

requirements.

This robot has a teaching pendant used to control the robot, which is represented in Figure 5.4.

This device can be used to, among other features, move the robot using the integrated joystick,

create and execute programs, and load programs from a USB stick which can be inserted in the

device’s lower right corner.

Figure 5.4: ABB IRB 2600 teaching pendant.
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The language used to program this robot was RAPID, as it is a high-level programming lan-

guage used to control ABB industrial robots. The generated file that contains the program has to

be initialized, declaring the module and invoking the main function and then finalized.

The function used to move the robot to the desired positions was MoveL, which moves the tool

center point linearly to a given target, and it takes as arguments the variables shown below [115].

• ToPoint, which has the data type robtarget, and provides the target point of the robot and the

external axis. This variable is defined by four different arrays:

1. The x, y and z vector, which represent the robot’s target position in millimeters, from

the recorded movement by the HoloLens 2 application.

2. The quaternion q1, q2, q3 an q4, which represent the orientation. As in this project the

robot’s orientation was not considered, this vector was chosen so that the end-effector

was in a straight position, thereby forcing the quaternion (0.5, -0.5, 0.5, 0.5).

3. The robot configuration for axis 1, 4, 6 and external, which was also forced to be a

fixed value (1,0,-1,1). This value was obtained by the execution of several experiments

moving the robot with the joystick.

4. The configuration of the external joints angles, it is possible to control six external

joints by default, but in this case the value of this array was 9E+9 in all six positions,

which the robot would then disregard.

• Speed, which represents the velocity of the tool center point in millimeter per second. Alter-

natively to the speed input, it can be also specified the time in which the robot should move,

although in this project was not used.

• Zone, which defined the accuracy in millimeters of the robot’s tool center point.

• Tool, which specifies the tool in use when the robot moves, the tool center point is then

moved to the target position.

Appendix A.2 shows an example of a program generated by the ROS nodes with the coordi-

nates recorded by the AR application to program ABB IRB 2600, using the programming language

RAPID. This file, which has the extension .mod, is the one which will be generated in ROS and

contains the RAPID code to program the robot. Additionally, a file with the extension .pgf has to

be created in the same folder, because it is this file that will load the created module in the robot.

Basically, it consists in a xml file that, inside the Program tags, declares the created module within

the tag Module.

5.2 Transferring of the Program to the Robots

In the previous Section it was explained how the code was built, thereby, in this one, it will be

clarified how each program was generated and sent to the robot. It is important to mention that

this process was different for each robot, as they have different characteristics.



Robots’ Translators for Programming by Demonstration 60

In the case of Universal Robots UR5, the method chosen to communicate with the robot was

through a TCP/IP socket. In that sense, the ROS C++ program responsible for generating the

code to program UR5, when initiated, opens a socket with the IP address displayed in the teaching

pendant network window. After the socket is opened, the ROS node initiates the subscribers

and, when it receives the signal to initiate the coordinates’ translation (message in the ROS topic

/HLstatus), it begins writing to a vector the program’s initialization. After that, as soon as the

coordinates start to be subscribed, the program saves them along with the other parameters to a

string stream, and then that stream string is inserted in the vector. Finally, when the ROS node

receives the signal to close the document, it is written in the vector the program ending and the

function write sends the vector to the robot through the opened socket. After sending it, the vector

is cleared and the node is ready to receive another program. Figure 5.5 illustrates the connection

between the ROS node and the robot.

Figure 5.5: Program dispatch to UR5.

On the other hand, for the industrial robot ABB IRB 2600, the method to transfer the program

to the robot was through a USB stick. For that to be possible, the ROS C++ node had to build

a document with the generated code. When the signal to close the document was received, the

RAPID program would be finalized and the document closed, allowing the ROS node to be ready

to start generating another program. By this point, the program was ready to be added to the USB

stick, and then inserted in the robot’s teaching pendant, where the program would be loaded and

then executed. For safety, as the industrial robot does not have strength and pressure sensors,

the robot would only move if the user was pressing a button in the teaching pendant. Thereby,

if any unexpected situated was to occur, the user would only need to release the button and the

robot would stop immediately. Figure 5.6 illustrates the connection between the ROS node and

the robot.

Figure 5.6: Program dispatch to ABB IRB 2600.
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5.3 Specification of the Software used

As the translators were developed in ROS, a Virtual Machine with an Ubuntu operating system

was used to execute them. Some adjustments to the virtual machine network needed to be set so

that it could communicate to external devices, the HoloLens 2 and the robots. Namely, the addition

of the two adapters listed below:

• Adapter 2 set to Host-only Adapter.

• Adapter 3 set to Network Bridge Adapter.

It is also possible to install Ubuntu as a dual boot, allowing the computer to have two operating

systems, avoiding the need to install the virtual machine. The list below represents the software

used for this project:

• Oracle Virtual Box with Ubuntu 18.04 distribution.

• ROS Melodic was the ROS version used to implement the translators.

• The ROS package rosbridge_server was utilized to make the connection between the HoloLens

2 and ROS.

5.4 Summary

This ROS package was developed to receive the coordinates list of the recorded movement by the

AR application, translate those coordinates for the specific robot language in use, and then sent it

to the robot for it to perform the desired trajectory.

The implemented translators are able to transform the list of coordinates to the URScript lan-

guage for the Universal Robots UR5, and to RAPID language for the ABB IRB 2600. The function

used to move the robot in both situations was the linear movement (movel) for simplicity. There-

fore, the following parameters were given as arguments: the target point, the orientation (which

in this case is not considered, so it was written a fixed value), the velocity and acceleration. Ad-

ditionally, in order to enable a smoother movement, a parameter was added to define the robot’s

tolerance towards the target position.

At last, the program generated by the translators had to be sent to the robots. For the UR5,

the method used was to forward the program via socket directly to the robot’s controller using the

IP address available in the robot’s teaching pendant. As UR5 is a collaborative robot, this method

was considered the most appropriate one, whereas for the industrial robot, ABB IRB 2600, the

method used was quite different. In fact, the ROS package generates a RAPID program and then

it is inserted in the robot teaching pendant through a USB stick. This is due to the fact that as it is

an industrial robot, some security measures needed to be implemented (the user needs to always

be holding the teaching pendant).
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Tests and System Validation

The primary aim of this Chapter is to delineate the experiments performed to test the developed

system and validate it. Therefore, the experiments were tested in UR5 and ABB IRB 2600, to

evaluate if the system worked not only in a collaborative robot, but also in an usual industrial one.

6.1 Experiments

As the main objective of these experiments was to demonstrate the concept, it was opted to draw

geometric figures. This way it would be easy to understand that the robot was, in fact, replicat-

ing the movement or not. The geometric figures chosen were ones with vertices that would be

easy to identify, for example, square/rectangle and triangle. The following sections (6.1.1 and

6.1.2) describe in more detail the methodology of each experiment in each robot. The circle was

not included in these experiments because it could be ambiguous, due to its lack of vertices. In

the following link1 it is displayed a video illustrating the experiments performed; which will be

explained in further detail in the subsequent sections.

In addition with these experiments, it was tested also the case where the user would record a

path outside the robot’s workspace, what would be impossible for the robot to replicate. In these

cases, the recording was automatically stopped by the application, the workspace turned red and

a popup warning appeared informing the user to restart the recording and always stay within the

robot’s defined workspace. This experiment on UR5 is represented in Figure 6.1, where in Figure

6.1a the path recording is about to exit the robot’s workspace, and in Figure 6.1b the recording was

stopped because it was detected that the user’s hand got out of the defined workspace. Neverthe-

less, despite not being represented, this experiment was also tested in the industrial robot. Thereby

obtaining similar results.

1https://youtu.be/joV-4uArWDw
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(a) Path recording. (b) Popup warning and recorded stopped.

Figure 6.1: Path recording outside the robot’s workspace.

6.1.1 UR5

The materials needed to perform the tests in UR5 are the following:

• A computer to run the developed ROS package;

• The HoloLens 2 with the developed application installed and configured with the IP address

of the computer which is running the ROS package;

• The robot UR5 turned on and connected to the same network as the computer. This can be

accomplish by two different methods:

– Connecting the robot directly to the computer through an Ethernet cable, which would

force the robot to be connected to the same network as the computer;

– Connecting the robot to the laboratory network through an Ethernet cable and then

connecting the computer to that same network through WiFi or Ethernet cable. This

method can enable the operator to program the robot without being next to the robot.

In fact, as long as they are connected to the same network, they can even be in different

rooms.

Both methods to connect to the network were tested, but due to a possible overload on the

laboratory network, the tests were developed with the robot connected directly to the computer

to avoid unexpected disconnections. Before performing the tests, it was important to define the

coordinate system of the AR application. It does not need to be defined in a particular place,

because it shows the referential frame and the robot workspace for the user to be aware of the

space. Nevertheless, it was opted to place a table next to the robot and define the application’s

coordinate system on top of it. This way, the coordinate system (from the robot and application)

would be side by side (Figure 6.2).

When the configurations are all set and the ROS node developed to send the program to UR5

running, the user can record the path that the robot will then replicate. The following list sums up

the methodology described:

1. Run the ROS bridge node in a terminal;

2. Build and initiate the AR application with the IP address of the computer;
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Figure 6.2: UR5 coordinate system definition.

3. Define the coordinate system in the AR application;

4. Connect the robot to the same network as the computer’s;

5. Run in another terminal the ROS node to send the program to UR5, after inserting in the

code the robot’s IP address;

6. Start recording the paths for the robot to replicate.

The acceleration, velocity and the blend radius inserted in the program alongside the recorded

coordinates were the same for all the experiments (0.01, 0.5 and 0.1, respectively), as these were

not critical features for these experiments. Although, they can be altered accordingly to the robot’s

application, specially the blend radius consistently to the accuracy desired to achieve.

The first experiment on UR5 was drawing a triangle, for being easy to detect if it was being

correctly performed (three vertices and three edges) - Figure 6.3a. Figures 6.3b to 6.3e show the

different moments where the robot reached a vertex. The blue circles numbered and the orange

arrows were added to mark the previous vertices reached by the robot, for a easier understanding

of the movement through the images.

Additionally, another experiment was performed: a square. Figure 6.4 shows the path drawing

in the AR application (Figure 6.4a) and the different moments where the robot reached each vertex

(Figures 6.4b to 6.4f).

6.1.2 ABB IRB 2600

The materials needed to perform the tests in ABB IRB 2600 are the following:

• A computer to run the developed ROS package;

• The HoloLens 2 with the developed application installed and configured with the IP address

of the computer which is running the ROS package;

• The robot ABB IRB 2600 turned on (controller mode: semi-manual for safety);
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(a) Path drawing in HoloLens 2.

(b) Robot at initial point. (c) Robot at second point.

(d) Robot at third point. (e) Robot at final point.

Figure 6.3: UR5 path execution (triangle).
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(a) Path drawing in HoloLens 2.

(b) Robot at initial point. (c) Robot at second point.

(d) Robot at third point. (e) Robot at fourth point. (f) Robot at final point.

Figure 6.4: UR5 path execution (square).
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• A USB stick to transfer the generated RAPID program to the robot.

The AR application is exactly the same as the one used in UR5, therefore, the ROS bridge

node has to be initiated before the AR application for a successful connection. In this case, the

generated program in the ROS node is not sent directly to the robot, it has to be transferred through

a USB stick. There are some alternative methods that could be implemented in the future, namely,

through network connections (it was not implemented because it was not considered to be a crucial

step). The following list sums up the methodology necessary to perform these experiments:

1. Run the ROS bridge node in a terminal;

2. Build and initiate the AR application with the IP address of the computer;

3. Define the coordinate system in the AR application;

4. Run in another terminal the ROS node to send the program to ABB IRB 2600;

5. Start recording the paths for the robot to replicate;

6. When the recording is finalized, transfer the generated program to a USB stick;

7. Insert the USB stick in the robot’s teaching pendant and load the program;

8. Initiate the program holding the teaching pendant button to enable movement in the robot.

The speed, zone and tool inserted in the generated program alongside the recorded coordinates

were the same for all experiments (v200, z50 and toolSprayGun, respectively), as these were not

critical features for these experiments. Those parameters were chosen because they were already

configured in the robot’s controller, thereby simplifying the whole process. It is worth mention

that the velocity that the robot would actually move was 25% of what was introduced because

of the safety measures. Nevertheless, these parameters can be altered accordingly to the robot’s

application, especially the velocity and the zone (consistently to the accuracy desired).

The first experiment on ABB IRB 2600 was drawing a triangle, for being easy to detect if

it was being correctly performed (three vertices and three edges). Figures 6.5a to 6.5d show the

different moments where the robot reached a vertex. The blue circles numbered and the orange

arrows were added to mark the previous vertices reached by the robot, for an easier understanding

of the movement through the images.

Additionally, another experiment was performed: a rectangle. Figure 6.6 shows the different

moments where the robot reached each vertex (Figures 6.6a to 6.6e).

To verify that the path drawing can be performed in a three-dimensional space and not only in

a plane, a new experiment was performed to illustrate that feature. Figure 6.7a shows the different

directions of the drawing following the three axis. In that sense, a three-dimensional figure was

drawn like the Figure 6.7b. The robot starts in point 1 and moves through the Z axis to point 2;

then, through the Y axis reaches point 3; next, to go to point 4 moves along the X axis; afterwards,

to go to point 5 advances through the Y axis; finally, to go to point 6 proceeds through the Z axis.

Figures 6.7c to 6.7h try to show that three-dimensional drawing.
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(a) Robot at initial point. (b) Robot at second point.

(c) Robot at third point. (d) Robot at final point.

Figure 6.5: ABB IRB 2600 path execution (triangle).
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(a) Robot at initial point. (b) Robot at second point.

(c) Robot at third point. (d) Robot at fourth point. (e) Robot at final point.

Figure 6.6: ABB IRB 2600 path execution (rectangle).



Tests and System Validation 70

(a) Path referential frame. (b) Path sequence.

(c) Robot at initial point. (d) Robot at second point. (e) Robot at third point.

(f) Robot at fourth point. (g) Robot at fifth point. (h) Robot at final point.

Figure 6.7: ABB IRB 2600 path execution (3D solid).
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6.2 Results Discussion

The main objective of these experiments was to demonstrate the concept of programming a robot

by demonstration using AR. After analysing the results of these five experiments, it is possible to

conclude that the goal was achieved with both robots.

Initially the idea was to use only a collaborative robot (the UR5 more specifically), because

of its functionalities, applicability and mainly due to the fact that it was built to work alongside

humans. Although, when that target was accomplished, it was decided to try to implement the

program in an industrial robot (ABB IRB 2600). Currently, at the laboratory, this robot is being

used for another project of programming by demonstration that requires cameras and hardware.

Therefore, it was thought that this could be an alternative to that method, as this project only uses

a headset (HoloLens 2) and a laptop. And, at this point it can be affirmed that it is in fact a possible

and viable alternative, as the results acquired were satisfactory. It was chosen to use robots from

different brands to exhibit the feasible generalization.

For this project to be integrated in the Industry, some precautions have to be made aware. The

parameters used for the velocity and blend radius were considered to be adequate for the purpose

of these experiments. Although, they can and should be adjusted to the application that they will

be integrated. Nevertheless, it is advisable to, first, experiment with these parameters and when it

is verified that the robot is performing well, then they can be adjusted, increasing the velocity and

regulate the blend radius accordingly to the accuracy desired.

6.3 Summary

In order to test the developed system and demonstrate its concept, some experiments were per-

formed in both robots: UR5 and ABB IRB 2600. For an easy verification of the robot’s path exe-

cution, it was opted to draw geometrical figures, more specifically, triangle and square/rectangle.

An additional test to verify that the path could be drawn in a three-dimensional workspace, was

performed in the ABB robot. Furthermore, it was also tested the possibility of the user recording

a path outside the robot’s workspace. The result obtained was expected, in which the application

automatically interrupted the recording and warned the user not to exit the robot’s workspace.

There are some requirements for the experiments to work properly. One of them is having a

computer to run the ROS package developed for this project. Then, the IP address of that computer

needs to be inserted in the AR application. Afterwards, before the initiation of the application, it is

important to launch the ROS bridge in the computer, because the AR application when started will

automatically try to connect to ROS. Moreover, in the case of UR5, it is important that the robot

and the computer are connected to the same network, because the program is sent directly to the

robot. The following step is to define the coordinate system in the application, it does not require

several precautions. Mainly because, when finalized, it shows the defined referential frame, so

that the user can be oriented. Finally, the user records the movements and the program is sent to
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the robot for replication. In the case of the industrial robot, the generated program is copied to a

USB stick and transferred to the robot’s teaching pendant where it is loaded and launched.

Analysing the five experiments carried out, it was concluded that the system had the desired

performance. In fact, in all of them the robots were able to successfully replicate the path drawn

by the user in the AR application. As a result of the satisfactory results acquired, the system de-

veloped is proved to enable a user to program a robot by demonstration using Augmented Reality

technology.



Chapter 7

Conclusions and Future Work

The main objective of this Chapter is to sum up the work developed and verify that the proposed

objectives were accomplished. Furthermore, some suggestions on future improvements to this

project will be made in order to enhance the developed product.

7.1 Conclusions

The prime objective of this dissertation was to promote a better interaction between machines and

humans, so that it could lead to less, better, and easier training, a safer environment for the operator

and the capacity to solve problems quicker. In that sense, it was proposed to develop a system that

would provide the operator without coding knowledge, a way to program robots using Extended

Reality technologies. Therefore, this thesis proposed a case study where the operator would use a

HoloLens 2 device to record movements, and then the robot would replicate those paths.

As an introductory stage to this dissertation, a study made on the accuracy and repeatability of

two XR devices was made. More specifically, the Augmented Reality device HoloLens 2 and the

Virtual Reality device HTC Vive were used and the results obtained compared to the OptiTrack

software, which was considered to be the ground truth because of its submillimeter accuracy.

For the HoloLens 2 the tracking object was the user’s hand, whereas for the HTC Vive was the

handheld controller inherit to the system, which was tracked by two base stations that captured

the infrared signals emitted by the headset and the controllers. This factor was the primary reason

for the obtained results, which were that the VR device had an accuracy of less than a centimeter,

while in the AR device it would vary between 1.5 and 3 centimeters. Thereby concluding that the

HTC Vive would be more suitable for applications that require high accuracy.

After this study, the development of the system that would solve the initial problem of pro-

gramming a robot by demonstration was initiated. The system was divided into two different parts:

the AR application that would record the operator’s hand movements, and then the translators that

would transform the recorded path coordinates to the robot language required.

73



Conclusions and Future Work 74

The AR application had the primary goal of providing the user with a simplistic and easy-

to-use application without distractions. In that sense, the interaction with the interface is made

by hand gestures and popup windows, avoiding the use of buttons that could confine the user to

a specific zone. When the application is initiated, the first thing that the user has to choose is

the robot which intends to program: UR5 or ABB IRB 2600. Then, the user has to define the

coordinate system that will then be used to record the coordinates. This definition aims to increase

the user’s awareness when recording the movement, providing to the user an idea of the robot’s

position and orientation. When the coordinate system is set, the application projects the robot’s

workspace and prevents the user to record movements outside the robot’s reach. Afterwards, the

user can record the path by performing an air tap movement to initiate and terminate the recording

(the gesture can be done with either hand, right or left). With the path recording finalized, the

user can choose to record again or send to the robot. If it chooses to send it, the list of recorded

coordinates is sent to the translators, which were implemented in ROS.

Depending on the robot that the user wants to program, the translators work in slightly dif-

ferent ways. In the case of UR5, the translator receives the commands through ROS topics (the

initialization signal, the coordinates, and termination signal), generates a URScript program with

the coordinates received and automatically sends it to the robot. The moment the robot receives

the program, it starts performing the recorded path. On the other hand, in the case of ABB IRB

2600 (industrial robot), the translator also receives the commands through ROS topics (the initial-

ization signal, the coordinates, and termination signal), and generates a RAPID program, the user

has to transfer that program to a USB stick and load it in the robot’s teaching pendant. As this

robot is not a collaborative robot, it does not have strength and pressure sensors, thereby requiring

additional safety measures; one of them the need to hold a button in the teaching pendant for the

robot to move. This way, if some unexpected movement was to happen, the user would only have

to get that button loose and the robot would stop moving.

In order to test the developed system and to validate it, some experiments were made to demon-

strate the concept proposed initially. In that sense, it was opted to draw geometric figures, because

it would be easy to verify if the robot was able to replicate the path. Therefore, the chosen paths

were a triangle, square/rectangle, and a three-dimensional solid to test that the path drawing could

be done in a 3D space. These experiments were considered successfully in both robots, as they

were able to replicate the recorded path. It is worth mention that the orientation and velocity im-

posed in this experiments were always the same, although that can be altered accordingly to each

robot’s application. Additionally, it was also tested the case where the user would try to record a

path outside the robot’s workspace, which was immediately interrupted and the user had to restart

the recording.

The obtained results are able to demonstrate the concept of this project, thereby enabling an

operator to program a robot by demonstration using XR technology. In this project were used

two robots, a collaborative and an industrial one, nevertheless the application was built to easily

add new ones. For that, the programmer only needs to insert the robot’s parameters to define its

workspace, and build the correspondent translator. If this project was to be integrated in Industry,
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some remarks had to be considered regarding the robot’s path execution. Namely, the robot’s

speed and blend radius that was hard-coded for these experiments. Accordingly to the robot’s

application, the speed can be increased and the blend radius adjusted to the desired accuracy of

the path execution.

7.2 Further Work

Although the proposed objectives for this project were all accomplished, there is always room for

improvement. In that sense, this section intends to enumerate possible improvements to enhance

the developed product for a better user experience and simplicity.

In fact, the first simple improvement that could be implemented is the rate of the coordinate

recording. At this point the programs records the coordinates at every frame, but it could be

simplified to record at a fixed rate and a more far-between sample acquisition. As a matter of fact,

this sampling rate could even be adjusted accordingly to the application in which the system will

be applied.

One possible upgrade could be to project an arrow in the headset indicating the next robot’s

movement. This way the operator would be able to anticipate possible reactions and feel more

comfortable alongside the robot.

A possible addition that can be integrated is to consider the hand orientation when recording.

As it was explained, for this case it was only considered the position, so the usage of the hand’s

orientation would make the range of possible applications of the product wider. For example,

enabling it for pick and place applications where some objects require specific movements to be

executed. Following that example of a pick and place application, it would also be a great addition

the possibility of controlling the robot’s end-effector.

Another improvement that would enhance the usability of the whole system would be to create

the possibility of opening a socket for the transference of the generated program to the industrial

robot. Although the same cautions would have to exist because this type of robot was not design

to specifically work alongside humans. But this addition would spare the use of an USB stick to

load the program in the robot.

Furthermore, the possibility of cutting out the intermediary of the whole process, ROS in this

case, would simplify the user experience for an operator without any programming knowledge.

In order to accomplish that, the translators would have to be implemented in the AR application

along with the sockets to communicate with the robots. These additions could slightly slow down

the application, but the advantages that it would provide are more significant. The main advantage

is the fact that the system can work only with the HoloLens 2 and the robots, avoiding the use of

an external computer.
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Appendix A

Examples of Generated Programs

A.1 URScript program for UR5

1 def myProg():

2 movel(p[0.324881,0.118973,0.253622, 2.2, 2.2, -0.3], a=0.01, v=0.5, r=0.1)

3 movel(p[0.324776,0.117087,0.252939, 2.2, 2.2, -0.3], a=0.01, v=0.5, r=0.1)

4 movel(p[0.324623,0.115607,0.252753, 2.2, 2.2, -0.3], a=0.01, v=0.5, r=0.1)

5 movel(p[0.324372,0.113685,0.252663, 2.2, 2.2, -0.3], a=0.01, v=0.5, r=0.1)

6 movel(p[0.324167,0.112923,0.252495, 2.2, 2.2, -0.3], a=0.01, v=0.5, r=0.1)

7 movel(p[0.324629,0.11191,0.252825, 2.2, 2.2, -0.3], a=0.01, v=0.5, r=0.1)

8 movel(p[0.324933,0.110681,0.252646, 2.2, 2.2, -0.3], a=0.01, v=0.5, r=0.1)

9 movel(p[0.324901,0.108994,0.252447, 2.2, 2.2, -0.3], a=0.01, v=0.5, r=0.1)

10 movel(p[0.32482,0.108482,0.252373, 2.2, 2.2, -0.3], a=0.01, v=0.5, r=0.1)

11 movel(p[0.324402,0.107297,0.25274, 2.2, 2.2, -0.3], a=0.01, v=0.5, r=0.1)

12 movel(p[0.324345,0.105897,0.252791, 2.2, 2.2, -0.3], a=0.01, v=0.5, r=0.1)

13 movel(p[0.324148,0.104833,0.252854, 2.2, 2.2, -0.3], a=0.01, v=0.5, r=0.1)

14 movel(p[0.323995,0.103877,0.252768, 2.2, 2.2, -0.3], a=0.01, v=0.5, r=0.1)

15 movel(p[0.323774,0.102096,0.252969, 2.2, 2.2, -0.3], a=0.01, v=0.5, r=0.1)

16 movel(p[0.323476,0.100437,0.253016, 2.2, 2.2, -0.3], a=0.01, v=0.5, r=0.1)

17 movel(p[0.323117,0.0981439,0.252619, 2.2, 2.2, -0.3], a=0.01, v=0.5, r=0.1)

18 movel(p[0.322919,0.0972181,0.252609, 2.2, 2.2, -0.3], a=0.01, v=0.5, r=0.1)

19 movel(p[0.322735,0.0955088,0.252611, 2.2, 2.2, -0.3], a=0.01, v=0.5, r=0.1)

20 movel(p[0.322191,0.0931087,0.252142, 2.2, 2.2, -0.3], a=0.01, v=0.5, r=0.1)

21 movel(p[0.322041,0.0912494,0.251768, 2.2, 2.2, -0.3], a=0.01, v=0.5, r=0.1)

22 movel(p[0.321888,0.0905556,0.251769, 2.2, 2.2, -0.3], a=0.01, v=0.5, r=0.1)

23 movel(p[0.321392,0.0881638,0.251444, 2.2, 2.2, -0.3], a=0.01, v=0.5, r=0.1)

24 movel(p[0.321029,0.0861092,0.250973, 2.2, 2.2, -0.3], a=0.01, v=0.5, r=0.1)

25 movel(p[0.320718,0.0844463,0.250728, 2.2, 2.2, -0.3], a=0.01, v=0.5, r=0.1)

26 movel(p[0.320329,0.0827959,0.250749, 2.2, 2.2, -0.3], a=0.01, v=0.5, r=0.1)

27 movel(p[0.32023,0.0806908,0.250644, 2.2, 2.2, -0.3], a=0.01, v=0.5, r=0.1)

28 end
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A.2 RAPID program for ABB IRB 2600

1 MODULE MainModule

2 PROC main()

3 MoveL [[391.112,639.217,820.583],[0.5,-0.5,0.5,0.5],[1,0,-1,1],[9E+09,9E

+09,9E+09,9E+09,9E+09,9E+09]], v200, z50, toolSprayGun;

4 MoveL [[390.524,639.597,821.413],[0.5,-0.5,0.5,0.5],[1,0,-1,1],[9E+09,9E

+09,9E+09,9E+09,9E+09,9E+09]], v200, z50, toolSprayGun;

5 MoveL [[389.823,640.47,822.018],[0.5,-0.5,0.5,0.5],[1,0,-1,1],[9E+09,9E

+09,9E+09,9E+09,9E+09,9E+09]], v200, z50, toolSprayGun;

6 MoveL [[389.799,640.498,822.212],[0.5,-0.5,0.5,0.5],[1,0,-1,1],[9E+09,9E

+09,9E+09,9E+09,9E+09,9E+09]], v200, z50, toolSprayGun;

7 MoveL [[389.423,640.83,822.799],[0.5,-0.5,0.5,0.5],[1,0,-1,1],[9E+09,9E

+09,9E+09,9E+09,9E+09,9E+09]], v200, z50, toolSprayGun;

8 MoveL [[389.129,641.283,822.963],[0.5,-0.5,0.5,0.5],[1,0,-1,1],[9E+09,9E

+09,9E+09,9E+09,9E+09,9E+09]], v200, z50, toolSprayGun;

9 MoveL [[388.838,641.971,823.035],[0.5,-0.5,0.5,0.5],[1,0,-1,1],[9E+09,9E

+09,9E+09,9E+09,9E+09,9E+09]], v200, z50, toolSprayGun;

10 MoveL [[388.8,642.153,823.344],[0.5,-0.5,0.5,0.5],[1,0,-1,1],[9E+09, 9E

+09,9E+09,9E+09,9E+09,9E+09]], v200, z50, toolSprayGun;

11 MoveL [[388.293,642.551,823.318],[0.5,-0.5,0.5,0.5],[1,0,-1,1],[9E+09,9E

+09,9E+09,9E+09,9E+09,9E+09]], v200, z50, toolSprayGun;

12 MoveL [[387.602,642.846,823.106],[0.5,-0.5,0.5,0.5],[1,0,-1,1],[9E+09,9E

+09,9E+09,9E+09,9E+09,9E+09]], v200, z50, toolSprayGun;

13 MoveL [[387.333,643.37,823.235],[0.5,-0.5,0.5,0.5],[1,0,-1,1],[9E+09,9E

+09,9E+09,9E+09,9E+09,9E+09]], v200, z50, toolSprayGun;

14 MoveL [[386.47,643.829,823.388],[0.5,-0.5,0.5,0.5],[1,0,-1,1],[9E+09,9E

+09,9E+09,9E+09,9E+09,9E+09]], v200, z50, toolSprayGun;

15 MoveL [[386.404,643.936,823.491],[0.5,-0.5,0.5,0.5],[1,0,-1,1],[9E+09,9E

+09,9E+09,9E+09,9E+09,9E+09]], v200, z50, toolSprayGun;

16 MoveL [[385.666,644.098,823.755],[0.5,-0.5,0.5,0.5],[1,0,-1,1],[9E+09,9E

+09,9E+09,9E+09,9E+09,9E+09]], v200, z50, toolSprayGun;

17 MoveL [[384.868,644.424,824.006],[0.5,-0.5,0.5,0.5],[1,0,-1,1],[9E+09,9E

+09,9E+09,9E+09,9E+09,9E+09]], v200, z50, toolSprayGun;

18 MoveL [[383.876,644.778,824.307],[0.5,-0.5,0.5,0.5],[1,0,-1,1],[9E+09,9E

+09,9E+09,9E+09,9E+09,9E+09]], v200, z50, toolSprayGun;

19 MoveL [[383.655,645.006,824.483],[0.5,-0.5,0.5,0.5],[1,0,-1,1],[9E+09,9E

+09,9E+09,9E+09,9E+09,9E+09]], v200, z50, toolSprayGun;

20 MoveL [[382.358,645.048,824.789],[0.5,-0.5,0.5,0.5],[1,0,-1,1],[9E+09,9E

+09,9E+09,9E+09,9E+09,9E+09]], v200, z50, toolSprayGun;

21 MoveL [[381.234,645.225,824.92],[0.5,-0.5,0.5,0.5],[1,0,-1,1],[9E+09,9E

+09,9E+09,9E+09,9E+09,9E+09]], v200, z50, toolSprayGun;

22 MoveL [[379.95,645.407,824.975],[0.5,-0.5,0.5,0.5],[1,0,-1,1],[9E+09,9E

+09,9E+09,9E+09,9E+09,9E+09]], v200, z50, toolSprayGun;

23 ENDPROC

24 ENDMODULE
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