
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Online Machine Learning-enabled
Network Intrusion Detection

Tiago Miguel Pereira Ribeiro

MASTER DISSERTATION

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Ricardo Santos Morla

Co-Supervisor: Carlos Novo

July 20, 2021

© Tiago Miguel Pereira Ribeiro, 2021

Abstract

Nowadays, the number of attackers using encryption as a means of concealing their activity is
growing. Attackers are increasingly using complex and sophisticated systems to obscure their
personal agendas, such as Transport Layer Security (TLS).

The introduction of machine learning into cybersecurity has enabled the detection of traffic
with encrypted malware. Therefore, this tool can be integrated into intrusion detection systems
(IDS). Most intrusion detection systems use a blacklist to determine the existence of malware in
traffic. Machine learning allows new horizons to be opened in intrusion detection.

In particular, the evolution of malware may present itself as an obstacle to common detection
techniques based on blacklisting. The blacklist is a set of rules that allows the detection system to
understand whether the traffic is malignant or benign.

In this thesis we propose to create an architecture that allows the incorporation of machine
learning in an intrusion detection system, and in parallel to use the new technology to improve
the system’s blacklist. This work has as main goal to prove the functionality of the system, and
also to evaluate the performance of machine learning in the presence of traffic evolution in time.
We proceeded to several evaluations and studies in order to draw conclusions about the adopted
architecture, but also to understand and retain knowledge of the evolution of the machine learning
component in the face of the variation of traffic characteristics over time.

The results obtained showed that the adopted architecture allows the learning component to
adapt to the variations of the traffic characteristics.

i

ii

Resumo

Atualmente, o número de atacantes a usar encriptação como meio de ocultação da sua atividade
está a crescer. Os atacantes recorrem cada vez mais a sistemas complexos e sofisticados para
ofuscar as suas agendas pessoais, como é exemplo Transport Layer Security (TLS).

A introdução da aprendizagem computacional na cibersegurança permitiu a detecção de tráfego
com malware encriptado. Sendo assim, esta ferramenta poderá ser integrada nos sistemas de de-
teção de intrusão (IDS). Os sistemas de deteção de intrusão, na sua maioria, recorrem a uma lista
de regras para determinarem a existência de malware no tráfego. A aprendizagem computacional
permite abrir novos horizontes na detecção de intrusão.

Em particular, a evolução do malware poderá apresentar-se como entrave para as técnicas de
deteção comuns, baseadas em lista negra. A lista negra é um conjunto de regras que permite ao
sistema de detecção perceber se o tráfego é maligno ou benigno.

Nesta tese propomo-nos a criar uma arquitetura que permita incorporar a aprendizagem com-
putacional num sistema de detecção de intrusão, e em paralelo utilizar a nova tecnologia para
melhorar a lista negra do sistema. Este trabalho tem como principal objetivo comprovar a fun-
cionalidade do sistema, e também avaliar o desempenho da aprendizagem computacional na pre-
sença de evolução do tráfego no tempo. Nós procedemos a várias avaliações e estudos de forma
a retirar conclusões sobre a arquitetura adotada, mas também compreender e reter conhecimento
da evolução da componente de aprendizagem computacional face à variação das características do
tráfego ao longo do tempo.

Os resultados obtidos mostraram que a arquitetura adotada permite que a componente de
aprendizagem se adapte às variações das características do tráfego.

iii

iv

Acknowledgments

First of all I want to thank Professor Ricardo Morla and Co-Supervisor Carlos Novo, from the
Faculty of Engineering University of Porto, for letting me be part of your working group and for
believing in me and in my abilities. I also thank you for all the work meetings held. I also thank
you for the work theme, which always enticed me and helped me to overcome difficulties that
arose.

I also thank RODZ, GÁBz RABZ and POLÉ for keeping up with me during this time of
writing, humhum for all the flashes that POLÉ photographed. For all the lovely smokes that
RABZ loved and for Mr RODZ’s exemplary behaviour at comps.

I thank, Mr. RODZ for all the war days spent at FEUP, as well as confined at home.

To Arminda, I want to express my thanks for all the translation sessions and, above all, for the
backrest that put me to sleep for many years.

I thank, my parents for having provided me the opportunity to have studied in a University, for
having raised me and put up with me in this journey of my life, thank you.

Finally, I thank Cintia, better known as Daniela by the family, for putting up with me even
when I am very annoying XD. For the love that she gives me every day, my many thanks.

Tiago Ribeiro

v

vi

“Try not to become a man of success, but rather try to become a man of value.”

Albert Einstein

vii

viii

Contents

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Problem Description . 2
1.3 Objectives . 2
1.4 Contributions . 2
1.5 Document Structure . 2

2 Literature Review 3
2.1 Intrusion Detection Systems vs. Intrusion Prevention System 3

2.1.1 Intrusion Detection Systems . 3
2.1.2 Intrusion Prevention System . 3

2.2 Malware Command and Control Over TLS . 4
2.2.1 Botnets and Command Control . 5
2.2.2 C2 Malware Traffic Over TLS . 5

2.3 Traffic Detection Using ML . 6
2.3.1 Features . 8
2.3.2 Models . 8
2.3.3 Detection Tasks . 9

2.4 Detection Performance . 10
2.4.1 Learning Performance . 10
2.4.2 Network and Computational Performance 10

2.5 Training with Live Data . 11
2.5.1 Comparison of Offline and Online Training 11

2.6 Conclusion . 13

3 System Description, Environment and Implementation 15
3.1 IDS Vs IPS . 15
3.2 Environment . 16

3.2.1 Place of Operation . 16
3.2.2 Services and Dependencies . 16
3.2.3 Packets-capture . 17

3.3 System Description . 18
3.3.1 Detection Assumptions . 18
3.3.2 Intrusion Detection System . 18
3.3.3 Baseline . 18
3.3.4 ML Component . 22
3.3.5 Acquisition of New Information . 22

3.4 Evaluation of the Impact of ML Training . 23

ix

x CONTENTS

3.5 Testing and Evaluation of the System . 24
3.6 Conclusions . 24

4 Command and Control Traffic Detection 25
4.1 Malware C2 . 25
4.2 C2 Traffic Features . 25
4.3 C2 Traffic Description . 27
4.4 Machine Learning Model . 28
4.5 Machine Learning Modes . 28

5 Offline Learning 31
5.1 Best Classifier . 31

5.1.1 Result . 31
5.2 Influence of the Class Weights . 32

5.2.1 Result . 32
5.3 Non-Incremental Training . 34

5.3.1 Evolution Over the Years . 35
5.4 Incremental Training . 38

5.4.1 Evolution Over the Years . 38
5.5 Conclusions . 42

6 Online Learning 43
6.1 Impact of Different Sequences of Labels . 43

6.1.1 Synthetic Dataset . 44
6.1.2 Comparison of Offline Training with Online Training (synthetic data) . . 44
6.1.3 0’s & 1’s . 46
6.1.4 Conclusions . 49

6.2 Application to the C2 Dataset . 50
6.2.1 Operation with Real Data . 50
6.2.2 0’s & 1’s Tuning . 52
6.2.3 Class Distribution . 55

6.3 Conclusions . 57

7 Conclusions 59
7.1 Future Work . 59

A Intrusion Detection System 61
A.1 Full Description Tstat Feature Set . 61
A.2 Code . 66
A.3 Testing . 67
A.4 Distribution Studies 0’s and 1’s per Year . 69
A.5 Limitation of 0’s and 1’s . 70

References 75

List of Figures

2.1 Intrusion Detection System logical topology [1] 4
2.2 Intrusion Prevention System logical topology and usually physical too [1] 4
2.3 The life cycle of a botnet . 5
2.4 Differences between internet users accessing normal servers and C2 servers [2] . 6
2.5 Certificate from TLS Malware C2 . 7
2.6 Traffic Detector Composition . 7
2.7 TLS flow metadata image format . 8
2.8 Representation of a simplied TLS handshake and application data protocols. The

feature sets used in this paper [3] are taken from the unencrypted ClientHello
message. Red text represents unencrypted messages, and blue text represents en-
crypted messages. 8

2.9 Visualization of Classes of Traffic [4] . 9
2.10 STA and NIDS performance comparison [5] . 11
2.11 Classical scheme of evaluating a batch algorithm in off-line mode [6] 11
2.12 The process of testing an incremental algorithm in the off-line setting. Noticeably,

only the last constructed model is used for prediction. All data used during training
(xi, yi) is obtained from the training set train. [6] 12

2.13 The online-learning scheme. Data is not split into training- and testing set. Instead,
each model predicts subsequently one example, which is afterwards used for the
construction of the next model. [6] . 12

2.14 Results from experiments. [7] . 13

3.1 Place of operation . 16
3.2 Proposed Solution Architecture . 19
3.3 Program One . 20
3.4 Program Two . 21
3.5 First Program’s Log . 22
3.6 First Program’s Log Scheme . 22
3.7 Second Program’s Log . 22
3.8 Second Program’s Log Scheme . 23
3.9 Program Log Scheme . 24
3.10 Program Two Log Scheme . 24

4.1 Tstat Log Example . 27
4.2 Suricata Log Example . 27
4.3 Non-incremental Offline Training [6] . 29
4.4 Incremental Offline Training [6] . 29
4.5 Online Training [6] . 30

xi

xii LIST OF FIGURES

5.1 Graph decomposition legend (Non-Incremental Training) 35
5.2 Comparison of Precision Score Non-Incremental Training: Evolution of the Clas-

sifier Over the Years . 37
5.3 Comparison of Recall Score Non-Incremental Training: Evolution of the Classi-

fier Over the Years . 37
5.4 Comparison of F1 Score Non-Incremental Training: Evolution of the Classifier

Over the Years . 38
5.5 Graph decomposition legend (Incremental Training) 39
5.6 Comparison of Precision Score Incremental Training: Evolution of the Classifier

Over the Years . 40
5.7 Comparison of Recall Score Incremental Training: Evolution of the Classifier

Over the Years . 41
5.8 Comparison of F1 Score Incremental Training: Evolution of the Classifier Over

the Years . 41

6.1 Precision Score Comparison of Non-shuffled Vs Shuffled Online Training 45
6.2 Recall Score Comparison of Non-shuffled Vs Shuffled Online Training 46
6.3 F1 Score Comparison of Non-shuffled Vs Shuffled Online Training 47
6.4 Graph decomposition legend . 47
6.5 Comparison of Recall Score Incremental Training 48
6.6 Comparison of Precision Score Incremental Training 49
6.7 Comparison of F1 Score Incremental Training 49
6.8 Online Training - 10k Real Shuffled Data . 51
6.9 Online Training - Year 2018 Real No-shuffled Data 52
6.10 CDF F1-score Studies . 55
6.11 Class Distribution Study . 56
6.12 Good year . 57
6.13 Bad year . 57

A.1 Alert Malware . 68
A.2 Log Matrix . 68
A.3 Program’s Log . 68
A.4 Year 2014 . 69
A.5 Year 2016 . 69
A.6 Year 2017 . 70
A.7 Year 2018 . 70
A.8 Study One - 128/32 (0’s/1’s) . 71
A.9 Study Two - 64/32 (0’s/1’s) . 71
A.10 Study Three - 32/32 (0’s/1’s) . 72
A.11 Study Four - 32/16 (0’s/1’s) . 72
A.12 Study Five - 32/8 (0’s/1’s) . 73
A.13 Study Six - 32/4 (0’s/1’s) . 73

List of Tables

2.1 Consistency Statistics of Handshake Field [2] 7

4.1 Flow Characteristics: Tstat Part One . 26
4.2 Flow Characteristics: Tstat Part Two . 26
4.3 Dataset Statistics . 27
4.4 Malware Family Statistics . 28

5.1 Confusion Matrix of the Best Classifier Experience 31
5.2 Metrics Table of the Best Classifier Experience 32
5.3 Confusion Matrix of 1’s at 60% and 0’s at 40% vs 1’s at 40% and 0’s at 60% . . . 33
5.4 Confusion Matrix of 1’s at 80% and 0’s at 20% vs 1’s at 20% and 0’s at 80% . . . 33
5.5 Metrics Table of 1’s at 60% and 0’s at 40% vs 1’s at 40% and 0’s at 60% 34
5.6 Metrics Table of 1’s at 80% and 0’s at 20% vs 1’s at 20% and 0’s at 80% 34

6.1 Confusion Matrix Comparison Offline Vs Online Training 45
6.2 Metrics Table Comparison Offline Vs Online Training 46
6.3 Sequences of 0’s and 1’s . 47
6.4 Confusion Matrix Comparison Offline Vs Online Training with Real Data 50
6.5 Metrics Table Comparison Offline Vs Online Training with Real Data 51
6.6 Table of Studies of the Distribution of 0’s and 1’s 53
6.7 Table of Studies of the Distribution and Evaluation of 0’s and 1’s 54

A.1 Core/Basic TCP Set . 62
A.2 TCP End to End Set . 63
A.3 TCP Options Set . 64
A.4 TCP Layer 7 Set . 65

xiii

xiv LIST OF TABLES

Listings

4.1 Non-Incremental Offline Training . 30
4.2 Incremental Offline Training . 30
4.3 Online Training . 30
5.1 Influence of the Classes Weight . 32
6.1 Creation of Synthetic Dataset . 44
6.2 Creation of Real Dataset . 53
A.1 Creation of TAP interface . 66
A.2 Pcap Replay . 67

xv

xvi LISTINGS

Acronyms and Abbreviations

API Application Programming Interface
WWW World Wide Web
IDS Intrusion Detection System
CIA Confidentiality, Integrity and Availability
NIDS Network Intrusion Detection System
HIDS Host Intrusion Detection System
OISF Open Information Security Foundation
IPS Intrusion Prevention System
TLS Transport Layer Security
SSL Secure Sockets Layer
LAN Local Area Network
WAN Wide Area Network
TCP Transmission Control Protocol
IP Internet Protocol
TAP Terminal Access Point
C2 Command and Control
GAN Generative Adversarial Networks
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure (HTTP over TLS or SSL)
MTA Malware Traffic Analysis
CPU Central Processing Unit
GPU Graphics Processing Unit
ML Machine Learning

xvii

Chapter 1

Introduction

The first chapter of this document includes a brief introduction to the issue of detecting malware’s

Command and Control encrypted traffic. The context and motivation behind this dissertation are

delineated and summarised in a problem description, and then the objectives, contributions and

document structure are presented.

1.1 Context and Motivation

Nowadays, machine learning is increasingly seen to be growing in all existing technologies [8].

The field of cybersecurity is no different, there have been continuous efforts in this direction as

this field is becoming more and more complex [9].

In the field of IDS, there is an extensive range of research in the area of machine learning,

since the increase of this type of technology enhances various opportunities in this system. One of

these is the early detection of new attacks, which the so-called normal systems (the old methods)

did not allow [1]. The introduction of machine learning has begun to allow detection of malware

command and control traffic over TLS. However, the performance and reliability of the detection

system still an unknown subject that has begun to be studied.

Online machine learning introduced in NIDS to control traffic over TLS is a fast-growing

area. This project is captivating since it dominates several areas, as well as presenting a challenge

to engineering. This project explores the optimisation of high-performance service, evolution and

learning techniques [4]. The creation of this project will also fill a gap in the investigation of the

performance over time of systems to detect malware command and control traffic over TLS, as

well as keeping systems more secure.

Therefore, this area is open to new studies and the development of new methods with projec-

tion into the future.

1

2 Introduction

1.2 Problem Description

The main issue is the detection of C2 malware in encrypted traffic. Malware is constantly evolving,

and adopting stealthier C2 architectures to avoid detection by blending in with legitimate traffic.

On the one hand, it is necessary to determine if malware detector is also evolving and adapting to

the evasive tendencies of malware, and design of an architecture that allows the intrusion detection

system to evolve and adapt over time.

1.3 Objectives

The goal of this dissertation is to implement an IDS capable of detecting malware command and

control traffic over TLS and evolve/adapt to the changes of the traffic over time.

In order to do so, this system will include a) a base component that detects TLS flows with

certificates in the blacklist; b) a machine learning component that classifies TLS flows; and c) an

information storage component that stores the information about the TLS flows that allows the

machine learning model to be re-trained and the blacklist of certificates to be updated.

1.4 Contributions

The main contributions of this dissertation are:

1. Implementation of an IDS capable of detecting malware command and control traffic over

TLS and evolve/adapt to the changes of the traffic over the time.

2. Exploring the adaptability of different machine learning methods that help ML models in

changing of malware characteristics.

1.5 Document Structure

Apart from this introduction, this document is divided into the following chapters: Chapter 2 -

Literature Review is presented the technology to be used, as well as approaches and work similar

to the project to be developed; Chapter 3 - System Description, Environment and Implementation

is where the complete description of the system will be made, the environment for which it will be

developed, as well as the solutions applied in the conception of the system; Chapter 4 - Command

and Control Traffic Detection is where the topic of machine learning and the solutions found will

be addressed; Chapter 5 - Offline Learning will cover all studies related to the performance and

evolution of the model over time; Chapter 6 - Online Learning will cover all studies related to the

performance and evolution of the model over time; Chapter 7 - Conclusions discuss the results

obtained in the previous chapters and finally highlight the most important conclusions and present

proposals for future work.

Chapter 2

Literature Review

The introduction of machine learning in IDS architectures has become increasingly popular and

ML technology has grown considerably, especially in the area of malware command and control

traffic [10] . However, the maintenance and updating of ML models is a challenge for IDS and

IPS [7].

2.1 Intrusion Detection Systems vs. Intrusion Prevention System

Technologies like IDS [11] and IPS [1] allow networks to be monitored.

The performance of these detection mechanisms is extremely important, especially under de-

manding computing conditions, at around 10 Gbps. It is necessary to choose wisely the decision

algorithms to maintain the performance at these levels, as also keeping the false positive and false

negative rate low, in order to achieve the best possible product [12].

2.1.1 Intrusion Detection Systems

The IDS has the objective of detecting intrusions in the network, in order to be able to provide

security to the system. The monitors analyse the network and detect any malign activity in the

network, as can be seen in Figure 2.1. If there is any anomaly, they create an alert for the system

admin with detailed information of the problem [13].

2.1.2 Intrusion Prevention System

IPS is much more capable in relation to IDS. IPS not only detects and alerts of an intrusion, but

also eliminates that threat, preventing the system from being affected, as can be seen in Figure 2.2.

IPS analyses all packets and those that are considered malignant are discarded. However, a small

delay is introduced that cannot be avoided because the system has to analyse all the packets and

decide which ones are dropped and which ones pass into the secured network [1].

Nevertheless, it is important to remember that if IPS rules are wrongly implemented, some

safe traffic may be dropped while an IDS simply generates misleading alerts [1].

3

4 Literature Review

Figure 2.1: Intrusion Detection System logical topology [1]

Figure 2.2: Intrusion Prevention System logical topology and usually physical too [1]

2.2 Malware Command and Control Over TLS

Malware is malicious code, which is intended to infiltrate the system in an illicit way to extract

information, gain control or even cause damage to the target [14].

This type of software is often used to steal money. As research and analysis show, bank mal-

ware has caused damage, such as ZEUS, Citadel, Carberp, SpeEye and Soraya [15]. With this

requirement, malware analysis has gained great strength with the aim of minimizing the problems

caused by malware, investing more and more in autonomous detection systems (IDS) [16]. Au-

tonomous detection systems must have an extensive knowledge of threats in order to detect and

alert the administrator. The problem is the taxonomy of attacks is varied and studies show that

IDS identifies only one third of the taxonomy of existing threats. This leads developers to try to

choose the best Datasets to train their MLs in order to get the best possible results [14].

Another problem is that malware is already being developed in a way that goes unnoticed, i.e.

they are already starting to use methods of anti-analysis [17]. However, defenders begun to use

forms of malware detection that are more difficult to violate, thus enabling it to detect malware

that is attempting to recreate legitimate traffic [18].

2.2 Malware Command and Control Over TLS 5

2.2.1 Botnets and Command Control

Botnets are networks formed by computers, called bots. These bots are controlled by botmasters

to perform the desired malignant activities. Experts think that there are approximately 16-25% of

infected computers belong to a botnet [19].

The description of the C2 operation is summarised in Figures 2.3 and 2.4. The first phase of

the attack refers to a malware injection into the host. The second depends on the first injection

in order to be able to download and execute the malware that will force the host to behave like

a bot. Later on, malware establishes a connection with the command and control centre of the

botnet. This is the most delicate part of the operation since this is where connections to C2 can

be detected. The fourth phase is the execution of the task to which the bot has been assigned.

Finally, the last phase is maintenance and update the platform, it is at this moment that the system

is updated in order to add new control tools.

Figure 2.3: The life cycle of a botnet

Botnets represent one of the greatest threats to cybersecurity, therefore led to an increased

effort in the detection of Botnets, this detection is done based on the analysis of the behaviour and

the flow intervals [20].

There are many ways to hide the flows of botnets. However, currently attackers use encryption

tools to hide data from detectors, such as SSL and TLS [10][2]. With this type of attacks, the

selection of the flow characteristics is extremely important, since this will be the material that will

provide to ML algorithm to classify encrypted traffic (TLS) [21].

2.2.2 C2 Malware Traffic Over TLS

The detection of C2 malware traffic over TLS is important as it prevents the creation of botnets.

It also allows breaking the links between the host and the command centre in the most advanced

phases of C2 by identifying and eliminating the respective flows [18].

6 Literature Review

Figure 2.4: Differences between internet users accessing normal servers and C2 servers [2]

The extraction of the correct flow characteristics is extremely important for the classification

of encrypted traffic. Some investigations have already concluded that the metadata of client Hello

packet in TLS handshake has enough information to distinguish flows with malware or benign

traffic [22][23]. In the Table 2.1 are some of the characteristics, that can be evaluated in order

to try to find patterns in communications and try to understand the differences between what is

benign and what contains malware [2].

Conversely, attackers start using free certificates provided by authorities like Let’s Encrypt for

their C2 servers or even using self-signed certificates. Since these are easy and quick to create.

These certificates usually give errors and warnings in web browsers, but since C2 traffic does not

use browsers there is no problem.

Malware authors sometimes use random fields to create the self-signed certificates. This makes

their detection easier, as we can see in the C2 traffic captures, as can be seen in Figure 2.5.

2.3 Traffic Detection Using ML

Traffic detection using ML has several stages [24], as can be seen in Figure 2.6. First one must

capture traffic. Later, the characteristics of the traffic have to be extracted in order to feed the

detection system (ML). These models can classify traffic in defined classes, as can be seen in

Figure 2.9.

2.3 Traffic Detection Using ML 7

Table 2.1: Consistency Statistics of Handshake Field [2]

No. Feature name Benign channel Malicious channel
1 Client hello version 94.09% 93.93%
2 Client hello length 26.43% 57.63%
3 Cipher suite number 16.53% 63.70%
4 Client extension number 27.68% 79.41%
5 Client server name 95.32% 99.49%
6 Client session ticket length 41.11% 68.86%
7 Client key exchange length 28.86% 79.24%
8 Client application layer protocol negotiation length 52.53% 89.73%
9 Client signature algorithm number 51.18% 86.44%
10 Client signature algorithm 48.07% 86.39%
11 Client extended master secret 100% 100%
12 Client supported groups 54.98% 89.11%
13 Client padding length 26.86% 86.90%
14 Server hello version 94.08% 94.55%
15 Server hello length 27.52% 78.11%
16 Server cipher suite 72.77% 89.27%
17 Server session ID length 43.60% 84.63%
18 Server extension number 29.60% 78.62%
19 Certificate number 24.09% 79.24%
20 Server compression method 100% 100%

Figure 2.5: Certificate from TLS Malware C2

Figure 2.6: Traffic Detector Composition

8 Literature Review

2.3.1 Features

Using traffic analysis tools it is possible to extract the necessary characteristics to feed the machine

learning model. In the case [25], they extracted the data described in Figure 2.7. In other case

[3], they extracted the data described in Figure 2.8. In other cases, the authors [2] extract more

characteristics, represented in Table 2.1.

Figure 2.7: TLS flow metadata image format Figure 2.8: Representation of a simplied TLS
handshake and application data protocols. The
feature sets used in this paper [3] are taken from
the unencrypted ClientHello message. Red text
represents unencrypted messages, and blue text
represents encrypted messages.

In the study of extraction of network traffic characteristics [26], the authors use TSTAT, since it

allows to extract information about the flows with extremely efficiency even on a high load traffic.

On other study [23], a random forest classifier feature has been used to determine the model’s

classification criteria, which makes it possible to determine the importance of a feature in classi-

fication. In conclusion, the choice of flow characteristics is very important as it is these that will

feed ML [23]. It is important to choose the ones that have the most impact on the classification

of the flows, this to improve the classification and at the same time not to fill the classifier with

unimportant characteristics. This reduces the quality of the classification as well as reducing the

performance of the classifier system. This is because the rating system will be wasting processor

time on unimportant features in the rating [27].

2.3.2 Models

The study on machine learning classification models is extensive. There are several classifica-

tion models, each one having the objective of optimizing certain characteristics. Each model has

2.3 Traffic Detection Using ML 9

its own classification performance for certain characteristics. Like Linear Regression, Logistic

Regression, Decision Tree, Random Forest, Support Vector Machine, Multi-layer Perceptron [3]

[12].

Another method that started to be used in the feeding of the models is image visualization

[4][28][29]. It started to be used to better organize the characteristics, as well as to take advantage

of the extensive knowledge about the best models for classification of patterns in images, as it is

possible to see in the Figure 2.9. With this, some researchers started to take advantage of this

method to classify traffic and malware.

Figure 2.9: Visualization of Classes of Traffic [4]

2.3.3 Detection Tasks

Machine learning detection systems have several applications in different areas. In addition to

detecting C2, it can be interesting to detect different objects. Such is the case of detecting the type

of application to which that flow belongs [4], Figure 2.9. Another application may be the malware

classification [28], after detecting the existence of malware it is possible to realize what kind of

malware was detected.

The use of the different machine learning applications can allow a better characterization of

the traffic detection as is exemplified above.

10 Literature Review

2.4 Detection Performance

The metrics of performance evaluation of detectors are important to define the effectiveness of the

detection system. This effectiveness is related to high detection rate and low false positive rate, but

it should be remembered that there are other types of evaluation factors such as system security,

memory, energy consumption, throughput, and much more [14].

2.4.1 Learning Performance

The detector at model level is usually evaluated in terms of accuracy that can be defined in terms:

True Positive (TP), True Negative (TN), False Positive (FP) or False Negative (FN). With these

terms it is possible to evaluate the model with different metrics: Overall Accuracy (Eq. 2.1), De-

tection Rates (Eq. 2.2 2.3 2.4 2.5), Precision 2.6, recall, F1 Eq. 2.7, Mcc Eq. 2.8 and much more

[14].

OverallAccuracy =
T P+T N

T P+T N +FP+FN
(2.1)

Sensitivity(akaRecall,TruePositiveRate) =
T P

T P+FN
(2.2)

Speci f icity(akaSelectivity,TrueNegativeRate) =
T N

T N +FP
(2.3)

Fallout(akaFalsePositiveRate) =
FP

T N +FP
(2.4)

MissRate(akaFalseNegativeRate) =
FN

T P+FN
(2.5)

Precision =
T P

T P+FP
(2.6)

F1 =
2T P

2T P+FP+FN
(2.7)

Mcc =
(T P∗T N)− (FP∗FN)√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
(2.8)

2.4.2 Network and Computational Performance

The metrics shown above are intended for the classification component of the detector. The eval-

uation can also be done globally, evaluating the complete system from start to finish, such as:

Packet Loss Ratio (%), Normalised Routing Load (Packets), Average End-End Delay (Seconds),

Average Energy Dissipation (Joules), Malicious Drop (Packets), False Detection (%) and Send

Buffer Drop (Packets) [30].

2.5 Training with Live Data 11

A research done on traffic analysis performances, Figure [5], addressed some features extrac-

tion software in the market such as: Tstat, Bro, Snort and Suricata. This study compared the four

to the level of excitation time, maximum used RAM, I/O rate and average CPU utilisation. It was

concluded that Tstat showed the best results, all with the default settings [5].

Figure 2.10: STA and NIDS performance comparison [5]

2.5 Training with Live Data

There is a great demand for online ML retraining [31]. There are already incremental learning

methods, that are already used to detect this type of traffic [7].

2.5.1 Comparison of Offline and Online Training

In the offline setup a model is created based on a training set. Later, this model classifies a test set

of data. Thus, average accuracy is calculated for data not yet seen by the model, Figure 2.11 [6].

Figure 2.11: Classical scheme of evaluating a batch algorithm in off-line mode [6]

The incremental offline evaluation is somewhat different from the fully offline, as can be seen

in Figure 2.12. The evaluation algorithm processes sequentially the training data instead of access-

ing the training data at once. The process generates multiple models and retrains the model from

the previous model, but only the last model is used to make the evaluation through the test data

classification. This process is better than the fully offline in that it allows re-training the model

from an existing one without having to re-train the whole model. It is very important in Big Data

scenarios, allowing us to continuously build a model that is as accurate as possible [6][7].

Data steams use an online configuration, as can be seen in Figure 2.13. The prediction is done

according to the previously learned model. Later, the correct classification is revealed and then the

loss of the model is calculated, where the model is updated according to the loss value [6] [7].

12 Literature Review

Figure 2.12: The process of testing an incremental algorithm in the off-line setting. Noticeably,
only the last constructed model is used for prediction. All data used during training (xi, yi) is
obtained from the training set train. [6]

The big difference from the previous configuration is that all the models are evaluated in terms

of performance, but each one only predicts the next sample. Furthermore, in this configuration

there is no disjunction between the training and test data, the sample is used initially to test the

model and then to adapt it, while in the others there are different sets of datasets and the test of the

model is done only at the end [6][7].

Figure 2.13: The online-learning scheme. Data is not split into training- and testing set. Instead,
each model predicts subsequently one example, which is afterwards used for the construction of
the next model. [6]

Online accuracy is good for tasks that require an immediate prediction even with few examples

provided as well as learn new behaviours that emerge over time (new malware). We conclude that

online accuracy converges on average faster than offline accuracy [6][7][31].

The experience [7], concludes that both offline and online training, can detect encrypted

anomalies efficiently, Figure 2.14.

2.6 Conclusion 13

Figure 2.14: Results from experiments. [7]

2.6 Conclusion

Malware and C2 have grown and are evolving over time. These types of attacks have looked for

new ways to pass unnoticed by detectors. Many attackers have begun to encrypt their activities

with TLS to make their detection difficult for machine learning detectors.

As a consequence, IDS have started to use different methods from the usual. They started to

adopt machine learning based detectors, since they are much more effective at detecting encrypted

traffic compared to conventional detection methods.

Machine learning began to be used in IDS, led to attackers starting to study ways around ML.

Attackers start adopting stealthier C2 architectures to avoid detection by blending in with legiti-

mate traffic in order to reduce the performance of classifiers. Thus, detection of C2 is becoming

more and more elaborate and difficult. So IDS has to have machine learning methods that over-

come these problems. There is also a great computational pressure on the extraction of the flow

characteristics and their analysis.

Several studies have been carried out on the training of machine learning models, leading to

the appearance of new training methods. However, online learning still has its obstacles [7], it is

necessary to make an extended evaluation of the learning influence on the model.

In short, there is still a need for research in the area of command and control traffic over TLS

detection and generation. As well as finding efficient methods to set up the whole complex online

learning system and evaluate its performance.

14 Literature Review

Chapter 3

System Description, Environment and
Implementation

The normal operation of an IDS relies on rules that are applied to packets and flows in order to

detect intrusion and C2 traffic. Our approach is to add an ML classification system in parallel to

the normal IDS operation. This will allow us to obtain both outputs — those of the IDS rules and

of the ML model.

In this chapter, we will cover the multiple sections of the system, present the design decision

taken throughout the development of the system and then we will demonstrate and discuss the

results.

3.1 IDS Vs IPS

The distinction from IDS concept to IPS is important since the different approaches have different

impacts on the system. IDS analyses the traffic and creates alerts in the presence of malicious

traffic according to the system’s black list, this system does not prevent the communication of

malicious traffic. However, the IPS is similar to the IDS, with the difference that it blocks com-

munications that are considered malicious.

In this thesis, the intrusion detection system was adopted. The IPS blocks malicious com-

munications preventing the collection of these samples, which will be necessary for training the

machine learning model, which is one of the objectives of the thesis. Selecting the IDS will imply

that the analysed network will be vulnerable to malware. However, the application of this IDS

will be for academic purposes and to study the evolution of the computational learning system.

This system will serve for analysts and cybersecurity companies to exploit the machine learning

systems and update their blacklists.

In short, the system will serve to improve intrusion detection systems. The goal is to apply the

acquired knowledge, updated blacklists and detection models to the market of intrusion prevention

systems.

15

16 System Description, Environment and Implementation

3.2 Environment

3.2.1 Place of Operation

Like many IDSs, our system is designed to work between the egress router and the switch of

a local network. The IDS system will segregate the internal network, LAN, and the external

network, WAN, to capture all traffic coming in and out of the local network. Figure 3.1 shows the

location of the IDS in the network. The IDS is designed to only scan TCP packets with TLS (this

IDS is targeted for C2 detection), all others that do not fit the profile will not be scanned. It should

be remembered that packet forwarding will not be affected, there will be no action on them.

Figure 3.1: Place of operation

3.2.2 Services and Dependencies

Our system was deployed on top of Docker, a containerisation tool. This tool allows us to platform

a virtualisation of the entire IDS system. The system virtualisation is an asset to the project since

it introduces a greater compartmentalisation of the services in a system. Docker tool increases the

security of the system since different services work in different environments, also enables reset-

ting/updating/maintaining services in parallel. Therefore, we created a Docker container with all

software, libraries and system configuration files needed. The system was thought and conceived

to be portable to any machine and to require as few external dependencies as possible in order to

optimise the installation. In short, this approach brings a new set of advantages to the system.

The IDS system is in a Docker image with the following dependencies:

• Docker — version: 20.10.5 - Docker is a containerisation tool.

• Jupyter Notebook Server — version: 6.2.0 - Jupyter Notebook is a tool used on the devel-

opment of the system.

• Tensorflow — version: 2.4.1 - Tensorflow is a machine learning library, that was used for

the formation of the classifier.

3.2 Environment 17

• Keras — version: 2.4.0 - Keras is component of the TensorFlow that allow the train of the

machine learning model.

• Numpy — version: 1.19.5 - Numpy is library that helps on data treatment.

• Pandas — version: 1.1.5 - Pandas is library that helps on data treatment.

• Tstat — version: 3.1.1 - Tstat is a tool that was used to extract the characteristics of the

TLS flows [32].

• Suricata — version: 6.0.2 - Suricata is a tool that was used to extract the fingerprint of the

TLS flows [33].

In addition, it was necessary to install the drivers of the network capture card, Endace DAG.

3.2.3 Packets-capture

The packet capture is done by a Endace network card. We opted for this network card because it is

designed to work with high traffic, but it would be possible to use a normal network card, however

the system would be limited by the capacity of the network card.

It is necessary to make the bridge between the capture card and the external programs that will

analyse the traffic (Tstat [32] and Suricata [33]). There are three ways to bridge the gap between

the capture and analysis software:

1. The first option is a a direct connection between the capture card and the analysis programs.

Both Tstat and Suricata allow connection by data streaming, with plugins specially made for

Endace boards. Normally when using these boards only one stream is used for the analysis

program. Using two programs in the same link could cause reading errors, since there is no

documentation regarding this issue, so we consider option one as unfeasible.

2. The second option introduce a larger delay compared to the other two options, since it is

necessary to transform the captures from .ref to .pcap and then replicate the traffic to a

virtual interface. The second option was also not adopted due to the additional delay.

3. The third option use the network interface. The analysis programs (Tstat and Suricata) read

directly from the network interface, with the restriction that this interface must be exposed

to the docker container. However, it will be necessary to do Port mirroring on the switch to

send a copy of the network packets to the network interface. Solution three was chosen as it

is the simplest solution and allows the use of a network card with a single network interface.

18 System Description, Environment and Implementation

3.3 System Description

3.3.1 Detection Assumptions

In this system, the detection of C2 malware encrypted will be done by analysing the characteristics

of TCP flows over TLS, so there will be no room for package-by-package analysis, neither there

will be any decryption of information.

The assumptions made for the creation of the detector will be summarised in key points to

support the concept explored.

• The model will only analyse TCP flows with TLS sections. Since it allows maintaining data

privacy protection and at the same time combating the attempt to hide malware in encrypted

traffic.

• The detector must be located outside the machine to be analysed.

• The detector aims to understand the communication patterns of malware encrypted sessions

trying to pass as benign traffic.

• The detector can only classify the flows that are complete, since it depends on the charac-

teristics of the complete flows for classification.

3.3.2 Intrusion Detection System

The intrusion detection system is made up of three components:

1. Baseline is the component that analyses the flows and detects those that have the TLS cer-

tificate on the blacklist;

2. ML component is an machine learning model that classifies TLS flows, decides if the flow

is malignant or not [34];

3. Acquisition of new information is a component that stores information about the TLS

flows. Later, information saved will allow the ML model to be retrained, as well as updating

the black list of TLS certificates.

In the diagram of the Figure 3.2, we can see how the different blocks of the system will be

interconnect with each other.

3.3.3 Baseline

The Baseline component consists in two python programs. The first Program analyse the TLS

flow characteristics (extracted by Tstat) and classify the TLS flows. The second Program analyse

logs from first program and fingerprints of TLS flows (extracted by Suricata). By having this

information the second program creates alerts (when TLS flows are considered malign) and creates

logs for the Acquisition of new information component could create training datasets.

3.3 System Description 19

Figure 3.2: Proposed Solution Architecture

The Baseline component depends on different types of logs produced by two different analysis

tools, Tstat and Suricata. In order to the system work correctly it was necessary to configure the

two analysis tools (Tstat and Suricata). Tstat and Suricata were configured to analyse only the

TLS flows. Both configurations were made to avoid privacy problems with the inspection of non-

encrypted information.

The logs created by Tstat and Suricata are created with a rotation of one hour. Tstat logs will

work as a feature extractor that will be fed to the classification system, while the Suricata logs will

be used to extract the fingerprints of the flows.

The first program is the one that makes the first actions of the system, which deals with the

extraction of the characteristics, the load of the classification model, the classification the of TLS

flows and the saving of classifications logs (first program’s log). The system has an operator that

automatically replaces the loaded model by the most recent one, as soon as it is trained.

Initially, the first program loads the newest classification model, then it will analyse the most

recent Tstat’s log (complete flows). The Tstat’s log contains the characteristics of each TLS flow,

each line has about 130 characteristics, from these 130 are removed 88 to feed the classification

system. However, before these are sent to the classifier it is necessary to normalise the data, in

order to be in conformity with the maximums of the data used on the training of the classification

model, this action is described in Section 3.3.5. Therefore, the data is prepared for classification

and then classification will take place. The classification value of each flow is added to the log

of the first program concatenated with the 88 characteristics used for the classification, as can be

seen on Figure 3.6. The operation cycle of the first program is describe on Figure 3.3.

Although, it is good to note that the acquisition of each Tstat line has been implemented

with blocking read. The first program use operating system tools to verify the changes of the

20 System Description, Environment and Implementation

file size (Tstat’s log), this application allows optimising the processing time in comparison with

non-blocking read. It should be mentioned as well that the log created by the first program have a

rotation of one hour.

Figure 3.3: Program One

The second program is responsible for creating alerts of TLS flows with malware, by com-

paring the fingerprints of the TLS flows (Suricata logs) with the blacklist, or by the classification

of the information stored in the first program’s log. The second program is also responsible for

creating a log that are used on creation of datasets for the training of machine learning models.

The operation cycle of the second program is simple describe on Figure 3.4

Initially, the program loads the blacklist into a dictionary, use the fingerprint hash to organise

the information in order to maximise the performance of the information query. Then it analyses

the Suricata’s log and extracts the fingerprint of each TLS flow. Later, the program will search in

the blacklist the fingerprint of each TLS flow, if it is found an alert will be immediately launched.

The second program does not wait for the first program classification to classify the TLS flow since

the first program can only classify the flow when a flow ends (a flow can last several minutes). On

the contrary, the second program read the Suricata’s log that has the analyse of the TLS negotiation

and extracts the fingerprint from the certificate, which allows it to detect the threat in advance,

minimising the detection time. However, when the threat is not on the list, the second program has

to wait for the classification of the first program to be able to analyse the TLS flow.

3.3 System Description 21

The next step is to join the information from the first program’s log with the Suricata’s log. To

accomplish this union, two dictionaries must be created, one for each log. The union is made using

keys that allow the union (destination IP, destination port, source IP, source port). In Section 4.2

shows one example of a join. This way, it is possible to join the two dictionaries for the creation of

the second program’s log, which will be extremely important in the creation of training datasets,

which in turn will be used in the formulation of future models. In review, the second program’s

log is characterised by the information from first program’s log concatenated with the information

taken from the Suricata’s log, this structure will be discussed in more detail in the Section 3.3.5.

Figure 3.7 and 3.8 show the structure of second program’s log.

The second program’s log has a rotation of one hour. The second program was implemented

with blocking read. However, during the development of the second system it was concluded that

Tstat does not identify all TLS flows, anyway Suricata comes to solve this problem since it does

not have this problem. In short, we will be able to classify the flows that Tstat don’t identify

by comparing the fingerprint with the blacklist. However, the TLS flows not identified by Tstat

cannot be used in the training of the machine learning as well as the machine learning cannot be

used to classify those TLS flows.

Figure 3.4: Program Two

22 System Description, Environment and Implementation

3.3.4 ML Component

The description of the ML system used will be exclusively demonstrated in Chapter 4. However,

it can be advanced with a basic idea of the concept being that the classification has as input a set

of 88 characteristics of the TLS flow taken by Tstat.

The intrusion detection system proposed is designed to work with offline training model, but

with minor changes it will be possible to adapt the system to an online training system by com-

bining the first program with the second.

The offline training system can run every 15 days, months or years, it uses the logs from the

second program. Put all the data together and create a training dataset, this topic will also be

covered extensively in the Section 3.3.5 and 4.5.

3.3.5 Acquisition of New Information

The acquisition of new information component is very important since it will bridge the infor-

mation between the two programs, as it is also allows training the new classification models and

updating the black list. The component is divided in three points: the first and second program’s

logs, the creation of datasets for training and updating the black list.

The program logs are divided into each program. The first program’s log is made up as follows,

Figure 3.5 and 3.6.

Figure 3.5: First Program’s Log

Figure 3.6: First Program’s Log Scheme

The second program’s log is made up as follows, Figure 3.7 and 3.8.

Figure 3.7: Second Program’s Log

3.4 Evaluation of the Impact of ML Training 23

Figure 3.8: Second Program’s Log Scheme

The creation of training dataset is done in the following cycle:

1. Searches the storage for the logs of the second program.

2. Loads the chosen data (second program’s logs) into a dataframe.

3. Eliminates the unnecessary data, leave only the 88 characteristics of the TLS flow and the

classification made through the black list.

4. Loads the matrix with the maximum of each feature and normalises the information.

This dataset can be used to train the ML model or simply saved in a file to be used later. It

should be noted that in point 2 of the cycle the logs used for the creation of the dataset must

be chosen by the analyst. The system could be completely autonomous if the analyst creat a

appropriate rule to choose the logs.

Updating the black list should be done by the analyst as well, simply by downloading an

updated black list from a credited source on a weekly basis.

Beside, the analyst could do a more detailed analysis of the second program’s log. The analyst

have to manually check the flows that the model classified as malware and figure out if the TLS

flow were really malware. This action will gadder some fingerprints to the system’s personal

blacklist that weren’t known.

Recall, this process of updating the blacklist is extremely important since it is this action that

allows raising the level of reliability of model training, since it will be improving the ground truth.

3.4 Evaluation of the Impact of ML Training

The impact of model training on the system is huge, since it requires a large computational capac-

ity. The solution to alleviate this problem is resort a cluster of GPUs to remove this computational

burden from the system. It should be remembered that if there is no GPU in the system or a cluster

that the training can resort, the overall system will be severely affected and suffer a CPU starva-

tion, since the training will have to resort to the CPU. Therefore, it is known that both Tstat and

Suricata are excessive consumers of the Processing unit [5], Figure 2.10, which indicates the need

to use different resources than CPU.

Furthermore, a performance measurement component has been developed to measure the per-

formance of the classifier. The performance measurement component was embedded in the base-

line. The component allows to calculate the true/false positives and true/false negatives. The

24 System Description, Environment and Implementation

Figure 3.9: Program Log Scheme

Figure 3.10: Program Two Log Scheme

values are stored in performance’s log and are updated every X time defined by the analyst, Fig-

ure 3.9 and 3.10.

However, the classification performance (accuracy, recall and f1) will be done in detail , in the

Chapter 5,

3.5 Testing and Evaluation of the System

The tests section is the most important since it allows to show the correct functioning of the

system, for this a sequence of tests was made to confirm the correct functioning of the system. To

empirically verify the correct operation of the system, it was necessary to perform the following

experiment.

Key points of the experiment in order to have the conditions properly controlled:

• The captures used well documented (the flows classified by analysts).

• Perform the experiment in a closed environment, virtual network.

• Analyse the logs and verify agreement with the analysis made by the analyst of the captures.

Therefore, test’s logs are provided in Appendix A.3.

3.6 Conclusions

In this chapter, the design of the intrusion detection system was carried out. Its architecture was

designed, as well as the elements that constitute were constructed and integrated. Therefore, after

extensive testing, it was concluded that the chosen architecture works as intended. All the systems

that integrate it, except the ML model that will be analysed in the next chapters, passed with

distinction and fulfilled their objectives. Thus, we can consider that the intrusion detection system

meets the objectives of this thesis.

Chapter 4

Command and Control Traffic
Detection

The C2 Malware Traffic Detector is designed to detect encrypted malware over TLS. Malware

detectors normally use Deep Packet Inspection techniques. However, in case of encrypted data it

is not possible to apply this technique. Therefore, the detector will rely on TLS features to detect

the encrypted malware. The design of the Malware C2 Traffic Detector is strongly linked to the

continuation of the thesis [34].

This chapter gives background on the C2 classification problem and to the studies carried out

in Chapter 5 and 6.

4.1 Malware C2

Malware C2 is dependent on the communication between C2 servers and victims. Therefore, the

detector will rely on this dependency (communication) to detect the malware. However, Malware

C2 communications have evolved to become undetectable by malware detectors using encrypted

communications (TLS).

The detector will use the characteristics of the TLS stream to detect the malware’s communi-

cation patterns. However, this approach has one problem: it can only detect malware at the end of

the communication, since the detector relies on characteristics of the entire communication.

4.2 C2 Traffic Features

Tables 4.1 and 4.2, enumerates the features extracted from the Tstat program. The full description

of Tstat’s features will be made on the Appendix A.1.

Nevertheless, it is also necessary to know the flow fingerprint to be able to verify if it is malign

or benign, for that we resort to a black list. The extraction of this information is done using

Suricata, which uses JSON to output its logs.

25

26 Command and Control Traffic Detection

Table 4.1: Flow Characteristics: Tstat Part One

Core/Basic TCP Set
C2S S2C Short description Unit

1 15 Client/Server IP addr -
2 16 Client/Server TCP port -
3 17 packets -
4 18 RST sent 0/1
5 19 ACK sent -
6 20 PURE ACK sent -
7 21 unique bytes bytes
8 22 data pkts -
9 23 data bytes bytes
10 24 rexmit pkts -
11 25 rexmit bytes bytes
12 26 out seq pkts -
13 27 SYN count -
14 28 FIN count -

29 First time abs ms
30 Last time abs ms
31 Completion time ms
32 C first payload ms
33 S first payload ms
34 C last payload ms
35 S last payload ms
36 C first ack ms
37 S first ack ms
38 C Internal 0/1
39 S Internal 0/1
40 C anonymized 0/1
41 S anonymized 0/1
42 Connection type -
43 P2P type -
44 HTTP type -

TCP Options Set
C2S S2C Short description Unit
65 88 RFC1323 ws 0/1
66 89 RFC1323 ts 0/1
67 90 window scale -
68 91 SACK req 0/1
69 92 SACK sent -
70 93 MSS bytes
71 94 max seg size bytes
72 95 min seg size bytes
73 96 win max bytes
74 97 win min bytes
75 98 win zero -
76 99 cwin max bytes
77 100 cwin min bytes
78 101 initial cwin bytes
79 102 rtx RTO -
80 103 rtx FR -
81 104 reordering -
82 105 net dup -
83 106 unknown -
84 107 flow control -
85 108 unnece rtx RTO -
86 109 unnece rtx FR -
87 110 != SYN seqno 0/1

Table 4.2: Flow Characteristics: Tstat Part Two

TCP End to End Set
45 52 Average rtt ms
46 53 rtt min ms
47 54 rtt max ms
48 55 Stdev rtt ms
49 56 rtt count -
50 57 ttl_min -
51 58 ttl_max -

TCP Layer 7 Set
C2S S2C Short description Unit
114 PSH-separated C2S -
115 PSH-separated S2C -
120 TLS Client ID reuse -
121 TLS Client Last Handshake ms
122 TLS Server Last Handshake ms

4.3 C2 Traffic Description 27

This JSON structure includes information to make the connection between the TLS flow char-

acteristics, taken by Tstat, and the fingerprint, taken by Suricata, Figure 4.1 and 4.2.

Figure 4.1: Tstat Log Example

Figure 4.2: Suricata Log Example

In short, we can analyse and compare these characteristics: destination IP, destination port,

source IP, source port. It is possible to put the two logs together and create a dictionary with the

characteristics of each flow with its associated fingerprint.

4.3 C2 Traffic Description

The dataset used in this thesis was taken from the Malware-Traffic-Analysis.net website [35].

Where we collected information (pcaps) from various years (2013 to 2020). Table 4.3 presents

some statistics about the data of the years collected.

Table 4.3: Dataset Statistics

Year Nº of Malware TLS Flows Nº of Bening TLS Flows % of Bening TLS Flows
2013 0 165 100
2014 143 645 81.85
2015 1 445 99.78
2016 363 298 45.08
2017 499 2353 83.50
2018 6890 9391 42.32
2019 658 9623 93.60
2020 184 6260 97.14

Table 4.4 presents a count of the TLS flows that belong to each malware family in the dataset.

We know that the data is not correctly classified. The dataset is classified by comparing the

fingerprint of each stream with a blacklist of fingerprints.

However, we know that the blacklist we use does not contain all the fingerprints associated

with malware. Therefore, we conclude two things:

1. Data classified as malign is indeed malign (it contains the fingerprint on the blacklist);

28 Command and Control Traffic Detection

Table 4.4: Malware Family Statistics

Family Count
TrickBot C&C 5584
PandaZeuS C&C 3613
IcedID C&C 589
Gozi C&C 551
Gootkit C&C 329
Other 271
Dridex C&C 161
IcedId C&C 102
Shylock C&C 102

2. Data classified as benign could be either benign (it doesn’t contains the fingerprint on the

blacklist) or malign (it doesn’t contains the fingerprint of a malignant flow on the blacklist,

which shows that the list is incomplete).

The knowledge of the existence of misclassified data (malignant data classified as benign

data) was acquired in the thesis [34]. Thus, we conclude that the detector will have to work

with misclassified data, which will imply the existence of high false negatives.

4.4 Machine Learning Model

The model we use has an 88 feature input. The model is a dense neural network with the following

layers:

• Input with 88 neurons (flow features)

• 1st layer with 256 neurons and Sigmoid Activation (hidden layer)

• 2nd layer with 128 neurons and Sigmoid Activation (hidden layer)

• 3rd layer with 32 neurons and Sigmoid Activation (hidden layer)

• Output with 1 neuron and Sigmoid Activation

We trained the model with an Adam optimisation algorithm [36] and used Categorical Crossen-

tropy loss [37] to account for 2-categorical outputs.

4.5 Machine Learning Modes

We identify three modes of training machine learning: non-incremental offline training, incremen-

tal offline training and online training.

Non-incremental offline training is the classic method and likely the easiest to execute. Ini-

tially, we create two datasets, a training one and a test one to make the evaluation, Figure 4.3 [6].

4.5 Machine Learning Modes 29

Applying non-incremental offline training to the Malware Traffic Detector would be like split-

ting all known information randomly into two data sets and applying the concept: train, test and

evaluate.

Figure 4.3: Non-incremental Offline Training [6]

Incremental offline training is partial the same as non-incremental training, the difference re-

lates to the training method. This method trains incrementally, with training and evaluation blocks,

Figure 4.4 [6]. This method is applied to our system in the way that at the beginning it is exactly

the same as the previous method. The difference is that when the cycle ends, the method resorts

to the previous model and continues to train the old model. Thus, the classifier model could be

trained initially with all the data. Later, the training cycle are repeated (month by month) to give

more knowledge to the existing model, which increase the classification ability and performance

of the model.

Figure 4.4: Incremental Offline Training [6]

Online training is much more challenging and different from the methods previously discussed,

this method changes the way of model training. This method seeks maximum adaptation of the

model to the information to be classified. This model uses one sample at a time to train, test and

evaluate the model, continuing to evolve the model at each iteration, Figure 4.5 [6]. This method

can be applied in our system, with a training, testing and evaluation cycle, leading to an increase

in the model’s knowledge with each sample.

The structure of the training models depends on the type of training: Non-Incremental Offline

Training, Incremental Offline Training and Online Training. However, it was reported earlier the

differences on the training cycle, for better clarification we will expose sections of the code that

were made for the different types of training.

30 Command and Control Traffic Detection

Figure 4.5: Online Training [6]

The batch size defines the number of samples to work with before updating the internal pa-

rameters of the model. The number of epochs defines the number of times the machine learning

algorithm will run over the entire training dataset.

1 model = ge t_compi l ed_mode l ()
2

3 model . f i t (np . a s a r r a y (t r a i n x) , np . a s a r r a y (t r a i n y) , c l a s s _ w e i g h t = c l a s s _ w e i g h t s ,
b a t c h _ s i z e =32 , epochs =10)

4

5 model . s ave (model_name)

Listing 4.1: Non-Incremental Offline Training

1 i f a v a i l a b l e () :
2 model = load_mode l (model_name)
3 model . summary ()
4 e l s e :
5 model = ge t_compi l ed_mode l ()
6

7 model . f i t (np . a s a r r a y (t r a i n x) , np . a s a r r a y t r a i n y) , c l a s s _ w e i g h t = c l a s s _ w e i g h t s ,
b a t c h _ s i z e =32 , epochs =10)

8 model . s ave (model_name)

Listing 4.2: Incremental Offline Training

1 model = ge t_compi l ed_mode l ()
2

3 f o r x i n r a n g e (0 , l e n (t r a i n x)) :
4 model . f i t (np . a s a r r a y (t r a i n x) [x : x + 1] , np . a s a r r a y (t r a i n y) [x : x + 1] ,

c l a s s _ w e i g h t = c l a s s _ w e i g h t s , b a t c h _ s i z e =32 , epochs =50)

Listing 4.3: Online Training

Chapter 5

Offline Learning

In this chapter will we study the performance of our classification model.

Initially, we adopt the formation of a Baseline model classification to support the study of

the system. Later, we will present a tool that allows us to manipulate the Classes Weight to

improve the classification performance. Finally, we will establish a direct comparison between

non-incremental and incremental training.

5.1 Best Classifier

Firstly, we intend to characterise the starting point for the study of the classifier. Thus, this will be

a point of reference for the comparison with the studies developed throughout the research.

The first logical solution to implement the classifier was to use all existing information from

the years 2013 to 2020. All further studies will use data from the MTA database[35] as a source

of malware traffic. This first study also defines the baseline of training for the different studies.

5.1.1 Result

The base model performed as described in Tables 5.1 and 5.2. Note that all functions used on the

calculations performed in the studies are described in Subsection 2.4.1.

Table 5.1: Confusion Matrix of the Best Classifier Experience

True label
Prediction label

Benign traffic (TLS) Malicious traffic (TLS)

Benign traffic (TLS) 4973 309
Malicious traffic (TLS) 79 2112

As it is possible to observe the model yielded very good results. The goal is to reduce the

false negatives, since we are certain that they are positive. Observing the confusion matrix and the

metrics table it is noticeable that there are many false positives. This phenomenon is due to the fact

that there are some flows that are C2 and are known as benign, this problem will only be solved

31

32 Offline Learning

Table 5.2: Metrics Table of the Best Classifier Experience

label Precision Recall F1-score Support
0.0 0.98 0.94 0.96 5282
1.0 0.87 0.96 0.92 2191

Accuracy 0.95 7473
Macro Avg 0.93 0.95 0.94 7473

Weighted Avg 0.95 0.95 0.95 7473

with the evolution of the knowledge of fingerprints of C2 flows. The false positives are flows that

we will later analyse in order to realise that those flows are C2, in case they are, the fingerprints of

the flows are added to the blacklist. The analysis work allows to improve the ground truth of the

data used to train the classifier, as consequence the classifier performance will also improve.

5.2 Influence of the Class Weights

In this context, we have developed a tool that allows us to refine the detection of the classifier by

performing decompensation on the class weights. Class weights are calculated with existing data

and then adjusted relatively in percentage to the desired value.

This tool ends up being a filter that helps us to choose the traffic that has to be analysed to

improve the knowledge of the blacklist, allowing to substantially decrease the amount of data to

be processed.

The Listing 5.1 shows an use case: first we calculate the weights of the classes (ex: weight_for_0

and weight_for_1), secondly we define the weight of each class (ex: Y and X) and thirdly we cal-

culate the final weight of each class according to the values defined.

1 c o u n t s = np . b i n c o u n t (t e s t _ t r a i n _ d a t a [1] [:] . a s t y p e (i n t))
2 w e i g h t _ f o r _ 0 = (c o u n t s [1]) / (c o u n t s [0] + c o u n t s [1])
3 w e i g h t _ f o r _ 1 = (c o u n t s [0]) / (c o u n t s [0] + c o u n t s [1])
4 # Y −> 0 ’ s X −> 1 ’ s
5 Y = 0 . 4
6 X = 0 . 6
7 c l a s s _ w e i g h t s = { 0 : ((w e i g h t _ f o r _ 0 *Y) / 0 . 5) , 1 : ((w e i g h t _ f o r _ 1 *X) / 0 . 5) }

Listing 5.1: Influence of the Classes Weight

Two comparison studies were carried out. One with a softer tuning, 1’s at 60% and 0’s at 40%

versus 1’s at 40% and 0’s at 60%. The second tuning was more circumspect, 1’s at 20% and 0’s at

80% versus 1’s at 80% and 0’s at 20%. The comparison can be seen in tables 5.3, 5.4, 5.5 and 5.6,

by order.

5.2.1 Result

We analysed the Tables 5.1 and 5.4 (Part: 1’s at 80% and 0’s at 20%), it was possible to see that

the false negatives reduced from 79 to 32. However, the false positives increased from 309 to 439.

5.2 Influence of the Class Weights 33

We also analysed the Tables 5.2 and 5.6 (Part: 1’s at 80% and 0’s at 20%), it was possible to

see that in the 0’s, Precision and Recall improved and F1-socore got worse. Meanwhile, it was

possible to see that in the 1’s, Recall improved and Precision and F1-socore got worse.

We conclude that it is possible to infer that it is feasible to fine tune the classifier to have a

better performance in classifying 1’s or 0’s. In case of tool application, it would be preferable to

optimise the classification of 1’s.

By further analysing the data it is possible to infer that the model tuning brings more value

to the classification of the desired characteristic, but deteriorates the classification of the opposite

class. However, from our point of view, it is important to have the lowest number of false negatives,

even compromising the false positives. This need is due to the existence of erroneous data in the

training dataset (there are malign streams given as benign).

Meanwhile, this tool will help us to tune the model so that it does not classify (known) malign

data as benign. At the same time, it allows pointing to traffic that has been classified as malign and

is wrongly known as benign on the dataset, thus making it possible to identify traffic that needs to

be analysed manually (correct the wrongly classification of the sample).

Table 5.3: Confusion Matrix of 1’s at 60% and 0’s at 40% vs 1’s at 40% and 0’s at 60%

1’s at 60% and 0’s at 40%

True label
Prediction label

Benign traffic (TLS) Malicious traffic (TLS)

Benign traffic (TLS) 4949 333
Malicious traffic (TLS) 80 2111

1’s at 40% and 0’s at 60%

True label
Prediction label

Benign traffic (TLS) Malicious traffic (TLS)

Benign traffic (TLS) 4965 317
Malicious traffic (TLS) 110 2081

Table 5.4: Confusion Matrix of 1’s at 80% and 0’s at 20% vs 1’s at 20% and 0’s at 80%

1’s at 80% and 0’s at 20%

True label
Prediction label

Benign traffic (TLS) Malicious traffic (TLS)

Benign traffic (TLS) 4843 439
Malicious traffic (TLS) 63 2128

1’s at 20% and 0’s at 80%

True label
Prediction label

Benign traffic (TLS) Malicious traffic (TLS)

Benign traffic (TLS) 5125 157
Malicious traffic (TLS) 289 1902

34 Offline Learning

Table 5.5: Metrics Table of 1’s at 60% and 0’s at 40% vs 1’s at 40% and 0’s at 60%

1’s at 60% and 0’s at 40%
label Precision Recall F1-score Support
0.0 0.98 0.94 0.96 5282
1.0 0.86 0.96 0.91 2191

Accuracy 0.94 7473
Macro Avg 0.92 0.95 0.94 7473

Weighted Avg 0.95 0.94 0.95 7473
1’s at 40% and 0’s at 60%

label Precision Recall F1-score Support
0.0 0.98 0.94 0.96 5282
1.0 0.87 0.95 0.91 2191

Accuracy 0.94 7473
Macro Avg 0.92 0.94 0.93 7473

Weighted Avg 0.95 0.94 0.94 7473

Table 5.6: Metrics Table of 1’s at 80% and 0’s at 20% vs 1’s at 20% and 0’s at 80%

1’s at 80% and 0’s at 20%
label Precision Recall F1-score Support
0.0 0.99 0.99 0.95 5282
1.0 0.83 0.97 0.89 2191

Accuracy 0.93 7473
Macro Avg 0.91 0.94 0.92 7473

Weighted Avg 0.94 0.93 0.93 7473
1’s at 20% and 0’s at 80%

label Precision Recall F1-score Support
0.0 0.95 0.97 0.96 5282
1.0 0.92 0.87 0.90 2191

Accuracy 0.94 7473
Macro Avg 0.94 0.92 0.93 7473

Weighted Avg 0.94 0.94 0.94 7473

5.3 Non-Incremental Training

The present section studies the behaviour of the classifier over time. Firstly, began the study of the

non-incremental training, described in Section 4.5, since it is the simplest to design, as it would

also be the first step when evaluating the behaviour of the system over time.

5.3 Non-Incremental Training 35

5.3.1 Evolution Over the Years

We are interested in evaluating the system’s evolution over time. The traffic in a network does not

always have the same characteristics and may evolve over time.

Two studies were conducted that allow us to draw conclusions about the evolution of the

system over time. In this case, we will use data from 2013 to 2020, MTA [35], excluding the

years 2013 and 2015. In both excluded years, there was less than 5% of data compared to the

other years, there wasn’t enough data to train the model and their use in this experiment would

misrepresent the experiment itself so we decided not to use them.

The first study (Study 1) was the training of one model of each year, with the data of the years

in question. In the second study (Study 2), the model was trained for each year with all the data

known up to that year.

To analyse in detail the models created from the two studies, two tests were created. One to

verify the performance of each model with the data of each distinct year. In the second, the perfor-

mance of each model was verified with all known data until the year of study. The performance of

the models was evaluated in three characteristic – Precision, Recall and F1-score. Accuracy and

Recall was calculated only on the classification of malign data since this is the objective of the

model.

The data was grouped in sets of four graphs in order to make the comparison of the evolution,

Figure 5.1.

Figure 5.1: Graph decomposition legend (Non-Incremental Training)

5.3.1.1 Result

The comparison of the results was organised in 3 sets of figures, Precision 5.2, Recall 5.3 and

f1-score 5.4.

36 Offline Learning

Analysing Q2 (study 1, test 1) of the 3 sets it is possible to identify the discrepancy of infor-

mation over the years. The best performance level occur at each year that was used to train the

model (example: 2018 model has its maximum in year 3 (2018)). This behaviour indicates the

existence of an evolution of the traffic morphology, since the values do not remain constant.

The change in the traffic morphology over time justifies the second training initiative. The

comparison between the Q2 (study 1, test 1) of the 3 sets and the Q3 (study 2 test 1), allows us to

verify that the use of all known data until the training date proves to be beneficial in comparison

with the use of data relative only to that year. The values of the second study are substantially

better; the models not only have a good performance for their relative year, but also a very good

performance for the data of each previous year, which does not happen in the case of the first

study.

Still, the comparison between the first quadrant (study 1 test 2) and the fourth quadrant (study

2 test 2), demonstrates the overwhelming advantage of using all known data up to the present

year in model training. The second study proves that models trained with the all known data hold

acceptable classification ability to classify all flows known to date. Whereas, the models of the

first study perform poorly compared to those of the second study.

Key points:

• Traffic morphology evolves in time.

• Training with all the data known so far performs better compared to training with the data

of the year in question, being better in the year being tested as well as in previous years.

The two studies performed allow to have a better idea of the change in the traffic morphology

over time, while at the same time allowing to choose the best data to train the model, with the aim

of increasing the performance of the classification system.

5.3 Non-Incremental Training 37

Figure 5.2: Comparison of Precision Score Non-Incremental Training: Evolution of the Classifier
Over the Years

Figure 5.3: Comparison of Recall Score Non-Incremental Training: Evolution of the Classifier
Over the Years

38 Offline Learning

Figure 5.4: Comparison of F1 Score Non-Incremental Training: Evolution of the Classifier Over
the Years

5.4 Incremental Training

This Section studies incremental training, described in section 4.5. It is necessary to verify that the

use of this new training idea maintains the performance of the model in comparison with previous

non-incremental training studies.

5.4.1 Evolution Over the Years

Incremental training comes almost as a necessity for us. Reflecting on the conclusions drawn from

the previous section, it is noticeable that the traffic evolves over time, so there is a need to save all

information that allows to create detectors with better performance. However, we are faced with

a problem. The previous training system requires the saving of all existing information, as well

as training with such data. We must have a large memory capacity, but above all, a large training

capacity. Training the model non-incrementally would imply failure in the near future, since model

training cannot be done in good time. To solve these two severe problems, incremental training

was proposed.

Model training was carried out year by year incrementally, retraining the model of the previous

year. The same two tests carried out in the two previous experiments were performed (Subsec-

tion 5.3.1), to allow direct comparison with them. In the first test, the performance of each model

5.4 Incremental Training 39

was verified with data from each different year. In the second, the performance of each model was

verified with all the known data until the years of study.

For a better comparison with the best study carried out in the previous section, we will dispose

the information as illustrated below in Figure 5.5. The second study, the model was trained for

each year with all the data known up to that year (non-incremental). The third study was carried

out with incremental training, the training was carried out year by year (incrementally).

Figure 5.5: Graph decomposition legend (Incremental Training)

5.4.1.1 Result

The comparison of the results was organised in 3 sets of figures: Precision 5.6, Recall 5.7 and

f1-score 5.8.

Comparing the two studies it is possible to verify that the incremental training is less efficient

compared to the non-incremental training (all data). We can conclude that the incremental training

begins to give less importance to the traffic of previous years, eventually starting to forget the older

training and giving more importance to more recent data. Thus, we can resort to this method to

induce this behaviour in the model using the incremental training method. However, it should be

remembered that the data does not have the same weights since there are years with more data than

others. It is possible to verify that in some years the performance values decay, like 2020 year.

At the same time, sometimes the traffic of a certain year is not good enough for the incremental

method, for example the year 2020, the model is very good in its year but is very bad for the

previous years.

Thus, we can take away the following points:

• Incremental training models perform less effectively than non-incremental models with full

data. However, the performance levels are acceptable.

• Incremental training models give more importance/weight to the most recent data, forgetting

the data from older years. Tracks the evolution of traffic characteristics.

We can conclude from these results that it is not necessary to store all the information to train

the model. This point allows optimising the training of the model in terms of storage as well

40 Offline Learning

as time, since training with a temporal margin of data is much faster than training with the total

dataset.

Meanwhile, there is a warning to us that some models from a certain year can easily forget

the malware from previous years. To combat this problem, we can save the various stages of the

models and use the models in parallel to get a more accurate classification.

Figure 5.6: Comparison of Precision Score Incremental Training: Evolution of the Classifier Over
the Years

5.4 Incremental Training 41

Figure 5.7: Comparison of Recall Score Incremental Training: Evolution of the Classifier Over
the Years

Figure 5.8: Comparison of F1 Score Incremental Training: Evolution of the Classifier Over the
Years

42 Offline Learning

5.5 Conclusions

The results of the studies show the evolution of the traffic characteristics over time and the verifi-

cation of the performance of the classification model with different training approaches.

Section 3.3.3, we improved the performance of the base model. Section 5.2, demonstrated

the possibility of tuning the detector classification system in order to improve the classification

performance of a particular class.

Section 5.3, we did a deeper study of the evolution of malware in time. We proved that the

characteristics of traffic change over time, as it is also proved a possibility to adapt the models to

follow the evolution of traffic. However, we concluded that there is a need to preserve and use all

the existing data to improve the model’s classification performance as much as possible.

In section 5.4, a study was developed with the purpose of eliminating the need to use all

data in the formation of models. The comparison of the incremental training approach with the

non-incremental one solves the storage/total training problem, but presents a lower yet acceptable

performance comparing to the models that use all data in a single training.

Overall, the studies allowed reaching the objectives required for the detection system (ML

classifier), designed in Chapter 3 to work properly. Nevertheless, it also adds knowledge in the

area of malware detection, providing proof of operation of new concepts of training malware

detectors. This knowledge can help save resources and optimise detection systems.

Chapter 6

Online Learning

The previous chapters explain and demonstrate how the intrusion detection system works, as well

as proving that the options taken are in line with what was thought, the evolution of traffic char-

acteristics in time and the evolution of the detection system in relation to changes in traffic over

time.

In this chapter, we begin to explore the development of online training, aiming to integrate it

into the intrusion detection system produced in this thesis.

The exploration of the model in the online area, aims to improve the overall performance of

the system. An online training system as explained in Chapter 2 and 4 has a higher capacity to

learn faster than offline training [6]. Therefore, the model will adapt more easily to traffic changes

and increases the probability of finding zero-day attacks.

In contrast, the introduction of the online system reduces the complexity of the detection sys-

tem in general, since it would no longer be necessary to store all the information. We could simply

save false positives for later analysis, so we could continue to improve our blacklist. So, this

solution would easily store lower amounts of data.

This chapter is divided in two main sections, the first one will prove the possibility of achieving

the desired solution 6.1 and the second one will apply the concept to real data 6.2.

6.1 Impact of Different Sequences of Labels

The application of online training in the detection system requires the use of a training library.

However, the library used in the design of the offline training did not have any reference in the

documentation about the possibility of online training. Nevertheless, doing some research we

came to the conclusion that it might be possible to apply the online method with the Keras library.

However, in this Section 6.1, we had to perform a set of studies to proof the online training

functionality, as well as verify some limitations of the online approach (like label sequence - 0’s

and 1’s).

43

44 Online Learning

6.1.1 Synthetic Dataset

The experimentation of the online method has made under controlled conditions to ensure that

our system will always behave in the same way. With this in mind, we designed a dataset with

synthetic data.

The synthetic data was created to look as similar as possible to the real data, having 88 char-

acteristics nsamples. The nsamples is the number of samples that each class will have. The

synthetic data is random, generated by multivariate Gaussians with the average of each dimension

in a vector loc and with diagonal covariance matrix, which means the variables are uncorrelated.

Creating two different vectors (loc0 and loc1) allows us to create the two classes of 0’s and 1’s.

The nsamples is the number of samples that each class will have. The creation of the datasets is

shown in Listing 6.1.

1 i m p o r t numpy as np
2

3 ndim = 88
4 nsamples = 50000
5 l o c 0 = np . random . un i fo rm (0 , 1 , ndim)
6 s c a l e = np . n d a r r a y . t o l i s t (np . eye (ndim))
7 v a l u e s = np . random . m u l t i v a r i a t e _ n o r m a l (loc0 , s c a l e , nsamples)
8 v a l u e s 0 = np . c l i p (v a l u e s , 0 , 1)
9 v a l u e s 0 _ y = [0] * nsamples

10

11 l o c 1 = np . random . un i fo rm (0 , 1 , ndim)
12 s c a l e = np . n d a r r a y . t o l i s t (np . eye (ndim))
13 v a l u e s = np . random . m u l t i v a r i a t e _ n o r m a l (loc1 , s c a l e , nsamples)
14 v a l u e s 1 = np . c l i p (v a l u e s , 0 , 1)
15 v a l u e s 1 _ y = [1] * nsamples

Listing 6.1: Creation of Synthetic Dataset

6.1.2 Comparison of Offline Training with Online Training (synthetic data)

The comparison between the two trainings was made by using three studies. However, it should

be noted that the structure of the models remains the same as the one assigned in Chapter 4, it

differs in the training method and number of epoch to 10. As it was explained in Section 4.5,

offline training feeds the FIT() function with all the training data, while the online training feeds

the FIT() function sample by sample.

Initially, the offline model was designed to understand if the offline model can learn with a syn-

thetic dataset, as well as to serve as a means of comparison with the online version. Later, online

training was carried out, one with the unmixed dataset classification, example [00...0011...11], and

another with the mixed one, example [0100011101010010110] having 0’s and 1’s classification

randomly alternated.

Two metrics were computed in the three studies the confusion matrix and the metrics table.

Although, three graphs were created to analyse accuracy, recall and F1-score for the two studies

6.1 Impact of Different Sequences of Labels 45

using online training. There is a need to mention that the confusion matrix and the metrics table

created for the online training are an average indication of the final state in which the training

ended. In addition, for a more detailed analysis of the metrics, it will be necessary to analyse the

evolution graphs over time.

Table 6.1: Confusion Matrix Comparison Offline Vs Online Training

Offline Training

True label
Prediction label

Benign traffic (TLS) Malicious traffic (TLS)

Benign traffic (TLS) 9656 344
Malicious traffic (TLS) 268 9732

Online Training Non-Shuffled

True label
Prediction label

Benign traffic (TLS) Malicious traffic (TLS)

Benign traffic (TLS) 0 2000
Malicious traffic (TLS) 0 2000

Online Training Shuffled

True label
Prediction label

Benign traffic (TLS) Malicious traffic (TLS)

Benign traffic (TLS) 1956 44
Malicious traffic (TLS) 244 1756

Figure 6.1: Precision Score Comparison of Non-shuffled Vs Shuffled Online Training

Analysing the Tables 6.1 and 6.2, it is possible to observe that the model with offline training

obtained a good result, exactly as expected. However, the analysis of the online training, we obtain

two completely opposite cases. The unmixed training fails completely, but the mixed training

gets promising results. A a more detailed analysis can be done by looking at the comparison

Figures 6.1, 6.2 and 6.3. It should be noted that the X axis represents the evolution over cycles, so

it allows to analyse and compare the different evolutions over cycles for each training. Analysing

the graphs over cycles we verify the same as in the tables the unmixed training misses its target

completely and the mixed training obtains promising results.

This behaviour raises a question - "Does the method used allow online training?". Under

certain conditions we think so, but the distribution of zeros and ones seems to influence the training

46 Online Learning

Table 6.2: Metrics Table Comparison Offline Vs Online Training

Offline Training
label Precision Recall F1-score Support
0.0 0.97 0.97 0.97 10000
1.0 0.97 0.97 0.97 10000

Accuracy 0.97 20000
Macro Avg 0.97 0.97 0.97 20000

Weighted Avg 0.97 0.97 0.97 20000
Online Training Non-Shuffle

label Precision Recall F1-score Support
0.0 0.00 0.00 0.00 2000
1.0 0.50 1.00 0.67 2000

Accuracy 0.50 4000
Macro Avg 0.25 0.50 0.33 4000

Weighted Avg 0.25 0.50 0.33 4000
Online Training Shuffle

label Precision Recall F1-score Support
0.0 0.89 0.98 0.93 2000
1.0 0.98 0.88 0.92 2000

Accuracy 0.93 4000
Macro Avg 0.93 0.93 0.93 4000

Weighted Avg 0.93 0.93 0.93 4000

Figure 6.2: Recall Score Comparison of Non-shuffled Vs Shuffled Online Training

capacity of the method used. We elaborate further on this in subsection 6.1.3.

6.1.3 0’s & 1’s

The discovery of the limitation in the training sequence implies a deep analysis of this obstacle,

since the sequence of the classification with real numbers is not controlled. To solve this issue, we

decided to create a set of tests that explore the training capabilities of the online method.

6.1 Impact of Different Sequences of Labels 47

Figure 6.3: F1 Score Comparison of Non-shuffled Vs Shuffled Online Training

Initially, we started to make tests with different sequences of 0’s and 1’s, to find the 0’s and 1’s

limitations. We explored the following combinations of 0’s/1’s represented in Table 6.3.

Table 6.3: Sequences of 0’s and 1’s

Study 1 Study 2 Study 3 Study 4
0’s 32 128 128 128
1’s 32 128 32 32

Epoch 10 10 10 1

The graphs were organised in this manner, Figure 6.4, to be able to make a direct comparison

of the results. We chose to use the same metrics as before, Precision, Recall and F1-score.

Figure 6.4: Graph decomposition legend

Looking at the graphs it is noticeable that the first study was a good performance and provides

the basis for finding the limits of the approach. Then, the second study has many defects, and the

performance varies within an acceptable range. In the third study, it is clear that we have reached

the limit of the acceptable performance.

After several attempts, we discovered the limit of the method used, as was the case in study

three. We changed the approach to the problem and started to try different cases. We came to the

conclusion that reducing the number of epochs per data allows to improve the training performance

when the method operates at its limit. As it is possible to observe in fourth study, more benign

flows were chosen than malign ones, which is normal for a common network. Observing the fourth

graph, it is perfectly possible to operate an online training up to the extreme patterns of the fourth

study.

48 Online Learning

Key point:

• Online training is approved under specific conditions.

By performing this verification, we can also point out that this type of training can be applied

both to a malware setup created by us (class distribution - 50%/50% - 0’s/1’s), and also to real data

(class distribution - 80%/20% - 0’s/1’s).

Figure 6.5: Comparison of Recall Score Incremental Training

6.1 Impact of Different Sequences of Labels 49

Figure 6.6: Comparison of Precision Score Incremental Training

Figure 6.7: Comparison of F1 Score Incremental Training

6.1.4 Conclusions

Studies have shown that online training is possible. However, it should be remembered that it is

feasible within the operating margins extrapolated in the verification tests.

50 Online Learning

6.2 Application to the C2 Dataset

Application with real data is more important than synthetic data. Therefore, this topic will be

addressed in the next subsections.

6.2.1 Operation with Real Data

Firstly, we want to demonstrate that online learning works properly with real data, so we designed

two tests in ideal and equal conditions to compare the performance of offline non-incremental

training with online training.

We randomly choose 10k data from the total data set and we always taking care that the

sequence of 0’s and 1’s does not exceed the online learning limit. All training characteristics

were equal, even the number of epochs to 10. The only differences on online learning are the

bash_size=1 and the number of samples passed at each iteration to fit() is one sample.

The first study refers to offline training, which will serve as the basis of performance compar-

ison. The second study refers to the online training, which aims to demonstrate how the approach

works with real data.

The main means of comparison are the confusion matrix and the performance table (Precision,

Recall and F1-score). Again, it is important to remind that these indicators, in the case of online

training, simply refer to the last state that the model finished the training. To analyse the evolution

and the different states of online training over time, three graphs will be shown, Precision, Recall

and F1-score.

Table 6.4: Confusion Matrix Comparison Offline Vs Online Training with Real Data

Offline Training

True label
Prediction label

Benign traffic (TLS) Malicious traffic (TLS)

Benign traffic (TLS) 3875 1407
Malicious traffic (TLS) 226 1965

Online Training

True label
Prediction label

Benign traffic (TLS) Malicious traffic (TLS)

Benign traffic (TLS) 3847 1435
Malicious traffic (TLS) 272 1919

Comparing the two studies we notice that online training with real information is completely

feasible in a controlled environment. Analysing the performances of the two trainings, it can be

seen that the performance of online training is identical to offline training with the same training

characteristics. It is possible to observe that the offline training had a lower performance than the

base model presented in section 5.1. The problem is due to the choice of training characteristics,

such as the number of epochs (Keras library implies the use of a low number of epochs to work

within the operating limit). We used a low epoch number to operate within the limitations of

the online approach, so essentially, we benefited online training in this comparison. However, it

6.2 Application to the C2 Dataset 51

Table 6.5: Metrics Table Comparison Offline Vs Online Training with Real Data

Offline Training
label Precision Recall F1-score Support
0.0 0.94 0.73 0.83 5282
1.0 0.58 0.90 0.71 2191

Accuracy 0.78 7473
Macro Avg 0.76 0.82 0.77 7473

Weighted Avg 0.84 0.78 0.79 7473
Online Training

label Precision Recall F1-score Support
0.0 0.93 0.73 0.82 5282
1.0 0.57 0.88 0.69 2191

Accuracy 0.77 7473
Macro Avg 0.75 0.80 0.76 7473

Weighted Avg 0.83 0.77 0.78 7473

Figure 6.8: Online Training - 10k Real Shuffled Data

was an option taken with the intention of being able to produce a fairer means of comparison,

since having the same training characteristics and the same data allows us to have a better direct

comparison of the trainings.

Analysing the Figure 6.8 it is possible to infer that most of the evolution over time the model

has remained within the operating margins of online learning, however there are some points

where there is a loss of performance.

52 Online Learning

Overall, we demonstrate that online training can be applied to real data in a controlled envi-

ronment.

Therefore, a question was raised - "Does it work if we use real data in its natural order?". In

the two previous studies, 10k data were chosen randomly taking into account the sequences of 1’s

and 0’s. However, the real data does not have controlled sequences hence the third study was born.

The third study comes to demonstrate what was determined with synthetic data, that it is

not possible to do online learning with the normal sequences of real data. Therefore, the study

was conducted with the same characteristics as the previous studies, the difference was only the

training data, where we chose the year 2018 for the test without using data shuffle.

Figure 6.9 presents the analysis of the evolution results with Precision, Recall and F1-score

graphs.

Figure 6.9: Online Training - Year 2018 Real No-shuffled Data

Analysing the Figure 6.9, it is noticeable that online training with data in its natural sequence

(No-shuffled) does not have an acceptable performance. This conclusion comes in agreement with

what was concluded with the synthetic data. Therefore, we must move on to the next step to

determine the limit of our approach with real data, which we discuss in the next Subsection 6.2.2.

6.2.2 0’s & 1’s Tuning

Once we prove that the online training technique can be applied to real data in a controlled envi-

ronment, the next step is to fine tune the training characteristics. The distribution of 0’s and 1’s

proved to be the main influence on training performance. However, it should be remembered that

a low epoch number (epoch=1) is important for performance too. This sub-chapter will look at

6.2 Application to the C2 Dataset 53

the influence of the sequences of 0’s and 1’s on real data. These studies will give us the know-

how, allowing to fine-tune the training model according to the preferences, as well as to the data

available. The studies will have three associated graphs, which have associated metrics (Precision,

Recall and F1-score).

The studies were performed with real data, however each study used different distributions of

0’s and 1’s. The training datasets were created according to the desired distribution, according to

the chronological order of the flows, X flows of 0’s and Y flows of 1’s were grouped, as shown in

the Listing 6.2.2.

1 / / ex : 128 /32 −> 0 s Vs 1 s
2 X = 128
3 Y = 32
4

5 t r e i n o x = []
6 t r e i n o y = []
7 y = aux
8 f o r x i n r a n g e (0 , aux −1 ,X) :
9 f o r aux1 i n t e s t _ t r a i n _ d a t a [0] [x : x+X] :

10 t r e i n o x . append (aux1)
11 f o r aux1 i n t e s t _ t r a i n _ d a t a [0] [y : y+Y] :
12 t r e i n o x . append (aux1)
13 f o r aux1 i n t e s t _ t r a i n _ d a t a [1] [x : x+X] :
14 t r e i n o y . append (i n t (aux1))
15 f o r aux1 i n t e s t _ t r a i n _ d a t a [1] [y : y+Y] :
16 t r e i n o y . append (i n t (aux1))
17 y += Y

Listing 6.2: Creation of Real Dataset

Table 6.6 follow the tests that were performed.

Table 6.6: Table of Studies of the Distribution of 0’s and 1’s

Study 1 2 3 4 5 6
Distribution (0/1) 128/32 64/32 32/32 32/16 32/8 32/4

Initially, we followed the path used in synthetic data. It started with higher sequences as is

the case of study one (A.8) and two (A.9). Analysing the results, it is possible to observe that the

results were not acceptable since they take a long time to converge and suffered several breaks

during the operation time. From these two studies we conclude that the 128/32 and 64/32 ratios

are not possible when using real data.

The next step was to reduce the number of each class, following the line shown in the synthetic

data. Where we created the study three A.10, four A.11 and five A.12. Analysing the results, it

is possible to observe that there is always a period of adaptation on the initial part of the model

(convergence of the model). However, when analysing the three models it is possible to observe

the improvement of performance with the reduction of the number of each class (0’s and 1’s

54 Online Learning

distribution). This feature is in accordance with what was concluded in the study with synthetic

data. In addition, we can affirm that studies three, four and five have acceptable performances

since most of the time they have performance values in the operating margin. However, taking

into account the sharp decreases in performance, it will be necessary to find countermeasures to

alleviate these problems. From these three studies we conclude that the ratios 32/32, 32/16 and

32/8 can be used in online training, since they have a good performance, but it should be noted

that they have some sudden decreases in performance.

Finally, the best duality between performance and the sequencing of classes was sought. From

this search we create the study six (A.13). The study is composed by a sequence of 32 (0’s) and 4

(1’s). Analysing the results of the study, we can affirm that it presents a high performance. In turn,

it no longer presents the behaviour of abrupt decrease of performance, so we can conclude that

study six has a high performance. In turn, it no longer presents the behaviour of abrupt decrease

of performance, so we can state that the decreasing the number of each class allows eliminating

this problem.

However, the possibility of using online training with real data was proven, the studies car-

ried out allowed us to figure out the boundaries of operation of online training. Table 6.7 and

Figure 6.10, allows us to map the limitation of training in relation to the sequence of 0’s and 1’s.

Analysing the Figure 6.10, allows us to group the studies into 3 groups in relation to their perfor-

mance evaluation, where they are represented and classified in Table 6.7. Note that the evaluation

goes from A to D, where A is the best performance evaluation and D is the worst performance

evaluation.

Table 6.7: Table of Studies of the Distribution and Evaluation of 0’s and 1’s

Study 1 2 3 4 5 6
Distribution (0/1) 128/32 64/32 32/32 32/16 32/8 32/4
Evaluation D D B B B A

In conclusion, the sequences of 0’s and 1’s used to obtain acceptable performances with real

data are much inferior to the synthetic data. This conclusion raises another problem that is which

are the sequences in the real data, in these studies we made a dataset with the desired sequences.

However the real data does not have this behaviour and this subject will be addressed in the next

Subsection 6.2.3.

6.2 Application to the C2 Dataset 55

Figure 6.10: CDF F1-score Studies

6.2.3 Class Distribution

The distribution of the data in the natural sequence of the live data is unknown. This problem

has to be solved so that the we can choose our training options, since the success of online training

is dependent on the class sequences.

A study has been constructed which gives an insight into the distribution of classes over time

and from this we can draw conclusions about the possibility of online training, Figure 6.11a. On

the Figure the X axis counts the number of times that a sequence is found and the Y axis the

number of the sequence (ex: 10 -> 1’s/0’s).

The previous study, Figure 6.11a, are about the sequences of the two classes, however it is

necessary to make a study for each class to be able to have a perspective of the ratio between the

two classes and it is another important characteristic in the online training, for that it was created

the study of the sequences of the 0’s 6.11b and the 1’s 6.11c.

Analysing the distributions of sequences it is possible to observe that they exceed the operation

limits for online training (defined on Subsection 6.2.2), but they are close to the operation level.

Therefore, it is necessary to find methods to minimise this problem. One solution would be to

simply discard certain flows for training in order to obtain the required sequence. In short, the

online training would not be done in every iteration, but when it is possible to maintain the ratio

and the desired sequence of the training classes. However, this problem needs to be addressed and

discussed in future work.

However, not all years have the same sequences. For this reason we made a detailed analysis

of each year regarding the sequence of 0’s and 1’s, we exposed all years in the appendix, in (A.4).

Therefore, here we will give an example of a good year 6.12 and a bad year 6.13. In order to

56 Online Learning

reinforce the idea given earlier, that online training is not always able to operate naturally. Note

that good year is inside the operation limits for online training and bad year exceed the operation

limits for online training (defined on Subsection 6.2.2).

(a) Class Distribution

(b) 0’s Distribution Study (c) 1’s Distribution Study

Figure 6.11: Class Distribution Study

6.3 Conclusions 57

(a) 0’s good year (b) 1’s good year

Figure 6.12: Good year

(a) 0’s bad year (b) 1’s bad year

Figure 6.13: Bad year

6.3 Conclusions

Throughout the chapter, lessons have been learned that will help analysts exploit detection systems

supported by online training.

We demonstrate that it is possible to use the Keras library for online training, as well as to over-

come the limits of our approach. However, it was found that the limits imposed by the synthetic

data are not the same as those imposed by the real data, as the real data have narrower operating

margins. We concluded that the alternation of class 0’s and class 1’s is extremely important in

the performance of online training. The existence of 0’s and 1’s distribution threshold forced the

search and characterisation of the randomness of the data that were used in online training. This

study showed that the distribution of classes in time is an obstacle to online training, thus hindering

the conventional online training.

58 Online Learning

Chapter 7

Conclusions

The work introduced and exposed on the previous chapters of this dissertation has been developed

with the objective of creating an intrusion detection system and determining a) if command and

control traffic evolves in time; and b) if the detection model can adapt to the changes of command

and control traffic over time.

Chapter 3 shows that the architecture adopted for the detection system achieved all the opera-

tional objectives.

In Chapter 5, we concluded that traffic characteristics change over time. However, we found

that the detection model was able to adapt to the changing characteristics over time, leading to the

conclusion that incremental offline training allows an adaptation to the changes in traffic charac-

teristics.

The results obtained in Chapter 6 show that is possible to use online training to update the

detection model. Nevertheless, after performing some tests we concluded that online training has

limitations. Online training performance depends on the natural classification distribution of the

traffic (0’s and 1’s distribution), which it could lead to failure the online training. In summary,

we conclude that it is necessary to create countermeasures to allow online training, which we will

describe in the future work section.

This thesis and its results confirm that command and control traffic evolves in time and the

detection model can adapt to the changes of command and control traffic over time.

7.1 Future Work

The future work will pass to replace offline training by online training on the intrusion detection

system. However, it is necessary to find a method that allows online training and mitigates the 0’s

and 1’s distribution problem.

Another direction is to evolve the IDS to an IPS, this implies that the system will start using

only the characteristics of the beginning of the flow instead of the complete flow characteristics

(since an IPS immediately blocks the flows considered malignant). This change will have a major

implication for the detection system, since until now the system used the complete flow features

59

60 Conclusions

to train the detection model. However, IPS prevents the training with the complete flow features

since it immediately blocks the flows considered malignant. Therefore, it is necessary to train the

detection models only with the initial characteristics of the flow. This way, it will be necessary to

prove that detection is feasible using only the initial features of the flow.

Appendix A

Intrusion Detection System

A.1 Full Description Tstat Feature Set

The full description of Tstat’s features follows in the following tables.

61

62 Intrusion Detection System

C
2S

S2C
Shortdescription

U
nit

L
ong

description
1

15
C

lient/ServerIP
addr

-
IP

addresses
ofthe

client/server
2

16
C

lient/ServerT
C

P
port

-
T

C
P

portaddresses
forthe

client/server
3

17
packets

-
totalnum

berofpackets
observed

form
the

client/server
4

18
R

ST
sent

0/1
0

=
no

R
ST

segm
enthas

been
sentby

the
client/server

5
19

A
C

K
sent

-
num

berofsegm
ents

w
ith

the
A

C
K

field
setto

1
6

20
PU

R
E

A
C

K
sent

-
num

berofsegm
ents

w
ith

A
C

K
field

setto
1

and
no

data
7

21
unique

bytes
bytes

num
berofbytes

sentin
the

payload
8

22
data

pkts
-

num
berofsegm

ents
w

ith
payload

9
23

data
bytes

bytes
num

berofbytes
transm

itted
in

the
payload,including

retransm
issions

10
24

rexm
itpkts

-
num

berofretransm
itted

segm
ents

11
25

rexm
itbytes

bytes
num

berofretransm
itted

bytes
12

26
outseq

pkts
-

num
berofsegm

ents
observed

outofsequence
13

27
SY

N
count

-
num

berofSY
N

segm
ents

observed
(including

rtx)
14

28
FIN

count
-

num
berofFIN

segm
ents

observed
(including

rtx)
29

Firsttim
e

abs
m

s
Flow

firstpacketabsolute
tim

e
(epoch)

30
L

asttim
e

abs
m

s
Flow

lastsegm
entabsolute

tim
e

(epoch)
31

C
om

pletion
tim

e
m

s
Flow

duration
since

firstpacketto
lastpacket

32
C

firstpayload
m

s
C

lientfirstsegm
entw

ith
payload

since
the

firstflow
segm

ent
33

S
firstpayload

m
s

Serverfirstsegm
entw

ith
payload

since
the

firstflow
segm

ent
34

C
lastpayload

m
s

C
lientlastsegm

entw
ith

payload
since

the
firstflow

segm
ent

35
S

lastpayload
m

s
Serverlastsegm

entw
ith

payload
since

the
firstflow

segm
ent

36
C

firstack
m

s
C

lientfirstA
C

K
segm

ent(w
ithoutSY

N
)since

the
firstflow

segm
ent

37
S

firstack
m

s
ServerfirstA

C
K

segm
ent(w

ithoutSY
N

)since
the

firstflow
segm

ent
38

C
Internal

0/1
1

=
clienthas

internalIP,0
=

clienthas
externalIP

39
S

Internal
0/1

1
=

serverhas
internalIP,0

=
serverhas

externalIP
40

C
anonym

ized
0/1

1
=

clientIP
is

C
ryptoPA

n
anonym

ized
41

S
anonym

ized
0/1

1
=

serverIP
is

C
ryptoPA

n
anonym

ized
42

C
onnection

type
-

B
itm

ap
stating

the
connection

type
as

identified
by

T
C

PL
7

inspection
engine

(see
protocol.h)

43
P2P

type
-

Type
ofP2P

protocol,as
identified

by
the

IPP2P
engine

(see
ipp2p_tstat.h)

44
H

T
T

P
type

-
ForH

T
T

P
flow

s,the
identified

W
eb2.0

content(see
the

http_contentenum
in

struct.h)
Table

A
.1:C

ore/B
asic

T
C

P
Set

A.1 Full Description Tstat Feature Set 63

C
2S

S2
C

Sh
or

td
es

cr
ip

tio
n

U
ni

t
L

on
g

de
sc

ri
pt

io
n

45
52

A
ve

ra
ge

rt
t

m
s

A
ve

ra
ge

R
T

T
co

m
pu

te
d

m
ea

su
ri

ng
th

e
tim

e
el

ap
se

d
be

tw
ee

n
th

e
da

ta
se

gm
en

ta
nd

th
e

co
rr

es
po

nd
in

g
A

C
K

46
53

rt
tm

in
m

s
M

in
im

um
R

T
T

ob
se

rv
ed

du
ri

ng
co

nn
ec

tio
n

lif
et

im
e

47
54

rt
tm

ax
m

s
M

ax
im

um
R

T
T

ob
se

rv
ed

du
ri

ng
co

nn
ec

tio
n

lif
et

im
e

48
55

St
de

v
rt

t
m

s
St

an
da

rd
de

vi
at

io
n

of
th

e
R

T
T

49
56

rt
tc

ou
nt

-
N

um
be

ro
fv

al
id

R
T

T
ob

se
rv

at
io

n
50

57
ttl

_m
in

-
M

in
im

um
Ti

m
e

To
L

iv
e

51
58

ttl
_m

ax
-

M
ax

im
um

Ti
m

e
To

L
iv

e
Ta

bl
e

A
.2

:T
C

P
E

nd
to

E
nd

Se
t

64 Intrusion Detection System

C
2S

S2C
Shortdescription

U
nit

L
ong

description
X

X
+23

R
FC

1323
w

s
0/1

W
indow

scale
option

sent
X

+1
X

+24
R

FC
1323

ts
0/1

Tim
estam

p
option

sent
X

+2
X

+25
w

indow
scale

-
Scaling

values
negotiated

[scale
factor]

X
+3

X
+26

SA
C

K
req

0/1
SA

C
K

option
set

X
+4

X
+27

SA
C

K
sent

-
num

berofSA
C

K
m

essages
sent

X
+5

X
+28

M
SS

bytes
M

SS
declared

X
+6

X
+29

m
ax

seg
size

bytes
M

axim
um

segm
entsize

observed
X

+7
X

+30
m

in
seg

size
bytes

M
inim

um
segm

entsize
observed

X
+8

X
+31

w
in

m
ax

bytes
M

axim
um

receiverw
indow

announced
(already

scale
by

the
w

indow
scale

factor)
X

+9
X

+32
w

in
m

in
bytes

M
axim

um
receiverw

indow
s

announced
(already

scale
by

the
w

indow
scale

factor)
X

+10
X

+33
w

in
zero

-
Totalnum

berofsegm
ents

declaring
zero

as
receiverw

indow

X
+11

X
+34

cw
in

m
ax

bytes
M

axim
um

in-flight-size
com

puted
as

the
difference

betw
een

the
largestsequence

num
berso

far,and
the

corresponding
lastA

C
K

m
essage

on
the

reverse
path.Itis

an
estim

ate
ofthe

congestion
w

indow
X

+12
X

+35
cw

in
m

in
bytes

M
inim

um
in-flight-size

X
+13

X
+36

initialcw
in

bytes
Firstin-flightsize,ortotalnum

berofunack-ed
bytes

sentbefore
receiving

the
firstA

C
K

segm
ent

X
+14

rtx
R

TO
-

N
um

berofretransm
itted

segm
ents

due
to

tim
eoutexpiration

X
+15

rtx
FR

-
N

um
berofretransm

itted
segm

ents
due

to
FastR

etransm
it(three

dup-ack)
X

+16
reordering

-
N

um
berofpacketreordering

observed
X

+17
netdup

-
N

um
berofnetw

ork
duplicates

observed
X

+18
unknow

n
-

N
um

berofsegm
ents

notin
sequence

orduplicate
w

hich
are

notclassified
as

specific
events

X
+19

flow
control

-
N

um
berofretransm

itted
segm

ents
to

probe
the

receiverw
indow

X
+20

unnece
rtx

R
TO

-
N

um
berofunnecessary

transm
issions

follow
ing

a
tim

eoutexpiration
X

+21
unnece

rtx
FR

-
N

um
berofunnecessary

transm
issions

follow
ing

a
fastretransm

it
X

+22
!=

SY
N

seqno
0/1

1
=

retransm
itted

SY
N

segm
ents

have
differentinitialseqno

Table
A

.3:T
C

P
O

ptions
Set

A.1 Full Description Tstat Feature Set 65

C
2S

S2
C

Sh
or

td
es

cr
ip

tio
n

U
ni

t
L

on
g

de
sc

ri
pt

io
n

K
H

T
T

P
R

eq
ue

st
co

un
t

-
N

um
be

ro
fH

T
T

P
R

eq
ue

st
s

(G
E

T
/P

O
ST

/H
E

A
D

)s
ee

n
in

th
e

C
2S

di
re

ct
io

n
(f

or
H

T
T

P
co

nn
ec

tio
ns

)
K

+1
H

T
T

P
R

es
po

ns
e

co
un

t
-

N
um

be
ro

fH
T

T
P

R
es

po
ns

es
(H

T
T

P)
se

en
in

th
e

S2
C

di
re

ct
io

n
(f

or
H

T
T

P
co

nn
ec

tio
ns

)
K

+2
Fi

rs
tH

T
T

P
R

es
po

ns
e

-
Fi

rs
tH

T
T

P
R

es
po

ns
e

co
de

se
en

in
th

e
se

rv
er

->
cl

ie
nt

co
m

m
un

ic
at

io
n

(f
or

H
T

T
P

co
nn

ec
tio

ns
)

K
+3

PS
H

-s
ep

ar
at

ed
C

2S
-

nu
m

be
ro

fp
us

h
se

pa
ra

te
d

m
es

sa
ge

s
C

2S
K

+4
PS

H
-s

ep
ar

at
ed

S2
C

-
nu

m
be

ro
fp

us
h

se
pa

ra
te

d
m

es
sa

ge
s

S2
C

K
+5

T
L

S
C

lie
nt

H
el

lo
SN

I
-

Fo
rT

L
S

flo
w

s,
th

e
se

rv
er

na
m

e
in

di
ca

te
d

by
th

e
cl

ie
nt

in
th

e
H

el
lo

m
es

sa
ge

ex
te

ns
io

ns
K

+6
T

L
S

Se
rv

er
H

el
lo

SC
N

-
Fo

rT
L

S
flo

w
s,

th
e

su
bj

ec
tC

N
na

m
e

in
di

ca
te

d
by

th
e

se
rv

er
in

its
ce

rt
ifi

ca
te

K
+7

T
L

S
C

lie
nt

N
PN

/A
L

PN
-

Fo
rT

L
S

flo
w

s,
a

bi
tm

ap
re

pr
es

en
tin

g
th

e
us

ag
e

of
N

PN
/A

L
PN

fo
rH

T
T

P2
/S

PD
Y

ne
go

tia
tio

n
K

+8
T

L
S

Se
rv

er
N

PN
/A

L
PN

-
Fo

rT
L

S
flo

w
s,

a
bi

tm
ap

re
pr

es
en

tin
g

th
e

us
ag

e
of

N
PN

/A
L

PN
fo

rH
T

T
P2

/S
PD

Y
ne

go
tia

tio
n

K
+9

T
L

S
C

lie
nt

ID
re

us
e

-
Fo

rT
L

S
flo

w
s,

in
di

ca
te

s
th

at
th

e
C

lie
nt

H
el

lo
ca

rr
ie

s
an

ol
d

Se
ss

io
n

ID
K

+1
0

T
L

S
C

lie
nt

L
as

tH
an

ds
ha

ke
m

s
Fo

rT
L

S
flo

w
s,

tim
e

of
C

lie
nt

la
st

pa
ck

et
se

en
be

fo
re

fir
st

A
pp

lic
at

io
n

D
at

a
(r

el
at

iv
e)

K
+1

1
T

L
S

Se
rv

er
L

as
tH

an
ds

ha
ke

m
s

Fo
rT

L
S

flo
w

s,
tim

e
of

Se
rv

er
la

st
pa

ck
et

se
en

be
fo

re
fir

st
A

pp
lic

at
io

n
D

at
a

(r
el

at
iv

e)
K

+1
2

T
L

S
C

lie
nt

A
pp

D
at

a
Ti

m
e

m
s

Fo
rT

L
S

flo
w

s,
tim

e
be

tw
ee

n
th

e
C

lie
nt

fir
st

A
pp

lic
at

io
n

D
at

a
m

es
sa

ge
an

d
th

e
fir

st
flo

w
se

gm
en

t
K

+1
3

T
L

S
Se

rv
er

A
pp

D
at

a
Ti

m
e

m
s

Fo
rT

L
S

flo
w

s,
tim

e
be

tw
ee

n
th

e
Se

rv
er

fir
st

A
pp

lic
at

io
n

D
at

a
m

es
sa

ge
an

d
th

e
fir

st
flo

w
se

gm
en

t
K

+1
4

T
L

S
C

lie
nt

A
pp

D
at

a
B

yt
es

by
te

s
Fo

rT
L

S
flo

w
s,

re
la

tiv
e

se
qu

en
ce

nu
m

be
rf

or
th

e
C

lie
nt

fir
st

A
pp

lic
at

io
n

D
at

a
m

es
sa

ge
K

+1
5

T
L

S
Se

rv
er

A
pp

D
at

a
B

yt
es

by
te

s
Fo

rT
L

S
flo

w
s,

re
la

tiv
e

se
qu

en
ce

nu
m

be
rf

or
th

e
C

lie
nt

fir
st

A
pp

lic
at

io
n

D
at

a
m

es
sa

ge
K

+1
6

FQ
D

N
-

Fu
lly

Q
ua

lifi
ed

D
om

ai
n

N
am

e
re

co
ve

re
d

us
in

g
D

N
H

un
te

r
K

+1
7

IP
of

D
N

S
re

so
lv

er
-

IP
ad

dr
es

s
of

th
e

co
nt

ac
te

d
D

N
S

re
so

lv
er

K
+1

8
D

N
S

re
qu

es
tt

im
e

m
s

un
ix

tim
e

(i
n

m
s)

of
th

e
D

N
S

re
qu

es
t

K
+1

9
D

N
S

re
sp

on
se

tim
e

m
s

un
ix

tim
e

(i
n

m
s)

of
th

e
D

N
S

re
sp

on
se

Ta
bl

e
A

.4
:T

C
P

L
ay

er
7

Se
t

66 Intrusion Detection System

A.2 Code

This section is for the demonstration of some scripts used in the thesis.

1 # ! / b i n / bash
2 # Run on sudo su ROOT needed
3

4 h e l p F u n c t i o n ()
5 {
6 echo " "
7 echo " Usage : . / t a p name ex t a p 0 "
8 echo " "
9 e x i t 1 # E x i t s c r i p t a f t e r p r i n t i n g h e l p

10 }
11

12 # P r i n t h e l p F u n c t i o n i n c a s e p a r a m e t e r s a r e empty
13 i f [−z " $1 "]
14 t h e n
15 echo " " ;
16 echo "Some or a l l o f t h e p a r a m e t e r s a r e empty " ;
17 h e l p F u n c t i o n
18 f i
19

20 sudo t u n c t l − t $1
21 sudo i f c o n f i g $1 1 7 2 . 1 6 . 0 . 1 netmask 2 5 5 . 2 5 5 . 2 5 5 . 0 up
22 sudo i f c o n f i g $1 up

Listing A.1: Creation of TAP interface

A.3 Testing 67

1 # ! / b i n / bash
2 # −K o p t i o n w i l l p r e l o a d t h e PCAP f i l e i n t o memory b e f o r e t e s t i n g
3 # − t o p t i o n w i l l send as q u i c k l y as p o s s i b l e
4 # −− loop t o add a loop n o t implemented
5

6 h e l p F u n c t i o n ()
7 {
8 echo " "
9 echo " Usage : p c a p r e p l a y p a t h _ t o _ p c a p e t h _ i n t e r f a c e v e l o c i t y (Mbps) "

10 echo " "
11 e x i t 1 # E x i t s c r i p t a f t e r p r i n t i n g h e l p
12 }
13

14 # P r i n t h e l p F u n c t i o n i n c a s e p a r a m e t e r s a r e empty
15 i f [−z " $1 "] | | [−z " $2 "] | | [−z " $3 "]
16 t h e n
17 echo " " ;
18 echo "Some or a l l o f t h e p a r a m e t e r s a r e empty " ;
19 h e l p F u n c t i o n
20 f i
21

22 # t c p r e p l a y − i t a p 0 −M 10 . . / pcap / 1 0 1 . pcap
23 # sudo t c p r e p l a y − i $2 −M $3 −K $1
24 sudo t c p r e p l a y − i $2 −K $1

Listing A.2: Pcap Replay

A.3 Testing

The Figures in this section A.3 refer to the test performed in subsection 3.5.

68 Intrusion Detection System

Figure A.1: Alert Malware

Figure A.2: Log Matrix

Figure A.3: Program’s Log

A.4 Distribution Studies 0’s and 1’s per Year 69

A.4 Distribution Studies 0’s and 1’s per Year

The Figures in this section A.4 refer to the studies performed in subsection 6.2.3. Each set of

figures represents one year and contains the distribution of 0’s and 1’s.

(a) 0’s year 2014 (b) 1’s year 2014

Figure A.4: Year 2014

(a) 0’s year 2016 (b) 1’s year 2016

Figure A.5: Year 2016

70 Intrusion Detection System

(a) 0’s year 2017 (b) 1’s year 2017

Figure A.6: Year 2017

(a) 0’s year 2018 (b) 1’s year 2018

Figure A.7: Year 2018

A.5 Limitation of 0’s and 1’s

The Figures in this section A.5 refer to the studies carried out in subsection 6.2.2. Each set of

Figures, contains 3 metrics (precision, recall, f1).

A.5 Limitation of 0’s and 1’s 71

Figure A.8: Study One - 128/32 (0’s/1’s)

Figure A.9: Study Two - 64/32 (0’s/1’s)

72 Intrusion Detection System

Figure A.10: Study Three - 32/32 (0’s/1’s)

Figure A.11: Study Four - 32/16 (0’s/1’s)

A.5 Limitation of 0’s and 1’s 73

Figure A.12: Study Five - 32/8 (0’s/1’s)

Figure A.13: Study Six - 32/4 (0’s/1’s)

74 Intrusion Detection System

References

[1] F. Hock and P. Kortiš. Commercial and open-source based intrusion detection system and
intrusion prevention system (IDS/IPS) design for an IP networks. In 2015 13th Interna-
tional Conference on Emerging eLearning Technologies and Applications (ICETA), pages
1–4, 2015. doi:10.1109/ICETA.2015.7558466.

[2] R. Zheng, J. Liu, K. Li, S. Liao, and L. Liu. Detecting malicious TLS network traf-
fic based on communication channel features. In 2020 IEEE 8th International Confer-
ence on Information, Communication and Networks (ICICN), pages 14–19, 2020. doi:
10.1109/ICICN51133.2020.9205087.

[3] B. Anderson and D. McGrew. Machine learning for encrypted malware traffic classi-
fication: Accounting for noisy labels and non-stationarity. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’17, page 1723–1732, New York, NY, USA, 2017. Association for Computing Machinery.
doi:10.1145/3097983.3098163.

[4] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng. Malware traffic classification using con-
volutional neural network for representation learning. In 2017 International Conference on
Information Networking (ICOIN), pages 712–717, 2017. doi:10.1109/ICOIN.2017.
7899588.

[5] M. Trevisan, A. Finamore, M. Mellia, M. Munafo, and D. Rossi. Traffic analysis with
off-the-shelf hardware: Challenges and lessons learned. IEEE Communications Magazine,
55(3):163–169, 2017. doi:10.1109/MCOM.2017.1600756CM.

[6] V. Losing, B. Hammer, and H. Wersing. Incremental on-line learning: A review and compar-
ison of state of the art algorithms. Neurocomputing, 275:1261 – 1274, 2018. doi:https:
//doi.org/10.1016/j.neucom.2017.06.084.

[7] I. Lee, H. Roh, and W. Lee. Poster abstract: Encrypted malware traffic detection using
incremental learning. In IEEE INFOCOM 2020 - IEEE Conference on Computer Com-
munications Workshops (INFOCOM WKSHPS), pages 1348–1349, 2020. doi:10.1109/
INFOCOMWKSHPS50562.2020.9162971.

[8] H. Anderson. Evading machine learning malware detection. 2017.

[9] L. Chen, Y. Ye, and T. Bourlai. Adversarial machine learning in malware detection: Arms
race between evasion attack and defense. In 2017 European Intelligence and Security Infor-
matics Conference (EISIC), pages 99–106, 2017. doi:10.1109/EISIC.2017.21.

[10] L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel. Disclosure: Detecting botnet
command and control servers through large-scale netflow analysis. In Proceedings of the

75

http://dx.doi.org/10.1109/ICETA.2015.7558466
http://dx.doi.org/10.1109/ICICN51133.2020.9205087
http://dx.doi.org/10.1109/ICICN51133.2020.9205087
http://dx.doi.org/10.1145/3097983.3098163
http://dx.doi.org/10.1109/ICOIN.2017.7899588
http://dx.doi.org/10.1109/ICOIN.2017.7899588
http://dx.doi.org/10.1109/MCOM.2017.1600756CM
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2017.06.084
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2017.06.084
http://dx.doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162971
http://dx.doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162971
http://dx.doi.org/10.1109/EISIC.2017.21

76 REFERENCES

28th Annual Computer Security Applications Conference, ACSAC ’12, page 129–138, New
York, NY, USA, 2012. Association for Computing Machinery. doi:10.1145/2420950.
2420969.

[11] A. Borkar, A. Donode, and A. Kumari. A survey on intrusion detection system (IDS) and
internal intrusion detection and protection system (IIDPS). In 2017 International Conference
on Inventive Computing and Informatics (ICICI), pages 949–953, 2017. doi:10.1109/
ICICI.2017.8365277.

[12] S. A. R. Shah and B. Issac. Performance comparison of intrusion detection systems and
application of machine learning to snort system. Future Generation Computer Systems,
80:157 – 170, 2018. doi:https://doi.org/10.1016/j.future.2017.10.016.

[13] D. A. Bhosale and V. M. Mane. Comparative study and analysis of network intrusion de-
tection tools. In 2015 International Conference on Applied and Theoretical Computing and
Communication Technology (iCATccT), pages 312–315, 2015. doi:10.1109/ICATCCT.
2015.7456901.

[14] H. Hindy, D. Brosset, E. Bayne, A. K. Seeam, C. Tachtatzis, R. Atkinson, and X. Bellekens.
A taxonomy of network threats and the effect of current datasets on intrusion detection sys-
tems. IEEE Access, 8:104650–104675, 2020. doi:10.1109/ACCESS.2020.3000179.

[15] V. Méndez-García, P. Jiménez-Ramírez, M. Á. Meléndez-Ramírez, F. M. Torres-Martínez,
R. Llamas-Contreras, and H. González. Comparative analysis of banking malware. In 2014
IEEE Central America and Panama Convention (CONCAPAN XXXIV), pages 1–5, 2014.
doi:10.1109/CONCAPAN.2014.7000412.

[16] R. Branco and U. Shamir. Architecture for automation of malware analysis. In 2010 5th
International Conference on Malicious and Unwanted Software, pages 106–112, 2010. doi:
10.1109/MALWARE.2010.5665786.

[17] P. Black and J. Opacki. Anti-analysis trends in banking malware. In 2016 11th International
Conference on Malicious and Unwanted Software (MALWARE), pages 1–7, 2016. doi:
10.1109/MALWARE.2016.7888738.

[18] Z. Berkay Celik, R. J. Walls, P. McDaniel, and A. Swami. Malware traffic detection using
tamper resistant features. In MILCOM 2015 - 2015 IEEE Military Communications Confer-
ence, pages 330–335, 2015. doi:10.1109/MILCOM.2015.7357464.

[19] S. Silva, R. Silva, R. Pinto, and R. Salles. Botnets: A survey. Computer Networks, 57(2):378
– 403, 2013. Botnet Activity: Analysis, Detection and Shutdown. doi:https://doi.
org/10.1016/j.comnet.2012.07.021.

[20] D. Zhao, I. Traore, B. Sayed, W. Lu, S. Saad, A. Ghorbani, and D. Garant. Botnet detection
based on traffic behavior analysis and flow intervals. Computers & Security, 39:2 – 16, 2013.
27th IFIP International Information Security Conference. doi:https://doi.org/10.
1016/j.cose.2013.04.007.

[21] F. V. Alejandre, N. C. Cortés, and E. A. Anaya. Feature selection to detect botnets
using machine learning algorithms. In 2017 International Conference on Electronics,
Communications and Computers (CONIELECOMP), pages 1–7, 2017. doi:10.1109/
CONIELECOMP.2017.7891834.

http://dx.doi.org/10.1145/2420950.2420969
http://dx.doi.org/10.1145/2420950.2420969
http://dx.doi.org/10.1109/ICICI.2017.8365277
http://dx.doi.org/10.1109/ICICI.2017.8365277
http://dx.doi.org/https://doi.org/10.1016/j.future.2017.10.016
http://dx.doi.org/10.1109/ICATCCT.2015.7456901
http://dx.doi.org/10.1109/ICATCCT.2015.7456901
http://dx.doi.org/10.1109/ACCESS.2020.3000179
http://dx.doi.org/10.1109/CONCAPAN.2014.7000412
http://dx.doi.org/10.1109/MALWARE.2010.5665786
http://dx.doi.org/10.1109/MALWARE.2010.5665786
http://dx.doi.org/10.1109/MALWARE.2016.7888738
http://dx.doi.org/10.1109/MALWARE.2016.7888738
http://dx.doi.org/10.1109/MILCOM.2015.7357464
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2012.07.021
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2012.07.021
http://dx.doi.org/https://doi.org/10.1016/j.cose.2013.04.007
http://dx.doi.org/https://doi.org/10.1016/j.cose.2013.04.007
http://dx.doi.org/10.1109/CONIELECOMP.2017.7891834
http://dx.doi.org/10.1109/CONIELECOMP.2017.7891834

REFERENCES 77

[22] K. C. Pai, S. Mitra, and M. Chari S. Novel TLS signature extraction for malware de-
tection. In 2020 IEEE International Conference on Electronics, Computing and Commu-
nication Technologies (CONECCT), pages 1–3, 2020. doi:10.1109/CONECCT50063.
2020.9198590.

[23] O. Roques. Detecting malware in TLS traffic, PhD Thesis, Imperial College London. 2019.

[24] D. Han, Z. Wang, Y. Zhong, W.i Chen, J.i Yang, S. Lu, X. Shi, and X. Yin. Evaluating
and improving adversarial robustness of machine learning-based network intrusion detectors,
2020. arXiv:2005.07519.

[25] D. Kim, J. Han, J. Lee, H. Roh, and W. Lee. Poster: Feasibility of malware traffic anal-
ysis through TLS-encrypted flow visualization. In 2020 IEEE 28th International Confer-
ence on Network Protocols (ICNP), pages 1–2, 2020. doi:10.1109/ICNP49622.2020.
9259387.

[26] R. Mellia, M. Cigno and F. Neri. Measuring IP and TCP behavior on edge nodes with tstat.
Computer Networks, 47:1–21, 01 2005. doi:10.1016/j.comnet.2004.06.026.

[27] F. Iglesias and T. Zseby. Analysis of network traffic features for anomaly detection. Machine
Learning, 101(1):59–84, Oct 2015. doi:10.1007/s10994-014-5473-9.

[28] S. Ni, Q. Qian, and R. Zhang. Malware identification using visualization images and deep
learning. Computers & Security, 77:871 – 885, 2018. doi:https://doi.org/10.
1016/j.cose.2018.04.005.

[29] H. Naeem, B. Guo, M. Naeem, F. Ullah, H. Aldabbas, and M. Javed. Identification of
malicious code variants based on image visualization. Computers & Electrical Engineering,
76:225 – 237, 2019. doi:https://doi.org/10.1016/j.compeleceng.2019.03.
015.

[30] S. Zanero. Flaws and frauds in the evaluation of IDS/IPS technologies. In Proc. of FIRST.
Citeseer, 2007.

[31] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai. Kitsune: An ensemble of autoencoders
for online network intrusion detection. 01 2018. doi:10.14722/ndss.2018.23211.

[32] Politecnico di Torino. Tstat: tstat.polito.it, 2021. URL: http://https://http:
//tstat.polito.it/.

[33] Open Information Security Foundation. Suricata: suricata.io, 2021. URL: https://
suricata.io/.

[34] C. Novo. Adversarial malware command and control traffic generation, Master’s thesis,
Faculdade de Engenharia, Universidade do Porto. 2020.

[35] Malware Traffic Analysis. MTA: malware-traffic-analysis.net, 2021. URL: http://
https://www.malware-traffic-analysis.net/.

[36] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.
arXiv:1412.6980.

[37] Zhilu Zhang and Mert R. Sabuncu. Generalized cross entropy loss for training deep neural
networks with noisy labels, 2018. arXiv:1805.07836.

http://dx.doi.org/10.1109/CONECCT50063.2020.9198590
http://dx.doi.org/10.1109/CONECCT50063.2020.9198590
http://arxiv.org/abs/2005.07519
http://dx.doi.org/10.1109/ICNP49622.2020.9259387
http://dx.doi.org/10.1109/ICNP49622.2020.9259387
http://dx.doi.org/10.1016/j.comnet.2004.06.026
http://dx.doi.org/10.1007/s10994-014-5473-9
http://dx.doi.org/https://doi.org/10.1016/j.cose.2018.04.005
http://dx.doi.org/https://doi.org/10.1016/j.cose.2018.04.005
http://dx.doi.org/https://doi.org/10.1016/j.compeleceng.2019.03.015
http://dx.doi.org/https://doi.org/10.1016/j.compeleceng.2019.03.015
http://dx.doi.org/10.14722/ndss.2018.23211
http://https://http://tstat.polito.it/
http://https://http://tstat.polito.it/
https://suricata.io/
https://suricata.io/
http://https://www.malware-traffic-analysis.net/
http://https://www.malware-traffic-analysis.net/
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1805.07836

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Context and Motivation
	1.2 Problem Description
	1.3 Objectives
	1.4 Contributions
	1.5 Document Structure

	2 Literature Review
	2.1 Intrusion Detection Systems vs. Intrusion Prevention System
	2.1.1 Intrusion Detection Systems
	2.1.2 Intrusion Prevention System

	2.2 Malware Command and Control Over TLS
	2.2.1 Botnets and Command Control
	2.2.2 C2 Malware Traffic Over TLS

	2.3 Traffic Detection Using ML
	2.3.1 Features
	2.3.2 Models
	2.3.3 Detection Tasks

	2.4 Detection Performance
	2.4.1 Learning Performance
	2.4.2 Network and Computational Performance

	2.5 Training with Live Data
	2.5.1 Comparison of Offline and Online Training

	2.6 Conclusion

	3 System Description, Environment and Implementation
	3.1 IDS Vs IPS
	3.2 Environment
	3.2.1 Place of Operation
	3.2.2 Services and Dependencies
	3.2.3 Packets-capture

	3.3 System Description
	3.3.1 Detection Assumptions
	3.3.2 Intrusion Detection System
	3.3.3 Baseline
	3.3.4 ML Component
	3.3.5 Acquisition of New Information

	3.4 Evaluation of the Impact of ML Training
	3.5 Testing and Evaluation of the System
	3.6 Conclusions

	4 Command and Control Traffic Detection
	4.1 Malware C2
	4.2 C2 Traffic Features
	4.3 C2 Traffic Description
	4.4 Machine Learning Model
	4.5 Machine Learning Modes

	5 Offline Learning
	5.1 Best Classifier
	5.1.1 Result

	5.2 Influence of the Class Weights
	5.2.1 Result

	5.3 Non-Incremental Training
	5.3.1 Evolution Over the Years

	5.4 Incremental Training
	5.4.1 Evolution Over the Years

	5.5 Conclusions

	6 Online Learning
	6.1 Impact of Different Sequences of Labels
	6.1.1 Synthetic Dataset
	6.1.2 Comparison of Offline Training with Online Training (synthetic data)
	6.1.3 0's & 1's
	6.1.4 Conclusions

	6.2 Application to the C2 Dataset
	6.2.1 Operation with Real Data
	6.2.2 0's & 1's Tuning
	6.2.3 Class Distribution

	6.3 Conclusions

	7 Conclusions
	7.1 Future Work

	A Intrusion Detection System
	A.1 Full Description Tstat Feature Set
	A.2 Code
	A.3 Testing
	A.4 Distribution Studies 0's and 1's per Year
	A.5 Limitation of 0's and 1's

	References

