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Abstract

Space weather has become an essential field of study as solar flares, coronal mass ejections, and
other phenomena can severely impact Earth’s life as we know it.

The solar wind is threaded by magnetic flux tubes that extend from the solar atmosphere to
distances beyond the solar system boundary. As those flux tubes cross the Earth’s orbit, it is
essential to understand and predict solar phenomena’ effects at 1 au, but the physical parameters
linked to the solar wind formation and acceleration processes are not directly observable.

Some existing models, such as MULTI-VP, try to fill this gap by predicting the background so-
lar wind’s dynamical and thermal properties from chosen magnetograms and using a coronal field
reconstruction method. However, this kind of simulation takes a long time to stabilize, although
they converge faster with better initial guesses.

As such our main research goal consisted in understanding how to decrease MULTI-VP’s sim-
ulation time by performing good initial guesses.

The State of the Art shows that there is an increasing interest in using machine learning tech-
niques to solve solar weather forecasting and classification problems whilst having an increase in
the interest in applying deep learning techniques to such problems. It also showcases that there is
pertinence in applying neural networks to the MULTI-VP simulation in order to improve simula-
tion times.

To address this problem then, we started by using a sampled line of each of the 12k plus
simulation generated files and started by performing preprocessing on the data and executing an
exploratory data analysis. We showcased that some of the features possessed a considerable range
of values and that some had a lot of outliers. We were also able to find some correlations between
data concluding that the further away from the Sun, the bigger the diameter of the flux tube and
the larger the wind velocity.

We then proceeded by performing data normalization and justified chosen configurations through
loss measures and by the use of k-fold validation and tuners. Different models were tested and
explained and compared with median and random based models outperforming these. Our re-
sults were then further analysed in comparison with the expected outputs proving not to be similar
enough to the expected predictions.

Given the issues faced, we then developed and tested a new model by using 6000 simulation
generated files instead of the lines as inputs and were faced with similar results.

We then questioned if the complexity of the developed network was high enough and decided
to test the use of a higher level of layers on the network. With the final described model we
achieved results that were more similar to those expected and that could be used in the MULTI-VP
simulation.

As such we provided the simulation with an initial guess of all the outputs’ lines in a profile
so that the simulation could convert faster to a final result.

Afterward, we predicted 15 files with our model and used such files on the MULTI-VP simu-
lation so as to compare their performance to the one achieved by standard files. We were then able
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to conclude that in the majority of cases, there is a small but existing improvement in the speedup
of convergence times. Finally, we validated our result’s statistical significance with the student’s
t-test achieving statistical significance at p < 0.05.

We further identified remaining open challenges to be tackled in the future.
Keywords: Initial Conditions Estimation, Machine Learning, Neural Networks, Solar Wind
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Introduction

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

In this chapter, an overview of the context, motivation, problem definition, goals of this dis-

sertation, and document structure are given in the following sections.

1.1 Context

Space Weather Science is defined as the understanding of the chain of causality between phys-

ical phenomena that cover a wide range of regimes, from Sun to Earth (as well as other posi-

tions in space). Solar events are called geo-effective when their intrinsic properties, propagation

path, and configuration regarding Earth’s magnetosphere can produce atmospheric or ground-

level disturbances; such disturbances can be of different types. Explosive phenomena called

coronal mass ejections (CME) produce the strongest and less predictable impacts on Earth (radio-

communication failures, ionospheric disturbances that lead to failure in global positioning systems,

high-energy radiation on aircraft crews, and passengers). Fluctuations intrinsic to the background

solar wind (i.e., the CME-free plasma flow that fills the whole interplanetary medium) come in the

form of waves, high-speed streams (HSS), or stream-interaction regions (SIR) and can produce

similar effects with smaller amplitudes but with much higher occurrence rates.

1.2 Motivation

Early detection and forecast of CMEs remains highly challenging to this day, as impulsive phe-

nomena trigger them on the Sun. However, some specific patterns visible in ultra-violet images
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2 Introduction

of the Sun seem to be related to the early phases of CME evolution (a straightforward verification

of CME precursors is still work-in-progress). The background solar wind follows a more deter-

ministic phenomenology, but many of the physical parameters that determine its structure are not

directly observable. This information gap is being progressively filled with the solar wind’s phys-

ical modeling, which has benefited enormously over the last years. Physical models, nevertheless,

always need to rely on heuristics to some extent, and more so in a context where real-time mod-

eling is required. Accurate forecasting of the solar wind background is a significant endeavor to

estimate its intrinsic disturbances and better and immediately determine the trajectories of CMEs

after they are triggered.

Current knowledge, methods, and tools have been developed historically by different scientific

communities. The underlying reason for this separation is intrinsically related to the availability of

data: remote observations of the solar surface and geophysical observations. It has become evident

over the last two decades that the Sun-to-Earth connections had to be addressed directly. A new

community started developing at the interface between geo and solar physics, building the ground

base for Space Weather Science and operational and industrial applications. A new generation of

ground-based and space-borne observatories geared at probing the physical processes at play be-

tween the perturbation source (the Sun) and the target (Earth). Examples of these are space probes

that scan intermediate orbital altitudes. (Parker Solar Probe1 Solar Orbiter2, BepiColombo3), ra-

dio probes, spacecraft away from the Sun-Earth line (STEREO, the future Lagrange), and remote

monitoring of coronal solar magnetic fields. Despite the enormous growth in variety and volume

of data, the physical coverage of the vast Sun-Earth domain remains very low (in comparison,

e.g., to the ocean and atmospheric monitoring for Earth meteorology). Extensive physical model-

ing of the Sun-Earth system is thus necessary, especially techniques that integrate data and models

seamlessly. Space Weather forecasting furthermore requires a quick, reliable, and systematic anal-

ysis of increasingly more extensive and more diverse datasets and calls for the implementation of

machine learning and deep learning methods (Artificial Intelligence (AI), generically). The solar

and space physics community has been actively seeking event and feature classification schemes,

early detection methods, intelligent data rejection/validation criteria, heuristic flagging of model

results, among other techniques. With incidents such as The Carrington event [2] being a possi-

bility, being able to predict and understand these is of vital importance to humankind given the

repercussions these might have on most of the used technology as mentioned before.

1NASA’s Parker Solar Probe is the first-ever mission to touch the atmosphere of the Sun, equaling a distance of 4
million miles from its surface. The Probe was launched on August 12, 2018. link

2Solar Orbiter’s mission goals are to take the closest-ever images of the Sun, the first-ever close-up images of the
Sun’s polar regions, measuring the composition of the solar wind and linking it to its area of origin on the Sun’s surface.
It was launched in February 2020. link

3BepiColombo is Europe’s first mission to Mercury which was launched on October 20, 2018. The mission shall
last seven years. link
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1.3 Problem Definition

The solar wind is threaded by magnetic flux tubes that extend from the solar atmosphere to dis-

tances beyond the solar system boundary. At 1 astronomical unit4 (au), there are observable phe-

nomena that depend on the physical properties of the solar corona (hot and dynamic layer of the

Sun’s atmosphere) and events taking place there. However, despite the need to determine and pre-

dict what is measured at 1 au, there is no direct access to the physical parameters causally linked

to the solar wind formation and acceleration processes, which are not directly observable. Some

existing simulation models try to fill this gap by extrapolating the magnetic field measured at the

Sun’s surface to the whole corona. These physical models allow the calculation of wind properties

measured at 1 au. However, it is observed that their performance (result-wise) increases when a

good initial guess is made regarding the initial conditions for the simulation. It should also be

noted that these models also take a long time to process the information and develop a solution.

The problem we are trying to tackle is obtaining good initial guesses using machine learning to

decrease the time taken to come to a feasible solution.

1.4 Goals

We aim to apply machine learning/deep learning techniques to find good initial guesses regarding

the initial conditions for a physical simulation model that predicts the solar wind. The goal is to

minimize the computation time required to predict a feasible solution.

1.5 Document Structure

This chapter, chapter 1, served the purpose of contextualizing, motivating and describing the prob-

lems this dissertation intends to solve. This document is comprised of six more chapters, structured

as follows:

• Chapter 2, Background, introduces the background information and explanation about con-

cepts necessary to contextualize this dissertation.

• Chapter 3, State of the Art, describes the state of the art regarding this dissertation’s scope,

including the exploration of solution of Machine Learning applied to solar events forecasts

and simulations of initial conditions using machine learning and for solar wind and magnetic

field prediction.

• Chapter 4, Research Statement, presents the problem this dissertation aims to solve, as well

as the approach taken to solve it.

• Chapter 5, Exploratory Data Analysis, explores the available data and studies correlation

between features.
4An astronomical unit (that can be abbreviated as AU or au) is a unit of length equaling the average distance between

Earth and the Sun, which has been measured at 149597870.7 km
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• Chapter 6, Experiments and Results, presents the conducted experiments and results ob-

tained while attempting to answer this thesis research questions. Implementation details are

also given in this chapter as a way to guarantee this work’s reproducibility.

• Chapter 7, Conclusions and Future Work, presents the final conclusions of the dissertation

and work to be built upon them.



Chapter 2

Background

2.1 Space Weather . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

This chapter describes the necessary foundations regarding the context of Solar Magneto-

hydrodynamics. Section 2.1 describes the background of Space Weather. In subsection 2.1.1 a

brief description of the Sun is provided, and in subsection 2.1.2 a more thorough look is taken at the

solar magnetosphere, including definitions of important phenomena later used for this dissertation.

Section 2.2 explains what Machine Learning is and introduces different algorithms and techniques

as well as regression metrics and re-sampling techniques. Lastly in Section 2.3 summarizes this

chapter.

2.1 Space Weather

Space weather is commonly defined as:

The term space weather generally refers to conditions on the sun, in the solar wind, and within

Earth’s magnetosphere1, ionosphere2 and thermosphere3 that can influence the performance and

reliability of space-borne and ground-based technological systems and endanger human life or

health[3].

In particular, activity occurring on the Sun, like solar flares and coronal mass ejections, as well

as the solar wind, can trigger geomagnetic storms and other phenomena on Earth.

1A magnetosphere is the region around a planet or star dominated by the planet’s or star’s magnetic field.
2Earth’s ionosphere overlaps the top of the atmosphere and the very beginning of space and has direct interference

from the Sun.
3The thermosphere is directly above the mesosphere and below the exosphere extending from about 90 km to

between 500 and 1,000 km above the Earth.

5



6 Background

2.1.1 The Sun and its Magnetic Field

The Sun is a massive ball of gas held together by pure gravity force. Comprised mainly of Helium

and Hydrogen, it provides fundamental conditions for life on Earth. However, several solar events

such as The Carrington Event [2] have proven that the Sun’s impact on Earth can be severe and,

as such, the study of this stellar object has become more critical. These solar events, correlated

with the Sun’s magnetic field, are of different dimensions, intensities, and structures. This section

intends to serve as a brief introduction to these topics. It is divided into overviews of the Sun’s

composition, Sun’s Magnetic Field, major solar events, and finally, it contextualizes magnetic

tubes, which will be studied in this work.

Figure 2.1: Structure of the sun. Temperatures in Kelvin and densities in kgm−3 (reprinted from
[1]).

The Sun, as can be seen in Figure 2.1 is comprised of a core, where temperatures can reach

billions of degrees, the radiative zone, in which energy is mainly transported toward the exte-

rior employing radiative diffusion and thermal conduction, a convection zone, a photosphere, a

chromosphere, and a corona.

The magnetic field of the Sun acts in different ways at each of the layers, and the aggregation

of these behaviors eventually leads to the observable solar events referred to before.
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Figure 2.2: Magnetic field above the chromosphere (reprinted from [4]).

The core of the Sun is a so-called nuclear reactor generating an extraordinary amount of en-

ergy. This energy leaks continuously outwards, across, and through the radiative zone by radiative

diffusion and thermal conduction. One should note that this is a considerably slow process due to

this duality in emission and absorption, taking the photons a considerable amount of time to cross

the radiative zone.

In the convection zone, as the name implies, the energy is primarily transported by convection.

Such happens due to the abrupt fall in the temperature gradient from the interior to the outermost

parts of the Sun. As such, the hot plasma rises and partitions before cooling, falling, and rising

again. There is a sheer layer at the lower part of this zone where the Sun’s magnetic field is

believed to be generated by a dynamo.

The photosphere is the lowest part of what is considered the Sun’s atmosphere and emits most

of the solar radiation. Its optical thickness (τ), in the near-ultraviolet is defined by the equation

I = I0ε−τ where I0 is the radiation intensity at the source, and I is the observed intensity after a

given path. Two types of granulation dominate convection in this layer. The granulation comprises

individual granules of the order of 1 000 km, while the super-granulation cells are over 20 000 km.

The atmosphere experiences magnetic flux emergence that can lead to solar flares, which can be

intense (later explained in this section).

The chromosphere is the second of the three main layers in the Sun’s atmosphere, and its

density is four orders of magnitude lower than that of the photosphere. The magnetic flux that

emerges from the photosphere is highly concentrated in small flux elements.

The magnetic flux which emerges from the photosphere is not distributed smoothly over the

solar surface but highly concentrated in small flux elements. The upper photosphere and chromo-
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sphere form a relatively cool layer up to a height of several thousands of kilometers (km) above the

visible surface where the plasma density and pressure decrease rapidly, the flux elements widen

their horizontal cross-section, and their total pressure balances the one of the surrounding plasma.

Eventually, individual flux tubes are bound to merge with a flux of equal polarity or bend into

magnetic arches to connect to flux elements of opposite polarity, as can be seen in Figure 2.2. This

phenomenon creates magnetic flux loops, which will be later discussed.

Finally, the corona stands as the outermost part of the Sun’s atmosphere. It is dominated by the

magnetic field and is most easily seen during a total solar eclipse. The coronal magnetic fields vary

between a few G4 to many hundreds of G. It is comprised of three main parts being these dark

coronal holes (in these plasma escapes outwards and results in fast solar winds), bright coronal

loops, which are magnetically closed and connect photospheric regions of opposite polarity; and

finally, small intense features called X-ray bright points consisting of tiny loops [1, 4]. Modeling

of the corona is usually based on magneto-hydrodynamics (MHD), which describes a strongly

ionized and magnetized plasma behavior such as that found in the corona.

2.1.2 Solar Events

Solar events such as sunspots (2.1.2.1), coronal mass ejections (2.1.2.2), solar flares (2.1.2.3) and

solar wind (2.1.2.4) are phenomena that occur in the Sun’s magnetic atmosphere. In this chapter

these events are explained.

2.1.2.1 Sunspots

Sunspots are dark cold spots in the sun’s surface caused by an extreme concentration of magnetic

flux that inhibits convection.

This concentration is caused by intense flux tubes of up to 2 kG that due to convective compres-

sion, flux expulsion and evacuation become more vertical and compressed thus achieving higher

magnetic intensity.

The sunspots are composed of two main parts: the umbra and the penumbra. In the umbra

(darkest part) the magnetic field is almost perpendicular to the surface of the Sun. In the penumbra

the magnetic field is not so inclined.

The life-cycle of a sunspot is comprised of two stages. In the first stage, the so called forma-

tion, a high intensity magnetic flux tube rises buoyantly, being strong enough to inhibit convection

leading to cooling and falling of the plasma in such tube. As such, the magnetic field in the spot

increases up until it becomes unbalanced with the external gas pressure. In the second stage,

the stage of decay, magnetic pressure removes field concentrations, leading to the dispersion of

sunspots. Sunspot cycles tend to accompany the solar eleven-year cycle [1, 4].

4The gauss, is a unit of measurement of magnetic induction, measuring the magnetic flux density.
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2.1.2.2 Coronal Mass Ejections

Coronal Mass Ejections, also known as CMEs, are magnetic plasma releases of up to 1022 Mx

and up to 4052kg, expanding from the Sun’s surface, having a long range of reach. This range

goes from near corona projections to farther into the planetary system. They often appear in active

regions where one can find sunspots and are closely related to solar flares. Their occurrence rate

varies from 0.2 per day while at solar minimum to 6 a day at solar maximum.

CMEs are believed to be caused by magnetic reconnection, a phenomenon in which magnetic

energy is converted into kinetic and thermal energy. It corresponds to an impulsive release of

energy accumulated progressively in the magnetic field.

Most ejections originate from active regions on the Sun’s surface, such as groupings of sunspots

and are frequently associated with solar flares [1, 4].

2.1.2.3 Solar Flares

Solar flares are bright eruptions of light in the surface of the Sun and just like CMEs, are usually

observed near a sunspot. These bright phenomena can be categorized from A-C, M and X classes

according to the X-ray flux felt near Earth. Each class corresponds to a peak flux 10 times higher

than that of the previous one, and can be further subdivided from 1 to 9.

Just like CMEs, there is some evidence that solar flares can be caused by magnetic reconnec-

tion. As such the plasma is increasingly heated and its particles accelerated leading to the release

of radiation across the electromagnetic spectrum.

One of the possible impacts of solar flares lies in the possibility of it affecting Earth’s iono-

sphere causing possible disruption in radio communications, radars and other devices [1, 4].

2.1.2.4 Solar Wind

Solar wind, a flow of charged particles, originates at the outermost layer of the Sun, the corona. In

here, there is a continuous outward expansion carried forward with the solar wind.

Table 2.1: Comparison of fast and slow winds (based on [1]).

Type of wind Speed Electron Density Mass Loss Ram Pressure
Slow 400kms−1 7x106m−3 1.5x109kgs−1 2.1X10−9Pa
Fast 750kms−1 2.5x106m−3 109kgs−1 2.1X10−9Pa

Most of the solar wind plasma comes from thin intense flux tubes described in 2.1.2.2 which

appear at supergranule as well as granule boundaries. It should also be noted that most of coronal

holes’ loss of energy is in fact due to the winds.

There are two fundamental states of solar wind being these fast and slow. The main differences

at 1 AU can be seen in Table 2.1.

Solar winds can cause disturbances in Earths’ magnetic field in the form of geomagnetic

storms [1, 4].
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Figure 2.3: Left: histograms of the terminal wind speed for different intervals of maximum field-
line inclination. Right: Terminal wind speed vs a function of the absolute magnetic field amplitude
and the total expansion factor (reprinted from [5]).

Changes in the magnetic field during the solar activity cycle cause variations in the solar wind

speeds at 1 au. Evident changes are seen in the solar wind at solar minima versus solar maxima,

making it clear that the spatial distribution of both slow and fast wind is directly impacted by the

coronal magnetic field’s cyclic variations. These cyclic variations are themselves closely linked to

the 11-year cycle of the Sun’s activity. Thus, solar wind speeds appear to be determined by the

magnetic flux-tubes’ geometrical properties through which it flows. The total expansion factors

ftot and absolute magnetic field amplitudes B0 are given by ftot =
B0
B1

(
r0
r1

)2
where B0 and B1

are evaluated respectively at the surface (r0− > r = 0) and at the outer boundary of the domain

(r1− > r = 15 solar radius). These variables are proven to have a direct impact on wind speed

along with the flux-tube inclination.

These relations can be better observed in Figure 2.3 where L is the field-line length and α is

the maximum inclination of each field line regarding vertical direction [5].

2.2 Machine Learning

Machine learning is often described as the art or science of making computers modify or adapt

their actions to make them more accurate. This accuracy is measured by how well the actions

chosen by a computer reflect the correct ones.

2.2.1 Machine Learning Algorithms

There are four main types of learning algorithms: supervised, unsupervised, reinforcement and

evolutionary learning. The main difference between supervised and unsupervised learning con-

sists of having a training set of examples with the correct answers on the first one but no on the

second one. Reinforcement learning consists of telling the algorithm if the answer is wrong but not

providing the correct ones, and finally, evolutionary learning bases itself in biological organisms

to learn [6].
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There exist several machine learning algorithms to be considered when dealing with any prob-

lem resolution.

Some of the approaches considered are: Bayesian analysis, clustering, decision trees, deep

learning, dimensionality reduction, regression, ensemble, instance-based, neural networks, regu-

larization, and rule systems. Each approach is further explained in its corresponding subsection.

2.2.1.1 Statistical Learning Algorithms

Finding a predictive function based on data is the aim of Statistical learning theory, and it has a

big abundance of applications in the realm of AI. The major aim of statistical learning algorithms

is to provide a framework for examining the inference problem: obtaining knowledge, making

predictions, and making decisions by creating a model from a data set [7].

Bayesian Bayesian inference is described as suiting a probability model to a data set and sum-

ming the result by a probability distribution on the model’s parameters and unobserved quantities

such as predictions for new observations. The three main steps of Bayesian data analysis consist in

arranging a complete probability model, conditioning on observed data, and finally assessing the

fit of the model and the implications of the resulting posterior distribution. The main motivation

for using Bayesian approaches is the facilitation of a common-sense interpretation of statistical

conclusions [8].

Regression Regression is a method of obtaining mathematical relationships between variables.

Such requires the opening premise that a specific type of association, linear in unfamiliar parame-

ters is in place. The undiscovered parameters are estimated following certain additional premises

by using available data, and finally, a suited equation is achieved [9].

2.2.1.2 Instance Based Learning

Instance-based learning can be described as algorithms that drag the generalization process until

classification is accomplished. These algorithms demand limited computational time during the

training period as opposed to other eager-learning algorithms but need longer computation time

throughout the classification process [10].

Clustering One of the most critical data analysis ventures is to classify or group data toward

a collection of classes or clusters. Data targets that are grouped ought to exhibit alike features

based upon some guidelines. Clustering is an unsupervised classification technique since no la-

belled data are available and, as such, has the goal of separating a measurable, unlabeled data

set into a measurable and discrete set of masked data structures in lieu of providing an accurate

characterisation of unobserved samples generated from the same probability distribution [11].
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2.2.1.3 Logic based Algorithms

Logic-based algorithms, such as decision trees make use of probabilistic reasoning and deductive

reasoning solving probabilistic satisfiability based on the study of the logical properties of the

problem to solve [12].

Decision Trees Sami K Solanki et al. . describe decision trees as a classifier represented as a

recursive partition regarding the instance space [4]. The decision tree comprises nodes that create

a rooted tree, a directed tree with a rooted node with no incoming edges. Any other nodes have

precisely one incoming edge [13]. There are two main stages concerning the DT induction method:

the growth and the pruning stage. The growth phase entails a recursive partitioning regarding the

training data occurring in a DT such that either each leaf node is associated with a single class

or additional partitioning of the given leaf would occur in at least its child nodes being under a

stipulated threshold. The pruning phase intends to generalise the DT made in the growth phase

by creating a sub-tree that bypasses over-fitting the training data. In each iteration, the algorithm

considers the partition of the training set utilising a discrete function of the input properties. The

election of the most suitable function is performed according to some splitting criteria. When

picking a good split, each node farther divides the training set into more diminutive subsets, until

no division obtains an adequate splitting measure or a stopping rule is satisfied [14].

2.2.1.4 Deep Learning

Deep-learning techniques are representation-learning methods with various representation levels,

achieved by making manageable but non-linear modules that convert the description at one level

into a greater, somewhat more conceptual level. With the combination of fairly before-mentioned

conversions, rather complex functions can be learned. Higher tiers of representation augment the

important input features for differentiation and repress unnecessary variations for classification

tasks [15].

Neural Networks Artificial neural networks are inspired by the structure and performance of the

human’s biological neural network. It is made up of neurons that consist of processing units which

receive an input and the associated weights, a summing part, an activation value, an output function

and finally an output signal. These neurons are interconnected according to some topology to

achieve a pattern identification task. Each unit of an ANN accepts inputs from other associated

units and an external origin in operation. A weighted sum of inputs is calculated at a given instant

of time. Usually, the activation dynamics is done to recall a pattern saved in the network. There

are several options available for both activation and synaptic dynamics, in an implementation [16].

2.2.1.5 Support Vector Machines

Support Vector Machines are the realisation of mapping x ∈Rn into a high dimensional space and

construct an optimal hyper-plane in this space. The mapping is performed by a Kernel function
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which defines an inner product in H. The optimal hyperplane is then the one with the maximal

distance in H space to the closest image from the training data [17].

2.2.2 Validation in Regression Machine Learning Models

In this section, some background concerning validation of results when using and developing

regression machine learning models will be given. The section is split into regression Metrics for

Machine Learning (2.2.2.1) and Cross Validation (2.2.2.2).

2.2.2.1 Regression Metrics For Machine Learning

To evaluate if the used/developed model is a good fit for our case and dataset, we must measure

the quality of the fit. In other words, this means measuring the difference between the predicted

value and the true value.

In a regression setting, the most commonly-used measure is the mean squared error (MSE),

given by

MSE =
1
n

n

∑
i=1

(
yi− f̂ (xi)

)
(2.1)

where f̂ (xi) is the prediction that f̂ gives for the ith observation.

The smaller the MSE, the smaller the differences between the expected and predicted values.

In order to minimize the MSE described in equation 2.1 there are a series of techniques that

can be successfully used to estimate this minimum. One of the most common to be used is cross

validation which is discussed in section 2.2.2.2.

2.2.2.2 Re-sampling Techniques

Single hold-out random subsampling When the dataset is considered to be representative of

the whole possible population, one of the simplest methods to use as a resampling technique is to

simply randomly split the data into a training and test data split. Usually the test set varies between

10% and 30% of the cases and the rest goes to the training data fed to the model. However,

seldomly does the obtained data is considered to be fully representative and as such more complex

methods are utilized.

k-fold random subsampling In this method, the method described above is repeated k times.

This means that k pairs of training and testing splits are generated. In the end, the used MSE is the

average over all the k test sets.

k-fold cross-validation Cross-validation is a data re-sampling method used in machine learning

to assess the generalization ability of predictive models and prevent over-fitting [18]. As such

one can use an limited sample in order to estimate how the model is expected to perform when

predicting data not used in its training stage. Cross validation is very similar to the k-fold random
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subsampling method. However, the sampling is done in such a way that there are no overlaps

among the tests.

Algorithm 1: k-fold cross-validation
Require: Kn, where n is the number of folds and Kn represents each fold
Require: D dataset containing input features x and output features y
Require: Psets , set of hyperparameters with different values
Require: M a single model
foreach i = 1 to Kn folds do

Split D into Dtrain
i and Dtest

i for the i′th’ split
foreach p in Psets do

Train M on Dtrain
i with hyperparameter set p

Compute test error Etest
i for M with Dtest

i
end

end

The algorithm for the k-fold cross validation technique can be seen in Algorithm 1. The MSE

computed and used for the procedure done is the mean of the models skill scores, that is, the MSE

values of each. Another important aspect to take into consideration is the choice of k. K sets the

difference in size between the training and testing sets. If k increases then the difference decreases

and the overfitting odds of the algorithm become slimmer. In known bibliography, the choice of

k is 5 or 10, with authors never setting for each choice. The value of 10 is commonly used in

machine learning applications though and such choice is shown to yield test error rate estimates

that suffer neither from excessively high bias nor from very high variance [19] [20].

2.3 Summary

This chapter introduced Space Weather, Machine Learning and gave some mathematical back-

ground which are all fundamental parts to the understanding of this dissertation. Section 2.1

introduced the concept of space weather explaining some properties of the Sun and its magnetic

fields as well as details of important solar events. Section 2.2 introduced fundamental concepts of

machine learning and common techniques whilst also presenting a few validation concepts such

as the mean squared error.



Chapter 3

State of the Art

In this chapter, a review of state of the art is made throughout sections 3.1, 3.2 and 3.3. In
section 3.1 an overview of ML techniques applied to solar weather are explored. In section 3.2
peer work on the area of improvement of initial conditions in physical simulations using ML is
explored. Finally in section 3.3 a literature review of the impact initial conditions have in
physical simulations is done.

3.1 Machine Learning Approaches to Solar Weather . . . . . . . . . . . . . . . 15
3.2 Machine Learning Approaches for Simulation Initial Data Improvement . 27
3.3 Initial Conditions in Physical Simulations and Models . . . . . . . . . . . . 29
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Machine Learning Approaches to Solar Weather

In this section, the different applications to Solar weather of the approaches presented in Sec-

tion 2.2 are described. To do so, an ad-hoc search in google scholar1 was made throughout the

use of combinations pertaining the words and expressions "machine learning", "solar weather",

and words related to the different solar weather phenomena identified in 2.1.2 and the methods

described in 2.2 were used. In the end, an analytical summary of the found literature is made,

plotting the different used techniques per year and per problem.

3.1.1 Statistical Learning Algorithms

In this subsection we discuss the algorithms described in 2.2.1.1. As stated before, statistical

learning theory has the main goal of finding a predictive function based on data. Bellow we

discuss Bayesian and Regression methods applied to solar weather problems.

1https://scholar.google.com/

15



16 State of the Art

3.1.1.1 Bayesian

The use of a Bayesian method to predict solar flares is made in the work of MS Wheatland [21].

This prediction is made using the flaring history of an active region and phenomenological rules

of flare statistics. Such is done to refine a primary prediction for a big flare during the succeeding

time. To calculate ε , the probability of a big event other variables must be calculated first. Firstly

the estimation of λ1, the distribution of the rate of flares larger than S1, using a Poisson model,

and γ (gamma is a constant that depends on the choice of the quantity S, but typically is found

to be in the range 1.5-2)(using the estimation of a power-law index [22]) is made. Secondly, the

probability distribution P2(λ2) for the rate λ2 of flares larger than S2 is made using a combination

of P1(λ1) and Pγ(γ) (estimated as in T Bai’s work [22])). Finally, Pε(ε) can be constructed using

P2(λ2) by performing a change of variable. Using the first approach, the method can provide a

reasonable estimate of a big event’s probability. Using the second approach, the authors conclude

that a reasonable estimate for υ is obtained for a relatively small number of events.

Another example of a Bayesian approach is described in Neal et al. [23]. The authors use

Bayesian inference techniques, and Markov Chain Monte Carlo sampling approaches to predict

dose-time profiles for vigorous solar particle events. Dose and dose-rate measurements obtained

earlier in the event are used as inputs. To find links amidst similar solar particle events, surro-

gate dose values are arranged in hierarchical models which consider nonlinear, sigmoidal growth

for dose during an event. Later, Markov Chain Monte Carlo methods are used to sample from

Bayesian posterior predictive distributions for dose and dose rate. It is concluded that the used

Bayesian forecasting models presented provide reasonable predictions of dose and dose–rate time

profiles with both for the used events of November 8, 2000, and August 12, 1989.

In Jonas et al. , a unified framework approach is used to visualise space weather event proba-

bility using a Bayesian model average and extreme historical events. This Bayesian model average

(BMA) combines the three most used statistical methods in recent literature to describe the proba-

bility of extreme space weather events: Power Law Distribution, Extreme Values Theory, and the

Lognormal Distribution. These three models fit the same data under a Bayesian paradigm while

the events are considered independent. Later, a Poisson distribution is used to infer the probability

of events greater than xcrit(the critical value of Dst considered) in a period of duration ∆t. To de-

termine the resulting probability across Dst (disturbance storm time) values for xcrit, a weighted

average over the three models is calculated, weighing them by the goodness of fit. The framework

ultimately allows the user to tailor the time range to whichever period is of interest helping to dis-

play different Dst values for different time frames and is shown to work according to the expected

values in previous works [24].

In an attempt to generalise the Bayesian methodology previously used to predict single-event

solar particle events, Neal et al. bind particle flux and fluence data with dose rate and dose calcu-

lations to develop a standard for defining an event as multiple. The model was proven to improve

previous forecasts [25].

A Bayesian approach to solar flare prediction was generated in the work of MS Wheatland
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using solely the statistics of previously observed solar flare events. It is assumed that the size

distribution of flares follows a power-law distribution and that, on short time scales, flares happen

as a Poisson process in time. Assuming that the power-law index γ plus the current rate of small

events λ1 are both estimated, then ε is the probability that the authors are trying to find. Using

Bayesian generalisation, and a series of M events with sizes sx observed from t = 0 to t = T ,

the usage of the Bayesian blocks procedure is conducted to determine this time interval. Shortly,

this method comprises Bayesian hypothesis experimentation, which compares an individual rate

Poisson model with a dual-rate Poisson model for the data. If the dual-rate model is more suitable,

the data section is segmented, and the two segments are themselves subject to the test. And so, the

posterior distribution for ε can be found as:

P(ε) =C[− ln(1− ε)]M
′
(1− ε)(T

′
/∆T )(S2/S1)

y∗−1−1×∧[− ln(1− ε)

∆T
(
S2

S1
)y∗−1]

. The paper concludes with the skill scores for M and X (events with peak fluxes larger than 105

and 104Wm2, respectively, in the 1–8 Å band witnessed by the satellites) event prediction of the

model which are, respectively, 0.272 and 0.066. The event statistics method is seen to out-perform

the NOAA (US National Oceanic and Atmospheric Administration) method in foretelling overall

numbers concerning M-X and X event days [26].

3.1.1.2 Regression

A.S. Parnowski [27] proposes a regression modelling approach to space weather forecast. Such a

model allows forecasting Dst index as far as 6 hours before with nearly 90% correlation. It may

additionally be utilised for creating phenomenological models of synergy amid solar wind and

magnetosphere. Two novel geoeffective parameters were obtained with its help: the solar wind’s

latitudinal and longitudinal flow angles. It was attested that Dst index retains its previous 2000

hours. The introduced approach is statistical yet holds some empirical principles based on regres-

sion analysis and mathematical statistics. In its framework the prognosticated Dst value is sought

in the form Dst( j+ k) = ∑iCi.xi( j),(1) where j is the number of current steps (number of hours

since January 1, 1963), k is the prediction length, Ci are the regression coefficients, and xi are the

regressors, which denote functions and combinations of input amounts, already measured at the

time while the prediction is made. Values of Ci are defined by a least square method (LSM) across

a broad sample of solar wind and geomagnetic data, with corresponding statistical weights of all

points. The irrelevant parameters are then discarded, and the method is iterated till the regression

carries only meaningful regressors. The authors used the OMNI2 (2009) database together with

provisional Dst data, taken from Kyoto WDC (World Data Center for Geomagnetism). Hence a

consecutive 44-year Dst time series was collected being fitting parameters not used. The suggested

regression approach seemed to be fit concerning space weather forecasting problems. For the fore-

casting alone, its significant benefits are quite good correlation (about 90% for 6 hours forecast),

adaptability to any samples, and swift forecasting code.
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N. Srivastava [28] executes a logistic regression model for forecasting appearance of intense/super-

intense geomagnetic storms. A twofold dependent variable, showing the existence of intense/super-

intense geomagnetic storms, is regressed facing a set of independent model variables that describe

several solar plus interplanetary features of geoeffective CMEs. The regression coefficients are es-

timated from a training data set obtained from 64 geoeffective CMEs seen between 1996 and 2002.

The trained model is verified by forecasting geomagnetic storms from a validation dataset, simi-

larly obtained of the same data set but not used for training the model. The model predicts 78% of

the geomagnetic storms of the validation data set. Besides, it predicts 85% of these geomagnetic

disturbances from the training data set. Those outcomes show that logistic regression models can

be efficiently adopted for predicting the appearance of intense geomagnetic storms from a set of

solar and interplanetary circumstances. The logistic regression model is a generalised linear model

that extends the linear regression model by inking the range of real numbers to the 0–1 range. To

implement logistic regression, the authors used the same dataset used by other authors. The logis-

tic regression was trained on the training dataset using XLSTAT software. Such training included

estimating the regression coefficient applying an iterative maximum likelihood method. The out-

comes reveal that the model accurately classifies 62.5% of the training super-intense geomagnetic

storms and 97% of the training intense geomagnetic storms. The model accurately classifies 50%

of the super-intense geomagnetic storms and 100% of the intense geomagnetic storms among the

validation events.

A dynamic multiple regression model aiming to forecast the diurnal peak of unusual energy

electron fluxes at geosynchronous orbit from input data is deduced in Wei et al. [29]. The model

takes as input variables the upstream solar wind speed v, the solar wind dynamic pressure Pdyn,

the half-wave rectifier function vBs, the asymmetric disturbance index in the horizontal direc-

tion AsyH plus the symmetric disturbance index in the horizontal direction SymH. The model’s

output variable is the logarithm of relativistic electron flux maxima (> 2MeV ). To deduce the

prediction model, the NARX model (Nonlinear AutoRegressive Moving Average with eXogenous

inputs) [30, 31, 32]. Applying the NARX model’s input variables, two multiple linear regression

models, one with lags m = 1, and other with lags m = 3 were estimated. All of the concluding pre-

dicted models hold 30 significant model terms chosen one by one in order of value. Following [33],

a measure designated the prediction efficiency defined as PE = 1−MSE(error)/var(out put) was

employed to measure the model performance. The outcomes display that this model execution

of the identified multivariate and multi-rate dynamical regression models is better than the one

produced by the non-parametric models as presented in [33].

3.1.2 Instance Based Learning

In this subsection we discuss the algorithms described in subsubsection 2.2.1.2. As stated in the

reffed subsection, instance-based learning can be described as algorithms that drag the general-

ization process until classification is accomplished. In this subsection we discuss peer work on

clustering applied to space weather problems.
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3.1.2.1 Clustering

Unsupervised clustering methods and learning vector quantity (LVQ) are applied in Rong Li et al.

to predict solar flares [34]. As measurements, three magnetic parameters, being these the neutral

line’s length, the number of singular points and the maximum horizontal gradient extracted from

SOHO/MDI longitudinal magnetograms, are applied. As a way of forming sequential data, the

sliding-window technique is employed. The method used in this work has two steps: the first is

the K-means clustering method that converts the non-balanced training set in balanced ones; the

following is the learning vector quantity(LVQ) method. The number of groups (k clusters) is fixed

to the corresponding number of the flaring samples during the K-means approach. The outputs

of the clustering algorithm are clustering centres, and every one of these clustering sections. The

clustering cores samples are selected to construct a well-balanced training set by adding the flar-

ing sample part. Then, the balanced training set is fed toward a training vector quantity network.

The learning vector quantity network output is the group label of a trial sample and is applied to

forecast the flares’ level inside 48 hours. Five measurements are utilised to evaluate the perfor-

mances of the proposed approach: True Positive (TP) rate, True Negative (TN) rate, False Positive

(FP) rate, False Negative (FN) rate and accuracy. Preliminary outcomes show that this introduced

model’s performance with sequential data is enhanced than if solely using the LVQ method.

To separate active regions (ARs) that are quiet from possibly eruptive ones, the authors’ in

Moon et al. [35] use an innovative clustering of ARs through matrix factorisation. A new clus-

tering of moving regions based on the local geometry observed in Line of Sight magnetogram

and continuum images is introduced. Using m× n patches Z ≈ AH where Z is the 2m2× n data

matrix with n data points being regarded. As such, matrix factorisation of image patches is an

encouraging novel means of defining active regions. Some recommendations for metrics, matrix

factorisation techniques, and regions of interest to study active regions are provided. It is found

that these metrics produce organic clusterings of active regions. The clusterings are associated

with grand scale descriptors of an active region, such as its size, local magnetic field configu-

ration, and complexity as measured with the Mount Wilson classification system. It was further

observed that including data centred on an active region’s neutral line can increase correspondence

among the clustering outcomes and separate active region descriptors such as the Mount Wilson

classifications and the R-value. Finally, the used clustering method is the Evidence Accumulating

Clustering with Dual Rooted Prim tree Cuts (EAC-DC) method which groups the data by setting

a metric based on the increase of two minimum spanning trees grown sequentially of a couple of

points. The Hellinger metric is utilised to grow the spanning trees by feeding it into a spectral

clustering algorithm that gathers related inputs. The conclusions that are withdrawn from the pa-

per are the following. When analysing and clustering the ARs built on the local properties’ global

statistics, there are similarities to the classification based on the large scale characteristics. For

example, when clustering using the Hellinger distance, one cluster contained most of the complex

ARs. As before-mentioned, matrix factorisation of image patches is an assuring novel approach

regarding characterising active regions.
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3.1.3 Logic-Based Algorithms

In this subsection we discuss the algorithms described in subsubsection 2.2.1.3. As stated before,

logic-based algorithms, make use of probabilistic reasoning and deductive reasoning solving prob-

abilistic satisfiability based on the study of the logical properties of the problem to solve. In this

subsection we resume peer work made in decision trees applied to solar weather problems.

3.1.3.1 Decision Trees

In Engall et al. , the authors use decision trees to predict onset and time profiles of solar-driven

events, including solar X-ray flares; solar energetic particles (SEP); coronal mass ejections; and

high-speed stream. To do so, the Space Radiation Intelligence System (SPRINTS) is presented.

The systems’ input consists of public forecasts, physics-based models, measurements made of the

local plasma environment, and two-dimensional event meta-data (magnetograms and automatic

detection). These inputs are then fed into a SPRINTS, and then the output is divided by different

deployment models. SPRINTS leverages machine-learning techniques to build and explore these

more advanced multivariate forecasts capabilities automatically. With an emphasis on human in-

terpretability and knowledge discovery concerning these models, SPRINTS has currently designed

two main machine-learning applications:1. Decision Trees2. K-Nearest Neighbor (KNN) Eval-

uator. These partitions create a tree-like hierarchy using the most relevant attribute at each split

point that best separates the given events by their label. The final bins (leaves) of the tree rep-

resent the model’s predictions and ideally have high levels of purity, whereby a majority of the

events in each bin share the same label. Beyond the benefit of simplicity and understandability,

decision trees implicitly produce a ranking of parameter (and specific value) importance which

are later grouped into random forests. The parameters from automatic detections used are: flare

magnitude, flare-integrated X-ray flux, flare decay phase, flare heliolongitude, flare heliolatitude.

The used separation is yes/no forecast. SPRINTS has been demonstrated to provide comparable

and novel SEP forecast modelling capabilities relative to others in the industry and academia [36].

3.1.4 Deep Learning

Deep-learning techniques are representation-learning methods with various representation lev-

els,achieved by making manageable but non-linear modules that convert the description at one

level into a greater more conceptual level. In this subsection we discuss deep learning techniques

such as, but not limited to, neural networks applied to solar weather problems.

In Yi et al. , the application of deep learning approaches to the prediction of crucial solar

X-ray flare flux profiles is presented. The used data encompasses the Geostationary Operational

Environmental Satellite 10 X-ray flux data from 1998 to 2006 [37]. The 10-fold cross-validation

plus the RMS error (RMSE) based on flux profiles and RMSE based on its maximum flux are

applied to evaluate the models. For judgment, the authors consider two simplistic deep learning

models and four traditional regression models. The proposed models make use of LSTM [38]

recurrent neural networks. The first proposed model consists of two LSTM layers and one fully
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connected layer for the encoder and a decoder. The LSTM layer results in the decoder are sent

to a fully connected layer without an activation function. The second proposed model has an

identical composition without attention. The models used for comparison are the Auto-Regressive

Integrated Moving Average [39], the K-Nearest Neighbor Regression [40], the Support Vector

Machine Regression [41], and the Random Forest Regression [42]. The main conclusions are

taken from the paper are as follows. The suggested models better the other models, the models

achieve better performance for projecting X-ray flux characterisations with low-peak fluxes than

those with high-peak fluxes, and finally, the models are successful in forecasting flare duration

with large correlations for both all events as well as events at peak times.

3.1.4.1 Neural Networks

In Valach et al. the authors use supervised Artificial Neural Networks, ANNs, as a way of quan-

tifying the geomagnetic response of selective solar events to conclude if the success of the neural

network prediction scheme based solely on the solar disc observations — X-ray flares (XRAs) ac-

companied by solar radio bursts(RSPs) — can be improved by additional information concerning

the energetic solar particle (SEP) flux. For doing so, a three-layer fed forward ANN was used with

N input neurons, one layer of hidden neurons and one output neuron to compute the geomagnetic

responses using the standard backward propagation algorithm. It is shown that supplying such

additional input data enhances the neural network forecasting scheme [43].

In Uwamahoro et al. the authors develop a supervised three-layer forward-fed artificial neural

network (FFNN) to estimate the probability of occurring geomagnetic storms after halo coronal

mass ejection, including related interplanetary events have taken place. NN optimisation consisted

of repeatedly training the network by changing the number of iterations and methodically mod-

ifying the number of nodes in the hidden layer; the optimum network architecture consisted of

five inputs and five hidden nodes. This implementation led to an accuracy of geomagnetic storm

prediction of 100% for intense storms and up to 75% for moderate one. The model’s estimate of

the storm occurrence rate from halo coronal mass ejection is assessed at a probability of 86% [44].

In H Lundstedt’s work, two artificial neural networks are used for forecasts of solar-terrestrial

effects which encompass geomagnetic provoked currents. These ANNs make use of multi-layer

back-propagation. As inputs, 20 items ranging from the number of X-ray flares, Coronal Mass

Ejections, CMEs, number of times the LDEs last more than three hours, and disappearing solar

filaments during the day, coronal holes as well as proton event flux and geomagnetic activity. All

these items come together to form an input pattern for the ANN in which the values for the present

day and one, two, three, four and 27 days before being used. The output patterns consisted of

values for the quantities of, no storm, minor storm, major storm and severe storm for the day after

the present day (one ANN) and the day after that one (another ANN). The succeeding rates were

73% for the first ANN and 68% for the other one [45].

Using solar magnetic field observations (such as highest horizontal gradient, the length of

neutral line and the number of singular points), in Wang et al. a solar flare forecasting model

is proposed backed by a supervised artificial neural network, using back-propagation training.
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The developed model tends to overestimate some flares being that it predicted 69% of the flares

correctly and 31% were considered incorrect forecasts [46].

In Sudar et al. the authors use a neural network in order to predict transit times (TT) of

coronal mass ejections (CMEs) from their opening parameters (initial velocity of the CME and

central-meridian distance of its associated flare). The used method was a feed-forward algorithm,

and the network consisted of 2 inputs (described before), one output (TT) and one hidden layer

with three nodes. The developed NN only predicts when particular CMEs reach 1AU from the

Sun. The work concludes that the medium error of the NN prediction in contrast to observations

is of approximately twelve hours and that the velocity at which acceleration by drag changes to

deceleration is roughly 500 km/h [47].

The work of Vandegriff et al. is to predict the remaining time until the arrival of interplanetary

(IP) shocks at Earth through the use of a recurrent ANN. This ANN uses ten input nodes, one

output node, and two hidden layers with four nodes each. The inputs consisted of proton intensity

of varying energy levels, anisotropy coefficient, spectral slope and its derivative, intensity at the

midpoint and its derivative. The output consisted solely on the remaining time for IP shock to

arrive. The results are as follows: for the 24 hours in advance prediction, the uncertainty was 8.9

hours whilst for the 12 hours in advance, it was 4.6 hours [48].

In Vallach et al. , a forecasting scheme of geomagnetic activity was developed using an ANN

with a backward propagation algorithm. The scheme’s main goal was to determine the probability

of which solar flares will be followed by a geomagnetic response of a specific intensity. The NN

inputs used were four, namely the heliographic latitude and heliographic longitude of the centre

of the area on the solar disc, XRA(X-Rays) class and, finally RSP(radio bursts) type. The output

quantity was the probability of the XRA event appearing in the given area being geoeffective.

Then, a hidden-layer of five neurons is used and as an output one neuron containing the probability

of the XRA event appearing in the given area being geoeffective was given. To assure that the

results were stable, the authors trained nine independent networks and used the median of the

results obtained as the final result. How successful the model was depended both on the solar flare

class and on the combination of radio-burst types being that for RSP IV, the success rate was of

58%, and when only RSP II was observed, the forecast was successful only for flares of the X

class with a success percentage of 67% [49].

ANNs were used by T. Colak et al. as a method for predicting solar flares. Their system

consisted of two neural networks in which the first generates the probability that a sunspot region

will produce a solar flare in the next 24 hours and the second one is activated When the first NN

predicts that a flare is going to occur and determines whether the predicted flare is going to be C,

M, and X class flare. Both neural networks take four inputs (sunspot area, modified Zurich class,

most extensive spot and sunspot distribution) and one hidden layer whilst the first has one output

(Flare: Yes or No) and the second has three outputs nodes being these the probability of a flare

being of type C, M or X. The number of nodes in the hidden layer is calculated by training the

Neural Networks changing the nodes from 1 to 20 and calculating the Mean Squared Error (MSE)

for each outcome. The networks were optimised using ten nodes in the hidden layer for the first
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one and 12 for the second one [50].

Intending to predict geomagnetic storm using solar wind data, Wu et al. [51] used dynamic

neural networks. Such ANNs consisted of Elman’s recurrent model consisting of a two-layer back-

propagation network with feedback connections from the hidden layer to its input (consisting of

precise input units and context units) and an activation function of the hyperbolic tangent for the

hidden layer and a linear one for the output layer. The authors were able to conclude that the

coupling functions that can be considered suited for predicting geomagnetic storms are P1/3V Bs,

P1/2V Bs, V 2Bs, V Bs, V Bz and V 3Bs in order from high to low prediction goodness being that the

best PE can reach 78% accuracy and a correlation coefficient p of 0.89 for a prediction of 1 hour

and for predictions of 6-8 hours the values go to 67% and 0.77 at best.

In Yang et al. [52] ANNs are used to predict solar wind speed at 1AU. These ANNs consist

of 3 layers and make use of the Levenberg-Marquardt back-propagation algorithm. In doing so,

they were able to achieve an overall correlation coefficient of 0.74 having 68 km/h as a root-mean-

square error. Finally, the probability for identifying a high-speed case is 0.68, with a resolute

forecasted value of 0.73 and a threat score of 0.55.

A Hybrid Regression-Neural Network (HR-NN) Method for Predicting Solar Activity is de-

scribed in Okoh et al. [53]. This model fuses regression analysis and neural network learning to

forecast the SSN (sunspot number). In testing the method, the current solar cycle(SCs) activity is

predicted utilising previous solar cycles, and then the same method is used to predict the upcom-

ing solar cycle 25. The Ap index, along with the SNN values, were used as inputs for the model.

Since the everyday and monthly averages of the daily SNN are noisy, they must be smoothed,

and such was done by using a time series as in Conway [54]. The 13-month running mean is a

conventional smoothing centred on the month in the subject and using half-weights for the months

at the beginning and end of the series. Using linear regression, it was revealed that there is a direct

relationship between the mean-rise rate and the peak value of SSN for each SC 7 to 24. Also,

there is a moderate inverse correlation between the rise duration and the fall duration, suggesting

that sequences that take longer to rise will take less time to fall, and vice versa. Lastly, it is shown

via regression there exists a positive correlation between the mean rise rate and the mean fall rate,

implying broadly that cycles with higher rise rates also have higher fall rates, and vice versa. De-

spite the accomplished correlations found, the authors recognised that given the need for knowing

the Ap index, the regression would not aid beyond the accomplished results in characterising an

SNN. Hence, a neural network training method was developed. In this method, the time series

indicator was used as input for the neural network and the peak of SSN for each cycle, the rise and

fall duration for each cycle and an A normalised fractional value. Training of the neural networks

was performed employing the Bayesian regularisation back-propagation algorithm [55]. The HR-

NN model was used to predict SSN values for the remaining part of SC 24 at an RMSE value of

3.5, and to give indications of the expectations for SC 25. Forecasts by the model show that the

total duration of SC 24 is 11.167 years, and the end of the cycle will be in March 2020. Using an

estimated precursor Ap index of 5.6 nT for SC 25, the peak SSN, 122.1 of the cycle, occurs in

January 2025 with a total duration of 11 years. Additional simulations of the SSNs by modifying
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the precursor Ap index between 4.6 and 6.6 nT showed that peak SSNs for SC 25 would change

by about 11 units for every 1-nT change in the assumed precursor Ap index.

3.1.5 Support Vector Machines

As discussed in Section 2.2.1.5, support vector machines have many applications. In this subsec-

tion we discuss the application of such a technique to solar weather problems.

An application of Support Vector Machines(SVMs) can be found in Inceoglu et al. [56] with

the purpose of forecasting if solar Flares will be connected to CMEs and SEPs. In this work, the

authors use SVMs and Multilayer perceptrons (MLPs) to compare both results. Eighteen physical

parameters from active regions (ARs) are used as input for the machine learning algorithms. The

first tested algorithm is SVMs creating k individual binary classifiers for l number of classes. The

mth binary SVM classifier is then trained using the mth class as positive (+1) whereas the remain-

ing l−1 number of classes are regarded as negative (-1) examples. It then analyses the data using

a hyper-plane separation with the most significant distance between the data classes. The second

used algorithm are MLPs which consists of a feed-forward ANN that classifies multidimensional

data into l different classes. This can be regarded as a multinomial logistic regression, in which

the results from the Neural Network is the following probability that the input data pertains to a

distinct class. The estimated posterior probability distribution of an arbitrary categorical variable

depends not only on a data object from a chance feature but additionally on the neurons’ weights,

which are the basic processing units. As a feed-forward network, the MLP delivers the non-linear

parameterized mapping from input I to an output that is a continuous function of the input and

the weights. To compare the algorithms, the author’s define True Skill Statistics (TSS, compares

the probability of detection(POD) to the probability of false detection(POFD)) and the Heidke

Skill Score (HSS, it is a method of measuring the fractional improvement of the forecast over the

random forecast).

In Liu et al. [57] SVMs are used for partial/full halo CME Arrival Time Prediction Using

Machine learning Algorithms (CAT-PUMA). Previously observed geoeffective partial-/full halo

CMEs do such and the predictions made after applying CAT-PUMA to a test set show a mean

absolute prediction error of 5.9 hr within the CME arrival time, with 54% of the predictions

having absolute errors inferior to 5.9 hr. Compared with other models, the engine has a higher

final prediction for 77% of the events investigated.

Jiao et al. [58] use SVMs to detect ionospheric scintillation and classify scintillation events

based on training data in the frequency domain. The detector input is the signal intensity.

3.1.6 Analysis

In Table 3.1 a resume of the techniques used, mentioned in this review, by problems and year is

made.
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Table 3.1: List of papers reviewed concerning machine learning techniques applied to solar
weather

Paper Approaches Technique Goal Problem Year
Wheatland [21] Statistical Learning

Algorithms
Bayesian Prediction folar flares 2004

Neal et al. [23] Statistical Learning
Algorithms

Bayesian Prediction solar particle events 2001

Jonas et al.
.[24]

Statistical Learning
Algorithms

Bayesian Prediction solar particle events 2018

Neal et al. [25] Statistical Learning
Algorithms

Bayesian Prediction solar particle events 2005

Wheatland [26] Statistical Learning
Algorithms

Bayesian Prediction solar flares 2005

Parnowski [27] Statistical Learning
Algorithms

Regression Prediction geomagnetic
storms

2009

Srivastava [28] Statistical Learning
Algorithms

Regression Prediction geomagnetic
storms

2005

Wei et al. [29] Statistical Learning
Algorithms

Regression Modeling magnetic field 2011

Li et al. [34] Instance Based
Learning

Clustering Classification solar flares 2011

Li et al. [34] Deep Learning Learning vector
quantity

Prediction solar flares 2011

Moon et al.
[35]

Instance Based
Learning

Clustering Classification active regions 2016

Engell et al.
[36]

Logic-based algo-
rithms

Decision Trees Prediction coronal mass ejec-
tions; Solar Falres;

2017

Yi et al. [37] Deep Learning Deep learning Prediction solar flares 2020
Valach et al.
[43]

Deep Learning Neural Networks Prediction solar flares; solar
radio Bursts

2009

Uwamahoro
et al. [44]

Deep Learning Neural Networks Prediction coronal mass ejec-
tions; Geomagnetic
storms

2012

Lundstedt [45] Deep Learning Neural Networks Prediction geomagnetic
storms

1992

Wang et al.
[46]

Deep Learning Neural Networks Prediction solar flares 2008

Sudar et al.
[47]

Deep Learning Neural Networks Prediction coronal mass ejec-
tions

2015

Vandegriff
et al. [48]

Deep Learning Neural Networks Prediction geomagnetic
storms

2005

Valach et al.
[49]

Deep Learning Neural Networks Modeling magnetic field 2007

Colak et al.
[50]

Deep Learning Neural Networks Prediction Solar Flares 2009

Wu et al. [51] Deep Learning Neural Networks Prediction geomagnetic
storms

1997

Okoh et al. [53] Deep Learning Neural Networks Prediction sunspots 2018
Yang et al. [52] Deep Learning Neural Networks Prediction solar wind 2018
Inceoglu et al.
[56]

Support Vector Ma-
chines

Support Vector
Machines

Prediction solar flares; coro-
nal mass ejections;
sunspots

2018

Liu et al. [57] Support Vector Ma-
chines

Support Vector
Machines

Prediction coronal mass ejec-
tions

2018

Jiao et al. [58] Support Vector Ma-
chines

Support Vector
Machines

classification solar flares 2017
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Figure 3.1: Literature Review analysis for Machine Learning techniques over the years stacking
the approaches used. The graphic shows a clear increase in usage of these techniques as well as a
preference for deep learning solutions

Figure 3.1 shows increasing interest in using machine learning techniques to solve solar weather

forecasting problems. Another trend which can be depicted is that increase in the use of deep

learning algorithms and a fall in statistical learning algorithms.

Figure 3.2 shows a particular interest has been taken in predicting solar flares followed by

geomagnetic storms and CMEs. Such can be explained given the possible impact such events can

have on Earth.
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Figure 3.2: Literature Review analysis for Machine Learning techniques for solar weather prob-
lems. Solar flares are shown to have the preference of these applications followed by geomagnetic
storms and CMEs

3.2 Machine Learning Approaches for Simulation Initial Data Im-
provement

This section intends to explore how machine learning has been used as a way of improving simu-

lation’s initial data/conditions. To do so, an ad-hoc search in google scholar2 was made throughout

the use of combinations pertaining the words and expressions "machine learning", "simulation",

and "initial conditions" was made.

In Kochov et al. ’s [59] work fluid dynamics simulations, also know as computational fluid

dynamics (CFD), are accelerated and improved by the use of deep learning. Even-though fluids

can be described using the Navier-Stokes equations, solving such is many times limited by the

computational cost it encompasses. As such, the authors use deep learning as a way of improv-

ing approximations inside computational fluid dynamics for modeling two-dimensional turbulent

flows. The methods used are learned solvers, learned interpolation and learned correction. The

2https://scholar.google.com/
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model for each time step then consists of a convolutional neural network controlling learned ap-

proximations inside the convection calculation of a standard numerical solver of advected and

advecting velocity components. Using supervised learning, the loss function of the model is given

by the cumulative point-wise mean squared error between the predicted and true velocities. The

authors then compare the performance of learned interpolation top alternative ML methods. The

method described in the paper achieves the same accuracy as traditional finite volume methods

whilst augmenting the resolution up to 10 times finer and performing the computation calculations

up to 80 times faster.

In Lattimer et al. ’s [60] work, the need to provide rapid high-fidelity predictions of fires is

enhanced and as such, the author’s give an overview of ML methods and techniques used to per-

form low computational cost predictions. The two main approaches discussed are dimensionality

reduction and deep learning. It is stated that unsupervised dimensionality reduction using princi-

pal component analysis has been used for simple plumes without reactions and for wildfire spread

models. In those works, it is shown that reduced order models were 2 to 3 orders of magnitude less

than the CFD models regarding computational costs. Deep learning is moreover discussed to be

an useful tool to not only predict estimates of a single quantity-point but also to create generative

models. These approach has been used for CFD applications with the limitation of not having been

explored to perform full-field predictions with changes in general boundary conditions. The paper

concludes by showing how promising ML techniques can be for predicting both single points and

full generative models regarding physical simulations.

In P Watson’s [61] work, the author explores the use of ANNs in combination with physically

derived models so as to predict the chaotic Lorenz ’96 system. The idea behind this combination

comes with the advantage of still understanding the physicality of the calculations whilst not need-

ing to feed the ANNs with too much data. In this work, error-correcting ANNs are used so as to

reduce the error in the used coarse-resolution model. The ANNs used had a multi-layer perceptron

architecture and were trained to predict the difference between the true system 5tendency and the

one predicted by the model. Different arrangements were tested being that more complex ANNs

proved to be more effective than simpler ones given that for the largest tested ANN the maximum

error reduction on the validation dataset was of 42%. The Rooted Mean Squared Error (RMSE)

on the validation dataset is shown to be below 3% increase from the training one, which indicates

over-fitting has been avoided.

In Tongal et al. ’s [62] work, three machine learning models are tested for simulating and

forecasting steam-flows. These models, Random Forests (RF), ANNs and SVRs, were used cou-

pled with base flow separation. Separation of these base flows seems to be the key factor on the

augmentation of performance of these models compared to previous work using these. As input

data four rivers’ steam-flow from the United states were used. Aside from the simulation scheme,

a forecasting scheme was also employed by sing antecedent discharge values in addition to the

values of precipitation (P), temperature (T) and evapotranspiration (PET) used in the simulation

framework. The authors present several metrics for comparison, being these Root Mean Square Er-

ror), Nash-Sutcliffe efficiency (NSE), Kling-Gupta efficiency (KGE), Volumetric efficiency (VE),
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Index of Agreement (d) and Persistence index (Pi). ANN (best in 3 out of 4 flow-streams) and

SVR (best in 1 out of 4 flow-streams) models performed better than RF model in the calibration

period. There were improvements in model performances in the validation versus the calibration

period. However, in this period RF and SVRs beat ANNs due ANNs’ poor generalization capacity.

3.3 Initial Conditions in Physical Simulations and Models

This section intends to explore the impact initial conditions may have when used in simulations

related to astronomy and cosmology as well as understand what techniques have been used to

calculate the initial conditions.

To do so, an ad-hoc search in google scholar3 was made throughout the use of combinations

pertaining the words and expressions "physical simulation", "physical model" and "initial condi-

tions" was made.

Hahn et al. [63] propose a new algorithm using an adaptive convolution of Gaussian white

noise with a real-space transfer function kernel and a multi-grid poisson solver to generate dis-

placements and velocities following first- (1LPT) or second-order Lagrangian perturbation theory

(2LPT). The main purpose of the discussed work is to generate multi-scale initial conditions with

multiple levels of refinements for cosmological ‘zoom-in’ simulations. Lagragian pertubation

theory describes the evolution of density perturbations in the restframe of the fluid. 2nd order La-

grangian theory (perturbations) is used in order to solve solve accuracy issues related to 1st order

perturbation theory. The authors develop a hybrid Poisson solver, using an adaptive multi-grid

algorithm for inter-level gravity and a Fast Fourier Transform based Poisson solver for the finest

grid. The tests to the proposed model were comprised of three parts. Firstly, the accuracy of the

model is shown by finding RMS errors velocity and displacement fields order of 10−4 showing

an improvement of about two orders of magnitude over previous approaches. Secondly, using

a re-simulations of a galaxy cluster halo the model is shown to be able to reproduce correlation

functions, density profiles, key halo properties and sub-halo abundances with one hundred percent

accuracy. Thirdly, generalizing the model for two-component baryon and dark-matter simulations,

it is shown that the power spectrum evolution is in perfect agreement with linear perturbation the-

ory.

In Crocce et al. [64] the authors study the impact of using such initial conditions in nu-

merical simulations related precisely to cosmology. As such, the paper compares the use of

Zel’dovich approximation (ZA) initial conditions and the use of more accurate initial conditions

based on second-order Lagrangian perturbation theory (2LPT). Since Zel’dovich initial conditions

are known to excite long-lived transients in the ts in the evolution of the statistical properties of

density and velocity fields, it is shown, therefore, that 2LPT initial conditions reduce transients

significantly and being are much more appropriate for numerical simulations concerning precision

cosmology.

3https://scholar.google.com/
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In the scope of the Horizon collaboration, in Prunet et al. [65] a software package used

to produce initial conditions for large scale cosmological simulations is described. Firstly, the

authors explain the use of grid-based initial conditions where having a 3 dimensional Gaussian

random field δ (x) (representing the density), if we consider zero-mean fields and their power

spectra P(k) than it is proven that
〈∣∣δ (k)2

∣∣〉= P(k). When dealing with dark matter then particles

Lagrangian coordinates are used to remap the particle velocities to grid cells. Secondly, the paper

describes grid-based implementation since given the white noise is has already been chosen in on a

grid of a given size, it possible to use them to generate initial density and velocity realizations with

the desired cosmology and power spectrum. Such is done as described before but by normalizing

the parameters and constraining the initial conditions to lower-frequency. Afterwards, low-pass

filtering and re sampling are applied, being followed by power spectrum estimation, estimation of

matter density on a grid from a set of particle positions. Finally the authors decompose the domain

using the Peano-Hilbert domain space filling curve decomposition which provides a complete

mapping between the 3D position of a grid point and a 1D coordinate on this curve. The codes

were validated up to resolutions of 40963 and used to generate the initial conditions of large hydro-

dynamical and dark matter simulations proving to be more versatile than previous solutions.

In Brown et al. [66] the authors propose an approach of customization to the root grid zoom-in

initial conditions utilized for simulations of galaxy formation. The work starts by cutting a minor

region of interest from the white noise used to seed the structures of an existing initial condition.

This cut is used to create a new root grid allowing for a lesser box volume. As to not disturb the

zoom region, the original dark matter particles and gas cells are put within the new root grid, with

solely with the addition of a bulk velocity offset. To test the approach, collision-less simulations

are run comparing the original and new ICs, finding plausible agreement. It is found that e two

bigger galaxies at the original ones within a range of 15% The times and masses of major mergers,

the full dark matter accretion histories, the maximum circular velocity and the distance from the

central galaxy are all reproduced in agreement as well. It should be noted that by dimensionality

reduction of the problem, the authors are able to achieve e CPU run-time speed up of up two.

In Jasche et al. [67] a probabilistic physical model of non-linearity evolved density field is pre-

sented. Using Bayesian exploration, the authors reconstruct the present density and velocity fields

from large-scale structure surveys, including a full propagation of the observational uncertainties

of the initial conditions. This physical model gives accurate reconstructions of the underlying

present-day density and velocity fields on scales larger than 6Mpch−1. The method accurately

reconstructs non-linear features corresponding to three-point and higher order correlation func-

tions. Tests of the reconstructed initial conditions show statistical consistency with the Gaussian

simulation inputs. Such approach demonstrates that statistical approaches based on physical mod-

els of large-scale structure distribution are now becoming feasible for realistic current and future

surveys.
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3.4 Summary

In Section 3.1 we presented a study and analysis of peer work in machine learning techniques

being applied to Space weather. We concluded that there is an increasing interest in using machine

learning techniques to solve solar weather forecasting and classification problems whilst having an

increase in the interest in applying deep learning techniques to such problems. The prediction of

solar flares as well as CMEs and geomagnetic storms have the higher rate of attempted solutions

given the possible impact of such events on Earth. In sections 3.2 and 3.3 we described peer work

done in applying machine learning learning approaches for simulation initial data improvement

and introduced initial conditions in physical simulations and models. We have then deduced that

there is pertinence in applying neural networks to the MULTI-VP simulation in order to improve

simulation times given the peer worked reviewed.
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In this chapter an overview of the problem this dissertation is trying to solve is given in sec-

tion 1.3. An hypothesis is given in section 4.2 and research question to validate such an hypothesis

are provided in section 4.3. Finally in section 4.4 experimental methods are explored in order to

validate and evaluate our work.

4.1 Problem Definition

The solar wind, driven along magnetic flux tubes, spreads from the Solar atmosphere to distances

beyond the solar system. The properties of solar wind in-situ in the vicinity of Earth have been

measured for a few decades, but the physical conditions that determine the differentiation between

different types of wind are those of the lower Solar atmosphere, which are not easily measured.

This incapacity to measure has become one of the core difficulties of this subject.

At 1 au, the solar wind speed bestows cyclic fluctuations in latitude and time, matching the

evolution of the global background magnetic field during the activity cycle. It is commonly ac-

cepted that the terminal wind speed in a given magnetic flux-tube is generally anti-correlated with

its total expansion ratio, which motivated the definition of widely used semi-empirical scaling laws

relating one to the other. In practice, such scaling laws demand ad hoc revisions and empirical fits

to in-situ spacecraft data.

Studies using magnetohydrodynamical (MHD) simulations of the corona and wind coupled to

a dynamo model to determine the coronal magnetic field’s properties and the wind velocity during

a whole 11-year activity cycle have been made. These MHD simulations present a large statistical

ensemble of open flux-tubes that were analyzed conjointly to identify relations of dependence
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between the wind speed and geometrical parameters of the flux-tubes that are valid globally (for

all latitudes and moments of the cycle). These MHD models work as follows.

Firstly access to observations and measurements of the magnetic field at the Sun’s surface

is obtained. Then, with some well-known techniques, these are extrapolated to the entire solar

corona. Secondly, from the obtained extrapolation, one can deduce the elementary geometry of

each stream of the solar wind, which is due to the physical regime one is in, conducted by the mag-

netic field. Thirdly, a solar wind acceleration model. This model uses this geometric information

from the flow tubes. This stage is the least trivial part of the problem.

There has not yet been a reasonable a priori estimate of what the properties of each solar wind

element will be, and even less what the solar conditions will generate in terms of time series at 1

AU - which would be directly comparable to the observable in-situ, and that results from going

through several consecutive elementary streams of solar wind. Afterward, a physical model that

allows the calculation of the properties of each element from the surface of the Sun to far away

from it is used. The final target is the asymptotic solar wind, which can be measured at 1AU.

First, however, one must consider all the acceleration processes that act progressively in a vast

region of the solar atmosphere. Studies confirm that the solar wind’s terminal (asymptotic) speed

depends very strongly on the geometry of the open magnetic flux tubes through which it flows. As

a result, the total flux-tube expansion is more clearly anti-correlated with the wind speed for fast

rather than for slow wind flows and effectively controls the locations of these flows during solar

minima. Overall, the actual asymptotic wind speeds attained are also strongly dependent on field-

line inclination, and magnetic field amplitude at the foot-points [5]. Some improvements on MHDs

have been made, and models such as MULTI-VP [68] have been recently developed and used

to compute the three-dimensional structure of the solar wind and include the chromosphere, the

transition region, and the corona and low heliosphere. The model computes the three-dimensional

structure of the solar wind and includes the chromosphere, the transition region, and the corona

and low heliosphere.

It calculates a large ensemble of wind profiles flowing along open magnetic field lines that

sample the entire three-dimensional atmosphere or a given region of interest. The radial domain

starts from the photosphere and typically extends to about 30 solar radius. The elementary uni-

dimensional wind solutions are based on a mature numerical scheme adapted to accept any flux-

tube geometry. The results support the hypothesis that the geometry of the magnetic flux tubes in

the lower corona controls the distribution of slow and fast wind flows. Furthermore, the inverse

correlation between density and speed far away from the Sun is a global effect resulting from mi-

nor readjustments of the flux-tube cross-sections in the high corona (necessary to achieve global

pressure balance and a uniform open flux distribution). MULTI-VP performs much faster than

other global MHD models and does not suffer from spurious cross-field diffusion effects. Fur-

thermore, it is shown that MULTI-VP can correctly predict the dynamical and thermal properties

of the background solar wind (wind speed, density, temperature, magnetic field amplitude, and

other derived quantities) and approach real-time operation requirements. It is concluded that the

quality and performance of this physical model depends on the quality of an initial guess, which
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would be the initial condition for the simulation. Another poignant observation is that these mod-

els take some computation time which can be reduced by starting the simulations with good initial

guesses. As such, the problem addressed by this dissertation is to decrease the time taken to come

to a feasible solution using the physical model, MULTI-VP, described in Pinto et al. by obtaining

good initial guesses [68].

4.2 Hypothesis

Considering the MULTI-VP simulation and its use, the primary research question this work at-

tempts to answer is the following:

How could Neural Networks be used to improve MULTI-VP’s performance pertaining

predictions and computation time?

Following the previous research question, we claim the following hypothesis:

Neural networks can be used to shorten the computation time needed for solar wind

flux-tubes simulations made by the simulator MULTI-VP by learning to provide good

initial guesses from previous runs.

Henceforth, we attempt to validate such hypothesis considering that (1) a decrease in computation

time corresponds to a decrease in comparison to the time the simulation currently takes to pro-

duce results; (2) good initial guesses to be those similar to the expected ones and that lower the

computation time.

4.3 Research Questions

To validate our hypothesis and validate our work, we have defined the following research ques-

tions:

RQ1 Can neural networks acquire skill in initial guess estimation of solar wind flux-tubes simu-

lations?

RQ2 Do initial guess estimations from Neural Networks improve solar wind flux-tubes simulation

times?

Answering these questions will allow us to assert the possible falsifiability of our hypothesis.

4.4 Validation and Evaluation

Zelkowitz et al. [69] define experimental models for validating technology. In this work, two

main experimentation methods referred in Zelkowitz’s work will be used.
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Engineering method Engineers develop and test a solution to a hypothesis. Based upon the

results of the test, they improve the solution until it requires no further improvement.

Empirical method A statistical method is proposed as a means to validate a given hypothesis.

Unlike the scientific method, there may not be a formal model or theory describing the hypothesis.

Data is collected to verify the hypothesis.

The engineering method is used in the first phase of our work when a solution for predicting

the simulation outputs is made. The empirical method is used in a later phase of this work when

we gather the data provided by the simulation to test our hypothesis.

These processes are explained in chapters 5 and 6.

4.5 Summary

Section 4.1 started by contextualizing the scope of the work done by Pinto et al. [68] and stating

the problems currently faced by the MULTI-VP simulation. Section 4.2 details the hypothesis of

this dissertation whilst section 4.3 detailed the research question this dissertation aims answering.

Finally in section 4.4 the validation and evaluation methods to be used in this dissertation were

presented.
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In this chapter as a first exploration of the available data is made. In section 5.1 the data is

explained in detail whilst in section 5.2 an exploratory analysis of the data is made. Finally a small

summary of the developed chapter’s work is made in section 5.3.

5.1 Data

The data used in the experiments consisted of a set solar wind profiles randomly selected from

a pool of simulations. Each one of these correspond to a given date and contains 2596 distinct

instances each. Each instance corresponds to one independent simulation of an elementary solar

wind flux-tube that contains a list of different physical quantities given in 640 points (abscissas)

ordered as a function of distance to the Sun (up to about 31 solar radii). These simulations re-

quire an initial guess provided by the user, that the numerical code will evolve towards a physical

solution.

These files contained twelve columns being these R[Rsun], L[Rsun], lon[Carr], lat[Carr], B[G],

A/A0, al pha[deg], V/Cs, propag_dt[d], n[cm−3], v[km/s] and T [MK]. R represents the radial

coordinate radius whilst L corresponds to the distance measured throughout the line. lon and lat

represent the longitude and latitude of the point relative to the Sun. B stands for the magnetic

field whilst A/A0 represents the expansion term with A being the flow diameter and A0 the initial

diameter. al pha[deg] indicates the inclination of the flux tube, V/Cs represents wind over sound

speed and propag_dt[d] is the propagation time of the plasma from the solar surface to the point

where we are. n[cm−3] is the umber of particles per unit volume (number of ionized H protons),

v[km/s] is the speed oriented along the line and T [MK] is the temperature at that point in space.
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5.2 Data Preparation and Analysis

Before analysing the data, some preprocessing techniques were performed in order to obtain more

accurate representations of the data. To do so, we started by renaming the columns of the file for

consistency (stripping extra-space and capitalizing the first letter of the columns leaving the rest in

lower case.) We then merged the data from all files sampling one random line from each, obtaining

a file with 12941 lines.

Data representation of a MULTI-VP generated flow can be seen in A.1 where one of the files

is represented.

Figure 5.1: Uni-variate histograms representing the different features distributions.
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Since we had a considerably large amount of data, we decided to drop lines where missing or

null data was placed as well as ones where there were any mistypes. Therefore, from the expected

14760 lines, 1819 were discarded.

Table 5.1: Data Statistical Description with outliers. Count, mean, maximum, minimum, standard
deviation and quartiles are represented for the different available variables.

R[Rsun] L[Rsun] lon[Carr] lat[Carr] B[G] A/A0
count 12940 12940 12940 12940 12940 12940
mean 4.7356 4.7908 185.9409 0.2045 -0.4920 1032.8481
std 7.1279 7.1700 104.2467 57.1295 13.8260 5249.1044
min 1.0000 1.0000 0.1292 -89.7902 -419.6305 -22152.6201
25% 1.0212 1.0212 97.5007 -55.7545 -1.6216 1.0598
50% 1.1579 1.1723 189.7790 -4.5143 0.0017 2.4265
75% 4.1951 4.3177 277.9799 58.0083 2.4711 163.5425
max 31.4920 31.5014 403.6049 89.9871 101.3155 135424.4260

alpha[deg] V/Cs propag_dt[d] n[cm^-3] v[km/s] T[MK]
count 12940 12940 12940 12940 12940 12940
mean 1.9863 1.5248 0.072813 8.3055e+13 256.1420 1.393164
std 14.4639 2.03380 0.133364 6.6338e+14 214.7340 0.899265
min -80.5875 -3.4646e-07 0.000000 7.8516e+01 -0.0000 0.006000
25% -0.0747 2.8999e-01 0.001693 1.6583e+04 51.2458 0.724575
50% 0.0000 8.2632e-01 0.008821 2.2975e+06 212.9088 1.345264
75% 1.2906 2.2009e 0.072140 2.0433e+07 449.8903 2.124096
max 72.8551 2.4942e+01 1.617492 1.0054e+16 886.0651 11.867441

The data distribution can be seen in Figure 5.1. A general statistical overview containing the

mean, standard deviation, minimum, maximum and percentage quartiles of the data can be seen

in Table 5.1.

In order to analyse the data a study of outliers, correlation and distributions was performed.

We started then by considering outliers detection using the definition provided by Hawkins[70]

which defined an outlier as an observation that deviates so much from other observations that it

incites suspicion that it was generated by a different mechanism and the definition of Johson et al.

[71] which defines an outlier as an observation in a data set which appears to be inconsistent with

the remainder of that set of data. Representing the data in Figure 5.2, we can spot some outliers in

columns B[G], A/A0, al pha[deg] and T [MK].

ρXY =
cov(XY )
σXσY

(5.1)

Afterwards we proceeded with analysing the correlation between our different variables. The

Pearson correlation, described in equation 5.1 can be defined as the measure of linear correlation

between two sets of data [72].

As can be seen in Figure 5.3, one can find a strong correlation between the distance to the

Sun R[Rsun], L[Rsun] and propagation propagdt[d] in days which was expected. Some degree
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Table 5.2: Data Statistical Description with no outliers. Count, mean, maximum, minimum, stan-
dard deviation and quartiles are represented for the different available variables.

R[Rsun] L[Rsun] lon[Carr] lat[Carr] B[G] A/A0
count 12927 12927 12927 12927 12927 12927
mean 4.7342 4.7892 185.9532 0.1994 -0.4593 1035.8614
std 7.1285 7.1705 104.2510 57.1478 13.3321 5247.6020
min 1.0000 1.0000 0.1292 -89.7902 -132.8306 0.3483
25% 1.0212 1.0212 97.5007 -55.8247 -1.6266 1.0603
50% 1.1576 1.1723 189.7719 -4.5291 0.0017 2.4369
75% 4.1882 4.3024 278.0201 58.0238 2.4801 164.6877
max 31.4920 31.5014 403.6049 89.9871 101.3155 135424.4260

alpha[deg] V/Cs propag_dt[d] n[cm^-3] v[km/s] T [MK]
count 12927 12927 12927 12927 12927 12927
mean 1.9827 1.5248 0.0728 8.3138e+13 256.1073 1.3925
std 14.4621 2.0345 0.1334 6.6371e+14 214.7809 0.8949
min -80.5875 -3.4646e-07 0.0000 7.8516e+01 -0.0000 0.0060
25% -0.0749 2.8995e-01 0.0017 1.6920e+04 51.2289 0.7244
50% 0.0000 8.2565e-01 0.0088 2.2990e+06 212.8528 1.3455
75% 1.2959 2.2008e 0.0720 2.0463e+07 449.9966 2.1243
max 72.8551 2.4942e+01 1.6175 1.0054e+16 886.0651 4.2241

of correlation can be found between V/Cs and the distance to the sun as well as A/A0 and, as

expected, v[km/s]. This tells us that the further away from the Sun, the bigger the diameter and

velocity of the wind flux tube.

A further analysis on the dependencies of the variables can be seen in Figure 5.4. In such

Figure the comparison is made between the variables which we shall later in chapter 6 consider as

inputs and outputs.

We then proceeded with removing the outliers and analysing data once more so as to better

understand the differences. To do so the following conditions had to be met: [′B[G]′] >= −200,

[′A/A0′] >= 0, [′T [MK]′] <= 6. In Figure 5.5 we can observe the dependencies of the inputs vs

outputs and are able to better analyse such dependencies with no outliers. We can also observe in

Table 5.2 the difference in the general statistical overview.
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Figure 5.2: Box Plots for each variable so as to detect outliers.
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Figure 5.3: Correlation Heatmap representing the different correlations that can be found between
all variables. The more intense the red or the blue in each square, the more directly or inversely
correlated are two variables, respectively.
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Figure 5.4: Multivariate pair plots with outliers. The graph aids in understanding the different
relations between each pair of of variables concerning inputs vs outputs.
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Figure 5.5: Multivariate pair plots with no outliers. The graph aids in understanding the different
relations between each pair of variables concerning inputs vs ouputs.
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5.3 Summary

In Section 5.1 we presented the data used in this work while in Section 5.2 we describes the

preprocessing techniques that were applied the data and analysed it. We were able to verify that

some of the features possess a large range of values and that one can detect a considerable number

of outliers in some features. We also found some correlation between V/Cs and the distance to the

sun as well as A/A0 and, as expected, v[km/s] were able to conclude that the further away from

the Sun, the bigger the diameter of the flux tube and the larger the wind velocity.
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This chapter explores the different experiments and corresponding results made throughout

this dissertation. We start by using a point-based approach in section 6.1. A flow-based approach

is presented in section 6.2 and simulation runs and comparisons are made in section 6.3. Validation

threats to our work are presented in section 6.4 and the hypothesis presented in 4.2 as well research

questions presented in 4.3 are discussed in section 6.5. Implementation details are detailed in

section 6.6. In the end, a short summary and brief discussion of our results is made in section 6.7.

6.1 Point-Based Approach

In order to answer the first research question we stated in chapter 4 we decided to start our approach

with the use dense neural networks. We then tested these against random-based and median-based

neural networks. Such neural networks are described further ahead.

The first step consisted of normalizing the data using the quantile scaler provided by the keras

library since it has been found that input data normalization with certain criteria, prior to a train-

ing process, is crucial to obtain good results as well as to fasten significantly the calculations

(especially in the training phase of the models) [73].

The used scaler transforms the features such that they follow a uniform or a normal distribu-

tion. As such, for a given feature, this transformation tends to spread out the most frequent values.

In doing so, it also reduces the impact of outliers. The transformation is applied on each feature

independently. First an estimate of the cumulative distribution function of a feature is used to map
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Table 6.1: Best hidden layers configurations for N, V and T prediction. The mean squared error
as well as its standard deviation are presented for each of the selected configurations.

Output HL HN mean_mse stdv
N 2 5 5.70×10-4 1.12×10-4

V 2 5 1.11×10-2 2.92×10-3

T 2 5 3.82×10-2 1.22×10-2

the original values to a uniform distribution. The obtained values are then mapped to the desired

output distribution using the associated quantile function. Features values of new/unseen data that

fall below or above the fitted range will be mapped to the bounds of the output distribution. As

such this is not a linear transformation.

We started our experiments by dividing the prediction of each output: N, V and T into three

different models. As such we avoided weighing on one of the outputs more than the others.

The sequential model provided by the keras library was used for providing us a straightforward

approach for producing a plain stack of layers where each layer has exactly one input tensor and

one output tensor [74].

A systematic experimentation with different configurations of hidden layers was made as rec-

ommended by Stathakis [75]. Since a single-layer neural network can only be used to represent

linearly separable functions [76]. we started our experimentation with two hidden layers and five

nodes on each hidden layer.

We started by randomizing the training data. We then divided the data into testing data and

training using a percentage of 30% for testing and 70% for training. A first run of the initial

configuration and its results for MSEs were stored. We started by analysing the number of hidden

layers that would benefit our loss function (MSE) the most. To do so we started adding hidden

layers to the model and comparing the results amongst such configurations. In order to make sure

that our results were not random of biased we ran the tests using a 10-fold validation with 10

experiments for each configuration. While the average measured MSE was smaller than then the

previous configuration we would keep adding layers until an optimal configuration was achieved.

The process described above helped us getting the number of layers for each output which

ended up being optimal with two layers for all of them. In Table 6.1, we can observe the winning

configuration for each output as well as the mean of the 10-fold tests and its standard deviation.

Since getting the number nodes for each output would be quite exhaustive we decided to use

the keras built-in tuner [77]. The Keras Tuner is a library that helped us pick the optimal set of

hyperparameters for our TensorFlow program (also know as hyperparameter tuning). The tuners

tried in this work were the RandomSearch and the Hyperband tuners. As the name suggests, the

RandomSearch hyperparameter tuning method randomly tries a combination of hyperparameters

from a given search space. Hyperband optimizes the random search method through adaptive

resource allocation and early-stopping. It first runs random hyperparameter configurations then

selects which configurations perform well, then continues tuning the best performers.

Before advancing with the training and predictions of the model, it was decided to add a
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dropout layer to the model. As explained in the work of Srivastava et al. [78], overfitting is

a serious problem in neural networks. Dropout comes a solution for addressing this problem.It

works by randomly dropping units, along with their connections from the neural network during

training. In doing so, it prevents units from co-adapting too much and gives major improvements

over other regularization methods. As such the dropout layer was added and the results for each

output were as follows.

For the N output the best tuner was the Random Search which returned a configuration of

two hidden layers with 52 nodes each and had an average MSE of 2.83× 10-4. For the V output

the best tuner was the Random Search which returned a configuration of two hidden layers with

44 nodes each and had an average MSE of 2.32× 10-3. For the T output the best tuner was the

Random Search which returned a configuration of two hidden layers with 48 nodes each and had

an average MSE of 4.81×10-3.

To use the tuner a hypermodel with two dense layers and a random number of nodes was

generated. We proceeded then by training the models with 250 epochs and by splitting the data

into training, testing and validation in a 70/15/15 ratio. The results are as follows. The model

used for the N output had a training MSE of 1.33× 10-4, a validation MSE of 1.93× 10-5 and a

testing MSE of 1.58×10-4. The model used for the V output had a training MSE of 4.34×10-4,

a validation MSE of 5.25× 10-4 and a testing MSE of 5.99× 10-4. The model used for the T

output had a training MSE of 1.15×10-3 , a validation MSE of 1.501×10-3 and a testing MSE of

1.391×10-3.

(a) Epochs’ History (b) Absolute Error

Figure 6.1: N model training history and absolute error in final predictions using a dropout layer.
A diminishing MSE can be observed through the training epochs and the validation MSE stands
below training MSE for most of the time.

In Figures 6.1, 6.2 and 6.3 we can see 100 of the 250 epochs of training of the N, V and T

models whilst also observing the absolute error in the predictions of the training phase for each of

the models.

Analysing both these results and the graphs one can see that the MSE for the training data tends

to stabilize near the 80 epochs. We can also observe that for the N and V outputs the validation
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(a) Epochs’ History (b) Absolute Error

Figure 6.2: V model training history and absolute error in predictions using a dropout layer. A
diminishing MSE can be observed through the training epochs and the validation MSE stands
below training MSE for most of the time.

MSE tends to be lower than the testing MSE and that for the T output the training and validation

MSEs are, for the most part, aligned with each-other. We can also observe that even though the

MSE tends to be quite low, some absolute errors in the prediction stage are quite high. As such we

decided to test the influence of both outliers and the dropout layer.

We decided then to start by comparing the results one might have obtained without using a

dropout layer. The results for the tuner for each output were as follows: For the N output the

best tuner was the Random search which returned a configuration of two hidden layers with 60

nodes each and had an MSE of 4.24× 10-4. For the V output the best tuner was the Hyperband

Search which returned a configuration of two hidden layers with 48 nodes each and had an MSE

of 1.954×10-3. For the T output the best tuner was the Random Search which returned a configu-

ration of two hidden layers with 48 nodes each and had an MSE of 6.358×10-3. Just like before,

we proceeded then by training the models with 250 epochs and by splitting the data into training,

testing and validation in a 70/15/15 ratio. The results are as follows: The model used for the N

output had a training MSE of 1.63×10-4, a validation MSE of 2.34×10-4 and a testing MSE of

1.93×10-4. The model used for the V output had a training MSE of 8.42×10-4, a validation MSE

of 1.017×10-4 and a testing MSE of 8.59×10-4. The model used for the T output had a training

MSE of 1.30×10-3 , a validation MSE of 1.46×10-3 and a testing MSE of 1.60×10-3.

In Figures 6.4, 6.5 and 6.6 we can see 100 of the 250 epochs of training of the N, V and T

models whilst also observing the absolute error in the predictions of the training phase for each of

the models.

Analysing both the obtained results and the illustrative graphics one can note that the MSEs

tend to be lower when using the dropout layer. We can also see that not using dropout achieves

an optimal performance sooner, Even though the training phase is not as smooth using a dropout

layer, because it avoids overfitting to the training data the validation becomes better than when we

don’t use the dropout technique.
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(a) Epochs’ History (b) Absolute Error

Figure 6.3: T model training history and absolute error in predictions using a dropout layer. A
diminishing MSE can be observed through the training epochs and the validation MSE stands in
line with training MSE for most of the time.

On another note, we can also observe that there are some peaks potentially caused by outliers

in our validation and training history in both models, especially when considering the V output.

We then proceeded by repeating the experiments on the datasets with no outliers so as to verify

the impact these might have on the final results. We decided to use the dropout layer given the

reasons mentioned before.

The results for the experiments with no outliers were as follows: The model used for the N

output had a training MSE of 1.79×10-4, a validation MSE of 1.90×10-4 and a testing MSE of

1.78×10-4. The model used for the V output had a training MSE of 4.84×10-4, a validation MSE

of 6.04× 10-4 and a testing MSE of 6.45× 10-4. The model used for the T output had a training

MSE of 1.65×10-3 , a validation MSE of 1.99×10-3 and a testing MSE of 2.31×10-3.

In Figures 6.7, 6.8 and 6.9 we can see 100 of the 250 epochs of training of the N, V and T

models whilst also observing the absolute error in the predictions of the training phase for each of

the models.

Analysing both the graphics and results mentioned above one can see that even though it

was expected that the outliers’ discarding might have a big impact in reducing the MSE obtained

especially when considering output T, such is not the case. Not only has the MSE not reduced

but it has even augmented. This tells us that the outliers are important for the physical problem

at hand, happening more times with physical significance than what seems to be the case at first

glance.

6.1.1 Random-Based and Median-Based Models

After this analysis we decided to make sure that our models outperformed the results given by a

random-based and a median based model.
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(a) Epochs’ History (b) Absolute Error

Figure 6.4: N model training history and absolute error in predictions not using a dropout layer.
A diminishing MSE can be observed through the training epochs and the validation MSE stands
above training MSE for most of the time.

(a) Epochs’ History (b) Absolute Error

Figure 6.5: V model training history and absolute error in predictions not using a dropout layer.
A diminishing MSE can be observed through the training epochs and the validation MSE stands
above training MSE for most of the time.
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(a) Epochs’ History (b) Absolute Error

Figure 6.6: T model training history and absolute error in predictions not using a dropout layer. A
diminishing MSE can be observed through the training epochs and the validation MSE stands in
line with training MSE for most of the time.

(a) Epochs’ History (b) Absolute Error

Figure 6.7: N model training history and absolute error in predictions using a dropout layer and
after outliers discarding. A diminishing MSE can be observed through the training epochs and the
validation MSE stands below training MSE for most of the time.
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(a) Epochs’ History (b) Absolute Error

Figure 6.8: V model training history and absolute error in predictions using a dropout layer and
after outliers discarding. A diminishing MSE can be observed through the training epochs and the
validation MSE stands below training MSE for most of the time.

(a) Epochs’ History (b) Absolute Error

Figure 6.9: T model training history and absolute error in predictions using a dropout layer and
after outliers discarding. A diminishing MSE can be observed through the training epochs and the
validation MSE stands in line with training MSE for most of the time.
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Table 6.2: Different Models MSEs comparison on testing data. A comparison between the devel-
oped models with and without outliers is made against a random based and a median based model.
The developed models show an out-performance based on MSE comparison when compared to
the random and median based models.

Output Outliers model
test MSE

No Outliers
model test MSE

Random model
test MSE

Median model
test MSE

N 1.58×10-4 1.783×10-4 1.65×10-1 3.33×10-1

V 5.99×10-4 6.45×10-4 1.63×10-1 2.34×10-1

T 1.39×10-3 2.31×10-3 1.67×10-1 1.82×10-1

The random model consisted of generating random values with the range of the corresponding

outputs. The median model consisted of generating the median of the range of values with the

range of the corresponding outputs. We then compared the results of testing amongst the different

used models. The results were as follows.

Considering the median models, the MSE obtained for testing using model N was of 3.33×
10-1. For model T the testing MSE was of 2.34× 10-1 and the testing MSE of model T was of

1.82×10-1.

Considering the random models, the MSE obtained for testing using model N was of 1.65×
10-1. For model T the testing MSE was of 1.63× 10-1 and the testing MSE of model T was of

1.67×10-1.

In Table 6.2 one can observe the comparison of the used model versus the random and median

models. As can be observed, the models used during this work outperform significantly the random

and the median model letting us know that it is possible to learn the output features at hand.

6.1.2 Real Values Graphical Comparison

After getting the MSEs for each of the models, we decided then to compare the predicted and the

real outputs of 15 random supplied files. The results for the N,V and T outputs can be seen in

Figures 6.10, 6.11 and 6.12 respectively.

Analysing the aforementioned Figures one can reach some conclusions. Firstly, the models

which were trained containing outliers seem to better accompany the expected results. As men-

tioned before such is possibly true given the physical significance of such outliers being present

more times than seems to be true at a first glance. The model used to predict N performs better

than the ones used to predict V and T which might be explained by the rapid changes experienced

by the V and T profiles. Ultimately we can infer that even though our MSE was extremely low

when analysing the prediction of each line and measuring the median error of the whole file, our

models are not reasonable enough at predicting the expected values.

Some reasons on why this might and that should be considered when thinking of future work

might be the range of values, no access to MULTI-VP, loss metric and model data configuration for

training. Explanations and future work and alternatives for these results can be found in chapter 7.
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Figure 6.10: Comparison of the real expected N output with the predicted ones from both the
models with with and no outliers. A clear discrepancy in values can be seen particularly when
using the model trained with no outliers.

Because our results were so drastically different than expected and there were a lot of irregu-

larities in the predicted profiles , we were not able to test our second research question regarding

the reduction of computation times. Such was due to the fact that the simulation is not capable of

digesting such large radial variations.

As such we decided to test a new approach to our data preprocessing which is described in 6.2
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Figure 6.11: Comparison of the real expected V output with the predicted ones from both the
models with with and no outliers. A clear discrepancy in values can be seen particularly when
using the model trained with no outliers.
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Figure 6.12: Comparison of the real expected T output with the predicted ones from both the
models with with and no outliers. A clear discrepancy in values can be seen particularly when
using the model trained with no outliers.
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Figure 6.13: Comparison of the real expected N output with the predicted ones from the model
using files, the model with outliers using more hidden layers and the model using files with more
hidden layers. A clear improvement in the predicted values can be seen especially in the last
model.
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Figure 6.14: Comparison of the real expected V output with the predicted ones from the model
using files, the model with outliers using more hidden layers and the model using files with more
hidden layers. A clear improvement in the predicted values can be seen especially in the last
model.
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Figure 6.15: Comparison of the real expected T output with the predicted ones from the model
using files, the model with outliers using more hidden layers and the model using files with more
hidden layers. A clear improvement in the predicted values can be seen especially in the last
model.
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6.2 Flow-Based Approach

Instead of sampling one random line from each provided file we decided to train a new model

consisting of the same hidden layers and nodes mentioned before for each output but, instead of

feeding the lines to it we would use each file as an input. To do so, we used 6000 of the provided

files and trained the models for 500 epochs. The results for the experiments with the files as input

using two hidden layers like before were as follows: The model used for the N output had a training

MSE of 2.61×10-2, a validation MSE of 2.87×10-2 and a testing MSE of 2.87×10-2. The model

used for the V output had a training MSE of 2.16× 10-2, a validation MSE of 2.17× 10-2 and a

testing MSE of 2.17×10-2. The model used for the T output had a training MSE of 1.93×10-2,

a validation MSE of 1.92× 10-2 and a testing MSE of 1.93× 10-2. However, as can be seen in

Figures 6.13, 6.14 and 6.12, this approach did not improve our previous results.

By interpreting such results, we started questioning whether the complexity of the Neural

Networks being used was not high enough to find relations between the different features. We

decided then to test if a higher complexity of ANNs would improve our results and incremented the

number of hidden layers to 8. The model used for the N output had a training MSE of 4.85×10-2,

a validation MSE of 4.72× 10-2 and a testing MSE of 4.7164× 10-2. The model used for the V

output had a training MSE of 1.01× 10-1, a validation MSE of 1.02× 10-1 and a testing MSE

of 1.02× 10-1. The model used for the T output had a training MSE of 4.45× 10-2, a validation

MSE of 4.51× 10-2 and a testing MSE of 4.51× 10-2. Even-though the MSEs augmented when

compared to the last model, this improved the results by a lot which can be seen in the last sub-

Figures of Figures 6.13, 6.14 and 6.12.

We decided then to go back and test if our k-fold validation had hit some kind of local minima.

To do so we tested the no outliers model with eight hidden layers and verified the there wasn’t a

considerable improvement in most layers. This helped us conclude that using the files as input

instead of the lines was the determining factor in improving our results.

6.3 Simulation Runs

Contrary to the results in subsection 6.1.2, the flow-based approach results did not present large

radial variations. As such, we were able to test 15 randomly selected predicted files in MULTI-VP.

Taking a first glance at the runs’ results in Figure 6.16, one can observe that convergence

is done correctly, meaning we get the same final result, and most profiles are closer to the final

solution. It can be seen that the convergence process is a little more straightforward in most cases,

with a smoother initial transient. In particular, the density profile generally seems closer to the

final solution than the standard profiles.

We proceeded by performing a convergence test. The results of such an experiment can be

found in Figure 6.17, that shows the temporal evolution of the relative variations of each quantity

between two consecutive data outputs on each run, i.e., the ratio (Xi−Xi−1)/Xi−1 for any given
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Figure 6.16: Illustrative example of comparison of standard and predicted profiles performance
using one of the 15 predicted profiles. The standard profile can be seen on the left panels, while
the new profile can be seen on the right panels. Red lines represent the initial condition, green
lines represent the final solutions, and black lines represent some intermediate instants, with the
same delta t on both sides.The abscissa represents the grid-point number.

quantity X . Figure 6.17 shows that the predicted profiles often converge faster than the standard

profiles.

The initial transients are different, being sometimes smoother with the new predicted files. The

integration time step that the code uses adapts automatically to the complexity of the simulated

flow at any given instant, and therefore differs between the two realizations. That is, the number

of total iterations required for the code to converge becomes different in the two cases.

As such, we used that same number of iterations, instead of elapsed time, as a measure of

performance. It results in the values shown in Table C.1) that consecutively indicate the an-

alyzed run, the convergence times for each case, the respective number of iterations, and the

speedup factor. This speedup factor was calculated by using the simple formula speed_fac =

standard_number_iterations/predicted_number_iterations.
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Figure 6.17: Illustrative example of comparison concerning convergence using one of the 15 pre-
dicted profiles. Each graph shows the relative variations measured at a reference altitude(1/10
of the Sun-Earth distance) between successive outputs of the code ("running differences") as a
function of time, the standard profiles are represented in red and the predicted ones in blue. First
for speed, then density and lastly temperature. The abscissa shows the elapsed time (in code units,
equivalent to 1.5 h of physical time). The vertical dashes show the instant at which convergence
was detected, defined as a threshold of relative variations for the three quantities (all three must
oscillate less than the threshold value).

We then tested the same runs and same diagnostics, but with a 10x higher data output rate to

better see the relaxation/convergence process. Relaxation time detections are more accurate this

way. As one can see in Figure 6.18, there is a series of oscillations at well-defined frequencies

that follow the initial impulse. This does not represent numerical noise: it is a well-defined oscil-

latory mode (which corresponds to an acoustic-type compressible mode or, more precisely, to the

slow MHD mode) that is excited as a secondary response to perturbations in the structure of the

transition region between the chromosphere and the solar corona (ie, between the cold/dense and

hot/lightly dense parts of the atmosphere). One could think of this as a canonical impulse/response
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Figure 6.18: Illustrative example of comparison concerning convergence with a 10 times higher
output data rate, using one of the 15 predicted profiles. Each graph shows the relative variations
measured at a reference altitude between successive outputs of the code ("running differences"),
the standard profiles are represented in red and the predicted ones in blue. First for speed, then
density and lastly temperature. The abscissa shows the elapsed time (in code units). The vertical
dashes show the instant at which convergence was detected, defined as a threshold of relative
variations for the three quantities (all three must oscillate less than the threshold value).

process (although there is an intermediate process). The abcissa is indicated using a code time unit

10x smaller than on the previous figure, such that a ∆ti = 10 now corresponds to 1.5 h of simulated

physical time.

The blue curves (cases with the predicted input files) generally seem to generate lower am-

plitude transients, which is twofold beneficial from a numerical point of view because it makes

the calculation more robust (less likely to produce transients excessively stiff for the code), and

because it allows for the code to keep a more moderate integration time step.

The results of this experiment can be found in Tables D.1. Analysing the referred table and

performing a simple mean of the speedup we came to a mean speedup of 1.13.
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It is shown that in the majority of cases, there is a small but existing improvement in the

speedup of convergence times. However, to better understand the nature of the groups and whether

or not there are statistical differences between their means, further analysis is required. To test the

null hypothesis that both groups have identical means, we opted to use the Student’s paired t-test.

This test relies on the assumption of a normal distribution of the population and equal variances,

although multiple studies have shown it is fairly robust to violations of at least one assumption and

is able to handle small sample sizes [79].

We used the Shapiro-Wilk test with α = 0.05 to check for distribution normality of the mea-

sured effect and obtained a p− value of 0.903 meaning that we cannot reject the hypothesis that

the distribution is normal. We then performed a Student’s paired t-test and obtained a p− value

score of 0.01306 allowing us to reject the null hypothesis as the result is significant at p < 0.05.

This supports our hypothesis that there is a statistically significant effect when using the predicted

profiles.

6.4 Validation Threats

Campbell et al. [80] [81] define internal validation (cause and effect) as validation referring to

whether an experiment makes a difference or not, and whether there is sufficient evidence to

support the claim. External validity (generalization), however, refers to the generalizability of

experiment outcome.

We identify the following threats to the validity of our results:

Data Integrity, Representativeness and Bias because MULTI-VP uses large volumes of data,

the dimensionality of the ML modeling features make it challenging to ensure data’s integrity and

representativeness. Because our data is manually selected by humans there is also a tendency for

the data to be biased. Another important matter is that the data comes pre-processed which might

imply some noise or over processing of these (external).

Explainability Challenges Machine learning models (especially neural network-based models)

are difficult to explain and are often viewed as black boxes. Assessment of the variable selection

process and explainability of driving factors become difficult due to the complexity and architec-

ture of neural networks. Even if ML models perform better than traditional models, the lack of

explainability may cause ML models to be restricted in use by specialized data scientists. Since the

model would be used by astronomers and astrophysicists a GUI of some sort could be presented

as a solution to this threat (internal).

Parameter and Method Selection Machine learning models involve scaling, normalization,

parameter optimization, randomization and activation functions. ML algorithms are sensitive to

the selection of these parameters and methods. The way normalization, parameter optimization
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and feature selection are conducted when developing ML models can impact test error estimation,

in our case the MSE and the absolute error (internal).

Loss Function Selection There are many loss functions that can be used to used to compare and

attest results between machine learning models. The selected loss function can directly impact

and blind-sight the results when not chosen properly. In our case, MSE proved not to be the best

possible choice since for the model using the files as inputs even though the MSE is better using

two hidden layers, the results are clearly demonstrated to be better when using eight hidden layers

(internal).

6.5 Hypothesis Evaluation and Research Questions Discussion

This evaluation process aimed to prove the hypothesis presented in section 4.2 being this

Neural networks can be used to shorten the computation time needed for solar wind

flux-tubes simulations made by the simulator MULTI-VP by learning to provide good

initial guesses from previous runs.

Given the results of our experiments, we conclude that the challenges that we focused on were

tackled and that evidence indicating that the hypothesis is possibly true, was collected. The result-

ing answers to the proposed research questions are as follows:

RQ1 Can neural networks acquire skill in initial guess estimation of solar wind flux-tubes sim-

ulations? We have determined that our models are better at acquiring skill in initial-guess

estimation of solar wind flux-tubes simulations. However, even though skill is acquired, the

metrics used for measuring such skilled proved not to be enough for us to have a usable

predicted dataset. To solve these issues, we used a different approach to our models and

verified that they could accurately predict the outputs.

RQ2 Do initial guess estimations from Neural Networks improve solar wind flux-tubes simula-

tion times? We were able to conclude that initial guess estimations from Neural Networks

improve solar wind flux-tubes simulation times. It is shown that in the majority of cases,

there is a small but existing improvement in the speedup of convergence times. The results

of the Student’s paired t-test p−value score of 0.01306 show that the results are significant

at p < 0.05.

6.6 Implementation Details

Python has become a broadly adopted language in machine learning applications and data sci-

ence. This usefulness derives fundamentally from the extensive and active ecosystem of third-

party packages [82]. This language was chosen given its code readability and many Machine

Learning Modules, examples, and pre-existing documentation.
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6.6.1 Libraries and Modules

The most important Python libraries used in this work were as follows:

pickle The pickle module implements binary protocols for serializing and de-serializing a Python

object structure.

pandas pandas is a Python package presenting fast, adaptable, and robust data structures de-

signed to make working with data both intuitive and straightforward. It strives to be the primary

high-level building block for doing practical, real-world data analysis in Python.

NumPy NumPy is the elemental package for scientific computing in Python. It is a Python

library that provides a multidimensional array object, various derived objects, and an assortment

of routines for fast operations on arrays, including mathematical, logical, shape manipulation,

sorting, selecting, I/O, discrete Fourier transforms, basic linear algebra, basic statistical operations,

random simulation and much more.

seaborn Seaborn is a Python data visualization library based on matplotlib. It provides a high-

level interface for drawing attractive and informative statistical graphics.

matplotlib Matplotlib is a comprehensive library for creating static, animated, and interactive

visualizations in Python.

Scikit-learn Scikit-learn is an open-source machine learning library that supports supervised

and unsupervised learning. It also provides various tools for model fitting, data preprocessing,

model selection and evaluation, and many other utilities.

TensorFlow TensorFlow is an open-source library for numerical computation and large-scale

machine learning. TensorFlow bundles together a slew of machine learning and deep learning

models and algorithms and makes them useful through a common metaphor. It uses Python to

provide a convenient front-end API for building applications with the framework while executing

those applications in high-performance C++.

Keras Keras is an API designed for making deep learning more accessible in Python. Keras

follows best practices for decreasing cognitive load offering consistent and straightforward APIs,

minimizing the number of user actions required for everyday use cases, and providing clear and

actionable error messages. It also possesses thorough documentation and developer guides.
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6.6.2 Replication Package

The replication package for this thesis can be found in https://github.com/FilipaBarros/initial-

estimation-in-flux-tube-sim

To use the code, one must simply download it and run each file in the order explicit in the

README file.

6.7 Summary

In this chapter, the experiments performed during this work were presented. Normalization of data

was explained as well as chosen configurations were justified through loss measures (MSEs) and

by the use of k-fold validation and Keras tuner. Different models with/without outliers and dropout

were tested and explained and finally compared with median and random based models outper-

forming these. Our results were then further analyzed in comparison with the expected outputs,

and even though the MSEs were very low, these proved not to be a sufficient source of validation

for the expected predictions. We then developed and tested a new model by using files instead

of lines as inputs and realized the results had not improved significantly. Questioning if the com-

plexity of the developed network was high enough (since there were no improvements with more

and more physically significant data being used) we tested the use of a higher level of layers on

the network. With this final model, we achieved results that were more similar to those expected,

and that could be used in the MULTI-VP simulation. We then proceeded to predict and test 15

randomly selected files with our ANN and used these predicted files on MULTI-VP comparing

their performance to the one achieved by standard files. We were then able to conclude that in the

majority of cases, there is a small but existing improvement in the speedup of convergence times

and used the student’s t-test to validate our results. Afterward, possible validation threats were

discussed, and our research questions were analyzed. Finally, implementation details were given

in section 6.6.



70 Experiments and Results



Chapter 7

Conclusions

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

In this chapter, the conclusions taken at the end of the developed work are presented in sec-

tion 7.1. Contributions are presented in section 7.2 and future work is discussed in section 7.3.

7.1 Conclusions

Machine Learning has become a go-to approach for solving space weather problems. In our state

of the art, we were able to conclude that not only was machine learning being used for predicting

phenomena; it was also being used in a variety of fields to help improve physical simulations

of such phenomena. The main goal of this work was to figure out if and how machine learning

techniques could be used to improve MULTI-VP’s simulator performance. As such, we decided

to use a neural network approach (since this method was one of the most commonly used) and to

come to our central hypothesis described in 4.2.

The experiments performed during this work were presented in 6. Normalization was made,

and configurations were chosen and justified through loss measures (MSEs) and by the use of

k-fold validation and Keras tuner. Different models with/without outliers and dropout were tested

and explained and finally compared with median and random based models outperforming these.

Our results were then further analyzed compared to the expected outputs, and even though the

MSEs were very low, these proved not to be a sufficient source of validation for the expected

predictions. We then developed and tested a new model using files instead of lines as inputs and

realized the results had not improved significantly. Questioning if the complexity of the developed

network was high enough (since there were no improvements with more and more physically

significant data being used) we tested the use of a higher level of layers on the network. With this

final model, we achieved results that were more similar to those expected, and that could be used in

the MULTI-VP simulation. We then predicted 15 randomly selected files with our ANN and used

71
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these files on MULTI-VP comparing their performance to the one achieved by standard files. We

were then able to conclude that in the majority of cases, there is a small but existing improvement

in the speedup of convergence times and used the student’s t-test to validate our results achieving

statistical significance at p < 0.05. Further work is discussed and can be found in section 7.3.

This dissertation contributes with a survey and analysis of machine learning techniques ap-

plied to space weather as well a new approach for generating MULT-VP usable predictions and a

replication package to validate and use the work performed.

7.2 Contributions

During this dissertation, three main contributions were made, being these:

Literature review: An analysis was made to the state of the art regarding Machine Learning

Approaches to Solar Weather

A new approach for generating predictions: Our solution encompasses the generation of pre-

dictions for initial and full output conditions of N, V , and T values.

A replication package has been developed and is currently open-source to anyone who wishes

to validate our results or even to use them for their own predictions.

7.3 Future Work

The solution developed during the course of this dissertation solved the problem of using machine

learning to predict MULTI-VP simulation values to be used as inputs. However, the implementa-

tion contains which can be expanded upon and solved in future work.

As mentioned previously in section 4.4, there are some validations threats to the way the

dissertation was carried out, such as but not limited to data integrity, representation, and bias, as

well as parameter and method selection and loss function selection.

To attack the issues faced with data integrity, representativeness, and bias, we propose using

preprocessing techniques. Since some noisy data can be seen in the actual data to be predicted,

one technique that might improve the results would be to apply data smoothing using a moving

average. We also propose the use of a Python generator so that we are able to feed the rest of

the data to the Keras model being used. Due to lack of memory, we are using about half the

available data, and the model could much improve from the use of all the provided files. Another

preprocessing technique worth mentioning for future work is the use offeature engineering. As

stated in chapter 5 there is a high correlation between features in the dataset. One possibility

would be to restructure the features to extract other features or even to remove useless features to

simplify the model and provide less computation time.

Some problems mentioned before with the last model which is currently being used is the lack

of k-fold validation and tuning. These could provide better insight into why the model works and
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if this model performance can be surpassed using a different configuration of hidden layers and

nodes.

Another problem detected in chapter 6 was the inconsistency of the MSE metric being used

accompanying better results. As such, future work should consist of developing a distance-based

loss function to evaluate the models better.

We would also suggest experimenting the process with more predicted files by automating its

prediction preventing bias in our selected files.

Finally, a new approach to the problem could be made with the use of reinforcement learning
Using reinforcement learning whilst having access to the MULTI-VP simulation in real-time to

have the simulation train the neural network model.

We can conclude that the work developed in this dissertation has space for improvement, not

only in its validation but also in its optimization and enrichment.
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Appendix A

Data representation

Representation of a MULTI-VP generated flow is given below in A.1.
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Appendix B

Results from MULTI_VP Runs

Comparison of standard and predicted profiles performance is shown bellow. The standard profile

can be seen on the left while the new profile can be seen on the right. Red lines represent the initial

condition and green lines, while black lines represent some intermediate instants, with the same

delta t on both sides.
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Appendix C

Results from MULTI_VP Runs with
Convergence Analysis

Comparison of standard and predicted profiles performance in convergence terms. Each graph

shows the relative variations measured at a reference altitude between successive outputs of the

code ("running differences"), the standard profiles are represented in red and the predicted ones

in blue. First for speed, then density and lastly temperature. The abscissa shows the elapsed time

(in code units). The vertical dashes show the instant at which convergence was detected, defined

as a threshold of relative variations for the three quantities (all three must oscillate less than the

threshold value).

93



94 Results from MULTI_VP Runs with Convergence Analysis



Results from MULTI_VP Runs with Convergence Analysis 95



96 Results from MULTI_VP Runs with Convergence Analysis



Results from MULTI_VP Runs with Convergence Analysis 97



98 Results from MULTI_VP Runs with Convergence Analysis



Results from MULTI_VP Runs with Convergence Analysis 99



100 Results from MULTI_VP Runs with Convergence Analysis



Results from MULTI_VP Runs with Convergence Analysis 101



102 Results from MULTI_VP Runs with Convergence Analysis



Results from MULTI_VP Runs with Convergence Analysis 103



104 Results from MULTI_VP Runs with Convergence Analysis



Results from MULTI_VP Runs with Convergence Analysis 105



106 Results from MULTI_VP Runs with Convergence Analysis



Results from MULTI_VP Runs with Convergence Analysis 107



108 Results from MULTI_VP Runs with Convergence Analysis



Results from MULTI_VP Runs with Convergence Analysis 109

Table C.1: Analyzed run, the detected convergence times for each case, the respective number of
iterations, and the speedup factor. This speedup factor was calculated by using a simple formula
of speed f ac = standardnumberiterations

predictednumberiterations .

Files standard
times

predicted
times

standard it-
erations

predicted
iterations

speedup

CR1992_line_0001 50 17 7710864 2537277 3.039031
CR1992_line_0704 24 23 2686141 2545823 1.055117
CR1992_line_1701 17 19 422743 466801 0.905617
CR1992_line_2441 16 12 886770 658443 1.346768
CR2056_line_1213 24 23 3370315 3209258 1.050185
CR2056_line_1689 14 13 964518 887515 1.086763
CR2056_line_1844 19 15 1474551 1153225 1.278633
CR2056_line_2079 15 13 728292 624809 1.165623
CR2125_line_0040 18 13 1381900 988898 1.397414
CR2125_line_1033 31 32 3977693 4092486 0.97195
CR2125_line_2224 14 14 886276 880883 1.006122
CR2210_line_0214 17 15 1150994 1007776 1.142113
CR2210_line_0621 15 15 951685 945667 1.006364
CR2210_line_1161 44 43 996516 967496 1.029995
CR2210_line_1942 17 15 1145990 1001342 1.144454
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Appendix D

Results from MULTI_VP Runs with
Convergence Analysis at 10x Data Rate

Comparison of standard and predicted profiles performance in convergence terms with a 10 times

higher output data rate, using one of the 20 predicted profiles. Each graph shows the relative

variations measured at a reference altitude between successive outputs of the code ("running dif-

ferences"), the standard profiles are represented in red and the predicted ones in blue. First for

speed, then density and lastly temperature. The abscissa shows the elapsed time (in code units).

The vertical dashes show the instant at which convergence was detected, defined as a threshold of

relative variations for the three quantities (all three must oscillate less than the threshold value).
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Table D.1: Analyzed run, the detected convergence times for each case, the respective number of
iterations, and the speedup factor. This speedup factor was calculated by using the simple formula
speed_fac = standard_number_iterations

predicted_number_iterations .

Files standard
times

predicted
times

standard it-
erations

predicted
iterations

speedup

CR1992_line_0001 179 170 2706560 2537278 1.066718
CR1992_line_0704 244 246 2730976 2612230 1.045458
CR1992_line_1701 177 187 440005 459398 0.957786
CR1992_line_2441 155 77 859138 422883 2.031621
CR2056_line_1213 232 226 3258564 3153111 1.033444
CR2056_line_1689 201 171 1385252 1167697 1.186311
CR2056_line_1844 206 181 1598801 1391459 1.149011
CR2056_line_2079 163 111 791122 533737 1.482232
CR2125_line_0040 204 172 1566301 1308297 1.197206
CR2125_line_1033 337 334 4322533 4271646 1.011913
CR2125_line_2224 114 130 720955 817851 0.881524
CR2210_line_0214 166 150 1123877 1007777 1.115204
CR2210_line_0621 117 155 741121 977309 0.758328
CR2210_line_1161 340 330 771988 743205 1.038728
CR2210_line_1942 206 183 1388534 1221461 1.136781
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