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Abstract

A comparison between quantum and its classical counterpart is an essential step to defining a
blueprint for a quantum computer. While also analyzing their disparities, the one that strikes out
the most is the error rates of qubits and quantum gates, being in the order of 10−3, while for
CMOS-technology are around 10−15. Physicists are currently researching how to circumvent this
problem, but estimations put solutions at least a decade away. K. Bertels compares our current
period to the pre-transistor period of the classical computer building.

The error rates already mentioned result from physical qubits’ inability to keep their state
for long periods of time. This happens for every single experimental platform currently in ex-
istence. Quantum gates are an additional contributor to this problem, being also susceptible to
error introduction. These factors bring us to distance from real qubits and isolate such problems
by concentrating on manipulating a theoretical perfect quantum unit. Qubits in such a simulated
system are also referred to as perfect since their behavior has no decoherence associated, and their
gate operations are fault-proof.

In that context, this master thesis describes the development of a quantum digital micro-
architecture that will serve as a medium between a quantum assembly language - cQASM -, and
the simulation platform that deals in this kind of qubits - QBeeSim -, using C++. The Quantum
Micro-Architecture here described is general-purposed, as it has no concrete solution oriented
design, but should serve as an adaptable structure that requires minimal adjustments to fit any
specific area of research. With it, we estimate what our current classical devices allow us in terms
of circuit simulation, concluding that fifty qubits should be beyond our limits for a single isolated
device.

This work brings us a step closer to having an implementation of the complete full-stack
quantum accelerator[11], and to simplifying the process of quantum algorithm development.

Keywords: Computer systems organization, Quantum computing, Quantum micro-architecture,
Quantum Assembly, Quantum accelerator
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Resumo

A comparação entre quantum e o seu equivalente clássico é um passo essencial para projetar um
computador quântico. Ao analisar também as suas disparidades, a mais evidente serão as taxas
de erro de qubits e portas quânticas, na ordem dos 10−3, enquanto que, para a tecnologia CMOS,
estas estão à volta dos 10−15. Actualmente, físicos investigam formas de contornar o problema,
mas estimativas otimistas colocam soluções a uma década de distância. K. Bertels compara o
nosso período actual com o período pré-transistor da construção dos computadores clássicos.

As taxas de erro já mencionadas resultam da incapacidade de qubits físicos manterem o seu
estado durante longos períodos de tempo. Este fenómeno é comum a todas as plataformas experi-
mentais actualmente existentes. As portas quânticas são um dos contribuintes para este problema,
pois estão sujeitas à introdução de erros. Estes factores levam-nos a um afastamento de qubits
físicos, de forma a isolar estes problemas, alterando o foco para a manipulação de uma unidade
quântica teórica perfeita. Os qubits deste sistema simulado são simultaneamente denominados de
perfeitos, uma vez que não existe qualquer limite de tempo para manter o estado do qubit válido,
e as portas que os manipulam são à prova de erro.

Neste contexto, esta tese de mestrado descreve o desenvolvimento de uma micro-arquitectura
digital quântica que servirá como meio entre uma linguagem assembly quântica - cQASM -, e o
simulador que lida com este tipo de qubits - QBeeSim -, usando C++. A Micro-Arquitetura Quân-
tica aqui descrita tem um propósito geral uma vez que não são tomadas decisões que beneficiem
soluções concretas, podendo portanto servir como uma estrutura adaptável que requer alterações
mínimas para se ajustar a uma área específica de investigação à escolha. Com esta, estimamos a
capacidade dos dispositivos clássicos actuais na simulação de circuitos quânticos, concluindo que
cinquenta qubits deverão estar além dos limites de um único dispositivo isolado.

Este trabalho aproxima-nos um pouco mais da implementação do acelerador quântico com-
pleto [11], e da simplificação do processo de desenvolvimento de algoritmos quânticos.

Keywords: Organização de sistemas de computadores, Computação Quântica, Micro-arquitetura
quântica, Assembly quântico, Accelerador quântico
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Chapter 1

Introduction

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Work’s purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Quantum computing was first introduced by R. Feynman, in 1982[24]. The prospective harnessing

of quantum mechanical behaviours has long been an alluring one, but the increasingly obvious

inability of classical computers to process the large amounts of data produced globally makes this

technology that much more enticing.

1.1 Motivation

Moore’s Laws is the observation of how classical computational capacity would improve over the

years. If the trend kept going, we would see the number of transistors in a dense integrated circuit

double every two years. It so happens that it no longer holds true. Although computational capac-

ity falls short to the expected rate, data production worldwide has never been so high, requiring us

to look for alternative ways to handle so much information.

History is kind enough to let us know there is no silver bullet, and optimal solutions require

optimal problem-oriented ways to solve specific problems. For instance, when we were unable

to increase the way our CPUs handle graphics, we introduced graphic-processing units (GPUs).

In the mean time, we also noticed that, while we were focused on solving for an efficient way

to process graphics, we were given a way to optimally handle algebraic calculations with large

matrices. This shows us two things:

1. The better and more capable system is heterogeneous;
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2. While solving a problem, it is unknown how many more we will be solving.

Nowadays, there is no shortage of end-users applications that perform better thanks to hetero-

geneity, and not only thanks to GPUs, showing how task delegation to specific hardware compo-

nents is the best strategy.

When there was a lack of hardware capable for testing, in 1994, P. Shor already developed

an algorithm[48] capable of surpassing even the most efficient classical algorithm, computational

complexity wise. This already showed an optimal use-case for quantum technology. While we

do not know what a quantum computer actually is, we do have some expectations on how the

technology should evolve in the next decade or so (which is latter explored in Chapter 2). Those

expectations leads to the belief that as we developed better quantum hardware, we can use it in the

same way we use GPUs, as accelerators, enabling us to factorize a number much faster, as Shor

hopped, while the classical system handles tasks that they are already quite good at. This hybrid

system would be capable of running hybrid quantum applications.

1.2 Work’s purpose

Similar to the development of transistors, quantum bit-wise, we may also call our current times a

pre-transistor era. At the moment, we have a multitude of experimental platforms competing with

none clearly outperforming the other. With any of those technologies, we have poor quality qubits

with abysmal error rates, when compared to CMOS technology - error rates in the order of 10−3

against the 10−15 in CMOS.

As we wait for quantum hardware capable of handling qubit manipulation trustingly, we alter-

natively look at simulating this behavior using classical machines, which are not well suited for

this task, only the next best thing. For the quantum accelerator model introduced in [11], the sim-

ulation only constitutes the very bottom layer, but it is, in reality, the only that will eventually be

replaced by quantum hardware. The remaining layers use simulation to progress in their individ-

ual development, reducing substantially the expected span between quantum hardware availability

and its usability. Additionally, the full-stack layer separation allows for layer abstraction, making

it possible to develop quantum algorithms without concerns for qubit routing, for instance. Also,

as the simulator in use handles perfect qubits, i.e. that are not susceptible to error (being by factor

of time - decoherence - or gate introduced), the developer does not need to worry about faulty

results beyond his/hers scope of research.

This thesis focus on developing a software-based Quantum Micro-Architecture layer for the

full-stack model, while guaranteeing its integration with the surrounding layers, using C++. Here,

we look at ways to process a specific kind of assembly language oriented to quantum operations -

cQASM[36] -, its delivery method to the simulator, while storing real-time processing information,

and the best ways to retrieve and store results away, reducing the memory footprint. Our final

conclusions should also answer the question what are our limits for quantum circuit’s simulation.
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1.3 Thesis organization

Chapter 2 gives the essential concepts on quantum computing, that serve as basis for understanding

the content of this thesis, as well as the many decisions taken through the course of the develop-

ment of the micro-architecture. Also, the current state of quantum technology is explored, from

quantum hardware to services available.

Chapter 3 presents equally important knowledge on classical and quantum acceleration. We

start by understanding classical acceleration to make the bridge into the vision of the full-stack

quantum accelerator. Next, the current state of that same stack is described, and its parts explained.

Finally, we explain how distancing from NISQ hardware intends to be the way to further develop

quantum software that will eventually make use of the full potential of quantum.

Chapter 4 describes the micro-architecture layer as seen from the outside. First, there is a

description of how information goes in/out of the layer. Second, we make a first explanation on

the possible memory impact that layer could have, without going into the specific implementation.

Third, the test process that drove the development of the micro-architecture as is is explained, as

well as additional knowledge needed to better understand that same process.

Chapter 5 has the first in-depth look of the micro-architecture, accompanied by an example

that goes through every single component, in order.

Chapter 6 builds upon the previous chapter, by looking at the implementation there described,

and optimizing several components in terms of runtime and memory usage.

Chapter 7 uses the implementation of the previous two chapters. It exposes the results of the

tests described in Chapter 4, followed by a predictive analysis of our current simulation capacity

using classical systems.

Chapter 8 offers the conclusions that resulted from this work, as well as future work that takes

this thesis as its basis.
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Chapter 2

Background

2.1 Notions on quantum computing . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 State of quantum hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

This chapter serves as an introduction to the concepts needed to understand the fundamentals

of quantum computing. It also provides and analysis on the state of quantum technology around

the world.

2.1 Notions on quantum computing

2.1.1 Qubits

A bit represents a two-state variable, being either 0 or 1, and there is no possibility for an inter-

mediary value. The unitary element of quantum information - the quantum bit or qubit - is not as

limited. A qubit is a two-level quantum system with two basis states. Its state depends on a linear

combination of both basis states in a phenomenon designated superposition. Mathematically, this

can be described as a combination of two orthogonal vectors

−→q = α
−→u +β

−→v = α

(
1

0

)
+β

(
0

1

)
, (2.1)

with α and β being complex numbers associated with the state’s vector positioning, in a 2D

vector space.

5
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Using Dirac notation, the vectors−→u and−→v correspond to |0〉 and |1〉, respectively, by analogy

to classical bits,

|q〉= α |0〉+β |1〉 . (2.2)

At the physical level, although we can manipulate a qubit’s state, we are unable to pry into the

values of α and β . Instead, when we force the reading of the quantum state, information is lost,

as it collapses into one of the two basis. This way measuring a qubit is a destructive action.

Still, α and β are indicators that a measurement is a non-deterministic action. Its value is

directly related to the probability of obtaining the bit 0 or 1, respectively. As the event space has

two possible outcomes (or states) defined, the following equation must hold:

|α|2 + |β |2 = 1 (2.3)

When α (β ) is equal to 0, we are faced with the pure state |1〉 (|0〉), with a 1 probability of

obtaining the correspondent bit on measurement. Equation 2.3 also represents the qubit’s vector

magnitude, which allows us to say that every qubit is a unitary vector.

φ

θ

x̂

ŷ

|0〉

|1〉

|ψ〉

Figure 2.1: Bloch Sphere representation of qubit |ψ〉

The Bloch Sphere, in Figure 2.1, corresponds to the 3D representation of that last property. It

allows for an intuitive visualization of a qubit’s state. This representation additionally shows that

a quantum state can be defined using the two angles θ and φ , according to

|q〉= cos
θ

2
|0〉+ sin

θ

2
eiφ |1〉 . (2.4)

2.1.2 Entanglement and coherence

Similarly to classical systems, we increase the outcome event space by introducing more qubits.

For a number of bits n, since every single one can take up to two different values, we have in total

2n possible states, with only one active at a time. Quantum superposition negates this last fact, as

multiple states can be active. Superposition results in an exponential state space, one of the pillars
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for quantum speedup. The application of the tensor product to each individual and independent

qubit gives the representation of many-qubit states

|ψ〉=
n−1⊗
i=0

ai |0〉+bi |1〉=
n−1⊗
i=0

(
ai

bi

)
, (2.5)

resulting in the association of a complex value α with each possible state

|ψ〉=


α0

α1

...

αn

 . (2.6)

As for a single state, each value α squared corresponds to the probability of measuring that

particular state. If no dependence is created between any qubits, i.e. all are independent, |ψ〉 is

unitary. The same does not hold for entangled qubits. Entanglement is the association of mul-

tiple qubits making them indistinguishable, without independent description. This phenomenon

does not affect our capability to represent a qubit’s state as we previously did in 2.6, but it im-

poses limitations on manipulating those states. Transitioning from Equation 2.6 to 2.5, i.e., the

decomposition as a qubit tensor product, becomes unfeasible.

For quantum hardware, creating entangled states requires the interaction of qubits, which poses

a challenge in the development of usable qubits. We simultaneously expect inter-qubit communi-

cation, otherwise there would be no entanglement; and qubit isolation, since interactions with the

environment affect the quantum state’s maintainability[30]. The loss of its state, or decoherence,

is an essential parameter in quantum computing. It places a time limit for qubit manipulation,

consequently limiting computation capacity, since it is not possible to clone a quantum state, as

stated per the Noncloning theorem[22].

2.1.3 Quantum gates

All qubit’s state manipulations correspond to the application of rotations along the Bloch Sphere

axes. In mathematics, these manipulations translate to having an operator A, capable of affecting

a quantum state as follows

A |q〉=
∣∣q′〉 . (2.7)

To maintain the state’s validity, |q′〉must remain unitary. On the Bloch Sphere, the new state’s

representation must remains on its surface. For this reason, A must be a unitary operator, and we

call the transformation of |q〉 to |q′〉 also unitary.
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The Pauli matrices or I, X, Y, Z-gates are defined as

I ≡ σ0 =

(
1 0

0 1

)
,

X ≡ σx = σ1 =

(
0 1

1 0

)
,

Y ≡ σy = σ2 =

(
0 −i

i 0

)
,

Z ≡ σz = σ3 =

(
1 0

0 −1

)
,

(2.8)

and are commonly used unitary operators or quantum gates. Take the X-gate as an example:

∣∣q′〉= X |q〉

= X(α |0〉+β |1〉)

=

(
0 1

1 0

)(
α

β

)

=

(
β

α

)
= β |0〉+α |1〉 .

(2.9)

It is clear that the vector’s magnitude remains the same. This case is the quantum equivalent

to the classical NOT gate, as it switches a qubit basis states’ amplitudes.

Similar to the multi-qubit state representation in Equation 2.6, unitary operators are not limited

to handling a single qubit at a time. For example, it is common for one qubit to act as a boolean

controller to the application of a gate on another qubit, like in the controlled-not-gate (or CNOT-

gate)

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , (2.10)

with the application of the X-gate on the second qubit depending on the first one. In practice,

this is the same of taking all states where the control qubit is set, and switching their amplitudes

with those where only the non-control qubit is flipped.

The number of qubits involved in a single gate is unlimited. Any gate can be applied to a

number n of qubits, as long as it still is a unitary operator of dimension 2n ∗ 2n. The Toffoli gate

is a three-qubit gate that follows these rules, with similar function as the CNOT gate, but with yet
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another control qubit. For that reason, it is also known as a CCNOT gate:

CCNOT =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


. (2.11)

When applying any quantum gate on physical qubits, interaction is required, i.e. there is a

need to break qubit isolation, which affects the system’s state and so, introduces errors. In a

naive prediction, if we consider the probability of introducing an error p every time we apply a

gate, we can estimate that using at least 1/p gates would most certainly produce a random result.

Although there are ways to avoid such strict constraints, quantum gate error rates are one of the

main problems quantum technology faces. The necessary time to apply a quantum gate is equally

limiting. Even without the pseudo-limit number of gates 1/p, if the total time needed to run all

gates required exceeds the limit given by decoherence, the result is equally wrong.

Multi-qubit gates also play an important role demonstrating important quantum computing

properties. The Deutch algorithm uses two-qubit gates to demonstrate quantum parallelism. The

algorithm proves if a function f with boolean input is constant or not, without calculating f (0)

and f (1) separately, as required in the classical case. This fundamental property is partially at

fault for the belief in quantum speedup[22].

2.1.4 Quantum circuits

The notion of applying consecutive operators on qubits was introduced already. It happens to

correspond to the definition of quantum circuit. The graphical depiction of quantum circuits has

horizontal lines representing qubits. Specific gates have their own representation, and their place-

ment indicates the qubits affected and order of operations.

Consider the EPR-Bell states , that are a particular example of quantum entanglement:



|Φ+〉= 1√
2
(|00〉+ |11〉)

|Ψ+〉= 1√
2
(|01〉+ |10〉)

|Φ−〉= 1√
2
(|00〉− |11〉)

|Ψ−〉= 1√
2
(|01〉− |10〉)

(2.12)

The circuit corresponding to the creation of the first Bell state |Φ+〉 is shown in Figure 2.2.
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|0〉 X
|Φ+〉

|0〉

Figure 2.2: Quantum circuit to generate the first EPR-Bell state

The mathematical equivalent to the diagram is the following sequence:

CNOTq0,q1 ·Hq0 . (2.13)

Note the inversion in the operations’ order, which is consistent with ordering multiple consec-

utive matrices for multiplication with an input state vector.

Another important concept relates to different ways of representing the same circuit. Figure 2.3

shows two equivalent circuits. By placing gates that affect different qubits at the same depth level,

we are compressing the circuit and identifying gate parallelism. Since the X-gate and the H-gate

shown do not relate, they can operate at the same time, reducing the overall circuit depth. In the

end, we keep respecting the pre-established order of operations, maintaining the final result, but

reducing the execution time. This may look meaningless on a small scale but, as we increase

circuit complexity, say, for example, up to twenty thousand (20.000) gates, the cumulative savings

may be significant.

|0〉 X

|0〉

|0〉 H

1 2 3

(a) depth = 3

|0〉 X

|0〉

|0〉 H

1 2

(b) depth = 2

Figure 2.3: Circuit depth representation

Useful quantum circuits are bound to have at least two-qubit gates connecting multiple qubits.

For physical qubits, this requires consideration for Nearest-neighbour (NN) constraints, as qubits’

interactions require physical proximity. In those cases, additional procedures to physically ap-

proximate qubits may be necessary. Eliminating those completely may be impossible, but even

reducing its necessity poses a challenge with a complexity degree proportional to the circuit’s own

complexity. Depending on the effort put into mapping virtual to physical qubits, these operations’

overhead may be reduced substantially, which contributes to reducing the circuit runtime.
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2.2 State of quantum hardware

Both the super-classical properties of quantum, and the development of algorithms showing classical-

hard problems as quantum-easy, sustain quantum computing’s potential. In turn, this estimated

potential supports the effort to develop better quantum hardware and explore potential use-cases,

on a global scale. Companies and governments alike play their part in the quantum race that inten-

sified, at a steady pace, these last few years. Global giants like Google, IBM, Intel, Microsoft, and

lesser known companies such as Xanadu, IonQ, Honeywell and Zapata are important contributors

to the on-going research, as are the United States, Europe and China.

2.2.1 Qubit errors

Compared to CMOS-technology, which offers error rates of about 10−15/−16, quantum chips, in-

dependently of the underlying technology, display rates in the order of 10−2/−3. Making the

parallelism to classical development, this places us in a pre-transistor or pre-qubit phase[11]. With

many possible solutions for qubit implementation, it is unknown how many (if any) will remain in

the future. Semi-conducting and superconducting qubits seem to be common approaches widely

used. Nonetheless, research continues on other fronts like photonics, topological, NV center,

graphene, and trapped-ion with identical results.

Qubit Type Gate Fidelity Gate Time Coherence TimeSingle-qubit Two-qubit Single-qubit Two-qubit
Superconducting[37] 0.99+ 0.997 10 - 40 ns 30 - 4600 ns 50 - 100 µs
Semi-Conducting[20] 0.99+ 0.94+ 0.25 - 100 ns 0.8 - 40 ns 30 ns - days
NV Centers[23][21][41] 0.999+ 0.992 <8 µs 8 µs 1.8+ ms
Graphene[49] - - - - 10 µs*
Photonic[45][43][38] 0.997 0.84 - - 100+ ms
Trapped-ion[18][17] 0.999999 0.996+ <1 µs <100 µs 600 s
Topological[39] - - - - -

Table 2.1: Qubit technology characteristics comparison

Table 2.1 shows how these experimental platforms relate to each other regarding essential

reference values1, that serve as indicators for its viability. In short, experimental platforms are far

from the desirable level in all fronts, so the next few years should be a period of quantum hardware

improvement. It is the enhancement of this underlying technology that will eventually allow us to

explore the full potential of quantum.

2.2.2 Scaling the quantum processor

Some questions regarding how quantum processors will scale remain unanswered, and should only

be answered with experimentation. For example, we still don’t know how scaling up the number

of qubits will impact qubit-qubit interactions. The noise produced by an increasing number of

1values marked with * are only theoretical
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low-quality qubits could threaten accuracy levels. To solve this problem, qubit isolation needs

refinement.

Improving qubit isolation, i.e. improving its quality, would diminish the overall error rates,

and, consequently, the overhead that results from Quantum Error Correction (QEC). QEC tech-

niques use groups of qubits to create a more reliable unit - the logical qubit - with one data storage

qubit - data qubit - and many for error detection - ancilla qubits. Surface code[26, 15, 40] was

the most popularized technique for QEC up to a few years ago[52, 51, 50]. The way to apply

surface code may vary, as neither the shape or size of the logical qubit are fixed, since the number

of qubits and their relative position changes. According to the version used in [12, 54], for a sin-

gle data qubit, in a distance-d logical qubit, there are n = d2 qubits in total. This shows that the

authors are using square-shaped logical qubits. We know this because, for surface code in general,

the total number of physical qubits is calculated as follows:

n = lx ∗ lz, (2.14)

where, for any rectangular-shaped logical qubit, lx (lz) corresponds to the length (width) of

said logical qubit on the plane of reference. The variables lx and lz are the weight of the Pauli

operators X-gate and Z-gate , respectively, hence the name. For the same general specification, the

distance-d of the logical qubit also depends on these two values:

d = min(lx, lz). (2.15)

An increase in the code distance represents a proportional increase in accuracy, but so do the

classical computations, and delay introduced to apply error correction[16]. Now, let us consider

square-shaped logical qubits, i.e. lx = lz. The table bellow shows how costly it is to increase

the logical qubit distance, by associating the distance-d with the total number of physical qubits

needed.

distance-d Number of physical qubits
3 9
5 25
7 49
13 169
... ...
27 729

Table 2.2: Cost of surface code in physical qubits

In 2018, it was due to this extravagant cost that Preskill[46] dismissed surface code entirely.

QEC research turned to small-codes, that require fewer physical qubits per logical qubit.

Independent of which technique is used to correct qubit errors, improving qubit quality would

mean an immediate increase in the trust of quantum devices results. For the long-term future, this

means a higher number of qubits per chip, that is only limited by a comparatively lower noise to
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signal ratio. Of those chip qubits, more will partake in useful computation, considering logical

qubits would be substantially smaller for the same degree of fidelity. In this phase, QEC will reach

the peak of its foreseeable relevance, being a crucial part of reliably scaling a quantum chip.

2.2.3 NISQ-era technology

NISQ is the term designated by Preskill[46] to define quantum hardware for the next decade. The

term comes from the erroneous behaviour of qubits (noisy), and our incapacity to make a large-

scale integration of many qubits, expected to have around fifty to a hundred qubits (intermediate-

scale). At the moment, the best devices registered have more than seventy (70) qubits[53, 55],

which is well within those limits. These devices are seen as a necessary step towards a future where

quantum reaches its true estimated potential. Until then, the usefulness of quantum devices will

remain limited. Nevertheless, access to the technology could prove useful for quantum algorithmic

development, similar to how first classical machines allowed for many advancements, independent

from the lack of theoretical basis.

2.2.4 Quantum problem-solving

NP-hard problems are classical hard problems that will remain hard for quantum. There are par-

ticular cases of these problems that require only approximate solutions to be considered useful.

For those, quantum devices could prove more effective in reaching the intended approximation,

although this remains a theoretical idea, and NISQ technology could not be enough to prove it.

In the short term, hybrid quantum-classical algorithms are another emerging possibility to make

NISQ devices useful, with optimization problems fitting well the criteria to be adapted as such.

For the long view, it remain essential to mark which problems are classical hard, but quantum easy.

2.2.5 Resources availability

Having an at-home quantum device is not an within our current reality. Cloud-based services like

IBM’s[2], Xanadu’s[1], Alibaba’s[5] allows quantum technology to reach the masses. They are

an effort to push quantum algorithms development, by providing tools that deal with and access

quantum systems. These services are connected to either quantum simulators or actual quantum

devices that run on different experimental platforms.

2.3 Conclusion

Here, the basic notions required for understanding quantum computing have been presented. The

concept of qubit was introduced, as were quantum gates, and its effects on qubits. Circuit repre-

sentation was also explained, and how all those interactions can be understood with the help of

linear algebra concepts and tensor mathematics. At the same time, superclassical properties were

identified and explained. The remaining of the chapter described the current quantum technology
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in existence, identifying its weaknesses and what to expect in the years to come. Resources avail-

ability and their uses were also explored. In short, quantum technology does not meet the maturity

level required for usability, and mixing its problems with computer engineering ones represents

an insurmountable challenge. In that sense, an abstraction from those properties will be suggested

in the next chapter, as the divide-and-conquer strategy seems to be the best fit.
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Chapter 2 explained how quantum hardware remains far from the desirable level. This area’s

advancements of the past fifteen years make us expect a Turing quantum computer’s arrival in the

next decade. The remaining time gives us enough leeway to consider the engineering problems

involved in producing such a device. For one, the "quantum computer" term is loosely employed,

since the technology is a better fit for accelerating a classical chip[11]. There are many tasks

that the classical computer already performs efficiently and we don’t expect quantum devices to

outperform them. In that sense, both technologies should coexist, where quantum technology

would be equivalent to other classical accelerators, responsible only for a designated group of

tasks. In this chapter, we will start the analysis on the following:

• Classical accelerators, in order to make a bridge to the quantum one;

• The quantum accelerator full-stack, as presented in [11];

• What assumptions we can make to move forward in the engineering challenges involved in

building a quantum accelerator.

15
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3.1 Classical hardware heterogeneity

For computer architecture, it was long agreed that core homogeneity is far from ideal. With that

in mind, accelerators like GPUs and FPGAs improved through the years. These components rep-

resent an extension of the computer architecture, and its processing capacity. During its design

process, engineers look at a group of specific tasks intending to reduce their required computa-

tional time.

3.1.1 How GPUs work

Heterogeneous systems intend to break homogeneity bottlenecks, enhancing the performance of

many applications. The type of the accelerator is oriented to the specific task it handles. Neverthe-

less, the inner workings of different accelerator types have commonalities, making this analysis

relevant. The remaining of this section is focused on GPUs specifically.

Initially, by having task-specific processors, the applications of graphical processing unit

(GPU) were limited to graphics and visual computing. The current implementation allowed for

the introduction of scalable parallel programming models and software platforms, like CUDA.

That development made it easier to benefit in other areas that thrive on the same implementation,

making them proficient in large data-parallel problem-solving. The term unified GPU architecture

refers to this latter development, consisting of a parallel array of many general programmable pro-

cessors. Those are highly scalable and enable its parallelism capabilities to increase according to

Moore’s law.

Disconnecting from CPU design principles, the focus is on the efficiency of many-core parallel

threads, whose cores are simpler but optimized for data-parallel behavior among groups of threads.

Today, GPUs are multiprocessors composed of multiprocessors, as represented in Figure 3.1.

Each multiprocessor’s parallelism provides powerful localized performance, and comprehen-

sive multi-threading support. This constitution fits fine-grained parallel programming models in-

credibly well.

3.1.1.1 Implementation details

All streaming processors (SP) have a shared memory accessible by every thread using a low-

latency interconnection. Its processors are multi-threaded multiprocessors as each has various

scalar processors (SPs) responsible for the majority of operations. The SP is hardware multi-

threaded, having a register file (RF) coupled. RF allocation is optimized by the compiler, balancing

expenses of register splitting versus thread costs. For a well-defined set of functions, there are

special function units (SFUs). Unique interfaces are also defined, allowing for external memory

load, store, and atomic access operation - memory interface - for example, that plays a fundamental

role in non-graphical computation.

The implementation described is associated with an execution model called single-instruction

multiple-thread (SIMT), intended to manage and execute the available threads. The concept of
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............

Figure 3.1: Basic unified GPU architecture core’s representation

warps represents the association of concurrent threads, facilitating its overall operations. A warp

can be the entire thread block, but it is also possible to divide a thread block into multiple warps.

There is only a single thread type on any warp, and all its threads start together at the same program

address; the rest of the execution is independent. The issue of an instruction to a warp is secured

by the SIMT multi-threaded instruction unit, broadcasting the SIMT instruction, in a synchronous

process, to the totality of active warp threads. The SIMT processor manages the individual threads,

and is optimized to find data-level parallelism among threads at run-time. Full efficiency occurs

when every thread on a warp takes the same execution path. Divergence due to data-dependent

conditional branching requires execution serialization for each branch, and ultimately convergence

on a single execution path. The resulting delays do not affect any other warps, as their executions

are independent of each other. The only existent dependency relates to the same warp’s sequential

instructions.

According to its type, a multiprocessor controller accumulates and packs both work requests

and input data into SIMT warps to allow its execution. Depending on the program’s requirements,

the controller manages the distribution of shared resources to warps, namely registers. These

requirements can cause processors to stall, as allocation depends entirely on availability, which

in turn depends on other warps completing the totality of its threads, enabling for resources to be

unlocked.
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3.1.1.2 Instruction execution

SP thread processors handle instruction execution for singular threads. The compiler generates

intermediate assembler-level instructions to be later optimized and translated into binary GPU

microinstructions. The definition of an Instruction Set Architecture (ISA), like the NVIDIA PTX,

guarantees GPU generation compatibility, as hardware instructions evolution is isolated from ISA

generator tools. This ISA works with virtual registers that are later analyzed for dependencies and

allocated to real registers. It also passes through a process of code simplification, where unneeded

parts vanish, instruction folding is applied whenever possible, and SIMT branch split points are

optimized. NVIDIA PTX has a particularity of allowing for behavior specification with a single

thread. Furthermore, its capabilities for memory load/store operations make it possible to support

commonly used languages, like C/C++. To allow for this possibility, there are three memory

spaces available on GPUs:

• Local memory per thread, for private temporary data, implemented on the external DRAM;

• Shared memory, intended for low-latency access to shared data for same thread block coop-

erating threads, on chip’s SRAM;

• Global memory, allowing large data sets storage and sharing between all threads, also on

the external DRAM.

The existence of these different memory spaces inevitably requires the definition of barrier

synchronization instructions to avoid race conditions. These barriers block processor cycle con-

sumption completely, and announce its waiting state to the scheduler, which modifies the barrier

counter when all threads are in the same state, resuming individual execution.

3.1.1.3 Memory characteristics

Accessing external DRAM is expensive. Individual parallel thread requests from the same SIMT

warp are coalesced to request for a single memory block when possible. This arrangement repre-

sents a significant improvement to operation costs.

A GPU’s performance aligns with its memory subsystem capabilities, and so the following

properties are crucial to avoid bottlenecks:

• Wide, referent to the number of data conveying pins, that have to be numerous;

• Memory array with many DRAM chips, supporting total data bus width;

• Fast, employing aggressive signaling techniques that maximize data rates per pin;

• Efficient, utilizing every cycle for successful data transference;

• Intended use of compression techniques, both lossless and lossy;
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• Cache and work coalescence for off-chip traffic reduction and value of data transference

cycles increase.

Even if we employ strategies for work coalescence, there will be numerous uncorrelated re-

quests. That makes related request accumulation vital, as it increases the value of the data trans-

ference. On average, this strategy increases latency, and it may lead to the processing unit’s

starvation, resulting in neighboring processors becoming idle. This pitfall makes careful address

selection for storage necessary.

Graphical related computation typically relies on large sets of data. In fact, those datasets’

size makes it unthinkable to implement a large enough cache to hold them completely, opting for

streamed cache. Compared to typical CPUs’ hit rates, GPUs are much lower, at around 90%. The

frequent necessity of in-flight misses handling is a hard problem. With a high number of threads

and the frequent need to retrieve cache data, bandwidth is equally a concern, making an on-chip

placement optimal.

Other implemented memories represent specific needs of GPU calculations. Constant memory

enables the storage of read-only scalar values common to a SIMT warp on shared memory. Texture

memory stores data in large arrays with read-only access, functioning as a throughput optimizer of

texture fetches from concurrent threads. Independently of its intended use, it can serve as cache

for any global memory data.

3.1.1.4 Case analysis and conclusion

O(n) algorithms speedup is a particular case deserving of attention. A clear obstacle relates to data

transference. PCIe bus transference rates are different from CPU’s memory access speeds, with

the latter being multiple times lower. There are three options to overcome this bottleneck:

1. Maintaining the data on the GPU increases the value of each data movement;

2. Allowing for concurrent processing and transferring of data eliminates useless computation

cycles;

3. Arguably, the most essential notion to retrieve from this analysis is related to work distri-

bution to the processors available, treating the system as the heterogeneous platform and

recognizing its advantages.

This section was based on [44].

3.2 Full-stack quantum accelerator

Quantum technology’s logical next step is to become an accelerator for specific tasks where it

excels. As shown in Figure 3.2, similar to the others of the same kind, a quantum accelerator or

quantum processing unit (QPU) would function as a separate processing unit that connects to the

main CPU, serving as an extension to its computational capabilities.
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Primary CPU

GPU TPU FPGA QPU

Figure 3.2: Heterogeneous computer system

When abstracting away from problem-oriented peculiarities, some components remain, and

are the basis for any accelerator. This allows for a starting point when defining a full-stack in

quantum. From the higher to lower levels, we can identify four elements:

• High-level logic that abstracts the low-level details;

• Compiler;

• Assembly kind of language;

• Micro-architecture closely linked to the acceleration hardware.

Figure 3.3: Quantum accelerator stack on [10]. a) supposes a quantum devices as bottom layer,
while b) uses a simulator

Research that dates up to 2004[10] already express this structure, as in Figure 3.3. The same

group updated its view on the topic with an evolved stack[11], that serves as the basis for this

thesis, and is shown in Figure 3.4.
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Figure 3.4: New quantum accelerator full-stack representation

From top to bottom, the degree of concern towards the implementation of qubits increases.

This isolation by layer means, for example, that quantum applications, at the top, are concerned

with algorithmic development for specific domain problem-solving while dismissing what qubits

are specifically being used in the chip. This focus is vital in demonstrating commercial viability

in many fields like genome sequencing[47], finance[14], and chemical and materials research[8].

3.2.1 Stack overview

To develop a commercial application, we need first a quantum programming language. This lan-

guage must express the nuances of quantum computing in a human-friendly way, focused, not on

the execution on specialised quantum hardware, but the application’s demands. This is the mean-

ing of the first few layers, that are also the most technology-agnostic. The high level description of

the application must use a framework like OpenQL[35], that has a defined structure, allowing for

validity and reliability confirmation of the logic defined. The quantum library would eventually

contain various algorithms that still need to be developed world-wide and that can be re-used for

various domains. So there is a clear link between the quantum application and the quantum library.

This library can be developed inside one´s own organisation, or be in the public domain.
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For the group’s concrete implementation of the stack, OpenQL is associated with its own

compiler. The compiler’s final product may either be cQASM[36] or eQASM[28], only depending

on the hardware that will run the application. cQASM is intended for simulators like QBeeSim to

execute it. If ever we connect to a real physical quantum chip, we must translate the cQASM

version in eQASM, where the prefix ’e’ stands for the executable assembler. This separation

came out of the team’s research for Intel as they had to control both a semiconducting as well

as a superconducting qubit[29, 28]. Both these QASM variations must abide by the underlying

system requirements, but being already capable of execution, the Quantum OS only needs to adjust

them to fit its criteria. Through this work, the Quantum Instruction Set Architecture (QISA) is

expressed in cQASM (as this thesis focus on simulator runs), serving as input to the Quantum

Micro-Architecture. In the micro-architecture layer, classical and quantum technology interactions

are crucial. Here we solve the challenges that digital-analog interactions (and vice-versa) entail,

like instructions execution timing, and results reading and storing.

Quantum technology-related constraints like qubit topology, specifically communication over-

head or qubit’s routing, require unique addressing, in the shape of instruction timing manipulation,

or even insertion of new commands. Specifically, qubit proximity constraints imply a careful map-

ping of virtual qubits to logical ones and possibly, the introduction of routing operations that are

ever-evolving along the application run. Even though there is the possibility to associate a quantum

device at the lowest level, the focus will remain, as already expressed, on using QBeeSim .

The remaining of this section is dedicated to explaining the already developed components of

the stack, due to their strong connection to the developments of this thesis.

3.2.2 OpenQL

OpenQL[35] is a framework that abstracts away the low-level requirements of quantum technol-

ogy. It allows for algorithmic definition, in C++ or Python, that is translated by its associated

compiler. The compiler allows for compilation and optimization of quantum code based on a con-

figuration file, where the low-level specifications are detailed. The final result comes as low-level

cQASM, that can be translated into eQASM, if needed.

Figure 3.5 represents a random quantum circuit that will be used as an example. Listing 3.1

describes that same example circuit using OpenQL.

1 from openql import openql as ql

2 # ...

3 # requires a platform definition in which the QASM will run

4 config_fn = os.path.join(curdir, ’hardware_config_qx.json’)

5 platform = ql.Platform("platform_none", config_fn)

6 # number of qubits in the circuit

7 nqubits = 8

8 # create a program (container of kernels)

9 p = ql.Program("p1", platform, nqubits)

10 # create a kernel
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|0〉 H

|0〉 H

|0〉 H

|0〉 H

|0〉 H

|0〉 H

|0〉 H

|0〉 H

Figure 3.5: 8 qubits quantum circuit

11 k = ql.Kernel("k1", platform, nqubits)

12

13 # populates the kernel

14 for i in range(nqubits):

15 k.gate(’prepz’, [i])

16

17 for i in range(nqubits):

18 k.gate(’h’, [i])

19

20 k.gate(’cnot’, [0,1])

21 k.gate(’cnot’, [1,2])

22 k.gate(’cnot’, [2,5])

23 k.gate(’cnot’, [4,6])

24 k.gate(’cnot’, [3,7])

25 k.gate(’cnot’, [6,7])

26 k.gate(’cnot’, [0,2])

27 k.gate(’cnot’, [1,5])

28

29 for i in range(nqubits):

30 k.gate(’measure’, [i])

31

32 # add the kernel to the program

33 p.add_kernel(k)

34

35 # compile the program
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36 p.compile()

Listing 3.1: Python example for the 8 qubits quantum circuit with OpenQL

The definitions that relate to Python configurations of OpenQL were omitted.

There are some circuit independent parts of the code that deserve attention. Particularly, the

JSON configuration file imported in line 4, which associates the quantum code with the low-level

hardware intended to run it. The following five sections split a valid configuration file:

1. hardware_setting, for the definition of hardware limitations, like the number of qubits

available and clock cycle to consider

2. topology, for qubit position understanding

3. resources, to express qubit relations, like available interactions

4. instructions, where available quantum gates are expressed, and their properties identi-

fied

5. gate_decomposition, for the association of non-defined gates to an equivalent sequence

of identified ones

To compile code intended for an actual quantum device is what makes the majority of these

sections relevant. A quantum simulator like QX[34] or QBeeSim relieves most of the constraints,

making all but sections numbered as 4. and 5. negligible.

3.2.3 cQASM

Common QASM, or cQASM, is intended for algorithmic description, distancing itself from qubit

technology needs. For instance, qubit routing is often needed to respect NN-constraints , allowing

for multi-qubit gates to work properly. The degree of proximity needed may be highly linked to

the quantum hardware technology in use, requiring different manipulations in accordance. This is

why such operations should be left alone until we reach the QISA level. To sum it up, cQASM

specifies the quantum gates that need to be applied, while on-chip qubit movement instructions

are introduced at the QISA level. Listing 3.2 shows the generated cQASM code for the circuit in

Figure 3.5.

1 qubits 8

2

3 .k1

4 { prep_z q[0] | prep_z q[1] }

5 { h q[0] | h q[1] }

6 { prep_z q[2] | prep_z q[3] | prep_z q[4] | prep_z q[6] | prep_z q[7] | cnot q

[0],q[1] }

7 { h q[2] | h q[3] | h q[4] | h q[6] | h q[7] }
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8 { prep_z q[5] | cnot q[1],q[2] | cnot q[4],q[6] | cnot q[3],q[7] }

9 h q[5]

10 { cnot q[2],q[5] | cnot q[6],q[7] }

11 { measure q[0] | measure q[1] | measure q[2] | measure q[3] | measure q[4] |

measure q[5] | measure q[6] | measure q[7] }

Listing 3.2: cQASM code generated for the 8 qubits quantum circuit

Like its Python counterpart, a program or circuit is a sequence of kernels, that requires an

initial definition of the number of qubits involved through its entirety. kernels are instructions’

groups, defined as seen in line 3. An array-like fashion is used to reference qubits by their in-

dex, for example, in gate application. For optimization, OpenQL joins independent operations,

involving them in curly brackets. Line 4 illustrates the possibility of parallelizing qubits 0 and

1 preparation, i.e. setting them to the |0〉 state at the same time. On a circuit, this is equivalent

to placing both operation at the same depth level. While there is no circuit symbol to indicate

qubit preparation, consider that qubits are only prepared at the points where its circuit line starts,

as shown in Figure 3.6, where the original circuit of Figure 3.5 is adapted to better represent

OpenQL’s optimizations of Listing 3.2.

|0〉 H

|0〉 H

|0〉 H

|0〉 H

|0〉 H

|0〉 H

|0〉 H

|0〉 H

Figure 3.6: Adaptation of the circuit in Figure 3.5 according to cQASM optimizations in List-
ing 3.2

Additionally, quantum simulators allow us to have access to the qubit states’ amplitudes at any

moment, using the display command, which is impossible for physical devices. This possibility

represents an advantage for quantum algorithm development, specially for debugging purposes.
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3.2.4 QBeeSim

QBeeSim was developed in C++. Similar to how we need to translate low-level instructions into

analog signals for quantum hardware, the simulator requires us to do the parsing of cQASM,

and translate it into C++ instructions that it understands. Every instruction will then manipulate

complex numbers, since they constitute the matrices and vectors for quantum gate operators repre-

sentation and quantum states storing, respectively. Those complex numbers make use of the C++

std::complex<T>. When instantiating a complex, choosing its elements’ type becomes a de-

cision between precision and memory cost, as the more memory its type needs, the more precise

it is. This decision is an extremely important one, as state memorization is the most expensive

process done in quantum simulation. To understand the why behind this statement, consider the

following: for a selected data type size Stype, considering an n number of qubits, quantum states

occupy a total size calculated by

Sstate = 2∗Stype ∗2n, (3.1)

while each gate’s matrix would result in a total memory expense of

Sgate = 2∗Stype ∗ (2n)2. (3.2)

In its C++ implementation, Stype should range from 4 bytes to 12 bytes, corresponding to

choosing the float data type and the long double, respectively. This means the values of Sstate and

Sgate are also in bytes.

Using 1D arrays - the sequence of its rows - to store this elements improves locality and results

in lower memory-related overhead. This is advantageous for the overall simulator’s performance[19].

Gate operations are efficient as QBeeSim quickly dismisses unimportant states with no amplitude -

Zero-state skipping. Each operation also runs in parallel for the remaining states, which is possible

since all qubit storage is done in a super-positioned state of all initialized qubits.

|0..00〉a0

|1..11〉aN

...

IN

|0..00〉b0

|1..11〉bN

...

OUT

|0..00〉a′0

|1..11〉a′N

...

OUT

|0..00〉b′0

|1..11〉b′N

...

IN

Ugate

Figure 3.7: QBeeSim quantum states memory model

Its use of two different arrays for operations’ input and output storage results in a shrinkage of

delays associated to moving data around after almost every operation, and facilitates parallelism.

This advantage comes from changing each array’s purpose post every operation, as shown in
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Figure 3.7. There, our current state, or the gate’s input, is on the left (IN) vector, and the amplitudes

that result from the application of the U-gate , or its output, are on the right (OUT) vector; next

the IN (OUT) vector is labeled as the OUT (IN) vector, and all states in the new OUT vector are

made into zero-states, becoming ready for the application of another gate. This setup avoids an

otherwise necessary move of results from one array to the other. As a result, memory usage for

state storage is constant through the simulator’s run and corresponds to

2∗Sstate. (3.3)

Note that zero-states are also preserved during runs, which allows for the direct association of

corresponding states to their storage index. This avoids the allocation of space for explicit state

indication, which is why we simply use arrays instead of maps.

3.3 Distancing from NISQ quantum hardware

The immaturity of quantum technology leaves us with to many problems to handle at the same

time. With real qubits, even if we are focused on solving high-level problems, our results are

influenced by the underlying technology. The developments here proposed are made under the

assumption of perfect or virtual qubits. Perfect qubits are tailored for testing the correctness of the

quantum logic, by not factoring decoherence or errors introduced by gate application or measure-

ment. With them, the focus remains on engineering problems, allowing for the advancement of

the rest of the stack’s layers while not waiting for a good enough experimental platform. Virtual

qubits go a step further, dismissing NN-constraints .

One day, we expect qubits to be sufficiently good to allow quantum hardware usability, with

error rates that reach at least 10−4/−5. At that point, they can be called realistic qubits[11],

and we may even be able to use QEC to help us scale quantum accelerators. Despite being far

from that stage, with simulators like QBeeSim, it is possible to introduce limitations, like NN-

constraints and topology restrictions. These restrictions make the behavior of perfect qubits com-

parable to logical qubits, allowing for a bridge to be maid, where the advancements of the former

can be applied to the latter.

To reiterate, by deciding to level in perfect qubits, we abstract ourselves away from the QEC

methodologies and experimental platforms, that are currently sub-optimal. Nonetheless, we can

still achieve breakthrough in terms of manipulation of logical qubits, giving a solid basis on how

logical qubits are routed and mapped. This would ultimately make the transition to physical qubits

smother, as the remaining steps would be almost limited to translating operations associated to

logical qubits into operations linked to physical qubits.
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3.4 Conclusion

This chapter starts by presenting the relevance of computer heterogeneity. The inner works of a

classical accelerator, the GPU, was explained to identify common points expected in any kind of

accelerator. Those points were enumerated and the parallelism was made to define a QPU. The

full-stack of the quantum accelerator and its evolution was explained, as were its core components

described in a more in-depth manner. At last, the assumptions for the development of quantum

software were laid.

To reiterate, a quantum machine is optimal for a certain group of tasks, as are classical systems.

This lead to the believe that a quantum computer should instead be a quantum accelerator. To

allow the developments that will be presented in the next chapters, we assume perfect qubits. This

assumption allows the development of quantum software without waiting for reliable quantum

hardware.
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In Chapter 3, we explained how to define a quantum accelerator. From here on, the content

becomes more specific, with the micro-architecture layer being the object of research. To be able

to develop a generic quantum micro-architecture, first we need to have a concrete understanding

of how we expect it to operate. Specifically, we need to detail how a developer’s application

code should be described to serve as input for the micro-architecture. Understanding its output is

equally important, and considering that we are using QBeeSim , the options are expanded. Here,

we consider the micro-architecture a black-box, so we can define input and output, understand

how it impacts the system, and also make an early definition of our expectations, without going to

deeply into how it works. With that in mind, the following sections are divided as follows:

• Analysis of the information flow of the micro-architecture;

• Micro-architecture’s memory impact;

• Testing process explanation: experimental setup, and concrete approach to testing.

Our analysis takes into account not only the number of qubits and gates, but also the overall

circuit design on its impact on memory usage and circuit processing time.

29
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4.1 Information flow description

Previously, we concluded that quantum is a good fit for hardware acceleration, so we see the

quantum accelerator as the first real-world implementation of the technology, and most likely the

dominant one on how we use quantum in the next decade or so. That analysis is based on quan-

tum being the way to speedup only specific tasks. With that principle in mind, the application’s

developer should have a way to differentiate between classical and quantum components of the

application. C++ already integrates the #pragma statement, allowing for additional information

to be passed to the compiler. In that sense, a #pragma quantum should precede a group of QPU

intended instructions:

[C++ operations]

#pragma quantum ...

{

[cQASM operations]

}

[C++ operations]

In Figure 4.1, we have two main areas: the blue one (micro-architecture) and the green one

(accelerator’s classical controller). The specified C++ operations are intended for Host CPU, in

the green area. In that same area, the arbiter function is to allow those same instructions to reach

the Host CPU, while all cQASM operations (inside a #pragma quantum) are redirected to the

Micro-Architecture, with its results being retrieved by the Exchange Register File, which allows

for their access on the Host CPU.

Additionally, the #pragma statement should be able to specify some kind of storage, to where

the result of the quantum operation is loaded at the end:

#pragma quantum store(results) ...

{

[cQASM operations]

}

Similarly, an option for results loading should also exist, opening the possibility to have

cQASM code that depends on the results previously calculated:

#pragma quantum store(results) ...

{

[cQASM operations]
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Figure 4.1: Quantum Micro-Architecture as a black-box

}

[C++ operations]

#pragma quantum load(results) store(new_results)

{

[cQASM operations]

}

With a concrete example, let us consider an initial search over a database, using Grover’s

algorithm1, followed by the application of our result oriented circuit, based on the intermediate

result that we got from Grover’s:

#pragma quantum store(results) ...

{

[Grover’s Algorithm cQASM operations]

}

std::bitset<S> result;

// Processing the most probable result

1The algorithm is latter explored near the end of this chapter
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std::map<std::bitset<S>, float>::iterator it = results.begin();

while (it != results.end())

{

std::bitset<S> state = it->first;

float prob = it->second;

//Assuming 51% as a good limit

if(prob >= 0.51) {

result = state;

break;

}

it++;

}

// End of processing

#pragma quantum load(result) store(new_results)

{

[cQASM operations]

}

The result loading on the last #pragma statement - in the end - should be equivalent to ma-

nipulating cQASM code. For example, if the search yields the state |00101〉, we prepare all qubits

to state |0〉, and apply the X-gate to all qubits in the |1〉 state, as follows:

//State preparation is implicit

#pragma quantum store(new_results)

{

{ X q[0] | X q[2] }

[Original cQASM operations]

}

4.1.1 Results representation

To transmit the results back to the developer, we see two obvious options:

1. Storage in an array;

2. Storage in an associative container (hash map).

(1) has a clear downside that requires us to record every single amplitude that the simulator

has access to, as the only indicator for the state comes as the array’s index. This means that the

order of storage represents the state that the stored amplitude refers to.
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(2) stores elements formed by a combination of a key value and a mapped value. Since each

element specifies both state (as key) and amplitude (as mapped), we loose the dependency to the

storage order. This approach allows us more flexibility to only save part of the simulator’s stored

state amplitudes.

For now, know that we opted for (2), and will refer to it from now on as map. The why behind

this approach is object of analysis in the next section.

4.1.2 QBeeSim versatility

When using QBeeSim, the processing and execution of quantum instructions remains digital. De-

spite all downsides of simulation, we are able to access the amplitudes associated with each state.

While developing an algorithm, it is useful to have access to such details, making it logical that

the first possible output are those same amplitudes.

q[0] H

q[1] H

Figure 4.2: Simple example circuit

For the example circuit of Figure 4.2, we get the following amplitudes:

results = {

0: (0.5, 0),

1: (0.5, 0),

2: (0.5, 0),

3: (0.5, 0)

}

In the above results map, the key - on the left - identifies the state and the mapped value

- on the right - is its amplitude. For example, in 2: (0.5, 0), 2 represents the state |10〉,
while (0.5, 0) is its amplitude α = 0.5+ 0i. By retrieving both state and amplitude, we are

eliminating the need to save all states’ amplitude. As quantum algorithms are supposed to produce

results that are highly disperse in the total event space, meaning that we will only have a few non-

zero or relevant states, we are ultimately saving memory.

As a second option, to imitate the results given by a physical device, we should only retrieve

the probability of each state:

results = {

0: 0.25,

1: 0.25,
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2: 0.25,

3: 0.25

}

Here, 2: 0.25, for example, shows that state |10〉 has a probability of 25%. We have the

option to completely replicate the process of a physical chip, and run the algorithm multiple times,

until we are satisfied with the results. On the other hand, digital simulations simplify the process,

since we can derive the probabilities from the amplitudes after a single run. This last method

would be equivalent to running the algorithms on a quantum chip n times, with n→ ∞.

4.2 Memory usage

The Quantum Micro-Architecture developed processes cQASM code to run on a quantum simula-

tor. In Chapter 3, we already described how we can calculate the total memory used by QBeeSim .

It remain true that, for any quantum circuit of reasonable size, QBeeSim is the main memory con-

sumer. Figure 4.3 shows the evolution of the number of states during a circuit run. The amount of

memory required is on par with the number of states stored. So, the state’s count ceiling comes

from superpositioning all qubits in the circuit, as we have to store a total of 2n state’s amplitudes,

with n being the total number of qubits. In contrast, the number of states (and, consequently, ex-

pected memory usage) floor logically happens when we don’t have any qubit superposition. At

those times, we only have to record each qubit basis states’ amplitudes, giving a total of 2 ∗ n

state’s amplitudes. Due to QBeeSim own optimizations, this behavior is not followed, as it would

require both state and amplitude storage, making it more efficient to have a stable memory use

during the circuit run, which only happens with constant full superposition. This means that in-

stead of having the gradual growth shown in Figure 4.3, if we were to place it in a memory graph,

we get an instantaneous rise to the maximum memory required in the beginning, and an equally

quick drop at the end of the circuit. In comparison, the QBeeSim peaks are always considerable

lower than what we get from gradually fluctuating the number of qubits in superposition.

Overall, the Quantum Micro-Architecture memory needs are much lower. Even if we ran a

100.000 gates circuit, we can opt for processing these gates in limited-sized batches, meaning

that at each moment, the total memory required for instruction parsing and processing is capped.

For the Quantum Micro-Architecture , the worst-case scenario in terms of memory requirements

happens when we need to store intermediate or final results, triggered by a display instruction,

i.e. when we access QBeeSim states and pull them to the Quantum Micro-Architecture . Con-

sidering that QBeeSim[19] works with two arrays for memory storage, with each having enough

space to store all states; if we apply the same result storing strategy, we will need at maximum,

half the memory used by QBeeSim . Still, this would be extremely inefficient, given that we

are targeting useful or purposeful quantum algorithms , which are most commonly very sparse in

their results space, as opposed to random quantum algorithms . As we direct the Quantum Micro-

Architecture to be optimized in this direction, we chose to store the amplitudes and the state they
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Figure 4.3: Optimal variation of the number of stored states

refer to in a map. This way, we can simply dismiss allocated space for non-valuable states, as was

presented in the previous section. The memory used Sstate in this situation is calculated by

Sstate = (2n− z)∗ (2∗Stype1 +Stype2). (4.1)

The equation has two key points:

• For the total number of states resulting from the superposition of all qubits 2n, we are only

interested in the non-zero amplitude states 2n−z, with z being the number of zero-amplitude

states;

• For each of those states, we have Stype1 representing the size of the data type chosen to store

both the real and imaginary parts (that being the why the value is doubled) of the complex

amplitudes, and Stype2 for the data type chosen for state storing; so each state+amplitude

combo amounts to 2∗Stype1 +Stype2.

This option is undoubtedly worst for non-useful or random quantum algorithms . For in-

stance, if applied the H-gate on every qubit and immediately after we record the results, all states

would have a non-zero amplitude, z = 0. In this case the total memory would still be inferior

to QBeeSim , but would reach up to three fourths of its memory. This fact becomes more obvi-

ous if we consider Stype = Stype1 = Stype2, so the total memory for state storing in the Quantum

Micro-Architecture can be calculated by

Sstate = 2n ∗3∗Stype. (4.2)

But again, we aim for usefulness, meaning we try to reduce the impact of the Quantum Micro-

Architecture in terms of memory usage, allowing QBeeSim to use a higher number of qubits.
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Figure 4.4 illustrates what we mean by this. In 4.4a we represent the worst case possible, where

all state’s amplitudes are recorded, even the zero valued ones. This ends up consuming three

fourths of the total space of QBeeSim (sum of the two state vectors of the simulator). Applying

the optimization for useful quantum algorithms , we only record the useful state, as is represented

in 4.4b, reducing the impact of the Quantum Micro-Architecture , and even allowing the expansion

of the circuit to one more qubit.

QBeeSim 1
4 GB

QBeeSim 2
4 GB

QMA
7 GB

(a) Worst case-scenario with n qubits

QBeeSim 1
8 GB

QBeeSim 2
8 GB

QMA
3 GB

(b) Best case-scenario with n+1 qubits

Figure 4.4: Proportional RAM consumption by the Quantum Micro-Architecture and QBeeSim ,
on 20 GB of RAM

4.2.1 Practical demonstration of sparsity

q[0]

q[1]

q[2]

q[3]

Figure 4.5: Quantum full-adder

Let us consider the quantum full-adder[4], shown in Figure 4.5. In this example, q[0] , q[1]

and q[2] are the input bits, with the first two being the bits to be summed and the last one being

the carry in bit. Given the reversibility of quantum circuits, we also need an additional qubit q[3] .

For the same reason, on output, q[0] and q[1] still have the same values but q[2] is now storing

the sum of the first three qubits, and q[3] holds the carry out.

If all qubits are initialized, similar to how we would do it in a classical machine, to basis states,

the output of the circuit would be a single state. For example, if we initialize the qubits to the state
|0101〉, by applying an X-gate on q[0] and q[2] , we expect the output to be the single state |1001〉.
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q[0] H

U

q[1]

q[2]

q[3]

Figure 4.6: Bell state preparation for the quantum full-adder represented as U

Now we will see, in Figure 4.6, that the result space remains sparse if we do the initialization

process with operations only available for quantum:

• We start by preparing an EPR-Bell state between q[0] and q[1] prior to starting the quantum

full-adder, here represented by U;

• If we maintain the prior initialization of q[2] and q[3] , i.e. states |1〉 and |0〉, respectively,

the final result will be either |0100〉 or |1111〉, with equal probabilities;

• Compared to the sixteen possible states generated by four qubits, the result space is still

very thin, demonstrating the usefulness of the optimization.

4.3 Testing process

In this context, testing refers not to the verification and validation of the software-based micro-

architecture developed, but to experimenting with different circuits, by changing its number of

gates and/or qubits. This allows us to have a notion on how the bottom layers of the stack react to

different inputs, making it possible to draw conclusions mainly related to scalability.

4.3.1 Hardware-independent analysis

It is clear, by looking at Table 4.1, that a classical machine with more memory would allow an

increase in the number of qubits that QBeeSim can simulate. Also, having defined an optimiza-

tion for the Quantum Micro-Architecture , we also do not expect that said layer would act as the

system’s bottleneck, especially on useful algorithms. Hardware-independent testing is based on

these two facts: since, for any random hardware used for testing, the impact in the system caused

by the Quantum Micro-Architecture is always a tier lower than one cause by the simulator, the

specifications of the classical computer used are irrelevant for the task of analysing the micro-

architecture’s performance. This leads to dismissing strict time-based performance, preferring to

evaluate the relative performance of running QBeeSim alone against running it with the Quantum

Micro-Architecture on top, while using the same hardware. The objective of such tests is to have



38 Quantum Micro-Architecture Layer Framing

Qubits Memory Usage Available Computational Capacity
5 1 024 B

10 32 768 B
15 1.04 MB
20 33.56 MB
25 1.08 GB Base-model Raspberry Pi 4 can run it
30 34.36 GB Surpasses common 16 GB laptops
35 1.10 TB
40 35.18 TB Limit of AWS EC2 High-memory[7]
45 1.12 PB
50 36.02 PB Above supercomputers (like Fugaku[6])

Table 4.1: Estimated memory usage for state storage of QBeeSim using double data type

a certain degree of comparison against our most time-consuming layer - QBeeSim . Similarly, it is

also important to analyse the overall memory consumption variation through time, for those same

situations.

4.3.2 Connecting to a database

Although a database connection causes additional overhead, hindering performance and making

the previous comparison flawed, the benefits outweigh the costs as we need a way to store algorith-

mic processing information, to help on overall layer analysis. Therefore, a previously developed

database was used, with an interaction layer placed directly on top of QBeeSim . Along with

other capabilities, a connection to this database allows for storing system properties, like memory

consumption, and recording intermediary and final states. This is an important step to guarantee

solution quality.

Originally, the database, whose EER Diagram is shown in Figure 4.7, was intended for local

use, i.e. having the MariaDB server on the same system used to run QBeeSim . To make it scalable,

we opted to move it to Amazon AWS, placing it in a RDS instance. By having this stand-alone

RDS instance for the database, we are capable of recording data that comes from multiple systems

in the same place. This way we are facilitating the tracking and comparison between different

hardware solutions. Note that, although we said that we are not interested in comparing hardware,

this is crucial as a business requirement. That same RDS instance was placed in an Amazon

Virtual Private Cloud or VPC, becoming accessible from multiple Amazon EC2 instances created

in the same physical location, that can run the full-stack quantum accelerator, and connect to it

simultaneously, without being exposed to the internet. The solution described is represented in

Figure 4.8.

4.3.3 Random circuit testing

Random circuit generation goes a long way when we want to validate the processing of quan-

tum instructions. It is also the simplest solution from which we can draw conclusion related to
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Figure 4.7: Database EER Diagram

VPC

RDS

EC2 #1 EC2 #2

EC2 #3 EC2 #4

EC2 #5 EC2 #6

Figure 4.8: AWS setup
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scalability of both gates and qubits. In that sense, we generated multiple circuits that have a vari-

able number of qubits, and go from a few gates up to multiple thousands. These conclusions will

remain limited, nonetheless, as random circuits do not explore the results storage optimization en-

visioned, making them more indicated for the time-based analysis. For a memory analysis, using

a concrete algorithms seems more appropriate.

4.3.4 Grover’s algorithm for useful circuit testing

Grover’s algorithm[31, 13] is commonly used due to its ability to perform searches with a quadratic

speedup. This kind of speedup is essentially optimal[9], and has proven itself useful as a subrou-

tine for more complex quantum algorithms[33]. Essentially, it can be divided into three distinct

phases:

• Initialization, to create an uniform superposition, by applying the H-gate on all qubits;

• Oracle Uw, that encodes the information, marking which state(s) we want to find - winner

state(s) |w〉[3];

• Diffuser Us, responsible for the amplification of the probability of winner state(s).

There are two distinct possibilities on how to encode the Oracle[25], with their own denomi-

nation: you can either have a boolean oracle or a phase oracle, using the |0〉 and |1〉, or the |+〉
and |−〉 basis, respectively, hence the names. Compared to the phase oracle, the boolean oracle

requires an additional ancilla qubit, which is similar to what we expect when using the classical

analog of the Grover’s algorithm. In the end, they are equivalent in function, and so, for our tests,

it is indifferent which one we choose. Due to the practicality of scaling the algorithm, we opted

for a phase oracle, which will now be explained.

4.3.4.1 Using a phase oracle

To describe how we can implement a phase oracle Uw, let us consider that we have a three qubit

system. As described above, the first step places the system in uniform superposition

|ψ〉= 1√
8
(|000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉+ |110〉+ |111〉). (4.3)

Take note that we will now define the current superposition as

|s〉= |ψ〉 . (4.4)

Next, we mark the winner state(s). Let us, for this example consider |w〉 = |110〉. The appli-

cation of the oracle results in a phase flip of state(s) |w〉, essentially switching its signal

|ψ〉= 1√
8
(|000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉− |110〉+ |111〉). (4.5)
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As expected, the oracle defined is highly dependable on the solution or |w〉 we are looking for.

For this concrete example, Figure 4.9 shows its quantum circuit representation.

q[0] X X

q[1]

q[2] Z

Figure 4.9: Phase oracle Uw for |ψ〉 where |w〉= |110〉

4.3.4.2 Amplifying the |w〉 states

The last step, the Diffuser’s Us application, refers back to the already defined superposition |s〉,
with

Us = 2 |s〉〈s|− I. (4.6)

If we expand the equality, with N being the number of states originated from n qubits

N = 2n, (4.7)

we are able to see that it corresponds to doing an inversion about the mean of the amplitude of
|ψ〉

Us =


2
N −1 2

N ... 2
N

2
N ... ... ...

... ... ... 2
N

2
N ... 2

N
2
N −1

 , (4.8)

since, for every state i of |ψ〉, it calculates its new amplitude α
′
i by doubling the mean µ , and

subtracting its current amplitude αi:

α
′
i =

2α0

N
+

2α1

N
+ ...+αi(

2
N
−1)+ ...+

2αN−1

N

=
2
N
(

N−1

∑
y=0

αy)−αi

= 2µ−αi.

(4.9)

Note that positive phased states or non-winner states are above the mean as µ is affected

negatively by winner-states, which are, at this point, negative. Figure 4.10 shows the circuit for a

Diffuser Us that can be used to complete our example.
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q[0] H X X H

q[1] H X X H

q[2] H X Z X H

Figure 4.10: Diffuser Us for |ψ〉

4.3.4.3 Grover iteration

The operators Us and Uw above describe, together, form the Grover iteration G

G =UsUw, (4.10)

so each time we apply G, we are initially reducing the mean, by inverting the phase of |w〉,
which corresponds to the application of Us. Uw subtracts from each state’s amplitude its distance

to the new found mean µ . Taking into account the phase of every state, positive phased states

end up being suppressed, with their amplitude reduced, while negative phased states, or |w〉 states,

increase their amplitude, keeping µ stable. So, by using G for a number of times t, we are growing

the |w〉 state(s) linearly with the number of applications of approximately

tN−1/2, (4.11)

with N, in our example case, being eight (8). From this equation, we take that the number

t of Grover iterations increase the differentiation between winner and non-winner states, while

the dimension of the space of possible result reduces the differentiation seen per iteration. This

is logical as impact of inversion around the mean is diluted the bigger the results’ space. Its

application can be described as

Gt |ψ〉 . (4.12)

For Equation 4.11, if we use t =
√

N number of Grover iterations, it is highly expected for us

to measure the correct result. With a M number of winner states |w〉, it is possible to generalize

this equation[42], so

t =
√

N/M. (4.13)

In our tests, we ran the algorithm using a t = π

4

√
N number of Grover iterations [32].

4.3.4.4 Building the complete circuit

For our previous example, the complete circuit for a single Grover iteration is shown in Fig-

ure 4.11.
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INITIALIZATION ORACLE AMPLIFICATION

q[0] H X X H X X H

q[1] H H X X H

q[2] H Z H X Z X H

Figure 4.11: Complete circuit to do a single Grover iteration for |ψ〉

If we take into account the number of Grover iterations required according to the previously

established t = π

4

√
N2, with

t = bπ
4

√
Nc= bπ

4

√
8c= 2, (4.14)

the final circuit to be translated into cQASM code would look as in Figure 4.12.

q[0] H

G0 G1q[1] H

q[2] H

Figure 4.12: Complete circuit to find |w〉 for |ψ〉

4.3.4.5 Scaling the algorithm

In here, we explore how we can use the Grover’s algorithm for different result spaces, i.e. how is

it affected by increasing or decreasing the number of qubits involved. Since the Initialization step

remains constant, independently of the number of qubits used, we should focus on how to scale

the other two steps. The way we build a phase oracle for a single winner state |w〉 is actually fairly

simple if we are able use a Z-gate controlled by every other non-target qubit in the circuit.

q[0]

q[1]

q[2]

q[3]

q[4] Z

Figure 4.13: Phase oracle Uw where |w〉= |11111〉

2Non-integer values will always be rounded down.
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Consider now Figure 4.13. By applying this single gate, we are tagging all qubits to the

state |1〉, which means the state |11111〉 is the winner. If, for instance, we intend to tag a different

solution like |10101〉, we only need to apply two X-gate , one before and another after the multiple-

control-Z-gate , on each qubit that is not in state |1〉 on the winner |w〉. Here, we would apply those

gates to qubits 1 and 3, like Figure 4.14 is showing.

q[0]

q[1] X X

q[2]

q[3] X X

q[4] Z

Figure 4.14: Phase oracle Uw where |w〉= |10101〉

Scaling the Diffuser is equally simple. For every new qubit added to the circuit, we need it to

also act as a control qubit for the multiple-control-Z-gate of this step. The remaining gates are the

same as for every qubit: the H-gate and X-gate prior to that same multiple-control-Z-gate , that

should also be followed by the X-gate and H-gate , in this order. For the same 5-qubit circuit, the

Diffuser is presented in Figure 4.15.

q[0] H X X H

q[1] H X X H

q[2] H X X H

q[3] H X X H

q[4] H X Z X H

Figure 4.15: Diffuser Us for a 5-qubit circuit

In total, on every new qubit added to the search, for |w〉 respecting

∀i ∈ [0,n],q[i] = |1〉 , (4.15)

with n being the number of qubits in the circuit, we are adding one more gate to the circuit

plus four gates on each existing Grover iterations. If q[i] = |0〉, the number of added gates rises to

three plus the same four on each existing iteration. Note that we are excluding the two additional

control for the two multiple-control-Z-gates , as they represent gate changes, not additions. If there
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are further Grover iterations due to the addition of the new qubit, the total number of added gates

is calculated with 1+4∗ (t−di f f (t))+(4n+1)∗di f f (t), if q[i] = |1〉

3+4∗ (t−di f f (t))+(4n+1)∗di f f (t), otherwise
(4.16)

with di f f (t) as the number of additional iteration. Again, know that Grover’s algorithm is

intended for memory testing, and we are focusing on knowing the impact of useful quantum al-

gorithms on the Quantum Micro-Architecture by comparing it to QBeeSim . For that reason, the

variation on gate quantity should not have a significant impact in overall the analysis.

4.4 Conclusion

This chapter started with an explanation on how we see the the top-level layers interacting with

the lower-layers of the full-stack, i.e. what a programmer developing a quantum algorithm should

expect from the Quantum Micro-Architecture . For that, we presented our vision on how cQASM

integrates with classical languages, using #pragma statements, and how the results are accessible

from classical languages by storing them in associative containers. Also, an important differentia-

tion was made from what to expect from a simulator and from an actual quantum processor. From

that, we concluded that the simulator allows us to have two types of results, one using state’s am-

plitudes, which is appropriate for application development, and other using state’s probabilities,

emulating the response from quantum hardware. Next, we explained how the number of states

evolves during a quantum algorithm , and related those same states to memory cost, identifying

state’s representation as the main memory consumer. This topic continued with an explanation on

how we decided to optimize the storage required by the Quantum Micro-Architecture , given our

focus on useful quantum algorithms , opting by only storing non-zero amplitude states. Finally, we

described our test process for the Quantum Micro-Architecture , taking into account what kind of

parameters are important for us, given the intended deployment setup. Specifically, we look for

ways to measure the overhead caused by the Quantum Micro-Architecture on the simulator, and

methods to assess correctness of instruction processing. That being the case, we differentiated be-

tween random circuits and useful quantum algorithms , even describing Grover’s algorithm, since

we plan to use it for memory analysis, while the former are preferred for a time-based analysis.

Restating, we analysed the Quantum Micro-Architecture from an outside perspective, looking

at the components that surround it to see what are good practices that we can adopt, and what

optimizations are clear from the start. This overview also served to clearly define what to expect

as both input and output, laying all the fundamentals that allow us to understand the inner-workings

of the Quantum Micro-Architecture . With this in mind, we can start its explanation, on the next

chapter.
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In Chapter 4, we described the Quantum Micro-Architecture essentially as a black-box: both

the input and output are known, and the test process is also defined. Some insights were also

given when it comes to memory conservation, which will be further explained here. Section 5.1

introduces our most recent diagram for the Quantum Micro-Architecture . Next, we go inside

the black-box, describing each component in the order cQASM code interacts with the structure,

again, focusing on its connection with QBeeSim for quantum algorithm development. Note that

we are describing a Generic Quantum Micro-Architecture . This means that, in the future, for

quantum accelerators that target a specific problem, this design might suffer slight variations to

better adapt it to the problem to be solved. In that sense, we try to define it in a way that makes

such adaptations as minimal as possible, for the great majority of applications. Particularly, we see

that happening for applications like finance, and genetic analysis, as those are the areas QBeeX is

most proactively looking, at the moment. A sample circuit expressed in cQASM is also used to

better visualize how each component works, as it accompanies their own description.

5.1 Overview

The developments on thesis are focused on a software-based implementation of the Quantum

Micro-Architecture . It is the same as saying that the entire development is described in classical

47
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logic, particularly in C++. In the future, we will develop an experimental quantum accelerator but,

the driving logic will remains classical, nonetheless. This is already implying that any quantum

accelerator will use digital hardware up to the quantum chip, which delves in the analog world.

Since the quantum chip is only reactive to whatever instruction we send, its control remains digital.

Figure 5.1: Generic Quantum Micro-Architecture for quantum algorithm development

Also, instead of a physical qubits , we deal with perfect qubits , requiring us to abandon the

idea using a quantum chip, at the moment. Still, by using QBeeSim , we can emulate its behavior,

and develop the remaining classical components around it, dissipating the limitation of not having

any quantum hardware ready. Figure 5.1 shows, in blue, our representation of the Quantum Micro-

Architecture as explained, while attached to our simulator QBeeSim .

Any optimized application, makes use of the heterogeneity of modern computer systems. This

optimization requires the routing of dedicated instructions towards particular co-processors, to

be executed. It is also implicit that such application can be written in several programming lan-

guages that communicate using the machine’s main memory, showing the versatility of modern

processors. Behind these processors, there is a specific architecture able to handle any sequence

of instructions, if expressed in an understandable way. Similarly, the QPU recognizes both clas-

sical and quantum instructions, having two distinct processors. For classical instructions, i.e. for

the accelerator’s logic, we should use a traditional processor, while quantum operations should

be redirected to the quantum chip. In essence, these architectures are a bridge connecting appli-

cations to the hardware that runs them. For the understandable language we speak off, we have

the Quantum Instruction Set Architecture or QISA, that should be highly adaptable, according to

the accelerator’s logic needs. Still, for the actual development of such a structure, a number of

properties can only be guessed, like the pipeline depth, instruction-length, or the effect of each
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cQASM instruction on platform control channels. Our view on this estimations will be given as

we describe each block, since they are the base for them.

This section was based on [11].

5.2 Components analysis

5.2.1 cQASM and Quantum Instruction Cache

The Instruction Memory holds both classical and quantum instructions, fetched and passed on

to the Arbiter , to be separated and redirected to the corresponding processor. While classical

instructions should be redirected to the Host CPU , quantum instructions are passed to the Quan-

tum Micro-Architecture , arriving at the Quantum Instruction Cache . The Quantum Instruction

Cache serves as an on-site storage for these instructions, meaning that at this point, there is no

processing of its individual information. Also, take into consideration that there is a size limit for

the number of instructions read, meaning that for a multi-hundred non-parallel instructions circuit,

only a small portion will be taken at a time, to be processed. After its processing, another group

or batch of instructions is pulled, and so on until the circuit is terminated.

1 qubits 4

2

3 x q[0]

4 {y q[1] | z q[2]}

5 cnot q[1], q[3]

6 h q[0]

7 cnot q[0], q[2]

8 z q[0]

9 {y q[1] | h q[2] | x q[3]}

10 x q[3]

11 x q[1]

12 display

Listing 5.1: Example circuit to demonstrate how the Quantum Micro-Architectureworks

Given that this is the only component that does not make any processing beyond identifying

each line as a valid instruction, the original cQASM code is extremely similar to the way it is

stored here, except that comments are already removed. For the explanation of each remaining

component, the random circuit described in Listing 5.1 will be used. In that way, it is possible to

visualize how the information is processed at each individual stage.

5.2.2 Execution Unit

On arrival at the Execution Unit , the instructions are interpreted, resulting on the identification of

the key points of each instruction, like its type, group, qubits it affects, and the arguments it has,
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like rotation angles, if any. For example, consider Listing 5.1 line 5. That instruction, at this stage,

is represented as follows:

cQASM Type Group Qubits Arguments
cnot q[1], q[3] CNOT NonPauli [1,3] []

Table 5.1: Instruction parsing example

At the same time we do the parsing of individual instructions, it is also possible to identify

parallelism. We expect OpenQL to already place parallel instructions together, as is shown in line

4, for example. Nonetheless, we can still verify if sequential instructions are not targeting the same

qubits. If we go back to how we represent quantum circuits in a diagram, we are simply saying

that parallel instructions are placed at the same depth level. It is clear that gates affecting the same

qubits must be placed one after the other, so at different depths. For Listing 5.1 lines 4 and 5, we

then have the following representation:

cQASM Type Group Qubits Arguments Depth
y q[1] Y Pauli [1] [] 2
z q[2] Z Pauli [2] [] 2

cnot q[1], q[3] CNOT NonPauli [1,3] [] 3
Table 5.2: Instruction parsing example with parallelism identification

with the first two operations to be executed at the same time, considering how they don’t

interfere with each other. This is signaled by the same Depth value. The third instruction (CNOT)

must take place after the first two, since both the first and third instructions require q[1] .

5.2.3 Qubit Address Table and the Routing and Mapping Unit

The Qubit Address Table is a requirement brought by the physical constraints imposed on real

qubits. Since we want to emulate those constraints, in order to make the simulation as close as

q[0] q[1] q[2]

q[3] q[4] q[5]

q[6] q[7] q[8]

(a) Initial mapping

q[0] q[1] q[2]

q[3] q[4] q[5]

q[6] q[7] q[8]

(b) After MOVE instruction

Figure 5.2: Example of simulator’s qubit mapping
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possible to reality, we need a way to associate the name given to qubits on cQASM to their position

on the simulator.

Consider again Listing 5.1 line 5. The CNOT-gate in question tells us that qubits q[1] and

q[3] must interact. If we impose NN-constraints , the mapping of qubits on the simulator becomes

substantially more relevant. Figure 5.2 shows us two of the possible cases for the mapping of these

two qubits. If we say that qubit interaction must only happen between adjacent qubits, it is clear

that situation on the left, i.e.

cQASM index QBeeSim index
q[1] q[0]
q[3] q[8]

Table 5.3: Partial Qubit Address Table for Figure 5.2a

is impossible unless we introduce position manipulation instructions, like the MOVE or SWAP1

instructions. This first instruction takes two (QBeeSim) qubit indexes, first the one to be moved,

and second the destination index. So, if we introduce a MOVE q[8], q[1], which is done by

the Routing and Mapping Control Unit , we would then have the following association:

cQASM index QBeeSim index
q[1] q[0]
q[3] q[1]

Table 5.4: Partial Qubit Address Table for Figure 5.2b

Consider also that such addition would be unnecessary if the initial mapping took into con-

sideration these interactions, meaning that we could have, from the beginning, mapped cQASM

q[3] to QBeeSim q[1] . Additionally, if we decided to ignore such constraints, the mapping could

be simplified by having QBeeSim indexes corresponding to cQASM indexes. This option seems

reasonable if we are intending to purely test the results of a quantum algorithm while dismissing

the natural implications of running it on an experimental platform.

5.2.4 Queues and Instance Controller

To understand how we define Instruction Queues and the Instance Controller for our specific

case, we need to look at the current state of development of QBeeSim . The most important

characteristic of the simulator is how each quantum gate requires a manipulation to a vast amount

of states’ amplitudes, since it places all qubits in superposition from the beginning2. The negative

consequence of this behavior is that we are limited to having a sequential execution of quantum

1Notice that a SWAP operation is essentially 3 MOVE operations: (1) storing the destination qubit in a vacant qubit,
(2) moving the origin qubit to the destination qubit and (3) moving the qubit stored away in the previously vacant qubit
to the origin qubit

2The explanations as to why this is done goes beyond the focus of this chapter, nonetheless, this was proven more
memory efficient when compared to creating qubits superposition when needed, since this last method requires us to
label the amplitudes with the states they refer to, while the former does not. See Chapter 3 for more information on
QBeeSim
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gates, otherwise, in case we decided to parallelise same-depth instructions, we would face race

conditions. This does not mean that, for each gate, we are unable to parallelise their effect on the

multiple states, as this is already implemented. To reinforce, QBeeSim:

• Places qubits in superposition, from the beginning until the end of the circuit;

• Quantum gates must be executed sequentially.

This conditions tells us that all instructions can be loaded into the same Instruction Queue , as

there is no benefit in having multiple ones, like there would be for a real quantum chip. Also, the

Instance Controller only functions are to make sure that the previous operation was concluded, so

that it can pull the next instruction from the Instruction Queue and deliver it to QBeeSim .

When we apply a Quantum Micro-Architecture on top of a quantum chip, it is at this point that

timing becomes deterministic[27]. As the simulator does not have the same time-wise constraints

as a quantum chip, we don’t have to set a specific timing for each operation as long as we keep

relative timing, i.e. the order of instructions is preserved.

5.2.5 Amplitude Storage Table

Considering that we are using a simulator, we have constant access to qubit state’s data, without

interfering with their value, meaning we don’t collapse the state by accessing it. This means that

instead of just knowing to which state the circuit collapses to, we can retrieve amplitudes, allowing

us to bypass the process of making multiple circuit runs, since we can build the correspondent

probability density function or PDF, for short, by extrapolating the probabilities. So, in terms of

algorithmic runs, the simulator is actually more efficient. The Amplitude Storage Table serves

as an intermediate holder for those amplitudes, before we store them away. In this block, we

don’t keep a register on all states produced for the circuit. Remember that we are targeting useful

quantum algorithms , so we expect the result space to be sparse. For those cases, contrarily to

what happens to the simulator, it is more efficient to know both the state we are referring to and its

amplitude, since in that way, we can discard what should be a great amount of irrelevant states, i.e.

state’s whose amplitude are zero, also known as zero-states. Table 5.5 shows what the Amplitude

Storage Table looks like for our example circuit, in Listing 5.1. Given that amplitudes are complex

numbers we store pairs of values for said column: on the left we have the real component, while

on the right we have the imaginary part. Also, while the state in the table uses ket notation, we

only store the correspondent integer value, so |1110〉, for example, is only recorded as 14.

State Amplitude
|1010〉 ( 0.5, 0.0)
|1011〉 ( 0.5, 0.0)
|1110〉 ( 0.5, 0.0)
|1111〉 (-0.5, 0.0)

Table 5.5: Amplitude Storage Table corresponding to example circuit
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5.2.6 DMA Controller and Exchange Register File

When we have access to the final results, we have two data paths:

1. Passing them along to the main memory, using a DMA Controller;

2. Sending them to the Host CPU , through the Exchange Register File .

The first option is optimal for terminal computations, meaning that the work of the quantum

accelerator is done. The second option allows the results to be kept inside the Quantum Micro-

Architecture , so we can do intermediary calculations without having to pull its results from main

memory in order to continue. A similar scenario happens for results loading. While intermediary

results can be directly loaded from the Quantum Micro-Architecture , again through the Exchange

Register File , results that were stored away to main memory can also be loaded using the DMA

Controller .

As we are working with a simulator, the process of loading results operates in a different way

of how it might happen on a quantum chip. While we can reestablish the quantum states fully for

the simulator, again, due to the capacity to access its data without causing any losses, it has another

meaning for quantum chips. Quantum chips need multiple runs of the same algorithm, so we can

build the circuit’s PDF. If, for some reason, we are required to interrupt the mid run cycle, we may

store the measurements from the already executed runs away, to latter load them, continuing the

cycle without losses.

5.2.7 Qubit Connection Table

While explaining how the Routing and Mapping Control Unit works, we exemplified with a spe-

cific topology, shown in Figure 5.2. This last component answers the question How do we define

that topology?, which is the same as asking how can we make the Quantum Micro-Architecture adapt-

able to simulate any kind of experimental platform/topology combination. In its essence, the Qubit

Connection Table brings into the Quantum Micro-Architecture two important pieces of informa-

tion:

• Which qubits interact with each-other;

• The cost of performing a SWAP operation between two qubits.

SWAP operations, like the name indicates, changes the information stored in the qubits. The

impact produced can be seen using the Qubit Address Table , as shown in Table 5.6.

cQASM index QBeeSim index
q[1] q[0]→q[1]
q[3] q[1]→q[0]

Table 5.6: Partial Qubit Address Table for a SWAP operation between q[0] and q[1]
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For multi-qubit gates, it is important to respect NN-constraints , so it makes sense to know if

the interaction of the qubits involved is instantly feasible, or if we are required to introduce SWAP

instructions to bring qubits to an adequate position. This information, for a four qubits chip, for

example, can can be seen in the two matrices of Figure 5.3.

q[0] q[1] q[2] q[3]

q[0] 1 0 0

q[1] 1 0 0

q[2] 0 0 0

q[3] 0 0 0

(a) Interactions information

q[0] q[1] q[2] q[3]

q[0] 1 2 5

q[1] 1 3 4

q[2] 2 3 2

q[3] 5 4 2

(b) SWAP Cost information

Figure 5.3: Information stored on the Qubit Connection Table

Figure 5.3a, for example, tells us that q[0] and q[1] are the only ones capable of performing

two-qubit gates, while Figure 5.3b lets us know that swapping qubits q[1] and q[3] has a cost

of 4. The costs don’t have units, as they should be taken as a measure of comparison for us to

know which SWAP operations are more or less demanding to the chip. In that way, our objective

is to use mapping and routing cautiously, so we can reduce the total cost of the circuit, which

means a reduction to both number of instructions executed and total circuit time for chips and

simulators. The two matrices can be compiled into a single table, which is the normal form of the

Qubit Connection Table:

q[0] q[1] q[2] q[3]
q[0] - (1,1) (0,2) (0,5)
q[1] (1,1) - (0,3) (0,4)
q[2] (0,2) (0,3) - (0,2)
q[3] (0,5) (0,4) (0,2) -

Table 5.7: Example Qubit Connection Table according to Figure 5.3

In this table we record both matrices’ values in a pair, with interactions as the first element

and SWAP cost as the second.

5.3 Conclusion

This chapter shows how the Quantum Micro-Architectureis used to process cQASM, and how it

redirects its results:

1. Classical and quantum instructions are fetched together, from Instruction Memory;
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2. The Arbiter separates classical from quantum instructions, sending the former to the Host

CPU , and the latter to the Quantum Micro-Architecture;

3. Quantum instructions are cached in the Quantum Instruction Cache;

4. The Execution Unit pulls instructions, to parse them, and identifies instruction parallelism;

5. cQASM qubits are mapped into QBeeSim qubits in the Routing and Mapping Control Unit ,

and this information is stored in the Qubit Address Table;

6. The instructions are loaded into the Instruction Queues , from which they are pulled by the

Instance Controller , so they can be passed on to QBeeSim , when it is available;

7. For every batch of processed instructions, some may need the addition of auxiliary instruc-

tions to route qubits; the Routing and Mapping Control Unit is responsible for the addition

of said instructions, based on the information provided by the Qubit Connection Table;

8. At the end of the entire circuit processing (or if called explicitly), the relevant amplitudes

are passed to the Amplitude Storage Table;

9. Before storing the results in the Amplitude Storage Table , we must access the Qubit Address

Table to translate QBeeSim qubits to cQASM qubits;

10. Intermediary results may go from the Amplitude Storage Table to the Exchange Register

File , so they can be reused later;

11. Final results use the DMA Controller to be stored directly on main memory;

12. It is also possible to restore main memory results to QBeeSim , using the DMA Controller .
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In the last chapter, we explained how cQASM instructions are processed in the Quantum Micro-

Architecture . Along its development, we noticed some areas where we can improve performance,

and/or reduce the total memory footprint, which is most relevant. In this chapter, we explain those

improvements, from the simplest to the most complex, in terms of implementation:

1. We look at perfect qubits connection’s, to detect unnecessary/duplicated information;

2. The barriers created for result acceptance are analysed, as they are a way to reduce the

Quantum Micro-Architecture memory footprint;

3. A new cQASM command is introduced, enabling the reduction of the qubit states in analy-

sis, without interfering with the solution.

6.1 Reducing the Connection Table size

Figure 6.1 is a copy of Figure 5.3 just to improve readability. From the figure, we take that both

matrices are symmetric, since every element ai, j, on each one, is equal to a j,i. This is the same as

saying that each matrix is equal to its transposed:

A = AT (6.1)
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q[0] q[1] q[2] q[3]

q[0] 1 0 0

q[1] 1 0 0

q[2] 0 0 0

q[3] 0 0 0

(a) Interactions information

q[0] q[1] q[2] q[3]

q[0] 1 2 5

q[1] 1 3 4

q[2] 2 3 2

q[3] 5 4 2

(b) SWAP Cost information

Figure 6.1: Information stored on the Qubit Connection Table- copy of Figure 5.3

It is now obvious that we are storing the same amount of information while using double the

amount of space required. To reduce said space, we can cut half the table and sort qubit indexes

each time we want to retrieve any information. For example, accessing the information for q[3]

and q[0] (a3,0) is the same as accessing the information for qubits q[0] and q[3] (a0,3), since the

indices of the former are now sorted, becoming the latter. For the interactions information, the

symmetry may seem obvious, but we are also assuming that the SWAP cost is similarly symmetric,

which may not be the case. Note that this reflects a very minor improvement in the overall program

cost, given that, for each matrix, instead of storing a total of q2−q values, for a q number of qubits,

we store

q2

2
−q (6.2)

values, which is a very small amount, when compared to the number of states produced by the

same number of qubits q. Additionally, this is a trade-off that may only make sense when we are

trying to save memory, as for this purpose, we introduce the sorting operation, which may have an

costly impact on a more time-sensitive platform, i.e. a quantum processor, due to the accumulation

of small time increments.

6.2 Restricting the result space

We already explained how useful quantum algorithms tend towards a more sparse result space

compared to random walks. For those cases, let us look at the two barriers we can implement to

exclude a state, i.e. leave it inside QBeeSim .

6.2.1 Elimination of zero-states

The possibility to eliminate zero-states was already explored in Chapter 5. In essence, every time

we want to store away QBeeSim’s results, we have to iterate through its vector of states, or copy

the entire memory block. If we exclude the latest option, for each state, we can check if their
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amplitude is zero, meaning that both the real and imaginary components of the amplitude are

zero valued, or at least close enough to zero, since small differences can be the result of classical

computation limitations.

6.2.2 Cutting improbable states

To further reduce the results space, we can establish a minimum acceptable probability, making in-

ferior amplitudes irrelevant. This option was mostly implemented thinking on the specific case of

Grover’s Algorithm. On each Grover iteration, we are inverting the amplitudes based on the mean

amplitude at the beginning of the iteration. Through successive iterations, it is highly unlikely

that we can reduce non-winner states to zero-states. Considering that all non-winners have equal

probability, the result space would have the same size as the total number of states produced by

the circuit. This makes the way we store results in the Quantum Micro-Architecture inappropri-

ate, even for a useful algorithm like this one. Similar to how we verify the amplitude of the state,

when iterating through QBeeSim results, to dismiss zero-states, we can make the same verification

based on a pre-established minimum probability value. If this value is high enough, we know that,

for Grover’s, for instance, the result space is only as large as the number of winner-states.

Figure 6.2 shows how this barriers function, having QBeeSim’s storage on top, and passing

through all barriers sequentially, until the remaining results are stored away in the Amplitude

Storage Table .

|0...00〉 |0...01〉 |0...10〉 |0...11〉 ... |1...10〉 |1...11〉

Zero-state barrier

Low-probability barrier

Amplitude Storage Table

Figure 6.2: Results space restriction

In practice we know that a low-probability check eliminates a zero-state check, given that all

zero-states are low-probability, although we cannot say the same for the opposite case, since not

all low-probability states are zero-states.
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q[0]

q[1]

q[2]

q[3]

q[4]

q[5]

q[6]

q[7]

Figure 6.3: 8-qubits circuit nodes

6.3 Instance command

6.3.1 Defining an instance

Consider a graph built from a random quantum circuit with 8 qubits, where its qubits are the nodes,

as shown in Figure 6.3. QBeeSim executes every circuit by placing all its qubits in superposition.

This means that, for every gate, the number of states we have to access is exponentially correlated

to the number of qubits on the circuit. Superposition is needed only for multi-qubit gates, which

means that applying it from the beginning to non-interacting qubits is a waist of resources. Now,

let us consider the extreme case for the 8-qubit circuit, by using the graph’s edges to represent

multi-qubit gates, as shown in Figure 6.4.

q[0]

q[1]

q[2]

q[3]

q[4]

q[5]

q[6]

q[7]

Figure 6.4: 8-qubits circuit qubit interactions graph
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The separation of q[0] to q[3] , and q[4] to q[7] is clear. We call this groups of connected

qubits instances, which are independent from each other. What this means is that these qubits

(and the correspondent circuit gates) can be separated in two different circuits. By doing so, we

can run the two circuits in parallel, reducing the total running time from the time it takes to run

the initial circuit, to the time it takes to run the larger of the newly built circuits. This speedup can

not be extrapolated directly from the sum of the time it takes to run the larger circuit’s gates on the

initial circuit. The gate time variation comes from the reduction of the total amount of states, as

we are superpositioning an inferior number of qubits, which in turn reduces each gate’s running

time.

At this point, a question like who would build a circuit that interacts in this way? might arise.

For one, in large circuits, this distinction is not very clear, unless we do this kind of graph. Also,

this case can represent simply a starting point: say, we have these same eight qubits in a thousand

gates circuit; maybe the first nine hundred gates can be represented using the graph in Figure 6.4,

and only the last hundred gates required another kind of configuration, by connecting q[1] to

q[5] , for example. This means that we can considerably speedup 90% of the circuit, while only

10% remaining sequential. But why do the last 10% remain sequential? Can we apply the same

strategy used to group qubits, and also speed it up? To apply the same strategy, we would have to

decompose the superposition in the amplitudes associated to the basis states of each qubit. So if

we have two qubits:

q[0] = γ0 |0〉+ γ1 |1〉 , (6.3)

q[1] = υ0 |0〉+υ1 |1〉 , (6.4)

and these two qubits where in superposition, they could be described as follow:

Ψ = α0 |00〉+α1 |01〉+α2 |10〉+α3 |11〉 , (6.5)

with the amplitude values α agreeing with the following association:

α0 = γ0 ∗υ0

α1 = γ1 ∗υ0

α2 = γ0 ∗υ1

α3 = γ1 ∗υ1

(6.6)

We must not forget that all these variables represent complex numbers, which means that we

are doubling the amount of variables in the system. Although we know the components of the α

named variables, γ0, γ1, υ0, and υ1 make up a total of eight unknown real variables, which are

impossible to determine in a system with four equations1. Since we are unable to decompose the

1Note that we may not be able to find the amplitudes but the probability associated to each basis state is achievable,
which does not have much impact for our intended solution
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superposition, we can only join both superpositions, by applying the tensor product. This option

leaves us with the same number of states as making the superposition with all circuit’s qubits,

meaning that the last 10% of the circuit are, indeed, unchanged.

6.3.2 Instance command implementation

We see the instance command as an informative command that tell us which qubits belong in

that same instance. For a circuit corresponding to the graph in Figure 6.4, we would required the

following instructions:

instance {0,1,2,3}

instance {4,5,6,7}

By listing all qubits that belong to each instance, we add versatility to the way they are named,

since this does not require qubits to be named sequentially, as it would if we used ranges.

As instructions are read in batches, it would be impossible to assess the constitution of said

instances correctly in the Quantum Micro-Architecture alone. We propose a change to OpenQL’s

compiler, since it already as to go through all circuit’s instructions, when building the cQASM

code. That way we guarantee the correctness of the instance instruction, and allows it to change

according to circuit’s needs. In turn, this results in the possibility to introduce a new instance com-

mand in any part of the circuit, if we want to change which qubits are interacting. The definition

of new instances is, of course, ruled by the limitations presented above, meaning that changing an

instance actually means joining it with another one.

6.3.3 Impact on the micro-architecture’s design

The instance command translates directly into how we group qubits in QBeeSim . For that reason,

we can say that QBeeSim itself also has instances. The first observable change to the Quantum

Micro-Architecture components comes to the Qubit Address Table , where we have not only a new

qubit address, but also an instance index, indicating in which simulator’s instance are we placing

said qubit. The QBeeSim index now indicates the qubit index inside the QBeeSim’s instance.

Table 6.1 shows how we make this association based on the graph shown in Figure 6.4.

cQASM index Instance index QBeeSim index
q[0] 0 q[0]
q[7] 1 q[3]

Table 6.1: Partial Qubit Address Table based on the qubit graph of Figure 6.4

In the end of the circuit, we have multiple groups of independent results, one for each instance.

Similar to how we would do in any other superposition, we apply the tensor product to build the

results in the expected format. One more step is required so we have accurate results, and that is

rebuilding the states to which the amplitudes correspond to. This process is done by looking at the
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Qubit Address Table , and doing the decoding of the states involved in the specific superposition

in question. For example, based on the partial table in Table 6.1, if q[0] on instance 0 is active,

q[0] is also active on the original state. Similarly, if q[3] on instance 1 is active, so is q[7] on the

original state, and so on.

Figure 6.5: Generic Quantum Micro-Architecture for quantum algorithm development - instance
based

Figure 6.5 shows how this changes affect the design of the Quantum Micro-Architecture .

Essentially, instead of directly placing the results in the Amplitude Storage Table , each instance

places its results in one of the Partial Amplitude Storage Tables (based on the same index value).

The phrasing "placing the results on Partial Amplitude Storage Tables" ends up being false, in the

strict sense of the word. The Partial Amplitude Storage Tables serve only as a bridge to QBeeSim ,

so we don’t actually copy the results from each QBeeSim’s instance, we simply access them,

saving memory. Those results are then reshaped, based on the Qubit Address Table , as explained

before, and only then are they stored away in the Amplitude Storage Table .

6.4 Conclusion

In this chapter, we explore three ways on how to make the Quantum Micro-Architecture more

efficient. We begin on the less relevant up to the most impactful. First, we showed that if SWAP

operations are symmetric quantum chip operations, meaning that a SWAP q[a], q[b] is the

same as a SWAP q[b], q[a], with a,b∈N0, we can half the size of the Qubit Connection Table ,

by sorting the qubits involved. Second, we placed two barriers with the purpose of validating the

results obtained. The looser one blocks the storage of states with amplitude zero - zero-states.

The other and stricter one, has defined a minimum acceptable probability for the result to be
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considered valid. Third, we presented a way to optimize how quantum circuits are simulated, by

dividing unrelated qubits in different instances, which is expected to save both memory and time.

Both savings come from the reduced number of superpositions to be handled, that result from this

new representation. In the next chapter, we look at the actual impact this changes produce.
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Chapters 5 and 6 serve as an explanation on the inner working of the Quantum Micro-Architecture

with its current improvements, respectively. In the former, we went component by component,

following the code’s path with a small circuit accompanying their respective explanation. The

latter introduced three improvements to the architecture’s implementation defined in the former,

and it is with those in mind that we realize all tests that follow. Here, we look at the impact of

said improvements according to its use context and testing methodology, as explained in Chapter

4. We start by analysing the impact caused by the micro-architecture in the existing stack layers.

Next, we look at what amount of instructions should be processed at a time, i.e. batch sizing. The

remaining experiments look at existing structures in the micro-architecture, to find weak links, and

direct our research for future improvements:

1. Analysis of the impact of database storage on the system;

2. Validation of its orientations towards useful quantum algorithms;

3. Limits testing and extrapolations of what circuits we are able to simulate.

65
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7.1 Benchmark system setup

The stack layers in use during this research were placed in an AWS EC2 instance, specifically a

c5a.4xlarge instance, which provides eight (8) cores and sixteen (16) vCPUs, and thirty-two (32)

GiB of memory, following the orientations in Chapter 4. The purpose of the setup is to allow

the following experiments to be made, both locally, and with external database storage, running

independently on a separate RDS instance:

1. Grover’s algorithm (as a useful quantum algorithm), with increasing number of qubits (and

gates, as a consequence);

2. Random algorithms, with increasing number of qubits for a set amount of gates;

3. Random algorithms, with fixed number of qubits and increasing number of gates.

Examples of circuits used for testing are provided in Appendices A and B, corresponding to

Grover’s algorithm and a random five-hundred (500) gates algorithm, respectively, both with five

(5) qubits.

Note that random algorithms represent the worst-case scenario of any algorithm, and it is in

that way that we use them for our tests. Also, take into account Grover’s dependency between the

number of qubits and gates, which makes it impossible to make an analysis following the same

structure that will be employed during the following sections1.

7.1.1 Results retrieving steps

There were, in total, three steps for recording peak memory usage during an algorithm’s run.

The first one, what we here call as micro-architecture only memory usage, takes place before the

initialization of QBeeSim , which means this only considers the first stage of usage of the Quantum

Micro-Architecture , i.e. does not account for final results storage. The second, or simulator’s

memory usage, happens at the end of every batch processing. The third and final, or total memory

usage, takes place just before the stack process is closed.

7.2 Results analysis

The next subsections contain all insights taken from the data collected, both by the information

stored away in the database, and from process tracking. Its conclusions build upon each other,

being presented in a way where previous subsections serve as the basis for conclusions taken

ahead.
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Figure 7.1: Ratio of total memory usage to micro-architecture only memory usage

7.2.1 Impact on the stack process

Figure 7.1 compares the first and final steps, corresponding to the micro-architecture only with

total memory usage, respectively:

y =
Total Memory
QMA Memory

(7.1)

To do so, we use three fixed gates numbers, representing the random algorithms, being a

thousand (1.000), five-thousand (5.000), and ten-thousand (10.000) gates, plus Grover’s algorithm,

where the number of gates depend on the number of qubits, as previously established in Chapter 4.

These four groups are varying the number of qubits.

The graph tells us that the ratio’s link is much stronger to the number of gates than to the

number of qubits. With this results alone, it is very hard to understand why the total memory

usage is growing with the number of gates (since the micro-architecture only memory usage is

almost constant for each of the random algorithms groups). The tests that follow should clarify

this question by relating them to database usage.

7.2.2 Runtime impact of instruction’s cache size on in database runs

In Chapter 5, the concept of instruction’s batch was introduced. A batch is a group of quantum

instructions pulled into the micro-architecture’s cache to be processed, which is predefined in its

size. Increasing the batch size means an overall increase in program memory consumption for

instructions only. As expected, at this cost, we end up with smaller running times (in most of

1See Chapter 4 for a detailed explanation on Grover’s
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Figure 7.2: Batch size comparison for 100 and 20 instructions batches

the cases), as shown in Figure 7.2. These results may come from the reduction of the amount

of times we need to open the cQASM input file, although this seems highly unlikely. Note that

discrepancy between the two possible batch sizes is more noticeable the more qubits we are taking

into consideration. Nonetheless, note that the discrepancy is kept almost constant, as we increase

the number of gates, which is expected due to the constant rate kept between the size of the batches

being compared. At last, we should note how smaller batches actually result in faster runtimes

when the circuits are small (< 1.000 gates). As before, the information here analysed should relate

to database usage, and will be further explained in the next sections, as for now it still remains

inconclusive.

7.2.3 In database & local run comparison

7.2.3.1 Process runtime

Looking at Figures 7.3 and 7.4, we notice two great contrasts:

1. Local and in database runtimes are widely separated on its runtimes;

2. Runtimes, either local or in database, are highly affected by the addition of extra qubits, as

in both cases we can see linear growth.

First, we now know that the communication with an external database is very costly, in terms of

process runtime. For this reason, we have to weigh the advantages of such connection, i.e. storage

of every detail that we can collect during circuit runs, like intermediary states for example, versus

solutions collection speed. Second, having more qubits brings more states, which, consequently,

affects gate performance since QBeeSim has to go through every existing state to either dismiss it,
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Figure 7.3: Local and in database process runtime by circuit size

Figure 7.4: Local and in database process runtime by circuit size (logarithmic scale)

or apply the respective operation. In this way, the average gate time is highly linked to the number

of qubits in the circuit. Considering that, with each new qubit, the number of states doubles -

Nq+1 = 2∗Nq, with N being the number of states resulting from q qubits -, it comes as no surprise

that process runtime is also affected exponentially.

Additionally, Figure 7.5 shows us that, either in local or in database runs, the effect of adding

qubits follow the same patterns. Despite the growth rate being more accentuated for in database

runs, qubit addition affect process runtimes exponentially, which is seen by comparing different
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number of qubits while keeping the same number of gates.

Figure 7.5: Local process runtime by circuit size

7.2.3.2 Average gate time

Figure 7.6 shows an analysis of the average gate time for fifteen (15) qubits circuits, with varying

number of gates.

Figure 7.6: Average gate time for 15 qubits circuits
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For the local runs, the results are as expected: we see the average gate time being reduced as

we grow the number of gates, meaning that the non-circuit processing operations, or operations

unrelated to QBeeSim’s simulations, become less relevant in terms of process runtime, until the

average gate time stabilizes on seven-thousand five-hundred (7.500) gates. Although graphically,

with in database results, this is not visually clear for the local runs, due to the scale displayed.

Multiple database runs show us approximately the same effect (shape of the graphic), but on a

much bigger scale. This means that for each gate, there are still database operations associated,

and those can not be eliminated, resulting in average gate times that are at least two orders of

magnitude greater than on local runs (+100 times longer).

To sum it up, for both types of runs, after a certain number of gates threshold, the average gate

time stabilizes, so increasing the number of gates should produce runtimes that fit linear estima-

tions. Only by increasing the number of qubits, considering that each gate will take more time

to go through all the superpositioned states, we should see this stabilization threshold happening

faster.

Note that the analysis of average gate times are highly connected to the constitution of the

circuit being analysed. We did not take into account maintaining gate proportion constant, i.e. the

ratio between different gates in the circuits were not taken into consideration, so, as different gates

have different runtimes, variations from a exact estimations are expected. What we mean by this is

that, for example, if we want to calculate the time it would take to run a twenty-thousand (20.000)

gates circuit locally, we should expect our error, compared to to double the time it takes to run a

ten-thousand (10.000) gates circuit also locally, to increase the more different the gate ratios are.

Independently of this factors, a correlation between local and in database runs is possible, as the

circuits ran are the same.

7.2.3.3 Qubit count based analysis

As mentioned already in this chapter, but primarily in Chapter 3, as we grow the number of qubits,

so do the number of possible states we need to represent. Figure 7.7 shows how the exponential

increase of states, by a factor of two (2) on each new qubit, results in an equally exponentially

increase in the time it takes to run a circuit. For the latter, the growth factor is also increasing

with the number of qubits, but has the tendency to stabilize equally at two (2). Again, we see a

distinction between local and in database runs, although it is clear that, in both cases, the growth

is exponential, only with the in database runs presenting a much quicker growth. Note that we

are also showing three different circuit sizes, for both local and in database runs and from this we

conclude that time increases linearly with the number of gates.

An increase in the number of states obviously results in a need for more memory, since all

states are kept in memory through the circuit’s run. Figure 7.8 similarly keeps the same parameters

as the previous one, but, this time, showing what that parameters combination represents in terms

of memory usage. Given the low amount of qubits, we see a very small growth in memory, which

is obfuscated by the impact that increasing the number of gates has on in database runs.
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Figure 7.7: Local and in database process runtime by number of qubits

Figure 7.8: Local and in database process peak memory (MB) by number of qubits

Note that Figure 7.9 shows the same information, but only for local runs. The exponential

increase in memory usage brought by the increase in the number of qubits, as calculated by Equa-

tion 3.1, is more obvious here, while there is no significant impact that comes from increasing the

number of gates. This proves how the impact on memory usage comes solely from the database

connection layer, which caches each step’s operation2 and only at its end does it release them. On

2With steps being the naming given on the database connection layer to group multiple instructions
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Figure 7.9: Local process peak memory (MB) by number of qubits

the other hand, the Quantum Micro-Architecture keeps its expected scalable behaviour of mini-

malist as possible footprint, only majorly affected by the number of produced results.

7.2.4 Runtime and memory impact of connecting to a database

Figure 7.10: Database connection layer individual components removal

Figure 7.10 purpose is to show the effects of removing specific actions from the database

connection, and see how it affects the overall process runtime. Prior to making this chart, we
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already identified in Subsection 7.2.3 the two major causes of performance deterioration:

• Need to store intermediary state’s amplitudes;

• Need to store groups of instructions (step instructions).

As expected, when removing step storage, we only get the increased delay brought by saving

state’s amplitudes, which has an exponential shape, that was also expected due to the way the

number of states grows when qubits are increased. Doing the opposite, i.e. removing amplitude

storage, we get a nearly constant additional delay. Such delays also falls within expectations,

considering how batch sizes are fixed at the beginning of the circuit’s run, making the number of

step instructions that need to be loaded into the database also constant. We also plot a reference

curve, with all database connection steps included, i.e. as it is intended to run, being essentially

the sum of the two previously described curves.

Considering that we are only loading instructions into the database at the end of the step (as

we do for amplitudes), for large amounts of qubits, bigger batches make more sense, as we store

those same amplitudes less frequently (assuming the time it takes to store the amplitudes alone

is bigger than the time to store the instructions, which happens at fourteen qubits onward). For

smaller amounts of qubits, where the amplitude storage time is inconsequential, we should opt

for smaller batches to get more efficient runs - smaller batches reduce the time it takes to store

instructions, but the time for amplitude storage is increased. That being said, choosing a batch

size is highly dependent on the number of qubits in use. Only in that way can we reach optimal

runtime conditions, balancing memory usage and runtime constraints to fit our needs.

7.2.5 Random & useful algorithms comparison

In Chapter 4, we concluded that the expensive memory cost brought by the micro-architecture

comes from the need to retrieve results from the QBeeSim . In Table 7.1 we present the constitution

of both Grover’s and random algorithms used for this comparison, where we can see the disparity

in the amount of results produced. Since the simulator is intended to be interchangeable with

a quantum chip, it should come as no surprise that we need to somehow retrieve results. With

QBeeSim , the moment of results retrieval to the micro-architecture represents the peak in terms

of memory use, for the process. At that moment, we have a data duplicate. The method chosen to

minimize this impact for useful quantum algorithmsis in full display in Figure 7.11. We leverage

how sparse the results space is for this kind of algorithms by recording both state and amplitude,

instead of having to depend on position for state association and, consequently, storing all states in

the micro-architecture. From this point onward, we are able to release the simulator’s resources.

In the figure mentioned, we see that random algorithms tend to have a higher peak for the same

amount of qubits (scale on the left). Given our lack of time to experiment with multiple random

algorithms, the orange curve (using the scale on the right) is also presented in the same figure. It

represents the proportion of results states against all possible states. When analysing the graph, we

should take into consideration that a high proportion is essentially meaningless for lower number
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Qubits Gates Results
Grover’s Random Grover’s Random

3 31 500 1 7
4 58 500 1 16
5 93 500 1 32
6 162 500 1 62
7 247 500 1 124
8 416 500 1 249
9 655 500 1 483
10 1060 500 1 949
11 1621 500 1 1835
12 2512 500 1 3449
13 3847 500 1 6364
14 5814 500 1 11190
15 8819 500 1 19032
16 13282 500 1 27291
17 19897 500 1 31841
18 29766 500 1 27711
19 44323 500 1 21115
20 65948 500 1 2258
21 97803 500 1 23
22 144742 500 1 1
23 213779 500 1 0
24 315192 500 1 0
25 464023 500 1 0

Table 7.1: Circuit constitution used when comparing Grover’s algorithm and random walks

of qubits, as the memory expense of duplicating the results space is minimal. Likewise, a low

ratio in higher number of qubits can represent a huge amount of states and memory usage, which

is visible after fifteen (15) qubits, for example, since there is a continuous separation between both

peak memory curves while the proportion curve is reducing.

7.2.6 Predicting simulation limits

The estimation of the number of qubits we can simulate with existing classical technology is an

important question that can help in the advance of quantum algorithms. As our last analysis, we

answer this question for the stack in question. We decided to use the data collected from random

algorithms as they represent the worst-case scenario that make the stack more resource-hungry.

That same data is shown in Figure 7.12a. Although with slight deviations, again, by not keeping

gate ratios from one algorithm to the other, it is possible to notice the approximation to exponential

curves for both time and memory, which goes in accord to this chapter’s earlier remarks. By look-

ing at the growth factor of successive memory results, we notice that same factor also growing,

becoming closer and closer to two (2). The time growth factor comes a litter shorter in compari-

son, stabilizing at one and a half (1.5), indicating that states’ manipulation (QBeeSim operations)
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Figure 7.11: Peak process memory usage (logarithmic scale) for random algorithms and Grover’s

(a) Measured (b) Estimated

Figure 7.12: Runtime and peak memory usage for 500 gates random circuits running locally

make the bulk but not the entirety of process costly operations. The knowledge of how time and

peak memory grow, enables us to predict the consumption of higher qubits circuits on the same

conditions by using those same growth rates mentioned, as shown in Figure 7.12b. According to

the predictions made, at best, AWS[7] would allow us to simulate up to thirty-nine (39) qubits,

while the supercomputer Fugaku[6] should be capable of running forty-seven (47) qubits circuits.



7.3 Conclusion 77

7.3 Conclusion

In this chapter, we present the results for all tests ran. For that, we identify the benchmark system

as an AWS EC2 c5a.4xlarge instance, used for both the Grover’s Algorithm, and random algo-

rithms with a variety of gates and qubits. When comparing the memory usage of the Quantum

Micro-Architecture and the entire stack in-use, we see a strong correlation of the entire stack’s

memory to the number of circuit’s gates. While analysing the optimal instructions batch size, we

noticed that small batches result in a longer total runtime. It was only when looking specifically

at the difference between local and in database runs that we could explain certain particularities

above mentioned. Both local and in database runs are highly affected by qubit additions. Nonethe-

less, there is a great discrepancy between local and in database runs for the same number of qubits.

Calculated average gate times for in database runs are more than a hundred times longer that local

average gate times. Despite this notorious difference, we could verify the micro-architecture’s

intended scalability. The section that followed, studied the impact of the database connection by

separating its costly components. From its analysis, we concluded that the previous hunt for an

overall optimal batch size is indeed pointless, since its optimally is highly connected to the number

of qubits in use, system’s memory availability, and needed detail depth when saving intermediary

results. Next, we tested the validity of the optimization implemented to target useful algorithms,

and, indeed, identified optimality towards its intended purpose, despite the small tests pool. Fi-

nally, we made an estimation of our capability to simulate large numbers of qubits using current

technology, using worst-case scenario data. To conclude, we should be able to use AWS[7] to sim-

ulate up to thirty-nine (39) qubits, while the supercomputer Fugaku[6] would allow for forty-seven

(47) qubits.
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Chapter 8

Conclusion and Future Work

The last few decades where single-mindedly focus on improving quantum hardware, growing the

disparity between it and quantum software. In recent years, that tendency as shown a shift as we

see more investigation directed towards quantum algorithms. The work with perfect qubits serves

to further close that gap, as the inherent defects associated to any quantum technology currently

available can be utterly ignored, bringing a new level of freedom to quantum algorithm developers.

It is generous to simply call simulation as sub-optimal, nevertheless, it makes it possible so that

software validation and verification does not wait for the perfecting of quantum technology.

The main goal of this thesis was to build a software-based micro-architecture capable of re-

ceiving any kind of cQASM instructions, so they could be run on either simulators or quantum

chips, as part of a quantum accelerator. With it, we would be empowering the development of

quantum software. Despite the hurdles that come from connecting multiple components to said

micro-architecture, this goal was achieved, as we now have a platform able to serve as a medium

between OpenQL and the layer responsible for running the circuit - QBeeSim , while storing huge

amounts of relevant circuit metrics.

However, Chapter 7 also tells us our ability to run large circuits is compromised. Despite

tinkering with the connection layer, for example, by adding a naive parallel implementation using

OpenMP to improve its performance, local circuit runs still perform more than a hundred times

faster. And this is on the 8 cores machine used for testing. This proves that there is still work to be

done on said layer, so that its performance can be improved, despite mid-algorithm state storage

inherently hindering the circuit’s runtime.

In addition, note that the simulator is also a work in progress. For the version we used during

this thesis development, functionalities like initialization with a user-defined state are still to be

integrated, which would allow for partial algorithms runs. With this new developments, corre-

sponding modifications will also need to be integrated in the micro-architecture, and all the way

up the stack layers, showing how highly related they are with each other. This high proximity

79



80 Conclusion and Future Work

ends up making them all works in progress, as a consequence. Also, we looked at the limits of

what our current setup can eventually achieve, and even using the now most capable supercom-

puter - Fugaku -, we fall short to even fifty (50) qubits. Note that, even if we built a distributed

system capable of joining multiple of those same supercomputers, a doubling into our capacity

only represents an one qubit increase, showing its scalability limitations. That could lead us to use

a different kind of simulator, that does not require all possible states to be handle simultaneously,

which would also require changes to the way the micro-architecture works.

Finally, OpenQL simply exports cQASM code that serves as the input for the micro-architecture.

We would like to see the inter-layers connection improved, so this no longer is a manual step, en-

hancing the experience of circuit running.

To summarise, the Quantum Micro-Architecture developed during this thesis is in accord to

all other layers QBeeX offers. In that way, its development is somewhat stagnant now, but with the

other layers’ development according to the company’s vision, adaptations to it will be required.
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Grover’s Algorithm Example

1 qubits 5

2 instance {0,1,2,3,4}

3 # Initialization

4 h q[0]

5 h q[1]

6 h q[2]

7 h q[3]

8 h q[4]

9 .grover_iteration(4)

10 # Oracle

11 cz q[0], q[1], q[2], q[3], q[4]

12 # Amplification

13 h q[0]

14 x q[0]

15 h q[1]

16 x q[1]

17 h q[2]

18 x q[2]

19 h q[3]

20 x q[3]

21 h q[4]

22 x q[4]

23 cz q[0], q[1], q[2], q[3], q[4]

24 x q[0]

25 h q[0]

26 x q[1]

27 h q[1]

28 x q[2]

29 h q[2]

30 x q[3]

31 h q[3]

32 x q[4]

33 h q[4]
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34 .measure

35 display

Listing A.1: cQASM code generated for a 5 qubits Grover’s algorithm quantum circuit



Appendix B

Random Algorithm Example

1 qubits 5

2 instance {0,1,2,3,4}

3 h q[1]

4 x q[4]

5 h q[4]

6 cnot q[2], q[4]

7 z q[2]

8 cnot q[0], q[3]

9 z q[4]

10 t q[2]

11 z q[0]

12 t q[0]

13 toffoli q[4], q[1], q[0]

14 cnot q[0], q[1]

15 y q[3]

16 cnot q[2], q[0]

17 h q[4]

18 cphase q[0], q[4]

19 h q[4]

20 cphase q[2], q[4]

21 toffoli q[0], q[1], q[3]

22 t q[2]

23 h q[2]

24 h q[2]

25 x q[4]

26 cphase q[1], q[3]

27 cnot q[1], q[4]

28 cnot q[3], q[4]

29 x q[0]

30 cnot q[1], q[2]

31 x q[0]

32 toffoli q[3], q[0], q[2]

33 toffoli q[0], q[3], q[1]
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34 t q[3]

35 z q[4]

36 t q[2]

37 t q[1]

38 x q[2]

39 t q[0]

40 cphase q[0], q[2]

41 t q[1]

42 z q[2]

43 y q[1]

44 cnot q[4], q[0]

45 h q[3]

46 t q[4]

47 t q[2]

48 z q[2]

49 z q[1]

50 z q[1]

51 z q[3]

52 t q[1]

53 z q[3]

54 h q[1]

55 z q[2]

56 t q[1]

57 t q[3]

58 toffoli q[0], q[2], q[3]

59 toffoli q[4], q[3], q[0]

60 cnot q[0], q[3]

61 cnot q[4], q[1]

62 x q[4]

63 t q[1]

64 x q[0]

65 cphase q[1], q[0]

66 cnot q[2], q[0]

67 x q[3]

68 x q[2]

69 y q[1]

70 h q[4]

71 t q[2]

72 x q[2]

73 cnot q[1], q[2]

74 x q[1]

75 cphase q[3], q[0]

76 t q[1]

77 y q[0]

78 z q[3]

79 h q[2]

80 cnot q[4], q[3]

81 x q[1]

82 h q[0]
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83 t q[3]

84 h q[4]

85 z q[3]

86 cphase q[1], q[2]

87 z q[2]

88 x q[0]

89 cphase q[4], q[3]

90 cnot q[2], q[1]

91 y q[4]

92 cnot q[1], q[2]

93 cnot q[2], q[0]

94 toffoli q[2], q[0], q[1]

95 t q[1]

96 t q[1]

97 x q[3]

98 cphase q[3], q[2]

99 z q[4]

100 y q[3]

101 cnot q[4], q[0]

102 toffoli q[1], q[4], q[0]

103 x q[2]

104 cphase q[2], q[3]

105 z q[1]

106 z q[2]

107 cphase q[4], q[1]

108 x q[4]

109 y q[2]

110 cphase q[1], q[2]

111 cphase q[3], q[1]

112 x q[1]

113 t q[3]

114 cnot q[0], q[1]

115 x q[0]

116 cnot q[0], q[3]

117 toffoli q[1], q[4], q[2]

118 z q[0]

119 y q[1]

120 t q[4]

121 t q[1]

122 y q[0]

123 x q[0]

124 x q[1]

125 t q[0]

126 x q[3]

127 z q[4]

128 z q[0]

129 y q[4]

130 x q[2]

131 t q[4]
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132 cnot q[1], q[0]

133 cnot q[4], q[3]

134 h q[0]

135 cnot q[0], q[2]

136 cnot q[2], q[4]

137 h q[1]

138 cphase q[3], q[0]

139 cphase q[4], q[0]

140 y q[4]

141 x q[2]

142 z q[0]

143 h q[2]

144 h q[4]

145 cphase q[1], q[4]

146 t q[4]

147 cnot q[4], q[3]

148 cphase q[3], q[2]

149 toffoli q[0], q[3], q[2]

150 cphase q[2], q[4]

151 toffoli q[0], q[3], q[2]

152 h q[0]

153 y q[2]

154 t q[1]

155 toffoli q[3], q[1], q[2]

156 cnot q[1], q[4]

157 z q[0]

158 t q[2]

159 z q[0]

160 h q[2]

161 cphase q[1], q[3]

162 toffoli q[2], q[3], q[0]

163 z q[1]

164 y q[0]

165 t q[0]

166 y q[0]

167 t q[1]

168 toffoli q[4], q[2], q[1]

169 t q[3]

170 h q[2]

171 t q[0]

172 cphase q[3], q[0]

173 cphase q[3], q[4]

174 h q[3]

175 toffoli q[0], q[3], q[1]

176 y q[0]

177 t q[4]

178 x q[4]

179 z q[2]

180 x q[4]
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181 z q[4]

182 cnot q[0], q[2]

183 cnot q[1], q[2]

184 toffoli q[4], q[3], q[1]

185 z q[2]

186 y q[3]

187 y q[2]

188 cnot q[3], q[1]

189 y q[3]

190 y q[2]

191 h q[1]

192 toffoli q[4], q[1], q[0]

193 h q[1]

194 cphase q[4], q[0]

195 y q[1]

196 x q[4]

197 cnot q[0], q[2]

198 cnot q[1], q[3]

199 t q[4]

200 cnot q[0], q[4]

201 x q[1]

202 x q[3]

203 cphase q[1], q[3]

204 cnot q[1], q[2]

205 cnot q[4], q[2]

206 z q[3]

207 x q[4]

208 cnot q[2], q[3]

209 h q[3]

210 cphase q[4], q[2]

211 cphase q[3], q[4]

212 toffoli q[2], q[4], q[1]

213 cphase q[3], q[4]

214 cnot q[1], q[0]

215 y q[0]

216 h q[4]

217 t q[0]

218 toffoli q[1], q[0], q[2]

219 cphase q[4], q[3]

220 toffoli q[2], q[0], q[3]

221 cnot q[1], q[2]

222 x q[4]

223 x q[0]

224 h q[3]

225 toffoli q[1], q[0], q[2]

226 h q[2]

227 h q[4]

228 h q[1]

229 y q[1]
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230 z q[1]

231 y q[1]

232 cnot q[1], q[4]

233 t q[0]

234 x q[2]

235 y q[1]

236 t q[2]

237 h q[0]

238 x q[3]

239 z q[0]

240 cphase q[1], q[2]

241 toffoli q[3], q[4], q[2]

242 y q[2]

243 h q[3]

244 y q[4]

245 x q[3]

246 t q[4]

247 z q[0]

248 toffoli q[1], q[3], q[4]

249 z q[0]

250 t q[1]

251 x q[2]

252 t q[1]

253 x q[3]

254 cnot q[4], q[3]

255 h q[1]

256 t q[1]

257 cphase q[3], q[1]

258 cnot q[1], q[4]

259 toffoli q[0], q[2], q[1]

260 h q[2]

261 cnot q[4], q[3]

262 h q[1]

263 cnot q[4], q[1]

264 y q[4]

265 toffoli q[0], q[4], q[3]

266 cnot q[0], q[2]

267 x q[0]

268 z q[4]

269 toffoli q[3], q[0], q[1]

270 cphase q[1], q[4]

271 h q[2]

272 x q[3]

273 toffoli q[1], q[0], q[2]

274 h q[2]

275 cnot q[3], q[4]

276 cnot q[3], q[1]

277 x q[0]

278 y q[1]
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279 h q[0]

280 t q[0]

281 toffoli q[0], q[3], q[2]

282 h q[1]

283 x q[0]

284 h q[2]

285 toffoli q[1], q[4], q[2]

286 t q[3]

287 y q[2]

288 z q[0]

289 cphase q[2], q[0]

290 t q[3]

291 cnot q[4], q[3]

292 toffoli q[4], q[1], q[3]

293 t q[3]

294 t q[0]

295 cphase q[2], q[4]

296 cnot q[4], q[2]

297 y q[0]

298 x q[1]

299 x q[3]

300 y q[1]

301 h q[1]

302 toffoli q[3], q[2], q[1]

303 x q[2]

304 h q[0]

305 x q[2]

306 x q[0]

307 y q[2]

308 y q[3]

309 y q[4]

310 z q[3]

311 cnot q[1], q[3]

312 y q[3]

313 z q[0]

314 y q[3]

315 cphase q[4], q[2]

316 y q[2]

317 y q[0]

318 h q[0]

319 t q[2]

320 cnot q[2], q[1]

321 cphase q[3], q[0]

322 z q[4]

323 y q[2]

324 x q[1]

325 t q[3]

326 t q[0]

327 t q[1]
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328 h q[2]

329 cphase q[1], q[0]

330 cphase q[4], q[3]

331 toffoli q[0], q[3], q[4]

332 z q[1]

333 cphase q[0], q[2]

334 cphase q[1], q[0]

335 cnot q[2], q[4]

336 t q[0]

337 toffoli q[4], q[3], q[0]

338 x q[1]

339 cphase q[1], q[3]

340 cphase q[4], q[0]

341 x q[2]

342 toffoli q[1], q[2], q[0]

343 h q[2]

344 y q[0]

345 cnot q[3], q[2]

346 toffoli q[3], q[4], q[1]

347 cphase q[3], q[2]

348 cnot q[1], q[4]

349 x q[4]

350 y q[1]

351 x q[1]

352 t q[4]

353 z q[2]

354 h q[3]

355 y q[1]

356 cphase q[3], q[1]

357 cphase q[2], q[1]

358 cphase q[1], q[3]

359 t q[1]

360 y q[3]

361 h q[4]

362 x q[3]

363 cphase q[2], q[3]

364 h q[1]

365 y q[0]

366 t q[0]

367 x q[4]

368 cnot q[4], q[1]

369 toffoli q[2], q[1], q[0]

370 t q[0]

371 y q[1]

372 z q[4]

373 z q[4]

374 z q[2]

375 x q[2]

376 toffoli q[1], q[3], q[4]
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377 cnot q[0], q[4]

378 t q[0]

379 t q[0]

380 h q[4]

381 cnot q[2], q[1]

382 cnot q[3], q[1]

383 z q[4]

384 y q[4]

385 cnot q[3], q[2]

386 cphase q[0], q[1]

387 h q[2]

388 h q[4]

389 x q[3]

390 x q[4]

391 z q[1]

392 toffoli q[0], q[4], q[3]

393 cnot q[1], q[0]

394 z q[2]

395 z q[1]

396 cnot q[4], q[2]

397 t q[2]

398 toffoli q[0], q[4], q[1]

399 h q[1]

400 t q[2]

401 z q[0]

402 x q[0]

403 toffoli q[3], q[0], q[2]

404 x q[3]

405 toffoli q[2], q[3], q[4]

406 h q[0]

407 cnot q[4], q[0]

408 t q[4]

409 y q[1]

410 toffoli q[1], q[0], q[4]

411 t q[2]

412 toffoli q[2], q[0], q[3]

413 h q[2]

414 t q[1]

415 z q[3]

416 cnot q[3], q[0]

417 cphase q[0], q[1]

418 cnot q[0], q[3]

419 cphase q[2], q[3]

420 cnot q[3], q[2]

421 x q[3]

422 t q[3]

423 toffoli q[1], q[4], q[2]

424 cphase q[3], q[4]

425 t q[0]
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426 cphase q[1], q[2]

427 cphase q[0], q[4]

428 x q[1]

429 y q[2]

430 cnot q[2], q[3]

431 cnot q[4], q[1]

432 x q[1]

433 z q[3]

434 y q[3]

435 z q[3]

436 y q[2]

437 y q[2]

438 x q[4]

439 y q[4]

440 y q[0]

441 y q[3]

442 x q[0]

443 cnot q[4], q[3]

444 t q[2]

445 y q[2]

446 x q[2]

447 h q[3]

448 cnot q[1], q[3]

449 z q[3]

450 cnot q[2], q[1]

451 h q[3]

452 z q[4]

453 cnot q[0], q[1]

454 toffoli q[2], q[4], q[3]

455 cnot q[4], q[3]

456 y q[2]

457 h q[4]

458 cphase q[1], q[4]

459 toffoli q[0], q[1], q[3]

460 t q[0]

461 cphase q[3], q[2]

462 x q[0]

463 cnot q[4], q[1]

464 y q[2]

465 toffoli q[0], q[2], q[3]

466 toffoli q[2], q[1], q[4]

467 t q[1]

468 cphase q[0], q[2]

469 toffoli q[0], q[2], q[3]

470 h q[1]

471 toffoli q[2], q[1], q[3]

472 y q[3]

473 y q[4]

474 cnot q[1], q[3]
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475 toffoli q[3], q[4], q[0]

476 h q[0]

477 cnot q[1], q[3]

478 cnot q[1], q[2]

479 h q[2]

480 x q[4]

481 x q[0]

482 t q[2]

483 h q[4]

484 toffoli q[1], q[3], q[0]

485 cnot q[2], q[1]

486 y q[2]

487 toffoli q[0], q[4], q[2]

488 t q[2]

489 toffoli q[0], q[4], q[1]

490 x q[2]

491 cnot q[4], q[3]

492 cphase q[1], q[3]

493 t q[3]

494 y q[4]

495 h q[3]

496 z q[4]

497 cphase q[3], q[1]

498 t q[3]

499 cnot q[0], q[4]

500 z q[2]

501 z q[1]

502 t q[1]

503 display

Listing B.1: cQASM code generated for a 5 qubits random quantum circuit
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