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Resumo

A quantidade de dados desempenha um papel crítico no sucesso ou fracasso de aplicações
de aprendizagem de máquina. Este problema é especialmente prevalente em domínios onde a
aquisição de dados relevantes, de alta qualidade e heterogéneos é complicada por factores externos.

Recentemente, a engenharia biomédica tem sido apontada como um potencial candidato a in-
vestigação em aplicações de aprendizagem de máquina, com o objetivo de detectar ou diagnosticar
diferentes doenças. No entanto, taxas, questões de privacidade e a grande quantidade de tempo e
esforço necessários para enviar um protocolo aos comitês éticos para obter aprovação tornam os
dados clínicos extremamente difíceis de serem obtidos.

Como tentativa de resolver este problema, os modelos generativos ganharam recentemente um
maior interesse na comunidade de visão computacional, devido à sua capacidade de aumentar a
quantidade de dados, gerando novas amostras de alta qualidade a partir do conjunto de dados ini-
cial. Três tipos de modelos generativos dominaram recentemente a geração de imagens: modelos
auto-regressive, variational autoencoders e generative adversarial networks. A maioria das apli-
cações de imagem médica utilizam generative adversarial networks devido à sua capacidade de
gerar imagens de alta qualidade com base em mapas de anotações semânticas.

Tendo isto em consideração, o objetivo deste trabalho é sintetizar imagens pulmonares artifici-
ais a partir de anotações posicionais e semânticas, usando bancos de dados de exames reais e téc-
nicas do estado da arte. Para isso, primeiro exploramos três possíveis algoritmos de segmentação
baseados em threshold para extrair os pulmões dos exames de tomografia computadorizada, de
forma a criar imagens semelhantes às que seriam usadas noutros modelos de deep learning. Pos-
teriormente, exploramos a framework pix2pix para gerar imagens de pulmões a partir de mapas de
segmentação e implementamos uma versão alternativa que permite o uso adicional de anotações
semânticas, que são especialmente comuns no domínio médico.

Adicionalmente, contribuímos para a investigação da avaliação de modelos generativos, fa-
cilitando a interpretação da Fréchet Inception Distance através de uma representação visual das
distribuições reais e sintéticas reduzidas espacialmente e do cálculo de domain-specific Fréchet
Inception Distance. Os nossos resultados demonstram que a Fréchet Inception Distance pode ter
resultados inconsistentes quando usada no domínio médico, onde o domínio de imagens são muito
diferentes das encontrados na base de dados do ImageNet.
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Abstract

Data sample size plays a critical role in the success or failure of machine learning applica-
tions. This problem is especially prevalent in domains where acquiring relevant, high-quality,
heterogeneous data is complicated by external factors.

In recent years, biomedical engineering has been targeted as a potential research candidate
for machine learning applications, with the purpose of detecting or diagnosing various diseases.
However, fees, privacy issues and the large amount of time and effort to submit a protocol to
ethical committees to get approval, make clinical data extremely difficult to obtain.

As an attempt to solve this issue, generative models, have recently gained growing interest
in the computer vision community, due to their ability to increase dataset size by generating new
high-quality samples from the initial dataset. Three types of generative models have recently dom-
inated image generation: auto-regressive models, variational autoencoders and generative adver-
sarial networks. The majority of medical imaging applications make use of generative adversarial
networks due to their ability to generate images of high-quality based on semantic label maps.

With this in mind, the goal of this work is to synthesize artificial lung images from corre-
sponding positional and semantic annotations using databases of real exams and state of the art
generative modeling techniques. To achieve, we first explore three possible threshold-based seg-
mentation algorithms to extract the lungs from the full Computed Tomography exams, in order
to create images of the same modality that would be used in other deep learning models. Subse-
quently, we explore the pix2pix framework to generate lung images from the segmentation maps,
and implement a modified version that enables the additional use of semantic labels, which are
especially common in the medical domain.

Additionally, we contribute to the ongoing research of generative model evaluation by facili-
tating the interpretation of the Fréchet Inception Distance by means of a visual representation of
spatially reduced real and generated distributions and the computation of domain-specific Fréchet
Inception Distance. Our results show that the original Fréchet Inception Distance may show incon-
sistent results when used in the medical domain, where the domain of images are much different
from the ones found in the ImageNet dataset.

Keywords: Deep Learning, Generative Adversarial Networks, Medical Imaging
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Chapter 1

Introduction

With approximately 9.6 million deaths per year, cancer remains one of the leading causes of death

in the world. Lung cancer remains the most common cause of cancer death, accounting for 18.4%

of annual cancer deaths [1].

Low dose computed tomography (CT) scans are widely used by radiologists for lung cancer

screening and early diagnosis, however, radiologists face many challenges in analyzing lung nod-

ules that often lead to misdiagnosis. One of those challenges is the variability in the appearance

of lung nodules: shape, size, texture and other characteristics vary regardless of being benign or

malignant nodules.

As such, there is significant effort in pushing Computer-Aided Diagnosis (CAD) to reliably

identify and characterize lung nodules, in hope to improve lung cancer diagnosis. Recent advances

by Hussein et al. [2] have shown promising results in this regard by using supervised learning to

classify various characteristics of nodules (calcification, lobulation, sphericity, speculation, mar-

gin, and texture). However, with only 635 benign and 509 malignant nodules, it’s noted in that

study and is the main topic of [3] that high-quality medical data in large numbers is extremely

difficult to acquire. Moreover, annotated medical data requires contributions by medical experts,

which is expensive and time consuming and therefore, many available datasets lack annotations

that would potentially improve the quality of machine learning applications. Ultimately, fees, pri-

vacy issues, and the large amount of time and effort to submit a protocol to ethical committees to

get approval, make clinical data extremely difficult to obtain.

Recently, generative models, have gained popularity as a potential data augmentation tech-

nique to allow for additional synthetic data to be sampled and used to augment the real train-

ing data [4]. Three types of generative models have dominated image generation in the last few

years: auto-regressive models, variational autoencoders (VAE) and generative adversarial net-

works (GAN). Regressive models are mostly used to complete partially obfuscated images and

are, currently, very inefficient to train and to generate images. VAEs are faster to train but produce

images with the lowest quality of the three types. Finally, GANs take a game theory approach to
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2 Introduction

synthesize images, and currently produce state of the art images in terms of quality, depite being

very unstable to train. Proposed by Goodfellow et. al in 2014 [5], GANs consist of two networks,

pitched against each other in an adversarial process where one generates new, fake data (Generator

Network, G) and the other characterizes images as real or fake (Discriminator Network, D). This

process creates a competition where the two models are led to improve each other: G will, over

time, generate images of increased realism, while D will improve its capability of distinguishing

real and fake data. Many variations of the original GAN have since been proposed [6, 7, 8, 9, 10]

with interesting applications in generating images of one style from another style (image-to-image

translation) [11] or image inpainting [12].

In medical imaging, the majority of studies employ image-to-image translation to generate

labels into segmentations, segmentations to images or medical cross modality generation [13, 14,

15, 16]. For example, Salman Uh Dar et al. [16], trained a conditional GAN to generate the

missing contrast in a Multi-Contrast brain MRI. This type of generation makes use of pairs of

images to train a GAN to generate the "missing pair" in a new, not seen before, image. Fewer

cases involve the generation of images with the starting point of a random z noise vector, the

original architecture of GAN. OMaayan Frid-Adar et al. [17], used a Deep Convolutional GAN

(DCGAN) to generate liver lesions of three labeled types (cysts, metastases, hemangiomas) in

order to augment the initial dataset size of a liver lesion classifier. Using a DCGAN to augment

data resulted in an improvement in the accuracy of the classifier, proposing that augmentation

through generative models is a viable approach.

1.1 Motivation

Dealing with small, unlabeled data has been a recurring issue for machine learning applications in

the medical domain. As a result, many models fall short of the expected results since, typically,

learning algorithms require large amounts of annotated data.

Large quantities of medical data are often barred behind large fees, privacy issues or slow bu-

reaucratic processes and annotated data requires the availability of experienced radiologists which

is both expensive and time consuming.

Due to the high incidence of lung related pathologies, there has been a great push for the use of

deep learning techniques to automatically detect and diagnose these pathologies, which are highly

dependant on the amount of available data. Traditionally, deep learning models employ data-

augmentation techniques such as rotation, translation and cropping to produce additional training

samples, however, these samples are highly correlated with the existing samples, since they are

directly derived from them. Generative models have proven useful to increase data by generating,

new, realistic data that is indistinguishable from real data.
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1.2 Goals and Contributions

The purpose of this work is to research and implement a reliable method to synthesize lung images

from both object position annotations and semantic characteristics, in order to help reduce the

impact of data scarcity in the clinical use of lung cancer classification models.

The contributions of this work are the following:

• Implement a generative model capable of generating lung images from lung position anno-

tations;

• Implement a generative model capable of generating lung images from lung position anno-

tations and semantic annotations;

• Provide a deeper exploration of the Fréchet Inception Distance metric by using domain-

specific encoders;

1.3 Structure

The remainder of this report is organized as follows: chapter 2 presents an overview of the anatomy

of the lung, followed by information regarding computed tomography and its uses and a brief

overview of lung cancer and pulmonary nodules. Chapter 3 explores a literature review of the

most commonly used generative model architectures, evaluation metrics, current lines of research

and uses in medical imaging. Chapter 4 details the datasets, segmentation methods, generative

models and evaluation metrics used in this work, as well of the results of the generated samples.

Chapter 5 concludes the dissertation with an overview of the accomplished goals and contributions

and suggestions of possible future work.
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Chapter 2

Medical Background

2.1 Lung Anatomy

The lungs are a paired, cone-shaped organ lying in the thoracic cavity, connected to the trachea by

the left and right bronchi[18]. The diaphragm, a flat, dome-shaped muscle is located at the base

of the lungs and thoracic cavity. The lungs are enclosed by the pleurae, which are attached to the

mediastinum. The left lung, occupies a smaller volume than the right, which is shorter and wider.

The indentation on the surface of the left lung, called cardiac notch, allows space for the heart.

The costal surface of the lung borders the ribs and the mediastinal surfaces faces the midline [19]

(Figure 2.1).

Figure 2.1: Lung anatomy [18].

The lungs are composed of a set of lobes, separated by fissures. The right lung contains three

lobes: superior, middle and inferior lobe. While the left lung consists of only two: superior and

inferior lobe. Each lobe can then be divided into several bronchopulmonary segments. Ten for the

right lung: apical, anterior and medial, located in the right upper lobe. Medial and lateral in the

5



6 Medical Background

middle lobe. Superior, medial, anterior, lateral, and posterior in the lower lobe. Eight for the left

lung: apicoposterior, anterior, superior lingula, and inferior lingula in the left upper lobe, superior,

anteromedial, lateral, and posterior in left lower lobe (Figure 2.2).

Figure 2.2: Bronchopulmonary segments [19].

2.2 Computed Tomography

Developed in 1972 by Godfrey Hounsfield and Allan McLeod Cormack, the computed tomogra-

phy (CT) is a non-invasive imaging technique that combines multiple X-ray images, based on the

principle that different tissues reflect and absorb X-rays at different levels. To capture theses im-

ages, a patient lies in a motorized, ring-shaped platform while a computerized axial tomography

(CAT) scanner rotates 360 degrees, taking X-ray images. These images are then combined into a

two-dimensional view of the scanned area named "slice", which in turn are used to reconstruct a

3D volume CT image. Figure 2.3 shows an example of one of the mentioned slices, on a thoracic

CT scan.
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Figure 2.3: An example thoracic CT image [20].

CT scans can be used for a variety of diagnostic procedures such as identification of tumors,

cysts or infections and have the advantage of being painless and low-risk since the amount of

radiation a patient is subjected during the CT scan is minimal. The most common CT scan related

problem is an adverse allergic reaction when, occasionally, contrast materials are administered

intravenously or through other routes, in order to improve image quality related with structural

relationships of the spine, the spinal cord, and its nerves, which can result in allergic reactions.

2.3 Lung Cancer

According to the National Cancer Institute1, cancer is a term for diseases in which malignant cells

grow and divide without control. Moreover, the cells can spread into different regions of the body

through blood and lymph systems, invading other tissues.

Lung cancer can be classified in two different categories: Small Cell Lung Cancer (SCLC)

and Non Small Cell Lung Cancer (NSCLC), with the latter being the most common, accounting

for around 84% of all cases, according to the American Cancer Society [21]. Different sub-types

of cancer fall into the NSCLC category, each starting in a different type of lung cell, such as:

• Adenocarcinoma: most common sub-type of cancer, starts in mucus cells;

1https://www.cancer.gov/
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• Squamous cell carcinoma: cells that line airways of lungs;

• Large cell (undifferentiated) carcinoma: can appear in any part of the lung.

After its initial appearance, cancer can spread to other parts of the body, making treatment

much more difficult. The SEER2 database [22], tracks 5-year survival rates in the United States

for both NSCLC and SCLC, based on how far the cancer has spread. Localized indicates no

sign of cancer outside its initial tissue, regional implies cancer has spread to nearby structures

and distant means that the cancer has spread to distant parts of the body. For lung cancer the

5-year survival rates are 57.4%, 30.8% and 5.2% for localized, regional and distant respectively,

indicating that early diagnosis can lead to a greater chance of surviving.

2.4 Pulmonary Nodules

A pulmonary nodule is a small, round or oval-shaped growth in the lung that is smaller than 3 cm in

diameter and can be either benign or malignant (Figure 2.4). Often named a "spot on the lung" or a

"coin lesion", pulmonary nodules vary in shape and size, with larger ones having higher likelihood

of being malignant. Structures larger than 3cm in diameter are named pulmonary masses due to

their much higher likelihood of being malignant.

A nodule can have a number of different origins such as ongoing infections, lesions from

past infections or from benign/malignant tumors. Management of a detected pulmonary nodule

should aim at identifying malignancy as fast as possible, since early identification of malignant

lung nodules is an important factor in increasing survival chance, leading to a potential 60-80%

5-year survival rate, in stage I NSCLC [23].

2Surveillance, Epidemiology, and End Results
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Figure 2.4: CT image presenting a pulmonary nodule (red arrow). [24]

According to the results of the National Lung Screening Trial, a United States based lung

cancer screening trial [25], the diameter of the nodule played a significant part in the malignancy

results of screened patients, as shown in table 2.1.

Diameter PPV

4-6mm 0.5

7-10mm 1.7

11-20mm 11.9

21-30mm 29.7

>30 41.3
Table 2.1: The positive predictive value (PPV) is defined as the proportion of patients with con-
firmed lung cancer among those with a positive result on screening whose lung-cancer status was
known [25].

Additionally, when assessing the likelihood of malignancy, other nodule characteristics are

typically considered, when examining a CT exam, such as: calcificaton, spiculation and ragged

margins, intranodular fat, among others [23].
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2.5 Emphysema

Emphysema is a lung condition, part of a larger group of diseases known as chronic obstruc-

tive pulmonary disease (COPD), that occurs more commonly in smokers or people who regularly

breathe in irritants, that causes shortness of breath. Emphysema causes the air sacs in the lungs

to be damaged and, over time, the inner walls of the air sacs weaken and rupture, which reduces

the surface area of the lungs and, in turn, the amount of oxygen that reaches the bloodstream[26].

Studies have shown that the presence of emphysema may increase the risk of lung cancer by 3.8-

fold[27] and as such, the diagnosis of this disease could lead to early cancer diagnosis and reduce

the risk of mortality.

Emphysema is a condition that over time becomes more visible in lung CT imaging. An

example of a lung CT with emphysema can be seen in Figure 2.5

Figure 2.5: CT scan of a lung with emphysema. [28]



Chapter 3

Generative Models - Literature Review

Generative models are a subset of unsupervised learning where given some training data, they

generate new samples from that same distribution. To achieve this, generative models perform

density estimation, where from an unknown training data distribution pdata, they return an estimate

of that distribution pmodel . There are two ways to achieve this result: explicit density estimation,

where generative models explicitly define and solve for pmodel , or implicit density estimation
where the model samples directly from pmodel without explicitly defining it. Figure 3.1 shows the

taxonomy of various generative models.

Figure 3.1: Taxonomy of Generative Models. [29]

11
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3.1 Auto-Regressive Models

Auto-regressive generative models implicitly define a distribution over sequences using the Chain

Rule for Conditional Probability, where in each step, the distribution of the next sequence element

is predicted given the previous elements. PixelRNN and PixelCNN[30] are two examples of auto-

regressive models where the first uses a recurrent neural network and the second a convolutional

neural network, the two main architectures for auto-regressive generative models.

Pixel recurrent neural networks (PixelRNN), generate each pixel of an image in a sequence,

where each one is dependant on all previously generated pixels. This technique employs a simple

and stable training process to produce very sharp images, sacrificing efficiency during sampling.

Formally, the goal is to assign a probability p(x) to each image x of size N×N pixels. This

probability is the product of conditional probabilities for each pixel:

p(x) =
n2

∏
i=1

p(xi|x1, ...,xi−1) (3.1)

where the probability of pixel xi, p(xi), is conditioned on the probability of previously gener-

ated pixels, for each color channel (red, green and blue).

Two PixelRNNs were designed, each composed of up to twelve, fast two-dimensional Long

Short-Term Memory (LSTM) layers: Row LSTM, applies each convolution along each row, cap-

turing a triangular area above the pixel, as shown in Figure 3.2.

Figure 3.2: Row LSTM. [30]



3.2 Variational Autoencoders 13

Since this process does not consider all previously generated pixels, an additional architecture

was proposed, Diagonal BiLSTM, where convolutions are applied along the diagonal of an image

(Figure 3.3).

Figure 3.3: Diagonal BiLSTM. [30]

Both row LSTM and diagonal BiLSTM have an unbounded dependency range, meaning that,

during training, each pixel could potentially be using information from every pixel before itself,

which can be computationally inefficient. To help overcome this issue, the PixelCNN uses con-

volutional layers to capture a bounded receptive field and compute features for all pixels at once,

which lowers training time considerably. However, image generation is still sequential in Pixel-

CNN and since the receptive field will be smaller, the quality of the image may be affected.

Since auto-regressive models are based on context to generate pixels, they are typically used

to complete partially occluded images, making them the model that achieves better results in this

type of problem. Figure 3.4 showcases results of PixelRNN in this type of problem.

Figure 3.4: PixelRNN results when completing an image. [30]

3.2 Variational Autoencoders

An Autoencoder is an unsupervised learning technique that apply Neural Networks to the task of

representation learning. They consist of a network that encodes/decodes training data to/from a

bottleneck region. The general attributes in the bottleneck are referred to as latent attributes of the

input data and compose a latent space. Figure 3.5 illustrates these concepts.
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Figure 3.5: Autoencoder architecture. [31]

In terms of data generation, Autoencoder are limited since the encoder outputs a single value

for each encoding dimension, producing a non-continuous latent space, which doesn’t allow in-

terpolation. To overcome this, Variational Autoencoders (VAE)[32], employ a probabilistic spin

on Autoenconders and enable the model to generate new data: instead of encoding an input as

a single point, we encode it as a distribution over the latent space. The model is then trained as

follows:

• Encode input as distribution over the latent space;

• Point from the latent space is sampled from that distribution;

• Decode sample point and compute reconstruction error;

• Backpropagate error through the network;

Formally, we can define the "probabilistic decoder" as p(x|z), that is, the distribution of the

decoded variable given the encoded one, whereas the “probabilistic encoder” is defined by p(z|x),
that describes the distribution of the encoded variable given the decoded one and can be calculated

by the Bayes’ rule:

p(z|x) = p(x|z)p(z)
p(x)

=
p(x|z)p(z)∫
p(x|z)p(z)dz

(3.2)

The integral in the denominator implies evaluating all possible configurations of latent vari-

ables for each candidate z which is intractable. To overcome this issue, p(z|x) is instead approxi-

mated through a distribution qλ (z|x), where λ refers to the parameters of the type of distribution,

for example, λ = (µ,σ2) in a Gaussian distribution. The Kullback-Leibler (KL) divergence can

then be used to evaluate how well the chosen distribution approximates p(z|x), and the goal is to

obtain the λ of distribution q that minimize the KL divergence:

argminλ KL(qλ (z|x)||p(z|x)) = argminλEq[logqλ (z|x)]−Eq[log p(x,z)]+ log p(x) (3.3)
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This minimization is also intractable since it involves computing p(x). Since the KL diver-

gence is always equal or greater than zero and log p(x) does not depend of q, we can instead

maximize the following expression, known as evidence lower bound (ELBO):

ELBO = Eq[log p(x,z)]−E[logqλ (z|x)] (3.4)

The network is then trained to minimize the loss function shown in equation 3.5, where

L (x,x1) indicates the previously mentioned reconstruction loss.

argmin
λ

L (x,x1)+ELBO (3.5)

3.3 Generative Adversarial Networks

Generative Adversarial Networks (GANs), first proposed in [5], have since gained increased pop-

ularity as a data generation technique. Figure 3.6 shows the cumulative number of uniquely named

GAN papers released monthly since they were first proposed in 2014, to September 2018.

Figure 3.6: Cumulative number of named GAN papers by month. [33]

GANs pair two neural networks (tipically, convolutional neural networks) in an adversarial,

two-player game where player one, the generator, has the goal of tricking the other player by gen-

erating realistic samples. Player two, the discriminator, has to guess if an image it receives as

input is real or fake. In other words, the discriminator’s goal is to correctly guess if the images

originate from the original training dataset or if they were synthesized by the generator. This com-

petition leads the two models to improve each other: the generator will, over time, sample images

with increased realistic features, while the discriminator will improve its ability to distinguish real

from fake images. The resulting system creates a scenario where if a discriminator learns the data

features and is accurate at identifying real images and a generator is still able to trick it, then the
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generated images can be considered of high-quality and could be part of the original dataset. This

interaction is summarized in Figure 3.7.

Figure 3.7: GAN architecture. [34]

Formally, the goal of the generator network (from now on referred to as G), is to learn the

mapping of some representation space (latent space) pz(Z), where Z is a a sample from that latent

space, to the space of the data pdata(x), where x is a real sample and produce a synthetic data

sample G(z). The goal of the discriminator network (from now on referred to as D), is to learn the

mapping of some data sample to the probability of it being real (closer to pdata, probability value

closer to 1) or fake (closer to pz, probability value closer to 0).

The process of training a GAN is often described as a zero-sum game (also known as min-

max game), where the generator and the discriminator have differentiable functions. The cost of

training is evaluated using a value function, V(G,D) that depends on both the generator and the

discriminator:

max
D

min
G

V (G,D) (3.6)

where,

V (G,D) = Ex∼pdata(x) logD(x)+Ez∼pz(Z) log(1−D(G(z))) (3.7)

The cost used for G in Equation 3.7 is useful for theoretical analysis but does not usually

perform well in practice. This is because when D successfully rejects G samples with very high

confidence, which occurs frequently in the early stages of training when the fake samples are

much different from the training data, G will likely go into the state of vanishing gradients which

throttles or completely stops training. To solve this, the most common approach is to change G’s

cost function to:

max
G

[Ez∼pz(Z) log(D(G(z)))] (3.8)
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The difference is, in Equation 3.7, G minimizes the log-probability of D being correct. In

Figure 3.8, the new optimized objective function, G maximizes the log-probability of D being

mistaken. This approach is known to improve results and is considered the standard in practice.

The training process consists of simultaneous Stochastic Gradient Descent. Ideally, D is

trained until optimization with respect to current G, then D is updated again. In practice, this

is prone to over-fitting and so D and G are, tipically, alternately optimized: D optimized for k

steps and G optimized 1 step. The number of k steps is a hyper-parameter. Although some au-

thors achieved better results running more k steps on D, Goodfellow[29], is of the opinion that the

protocol works best with the value of 1. That is, D and G are trained iteratively, with one step for

each one.

3.3.1 Deep Convolutional GAN

GANs are often affected by a number of different issues such as: mode collapse (G maps different

Z values to the same output, resulting in similar synthesized images), diminished gradients (D

becomes rapidly successful, resulting in gradient vanishing in G), non-convergence (G and D fail

to stabilize and converge) and high sensitivity to hyper-parameters. In order to solve these issues,

several architecture variants have been proposed. Most notably, the Deep Convolutional GAN[10]

made great progress in improving the quality of generated images by replacing maxpoolings in

the original architecture with strided convolutions in D and fractionally-strided convolutions in

G (figure 3.8), allowing the networks to learn their own spatial downsamplings. Despite this

progress, the mentioned issues still remain an open problem.

Figure 3.8: DCGAN Generator architecture. [10]

Other key changes in the DCGAN architecture were:

• Using batch normalization[35] in both G and D to help gradient flow in deeper models and

prevent mode collapse.

• Removal of fully connected hidden layers for deeper models.

• Using ReLU activation in G for all layer except output, which uses Tanh.

• Using LeakyReLU in all layers of D
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• Adam optimizer[36] instead of Stochastic Gradient Descent with momentum

As an extension to this architecture, Wu et al.[37], presented GANs that were able to synthesize

3D images of cars, tables and chairs using volumetric convolutions.

3.3.1.1 Loss Functions

Most GAN architectures are now based on the DCGAN architecture with hundreds of new named

GANs being developed since its inception. The majority of new GANs focus on researching

improvements of the original loss function by adding new penalties or by creating new ways to

compute costs. Popular variations are the Wasserstein GAN (wGAN)[6] and the Least Squares

GAN (LSGAN)[38].

wGAN consists on a modification to the original loss function in which D does not classify

instances. Instead, for each instance it outputs a number corresponding to how real an image is

and so the training goal is to have a higher value for real images than to fake images. This way, D

is no longer simply "discriminating" between real or fake images but critiquing the "realness" of

an image. This means that the inputs to the loss functions don’t have to be probabilities. The loss

functions for D and G are then respectively:

max
D

D(x)−D(G(z)) (3.9)

max
G

D(G(z)) (3.10)

The benefit of Wasserstein loss is that it provides useful gradient almost everywhere, allowing

for the continued training of the models. It also means that a lower Wasserstein loss correlates

with better fake image quality, meaning that we are explicitly seeking a minimization of generator

loss.

Also motivated by the issue of vanishing gradients caused by the use of binary cross entropy,

it was also proposed penalizing G when the generated images are very different from the real

images, reducing the chances of the gradients to vanish. D is then modified to minimize the sum

squared difference between predicted and expected values for real and fake images:

min
D

(D(x)−1)2 +(D(G(z)))2 (3.11)

The generator seeks to minimize the sum squared difference between predicted and expected

values as though the generated images were real:

min
G

(D(G(z))−1)2 (3.12)
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In practice, this involves maintaining the class labels of 0 and 1 for fake and real images

respectively, minimizing the least squares, also called mean squared error or L2 loss:

l2loss = ∑(ypredicted− ytrue)
2 (3.13)

The benefit of the least squares loss is that it gives more penalty to larger errors, in turn re-

sulting in a large correction rather than a vanishing gradient and no model update. Many other

GAN loss functions have been proposed such as the DRAGAN[39] or the BEGAN[40], however,

it should be noted that there is a growing discussion[41] on whether modifications to the loss

functions effectively improve GAN results.

3.3.2 Stacked GANs

Stacked GANs (SGAN)[42] are another variant of the original GAN architecture that instead of

using a Generator and Discriminator, uses an Encoder, and a Decoder network. The decoder

works as the generator in a GAN model and as the name “stacked” implies, the decoding and the

encoding are done in a stack.

The stack of encoders is fed with image x, predicting label y at the end of the stack. Each

encoder in the stack creates an intermediate prediction and feeds it as conditional input to the

corresponding generator along with noise. The output of the generator is fed as input to the same

encoder creating a new prediction. Each level is trained individually, and then joint training is

performed as schematised in Figure 3.9.

Figure 3.9: SGAN architecture. [42]

3.3.3 Progressive Growing of GANs

Most GAN research has focused on low-resolution images. During the early stages of training,

if the real images are of low-resolution and so have less detail, D will have more difficulty in
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identifying real from fake images. In other words, low-resolution images make the early G’s

distribution closer to the real images distribution, which improves convergence.

Progressive growing of GANs[7] (PGGAN), were introduced by NVIDIA1 as a way to tackle

this limitation. The main idea of this architecture is to grow G and D progressively, starting from

simpler, low-resolution images, and adding new layers that introduce higher-resolution details as

training progresses. The goal is to initially discover large scale (low frequency) information and

incrementally learn more fine scale (higher frequency) information. To achieve this, G and D are

mirrors and are increased in synchrony, as shown in figure 3.10.

Figure 3.10: PGGAN architecture & results. [7]

Figure 3.11 shows how each layer is faded in to G and D. This process is used to avoid "shocks"

to the model when a new layer is added with initialised parameters, which would destabilise the

model. After a certain number of training iterations (800k images shown to D in the publication),

the new layer is added to D and G and progressively more images are passed through this layer,

until it is completely faded in (fade in takes another 800k images in the publication). In figure 3.11,

the fade in is controlled by α which starts at 0. As it increases, more images are passed through

the new 32×32 layer (b), until it reaches the value of 1 and all images start passing through it

(c). This process repeats until all layers are faded in and the images are outputted in the desired

resolution.

1https://www.nvidia.com/
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Figure 3.11: PGGAN layer fade-in. [7]

In terms of loss functions, a WGAN-GP and LSGAN were used, achieving similar results, and

noting that the choice of loss function should have minimal impact on this training method.

3.3.4 Conditional GAN

First proposed in [8], conditional GANs (cGAN) extend the original architecture by adding a class

conditional label to G and D, as shown in Figure 3.12. Conditional GANs provide better represen-

tations of multimodal data, for example, in the MNIST dataset[43], using a cGAN would allow

the specification of which digits the generator should output. In the original GAN (or DCGAN),

the generator randomly outputs digits and there is no control over which digits are generated.

Figure 3.12: cGAN architecture. [34]
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The loss function for the cGAN shown in Equation 3.14 is a variation of the original minmax

equation for GANs shown in Equation 3.7.

max
D

min
G

V (G,D) = Ex∼pdata(x) logD(x|y)+Ez∼pz(Z) log(1−D(G(z|y))) (3.14)

where y represents a class label or data from other modalities such as semantic label maps, as

shown in section 3.3.5.

Another type of conditional GAN, the Auxiliary Classifier GAN (AC-GAN), first proposed

in[9], showed that tasking D with reconstructing side information, instead of directly being fed side

information, improved the overall quality of the generated images on the ImageNet dataset[44].

Figure 3.13: AC-GAN architecture. [34]

This architecture implies a modification to the original GAN loss function of Equation 3.7, in

order to add the additional term Lc, related with D’s probability of correctly classifying labels:

max
D

min
G

V (G,D) = Ex∼pdata(x) logD(x)+Ez∼pz(Z) log(1−D(G(z)))+Lc (3.15)

where,

Lc = E[logP(C = c|Xreal)]+E[logP(C = c|X f ake)] (3.16)

3.3.5 Image-to-image Translation: pix2pix & pix2pixHD

First introduced in [45], image to image translation refers to the conversion of an image of a certain

domain, into an image of a different domain. The idea is to learn the mapping between an input

image and an output image using a training set of image pairs.

The first work that pioneered image-to-image using GANs was pix2pix [11], a cGAN based

architecture that uses U-Net[46] for G and a Convolutional PatchGAN as D. Instead of classifying

each image as real or fake, as in the cGAN architecture, the PatchGAN applies a classification

strategy to N×N patches of the images it receives as input. The training process of this framework

is similar to the cGAN architecture, with the addition of the L1 distance as one of terms of the loss

function of G to measure the similarity between corresponding real and synthetic images. The L2
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loss was also tested but produced blurrier results. The resulting loss function is the adversarial loss

function presented in the previous chapters, with the added L1 loss:

argmin
G

max
D

Ex,y[logD(x,y)]+Ex,z[log(1−D(x,G(x,z)))+λEx,y,z[||y−G(x,z)||1] (3.17)

where λ is a hyper-parameter that controls the importance given to the L1 distance term. In

terms of the practical implementation, G was trained to maximize log(D(x,G(x,z))), to prevent

vanishing gradients.

This framework does not directly input noise to G. Instead, it is introduced through dropouts

in the network, since initial experiments showed that G simply learned to ignore the noise when it

was provided as a direct input tot he network. Additionally, D’s objective function is divided by

2, to slow down it’s learning rate.

Figure 3.14: pix2pix results. [11]

A variant of this architecture known as pix2pixHD is proposed in [47] where the model is mod-

ified to use a coarse-to-fine G and multi-scale discriminators, achieving better results at producing

images of higher resolution.

Figure 3.15: Coarse-to-fine generator of pix2pixHD. [47]

The coarse-to-fine generator is composed of two sub-networks: global generator G1 and local

enhancer G2 that interact in the following way: G2 first receives a semantic label map and outputs a

set of feature maps with half the size of the original input. The semantic label map is downsampled

to half size, concatenated with the feature map and fed as input to G1. The last set of feature map
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produced by G1 is summed pixel-wise to the set of feature maps outputted by G2, and the resulting

set of feature maps is fed to G2’s residual blocks, finishing the forward pass through G2.

To discriminate real and fake images, a multi-scale discriminator architecture was proposed.

Three identical discriminators are trained to detect real and fake images at different resolutions.

Through experiments, it was noted that the multi-scale discriminators not only resulted in higher-

quality images, but also reduced repeated patterns that would often appear in the generated images,

making the images visually incoherent.

The objective function used to train the model combines a modified version of the classical

GAN loss that incorporates multi-discriminator optimization with feature matching (Equation

3.18) and perceptual loss (Equation 3.19).

LFM(G,Dk) = E(s,x)

T

∑
i=1

1
Ni

[||D(i)
k (s,x)−D(i)

k (s,G(s))||1] (3.18)

where Dk
(i) indicates the ith layer feature maps of the discriminator Dk, T refers to the total

number of layers and Ni refers to the number of elements of the ith layer.

The perceptual loss component consists of computing the L1 distance between the same inter-

mediate feature maps of the VGG network[48] obtained using the real image and it’s correspond-

ing fake counterpart:

Lperceptual(x,G) =
N

∑
i=1

1
Mi

[||F(i)(x)−F(i)(G(s))||1] (3.19)

where F(i) denotes the ith layer with Mi elements of the VGG network.

The final objective function is then given by:

min
G

(( max
D1,D2,D3

∑
k=1,2,3

LGAN(G,Dk))+λ ∑
k=1,2,3

LFM(G,Dk)+λLperceptual(x,G)) (3.20)

Additionally, binary boundary maps were used to differentiate between multiple objects of

the same class that were partially in front of each other. Figure 3.16 showcases the results of this

implementation compared with the original pix2pix.
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Figure 3.16: Comparative results of pix2pix, pix2pixHD and CRN. [47]

3.3.6 Image-to-image Translation: CycleGAN

The two mentioned frameworks of the previous section, require paired data which can be difficult

and expensive to prepare. For this reason, the CycleGAN[49] was proposed as an unsupervised

model, using a collection of images that do not need to be related in any way. This simple, yet

powerful technique resulted in image translation of high quality on a wide range of domains,

Figure 3.17 shows some of the published results.

Figure 3.17: CycleGAN results. [49]

The framework is composed of four networks: two generators G and F , and two discriminators

Dx and Dy. These networks work in pairs where Dy evaluates images translated from domain X to

Y by G, and Dx evaluates the inverse transformation (Y to X) performed by F . The goal is to learn

the appropriate G and F mappings according to the training data comprised in each domain. This

interaction is shown in Figure 3.18.
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Figure 3.18: CycleGAN framework. [49]

The loss function used in this framework combines the classic GAN loss with an added cycle
consistency term. The goal of this term is to evaluate whether an image that is translated from

domain X to Y to X, remains identical to the original image. Cycle consistency is computed

through the L1 distance between each image and its reconstruction for each domain:

Lcc(G,F) = Ex∼pdata(x)[||F(G(x))− x||1]+Ey∼pdata(y)[||G(F(y))− y||1] (3.21)

The final loss function is then given by:

L (G,F,Dx,Dy) = LGAN(G,Dy,X ,Y )+LGAN(F,Dx,Y,X)+λLcc(G,F) (3.22)

where λ controls the importance of the cycle consistency term.

3.3.7 Optimization Techniques

Training a GAN is not a simple task and finding ways to improve and facilitate this process is

an ongoing research topic. Non-convergence, mode collapse and diminished gradients are some

of the main issues that affect GAN training and several publications have highlighted possible

techniques that reduce the impact of these issues:

• Experience replay[50]: D updated using the newest generated samples as well as with

previous ones, preventing it from over-fitting to a certain time instance of the generator.

• Historical averaging: track previous model parameters and penalize changes that are too

different from the average changes, which improves convergence.[51]

• Feature matching: Train G to produce fake data that matches the statistics of real data.[51]

• One-sided label smoothing: Penalize D by replacing 0 and 1 targets with smoothed values,

such as 0.2 and 0.9 respectively. Some authors advise not smoothing fake labels.[51]

• Mini-batch discrimination: Instead of training D with one image at a time, train with

one mini-batch of fake images and one mini-batch of real images. This not only improves

convergence but can also be used to detect mode collapse by analyzing the similarity of the

images in the mini-batch of fake images.[51]
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• Virtual batch normalization: Normalize each input sample in relation to the statistics of a

fixed, reference batch, defined beforehand.[51]

3.3.8 Evaluation of generative models

Standardising GAN evaluation is currently an open problem. Although several methods and met-

rics have been proposed, researchers are yet to agree on which better capture the advantages and

shortcomings of GAN models. Current methods can be divided into two groups: perceptual
studies, which relate with using human observers analyze and compare real and fake images, and

objective metrics, which contain both traditional similarity scores and tasks such as classification,

detection or feature extraction and comparison.

3.3.8.1 Perceptual Studies

Perceptual studies consist on asking human annotators to attempt to distinguish between generated

data and real data and evaluate those results to extract a metric that quantifies the quality of the

model. Naturally, since these evaluations are based on subjective evaluation, the results can vary

depending on the motivations of the subject, the setup of the task or by the use of hand-picked

samples.

The Visual Turing Test (VTT)[52], proposes a standard to perform this evaluation. It consists

of posing binary questions to assess a system’s ability to recognise objects and identify attributes

and relationships in images. This method is commonly used in medical generation, for example

in [53], since objective methods are typically not available in this domain.

3.3.8.2 Inception Score

The Inception Score (IS)[51], was proposed as a way to overcome the downsides of perceptual

studies while still maintaining correlation with human evaluation. The IS measures two things

simultaneously: whether the images have variety and if each image contain meaningful objects.

Calculating the IS involves applying one of the most widely used classification networks,

the Inception network[54], pre-trained on the ImageNet dataset, to obtain the conditional label

distribution p(y|x). If the generated images are varied, the marginal
∫

p(y|x = G(z))dz will have

high entropy and if an image contains meaningful objects, its corresponding p(y|x) will have low

entropy. The combination of these two values results in the Inception Score:

IS = eExKL(p(y|x)||p(y)) (3.23)

where p(y) corresponds to the marginal class distribution.

Despite being a novel method of GAN evaluation, the IS score still has several drawbacks[55,

56]:

• IS is limited by what the Inception network can classify, which depends on the data used to

train it, which makes it impractical in domains where classifying images is difficult.
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• The Inception network is sensitive to small variations on the pre-trained weights, resulting

in different scores for the same set of test images. The process of training a network for clas-

sification has inherent randomness, which causes different training procedures to produce

different weights.

• The IS has no component for evaluating intra-class variability, so high scores will be pro-

duced even if the generator only synthesizes one type of image per class.

• The IS is unable to detect if the generator learns to replicate the training images instead of

generating different ones, producing high values.

• Due to its conception, the IS may favor models that generate good objects rather than real-

istic images.

• The IS is an asymmetric measure and is affected by image resolution.

3.3.8.3 Fréchet Inception Distance

The Fréchet inception distance (FID)[57] measures the generator’s performance by calculating the

Fréchet distance between two multivariate Gaussians, created by the 2048-dimensional features of

the pool3 layer of the Inception-v3 model:

FID = ||µr−µg||2 +Tr(Σr +Σg−2(ΣrΣg)
1/2) (3.24)

where the µr and µg refer to the feature-wise mean of the real and generated images and Σr,

Σg are the covariance matrix for the real and generated feature vectors.

FID has 0 as its lower bound but has no upper bound. A lower FID value indicates higher

similarity between a real image and its corresponding synthetic counterpart and, therefore, a high

quality synthetic image. Similarly to IS, this metric is also dependant on what the Inception

network can classify.

3.3.8.4 Structural Similarity Index

First used in[58] as an image evaluation technique, the Structural Similarity Index (SSIM) uses

three image characteristics to compare two images:

• Luminance and contrast distortion: Image distortitions are less visible in bright or tex-

tured regions.

• Loss of structural correlation: Spatially close pixels are considered to have strong inter-

dependence.

The SSIM is calculated through the product shown in equation 3.25 where l, c and s represent

luminance, contrast and structural correlation, respectively.

SSIM(x,y) = l(x,y) · c(x,y) · s(x,y) (3.25)
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where,

l(x,y) =
2µxµy +C1

µ2
x +µ2

y +C1
(3.26)

c(x,y) =
2σxσy +C2

σ2
x +σ2

y +C2
(3.27)

s(x,y) =
σxy +C3

σxσy +C3
(3.28)

where µx, µy, σx, σy, and σxy are the local means, standard deviations, and cross-covariance

for images x, y. C1, C2 and C3 are constants.

3.3.9 GANs in medical imaging

Although the use of GANs in the medical domain is extremely recent, the popularity of GANs

and the quality of the results shown in benchmark datasets, have encouraged medical imaging re-

searchers to experiment with this technology over the last years. Figure 3.19 shows the distribution

of released GAN papers in medical imaging in terms of (a) canonical tasks, (b) image modality

and (c) number of papers published from 2016 to 2018.

Figure 3.19: (a) Categorization of GAN related papers according to canonical tasks. (b) Cate-
gorization of GAN related papers according to imaging modality. (c) Number of GAN related
papers published from 2016. Note that some works performed various tasks and conducted eval-
uation on datasets with different modalities. We counted these works multiple times in plotting
these graphs. Works related to cross domain image transfer were counted based on the source
domain. The statistics presented in figure (a) and (b) are based on papers published on or before
January 1st, 2019. [59]

3.3.9.1 Noise-to-image applications

Noise-to-image refers to GANs that generate images that are not conditioned on a semantic label

map. From graph (c) of figure 3.19, only 21 publications fall into this category with the large

majority of publications employing image-to-image synthesis.
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On the use of GANs as a potential augmentation technique, Maayan Frid-Adar et al.[17], used

three DCGANs (section 3.3.1), to generate three types of liver lesions (cysts, metastases, and he-

mangiomas). The generated samples where used to train a liver lesion classifier with additional

synthetic data, improving the accuracy of the classifier when compared with training with tradi-

tional augmentation techniques (rotation, cropping, etc.) by 7.1%. This work is fundamental in

further supporting the hypothesis that GANs can effectively be used to lessen the impact of data

scarcity in the medical domain, and increase the accuracy of classifiers. Furthermore, the same

experiment was performed with an ACGAN (section 3.3.4), but the generated images did not

improve classification. This result was unexpected since typically, other experiments performed

by the computer vision community, suggested that using labels to train GANs resulted in higher

quality images[9][51].

Christopher Bowles et al.[60], also used GANs to increase data size to improve the perfor-

mance of a CNN. In this publication, a PGGAN (section 3.3.3) was used due to its ability to

synthesize images of larger resolutions and the additional synthetic data was used to test whether

a segmentation network could be improved. Several experiments were performed with varying

percentages of available real data. The results showed that in all cases the segmentation network

benefited from the increased synthetic data, with more significant results with lower percentages

of available real data.

In another interesting experiment, Sarfaraz Hussein et. al[53], used a DCGAN to generate lung

nodules and used a Visual Turing Test (section 3.3.8.1) to evaluate whether two radiologists could

identify which nodules were real or not. Figure 3.21 shows the ratio of nodules correctly identified

by the radiologists and Figure 3.20 showcases the generated nodules. In this publication, it’s noted

that the radiologists would occasionally notice unnatural characteristics in the lung nodules, such

as nodules having both malignant and benign characteristics that would stand out and tip them into

recognizing them as fake.

Figure 3.20: Example of synthetic lung nodules from DCGAN. [53]
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Figure 3.21: FRR for the two radiologists and contain either all generated nodules or a mixture of
real and generated nodules. The FRR shown in the pie charts indicate the percentage of nodules
which radiologists recognized as generated (fake). [53]

This experiment showed that a DCGAN architecture can be used to generate samples that

pass the VTT test. Nevertheless, it was noted that some samples contained characteristics of both

malignant and benign nodules, which would stand out to the radiologists and lead them to correctly

identify the synthetic image as fake.

3.3.9.2 Image-to-image applications

The majority of image-to-image applications employ the pix2pix and cycleGAN frameworks for

cross modality synthesis. This type of synthesis relates to generating an image of a certain domain,

from an image of a different domain for example, T1 weighted MRI to T2 weighted MRI or MRI

to CT.

In the medical imaging context, annotating medical data requires highly specialized profes-

sionals. This means that paired images are often not available, which encourages many researchers

to employ the CycleGAN framework. Jelmer M. Wolterink et al.[14], used this architecture to

translate brain MR images into brain CT images, experimenting with paired and unpaired data

and achieving better results with the latter (figure 3.22).

Figure 3.22: Paired data results vs unpaired data results. [14]

In another interesting application, Zizhao Zhang et al.[61], found that improved results could

be achieved when adding a shape consistency loss obtain from two segmentation networks to
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the cycleGAN loss function. This added term provided an extra level of regularization on the

generators, preserving pixel-wise semantic label ownership and guarantee the anatomical structure

invariance in medical volumes.

3.4 Summary

In this chapter, we explored various architectures of the three main types of generative models,

their strengths and shortcomings. Auto-regressive models are a relatively simple model to train,

produce images of high-quality but are very inefficient and, since they are based on generating

pixels through context, are mostly used for completing partially occluded images, which is not

within the scope of this project. Variational autoencoders are efficient both during training and

sampling but produce blurry images due to the reconstruction error of the decoder. Improving

image quality in VAEs is currently an open problem with VAE-GAN hybrids being proposed

recently, such as the adversarial autoencoder[62] that produce improved results. However, these

results are still not on par with the quality of images generated by GANs and are also yet to

be tested in real-world scenarios. GANs currently offer state of the art image quality and their

popularity as sprouted a number of different architectures aimed at improving both efficiency

(DCGAN) and image resolution (PGGAN). The biggest disadvantage of GANs when compared

to the other two methods is the lack of viable evaluation metrics, which often leads to researchers

using subjective visual evaluation.



Chapter 4

Lung Image Synthesis

4.1 Datasets

Choosing viable datasets is a crucial task in any deep learning application, especially when deal-

ing with unstable models such as GANs and in domains where high-quality data is difficultly to

acquire. The following sections will describe the two used datasets, one public (LIDC) and one

private (NLST), their details and train/test distributions.

4.1.1 Lung Image Database Consortium

The Lung Image Database Consortium image collection (LIDC-IDRI) [20] is a public dataset

consisting of 1018 diagnostic and lung cancer screening thoracic computed tomography (CT)

scans with an associated XML file containing the results of an annotation process performed by

up to four radiologists related with the position and characteristics of lung nodules.

For the final dataset, we decided to use both examples with and without nodules, and, in order

to balance the dataset, for each image containing an annotated nodule, a random slice guaranteed

to not contain a nodule was added to the final dataset.

Of the total 1018 exams, 713 (70%) were used in the training dataset while the remaining 305

(30%) were used for the test set, resulting in 20553 images for training and 7885 for testing. All

images remained with the original size of 512×512.

4.1.2 National Lung Screening Trial

The NLST Dataset [63] is a large scale dataset that collected data between August 2002 and April

2004. It includes patient clinical data, characteristics, screening exam results from approximately

54,000 participants. The CT dataset contains 75,000 screening exams complete with various an-

notations such as presence of abnormalities (for example, emphysema and fibrosis).

Using the entire database is unfeasible due to its size, so the NLST Query tool was used

to select 400 total CTs where 200 contained emphysema and 200 did not contain emphysema.

Since there were no annotations for the lung nodules, the masks from this dataset only contain the

33
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position of the lungs and the entire CT was used for the final dataset. In total, 35829 images were

used for the training set and 16383 for the test set.

4.2 Pre-processing

Considering that one of the main goals of this project is to explore a potential solution to data

scarcity issues when building machine learning models in the medical domain, it is logical to fit

our generated images to the kind of data that these models would use as input. Therefore, both

datasets were first passed through a segmentation algorithm that extracted the lung from the CT

images. This process also allows the creation of a mask of the position of the lungs that will later

be used in our image-to-image GANs.

Three different threshold-based segmentation algorithms were tested: a mixture of pa mixture

of implementations from various Kaggle contributors to the Data Science Bowl 2017 compiled by

H.Chen[64], a lung segmentation algorithm developed to increase the likelihood of inclusion of

juxta-pleural lung nodules developed by Moreira Aresta[65] and an algorithm developed during

this dissertation.

Starting with H.Chen’s algorithm[64], the CT is first normalized and then a threshold value is

found by using kmeans clustering to separate soft tissue/bone from lung/air. Then, after two mor-

phological operations to erode and dilate the mask, the lungs candidates are chosen by analyzing

their position relatively to the center of the image. Figure 4.1 details the steps taken to segment a

slice using H.Chen’s[64] method.

Figure 4.1: Flowchart of H.Chen[64] algorithm.

Although this algorithm presented a good starting point, it failed to segment slices that the

other two algorithms could segment without any additional changes, likely due to the kmeans



4.2 Pre-processing 35

method failing to find the correct threshold value. Figure 4.2 shows an example where the algo-

rithm successfully segmented a slice.

Figure 4.2: Segmented slice using H.Chen[64] algorithm on the LIDC dataset.

Moreira Aresta’s[65] algorithm, takes a region growing-based approach to segment the entire

lung volume at once. Initially, a voxel near the fat/muscle area of the volume is selected and, in

an iterative process, each neighboring voxel is included in the final mask if its intensity is no less

than 35% of the intensity of the initial voxel. Additionally, in order to increase the probability

of the inclusion of juxta-pleural nodules in the final mask, a morphological operation is used to

expand the borders of the resulting mask. Figure 4.3 and 4.4 show the algorithm flowchart and a

successful result of this technique, respectively.

Figure 4.3: Flowchart of Moreira Aresta’s[65] algorithm.
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Figure 4.4: Segmented slice using Moreira Aresta’s[65] on the LIDC dataset.

Lastly, the developed algorithm uses the dynamic threshold technique shown in figure 4.5 to

calculate the optimal threshold for each slice. The threshold is calculated by finding the lowest

point between between the two maximums which are typically lung and fat/muscle pixels. Then,

possible lung masks are ordered by area size, and the largest one is picked for the final mask.

Finally, each successive area is then evaluated on whether it has at least 20% of the previous

accepted area, until either a certain minimum area threshold is reached or there are no more areas.

After the areas are aggregated in a final mask, a morphological disk dilation is applied to fill out

holes. This greedy approach is effective when the lungs occupy a large portion of the image, and

when the lung is split in several smaller "blobs". Additionally, the minimum area can be seen has

a hyper-parameter that can be easily fine-tuned if vanishing gradients occur. Figure 4.6 shows a

flowchart that illustrates this method and Figure 4.7 shows different results of this algorithm.

Figure 4.5: Dynamic threshold - image adapted from[66].
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Figure 4.6: Flowchart of the developed algorithm.

Figure 4.7: Segmented slices with developed algorithm on the LIDC dataset.

After several experiments with the three algorithms, the last two seemed to perform similarly

well for the goals of this project. Although more robust, the main focus of the second algorithm

was to guarantee the inclusion of juxta-pleural nodules, which is not within the scope of this

project. After initial experiments with image-to-image GANs, it was a common occurrence that

when there was a low variance between images, the model would hit vanishing gradients which

caused the Generator to collapse and fail to train. This means that there is a disadvantage to

training image-to-image GANs with sections of lungs that are small, relative to the rest of the

image. Because the developed algorithm makes controlling the minimum size of the lungs more

practical, it was chosen for this project. Figures 4.8 and 4.9 showcase an example of segmentation

by all three algorithms and fully segmented lungs using the third algorithm, respectively.
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Figure 4.8: A slice from the LIDC dataset segmented by all three algorithms. Blue - algorithm 1,
red - algorithm 2, green - algorithm 3

Figure 4.9: Fully segmented lungs using the developed algorithm.

For the LIDC dataset presented in section 4.1.1, an additional pre-processing step was added

to include the annotated positions of the nodules. Each lung nodule mask was added to the cor-

responding lung mask generated by the segmentation algorithm and, since each nodule has up to

four different positional masks pertaining to the annotation of each radiologist, an average mask

was computed by adding each pixel to the final mask if it was contained in at least 50% of all

masks, in other words, the final mask is the result of a 50% pixel-wise consensus from all radiol-

ogists. This process was done by the Python package pylidc, created by Hancock et al.[67] and
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an example of a final result can be seen in Figure 4.10 as well as a final lung/nodule mask and

corresponding lung segmentation in Figure 4.11.

Figure 4.10: Nodule position annotation of four radiologists and the resulting 50% consensus
mask.[67]

Figure 4.11: Mask of lung with nodule and corresponding segmented lung from the LIDC dataset.

The NLST dataset used only the lung position masks and so no additional pre-processing was

needed. The emphysema presence/absence was later used internally when loading data into the

models. Figure 4.12 shows an example of a mask and resulting segmented lung from the NLST

dataset.
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Figure 4.12: Mask of lung and corresponding segmented lung from the NLST dataset.

4.3 Model architectures

This chapter will describe the models used for synthesizing lung images. Starting with the Pix2Pix

model that was used as baseline, followed by a modified Pix2Pix version that allows conditioning

the synthesized image on a semantic label.

4.3.1 Pix2pix

The baseline Pix2Pix architecture was implemented as recommended in the original publication[11].

The generator utilizes an architecture similar to U-Net, without max-pooling layers, where an en-

coder comprised of convolutional layers increases the depth of an image by computing feature

maps and reducing the dimensions of the image until a bottleneck is reached. The decoder then

has the opposite task of reducing the depth of the image, while increasing the dimension of the im-

age. Additionally, skip-connections, connect each encoder layer with its mirrored decoder layer,

which improves gradient flow, stabilizes training and improves results. Considering that the no-

tation Ck and TCk denote a convolution and transposed convolution with k filters respectively, the

specific encoder and decoder architectures are the following:

• encoder: Ci64-C128-C256-C512-C512-C512-C512-C512

• decoder: TC512-TC512-TC512-TC512-TC256-TC128-TC64-TC f1

All Ck layers apply batch normalization followed by a LeakyReLU layer with slope of 0.2.

The first layer of the encoder, Ci64, does not use batch normalization. The decoders TCk layers

use ReLU and the final layer, TC f1, maps the image to the number of output channels (in this case

1 since the images are grayscale) and applies a Tanh function. All convolutions use a kernel size of

4×4 and stride of 2, with the exception of the first encoder layer which uses a stride of 1. Figure

4.13 shows a scheme of this architecture.
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Figure 4.13: Pix2Pix Generator architecture

The architecture for the discriminator will follow the recommended in the publication for a

30×30 PatchGAN:

C64−C128−C256−C512−C1

All convolutions use LeakyRelu with 0.2 slope, kernel size of 4× 4 and padding of 1. The

first three convolutions use a stride of 2, while the remaining two use a stride of 1. The first four

layers use LeakyReLU as the activation function with 0.2 slope, while the last layer uses a Sigmoid

function to determine whether an image is real of fake.

4.3.2 Semantic label conditioned Pix2Pix

The second implemented model was a variant of the Pix2Pix model that enables the use of an

additional semantic label. The goal of this implementation is two-fold: control the type of image

generated by the model and enable the possibility of utilizing semantic annotations that are very

common in medical datasets, which could in turn produce better results.

In order to achieve this, the architecture will be modified to give the generator an additional

class label and the discriminator the additional task of classifying images according to said label.

This addition to the architecture is identical to the ACGAN described in section 3.3.4. The idea

is to combine the contextual position of objects given by the image-to-image architectures and

enable the generation of images based on additional semantic information. This implementation

results in a modification to the loss function to include D’s loss when guessing the class of an

image, given by Equation 4.1.

argmin
G

max
D

Ex,y[logD(x,y)]+Ex,z[log(1−D(x,G(x,z)))+λ1Ex,y,z[||y−G(x,z)||1]+λ2Lc (4.1)
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where λ2 controls the importance given to,

Lc = E[logP(C = c|Xreal)]+E[logP(C = c|X f ake)] (4.2)

Equation 4.2 indicates the loss for classifying a certain label c for real and fake images.

The architectures for D and G will remain the same, with the exception of an addition of an

extra ouput layer with a Sigmoid function to D, in order to calculate the probability of a binary

class, and the concatenation of the label to the input segmentation maps. Figure 4.14 shows an

overview of the interaction of the two networks, with the addition of the class label.

This architecture is identical to the conditional generative adversarial network with classifier,

ccGAN[68], where the same idea was implemented but different models were used for the gener-

ator and discriminator in a segmentation task.

Figure 4.14: ccGAN architecture - the discriminator classifies images as real or fake and classifies
the label. The combined loss is propagated to both the Discriminator and Generator.
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4.4 Metrics

In order to evaluate the quality of the generated images, it is important to choose a set of metrics

that cover the disadvantages of each other, since GAN evaluation is still an open problem. Consid-

ering that the Fréchet Inception Distance is currently widely used, it is logical to integrate it in this

project. However, the FID is calculated by first computing the 2048-feature vector resulting from

the pool3 layer of the Inception V3 network trained on the ImageNet dataset[44], which is com-

posed of labeled RGB photographic images. This means that it is possible that the feature vector

calculated for the lung images are not meaningful, since this domain images are not represented

in the ImageNet dataset.

Liu et al.[69] suggested that FIDs-InceptionV3 extracted from images that are not represented

in the ImageNet dataset, don’t correlate with visual inspection, which was considered one of the

strongest arguments for the use of FID. Instead, Liu et al. suggest the use of a domain-specific

encoder to extract feature vectors for FID calculation.

This chapter will first explain a small test on the ccGAN architecture using the MNIST dataset,

followed by an explanation and reasoning behind the choice of the evaluation metrics.

4.4.1 MNIST Test

Several studies have shown that evaluating GANs is not a simple task[56][41]. This problem

is especially prevalent when the domain deals with images that are not easily evaluated through

visual turing tests, such as images from the medical domain which require expertise to be visually

evaluated. As such, it was important to guarantee that the implementation of the ccGAN was

working as intended since it would be difficult to confirm that the medical annotations are being

learned. In sum, by training the model in a domain where the generated images can be visually

evaluated, we can rule out the possibility of an incorrect implementation. However, it is important

to note that this test does not guarantee that the model will be able to learn medical labels, since

the difficulty in training is vastly superior.

In order test if the ccGAN implementation was working as intended, a small experiment with

the MNIST dataset[43] was conducted. The goal of the experiment was to test whether it was

possible to train the ccGAN to generate the image of the desired digits, conditioned on the class

label while the mask remained the same for all numbers. To achieve this, the training data is

composed of masks of size 256×256×1, with a central area representing the general position of

the digit, concatenated with the respective digit label, resulting in a mask of size 256×256×2. In

order to fit the model to a multi-label classification task, the activation function on the label output

layer was changed to a SoftMax function.

The model was trained for 200 epochs, using stochastic gradient descent with the ADAM

optimizer[36] with momentum parameters β1 = 0.5 and β2 = 0.999 and learning rate of 0.0002.

The learning rate was kept constant for 100 epochs and linearly decayed until 0 for the remaining

epochs, as per the strategy introduced in the Pix2Pix publication[11]. The LSGAN goal was used

to improve training stabilization, a batch size of 64 and an alternating gradient step strategy was
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used by computing one gradient descent step in the discriminator followed by one step in the

generator.

After training, the generator was able to produce realistic digit results conditioned on a class

label. An example of the used masks and generated digits can be seen in Figure 4.15

Label:	7

Label:	8

256x256x2

256x256x2

Figure 4.15: Example of two generated digits. Since the masks remain the same, it proves that the
model can correctly be conditioned on class labels

4.4.2 Metrics

Along with training the GANs, each training set was also used to train two autoencoders. Then, the

generated and real images from the test set are passed through the encoder where the distribution of

fake and real images is calculated and used to compute the FID distance. Figure 4.16 summarizes

this process. Additionally, for the ccGAN, a class-aware FID is also calculated for each label

where the FID is calculated for each generated class.

Test	set

GAN

Encoder
Real	lungs

Real	masks

Fake	lungs

FID

Train	set

GAN

Autoencoder
Real	lungs

Real	masks/lungs

Figure 4.16: Train/test domain-specific FID calculation methodology.

Domain-specific FID is a relatively novel technique and at the moment there there are no

publications that suggest the proper architecture for the encoder in benchmark datasets and no

publications of this technique in the medical domain. Considering that the type of images in the

medical domain are vastly different from other "real-world" image datasets, it would be a valuable

contribution to create an encoder that extracts features from these datasets and use it for FID

calculation, since it would create a viable way to compare GAN results in the medical domain.

For this purpose, two autoencoder architectures were trained. The first is a simple, fully-

connected autoencoder that reduces images to 3 features and attempts to reconstruct the image.
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This has the advantage of having the ability to create a visualization of real/fake distributions,

since each image is reduced to a point in 3-dimensional space and we are able to visualize the

distributions of the real and fake images. The encoder and decoder are composed of four fully-

connected hidden linear layers each with ReLU as activation function, except for the final layers

of the encoder and decoder which use Tanh. The FID values calculated from this autoencoder will

be referred to as FID f c.

The previous autoencoder serves as a way to visualize where the real/fake distributions lie,

however, state of the art autoencoders typically make use of convolutions to map each image to

thousands of feature maps, which usually results in a better reconstruction. The second autoen-

coder is the inverse of DCGAN[10] with a bottleneck of 1024 feature maps. Considering the

notation used in the previous chapter, the specific encoder and decoder architectures are the fol-

lowing:

• encoder: Ci64-C128-C256-C512-C f1024

• decoder: TC512-TC256-TC128-TC64-TC1

All Ck layers apply batch normalization followed by a LeakyReLU with slope of 0.2 layer.

The first layer of the encoder, Ci64, does not use batch normalization. The decoders TCk layers

use ReLU and the final layer, TC f1, maps the image to the number of output channels (in this case

1 since the images are grayscale) and applies a Tanh function. All convolutions use a kernel size

of 4×4 and stride of 2, except for the last encoder and the first decoder layer which use stride of 1.

Figure 4.17 shows a scheme of this architecture. The FID values calculated from this autoencoder

will be referred to as FIDconv.

Figure 4.17: Convolutional autoencoder architecture

In sum, each GAN model is evaluated and compared using FIDinceptionV 3, domain-specific

FID f c, domain-specific FIDconv and structural similarity index (SSIM).
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4.5 Training

For the synthesis task, 3 GAN models were trained: Pix2Pix on the LIDC dataset (P2Plidc),

Pix2Pix and ccGAN on the NLST dataset (P2Pnlst and ccGANnlst , respectively). The ccGAN

used the presence/absence of emphysema as its classification label. The ccGAN was not trained

on the LIDC dataset since the available labels refer to the lung nodules, which constitute very

small parts of the image (between 3mm and 30mm), making it unlikely that the model could learn

these labels. Additionally, two AEs (one fully-connected, one convolutional) were trained on each

dataset for domain-specific FID computation. The same training datasets were used for GANs and

AEs in order to not introduce bias when testing.

All GAN models were trained for 200 epochs, using stochastic gradient descent with the

ADAM optimizer[36] with momentum parameters β1 = 0.5 and β2 = 0.999 and learning rate

of 0.0002. The learning rate was kept constant for 100 epochs and linearly decayed until 0 for the

remaining epochs. The LSGAN goal was used to improve training stabilization, a batch size of 64

and an alternating gradient step strategy was used by computing one gradient descent step in the

discriminator followed by one step in the generator. The loss functions used Equation 3.17 with

λ = 10, as per the strategy introduced in the Pix2Pix publication[11]. The ccGAN used λ2 = 10

for the importance of the classification loss.

The AEs were trained for 200 epochs with the exception of the LIDC convolutional AE which

was trained for 300 epochs to improve convergence, since the dataset was smaller. All AEs also

used the ADAM optimizer with momentum parameters β1 = 0.5 and β2 = 0.999, learning rate of

0.00002 and used MSE loss.

4.6 Results and discussion

The intent behind FID is to create a reliable comparison between GAN results by method of

feature extraction and comparison, which indicates that FIDs can only be compared when the

model used for feature extraction is the same for all GANs. Table 4.1 shows the results of this

project’s FIDinceptionV 3, compared with Pix2Pix FIDinceptionV 3 results on benchmark datasets

Facades, Maps, Edges2Shoes and Edges2Handbags from DeVries et al.[70] and with DCGAN

FIDinceptionV 3 results from MRI image synthesis from Haarburger et al.[71]. Additionally, for

the LIDC dataset, all FID values are calculated for all images and separately, for only the subset

of images that contain nodules and subset that do not contain nodules. Similarly, for the NLST

dataset, all FID values are calculated for all images and separately, for only the subsets of images

with and without emphysema. All FIDinceptionV 3 from this project were estimated using the

official implementation code provided by the authors of FID[57].
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FIDInceptionV 3

P2PLIDC
All With nodules Without nodules

12.82 16.84 13.43

P2PNLST
All Emphysema No Emphysema

11.56 15.21 13.75

ccGANNLST
All Emphysema No Emphysema

10.82 12.35 12.62

P2PFacades[70] 104

P2PMaps[70] 106.8

P2PEdges2Shoes[70] 47.3

P2PEdges2Handbags[70] 76.0

DCGANMRI[71] 20.23
Table 4.1: FID results from features extracted from the InceptionV3 network.

The results extracted from this metric, would indicate that the ccGAN is the overall superior

model, surpassing the other two developed models and the literature results. However, as sug-

gested by Liu et al.[69], it is possible that since the InceptionV3 model was trained on images

that are far different from the domain of this work (RGB photographic images), the extracted

features are not relevant enough to give an accurate representation of the distribution of real and

generated images and thus the FID would be inconsistent with visual inspection. It is possible

that the low FID values achieved by the developed models are caused by the extracted features

being mainly related with the general position of the lungs, without much relevance to the detail

inside them. Considering that the models use an image-to-image technique, with the position of

the lungs as starting point, it would explain why the FID values are still considerably lower than

the DCGANMRI[71] results, a non-conditional model that generates images from a latent space.

As mentioned in section 4.4.2, the fully-connected AE allows us to create a visualization of the

distribution of real and fake images, since each image is reduce to a point in 3D space, in addition

to calculating an FID value. The official implementation of FID was still used, but was modified

to receive the features extracted from the encoder as input.

Figures 4.18 4.19 and 4.20 show the real and fake distributions of all test set images, images

with nodules and images without nodules respectively, for the Pix2Pix model trained on the LIDC

dataset.
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Figure 4.18: Distributions of all images for Pix2Pix on LIDC dataset. (a) real images distribution,
(b) generated images distribution, (c) real and generated images.

Figure 4.19: Distributions of images with nodules for Pix2Pix on LIDC dataset. (a) real images
distribution, (b) generated images distribution, (c) real and generated images.

Figure 4.20: Distributions of images without nodules for Pix2Pix on LIDC dataset. (a) real images
distribution, (b) generated images distribution, (c) real and generated images.

Analyzing the LIDC distributions, it appears that the differences between real images with

and without nodules are very subtle, which is expected since the size of the nodules constitute an

extremely small portion of the image and it is likely that this architecture is not deep enough to

capture essential features to fully create differences in the representations. Additionally, it appears

that most of the generated images are still encoded to the same space as the real images, with some

outliers distancing themselves from the larger group of real images.

For the NLST dataset, the distributions and FID values were calculated for all images, images

with emphysema, and images without emphysema. Figures 4.21, 4.22 and 4.23 show the distribu-

tions of all test images, images with emphysema and images without emphysema respectively, for

the Pix2Pix model trained on the NLST dataset.
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Figure 4.21: Distributions of all test set images for Pix2Pix on the NLST dataset. (a) real images
distribution, (b) generated images distribution, (c) real and generated images.

Figure 4.22: Distributions of test set images with emphysema label for Pix2Pix on the NLST
dataset. (a) real images distribution, (b) generated images distribution, (c) real and generated
images.

Figure 4.23: Distributions of test set images without emphysema label for Pix2Pix on the NLST
dataset. (a) real images distribution, (b) generated images distribution, (c) real and generated
images.

From these distributions, we can observe that although the real images with and without em-

physema are slightly more visually different than the previous set of distributions, the majority

of images are still encoded to the same general encoding space, likely due to the same reason.

However, for the generated images, there seems to be more concentration of encodings around the

real distribution, which should indicate better quality images and a lower FID.

Figures 4.24, 4.25 and 4.26 show the distributions of all test images, images with emphysema

and images without emphysema respectively, for the ccGAN model trained on the NLST dataset.
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Figure 4.24: Distributions of all images for ccGAN on the NLST dataset. (a) real images distribu-
tion, (b) generated images distribution, (c) real and generated images.

Figure 4.25: Distributions of images with emphysema label for ccGAN on the NLST dataset. (a)
real images distribution, (b) generated images distribution, (c) real and generated images.

Figure 4.26: Distributions of images without emphysema label for ccGAN on the NLST dataset.
(a) real images distribution, (b) generated images distribution, (c) real and generated images.

The distributions of the generated images appear similar to the previous, with the exception of

the images without emphysema (Figure 4.26), where the fake and generated distributions appear

to be closer. Additionally, it is worth noting that contrary to the LIDC dataset results, there are

certain areas where the generated images failed to sample images to those areas, which could be

an indicator of overfitting, since the model seems to not be able to generalize to the entire real

distribution.

Table 4.2, shows the results of the FID for each of the previous distributions. Each value is the

distance between the real and generated distributions.
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FID f c

P2PLIDC
All With nodules Without nodules

105.25 151.82 90.22

P2PNLST
All Emphysema No Emphysema

39.87 79.87 60.59

ccGANNLST
All Emphysema No Emphysema

55.17 87.13 45.31
Table 4.2: FID values calculated from features extracted from the fully-connected AE

Being a distance measure, it is logical that the FID f c values correlate more or less with visual

inspection of the encoding distributions. From these metrics, the P2PNLST generates better general

results than the rest, while the ccGANNLST generates better images without emphysema. Moreover,

it is worth noting that altough the LIDC dataset uses an additional mask label for the nodules, the

FID values are much higher, likely due to differences in dataset size.

This experiment showed that although useful for a general view of the real/generated distribu-

tions, the simpler architecture might not be enough to capture the subtle differences between the

labels of the two datasets. Hence, The encoder of the developed convolutional autoencoder out-

puts a feature map of size 1024×29×29, for each image, creating a better likelihood of valuable

encoded features. The values extracted from the convolutional autoencoder are displayed in Table

4.3. In order to reduce the spatial extent of the feature maps to 1×1, the features are first global

average pooled to a vector before calculating the mean and covariance used in FID calculation.

FIDconv

P2PLIDC
All With nodules Without nodules

247.36 224.84 280.87

P2PNLST
All Emphysema No Emphysema

163.85 162.12 162.57

ccGANNLST
All Emphysema No Emphysema

172.10 191.22 172.95
Table 4.3: FID values calculated from features extracted from the convolutional AE

The results for the entire datasets remain correlated with the previous encoder, where the

P2PNLST generates the lower FID. However, we can see that for the labeled structures, the same

architecture appears to be superior.

As a final metric, SSIM was used in order to compare each image with its groud-truth counter-

part. The advantage of SSIM over other comparison metrics such as Mean Square Error and Peak

Signal Noise Ratio, is that it compares the images in a structural approach rather than a pixel-wise

approach.
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Table 4.4 shows the SSIM results computed over the entire 512×512 images and on a crop of

size 256×256 centered on the original images, in order to capture less background.

SSIM512 SSIM256

µ σ µ σ

P2PLIDC 0.803 0.122 0.651 0.083

P2PNLST 0.841 0.057 0.687 0.065

ccGANLIDC 0.846 0.057 0.696 0.064
Table 4.4: SSIM results for entire 512×512 image and with a central crop of 256×256

Additionally, Table 4.5 shows the SSIM results for a 128×128 and 64×64 centered window

around pulmonary nodules generated on the LIDC dataset1. Since no other works were found in

the literature concerning full lung synthesis, we are not able to compare these results with any

reference.

SSIM128 SSIM64

µ σ µ σ

P2PLIDC_Nodules 0.619 0.050 0.601 0.064
Table 4.5: SSIM results for generated nodules in 128×128 and 64×64 window centered on the
nodule.

As expected, the values for SSIM lower considerably when the full image is constricted to

include less of the background and as shown by the previous results, the model has difficulty

generating high-quality nodules, likely due to their smaller size. Figure 4.27 shows examples of

generated nodules with a 128×128 window centered on the nodule.

1Padding equal to background value was added when necessary to fit the desired window sizes.
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Figure 4.27: Generated images centered on a nodules with a 128×128 window.

Figures 4.28 shows examples of generated images of the Pix2Pix model on the LIDC dataset

and Figure 4.29 shows examples of images generated using the Pix2Pix and ccGAN models on

the NLST dataset.
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Figure 4.28: Generated images from the LIDC dataset usint the Pix2Pix model.



4.7 Summary 55

Figure 4.29: Generated images from the NLST dataset using the Pix2Pix and ccGAN models.

Visually, the models seem to generate images with similar quality, however, the results of the

various metrics seem to indicate that the Pix2PixNLST model generates images of higher quality,

with only the FIDInceptionV 3 clearly deviating from this conclusion.

4.7 Summary

At the beginning of this chapter, we gave an overview the chosen datasets for this work, namely, the

National Lung Screening Trial (NLST) and Lung Image Database Consortium image collection

(LIDC), their demographics and detailed information, followed by the explanation and analysis

of the three different threshold-based segmentation algorithms explored to extract the lungs from

thoracic CT scans, resulting in a modality of images closer to what is expected in lung-based

deep learning models. Then, we reviewed the methods applied to synthesize artificial lung images

namely, the Pix2Pix framework and a modified version that makes use of semantic labels and

employs an auxiliary classifier to the Discriminator. Finally, we presented the chosen metrics to

evaluate the quality of the generated samples, the widely used Fréchet Inception Distance (FID)

that extracts and compares features resulting from the output of the pool3 layer of the InceptionV3

network, and derived domain-specific FID that uses AutoEncoders trained on the domain of the

generated samples, in order to increase the relevance of the extracted and compared features. We

presented the two different architectures used for this purpose, a fully-connected AE that reduces

images to a three dimensional space, allowing the visualization of the distributions of the encoded
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features, and a convolutional AE that maps each image to a 1024×29×29 feature map, resulting

in a more robust comparison.

Despite the advantages of the other two segmentation algorithms, the developed segmentation

algorithm proved to be useful for the specific task of training GANs due to its ability to easily

control the minimum accepted size of segmented objects and subsequently reducing the risk of

inconsistent segmentation mappings.

Concerning the evaluation of the generative models, as expected, quantifying the realism and

quality of the generated samples was a challenging task. The ambiguous nature of the FID metric

prompted the use of an encoding visualization technique, that improved the overall understand-

ing of the quality of the generated samples, and a domain-trained convolutional encoder for an

increased trust in the result of this metric. The overall results seem to indicate that the original

Pix2Pix architecture, trained on the NLST dataset, generated better samples, which is somewhat

expected due to the larger dimensions of this dataset. However, it remains unclear whether these

samples are of enough quality to be used as supplement to other deep learning models and, con-

versely, if the samples generated by the other models are not of enough quality for that sort of task.

Additionally, it is possible that the inferior results of the ccGAN are a symptom of the chosen label

since the emphysema annotation refers to the global volume, and the characteristics of this disease

might not be present in all slices of a positive volume.



Chapter 5

Conclusion

This chapter summarizes the research performed throughout this dissertation, its main conclusions,

contributions and lastly, a list of some possible research lines that could be explored to improve

our work in the future.

5.1 Overview

The goal of this thesis, was to research and implemented an efficient method of synthesizing

artificial lung images from annotation masks and semantic labels. The intent is to provide deep

learning medical imaging researchers, with more comprehensive and balanced datasets, allowing

for more robust methods of automatic detection or diagnosis of various lung diseases. Due to

the domain of the used datasets, we started by reviewing the medical anatomy associated with

the lungs and motivations behind the use of CT scans. We then reviewed the state of the art of

image synthesis and evaluation, with special focus on generative adversarial networks and their

applications in the medical imaging domain.

The main contributions of this work were the methods to synthesize and evaluate lung images.

Concerning the generative models, three different approaches were explored: a pix2pix model on

a smaller sized, but with two types of annotation mappings dataset (lung and nodule), a pix2pix

model on a large dataset with only one type of annotation mapping (lung), and a ccGAN model

on a large dataset with both the singular mapping and an additional semantic label (lung and

emphysema label).

Regarding evaluation, the widely used FID metric was explored in a domain-specific environ-

ment, in order to improve the accuracy of results. To achieve this, two distinct autoencoders were

trained to encode features to different spacial mappings, one allowing a 3D representation of real

and fake distributions, and the other creating a larger spacial mapping, to closer resemble the en-

coding dimensions extracted from the InceptionV3, used in the original FID. Overall, the results

computed from the used metrics indicate that the pix2pix trained on the NLST dataset, produces

the higher quality samples.

57
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5.2 Future work

This dissertation opens many different options regarding future research lines related with lung

image synthesis. Below, we list a few possible improvements that we propose to implement in the

future.

• Perform Visual Turing Tests with radiologists, which would give valuable insights regard-

ing the realism of the generated samples.

• Explore the use of semantic segmentation metrics, which use pre-trained segmentation

networks to evaluate the quality of the generated samples by computing the accuracy of

the segmentation. If the samples are realistic, the network should be able to segment them

correctly.

• Implement and evaluate lung generation using other GAN frameworks such as the MedGAN[72]

or SPADE[73].

• Increase dataset size by using a larger subset of the NLST dataset.

• Create deeper autoencoders for better feature extraction used in the domain-specific FID.

• Use the features extracted from the used Autoencoders in domain-specific FID by using

them in a separate task such as classification, which would guarantee that the compared

features are important.

• Increase the amount of annotated structures such as surrounding muscles or generate the

entire CT image
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