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Abstract

Software development is becoming increasingly complex. Assuring a project’s quality is becom-
ing harder since the time and resources needed to achieve quality software and find and fix bugs
are also growing rapidly. To automate and simplify the development process, tools have been de-
veloped to improve the confidence in the product’s quality and accelerate the development process
since developers are given immediate feedback for their actions.

To help developers, tools like pAPRika were created. This tool leverages unit tests and
property-based tests as specifications to generate variations in the source code to repair bugs in
JavaScript and TypeScript. With this, pAPRika can provide live semantic feedback to the devel-
opers while they are writing code.

The necessity for tools like this arose because tools capable of providing feedback to their
users frequently only provide syntactic information and rarely give semantic ones.

However, pAPRika faces the problem that every time a code segment is changed, it runs the
whole test suite. This hinders its scalability to more significant projects. A way to solve this is by
running only the tests that cover the modified code segments. With this in mind, we proposed to
implement a fault localization technique that uses reverse code coverage.

Our solution was implemented on top of the existing pAPRika tool, and an empirical study
was conducted to validate it. The study consisted of 10 participants and showed that the fault
localization technique significantly reduces the number of tests needed to run while demonstrating
that they were necessary to test the program.

Keywords: Automatic Program Repair (APR), Automatic Programming (AP), Live Automatic
Programming Repair (LAPR), Fault Localization (FL), Reverse-Code-Coverage (RCC)
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Resumo

O desenvolvimento de software está a tornar-se cada vez mais complexo. Assegurar a qualidade
de um projeto está a tornar-se mais difícil porque o tempo e os recursos necessários para atingir
software de qualidade e encontrar e corrigir bugs também está a crescer rápidamente. Para auto-
matizar e simplificar o processo de desenvolvimento, ferramentas estão a ser desenvolvidas para
melhorar a confiança na qualidade do produto e acelerar o processo de desenvolvimento porque os
desenvolvedores recebem feedback imediatamente pelas suas ações.

Para ajudar os desenvolvedores, ferramentas como pAPRika foram criadas. Esta ferramenta
usa testes unitários e testes baseados em propriedades para gerar variações no código fonte para
reparar bugs em JavaScript e TypeScript. Com isto, pAPRika pode fornecer feedback semântico
em tempo real para os desenvolvedores enquanto estão a escrever código.

A necessidade para ferramentas como esta surgiu porque as ferramentas capazes de fornecer
feedback para os seus utilizadores frequentemente só dão informação sintática e raramente dão
informação semântica.

Contudo, pAPRika sofre o problemas de que sempre que um segmento de código é alterado,
toda a suíte de testes é corrida. Isto afeta a sua escalabilidade para projetos maiores. Uma forma
de resolver isto é correndo só os teste que cobrem o segmento de código modificado. Com isto em
mente, propomos a implementação de uma técnica de localização de erros que usa cobertura de
código reverso.

A nossa solução foi implementado por cima da já existente ferramenta pAPRika, e um es-
tudo empírico foi conduzido para valida-la. Este estudo consisitiu em 10 participantes e mostrou
que a técnica localização de erros reduz significativamente os testes necessários correr enquanto
demonstra que esses testas são necessários para testar o programa.

Keywords: Automatic Program Repair (APR), Automatic Programming (AP), Live Automatic
Programming Repair (LAPR), Fault Localization (FL), Reverse-Code-Coverage (RCC)
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Chapter 1

Introduction

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 General Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.5 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

This chapter introduces the problem under study. Section 1.1 presents the context of the work fol-

lowed by its motivation in Section 1.2. Then, Section 1.3 details the problem under investigation,

followed by Section 1.4 describes the main goals intended to achieve. Finally, Section 1.5 presents

the structure of this document.

1.1 Context

Software development is becoming inherently complex, which is directly related to the increas-

ing difficulty of debugging software. This debugging process costs companies billions of dollars

annually because it is needed to allocate developers’ time to fix, find and repair software bugs

manually, consuming around 50% of their time [8].

This problem motivated researchers to investigate ways to reduce the software development

cycle by automating its steps. One of the areas that emerged from these researches is Automatic

Program Repair (APR), a field of study based on Automatic Programming (AP), a term first in-

troduced in, at least, 1954 [7]. AP consists on the automatic generation of a computer program,

converting high-level specification into an efficient implementation, whereas APR aims to reduce

the manual effort required to debug a program. Automatic Program Repair receives a faulty pro-

gram and its correct specification as input, automatically identifying a failure, implementing a

fix, and validating that fix, ensuring that the program’s specifications are followed, and unwanted

behaviors were introduced [28, 12].
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2 Introduction

On top of this, there are other research areas that also aim to provide developers a way to to

build software programs, guaranteeing its software quality. One of those areas is Live Program-

ming (LP) [38], which entails the notion of giving live feedback to the users. LP aims at reducing

the usual three-phased edit-compile-run software development cycle (or edit-compile-link-run) to

just a one-phased one, where all the efforts are directed to the edit part.

1.2 Motivation

Software debugging is an essential but time-consuming process in software development, which is

becoming increasingly complex [8]. This increase in complexity has a direct impact on the costs

associated with debugging. As such, there is a great motivation to localize a fault in a program

and patch it automatically.

Given this problem, APR techniques have been used to automatically debug and fix programs,

abstracting all of its complexity from developers.

Merging Automatic Program Repair techniques with Live Programming ones in developing

environments, could help reduce the effort put in debugging by fixing a bug while the software

is still being developed. This could be achieved by providing tactile semantic feedback to the

developers, which focus goes to developing source code, about the state of the program. This

allows us to achieve a higher software development rate with a decrease in its associated cost,

assuring that the project’s specifications are met.

1.3 Problem

Current software development environments mainly only provide syntactic suggestions to the de-

velopers’ writing code, giving no semantic information. The majority of APR implementations

that have been developed fail to integrate with well-known development environments. This prob-

lem is inherently related to the lack of live semantic suggestions presented by APR tools.

Furthermore, tools that present this behavior — provide live suggestions to developers — are

specific to a single development environment, to a single programming language, or lack providing

relevant feedback in a reasonable time in an autonomous way.

In this work, we intend to improve an existing APR tool [10] in the form of a Visual Studio

Code extension, to enhance its functionalities, performance, and usability by introducing new

capabilities. More specifically, reduce the time required to find a faulty code segment and improve

its general usability. The problem under study is further analyzed in Chapter 4.

1.4 General Goal

The main goal of this work is to extend a live automatic program repair tool created by Campos [9,

10, 36]. This tool, created as an extension to the Visual Studio Code development environment,



1.5 Document Structure 3

provides live semantic feedback capable of generating program variations for faulty functions and

validate them against the given test-specification.

Our extension of the tool should (1) implement a fault localization technique capable of de-

tecting which subset of the test suite should be run, and (2) automate all its processes, allowing

the tool to not depend on the user to start its repair process.

1.5 Document Structure

This document presents seven chapters, structured as follows:

• Chapter 1, Introduction, presents the problem under study, its goals and motivation;

• Chapter 2, Background, introduces the key concepts required to fully understand this work;

• Chapter 3, State of the Art, describes the current state of the art on the topic of automatic

program repair;

• Chapter 4, Problem Statement, details the problem under study, the proposed solution on

how to solve it, and its validation process;

• Chapter 5, Proposed Solution, delves into the implementation details of our solution, pro-

viding a justification to all the adopted choices and exploring all of its limitations;

• Chapter 6, Empirical Study, presents our validation process, analyzing all the obtained

results;

• Chapter 7, Conclusions, presents a summary of the work done, describing its main contri-

butions and future work.
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Chapter 2

Background

2.1 Automatic Program Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Live Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

This chapter introduces and describes key concepts needed in the further understanding of this

work. Section 2.1 presents the definition and main goals of Automatic Program Repair as well

as its types of specifications in Section 2.1.1. Section 2.1.2 introduces APR techniques, and in

Section 2.1.3, an analysis of current APR limitations. An overview of what is Live Programming

is presented in Section 2.2. Finally, this chapter’s contents are summarized in Section 2.3

2.1 Automatic Program Repair

Automatic Program Repair (APR) is a research area whose main idea is automatically repairing

a faulty software program by generating code changes (patches) that fix it [12]. This document

follows the definition that "Automatic repair is the transformation of an unacceptable behavior of

a program execution into an acceptable one according to a specification" [27].

As input, APR tools receive a program with some failure and a specification of its proper

behavior.

There are two different types of patches: (1) plausible patches, ensure the program’s cor-

rectness, following its specification, and (2) correct patches, fix the program without introducing

unwanted behaviors [46].

Most APR approaches follow a two step methodology:

• Fault Localization (FL): consists of localizing possible bugs in faulty software’s source

code. Wong et al. [43] classified FL techniques into eight categories: slice-based, spectrum-

based, statistics-based, program state-based, machine learning-based, data mining-based,

5



6 Background

model-based and miscellaneous techniques. With spectrum-based fault localization (SBFL)

implementations [16, 14, 2] being the most adopted ones.

• Patch Generation: uses patch ingredients to search for modified programs [20], which

represent plausible patches, and their corresponding validation. These techniques will be

explained in Section 2.1.2.

2.1.1 Specification

APR’s goal is to find variations of a faulty program that fix it. A specification defining its correct

behavior must be provided. This allows (1) identifying if the program is behaving incorrectly, and

(2) provides a way to validate the suggested patches. These specifications serve as a guide that

informs APR tools if the generated bug fixes satisfy the program’s intended features.

There are several ways to defined a program’s correct behavior. The most common ones used

in APR are formal-specifications, test-specifications.

Formal-specifications provide an accurate and reliable way of specifying a program’s wanted

behavior. But, since they are normally human-written, they tend to be rarely available and error-

prone [18, 22]. On the other hand, there are test-specifications, which are based on test suites.

These are easier to establish but usually lack to define some behaviors, not providing a complete

program specification [30]. If a plausible patch passes all given tests, it is assumed as a correct

one but there is no way of ensuring that an unwanted behavior was not introduced [46].

2.1.2 Patch Generation Techniques

One of the steps required to generate automatic program fixes is patch generation. This tries to

patch a bug by identifying code changes that may present a fix to the program. Existing repair

techniques usually fall into two categories: generate-and-validate (G&V) and semantics-based.

These will be explained in detail in Section 2.1.2.1 and Section 2.1.2.2, respectively.

2.1.2.1 Generate-and-Validate

Generate-and-validate techniques follow the process described in Figure 2.1. As the name sug-

gests, it is divided into two steps: (1) generate, where candidate patches to the original program

are created, and (2) validate, where such fixes’ correctness is verified.

The candidate patches generation is commonly done using three different change operators:

• Atomic change: alters the faulty program in just one location. This can be achieved by

changing the Abstract Syntax Tree (AST), by inserting, removing, modifying statements or

expressions or reusing them from elsewhere in the source code.

• Pre-defined templates: using templates allows altering one or more locations of the pro-

gram’s source code, being able to fix more complex bugs. These templates are retrieved by

the APR tool’s developers and present guidelines on how to fix given bugs [23, 25, 32].
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Figure 2.1: Generate-and-validate repair process [12].

• Example-based templates: works in a similar way to the previous one, but the templates

are obtained by reusing previous fixes to the same problem [44, 15, 19].

In the validation step, the candidate patches’ correctness is assessed by using the provided

program’s specification.

2.1.2.2 Semantics-based

Semantics-based techniques follow the process described in Figure 2.2. These approaches use

symbolic execution and test cases to gather semantic information about a faulty code segment,

which is then encoded as a formula [11]. This formula’s solutions correspond to possible patches

to the faulty program. These patches are then generated by program synthesis, and there is no

need to validate them since they present the desired functionality, guaranteeing to fix the problem

[30].

This technique consists of three main stages [12]:

• Behavioral analysis: In this step the program under repair is analyzed and semantic infor-

mation about its correct and faulty behaviors is extracted.

• Problem generation: Uses the information retrieved in the previous step to create a formal

representation of the problem. The solutions to this problems represent the patches the fix

the faulty program.
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• Fix generation: Tries to solve the problem generated. Identifies the code change that fixes

the program. This stage either finds a valid solution, returning the repaired program, or

return no solution if it does not exist or can’t be found in a reasonable time.

Figure 2.2: Semantics-based repair process [12].

2.1.3 Limitations

Current APR tools mainly suffer from two main limitations that prevent them from being widely

used:

• Search space explosion: APR tools aim to find a program variation that is capable of fixing

a bug in the space of all possible variations (search space). Long and Rinard [24] conducted

a study that shows: (1) a considerable search space could be insufficient to find a correct

patch, and (2) the search space contains a lot of plausible but incorrect patches that hinder

the find of the correct one. A small search space might not include the correct patches, with

the solution being its expansion, hindering the repair performance.

• Patch overfitting: Current repair techniques often overfit patched programs. These pro-

grams successfully follow the given program’s specification but fail to properly fix the bug

due to an incomplete specification.
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2.2 Live Programming

Live Programming, like APR, aims to fasten the software development process. It is a research

area built around the notion of providing live feedback to developers [3].

When programming, the developer follows a three-phased edit-compile-run software develop-

ment cycle (or edit-compile-link-run). When live programming, this development cycle is reduced

to only one phase (edit). Instead of manually running the typical three phases, the programmer

only has to worry about writing source code since the developing environment automatically runs

the other phases while providing live feedback [38].

The ability of an environment to automatically provide feedback to programmers about what

they are developing is defined as liveness [38]. This characteristic can be measured in a six level

hierarchy [27], as shown in Figure 2.3.

6. Strategically Predictive
(adds inference of gross functionality)

5. Tactically Predictive
(adds programming via selection from running predicted
behaviors)

4. Informative, Significant, Responsive and Live
(e.g. stream-drive updates)

3. Informative, Significant and Responsive
(e.g. edit-triggered updates)

2. Informative and Significant
(e.g. executable flowchart)

1. Informative
(e.g. flowchart as ancillary description)

Figure 2.3: Liveness hierarchy proposed by Tanimoto [38].

2.3 Summary

This chapter presents concepts related to Automatic Program Repair, and Live Programming

which are essential to understand this work. Section 2.1 defines APR an presents several tech-

niques that are associated with this research area. These techniques are then analyzed in detail,

outlining the problems that they currently face.
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Section 2.2 presents the concept of Live Programming, introducing the concept of liveness and

depicting how it is measured.



Chapter 3

State of the Art

3.1 Systematic Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

This chapter describes the state of the art of automated program repair approaches and how studies

are conducted on these same approaches. Section 3.1 presents the conducted Systematic Literature

Review to gather relevant information for this state of the art, describing the used methodology

in Section 3.1.1, which aims to answer the survey research questions defined in Section 3.1.1.1.

Section 3.1.2 presents the results of the Systematic Literature Review, which are categorized in

Section 3.1.3. Section 3.1.4 presents the analysis and discussion of the approaches found, an-

swering the previously defined survey questions in Section 3.1.4.2. Lastly, Section 3.2 contains a

summary of the main findings on the mentioned topics.

3.1 Systematic Literature Review

A systematic literature review (SLR) was made to review the state of the art of empirical studies

applied to APR methods or tools. The goal of conducting this type of review is to gather and

synthesize enough results assuring their quality.

3.1.1 Methodology

This SLR followed a specific methodology aiming to reduce bias and gather the best results.

Hence, research questions to be answered were defined as well as literature data sources. Then,

the results were analyzed following a specified inclusion and exclusion criteria.

3.1.1.1 Survey Research Questions

To identify the current state of the art approaches, techniques, and studies related to automatic pro-

gram repair implementations, the following Survey Research Questions (SRQ) were established:

11
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SRQ1 Which are the most relevant APR approaches? APR tools follow different

approaches to generate a fix to faulty program. Identifying these approaches is

essential to understand how program repair tools work.

SRQ2 How is the performance of an APR approach evaluated? Different approaches

present different results. It is needed to identify how these results are evaluated

to understand better how an approach’s performance is measured.

SRQ3 How are APR tools validated? When an APR tool is developed, it needs to

be validated. It is necessary to understand how these validations are done and

their corresponding validity threats.

SRQ4 Do APR tools provide live fixes to developers? The liveness of an APR tool is

an important characteristic [3] that is needed to be evaluated.

Answering these questions will provide valuable insight to practitioners on evaluating APR

techniques and researchers by showing the current challenges and problems regarding this topic.

3.1.1.2 Data Sources

The literature analyzed during this research was collected from three digital libraries: (1) Scopus,

(2) ACM Digital Library, and (3) IEEE Xplore.

These electronic databases contain some of the most relevant literature for Computer Science

studies, so they are considered reliable information sources.

3.1.1.3 Literature Analysis

It is needed to select unbiased literature representative of the current state of the art, allowing the

investigation of the previously defined research questions. Therefore, this SLR follows a set of

inclusion and exclusion criteria detailed in Table 3.1.

Table 3.1: Inclusion and Exclusion Criteria.

Inclusion Criteria

IC1 Must be on the topic of automatic programming or automatic program.
IC2 Must belong to the Computer Science subject area.
IC3 Published between 2011 and 2021.
IC4 Provides a detailed empirical study about automatic program repair tools and/or methods.

Exclusion Criteria

EC1 Not written in English.
EC2 Presents just ideas, integration experimentation, interviews, or discussion papers.
EC3 Duplicate articles.
EC4 Has less than five (non-self) citations when more than five years old.
EC5 Not available in PDF.
EC6 Presents a study not related to automatic program repair techniques.
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The literature review started with a general query to the digital databases to reach a significant

amount of literature related to Automatic Program Repair.

("automat* program* repair" OR apr)

This way, we use a wildcard (*) to match different spelling variations of the same topic (e.g.,

automatic and automating, program and programming).

Figure 3.1: SLR Pipeline.

This review was conducted in January 2021 and is outlined in Figure 3.1. It presents a total of

six stages with the following purposes:

1. Automatic search: Result gathered from the search in the digital libraries with the query

mentioned above.

2. Filtering (EC1 EC5 IC2 IC3): The results obtained from the previous step were filtered by

(EC1) language, filtering out the ones not written in English, (EC5) PDF availability, (IC2)

subject area, eliminating the ones that don’t belong to Computer Science, and (IC3) publish

date, keeping only publications from 2011 to 2021.

3. Filtering (EC3): After merging all the papers from the different data sources, the duplicate

entries were removed.

4. Filtering by Title, Abstract, and Keywords (IC1-2 IC4 EC2 EC4 EC6): The resulting lit-

erature was reviewed according to its Title, Abstract, and Keywords. In this stage, papers

presenting only ideas or hypotheses (EC2), having less than five (non-self) citations when

more than five years old (EC4), a study not related to an Automatic Program Repair tech-

nique or tool (EC6), or not providing an evaluation on the proposed methods (IC4) were

excluded.
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5. Filtering by Introduction and Conclusion (IC1-2 IC4 EC2 EC6 EC7): Same procedure

as the previous step, but now the literature analysis was expanded to the Introduction and

Conclusions sections.

6. Paper Analysis: Detailed analysis of each publication to fully understand the presented

study.

We started with a total of 20488 publications, but we narrowed them to 27 publications after a

well defined systematic review protocol, as shown in Figure 3.1.

3.1.2 Results

Xin and Reiss [44] developed sharpFix when they noticed that ssFix [45] techniques could be

significantly improved. ssFix is a search-based technique APR which repair process follows three

steps: (1) fault localization, (2) code search, and (3) code reuse. sharpFix follows the same repair

idea differing on how it approaches the code search and code reuse stages. These were suffering

from using a basic code search approach for local search (within the local program) and global

search (from a repository) and a not effective code reuse approach. The authors decided to improve

the ssFix using two different local search methods (within the local program) and global search

while adding one more step to the code reuse stage. The proposed tool methods were validated

through two different experiments using the Defects4J dataset [17] and Bugs.jar-ELIXIR [37].

The results show that sharpFix outperformed ssFix in the first benchmark. For the second one,

sharpFix was tested against ssFix and four other APR techniques, having the best performance of

them all.

Wang et al. [40] present ARepair, a generate-and-validate APR technique for faulty Alloy

models. It uses both mutation testing and program synthesis to generate a fix to the model. The

authors defend that using a mixed approach is needed to find a complete fix for faulty models. An

evaluation on the developed technique was conducted using human-written buggy Alloy models

as input to ARepair (collected from graduate students’ homework) and models from Alloy release

4.1, Amalgam [29]. To note that, the human-written models used are limited by the fact that most

of them were written by graduate students, so the results can be overfitted and may not generalize

to models written by skilled developers.

Wen et al. [42] introduce CapGen, a generate-and-validate APR that leverages fine-granularity

fixing ingredients (e.g., expressions instead of a statement) to generate a correct patch. This tool

aims to tackle the space explosion problem, prioritizing mutation operator and fix ingredients

based on the likelihood of providing a correct fix instead of just a plausible one. The authors

found that the context information of a suspicious segment of code and the given ingredients can

give a good approximation about their likelihood to patch the program correctly, defending that

"a fixing ingredient should be applied to the locations with similar contexts compared with the

location where it is extracted." CapGen was evaluated on the Defects4J dataset against other APR
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techniques, achieving a precision of 84% (correctly fixed 21 bugs and generated 25 plausible

fixes).

Jiajun et al. [15] present SimFix, an automatic program repair technique, which leverages

existing patches from other projects and similar code snippets in the same project to generate

patches. It follows two stages: mining and repairing. In the first one, repair patterns are mined

from existing open-source projects, creating an abstract space. In the repairing stage, the tool

extracts modifications from similar code snippets in the same program, constituting the concrete

space. These two spaces are then intersected, ruling out invalid modifications. The technique was

evaluated on Defects4J, being able to fix 34 bugs, 13 of those the authors believe have never been

fixed by other APR techniques.

Ghambari et al. [13] introduce an APR technique that works at Java virtual machine (JVM)

bytecode level, PraPR. This simplistic method can complement other existing techniques since,

for each suggested patch, there is no need for compilation to validate it. Working at such a low

level allows the possibility of fixing a program without knowing its source code, not needing to

learn/search for information. These approaches dramatically increase PraPR’s efficiency (over

10x). The authors show that simple bytecode mutations can complement state-of-the-art tech-

niques in effectiveness, efficiency, and applicability. The results of experimenting with this tool on

Defects4J are shown in Figure 3.2, showed a ratio between plausible fixes and correct fixes, with

a great increase in efficiency when compared to other techniques.

Figure 3.2: Distribution of the bugs that can be successfully fixed by PraPR and other APR tech-
niques.

Liu et al. [23] introduce a template-based automatic program repair TBar. This tool integrates

a total of 35 fix patterns. The authors collected these manually, identifying the patterns that other

APR tools use and manually assessing them in 15 different categories, as shown in Table 3.2.

The authors believe that such a catalog of fix patterns can help improve APR overall performance.

However, it was noticed that fault location noise could significantly impact this tool’s performance.

Two different experiments were conducted on the Defects4J dataset: (1) providing the perfect bug
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location to TBar, avoiding the bias that fault localization can introduce, and (2) evaluating TBar

in a normal program repair scenario. The results validate the authors’ hypothesis showing that fix

patterns are susceptible to false-positive fault locations. The authors clarify that TBar’s overall

performance in the benchmark experiment is hindered by a naive search strategy to select the most

relevant fix ingredients to build correct patches from the patterns.

Table 3.2: Liu et al. [23] Analysis of Collected Patterns.

Fix Pattern Change Action Change Granularity Bug Context Change Spread

FP1 Insert statement cast expression single

FP2.1
Insert statement

a variable or an expression returning
non-primitive-type data

single

FP2.(2,3,4,5) dual

FP3 Insert statement element access of array or collection variable single

FP4.(1,2,3,4) Insert statement any statement single

FP5 Update expression
class instance creation expression

and clone method
single

FP6.1 Update

expression conditional expression singleFP6.2 Delete

FP6.3 Insert

FP7.1 Update expression variable declaration expression single

FP7.2 Update expression cast expression single

FP8.(1,2,3) Update expression integral division expression single

FP9.(1,2) Update expression literal expression single

FP10.1
Update

expression,
or statement

method invocation, class instance creation,
constructor, or super constructor

single
FP10.2

FP10.3 Delete

FP10.4 Insert

FP11.1 Update expression assignment or infix-expression single

FP11.2 Update expression arithmetic infix-expression single

FP11.3 Update expression instance of expression single

FP12 Update expression return statement single

FP13.(1,2) Update expression variable expression single

FP14 Move statement any statement single or multiple

FP15.1 Delete statement any statement single or multiple

FP15.2 Delete method any statement single or multiple

Assiri and Bieman [6] propose a prototype tool, MUT-APR, which uses mutations to binary

operators to patch programs. It is built on top of GenProg [22], using genetic programming to find
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a patch to a faulty program but distinguishes itself in the mutation step. The authors divided the

operators into different classes, only changing the wrong operators with ones in the same category.

There are four operator classes: (1) relational, (2) arithmetic, (3) bitwise, and (4) shift operators.

This tool presents some limitations like the inability to fix logical operators (e.g., || and &&) and

the equality operator (==). In previous work [5], the authors conducted a study to validate this

technique, comparing its results against GenProg in programs from the Siemens Suite [1]. MUT-

APR was able to repair faulty operators in 87.03% of the programs, while GenProg only fixed

31.48%.

Ke et al. [18] propose SearchRepair. The authors built this tool under the assumption that

human-written code, partly satisfying a specification (test cases), "is more likely to satisfy the

unwritten specification than a randomly chosen set of smaller edits generated with respect to the

same partial specification." Following this idea, SearchRepair is a semantic-based code-search

APR approach. It makes use of existing open-source projects to find patches for faulty programs.

After localizing the possible bug, an input-output profile characterizing the expected behavior is

constructed. A search for potential patches is done in the encoded database of human-written code

fragments and are validated. This technique is not finished since the author’s point some flaws:

(1) global variables are not considered, and (2) can’t handle code fragments with loops. Ke et

al. conducted a study using the ManyBugs benchmark [21] where SearchRepair managed to fix

(19%) of them, achieving a higher patch quality than other three tools.

Kim et al. [19] state that genetic programming based APR techniques generate invalid and

senseless patches due to the randomness imposed by program mutations. To tackle this, they pro-

pose PAR, a pattern-based automatic program repair. The authors made a manual evaluation of

human-written patches and categorizing them, resulting in eight common fix patterns shown in Ta-

ble3.3. These patterns are used to generate code modifications until a patch for a code segment is

found. To evaluate this APR’s performance, six open-source projects were analyzed for replicable

bugs and compare the results against GenProg [22]. PAR was able to correctly fix 27 out of 119

bugs while GenProg successfully patched 16. Also, to compare the suggested patches similarity

to human-written ones, a user study of 253 participants (students and developers) was conducted,

showing that PAR’s resulting patches were more comparable to human patches than GenProg.

Mechtaev et al. [26] present Angelix. The authors’ objective is to tackle semantic-based

techniques’ main setback, low scalability, introducing the concept of angelic forest — a semantic

signature for repair — based on angelic value [11]. This is possible by keeping this angelic forest,

size-independent from the problem’s dimension. Mechtaev et al.’s notion that this semantic sig-

nature containing enough semantic information to make Angelix able to fix multiline bugs. The

authors conducted a series of experiments to prove Angelix’s scalability and patch quality when

comparing against GenProg [22].
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Table 3.3: PAR’s fix patterns [19].

Fix Patterns
Altering method parameters

Calling another method with the same parameters
Calling another overloaded method with one more parameter

Changing a branch condition
Adding a null checker
Initializing an object

Adding an array bound checker
Adding a class-cast checker

Nguyen et al. [30] present SemFix, a semantic-based technique that can synthesize a patch for

a faulty program even if the repair code doesn’t exist in its source code. This technique retrieves a

list of possible statements that are likely to contain the bug. For each of these statements, a repair

constraint is generated with the specification for its correct behavior. Then program synthesis is

used to try to solve this constraint. The authors compare SemFix against genetic programming-

based repair techniques achieving higher effectiveness and efficiency.

Qi et al. [35] introduce RSRepair, an APR based on GenProg [22], but using a random search

algorithm instead of genetic programming. To further improve RSRepair’s efficiency, the au-

thors optimized the number of test executions needed to find a potential fix with a prioritization

technique. An experiment was done to compare random search algorithms’ performance against

genetic programming, comparing RSRepair with GenProg on faulty problems. This experiment

results show that RSRepair requires fewer patch trials to find a plausible patch over genetic pro-

gramming.

Le Goues et al. [22] present GenProg, using genetic programming to evolve a faulty pro-

gram to achieve the desired functionality. A sequence of source code edits is used to represent a

candidate patch to fix a given bug. Crossover and mutation operations are used to generate new

candidate repairs until one provides the wanted functionality while fixing the program’s bug. The

authors built this tool under the assumption that if a problem contains a bug in a code fragment,

its correct behavior is implemented elsewhere in the software source code. This aids GenProg’s

efficiency reducing the possible search space. Le Goues et al. implement three different mutator

operators to modify statements from the program itself: (1) deletion, (2) insertion, and (3) swap.

Experiments were done in C programs showing that GenProg can repair several errors efficiently.

Long and Rinard [25] present Prophet, a novel program repair system that learns a proba-

bilistic model of correct code using machine learning techniques. This model comes from a set of

successful human-written patches retrieved from open-source repositories. This model is used to

rank candidate solutions based on their likeness to be correct. Prophet was evaluated on a bench-
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mark containing 69 real-life bugs outperforming other APR tools.

Pei et al. [32] present AutoFix, the latest implementation of a tool AutoFix-E [41] developed

in 2010. This tool generates fixes to faulty programs annotated with contracts, which can take

several forms: (1) preconditions, (2) postconditions, and (3) class invariants. The authors use fix

actions, to change the faulty program state. These fix actions are obtained using two different

approaches: setting, modifying the value of variables, and replacement, modifying the value of

expressions. AutoFix uses four templates that inject these fix actions into suspicious statements,

as shown in Figure 3.3. Pei et al. conducted experiments in faulty software generating fixes for

42% of the faults. Besides, 59% of these patches are equivalent to human-written ones.

Figure 3.3: Flowchart representing the approach presented by Pai et al. [32].

3.1.3 Results Categorization

The mentioned tools, while trying to tackle the same problem, present different solutions. There-

fore, they were categorized based on their approaches towards:

1. General approach: The are two main approaches, as explained in Section 2.1.2, that APR

tools can follow. This value can either be: (1) generate-and-validate, or (2) semantics-

based.

2. Code modification: One crucial step in any APR is how and which program elements it

decides to change when repairing it. These modifications can involve code synthesis, code

mutations, or AST modifications.



20 State of the Art

3. Patch generation: APR tools present several patch generation techniques. Possible values

are atomic change, pre-defined templates, example-based templates, or program synthesis.

4. Specification: A specification of the program’s correct behavior need to be provided to

any APR tool. As explained in Section 2.1.1, this value can either be test-specification, or

formal-specification.

The categorization of SLR results is described in Table 3.4.

Table 3.4: APR categorization.

Approach Tool Code modification Patch generation Specification

ge
ne

ra
te

-a
nd

-v
al

id
at

e

ARepair [40] expression synthesis

atomic change test-specification

CapGen [42] AST replacement/insertion/deletion

PraPR [13] JVM bytecode mutation

MUT-APR [6] binary operator modification

RSRepair [35] statement mutation

GenProg [22] AST reuse/insertion/deletion

sharpFix [44] code reuse (AST replacement/insertion/deletion)

example-based
templates

test-specificationSimFix [15] code reuse (AST replacement/insertion)

PAR [19] AST replacement/insertion/deletion

TBar [23] AST replacement/insertion/deletion

pre-defined
templates

test-specification
Prophet [25] condition modification/synthesis

AutoFix [32] AST replacement formal-specification

se
m

an
tic

s-
ba

se
d

SearchRepair [18] AST synthesis

program synthesis test-specificationAngelix [26] patch synthesis

SemFix [30] expression synthesis

3.1.4 Analysis

In section 3.1.3, we can verify that the papers retrieved by the SLR can be categorized regarding

the approach followed to fix a faulty program. These approaches present promising results in

producing valid patches but still face some drawbacks that can influence their validity.

3.1.4.1 Categorical Analysis

General approach Generate-and-validate is the most adopted APR approach, with only SearchRe-

pair [18], Angelix [26], and SemFix [30] being the only 3 tools that follow a semantics-based

approach.
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Code modification When choosing which program’s code elements will be a target as possible

fixes to a faulty program, most tools adopt some AST variation (either by replacing, inserting,

deleting, or synthesizing). Semantics-based tools prefer synthesizing a code modification, while

generate-and-validate ones prefer more straightforward code modifications, like AST modifica-

tions, statement mutations [4, 31] and code reuse.

Patch generation Semantics-based tools generate their patches by synthesizing a new program,

while generate-and-validate approaches use one of three generation techniques: (1) atomic change,

(2) example-based templates, or (3) pre-defined templates, as explained in Section 2.1.2.

Specification When specifying a program’s behavior, test suites are the most adopted choice,

with only AutoFix [32] resourcing to formal-specifications.

3.1.4.2 Survey Research Questions

SRQ1: Which are the most relevant APR approaches?

Most APR tools either follow a search-and-validate methodology or a semantics-based one.

The main difference between them is how they approach the repair process. These ap-

proaches can range from a simple binary modification [6] to a full abstract syntax tree (AST)

replacement [18].

SRQ2: How is the performance of an APR approach evaluated?

When measuring and APR performance, three factors are taken into account: (1) scalabilty

(should scale to large projects), (2) efficiency (should find a correct patch in a short time),

and (3) effectiveness (should produce repairs to different types of bugs). Analyzing these

three factors provides good insight on the tools performance. It allows us to measure the

quality of the suggested patches, the time required to generate such patches, and the scale

of the projects that can use this tool without hindering its performance.

Achieving high performance in these three properties proves to be complicated. The way

that APR techniques leverage each of these properties’ importance is how they distinguish

themselves from others, being more applicable in specific scenarios.

SRQ3: How are APR tools validated?

The presented approaches conduct experiments to evaluate its performance when generating

patches. These are mainly tested in benchmarks, open-source projects that offer bug tracking

tools, and user studies.

When using benchmarks the results obtained might not generalize to complex systems since

they were only tested on a specific group of well-known bugs. When doing a user study, the

level of knowledge of the participants must be taken in consideration.
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SRQ4: Do APR tools provide live fixes to developers?

Only AutoFix [32] provides live bug fixing suggestions to developers since a plugin for

the EiffelStudio IDE [33] was developed. With this plugin, AutoFix managed to achieve a

liveness level 5 in the hierarchy proposed by Tanimoto [38]. All other tools are not able to

accomplish this or don’t provide any information about this characteristic.

We know of pAPRika [9, 10, 36], a Visual Studio Code extension that can provide live

semantic feedback to the user. This APR tool will be analyzed in detail in the next section.

3.2 Summary

Section 3.1.1 describes the Systematic Literature Review methodology that was followed to gather

information about the state of the art of automatic program repair tools.

The results obtained were analyzed in Section 3.1.2. Each APR implementation is summa-

rized, describing the approaches taken during their development. They were then categorized in

Section 3.1.3.

An analysis was conducted in Section 3.1.4, analysing the results obtained from the catego-

rization and answering the previously defined Survey Research Questions.
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This chapter describes the problem tackled in detail. An overview of pAPRika, a live APR tool,

is presented in Section 4.1, followed by the problem under study in Section 4.2. An hypothesis to

guide the development of this dissertation was build in Section 4.3, and it’s Research Questions in

Section 4.4. The validation methodology is presented in Section 4.5. Finally, in Section 4.6 this

chapter’s contents are summarized.

4.1 pAPRika

Campos [9, 10], noticing the lack of Automatic Program Repair tools integrated with program-

ming environments and capable of providing live semantic suggestions to developers, as seen in

Section 3.1.4, decided to tackle this problem and proposes a Visual Studio Code1 extension. This

tool merges the Automated Program Repair and Liveness research areas to provide semantic code

fixes to developers that use the Visual Studio Code programming environment, achieving a level 5

in the liveness hierarchy [38], corresponding to tactically predictive feedback.

In a later work, Ramos [36], expanded this tool’s capabilities, adapting it to follow the Lan-

guage Server Protocol (LSP), a protocol that is used across IDEs, improving the patch genera-

tion technique used, and expanding it’s support to other frameworks and programming languages

(JavaScript and TypeScript).

1Visual Studio Code: https://code.visualstudio.com/
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4.1.1 Overview

To successfully provide valid live suggestions that can fix a faulty program, pAPRika follows a

generate-and-validate approach. It leverages the power of atomic changes, mutating the program’s

Abstract Syntax Tree to generate plausible patches, and the power of test-specifications, to validate

them by running the available test suite, to get only the correct patches, which are then suggested

to the developer. In Figure 4.1, pAPRika’s flowchart is depicted.

Figure 4.1: pAPRika flowchart [36].

This APR tool is a background process that automatically runs the provided test suite, trying to

find a program variation that passes all the tests. Such solution is then suggested to the developer.

These variations come from mutations of 7 code ingredients: (1) switch mutations, (2) parentheses

mutations, (3) off-by-one mutations, (4) operator mutations, (5) boolean mutations, (6) remove

prefix mutations, and (7) statement moving mutations.
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4.1.2 Issues

This APR tool faces some problems that the authors identified:

• Fault Localization: The current implementation of pAPRika has no fault localization tech-

nique. The tool generates variations to the whole program every time it is run. This gives

pAPRika low scalability and can hinder its liveness aspect since it should find a correct

patch quickly.

• Program Repair Strategies: Campos [9] believes that exploring new, different, and po-

tentially more complex strategies could increase the tool’s potential regarding of how many

bugs it can find in a short time.

• Fix Ranking: The tool is capable of generating, validating, and suggesting fixes to de-

velopers, but these patches can sometimes not be seen as correct to a human. Having a

heuristic to rank generated patches based on human correctness could significantly improve

its usability.

• Visual feedback: The tool lacks in providing helpful visual cues to the users regarding its

current state.

4.2 Problem Definition

Software debugging is proving to become considerably more time consuming [8]. Current soft-

ware development environments mainly provide syntactic suggestions to the developers when

writing code, giving no relevant semantic information.

As far as our knowledge goes, almost no APR tools are integrated to programming environ-

ments and can provide live semantic code fixes to developers in an automatic way. We know about

two tools that can accomplish this: (1) AutoFix [33], and (2) pAPRika, that is described in Section

4.1.

Taking a deeper look into pAPRika, it is noticeable that it suffers from some drawbacks that

affect this tool’s performance and usability. These problems arise from the nonexistence of a

fault localization technique and its necessity for user input (either by saving a file or running a

command) to start the whole process.

All things considered, having to manually run pAPRika each time we want a suggestion and

running the whole test suite for obtaining it, defeats the tool’s purpose of providing semantic

suggestions to the users in a live and effortless way.

4.3 Hypothesis

Fault Localization is a whole research area in itself. Detecting a faulty code segment in the whole

source code proves to be a difficult task to achieve. Since pAPRika is running simultaneously to the

programmer’s development we propose to build this dissertation around the following hypothesis:
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Implementing a Fault Localization technique resorting to Reverse Code Coverage

methods can improve the overall performance of live APR tools, reducing the number

of tests run each time.

To build this hypothesis, we make the assumption that, when developing a program, the pro-

grammer is most likely to insert unwanted behaviors in functions that he is working on. Making

use of reverse code coverage it is possible to find which tests execute which lines of code.

This performance is not related to the quality of the suggested patches but is directly related

to the time required to provide them. A lot of pAPRika’s effort goes into running the test suite to

detect the function that does not pass the provided specification.

A fault localization algorithm would soften this problem, since only tests for functions that the

developer changed will be run, reducing the time required to generate code fixes while improving

its liveness aspect.

4.4 Research Questions

To guide the development of this dissertation, we set the following Research Questions:

RQ1 Is it possible to use fault localization techniques to limit the number of tests

needed to run in a test-based APR tool? The performance of a live APR tool

is directly correlated to the number of tests that are run each time. Identifying

which tests are required to run can result in a great increase in performance.

RQ2 When limiting the number of tests on a test-based APR tool using a FL tech-

nique, are the remaining tests still enough to allow detection and fixing of

bugs? Reducing the number of tests required to run can raise the problem that

not enough tests are being tested each time.

4.5 Validation

To validate the proposed hypothesis and answer the research questions, an empirical test was

undertaken. A group of students of software engineering performed a task in Visual Studio Code

using the pAPRika extension that uses fault localization.

When developing their solution, all information required to replicate programmer’s approach

to solving the problem was sent via telemetry to a Microsoft Azure2 server. Alongside this in-

formation that allows the replay of every programmer action, information regarding pAPRika’s

functionality was also being sent.

With this information, we can replicate the programmers’ development manually, using a mod-

ified version of pAPRika, where fault localization wasn’t used. This allows for an immediate

comparison between both approaches, with and without fault localization, results.

A thorough account of the validation process can be found in Chapter 6.

2Microsoft Azure: https://azure.microsoft.com/pt-pt/

https://azure.microsoft.com/pt-pt/
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4.6 Summary

Facing the lack of live APR tools detected in Chapter 3, pAPRika, an extension for Visual Studio

Code development environment, was built. This tool is analyzed in Section 4.1.

Based on this tool’s issues, a problem was defined in Section 4.2. The hypothesis for this work

is presented in Section 4.3 stating that pAPRika’s performance can be improved by implementing

a fault localization technique that uses reverse code coverage methods as it’s base concept. Then,

in Section 4.4, we formulate Research Question that guide the development of this work.

In Section 4.5 we present our experimental methodology that will help validate our hypothesis

and answer the proposed Research Questions. Our solution will be tested comparing its perfor-

mance using fault localization against one without it.
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This chapter goes into detail of the proposed solution. Section 5.1 presents an overview of the

solution, which is then described in the next sections. Section 5.2, details the implementation

of the fault localization mechanism, as well as, each of its steps, Section 5.2.1 presents how the

reverse code coverage is implemented, Section 5.2.2 explains how the detection of code changes is

done, and Section 5.2.3 shows the modifications made to the test runner. In Section 5.3, changes to

the extension’s functionality are shown. The current know limitations are described in Section 5.4.

Finally, in Chapter 5.5, this chapter is summarized.

5.1 Overview

In Chapter 4, we point out the problems that pAPRika[9, 36] face, regarding the lack of fault

localization techniques and the fact that it is needed user input in order to run the APR tool, when

offering true semantic suggestions to developers.

We propose that this solution is able to mitigate both of this problems, by implementing a fault

localization algorithm, that uses reverse code coverage (RCC) techniques. This allows us to get

the test cases that test a given function, discarding all non-relevant ones.

Assuming that a developer is more likely to introduce unwanted behaviors in functions that are

being implemented, we can filter the test suite to only run tests relevant to those specific functions.

By keeping track of all the updated functions in the source code, this method should increase

pAPRika’s overall performance providing faster code fixes to developers.
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To tackle the necessity to manually run the APR process, it will be automatically run every

time the development process is stopped for a few seconds, and automatically update the reverse

code coverage graph that keeps track of what tests should be run per function.

Figure 5.1: Flowchart describing the proposed solution.

In Figure 5.1, an overview of the proposed solution is depicted. At any time, when writing

source code, pAPRika will automatically generate code variations for failing test and suggest them

to the developer if they are successfully validated against the test suite.

An in-depth description of the implementation of the fault localization technique used to filter

out unnecessary tests is given in Section 5.2, while Section 5.3 presents how we can automate the

running of the extension.

5.2 Fault Localization

Fault localization, which focus on identifying segments of code that may contain faults, has been a

laborious and time consuming task to achieve [39]. Since pAPRika is a live APR tool, we assume
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that the faulty code segment is contained in one of the functions changed by the developer.

Improving pAPRika’s performance is a matter of reducing the number of tests from the suite

necessary to run. To achieve this, we resource to reverse code coverage techniques. These tech-

niques allow us to obtain the tests that validate a specific code segment (e.g., functions).

Knowing which functions were modified by the developer before running the automatic pro-

gram repair, it is possible to get which tests are sufficient to run to find for a possible bug in the

program’s source code.

This implementation follows a three step approach:

• Reverse Code Coverage: Reverse code coverage allows us to answer the following ques-

tion: Given this segment of the source code, which tests execute it?

• Function Modified Detection: When the programmer is developing a given program’s

functionality, it is imperative to keep track of which functions were modified. Using the-

ses altered functions and intersecting them against the RCC previously calculated, we can

determine which tests should be run.

• Test Runner: Having the list of tests to run, we can send them to our test runner, which is

responsible to ensure that only those are run.

The following sections explain in detail how all of those three steps are implemented.

5.2.1 Reverse Code Coverage

Reverse code coverage allows the possibility to check how code changes affect the overall program

without running the entirety of the test suite, testing only the affected spots.

The proposed approach uses the TypeScript Compiler API1. This API provides multiple ways

to interact with the TypeScript programming language and, by extension, with JavaScript. In order

to further understand the API the following concepts must also be understood:

• Node: Represents a node in the program’s AST.

• FunctionDeclaration: Is a subclass of Node and represents the declaration of a function

defined in the following format:

function name([param[, param[, ... param]]]) {

statements

}

• ArrowFunction: Is a subclass of Node and represents the declaration of an arrow function

defined in the following format:

1TypeScript Compiler API: https://github.com/microsoft/TypeScript/wiki/Using-the-Compiler-API

https://github.com/microsoft/TypeScript/wiki/Using-the-Compiler-API
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([param[, param]]) => {

statements

}

param => expression

These are nameless functions that can be assigned to variables, giving them their name.

• MethodDeclaration: Is a subclass of Node and represents the method declarations in the

following format:

var obj = {

foo() {},

bar() {}

};

• CallExpression: Is a subclass of Node and represents a call to other function, it follows the

format:

foo([param[, param[, ... param]]])

This implementation is comprised of four different stages:

• function extraction

• get first-level calls from functions

• get total calls from function

• reverse function calls

These steps are going to be explained in the following sections, presenting its algorithm as a

pseudocode adaptation from the developed TypeScript code for purposes of simplicity and clarity.

5.2.1.1 Function Extraction

The first stage in the reverse code coverage implementation consists of, given the complete source

code’s parent node, iterate through it and extract all of the nodes representing any type of the func-

tions specified previously: FunctionDeclaration, ArrowFunction, and MethodDeclaration.

Algorithm 1 represents this step’s pseudocode.
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Algorithm 1 Function Extraction
1: function GETFUNCTIONNODESFROMNODE(node)

2: functionNodes←{}
3: functionNodes.add(GetFunctionDeclarations(node))

4: functionNodes.add(GetArrowFunctions(node))

5: functionNodes.add(GetMethodDeclarations(node))

6: return functionNodes

7: end function

5.2.1.2 First-Level Function Calls

Having extracted all the functions from the source code, it is now possible to get all the direct calls

made to other functions (first-level) for each one of them. To accomplish this, CallExpression

from the TypeScript API was used. This step’s pseudocode is depicted in Algorithm 2.

Algorithm 2 Get First Level Calls
1: function GETFIRSTLEVELCALLS(node)

2: functionCalls←{}
3: for child of GetChildren(node) do
4: if IsCallExpression(child) then
5: f unctionCalls.add(child)

6: end if
7: functionCalls.add(getFirstLevelCalls(child))

8: end for
9: return functionCalls

10: end function

This is a recursive function, every node child can contain a child from itself that is a function

call, so this methodology allows the verification of all descendants from the principal node.

5.2.1.3 Total Function Calls

The third, and most important step, is where we get the complete call hierarchy per function. This

algorithm, represented in Algorithm 3, takes as input a Map that contains all the first-level calls

for each function. This algorithm adds the directs function calls to a Queue and iterates through

each nodes in it until it is empty. When analyzing a node, its direct calls are also added to the

queue. This allows us to get all function calls made from a function at any depth. A dynamic

programming approach was taken to make the algorithm more efficient.
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Algorithm 3 Total Calls
1: function GETTOTALCALLS(firstLevelCalls)

2: totalCalls←Map()

3: for functionNode,functionCalls of firstLevelCalls do
4: toHandle← Queue(functionCalls)

5: calls←{}
6: while toHandle.size()> 0 do
7: node← toHandle.pop()

8: if node== functionNode then . Skip if analyzing itself

9: continue

10: end if
11: calls.add(node)

12: toHandle.push(firstLevelCalls[node])

13: end while
14: totalCalls[functionNode]← calls

15: end for
16: return totalCalls

17: end function

5.2.1.4 Reverse Function Calls

Since pAPRika requires that, in every test description, the function name that to be tested must

be specified, if we get all the functions that call a specific one, we know which tests to run. This

is a relatively simple process since we already have all the calls that a function makes, so it is

necessary to reverse them. This step’s pseudocode is shown in Algorithm 4.

Algorithm 4 Reverse Function Calls
1: function REVERSECALLS(totalCalls)

2: reverseCalls←{}
3: for function,functionCalls of totalCalls do
4: for call of functionCalls do
5: reverseCalls[call].add(function)

6: end for
7: end for
8: return reverseCalls

9: end function
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5.2.2 Function Modified Detection

Through the Visual Studio Code Extension API2, hereinafter the Extension API, it is possible

to customize and extend most of the editor’s functionalities. Setting the server’s document syn-

chronization capabilities to TextDocumentSyncKind.Incremental, we can define a custom

handler to the workspace/onDidChangeTextDocument that, as the name suggests, every

time a change is made to a file, an event following the format shown below is sent to the server:

1 {

2 uri: string \\ uniquely identifies the document

3 contentChanges : { \\ contains all the changes made to the document

4 range: {

5 start: {

6 line: number,

7 character: number

8 },

9 end: {

10 line: number,

11 character: number

12 }

13 }

14 rangeLength?: number

15 text: string

16 }[]

17 }

There was another approach that could be taken, setting the document synchronization capa-

bilities to TextDocumentSyncKind.Full, but this idea was quickly discarded since, instead

of sending where a change occurred, it sent the whole document’s text. This method significantly

hampered the detection of the modified function.

This problem now resorts to the TypeScript Compiler API to detect which functions are defined

in a given range. Iterating each function node from the source file and comparing its beginning

and end positions to a specific range, one can determine which FunctionNodes were modified.

5.2.3 Test Runner

To run the test suite provided as the program’s specification, the Mocha Testing Framework3 was

used. The file containing the test suite is loaded into Mocha, and using the grep API call, it is

possible to filter the tests providing a regular expression.

In order to only run a specific set of tests from the suite every time pAPRika starts, both

previous steps were combined. Applying the reverse code coverage to all modified functions, it is

possible to obtain a new list containing all function names that should be tested. Passing this list

2Visual Studio Code Extension API: https://code.visualstudio.com/api/references/vscode-api
3Mocha Testing Framework: https://mochajs.org/

https://code.visualstudio.com/api/references/vscode-api
https://mochajs.org/
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to the test runner and using the grep call with a regular expression matching only the provided

function names, we can ensure that only a partial suite of tests is run each time.

This approach of filtering the test suite by the function names, is only possible since pAPRika

requires that every test specifies what function it validates in its description (every test should

contain "#fix {foo}").

5.3 Visual Studio Code Extension

As we want to provide a more automatic experience to pAPRika, requiring less user inputs, and to

integrating it with the new fault localization mechanism, some changes to how the extension work

were required.

Two new settings were added:

• pAPRika.runPAPRikaInterval: Specifies on many seconds are required, after the last text

change, to automatically run pAPRika (defaults to 4 seconds).

• pAPRika.updateReverseCodeCoverageInterval: Indicates how many minutes are be-

tween every automatic reverse code coverage update (defaults to 4 minutes).

Alongside these new settings, two new commands, to manually update the reverse code cov-

erage, were also added:

• pAPRika.updateReverseCodeCoverage: Updates the reverse code coverage for the active

document.

• pAPRika.updateReverseCodeCoverageAll: Updates the reverse code coverage for every

open document.

With these changes, it is possible for pAPRika to automatically update its fault localization

system, as well as start its program repair.

5.4 Known Limitations

When implementing the proposed solution, some limitations were noticed. In Section 5.2.2, there

was the need to use the workspace/onDidChangeTextDocument notification. This proved

to be a problem since it is a Visual Studio Code specific notification and not a Language Server

Protocol one. Because of this, the server’s internal representation of a text document was not

updated, but was the only way of obtaining content changes. The server’s equivalent notifica-

tion (documents/onDidChangeContent) only sent the updated full text of the document

instead. A workaround for this issue was found using TextDocument.update(document,

changes). Every change made to the file was used to update the document’s internal repre-

sentation. This approach came at the cost of the tool’s interoperability between development

environments.
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Regarding the TypeScript Compiler API, a problem also emerged. When getting the complete

program’s AST, its source file is loaded, loading the previously saved version of that file. This

proves to be a problem when getting which functions were modified since the given ranges might

not be synchronized to what is stored in the disk.

The final limitation is that for every code change the whole AST is iterated through, as ex-

plained in Section 5.2.2. This can become an expensive task to perform when dealing with bigger

projects.

5.5 Summary

In this chapter we present and discuss the implementation choices taken during the solution’s

development.

In Section 5.1, a simple overview of the changes done to pAPRika are shown and analyzed,

where two problems were tackled: (1) the lack of a fault localization technique, and (2) the need

for some user input to start the program repairing process. The first problem solution is described

in Section 5.2. The assumption that, since pAPRika is a live APR tool, the buggy code segment

must be contained in one of the functions that the developer is programming. This implementation

follows three steps: reverse code coverage, which is analyzed in Section 5.2.1, modified function

detection, in Section 5.2.2, and, finally, test runner, described in Section 5.2.3.

The Visual Studio Code extension specific changes, are analyzed in Section 5.3. These consist

in addition of two new settings, two new commands, and the amortization of the APR process.

This way, no user input is required to run the APR.

Our solution still faces some limitations, mainly regarding code synchronization issues. Sec-

tion 5.4 goes into detail regarding this subject.
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This chapter presents a description of the empirical study of the developed tool. Section 6.1 goes

into detail to all the preliminary-work required to conduct the study. Secondly, in Section 6.2, the

methodology followed is presented. Then, the analysis of the obtained results and a discussion is

conducted in Section 6.3, followed by a listing of the threats to the study’s validity in Section 6.4.

Finally, a summary of this chapter is done in Section 6.5.

6.1 Preliminary Work

To validate our hypothesis, defined in Section 4.3, and measure to what extent our goals, defined

in Section 1.4, have been reached, we devised an empirical study on which we test our solution. To

ease this evaluation, some preliminary work was conducted. This work consisted of three different

tasks:

• Telemetry: To easily monitor the tool’s performance, a telemetry system that sends data to

a Microsoft Azure server was implemented into pAPRika.

• Replay System: Extending the already implemented telemetry, information regarding the

user’s actions was also sent. This change allows the reproduction of the user’s actions

locally.

• Base pAPRika Comparison: A basic version of pAPRika (without fault localization) must

be developed in order to compare the developed solution against a baseline.
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6.1.1 Telemetry

An important step of the whole study process, is to collect and analyze data from pAPRika. Since

the the developed solution was an internal upgrade to the tool, retrieving this details is a trouble-

some task since there is no visual feedback provided by the extension regarding them. With this

in mind, a telemetry system was implemented. This implementation uses the vscode-extension-

telemetry1 node module. This module provides a way for Visual Studio Code extensions to send

telemetry over Application Insights2 in Azure.

Three steps were identified as necessary in order to successfully retrieve and send data from

pAPRika, via telemetry:

1. Data Collection: The first step to monitor this tool is identifying which data is relevant to

keep track of and collect it.

2. Send Data from LSP to Client: Secondly, it is needed to send the collected data from the

LSP’s server to the extension’s client. This step is required since it is not possible to send

telemetry data directly from the server.

3. Send Data from Client over Application Insights: Finally, having all the data in the client

it is needed to sent it to over Application Insights.

The second step, was made possible by implementing a TelemetryManager that is respon-

sible for sending all information to the client. This manager sends events through a telemetry/event

notification that is sent from the server. The client, on the other hand is subscribed to these noti-

fication by listening for them. The events sent between the LSP and the client follow the format

depicted below:

{

name: string \\ event name

properties: {[key: string]: string} \\ properties to send

measures: {[key: string]: number} \\ unsued

}

Using the previously mentioned package and having a telemetry event in the client from the

LSP, sendTelemetryEvent(event.name, event.properties, event.measures) is

used to send that event over Application Insights.

The data collected, which is sent in specific events, is explained in Section 6.1.1.1. Each event

has specific properties related to it, but they all send the sessionUUID property. This value is

unique to each instance of pAPRika and allows to group events by it.

1vscode-extension-telemetry: https://github.com/microsoft/vscode-extension-telemetry
2Guide to set up Application Inside: https://docs.microsoft.com/en-us/azure/application-insights/app-insights-

nodejs-quick-start

https://github.com/microsoft/vscode-extension-telemetry
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-nodejs-quick-start
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-nodejs-quick-start
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6.1.1.1 Telemetry Events

The communication between entities (LSP, client, and Application Insights) is made using events.

Each telemetry event is described as follows and contains the depicted properties (does not show

the sessionUUID property mentioned previously):

CONNECTED This event is sent every time a pAPRika instance is started.

1 CONNECTED: {

2 faultLocalization: boolean \\ is fault localization active

3 }

FILE_OPEN This event is sent every time a file is opened.

1 FILE_OPEN: {

2 document: string, \\ file that was open

3 text: string \\ file's full text

4 }

FILE_CLOSE This event is sent every time a file is closed.

1 FILE_CLOSE: {

2 document: string, \\ file that was open

3 text: string \\ file's full text

4 }

PAPRIKA.RUN This event is sent every time pAPRIka’s program repair is run.

1 PAPRIKA.RUN: {

2 document: string, \\ file where pAPRika run

3 documentText: string, \\ file's full text

4 elapsedTime: number, \\ time taken (ms)

5 fullTestSuite: boolean, \\ did it run the full test suite

6 totalTestsRun: number, \\ number of tests run

7 testsRun: string[], \\ tests run

8 passedTests: string[], \\ tests that passed

9 failedTests: string[], \\ tests that failed

10 functionsToTest?: string[], \\ functions to test

11 variationsGenerated: number, \\ number of generated variations

12 variationsTestsRun: number, \\ tests run validating variations

13 variationsPassedTests: number, \\ tests passed validating variations
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14 variationsFailedTests: number, \\ tests failed validating variations

15 suggestedReplacements: { \\ suggested replacements

16 start: {line: number, char: number, offset: number},

17 end: {line: number, char: number, offset: number},

18 oldText: string,

19 newText: string,

20 code: string

21 }[]

22 }

REVERSE_CODE_COVERAGE.RUN This event is sent every time the program’s reverse

code coverage is updated.

1 REVERSE_CODE_COVERAGE.RUN: {

2 document: string, \\ file that updated reverse code coverage

3 documentText: string, \\ file's full text

4 elapsedTime: number \\ time taken (ms)

5 }

QUICK_FIX.ACCEPTED This event is sent every time the user accepts a suggestion.

1 QUICK_FIX.ACCEPTED: {

2 document: string, \\ file where it was accepted

3 code: string \\ suggestion's code

4 }

6.1.2 Replay System

To be able to replicate the user’s actions locally, a new telemetry event was added:

CONTENT_CHANGE This event is sent every 5 seconds after a modification, before running

pAPRika, or before updating the reverse test coverage. Contains all code changes that occurred

during that time span. These are retrieved from the workspace/onDidChangeTextDocument

notification.

1 CONTENT_CHANGE: {

2 document: string, \\ modified file

3 start: { \\ modification start position

4 line: number,

5 character: number

6 },



6.2 Methodology 43

7 end: { \\ modification end position

8 line: number,

9 character: number

10 }

11 text: string \\ modified text

12 }[]

6.1.3 Base pAPRika Comparison

One of our objectives is to compare the fault localization impact on the tool’s performance. With

this in mind, we need to replicate the user’s actions on the proposed tool, in Chapter 5, against

another that only differs in the fact that it does not use fault localization. The last one will be the

baseline against which we will compare the values obtained.

6.2 Methodology

With the goal of validating the proposed hypothesis in Section 4.3, an empirical study was con-

ducted. The study evaluated the proposed fault localization technique’s impact on a live automatic

program repair tool. To achieve this, we recurred to a telemetry system, explained in Section 6.1.1.

This telemetry provides enough information for us to manually replay a user’s inputs. Using this

replay system, it is possible to make a comparison between two different tools by reproducing the

exact conditions from one onto the other. We will be comparing the two tools: (1) the proposed

solution, with fault localization, and (2) a modified version of the developed one but without its

fault localization technique, detailed in Section 6.1.3.

6.2.1 Plan

This section describes the guidelines that the experiment follows.

Participants The tests consisted of implementing two features in a JavaScript project. With

this in mind, the participants must have some programming knowledge and familiarity with the

JavaScript language.

Duration This study’s duration was estimated to be around 30 minutes. A brief introduction

explaining the problem and what was expected from the participants was made beforehand, taking

an estimated 10 minutes.

Environment Due to the global pandemic situation that is being faced, the study was performed

online. The participants were free to use their personal computers as long as Visual Studio Code,

with the developed extension installed, was used and had the latest version of Node.js3 installed.

3Node.js: https://nodejs.org/

https://nodejs.org/
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Procedure To compare the performance difference of a live APR tool using fault localization

with the performance of one without it, the study was divided into two stages, the first one is

performed by the participants while the second is performed by us:

• First Part: Every participant, before starting the study, sends us their sessionUUID value

that would be printed in the console. Following this, they start implementing the tasks that

they were asked to. All the necessary information is being sent by telemetry to a server.

This part was executed using pAPRika with fault localization.

• Second Part: When the participants finish their assigned tasks, we, using their sessionUUIDs

retrieved all their logs from the server using the following query:

customEvents

| where customDimensions.sessionUUID == "<sessionUUID>"

With this information, it was possible to replicate their development process in a program-

ming ambient without fault localization. All relevant information from this step is also sent

through telemetry.

Data During this study, several data was collected to be analyzed:

• Tests run: The tests that were executed during the program repair.

• Tests failed: The tests that failed when the test suite run.

• Tests passed: The tests that passed when the test suite run.

• Changed functions: We kept track of which functions were modified by the participants.

• Proposed suggestions: The suggestions that the APR proposed.

• Elapsed time: The execution time of the APR process was being recorded but then proved

to be not useful since it was not possible for us to accurately compare this value against our

controlled environment due to computer differences.

• Document’s source code: The document’s full source code was being collected.

6.2.2 Tasks

This study aims not to evaluate the quality of the suggested code fixes but the improvement that the

fault localization algorithm has in a live APR. So, simple tasks were proposed to the participants.

Both tasks are adaptations of a Raspberry Pi Pico Emulator, developed by wokwi, called

rp2040js4. This project is developed in TypeScript and provides a test suite validating its instruc-

tion implementations, perfectly fitting our needs.
4rp2040js, by wokwi: https://github.com/wokwi/rp2040js

https://github.com/wokwi/rp2040js
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Each task provides the basic setup required to simulate a Raspberry Pi Pico as well as the

implementation of some of its instructions. The goal of the tasks was to implement the LDR

(immediate) and the PUSH instructions, respectively.

The specification for all — implemented and to be implemented — instructions was provided.

As well as a brief overview of the program’s already implemented functionalities.

6.3 Results

During the study, each participant was required to solve two different tasks, as described in Sec-

tion 6.2.2. Posteriorly, we took replay information to solve the tasks the exact same way as the

participants but using an extension version without fault localization. The following results were

compared:

• Tests that run every time the program repair started.

• Functions that were changed before running the APR.

Below follows the comparison and analysis of these metrics:

6.3.1 Tests Run

In Table 6.1, we compare the mean number of tests run for both of the approaches. The values

obtained from the tool without fault localization are expected since every time pAPRika run, the

whole test suite (containing 12 tests) is also run.

These initial observations are in conformity to what was expected. Having the participants to

undertake a study where the need to implement two problem (each one with one test validation

them), the mean value for the total of tests run is presumed to be between one and two. This is due

to the fact that the participants can either, simultaneously, tackled both problems, running the two

corresponding tests, or focus on each problem at a time, running only one of the tests in the whole

test suite.

6.3.2 Functions Changed Before Running the APR.

The detection of function changes directly affects which tests should be run. So, analyzing the

performance of these detections is sufficient to evaluate the if tests run by the tool are the correct

ones.

In order to analyze these results two metrics were used:

• Precision: Precision is a metric that quantifies the number of correct positive predictions

made. Simply put, precision corresponds to the ratio of correct positive predictions out of

all positive predictions made. In our case, this metric represents the number, from all the

tests run, that was necessary to run.
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Table 6.1: Results regarding the number of tests run.

With Fault Localization Without Fault Localization

Mean Std. Deviation Mean Std. Deviation
#1 1.909 3.204 12 0
#2 1.480 2.156 12 0
#3 1.333 1.502 12 0
#4 2.000 3.055 12 0
#5 2.077 2.894 12 0
#6 1.750 2.657 12 0
#7 2.000 3.028 12 0
#8 2.000 2.909 12 0
#9 1.309 1.536 12 0
#10 1.032 2.071 12 0

• Recall: Recall is a metric that quantifies the number of correct positive predictions made

out of all positive predictions that could have been made. Here, this represents the number,

from all the tests that should run, actually run.

The results presented in Table 6.2, depict the precision and recall regarding the detection

of code changes. The precision and recall values retrieved are pretty good, getting a mean of

0.95865±0.0186 and 0.9871±0.0142, respectively.

6.3.3 Discussion

This experiment was taken in order to validate the following hypothesis:

Implementing a Fault Localization technique resorting to Reverse Code Coverage

methods can improve the overall performance of live APR tools, reducing the number

of tests run each time.

With it we pretend to answer the Research Questions presented in Section 4.4:

RQ1: Is it possible to use fault localization techniques to limit the number of tests needed to run

in a test-based APR tool?

In order to answer this question, an evaluation comparing the number of tests run with and

without fault localization was done.

Using the replay system, described in Section 6.1.2, we are able to compare the test exe-

cution process in the exact same state between the two tools. The answer to this Research

Question lies in Section 6.3.1. In the mentioned section, we can see that the whole test suite

is comprised of 12 individual tests, which are always run in the implementation not using

fault localization.
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Table 6.2: Results regarding the function change detection.

Function Changes

True Positives False Positives False Negatives Precision Recall
#1 24 0 0 1.0000 1.0000
#2 48 2 2 0.9600 0.9600
#3 91 4 2 0.9579 0.9785
#4 32 1 0 0.9697 1.0000
#5 34 2 1 0.9444 0.9714
#6 41 1 1 0.9762 0.9762
#7 52 3 0 0.9455 1.0000
#8 64 4 1 0.9412 0.9846
#9 84 6 0 0.9333 1.0000
#10 46 2 0 0.9583 1.0000

In the proposed solution, the number of tests run, was significantly lower, and between the

suspected interval (between one and two tests). This happens since the study was composed

of two different tasks, each task with one test validating it.

So, we can argue that there is enough evidence to support the idea that, using fault localiza-

tion we can reduce the number of tests run in a live APR tool.

RQ2: When limiting the number of tests on a test-based APR tool using a FL technique, are the

remaining tests still enough to allow detection and fixing of bugs?

The answer to this question, RQ2, is more complex than the previous one. We needed

to resource to the replay system, and manually, simulate every code change made by the

participants in a controlled environment.

Every code change position was analyzed, and the functions in that location were tracked

as modified functions until the program repair process began. These functions were then

compared against the functions in the field functionsToTest that was sent as part of

the PAPRIKA.RUN telemetry event. Comparing these values gives us a confusion matrix,

and we can calculate the precision and recall metrics. These metrics provide information

relative to the number of modified functions correctly predicted. These metrics are explained

in detail in Section 6.3.1.

6.4 Threats to Validity

As with any empirical study,certain threats to its validity must be considered and the respective

impact in the study [34].

In this section three validity threats are analyzed: (1) Construct Validity, (2) Internal Validity,

and (3) External Validity. The following sections describe each of these threats.
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6.4.1 Construct Validity

Construct Validity analyzes to which degree the inferences made can validly be made in our study.

This type of validity is related to generalization.

Task’s Validity
This is, most likely, one the most relevant threats to construct validity in this study. The

fidelity of which the tasks used in this experiment represent represent real-life scenarios

may impose a threat to the validation of this experiment. The tasks used were adapted from

an open source repository, tackling a very specific area, instead of specially made for this

purpose.

Hypothesis Guessing
Being under a test environment might make some participates try to guess what we are try-

ing to demonstrate and change their behavior based on that assumption. So, the variables

retrieved during the study might not be as accurate. While we cannot be sure that a par-

ticipant is trying to obtain a specific result, we decided not to divulge the hypothesis and

objectives of the study.

6.4.2 Internal Validity

Internal validity reflects how a given study ensures the elimination of alternative explanations for

a finding.

Telemetry Dependability
Since we make heavy usage of the telemetry system to aid the development of this study,

we have become heavily dependent on it. Therefore, losing this system, even for a small

amount of time, could result in the loss of events. With this in mind, the participants tried

to perform the study in locations with a good internet connection. Microsoft’s server was

checked before each participant evaluation to see its status.

Manual Work
Considering the intense manual labour, one can argue that the obtained results may contain

some error in them. We accept that this can be a possibility, but the necessary work was

carefully done.

6.4.3 External Validity

The final type of validation discussed is External Validity. This refers to how well the the results

obtained from the study can be generalized to other settings.

Sample Size
In this study we apply the process described in Section 6.2.1 to two different tasks among

10 participants. We are aware that the size of tests conducted is low in order to confidently
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make assumptions regarding the improvement made by using a fault localization technique.

Notwithstanding, the findings exhibited by the study reveal the potential in using a fault

localization technique based in reverse code coverage approaches in live automatic program

repair tools.

Practical Situations
This study conducted experiments on relatively small sized projects. Therefore, using the

developed solution in a bigger project (with more tests and functions) may not achieve

the same results as the ones that we obtained during this validation. Regardless, future

experiments should make use of bigger projects.

6.5 Summary

This chapter starts by presenting the preliminary work necessary to implement, in Section 6.1, to

conduct the empirical study successfully. This work is composed of three different tasks, detailed

in its subsections.

An explanation of the experimental study is presented in Section 6.2. Here, the methodology

followed, overall plan and tasks are described in detail. The results are delineated in Section 6.3,

accompanied by a discussion and interpretation of the obtained results regarding the proposed

hypothesis and research questions.

Threats to this study’s validity are presented in Section 6.4, showing the approaches taken to

reduce their impact.
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This chapter presents the considerations on the work developed during this document. Section 7.1

presents the main conclusions of this work, revisiting the hypothesis and research questions. Sec-

ondly, Section 7.2 details the main contributions made with our work and, finally, in Section 7.3

an analysis of work to be tackle in the future is done.

7.1 Conclusions

Software development is becoming increasingly complex. Following this trend, software debug-

ging is also increasing in difficulty [8]. Since the latest one is essential to the first one, two

research areas have emerged to ease this stage of software development: (1) Automatic Program

Repair and (2) Live Programming. The first one’s base idea is to try to fix a faulty program by

generating code fixes. The second one was built around automatically providing live feedback to

programmers about what they are developing. However, the systematic literature review showed

that very few tools managed to merge these two areas into one tool, achieving live semantic feed-

back. Moreover, the tools that managed to accomplish this are still in early development and lack

some crucial features to ensure efficiency and usability, namely a fault localization technique.

In our work, we address this problem by implementing a fault coverage approach based on

reverse code coverage techniques, improving the tool’s overall performance, as initially set by our

hypothesis:

Implementing a Fault Localization technique resorting to Reverse Code Coverage

methods can improve the overall performance of live APR tools, reducing the number

of tests run each time.
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We implemented the proposed fault localization technique in a live APR tool [9, 36] integrated

into the Visual Studio Code developing environment to validate our hypothesis. Then, an empirical

study was performed to evaluate the performance of the proposed solution.

This experiment was used to validate the mentioned hypothesis and answer the following

Research Questions:

RQ1: Is it possible to use fault localization techniques to limit the number of tests needed to run

in a test-based APR tool?

We argue that a fault localization implementation improves the APR performance by re-

ducing the number of tests required. This is supported by a direct comparison between

two tools, in the same conditions, only differing because one uses the fault localization

techniques and the other doesn’t. Comparing the mean number of tests run every time the

program repair process started between both tools, we can see a significant decrease in tests

run when using fault localization.

RQ2: When limiting the number of tests on a test-based APR tool using a FL technique, are the

remaining tests still enough to allow detection and fixing of bugs?

Our implementation is built around the assumption that a programmer is more likely to

introduce a bug in functions that he is developing. With this in mind, knowing the modified

functions and resourcing to reverse code coverage, we can get which tests should be run.

Using the replay system, we can reproduce a participant’s inputs. This way, we can manually

verify the modified functions and the ones that were tested. We obtained a precision of

0.95865± 0.0186 and a recall of 0.9871± 0.0142. These results support the fact that the

tests run by the fault localization technique are sufficient.

Ultimately, we can validate our hypothesis, as we find that the fault localization technique

allows a live Automatic Program Repair tool only to run a subset of the whole test suite.

7.2 Main Contributions

Our work resulted in the following main contributions:

Systematic Literature Review on Automatic Program Repair: The current state of the art of

Automatic Program Repair was analyzed.

Fault localization technique using reverse code coverage: We present a fault localization im-

plementation using reverse code coverage techniques. This technique was implemented in

a live APR tool (pAPRika).

Empirical study: An empirical study with 10 participants was conducted to validate the devel-

oped fault localization technique.
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7.3 Future Work

Our proposed solution currently contains certain limitations described in Section 5.4 that could

be improved. Alongside this, different evaluations could be conducted to validate the fault local-

ization technique further. In this section, we summarize our thoughts and suggestions for future

development in this area:

• The current implementation of the fault localization technique suffers a limitation from the

TypeScript Compiler API. It is only possible to extract an AST from a saved file. This in-

troduces file synchronization issues since now the APR runs automatically, independently if

the open file is saved or not. Fixing this could involve creating a temporary file synchronized

with the server’s internal representation of itself.

• When detecting which functions were modified by a code change, we iterate through the

whole program’s AST, significantly affecting its performance. The challenge here consists

in improving this step, reducing the number of function nodes needed.

• Conducting other experiments to compare the suggested patches using fault localization

against the suggestions given without it. This would allow verifying that the tool’s behavior

was not altered due to the fault localization technique.
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