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Resumo

Os avanços em tecnologia de semiconductores já não ocorrem ao ritmo a que a indústria se tinha
acostumado. Estamos agora a viver aquilo que é considerado por muitos a era pós-Moore. De
maneira a se conseguir continuar a escalar a capacidade de processamento, arquitecturas cada vez
mais heterogéneas têm sido desenvolvidas e tem-se assistido a uma proliferação de aceleradores
de uso específico.

Neste documento apresentamos uma framework de compilação de código-fonte para código-
fonte capaz de transformar programas comuns escritos em C/C++ em programas adequados a
arquitecturas heterogéneas. Isto é conseguido ao reaproveitar o código original para gerar aceler-
adores por recurso a HLS mantendo a capacidade original de execução em CPU, inserindo código
especializado para a gestão de memória e tarefas e injectando um algoritmo de escalonamento
definido pelo utilizador. Propomos ainda um tal algoritmo de escalonamento baseado numa im-
plementação flexível em C/C++ para HLS de uma Árvore de Hoeffding. Os parâmetros de im-
plementação da árvore incluem a quantidade de atributos contidos em cada conjunto de dados, o
número de classificações possíveis e o número máximo de nós que a árvore pode conter.

Com recurso a uma placa MPSoC ZCU102 da Xilinx, avaliamos o desempenho da nossa
implementação da Árvore de Hoeffding a classificar vários conjuntos de dados. Estes variam no
número de exemplos contidos (N), número de classes de saída (K) e número de atributos dos
dados (D). Comparamos execuções puramente de software no CPU ARM Cortex-A53 da placa
com implementações em hardware dos algoritmos da árvore com recurso à ferramenta Vitis HLS
da Xilinx. Avaliamos ainda qual a utilização de recursos e frequência de relógio para as várias
implementações em hardware quando são utilizados diferentes números de atributos e números de
classes de saída. Para problemas de complexidade D3, K5, N40000, a implementação por HLS de
uma só árvore de decisão opera a 103MHz e é capaz de executar tarefas de inferência 8.3× mais
rápido do que um CPU ARM Cortex-A53 a 1.2 GHz. Demonstramos a capacidade da framework
Tribble de diminuir o custo de desenvolvimento para arquitecturas heterogéneas ao validar o fluxo
de compilação proposto e que um algoritmo de escalonamento baseado numa Árvore de Hoeffding
é capaz de atingir uma precisão de 96% em conjuntos de simulações de kernels hipotéticos.

i



Abstract

Advancements in semiconductor technology do not currently occur at the pace the industry had
been accustomed to. We have entered what is considered by many to be the post-Moore era. In or-
der to continue scaling performance, increasingly heterogeneous architectures are being developed
and the use of special purpose accelerators is on the rise.

We present Tribble, a source-to-source framework capable of transforming regular C/C++
programs to execute on heterogeneous architectures. This is done by retargeting kernel source
code to an HLS compiler while keeping the original capability of CPU execution, inserting custom
code for task and memory management and injecting a user-defined scheduler algorithm. We also
propose a runtime scheduling algorithm based on a flexible C/C++ HLS implementation of the
Hoeffding Tree. The implementation parameters of the tree include the number of attributes of the
samples under classification, the number of output classes, and the maximum number of nodes to
which the tree is allowed to grow.

Targeting a Xilinx MPSoC ZCU102 device, we evaluate the classification performance of
our Hoeffding Tree implementation on several datasets of varying sample sizes (N), number of
output classes (K) and number of sample attributes (D). We compare software-only execution
on the embedded ARM Cortex-A53 core, with hardware implementations of the tree algorithm
using Xilinx’s Vitis HLS tool. For the hardware implementations, we also evaluated the resource
consumption and clock frequency for different numbers of classes and attributes. For a problem
size of D3, K5, N40000, the HLS implementation of a single decision tree operating at 103MHz
is capable of 8.3× faster inference than the 1.2 GHz ARM Cortex-A53 core. We demonstrate the
capabilities of Tribble for easing the burden of developing code for heterogeneous architectures
by validating the full-flow compilation capability and also that the proposed Hoeffding Tree-based
scheduler is able to learn datasets based on hypothetical kernels’ computational loads with an
accuracy of 96%.
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Chapter 1

Introduction

1.1 Context

Over the years, with the decrease of transistor sizes, the industry has been able to scale transistor

density and the other benefits that accompany a new silicon manufacturing node, resulting in a

predictable increase in compute capacity of new chip architectures. However, with the ever more

pressing issue arising from the phenomenon known as the death or slowdown of both Moore’s

Law and Dennard Scaling, compute performance has not been increasing at the rate the industry

had become accustomed to over the decades [1]. Without the performance benefits provided by

new manufacturing nodes in new chips, the industry started looking at other ways of achieving

speedups. One of those ways has been the shift from a mostly homogeneous architecture to an

increasingly heterogeneous one.

The execution performance of an application is a function of the quality of the software, and

the computing power of the hardware. That is, an application’s performance can be maximised

if it is executed on specialised hardware, both from a time and power consumption perspective.

Unsurprisingly, in the embedded domain, it is not uncommon for compute platforms to be het-

erogeneous [2, 3]. That is, to contain a main processor, and several specialised co-processors for

specific functions (e.g., cryptography, image processing). It is up to the programmer to under-

stand the underlying hardware platform, schedule workloads onto different components and to

synchronise their behaviour. As customers demand higher performance and functionality, these

systems tend to increase in complexity and therefore require more development time and exper-

tise. Furthermore, since silicon area is expensive, the use of Hardware Accelerators (HwAs) is

only justified under certain conditions. Firstly, that they are used frequently to justify not only

the area they occupy but also the design time. Secondly, that their workload is both well defined,

and amenable for parallelization, so that performance benefits can be maximised. For example,

cryptography, video codecs, and neural networks [4], among others.

One of the platforms that can be used for this kind of approach are Field-Programmable-Gate-

Arrays (FPGAs). Although these devices lack the advantages of full-custom, i.e. Application

Specific Integrated Circuit (ASIC), implementations [5], they introduce new paradigms to these

1



Introduction 2

heterogeneous systems. FPGAs allow the application to define custom circuitry to be imple-

mented. This task-specific circuitry is more efficient at executing the task than a general-purpose

Central Processing Unit (CPU).

The capability for reconfiguration allows for application-specific circuits to be deployed at

small or medium scales without the need for ASIC fabrication, which is only viable at large scales.

Instead, a single underlying chip can be used to implement the HwAs required by a specific appli-

cation. Given the present trend towards edge computing e.g., distributed Machine Learning (ML)

[6], the respective need for fast design of specialised computing devices, and the aforementioned

cost benefits, FPGAs gain new relevance. Additionally, algorithms are subject to change due to

performance reasons, different application needs, or bug fixes. As FPGAs are reconfigurable, the

cost cutting is multiplied as no new devices need to be fabricated and deployed.

1.1.1 High Level Synthesis

Manual hardware design is a difficult process. It requires extensive knowledge of computer ar-

chitecture, signal propagation, power management and many more technical domains, all of them

taking decades to fully master. Due to this, development is mainly done by large specialised teams

during several months to years.

FPGAs reduce the development burden by removing the complexity of physical design and by

providing tools that allow developers to work using Hardware Description Languages (HDLs) that

then map to predefined blocks on the FPGA. Vendors place great invest into these tools, automat-

ing the mapping of the algorithm onto the blocks and the subsequent routing of the connections

between blocks. This process is known as synthesys.

Although much simpler, this process is still not what one could call "software developer

friendly" as a detailed understanding of the underlying architecture is needed to produce any high-

performance design. To that end, industry and academia have invested in a technique called High

Level Synthesis [7, 8]. This takes high-level C, C++, Fortran and some times even Python code

and converts it to an Register-transfer Level (RTL) description on a HDL like Verilog or VHDL.

Designing circuits using a higher-level language has several advantages. The move from cir-

cuit description to behaviour description lowers the barrier of entry but it also means that the

overall code base is much smaller. Less code to write, review and maintain. Leveraging existing

software development tools like linters, static analysers, debuggers and Integrated Development

Environments (IDEs) means that the process itself is supported by a plethora of mature, easy-to-

use and effective tools. Testing the code is much faster and late-stage changes and experimentation

can also occur seamlessly. In RTL any major change or feature addition often requires a major

redesign of the entire circuit. Using High-Level Synthesis (HLS) that translates into changing the

code and re-running the compiler. Perhaps more importantly, as only behaviours are being coded,

there is no tie to any architecture or manufacturing process. Changing any of these parameters is

as simple as recompiling the code.

The economic benefit of this technology is clear. Much faster and flexible development that

enables a significantly shorter time-to-market.
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However, just as with HDL based designs, some expert knowledge is required to create perfor-

mant HLS-based designs. Specifically, although low level hardware details are abstracted away,

the expert knowledge required for efficiency is now centered around the computing model. Mainly,

on dataflow parallelism, data partitioning, and data streaming.

1.1.2 Dynamic Partial Reconfiguration

A unique property of FPGAs is the capability of switching between accelerator circuits at run-

time, which is referred to as Dynamic Partial Reconfiguration (DPR) [9]. This feature, which has

not seen widespread adoption in real-world applications, allows for a targeted FPGA area to be

reconfigured while the device is in operation without disturbing operations occurring in the rest

of the compute fabric. This effectively modifies the circuit implemented in the delimited region,

allowing for the same resources to implement multiple functions in a time-multiplexed manner.

A set of accelerators can make use of the same FPGA region using this technique, which can

be referred to as accelerator hot-swapping [10]. Allowing an application to hot-swap accelerators

instead of solely dealing with a fixed, predefined set, implemented at boot-time, greatly expands on

the possibilities of using FPGA devices as platforms for implementing accelerators. Accelerators

that are not used concurrently can be swapped out as needed freeing up space for others, reducing

the total area of re-configurable fabric required to implement the complete set of HwAs of a

specific application. By allowing time-multiplexed use of limited silicon resources, smaller and

less expensive devices can be utilised.

However, despite this DPR capability, the runtime management of available silicon area is not

straightforward. Different HwAs implement different workloads (e.g., functions, or set of func-

tions) with different memory and compute characteristics. Also, they may each require different

silicon area, and have different average compute times. If a HwA is not currently available in

the FPGA fabric, time must be expended to reconfigure the device. Memory transfer overheads,

thermal considerations and problem size all influence the relative performance of the accelerator.

Whether or not a specific task should be accelerated at a given time, or if execution should fall

back to software thus depends on these aspects, on the particular task order and on current silicon

usage, i.e. FPGA area.

1.2 Problem

As established, compute capabilities are no longer scaling with the physical node changes nor are

these happening at the rate the industry enjoyed for the past decades. Heterogeneous architectures

provide a way for better performance scaling and FPGA’s characteristics place these devices at the

forefront of these emerging architectures. The main cost of this approach is overall greater system

complexity. As a result, software complexity increases as the effort required to manage the system

also grows.

Most tasks related to managing heterogeneity are currently hand tuned. Task scheduling, ker-

nel generation and the hardware/software partitioning problem are prime examples. This translates
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into increased development costs as time is siphoned from developers that could be spend on more

important tasks.

1.3 Objective

This work intends to explore techniques aimed at simplifying the process of developing and man-

aging accelerated applications.

We believe that through the use of source-to-source compilation techniques one can effort-

lessly adapt an application to a heterogeneous environment and then resort to ML methods that

learn how to appropriately schedule accelerated tasks. Given that decision trees are known to be

efficient in terms of resource usage on FPGAs, we outlined the exploration of this specific ML

mechanism to implement the runtime resource management.

In summary, we propose to address the following questions:

1. Can tasks be scheduled on a heterogeneous system through machine learn-
ing algorithms trained at runtime?

2. Can source-to-source techniques be effective at transparently scheduling
programs for heterogeneous architectures?

1.4 Document Structure

This chapter contained a contextualisation of the theme presented in this dissertation. Chapter 2

elaborates on the topics presented, giving the reader the information required for understanding

the rest of the document. Chapter 3 looks into past attempts by industry and academia at solving

the problem we described. Chapter 4 details how we propose to solve that problem, building on

top of previous knowledge, followed by chapters 5 and 6 detailing the implementation. Chapter

7 documents the experiments conducted and we conclude with chapter 8 offering an overarching

view of this dissertation and the problems it addresses.



Chapter 2

Background

This chapter is a brief look into some of the concepts relevant to understanding this dissertation

and the implementation choices made within it.

2.1 Field Programmable Gate Arrays

As the name suggests, FPGAs are a type of semiconductor device constituted by a array of logic

blocks. These can be Lookup Tables (LUTs), Block RAMs (BRAMs), Digital Signal Proces-

sors (DSPs) and Flip-Flops (FFs). They are individually configured to make up individual logic

operations that, when connected through a configurable interconnect, make up a comprehensive

circuit. This circuit is then connected to Input/Output (I/O) blocks to ingest data and output results.

To configure all these components, on startup, a bitstream is is loaded from the memory banks and

applied onto the fabric.

Table 2.1: Full-adder logic table.

Inputs Outputs

A B Ci Sum Carry

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

An example of how a logic block emulates complex gate arrangements can be seen in the way

LUTs work. Compared to a traditional digital circuit, the task of a group of logic gates between

two registers can be assumed by a LUT. For all possible inputs to that logic function, the LUT

stores the outcomes and outputs them on demand (Table 2.1). This simple mechanism allows a

5



Background 6

LUT to be configured to assume the task of many different logic gates and condense them onto a

single logic block.

The ability to configure a device at this level and interconnect the output of any block to

another is what sets FPGAs apart. Even though the performance of an algorithm implemented

on a FPGA will always be inferior to a direct implementation in ASIC form it still allows for

improvements due to the use of special-purpose circuitry. This if the trade-off made with FPGAs.

That is why a common application for the use of FPGAs is ASIC prototyping as it allows

a team of engineers to iterate on their logic design, test and validate it before incurring in the

expense of doing a production run. Other applications centre around low volume circuit designs.

Although ASICs are less costly per unit, the initial investment into design tools, expert teams,

validation and non-recurring manufacturing costs make the cost proposal of FPGAs stand out

for low production runs. Aerospace, automotive, medical or consumer electronics companies

commonly use the reconfigurable nature of FPGAs to adapt the programmable fabric to their

needs and implement custom circuitry at lower cost.

2.1.1 Benefits of special-purpose circuitry

Implementing algorithms using special-purpose circuitry allow us to make use of a few techniques

aimed at enhancing the performance of that algorithm that would not be possible if it were running

on a general purpose compute device (CPU). One example is parallelism. If two sequential task of

an algorithm do not depend on each other results, they can be run in parallel to save time (Figure

2.1).

Figure 2.1: Task Parallelism within a Run. Source: Vitis Unified Software Development Platform
2021.1 Documentation.

Another improvement is task pipelining. If a run only needs each task at a single point of

execution, the tasks can be pipelined. That is, as soon as each of them complete the processing

of the current sample and pass the result on to the next task, they can already receive the next

sample without waiting for the whole run to complete (Figure 2.2). This results in a reduction in

the Initiation Interval (II) of an algorithm i.e. the time between sample ingests.

These enhancement strategies can then be applied simultaneously to maximise throughput as

seen in Figures 2.3 and 2.4.
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Figure 2.2: Task Pipelining. Source: Vitis Unified Software Development Platform 2021.1 Docu-
mentation.

Figure 2.3: Task Parallelism with Pipelining. Source: Vitis Unified Software Development Plat-
form 2021.1 Documentation.

Figure 2.4: Task Parallelism and Pipelining within a Run, Pipelining of Runs, and Pipelining
within a Task. Source: Vitis Unified Software Development Platform 2021.1 Documentation.
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2.2 High-Level Synthesis

Traditionally, circuit specifications are done at the RTL level with HDLs such as Verilog or VHSIC

Hardware Description Language (VHDL). This allows for fine-grained control of how the logic

components of a circuit are arranged, how they function and how they are interconnected to per-

form a complex task. However working at the RTL level requires expert knowledge of how hard-

ware architectures work and how the individual components will interact. While for many appli-

cations this working level is desirable, for others a greater flexibility and lower barrier of entry is

required.

The use of C/C++ allows for development of algorithms at a higher level of abstraction. En-

gineers can implement the desired behaviour in C, C++ or OpenCL and validate the algorithms at

that level without having to worry about hardware implementation details. Testing and simulation

can done be using common software development tools leading to faster design iterations. HLS

tools will then take this high level code and synthesise it to RTL level (Figure 2.5).

Figure 2.5: C/C++ to RTL synthesis flow in Xilinx Vitis HLS. It consists of 2 main components –
1. Front-end: This component parses the code expressed in C/C++ or OpenCL, applies front-end
and middle-end transformations using the Clang/LLVM tool chain. 2. Back-end: This phase takes
an LLVM IR input and performs FPGA-specific lowering and scheduling until the final step, RTL
generation. Source: Xilinx Blog.

To guide the synthesis process, tools can interpret pragma directives inserted into the C/C++

code that guide optimisations steps. Examples include pipelining (Figure 2.2), array partitioning,

loop unrolling, loop merging and function inlining. Developing in C/C++ allows for the rapid

creation of multiple designs using different directives to conduct design space exploration and

find and optimum solution.

Additionally RTL specifications are usually tied to a specific hardware architecture as the basic

building blocks are not necessarily the same across device families or not available in the same

quantity. HLS can be used to easily develop a design across devices and architectures and tailor

optimised versions by again exploring the design space with different pragma directives for the

different target devices.
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HLS synthesis is divided into three main stages: scheduling, hardware resource binding and

control logic extraction.

• Scheduling is used to determine when each operation will occur based on the target clock

frequency, data dependency information extracted from the code, available resource, how

long each logic block takes to complete an operation (varies depending on the target device)

and on the user-defined pragma directives.

• Hardware Resource Binding allocates and maps each scheduled operation to the respective

RTL implementations and thus device hardware resources.

• Control Logic Extraction creates a Finite State Machines (FSM) tailored to control the flow

of data in the device as well as implementing the input and output ports.



Chapter 3

Related Work

3.1 Reconfigurable Hardware Resource Management Frameworks

In this section several academic efforts to develop develop hardware accelerator invocation and

resource management are presented. These are used by applications to determine the best kernel

implementation to utilise in order to obtain the fastest execution times.

3.1.1 SkePU

In the work of U. Daasteger et al. [11] the SkePU library is presented as being capable of generat-

ing code for accelerating a task when executed on a Graphics Processing Unit (GPU) using three

different methods. Choosing the best implementation then becomes a problem. Recognising the

non-trivial task that is performance portability between devices, the authors propose a method for

automatic selection between the implementation variants.

The simplest approach would be to profile all possible variants of a function call context (num-

ber of arguments, their value and sizes) to determine the variant that provides the shortest execution

time for each possibility. This, however, is unfeasible.

The empirical offline auto-tuning method the authors propose for implementation selection

is based on a decision tree where the heuristic convexity assumption is applied. That is, in a 1-

dimensional space, if two points A and B prefer the same implementation then all the points in the

[A, B] range must also prefer it. This assumption can be expanded to a N-dimensional subspace

where if a method is preferred for all vertices of that subspace then all points inside that subspace

must perform better when using that same method. This algorithm is used to explore the parameter

subspaces in a recursive manner.

Before every call to a function with several available implementations, the decision tree is

evaluated in order to determine the most appropriate for the context of the call. In the case of

SkePU, this can mean a execution purely on the CPU (C++) or on a GPU (OpenMP, CUDA or

OpenCL).

Caution is given in the case of sequential kernel executions with tight data dependencies, as

the algorithm makes the choice that provides the best performance for each individual kernel. This

10
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combination, however, might not provide the fastest global execution as expensive data transfers

may be required between kernel executions. To mitigate this issue, kernels are manually grouped

and the framework executes the whole group on the device chosen for the execution of the first

kernel.

The authors evaluated this approach by using nine benchmark kernels and demonstrated an

effectiveness greater than 90% in predicting the best implementation from an exploration of just

0.5% of the possible training space. The authors point out that the method requires no modification

of application-code when porting to new non-identical systems however offline retraining of the

decision tree model is necessary using all new profiling information. Furthermore, being a library,

SkePU requires users to be familiar with its concepts and programming model to be able to take

advantage of its advertised capabilities. A program has to be designed with SkePU in mind from

its inception.

3.1.2 Offload Annotations

In the work of G. Yuan et al. [12] a Python runtime is presented to assist in managing function

offloading to HwAs. GPUs were used as an example. Specifically, the work focuses on popular

Python libraries used in the field of data science.

Effectively, annotators write code for select library functions that indicates proper targets (ac-

celerated substitutes) for each function. When the runtime decides that a function call is to be

offloaded this target is called instead of the original CPU function. The offloading decision is

made by the runtime based on cost estimates of data transfer and compute costs for either device.

These estimators need to be globally defined by the user and can make use of the values and types

of the arguments passed onto the library functions in their criteria. In their paper, the authors

demonstrate the behaviour using simple linear estimators. In case they are not defined the runtime

naively suggests using the accelerator if a target function has been provided otherwise the function

is executed on the CPU.

Data management is also a major part of the runtime. As some datasets are able to fit in system

memory but not in the memory banks of accelerators, the runtime uses user defined methods of

dividing the input data to split this data into chunks manageable by the HwA. After executing the

algorithms over all data chunks, data is transferred back to system memory and merged.

Tests were conducted on system with a GPU installed using it to accelerate Pandas, Sklearn

and NumPy functions by means of the CuPy and PyTorch target functions. The results provided

by the authors show that up to a 1200× speedup is possible with the median speedup being 6.3×.

With the possibility of estimators to be defined by the end-user, in theory, sophisticated algo-

rithms can be used to guarantee portability of the code between every CPU+HwA meaning that if

there are any hardware changes between systems no new profiling and tuning must be made.

One downside of this approach is that its usefulness is limited to situations where code reuse is

common such as popular libraries. For every new kernel, a new annotation must be made. This is

a feasible endeavour if it is done incrementally and over time. For generic programs written from

scratch, Offload Annotationss (OAs) are in essence the same as the current manual process. The
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only advantages provided come from the data splitting and transfer management handled by the

runtime.

3.1.3 Runtime Decisions

The work of G. Vaz et al. [13] describes a method based on profiling at runtime the performance

characteristics of the HwAs and CPU when executing a task.

Making use of LLVM’s ScalarEvolution (SCEV) analysis, information about loop trip counts

is obtained. SCEV automatically determines if a trip count can be obtained statically and known at

compile time or if it is dependant on the value of a variable at runtime in which case the decision

on where to execute the kernel is deferred to when that value is available. This means that for

deferred decisions, code is injected just before the function call to evaluate the loop trip count and

determine if the computation should be offloaded.

Decisions are made based on user-defined thresholds. These need to be inferred by the user

from profiling information and via manual tuning. The framework allows thresholds to be defined

generally or be loop specific.

The authors show a speedup of up to 3× compared to a naive "CPU only" and up to 10× when

compared to a "HwA only" approach on image processing workloads.

Two major limitations are apparent: 1) The dependency on the LLVM compiler framework

[14]. This restricts development to programming languages supported by LLVM frontends and

preventing use of compilers based on the GNU is Not Unix (GNU) ecosystem. 2) By doing

the analysis steps and behaviour injection at the Intermediate Representation (IR) level a user is

restricted to perform the compilation steps using the authors tools. If the user workflow includes

using a closed-source LLVM-based compiler provided by the hardware vendor, this method is not

applicable.

One final component to stress is the focus on loop trip counts. There is room for future re-

search directions exploring diverse methods for inferring acceleration potential from the IR or

other representations of source code.

3.1.4 QBC

In W. Ogilvie et al. [15] the Query by Committee (QBC) technique is proposed as a more efficient

way of heuristic construction intended to aid in the creation of accurate ML models while requiring

less training data.

The authors propose a method for choosing training data using interim ML models. This

process starts by the creation of a set of ’seed’ profiling data. These inputs are randomly selected.

After offline profiling, 12 models are trained using different algorithms. These represent the ’com-

mittee’.

New, randomly generated points, are then evaluated by the ’committee’ to derive new points

of interest. The interest of each new point is inverse to the agreement of the ’committee’. If

the models disagree on which implementation of a function should be used when a certain input
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context is present then that context should be profiled and used for training. A new ’committee’

is generated using the initial ’seed’ data and the new ’candidate’ points. This process is repeated

until some completion criterion are met. The final set of points are used to train a final ML model

for production use.

The authors show that using the proposed approach and avoiding profiling inputs that provide

little to no information for a ML model, training overhead can be significantly reduced. An ac-

curacy of over 85% was achieved on all examples while providing, on average, a 3x speedup of

training due to the smaller training set used.

3.1.5 HIS

The Hybrid static-dynamic Implementation Selection (HIS) engine described in the work of D.

del Rio Astorga et al. [16] takes advantage of annotations placed on C++ code to guide its be-

haviour. A user of this framework describes the available hardware for every function it wishes to

accelerate. For each available HwA a variant must then be implemented to execute that function

in the respective HwA. Information can be added to make sure that, for certain problem sizes, a

specific HwAis used. For ranges where the user does not specify which one should be used, the

framework collects profiling information and then uses it to add a if-else-based decision tree to the

source code specifying the ranges where an implementation is preferred over the others.

3.1.6 Digest

In this subsection a short digest of the related work is presented. Table 3.1 collects the main points

of the discussed works.

Table 3.1: Digest of decision engine characteristics

Section 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 5

Name SkePU OA
Runtime
Decisions

QBC HIS Tribble

Type decision tree heuristic threshold heuristic decision tree Any

Retraining Yes - - Yes - -

Recompiling Yes - Yes Yes Yes No

Manual
Code Changes

No Yes Yes Yes Yes No

Compiler
Lock-in

No Python LLVM - No No

In the presented works, all decision engines require some sort of user interaction in order to

port the applications to a different system. Due to the use of offline profiling and/or training, 3.1.1

and 3.1.4 require a period of exploration. This process could be automated on a per-device level

as a bootstrapping period, but it would always require a waiting period between programming
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and production use and depending on the possible exploration space can become impractical for

embedded use. Alternatively, the end-user could train the models on a test system and then port

the application and models to identical systems.

The works in 3.1.2, 3.1.3 and 3.1.5 all require code changes to be ported to different platforms.

This would require source-code access and extensive manual profiling to determine the preferred

methods of kernel execution.

3.2 Decision Trees

In the field of Decision Trees (DTs) there are many algorithms to choose from. A particular

divide can be found in the type of output provided by DTs. Two great groups of algorithms can

be observed: Classification and Regression. Classification algorithms try to learn the relation

between the input values and provided labels. Any prediction places the input sample inside a

particular class (e.g. scorching, hot, cold, freezing). Regression algorithms are more suited to

learn relations to quantities (e.g. 50 through -10ºC).

Another metric of classifying algorithms is by how they require the dataset to be presented.

Again, two major categories emerge: Batch learners and Incremental learners. Batch learners

require that the entire dataset is present in memory. The dataset is then split into a training portion

and a testing portion. The algorithm constructs a model using the training dataset and then the

fitness of that model is validated using the test dataset. A good training/test split is necessary

to ensure that the model has not been overfitted. As one can imagine, memory requirements

grow with the dataset size which makes many of these algorithms not suited for devices with

restricted memory resources. Furthermore, if more data is added to the dataset a new model must

be constructed from scratch. ID3 [17], and derivatives such as C4.5 and C5.0 are examples of DT

batch learners.

Inversely, incremental learning algorithms as ID5 [18], ID5R [19] and ITI [20] allow for on-

going learning from streaming data but store the dataset samples within the tree.

Hoeffding Trees [21] are incremental learning trees, which are more suitable for embedded

scenarios because they have the following advantages: 1) They asymptotically guarantee the same

classification as traditional batch learners. 2) They store information about the distribution of

samples statistically rather than the samples themselves, which drastically reduces memory re-

quirements, especially for large datasets.

A Hoeffding tree performs learning and inference by relying on a property of the Hoeffding

bound that guarantees that best splitting point is chosen. If a gain function G, is to be maximised,

then given G(X) and G(Y ) - X and Y being the attributes that generate the highest and second

highest values of G - if G(X)−G(Y )> ε then the Hoeffding bound guarantees that with probability

1− δ X is the best attribute to split on. The Hoeffding bound is computed as shown in Equation

3.1.
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ε =

√
R2ln( 1

δ
)

2N
(3.1)

3.2.1 VFDT

Very Fast Decision Tree (VFDT) is the original Hoeffding Tree implementation [21]. The statis-

tical method used to store sample data is a binning system. These bins count the frequency of

every value for analysed samples of the dataset. For categorical data, bins could either be assigned

at compile time for every discrete value as the data range is a known parameter (it is required to

calculate the Hoeffding Bound) or the number of bins can be capped and assigned to a value on a

first-come-first-served basis as samples are seen by a node [22]. Once all the bins become assigned

new values are discarded. For numerical data, the range can be divided equally among N bins. The

value of N is a delicate balance. Too small and each bin covers an inversely large numerical range,

being unable to distinguish small variations. Too large and the memory requirements may become

great.

3.2.2 Gaussian Method

A method used mitigate the problems of the original bin system is to store information about

sample values in the form of a Gaussian Distribution [23]. As the only values required to char-

acterise the distribution of data for every attribute-class pair are the mean and variance, the data

storage requirements are reduced heavily. This reduction is traded for an increase in computation

requirements as one is no longer just incrementing bin values as samples come in.

3.2.3 Quantile Estimation

Zhe Lin et al. [24] makes use of asymmetric signum functions [25] for quantile estimation. This

method uses each incoming sample to update a set of quantiles characterising the distribution of

values for every attribute-class pair. The authors describe three main advantages of this method:

1) It does not require sample storage and the memory footprint is kept smaller than binning-

based methods. 2) As only comparisons and subtractions are needed, there are less computational

requirements than compared to the Gaussian Distribution method. 3) The algorithm is amenable

for paralelisation and pipelining.

The authors proceed to describe an FPGA implementation written in Verilog for this algorithm.

Experimental evaluation of the architecture granted a up to 1581× speedup over a server-grade

CPU.



Chapter 4

General Approach

The intention of this work is to architecture a compilation flow capable of easing the entry of

developers into the heterogeneous architectures space. To automate the process of taking a non-

accelerated program and transforming it into an accelerated one with minimal developer interven-

tion and where the end result is portable between different devices and architectures.

4.1 Scope

For the purpose of maintaining focus throughout the development of this work, restricting the

scope of research is necessary.

Figure 4.1: Diagram of internal architecture of Xilinx UltraScale and UltraScale+ family of inte-
grated circuit devices. A processing system portion implemented as hard logic interfaces with the
re-configurable area portion where accelerators are hosted. Source: Xilinx product pages.

1. We will only be working with Xilinx Multi Processor System on a Chip (MPSoC) products,

that include CPU and FPGA portions, as shown in Figure 4.1. These systems are running a

Linux-based Operating System (OS) (particularly Petalinux) with support for the OpenCL

model of communicating and commanding the FPGA in the System on a Chip (SoC).

16
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2. We do not intend to explore and expand on how to optimise code for HLS or conduct pragma

space exploration.

3. We assume optimised version of the kernels can be generated either via expert intervention

or by means of other tools or academic works.

4. We use the concept of arithmetic operation counts (an expansion on the notion of loop

tripcounts) as an indicator of how long a task will take to compute. We do not intend to

use it as a measure of absolute performance but as a means of comparing how they impact

execution times on CPUs and FPGAs.

4.2 Proposed Architecture

The problem we chose to tackle can be divided into two main aspects: 1) A tool capable of trans-

forming regular C/C++ programs and inject code to enable them to make use of accelerators. 2) A

resource scheduler to choose between kernel implementations to optimise the overall application

performance. The way they interact is described in Figure 4.2.

Target
Application

(C/C++)

LARA
code to guide

transformations

Annotate Kernel
Functions

Transformed Application
(HLS versions of kernels,
and OpenCL boilerplate)

Hoeffding Tree for runtime
accelerator management

(C++ Template)

FPGA MPSoC

ARM Main Processor
(host code, tree object, and

software versions of kernels)

Compile Time Runtime

Accelerated
Tree

Training and
Inference

Slots for
Accelerated

Kernels
(loaded at
runtime)

Figure 4.2: Diagram describing the proposed workflow.

4.2.1 Code Injection

In order to make the tool platform agnostic and portable, the best choice for where to make any

modifications is the source code itself by means of the Abstract Syntax Tree (AST) allowing the

program to be reconstructed into source code form to then be compiled by any toolchain as if it

were written by the developer. A completely transparent process.

Clava [26] is a tool capable of being used as a base for this code injection as it automates the

process of converting the source code into AST form, operate over the AST using a javascript-

based Domain Specific Language (DSL) and simple Application Programming Interfaces (APIs)

and finally convert the modified AST back to source code.

Any kernel implementation can also be used generate HwAs by means of HLS. Xilinx pro-

vides HLS support through its Vitis product [27] - the same software used to program the host

platforms (CPU) of its embedded products.
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4.2.2 Scheduling

State-of-the-art frameworks use loop tripcount estimations as input for their schedulers. We argue

that this does not paint a clear picture as the content of each loop may influence runtime greatly. We

intend to use arithmetic operation counts as the inputs to our scheduler (Algorithm 1). Specifically

an array of 16 different counts spanning several bitwidths and operation types.

To guarantee portability between devices with the minimal developer intervention, offline pro-

filing is not an option. Bootstrapping periods are at a device’s first usage is also something to be

avoided, as the period would grow with the size of the exploration space and number of available

HwAs. Due to these restrictions, ML is a compelling choice. Decision trees were chosen to the

detriment of other ML algorithms as they simpler to implement, amenable for FPGA acceleration

and provide a of easily extracting knowledge from. This last point is very important as to be able

to guide future research into this field.

The intention is to use a C/C++ HLS implementation of a Hoeffding Tree with quantile es-

timation to learn, at runtime, what kernel implementation is preferable for executing a specific

task.

Algorithm 1: Runtime Decision Engine

Initialisation;
Infer execution platform based on function call parameters.
Let σ be the confidence in the choice made by the tree model.
if σ > confidence threshold then

Execute task on preferred platform.
else

Start timer.
Start execution on CPU.
Use DPR to load the HwA (if needed).
Copy input data to HwA.
Start execution on HwA.
Wait for CPU or HwA to finish.
Halt execution of slower platform.
If applicable, copy result over from HwA.
Stop timer.
if Train with sample then

Report winner to the tree model (training).
end

end



Chapter 5

Tribble Source-to-Source Framework

As allured to earlier, the way in which we set out to create a tool capable of transparent code

injection was through modification of the source code itself by means of the AST. We dubbed

this tool: Tribble. Tribble is a collection of scripts for the Clava source-to-source compiler. Clava

provided an easy way to interface with the LLVM AST and modify any program without becoming

tied to the LLVM infrastructure.

On a high level, Tribble achieves the following:

1. Automatically locate all functions tagged as kernels.

2. Transform any non-void kernel function into a void function.

3. Analyse kernel computational load.

4. Modifies the kernel function to allow for an external scheduler to decide which implemen-

tation to execute for every kernel function call.

5. Configures all OpenCL arguments and buffers required for HwA operation and inserts the

respective OpenCL kernel-specific boilerplate invocation code without user intervention.

6. Injects code to profile the kernel executions and provide feedback to the external scheduler.

7. Replace the program’s main() function with a version from predefined template while main-

taining all functionality.

A quick note is warranted. The several code examples present on this chapter do not reflect

parts of the same kernel. Each example is tailored to show as much information as possible about

a specific feature to the detriment of providing a step-by-step guide to how a single kernel is

morphed by each step taken by the Tribble scripts.

19
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5.1 Folder Structure

In order to be able to use Tribble, a basic knowledge of how the tool is structured is required.

Knowing where files are located is important for a user to be able to understand how Tribble

functions and how to utilise its products further down the toolchain.

1 |-CxxIgnored

2 | |-OCL_Helpers.cpp

3 | |-OCL_Helpers.hpp

4 |-CxxSource

5 | |-main.cpp

6 | |-lib1.cpp

7 | |-lib1.hpp

8 |-.clang-format

9 |-CxxTemplates

10 | |-OCLH_main.cpp

11 |-woven_code

12 | |-CxxIgnored

13 | | |-OCL_Helpers.hpp

14 | | |-OCL_Helpers.cpp

15 | |-_HLS_graphs

16 | |-_HLS_reports

17 | |-CxxTemplates

18 | | |-OCLH_main.cpp

19 | |-CxxSource

20 | | |-kernels.cpp

21 | | |-main.cpp

22 | | |-lib1.cpp

23 | | |-lib1.hpp

24 |-Clava-Options

25 |-Makefile

Listing 5.1: Relevant Tribble folder structure

Execution is simple as a Makefile is provided. make run and make clean are the available

commands. run performs the code generation and clean deletes any artefact. As a final step to

the code generation, the code is formatted using clang-format. For that, a .clang_format

file is provided to allow for custom code styles.

• CxxIgnored - Contains source files that are not parsed by Clava. The files are just copied

to the output folder without any modification. The purpose of this is to allow for Trib-

ble-provided helper libraries to include C-style macros and enable their use in the code

generation steps. The result is cleaner code, that is more readable, auditable and easier to

debug.

• CxxSource - Main source code folder. Can be a symbolic link to the user’s project.
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• CxxTemplates - Internal Tribble C/C++ templates. Refer to section 5.9.

• woven_code - Output folder. All generated code is placed here. The folder structure of the

input is maintained and reports from the HLSAnalysis step (section 5.10) are also present.

Any of names of any the folders used as inputs and outputs of code can be customised by

altering the Clava-Options and Makefile files.

5.2 Kernel Pragmas

Tribble, as it stands, is not able to identify code amenable for acceleration. It falls outside of the

scope of this work. Therefore, in order to have any knowledge of which function the developer

wishes to turn into HwA, a couple of pragmas can be used to tag a function.

An additional pragma can be used as a guide for refining the OpenCL configuration of that

kernel. The use of this second pragma is optional and its further explained in 5.7.

1 #pragma clava kernel

2 #pragma clava data kernel:[{ro:"auto"}, {wo:"auto"}]

3 void foo(int in[1000], int out[1000]) {

4 (...)

5 }

Listing 5.2: Pragma exemplification

5.3 Enforcing kernel void type

Injecting code for choosing between the kernel implementations can be done in two main ways:

1) Find all function calls for that kernel and wrap them in selection code. 2) Change the kernel

function itself. With Tribble we chose the second as this minimises code changes and makes

debugging easier. The original kernel code (Listing 5.3) is copied into another function and the

original is modified to call the clone (Listing 5.4).

1 #pragma clava kernel

2 #pragma clava data kernel : [{ro : "auto"}, {ro : "auto"}]

3 int foo(int a, int b) { return a*b; }

Listing 5.3: Original kernel

1 int foo_KernelCode(int a, int b) { return a*b; }

2

3 int foo(int a, int b) {
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4 (...)

5 int kernelReturn = foo_KernelCode(a, b);

6 (...)

7 return kernelReturn;

8 }

Listing 5.4: Code after initial transformation

Additionally, the OpenCL programming model forces every kernel to be of void type as all

the memory management must be made manually. In order to support functions with non-void

return types, an intermediate function is used to make the translation where the return variable

is transformed into an argument. The script takes into account if the return type was already a

pointer.

1 int foo_KernelCode(int a, int b) { return a*b; }

2

3 void foo_Kernel(int a, int b, int *kernelReturn) {

4 *kernelReturn = foo_KernelCode(a, b);

5 }

6

7 int foo(int a, int b) {

8 int kernelReturn;

9 (...)

10 foo_Kernel(a, b, &kernelReturn);

11 (...)

12 return kernelReturn;

13 }

Listing 5.5: Code after void type enforcement

As an alternative to this automated process, the user can manually define functions with these

suffixes and they will be used by the script instead of creating them. This allows for custom

modifications and expert use-cases not supported/provided by Tribble.

5.4 Estimating Kernel Compute Load

In order to determine if a function call should be accelerated, some information must be inferred

about the computational requirements of that function call. To do so, a module called StaticOp-

sCounter is used to analyse the source code of the kernel and derive mathematical expressions for

how many operations a kernel will compute.

The process starts by using Clava to look into the AST and finding every statement made in

the scope of the function. There are two possible scenarios. The first being that the statement is

not a loop. In this case, all the ops within this statement are counted and categorised according to

their type (Integer Operation (IOP) or Floating Point Operation (FLOP)), bitwidth and kind (sum,
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multiplication, division). Additionally, if the statement is a function call, the module recursively

calls itself. Conversely, if the statement is a loop the module is recursively called to analyse the

loop’s scope and an analysis of the loop headers is conducted.

1 for (uint i = 0; i < 10*58; i++) { (...) }

2 for (uint j = 0; j < N/2; j++) { (...) }

Listing 5.6: Loop Header Examples

A loop can be bounded by a constant or variable expression (Listing 5.6). In cases where the

latter is true a check is performed to see if the variables in the expression are function arguments.

If not, a search is made for the last time that variable was written to and what expression was used

to do so. The variable is then substituted by the expression. This process is repeated until the

loop expression is entirely reliant on function arguments, the algorithm gives up or it encounters a

situation it is not capable of dealing with.

1 // Original

2 void foo (int N, int K) {

3 uint H = K/2;

4 uint J = N*H*5;

5 for (uint i = 0; i < pow(J, 2)/10; i++) {

6 (...)

7 }

8 }

9

10 // Loop count expression iterations

11 // pow(J, 2)/10

12 // pow((N*H*5), 2)/10

13 // pow((N*(K/2)*5), 2)/10

Listing 5.7: Loop Tripcount

Operation counts within the scope of a loop are then multiplied by the loop tripcount. The

result is a series of expressions that easily calculate how many operations of each type, bitwidth

and kind are needed to compute the requested function call. These expressions are then merged

according to a map of similar expressions kinds.

1 static opEquivalenciesMap = {

2 // Custom op names for consolidation

3 sum: "sum",

4 free: "free",

5 // Names from the StaticOpsCounter whitelist

6 mul: "mul",

7 div: "div",

8 rem: "div",
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9 add: "sum",

10 sub: "sum",

11 shl: "free",

12 shr: "free",

13 cmp: "free",

14 and: "free",

15 xor: "free",

16 or: "free",

17 l_and: "and",

18 l_or: "or",

19 mul_assign: "mul",

20 div_assign: "div",

21 rem_assign: "rem",

22 add_assign: "add",

23 sub_assign: "sub",

24 shl_assign: "shl",

25 shr_assign: "shr",

26 and_assign: "and",

27 xor_assign: "xor",

28 or_assign: "or",

29 post_inc: "add",

30 post_dec: "sub",

31 pre_inc: "add",

32 pre_dec: "sub",

33 }

Listing 5.8: Operation Kind Equivalences Map

After consolidation, the expressions are simplified and placed on a new function whose pro-

totype is cloned from the original kernel. This guarantees that any function arguments used in

the expressions are available to calculate them. An additional argument is added (uint64_t

opsCount[16]) to be able to extract the calculated values.

1 void bar_KernelCount(int a, int b, uint64_t ops[]) {

2 ops[1] = b + 2 * pow(b, 2); // iops-32-mul

3 }

Listing 5.9: KernelCount Example

In this example, the kernel function barwas analysed, and an auxiliary function bar_KernelCount

was created. By receiving the same argument list, the function can compute, at runtime, the ex-

pected compute load of the kernel as a function of calling argument values. This information is

used by the scheduler to infer which device would deliver the lowest execution time.
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5.5 Scheduling

As established, the selection of what implementation to use for a kernel call is carried out by a

scheduler. This is a function call (that can be a HwA itself) inserted into the kernel that utilizes

the operations counts calculated beforehand in foo_KernelCount as input for a decision.

1 extern void scheduler(uint64_t ops[], bool &executeOnCPU, bool &executeOnFPGA,

2 bool &measurePerf);

3

4 // The function "foo" is processed by the source-to-source compilation stage, and

is replaced with the following result. The function signature is preserved, and

the original function is called based on whether the scheduler determines if

the execution is faster on CPU or FPGA.

5 int foo(int a, int b) {

6 int kernelReturn;

7 bool executeOnCPU;

8 bool executeOnFPGA;

9 bool measurePerf;

10 uint64_t opsCount[16] = {0};

11 foo_KernelCount(a, b, opsCount);

12

13 // The scheduler may determine to execute the kernel on both targets if

learning is required, or otherwise infers which target is best from past

data and executes only on that platform.

14 scheduler(opsCount, executeOnCPU, executeOnFPGA, measurePerf);

15 if (executeOnCPU) {

16 (...)

17 foo_Kernel(a, b, &kernelReturn);

18 (...)

19 }

20 if (executeOnFPGA) {

21 (...)

22 }

23

24 return kernelReturn;

25 }

Listing 5.10: Scheduler Insertion

There are three boolean variables controlled by the scheduler. The first two, executeOnCPU

and executeOnFPGA, control where the kernel should be executed (it is possible to select both).

A third variable measurePerf signals whether or not the scheduler is confident in its decision

and therefore requests profiling of the execution.
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5.6 Profiling and Training

To provide feedback and train ML-based scheduling algorithms, information about the perfor-

mance of a kernel’s execution is needed. Tribble achieves this by using the C++ chrono library

to measure the execution time of the kernel in either target.

1 extern void scheduler(uint64_t ops[], bool &executeOnCPU, bool &executeOnFPGA,

2 bool &measurePerf);

3 extern void train(uint64_t ops[], bool CPUwonFPGAlost);

4

5 int foo(int a, int b) {

6 int kernelReturn;

7 bool measurePerf;

8 std::chrono::high_resolution_clock::duration clava_timing_duration_0;

9 std::chrono::high_resolution_clock::duration clava_timing_duration_1;

10

11 scheduler(opsCount, executeOnCPU, executeOnFPGA, measurePerf);

12 if (executeOnCPU) {

13 std::chrono::high_resolution_clock::time_point clava_timing_start_0;

14 std::chrono::high_resolution_clock::time_point clava_timing_end_0;

15 if (measurePerf) {

16 clava_timing_start_0 = std::chrono::high_resolution_clock::now();

17 }

18 foo_Kernel(a, b, &kernelReturn);

19 if (measurePerf) {

20 clava_timing_end_0 = std::chrono::high_resolution_clock::now();

21 clava_timing_duration_0 = clava_timing_end_0 - clava_timing_start_0;

22 }

23 }

24 if (executeOnFPGA) {

25 std::chrono::high_resolution_clock::time_point clava_timing_start_1;

26 std::chrono::high_resolution_clock::time_point clava_timing_end_1;

27 if (measurePerf) {

28 clava_timing_start_1 = std::chrono::high_resolution_clock::now();

29 }

30

31 // Execute on FPGA

32

33 if (measurePerf) {

34 clava_timing_end_1 = std::chrono::high_resolution_clock::now();

35 clava_timing_duration_1 = clava_timing_end_1 - clava_timing_start_1;

36 }

37 }

38 if (measurePerf)

39 train(opsCount, clava_timing_duration_0 < clava_timing_duration_1);

40

41 return kernelReturn;

42 }
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Listing 5.11: Profiling Code

Each kernel execution is wrapped in code that calculates the duration of those executions

and then relays that to the external train function in the form of a boolean result that can be

used to improve future scheduling decisions, without the need for profiling, even if the particular

combination of calling arguments has not yet been observed for the kernel.

5.7 OpenCL Kernel Arguments

One of the most complex code generation tasks is the management of the OpenCL API calls.

As the programming model is heavily reliant on expert intervention, automating the interface be-

tween CPU and FPGA quickly grows in complexity. In particular, data transfers must be managed

manually.

As mentioned in Section 5.2, an optional pragma can be used to aid this process. Omitting

the pragma outright, or partially, results in the script falling back to the default behaviour (auto).

1 #pragma clava data kernel : [{auto : "auto" }, {scalar : "auto" },

2 {rw: "N*sizeof(int)"}]

Listing 5.12: Buffer pragma

The content of this pragma is a JavaScript Object Notation (JSON) object detailing how a

kernel’s argument is used and how much space does it occupy in memory. Each object ({})

in the array ([]) maps to an argument in order of declaration. Several options are available to

indicate how the argument’s memory will be used: read-only (ro), write-only (wo), read-write

(rw), automatic detection (auto) and that the argument is a scalar and is not modified during the

execution of the kernel (scalar). When no information is provided, auto is used. Currently

auto maps to rw however future work includes analysis capabilities to infer if a variable is read

or written to.

For each key used to indicate how the memory is used a value must auto be provided. The

auto option is also available here. It results in an expression where the type of the argument is

wrapped in a call to sizeof(). Examples can be seen in code listing 5.13. Alternatively, users

can provide a C/C++ expression as seen in listing 5.12.

Buffers are only created for non-scalar arguments and have the CL_MEM_USE_HOST_PTR

option enabled in order to reuse the memory objects passed into the kernel as arguments as opposed

to allocating memory for this purpose.

1 cl::Buffer buffer_a(context, CL_MEM_USE_HOST_PTR | CL_MEM_READ_ONLY,

2 sizeof(int[2]), a);

3 cl::Buffer buffer_b(context, CL_MEM_USE_HOST_PTR | CL_MEM_WRITE_ONLY,
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4 sizeof(float), &b);

5 cl::Buffer buffer_c(context, CL_MEM_USE_HOST_PTR | CL_MEM_READ_WRITE,

6 a[0]*sizeof(unsigned long long int), &c);

Listing 5.13: Buffer Examples

After all buffers are created, they need to be set as arguments to the HwA. An example of this

can be found in listing 5.14.

1 extern cl::Kernel krnl_foo;

2

3 krnl_foo.setArg(0, buffer_a);

4 krnl_foo.setArg(1, b);

Listing 5.14: Argument assignment

Finally, all that is left is to transfer all necessary buffers between devices, execute the kernel

and transfer the results back.

1 #pragma clava kernel

2 #pragma clava data kernel : [{scalar: "auto"}, {ro, "auto"}, {rw, "auto"}]

3 int foo (int a, int B[100], int C[100]) {

4 (...)

5 queue.enqueueMigrateMemObjects({buffer_B, buffer_C}, 0 /* 0 means from host */)

;

6 queue.enqueueTask(krnl_foo);

7 queue.finish(); // Wait for the kernel to finish executing before transferring

the results back

8 queue.enqueueMigrateMemObjects({buffer_C}, CL_MIGRATE_MEM_OBJECT_HOST);

9 queue.finish();

10 (...)

11 }

Listing 5.15: Data transfer and kernel execution

API calls for enqueueing tasks are non-blocking. Therefore, the C/C++ code proceeds execu-

tion without waiting for the data transfers to finish, nor the kernel execution. Because of that, it

is necessary to wait for the command queue to become empty before transferring the results back

from the HwA.

The krnl_* variables are cl::Kernel objects created externally and imported as global

variables to make them available inside any required function. This is also the case for the

cl::CommandQueue and cl::Context objects needed at various locations.

This process of adapting an arbitrary annotated kernel to conform with the calling convention

of our target execution device is thus fully automated by the source-to-source step of our flow. This

is, on its own, a significant contribution to the usability of Xilinx FPGA devices. Although Vitis
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HLS offloads the hardware design effort from the programmer (albeit with non-optimal results),

there is still a hard requirement for potentially extensive code re-writting in order to conform

with the OpenCL based abstractions between the processing system and the reconfigurable fabric,

which this contribution of this dissertation circumvents. Additionally, this process conforms with

current limitations and requirements imposed by the HLS compiler, as outlined following.

5.8 Vitis Incompatibilities

For compiling C/C++HLS kernels, the Vitis software utilises the v++ compiler. Some peculiarities

of this compiler introduce a few impediments to the source-code generation. One of the checks

v++ performs is if the C/C++ HLS code conforms to the rules and restrictions of the Xilinx HLS

implementation. One of them being that no calls to operating system are permitted (as a kernel

would not have access to the OS).

Part of the process of generating HwAs using Vitis includes selecting which C/C++ functions

we wish to accelerate. It happens that v++ does not apply the HLS restrictions only to these

functions and code they depend on. Instead it applies them to the entirety of the input, meaning

that if the code happens to import a library that does not comply with the HLS restrictions the

compilation fails. This is the case if we import the OpenCL headers in order to be able to use the

API.

A solution to this problem is to separate the *_Kernel and *_KernelCode functions from

the rest of the codebase into a different file. This allows us to give the v++ compiler this new

file as the input. The program is still compilable for the host platform (executing on the CPU) as

Tribble creates prototypes for the *_Kernel and *_KernelCode functions in the header files of

each respective library. The linker will then join the program appropriately.

5.9 main() Template

As alluded to before in section 5.7, several variables and functions related with the OpenCL pro-

gramming model used in the files where kernels reside and are defined are created externally to

those files. These originate from a file present in the CxxTemplates folder that includes a func-

tion named main_template. The purpose of this file is to serve as a template for any program

being accelerated using Tribble. It contains the code that creates and configures all OpenCL ob-

jects, imports the xclbin file, finds the FPGA device and defines the scheduler and train

functions.

1 #include "../CxxIgnored/OCL_Helpers.hpp"

2

3 cl::Context context;

4 cl::CommandQueue queue;

5 cl::Program program;

6
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7 void scheduler(uint64_t ops[], bool &executeOnCPU, bool &executeOnFPGA,

8 bool &measurePerf) {

9 executeOnCPU = true;

10 executeOnFPGA = false;

11 measurePerf = false;

12 }

13

14 void train(uint ops[], bool CPUwonFPGAlost) { return; }

15

16 #pragma clava ocl_insert_globals

17 // cl::Kernel krnl_foo;

18

19 int main_template(int argc, char *argv[]) {

20

21 static const std::string platformName = "Xilinx";

22

23 OCLH::getConfig(argv[1], platformName, context, queue, program);

24

25 #pragma clava ocl_insert_kernel_initializations

26 // krnl_foo = OCLH::getKernel("foo_Kernel", program);

27 }

Listing 5.16: Example of configuration file

In Listing 5.16 a few new things stand out. The use of functions from the OCLH namespace

and the presence of two pragmas. These pragmas are used as markers for where to insert code per-

taining to the creation and configuration of the cl::Kernel objects. Below them are examples

of the code that is created by Tribble. The OCLH namespace is defined in the OCL_Helpers.hpp

file. This library is composed of a number of helper functions with the purpose of simplifying the

process of configuring the OpenCL environment.

A simple solution to insert this configuration code at the beginning of the program execution

without disrupting the main function is to replace the function altogether as the main. Thus,

when Tribble is executed, main becomes main_original, main_template becomes main

and calls main_original to execute the intended program behaviour.

1 // CxxSource/main.cpp

2 // main --> main_original

3 int main_original(int argc, char *argv[]) {

4 (...)

5 }

6

7 // CxxTemplates/main.cpp

8 extern int main_original(int argc, char *argv[]);

9

10 // main_template --> main

11 int main(int argc, char *argv[]) {
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12 (...)

13 return main_original(argc, argv);

14 }

Listing 5.17: main() replacement mechanism

5.10 HLSAnalysis

As a final step, all *_KernelCode functions are submitted to the Clava script developed by Tiago

Santos in his master’s dissertation entitled ’HLSAnalysis’ [28]. The script performs an analysis of

the source code and places HLS pragmas intended to maximise the performance of that code when

synthesised. For information regarding how that script achieves this, please refer to his work.

Summarily, the automatic HLS conversion introduces partitioning pragmas and pipelining

and/or unrolling based on data dependencies.

5.11 Trials and Tribble-ations

Throughout the development of Tribble, limitations were noticed about the approaches used and

code generated. This section discusses them, explains why they exist, and proposes possible future

solutions for most of said limitations.

1. Xilinx OpenCL does not allow the use of const in the arguments of a kernel. This can

be solved by removing the type qualifier in *_Kernel functions. As it is still present in

the original function prototypes it will not affect the program behaviour. The detection and

removal of the const qualifier can also be used to augment the auto setting described in

section 5.7 as any argument with it is known to not be modified by the code and thus can be

tagged as read-only (ro).

2. Xilinx OpenCL does not allow the use of the static storage class on a kernel. When

a function is tagged as a kernel using the pragma described in section 5.2, Tribble should

remove it.

3. Class methods are a particularly interesting problem. As the Xilinx OpenCL only allows

communication with the kernel through its arguments, there is no way to reference an object.

A possible solution would be to create a static method on the same class where a parameter

is added. That parameter being a pointer to an object of that class. Let’s call this Solution 1.

The issue with Solution 1 is that, as described before, the static storage class cannot be

used. A quick fix to this problem would be to extract the kernel from the class scope. Define

it as a standard function. Let’s call this Solution 2.

Solution 2 would compile and execute but has a slight flaw. It does not account for the

possibility of two functions having the same name. If a method foo from classes A and



Tribble Source-to-Source Framework 32

B is tagged as a kernel, two functions with the same name, but different arguments will

be created outside the namespace of their respective classes. OpenCL does not allow two

kernels to have the same name as it uses the kernel names to identify them. Solution 3 then

is to cryptographically hash the prototype of the function and use it as its name or randomly

generate a string. We believe this would prevent any naming collisions and allow for the use

of class methods seamlessly in Tribble. Hashed or randomly generated values would then

be converted to strings with 25 alphanumeric characters, as a prefix is needed to insure that

the function name starts with a letter (C/C++ requires it).

1 // Original

2 int A::foo(int x);

3

4 int A::foo_KernelCode(int x);

5

6 // Solution 1

7 static int A::foo_Kernel(A* obj, int x) {

8 obj->foo_KernelCode(x);

9 }

10

11 // Solution 2

12 int foo_Kernel(A* obj, int x) {

13 obj->foo_KernelCode(x);

14 }

15

16 // Solution 3

17 int Kernel_1E6FpfZkDcbp7mTfk2dvZeFna(A* obj, int x) {

18 obj->foo_KernelCode(x);

19 }

Listing 5.18: Class method solutions

4. As hinted in the solution to the previous limitation, OpenCL restricts the length of the name

of kernels to 32 characters. By applying the aforementioned solution to all kernels and not

only class methods, this problem can be avoided.

5. As described in section 5.8, Vitis forces the entirety of the program inputted to v++ to follow

the HLS rules and restrictions. This includes code from external libraries. However, kernels

may depend on these external libraries to function. This way, header files present in the

original files where the kernels were located are copied to the separate file described in that

section. Users are then required to remove any incompatible includes that are unnecessary

for the kernels to operate.

6. Currently the auto option described in section 5.7 defaults to rw. In cases where a kernel

parameter is never written to and is not an array, auto should instead classify it as a scalar.
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If is is an array, ro would be more appropriate. The same principle can be applied to

parameters that are only written to.

7. Currently, OpenCL buffers use the pointer to original variable passed as an argument to the

kernel (section 5.7). As this saves time by not requiring the data to be copied to a new lo-

cation, it does not guarantee that it is 4096 bit aligned. This results in more time expended

transferring data between the CPU and FPGA as additional memory copy operations are re-

quired. Two solutions are possible. Create 4096-aligned variables inside the kernel function

and spend the time to copy the data over or locate where the variables are created in the first

place and guarantee they are aligned. Instinctively, the first option seems less error-prone

as structs and unions would rapidly complicate how the second solution would need to

work. Either way, experimentation would be required to determine the best balance.

8. As it stands, if the scheduler requests that a task should be executed on both the CPU and

FPGA and that they be profiled this happens sequentially. The end goal of Tribble is to have

them running concurrently and when one of the platforms finishes the execution on the other

is terminated early. This would minimise the overhead of learning.

Additionally, if the kernel stores results on the same input buffer, running on CPU and FPGA

for training will result in an erroneous result as the data will suffer more modifications than

expected. This can be solved by detecting if a parameter is not a scalar and is not const.

That being the case, the data should be cloned before any computation occurs. This ties into

one of the solutions proposed for the previous limitation.

9. In *_KernelCount functions, the types of the parameters can influence the result of the

calculation. Overflows can occur, intermediate negative values saved to unsigned variables,

etc. A possible solution would be to force the conversion of all parameters to floating point

data types. The output would then be done in these types instead of large unsigned integer

types.

10. Either manually or as part of the processing done by HLSAnalysis, array partitioning prag-

mas can be inserted into the code. Partitioning the function parameters will result in addi-

tional OpenCL kernel arguments (krnl.setArg()) proportional to how the variables are

partitioned. In this cases, splitting the data and creating the additional transfer buffers can

be done but it is not currently implemented.

11. StaticOpsCounter (described in section 5.4) currently does not support recursive functions.

This is not a relevant limitation as HLS itself disallows the use of recursive functions but a

limitation nonetheless.

12. StaticOpsCounter currently does not support loops of any type other than for loops. That

means that any kernel containing a while or do...while loop will result in an exception

being thrown.
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13. StaticOpsCounter does not take into account the use of break or continue inside loops.

If these statements are dependant on the value of data being worked on by the kernel then no

action can be taken. However, if they depend only upon the values of the arguments passed

to the kernel then the expression used to evaluate whether or not to execute the statement

can be incorporated into the expressions used to estimate the loop tripcount.

14. StaticOpsCounter is currently only counting arithmetic operations and discarding any infor-

mation about memory access.

15. The module referred in section 5.4 used for expression simplification is currently limited

and does not support many mathematical constructs.

5.12 Toolchain

One of the goals laid out in chapter 4 was to establish a transparent process that slots in between

the code development and industry tools. This is easily done in Tribble. In this section the example

of Xilinx Vitis 2020.2 is shown.

5.12.1 Project Creation

Vitis provides a set of examples and templates for projects. A simple one that creates all the project

folders required is the Hello World (HLS C/C++ Kernel) from the SW acceleration templates. This

example is only available if the chosen hardware platform supports use of the Xilinx Runtime

(XRT). Figure 5.1 illustrates one such platform. Special attention is warranted for the value in the

’Flow’ column and the domains available. The sysroot and rootfs used in the project configuration

will also impact which examples are made available.

After completing the configuration in the wizard, the folder structure in listing 5.19 is what is

expected to be found in the Vitis workspace folder. The project name ’ExampleProject’ has used

for this demonstration.

1 // Other files and folders were omitted as they are irrelevant for this discussion.

2

3 |-ExampleProject // Project for code running on the host (CPU)

4 |-src

5 | |-host.cpp

6 |-ExampleProject_kernels // Project for C/C++ HLS kernel code and HLS synthesis

7 |-src

8 | |-vadd.cpp

9 |-ExampleProject_system

10 |-ExampleProject_system_hw_link // Kernel synthesis and bitstream generation

Listing 5.19: Example Vitis project folder structure
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Figure 5.1: XRT support in Vitis platform

5.12.2 Tribble output integration

An easy way to pipe the output of Tribble to the Vitis projects is through symbolic links. Listing

5.20 exemplifies the two required links.

1 |-ExampleProject

2 |-src // Symbolic link to ’woven_code’

3 |-ExampleProject_kernels

4 |-src

5 | |-kernels.cpp // Symbolic link to ’woven_code/CxxSource/kernels.cpp’

Listing 5.20: Vitis projects required symbolic links

With the symbolic links in place, all that remains is to select the functions to be acceler-

ated in Vitis. That is achieved in in both the ’ExampleProject_kernels.prj’ and ’ExamplePro-

ject_system_hw_link.prj’ files using the Graphical User Interface (GUI).

The projects can now be compiled.
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Hardware Resource Scheduler

As described in chapter 5, the Tribble framework prepares a program for the use of accelerated

kernels. Tasks are executed on these HwAs when a scheduler considers it can provide a result

faster than the CPU.

In order to prevent the need for a lengthy exploration of the problem space to determine the

execution times of every single kernel or a bootstrapping period to train an algorithm on a de-

vice’s first use, we intend to make use of the Hoeffding Tree’s properties to take a learn-as-you-go

approach to the resource scheduler.

In this dissertation, we present a flexible C/C++ HLS implementation of a Hoeffding Tree

variant tailored for use in FPGAs, originally proposed by Lin et al. [24]. Their work built atop

an earlier variant in which the storage of the statistical data of the sampling distribution of the

original Hoeffding Tree was replaced by a Gaussian approximation [23]. Lin et al. replace this

approximation with quantile estimation using asymmetric signum functions [25]. The result is a

larger memory footprint but a reduction in computational requirements, while achieving similar

results. Since it is implemented in Verilog, the applicability of the implementation is limited to

circuit synthesis, e.g. for FPGA.

By using HLS, we expand upon previous work by providing a parametrizable implementation

that is equally suitable for CPU and FPGA allowing for synergies between compute resources,

easy customisability and support for a wide range of tree dimensionalities.

6.1 HLS Hoeffding Tree Implementation

We implemented the tree as a parametrizable C++ class. Specifically, the parameters include the

maximum number of nodes in the tree, the number of attributes of each data sample, and the

floating-point precision. The class contains a training and inference methods which are the target

of HLS synthesis. At runtime, the C++ tree object can be manipulated in software, and passed

as an argument to the training/inference method. This introduces the potential for instantiating

several tree objects in memory, which can be processed by the same synthesised circuit, assuming

36
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the same template parameters. Additionally, training and inference can be dynamically partitioned

between software and hardware, although this exploration is out of the scope of this dissertation.

C++ Hoeffding Tree Template

Tree
Instance #1

Tree
Instance #2 ...

Static Code

Training
Method

Inference
Method Circuits

Figure 6.1: Hoeffding Tree kernel generation and workflow diagram.

As discussed, we are using a Xilinx Vitis HLS flow that enforces the use of OpenCL APIs for

the invocation of the synthesised kernels. The implemented C/C++ kernel dubbed krnl_Tree

receives 4 arguments: a HoeffdingTree object, an array of samples structures, an array of

structures that store the tree inferences and the size of this array.

When using the OpenCL model, a large overhead would be introduced if the hardware tree

kernel were to be invoked for one sample at a time, as the processing time of a very low volume

of data is overwhelmed by a large transfer time. A practical application of the kernel design could

be, for example, in the sensor domain, where the tree could continuously sample fused data from

multiple sensors (i.e., multiple attributes) without host processor intervention and therefore API

related overheads. Alternatively, to mitigate this overhead, the host may choose to postpone the

classification of samples until it has accumulated a sufficiently large number such that the volume

of data mitigates this overhead.

Inference on an incremental learning decision tree cannot be easily parallelised as the model

changes and evolves with every training sample that arrives. This restricts the pipeline to dealing

with one sample at a time, sequentially. The sample structure contains information about whether

it should be used for training purposes or only for inference. Thus, as the kernel loops through the

sample array, it executes either the train or infer method of the tree object accordingly. The

results are placed in the output data structure.

The OpenCL API allows for fine-grained control of how these arguments are passed to the

kernels. Each one is a separate buffer, and the transfer of these buffers to and from FPGA memory

is done manually by the user. While touted as as downside previously in this work, this fine-

grained control allows for one to transfer the tree object to FPGA memory and not retrieve it

between executions, as the memory persists until the user changes it. With this mechanism, a

model can be trained on the FPGA and then retrieved for analysis at a later stage.
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Models can also be swapped between kernel executions, opening the door for decision tree

ensembles. Trees can reuse the same kernel instance for a time-multiplexed ensemble or several

copies of krnl_Tree can be instantiated in parallel and, by assigning the same sample buffers to

all of them, multiple trees can process the same data without memory duplication.

Our code is structured in layers, allowing for modularity in the tree construction. The follow-

ing C++ classes are used.

6.1.1 NodeData

This templated class is responsible for storing all the data and methods regarding training in a

node. In this case, it harbours all methods for quantile estimation, how to calculate the Gini

impurity of the node and find the optimal split candidates. Template parameters of this class

allow for compile-time customisation of the type used for storing the quantile values and make

non-integer calculations. Defaults to float type. Changing this type affects the precision of all

the tree’s calculations. Other customisations include the number of tree attributes (D) and output

classes (K).

6.1.2 Node

The Node class stores all information regarding a node in the tree: whether it is split, what are its

children, the split value, split attribute and the corresponding Data object. The template parameters

for this class allow for changes to the capacity of the tree in terms of maximum amount of nodes (as

it impacts the type used to store node indexes) and to the Data object class (defaults to NodeData).

If one decides that the Gaussian approximation method is preferable in their case, a reimple-

mentation of NodeData is all that is necessary.

6.1.3 BinaryTree and HoeffdingTree

BinaryTree is a base class for binary tree operations. It stores an array of node objects (whose

type is defined in the class template), contains methods for managing those nodes (splitting a node

and defining children) and sort a sample through the tree.

The HoeffdingTree class extends BinaryTree to include methods on how to calculate

the Hoeffding bound (Equation 3.1) and the higher-level training algorithm that is agnostic to how

the data is physically stored and managed.

6.1.4 TypeChooser and TypeChooserMath

TypeChooser is a helper library that supplies macros for automatic integer type selection. The

macros take as inputs the minimum and maximum values expected to be stored in a variable (just

the maximum for unsigned types) and returns the smallest type that can fit those values. This is

only compatible with C++ as the macros make use of std::conditional directives. The main
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value of these macros is that they are evaluated at compile time and therefor can be used with HLS

and in templates to select the most appropriate data types.

TypeChooser is also compatible with Xilinx Arbitrary Precision (AP) types. A check for

the definition of the USE_XILINX_AP_TYPES macro is used to select whether AP types will

be returned by the signed and unsigned macros or if they are restricted to native C/C++ types.

Bitwidths of up to 64 bits are supported.

The use of AP types introduces compatibility issues with mathematical functions of the std

namespace. Xilinx provides its own hls namespace for mathematical functions compatible with

its AP and native C/C++ types but a host of problems arise with its use as hardware implemen-

tations of mathematical functions for native types are available but not any software implemen-

tations. TypeChooserMath is a companion library to TypeChooser that provides a namespace

(tcm) that is host to a number of wrapper functions aimed at resolving these conflicts. Usage of

AP types is still discouraged for beginners as the hls hardware implementations are based on

different principles than those used by the standard library (std) and may not provide the same

results.

6.2 Tree Visualisation

A major factor for the use of Decision Trees as the scheduler in this dissertation is the ability to

extract usable knowledge from them - provided that their scale does not defy the limits of human

understanding. To achieve this goal a method for visualising the tree models is a necessary aid.

The availability of mature, robust and feature-complete libraries in Python has made it the de

facto language for ML tasks. Tensorflow, Keras, Pytorch, SciKit Learn, Matplotlib and ONNX are

a few examples of the tools that power the Python ML ecosystem. As companions to this environ-

ment, a suite of visualisation tools are available that interface with the formats used by these li-

braries. To capitalise on this rich tool ecosystem, we implemented the JsonExporter C++ class

capable of exporting a Hoeffding Tree model to the format used by SciKit Learn. Specifically, the

tree model is exported to JSON in a format compatible with the sklearn_json Python library [29]

which in turn is capable of interpreting it and constructing a sklearn.tree.DecisionTreeClassifier

model.

6.3 Limitations

The presented implementation of the Hoeffding Tree algorithm is host to a few limitations. A

rather impacting one is the fact that the type used for attribute storage is also the one used for

intermediate, fractional, calculations. This forces the attribute storage type to be floating point

and thus potentially larger than what would be required to hold all the possible values for those

attributes.
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Experimental Evaluation

7.1 Experimental Setup

Our evaluation targeted the Xilinx ZCU102 Evaluation Board [3] featuring the Zynq UltraScale+

XCZU9EG-2FFVB1156 MPSoC. Programs were compiled using the Xilinx Vitis IDE v2020.2.0.

All Vitis projects were configured to use the xilinx_zcu102_base_dfx_202020_1 prepackaged plat-

form by Xilinx resulting in the use of the Xilinx Zynq MP First Stage Boot Loader Release 2020.2

and a prepackaged PetaLinux distribution using the Linux kernel version 5.4.0-xilinx-v2020.1.

The clustering data sets used for testing our Hoeffding Tree implementation were synthetically

generated with different numbers of points, clusters, and dimensions. Attributes are randomly

correlated. With these datasets we did not intend to evaluate classification accuracy, but instead

to present the FPGA resource requirements of the synthesised training and inference methods for

several template parameters and evaluate the execution time versus the on-chip ARM Cortex-A53

(1.2GHz) CPU.

Tests involving the Tribble framework follow the setup and compilation flow detailed in section

5.12 and use kernels from the Polybench Suite.

7.2 Validation Threats

We identify a few situations that may pose a threat to the validation of the research described in

this documents, introduce biases into the experiments and thus reduce the meaning of their results.

1. There is no publicly available implementation (in C/C++ or otherwise) of the Hoeffding

Tree utilising quantile estimation by means of asymmetric signum functions. Thus we have

no ground truth to validate our results against and cannot guarantee that our implementation

of the tree is free of algorithmic or coding errors.

40
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2. Validation of the usability of the Tribble framework was made using small examples or

benchmarks from the Polybench Suite [30]. Tests have not been conducted with compre-

hensive, real-world examples of programs actually intended to be deployed in embedded

devices on a production environment.

7.3 Evaluation

In this section we present the following experiments:

1. An evaluation of the throughput of our implementation of the Hoeffding Tree, for CPU and

FPGA, using synthetic data clusters.

2. An evaluation of the size of the Hoeffding Tree object in CPU memory, and of the FPGA

resource usage of the respective train/inference methods, as a function of the tree’s K and D

parameters.

3. We compare our Hoeffding Tree implementation with a state-of-the-art implementation (Lin

et al. [24]), for two reference datasets.

4. A test of the full-flow compilation ability of Tribble with an example from the Polybench

benchmark set.

5. We demonstrate that the output of Tribble is in fact valid and benchmark the generated code.

6. An evaluation of the Hoeffding Tree’s ability to learn from arithmetic operation counts using

hypothetical kernels.

7. We propose and evaluate a scheduling algorithm based on a Hoeffding Tree.

7.3.1 Hoeffding Tree Throughput

These results were obtained by feeding the tree with datasets of K clusters in a D dimensional

spaces, constituted of N points (Figure 7.1). These were generated using the work of Paulino [31].

For these experimental runs, we will have the entire dataset transferred in a single operation to the

FPGA’s memory.

Looking at the first four rows of Table 7.1 (D=3) it can be observed that for a 3-dimensional

dataset, regardless of the bundle size, the ARM CPU in the ZCU102 SoC significantly outperforms

the FPGA implementation in both the training and inference tasks. Also, the performance gap

between both implementations grows with the number of samples processed. This indicates that

the kernel is slower, per iteration, than the pure software solution.

Regarding the last four rows of Table 7.1 (D=100), the picture is not quite as clear. When a

dataset with a larger number of dimensions is used, the ARM CPU still outperforms the FPGA

kernel in training. However, it does so with a lower margin and one that does not appear to grow

with the added number of samples. On the inference task with this larger dataset, the FPGA

outperforms the ARM processor by 8.4×.
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Figure 7.1: Visualisation of a 3 dimensional (D=3), 5 cluster dataset (K=5), with 40k points
(N=40.000). The number of points in each cluster is random.

7.3.2 Hoeffding Tree Resource Utilisation

Table 7.2 presents various configurations of the kernel, tailored for datasets of different dimensions

(D), with different number of classes (K), number of samples (N) and max number of nodes (Nd).

The purpose is to determine the effect of these parameters on FPGA resource utilisation. As

expected, parameter N has no effect on resource utilisation as samples cannot be processed in

parallel.

When it comes to the other parameters, they all result in an increase in resource usage. This

is due to the highly sequential nature of the generated kernel, which also explains why the perfor-

mance of this kernel on training tasks is poor compared to the CPU. This overall advantage is less

surprising when considered in the context of an 11-fold CPU advantage in clock speed. Current

HLS tools cannot automatically parallelize sequential code. Without hardware design expertise in

order to optimise the design, the implementation will be far from optimal. In our implementation,

we still believe that further parallelization can be achieved even within a single tree, through inner

loop unrolling or memory partitioning.

One interesting result is that of the kernel’s operating frequency. It remains unchanged for all

configurations. Looking deeper into the cause of this phenomenon, we find that the bottleneck

is the sorting of a sample down from the root node to the appropriate leaf node. A process with

queue depth of one. This sequential operation also prevents the kernel from being pipelined.

Figure 7.3 presents the size of the tree object for the ranges of parameters used. The maximum

value measured was of 64.2 MiB. Each variable has a linear effect on object size growth.
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Figure 7.2: Two dimensional projection over the Z-axis of how the dataset from figure 7.1 was
classified by a tree.

Table 7.1: Training and inference times for four synthetic clustering datasets, for the ARM CPU
(1.2Ghz) and the FPGA (103MHz).

K D N Task ARM CPU FPGA Speedup

5

3

40k
Training 207 ms 1,990 ms 0.10×

Inference 151 ms 462 ms 0.33×

500k
Training 2,983 ms 30,933 ms 0.10×

Inference 2,260 ms 11,442 ms 0.20×

100

40k
Training 6,028 ms 51,648 ms 0.12×

Inference 3,924 ms 469 ms 8.37×

500k
Training 75,763 ms 651,775 ms 0.12×

Inference 49,495 ms 11,494 ms 4.31×

D=1 D=2 D=4 D=8 D=16 D=32 D=64 D=128
101
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Figure 7.3: Evolution of the size of Tree objects in bytes by changing Nd, D and K. Each bar in
every grouping, depicts a tree with a max number of nodes from 20 to 27. Datatype is float.
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Table 7.2: N, D, K and Nd effects on FPGA Resource Utilisation

Nodes 100 100 100 1000 100 100 100 1000
K 5 5 10 5 5 5 10 5
D 3 100 3 3 3 100 3 3
N 40k 40k 40k 40k 500k 500k 500k 500k

LUT 23304 (8.6%) 20567 (7.6%) 23776 (8.8%) 24351 (9.0%) 23304 (8.6%) 20567 (7.6%) 23776 (8.8%) 24351 (9.0%)

LUTRAM 1395 (1.0%) 1179 (0.8%) 1399 (1.0%) 1397 (1.0%) 1395 (1.0%) 1179 (0.8%) 1399 (1.0%) 1397 (1.0%)

FF 35682 (6.6%) 29775 (5.5%) 36374 (6.7%) 36336 (6.7%) 35682 (6.6%) 29775 (5.5%) 36374 (6.7%) 36336 (6.7%)

BRAM 12 (1.3%) 9.5 (1.0%) 12 (1.3%) 12 (1.3%) 12 (1.3%) 9.5 (1.0%) 12 (1.3%) 12 (1.3%)

DSP 23 (0.9%) 25 (1.0%) 25 (1.0%) 25 (1.0%) 23 (0.9%) 25 (1.0%) 25 (1.0%) 25 (1.0%)

BUFG 13 (3.2%) 13 (3.2%) 13 (3.2%) 13 (3.2%) 13 (3.2%) 13 (3.2%) 13 (3.2%) 13 (3.2%)

MMCM 1 (25.0%) 1 (25.0%) 1 (25.0%) 1 (25.0%) 1 (25.0%) 1 (25.0%) 1 (25.0%) 1 (25.0%)

Freq. (MHz) 103.6 103.6 103.6 103.6 103.6 103.6 103.6 103.6
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7.3.3 Hoeffding Tree Kernel Performance

To evaluate the accuracy of our C/C++ HLS implementation, we obtained results for two of the

UCI datasets used by Lin et al. [24].

Table 7.3 presents the benchmarks the following tree parameters were used (same as in Lin et

al. [24]): δ = 0.001, λ = 0.01, τ = 0.05, nmin = 200, npt = 10, nquantiles = 16, Nd = 2047, with

one being of special relevance: Nd (maximum number of nodes).

When compared to the author’s implementation, our kernel presents a significant slowdown.

With the increased number of nodes, the sequential tree traversal portion of the algorithm increases

in length. Our HLS implementation achieves comparable accuracy for Bank, although the perfor-

mance for Covertype is inferior. Lin et al. [24] reports 89.30% and 72.51%, respectively. We

believe a difference in calculation precision between the CPU and FPGA caused the degradation

in Covertype, despite the use of 32-bit floating point data types for both devices.

Table 7.3: Training time and Accuracy (Acc.) for Covertype and Bank datasets, for the ARM CPU
(1.2Ghz) and the FPGA (103MHz)

Lin et al. [24]
ARM CPU FPGA

Acc. Time Acc. Time Speedup

Bank 89.30% 88.25% 202 ms 88.25% 8,525 ms 0.02×

Covertype 72.51% 72.21% 9,712 ms 63.71% 374,600 ms 0.03×

7.3.4 Tribble Code Transformations

We tested the flow described in section 5.12. The example used was the adi benchmark from

the Polybench suite. In appendix B a full example of the use of Tribble is present with integral

file contents to show how the steps documented in chapter 5 translate to a complete application.

For this run, the expression simplification module was not used as per limitation 9 documented in

section 5.11.

A few alterations to the source code were necessary to make the final program compile (for

the CPU and FPGA) and behave correctly.

1. The types of the parameters tsteps and n in the kernel_adi_KernelCount function

needed to be modified from their original type (int) to uint64_t. This is again due to

limitation 9.

2. As the C++ compiler mangles all function names during compilation, when Vitis searches

the AST for the original name to start the synthesis steps, it is unable to find it. To pre-

vent this issue from happening, the kernel_adi_Kernel function definition in the wo-

ven_code/CxxSource/kernels.cpp file needed to wrapped by a extern "C" block.

3. Neither original adi.h and adi.cpp files include a prototype for the kernel_adi func-

tion. Due to this peculiarity, when that original function is cloned during the execution of
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Clava, no prototype for kernel_adi_Kernel is inserted in the output files. The code

shown in listing 7.3.4 had to be manually inserted into the woven_code/CxxSource/adi.cpp

file.

4. The HLSAnalysis processing step (section 5.10) introduced a number of HLS pragmas in the

kernel_adi_KerneCode function. Among these were array_partition pragmas

applied to the function arguments. In its current form, Tribble is not able to deal with

the effects of these pragmas when partitioning the function arguments as per limitation 10

described in section 5.11.

1 extern "C" {

2 extern void kernel_adi_Kernel(int tsteps, int n, float u[2000][2000],

3 float v[2000][2000], float p[2000][2000],

4 float q[2000][2000]);

5 }

7.3.5 Execution of Generated Code

The code resulting from the previous compilation flow experiment was executed in the ZCU102

board from where the following experimental data was obtained. A variation of that compilation

flow was also created where the datatype used by the kernel is double as opposed to float.

Figures 7.4 and 7.5 plot the profiling data collected by Tribble with the code described in

section 5.6 pertaining to the performance of the adi kernel. These demonstrate a clear perfor-

mance advantage by the CPU where the FPGA implementation consistently takes 40× more time

to complete the same task.

Figures 7.6 and 7.7 paint a similar picture. These refer to the float version of the kernel.

In this configuration the performance gap gets reduced but the CPU is still the clear winner and

the trendline of figure 7.7 that for the maximum possible value of N (2000) that situation will not

change.

To boost FPGA performance, light changes were made to the kernel code (listing C.1). This

narrowed the performance gap even further to a point where the FPGA still produced 6× worse

execution times than the CPU.

As shown, HLS is no substitute for expert manipulation of code and optimisation for FPGA

environments. We demonstrate that slight modifications to the codebase, can lead to major im-

provements in a kernel’s performance on a FPGA device.

7.3.6 Hoeffding Tree - Learning from Operation Counts

In order to evaluate a resource scheduling algorithm, a necessary premise is that the algorithm is

forced to choose. That is, the same choice must not be the optimal for all regions of the possible

exploration space. If, as seen in the previous experiment, a CPU always outperforms an FPGA
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Figure 7.4: Evaluation of adi kernel runtimes on the the CPU and FPGA portions of the ZCU102
board using ’double’ as the kernel datatype. tsteps = N/2. N ∈ [20;146]
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Figure 7.5: Comparison between the FPGA and CPU execution times for the adi kernel using
’double’ as the datatype. tsteps = N/2. N ∈ [20;146]
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Figure 7.6: Evaluation of adi kernel runtimes on the the CPU and FPGA portions of the ZCU102
board using ’float’ as the kernel datatype. tsteps = N/2. N ∈ [50;750]

Figure 7.7: Comparison between the FPGA and CPU execution times for the adi kernel using
’float’ as the datatype. tsteps = N/2. N ∈ [50;750]
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Figure 7.8: Evaluation of adi kernel runtimes on the the CPU and FPGA portions of the ZCU102
board using ’float’ as the kernel datatype. tsteps = N/2. N ∈ [20;280]. Kernel has had light
manual optimisations made to the code.

Figure 7.9: Comparison between the FPGA and CPU execution times for the adi kernel using
’float’ as the datatype. tsteps = N/2. N ∈ [20;280]. Kernel has had light manual optimisations
made to the code.
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implementation then there is nothing for the scheduler to decide and much less a ML algorithm to

learn. For an experiment to be valid at least one region of the exploration space must exist where

the FPGA outperforms the CPU.

A possibility would be to simulate a device less powerful than the ZCU102. This could be

done by reducing the operating frequency of the CPU. This would not an unreasonable thing to

do to guarantee that our poorly optimised kernels beat the CPU as most embedded devices do not

sport such a high-end part. Reducing the frequency to half would roughly double the time the CPU

takes to complete a task.

Another possibility would be to, either manually or through source-to-source techniques, opti-

mise the kernels for HLS synthesis. This tuning would involve considerable effort and falls outside

of the scope of this dissertation.

In the end we chose not to follow either of these approaches. Instead, we will be using hypo-

thetical kernel optimisations. Let us use the adi kernel again as an example. We can assume that,

with sufficient optimisation, we are able to synthesise a version of adi that for half of the problem

space has a lower runtime on the CPU and that on the other half performs better on the FPGA.

For the adi kernel, only two parameters control the problem size. These are n and tsteps

(Listing 7.1). The polybench suite already proposes a relation between the two variables (tsteps =

n/2) in the default dataset sizes. We can use this relation to make a uni-dimensional exploration

space.

1 void kernel_adi(int tsteps,

2 int n,

3 double u[2000][2000],

4 double v[2000][2000],

5 double p[2000][2000],

6 double q[2000][2000]);

Listing 7.1: adi kernel prototype.

With n ∈ [20;2000] where a kernel call performs better can be determined by n > ((2000−
20)/2) with 0 (false) representing the CPU and 1 (true) the FPGA. These principles can be

applied to other kernels (2mm, atax, bicg and deriche) to create a more comprehensive dataset.

This method allows for the simulation of the behaviour to be guaranteed to be correlated to the

operation counts. The full code used to create the dataset can be consulted in Appendix D along

with the relations between input variables and operation count expressions for all the kernels.

Note that using this method it is possible for two equal feature sets (same operation counts

vector) to produce different results. This adds a dimension of variability to the dataset that reflects

the internal characteristics of each kernel. e.g. kernel A can be more parallel than kernel B and

thus for the same feature set kernel A should execute on the FPGA while kernel B should be

executed on the CPU. For that reason, we chose to train six models in total. One for each of the

five individual kernels and one overarching model with all the data points. Note that there is no
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Table 7.4: Dataset characteristics for hypothetical optimised kernels.

Model Name Nr. Samples Better on FPGA

All Kernels 12761 52.26%
adi 1981 50.98%
2mm 2185 50.71%
atax 2169 51.45%
bicg 2169 51.45%
deriche 4257 51.49%

feature in the feature set that identifies a kernel. The characteristics of each dataset can be seen in

Table 7.4

Table 7.5 presents the accuracy results for all kernels. The feature set values were normalised

to fit into a [0;1] range. This was done by dividing all values by 40,000,000,000. However for

actual deployment one of the following functions could be used to bound unbounded variable such

as the operation counts:

2
π
∗ arctan

x
A

(7.1)

tanh
x
B

(7.2)

2
1+ e(−x/C)

−1 (7.3)

A, B or C should be adjusted to the appropriate value.

Interleaved testing-then-training was used for this measurement as it is a common method

used for evaluating incremental learning algorithms. Before every run, the order of the samples

on the dataset is randomised to minimise the effect the order has on the model. Additionally, each

experiment has 3 runs. The final accuracy considered is the average of all the runs.

In Table 7.5 the accuracy value for the third run of the 2mm dataset is highlighted. The dis-

crepancy between the other runs of this kernel is due to the fact that on the first two, the tree only

managed to split very late in the execution (Figure 7.10a) as opposed to the highlighted execution

where only 600 samples were required to make a split (Figure 7.10b). To curb this problem, the

experiment was repeated reducing the number of samples required to attempt a split on a leaf node

(Tables 7.6 and 7.7). We can observe an increase in the accuracy for adi and 2mm and a massive

jump for deriche.

With this example we have demonstrated that, when the exploration space has regions where

the CPU is preferable and where FPGA is preferable, it is possible to use arithmetic operation

counts as the means to construct a tree model capable of selecting the platform providing the

fastest execution (kernels adi, 2mm and deriche in Tables 7.6 and 7.7). For kernels atax and bicg

the tree was unable to split using only the available samples. The model targeting all five kernels

also was unable of producing satisfying results. Future exploration is warranted with a larger

dataset or with an added feature that identifies each kernel.
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Table 7.5: Hoeffding Tree accuracy results for hypothetical optimised kernels. Leaf nodes do split
trials on every 200 samples collected.

Model Name Average Accuracy Individual Runs

All kernels 65.99% 64.75% 68.04% 65.18%
adi 50.40% 50.93% 49.92% 50.33%
2mm 65.17% 58.86% 54.19% 82.47%
atax 51.07% 51.31% 50.76% 51.13%
bicg 50.21% 48.92% 51.13% 50.58%
deriche 57.21% 55.27% 60.21% 56.14%

Table 7.6: Hoeffding Tree accuracy results for hypothetical optimised kernels. Leaf nodes do split
trials on every 50 samples collected.

Model Name Average Accuracy Individual Runs

All kernels 64.12% 63.90% 67.26% 61.21%
adi 70.54% 69.71% 72.14% 69.76%
2mm 77.47% 82.47% 74.64% 75.29%
atax 50.21% 51.13% 50.02% 49.47%
bicg 51.01% 50.58% 51.31% 51.13%
deriche 80.46% 76.96% 86.59% 77.85%

Table 7.7: Hoeffding Tree accuracy results for hypothetical optimised kernels. Leaf nodes do split
trials on every 10 samples collected.

Model Name Average Accuracy Individual Runs

All kernels 55.57% 59.63% 51.79% 55.27%
adi 72.67% 73.80% 68.80% 75.42%
2mm 76.31% 75.79% 75.88% 77.25%
atax 50.18% 49.47% 50.48% 50.58%
bicg 50.67% 51.13% 49.75% 51.13%
deriche 81.92% 82.64% 85.65% 77.47%
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flops-64-mul ≤ 2904453632.0
gini = 0.5

samples = 1800
value = [873, 927]

class = FPGA

gini = 0.0
samples = 182

value = [182, 0]
class = CPU

True

gini = 0.193
samples = 203

value = [22, 181]
class = FPGA

False

(a) Accuracy in the 50% range.

flops-64-mul ≤ 2904451584.0
gini = 0.499

samples = 600
value = [288, 312]

class = FPGA

gini = 0.0
samples = 715

value = [715, 0]
class = CPU

True

flops-64-mul ≤ 5555671552.0
gini = 0.156

samples = 600
value = [51, 549]

class = FPGA

False

gini = 0.5
samples = 46

value = [23, 23]
class = CPU

gini = 0.0
samples = 224

value = [0, 224]
class = FPGA

(b) 82% accuracy.

Figure 7.10: Visualisation of the decision tree models resulting from learning the dataset generated
for a hypothetical 2mm kernel. Leaf nodes attempt to split at every 200 samples. Sample counts
on each non-leaf node represent the state of the node when it was split.

For an arbitrary kernel with an arbitrary number of input parameters the methodology of ex-

tracting the 16 types of operation counts validates that it is possible to distil the parameter space

complexity into a standardised set of arithmetic operation counts representing the computational

load, resorting only to automated source analysis and transformations at compile time.

7.3.7 Hoeffding Tree Scheduler

In the previous experiment, using the hypothetical kernels dataset, the tree learned with every

incoming sample. That does not represent a scheduler as one must be able to decide between

execution platforms instead of asking the system to profile every single execution. In this final

experiment, we present and evaluate our proposed portable Hoeffding Tree scheduling algorithm.

We used the following code to determine if the model should learn or infer on the n-th kernel

execution request.

1 #define BINSIZE 2000

2 train = (n % BINSIZE) < (BINSIZE * (1 / (pow(2, 1 + uint(n / BINSIZE)))));

Listing 7.2: Expression used to reduce learning requirements over time.

This results in a exponential reduction of training over time. Training will occur with the first

1000 samples of the first 2000 sample group. In the second group, the scheduler will only use

500 to train, 250 in the third group, etc. Effectively, the scheduler has a warm-up period that

diminishes over time.

The accuracy results of the scheduler can be seen in Table 7.8. The last column shows the per-

centage of samples from which learning was conducted instead of making a scheduling decision.

Again, the order in which the samples come in affects the results greatly. If the samples come

in an order such that the tree is able of splitting early (or at all), the accuracy increases sharply.
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Table 7.8: Scheduler accuracy results hypothetical optimised kernels. Leaf nodes do split trials on
every 50 samples collected.

Kernel Avg. Nr. Nr.
Name Acc. Individual Runs Samples Inferences Training

All kernels 55.50% 51% 50% 63% 62% 51% 12761 10775 15,56%
adi 59.51% 50% 51% 50% 50% 96% 1981 981 50,48%
2mm 67.18% 93% 49% 50% 49% 95% 2185 1000 54,23%
atax 52.08% 51% 53% 52% 53% 52% 2169 1000 53,90%
bicg 50.80% 51% 52% 50% 50% 51% 2169 1000 53,90%
deriche 73.84% 75% 75% 81% 70% 69% 4257 2507 41,11%

To mitigate this problem a base tree model could be provided that is augmented and adjusted to a

specific device on runtime.

As seen, we were able to validate the full flow use of Tribble and, through this model of

computational load, validate that our Hoeffding Tree scheduler can, under certain conditions, ef-

fectively choose between kernel implementations. A great dependability on the order of sample

input is present. There is also a sharp decrease in accuracy when considering models for individual

kernels vs. the generic model with all samples (All kernels). Larger, more comprehensive datasets

may provide additional insights into the matter. Different bin sizes and methods for determining

the warm-up period should also be explored as well as adding an additional feature to the feature

vector to identify each kernel. Finally, with minor modifications to Tribble’s code generation, any

of the two approaches could be used (individual vs generalised models) to achieve the best results.
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Conclusions

With the move to increasingly heterogeneous architectures, we have seen that the effort required

to create software for these complex architectures is immense as most tasks such as memory

management and task allocation require manual tuning and expert knowledge of the underlying

architectural details.

We have identified a few shortcomings in the state-of-the-art tools aiming to mitigate this

issue (Section 3.1). Several are not transparent and require that programs be developed around

their APIs and programming models. Other dependencies such as on the LLVM Intermediate

Representation (LLVM-IR) for the analysis of the code and injection of schedulers makes it so that

a developer is forced to compile their program using the author’s compiler. In many situations, this

is not possible. The Xilinx toolchain, for example, uses GNU C Compiler (GCC) as the compiler

for the host program and a number of scripts to configure it. Program portability was always

impaired by requirements of offline retraining of ML models or outright code modifications. In

general, all tools required the developer to adapt their workflow to them instead of offering a

totally transparent workflow.

We have demonstrated the capability and validity of the end-to-end compilation flow of Tribble

as a means of transparently generating an accelerated version of any C/C++ program targeting a

heterogeneous architecture. Experimental evaluation was conducted of Tribble and of our Hoeffd-

ing Tree implementation on a ZCU102 board. These experiments showed that our non-optimised

Hoeffding Tree HLS implementation can achieve speedups of 8.3× in complex inference tasks

over a pure software execution. They also demonstrate that HLS is no substitute for expert manip-

ulation of code.

In line with our goal of code portability, we propose a scheduling algorithm based on our

Hoeffding Tree implementation and show that it is possible to use arithmetic operation counts as

a means of constructing a scheduling model capable of selecting the optimum platform for task

execution with an accuracy of up to 96%.
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8.1 Contributions

The contributions of this work are as follows:

• A source-to-source compilation framework capable of automatically and transparently gen-

erate accelerated programs targeting CPU+FPGA heterogeneous environments.

• Experimental evaluation of the capabilities of the Tribble framework.

• A generic, template-based C/C++ implementation of the Hoeffding Tree classifier as per

Lin et al. [24], but that is suited for HLS and can be used on a CPU or FPGA.

• Functional validation of the tree implementation through software execution, and post-

synthesis onto a Xilinx ZCU102 development board.

• Experimental evaluation of memory requirements of the tree object as a function of template

parameters.

• Experimental evaluation of FPGA resource requirements and execution time of the synthe-

sised training and inference method as a function of template parameters for our Hoeffding

Tree implementation.

• Two conference publications (see Appendix A)

8.2 Future Work

1. Fix the limitations detailed in sections 5.11 and 6.3.

2. Currently our proposed scheduler only takes into account arithmetic operation counts. Ex-

ploration of the effect that counting data access operations and incorporating them into the

model is a path worth pursuing.

3. The Tribble profiling of the FPGA task execution time is for the total time taken to complete

the task. This could be divided into the data transfer and compute portions to support more

complex models.

4. DPR is mentioned in chapter 1 as a major enabler for the compute model we try to explore.

The scheduler proposed in this document does not take into account reconfiguration times

due to DPR or if the kernel is already available.

5. Explore if the operation counts measured via the AST differ heavily from the number ob-

tained through the IR. To do this each scope could be compiled individually and compared

to the current results.

6. Recent Xilinx and Intel tools support the synthesis of ONNX models to heavily optimised

IP blocks. Our Hoeffding Tree implementation is exportable to the SciKit Learn format.
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From there, the skl2onnx Python package can be used to convert it to the ONNX format.

Comparisons can be made between the inference performance of our HLS-generated models

to the ones from ONNX.

7. Characterisation of the overhead introduced by the Tribble framework and scheduler.

8. Automatic identification of computationally heavy workloads, amenable for acceleration on

FPGAs, to reduce Tribble’s the dependency on the user to be able to correctly identify usable

kernels.

9. Explore Regression Decision Trees and non-Decision Tree-based models as scheduler op-

tions.

10. Explore other feature sets for model training.

11. Expand Tribble to support regression models and more than two target devices.



Appendix A

Publications

Table of Contents

1. LATTE’21 - The workshop on Languages, Tools, and Techniques for accelerator Design is

a workshop embedded in the Architectural Support for Programming Languages and Oper-

ating Systems conference. ASPLOS is rated as a CORE A* conference.

2. ISCAS 2022 - This paper has been submitted to the IEEE International Symposium on

Circuits and Systems and is currently being peer-reviewed.
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ABSTRACT
With the ever more pressing issue arising from the phenomenon
known as the death or slowdown of Moore’s Law and the Dennard
Scaling, compute performance has not been increasing at the rate
the industry had been accustomed to over the decades [7]. This has
prompted a shift from mostly homogeneous compute architectures
to increasingly heterogeneous ones [1]. As these systems become
increasingly complex, manual tuning and management of these
heterogeneous resources becomes unfeasible. In this paper, we pro-
pose a runtime mechanism for automatic reconfigurable resource
management that will enable a hypothetical flow for combined
hardware and software compilation.

1 INTRODUCTION
An application’s performance can be maximised if it is executed
on specialised hardware, both from a time and power consump-
tion perspective. As customers demand higher performance and
functionality, complexity and development time tend to increase.
Furthermore, since silicon area is expensive [2], the use of Hard-
ware Accelerators (HwAs) is only justified under certain conditions.
Firstly, that they are used frequently to justify the design time and
area expended. Secondly, that their workload is both well defined
and amenable for parallelization, so that performance benefits can
be maximised.

A task is only worth using an accelerator if the time it takes
to be completed on such an accelerator is lower than the time it
would take on general-purpose hardware. The time to transfer
the data to the accelerator must be taken into account. Consider
an embedded application with N functions for which accelerator
circuits have been created. At run-time, the functions are called
with arbitrary arguments, potentially in an unknown order. If the
device harbouring the HwAs is incapable of implementing all N
accelerators concurrently, some sort of management must be made
in order to make available the most valuable subset of HwAs at any
given time.

Traditionally, the developer of a heterogeneous system must un-
derstand the algorithmic component of the application, design the
appropriate hardware to accelerate candidate regions (e.g. bottle-
necks or good parallelization opportunities), and then must sched-
ule workloads onto the different components, and synchronise their
behaviour [12, 15].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LATTE ’21, April 15, 2021, Virtual, Earth
© 2021 Copyright held by the owner/author(s).

The hardware design aspect has been addressed, in part by new
tools such as High-Level Synthesis (HLS) which can be used to
automatically generate circuit descriptions from functions written
in C/C++ code [8, 14]. This enables simpler and lower cost devel-
opment workflows. For certain execution models such as Field-
Programmable-Gate-Array (FPGA) based server boards, HLS also
provides Application Programming Interface (API) level integration
of the resulting components.

Although FPGA devices lack the advantages of full-custom, i.e.
Application Specific Integrated Circuit (ASIC) implementations [9],
they introduce new paradigms to these heterogeneous systems by
allowing the application to define custom circuitry to be imple-
mented.

This capability for reconfiguration allows for a single underlying
chip to be used to implement the HwAs required by a specific
application. Additionally, algorithms are subject to change due to
performance reasons, different application needs, or bug fixes. As
FPGAs are reconfigurable, the cost-cutting is multiplied as no new
devices need to be fabricated and deployed.

Another advantage of FPGAs for application-specific HwA de-
sign is the unique ability of hot-swapping [6] accelerator circuits
at run-time, which is referred to as Dynamic Partial Reconfigu-
ration (DPR) [13]. This feature, which has not seen widespread
adoption in real-world applications, allows for a targeted FPGA
area to be reconfigured while the device is in operation, allow-
ing for the same resources to implement multiple functions in a
time-multiplexed manner. (Figure 1) Allowing an application to hot-
swap accelerators instead of solely dealing with a fixed, predefined
set, implemented at boot-time, greatly expands on the possibilities
of using FPGA devices as platforms for implementing accelera-
tors. Those that are not used concurrently can be swapped out
as needed freeing up space for others, reducing the total area of
re-configurable fabric required to implement the complete set of
HwAs of a specific application. By allowing time-multiplexed use
of limited silicon resources, smaller and less expensive devices can
be utilised.

Given this context, developers that wish to exploit heterogene-
ity in the context of FPGAs for the embedded domain, while also
relying on their DPR capability for better silicon area usage, must
therefore manually perform hardware/software partitioning, hard-
ware design and testing, and runtimemanagement of reconfigurable
slots, both spatially and temporally.

2 PROPOSED SOLUTION
Ourwork focuses on the implementation of a runtime resourceman-
agement mechanism based on decision trees. We envision this as
part of compiler-based hardware/software partitioning approaches
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previously proposed in the state-of-the-art, which can be sum-
marised as 1) identifying segmented regions of code amenable for
acceleration, 2) generating circuits for those regions without de-
veloper intervention, and 3) inserting invocations to the custom
hardware. We aim to augment the accelerator invocation runtime
management capabilities. Namely, 1) determining if a given acceler-
ated function can indeed benefit from hardware invocation, versus
its software counterpart, based on runtime function input parame-
ters, and 2) falling back to software execution based on available
accelerator slots.

This would determine if it is advantageous to implement an
accelerator for a specific task execution and offload it to a DPR-
based slot or execute that task on the general-purpose hardware.

Previous work has been done with this concept. However, the
approaches used require time-consuming offline profiling and train-
ing of the used models [3, 4, 11] not consistent with compiler flows.
These can provide very good offloading decisions on a system en-
suring great performance but at the sacrifice of portability. The
models developed for one particular system are not applicable if
any of the components, or their operating frequency are changed,
even when maintaining the same Instruction Set Architecture (ISA).
Any change in system configuration will require profiling of the
new system and retraining.

Our proposal, intended to automate the use of HLS and DPR
transparently, requires no offline profiling and therefore no ex-
pended time dealing with changes to the code base. A custom
decision engine can be trained on a per-device level that provides
decisions tailored to the application running on such a device by
employing online Decision Tree (DT) learning [5] fed by data such
as the values of the arguments of the functions that are being called,
the size of the data they will operate on, an estimate of the arith-
metic intensity obtained through static analysis, the order in which
the functions are called, whether or not the corresponding HwA is
already loaded into the FPGA and the temporal overhead of loading
the HwA via DPR (Algorithm 1).

The process starts by using the DT to decide if either software
or hardware execution should be used to target each individual
function call. If the DT’s confidence level in its decision is above
a user-defined threshold, the chosen component will execute the
function and return the result. On the other hand, if the confidence

Algorithm 1: Runtime Decision Engine
Initialisation;
Use the parameters of the function call in DT.
Let 𝜎 be the confidence in the choice made by the DT.
if 𝜎 > confidence threshold then

Execute function on the preferred platform.
else

Start execution on CPU.
Start timer.
Use DPR to load the HwA (if needed).
Copy input data to HwA.
Start execution on HwA.

end
if CPU or HwA is finished then

Halt execution of slower platform.
Copy result from HwA (if available).
Stop timer.
Train DT using the winner.

else
end

level in the decision is low, the function is executed concurrently on
both Central Processing Unit (CPU) and HwA. Execution is halted
once either concurrent execution (i.e., software and hardware) ter-
minates. The result is used to train the DT, increasing its confidence
level in that region of the problem space.

The Hoeffding Tree algorithm [5] is the method we propose to
use in this Engine. It guarantees an asymptotically identical result
when compared to batch learners, assuming that the data distribu-
tion does not change over time. Furthermore, several improvements
to the original algorithm have also been proposed to make it more
efficient when executed on an FPGA architecture [10].

By compiling the information of all the leaf nodes on the DT,
a list of the most used HwAs can be obtained. These can be kept
preloaded in the FPGA fabric to minimise DPR overhead. Take a
pair of identical devices (A & B) deployed in different conditions.
Device A may use HwA 1 more often than device B that prefers
HwA 2 due to the conditions surrounding the devices. By keeping
HwA 1 preloaded on device A better performance can be achieved
by cutting the reconfiguration time. Device Amay also have a better
CPU than device B. This can mean that, for particular scenarios,
device A may prefer CPU execution where device B will use HwA
3.

We propose to explore the implementation of such decision algo-
rithms, firstly through software implementations on-chip running
in an auxiliary processor, and then via hardware implementations
of the DT. Leveraging technologies such as HLS and DPR, we thus
aim to increase the abstraction level given to programmers for
the use of re-configurable resources by shifting these development
concerns towards the compiler.
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A Flexible HLS Hoeffding Tree Implementation for
Runtime Learning on FPGA 1

Abstract—Decision trees are often preferred when implement-
ing Machine Learning in embedded systems for their simplicity
and scalability. Hoeffding Trees are a type of Decision Trees
that take advantage of the Hoeffding Bound to allow them to
learn patterns in data without having to continuously store the
data samples for future reprocessing. This makes them especially
suitable for deployment on embedded devices. In this work we the
highlight features of an HLS implementation of the Hoeffding
Tree. The implementation parameters include the feature size
of the samples (D), the number of output classes (K), and the
maximum number of nodes to which the tree is allowed to grow
(Nd). We target a Xilinx MPSoC ZCU102, and evaluate: the
design’s resource requirements and clock frequency for different
numbers of classes and feature size, the execution time on several
synthetic datasets of varying sample sizes (N), number of output
classes and the execution time and accuracy for two datasets from
UCI. For a problem size of D3, K5, and N40000, a single decision
tree operating at 103MHz is capable of 8.3× faster inference than
the 1.2 GHz ARM Cortex-A53 core. Compared to a reference
implementation of the Hoeffding tree, we achieve comparable
classification accuracy for the UCI datasets.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

With the rise of edge computing, FPGA vendors have been
releasing and marketing CPU+FPGA SOCs as the ideal solu-
tion for this domain. As edge devices are often specialised for a
single task in a constrained environment, it is advantageous to
build dedicated hardware to improve performance and energy
efficiency. FPGAs offer the advantage of targeted hardware
without losing the ability to adapt the platform to changes
(e.g., security updates), while being more efficient than a pure
software solution.

As High Level Synthesis (HLS) matures [1], it becomes a
more attractive approach to creating efficient high-preformance
accelerators for FPGA devices.

Machine Learning (ML) algorithms are a prime candidate
for acceleration at the edge, but their computational require-
ments exceed the capabilities of many embedded devices.
Inference at the edge is a problem being addressed by many
works, but training at the edge still faces hurdles to adoption
despite its clear benefits. In the field of Decision Treess (DTs),
many algorithms are incompatible with devices of this class
due to memory constraints. ID3 [2], and derivatives such as
C4.5 and C5.0 require the entire training dataset be present
in memory for training. Incremental learning algorithms as
ID5 [3], ID5R [4] and ITI [5] do allow for ongoing learning
from streaming data but store the dataset samples within the
tree.

Hoeffding Trees [6] are incremental learning trees, which
are more suitable for embedded scenarios because they have
the following advantages: They asymptotically guarantee the

same classification as traditional batch learners, and they
store information about the distribution of samples statistically
rather than the samples themselves, which drastically reduces
memory requirements, especially for large datasets.

In this work, we present a flexible C/C++ HLS implemen-
tation of a Hoeffding Tree variant tailored for use in FPGAs,
originally proposed by Lin et al. [7]. Their work built on an
earlier variant in which the storage of the statistical data of
the sampling distribution of the original Hoeffding Tree was
replaced by a Gaussian approximation [8]. Lin et al. replace
this approximation with quantile estimation using asymmetric
signum functions [9]. The result is a larger memory footprint
but a reduction in computational requirements, while achieving
similar results. Since it is implemented in Verilog, the applica-
bility of the implementation is limited to circuit synthesis, e.g.
for FPGA. By using HLS, an implementation can be created
that is equally suitable for CPU and FPGA.

The contributions of this work are as follows:

• A generic, template-based C/C++ implementation of the
Hoeffding Tree classifier as per Lin et al. [7], but that is
suited for HLS.

• Functional validation of the implementation through soft-
ware execution, and post-synthesis onto a Xilinx ZCU102
development board.

• Experimental evaluation of memory requirements of the
tree object as a function of template parameters.

• Experimental evaluation of FPGA resource requirements
and execution time of the synthesised training and infer-
ence method as a function of template parameters.

II. HLS HOEFFDING TREE IMPLEMENTATION

A decision tree is a type of machine learning algorithm
used either for classification or regression. A decision tree
performs sequential binary decisions over an incoming vector
of features, and a classification is computed when a leaf node
is reached. During training, leaf nodes are added to the tree
based on a splitting criteria, which separates the data into two
regions at every tree junction. A Hoeffding tree is a type of
decision tree where the criteria is the Hoeffding bound, shown
in Equation 1. The tree performs learning and inference by
relying on a property of the Hoeffding bound that guarantees
that best splitting point is chosen. If a gain function G, is to
be maximised, then given G(X) and G(Y ) (X and Y being
the attributes that generate the highest and second highest
values of G) if G(X)−G(Y ) > ε then the Hoeffding bound
guarantees that with probability 1 − δ X is the best attribute
to split on. R represents the range of the attributes e N the
number of samples on a node.
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Fig. 1. Software and hardware architecture of the Hoeffding Tree implemen-
tation; the training and inference kernels are shared by multiple tree objects

ε =

√
R2ln(1/δ)

2N
(1)

Over other criteria, the Hoeffding bound has two character-
istics: it allows for online incremental learning and growth of
the tree which asymptotically tends towards the results pro-
vided by batch learners, and is independent of the probability
distribution of the data sampling. The Hoeffding tree allows
for continuous learning and node splitting for a potentially
infinite (e.g. streaming applications) number of samples [6].

FPGAs have been intensively studied for decision tree
implementations, as a tree structure maps efficiently to spe-
cialised hardware. In conjunction with other optimisations,
decision trees in FPGAs have been shown to outperform CPU
and GPU solutions [10]. Lin et al. [7] demonstrate speedups
of up to 1500x for an RTL implementation of the Hoeffding
tree versus a 2.6GHz processor. Our aim is to explore a higher
abstraction level via HLS, providing greater applicability fea-
tures, while evaluating the attainable performance.

We implemented the tree as a C++ class template. The
parameters include the maximum number of nodes in the
tree, the feature size, and the floating-point precision. The
class contains the training and inference methods which are
synthesised to hardware. At runtime, the C++ tree object can
be manipulated in software, and passed as an argument to the
training/inference method, as summarised in Figure 1.

This allows for instantiation of several tree objects in
memory (with different template parameters if desired). Trees
with the same template parameters can be processed by the
same synthesised circuit. Since the functions can also be
invoked in software, this means that training or inference can
be dynamically partitioned based on which device performs
better for either task, as a function of the tree parameters.
This also means that if FPGA is occupied processing a tree
object, other trees can be evaluated via software without the
need for a blocking wait.

Finally, evaluation of multiple trees is possible by either
a combination of software and hardware invocations, by de-
ploying multiple instances of the hardware kernel, or by time-
multiplexing a single hardware kernel (as explained below).
Either case allows for the possibility of arbitrary runtime tree
ensembles. This evaluation is currently future work.

The Xilinx Vitis HLS flow enforces an OpenCL model
for kernel invocation. The implemented kernel, krnl_Tree,
receives 4 arguments. A HoeffdingTree object as men-

tioned, an array of samples, an array of output classifications,
and the size of these arrays.

In this model, a large overhead penalty would occur for
invocations with a single sample, due to the data transfer time.
A practical application of the kernel design could be, e.g., in
the sensor domain, where the tree could continuously sample
fused data from multiple sensors (i.e., multiple attributes)
without processor intervention, avoiding transfer overheads.
Alternatively, streaming samples can be accumulated until a
sufficiently large number is held that mitigates this overhead.
This does not mean that the tree behaves as a batch learner,
as one sample is processed per each infer-then-train step.

Inference on an incremental learning decision tree cannot
be easily parallelised as the model changes and evolves with
every training sample that arrives. This restricts the pipeline
to dealing with one sample at a time, sequentially. The sample
structure contains information about whether it should be used
for training purposes or only for inference. Thus, as the kernel
loops through the sample array, it executes either the train
or infer method of the tree object accordingly. The results
are placed in the output data structure.

The OpenCL API allows for fine-grained control of how
these arguments are passed to the kernels, each argument being
a separate buffer with persistent storage. Thus, trees can be
transferred to FPGA memory once, and not retrieved between
executions of the kernels. With this mechanism, a tree object
can reside in memory while only new samples are transferred
in, and the model can be retrieved in a final stage.

Conversely, the samples themselves may remain in memory,
and trees freely exchanged. This is one strategy for the
construction of tree ensembles mentioned previously. Trees
can reuse the same kernel instance via time-multiplexing, or by
concurrent instantiation of several copies of krnl_Tree. In
either case, the same read-only sample buffer can be assigned
to all trees, thus significantly reducing overhead and preventing
data duplication. For brevity, the evaluation of ensembles is out
of the scope of this paper.

III. EXPERIMENTAL EVALUATION

We performed the following experiments: evaluated the
resource utilisation of a single synthesised tree for a range
of values for the feature size and number of classes; evaluated
the training and inference time of a single tree in hardware,
versus the ARM CPU, for several synthetic clustering datasets
(varying number of point, clusters, and feature size); evaluated
the classification accuracy and execution time of a single tree
for UCI’s Bank and Covertype datasets.

A. Resource Utilisation

Table I presents various configurations of the kernel, tailored
for datasets of different dimensions (D), with different number
of classes (K), number of samples (N) and max number
of nodes (Nd). The purpose is to determine the effect of
these parameters on FPGA resource utilisation. As expected,
parameter N has no effect on resource utilisation as samples
cannot be processed in parallel.
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The feature size and the number of classes result in an
increase in resource usage. This is due to the highly sequential
nature of the generated kernel, which also explains why the
performance of this kernel on training tasks is poor compared
to the CPU. This overall advantage is less surprising when
considered in the context of an 11-fold CPU advantage in clock
speed. Current HLS tools cannot automatically parallelize
sequential code. Without hardware design expertise in order
to optimise the design, the implementation will be far from
optimal. In our implementation, we still believe that further
parallelization can be achieved even within a single tree,
through inner loop unrolling or memory partitioning.

One interesting result is that of the kernel’s operating fre-
quency. It remains unchanged for all configurations. Looking
deeper into the cause of this phenomenon, one finds that the
bottleneck is the sorting of a sample down from the root node
to the appropriate leaf node. This sequential operation also
prevents the kernel from being pipelined.
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Fig. 2. Size of Tree objects in bytes for Nd, D and K. Each bar in every
grouping, depicts a tree with a max number of nodes from 20 to 27.

B. Performance

These results were obtained by feeding the tree with datasets
of K clusters in a D dimensional spaces, constituted of N
points. For these experimental runs, we will have the entire
dataset transferred in a single operation to the FPGA’s memory.

A0 ≤ 0.739
gini = 0.623

samples = 581011
value = [211840, 283301, 35753, 2747, 9493, 17367, 20510]

class = C1

A13 ≤ 0.091
gini = 0.626

samples = 169657
value = [12121, 94767, 35699, 2747, 7006, 17317, 0]

class = C1

True

gini = 0.552
samples = 411354

value = [199719, 188534, 54, 0, 2487, 50, 20510]
class = C0

False

gini = 0.496
samples = 132689

value = [12121, 91741, 14245, 0, 7006, 7576, 0]
class = C1

gini = 0.582
samples = 36968

value = [0, 3026, 21454, 2747, 0, 9741, 0]
class = C2

Fig. 3. Illustrative visualisation of tree model derived from UCI Covertype
dataset. The tree was only allowed to grow to 5 nodes.

Looking at the first four rows of Table II (D=3) it can be
observed that for a 3-dimensional dataset, regardless of the
bundle size, the ARM CPU in the ZCU102 SoC significantly
outperforms the FPGA implementation in both the training
and inference tasks. Also, the performance gap between both
implementations grows with the number of samples processed.
This indicates that the kernel is slower, per iteration, than
the pure software solution. Regarding the last four rows of
Table II (D=100), the ARM CPU still outperforms the FPGA
kernel in training. However, it does it with a lower margin

and one that does not appear to grow with the added number
of samples. On the inference task with this larger dataset, the
FPGA outperforms the ARM processor by 8.3×.

Table III presents benchmarks of two of the UCI datasets
used by Lin et al. [7]. The same tree parameters were used
(δ = 0.001, λ = 0.01, τ = 0.05, nmin = 200, npt = 10,
nquantiles = 16, Nd = 2047), with one being of special
relevance: Nd (maximum number of nodes). A significant
slowdown occurred. With the increased number of nodes, the
sequential tree traversal algorithm increases in length. Our
HLS implementation achieves comparable accuracy for Bank,
although the performance for Covertype is inferior. Lin et al.
[7] reports 89.30% and 72.51%, respectively. We believe a
difference in calculation precision between the CPU and FPGA
caused the degradation, despite the use of 32-bit floating point
data types for both devices.

IV. RELATED WORK

Kulaga et al. [11] present an HLS decision tree ensemble
solution for inference tasks. The results achieved are com-
petitive regarding performance when compared to the ARM
core present in the tested SoC. However, the design is highly
dependent on the number of trees and corresponding depths, as
a change in ensemble parameters requires re-tuning multiple
pragmas.As we have also seen, an unavoidable sequential
portion of the algorithm is the sample sorting through the
tree structure. Unlike our approach, the number of trees in an
ensemble is hardcoded into the synthesised kernel. In contrast,
by having one or more synthesised training/inference methods
(for different hyper-parameters), we can deploy N instances of
such circuits and process a runtime allocated number of trees.

As previously stated, the work on this paper builds on Lin et
al. [7] work. However, their implementation is closed-source
and done in Verilog, which excludes native execution on
CPUs. Also, as the work was developed for a datacenter-class
FPGA device, the implementation is very resource intensive
and thus not suitable for small devices such as the ones used
on embedded systems.

InAccel2 provides an HLS implementation of the XGBoost
learning algorithm, which is also based on decision trees.
For a dataset of 65k points, 5 classes, and 128 features, the
training time is 2.7 seconds. This is significantly faster than
our performance for similarly sized datasets, but InAccel’s
implementation targets server-grade FPGA accelerator boards
(including multi-board setups), while we target the embedded
domain. However, the potential for HLS FPGA acceleration
of decision tree algorithms is demonstrated, given expert
optimisation of the code for HLS.

V. CONCLUSIONS

We presented a flexible and scalable implementation of a
Hoeffding Tree compatible with HLS tools3. We performed
a functional validation of the tree design, against software
execution, by implementation on chip on a Xilinx ZCU102.

2InAccel, 2019, XGBoost Exact Updater IP core,
https://github.com/inaccel/xgboost

3Omitted for blind review
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TABLE I
N, D, K AND ND EFFECTS ON FPGA RESOURCE UTILISATION

Nodes 100 100 100 1000 100 100 100 1000
K 5 5 10 5 5 5 10 5
D 3 100 3 3 3 100 3 3
N 40k 40k 40k 40k 500k 500k 500k 500k

LUT 23304 (8.6%) 20567 (7.6%) 23776 (8.8%) 24351 (9.0%) 23304 (8.6%) 20567 (7.6%) 23776 (8.8%) 24351 (9.0%)

LUTRAM 1395 (1.0%) 1179 (0.8%) 1399 (1.0%) 1397 (1.0%) 1395 (1.0%) 1179 (0.8%) 1399 (1.0%) 1397 (1.0%)

FF 35682 (6.6%) 29775 (5.5%) 36374 (6.7%) 36336 (6.7%) 35682 (6.6%) 29775 (5.5%) 36374 (6.7%) 36336 (6.7%)

BRAM 12 (1.3%) 9.5 (1.0%) 12 (1.3%) 12 (1.3%) 12 (1.3%) 9.5 (1.0%) 12 (1.3%) 12 (1.3%)

DSP 23 (0.9%) 25 (1.0%) 25 (1.0%) 25 (1.0%) 23 (0.9%) 25 (1.0%) 25 (1.0%) 25 (1.0%)

BUFG 13 (3.2%) 13 (3.2%) 13 (3.2%) 13 (3.2%) 13 (3.2%) 13 (3.2%) 13 (3.2%) 13 (3.2%)

MMCM 1 (25.0%) 1 (25.0%) 1 (25.0%) 1 (25.0%) 1 (25.0%) 1 (25.0%) 1 (25.0%) 1 (25.0%)

Freq. (MHz) 103.6 103.6 103.6 103.6 103.6 103.6 103.6 103.6

TABLE II
TRAINING AND INFERENCE TIMES FOR FOUR SYNTHETIC CLUSTERING
DATASETS, FOR THE ARM CPU (1.2GHZ) AND THE FPGA (103MHZ)

K D N Task ARM CPU FPGA Speedup

5

3

40k
Training 207 ms 1,990 ms 0.10×

Inference 151 ms 462 ms 0.33×

500k
Training 2,983 ms 30,933 ms 0.10×

Inference 2,260 ms 11,442 ms 0.20×

100

40k
Training 6,028 ms 51,648 ms 0.12×

Inference 3,924 ms 469 ms 8.37×

500k
Training 75,763 ms 651,775 ms 0.12×

Inference 49,495 ms 11,494 ms 4.31×

TABLE III
TRAINING TIME AND ACCURACY (ACC.) FOR COVERTYPE AND BANK
DATASETS, FOR THE ARM CPU (1.2GHZ) AND THE FPGA (103MHZ)

ARM CPU FPGA

Acc. Time Acc. Time Speedup

Bank 88.3% 202 ms 88.3% 8,525 ms 0.02×

Covertype 72.2% 9,712 ms 63.7% 374,600 ms 0.03×

We provide a evaluation of the design’s resource usage for
multiple template parameter values (i.e., maximum tree size,
number of sample attributes, number of clusters, and number
of dataset samples), as well as execution time versus an ARM
Cortex-A53 processor. The resource requirements of the tree
do not scale significantly with problem size, although further
HLS optimisations such as unrolling remain unexplored. Even
so, we outperform the ARM by 8.3x times for largest dataset
for the inference task, while being 8.6x slower during training.
As future work, we envision the use of tree ensembles, and the
partitioning of training and inference task between software
and hardware based on problem size.
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Appendix B

adi Code Transformations

B.1 Original Code

1 |-_HLS_graphs

2 |-_HLS_reports

3 |-CxxIgnored

4 | |-OCL_Helpers.hpp

5 | |-OCL_Helpers.cpp

6 |-CxxSource

7 | |-adi.cpp

8 | |-adi.h

9 | |-polybench.c

10 | |-polybench.h

11 |-CxxTemplates

12 | |-OCLH_main.cpp

Listing B.1: Original Folder Structure

B.1.1 CxxTemplates/OCLH_main.cpp

1 #include "../CxxIgnored/OCL_Helpers.hpp"

2

3 cl::Context context;

4 cl::CommandQueue queue;

5 cl::Program program;

6

7 void scheduler(uint64_t ops[], bool &executeOnCPU, bool &executeOnFPGA,

8 bool &lowConfidence) {

9 executeOnCPU = true;

10 executeOnFPGA = true;

11 lowConfidence = true;

66
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12 }

13

14 void train(uint ops[], bool CPUwonFPGAlost) { return; }

15

16 #pragma clava ocl_insert_globals

17 // cl::Kernel krnl_scheduler;

18

19 int main_template(int argc, char *argv[]) {

20

21 static const std::string platformName = "Xilinx";

22

23 OCLH::getConfig(argv[1], platformName, context, queue, program);

24

25 #pragma clava ocl_insert_kernel_initializations

26 // krnl_scheduler = OCLH::getKernel("scheduler", program);

27 }

Listing B.2: Original CxxTemplates/OCLH_main.cpp

B.1.2 CxxSource/adi.cpp

1 /**

2 * This version is stamped on May 10, 2016

3 *

4 * Contact:

5 * Louis-Noel Pouchet <pouchet.ohio-state.edu>

6 * Tomofumi Yuki <tomofumi.yuki.fr>

7 *

8 * Web address: http://polybench.sourceforge.net

9 */

10 /* adi.c: this file is part of PolyBench/C */

11

12 #include <math.h>

13 #include <stdio.h>

14 #include <string.h>

15 #include <unistd.h>

16

17 #define EXTRALARGE_DATASET

18 #define DATA_TYPE_IS_FLOAT

19

20 /* Include polybench common header. */

21 #include "polybench.h"

22

23 /* Include benchmark-specific header. */

24 #include "adi.h"

25

26 /* Array initialization. */
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27 static void init_array(int n, DATA_TYPE POLYBENCH_2D(u, N, N, n, n)) {

28 int i, j;

29

30 for (i = 0; i < n; i++)

31 for (j = 0; j < n; j++) {

32 u[i][j] = (DATA_TYPE)(i + n - j) / n;

33 }

34 }

35

36 /* DCE code. Must scan the entire live-out data.

37 Can be used also to check the correctness of the output. */

38 static void print_array(int n, DATA_TYPE POLYBENCH_2D(u, N, N, n, n))

39

40 {

41 int i, j;

42

43 POLYBENCH_DUMP_START;

44 POLYBENCH_DUMP_BEGIN("u");

45 for (i = 0; i < n; i++)

46 for (j = 0; j < n; j++) {

47 if ((i * n + j) % 20 == 0)

48 fprintf(POLYBENCH_DUMP_TARGET, "\n");

49 fprintf(POLYBENCH_DUMP_TARGET, DATA_PRINTF_MODIFIER, u[i][j]);

50 }

51 POLYBENCH_DUMP_END("u");

52 POLYBENCH_DUMP_FINISH;

53 }

54

55 /* Main computational kernel. The whole function will be timed,

56 including the call and return. */

57 /* Based on a Fortran code fragment from Figure 5 of

58 * "Automatic Data and Computation Decomposition on Distributed Memory Parallel

59 * Computers" by Peizong Lee and Zvi Meir Kedem, TOPLAS, 2002

60 */

61 #pragma clava kernel

62 #pragma clava data kernel : [{ \

63 scalar : "auto" }, {scalar : "auto" }, {auto : "sizeof(double[n][n])" }, \

64 {auto : "sizeof(double[n][n])" }, \

65 {auto : "sizeof(double[n][n])" }]

66 void kernel_adi(int tsteps, int n, DATA_TYPE POLYBENCH_2D(u, N, N, n, n),

67 DATA_TYPE POLYBENCH_2D(v, N, N, n, n),

68 DATA_TYPE POLYBENCH_2D(p, N, N, n, n),

69 DATA_TYPE POLYBENCH_2D(q, N, N, n, n)) {

70 int t, i, j;

71 DATA_TYPE DX, DY, DT;

72 DATA_TYPE B1, B2;

73 DATA_TYPE mul1, mul2;

74 DATA_TYPE a, b, c, d, e, f;

75
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76 DX = SCALAR_VAL(1.0) / (DATA_TYPE)_PB_N;

77 DY = SCALAR_VAL(1.0) / (DATA_TYPE)_PB_N;

78 DT = SCALAR_VAL(1.0) / (DATA_TYPE)_PB_TSTEPS;

79 B1 = SCALAR_VAL(2.0);

80 B2 = SCALAR_VAL(1.0);

81 mul1 = B1 * DT / (DX * DX);

82 mul2 = B2 * DT / (DY * DY);

83

84 a = -mul1 / SCALAR_VAL(2.0);

85 b = SCALAR_VAL(1.0) + mul1;

86 c = a;

87 d = -mul2 / SCALAR_VAL(2.0);

88 e = SCALAR_VAL(1.0) + mul2;

89 f = d;

90

91 for (t = 1; t <= _PB_TSTEPS; t++) {

92 for (i = 1; i < _PB_N - 1; i++) {

93 v[0][i] = SCALAR_VAL(1.0);

94 p[i][0] = SCALAR_VAL(0.0);

95 q[i][0] = v[0][i];

96 for (j = 1; j < _PB_N - 1; j++) {

97 p[i][j] = -c / (a * p[i][j - 1] + b);

98 q[i][j] = (-d * u[j][i - 1] +

99 (SCALAR_VAL(1.0) + SCALAR_VAL(2.0) * d) * u[j][i] -

100 f * u[j][i + 1] - a * q[i][j - 1]) /

101 (a * p[i][j - 1] + b);

102 }

103

104 v[_PB_N - 1][i] = SCALAR_VAL(1.0);

105 for (j = _PB_N - 2; j >= 1; j--) {

106 v[j][i] = p[i][j] * v[j + 1][i] + q[i][j];

107 }

108 }

109

110 for (i = 1; i < _PB_N - 1; i++) {

111 u[i][0] = SCALAR_VAL(1.0);

112 p[i][0] = SCALAR_VAL(0.0);

113 q[i][0] = u[i][0];

114 for (j = 1; j < _PB_N - 1; j++) {

115 p[i][j] = -f / (d * p[i][j - 1] + e);

116 q[i][j] = (-a * v[i - 1][j] +

117 (SCALAR_VAL(1.0) + SCALAR_VAL(2.0) * a) * v[i][j] -

118 c * v[i + 1][j] - d * q[i][j - 1]) /

119 (d * p[i][j - 1] + e);

120 }

121 u[i][_PB_N - 1] = SCALAR_VAL(1.0);

122 for (j = _PB_N - 2; j >= 1; j--) {

123 u[i][j] = p[i][j] * u[i][j + 1] + q[i][j];

124 }
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125 }

126 }

127 }

128

129 int main(int argc, char **argv) {

130 /* Retrieve problem size. */

131 int n = N;

132 // int tsteps = TSTEPS;

133

134 /* Variable declaration/allocation. */

135 POLYBENCH_2D_ARRAY_DECL(u, DATA_TYPE, N, N, n, n);

136 POLYBENCH_2D_ARRAY_DECL(v, DATA_TYPE, N, N, n, n);

137 POLYBENCH_2D_ARRAY_DECL(p, DATA_TYPE, N, N, n, n);

138 POLYBENCH_2D_ARRAY_DECL(q, DATA_TYPE, N, N, n, n);

139

140 /* Initialize array(s). */

141 init_array(n, POLYBENCH_ARRAY(u));

142

143 /* Start timer. */

144 polybench_start_instruments;

145

146 /* Run kernel. */

147 for (n = 1; n < N; n++) {

148 kernel_adi(n / 2, n, POLYBENCH_ARRAY(u), POLYBENCH_ARRAY(v),

149 POLYBENCH_ARRAY(p), POLYBENCH_ARRAY(q));

150 }

151

152 /* Stop and print timer. */

153 polybench_stop_instruments;

154 polybench_print_instruments;

155

156 /* Prevent dead-code elimination. All live-out data must be printed

157 by the function call in argument. */

158 polybench_prevent_dce(print_array(n, POLYBENCH_ARRAY(u)));

159

160 /* Be clean. */

161 POLYBENCH_FREE_ARRAY(u);

162 POLYBENCH_FREE_ARRAY(v);

163 POLYBENCH_FREE_ARRAY(p);

164 POLYBENCH_FREE_ARRAY(q);

165

166 return 0;

167 }

Listing B.3: Original CxxSource/adi.cpp

B.1.3 CxxSource/adi.h
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1 /**

2 * This version is stamped on May 10, 2016

3 *

4 * Contact:

5 * Louis-Noel Pouchet <pouchet.ohio-state.edu>

6 * Tomofumi Yuki <tomofumi.yuki.fr>

7 *

8 * Web address: http://polybench.sourceforge.net

9 */

10 #ifndef _ADI_H

11 # define _ADI_H

12

13 /* Default to LARGE_DATASET. */

14 # if !defined(MINI_DATASET) && !defined(SMALL_DATASET) && !defined(MEDIUM_DATASET)

&& !defined(LARGE_DATASET) && !defined(EXTRALARGE_DATASET)

15 # define LARGE_DATASET

16 # endif

17

18 # if !defined(TSTEPS) && !defined(N)

19 /* Define sample dataset sizes. */

20 # ifdef MINI_DATASET

21 # define TSTEPS 20

22 # define N 20

23 # endif

24

25 # ifdef SMALL_DATASET

26 # define TSTEPS 40

27 # define N 60

28 # endif

29

30 # ifdef MEDIUM_DATASET

31 # define TSTEPS 100

32 # define N 200

33 # endif

34

35 # ifdef LARGE_DATASET

36 # define TSTEPS 500

37 # define N 1000

38 # endif

39

40 # ifdef EXTRALARGE_DATASET

41 # define TSTEPS 1000

42 # define N 2000

43 # endif

44

45

46 #endif /* !(TSTEPS N) */

47

48 # define _PB_TSTEPS POLYBENCH_LOOP_BOUND(TSTEPS,tsteps)
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49 # define _PB_N POLYBENCH_LOOP_BOUND(N,n)

50

51

52 /* Default data type */

53 # if !defined(DATA_TYPE_IS_INT) && !defined(DATA_TYPE_IS_FLOAT) && !defined(

DATA_TYPE_IS_DOUBLE)

54 # define DATA_TYPE_IS_DOUBLE

55 # endif

56

57 #ifdef DATA_TYPE_IS_INT

58 # define DATA_TYPE int

59 # define DATA_PRINTF_MODIFIER "%d "

60 #endif

61

62 #ifdef DATA_TYPE_IS_FLOAT

63 # define DATA_TYPE float

64 # define DATA_PRINTF_MODIFIER "%0.2f "

65 # define SCALAR_VAL(x) x##f

66 # define SQRT_FUN(x) sqrtf(x)

67 # define EXP_FUN(x) expf(x)

68 # define POW_FUN(x,y) powf(x,y)

69 # endif

70

71 #ifdef DATA_TYPE_IS_DOUBLE

72 # define DATA_TYPE double

73 # define DATA_PRINTF_MODIFIER "%0.2lf "

74 # define SCALAR_VAL(x) x

75 # define SQRT_FUN(x) sqrt(x)

76 # define EXP_FUN(x) exp(x)

77 # define POW_FUN(x,y) pow(x,y)

78 # endif

79

80 #endif /* !_ADI_H */

Listing B.4: Original CxxSource/adi.h

B.2 Tribble Output

1 |-woven_code

2 | |-_HLS_graphs

3 | |-_HLS_reports

4 | |-CxxIgnored

5 | | |-OCL_Helpers.hpp

6 | | |-OCL_Helpers.cpp

7 | |-CxxSource

8 | | |-adi.cpp
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9 | | |-adi.h

10 | | |-kernels.cpp

11 | | |-polybench.c

12 | | |-polybench.h

13 | |-CxxTemplates

14 | | |-OCLH_main.cpp

Listing B.5: Output Folder Structure

B.2.1 woven_code/CxxTemplates/OCLH_main.cpp

1 #include "../CxxIgnored/OCL_Helpers.hpp"

2 cl::Context context;

3 cl::CommandQueue queue;

4 cl::Program program;

5 void scheduler(uint64_t ops[], bool &executeOnCPU, bool &executeOnFPGA,

6 bool &lowConfidence) {

7 executeOnCPU = true;

8 executeOnFPGA = true;

9 lowConfidence = true;

10 }

11

12 void train(uint ops[], bool CPUwonFPGAlost) { return; }

13

14 #pragma clava ocl_insert_globals

15

16 extern int main_original(int argc, char **argv);

17 cl::Kernel krnl_kernel_adi;

18 // cl::Kernel krnl_scheduler;

19 int main(int argc, char *argv[]) {

20 static std::string const platformName = "Xilinx";

21 OCLH::getConfig(argv[1], platformName, context, queue, program);

22 #pragma clava ocl_insert_kernel_initializations

23 krnl_kernel_adi = OCLH::getKernel("kernel_adi_Kernel", program);

24 // krnl_scheduler = OCLH::getKernel("scheduler", program);

25

26 return main_original(argc, argv);

27 }

Listing B.6: Generated woven_code/CxxTemplates/OCLH_main.cpp

B.2.2 woven_code/CxxSource/adi.cpp

1 #include "adi.h"



adi Code Transformations 74

2 #include "../CxxIgnored/OCL_Helpers.hpp"

3 #include "polybench.h"

4 #include <chrono>

5 #include <math.h>

6 #include <stdio.h>

7 #include <string.h>

8 #include <unistd.h>

9 extern void scheduler(uint64_t ops[], bool &executeOnCPU, bool &executeOnFPGA,

10 bool &lowConfidence);

11 extern void train(uint64_t ops[], bool CPUwonFPGAlost);

12 extern cl::Kernel krnl_kernel_adi;

13 extern cl::CommandQueue queue;

14 extern cl::Context context;

15 /**

16 * This version is stamped on May 10, 2016

17 *

18 * Contact:

19 * Louis-Noel Pouchet <pouchet.ohio-state.edu>

20 * Tomofumi Yuki <tomofumi.yuki.fr>

21 *

22 * Web address: http://polybench.sourceforge.net

23 */

24 /*adi.c: this file is part of PolyBench/C*/

25 /*Include polybench common header.*/

26 /*Include benchmark-specific header.*/

27 /*Array initialization.*/

28 static void init_array(int n, float u[2000][2000]) {

29 int i, j;

30 for (i = 0; i < n; i++)

31 for (j = 0; j < n; j++) {

32 u[i][j] = (float)(i + n - j) / n;

33 }

34 }

35

36 /*DCE code. Must scan the entire live-out data.

37 Can be used also to check the correctness of the output.*/

38 static void print_array(int n, float u[2000][2000]) {

39 int i, j;

40 fprintf(stderr, "==BEGIN DUMP_ARRAYS==\n");

41 fprintf(stderr, "begin dump: %s", "u");

42 for (i = 0; i < n; i++)

43 for (j = 0; j < n; j++) {

44 if ((i * n + j) % 20 == 0)

45 fprintf(stderr, "\n");

46 fprintf(stderr, "%0.2f ", u[i][j]);

47 }

48 fprintf(stderr, "\nend dump: %s\n", "u");

49 fprintf(stderr, "==END DUMP_ARRAYS==\n");

50 }
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51

52 void kernel_adi_KernelCount(int tsteps, int n, float u[2000][2000],

53 float v[2000][2000], float p[2000][2000],

54 float q[2000][2000], unsigned long ops[]) {

55 ops[0] =

56 ((((5 + 1 + 1) * ((n - 1) - 1) + (1 + 1) * ((n - 2) - 1 + 1) + 3 + 1) *

57 ((n - 1) - 1) +

58 ((5 + 1 + 1) * ((n - 1) - 1) + (1 + 1) * ((n - 2) - 1 + 1) + 3 + 1) *

59 ((n - 1) - 1) +

60 1) *

61 ((tsteps)-1 + 1)) *

62 (1);

63 ops[10] = ((((2) * ((n - 1) - 1)) * ((n - 1) - 1) +

64 ((2) * ((n - 1) - 1)) * ((n - 1) - 1)) *

65 ((tsteps)-1 + 1) +

66 7) *

67 (1);

68 ops[8] =

69 ((((4 + 2) * ((n - 1) - 1) + (1) * ((n - 2) - 1 + 1)) * ((n - 1) - 1) +

70 ((4 + 2) * ((n - 1) - 1) + (1) * ((n - 2) - 1 + 1)) * ((n - 1) - 1)) *

71 ((tsteps)-1 + 1) +

72 2) *

73 (1);

74 ops[9] =

75 ((((7) * ((n - 1) - 1) + (1) * ((n - 2) - 1 + 1)) * ((n - 1) - 1) +

76 ((7) * ((n - 1) - 1) + (1) * ((n - 2) - 1 + 1)) * ((n - 1) - 1)) *

77 ((tsteps)-1 + 1) +

78 4) *

79 (1);

80 }

81

82 /*Main computational kernel. The whole function will be timed,

83 including the call and return.*/

84

85 /*Based on a Fortran code fragment from Figure 5 of

86 * "Automatic Data and Computation Decomposition on Distributed Memory Parallel

87 * Computers" by Peizong Lee and Zvi Meir Kedem, TOPLAS, 2002

88 */

89

90 #pragma clava kernel

91

92 #pragma clava data kernel : [{ \

93 scalar : "auto" }, {scalar : "auto" }, {auto : "sizeof(double[n][n])" }, \

94 {auto : "sizeof(double[n][n])" }, \

95 {auto : "sizeof(double[n][n])" }]

96

97 void kernel_adi(int tsteps, int n, float u[2000][2000], float v[2000][2000],

98 float p[2000][2000], float q[2000][2000]) {

99 bool executeOnCPU;
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100 bool executeOnFPGA;

101 bool measurePerf;

102 std::chrono::high_resolution_clock::duration clava_timing_duration_0;

103 std::chrono::high_resolution_clock::duration clava_timing_duration_1;

104 uint64_t opsCount[16];

105 kernel_adi_KernelCount(tsteps, n, u, v, p, q, opsCount);

106 scheduler(opsCount, executeOnCPU, executeOnFPGA, measurePerf);

107 if (executeOnCPU) {

108 std::chrono::high_resolution_clock::time_point clava_timing_start_0;

109 std::chrono::high_resolution_clock::time_point clava_timing_end_0;

110 if (measurePerf) {

111 clava_timing_start_0 = std::chrono::high_resolution_clock::now();

112 }

113 kernel_adi_Kernel(tsteps, n, u, v, p, q);

114 if (measurePerf) {

115 clava_timing_end_0 = std::chrono::high_resolution_clock::now();

116 clava_timing_duration_0 = clava_timing_end_0 - clava_timing_start_0;

117 }

118 }

119 if (executeOnFPGA) {

120 std::chrono::high_resolution_clock::time_point clava_timing_start_1;

121 std::chrono::high_resolution_clock::time_point clava_timing_end_1;

122 if (measurePerf) {

123 clava_timing_start_1 = std::chrono::high_resolution_clock::now();

124 }

125 krnl_kernel_adi.setArg(0, tsteps);

126 krnl_kernel_adi.setArg(1, n);

127 cl::Buffer buffer_u(context, CL_MEM_USE_HOST_PTR | CL_MEM_READ_WRITE,

128 sizeof(double[n][n]), u);

129 krnl_kernel_adi.setArg(2, buffer_u);

130 cl::Buffer buffer_v(context, CL_MEM_USE_HOST_PTR | CL_MEM_READ_WRITE,

131 sizeof(double[n][n]), v);

132 krnl_kernel_adi.setArg(3, buffer_v);

133 cl::Buffer buffer_p(context, CL_MEM_USE_HOST_PTR | CL_MEM_READ_WRITE,

134 sizeof(double[n][n]), p);

135 krnl_kernel_adi.setArg(4, buffer_p);

136 cl::Buffer buffer_q(context, CL_MEM_USE_HOST_PTR | CL_MEM_READ_WRITE,

137 sizeof(float[2000][2000]), q);

138 krnl_kernel_adi.setArg(5, buffer_q);

139 queue.enqueueMigrateMemObjects({buffer_u, buffer_v, buffer_p, buffer_q},

140 0 /* 0 means from host */);

141 queue.enqueueTask(krnl_kernel_adi);

142 queue.finish();

143 queue.enqueueMigrateMemObjects({buffer_u, buffer_v, buffer_p, buffer_q},

144 CL_MIGRATE_MEM_OBJECT_HOST);

145 queue.finish();

146 if (measurePerf) {

147 clava_timing_end_1 = std::chrono::high_resolution_clock::now();

148 clava_timing_duration_1 = clava_timing_end_1 - clava_timing_start_1;
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149 }

150 }

151 if (measurePerf)

152 train(opsCount, clava_timing_duration_0 < clava_timing_duration_1);

153 }

154

155 int main_original(int argc, char **argv) {

156 /*Retrieve problem size.*/

157 int n = 2000;

158 // int tsteps = TSTEPS;

159 /*Variable declaration/allocation.*/

160 float(*u)[2000][2000];

161 u = (float(*)[2000][2000])polybench_alloc_data((2000 + 0) * (2000 + 0),

162 sizeof(float));

163 ;

164 float(*v)[2000][2000];

165 v = (float(*)[2000][2000])polybench_alloc_data((2000 + 0) * (2000 + 0),

166 sizeof(float));

167 ;

168 float(*p)[2000][2000];

169 p = (float(*)[2000][2000])polybench_alloc_data((2000 + 0) * (2000 + 0),

170 sizeof(float));

171 ;

172 float(*q)[2000][2000];

173 q = (float(*)[2000][2000])polybench_alloc_data((2000 + 0) * (2000 + 0),

174 sizeof(float));

175 ;

176 /*Initialize array(s).*/

177 init_array(n, *u);

178 /*Start timer.*/

179 ;

180 /*Run kernel.*/

181 for (n = 1; n < 2000; n++) {

182 kernel_adi(n / 2, n, *u, *v, *p, *q);

183 }

184 /*Stop and print timer.*/

185 ;

186 ;

187 /*Prevent dead-code elimination. All live-out data must be printed

188 by the function call in argument.*/

189 if (argc > 42 && !strcmp(argv[0], ""))

190 print_array(n, *u);

191 /*Be clean.*/

192 free((void *)u);

193 ;

194 free((void *)v);

195 ;

196 free((void *)p);

197 ;
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198 free((void *)q);

199 ;

200

201 return 0;

202 }

Listing B.7: Generated woven_code/CxxSource/adi.cpp

B.2.3 woven_code/CxxSource/adi.h

1 #ifndef _ADI_H_

2 #define _ADI_H_

3

4 #endif

Listing B.8: Generated woven_code/CxxSource/adi.h

B.2.4 woven_code/CxxSource/kernels.cpp

1 #include "adi.h"

2 #include "polybench.h"

3 #include <math.h>

4 #include <stdio.h>

5 #include <string.h>

6 #include <unistd.h>

7 void kernel_adi_KernelCode(int tsteps, int n, float u[2000][2000],

8 float v[2000][2000], float p[2000][2000],

9 float q[2000][2000]) {

10 #pragma HLS array_partition variable = u cyclic factor = 64

11 #pragma HLS array_partition variable = v cyclic factor = 64

12 #pragma HLS array_partition variable = p cyclic factor = 64

13 #pragma HLS array_partition variable = q cyclic factor = 64

14 float f;

15 float e;

16 float d;

17 float c;

18 float b;

19 float a;

20 float mul2;

21 float mul1;

22 float B2;

23 float B1;

24 float DT;

25 float DY;
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26 float DX;

27 int j;

28 int i;

29 int t;

30 DX = 1.0f / (float)n;

31 DY = 1.0f / (float)n;

32 DT = 1.0f / (float)tsteps;

33 B1 = 2.0f;

34 B2 = 1.0f;

35 mul1 = B1 * DT / (DX * DX);

36 mul2 = B2 * DT / (DY * DY);

37 a = -mul1 / 2.0f;

38 b = 1.0f + mul1;

39 c = a;

40 d = -mul2 / 2.0f;

41 e = 1.0f + mul2;

42 f = d;

43 for (t = 1; t <= tsteps; t++) {

44 for (i = 1; i < n - 1; i++) {

45 #pragma HLS pipeline

46 v[0][i] = 1.0f;

47 p[i][0] = 0.0f;

48 q[i][0] = v[0][i];

49 for (j = 1; j < n - 1; j++) {

50 #pragma HLS unroll

51 p[i][j] = -c / (a * p[i][j - 1] + b);

52 q[i][j] = (-d * u[j][i - 1] + (1.0f + 2.0f * d) * u[j][i] -

53 f * u[j][i + 1] - a * q[i][j - 1]) /

54 (a * p[i][j - 1] + b);

55 }

56 v[n - 1][i] = 1.0f;

57 for (j = n - 2; j >= 1; j--) {

58 #pragma HLS unroll

59 v[j][i] = p[i][j] * v[j + 1][i] + q[i][j];

60 }

61 }

62 for (i = 1; i < n - 1; i++) {

63 #pragma HLS pipeline

64 u[i][0] = 1.0f;

65 p[i][0] = 0.0f;

66 q[i][0] = u[i][0];

67 for (j = 1; j < n - 1; j++) {

68 #pragma HLS unroll

69 p[i][j] = -f / (d * p[i][j - 1] + e);

70 q[i][j] = (-a * v[i - 1][j] + (1.0f + 2.0f * a) * v[i][j] -

71 c * v[i + 1][j] - d * q[i][j - 1]) /

72 (d * p[i][j - 1] + e);

73 }

74 u[i][n - 1] = 1.0f;
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75 for (j = n - 2; j >= 1; j--) {

76 #pragma HLS unroll

77 u[i][j] = p[i][j] * u[i][j + 1] + q[i][j];

78 }

79 }

80 }

81 }

82

83 void kernel_adi_Kernel(int tsteps, int n, float u[2000][2000],

84 float v[2000][2000], float p[2000][2000],

85 float q[2000][2000]) {

86 kernel_adi_KernelCode(tsteps, n, u, v, p, q);

87 }

Listing B.9: Generated woven_code/CxxSource/kernels.cpp
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adi Kernel Optimisations

Note: A reduction of the max matrix size from 2000 to 400 for each dimension was necessary to

produce a synthesisable kernel.

1 /* #include "adi.h"

2 #include "polybench.h"

3 #include <math.h>

4 #include <stdio.h>

5 #include <string.h>

6 #include <unistd.h> */

7

8 extern "C" {

9 void kernel_adi_KernelCode(int tsteps, int n, float u_o[400][400],

10 float v_o[400][400], float p_o[400][400],

11 float q_o[400][400]) {

12 float u[400][400];

13 float v[400][400];

14 float p[400][400];

15 float q[400][400];

16

17 u_read_out:

18 for (int i = 0; i < n; i++) {

19 u_read_int:

20 for (int j = 0; j < n; j++) {

21 u[i][j] = u_o[i][j];

22 }

23 }

24 v_read_out:

25 for (int i = 0; i < n; i++) {

26 v_read_int:

27 for (int j = 0; j < n; j++) {

28 v[i][j] = v_o[i][j];

29 }

30 }

31

81
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32 /*

33 #pragma HLS array_partition variable = u cyclic factor = 4

34 #pragma HLS array_partition variable = v cyclic factor = 4

35 #pragma HLS array_partition variable = p cyclic factor = 4

36 #pragma HLS array_partition variable = q cyclic factor = 4

37 */

38

39 float f;

40 float e;

41 float d;

42 float c;

43 float b;

44 float a;

45 float mul2;

46 float mul1;

47 float B2;

48 float B1;

49 float DT;

50 float DY;

51 float DX;

52 int j;

53 int i;

54 int t;

55 DX = 1.0f / (float)n;

56 DY = 1.0f / (float)n;

57 DT = 1.0f / (float)tsteps;

58 B1 = 2.0f;

59 B2 = 1.0f;

60 mul1 = B1 * DT / (DX * DX);

61 mul2 = B2 * DT / (DY * DY);

62 a = -mul1 / 2.0f;

63 b = 1.0f + mul1;

64 c = a;

65 d = -mul2 / 2.0f;

66 e = 1.0f + mul2;

67 f = d;

68 for (t = 1; t <= tsteps; t++) {

69 for (i = 1; i < n - 1; i++) {

70 #pragma HLS pipeline

71 v[0][i] = 1.0f;

72 p[i][0] = 0.0f;

73 q[i][0] = v[0][i];

74 for (j = 1; j < n - 1; j++) {

75 #pragma HLS unroll

76 p[i][j] = -c / (a * p[i][j - 1] + b);

77 q[i][j] = (-d * u[j][i - 1] + (1.0f + 2.0f * d) * u[j][i] -

78 f * u[j][i + 1] - a * q[i][j - 1]) /

79 (a * p[i][j - 1] + b);

80 }
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81 v[n - 1][i] = 1.0f;

82 for (j = n - 2; j >= 1; j--) {

83 #pragma HLS unroll

84 v[j][i] = p[i][j] * v[j + 1][i] + q[i][j];

85 }

86 }

87 for (i = 1; i < n - 1; i++) {

88 #pragma HLS pipeline

89 u[i][0] = 1.0f;

90 p[i][0] = 0.0f;

91 q[i][0] = u[i][0];

92 for (j = 1; j < n - 1; j++) {

93 #pragma HLS unroll

94 p[i][j] = -f / (d * p[i][j - 1] + e);

95 q[i][j] = (-a * v[i - 1][j] + (1.0f + 2.0f * a) * v[i][j] -

96 c * v[i + 1][j] - d * q[i][j - 1]) /

97 (d * p[i][j - 1] + e);

98 }

99 u[i][n - 1] = 1.0f;

100 for (j = n - 2; j >= 1; j--) {

101 #pragma HLS unroll

102 u[i][j] = p[i][j] * u[i][j + 1] + q[i][j];

103 }

104 }

105 }

106

107 p_read_out:

108 for (int i = 0; i < n; i++) {

109 p_read_int:

110 for (int j = 0; j < n; j++) {

111 p_o[i][j] = p[i][j];

112 }

113 }

114 q_read_out:

115 for (int i = 0; i < n; i++) {

116 q_read_int:

117 for (int j = 0; j < n; j++) {

118 q_o[i][j] = q[i][j];

119 }

120 }

121 }

122

123 void kernel_adi_float_Kernel(int tsteps, int n, float u[400][400],

124 float v[400][400], float p[400][400],

125 float q[400][400]) {

126 kernel_adi_KernelCode(tsteps, n, u, v, p, q);

127 }

128 }

Listing C.1: Slightly modified adi kernel code. Optimised for FPGA synthesis
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Dataset Creation Code

1 #include <fstream>

2 #include <iostream>

3 #include <sstream>

4 #include <stdio.h>

5 #include <stdlib.h>

6 #include <string>

7

8 #include "src/Tree.hpp"

9

10 #define WRITE_TO_FILE

11

12 const std::string outFilename = "dataset.txt";

13

14 void kernel_adi_KernelCount(uint64_t tsteps, uint64_t n, uint64_t ops[]) {

15 ops[0] =

16 ((((5 + 1 + 1) * ((n - 1) - 1) + (1 + 1) * ((n - 2) - 1 + 1) + 3 + 1) *

17 ((n - 1) - 1) +

18 ((5 + 1 + 1) * ((n - 1) - 1) + (1 + 1) * ((n - 2) - 1 + 1) + 3 + 1) *

19 ((n - 1) - 1) +

20 1) *

21 ((tsteps)-1 + 1)) *

22 (1);

23 ops[10] = ((((2) * ((n - 1) - 1)) * ((n - 1) - 1) +

24 ((2) * ((n - 1) - 1)) * ((n - 1) - 1)) *

25 ((tsteps)-1 + 1) +

26 7) *

27 (1);

28 ops[8] =

29 ((((4 + 2) * ((n - 1) - 1) + (1) * ((n - 2) - 1 + 1)) * ((n - 1) - 1) +

30 ((4 + 2) * ((n - 1) - 1) + (1) * ((n - 2) - 1 + 1)) * ((n - 1) - 1)) *

31 ((tsteps)-1 + 1) +

32 2) *

33 (1);

84
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34 ops[9] =

35 ((((7) * ((n - 1) - 1) + (1) * ((n - 2) - 1 + 1)) * ((n - 1) - 1) +

36 ((7) * ((n - 1) - 1) + (1) * ((n - 2) - 1 + 1)) * ((n - 1) - 1)) *

37 ((tsteps)-1 + 1) +

38 4) *

39 (1);

40 }

41

42 void kernel_2mm_KernelCount(uint64_t ni, uint64_t nj, uint64_t nk, uint64_t nl,

43 uint64_t ops[]) {

44 ops[0] = (((1 * nk + 1) * nj + 1) * ni + ((1 * nj + 1) * nl + 1) * ni) * 1;

45 ops[12] = (((1 * nk) * nj) * ni + ((1 * nj) * nl) * ni) * 1;

46 ops[13] = (((2 * nk) * nj) * ni + ((1 * nj + 1) * nl) * ni) * 1;

47 }

48

49 void kernel_3mm_KernelCount(uint64_t ni, uint64_t nj, uint64_t nk, uint64_t nl,

50 uint64_t nm, uint64_t ops[]) {

51 ops[0] = (((1 * nk + 1) * nj + 1) * ni + ((1 * nm + 1) * nl + 1) * nj +

52 ((1 * nj + 1) * nl + 1) * ni) *

53 1;

54 ops[12] =

55 (((1 * nk) * nj) * ni + ((1 * nm) * nl) * nj + ((1 * nj) * nl) * ni) *

56 1;

57 ops[13] =

58 (((1 * nk) * nj) * ni + ((1 * nm) * nl) * nj + ((1 * nj) * nl) * ni) *

59 1;

60 }

61

62 void kernel_atax_KernelCount(uint64_t m, uint64_t n, uint64_t ops[]) {

63 ops[0] = (1 * n + (1 * n + 1 * n + 1) * m) * 1;

64 ops[12] = ((1 * n + 1 * n) * m) * 1;

65 ops[13] = ((1 * n + 1 * n) * m) * 1;

66 }

67

68 void kernel_bicg_KernelCount(uint64_t m, uint64_t n, uint64_t ops[]) {

69 ops[0] = (1 * m + (1 * m + 1) * n) * 1;

70 ops[12] = ((2 * m) * n) * 1;

71 ops[13] = ((2 * m) * n) * 1;

72 }

73

74 void kernel_deriche_KernelCount(uint64_t w, uint64_t h, uint64_t ops[]) {

75 ops[0] =

76 ((1 * h + 1) * w + (1 * ((h - 1) + 1) + 1 + 1) * w + (1 * h + 1) * w +

77 (1 * w + 1) * h + (1 * ((w - 1) + 1) + 1 + 1) * h + (1 * h + 1) * w) *

78 1;

79 ops[8] = (((3) * ((h))) * ((w)) + ((3) * ((h - 1) + 1)) * ((w)) +

80 ((1) * ((h))) * ((w)) + ((3) * ((w))) * ((h)) +

81 ((3) * ((w - 1) + 1)) * ((h)) + ((1) * ((h))) * ((w)) + 4 + 2) *

82 (1);
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83 ops[9] = (((4) * ((h))) * ((w)) + ((4) * ((h - 1) + 1)) * ((w)) +

84 ((1) * ((h))) * ((w)) + ((4) * ((w))) * ((h)) +

85 ((4) * ((w - 1) + 1)) * ((h)) + ((1) * ((h))) * ((w)) + 11) *

86 (1);

87 ops[10] = 1 * 1;

88 }

89

90 int main() {

91

92 std::ofstream fout(outFilename);

93 float split = 0;

94

95 /////////

96 // adi //

97 /////////

98 #define MIN 20

99 #define MAX 2000

100 for (uint n = MIN; n <= MAX; n++) {

101

102 uint64_t ops[Tree::_DataClass::N_Attributes] = {0};

103 kernel_adi_KernelCount(n, n / 2, ops);

104 bool fpgaWonCPULost = n > ((MAX - MIN) / 2);

105

106 #ifdef WRITE_TO_FILE

107 for (uint i = 0; i < Tree::_DataClass::N_Attributes; i++) {

108 if (i) {

109 fout << " ";

110 }

111 fout << std::to_string(ops[i]);

112 }

113 fout << " " << fpgaWonCPULost << std::endl;

114 #endif

115

116 split += fpgaWonCPULost;

117 }

118

119 std::cout << "ADI split: " << split / (MAX - MIN) << std::endl;

120 split = 0;

121

122 /////////

123 // 2mm //

124 /////////

125 #undef MIN

126 #undef MAX

127 #define MIN 16

128 #define MAX 2200

129 for (uint n = MIN; n <= MAX; n++) {

130

131 uint64_t ops[Tree::_DataClass::N_Attributes] = {0};
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132 kernel_2mm_KernelCount(n, n, n, n, ops);

133 bool fpgaWonCPULost = n > ((MAX - MIN) / 2);

134

135 #ifdef WRITE_TO_FILE

136 for (uint i = 0; i < Tree::_DataClass::N_Attributes; i++) {

137 if (i) {

138 fout << " ";

139 }

140 fout << std::to_string(ops[i]);

141 }

142 fout << " " << fpgaWonCPULost << std::endl;

143 #endif

144

145 split += fpgaWonCPULost;

146 }

147

148 std::cout << "2MM split: " << split / (MAX - MIN) << std::endl;

149 split = 0;

150

151 //////////

152 // atax //

153 //////////

154 #undef MIN

155 #undef MAX

156 #define MIN 32

157 #define MAX 2200

158 for (uint n = MIN; n <= MAX; n++) {

159

160 uint64_t ops[Tree::_DataClass::N_Attributes] = {0};

161 kernel_atax_KernelCount(n, n, ops);

162 bool fpgaWonCPULost = n > ((MAX - MIN) / 2);

163

164 #ifdef WRITE_TO_FILE

165 for (uint i = 0; i < Tree::_DataClass::N_Attributes; i++) {

166 if (i) {

167 fout << " ";

168 }

169 fout << std::to_string(ops[i]);

170 }

171 fout << " " << fpgaWonCPULost << std::endl;

172 #endif

173

174 split += fpgaWonCPULost;

175 }

176

177 std::cout << "ATAX split: " << split / (MAX - MIN) << std::endl;

178 split = 0;

179

180 //////////
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181 // bicg //

182 //////////

183 #undef MIN

184 #undef MAX

185 #define MIN 32

186 #define MAX 2200

187 for (uint n = MIN; n <= MAX; n++) {

188

189 uint64_t ops[Tree::_DataClass::N_Attributes] = {0};

190 kernel_bicg_KernelCount(n, n, ops);

191 bool fpgaWonCPULost = n > ((MAX - MIN) / 2);

192

193 #ifdef WRITE_TO_FILE

194 for (uint i = 0; i < Tree::_DataClass::N_Attributes; i++) {

195 if (i) {

196 fout << " ";

197 }

198 fout << std::to_string(ops[i]);

199 }

200 fout << " " << fpgaWonCPULost << std::endl;

201 #endif

202

203 split += fpgaWonCPULost;

204 }

205

206 std::cout << "BICG split: " << split / (MAX - MIN) << std::endl;

207 split = 0;

208

209 /////////////

210 // deriche //

211 /////////////

212 #undef MIN

213 #undef MAX

214 #define MIN 64

215 #define MAX 4320

216 for (uint n = MIN; n <= MAX; n++) {

217

218 uint64_t ops[Tree::_DataClass::N_Attributes] = {0};

219 kernel_deriche_KernelCount(uint(1.5f * n), n, ops);

220 bool fpgaWonCPULost = n > ((MAX - MIN) / 2);

221

222 #ifdef WRITE_TO_FILE

223 for (uint i = 0; i < Tree::_DataClass::N_Attributes; i++) {

224 if (i) {

225 fout << " ";

226 }

227 fout << std::to_string(ops[i]);

228 }

229 fout << " " << fpgaWonCPULost << std::endl;
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230 #endif

231

232 split += fpgaWonCPULost;

233 }

234

235 std::cout << "DERICHE split: " << split / (MAX - MIN) << std::endl;

236 split = 0;

237

238 fout.close();

239 }

Listing D.1: Dataset creation code.
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