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Resumo

Automated Guided Vehicles (AGV) são robôs que têm vindo a assistir cada vez mais operações
em ambientes fabris. Utilizados tanto no transporte de materiais em zonas industriais como no
transporte em grandes armazéns, o uso destes robôs revela-se uma vantagem relativamente ao
aumento de produtividade e eficiência.

Desta forma, o trabalho desenvolvido visa a implementação de um sistema capaz de coordenar
uma frota de robôs AGV, planeando e coordenando os caminhos de cada robô, mas apresentando
tolerância a situações críticas, capazes de desencadear colisões e deadlocks.

A abordagem escolhida baseia-se num trabalho previamente desenvolvido que foi testado e
melhorado conforme a dinâmica de um ambiente real.

O algoritmo responsável pelo planeamento dos caminhos dos robôs, evitando colisões e dead-
locks, é denominado de Time Enhanced A* (TEA*). Como apresentado na revisão bibliográfica,
é, normalmente, utilizado como um método online, re-planeando os caminhos dos robôs constan-
temente, de forma a possuir sempre informação atualizada relativa ao ambiente.

Para evitar o re-planeamento constante, visto que também se revela computacionalmente pe-
sado, foi proposto um sistema supervisor. Este sistema supervisor modular é responsável por
detetar alterações no ambiente dos robôs e permitir o re-planeamento quando necessário. O sis-
tema supervisor implementado foca-se nas situações de atrasos e dessincronizações entre os robôs
e em falhas de comunicação.

Para os dois tipos de situações mais críticas, o módulo de supervisão está dividido em dois sub-
módulos: Planning Sub-Module, responsável por verificar se os robôs seguem o caminho planeado
pelo TEA* nos tempos corretos (procurando assim atrasos e dessincronizações) e o Communica-
tion Sub-Module, responsável por detetar e gerir falhas de comunicações.

O trabalho desenvolvido previamente foi testado em robôs AGV de pequena escala. O com-
portamento do Planning Sub-Module foi avaliado e adaptado às condições reais. O Communica-
tion Sub-Module foi também testado induzindo, artificialmente, falhas de comunicação em zonas
específicas e analisando a deteção, localização e a estimação das falhas pelo supervisor.

Através da implementação do módulo supervisor, é permitida uma segurança extra nestas situ-
ações descritas. No entanto, as falhas de comunicação continuam a representar uma ameaça à
segurança das trajetórias dos AGV. Assim, foi avaliado que as zonas de falhas deveriam de ser evi-
tadas depois de detetadas. Para cumprir este objectivo, o algoritmo TEA* teve de ser modificado
de forma a escolher, como caminho ótimo, um caminho sem falhas de comunicação, sempre que
possível.

Por fim, foi avaliado um possível caso crítico em relação a falhas de comunicação. Uma vez
que, no fim das suas missões, os AGV deslocam-se para uma estação de descanso préviamente
atribuída, no pior dos casos, essa estação pode se apresentar numa zona sem comunicação. Desta
forma, o robô ficaria preso nessa estação indefinidamente, pois a central de controlo não con-
seguiria enviar novos comandos. Esta situação foi estudada e uma solução foi desenvolvida e
testada.
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Abstract

Automated Guided Vehicles (AGV) are robots that have been growing in industrial environments.
Used to assist the movement and transportation of items in manufacturing facilities or in ware-
houses and distribution centres, these systems represent a significant increase in efficiency and
productivity.

Thus, the developed work aims to implement a system capable of coordinating a fleet of AGV,
planning and coordinating each robot’s path but exhibiting tolerance in critical situations that can
lead to collisions and deadlocks.

The chosen approach is based on previously developed work that was tested and improved and
adapted to a real environment’s dynamic.

The algorithm chosen, responsible for the planning of the robot’s path, avoiding collisions
and deadlocks, was the Time Enhanced A* (TEA*). As presented in the literature, it is usually
implemented as an online method, re-planning the paths every cycle to be able to have updated
paths even with changes in the environment.

To avoid the constant re-calculation of the paths, since it can reveal to be computationally
heavy, a supervisory system was proposed. This modular supervisory system is responsible for
detecting changes in the robot’s environment and allow the re-calculation of the paths, if neces-
sary. The supervisor implemented searches for delays and desynchronisations on the robots and
communication failures.

For these two critical situations, the supervisor is divided into two sub-modules: Planning
Sub-Module, which is responsible for checking if the robots follow the computed trajectory, by
the TEA*, within the correct time (searching for delays and desynchronisations) and the Commu-
nication Sub-Module, responsible for detecting and dealing with communication faults.

The work developed previously was tested in small-scale AGV robots. The behaviour of the
Planning Sub-Module was evaluated and adapted to the real world’s conditions. The Communica-
tion Sub-Module was also assessed by inducing, artificially, communication faults in specific areas
and analysing their detection, localisation and estimation (a procedure done by the supervisor).

Through the implementation of the supervisor module, it is granted additional security in the
situations described. However, communication faults still reveal to be a threat to the safety of the
AGV’s trajectories. Therefore, it was assessed that communication faults’ areas should be always
avoided after being detected. To reach that goal, the TEA* algorithm was modified to choose, as
the optimal path, a path free of communication faults, every time it is possible.

Lastly, it was analysed a possible critical scenario concerning communication faults. When a
robot completes its mission, the AGV retreats into their designated rest station. In the worst-case
scenario, that rest station is inside a communication fault’s area and the system is not aware of it.
Therefore, the robot would be stuck in its rest station, indefinitely, since the central control would
not be able to communicate and send new commands to the robot. This situation was studied and
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a solution was developed and tested.



Acknowledgements

The success of this project would have not been possible without all the support and help from
my supervisor, professor Pedro Costa, my co-supervisor, professor Paulo Costa, professor José
Lima and PhD student Diogo Matos. The regular monitoring and encouragement were crucial to
motivate me and help this project go further.

I am deeply grateful for all the patience and comprehension and, above all, all the love given
by my parents, not only shown during this intense semester but also during all my academic path.
All my success is theirs. It was with their love and approval that they saw their house becoming
a laboratory to allow this project to be developed in the middle of a pandemic. I will be forever
thankful for that. And mostly, I want to thank them for believing in me even when I did not believe
in myself.

I would like to give special thanks to my sisters, Rita and Mariana, for all the support and
humorous moments and nicknames given to my robots. I will always cherish those moments.

I would also like to thank Luís Pires for all the love and support shown, not only in the good
moments but also during the bad times. Thank you for always listening to me and believing in me.

Finally, I would like to thank all my friends, especially Bruno Gonçalves and Hélder Pereira,
for all the tough moments shared and mutual support, encouraging words and laughter shared.
Without them, this path would have been lonelier and tougher.

Ana Cruz

v



vi



“Efforts and courage are not enough without purpose and direction”

John F. Kennedy

vii



viii



Contents

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Document’s Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature Review 5
2.1 Control Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Centralised Control Architecture . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Decentralised Control Architecture . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Control Architecture and Path Planning . . . . . . . . . . . . . . . . . . 7

2.2 Path Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Path Planning Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Graph Search Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Deadlocks, Livelocks and Semaphores . . . . . . . . . . . . . . . . . . . 19

2.3 Communication Faults: System Supervisor . . . . . . . . . . . . . . . . . . . . 21

3 Implemented System 25
3.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Robot Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Shop Floor Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Robot Localisation Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Robot Control Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.1 Velocity Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.2 Online Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.3 Offline Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.4 Velocity Control Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Supervisory System 41
4.1 Planning Supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Communication Supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Persistent Communication Faults . . . . . . . . . . . . . . . . . . . . . 50
4.2.2 Sporadic Communication Faults . . . . . . . . . . . . . . . . . . . . . . 56
4.2.3 TEA* with Dynamic Costs . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

ix



x CONTENTS

5 Communication Fault Recovery 65
5.1 Recovery Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Tests and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.1 Test G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2.2 Test H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.3 Results’ Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Conclusions and Future Work 79
6.1 Accomplishment of the Described Objectives . . . . . . . . . . . . . . . . . . . 79
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

References 83



List of Figures

2.1 Example of a Visibility Graph [1] . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Example of a Voronoi Diagram [2] . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Example of Convex Polygons Decomposition [3] . . . . . . . . . . . . . . . . . 11
2.4 Example of a Trapezoidal Decomposition [4] . . . . . . . . . . . . . . . . . . . 11
2.5 Example of Fixed Size Cell Decomposition [4] . . . . . . . . . . . . . . . . . . 12
2.6 Example of Quadtree Decomposition [4] . . . . . . . . . . . . . . . . . . . . . . 13
2.7 Comparison of obstacle boundary modeling using the Quadtree method and the

proposed Mesh method. (a) Example obstacle. (b) Quadtree requires 24 vertices
to model the obstacle. (c) Mesh requires six vertices to model the obstacle with
the nearly equal resolution of (b). [5] . . . . . . . . . . . . . . . . . . . . . . . . 13

2.8 Comparison of the Depth-first Search method (depth search) and the Breadth-first
Search method (width search) [6] . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.9 TEA* input map and analysed neighbour cells focusing on the cell with the AGV’s
position [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.10 Area A composed of an elementary node N (shared resource) controlled by semaphore
E [8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.11 Example of a Communication Fault Zone [9] . . . . . . . . . . . . . . . . . . . 22

3.1 System architecture and relations between the different modules . . . . . . . . . 26
3.2 Example of the robot developed to perform tests . . . . . . . . . . . . . . . . . . 27
3.3 Robot’s diagram: Black lines represent control signals and red ones represent power 27
3.4 Shop floor map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Nodes from the graph resulted from the decomposition of the map and their loca-

tion (meters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Pose estimation through the detection and identification of ArUco markers (Robot

Localisation Module) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7 ArUco markers used to identify the robots . . . . . . . . . . . . . . . . . . . . . 30
3.8 UDP packet sent from Robot Localisation Module to both Central Control Module

and Robot Control Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.9 Velocity Control Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.10 UDP packet sent from Central Control Module to the Robot Control Module . . . 34
3.11 Orientation Compass Card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Example of the situation that the first condition of the Planning Supervision Sub-
Module analyses: In this case, the distance threshold is smaller than the length of
a link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Example of a small delay that leads to a collision: The last condition of the Plan-
ning Supervision Sub-Module aims to detect these situations . . . . . . . . . . . 42

xi



xii LIST OF FIGURES

4.3 Shop floor skeleton graph with the workstations selected in blue . . . . . . . . . 43
4.4 Initial path schematic calculated by the Path Planning Module (rotations are not

represented) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 Schematic of a situation example of the detection, location, estimation and correc-

tion of the area of a communication fault . . . . . . . . . . . . . . . . . . . . . . 51
4.6 Merge of the faults through common "faulted" nodes: red nodes represent "faulted"

nodes, yellow nodes represent entry/exit nodes, purple nodes represent frontier
nodes, green nodes represent "unfaulted" nodes and blue nodes represent not mapped
nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.7 Borders of the fault’s area (orange) and where it is located in the environment’s
graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.8 Mapping of the faults (the induced fault is interpreted as two different faults) and
crossed nodes: red nodes represent "faulted" nodes, yellow nodes represent en-
try/exit nodes, purple nodes represent frontier nodes, green nodes represent "un-
faulted" nodes and blue nodes represent not mapped nodes . . . . . . . . . . . . 54

4.9 Robots’ trajectories during mission with two faults . . . . . . . . . . . . . . . . 55
4.10 Schematic of fault removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.11 Example of how the nodes represent a circular area and not just a point . . . . . . 58
4.12 Shop floor skeleton graph with the workstations selected for Test E and Test F

(blue nodes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.13 Localisation of the induced fault (borders at orange) in Test E and Test F on the

map’s graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.14 Initial path schematic, calculated by the Path Planning Module (rotations are not

represented) for the mission of Test E and Test F . . . . . . . . . . . . . . . . . . 60

5.1 Shop floor skeleton graph with the workstations selected for Test G . . . . . . . . 67
5.2 Induced fault (borders at orange) for Test G . . . . . . . . . . . . . . . . . . . . 68
5.3 Mapping of the fault of Test G: red nodes represent "faulted" nodes, yellow nodes

represent entry/exit nodes, purple nodes represent frontier nodes, green nodes rep-
resent "unfaulted" nodes and blue nodes represent not mapped nodes . . . . . . . 69

5.4 Initial path schematic calculated by the Path Planning Module (rotations are not
represented) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Shop floor skeleton graph with the workstations selected for Test H . . . . . . . . 71
5.6 Induced fault (borders at orange) for Test H . . . . . . . . . . . . . . . . . . . . 72
5.7 Mapping of the fault of Test H: red nodes represent "faulted" nodes, yellow nodes

represent entry/exit nodes, purple nodes represent frontier nodes, green nodes rep-
resent "unfaulted" nodes and blue nodes represent not mapped nodes . . . . . . . 73

5.8 Initial path schematic calculated by the Path Planning Module (rotations are not
represented) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



List of Tables

3.1 Results from Test I (coordinates in meters and orientation in degrees) . . . . . . . 37
3.2 Results from Test II (coordinates in meters and orientation in degrees) . . . . . . 37

4.1 Assigned tasks for Test A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Execution of Test A: Planning Supervision Sub-Module followed the criteria de-

fined previously . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Average values of Test A: Planning Supervision Sub-Module followed the criteria

defined previously . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Execution of Test B: Planning Supervision Sub-Module acts upon any delay . . . 45
4.5 Average values of Test B: Planning Supervision Sub-Module acts upon any delay 45
4.6 Execution of Test C: Nominal linear velocity at 800 steps/s and nominal angular

velocity at 125 rad/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.7 Average values of Test C: Nominal linear velocity at 800 steps/s and nominal

angular velocity at 125 rad/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.8 Execution of Test D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.9 Average values of Test D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.10 Execution of Test D’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.11 Average values of Test D’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.12 Mission’s assigned tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.13 Mission’s assigned tasks with different initial orientations . . . . . . . . . . . . . 53
4.14 Execution of Mission with Fault: Robot 3 enters fault before robot 1 . . . . . . . 53
4.15 Average values of Mission with Fault: Robot 3 enters fault before robot 1 . . . . 53
4.16 Dynamic Cost Tests: Mission’s assigned tasks . . . . . . . . . . . . . . . . . . . 58
4.17 Execution of Mission with Fault: TEA* algorithm does not distinguish nodes af-

fected by communication faults . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.18 Average values of Mission with Fault: TEA* algorithm does not distinguish nodes

affected by communication faults . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.19 Execution of Mission with Fault: TEA* algorithm considers an extra cost . . . . 61
4.20 Average values of Mission with Fault: TEA* algorithm considers an extra cost . . 61

5.1 Assigned tasks for Test G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Execution of Test G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Average values of Test G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4 Execution of Test G’: Test G without the induced fault . . . . . . . . . . . . . . 70
5.5 Average values of Test G’: Test G without the induced fault . . . . . . . . . . . . 70
5.6 Assigned tasks for Test H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.7 Execution of Test H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.8 Average values of Test H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xiii



xiv LIST OF TABLES

5.9 Execution of Test H’: Test H without the induced fault . . . . . . . . . . . . . . 75
5.10 Average values of Test H’: Test H without the induced fault . . . . . . . . . . . . 75



Abbreviations and Symbols

AGV Automated Guided Vehicle
AGVS Automated Guided Vehicle System
D* Dynamic A*
D*LR D* Lite with Reset
LPA* Lifelong Planning A*
TEA* Time Enhanced A*
UDP User Datagram Protocol
VD Voronoi Diagram
VFF Virtual Force Field
VG Visibility Graph
VFH Vector Field Histogram

xv





Chapter 1

Introduction

The present document explores the development of the dissertation in the scope of the master’s

degree in Electrical and Computer Engineering, in the field of Robotics and Systems.

In this first chapter, the context of the problem and what motivated the work developed are

described for a better understanding of the environment in which all the work was developed.

It is also explained the main objectives proposed and studied throughout the development of

this work.

Lastly, the structure of the dissertation is briefly explained for a better comprehension of it.

The majority of the work was developed through the development environment, Lazarus in

Free Pascal language. The computer vision algorithm was developed using Python and tested

using a Raspberry Pi.

1.1 Context

Industries of all branches and areas of production share the goal of increasing workflow efficiency

on factory floors and in distribution centres. To fulfil this demand, automated guided vehicle sys-

tems (AGVS), a flexible automatic means of conveyance, have become a key element in industries’

intralogistics, with more industries making use of AGVS since the mid-1990s [10].

With automated guided vehicles (AGV), almost any load can be transported. These systems

can assist to move and transport items in manufacturing facilities, warehouses, and distribution

centres without any permanent conveying system or manual intervention. It follows configurable

guide paths for optimisation of storage, picking, and transport in the environment of premium

space [11].

The use of AGV represents a significant reduction of labour cost, an increase in safety, and a

sought-after increase in efficiency [12]. These systems are also programmed to take over repetitive

and fatiguing tasks that could diminish the human worker attention and lead to possible accidents.

Therefore, industries that use AGV can reduce these accidents significantly and, with a 24 hours

per day and 7 days per week operability and high production output, AGV ensure worker safety

while maximizing production [13].

1



2 Introduction

Even though AGV are commonly found in industrial environments, other sectors (such as

hospitals) have been taking advantage of these systems to automate their processes and tasks. One

of the main advantages of AGVS is their modularity, meaning that easily more AGV can be added

to the fleet: this is sometimes called a “modular system element” [12]. This also represents an

advantage when it comes to the initial investment.

Multiple robot systems can accomplish tasks that no single robot can accomplish, since a

single robot, no matter how capable it is, is spatially limited [14]. Nevertheless, a multi-AGV

environment requires special attention.

Coordinating a fleet of AGV is already a complex task and restrict environments with the pos-

sibility of exposing the AGV to delays in the trajectory and communication faults can represent a

threat, compromising the safety, productivity and efficiency of these systems. To solve this, tra-

jectory planning algorithms allied with supervisory systems with communication faults detection

and mitigation have been studied and developed.

1.2 Motivation

The use of multi AGV implies optimisation of traffic control. Several approaches focus on a

trajectory planning method that guarantees efficient and safe coordination of multi AGV. However,

many fail to detect, treat and prevent the possible failure and delay in the communication between

the AGV and the control platform. These faults can result in possible deadlock situations and

collisions.

In environments where communication faults are common, a decrease in efficiency may hap-

pen. Thus, this document intends to address the communication problems resorting the Time En-

hanced A* (TEA*) algorithm to avoid deadlocks and collisions and optimise environments with

communication faults.

1.3 Objectives

The aim of this project is to implement, test and further develop the work initiated by [9]. There-

fore, the focus of this thesis is a supervisory system that is able to control the traffic of a fleet of

AGV by detecting communication faults, delays in communication, deviations in the routes cal-

culated by the TEA* algorithm and triggering the re-calculation of the trajectories, if necessary.

To implement and test the work of [9], it is intended to develop and assemble small scale AGV

to study the dynamic of the environment and how the developed supervisor reacts to the changes

of the environment. Based on those results, it is desired to adapt the supervisory system to a real

environment and improve its performance.

To obtain the optimal paths for the robots to execute their missions, the system relies on the

TEA* algorithm, a graph search algorithm based on the A* with time notion. This algorithm will

be used to keep the efficiency and allow time optimisations.
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When communication faults are detected by the supervisor, those areas are located and esti-

mated. To increase the safety of the routes chosen, it is planned to reduce the number of times

a robot crosses the communication fault’s area. Even if those paths may reveal to be the fastest,

they cannot be considered optimal if communication between the central module and the robot is

lost. Loss of communication reduces the safety and the efficiency of the paths and may expose the

robots to deadlocks and collisions.

To achieve that feature, modifications on the TEA* algorithm may be considered so that the

resulted paths only cross faulty areas as the last available option.

This work is also focused on studying communication faults (if they are temporary or per-

sistent, how two different faults may be connected, etc) and assessing extreme situations such as

having a robot completing its mission inside a fault and not being able to reestablish communica-

tion with the central module.

1.4 Document’s Structure

The body of this dissertation is constituted by the current introductory chapter and other five

chapters.

The following chapter, Chapter 2 contains a compilation of work developed in the scope of

the area of this dissertation. The work reviewed in that chapter revealed to be important for the

development of this project.

In Chapter 3, it is presented the proposed approach with a description of the modules that

constitute the system and how they interact with each other. It is also presented the key elements

to be able to implement the work, initially developed by [9] in a simulator, in a real environment.

Lastly, the low level control is tested and the results are analysed and discussed.

The next chapter, Chapter 4, focuses on the development of the Supervisor Sub-Module: Plan-

ning Sub-Module and Communication Sub-Module. It is described, for each sub-module, their

development, the tests performed and the conditions in which they were performed, the results

obtained and the discussion and interpretation of them.

Chapter 5 presents an approach for a specific but critical problem that may happen when the

system is dealing with communication faults. That approach is explained in detail and tested in

multiple situations. The results are analysed and discussed.

Lastly, Chapter 6 concludes this document by summarizing the work developed, the results

accomplished and some domains that should be explored and addressed in the continuation of this

work.
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Chapter 2

Literature Review

Automated Guided Vehicles have to satisfy all safety requirements while working reliably to be

cost-effective and gain industry acceptance [15]. To be considered a viable option, these systems

need to present a high communication fault tolerance to promote cooperative behaviour in a multi-

robot environment.

2.1 Control Architectures

When it comes to the structure of a multi AGV system, the control architecture is the primary

element and crucial to determine the capabilities, as well as the limitations, of the system. The

mechanism of cooperation of the AGV fleet is directly linked with the design of the control and

communication structure [14].

One of the key features of a group architecture lays in the decision of it being a centralised or

decentralised model. The main divergent point of these two architectures is the level of autonomy

granted to the AGV to choose its route.

2.1.1 Centralised Control Architecture

Most practical multi AGV rely on the centralised control architecture where one central unit con-

centrates the planning of the strategies of the AGV (task scheduling, path planning, and motion

coordination) and communication between robots is non-existent [16]. The central unit is respon-

sible for communicating with each AGV, observing their positions, calculating motion plans, and

transmitting control actions.

This architecture can be divided into coupled or decoupled approaches. Coupled approaches

treat the whole system as a composite system. In this way, a single-vehicle motion planning

algorithms can be applied. This has the propriety of completeness and the possibility of calculating

optimal motion plans but is highly demanding in terms of computational resources such as the time

required to solve a coordination problem (as the number of vehicles increases the computational

load increases exponentially) [17].

5
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Decoupled approaches reduce computational complexity and solve the coordination problem

by dividing it into two phases: path planning and motion coordination. Typical approaches are

prioritised planning and path coordination [17].

Prioritised planning is based on a sequential calculation of paths in priority order, considering

higher priority AGV moving along their path as moving obstacles that must be avoided. Op-

positely, path coordination methods, firstly, calculate independent paths for each robot, without

considering the others and then adjust each AGV to avoid collisions. Decoupled planners are gen-

erally faster than coupled planners, but cannot guarantee completeness and may be sub-optimal.

Other centralised coordination methods classified as decoupled include methods based on zone

control [18], time windows [19], and multi-agent systems [20].

2.1.2 Decentralised Control Architecture

Considering that centralised control has computational limitations, high communication demands,

and low tolerance to faults, there is a high demand for efficient decentralised control methods. In

this type of control (also referred to as distributed control), each robot is an agent that can inde-

pendently plan its path, make its own motion decisions and communicate with other robots [17].

This grants flexibility, scalability and fault tolerance, but cannot guarantee optimal performance

[16]. The design of decentralised algorithms must also ensure collision avoidance and deadlock

prevention.

In decentralised control architecture, the strategies used can also be divided into prioritised

planning and path coordination.

An example of decentralised control architecture using the priority system is described in [21].

Each vehicle plans its trajectory, dynamically, considering other vehicles as static obstacles and

a reactive method for obstacle avoidance is used: the information about its state in the environ-

ment is broadcast, and by combining all these states locally, each AGV decides which action to

take. However, the resulted paths can be highly sub-optimal. It is also needed to take into account

that the efficiency of prioritised planning based algorithms depends mainly on the order in which

the priorities are defined. So, to increase efficiency, adaptive priority reassignment can be imple-

mented. This can be particularly useful when a robot cannot find a path to complete its task. An

increase of priority of said robot could solve the problem.

Concerning the path coordination method, as mentioned before, each robot calculates inde-

pendently its path without considering the others, and to avoid collisions many strategies can be

adopted. When two or more robots overlap trajectories, it is important to detect when and where

the conflicts will occur.

To achieve this, the velocity profile of the robots is considered and a temporal based scheduling

of the robot position is obtained. Consequently, the locations and time instances of the collisions

can be calculated [22]. After this, it is possible to implement prevention strategies. One of them

is the implementation of priorities on the crossing points between paths. When defining priorities,

a common solution is a negotiation between the robots or the intervention of an external entity.

Another strategy is adapting the robot’s velocity to avoid collision.
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However, in practice, many systems do not conform to a strict centralised/decentralised di-

chotomy [14] mainly because the control architecture implies a certain path planning technique.

2.1.3 Control Architecture and Path Planning

Taking into consideration the type of control architecture, centralised, decentralised or hybrid, the

chosen path planning method needs to be suitable. Therefore, the path planning adopted by the

system can be divided into three types: global path planning, local path planning and hybrid path

planning.

The global path planning aims for a globally optimal and collision-free path in many types of

“map” (Voronoi diagram [23], regular grid, Quad-tree, Roadmap [23], Visibility Graph [1]) which

are extracted from the environment space, Cspace, or other environmental information.

Based on the map, several path finding algorithms can be employed to find the path. Typically,

the search algorithm includes graph searching algorithms (such as A* [24], D* [25], D* lite [26]),

intelligent optimisation algorithms (such as Genetic algorithm [27], Ant Colony system [28]) and

sampling-based algorithms (such as [23] and [29]).

However, most of them are time-consuming and full knowledge of the environment is needed.

Consequently, when executed offline (which most of them are due to the computational power

required), their adaptability to the changing of environment’s information and the motion error of

the robot is limited [30].

Local path planning methods, in general, are efficient enough to be executed online and are

capable of dealing with both the motion error and the change of environment’s information. How-

ever, they cannot guarantee that the destination is reached due to the lack of global information.

Some of these methods are the Virtual Force Field (VFF) [31] and Vector Field Histogram (VFH)

[32] (which combine the potential field method [33] and certainty grid-based world modelling),

fuzzy logical control methods (such as [34]), that guide the robot according to human driving

experience and are easier to comprehend, and the dynamic window approach [35], that controls

the motion with both obstacles and the driving ability of the robot considered, being capable of

guaranteeing a feasible and safe motion of the robot [30].

The hybrid path planning approaches combine both types of approaches to avoid their draw-

backs while keeping the advantages. They can be further divided into two types based on the

combination method: sub-target based approaches, where local path planning is guided by the

sub-target chosen from the global path (for example, [35]); behaviour based approaches, where

the global behaviour incorporates the local behaviour into a final behaviour (for example, [36])

[30].

Hybrid path planning algorithms obtain moderate adaptability from the local path planning

part. However, they are restrained on local scale because of their offline planning model of the

global path planning part [30].

All three types of path planning approaches may be used in a partially unknown environment.

For such environment, because of the limited dependence on environmental information and its

online planning model, local path planning provides good adaptability. In the case that either
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global environmental information and local information are not available, local path planning is

an appropriate choice [30].

On the other hand, most global path planning methods suffer from their limited adaptability

in partly unknown environments. It is mainly because they need to be able to re-plan as fast as

the environment changes and that is difficult to achieve. To solve this issue, some algorithms

have been developed such as D* lite, whose path is based on a previous planning result instead of

starting a new planning process, which accelerates the re-planning. Hybrid path planning is also

an attractive manner to solve the planning problem in such environment [30].

2.2 Path Planning

The system performance is highly connected with path planning and trajectory planning. Path

planning describes geometrically and mathematically the way from the starting point to the desti-

nation point, avoiding collisions with obstacles.

On the other hand, trajectory planning is that path as a function of time: for each time instance,

it is defined where the robot must be positioned [4].

To describe the path for each robot to follow, firstly, it is necessary to define the environment

space where the robot is: Cspace. The free space from Cspace (the space that is not occupied by

obstacles) is called Cfree and it is the area where the safe paths will be created. In opposition,

the space unavailable due to obstacles is referred to as Cobstacle [4]. It should also be taken into

consideration that Cobstacle may also contain a margin of free space around the obstacles to create

a safety gap.

2.2.1 Path Planning Methods

When choosing a path planning method, several aspects have to be considered. For example, the

type of intended optimisation: it might be intended to optimise the path length or the time it takes

to perform the trajectory (the trajectory execution time), the energy consumed or other aspects [4].

The computational complexity is another main aspect to take into account as many of the

methods are purely theoretically and not possible to implement due to insufficient memory or

because the execution time is extremely high [4].

The method can also be complete, if it always finds a solution when it exists, in full resolution,

if there is a solution to a particular discretisation of the environment, or probabilistically complete

if the probability of finding a solution converges to 1 as the time tends to infinity [4].

Due to the nature of the work to develop, the following sections will only focus on global

algorithms that result in graphs.
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2.2.1.1 Roadmap

The Roadmap algorithm attempts to capture the free space connectivity with a graph where nodes

and links may have physical meaning (the nodes may represent a location and the links the path

between these locations) [4]. This method boils down to a research problem using a graph.

Some popular approaches to build the roadmap are based on computational geometry struc-

tures. The Visibility Graph (VG) is used to obtain the shortest path and the Voronoi Diagram (VD)

is preferred for a maximum clearance path [23].

The Visibility Graph method is applied to a 2 dimensional Cspace with polygonal Cobstacle

spaces. The roadmap is built by connecting every pair of vertices in the set of Cobstacle spaces

by a line segment that cannot intersect any Cobstacle. The main idea is to construct a path as a group

of polygonal lines (the VG) connecting the robot’s initial point to its destination through vertices

of the Cobstacle spaces.

Figure 2.1: Example of a Visibility Graph [1]

In the Figure 2.1, it is considered a moving point A from position S to position G while avoid-

ing the obstacles (shaded areas). It is also possible to observe the shortest collision-free path from

S to G. Through the figure, it is possible to verify the important property described previously:

that the path is composed only by straight lines joining the initial point to the destination via a

possibly empty sequence of obstacle’s vertices.

This methodology is one of the earliest path planning methods and it has been widely used to

implement path planners for mobile robots since it has been proved that VG guarantees the shortest

path [37]. However, it is difficult to compute an efficient path planning for an environment with

complicated obstacles (the computation time increases with the number of obstacles’ vertices) [38]

[1].

On the other hand, the Voronoi Diagram is composed of a set of points that are equidistant

from two or more Cobstacle. The Cspace is divided into regions and in each region, there is only one

obstacle. Inside that region, any point is closer to the inside obstacle than to any other [4].



10 Literature Review

Figure 2.2: Example of a Voronoi Diagram [2]

To find the path between the initial and final points, firstly it is needed to connect the initial

point to the VD (Figure 2.2) and then find in the diagram the best path. Lastly, it is necessary to

connect the diagram to the final point.

Unlike the Visibility Graph, any path generated by the Voronoi Diagram is too far away from

obstacles. This also prevents Voronoi Diagrams from giving minimal paths between points.

2.2.1.2 Cell Decomposition

In this approach, the Cspace is divided into cells and it is followed by the computation to identify

if the cell is free or not and connect it to neighbouring cells. Through this procedure, a graph is

created. The path is found through graph search.

The steps of this algorithm consist of allocating the initial point to a cell and the destination

point to another. Afterwards, a sequence of cells is found so that the initial and destination points

are connected.

Two approaches of this method are:

• Exact Cell Decomposition

• Approximated Cell Decomposition

Exact Cell Decomposition The Exact Cell Decomposition describes accurately the real world

by clearly distinguish cells that represent Cfree (free space) and Cobstacle (occupied space). The

cells generated by the decomposition should have a simple geometry so that a path between any

two configurations in the cell can be easily computed. Also, it should not be difficult either to test
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the adjacency of any two cells or to find a path crossing the frontier shared by two adjacent cells

[39].

When it comes to the shape of the cells, the most common are the decomposition using convex

polygons and the decomposition based on trapezoids.

In the decomposition using cells shaped as convex polygons, the cells’ vertexes correspond

to the obstacles’ vertexes. The links represent adjacent cells and intermediate points of the cells’

frontiers are used for path planning [4].

Figure 2.3: Example of Convex Polygons Decomposition [3]

In Figure 2.3, it is possible to observe the shortest path between point qI and point qG using

the Convex Polygons Decomposition.

Figure 2.4: Example of a Trapezoidal Decomposition [4]
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In trapezoidal decomposition, each obstacle’s vertex contains a vertical line. Those vertical

lines compose the cells’ edges. Figure 2.4 illustrates the decomposition with two obstacles.

Approximated Cell Decomposition Approximated Cell Decomposition relies on cells that can

be identified as free (inserted in Cfree), occupied (inserted in Cobstacle) or semi-occupied (inserted

in both Cfree and Cobstacle). Because of this nomenclature, this method does not represent the exact

real space. The cells tend to have simpler shapes, such as square, that allows being faster and

simpler to configure the Cspace. However, one of the drawbacks is that the path may not be found

even if it exists. It all depends on the chosen cells’ size. Overall, the error between the real world

and the decomposition lies in the cells’ size [4].

In 2D spaces, the most used forms of this decomposition are Fixed Size Cell and Quadtree.

Figure 2.5: Example of Fixed Size Cell Decomposition [4]

With the Fixed Size Cell approach, the cells have always a predefined size and the Cspace is

divided into squares of that size as shown in Figure 2.5. To obtain high precision with this method,

especially in areas near the obstacle, the size of the squares should decrease, increasing the number

of cells and, consequently, the processing time [4].

In the Approximated Cell Decomposition using Quadtree, firstly, the Cspace is divided into four

equal cells and every time a cell does not belong to Cfree, the cell is divided in four. This procedure

is recursive and only stops when minimal predefined cell size is reached or all space belongs

to Cfree. Thus, the Cspace around the obstacles is defined with higher precision. An illustrative

example is shown in Figure 2.6.
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Figure 2.6: Example of Quadtree Decomposition [4]

The limitations of the Quadtree is that the representation requires very high resolution to model

the obstacles accurately and it cannot guarantee to find the shortest path (since the position of a

path graph node is always the centre of the cell).

Figure 2.7: Comparison of obstacle boundary modeling using the Quadtree method and the pro-
posed Mesh method. (a) Example obstacle. (b) Quadtree requires 24 vertices to model the obsta-
cle. (c) Mesh requires six vertices to model the obstacle with the nearly equal resolution of (b).
[5]

To solve these two limitations of the Quadtree method, [5] proposes a new Compact Mesh

(Mesh is a triangular decomposition of a world space) representation for path planning. The

vertexes and edges of the compact mesh are determined to optimally represent the curvatures of

the obstacles with much fewer number of vertexes and edges than the Quadtree method. A base
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mesh is generated by the triangulation and it is simplified to a compact mesh with small error. The

simplification algorithm optimises the position of the vertices to better represent the obstacles.

To address the second limitation, the simplification algorithm spreads vertexes in free space

in a balanced way (since the density of vertexes is controllable by an edge length threshold). The

path graph is extracted from the Compact Mesh and it is possible to verify that that the proposed

method generated paths as short as the Quadtree using a much simpler path graph [5]. Through

Figure 2.7, it is possible to observe the differences between Quadree and the proposed compact

Mesh related to obstacle boundary modelling.

2.2.2 Graph Search Algorithms

In the previous subsection, some methods for path planning were shown. All of the methods

mentioned resulted in a graph of the environment space, Cspace. After obtaining the path graph, to

find the best path that connects the initial point to the destination, it is necessary to resort to graph

search algorithms. For that matter, the performance of the graph search algorithm determines the

efficiency of the system and the cooperation between all robots. These algorithms can be divided

into two groups: algorithms without information and algorithms with heuristic.

2.2.2.1 Algorithms Without Information

These algorithms are referred to as "without information" because they do not invoke any other

information besides the initial and destination point. They are based on exhaustive search and only

when the destination is reached, the algorithm recognises that solution was found. Otherwise, the

algorithm does not have the perception if the solution is close or not [4].

In this category, the most known algorithms are of search by depth, search by width, limited

depth search and iterative deepening search. What distinguishes them is the search direction,

making their efficiency dependant on the graph’s format and the localisation of the initial and

destination node.

Depth Search Depth-first Search is a depth search algorithm that explores the deepest nodes

before retreating. The search is done from bottom to top and left to right. For each node, it only

explores the first link, successively, until it finds the solution or reaches a node without any links.

If it reaches a node without any links, it retreats until it finds a node with links to explore [4].

Width Search The width search algorithm, Breadth-first search, explores all links from one

node before moving to another. This results in a search done by layers [4].

The main differences between the depth search and the width search are shown very clearly in

Figure 2.8.
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Figure 2.8: Comparison of the Depth-first Search method (depth search) and the Breadth-first
Search method (width search) [6]

Limited Depth Search Depth–limited Search algorithm executes the Depth-first Search algo-

rithm until it reaches the limit imposed. Even if there are more nodes with links to explore, the

algorithm does not expand and retreats [4].

Iterative Deepening Search Iterative Deepening Depth-first search is an algorithm that applies

the Depth-Limited Search algorithm multiple times, increasing each time the depth limit until a

solution is found [4].

2.2.2.2 Algorithms With Heuristic

Algorithms with heuristic search attempt to optimise the problem by iteratively improving the

solution based on a given heuristic function or a cost measure. A heuristic search method does not

always guarantee an optimal or the best solution but instead finds an acceptable solution within a

reasonable amount of time and memory space [40].

In a multi-AGV environment, the cost used in a heuristic algorithm could be the time it would

take the AGV to cross from one node to another in the physical space. The cost can also represent

how difficult it is going from one node to another or even the distance it would take to traverse [9].

The most recognised algorithms with heuristic are the Dijkstra’s algorithm, the Greedy algo-

rithm and A* family algorithms.

Dijkstra’s Algorithm The Dijkstra’s Algorithm is an algorithm conceived by Dijkstra in 1956.

To find the shortest path, the algorithm chooses an unvisited vertex with the lowest distance and

the distance through it to each unvisited neighbour is calculated. If the resulted distance is smaller,

the neighbour’s distance is updated. After all nodes are visited, the path with the smallest travelled

distance is the one chosen.
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The algorithm is complete if the maximum number of links of a node is finite.

Greedy Algorithm The Greedy Algorithm, in each iteration, analyses the closest node to the

destination and selects the locally optimal choice. For most problems, the Greedy algorithm does

not return an optimal solution. Nonetheless, it provides a locally optimal solution close to a

globally optimal solution in a reasonable amount of time [41].

The algorithm is complete if the maximum number of links of a node is finite.

A* Algorithm The A* algorithm uses a heuristic function f (n) to search through a graph for an

optimal path from an initial node to a destination node.

The heuristic function f (n), that determines in which order to explore the nodes to find the

optimal path in the least amount of time, is calculate through Equation 2.1. The function h(n)

represents the current cost from the initial node to the n node. The function g(n) represents the

cost from going from the n node to the destination node [4].

f (n) = h(n)+g(n) (2.1)

The main steps of the A* algorithm consist in [4] [42] :

1. Mark the initial node i as "open" (store the node in the open list, O-list, where all candidate

nodes to be explored are stored) and calculate f (i);

2. Select the open node n from O-list whose value of f is the smallest. This node is now

considered explored so it is removed from the O-list and moved into the C-list (closed list:

the list with all explored nodes);

3. Calculate the cost of all the adjacent nodes of node n, which can be one of the following

cases:

(a) Be inserted on the O-list, if it is neither there nor on the C-list, with the information of

the f value and its predecessor, known as parent (node where it came from);

(b) If it already exists in the O-list, confirm if the function f is smaller than the value

previously stored with the node. If so, the parent node is changed and the new value

of the f function is stored;

(c) If it belongs in the C-list, verify if the function f is lower. If so, this node is moved

again to the O-list.

4. Go to step 2 until the destination node is reached or the O-list is empty (in this case there is

no solution).

The optimal path is obtained by starting on the destination node and following each parent

node until arriving at the initial node.
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This algorithm possesses several properties including completeness, admissibility, and opti-

mality. The A* algorithm converges to an optimal solution whenever it exists [42]. Nevertheless,

its performance can be significantly affected by the computational power, memory limitations, the

type of data structure used for the open and closed lists and the heuristics used [4].

TEA* Algorithm Recently, a new graph search algorithm, based on the A* algorithm, was

developed by [43]. This new approach aims to fulfil industrial needs by creating routes that min-

imise the time allocated for each task, avoid collisions between AGV and prevent the occurrence

of deadlocks. It is described as a multi-mission algorithm that incrementally builds the path of

each vehicle considering the movements of the others, revealing to be very fitted for a multi-AGV

environment [43].

Figure 2.9: TEA* input map and analysed neighbour cells focusing on the cell with the AGV’s
position [7]

Considering a graph G with a set of vertexes V and edges E (links between the vertexes), with

a representation of the time k = [0;TMax], each AGV can only start and stop in vertexes and a

vertex can only be occupied by one vehicle at a temporal layer [7]. As it can be seen in Figure 2.9,

the analysed neighbour cells belong to the next temporal layer and include the cell containing the

AGV’s current position.

The number of layers of the map depends on the number of necessary iterations to achieve

the final mission and on the map’s dimension. The larger the map, the more temporal layers are

required. In addition, the more obstacles there are, the longer it will take to find the final point

(since the obstacles must be all avoided) [43].

To find the minimal path, the algorithm starts by calculating the position of each robot in each

temporal layer. Hence, in the future, possible collisions can be identified and avoided in the begin-

ning (k = 0) of the paths’ calculation. This contributes to a collisions free initial path’s calculation.
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Similarly to the A* Algorithm, during the path calculation, the next analysed neighbour cell is de-

pendent on a cost function. In the TEA* approach, the heuristic function used is the euclidean

distance [43].

The main differences between TEA* and A* algorithms reside in the features considering the

time domain. In TEA*, the analysed neighbour cells belong to the next temporal layer and include

the cell containing the AGV’s current position, as it is shown in Figure 2.9. This late property

allows the AGV to maintain its position between consecutive time instants, if any neighbour cell

is free [43].

When applying this algorithm to a multi-AGV environment, the first step is to convert the

AGV’s current positions in obstacles. As already mentioned, this will allow that a vehicle consid-

ers the other’s position as occupied cells. To avoid deadlocks these cells are placed as obstacles

only in the temporal layer k = {0,1}. Thus, each vehicle knows that the corridor is occupied in the

first instant but can calculate an alternative collision-free path in the following instants, allowing

it to recover from a deadlock situation [43].

The next step of the control loop consists in analysing the list of missions (the tasks assigned

to each vehicle) and calculating the path for each AGV. Before moving to the next mission on the

list, the calculated path is converted to a moving obstacle for the other robots [43].

Since the coordination between robots is essential to avoid collisions and to guarantee the

correct execution of the missions, this approach ensures it since the previously calculated paths

become moving obstacles [43].

Dynamic A* Algorithm The Dynamic A* (D*) is an algorithm similar to A* except that the

links’ cost can change as the algorithm runs [44].

With this algorithm, the robot aims to navigate to the goal coordinates in an unknown envi-

ronment. Assumptions are made about the unknown part of the environment (for example: that it

contains no obstacles) and the shortest path from its current coordinates to the goal coordinates is

calculated under these assumptions [44].

When it is observed new map information (such as previously unknown obstacles), it is added

to the map and, if necessary, the shortest path from its current coordinates to the given goal is

re-planned. The process is repeated until the goal is reached or the goal coordinates cannot be

reached [44].

Lifelong Planning A* Algorithm The Lifelong Planning A* (LPA*) algorithm is an incremen-

tal version of A*. However, this algorithm can adapt to changes in the path without re-calculating

every paths by updating the g-values (cost from going from the n node to the destination node)

from the previous search during the current search to correct them, when necessary [45].

When the cost of a node’s predecessor or the edge linking it to a predecessor changes, the node

becomes locally inconsistent and it is placed in a priority queue for re-evaluation. The nodes are

expanded and analysed in the priority queue [45].
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D* Lite Algorithm D* Lite is a fast re-planning method for robot navigation in an unknown

environment, built on Lifelong Planning A* (LPA*) algorithm (an incremental heuristic search

algorithm based on A*). It also implements the same navigation strategies as D* Algorithm [46].

Both algorithms, D* Lite and D*, search from the goal vertex towards the current vertex of

the robot, use heuristics to focus the search, and use similar ways to minimize having to re-order

the priority queue. However, since D* Lite does not expand any vertices whose g-values (cost

from going from the n node to the destination node) were already equal to their respective goal

distances, D* Lite is algorithmically different from D* [46].

The D* Lite Algorithm is described as easy to understand and extend while being as efficient

as D* Algorithm [46].

D*LR Algorithm When it comes to the D* Lite algorithm, if the robot encounters an environ-

ment change when the old path is almost completed and the new path is much longer than the old

one, the D* Lite will waste a lot of computing resources to correct the inconsistent nodes (nodes

become inconsistent because the cost of its predecessor or the edge linking it to a predecessor

has changed). If the total number of these nodes is greater than the number of already-consistent

nodes, it is more profitable to reset the D* Lite and recompute the old data instead of reusing it

while correcting the false one [47].

Therefore, D* Lite with Reset (D*LR) is a modified version of the D* lite that aimed to correct

the mentioned problem. This new algorithm conducts a test whenever the environment changes.

If the test is passed (or rejected), it will reset the D* Lite, discarding old data and starting a whole

new search [47].

2.2.3 Deadlocks, Livelocks and Semaphores

Two of the main situations that we look forward to avoiding are deadlocks and livelocks. These

situations are a common problem concerning path planning and can destabilise the system, de-

crease the efficiency of the paths planned and avoid substantial production interruptions. For

better utilisation of the workspace, flexible deadlock and congestion avoidance mechanisms need

to be implemented [48].

A deadlock is described as a situation when a resource is assigned to various vehicles compro-

mising the flow of the system. This problem is a logical one that can emerge in different contexts.

However, when deadlock situations arise the following conditions are always observed [49]:

• Tasks claim exclusive control of the resources they require ("mutual exclusion" condition);

• Tasks hold resources already allocated to them while waiting for additional resources ("wait

for" condition);

• Resources cannot be forcibly removed from the tasks holding them until the resources are

used to completion ("no preemption" condition);
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• A circular chain of tasks exists, such that each task holds one or more resources that are

being requested by the next task in the chain ("circular wait" condition).

To prevent deadlock situations, at least one of these conditions needs to be avoided.

On the other hand, systems can also be confronted with the livelock situation. This situation

appears when a vehicle is trying to access a resource that is continuously occupied by others.

In multi AGV environments, the resources shared are usually physical spaces that the vehicles

must access to fulfil their tasks. To manage these resources, some algorithms use the priorities

established to each robot to decide which robot must access the resource. However, that does not

always guarantee the prevention of deadlocks and livelocks [9].

Figure 2.10: Area A composed of an elementary node N (shared resource) controlled by
semaphore E [8]

Some synchronization methods can be used to help to control the vehicles’ traffic. In the

example developed by [8] (Figure 2.10), the AGV’s traffic was controlled through the use of binary

semaphores (a variable whose value varies between 0 and 1). Whenever a vehicle approached the

resource N, the vehicle stopped: if the semaphore E=0 then N was occupied and the vehicle had

to wait, else if N was free, the vehicle could proceed and the semaphore switch from 1 to 0 (N was

now occupied). When the vehicle left, E switched values to 1 to allow another vehicle to access

the resource N. When two or more vehicles wanted to access N, one of them had to be selected,

so it was necessary to introduce an access protocol on E. Various rules could decide which one to

access. The theory of production control suggests the following [8] :
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• Random;

• First-In-First-Out;

• Priority to a vehicle in the same direction as the predecessor;

• Priority to the vehicle with the earliest due time;

• Priority to vehicles with a direction with the smallest queue on the following semaphore;

• A combination of the rules mentioned above.

The semaphores can also be counters and be applied to resources that allow multiple instances

at the same time.

Dealing with deadlock avoidance for relatively large AGV systems (a large number of AGV

and/or zones) is quite challenging [48]. Wherefore, a supervisory system that can identify these

situations and prevent them would have a significant impact on the system’s performance.

2.3 Communication Faults: System Supervisor

The work developed by [9] contemplates some solutions for communication failures in a multi-

AGV environment. The methods implemented can be divided into three:

1. Detection and tolerance of communication faults inside the robot control cycle;

2. Adjustment of path planning taking into consideration the nodes where faults were detected

(modified TEA*);

3. Detection of communication faults and association with the graph’s nodes.

When it comes to the TEA* algorithm’s adaptations, [9] modified the TEA* library to indicate

the nodes associated with active faults as immovable obstacles until the affected robot exited the

communication fault area and reestablished the communication with the central module. This

alteration prevented any other robot from entering the communication fault zone, regulating the

traffic. In the example shown in Figure 2.11, both blue and orange robots must enter a critical

zone (the link delimited by the two red nodes) where no communication can be established. When

the blue robot reaches the communication fault zone, the orange robot is forced to wait until

communication is reestablished with the blue robot (since it is the only possible path for the orange

robot, otherwise the path would be re-planned) [9].

To detect communication faults, a specific module was created to control when the robots’

paths needed to be re-planned and to detect, measure and handle communication faults. This

module is composed of two sub-modules: one responsible for controlling when the robots’ path

need to be re-planned in situations where no communication faults are detected (Planning Supervi-

sion Sub-Module) and another sub-module to intervene whenever the communication with a robot

is lost (Communication Supervision Sub-Module).
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Figure 2.11: Example of a Communication Fault Zone [9]

The Planning Supervision Sub-Module detects when one of the robots is delayed or ahead of

its time and if a robot already completed the current step of its path in order to increment it safely.

In the TEA* algorithm, when all the robots are synchronised, it means that all robots are in the

step assigned to the current temporal layer. If a robot is delayed or ahead of time, it means that it is

not on the same temporal layer as the rest of the fleet, possibly leading to collisions and deadlocks.

The other sub-module, the Communication Supervision Sub-Module, is responsible for de-

tecting communication faults, calculating their size and forcing path re-planning considering the

detected fault [9]. There are two types of faults: areas in the factory floor map that consistently

have no communication with the Central Control unit and areas that face a temporary loss of

communication.
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Since the system has no prior knowledge of the existence and localisation of these areas, it is

necessary to map the factory floor at the same time the robots execute their tasks. When a new

robot enters a fault zone, the nodes where it was still possible to communicate with the robot are

marked as unflawed and are used to delimit the critical area. Therefore, when a robot enters a

zone with no communication, it is possible to estimate when it will exit the zone and re-establish

communication with the central unit.

When dealing with sporadic faults, if a zone was already mapped as critical (with communica-

tion faults) and a robot is capable of transverse it without experience any loss in communication,

the whole fault is discarded, leading to a remapping of the zone.
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Chapter 3

Implemented System

Following the work developed by [9], it was intended to coordinate a fleet of three small scale

AGV in a real environment using a global path planning with the TEA* graph search algorithm

combined with a supervisory system.

Executing the TEA* algorithm with a supervisory system revealed to be a more efficient ap-

proach to avoid collisions and deadlocks. Instead of keeping the TEA* methodology an online

method, where the paths are re-calculated every cycle (a procedure that is computationally heavy),

the supervisory system was responsible for detecting critical situations.

The supervisor detected when delays in the communication, deviations in the routes of the

robots and communication faults happened and triggered the re-calculation of the paths when

needed. Overall, the supervisor was responsible to keep the robots synchronised because, if the

robots are not synchronised, it means that each one is at a different step of the planned path, which

can lead to collisions and deadlocks.

Therefore, [9] proposed a supervisory system consisting of two sub-modules, Planning Su-

pervision Sub-Module and Communication Supervision Sub-Module, that were tested in a real

implementation and further developed to fit a real environment’s dynamic.

3.1 System Architecture

To implement and test the work developed by [9] and further modifications, it was set a shop floor

map and developed a fleet of three robots and their control module, a localisation system based on

the pose estimation of fiducial markers and a central control module.

This model does not represent a real life situation (since the localization of the robots is given

by the Robot Localisation Module and not by the robots themselves) but it is suitable to test and

develop the supervisory system.

The architecture of the system developed is represented in Figure 3.1. The communication

between the different modules is established via Wi-Fi.

25
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Robot Localisation
Module

Robot Control Module

Path Planning (TEA* Algorithm)

 Planning Supervision 

Communication
Supervision

Central Control Module

Figure 3.1: System architecture and relations between the different modules

The Central Control Module of the system maintains the structure initially developed by [9].

Therefore, it is composed of three hierarchical units: the Path Planning Sub-Module (TEA* Al-

gorithm) and the Supervisor: Planning Supervision Sub-Module and Communication Supervision

Sub-Module.

The Robot Localisation Module locates and estimates the robots’ coordinates. It then com-

municates, through User Datagram Protocol (UDP) messages, simultaneously, with the Central

Control Module and the Robot Control Module.

Lastly, the Robot Control Module is responsible for calculating and delivering through UDP

packets the most suitable velocities for each robots’ wheel, depending on the destination point/node

indicated by the Central Control Module.

The system was configured with a centralised control architecture since the graph search algo-

rithm used, the TEA* algorithm, selects the optimal paths from a graph of the global environment

space, Cspace, and communication between robots is non-existent. However, instead of using the

TEA* algorithm as an online method, the Supervisory Module is responsible for detecting the

environment changes and triggering the re-calculation of the paths, providing good adaptability to

the overall system.

3.2 Implementation

The main elements, that were necessary to introduce to the work already developed, were a shop

floor map and a fleet of three robots.
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The robots developed represented a small scale AGV and the map designed had the dimension

of 173 cm per 123 cm.

3.2.1 Robot Architecture

To validate the implemented system, three differential mobile robots were developed, as a small

scale of an industrial Automated Guided Vehicle, AGV. Each one measures 11 cm length by 9 cm

width, as presented in Figure 3.2. Each robot was produced through additive manufacturing using

a 3D printer.

Figure 3.2: Example of the robot developed to perform tests

Each robot is powered by three Li-Ion MR18650 batteries, placed on the top of the robot, that

supply the main controller board based on an ESP32 microcontroller and the stepper motor drivers

DRV8825.

ESP32

DRV8825 Stepper motor
NEMADRV8825Stepper motor

NEMA

Vbat
Off

control
3 x

18650

R
Wheel

L
Wheel

Push-button Power Switch

Figure 3.3: Robot’s diagram: Black lines represent control signals and red ones represent power
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The ESP32 owns Wi-Fi connection that allows it to communicate with the Robot Control

Module. The main architecture of the small scale AGV is presented in Figure 3.3. A push-button

Power switch controller is used to turn the system off when batteries are discharged, avoiding

damaging them. A voltage divider was applied so that the microcontroller is able to measure the

battery voltage.

The communication between the Robot Control Module and each robot is also done using UDP

packets. Commands are sent to the motors while the Robot Control Module receives information

from the robots about the odometry (steps).

To avoid slippage, a circular rubber was placed on each wheel. A free contact support of Teflon

with low friction was also used to support the robot.

3.2.2 Shop Floor Map

The shop floor map designed for testing is presented in Figure 3.4.

Figure 3.4: Shop floor map

The map in Figure 3.4 was turned into a graph with links around the size of the robot plus a

safety margin, in this case, it was intended for the links to measure, approximately, 15 cm.

The decomposition of the map was done using the Map Decomposition Module, developed by

[9], and incorporated in the Central Control Module through an XML file. Through Figure 3.5, it

is possible to observe how to map was decomposed in graph nodes. It is also possible to observe

that the distance between two nodes is not always the same.
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Figure 3.5: Nodes from the graph resulted from the decomposition of the map and their location
(meters)

The Map Decomposition Module aimed to divide the links between the main nodes (the nodes

on crossroads, path terminations and path direction changes) into smaller links of 15 cm by adding

new nodes.

However, this was only possible if the link was superior to 30 cm, resulting in two links of

15 cm and a new node. Otherwise, the link would not be divided, resulting in links of different

dimensions.

The smallest link measures, approximately, 15.6 cm and the longest, approximately, 25.15 cm.

This difference affects the coordination of the robots, as will be further explained.

3.3 Robot Localisation Module

To control the robots and run the system, the current coordinates, X and Y, and orientation, Theta,

of the robots were crucial. To obtain these values, approaches such as odometry or even an Ex-

tended Kalman Filter localisation using beacons [50] would be suitable. However, for pose esti-

mation, the Robot Localisation Module applies a computer vision algorithm.

For this purpose, a camera was set above the centre of the shop floor map and the robots were

identified with ArUco markers [51] [52], as represented in Figure 3.6.
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Figure 3.6: Pose estimation through the detection and identification of ArUco markers (Robot
Localisation Module)

The camera distortion was corrected through its calibration using the OpenCV library [53].

Through this procedure, it was possible to obtain the camera matrix, the distortion coefficients and

the rotation and translation vectors. These variables were incorporated in the ArUco functions to

obtain the coordinates X , Y and Theta in the real world frame.

(a) First marker (ID: 23) (b) Second marker (ID: 33) (c) Third marker (ID: 43)

Figure 3.7: ArUco markers used to identify the robots

The ArUco markers used are square markers characterised by a wide black border and an

inner binary matrix that determines their identifier. Using the ArUco library developed by [51]

and [52] and associating an ArUco tag id to each robot (Figure 3.7), it was possible to obtain the

coordinates of the robots’ positions.

However, the vision algorithm revealed to be very sensitive to poor illumination conditions

and unstable in regard to non-homogeneous lighting. The size of the tag used was 10 per 10 cm

with a white border of 1.6 cm.
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Figure 3.8: UDP packet sent from Robot Localisation Module to both Central Control Module
and Robot Control Module

The Robot Localisation Module is able to communicate with the Central Control Module and

the Robot Control Module through UDP messages. Each UDP message carries the positions of all

robots detected and one message is sent every 170 ms (camera frame rate plus vision algorithm

processing time).

In Figure 3.8 is represented a UDP message sent from the Robot Localisation Module to both

Central Control Module and Robot Control Module. Highlighted in pink is the ArUco tag iden-

tified by the Localisation Module. The match between the ArUco marker and the robot’s ID and

IP address is done only in the Central Control Module and Robot Control Module. Highlighted

in green is the information concerning the robot previously identified. The computer vision al-

gorithm identified the coordinates X , Y and Z and the orientation Theta of the robot. However,

since the Z coordinate is not needed, both Control Modules discarded it. To separate the robots’

information, it is used a termination character, highlighted in yellow. The coordinates are sent in

centimetres and the orientation is sent in degrees.

3.4 Robot Control Module

The Robot Control Module is in charge of leading each robot towards the desire nodes indicated

by the Central Control Module.

After the TEA* algorithm calculates each robot’s path, a command list stores the nodes that

the robot has to cross to complete its mission.

Every 80 ms, the Central Control Module sends, to each robot, their updated command list

and the Robot Control Module assures the execution of it.

3.4.1 Velocity Control

The velocity of the robots is controlled through the calculation of the most suitable velocity for

each wheel for each step’s X and Y coordinates and direction/Theta angle. That operation is done

through the function represented by the diagram in Figure 3.9.

In each stage of the diagram, the linear and angular velocities are calculated accordingly. The

velocity for each wheel/motor (M0 represents the motor of the left and M1 the right motor) is

calculated through Equation 3.1 and 3.2, where b represents the distance between both wheels.

M0Speed = linearvelocity+
angularvelocity ·b

2
(3.1)
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Rotate

Go_Foward

De_Accel

Final_Rot

abs(erro_theta) < MAX_ETF

erro_dist < TOL_FINDIST
erro_dist < DIST_DA

erro_dist < TOL_FINDIST

abs(erro_theta_f) < THETA_DA

erro_dist > DIST_NEWPOSE

Stop

(abs(erro_theta_f) > THETA_NEWPOSE)
 or

 (erro_dist > DIST_NEWPOSE)

Figure 3.9: Velocity Control Function
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M1Speed = linearvelocity− angularvelocity ·b
2

(3.2)

To understand which movement the robot needs to complete, in order to move towards the

desired point, three types of error are calculated. These errors are the erro_theta, Equation 3.3,

which represents the error between the current robot’s orientation (Theta) and the orientation that

the robot needs to have to travel towards the destination; the erro_dist, Equation 3.4, that repre-

sents the distance between the current robot’s position and the target position; the erro_theta_f,

Equation 3.5, which represents the error between the robot’s current orientation and the target/final

orientation given by the Central Control Module.

erro_theta = thetarobot−Atan2(ytarget− yrobot,xtarget− xrobot) (3.3)

erro_dist =
√
(xrobot− xtarget)2 +(yrobot− ytarget)2 (3.4)

erro_theta_ f = thetatarget− thetarobot (3.5)

By comparing these errors with the threshold values, the linear and angular velocities are

calculated to fit the type of movement needed.

When a new target position is indicated, to rotate the robot towards it, the Rotate step is

selected. The linear and angular velocities are calculated accordingly to Equation 3.6 and 3.7,

where sign determines the fastest rotation (positive or negative rotation) and WNOM represents

the nominal angular velocity.

linear_vel = 0 (3.6)

angular_vel = sign ·WNOM (3.7)

After the robot acquires the correct orientation (the module of the erro_theta is smaller than

a certain MAX_ETF threshold), the robot begins its movement forward, state Go_Forward. The

linear velocity maintains its nominal value and the angular velocity is calculated through a pro-

portional controller that tries to correct any angle deviation erro_theta, Equations 3.8 and 3.9.

linear_vel = LINV ELNOM (3.8)

angular_vel =−GAIN_FWD · erro_theta (3.9)

When the robot is within a certain distance, DIST_DA, the function enters a deceleration step

in order to stop the robot with the smallest error. To reduce its velocity, the linear velocity takes

into account the distance error, erro_dist, normalised. Reaching a distance error smaller than the
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threshold TOL_FINDIST, the function looks forward to correct the robot’s orientation to the target

orientation.

linear_vel = LINV ELNOM · erro_dist
DIST _DA

(3.10)

angular_vel =−GAIN_DA · erro_theta (3.11)

To correct the robot’s orientation, the function enters a Final_Rot state that calculates the

angular velocity by relying on the final angle error, Equations 3.12 and 3.13.

linear_vel = 0 (3.12)

angular_vel = GAIN_DA · erro_theta_ f (3.13)

After completing the final rotation, the robot enters a rest state, Stop step. This state is only

changed if a new target is received by the velocity control function.

3.4.2 Online Mode

The communication between the Central Control Module, constituted by the Path Planning Mod-

ule (TEA* Algorithm) and the Supervisory Module, and the Robot Control Module is established

through UDP messages. After the paths are planned, the information is sent to the Robot Control

Module through UDP packets. Each packet has the structure represented in Figure 3.10.

Figure 3.10: UDP packet sent from Central Control Module to the Robot Control Module

The heading of the packet, highlighted in yellow, carries the robot id (N), the priority of the

robot (P) and the number of steps that the packet contains (S). Consequently, the body of the

packet, highlighted in green, contains the information of the S steps. This information is organised

by the number of the step (I), the coordinates X and Y and the direction D (that is translated into

an angle in radians inside the trajectory control function). The ending of the packet, highlighted

in blue, indicates if the robot has reached the destination and carries a termination character. The

indicator T0 or T1 informs if the robot’s current position is the final destination (T1 if yes, T0 if

not) as a form of reassurance. When a robot finishes its mission, the UDP packet sent would not

contain any steps (S0), therefore it does not contain any information on its body. The character F

was the termination character chosen to indicate the end of the packet.
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Figure 3.11: Orientation Compass Card

To include the orientation of the robot in the TEA* algorithm, it was needed to be represented

by a discrete value. Hence, the robot’s direction was translated to integers from 0 to 7, where each

integer represented a direction of the compass card, Figure 3.11.

Due to the map’s frame having its origin in the superior left corner, the X axis pointing to the

right and the Y axis pointing down (Figure 3.5), the orientation of the robots is as described in

Figure 3.11. The -90 degrees are represented by 0 since it is the direction for the robot to move in

the positive Y axis. The integers are translated into radians inside the Velocity Control Function.

After decoding the packet received from the Robot Localisation Module, the suitable velocity

for each wheel is calculated through the Velocity Control Function.

3.4.3 Offline Mode

The Robot Control Module needed to be able to detect when the Central Control Module could not

establish communication with a robot. Hence, message control was needed. After four cycles of

not receiving new UDP messages from the Central Control Modules, concerning a certain robot,

an offline mode takes over.

When it comes to the Central Control Module, it is considered that after 3 cycles without any

message concerning the robot’s position, the robot is inside a communication fault area. Since it is

received a UDP message from the Robot Localisation Module every 170 ms, the Central Control

Module only associates the robot as in a communication fault after 3 × 170 ms = 510 ms. Each

cycle in the Robot Control Module takes 80 ms and 4 cycles correspond to 4 × 80 ms = 320 ms.

Being the worst case the robot moving forward at the nominal linear velocity, and since the linear
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velocity was 800 steps/s (4.09 cm/s), in the worst-case scenario, the robot would move 3.39 cm

without any control.

Reaching the fourth cycle with no messages, an offline mode is activated. This mode guar-

antees the accomplishment of the last command list received while trying to avoid any delays,

collisions and deadlocks.

While the robot is not able to establish communication with the Central Control Module, a

timer is set to force the lost robot to respect its steps within their time. This operation revealed

to be very important, especially for the waiting steps (steps where the robot awaits for its turn to

move because its path is temporary blocked, usually by other robot). It also allowed for more than

one robot to cross the faulty area, simultaneously, with more assurance of safety.

For the offline mode’s timer, an estimation of each step’s time was made. For this estimation,

some tests were performed and it was analysed if the different steps (movement and rotation) were

taking, approximately, the same execution time.

3.4.4 Velocity Control Tests

To validate the Velocity Control Function and analyse one step’s execution time, tests were per-

formed.

The tests consisted of commanding a robot to go from an initial position and orientation to a

target X , Y and Theta values. For each test, it was aimed to analyse the following:

• The error between the robot’s final X coordinate and the target X coordinate;

• The error between the robot’s final Y coordinate and the target Y coordinate;

• The error between the robot’s final orientation and the target orientation;

• The time taken by the robot to perform the trajectory.

To perform the following tests, the distance threshold TOL_FINDIST was set to 3 cm and the

orientation threshold THETA_DA was set to 0.087 radians (5 degrees). The nominal linear velocity

was set at 800 steps/sec (4.09 cm/s) and 125 rad/sec.

As mentioned before, in Section 3.3 and observed in Figure 3.5, the links between nodes do

not have all the same length. However, in the TEA* algorithm, one step is equivalent to crossing

one link or to a rotation of 90 degrees. So, the time taken by a robot to perform the rotation or to

cross one link needs to be, approximately, the same. These tests also aimed to verify this situation.

3.4.4.1 Test I: Movement forward with no rotation

The first situation that was evaluated was the movement of the robot that was equivalent to crossing

one link. Since the links do not have the same length, for this test, an average distance of 0.2 meters

was used. Therefore, it was expected a straight trajectory of 0.2 meters in the X axis (to avoid any

initial rotation) and a final orientation equal to the initial one. This test was performed 10 times

and the results are described in Table 3.1.
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• Average X error: 0.001 m;

• Average Y error: -0.003 m;

• Average Theta error: 0.8 degrees;

• Average execution time: 4967 ms.

Table 3.1: Results from Test I (coordinates in meters and orientation in degrees)

# Xini Yini T hetaini X f inal Y f inal T heta f inal X error Y error Theta error Time (ms)
1 0.40 0.28 0 0.58 0.29 3 -0.02 0.01 3 5625
2 0.58 0.29 3 0.76 0.30 4 -0.02 0.01 1 4391
3 0.76 0.30 2 0.94 0.31 3 -0.02 0.01 1 4578
4 0.94 0.31 3 1.13 0.31 6 -0.01 0 3 4531
5 1.50 0.34 180 1.31 0.33 -176 0.01 -0.01 4 5609
6 1.31 0.33 -176 1.13 0.32 -176 0.02 -0.01 0 4531
7 1.13 0.32 -176 0.95 0.32 -178 0.02 0 -2 4625
8 0.95 0.32 -178 0.76 0.31 -174 0.01 -0.01 4 4938
9 0.76 0.31 -174 0.58 0.29 -177 0.02 -0.02 -3 6094
10 0.58 0.29 -177 0.38 0.28 180 0 -0.01 -3 4750

3.4.4.2 Test II: Rotation of 90 degrees

The TEA* algorithm also assigns a step to a rotation of, at least, 90 degrees. To avoid delays

between robots, it is important that the average execution time of this test is similar to the previous

one.

In this test, the robot kept the initial X and Y coordinates and was expected to rotate 90 degrees.

This test was performed 10 times and the results are described in Table 3.2.

• Average X error: -0.003 m;

• Average Y error: -0.001 m;

• Average Theta error: -1.8 degrees;

• Average execution time: 4286.1 ms.

Table 3.2: Results from Test II (coordinates in meters and orientation in degrees)

# Xini Yini T hetaini X f inal Y f inal T heta f inal X error Y error Theta error Time (ms)
1 0.38 0.28 -180 0.37 0.28 -91 -0.01 0 -1 5016
2 0.37 0.28 -91 0.38 0.29 -3 0.01 0.01 -2 4468
3 0.38 0.29 89 0.38 0.28 177 0 -0.01 -2 4391
4 0.38 0.28 177 0.39 0.29 91 0.01 0.01 4 4203
5 0.39 0.29 91 0.38 0.29 3 -0.01 0 2 3860
6 0.39 0.30 8 0.38 0.29 94 -0.01 -0.01 -4 4328
7 0.38 0.29 95 0.39 0.29 -178 0.01 0 -3 4094
8 0.39 0.29 -178 0.37 0.28 -92 -0.02 -0.01 -4 4610
9 0.39 0.29 -91 0.37 0.28 -5 -0.02 -0.01 -4 3703
10 0.37 0.28 -6 0.38 0.29 80 0.01 0.01 -4 4188
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3.4.4.3 Results’ Discussion

Analysing the results from both Table 3.1 and 3.2, it is possible to confirm that the threshold values

were respected. However, the orientation presented a bigger error than the coordinates X and Y.

The X and Y errors revealed to be very small and insignificant.

Analysing the execution time, the average values of both tests were similar. This means that,

since one step corresponded to both crossing one link and rotating, at least, 90 degrees, delays

caused by the execution of these commands should not be common. However, since the links do

not all measure the same, some delays are still expected.

To minimise delays on the steps during communication faults, the timer used, in the offline

mode of the Robot Control Module, was of 5000 ms. The value took into consideration longer

links and situations where a rotation smaller than 90 degrees can be needed before moving forward.

3.5 Conclusion

During this chapter, it was presented a summary of how the system was implemented and some

context for the following chapters. The chosen system’s architecture was explained, as well as

how the modules are connected and communicated between them.

The main adjustments that were applied to the previous work were also discussed. These

modifications aimed to replace the simulation platform with a real implementation. Therefore, the

shop floor map and the robots used were presented and described.

Another important feature added was a module responsible for locating and estimating the

robots’ position through computer vision. The technology used was the ArUco markers and li-

brary.

It was also detailed how the Robot Control Module is composed and how it runs. It was

described how the velocity control of the robots is executed and how the communication faults,

between the robots and the Central Control Module, affect the robot’s control.

The velocity control is done through a specific Velocity Control Function. This function calcu-

lates the velocity of each wheel taking into account the necessary movement for the robot to reach

the desired position. The function’s behaviour was explained in deep detail during this chapter.

Concerning communication faults, it was explained how the Robot Control Module is divided

in two modes. When the Central Control Module can locate the robots, messages are sent from

the central module to the Robot Control Module. Otherwise, since the robots can not be located,

no messages are sent to the Robot Control Module.

When the Robot Control Module detects that packets from the Central Control Module are not

arriving (4 execution cycles), an offline mode is activated. It was described how this offline mode

helps to avoid deadlocks and collisions.
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The Robot Control Module was also tested to validate the Velocity Control Function. Analysing

the execution time of both tests, it was also possible to estimate the time taken by the robots to ex-

ecute one step of their paths. This time was incorporated in the offline mode of the Robot Control

Module.
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Chapter 4

Supervisory System

The supervisory system proposed, based on the work developed by [9], is responsible for deciding

when to re-plan the robots’ paths and for detecting and handling communications faults.

As mentioned before, the supervisory system implemented consists of two sub-modules hier-

archically related with each other: Planning Supervision Sub-Module and Communication Super-

vision Sub-Module.

In environments where no communication faults are present, the Planning Supervision Sub-

Module is responsible for determining when one of the robots is delayed or ahead of time (ac-

cording to the path planned by the TEA* algorithm) and also detect when a robot completes the

current step of its path.

On the other hand, the Communication Supervision Sub-Module is only responsible for de-

tecting communication faults. When a communication fault is detected, the Planning Supervision

Sub-Module is overruled and the re-calculation of the robots’ paths is controlled by the Commu-

nication Supervision Sub-Module. Once the communication is reestablished, the supervision is

returned to the Planning Supervision Sub-Module.

4.1 Planning Supervision

In the Central Control Module, after the initial calculation of the robot’s paths, done by the Path

Planning Module, [9] proposed three critical situations for the Planning Supervision Sub-Module

to check:

• If a robot is too distant from its planned position;

• If the maximum difference between steps is 1;

• If there is a robot moving into a position currently occupied by another.

These situations are described as critical since they can lead to collisions and/or deadlocks.

The first situation: verifying if a robot is too distant from its planned position, aims to verify

the distance between the most advanced robot’s position and the position it would have if it was at

the lowest step.

41
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This procedure is done by, firstly, analysing the type of movement of each robot. If the robot

is crossing a link, the current steps of every robot are taken into consideration and the lowest step

is obtained.

Comparing the coordinates of each robot, at their current step, with the ones they would have if

they were executing the lowest step obtained, a difference is computed. If that distance is superior

to a certain threshold, the paths are re-planned because the robot was too advanced in its path.

In Figure 4.1 is represented a situation example analysed by the first condition of the Planning

Supervision Sub-Module. In the example, being the lowest current step of the fleet step 1, each

robot has its current coordinates compared with the ones they would have if they were in step 1.

The maximum distance can only be the one defined by the threshold. Therefore, in Figure 4.1,

the coordinates indicated by this condition have to correspond, at maximum, with the coordinates

of the dashed robot. Since it is expected that, at step one, the robot is on the second node, in this

case, this robot would not trigger the supervisor.

threshold

Step 1 Step 2

Figure 4.1: Example of the situation that the first condition of the Planning Supervision Sub-
Module analyses: In this case, the distance threshold is smaller than the length of a link

However, this function assumes that all links are superior to the threshold defined and only

checks robots that are moving between nodes.

To take into consideration delays during rotations or even stopped robots, condition number

two is used. By checking the maximum difference between steps and setting the threshold to one,

it is possible to detect delays in robots that are at waiting steps or rotating, and also compensate

the previous function if there are links smaller than its threshold.

To detect specific cases of small but dangerous delays, the last condition checks if the node

that corresponds to the current step of a robot also corresponds to the current position of another

robot. An example of a small delay is represented in Figure 4.2.

(a) Robots are synchronised and Planning Su-
pervision Sub-Module is not triggered

(b) Small delay happened and both robots can
collide

Figure 4.2: Example of a small delay that leads to a collision: The last condition of the Planning
Supervision Sub-Module aims to detect these situations



4.1 Planning Supervision 43

All these situations can be covered in only one: verifying when the robots become unsyn-

chronised. If the robots are not synchronised, it means that each robot is at a different step of the

planned path, which can lead to collisions and deadlocks. However, triggering the supervisory

system by this criterion may lead to an ineffective system where the paths are constantly being

re-calculated.

In the next sub-section are described the tests performed to study and understand better how

the re-planning of the robot’s path affects the execution’s time and the number of tasks completed,

and which factors influenced the intervention of the supervisor: what caused the delays.

4.1.1 Experiments and Results

To test the Planning Supervision Sub-Module and its intervention, it was assigned a workstation to

each robot as written in Table 4.1. After reaching the workstation, each robot moves towards the

nearest rest station, which is any other station that is not chosen as a workstation. In Figure 4.3, it

is possible to observe the chosen workstations in blue and the available rest stations in red.

Table 4.1: Assigned tasks for Test A

Robot ID Robot Station Orientation Workstation Rest Station
1 No 8 180 ◦ No 6 No 7
2 No 2 180 ◦ No 4 No 3
3 No 7 180 ◦ No 9 No 10

Figure 4.3: Shop floor skeleton graph with the workstations selected in blue

For this mission, the trajectory that each robot should have followed, according to the initial

calculation done by the TEA* algorithm, is represented in Figure 4.4 (rotations are not repre-

sented). Robot number 1 is coloured in red, robot number 2 is coloured in blue and robot number

3 is coloured in green.
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(a) Steps 1 to 6 (b) Steps 6 and 7 (c) Steps 7 to 10

(d) Steps 10 to 14 (e) Steps 14 to 17 (f) Steps 17 and 18

Figure 4.4: Initial path schematic calculated by the Path Planning Module (rotations are not rep-
resented)

The following tests aimed to evaluate how many times the supervisor had to intervene and

which situations triggered it the most. It was also studied what may have caused the delays and

what could influence those situations.

It was expected that the paths were re-calculated more times when the Planning Supervision

Sub-Module was triggered by every delay (Test B), instead of re-calculating the paths only on the

critical situations (Test A).

Initially, the nominal linear velocity and the nominal angular velocity set in the Robot Control

Module was of 800 steps/s (corresponds to 4.09 cm/s) and 100 rad/s, respectively.

Before running the algorithm, it was already possible to predict a critical situation. Since robot

number 1 and number 3 have part of their paths in common, the TEA* algorithm defined steps of

waiting to prevent the collision of robot number 1 with robot number 3. However, if robot number

3 suffers any delay, robot number 1 can still collide with it.

4.1.1.1 Test A

During this test, the Planning Supervision Sub-Module only searched for the three situations pre-

viously mentioned to re-plan the paths.

This mission was executed five times and the results of each sample and the average results

are registered in Table 4.2 and Table 4.3, respectively.

The situations that triggered the Planning Supervision Sub-Module the most were a robot being

in a step ahead of time (the robot was too distant from its planned position) and the maximum step

difference between all robots being superior to one.
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Table 4.2: Execution of Test A: Planning Supervision Sub-Module followed the criteria defined
previously

# Supervisor Intervention Exec. Time (min.) Deadlocks & Collisions Tasks Completed
1 22 1:50 0 100%
2 23 1:51 0 100%
3 23 1:54 0 100%
4 32 1:47 0 100%
5 21 2:10 0 100%

Table 4.3: Average values of Test A: Planning Supervision Sub-Module followed the criteria de-
fined previously

# Supervisor Intervention Exec. Time (min.) Deadlocks & Collisions Tasks Completed
5 24.2 2:02 0 100%

4.1.1.2 Test B

The mission previously described was also tested, with the same velocity conditions, with the

Supervisory Sub-Module analysing and acting whenever any robot became out of sync, instead

of waiting for any of the other situations to happen. The results of each sample and the average

results are registered in Table 4.4 and Table 4.5, respectively.

Table 4.4: Execution of Test B: Planning Supervision Sub-Module acts upon any delay

# Supervisor Intervention Exec. Time (min.) Deadlocks & Collisions Tasks Completed
1 34 1:47 0 100%
2 37 1:52 0 100%
3 37 1:49 0 100%
4 39 1:45 0 100%
5 36 1:50 0 100%

Table 4.5: Average values of Test B: Planning Supervision Sub-Module acts upon any delay

# Supervisor Intervention Exec. Time (min.) Deadlocks & Collisions Tasks Completed
5 36.6 1:49 0 100%

Comparing with the previous results, the supervisor was called an average of 36.6 times, 12.4

times more. However, since the paths were planed again at the slightest delay, robot number 1

and number 3 never got as close as in the first performance. Therefore, this criterion was able to

correct the issues before the other situations triggered the supervisor.

4.1.1.3 Test C

Analysing the number of times that the supervisor intervened in the previous tests, it was analysed

what may have caused the delays between the robots.
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The situations proposed were the time that it took for a robot to rotate not corresponding to the

time that it took to cross a link (since one step corresponds to crossing from one node to the other

but corresponds also to a rotation of 90 degrees) or the links (the distance between two nodes) not

having a similar size. This last situation was already analysed and verified in Sub-Section 3.2.2.

Due to the topology of the map, it is not possible to change the size of the links. So, to try to

reduce the number of delays, it is proposed an adjustment of velocity to try to correspond the time

taken by a rotation with the time taken by crossing a link.

Therefore, focusing on the supervisor tested in Test A, the nominal linear velocity of the robots

was set at 800 steps/s and the nominal angular velocity at 125 rad/s (increased by 25%).

The results are in Table 4.6 and Table 4.7.

Table 4.6: Execution of Test C: Nominal linear velocity at 800 steps/s and nominal angular velocity
at 125 rad/s

# Supervisor Intervention Exec. Time (min.) Deadlocks & Collisions Tasks Completed
1 19 1:47 0 100%
2 21 1:44 0 100%
3 24 1:43 0 100%
4 24 1:42 0 100%
5 24 1:46 0 100%

Table 4.7: Average values of Test C: Nominal linear velocity at 800 steps/s and nominal angular
velocity at 125 rad/s

# Supervisor Intervention Exec. Time (min.) Deadlocks & Collisions Tasks Completed
5 22.4 1:44 0 100%

Comparing the results with the ones in Test A (Table 4.2 and Table 4.3), the average number of

times that the supervisor re-calculated the path is lower when the angular velocity is 25% superior.

However, increasing too much this value can cause new delays (because the time taken by one

step of rotating would be less than the time of one step of going forward). The average execution

time is also lower, as expected.

4.1.1.4 Test D

Even though, the average value of the supervisor intervention of Test C, Table 4.7, was lower

than the average value of Test A, Table 4.3, having to re-plan the paths more than twenty times

represented an exaggerated value.

To solve this issue, the threshold values, that evaluated and triggered any of those three con-

ditions, were reconsidered and amended. The main condition reconsidered was the situation of a

robot being too distant from its planned position.

Initially (in Tests A, B and C), the threshold used was 10 cm. This value seemed adequate due

to the fact that it was determined that the links should measure, approximately, 15 cm. However,
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most of the links measure more than 15 cm. So, a new threshold was set to test how much this

factor influenced the re-calculation of the paths.

To test a new threshold, the same mission was performed and it was considered a threshold

distance of 15 cm.

The results of this test are presented in Table 4.8 and Table 4.9.

Table 4.8: Execution of Test D

# Supervisor Intervention Exec. Time (min.) Deadlocks & Collisions Tasks Completed
1 5 1:38 0 100%
2 4 1:34 0 100%
3 2 1:38 0 100%
4 4 1:35 0 100%
5 4 1:52 0 100%

Table 4.9: Average values of Test D

# Supervisor Intervention Exec. Time (min.) Deadlocks & Collisions Tasks Completed
5 3.8 1:39 0 100%

As it is possible to observe, the average value of the re-calculations is much lower when

combined the velocity adjustment with the threshold adjustment.

However, during the execution of the samples, it was noticed that the threshold distance was

too big and was allowing the robots to get too close before triggering the re-calculation. An

example of this was, on sample number 4, robot number 1 getting too close to robot number 3 and,

when the re-calculation was triggered, robot number 1 was sent back to its previous node instead

of just adding waiting steps on its current node/position.

Another test was performed to verify that hypothesis. In this test, the threshold was set at 13

cm. The results are described in Table 4.10 and Table 4.11.

Table 4.10: Execution of Test D’

# Supervisor Intervention Exec. Time (min.) Deadlocks & Collisions Tasks Completed
1 2 1:30 0 100%
2 1 1:29 0 100%
3 1 1:35 0 100%
4 6 1:31 0 100%
5 4 1:33 0 100%

Table 4.11: Average values of Test D’

# Supervisor Intervention Exec. Time (min.) Deadlocks & Collisions Tasks Completed
5 2.8 1:32 0 100%
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As it is possible to observe in the results, the execution time between Tests D and D’ does not

vary significantly, but the threshold of 13 cm reveals to be more adequate and the re-calculation of

the paths is done less frequently.

4.1.1.5 Results’ Discussion

The time taken by the robots to perform their tasks is slightly longer in Test A. This can be justified

due to the situations where the supervisor acts on being more critical and resulting in different

paths instead of extra steps on the same node (the robot waiting in the same position).

For example, in Table 4.2, the execution time of sample number 51 stands out from the others.

This longer performance is justified by the alteration of the path of robot number 1. The addition

of extra steps in station number 7, for robot number 1 to wait until robot number 3 has cleared the

section, was a consequence of the re-planning done by the supervisor. Even though, in the other

samples, it was possible to observe robot number 1 starting to rotate in the direction of station

number 7, the robot never moved into that node/station, resulting in a shorter execution time.

In sample number 4 of Test A2, it was also possible to observe robot number 2 taking an

alternative path to reach its rest station. The execution time was not significantly affected but the

supervisor had to re-calculate the paths 32 times.

When it comes to the results of Test B, sample number 43 is also distinct. Even though the

supervisor re-calculates the paths more frequently, the execution time is a little shorter than on the

other samples. This can be a result of the supervisor being called on simpler situations that do not

involve a change of the path and are quickly sorted.

With Tests A and B, it is possible to verify that there is a trade-off between the number of

times that the path is calculated (re-calculating the paths frequently can be a computationally

heavy procedure) and the mission’s execution time.

If the supervisor is only called on critical situations, the algorithm will be executed faster and

it will not be as computationally heavy but the robots’ may take longer to perform their missions

due to alternative and longer paths.

Contrarily, if the paths are re-calculated every time a robot becomes unsynchronised, the most

likely situation to happen is the TEA* algorithm adding extra steps on the current node, making

the robots wait for each other and, consequently, avoiding longer paths.

To test the impact of the velocity on the delays and, consequently, on the number of paths’

re-calculation, in Test C, the nominal angular velocity was increased. This modification aimed to

observe if the rotation’s velocity was similar to the velocity of going forward. As expected, the

execution time decreased.

Comparing the results from Test C and Test A, the average number of the supervisor interven-

tions was inferior in Test C. This means that the angular velocity in Test C was more adequate.

However, the results are not significantly different.

1https://www.youtube.com/watch?v=7tiBd8hPfKE
2https://www.youtube.com/watch?v=XeMGC1BlOg8
3https://www.youtube.com/watch?v=NmdK5b0vj64

https://www.youtube.com/watch?v=7tiBd8hPfKE
https://www.youtube.com/watch?v=XeMGC1BlOg8
https://www.youtube.com/watch?v=NmdK5b0vj64
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Since the situation that triggered the supervisor the most was the robot being too distant from

its planned position, that condition was evaluated.

In Tests A, B and C, the threshold used to evaluate this condition was 10 cm. This value seemed

adequate due to the fact that it was determined that the links should measure, approximately, 15

cm. However, not all links measure the same. So, a new threshold was set to test how much this

factor influenced the re-calculation of the paths.

With a proper velocity adjustment and with a better threshold, the number of re-calculations

decreased. In Test D, two threshold values were tested to obtain the best fit, not only to avoid

excessive re-planning but also to guarantee that the re-calculation happened at the right moment.

In sample number 5 of Test D, once again, the execution time stood out from the others due to

the same reason as sample number 5 of Test A.

Through sample number 4 of Test D4, it was possible to observe robot number 1 getting too

close to robot number 3 before triggering the Planning Supervision Sub-Module (0:18). When the

paths were re-calculated, robot number 1 was sent back to its previous node instead of waiting in

its current position. This meant that the threshold used for the first condition was too big.

To avoid situations similar to that, a threshold of 13 cm was tested in Test D’. This new

value revealed to be the adequate maximum distance between the most advanced robot’s current

coordinates and the coordinates it would have if it was in the delayed robot’s current step. This

value translates to less than a step of difference (since one step represents crossing one link-

approximately 15 cm) between the most advanced and the slowest robot. With this new threshold,

the re-calculation of the paths was trigger adequately, as it is possible to watch in sample number

5 of Test D’5.

For this mission, the trajectory that each robot should have followed, according to the initial

calculation done by the TEA* algorithm, is represented in Figure 4.4 (rotations are not repre-

sented). In most cases, the paths were mainly maintained because the re-calculation only forced

the robots to stop and wait until all robots were in sync, the only exceptions were the previously

mentioned samples.

4.2 Communication Supervision

As explained before, to prevent collisions and deadlocks, is extremely important that the super-

visor is tolerant of communication failures. Hence, the Communication Supervision Sub-Module

was implemented in order to detect communication faults, determine their size and forcing the

re-calculation of the paths, considering the fault and the possible area affected. The type of com-

munication faults that can affect the environment are areas of the shop floor map that consistently

have no communication with the Central Control Module and temporary loss of connection. In

both cases, the system does not have any prior knowledge of the faults’ location.

4https://youtu.be/Zi3IVC1MvTc
5https://youtu.be/39bkMAfT_fg

https://youtu.be/Zi3IVC1MvTc
https://youtu.be/39bkMAfT_fg
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During the normal functioning of the system, the Communication Supervision Sub-Module

searches for communication faults constantly. When a communication fault is detected, the normal

functioning of the Central Control Module is interrupted and the fault and its dimension is studied.

After estimating the size of the area with no communication, the re-calculation of the paths is

forced in order to prevent any other robot to enter that area. The system then returns to its normal

functioning.

The Central Control Module also interrupts its normal functioning when it is detected that a

robot exited the area of the communication fault and the system is again capable of locating the

robot. In this case, the fault has its size and location adjusted.

4.2.1 Persistent Communication Faults

Initially, when no robot is inside an area without communication, while the robots are executing

their missions, the nodes that they cross are mapped and labelled as "unfaulted" nodes (since it is

possible to establish communication with the robots in them). These nodes will help estimate the

size of a persistent communication fault’s area. When it comes to sporadic communication faults,

all nodes can lose communication unexpectedly. Therefore, the node status as "unfaulted" may

not be permanent.

When a communication fault is detected, one of these two situations happened: either the

robot entered a fault not mapped yet or the fault has already been mapped. The robot that lost

communication is immediately associated with the area of the communication fault and, if the

area has not been mapped, the robot is labelled as mapping the faulty area.

In the case of a robot entering a communication fault area that has not been mapped yet, the

path of the robot is analysed to determine the most likely exit node and where the communica-

tion can be reestablished. To implement this, the nodes of the following steps of that robot are

compared with the nodes already mapped as "unfaulted". If the node is not mapped then it is

included in the faulty area. This comparison is done until one of the path’s node is found to be

mapped as "unfaulted" or the path ends. This set of faulted nodes is considered an area where no

communication can be established. The possible entry/exit nodes are also associated with each

area.

If the robot exits the faulty area before reaching the estimated exit node, the faulty area’s

dimension is corrected as well as the possible entry/exit nodes. The fault’s exit is corrected by

locating the current robot’s node, and the following nodes, that were previously included in the

communication fault, are removed from the fault’s structure. The nodes that were removed from

the fault are labelled as not mapped and, after exiting the area, the robot is no longer associated

with that fault.

In Figure 4.5, it is exemplified the procedure of detecting, locating, estimating and correcting

(when communication is reestablished) the area of a communication fault.

On the other hand, if a robot enters a communication fault and the system already has com-

munication faults registered, it is tried to associate the current fault with the ones already mapped.
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(a) Fault not detected: node 1 labelled as "un-
faulted"

(b) Fault not detected: node 2 labelled as "un-
faulted"

(c) Fault detected and located: node 2 represents
the entry node, the following nodes of the path
are labelled as "faulted"

(d) Communication reestablished: node 3 be-
longs to the faulty area, node 4 represents the
exit node of the fault

Figure 4.5: Schematic of a situation example of the detection, location, estimation and correction
of the area of a communication fault

If the entry node corresponds to an entry node of another fault then the fault’s location is

extended and it is added the not mapped nodes that belong to the robot’s path.

If the entry node does not correspond to the entry nodes of any of the mapped faults, the

method used tries to recognise if 60% of the path’s nodes of the robot are located at the already

mapped faults. If at least 60% of the nodes do not belong to any of the mapped faults, it is

considered that the robot is mapping a new zone with communication fault and the procedure

explained initially is repeated.

In the case of 60% of the nodes corresponding to an already mapped fault but the robot’s entry

node does not correspond to the entry nodes of the fault, it is adopted the procedure of merging the

two sets of nodes: the nodes from the robot’s path that are not mapped and the nodes of the fault

already mapped. As a result, the already mapped fault has its dimension extended and the nodes

of the robot’s path are included.

For the example of Figure 4.6, the chosen stations are in Table 4.12. The area of the fault,

since it was induced artificially, is represented in Figure 4.7.

Table 4.12: Mission’s assigned tasks

Robot ID Robot Station Orientation Workstation Rest Station
1 No 8 0 ◦ No 6 No 7
2 No 2 0 ◦ No 4 No 3
3 No 7 0 ◦ No 9 No 10

The example in Figure 4.6 only happens if the two robots entered the fault at the exact same

time. Otherwise, the TEA* algorithm re-calculates the path and avoids the fault’s area by choosing
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(a) First detected, located and estimated fault (b) Dimension of the second fault

(c) Combined fault due to merging process (d) Combined fault adjusted after it is mapped

Figure 4.6: Merge of the faults through common "faulted" nodes: red nodes represent "faulted"
nodes, yellow nodes represent entry/exit nodes, purple nodes represent frontier nodes, green nodes
represent "unfaulted" nodes and blue nodes represent not mapped nodes

Figure 4.7: Borders of the fault’s area (orange) and where it is located in the environment’s graph
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an alternative path for robot number 1 or by forcing robot number 3 to wait until the first robot

reestablished communication.

For the same mission and induced fault, if robot number 1 and 3 do not enter at the same time

(if robot number 3 enters the fault first), the fault would be seen as two separate faults.

Therefore, it was tested the same situation but with different initial orientations. The assigned

tasks and initial positions are described in Table 4.13 and the fault induced is the same as Fig-

ure 4.7.

Table 4.13: Mission’s assigned tasks with different initial orientations

Robot ID Robot Station Orientation Workstation Rest Station
1 No 8 180 ◦ No 6 No 7
2 No 2 0 ◦ No 4 No 3
3 No 7 0 ◦ No 9 No 10

During the execution of this mission6, robot number 3 stepped into the fault first. Once robot

number 3 entered the fault, robot number 1 had its path re-calculated. As robot number one entered

the fault, the system compared the new trajectory of robot number one with the fault. Since there

are no nodes in common, the system assumed two different faults. The mapping of the shop floor

map during this mission is represented in Figure 4.8.

Through the video of the execution of this mission with a fault, it is possible to observe an

alternative path chosen for robot number 1 in order to avoid the first estimated fault. As soon as

robot number 3 exited the fault, the paths of robot number 1 and 2 were re-planned and the first

alternative path of robot number 1 (that was temporary also marked as a fault location and can be

seen in Figure 4.8b) was not executed.

Repeating this mission, with the mentioned fault, it was analysed the execution time and the

re-calculation of the paths (supervisor intervention: re-calculation called by Planning Supervisor

and Communication Supervisor). The results are in Table 4.14 and Table 4.15.

Table 4.14: Execution of Mission with Fault: Robot 3 enters fault before robot 1

# Supervisor Intervention Exec. Time (min.) Deadlocks & Collisions Tasks Completed
1 16 1:51 0 100%
2 15 1:50 0 100%
3 11 1:48 0 100%
4 19 1:49 0 100%
5 18 1:42 0 100%

Table 4.15: Average values of Mission with Fault: Robot 3 enters fault before robot 1

# Supervisor Intervention Exec. Time (min.) Deadlocks & Collisions Tasks Completed
5 15.8 1:48 0 100%

6https://youtu.be/NlXUYYPKLvw

https://youtu.be/NlXUYYPKLvw
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(a) First detected, located and estimated fault (b) Second detected, located and estimated fault

(c) Faults are interpreted as being distinct faults:
fault 2 is adjusted

(d) Robot number 1 exits first fault and it is ad-
justed

(e) Robot number 2 reentries fault and adjusts it
(f) Robot number 2 exits first fault and finishes
its mission

Figure 4.8: Mapping of the faults (the induced fault is interpreted as two different faults) and
crossed nodes: red nodes represent "faulted" nodes, yellow nodes represent entry/exit nodes, pur-
ple nodes represent frontier nodes, green nodes represent "unfaulted" nodes and blue nodes repre-
sent not mapped nodes
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The initial path calculated by the Path Planning Sub-Module is represented in Figure 4.4.

However, the paths that were performed are represented in Figure 4.9. During the steps represented

in Figure 4.9a, the fault is detected but interpreted as two different communication faults. In steps

of Figure 4.9b, both robot number 1 (red robot) and robot number 3 (green robot) exit the fault

and the paths are re-calculated resulting in the final trajectories.

(a) Fault is detected but seen as two differ-
ent faults

(b) Robot number 1 exits the fault and
robot number 2 proceeds its path

(c) Robot number 3 exits the fault (d) No robots are inside the fault: re-
calculations are trigger by the Planning
Sub-Module

(e) Robot number 1 enters the communica-
tion fault again to enter station 6

(f) Robot number 1 reestablishes commu-
nication when in station 6 but reenters fault
when moving towards its rest station

(g) Robot number 1 is inside the fault (h) Robot number 1 reestablishes commu-
nication once it reaches the rest station

Figure 4.9: Robots’ trajectories during mission with two faults
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As it is possible to observe, when a robot enters a faulty area, the estimated location of the

fault is locked and that area is prevented from other robots to enter and cross it. However, it is

impossible to prevent two or more robots to enter the same fault from different entry nodes. When

that situation happens, the process of merging may happen and the robots map, simultaneously,

the fault’s area. Inside the fault, the collision/deadlock prevention is done only through the Robot

Control Module, as explained in Sub-Section 3.4.3.

4.2.2 Sporadic Communication Faults

In a real multi-AGV environment, most communications faults that may occur do not represent

steady areas where communication is always down. Hence, the system had to be capable of dealing

with sporadic faults.

The function implemented starts by analysing, as the robots execute their missions and cross

the map’s nodes, the nodes in which communication can be established. The node that corresponds

to the robot’s position is compared to the nodes in the faults’ areas. If the node is included in a

fault, it means that the node, and probably the rest of the fault’s area, is no longer subjected to

communication faults. So, the fault associated with that node is removed and all the "faulted"

nodes are labelled as "not mapped" except for the node where the communication was established:

that node is placed as "unfaulted". The entry/exit nodes of the fault are kept as "unfaulted". An

exemplification of this process is represented in Figure 4.10.

Through this method, it is possible to remove any sporadic communication faults that may

occur as well as remove inactive persistent communication faults. However, even if the status of

the nodes are changed, the Path Planning Sub-Module (TEA* algorithm) still takes into consider-

ation that the nodes were once subjected to communication faults, as will be further explained in

Sub-Section 4.2.3.

(a) Detected, located and estimated fault (b) Robot enters communication fault zone

(c) Communication established inside the
fault (d) Fault’s "faulted" nodes are re-mapped

(e) The fault is removed

Figure 4.10: Schematic of fault removal
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4.2.3 TEA* with Dynamic Costs

As mentioned before, when a communication fault is detected and estimated, the area is locked

and prevented from other robots to enter. However, as soon as the robot exits the area, nothing

prevents the other robots from crossing that area.

Even though, as mentioned before, the system implements procedures to avoid collisions and

deadlocks during communication failures, it is safer to avoid crossing these areas when there are

alternative paths available.

To minimise the paths that cross the areas of the communication faults, it was incorporated

a dynamic cost on the nodes on the TEA* algorithm. Therefore, the nodes affected by commu-

nication faults present an extra cost when being considered for the optimal path. The extra cost

incorporated is proportional to the probability of the node suffering communication faults. Even

if a fault is sporadic, the TEA* still takes into account that the node once suffered from communi-

cation faults and it is not as reliable as other "unfaulted" nodes.

During the execution of the robots’ missions, it is calculated the probability of the crossed

node being exposed to communication faults. This reliability factor is then added to each node in

the TEA* algorithm.

As mentioned in Sub-Section 2.2.2.2, the TEA* algorithm uses a heuristic function f (n),

described by Equation 4.1, to search through the map’s graph for an optimal path from an initial

node to a destination node.

f (n) = h(n)+g(n) (4.1)

The function h(n) represents the current cost from the initial node to the n node. The function

g(n) represents the cost from going from the n node to the destination node. To consider the

probability of the node suffering from communication faults, an extra cost is added to the g(n)

function, Equation 4.2.

g(n) = g(n)+COST · prob (4.2)

It is important to understand that, even though a node is described as having only an X and

Y coordinate, during the execution of the missions, a node ends up representing a circular area.

Analysing the situation in Figure 4.11, while a robot is crossing the link between node 1 and 2,

during the first half of the link, the robot is still associated with node 1.

Once it crosses the first half of the link, the system identifies the robot as being on the second

node. Therefore, even if a node is included in the location of a communication fault area, it is not

guaranteed that the probability of being affected by the communication fault is 100%. This is a

common situation for entry/exit nodes.
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1 2

(a) Robot is associated to node number 1

1 2

(b) Robot is associated to node number 2

Figure 4.11: Example of how the nodes represent a circular area and not just a point

To observe the impact of the dynamic cost, it was performed the mission in Table 4.16. The

goals of the following tests, Test E and Test F, are analysing the number of times the faulted area

is crossed, the number of re-calculations of paths and the execution time. The two tests explore

two situations:

• The TEA* algorithm considers an extra cost which is proportional to the probability of the

node presenting communication faults;

• The TEA* algorithm considers that every node, with or without communication faults, has

the same cost;

It is expected that, when the TEA* algorithm considers an extra cost in nodes with a probability

of losing communication with the system, the optimal paths chosen avoid the area unless there are

no alternative routes. The execution time is predicted to be longer because of the longer alternative

paths.

When it comes to the number of the paths’ re-calculations, even though every time a robot

enters and exits a communication fault the supervisor re-plans the paths, when a robot takes an

alternative longer route, the probability of happening delays is higher.

Table 4.16: Dynamic Cost Tests: Mission’s assigned tasks

Robot ID Robot Station Orientation Workstation Rest Station
1 No 6 90 ◦ No 4 No 2
2 No 7 180 ◦ No 3 No 5
3 No 9 180 ◦ No 10 No 9

The workstations, nodes coloured in blue, and the localisation of the rest stations chosen can

be consulted in Figure 4.12.
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Figure 4.12: Shop floor skeleton graph with the workstations selected for Test E and Test F (blue
nodes)

The communication fault induced in Test E and Test F is presented in Figure 4.13, where is

possible to identify the nodes that will be affected.

Figure 4.13: Localisation of the induced fault (borders at orange) in Test E and Test F on the map’s
graph

The initial trajectory calculated by the Path Planning Sub-Module is represented in Figure 4.14,

where robot number 1 is coloured in red, robot number 2 is coloured in blue and robot number 3

is coloured in green. However, since a communication fault is going to be induced, it is possible

to predict that the paths will not be exactly as described in Figure 4.14.
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(a) Steps 1 to 3 (b) Steps 3 to 6 (c) Steps 6 to 9

(d) Steps 9 to 12 (e) Steps 12 to 15 (f) Steps 15 to 17

Figure 4.14: Initial path schematic, calculated by the Path Planning Module (rotations are not
represented) for the mission of Test E and Test F

4.2.3.1 Test E: TEA* algorithm without dynamic cost

The execution of five samples of the mission without considering a dynamic cost resulted in the

values on Table 4.17 and Table 4.18.

Table 4.17: Execution of Mission with Fault: TEA* algorithm does not distinguish nodes affected
by communication faults

# Supervisor Intervention Exec. Time (min.) Fault’s Area Crossed Tasks Completed
1 7 1:31 2 100%
2 8 1:36 2 100%
3 6 1:35 2 100%
4 6 1:35 2 100%
5 7 1:39 2 100%

Table 4.18: Average values of Mission with Fault: TEA* algorithm does not distinguish nodes
affected by communication faults

# Supervisor Intervention Exec. Time (min.) Fault’s Area Crossed Tasks Completed
5 6.8 1:35 2 100%

During the execution of Test E7, it can be observed clearly (0:23) that, after robot number 1

exits the fault, robot number 2 has its path re-calculated and rotates in order to execute the original

path because it reveals to be the fastest even if it presents communication faults.

7https://youtu.be/8jxzUIGUT8k

https://youtu.be/8jxzUIGUT8k


4.2 Communication Supervision 61

4.2.3.2 Test F: TEA* algorithm with dynamic cost

Considering an extra cost, as explained in Equation 4.2, the mission was again executed five times.

The results can be consulted in Table 4.19 and Table 4.20.

Table 4.19: Execution of Mission with Fault: TEA* algorithm considers an extra cost

# Supervisor Intervention Exec. Time (min.) Fault’s Area Crossed Tasks Completed
1 6 1:45 1 100%
2 5 1:52 1 100%
3 2 1:46 1 100%
4 6 1:40 1 100%
5 4 1:46 1 100%

Table 4.20: Average values of Mission with Fault: TEA* algorithm considers an extra cost

# Supervisor Intervention Exec. Time (min.) Fault’s Area Crossed Tasks Completed
5 4.6 1:46 1 100%

When executing Test F8, the fact that robot number 1 exited the communication fault had no

impact on the path of robot number 2. The path executed by robot number 2 was longer but

avoided crossing a communication fault.

4.2.3.3 Results’ Discussion

Observing the average execution time of both tests, through Table 4.18 and Table 4.20, the average

execution time on Test F is longer. This is a consequence of avoiding the communication fault that

is located on the optimal path of robot number 2.

Even though, on Test E, robot number 2 starts executing the alternative route (because the

faulty area is locked and no robot can cross it while robot number 1 is inside it), when robot number

1 leaves the communication fault, the paths are re-planed. At the moment of the re-calculation of

the paths, robot number 2 is further away from that path than initially but the optimal path still

remains the same as calculate in the beginning. Therefore, robot number 2 inverts its movement

and follows the initial path.

On Test F, after it is detected the communication fault, robot number 2 avoids that area and

it completes the alternative path even after robot number 1 exits the fault. The initial path still

reveals to be the fastest after the faulty area is unoccupied. However, because of the dynamic cost,

the TEA* algorithm discards that path unless no alternative routes are available. This reflects on a

longer execution time. Nevertheless, it is safer to adopt paths with no communication faults.

The re-calculation of the paths (the intervention of the Supervisor) happens more often in

Test E. Considering the average value of 6.8 (Table 4.18), it is possible to affirm that 4 of those

re-calculations were due to the entry and exit of robot number 1 and robot number 2 on the com-

munication fault’s area. The number of times the Communication Supervision Sub-Module had
8https://youtu.be/VSPS3h5hxeY

https://youtu.be/VSPS3h5hxeY
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to intervene is two times (re-plans when a robot enters the fault and when it exits it) multiplied by

the number of times a fault’s area is crossed.

However, the alternative paths are usually longer, which will cause the mission to take a longer

time. Hence, is also probable that delays happen and re-calculations need to be done by the

Planning Supervision Sub-Module.

4.3 Conclusion

The supervisor has the responsibility of evaluating potentially dangerous situations that may lead

to deadlocks and collisions in the multi-AGV environment. The key moments for preventing those

situations are detecting significant changes on the robots’ path (calculated by the TEA* algorithm:

Path Planning Sub-Module) and allowing their re-calculation, and the detecting and controlling

communications faults.

To execute those tasks, the supervisor is divided into two sub-modules: Planning Supervision

Sub-Module and the Communication Supervision Sub-Module.

Throughout this chapter, the sub-modules of the supervisor of the system were explained in

greater detail.

The Planning Supervision Sub-Module monitors deviations and delays in the routes of the

robots by controlling three specific situations. The implementation of this sub-module had the aim

of replacing the use of the TEA* algorithm, as an online method that re-plans the paths at every

iteration.

The conditions monitored by the supervisor were described and tested in this chapter. It was

compared the efficiency of tracking those three conditions to re-calculating the paths every time a

delay was detected (when the robots were not all at the same step on the trajectory).

It was also studied the factors that influence the Planning Supervision Sub-Module the most.

Two hypotheses were made: the significant variation of the length of the links of the map and an

inadequate linear and angular velocity. Due to the map’s topology, it was only tested the variation

of the velocity, since the length of links could not be changed.

The conditions of the Planning Supervision Sub-Module were also tested in order to find

adequate thresholds to the environment’s dynamics.

The main goal of the Communication Supervision Sub-Module is to detect communication

faults and guarantee secure and efficient paths when stable communication cannot be established.

To operate accordingly, this sub-module locates and estimates the dimension of the communication

fault to allow the TEA* algorithm to calculate safe routes, avoiding those locations.

The Communication Supervision Sub-Module can register two types of faults: persistent and

sporadic. Persistent communication faults often represent bigger areas whereas sporadic faults

are temporary losses of communication in a few nodes. However, if a fault becomes inactive, the

supervisor proceeds the same way for both cases.

To avoid locations with communication faults, even if no robot is crossing that area, the Path

Planning Sub-Module incorporated, in the TEA* algorithm, a reliability factor depending on the
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node. As explained in this chapter, an extra cost is added to a certain node depending on its

probability to suffer communication faults.
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Chapter 5

Communication Fault Recovery

In the previous chapter, it was explored how the Supervisor is composed and how the different

sub-modules interact with each other and with the changes in the environment.

One of the major concerns about the coordination of AGV is the possible presence of commu-

nication faults. The Communication Supervision Sub-Module revealed to be quite effective in the

detection, localisation and estimation of communication faults during the execution of the robots’

missions.

However, if a robot finishes its mission while on a communication fault, the system cannot

reach out to that robot and it will be permanently stuck on its rest station until communication can

be reestablished.

In order to solve this problem, it was developed, as a part of the Communication Supervision

Sub-Module, a Recovery Mode.

5.1 Recovery Mode

In the Central Control Module, during the execution of a mission, if it is detected that a robot just

entered an area without communication, a timer is set and associated with that robot.

The timer aims to predict when will the robot finish its mission if it does not reestablish com-

munication with the Central Control Module until the end of it. Therefore, until communication

is reestablished, the timer is always running and being checked.

The prediction of the timer’s value is based on the number of steps that the robot still had to

complete and an estimation of the execution time of one step (that estimation was explained in

Sub-Section 3.4.4).

Once the value of the timer is reached, the Supervisor Sub-Module activates the Recovery

Mode. This mode is activated with the intention of preventing the robot from being stuck, in-

definitely, on its rest station (since the robot cannot establish communication with the Central

Control).

The Recovery Mode assumes that, approximately after the timer ends, the lost robot, which is

aware that the communication is down, will find a path from its current workstation to the nearest

65
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workstation. Therefore, it is necessary to coordinate the rest of the fleet to avoid the lost robot and

the possible exit area.

Firstly, the supervisor assesses the nearest rest station to the current rest station of the lost

robot. The sub-missions of the robot are registered as completed and another sub-mission is added:

shifting of rest stations. This update on the sub-missions will allow the reestablishment of commu-

nication with the robot to happen smoothly without incoherent sub-missions and outdated steps.

Since the robot is inside a faulty area, the new trajectory is included in the communication fault’s

data structure. It is expected that, when the robot reestablishes communication, the fault will be

updated and corrected.

After obtaining the station and updating the lost robot’s mission and the fault’s area, it is

necessary to coordinate the rest of the AGV fleet so that collisions and deadlocks can be avoided.

The Path Planning Sub-Module is called to intervene and re-calculates the paths according to the

possible exit path of the lost robot.

To determine new paths, it is given the higher priority to the lost robot and the faults’ loca-

tions are not taken into consideration when planning the lost robot’s path. These two features are

important because it is not expected for the Robot Control Module to know the location and the

paths of the rest of the fleet and neither to have access to the communication faults’ location.

As it was mentioned, ideally, in these situations, the Robot Control Module would have access

to the map’s graph, the available stations (workstations and rest stations) and to a graph search

algorithm to be able to calculate a new trajectory. This new trajectory would move the robot from

its current rest station to the nearest one where communication with the Central Control can be

established.

However, because of the structure of the Robot Control Module, it is not possible for the robot

to obtain a new trajectory for itself. To test the Recovery Mode, and since the communication

faults are induced, this process is simulated. After the Path Planning Sub-Module re-plans the

new paths, a single UDP message is sent to the Robot Control Module with the lost robot’s new

trajectory.

With new paths calculated for the connected robots and a predicted path for the lost robot,

a new timer is set and the Recovery Mode goes to sleep until activated again. The Supervisor

Sub-Module returns to its normal functions.

Another measure taken to prevent these situations is the evaluation of the location of all rest

stations after a robot exits a communication fault. When communication is reestablished with a

lost robot, not only the fault’s area is updated but also the chosen rest stations are compared with

the fault’s nodes. If any of the rest stations’ nodes belong to the fault, the attributed rest stations

are changed to the closest with communication.

To observe the performance of the Recovery Mode, different missions were chosen and exe-

cuted.
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5.2 Tests and Results

To test the supervisor response to this critical situation, some tests were performed.

Test G and Test H intend to evaluate not only the new path from the new sub-mission of the

lost robot: the movement from the first designated rest station to the nearest one, but also the

coordination of the rest of the fleet in order to avoid collisions and deadlocks, specially on the

expected exit area of the communication fault.

Test G assigns simple tasks to the robots and it is tested the system’s performance with a

induced fault. Next, the same mission is tested (Test G’) to allow to identify and compare the

impact of the fault on the nodes (dynamic cost), on the re-calculation of the paths (supervisor

intervention), on the execution time and on the activation of the Recovery Mode.

Test H is then performed to test the same parameters. However, the tasks assigned are more

complex and it is expected a more careful coordination on the Central Control Module’s behalf.

The robots’ performance is evaluated as well as the previous mentioned parameters .

5.2.1 Test G

The first mission tested to analyse the Recovery Mode is described in Table 5.1 and in Figure 5.1.

Table 5.1: Assigned tasks for Test G

Robot ID Robot Station Orientation Workstation Rest Station
1 No 8 180 ◦ No 6 No 7
2 No 2 180 ◦ No 4 No 3
3 No 7 180 ◦ No 1 & 9 No 10

Figure 5.1: Shop floor skeleton graph with the workstations selected for Test G
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Figure 5.2: Induced fault (borders at orange) for Test G

The location of the induced fault is represented on the map’s graph in Figure 5.2. As intended,

the rest station of robot number 2 is located inside the fault.

After the Recovery Mode is activated, it is expected for robot number 2 to change its rest

station from number 3 (node 16 in Figure 5.2) to rest station number 5 (node 18 in Figure 5.2).

The test was performed five times and the results are described in Table 5.2 and Table 5.3.

Table 5.2: Execution of Test G

# Supervisor Intervention Exec. Time (min.) Deadlocks & Collisions Tasks Completed
1 10 2:19 0 100%
2 11 2:13 0 100%
3 10 2:16 0 100%
4 8 2:16 0 100%
5 8 2:17 0 100%

Table 5.3: Average values of Test G

# Supervisor Intervention Exec. Time (min.) Deadlocks & Collisions Tasks Completed
5 9.4 2:16 0 100%

The execution times of the samples are very similar. Since this fault is firstly mapped by robot

number 1 (before robot number 2 becomes stuck inside), the paths are re-calculated four times due

to the fault. The other re-calculations were cause by the delays, as studied in Section 4.1.
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(a) Fault detected, located and estimated by
robot number 1

(b) Fault’s dimension adjustment after robot
number 1 reestablished communication

(c) Robot number 2 entered the fault and its di-
mension was adjusted

(d) Robot number 2 exited the fault and stopped
at rest station number 5

Figure 5.3: Mapping of the fault of Test G: red nodes represent "faulted" nodes, yellow nodes rep-
resent entry/exit nodes, purple nodes represent frontier nodes, green nodes represent "unfaulted"
nodes and blue nodes represent not mapped nodes

During the execution of Test G1, the induced fault was mapped initially by robot number 1

and, after robot number 1 exited the fault’s area, by robot number 2.

Robot number 2 completed its mission inside the fault and became stuck inside of it. As

expected, the Recovery Mode was activated (1:40) and robot number 2 followed a new trajectory

towards the nearest rest station. The path towards station number 5 was also included on the

fault’s area. However, since robot number 1 had already mapped those nodes, no changes were

made when it comes to the fault’s estimated area.

The schematic of the process of mapping the nodes and the fault is represented in Figure 5.3.

The path initially calculated by the Path Planning Sub-Module is represented in Figure 5.4,

where robot number 1 is coloured in red, robot number 2 in blue and robot number 3 in green.

However, as it was already explained, the final trajectories performed were not the same trajec-

tories due to the Recovery Mode (there were also some extra waiting steps due to the Planning

Supervisor re-calculations).

The performed paths can be consulted through the link on footnote.

1https://youtu.be/rCv7Aauoxk0

https://youtu.be/rCv7Aauoxk0
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(a) Steps 1 to 6 (b) Steps 6 to 13 (c) Steps 13 to 15

(d) Steps 15 to 17 (e) Steps 17 to 19 (f) Steps 19 to 23

Figure 5.4: Initial path schematic calculated by the Path Planning Module (rotations are not rep-
resented)

If the same mission is repeated without the communication fault, it is possible to compare the

execution time and estimate the time added by the Recovery Mode, as well as other parameters.

Therefore, Test G was repeated without the induced fault. In this way, it is also possible to

observe the impact of the fault on the re-calculations of the paths.

The results are presented in Table 5.4 and Table 5.5.

Table 5.4: Execution of Test G’: Test G without the induced fault

# Supervisor Intervention Exec. Time (min.) Deadlocks & Collisions Tasks Completed
1 6 2:00 0 100%
2 2 1:37 0 100%
3 7 1:40 0 100%
4 7 1:55 0 100%
5 4 2:01 0 100%

Table 5.5: Average values of Test G’: Test G without the induced fault

# Supervisor Intervention Exec. Time (min.) Deadlocks & Collisions Tasks Completed
5 5.2 1:50 0 100%

5.2.2 Test H

The previous mission represented simple tasks, since only one of the robots visited more than

one work station. In this test, more complex missions were tested. The tasks assigned and their

location are described in Table 5.6 and in Figure 5.5.



5.2 Tests and Results 71

Table 5.6: Assigned tasks for Test H

Robot ID Robot Station Orientation Workstation Rest Station
1 No 1 180 ◦ No 8 & 7 & 3 No 4
2 No 4 180 ◦ No 3 & 5& 8 No 1
3 No 6 -90 ◦ No 7 & 5 No 2

Figure 5.5: Shop floor skeleton graph with the workstations selected for Test H

To observe which nodes will be affected by the fault, the graph of the map and the location of

the induced fault are represented in Figure 5.6.

It is expected for robot number 3 to change its rest station from number 2 (node 12 in Fig-

ure 5.6) to rest station number 1 (node 1 in Figure 5.6). Observing Figure 5.6, it is possible to

confirm that rest station number 2 is inside the communication fault’s area. To assess the nearest

rest station is necessary to exclude the stations that are workstations (stations number 3 and 5, as

shown in and Figure 5.5). The nearest rest station would be station number 4. However, robot

number 1 had that station attributed in the beginning of the mission. So, considering the available

rest stations, the closest one would be station number 1.

The test was performed five times and the results are described in Table 5.7 and Table 5.8.

Table 5.7: Execution of Test H

# Supervisor Intervention Exec. Time (min.) Deadlocks & Collisions Tasks Completed
1 14 4:14 0 100%
2 22 4:01 0 100%
3 19 3:59 0 100%
4 15 4:04 0 100%
5 15 4:07 0 100%



72 Communication Fault Recovery

Table 5.8: Average values of Test H

# Supervisor Intervention Exec. Time (min.) Deadlocks & Collisions Tasks Completed
5 17 4:05 0 100%

Figure 5.6: Induced fault (borders at orange) for Test H

During the execution of Test H2, it was possible to observe that this mission required a lot

of coordination to avoid deadlocks and collisions. The area where the nodes 4, 19, 14, 15 and 8

belong was accessed multiple times by the three robots, which required a lot of traffic control.

As expected, when the Recovery Mode was activated (3:09), robot number 3 moved to rest

station number 1.

As it is possible to observe, from the results in Table 5.7 and Table 5.8, no collisions or

deadlocks happened and the tasks where all completed. However, the multiple access to that

area may explain the supervisor intervention.

The schematic of the process of mapping the nodes and the fault is represented in Figure 5.7.

As it was possible to predict, the fault was, firstly, partially mapped by robot number 2 and

then mapped by robot number 3 as it went to complete its mission in its rest station.

2https://youtu.be/huASuabvJHM

https://youtu.be/huASuabvJHM
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Once again, because the map was almost completely mapped, it is not possible to observe the

addition of the area of the trajectory from station 2 to station 1 because all nodes around the fault

were already mapped as "unfaulted".

(a) Robot number 2 enters the fault and it is de-
tected, located and estimated

(b) Fault’s dimension is adjusted after robot
number 2 reestablished communication

(c) Robot number 3 entered the fault and its di-
mension was extend until its rest station

(d) Robot number 3 exited the fault after chang-
ing to rest station 1 (Recovery Mode)

Figure 5.7: Mapping of the fault of Test H: red nodes represent "faulted" nodes, yellow nodes rep-
resent entry/exit nodes, purple nodes represent frontier nodes, green nodes represent "unfaulted"
nodes and blue nodes represent not mapped nodes

The path initially calculated by the Path Planning Sub-Module is represented in Figure 5.8.

The actual paths completed can be observed through the link on footnote.

The same mission was repeated without the communication fault, to analyse, approximately,

the time added by the Recovery Mode to the execution time of the mission and to observe the

impact of the fault on the re-calculations of the paths.

The results are presented in Table 5.9 and Table 5.10.
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(a) Steps 1 to 5 (b) Steps 5 to 8 (c) Steps 8 to 11

(d) Steps 11 to 15 (e) Steps 15 to 19 (f) Steps 19 to 24

(g) Steps 24 to 28 (h) Steps 28 and 29 (i) Steps 29 to 35

(j) Steps 35 to 39 (k) Steps 39 and 40 (l) Robots in their rest stations

Figure 5.8: Initial path schematic calculated by the Path Planning Module (rotations are not rep-
resented)
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Table 5.9: Execution of Test H’: Test H without the induced fault

# Supervisor Intervention Exec. Time (min.) Deadlocks & Collisions Tasks Completed
1 7 3:00 0 100%
2 15 2:59 0 100%
3 12 3:35 0 100%
4 12 2:58 0 100%
5 8 3:09 0 100%

Table 5.10: Average values of Test H’: Test H without the induced fault

# Supervisor Intervention Exec. Time (min.) Deadlocks & Collisions Tasks Completed
5 10.8 3:08 0 100%

5.2.3 Results’ Discussion

Through the implementation of Test G and Test H, it was aimed to observe the response of the sys-

tem to a critical situation such as having a robot completing their mission inside a communication

fault and being stuck inside of it.

The Communication Supervisor Sub-Module guaranteed the prevention of this situation by

activating a Recovery Mode, as explained previously.

The first test executed, Test G, assigned simple missions to the robots. It was assessed the rest

stations chosen and an induced fault was triggered in order to cover one of the rest stations.

Analysing the resulted data, the supervisor had to re-calculate the paths an average of 9.4

times. As it was already mentioned, since two robots mapped the fault, 4 of those re-calculations

were due to the fault. The average execution time was of 2:16.

To be able to compare those results and analyse what was triggered by the fault, the same

mission was repeated without the fault. The results in Table 5.4 and Table 5.5, describe an average

supervisor intervention of 5.2 times and an execution time of 1:50.

Therefore, it is possible to confirm that, due to the difference between the average re-calculations

of both experiments, the fault truly imposed a re-calculation of 4 times.

The difference in the execution time is justified by the activation of the Recovery Mode and the

addition of the sub-mission to shift rest stations. Even though the Recovery Mode was activated

before robot number 3 finished its mission, robot number 2 only reached its new rest station a few

seconds, approximately 26, later.

To analyse the Recovery Mode, the coordination of the fleet and the influence of the fault, in

more detail, another mission was tested. Test H aimed to assign more complex tasks. A careful

coordination of the fleet was expected and needed to avoid deadlocks and collisions.

An induced fault was also triggered, affecting the rest station of robot 3. It was expected the

Recovery Mode to change its rest station, once it was stuck inside the fault, to rest station number

1.
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During Test H performance, when robot number 3 was inside the communication fault, in its

rest station, robot number 1 would not go inside its rest station because it would have to cross an

entry/exit of the fault. That node can be observe in Figure 5.7, in the colour yellow, at the entrance

of station number 4 (node 17 in Figure 5.6). Since a robot was inside the fault, the area of the

fault was blocked and robot number 1 had to wait (on the video it is possible to observe the robot

moving from node 9 to node 40 because node 40 was the only available node connected to node

9) until robot number 3 exited it to cross node number 10 (Figure 5.6).

Because of the Recovery Mode, this situation did not reveal to be a problem. However, alter-

native procedures could be considered to avoid this situation such as a temporary window to block

the entry/exit nodes (accordingly to the expected exit area of the lost robot).

As studied in Sub-Section 4.2.3, the dynamic cost incorporated on the Path Planning algorithm,

TEA* algorithm, intended to avoid optimal paths that crossed faulty nodes.

That implementation was possible to observe in the execution of Test H, after robot number 3

completed its task in workstation number 5, it moved towards its initial rest station, station number

2, through the "unfaulted" nodes (2:04).

In some situations, this could have not happened because there were only two nodes marked

as "faulted" and two entry/exit nodes with a probability of being faulty superior to 0 but inferior to

1. These nodes and their cost could have not been sufficient to balance a longer alternative path.

Comparing the results of Test H with the ones of Test H’, the difference between the average

execution time was of 1:13. In Test H, the supervisor also had to re-calculate the paths 6.2 times

more.

The difference in the number of re-calculations (6.2 times) is superior to the predicted (4

times). However, that difference does not have a significant meaning.

When it comes to the time difference, 1:13 reveals a significant addition on the duration of

the mission. However, comparing this result with the obtained in Test G (26 seconds), in Test G

not all robots had completed their mission before the Recovery Mode was activated, existing an

overlap between the execution time of the mission and the execution time of the Recovery Mode.

In Test H, all robots had finished their missions, being the resulted time difference, between Test

H and Test H’, exclusively from the Recovery Mode.

It is also important to mention that the new rest station chosen in Test H was located further

away from the current rest station, due to the unavailability of the closest rest stations.

Therefore, the distance difference, between the current rest station and the new rest station,

and the execution of the Recovery Mode not overlapping the execution of the assigned mission,

resulted in the longer execution time of the Recovery Mode in Test H.

5.3 Conclusion

After the implemented system and its most important features have being described in previous

chapters, Chapter 3 and Chapter 4, in this chapter a specific situation was evaluated, resorting all

the features previously implemented and explained.
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Therefore, throughout this chapter, it was presented the approach of the Communication Su-

pervisor Sub-Module to a critical situation.

The situation studied concerned the completion of a robot’s mission inside a communication

fault, resulting in that lost robot being stuck inside the fault until, eventually, communication could

be established.

To solve this situation, a solution denominated Recovery Mode was proposed. This feature of

the Communication Supervisor Sub-Module would be activated after the Central Control Module

determined that all steps of the lost robot had, probably, been completed. This assessment is done

through the estimation of the time taken to complete the number of missing steps, to complete the

mission, at the time that the connection with the robot was lost.

It is expected that the lost robot, after completing its mission inside a fault, realises that it is

inside a fault and removes itself from the fault to the nearest rest station. When the Recovery Mode

is activated, it aims to predict the exit area and the lost robot’s new path (to a new rest station) and

coordinate the rest of the fleet to avoid collisions and deadlocks.

This approach was implemented and tested through two particular tests: Test G and Test H.

Both tests intended to not only evaluate the execution of the Recovery Mode and its effective-

ness in solving the described problem, but also to analyse all the features implemented previously.

Therefore, both tests were also performed without contemplating the induced fault. The results

were analysed and discussed.

The Recovery Mode revealed to have an effectiveness of 100%, taking into account the tests

executed.
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Chapter 6

Conclusions and Future Work

In this chapter, a brief summary of the objectives is presented as well as the implemented ap-

proaches and obtained results. Based on the obtained results, modifications and additional features

to be developed in future work are also proposed.

6.1 Accomplishment of the Described Objectives

The main objective of this dissertation was the implementation of a system capable of planning and

controlling, safely and effectively, a fleet of AGV. To reach this objective, it was needed a multi-

AGV supervisory system capable of being communication failure tolerant, since communication

failures represented a big threat.

By continuing the work previously developed by [9], it was possible to test the developed

approaches in a real environment, since it was only tested in a simulation platform, and adapt

them to the real world’s dynamics. Further developments were also made in order to increase the

safety of the planned paths.

To implement the work previously developed, some modules were added and small scale AGV

were developed.

The overall system comprised different modules. The Central Control Module comprised

the Path Planning Sub-Module and the Supervisor Sub-Module. The implemented system had

to rely on the TEA* algorithm (in the Path Planning Sub-Module) to plan efficient paths for the

robots to accomplish the designated missions and be implemented in Free Pascal language in the

development environment Lazarus. Once the paths were calculated, any alteration needed would

be triggered by the Supervisor Sub-Module.

The supervisor implemented searched for communication faults, delays in the execution of

the missions and deviations in the routes, as initially proposed. In this way, the execution of the

paths was monitored to maintain the temporal efficiency granted by the TEA* and to incorporate

strategies to safely deal with communication faults.

79



80 Conclusions and Future Work

The Planning Supervisor Sub-Module, initially developed by [9], was tested in several situa-

tions in order to explore what triggered the re-calculation of the paths and which factors could be

adjusted to adapt the supervisor to the dynamic of a real environment.

As already mentioned, the main goal of the Communication Supervision Sub-Module was to

detect communication faults and guarantee secure and efficient paths when stable communication

could not be established. To operate accordingly, several situations were tested to observe how the

communication faults were located and their dimension estimated.

An approach was proposed to try to prevent the robots from crossing mapped areas with com-

munication faults. That approach consisted of a dynamic cost on the TEA* to allow the algorithm

to calculate safe routes, avoiding the locations of communication faults. To avoid those locations,

it was incorporated, in the TEA* algorithm, a reliability factor depending on the node. An extra

cost was added to certain nodes, depending on their probability to suffer communication faults.

Through the study of the communication faults’ detection and their impact on the robots’

trajectories, a new feature was added to the Communication Supervision Sub-Module to prevent

robots to be stuck inside communication faults after completing their mission. That feature, Re-

covery Mode, was implemented and tested and revealed to be effective when that problem hap-

pened.

Other critical situations described by [9] were also fixed. The synchronisation of two or more

robots when inside the same fault, at the same time, was guaranteed through the obligation of

executing one step within the time defined. This procedure was applied in the Robot Control

Module and was only followed when communication with the Central Control Module was off.

Although the system exhibits good tolerance to communication faults, further testing is still

needed to discover critical situations and implement additional features.

Some of the results present in this dissertation have been included in a paper accepted in the

"OL2A: International Conference on Optimization, Learning Algorithms and Applications 2021"

conference.

Another paper is already being developed with the obtained results from the validation and

testing of the present work.

6.2 Future Work

During the development of this project, some critical situations, usually caused by communication

faults, were evaluated and approaches were proposed to help the system tolerant those. However,

further testing is needed.

Firstly, it was noticed that the different size of the links affected significantly the synchroni-

sation of the robots. Different link sizes would not allow some of the triggered conditions of the

supervisor to be fair criteria. Therefore, the conception of another map, with strategically located

crossroads, would be a factor to test and evaluate how it would impact the re-calculations of the

paths.
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Also, other critical situations, such as having a robot starting its mission inside a communica-

tion fault, have not been considered yet.

It would also be beneficial to test the already implemented features in an already mapped

graph. For example, the situation of having the system changing an assigned rest station, that

was found to be inside a fault, to another was not tested yet. A feature to solve this problem was

already implemented but it was not possible to test it because rest stations are not mapped unless

a robot completes its mission.

During the test and validation of the Recovery Mode, it was observed a situation where a

robot could not move inside its rest station because it needed to cross an entry/exit node. Since

a robot was inside that fault, all area concerning the fault was locked. To prevent situations like

that, instead of applying a binary semaphore to control the access to faults, a semaphore based

on a time window should be tested. This approach would increase the effectiveness of the system

because it would allow the entry/exit nodes to be unlocked when the probability of the lost robot

being near that area would be insignificant.



82 Conclusions and Future Work



References

[1] Tomás Lozano-Pérez and Michael A. Wesley. An algorithm for planning collision-free paths
among polyhedral obstacles. Commun. ACM, 22(10):560–570, October 1979. URL: https:
//doi.org/10.1145/359156.359164, doi:10.1145/359156.359164.

[2] Franz Aurenhammer. Voronoi diagrams—a survey of a fundamental geometric data struc-
ture. ACM Comput. Surv., 23(3):345–405, September 1991. URL: https://doi.org/
10.1145/116873.116880, doi:10.1145/116873.116880.

[3] Steven M. LaValle. Planning Algorithms. Cambridge University Press, 2006. doi:10.
1017/CBO9780511546877.

[4] Pedro L. C. Gomes da Costa. Planeamento Cooperativo de Tarefas e Trajectórias em Múlti-
plos Robôs. PhD thesis, Faculdade de Engenharia da Universidade do Porto, 2011.

[5] Joo Young Hwang, Jun Song Kim, Sang Seok Lim, and Kyu Ho Park. A fast path planning
by path graph optimization. IEEE Transactions on Systems, Man, and Cybernetics - Part A:
Systems and Humans, 33(1):121–129, 2003. doi:10.1109/TSMCA.2003.812599.

[6] UNSW Computing. Methods of Search. URL: http://www.cse.unsw.edu.au/
~billw/Justsearch.html [last accessed 2021-01-29].

[7] Joana Santos, Pedro Costa, Luís Rocha, Kelen Vivaldini, A. Paulo Moreira, and Germano
Veiga. Validation of a time based routing algorithm using a realistic automatic warehouse
scenario. In Luís Paulo Reis, António Paulo Moreira, Pedro U. Lima, Luis Montano, and
Victor Muñoz-Martinez, editors, Robot 2015: Second Iberian Robotics Conference, pages
81–92, Cham, 2016. Springer International Publishing.

[8] Joseph J.M. Evers and Stijn A.J. Koppers. Automated guided vehicle traf-
fic control at a container terminal. Transportation Research Part A: Policy
and Practice, 30(1):21 – 34, 1996. URL: http://www.sciencedirect.
com/science/article/pii/0965856495000119, doi:https://doi.org/10.
1016/0965-8564(95)00011-9.

[9] Diogo M. R. Matos. Multi AGV Coordination Tolerant to Communication Failures. Master’s
thesis, Faculdade de Engenharia da Universidade do Porto, 2020.

[10] G. Ullrich. Automated Guided Vehicle Systems. Springer, Berlin, Heidelberg, Second edition,
2015. doi:10.1007/978-3-662-44814-4.

[11] Grand View Research. Automated Guided Vehicle Market Size, Share & Trends Anal-
ysis Report By Vehicle Type, By Navigation Technology, By Application, By End-use

83

https://doi.org/10.1145/359156.359164
https://doi.org/10.1145/359156.359164
http://dx.doi.org/10.1145/359156.359164
https://doi.org/10.1145/116873.116880
https://doi.org/10.1145/116873.116880
http://dx.doi.org/10.1145/116873.116880
http://dx.doi.org/10.1017/CBO9780511546877
http://dx.doi.org/10.1017/CBO9780511546877
http://dx.doi.org/10.1109/TSMCA.2003.812599
http://www.cse.unsw.edu.au/~billw/Justsearch.html
http://www.cse.unsw.edu.au/~billw/Justsearch.html
http://www.sciencedirect.com/science/article/pii/0965856495000119
http://www.sciencedirect.com/science/article/pii/0965856495000119
http://dx.doi.org/https://doi.org/10.1016/0965-8564(95)00011-9
http://dx.doi.org/https://doi.org/10.1016/0965-8564(95)00011-9
http://dx.doi.org/10.1007/978-3-662-44814-4


84 REFERENCES

Industry, By Component, By Battery Type, By Region, And Segment Forecasts, Febru-
ary 2020. URL: https://www.grandviewresearch.com/industry-analysis/
automated-guided-vehicle-agv-market [last accessed 2021-01-21].

[12] Chris Benevides. The Advantages and Disadvantages of Automated Guided Vehicles
(AGVs), October 2020. Updated on January 5th, 2021. URL: https://www.conveyco.
com/advantages-disadvantages-automated-guided-vehicles-agvs/ [last
accessed 2021-01-21].

[13] Andre Clayton. 4 Benefits of Industrial AGVs in Manufactur-
ing, December 2018. URL: https://blog.pepperl-fuchs.us/
4-benefits-of-industrial-agvs-in-manufacturing [last accessed 2021-
01-21].

[14] Alex S. Fukunaga Y. Uny Cao and Andrew Kahng. Cooperative Mobile Robotics:
Antecedents and Directions. Autonomous Robots, 4:7–24, 1997. doi:10.1023/A:
1008855018923.

[15] M. Bader, A. Richtsfeld, W. Holl, M. Suchi, G. Todoran, and M. Vincze. Balancing Cen-
tralised Control with Vehicle Autonomy in AGV Systems for Industrial Acceptance. Pro-
ceedings 11th International Conference on Autonomic and Autonomous Systems (ICAS),
May 2015.

[16] C. Liu, J. Tan, H. Zhao, Y. Li, and X. Bai. Path planning and intelligent scheduling of
multi-agv systems in workshop. In 2017 36th Chinese Control Conference (CCC), pages
2735–2739, 2017. doi:10.23919/ChiCC.2017.8027778.
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