
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

CONGRATS – Convolutional Networks
in GPU-based Reliability Assessment of

Transmission Systems

Rodrigo Gonçalves de Morais

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Professor Vladimiro Henrique Barrosa Pinto de Miranda, Ph.D.

Second Supervisor: Leonel de Magalhães Carvalho, Ph.D.

July 24, 2021

© Rodrigo Morais, 2021

Resumo

A Simulação Monte Carlo é uma técnica bem conhecida e utilizada em estudos de fiabilidade de
sistemas de energia porque pode incluir as particularidades do sistema de energia, principalmente
o seu comportamento estocástico e a incerteza sobre a carga. No entanto, o tempo computacional
requerido pela simulação é elevado, especialmente quando os sistemas são extremamente fiáveis
e os estudos incluem o sistema de transmissão. Neste último caso, é necessário um procedimento
complexo envolvendo vários algoritmos, que consomem muito tempo, para avaliar se os sistemas
de transmissão operam dentro dos seus limites técnicos.

O principal objectivo desta dissertação é aplicar uma técnica de Deep Learning, Convolu-
tional Neural Network (CNN), treinada em GPU, à simulação de Monte Carlo para estudos de
fiabilidade em sistemas de energia (incluindo a geração e transmissão) e verificar a relevância
desta abordagem em termos de eficiência temporal.

Para atingir o objectivo proposto, a Convolutional Neural Network foi treinada para classificar
instantaneamente os estados operacionais do sistema relativamente à perda de carga. A CNN é
testada num pequeno conjunto de amostras com resultados encorajadores. Mais tarde, a CNN
é aplicada à simulação de Monte Carlo. A estratégia desenvolvida, MCS-CNN, é utilizada para
avaliar a fiabilidade do sistema IEEE RTS 79, considerando a simulação não sequencial e sequen-
cial.

i

ii

Abstract

The Monte Carlo Simulation is a well-known technique used in power system reliability studies
because it can include the particularities of the power system, mainly his stochastic behaviour and
uncertainty on the load. The flaw in this method is the computational time required by the sim-
ulation, especially when systems are highly reliable and studies include the transmission system.
In the latter case, a complex procedure involving several time-consuming algorithms is needed to
assess if transmission systems operate under its operational limits.

The main goal of this dissertation is to apply a deep learning technique, Convolutional Neural
Network (CNN), trained in GPU, to the Monte Carlo Simulation for composite (generation and
transmission) reliability assessment studies and verify the relevance of this approach in terms of
time efficiency.

To accomplish the proposed goal, a Convolutional Neural Network was trained to instantly
classify operational system states based on the loss of load. This network is tested on a small set
of samples with encouraging results. Later, CNN is applied to Monte Carlo Simulation. The devel-
oped strategy, MCS-CNN, is used to assess the reliability of the IEEE RTS 79 system, considering
non-sequential and sequential simulation.

iii

iv

Acknowledgments

I would like to begin this acknowledgement section by thanking Professor Doctor Vladimiro Mi-
randa for his encouragement, key insights and the opportunity to work on such an exciting theme.
To Doctor Leonel Carvalho and Engineer Inês Alves, I express my appreciation for all the valuable
contributions to the work developed.

A special mention goes to my girlfriend Francisca for her presence, understanding, motivation
and, most of all, her love.

Finally, I would like to express my extreme gratitude to my parents and my brothers. Their
unconditional support and love was crucial during this five years journey.

Rodrigo Morais

v

vi

"No muscles without strength,
friendship without trust,

opinion without consequence,
change without aesthetics,

age without values,
life without effort,

water without thirst,
food without nourishment,

love without sacrifice,
power without fairness,

facts without rigor,
statistics without logic,

mathematics without proof,
teaching without experience,

politeness without warmth,
values without embodiment,

degrees without erudition,
militarism without fortitude,

progress without civilization,
friendship without investment,

virtue without risk,
probability without ergodicity,

wealth without exposure,
complication without depth,

fluency without content,
decision without asymmetry,

science without skepticism,
religion without tolerance,

nothing without skin in the game."

Nassim Nicholas Taleb, in Skin in the Game: Hidden Asymmetries in Daily Life

vii

viii

Contents

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Objectives . 2
1.3 Dissertation Outline . 2

2 Power System Reliability 3
2.1 Adequacy and Security . 3
2.2 Functional Zones and Hierarchical levels . 4
2.3 Reliability Assessment Methods . 5

2.3.1 Analytical Methods . 6
2.3.2 Simulation Methods . 6
2.3.3 Confidence Intervals . 8

2.4 Reliability Indices for HLII studies . 8
2.5 Non-Sequential Monte Carlo Simulation for Reliability Assessment 9

2.5.1 Component State . 9
2.5.2 Load Model . 10
2.5.3 Indices Estimation . 11

2.6 Sequential Monte Carlo Simulation for Reliability Assessment 11
2.6.1 Component State . 11
2.6.2 Load Model . 11
2.6.3 Indices estimation . 12

2.7 Evaluation Stage . 13

3 Acceleration of Monte Carlo Simulation for Reliability Assessment 15
3.1 Mathematical approaches . 16

3.1.1 Importance Sampling . 16
3.1.2 Cross Entropy Method . 17

3.2 Parallel Implementation of Monte Carlo Simulation 17
3.3 Pattern Recognition Techniques . 18

4 Convolutional Neural Networks 19
4.1 Artificial Intelligence, Machine Learning and Deep Learning 19
4.2 Convolutional Neural Networks . 20

4.2.1 CNN applications on non image data and Power Systems 22
4.3 CNN’s training on GPU . 22
4.4 TensorFlow, Keras and Google Colab . 23

ix

x CONTENTS

5 Loss of Load Classifier based on CNN 25
5.1 Data Harvesting . 25

5.1.1 Test System . 25
5.1.2 Data Set Considerations . 27

5.2 Data Preprocessing . 28
5.3 CNN’s Training Process . 30
5.4 Classification Stage . 32
5.5 Pattern Extraction Stage . 35
5.6 Input Structure and CNN Architecture . 36

5.6.1 Models Performance Evaluation . 37
5.7 Final Remarks . 40

6 Methodology for Monte Carlo Simulation Composite System Reliability Assessment
based on CNN 41
6.1 Non-Sequential Monte Carlo Simulation . 41
6.2 Sequential Monte Carlo Simulation . 42
6.3 Evaluation Stage . 43

6.3.1 Transmission Grid Configuration . 43
6.3.2 Generation Dispatch . 45
6.3.3 DC Power Flow . 46
6.3.4 Optimal DC Power Flow . 47

6.4 The Monte Carlo-CNN Simulation for Composite System Reliability Assessment 47
6.4.1 Sampling stage . 48
6.4.2 CNN application to the MCS process 50

7 Results 53
7.1 IEEE RTS 79 with an annual load curve constant at 2850 MW (Modified IEEE

RTS 79) . 53
7.1.1 Non-Sequential Simulation . 53
7.1.2 Sequential Simulation . 55

7.2 IEEE RTS 79 with original load curve (IEEE RTS 79) 56
7.2.1 Non-Sequential Simulation . 56
7.2.2 Sequential Simulation . 57

7.3 Comments . 58

8 Conclusion and Future Work 61

References 63

List of Figures

2.1 Division of Power System Reliability [1] . 3
2.2 Hierarchical Levels [1] . 4
2.3 Evolution of the functional zones [2] . 5
2.4 Normal Distribution N(0,1) with three standard deviations represented [3] 8
2.5 Two state Markov model for components . 10
2.6 Example of a daily peak load variation curve obtained with load values from IEEE

RTS case . 10
2.7 Example of component "Up-Down" cycle obtained at the end of sampling process 12

3.1 MCS stages [4] . 15

4.1 Relationship between AI, ML and DL and their evolution through years [5] . . . 19
4.2 Visual representation of an artificial neuron used on neural networks[6] 20
4.3 Representation of convolutional layer and a convolutional operation [7] 21
4.4 Example of an architectural Structure of a CNN (LeNet-5), where is possible to

identify the principal layers: Convolutional, pooling and fully connected layer [8] 22
4.5 Illustrative diagrams of serial programming and parallel programming [9] 23

5.1 Annual Peak Load Variation Curve . 26
5.2 IEEE Reliability Test System [10] . 27
5.3 Forward Pass and Back Propagation, essential processes on training deep learning

models . 31
5.4 An example of a MLP with one hidden layer, similar to the one used on the Loss

of Load Classifier [11] . 32
5.5 Logistic sigmoid function, p(x) is represented on vertical axis and x is the input

values [12] . 33
5.6 Gradient descent procedure concept applied to a cost function [13] 34
5.7 Diagram representing the iterative training process of the classification phase . . 35
5.8 Convolutional layers training approach . 35
5.9 Diagram representing the iterative training process of the pattern extraction phase 36
5.10 Representation of matrix A . 37
5.11 Representation of Matrix B . 37

6.1 Stages of the proposed method . 48
6.2 Sampling State routine . 49
6.3 Diagram representing the two methods: the classic MCS (left) and the method

proposed, MCS-CNN (right) . 51

xi

xii LIST OF FIGURES

List of Tables

4.1 CPU vs GPU [14] . 23

5.1 Generation System for IEEE RTS 79 . 25
5.2 Transmission System for IEEE RTS 79 . 26
5.3 Absolute and Relative Variation between the original f.o.r and the CE f.o.r (high-

lighted results represent the chosen plants) . 30
5.4 Developed models with 64 filters in each convolutional layer 39
5.5 Developed models with 8 filters in each convolutional layer 39
5.6 Classification performance for each model in the test set 39

7.1 Non-Sequential results for Modified IEEE RTS 79 with β ≤ 5% 54
7.2 Non-Sequential results for Modified IEEE RTS 79 with β ≤ 1% 54
7.3 Process Time Analysis for Non-Sequential Modified IEEE RTS 79 55
7.4 Sequential results for Modified IEEE RTS 79 with β ≤ 5% 56
7.5 Sequential results for Modified IEEE RTS 79 with β ≤ 1% 56
7.6 Average Time (in minutes) spent to analyse a whole year for β ≤ 5% and β ≤ 1%

(Modified IEEE RTS 79) and Process time acceleration provided by SMCS-CNN
in relation to SMCS . 56

7.7 Non-Sequential results for IEEE RTS 79 with β ≤ 5% 57
7.8 Non-Sequential results for IEEE RTS 79 with β ≤ 1% 57
7.9 Process Time Analysis for Non-Sequential IEEE RTS 79 57
7.10 Sequential results for IEEE RTS 79 with β ≤ 5% 58
7.11 Average Time (in minutes) spent to process a whole year for β ≤ 5% (IEEE RTS

79) and Process time acceleration provided by SMCS-CNN in relation to SMCS . 58

xiii

xiv LIST OF TABLES

Abbreviations

ANN Artificial Neural Network
API Application Programming Interface
CNN Convolutional Neural Network
CE Cross Entropy
CPU Central Process Unit
EENS Expected Energy Not Served
EPNS Expected Power Not Supplied
f.o.r Forced Outage Rate
GPU Graphics Processing Unit
HL0 Hierarchical Level 0
HLI Hierarchical Level I
HLII Hierarchical Level II
HLIII Hierarchical Level III
IEEE RTS 79 IEEE Realibility Test System
LOLE Loss of Load Expectation
LOLF Loss of Load Duration
LOLP Loss of Load Probability
MCS Monte Carlo Simulation
MTTF Mean Time to Failure
MTTR Mean Time to Repair
NSMCS Non-Sequential Monte Carlo Simulation
OPF Optimal Power Flow
SMCS Sequential Monte Carlo Simulation

xv

Chapter 1

Introduction

1.1 Context and Motivation

From storing food, communicating with family, and performing financial transactions, nearly ev-

ery facet of modern life depends on electricity. It is a central and fundamental pillar to society.

Electric Power systems are responsible for responding to load demand and thus keeping soci-

ety moving. Reliability studies have a predominant role on assessing the power system’s inherent

risks. However, recent changes in electric grid structure have shifted the way reliability is seen.

The electric system is transitioning from a centralised and fossil-fuelled generation to a decen-

tralised structure composed of small generators powered by renewable sources. Now, reliability

studies have to consider the stochastic behaviour of these renewable energy sources in addition the

forced outage rate of system components and load demand uncertainties. Also, as the power sys-

tem grows in complexity, a more robust set of informative reliability indices needs to be calculated,

and these studies are often repeated many times.

As a result of this changing paradigm, Monte Carlo Simulation arises as a valuable method in

the field of power system reliability because of its capability to incorporate the behaviour of the

modern power system. MCS can compute various reliability indices such as Loss of Load Proba-

bility and Loss of Load Expectation. When considering chronological modelling, frequency and

duration indices can be calculated. Despite all this, the time required to obtain accurate estimations

with this method remains his most significant drawback.

Techniques such as Importance Sampling [15] were developed and successful in reducing the

overall process time by shortening the number of iterations needed to complete the simulation.

Deep learning methodologies have found their way in many areas, and power system reliability

is no exception. Artificial Neural networks were applied to Monte Carlo simulation for reliability

assessment [16] to decrease the computational effort required for the simulation on sample evalu-

ation. Convolutional neural networks are typically used in image processing, and their ability on

pattern recognition makes them attractive to be also applied on MCS.

This dissertation aims to develop a method to speed up Monte Carlo Simulation for Composite

system reliability assessment based on Convolutional Neural Networks, trained on GPU.

1

2 Introduction

1.2 Objectives

The main goal in this dissertation is to implement a Convolutional Neural Network in Monte Carlo

process for reliability assessment studies.

To achieve this goal the following objectives will be set:

• Definition of a "Loss of Load Classifier" based on CNN capable of accurately determine,

given the system operational information, if a system can supply the load demand. This

classifier will be the building block of the thesis.

• Implement the trained classifier in Monte Carlo Simulation, MCS-CNN;

• Assessment of the composite reliability of electric systems using both models, the classic

MCS and the developed MCS-CNN, and considering non-sequential and sequential simula-

tion;

1.3 Dissertation Outline

The present thesis is composed by eight chapters (including this Introduction).

Chapter 2 provides an introduction to electric power systems reliability and concepts that

outline the theorical methodology for Monte Carlo Simulation.

Chapter 3 addresses the state of the art techniques used to accelerate Monte Carlo simulation

processes.

Chapter 4 provides information about deep learning and its place in the chain of Artificial

Intelligence. The intuition behind Convolutional Networks is addressed, and the frameworks used

to implement it in this thesis are presented.

In Chapter 5 details related to construction, training and testing of the developed classifier are

documented. Information about the system data used to obtain samples for network training and

data preprocessing are also mentioned.

Chapter 6 reports the methodology used on Monte Carlo composite system reliability assess-

ment. The integration of a Convolutional Network in Monte Carlo simulation is explained.

In Chapter 7 results of the algorithms implementation, defined in the previous chapter, are

presented and discussed. Two variations of the IEEE RTS 79 are used to assess the performance

of the proposed method in comparison with crude versions of Monte Carlo Simulation.

Finally, on Chapter 8 a conclusion about the work carried out in this thesis and suggestions

for future upgrades are presented.

Chapter 2

Power System Reliability

This chapter provides essential definitions of power system reliability and theoretical information

about the concepts behind Monte Carlo simulation.

2.1 Adequacy and Security

Reliability studies on Power Systems evaluate if a system can perform its intended function ad-

equately, supplying the load demand without interruptions. Given the complexity of the power

system, reliability studies are divided into two fundamental fields: Adequacy and Security [1].

Figure 2.1: Division of Power System Reliability [1]

Adequacy is related to the existence of sufficient resources to meet the load demand and op-

erational constrains [1]. These resources include the generation, transmission and distribution

equipment needed to supply the electric energy to consumers. Shortly, adequacy refers to the

static conditions of the system.

Security is linked with the ability of the system to respond to dynamic or transient disturbances

that might arise within it [1]. The origin of these disturbances may be due to natural phenomena

such as lightning. However, most of them are caused by internal events like load switching, breaker

switching, fuse disconnection, short-circuit, and islanding [17].

Assessing security reliability of a system is an arduous task on account of the complexity to

model dynamic behavior of the electric power systems [18].

3

4 Power System Reliability

2.2 Functional Zones and Hierarchical levels

Modern electric power systems are complex. Its extensive structures can be described with various

levels of detail, allowing different system component representations and techniques for reliability

adequacy assessment studies.

Typically, a power system is seen as a threefold system composed of Functional Zones: Gen-

eration, Transmission and Distribution. This division is relevant since most utilities are either

divided into these zones for organization, planning, operation and analysis or are solely responsi-

ble for one of these functions [1].

The functional zones can be combined and organized into hierarchical levels, represented in

Figure 2.2. Adequacy studies can be conducted in each functional zone or on hierarchical levels.

Figure 2.2: Hierarchical Levels [1]

Hierarchical Level I (HLI) is related to generation facilities, and the purpose of adequacy

studies on this level is to determine the capability of the system generation to meet the total system

demand [1].

Hierarchical Level II (HLII) includes generation and transmission components, and adequacy

assessments aim to determine the ability to supply the bulk consumption points [1]. This disserta-

tion is focused on HLII adequacy assessment.

Lastly, Hierarchical Level III (HLIII) comprises all functional zones. Adequacy studies on this

level evaluate the overall system adequacy however due to the extensive dimension of the power

system, this studies are not usually conducted since it would require a vast computation time and

effort [1]. Alternately, adequacy assessment of distribution functional zone is done separately

assuming approximate models from the rest of functional zones.

2.3 Reliability Assessment Methods 5

In the last decades, hierarchical level (HL) concept have been adjusted mainly due to important

changes in the power industry [2]. A new functional zone, Energy (HL0 on figure 2.3), was added

to take into account the renewable sources of energy [2] which are defined by their intermittence

and variability on the contrary to classic non-renewable generation units, where primary resources

are always available.

Figure 2.3: Evolution of the functional zones [2]

2.3 Reliability Assessment Methods

Nowadays, the use of probabilistic methods in power systems reliability assessment is consen-

sual [19]. Data related to components behaviour such as failures and outage duration is collected

and processed to create statistical measures and indices later used in reliability studies.

In this scope, two main categories define the techniques used: analytical and simulation.

Analytical techniques represent the system by mathematical models and can calculate the exact

value of reliability indices. These techniques were highly developed, and many technical papers

and books are dedicated to these methods [20] [21].

Simulation methods like the Monte Carlo Simulation, on the other hand, estimate the reliability

indices and their confidence interval by simulating the random behaviour of the system [22]. The

6 Power System Reliability

evolution of computation and the development of accessible and more powerful computers made

these methods popular for power system reliability assessment.

Both methods can be used to execute reliability studies. However, with simulation methods,

the system can be studied without "building it", which can be advantageous when power systems

are vast and complex. On the downside, simulation time to retrieve accurate estimations can be

vast and discouraging.

2.3.1 Analytical Methods

Analytical methods rely on an extensive analysis of all possible system states, therefore obtaining

the probability density function of all system states. Then, reliability indices can be calculated

according to equation 2.1 [23].

E[H(x)] = ∑
x∈A

H(x)p(x) (2.1)

On equation 2.1, x is a system state, A is the set of all system states, p(x) is the probability of

the system state x and H(x) is the output of the test function H for the considered reliability index.

E[H(x)] is the exact value of the reliability index.

Since this method requires an analysis of all system states, the computational effort required

for estimate an index is proportional to the complexity of the power system. As a means to reduce

this effort is common to simplify the set of system states by ignoring the states which possess a

probability inferior to a priori specified value. Truncation based on state probability is not the only

criteria used for this simplification, for instance, first order contingencies or simply knowledge of

the system by the operator can also be contemplated.

Although truncation of state space reduces computational effort this technique can lead to

untrustworthy reliability indices, since there is always the chance that some ignored state, although

unlikely to happen, might be important to the correct assessment of reliability.

2.3.2 Simulation Methods

Simulation methods, like MCS, provide estimates of the reliability indices with an interval of

confidence. The advantage of the MCS is that the number of samples needed to ensure a certain

level of confidence for the estimated indices is not related to the size of the power system but

instead with the variance of the sampled states [22].

Simulation-based methods can be classified according to how system states are sampled. If a

random state space representation is used, then the MCS method is called non-sequential. Con-

versely, when system states are sampled taking into account the events chronology, the method is

called sequential. Nonetheless, methods like quasi-sequential [24] or pseudo-sequential [25] were

developed and present a middle term between chronological and random sampling.

2.3 Reliability Assessment Methods 7

The MCS can be seen as recurrent application of a process called Sampling. It relies on a set

of samples with N dimension inside the space of states and the posterior estimation of its expected

value (equation 2.2) and variance (equation 2.3) [26].

E(X) = ∑
i

p(Xi)Xi =
1
N

N

∑
i=1

Xi (2.2)

V (X) = E
(
[X−E(X)]2

)
=

1
N

N

∑
i=1

(Xi−E(X))2 (2.3)

The equations 2.4 and 2.5 are only valid when working with discrete and finite sets. For

demonstration purposes consider state space as finite set although very large, where multiple N

samples can be retrieved from.

E(X̄) = E

(
1
N

N

∑
i=1

Xi

)
=

1
N

N

∑
i=1

E (Xi) =
1
N

Nµ = µ (2.4)

V (X̄) =V

(
1
N ∑

i
= 1NXi

)
=

1
N2

N

∑
i=1

V (Xi) =
1

N2 Nσ
2 =

1
N

σ
2 (2.5)

Now, consider a random extraction process where a set of N samples is collected and X̄ is the

mean of the collected sample set.

By 2.4, X̄ is an unbiased estimator of the state space mean µ [27].

A variance estimation of state space distribution, according to 2.5 can be obtained by calcu-

lating the variance of X̄ . Keep in mind that the actual variance value of estimator X̄ depends on

the selected samples, however for a larger sample size, a lower variance for X̄ will always be

produced [27].

The convergence of the MCS methods is monitored by the coefficient of variation β of the

reliability indices estimates, and it is calculated according to:

β
2 =

V (X)

Ê(X)2
(2.6)

By rearranging equation 2.6, it is possible to obtain:

N =
V (F)

[β Ê(F)]2
(2.7)

The equation 2.7 highlights an important aspect about the convergence characteristics of the

Monte Carlo Simulation, later used on acceleration techniques described on chapter 3: the varia-

tion coefficient β is related to the number of iterations, concluding that, if one wants to reduce the

number of simulation iterations, the variance of the samples must be reduced.

8 Power System Reliability

2.3.3 Confidence Intervals

As mentioned before, the estimation of reliability indices, done by the MCS, is followed by a

confidence interval, meaning that there will be a given probability that this interval contains the

exact value of the reliability indices. The knowledge of the variance of the samples allows the

estimation of an interval of confidence for the estimated values.

Figure 2.4 represents the probability density function of the normal distribution N(0,1). With

mean µ = 0 and variance σ2 = 1, the symmetrical interval centred in the mean, and with a semi-

width of two standard deviations, corresponds to a probability obtained by the integral of the

distribution between the limits of the interval. Therefore, if an interval associated to 2σ is de-

fined, one may say that the confidence level associated to the statement that a given result may be

inside the interval is α = 95.45%. For σ and 3σ , the confidence level becomes α=68.27% and

α=99.73%, respectively, as seen in figure 2.4.

It is common to take a confidence interval of 95% (1.96σ) rather than 95.45%, and a confi-

dence interval of 99% (2.575σ) instead of 99.73%. The determination of a confidence interval

(CI), for instance considering a confidence interval of 95% is calculated through equation 2.8.

CI(95%) =

[
Ê−1.96

σ̂√
N
, Ê +1.96

σ̂√
N

]
(2.8)

Figure 2.4: Normal Distribution N(0,1) with three standard deviations represented [3]

2.4 Reliability Indices for HLII studies

Reliability indices can be classified into two main categories: predictive or empirical [28]. Predic-

tive indices are determined from information collected, for instance, through simulations where

reliability data from system components is used to portrait the operational, physical and temporal

characteristics of the system in study [28].

Empirical indices, contrarily, are determined from direct observation, such as by collecting

data at the location of interest [28].

2.5 Non-Sequential Monte Carlo Simulation for Reliability Assessment 9

The focus of this thesis is on predictive indices. Within this category, there is also divisions

such :

• Probability and expectation indices: These indices include loss of load probability (LOLP)

and loss of load expectation, expressed in hours (LOLE);

• Frequency and duration indices: These indices indicate the frequency and duration of

reliability events, and includes loss of load frequency (LOLF) and loss of load duration

(LOLD);

• Severity Indices: These indices convey the severity of reliability indices [28], and includes,

for instance, expected power not served (EPNS), expressed in MW per year and expected

energy not served (EENS), expressed in MWh per year;

The above indices constitute probabilistic measures of the system reliability. Depending on the

hierarchical level of study, is common to find different designations for this indices. The presented

indices are used for composite reliability assessment (HLII studies).

2.5 Non-Sequential Monte Carlo Simulation for Reliability Assess-
ment

In non-sequential MCS, system states are sampled by taking “snapshots” of its stochastic behavior,

hence without considering any time-dependency between consecutive states. A system state is

composed by the combination of all system components and the load state.

2.5.1 Component State

Each component state can be determined by sampling the probability that the component appears

in that state [22]. A more detailed description of the algorithm behind the components state sam-

pling is presented in Chapter 6.

The component model can be described by a two state Markov chain, as represented in Fig-

ure 2.5. The component’s state is classified as a failure if it is out of service or a success if it is fully

available. The transition between states is modelled by the expected failure rate (λ) and expected

repair rate (µ). These variables are defined by statistical studies, which consider historical data

about the previous failures of the component and the behaviour of similar components.

The probability of a generator to be out of service, also known as forced outage rate (f.o.r), is

given by:

f.o.r =
λ

λ +µ
(2.9)

10 Power System Reliability

Figure 2.5: Two state Markov model for components

On components reliability data is usual to find the the parameters Mean Time to Failure

(MTTF) and Mean Time to Repair (MTTF). These parameters are related to λ and µ by:

MT T F =
1
λ

(2.10)

MT T R =
1
µ

(2.11)

2.5.2 Load Model

The load is modelled by a daily peak load variation curve which represents the cumulative prob-

ability of occurrence of certain load levels over a specified period, usually a year (Figure 2.6).

These load values are obtained through forecasting studies and analyses of the previous series.

Figure 2.6: Example of a daily peak load variation curve obtained with load values from IEEE
RTS case

2.6 Sequential Monte Carlo Simulation for Reliability Assessment 11

2.5.3 Indices Estimation

The reliability indices on non-sequential MCS are estimated according to:

Ê(H(X)) =
1
N

N

∑
i=1

H (xi) (2.12)

where xi is a sampled system state, N is the number of states, H(Xi) is the output of the test

function H for each sampled system state and Ê(H(X)) is the value estimated for a given reliability

index that is defined by H.

An example of a test function used to calculate LOLP would be:

HLOLP(xi) =

1, if failure state.

0, if sucess state.
(2.13)

2.6 Sequential Monte Carlo Simulation for Reliability Assessment

In sequential MCS the state duration sampling approach is used. In this approach, chronological

component state transition processes are sampled for all components. The chronological system

state is created by combination of the chronological components state transitions [22].

2.6.1 Component State

Considering the two state component Markov model (2.5) and assuming that the operation and

repair state duration distribution functions of the components are exponential [22], the residence

time in the success and failure states ("Up" and "Down", respectively) is given by:

TU p =−
1
λ

lnU1 (2.14)

TDown =−
1
µ

lnU2 (2.15)

where TU p is the residence time where component is in service and TDown the residence time

where is out of service. U1 and U2 are uniformly distributed random numbers between [0,1].

When simulation time achieves the last hour of the yearly simulation, sampling process ends,

and an "Up-Down" cycle of the component is obtained like the one presented in Figure 2.7. A

more detailed view of the algorithm developed for this phase is described on chapter 6.

2.6.2 Load Model

The load is modelled using a chronological representation that contains a load level for each hour

of the year. The sequential MCS method follows chronologically these loads steps as the simula-

tion progresses.

12 Power System Reliability

Figure 2.7: Example of component "Up-Down" cycle obtained at the end of sampling process

2.6.3 Indices estimation

The estimation of reliability indices in Sequential MCS is done by:

Ê[H(X)] =
1

NY

NY

∑
i=1

H (xn)
Si
n=1 (2.16)

where xn is the sequence of system states x over the period i and NY is the number of years

simulated.

Similar to the non-sequential MCS, the test function H can take various forms depending on

the intended reliability index. On sequential MCS it is possible to calculate duration and frequency

indices (LOLD and LOLF).

LOLE and EENS will be the estimated indices in this thesis and their estimation follows equa-

tions 2.17 and 2.18, respectively.

LOLE =
1

NY

NY

∑
n=1

NHY

∑
i=1

H (Xin) (2.17)

EENS =
1

NY

NY

∑
n=1

NHY

∑
i=1

H (Xin)× (Cin−Li) (2.18)

Where H(Xi) is equal to the one presented in 2.13 , Ci is the total capacity of state Xi and Li is

the total load.

2.7 Evaluation Stage 13

2.7 Evaluation Stage

The evaluation stage is a crucial part of the MCS simulation. When composite reliability studies

(HLII) are considered, it is the most complex part of the MCS process since it can include several

algorithms.

On generation capacity assessment studies (HLI) this stage is simple because one just needs to

verify if the generated capacity is sufficient to supply the load. If not, there is load curtailment, and

its magnitude is calculated by the difference between the load demand and the available generation.

However, this thesis relates to the HLII reliability assessment. Therefore, the transmission

system is also considered, meaning that the limits and reliability data of transmission components

are held into account. In this case, the evaluation procedure can be divided into four steps. The

first step is regarding the detection of islands in the system. Then the load demand of the system

is assigned to the available generation units by a process called generation dispatch. Afterwards,

a Power Flow is computed to assess if operational limits of the components are respected. If

limits are violated, an Optimal Power flow is used to apply corrective measures and if it is the

case, determine the minimum load curtailment.

Details regarding the algorithm used for this phase are presented in chapter 6.

14 Power System Reliability

Chapter 3

Acceleration of Monte Carlo Simulation
for Reliability Assessment

Monte Carlo Simulation can be used to provide estimation of the reliability indices with a required

level of precision and its simplicity makes it useful for extensive and complex power system relia-

bility studies. However, when the system in question is very reliable these method requires a long

time to converge, especially when higher levels of precision are required.

The MCS can be considered as threefold process as presented on Figure 3.1 where the vital

stages are: State Sampling, State Evaluation and Index Calculation.

Figure 3.1: MCS stages [4]

Depending on the type of MCS process and the reliability studies category, these stages can

take a considerable amount of time, affecting the overall time of the process. For instance, in

sequential MCS, the state selection phase is time-consuming, and the evaluation phase becomes

computationally intensive when reliability studies contemplate transmission systems.

Several techniques were developed with the purpose to reduce time burden of this stages, based

on different concepts and generically can be be divided into two groups: Mathematical approaches

15

16 Acceleration of Monte Carlo Simulation for Reliability Assessment

and Pattern Recognition Techniques. The parallel implementation of MCS, constitutes also an

approach to accelerate the MCS process. These techniques are briefly described in the following

sections.

3.1 Mathematical approaches

Variance Reduction techniques are mathematical approaches that aim to reduce the variance

between samples and consequently decrease the number of samples needed to complete the sim-

ulation while maintaining the same precision and without altering the expected value of the esti-

mated index. Various techniques for variance reduction have been developed such as Importance
Sampling [15], control variates [29] and antithetic variates [30]. In the following section, Im-

portance Sampling (IS) and its application on Cross Entropy Method (CE) is described.

3.1.1 Importance Sampling

Importance sampling methodology is based on the distortion of the probability distribution of x,

and consequently of H(x) in order to raise the probability of relevant events (in this case events

that lead to load curtailment).

As stated before, the probabilistic analysis of a power system can be seen as the expected value

determination of a test function of the system H(x) such that:

E(H) = ∑
x∈X

H(x) ·p(x) (3.1)

Where p(x) is the probabilistic distribution from where samples are obtained.

By multiplying and dividing the right member of the expected value in equation 3.1 by a new

distribution function p∗:

E(H) = ∑
x∈X

H(x)p(x)
p∗(x)

p∗(x) = E (H∗) (3.2)

It is possible to obtain a new function of test H∗ given by:

H∗(x) =
H(x)p(x)

p∗(x)
(3.3)

The expected value of both test functions remains the same but the variance of H∗ is not

necessarily the same. However, in reality, p∗ is not known. Fortunately, if an approximate function

Z(x) is defined it is possible to derive an approximation p′ to the optimal importance distribution

p∗:

p′(x) =
Z(x)p(x)

E(Z)
(3.4)

3.2 Parallel Implementation of Monte Carlo Simulation 17

From which:

E(H) = ∑
x∈X

F(x)
Z(x)

E(Z)p′(x) (3.5)

Then the expected value of H can be estimated by:

Ê(H) =
1

N∗
N∗

∑
i=1

H
(
xi
)

Z (xi)
E(Z) (3.6)

The vectors xi are sampled according to p′(x). The efficiency of this process depends on the

relationship between H(x)
Z(x) , the knowledge kept on the function Z allows the reduction of variance

of the Monte Carlo process.

3.1.2 Cross Entropy Method

The previous section showed the importance of the relationship between H(x)
Z(x) . Function Z(x),

which is an approximation of p′ must be "close" to the optimal importance distribution p∗ to

achieve a substantial reduction in variance.

The cross-entropy (CE) method is an adaptive importance sampling procedure for the esti-

mation of rare-event probabilities that uses the cross-entropy or Kullback–Leibler divergence as

a measure of closeness between two sampling distributions and can be used for estimation and

optimization [31] [32]. In this case, the parameters to be optimized are the system components

forced outage rates and since the distribution of this variables belongs to the exponential fam-

ily, the CE method can be applied [33]. The outcome of this method will be the distorted for of

each component favouring the loss of load cases that can be used directly in Importance Sampling

method [33] [34].

3.2 Parallel Implementation of Monte Carlo Simulation

This technique comprises the division of MCS process into smaller tasks that can be executed

simultaneously (parallel processing).

The work developed in [26] and [35] takes advantage of parallel computing using a GPU to

speed up routines of the MCS process. The sampling stage is time-consuming in MCS process

because state sampling occurs in serial mode (one after another). Applying parallel computing can

reduce significantly the time spent on this stage, especially when sequential sampling is required.

It is also possible to apply this technique to the evaluation stage of MCS since it comprises

continuously repeated matrix operations. However, a detailed study is necessary to analyse the

routines suitable for parallelisation. In HLI studies, parallelisation in the evaluation stage is easily

achieved since it only requires a comparison between the available generation and load demand.

On the other hand, in HLII studies, a complex algorithm composed of optimisation tools is neces-

sary and can be hard to implement in a parallel way.

18 Acceleration of Monte Carlo Simulation for Reliability Assessment

3.3 Pattern Recognition Techniques

Deep learning algorithms have found application in many areas, and power system reliability is no

exception.

On [16] a methodology for reliability evaluation of composite generation and transmission

systems, based on non sequential Monte Carlo Simulation and Polynomial Neural Networks

(GMDH), is described. GMDH is trained and used to identify system states with no load cur-

tailments (success states). This way, only the states not identified as success states are evaluated

by the MCS evaluation phase, thus reducing the overall simulation time.

Similar to the approach developed in this thesis, a Convolutional Neural Network (CNN) was

applied on [36] to the non-sequential MCS. The application of this deep learning method aims,

like the GMDH, to classify a system state instantly, thus reducing the number of samples analysed

by the MCS evaluation phase. Since CNN is generally used in image processing, organising the

input data in a graphical image is necessary. This way, images of the system are formed, and CNN

can reveal essential patterns to distinguish them between cases of load loss and cases where the

system can respond to the load demand.

Chapter 4

Convolutional Neural Networks

4.1 Artificial Intelligence, Machine Learning and Deep Learning

Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning (DL) are three terms often

perceived and used to refer the same concept. The easiest way to think of their relationship is to

visualize them as concentric circles with artificial intelligence, which is the idea that came first,

then machine learning and finally deep learning, which is driving today’s AI explosion [5]. A

visual map illustrating this relationship is presented on Figure 4.1.

Figure 4.1: Relationship between AI, ML and DL and their evolution through years [5]

Artificial intelligence developments in these few decades are remarkable, and many appli-

cations are revolutionizing areas where solely humans could intervene like healthcare [37], fi-

nance [38] and engineering [39]. In conclusion, AI is a broad term reuniting all the techniques

that aim to reproduce human intelligence.

Machine learning is a first attempt to achieve artificial intelligence by swapping the classical

software routines, written for a specific purpose, with routines trained with many data giving the

19

20 Convolutional Neural Networks

ability to the machine to learn and perform a task. Still, ML algorithms require a lot of hand-coding

and often did not meet the expectations [5].

Deep learning came as a new way to implement machine learning, with algorithms and tech-

niques less prone to error than his ancestor and automated learning. Artificial Neural Networks

(ANNs) are the core of deep learning and are inspired by how the human brain processes infor-

mation through neurons. Many deep learning models were developed on this basis, leading to the

appearance of other methodologies like Deep Neural Networks (DNNs) and Convolutional Neural

Networks (CNNs), which are the core of this dissertation.

4.2 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a deep learning algorithm which can take an in-

put image, assign importance (learn weights and biases) to various aspects/objects in the im-

age and be able to differentiate one from the other. While in machine learning methods, filters

are hand-engineered, a CNN, with enough data and training, have the ability to learn these fil-

ters/characteristics.

The architecture of a CNN aims to replicate the connectivity pattern of neurons in human

brain and is inspired by the organization of the visual cortex where individual neurons respond to

stimulus only in a restricted region of the visual field known as the Receptive Field. A collection

of such fields overlap to cover the entire visual area.

CNNs are characterized by two parts: Pattern Extraction and Classification. For Pattern Ex-

traction, CNNs make use of two fundamental operations, Convolution and Pooling, and in Clas-

sification rely on a fully connected layer to make a correlation between the output neurons of the

pattern extraction stage and the desired targets.

In Figure 4.2 a representation of an "artificial neuron" is presented, where xi inputs are affected

by weights, wi, and a bias, b. The resulting product feeds a function called activation function to

accentuate the neuron features. The most common activation functions are hyperbolic tangent,

sigmoid, and ReLU (Rectified Linear Unit). The choice of a specific function depends on the

nature of the problem and it is usually a process of "trial and error".

Figure 4.2: Visual representation of an artificial neuron used on neural networks[6]

4.2 Convolutional Neural Networks 21

The convolutional layer is the core building block of a CNN, based on convolution operation,

it is where the majority of computation occurs. This layer processes input data through a filter,

and produces features maps [7].

Consider the input data as gray scale image which can be interpreted as a matrix where each

element of it represents a value of a pixel. The filter, also known as kernel, is a steady matrix of

weights with a 2D shape and smaller than the input image. Filter is applied to an area of the input

image, and convolution is calculated between the input pixels and the filter. Convolution operation

is a dot product between the pixels values of the image and filter values.

Afterwards, the filter shifts its position, repeating the process until the kernel has swept across

the entire image. The final output from the series of dot products between input and the filter is

known as a feature map [7].

The weights of the filter remain fixed as it moves across the input, this characteristic is also

known as parameter sharing. As seen in Figure 4.3, feature map value (output array) does not

connect to each pixel value in the input image, instead only connects where the kernel is being

applied, this characteristic is known as local connectivity and it is why convolution layers are also

called "partially connected” layers [7].

Figure 4.3: Representation of convolutional layer and a convolutional operation [7]

The pooling layer, also known as the downsampling layer, is responsible for dimension reduc-

tion of the convolutional layer’s previously obtained feature maps. A kernel swipes the feature

map outputting the maximum value on the area selected by the kernel in pooling operation. This

way, the most representative characteristics in feature maps are preserved while reducing the com-

plexity of the input [7].

In a fully connected layer, in contrast with "partially connected" layers, each "neuron" in

the output layer connects directly to a neuron in the previous layer. In convolution layers, it is

common to use RelU as an activation function. In fully connected layers, softmax function is used

22 Convolutional Neural Networks

to correctly classify the input, producing values between 0 and 1, so that they can be interpreted

as probabilities [40]. It is also possible to use a sigmoid function as activation function in binary

classification problems.

Figure 4.4: Example of an architectural Structure of a CNN (LeNet-5), where is possible to iden-
tify the principal layers: Convolutional, pooling and fully connected layer [8]

4.2.1 CNN applications on non image data and Power Systems

Convolutional Neural Networks are normally applied to image input, for instance the CNN repre-

sented on Figure 4.4, proposed by LeCun et al. [8], was used for handwritten and machine-printed

character recognition. However there is no apparent limitation on the application of this technique

on non image data, since this idea was already explored in distinct areas [41], inclusively on Power

Systems.

In [42] an approach was developed to detect dynamic events in power systems by processing

phasor measurement units (PMU) frequency data through a CNN. The work proved it is possible

to represent a continuous variable, frequency, in an image to feed a CNN model and produce

essential features used to characterize a specific event, like load shedding and generation tripping.

Another recent application of CNNs in power systems is the definition of a topology processor

based on a CNN, capable of accurately determining the connectivity of a line in a certain point

of the grid [43]. In this work, a method to organize power flow results in an image by applying

information theory concepts was developed.

4.3 CNN’s training on GPU

When working with deep learning models, the training phase is the most resource intensive task.

As explained in the previous section, CNN take as input an image, and this input is processed

by the hidden layers through a operation called Convolution. This operation, at his core, is es-

sentially matrix multiplication. CNNs, in general, require many filters because they aim to fully

determine the patterns of an image, meaning that a significant amount of convolution processes

are computed.

CPU (Central Processing Unit), is a core element of any computational device and focuses its

smaller number of cores on individual tasks. By contrast, GPU (Graphic Processing Unit) breaks

4.4 TensorFlow, Keras and Google Colab 23

complex problems into thousands or millions of separate tasks and work them out at once [14], as

illustrated on Figure 4.5 with parallel computing. A summary about both processors characteristics

can be found in Table 4.1.

Table 4.1: CPU vs GPU [14]

CPU GPU
Several cores Many cores
Low latency High throughput

Good for serial processing Good for parallel processing
Can do a handful of operations at once Can do thousands of operations at once

(a) Serial Programming (CPU) (b) Parallel Programming (GPU)

Figure 4.5: Illustrative diagrams of serial programming and parallel programming [9]

The ability to run several processes simultaneously in all cores, such as mathematical opera-

tions like convolution makes GPU a well suited processor to speed up CNN training, especially

when dealing with great amounts of data.

4.4 TensorFlow, Keras and Google Colab

For someone new to deep learning, developing CNN models from scratch in a short period may be

challenging. Luckily there are frameworks like Tensorflow and Keras that simplify this process.

TensorFlow is an end-to-end open-source platform for machine learning. It has a compre-

hensive and flexible ecosystem of tools, libraries and other resources that provide workflows with

high-level APIs [44].

Keras [45] is a high-level API, written in python, that runs on top of TensorFlow, specialized

in deep learning models. Keras is intuitive to use, and because it offers "stock models", the user

can focus on upgrading his "basic model" for the problem to solve and doing a more significant

number of experiments. Also, models developed on this framework are "GPU-friendly", which

means that, for a basic developed model, training can be executed on GPU without the need to

enter in full detail about parallel computing. All this makes Keras the perfect platform choice to

develop, in a fast and easy way, a CNN capable of solving the problem proposed in this thesis.

Google Colab [46] is a product from Google Research. Colab allows writing and executing

arbitrary python code through the browser and is especially well suited to machine learning and

24 Convolutional Neural Networks

data analysis. In this case, Google Colab was not used to execute python code but because it

provides free resources like GPUs, although subject to time constraints. There are many types of

GPUs available on Colab, and there is no way to choose what type of GPU one can connect to at

any given time. However, most of the CNN’s training was done in an Nvidia T4 GPU.

Chapter 5

Loss of Load Classifier based on CNN

This chapter addresses the methodology for a CNN classifier to identify load curtailment states.

The chapter starts with information about the test system, data set considerations, and data

inputs to train the CNN. Secondly, a CNN’s input structure study was conducted to decide which

kind of "image" better organizes the data. Finally, CNN’s training and architecture aspects are

described, and the developed classifier evaluates a test set to collect insights about its performance.

5.1 Data Harvesting

5.1.1 Test System

In this dissertation, the IEEE Reliability Test System (IEEE RTS 79) [10] is considered for com-

posite system reliability assessment and sampled data is collected regarding this system. The sys-

tem has an annual peak load of 2850MW, the total installed generation is 3405 MW, and Figure

5.2 presents the system topology.

The generation system is composed of 14 plants (32 generating units) ranging from 12 to 400

MW. Complete information regarding unit’s number, capacity and reliability data (MTTF, MTTR

and f.o.r) is provided on Table 5.1.

Table 5.1: Generation System for IEEE RTS 79

Type Capacity (MW) N MTTF MTTR f.o.r
Oil 12 5 2940 60 0.02
Oil 20 4 450 50 0.1

Hydro 50 6 1980 20 0.01
Coal 76 4 1860 40 0.02
Oil 100 3 1200 50 0.04

Coal 155 4 960 40 0.04
Oil 197 3 950 50 0.05

Coal 350 1 1150 100 0.08
Nuclear 400 2 1100 150 0.12

25

26 Loss of Load Classifier based on CNN

The transmission network consists of 24 bus locations connected by 38 lines and transformers,

as shown in Figure 5.2. Table 5.2 presents information about the transmission network. Note

that reliability data from the transmission system is not displayed, as, in this thesis, transmission

components are considered in service all the time. Nonetheless, the operational limits of the

network are taken into account (Rating).

Table 5.2: Transmission System for IEEE RTS 79

From
bus

To
Bus

X
(p.u./ 100 MVA base)

Rating
(MVA)

From
bus

To
Bus

X
(p.u./ 100 MVA base)

Rating
(MVA)

1 2 0.0139 175 12 13 0.0476 500
1 3 0.2112 175 12 23 0.0966 500
1 5 0.0845 175 13 23 0.0865 500
2 4 0.1267 175 14 26 0.0389 500
2 6 0.1920 175 15 16 0.0173 500
3 9 0.1190 175 15 21 0.0490 500
3 24 0.0839 400 15 21 0.0490 500
4 9 0.1037 175 15 24 0.0519 500
5 10 0.0883 175 16 17 0.0259 500
6 10 0.0605 175 16 19 0.0231 500
7 8 0.0614 175 17 18 0.0144 500
8 9 0.1651 175 17 22 0.1053 500
8 10 0.1651 175 18 21 0.0259 500
9 11 0.0839 400 18 21 0.0259 500
9 12 0.0839 400 19 20 0.0396 500
10 11 0.0839 400 19 20 0.0396 500
10 12 0.0839 400 20 23 0.0216 500
11 13 0.0476 500 20 23 0.0216 500
11 14 0.0418 500 21 22 0.0678 500

Figure 5.1 describes the annual load curve for 8736 hours of the year per MW basis. This

model accounts for daily, weekly and seasonal patterns characterized in [10]. Training data consid-

ers this load curve, yet, the trained network will also be tested with an annual load curve constant

at the peak of 2850 MW.

Figure 5.1: Annual Peak Load Variation Curve

5.1 Data Harvesting 27

Figure 5.2: IEEE Reliability Test System [10]

5.1.2 Data Set Considerations

Deep learning methodologies commonly divide a data set into three groups: Train, Validation and

Test [47]. Model trains on train set samples. The validation set evaluates the classifier performance

and guides the choices and changes to various model hyperparameters like layers and filters. Fi-

nally, the test set samples evaluate the accuracy of the developed model, thus giving a glimpse of

the model performance on its final use.

Typically, CNN’s solutions are based on extensive image data sets, hence having plenty of

information to train the model. However, when applying the loss of load identification task to

CNN methodology, two problems are considered. One is related to the input structure. The data

28 Loss of Load Classifier based on CNN

collected is purely numerical and does not take an image structure naturally. This issue is debated

in the next section. The other is that data used to train and test this classifier does not simply exist

on databases. Instead, it is generated for this sole purpose and given a specific test system.

A well-structured data set is usually needed to attain a good model performance, an equal

amount of negative and positive samples, if the problem in hands is binary, like this case. Un-

fortunately, obtaining a data set for this specific problem requires computational effort since most

power systems are highly reliable. Thus, it is harder to obtain samples representing a system

operation that leads to loss of load.

The Cross-Entropy method tackles this barrier easing the sampling of loss of load cases. More

information about the importance sampling algorithm and the method used to obtain the data set

are presented in chapter 6.

The composition of each set was decided as:

• Train set: 7500 samples, where 2500 are failure cases (loss of load cases) and 5000 are

success cases (no loss of load cases);

• Validation set: 1000 samples, equally divided into failure and success cases;

• Test set: 1000 samples, equally divided into failure and success cases;

Due to the high time consumed by the developed method to obtain loss of load samples, an

unbalanced training set was settled for this task.

5.2 Data Preprocessing

Data is an essential aspect of a good CNN performance. However, in most cases, data does not

come in an appropriate form to feed the model, and it becomes necessary to prepare it first. Data
Preprocessing is a term used to refer to a combination of several steps that aim to treat data by

making it more accessible for network interpretation.

These steps normally include:

• Data cleaning: to handle repetitions, missing values or noise;

• Data transformation: Normalization and Standardisation of data;

• Data reduction: deals with the dimensionality reduction of the data set, or attribute selection;

Data for training a deep learning model can be composed of many attributes, yet not all at-

tributes are worthwhile to consider depending on the problem’s nature. Given a problem, this

raises the question: how could one find the relevant inputs that lead to a good model performance?

This dissertation focuses on the loss of load event identification on composite generation and

transmission power systems. What variables can lead the model to identify a loss of load event?

There are algorithms in the data preprocessing area, like Principal Component Analysis (PCA),

[48], which aim to reduce the dimensionality of a data set, consequently identifying essential

5.2 Data Preprocessing 29

features for a data class. However, the so-called "engineering judgment" is a straightforward

criterion for choosing the attributes to solve this problem.

The generated data contains many attributes that, when put together, can produce a proper

pattern to distinguish between success and failure states, like system load, available generation

reserve, circuit power flows and equipment outage rates. In this thesis, from the data available,

the chosen attributes are the state of generation units (if they are in service or not), the total

unavailable generation system capacity and the system load demand. Note that attributes related

to the transmission system are not included because it is considered that transmission components

are always available.

The inclusion of all system generation units states may be poorly informative for the present

problem because the failure of higher capacity generators in the system will most likely lead to a

loss of load event than the failure of the ones with lower capacity. Based on the forced outage rate

vector obtained with the Cross-Entropy method, a heuristic was developed to check this reasoning

and find which units are more important for this problem.

The absolute and relative variation between the original f.o.r’s vector and the one obtained with

the CE method are calculated for the proposed principle. Given a threshold, units with variations

above that value are selected.

On Table 5.3, absolute and relative variation results are presented. Note that, the cross entropy

method is a stochastic method for optimization hence the f.o.r obtained for units in the same

group could not be exactly the same, however the results must be analysed relatively to a group of

generators and not individually. To select the most important group of generators the threshold for

absolute and relative variation is fixed at 0.05 and 100%, respectively. Consequently the state of

400, 350, 197 and 155 MW plants is chosen as attributes. By applying this technique, the attribute

dimension space is reduced from 34 (32 generators state, load level and total unavailable system

capacity) to 12 (10 generators state, load level and total unavailable system capacity).

Normalization is another crucial step in the data preprocessing stage. The data normalization

is essential to achieve a good classification performance before the evaluation step since it aims

to standardize the various types of variables to a common scale to make an equal contribution of

each variable [49]. Two popular methods for data normalization are the Z-score and the Min-Max

Normalization. The latter method is used in this dissertation to scale the values to the interval

[0,1], and it is given by the expression:

xscaled =
x−min(x)

max(x)−min(x)
(5.1)

where xscaled is the normalized variable, x the value of the variable, max(x) and min(x), are

the maximum and minimum value that the variable can take, respectively.

Given the nature of the attributes, only the total unavailable capacity and load level are nor-

malized since the attributes related to the state of the generators are categorical and represented as

binary values, thus already inside the considered interval.

30 Loss of Load Classifier based on CNN

Table 5.3: Absolute and Relative Variation between the original f.o.r and the CE f.o.r (highlighted
results represent the chosen plants)

Unit Original f.o.r CE f.o.r Absolute Variation Relative Variation (%)
12 0.02 0.02403 0.00403 20
12 0.02 0.02287 0.00287 14
12 0.02 0.02414 0.00414 21
12 0.02 0.02575 0.00575 29
12 0.02 0.02382 0.00382 19
20 0.1 0.11200 0.01200 20
20 0.1 0.11559 0.01559 16
20 0.1 0.12263 0.02263 23
20 0.1 0.12654 0.02654 27
50 0.01 0.01161 0.00161 16
50 0.01 0.01374 0.00374 37
50 0.01 0.01246 0.00246 25
50 0.01 0.01483 0.00483 48
50 0.01 0.01321 0.00321 32
50 0.01 0.01040 0.00040 4
76 0.02 0.02806 0.00806 40
76 0.02 0.03102 0.01102 55
76 0.02 0.03175 0.01175 59
76 0.02 0.02614 0.00614 31
100 0.04 0.05501 0.01501 38
100 0.04 0.06463 0.02463 62
100 0.04 0.05926 0.01926 48
155 0.04 0.08568 0.04568 114
155 0.04 0.09142 0.05142 129
155 0.04 0.09087 0.05087 127
155 0.04 0.09672 0.05672 142
197 0.05 0.16457 0.11457 229
197 0.05 0.16756 0.11756 235
197 0.05 0.15431 0.10431 209
350 0.08 0.28925 0.20925 262
400 0.12 0.52224 0.40224 335
400 0.12 0.52982 0.40982 342

5.3 CNN’s Training Process

As mentioned in chapter 4, a CNN is composed of a feature extraction stage, comprised of con-

volutional layers, and a classification stage, where a fully connected layer gives meaning to the

information retrieved from the earlier layers. The Loss of Load Classifier, as based on a CNN,

follows the same structure.

On the training process of a deep learning model, hyperparameters like the batch size and the

number of epochs are defined. A hyperparameter is a parameter whose value is used to control

the learning process. By contrast, the values of other parameters, like node weights and filters

5.3 CNN’s Training Process 31

are derived via training. The batch size, defines the number of samples to work through before

updating the internal model parameters [50]. The number of epochs, defines the number times that

the learning algorithm will work through the entire training dataset [50].

To understand the training process of this network is crucial to understand the concepts: For-

ward Pass, Back-propagation and Loss function.

The Forward Pass refers to the calculation of output values from the data inputs. When the

forward pass process reaches the final layer of the CNN (the fully connected layer), the output,

which is a result of the classification task, is compared to the true label of the input. A loss function

calculates a prediction error.

The derivatives of the loss function are then used in the next step, Back Propagation, which

is where all the learning of the network is done. The Back Propagation procedure uses a gradient

descent algorithm to update the weights (in the fully connected layer) and the filters (in convolu-

tion layers). For each batch of data that feeds the network, a training step involving the forward

and backward pass is completed, and the values of weights slowly converge towards a value that

minimises the loss function, thereby producing the best quality predictions.

Figure 5.3: Forward Pass and Back Propagation, essential processes on training deep learning
models

It is also essential to refer to two learning strategies for deep learning algorithms: Supervised

and Unsupervised Learning.

Supervised learning is defined by the use of labelled data pairs to train algorithms. It is su-

pervised since the correct classification of data is known. The train approximates the mapping

function, and when new inputs are fed to the network, an output value is formed accordingly.

Supervised learning methods can be divided into two major groups: Classification, when the out-

put variable is a category, such in this case, Loss of Load or not, or Regression when the output

variable is a real value.

On the other hand, unsupervised learning uses unlabeled data. From that data, it discovers

patterns that help solve clustering or association problems.

Although CNNs are usually seen as a supervised learning procedure, since the filters and

weights are updated concerning labelled data, in this dissertation, the network’s training will in-

volve both methods mentioned above. The following sections will make more explicit how this

train is done.

32 Loss of Load Classifier based on CNN

5.4 Classification Stage

As stated before, CNNs retrieve patterns from an image by a series of convolution and pooling

operations. The patterns collected by convolutional layers does not offer a response to the classi-

fication problem by itself. It is necessary to give interpretation to the acquired patterns. Hence,

adding a final hidden layer after the last convolutional layer enables the classification of the fea-

tures retrieved into the desires categories of the problem.

This layer is called a Multilayer Perceptron - MLP, a feedforward neural network responsible

for providing a nonlinear mapping between an input vector and a corresponding output vector [51].

In terms of architecture, it is composed of three types of layers: the input layer, hidden layer and

output layer, as shown in Figure 5.4. In several MLP architectures, it is common to see more than

one hidden layer when the number of inputs is extensive, enabling progressive downsampling of

the values and better correlation between these values and the output, thus providing better results

for complex problems. On the Loss of load Classifier, one hidden layer is understood as sufficient

for the task since more does not improve the classification task and makes the model heavier on

parameters to train.

Figure 5.4: An example of a MLP with one hidden layer, similar to the one used on the Loss of
Load Classifier [11]

Connections between the hidden layer and the output are essential to classify the reunited

information. In this connections, Logistic Regression is applied.

Logistic regression uses the logistic sigmoid function (Figure 5.5) to return a probability value

which, by defining a threshold, can then be mapped to two or more discrete classes. In this case, the

problem is binary classification, so there are only two classes, failure (loss of load) or success(no

loss of load). If p(x) ≥ 0.5 , where x are the values of the hidden layer and p(x) the probability

calculated by the Logistic Regression, then the value at the output node will be 1, corresponding to

a case of failure. If p(x)< 0.5, the value at the output node will be 0, corresponding to a success

case.

5.4 Classification Stage 33

Figure 5.5: Logistic sigmoid function, p(x) is represented on vertical axis and x is the input values
[12]

A loss function, also called cost function, is necessary to calculate the classification error. For

binary classifiers, the typical function is the binary cross-entropy function [52]. Equation 5.2

represents the binary cross entropy loss function used in this problem.

Hp(q) =−
1
N

N

∑
i=1

yi · log(p(yi))+(1− yi) · log(1− p(yi)) (5.2)

where yi stands for the label assigned to the sample (1, for loss of load case or 0, for not loss of

load case), p(yi) is the predicted probability of the sample being a case of load loss, N is is number

of samples evaluated and Hp(q) is the binary cross-entropy loss for the given set distribution.

After the error calculation by the loss/cost function, a gradient descent method updates the

weights and biases of the layers. The gradient descent procedure applied to the weights (W) and

biases (b) can be described by the following expressions:{
Wi =Wi−1−α ·∇Ji(W,b)

bi = bi−1−α ·∇Ji(W,b)
(5.3)

New values of the parameters are obtained concerning the gradient of the loss function. The

convergence to minimum local error is done, iteratively, in the direction of the negative gradi-

ent (−∇Ji(W,b)). Figure 5.6 presents a visual representation of the gradient descent method.

Although represented as single variable optimization, note that the optimization considers both

variables, weights and biases.

In deep learning methodology is common to find various designations for the gradient descent

34 Loss of Load Classifier based on CNN

Figure 5.6: Gradient descent procedure concept applied to a cost function [13]

method depending on the timing of the weight update. For example, in "Gradient Descent (GD)

Optimization", the weights are updated incrementally after each epoch (pass over the training

dataset) [13]. Another method is the "Stochastic Gradient Descent (SGD)", where weights are up-

dated after each training sample [13]. Finally, the "Mini-Batch Gradient Descent" is a middle term

between GD and SGD, where weights are updated based on smaller groups of training samples

called batch [13]. This method is used in the classifier training, and the batch dimension is settled

to the value of 200 samples.

A crucial parameter that affects the gradient descent method is the learning rate α , as seen in

equation 5.3. With a high learning rate value, it is possible to cover more ground with each step,

but it may overshoot the lowest point of the loss function. Inversely, convergence is guaranteed

with a low learning rate value, but it takes a long time to find the optimal point. Thus choosing a

fixed learning rate can be difficult and requires a few tries to find the optimal value.

In response to this issue, adaptive learning gradient descent methods like ADAM were devel-

oped. ADAM [53] is a well-known algorithm in the area of deep learning, and it is based on the

computation of individual adaptive learning rates for different parameters from estimates of first

and second moments of the gradients [53]. The training of the developed classifier uses ADAM,

and the implementation present on Tensorflow/Keras framework eases his use. [54].

Figure 5.7 presents a summary of the training procedure of this stage. Training occurs in data

batches composed of 200 input samples. First, the weights and biases of the layers are randomly

initialised. Then, the process is done iteratively until the loss function minimum error is achieved.

Note that this process only refers to the classification layer (fully connected layer) of the network.

The training of convolutional layers is mentioned in the following section.

5.5 Pattern Extraction Stage 35

Figure 5.7: Diagram representing the iterative training process of the classification phase

5.5 Pattern Extraction Stage

This stage takes place before the events in the training of the classification phase. The convo-

lutional layers are trained separately from the MLP to guarantee that they can retain important

sectors of the image without the influence of the labelled data. The training process of this phase

is similar to the previously described since a loss function and a gradient descent method is needed

to update the filters. The difference is the absence of labelled data. Hence the objective of this

training is to reconstruct the input image as presented in Figure 5.8.

Figure 5.8: Convolutional layers training approach

As described in chapter 4, convolution operations are executed on the input image by con-

volution layers to gather feature maps. Several convolutional layers can be added on top of one

another to retain more intricate patterns in the image. In this approach, feature maps are reunited

to compose one image. Finally, this image is compared to the original image.

To compare the two images the Mean Square Error (5.4) function is used as a loss function:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)−O(i, j)]2 (5.4)

where I is the input image and O is the output image. The difference between the images is

computed by subtracting the pixel values of both images, squaring that value and finally sum them.

To obtain the MSE, the sum of squares is divided by the total number of pixels in the image.

36 Loss of Load Classifier based on CNN

Like classification phase training, ADAM is used as the gradient descent method to update the

convolutional layers filters. The training process 5.9 runs for 200 epochs, and in the end, filters

values are kept to be used in the classification phase.

Figure 5.9: Diagram representing the iterative training process of the pattern extraction phase

5.6 Input Structure and CNN Architecture

CNN accepts an image, which can be viewed as a matrix of size m x n, and through the convolution

and pooling operations, it can extract patterns and do classification tasks. An image is a collection

of pixels arranged in a specific way to represent, for instance, an object, where each pixel has a

spatial relation to the neighbouring pixel. Hence, the utility of CNNs to interpret images since

one of the advantages of this type of networks is detecting high order relationships and non-linear

correlations between pixels.

In this case, the features selected are not naturally present in an image. Therefore one needs to

find a way to organise the features in an image to feed the CNN. This task may be hard since there

is no information a priori about the relationship between features and the loss of load events, only

assumptions that can be made. Hence the only option to find out the "perfect image structure" to

organise the features while taking advantage of the power of CNN to find relations between the

variables is by constructing several structures and analyse how the network performs for every

image.

For the proposed study, two input structures were developed to place the 12 features. Fig-

ure 5.10 represents input structure A, a 4x3 matrix, where features related to load and unavailable

capacity of the system are placed in the centre of the image and the features related to the state of

the generation units are located in the surroundings of the image. The concept behind this structure

is the belief that load and unavailable capacity are necessary inputs. Therefore, by putting them in

the centre, the CNN can easily capture relations between the other variables.

Figure 5.11 represents input structure B, a 1x12 matrix, and contrary to matrix A, it is not

possible to assign a robust spatial relation between the variables given the dimension nature, but

the same principle is applied, load and unavailable generation feature are placed in the centre of

the vector and the other features are arranged in the following "pixels".

5.6 Input Structure and CNN Architecture 37

Figure 5.10: Representation of matrix A

Figure 5.11: Representation of Matrix B

In both matrix representations, L stands for the load feature, UC for unavailable system capac-

ity and XMW is the state of the generation unit with the respective capacity.

With these two different structures, the idea is to study how feature positioning and the dimen-

sion of the matrix affects the pattern extraction and classification performance of CNN.

5.6.1 Models Performance Evaluation

For classification tasks, the terms true positive (tp), true negative (tn), false positive (fp), and false

negative (fn) compare the results of the classifier under test with data labels. The terms positive

and negative refer to the classifier’s prediction (in this case, positive means a sample classified as

a loss of load case and negative as not), and the terms true or false refer to whether that prediction

corresponds to the data label or not. For the evaluation of developed models, the following metrics

were considered: Accuracy, Recall and Specificity.

Accuracy (5.5) is a statistical metric used to measure the proportion of correct predictions (true

positives and true negatives) among the total number of examined cases. This measure provides

general insight into the classifier performance and takes values in the interval [0,1], 0 when the

classifier provides only false predictions and 1 when the classifier correctly predicts all the test

data labels.

Accuracy =
t p+ tn

t p+ tn+ f p+ f n
(5.5)

38 Loss of Load Classifier based on CNN

Specificity and Recall are metrics needed to evaluate the performance of the classifier in the

application context. In this dissertation, CNN is used in the Monte Carlo process to replace the

necessity of examining all the states by a power flow analysis since only the cases classified as

positive are analysed. Thus it is crucial to guarantee that CNN provides a good classification of

positive cases, or in other words, minimises the number of false positives. Otherwise, instead of

reducing the computational effort, pointless analyses will be computed.

It is also essential to assure a good classification of negative cases. False negatives affect how

well reliability indices are estimated because the loss of load cases can be neglected.

Specificity (5.6) provides insight about the false positive rate. Ideally, a value of 1 is the

desired result in the specificity metric since the negatives cases are all correctly identified and,

consequently, there are no false positive cases.

Specificity =
tn

tn+ f p
(5.6)

On the other hand, Recall (5.7) provides awareness about the false negative rate. The max-

imum value is 1 when all the evaluated cases are correctly identified as positives. Therefore no

false negatives exist.

Recall =
t p

t p+ f n
(5.7)

The architecture of a CNN is centred in the input image. To construct comparable models

between both input structures, some aspects were considered:

• Models have two convolutional layers in the pattern extraction phase;

• Convolutional filters, although not equal in shape, have the same image area covered;

• Classification phase is composed by one hidden layer;

To study the filter influence, two groups of models (1 and 2) were created regarding the number

of filters in convolutional layers: 64 and 8. Table 5.4 presents the architecture for models with 64

filters in each convolutional layer. Table 5.5 presents the architecture for models with 8 filters in

each convolutional layer. In both tables, Model A receives, as input, the matrix A (4x3) and Model

B receives the matrix B (1x12).

To evaluate the performance of the proposed CNN architectures there is one aspect to take

into account: CNN models are stochastic. These models use randomness while being fit on a

dataset, such as random initial weights and filters, random shuffling of data in each training epoch,

and while applying the gradient descent method. This means that each time the same model fits

the same training data, it may give different predictions on the test data and thus return different

performance levels.

To overcome this barrier, a strategy was developed: for each model, convolutional layers are

trained once, as described in the training section, and then with those filters the classifier phase of

the network is trained on the same data 30 times. When a training round is finished, CNN makes

5.6 Input Structure and CNN Architecture 39

Table 5.4: Developed models with 64 filters in each convolutional layer

Layers Properties Model A1 Model B1

Input Size 4x3 1x12
No. of Filters 64 64

Convolutional
Filter Size 3x3 1x9

No. of Filters 64 64
Convolutional

Filter Size 2x2 1x4
Pooling Pool Size 2x2 1x2

Input units 128 192
Hidden units 64 64Fully Connected

Activation function ReLU ReLU
Input Units 64 64

Output Units 1 1Logistic Regression
Activation function Sigmoid Sigmoid

Table 5.5: Developed models with 8 filters in each convolutional layer

Layers Properties Model A2 Model B2

Input Size 4x3 1x12
No. of Filters 8 8

Convolutional
Filter Size 3x3 1x9

No. of Filters 8 8
Convolutional

Filter Size 2x2 1x4
Pooling Pool Size 2x2 1x2

Input units 16 24
Hidden units 8 8Fully Connected

Activation function ReLU ReLU
Input Units 8 8

Output Units 1 1Logistic Regression
Activation function Sigmoid Sigmoid

predictions on the test data set. Finally, a mean of the metrics values obtained for the test set is

computed. The results are presented in Table 5.6 for each model.

Table 5.6: Classification performance for each model in the test set

Metric Model A1 Model B1 Model A2 Model B2

Accuracy 0.992 0.988 0.987 0.958
Recall 0.9835 0.976 0.975 0.918

Specificity 0.999 0.999 0.999 0.999

Regarding the results in Table 5.6, Models A, with input matrix 4x3, have a better accuracy

performance than the Models B, with input matrix 1x12, even with less filters, concluding that

an input where features are arranged in a 2D (two dimensions) shape its more suitable for this

problem than arranging the features in a 1D (one dimension) shape. Organizing features in a 2D

shape makes it easier for the CNN to discover patterns that lead to a better classification since the

40 Loss of Load Classifier based on CNN

"pixels" in the centre of the image share their border with more "pixels" than when arranged in a

1D shape, where at the most, just share their border with the immediate neighbour "pixel".

Every filter collected describes a pattern discovered in the image, so it is expected that when

the number of filters increases, the accuracy also increases because more patterns are available for

the network to consider in the classification phase. However, in studies developed with a number

of filters higher than 64, no improvement in the classifier’s performance was found for the two

input structures, stating that a more complex model with more parameters does not provide a

better classification.

One point to be noticed is the high value on specificity test achieved by all models developed,

proving that variables chosen to construct both input structures provide sufficient information to

identify loss of load cases correctly. On the other hand, recall results seem to vary with the number

of filters and input arrangement, demonstrating that learning a pattern for cases with no loss of load

is more challenging with the available variables.

Results of Table 5.6 were computed on a test set with 500 failure samples and 500 success

samples. In Monte Carlo Simulation, where the CNN will be applied, the number of samples

analysed is much higher and less balanced than this test data set. However, based on these results

is possible to choose the architecture that will likely have a better performance when applied to the

MCS. In light of the results presented, the chosen CNN architecture to apply in the Monte Carlo

Simulation is the model A1 with input structure 4x3.

5.7 Final Remarks

This chapter presented a deep learning methodology to evaluate operational system states, the

Loss of Load Classifier based on CNN. In the performed tests, the developed classifier proved to

be an efficient tool to distinguish between failure (loss of load) and success cases. Besides the

accuracy of this classifier, the training time also affects the relevance of this solution. Fortunately,

using a GPU for network training reduces the time spent on this task, making the classifier quickly

available for its final use.

Although the purpose of this classifier is to be integrated into a Monte Carlo Process, the CNN

should be seen as a by-product of the developed work since there is a range of applications for this

model besides the MCS, for instance, as an auxiliary tool for engineers on dispatch centres.

Chapter 6

Methodology for Monte Carlo
Simulation Composite System
Reliability Assessment based on CNN

In this chapter, the methodology used in this dissertation is presented.

First, the classic versions of the MCS are reviewed: the Non-Sequential and Sequential Sim-

ulation. The algorithm for the evaluation stage of MCS is described. Finally, the MCS-CNN

proposed method is addressed, and comparisons are made with the classic version. It should be

mentioned that classic versions of MCS were guided by the work developed in [26] [35] [23].

6.1 Non-Sequential Monte Carlo Simulation

Algorithm 1: Non-Sequential Monte Carlo for Composite Reliability Assessment
Input :
PGen as the capacity of each system generator;
f or of each generator;
β as the confidence interval coefficient;
Peak load variation curve;
maxit as as the maximum number of iterations;
while β 2 < V (X)

N×LOLP2 or k < maxit do
Sample vector of states regarding generation units;
Sample vector of states regarding transmission system components;
Sample load value from the yearly peak load variation curve;
Evaluate if it is a case of loss of load or not ;
Estimate ˆLOLP = avg(X);
Compute the variance V(X) between the sampled states ;

Output: ˆLOLP

41

42
Methodology for Monte Carlo Simulation Composite System Reliability Assessment based on

CNN

The algorithm of the NSMCS process for composite system adequacy is described on Algo-

rithm 1. As explained in Chapter 2, the main objective is to estimate a reliability index, in this

case LOLP, within a confidence interval bounded by β , selected a priori.

Algorithm 2: Sampling the state of generation units
Input : f or of each generator
while The state of every generator i have not been defined do

Sort a number (u), according to the uniform distribution, between 0 and 1;
if f ori > u then

State of generator i = 0;
else

State of generator i = 1;

Output: Vector of states regarding generation system units

The first task in the simulation is the components state sampling, and it is done according

to Algorithm 2. When the sorted number u is smaller than the generator’s f or, the generator is

considered out of service or in his downstate (0). Otherwise, the generator is in service or in his

upstate (1). In this case, only the generation units states are sampled because it is considered that

components from the transmission system are always available.

The sampling of the load value from the annual peak load variation curve is done by sorting

an integer number from a "discrete uniform” distribution in the interval 0 to 8736. Then the load

value stored in the index corresponding to the sorted number is retrieved and used in the next task.

The next step is the loss of load evaluation using the state of system components and the load

value. The methodology used for this evaluation is explained later in this chapter.

6.2 Sequential Monte Carlo Simulation

The algorithm of SMCS process for composite system adequacy is described in Algorithm 3.

The crucial difference between NSMCS and SMCS is that, in the latter, samples are gener-

ated across a year, thus having a chronological relation among them. This particularity allows

the calculation of reliability frequency and duration indexes. In this case, LOLE and EENS are

estimated, within a confidence interval bounded by β , selected a priori.

The state of system components is sampled year by year, making possible to construct the

component "Up-Down" cycle which is a record of the component state in every hour of the year.

Algorithm 4 shows the steps to obtain this record. In the beginning of the simulation, the initial

state of each generator is drawn based on a comparison between a random sorted number u and

generator’s f.o.r. Then the rest of the simulation is done sequentially, by modelling service and

failure periods according to expressions presented in Chapter 2.

Similar to the NSMC process, the "Up-Down" cycle is generated only for the generation units,

transmission components are considered available all hours of the year.

On SMCS is not necessary to sample the load level since it takes as input the chronological

annual load curve.

6.3 Evaluation Stage 43

The evaluation stage occurs in the same manner as in the NSMCS process. The difference is

that evaluation is done hour by hour until the whole year is evaluated.

Algorithm 3: Sequential Monte Carlo for Composite Reliability Assessment
Input :
PGen as the capacity of each system generator;
MT T F of each system generator;
MT T R of each system generator ;
β as the confidence interval coefficient;
Hourly Peak load variation curve;
maxit as as the maximum number of iterations;
while β 2 < V (X)

N×LOLP2 or k < maxit do
Sample yearly "life line" of every system generator;
Sample yearly "life line" of every transmission system component;
i=0;
LOLEk=0;
EENSk=0:
while i< 8760 do

Evaluate if there is loss of load; if Losso f Load = True then
Calculate magnitude of the load loss;
EENSk= EENSk + Magnitude of the load loss (in MW);
LOLEk= LOLEk + 1;

Estimate ˆLOLE = avg(LOLEk)
Estimate ˆEENS = avg(EENSk)
Compute the variance V(X) between the sampled years;

Output: ˆLOLE, ˆEENS

6.3 Evaluation Stage

This section presents a description of the algorithms used for the evaluation stage of composite

system reliability assessment.

6.3.1 Transmission Grid Configuration

The objective of the transmission grid configuration is to identify the electric islands and the

nodes/branches they enclose [23]. The grid is assumed to be constituted by electric nodes, buses,

and branches that are transmission circuits. Each branch connects to two different nodes. This

method is described in Algorithm 5.

Initially, every bus in the list of system buses is associated with an indicator, that can be the

ordinal number which they appear in the list. This indicators are saved to a vector F and replicated

to an auxiliary vector F’.

44
Methodology for Monte Carlo Simulation Composite System Reliability Assessment based on

CNN

Algorithm 4: Sampling the yearly state of generation units ("Up-Down" cycle)
Input :
λ of each system generator, obtained with MT T F ;
µ of each system generator, obtained with MT T R;
f .o.r of each system generator;
k=0;
while The yearly state of every generator have not been defined do

k=k+1;
Initialize a vector of zeros, size 8736, to allocate the generator state for every hour
(Li f elinek);

Sort a number, u, between 0 and 1, according to the uniform distribution;
if u> f .o.r then

while i< 8736 do
Sort a number, u1, between 0 and 1, according to the uniform distribution;
Calculate the time in service by : TU p =− 1

λ
lnu1;

Li f elinek [i, i+ TU p] =1;
i= i+ TU p

Sort a number, u2, between 0 and 1, according to the uniform distribution;
Calculate the time out of service by : TDown =− 1

µ
lnu2;

i= i+ TDown

else
while i< 8736 do

Sort a number, u1, between 0 and 1, according to the uniform distribution;
Calculate the time out of service by : TDown =− 1

µ
lnu1;

i= i+ TDown

Sort a number, u2, between 0 and 1, according to the uniform distribution;
Calculate the time in service by : TU p =− 1

λ
lnu2;

Li f elinek [i, i+ TU p] =1;
i= i+ TU p

Output: Yearly state of every system generator

6.3 Evaluation Stage 45

While searching the list of branches in system, the origin node (i) and the end node (j) are

checked and if that branch is in service, the respective bus indicators in vector F are updated to the

same value (min(Fi,Fj)).

When all branches are covered, Vector F and F’ are compared and if vectors values are differ-

ent, meaning that configuration evaluation is not concluded, vector F values are copied to F’ and

the search restarts.

When vector values are equal, configuration evaluation is finished and the number of isles

in the system is obtained by counting the number of different indicators in F, since the nodes

belonging to the same electric isle have the same indicator [23] [55].

Algorithm 5: Transmission Network Configuration
Input :
Initialize Vector F, size number of buses in the system, by assigning each entry i an

indicator, according to Fi = i ;
Initialize Vector F’, equal to vector F;
while True do

while All the branches are not checked do
if Branchi j is in service then

Fi = Fj = minFi,Fj

if F equal to F’ then
break;

else
F’= F

Number of isles in the system = number of different indicators in F;
Output: Number of isles in the system

6.3.2 Generation Dispatch

Generation Dispatch process aims to distribute load demand through the available generation units

considering restrictions like the minimum and maximum power output of each unit [23]. There

are two ways to do this distribution, a merit order or a proportional strategy.

Firstly, load is assigned to every generator with respect to the minimum power output of each

unit. The remaining load is then allocated using a proportional strategy based on expression 6.1:

Pi =
P̄i−Pi

∑
NG
j=1
(
P̄j−P j

) ×(L−
NG

∑
j=1

P j

)
+Pi (6.1)

Where Pi is the production of the generation unit i, P̄i is the maximum capacity of the unit, Pi

is the minimum capacity of the unit, NG is the number of generating units available and L is the

load demand.

46
Methodology for Monte Carlo Simulation Composite System Reliability Assessment based on

CNN

6.3.3 DC Power Flow

A Power Flow analysis is run to check if the components from the transmission grid are operating

outside their operational limits. However, the complete form (AC power flow) problem is complex

to solve given the non linearity of expressions and the restrictions to be taken into account. Luckily

a linearised method (DC power flow) can be adopted, reducing the computational effort but only

analysing the impact of active power on the adequacy of the system. Considering these method

some assumptions are made [56]:

• No transmission losses;

• Resistance and admittance from the line are negligible (R∼= 0 and Y ∼= 0);

• sinθik ≈ θik supposing small θik = θi−θk, and i and k are contiguous nodes;

• Voltage Nodes is considered close to the nominal value (Vi ≈ 1p.u)

The DC Power flow is based on the solution of the following system of linear equations:

Pin j = PG−PL = B′θ (6.2)

where Pin j is a vector of the active power injected at each bus, PG and PL, respectively are the

vectors of active power produced and consumed at each bus , B′ is the susceptance matrix and θ

is the vector of bus voltage angles.

The elements of the susceptance matrix are calculated by:

B′ik =−
1

xik
, i 6= k (6.3)

B′ii =−
NB

∑
i 6=k

1
xik

, i = k (6.4)

where NB is the number of buses and xik the reactance of the branch connecting bus i to k.

The equation system provided by 6.2 is undetermined, but by fixing a system bus as reference

and zeroing that bus voltage angle, one equation can be removed resulting in

P̂G− P̂L = B̂′θ̂ (6.5)

And the active power flow through the branch connecting bus i to k is obtained by:

Pik =
θi−θk

xik
. (6.6)

In this dissertation, instead of programming this process from scratch, the framework PY-

POWER, already developed for this purpose, is used. PYPOWER [57] is a Power Flow and

Optimal Power Flow (OPF) solver to be applied with python programing language.

6.4 The Monte Carlo-CNN Simulation for Composite System Reliability Assessment 47

6.3.4 Optimal DC Power Flow

If transmission components are operating outside their operational limits, a DC OPF is computed.

This process aims to determine the best operating strategy by adjusting the active power injected

at the buses while keeping into account components functional limits. This optimization is done

with the objective to minimize the total load curtailment, if is not possible to respond to the total

load demand [23].

The DC optimal power flow problem can be formulated by:

z = min∑
i

MiPFGi (6.7)

Where Mi is a constant that reflects the load curtailment priority at bus i and PFGi is the active

power produced by the fictitious generation unit in bus i that count for the load curtailment.

Subject to:

0≤ PGF ≤ PL (6.8)

PG ≤ PG ≤ PG (6.9)

Pik ≤ ΓZθ ≤ Pik (6.10)

PG +PGF −PL +B′θ = 0 (6.11)

Where PG the active power produced by generation units, PL is the system load demand, Γ is a

diagonal matrix whose values are the branches admittance and Z is the system incidence matrix.

The method selected to solve this optimization problem was the Interior Point method [58],

although other approaches could also be considered like the Simplex Method.

After defining the objective function, the decision variables and constrains, the interior point

method was applied with the SciPY [59] optimization framework.

6.4 The Monte Carlo-CNN Simulation for Composite System Relia-
bility Assessment

This section describes the methodology for including the CNN in the MCS process for composite

system reliability assessment. The stages that make part of this method are presented in Figure

6.1.

The training phase of CNN has already been explained in chapter 5, the sampling stage and

the application of CNN in MCS will be the focus in this section.

48
Methodology for Monte Carlo Simulation Composite System Reliability Assessment based on

CNN

Figure 6.1: Stages of the proposed method

6.4.1 Sampling stage

The sampling stage is an important component in this application since the quality of CNN’s

classification depends on the quality of the samples retrieved and used for training. The routine

of sampling stage is presented on Figure 6.2 and makes use of the functions already defined for

the evaluation stage of MCS. Instead depending on a variance coefficient to end the sampling, the

number of cases with and without loss of load to be obtained are fixed a priori.

Through the Cross Entropy method, Importance Sampling is applied, thus reducing the com-

putational effort needed to sample cases with loss of load.

A test was conducted to evaluate the impact of this method on collecting the loss of load

samples. Considering the original f.o.r and the f.o.r obtained with CE, the sampling stage routine

was computed to obtain 1000 operational samples. With the original f.o.r, it was not possible to

obtain loss of load samples, and with the CE f.o.r, 47 loss of load samples were collected. The CE

method has fulfilled its purpose. However, the 47/1000 ratio demonstrates that the computational

effort is still a drawback to obtain a more extensive set of loss of load samples, like the one used

to train the CNN classifier (2500 samples).

The Cross Entropy algorithm used for this method is described in Algorithm 6 [26].

To obtain a new set of forced outage rates for each generator, the original f or , the units max-

imum capacity and the system load are needed. Also the definition of some algorithm variables

are necessary as the sample size N for the optimisation process (in this case settled as 10000 sam-

ples), the multilevel parameter ρ (typically between 0.01 and 0.1), the smoothing parameter, α

used to avoid the occurrence of 1’s and 0’s in the new vector of f.o.r’s, and the maximum number

of iterations.

The algorithm starts by assigning the original f.o.r vector to a vector created with the purpose

to keep the new f.o.r values. The original f.o.r vector is used to sample a vector of states with size

N, defined a priori. Then the available generation is computed by equation 6.12.

S (Xi) =
N

∑
j=1

Xi j×C j (6.12)

Where Xi j is the state of the generator j in the hour i and C j is the maximum capacity of the

generator. The evaluated states, S[i], are ordered in descending order. The value of L̂k is actualized

as S[(1−ρ)N], if it is greater than L, if not, L̂k = L.

6.4 The Monte Carlo-CNN Simulation for Composite System Reliability Assessment 49

Figure 6.2: Sampling State routine

The next step is evaluating the test function for LOLE index according to equation 6.13:

H (Xi) =

{
1 if S (Xi)< L̂k

0 if S (Xi)≥ L̂k
(6.13)

50
Methodology for Monte Carlo Simulation Composite System Reliability Assessment based on

CNN

Algorithm 6: Cross Entropy Method
Input :
PGen as the max capacity of each system generator;
f .o.r of each generator;
Set the maximum number of iterations itmax;
Set the sample size N
Set the multilevel parameter ρ;
Set the distortion target, L̂k as the peak load value;
while L̂k < Lmax or k < kmax do

for old = for new
Sample the generators using f orold and Algorithm 2;
Computes the available generation in system state and sort them in descending order;
L̂k = S[(1−ρ)N];
if L̂k > L then

L̂k = S[(1−ρ)N];
else

L̂k = L
while All Si are not checked do

if Si < L̂k then
H[Xi]=1

Compute W according equation 6.14 ;
Update f ornew for each unit according equation 6.15;

Output: f orold

The likelihood ratio (W), that represents the correlation between the f .o.rold and f .o.rnew , is

calculated by equation 6.14.

Wi (Xi, f.o.r new , f.o.r old) =
∏

N
j=1
(
1− f.o.r new j

)Xi j × f.o.r (
1−Xi j)

new j

∏
N
j=1
(
1− f.o.r old j

)Xi j × f.o.r (
1−Xi j)

old j

(6.14)

Finally a new forced outage rate for each generator in the system is obtained by 6.15:

f.o.r new , j = 1− 1
NG
×

∑
N
j=1 H (Xi)Wi (Xi, f.o.r new , f.o.r old)Xi j

∑
N
j=1 H (Xi)Wi (Xi, f.o.r new , f.o.r old)

(6.15)

6.4.2 CNN application to the MCS process

The CNN application in MCS is straightforward: after the sampling stage and training, CNN

incorporates the MCS process by replacing all the essential algorithms for a case evaluation. The

premise of using the proposed algorithm (MCS-CNN) is to save time by only running the complex

evaluation process when CNN classifies a loss of load case instead of running it for all samples,

as demonstrated by Figure 6.3.

6.4 The Monte Carlo-CNN Simulation for Composite System Reliability Assessment 51

Figure 6.3: Diagram representing the two methods: the classic MCS (left) and the method pro-
posed, MCS-CNN (right)

52
Methodology for Monte Carlo Simulation Composite System Reliability Assessment based on

CNN

Chapter 7

Results

This chapter presents the implementation results of the proposed method MCS-CNN. The classic

version of Non-sequential Monte Carlo (NSMCS) and Sequential Monte Carlo (SMCS) will be

compared with the proposed MCS-CNN versions (NSMCS-CNN and SMCS-CNN) in terms of

the estimation accuracy of the reliability indices and time necessary to complete the simulation.

Both classic and proposed versions will be tested on 2 cases based on IEEE RTS 79. The first case

is the IEEE RTS 79, with an annual load curve constant at its peak value of 2850 MW. The second

is the IEEE RTS 79 with the original annual load curve. In both cases, generation system reliability

data is taken into account, but transmission system components are considered available.

All simulations were computed in Python and executed in a PC with Intel Core i7-3630QM

CPU (2.40GHz). The CNN training was done in a Nvidia T4 GPU provided by the Google Colab

services.

To make a comparison between the two methods the "seed" responsible for the randomness in

sample generator was fixed, this way both methods are evaluating the same samples.

7.1 IEEE RTS 79 with an annual load curve constant at 2850 MW
(Modified IEEE RTS 79)

7.1.1 Non-Sequential Simulation

In this section results for the NSMCS and the NSMCS-CNN are presented with respect to the

IEEE RTS 79 case with an annual load curve constant at its peak value of 2850 MW. Two values

for variation coefficient, 5% and 1% were considered.

The value for LOLP obtained for β ≤ 1, published on [36] is used to gauge the accuracy of the

proposed method, NSMCS-CNN, for both values of β . LOLE value, although not present in [36],

is deducted from LOLP. A crude NSMCS is computed as means to compare the process time and

index values obtained.

Table 7.1 and 7.2 present the computed results for both methods (NSMCS and NSMCS-CNN)

considering a 5% and a 1% coefficient of variation, respectively. Table 7.3 presents the process

53

54 Results

time analysis, including the metric that measures how many samples both methods evaluate per

time interval and the process time relation between methods considering NSMCS process time as

a baseline.

The NSMCS-CNN has proved to be 1.8 times faster (7.3) than the NSMCS estimating LOLP

(and inherently LOLE) for both values of variation coefficient. These results support that even with

the increase in required precision (and consequently more samples to evaluate) NSMCS-CNN

remains as the fastest method.

Also for both values of variation coefficient, NSMCS-CNN evaluates more samples than

NSMCS , meaning that the trained CNN provides some false classifications that extend the con-

vergence of the method. However since NSMCS-CNN evaluates more samples per second (in

average - 7.3) than NSMCS, this does not seem a disadvantage for the proposed method.

Independently from CNN accuracy, NSMCS-CNN was able to estimate LOLP with small

deviation when compared to the LOLP value reported in [36], in fact when β ≤ 1%, values are

almost identical.

On table 7.2 and 7.1, LOLP and LOLE confidence intervals obtained with NSMCS-CNN in-

clude the index values reported in [36]. This is evidence of the excellent performance of NSMCS-

CNN, which is capable of estimating reliability indices equally accurately as the NSMCS but

quicker.

Table 7.1: Non-Sequential results for Modified IEEE RTS 79 with β ≤ 5%

β ≤ 5% LOLP LOLE(h) Iterations (Samples) Process Time (s)
NSMCS [36] 0.084 735.84 - -

NSMCS 0.0919 805.21
β (%) 4.99 4.99

CI (95%) [0.0829, 0.1009] [726.38, 884.04]
3960 81

NSMCS-CNN 0.0902 790.05
β (%) 4.99 4.99

CI (95%) [0.0814, 0.0990] [712.63, 867.47]
4036 45

Table 7.2: Non-Sequential results for Modified IEEE RTS 79 with β ≤ 1%

β ≤ 1% LOLP LOLE(h) Iterations (Samples) Process Time (min)
NSMCS [36] 0.084 735.84 - -

NSMCS 0.0851 745.5
β (%) 0.99 0.99

CI (95%) [0.0834, 0.0868] [730.89, 760.11]
107517 34

NSMC-CNN 0.0834 730.6
β (%) 0.99 0.99

CI (95%) [0.0818, 0.0850] [716.29, 744.93]
109900 19

7.1 IEEE RTS 79 with an annual load curve constant at 2850 MW (Modified IEEE RTS 79) 55

Table 7.3: Process Time Analysis for Non-Sequential Modified IEEE RTS 79

β ≤ 5%
(Samples/s)

β ≤ 1%
(Samples/s)

NSMCS 49 53
NSMCS-CNN 90 96

Process Time Acceleration 1.8 1.8

7.1.2 Sequential Simulation

In this section results for the SMCS and the SMCS-CNN are presented with respect to the IEEE

RTS 79 case with an annual load curve constant at its peak value of 2850 MW. Two values for

variation coefficient, 5% and 1% were considered.

Although results on [36] rely on non-sequential MCS, the LOLE value deducted from LOLP

in the previous section is used to assess the accuracy of SMCS-CNN. Unfortunately, EENS values

obtained for this specific case were not found in literature.

Table 7.4 and 7.5 present the computed results for both methods (SMCS and SMCS-CNN)

considering a 5% and a 1% coefficient of variation, respectively. Table 7.6 presents the process

time analysis, including the metric that measures how long, in average, each method takes to

analyse a whole year and the process time relation between methods considering SMCS process

time as a baseline.

Despite results on 7.6 display slightly different accelerations for the two values of β , its secure

to say that SMCS-CNN can estimate EENS and LOLE, at least 2 times faster than SMCS for

both variance coefficient values. This also corroborated by the time SMCS-CNN takes to examine

a full year that is half of what SMCS needs. Note that this examination contains the process

of sampling the system state for all hours of the year and then evaluation. Since the only equal

process between SMCS-CNN and SMCS is the one concerning sampling, its possible to see the

CNN role on making SMCS-CNN quicker.

Looking to the results expressed on tables 7.4 and 7.5, SMCS-CNN established LOLE con-

fidence intervals that include the LOLE estimate obtained in [36]. When comparing with confi-

dence intervals obtained by SMCS for both reliability indices, there is a superposition, meaning

that both methods expect similar index values. All this observations certify the good performance

of SMCS-CNN, as an alternative method to compute reliability indices via sequential simulation.

Before collecting this results, it was expected that the number of sampled years by SMCS-

CNN would always be greater than the number of years sampled by SMCS, following the trend

observed when non-sequential simulation was computed. However this was not true when higher

precision was required (β ≤ 1).

56 Results

Table 7.4: Sequential results for Modified IEEE RTS 79 with β ≤ 5%

β ≤ 5% LOLE (h/yr) EENS (GWh/yr) Sampled Years
(No. samples) Process Time (min)

NSMCS [36] 735.8 - - -
SMCS 774.65 128.97
β (%) 3.82 4.94

CI (95%) [716.70, 832.60] [116.48, 141.45]

46
(401856)

125

SMCS-CNN 741.41 129.12
β (%) 3.58 4.99

CI (95%) [689.43, 793.39] [116.48, 141.76]

56
(489216)

69

Table 7.5: Sequential results for Modified IEEE RTS 79 with β ≤ 1%

β ≤ 1% LOLE (h/yr) EENS (GWh/yr) Sampled Years
(No. samples) Process Time (min)

NSMCS [36] 735.8 - - -
SMCS 746.69 130.39
β (%) 0.69 0.99

CI (95%) [736.58, 756.81] [127.84, 132.95]

1474
(12876864)

3196

SMCS-CNN 731.10 127.92
β (%) 0.70 0.99

CI (95%) [721.01, 741.21] [125.42, 130.43]

1400
(12230400)

1493

Table 7.6: Average Time (in minutes) spent to analyse a whole year for β ≤ 5% and β ≤ 1%
(Modified IEEE RTS 79) and Process time acceleration provided by SMCS-CNN in relation to
SMCS

β ≤ 5%
(min/sampled yr)

β ≤ 1%
(min/sampled yr)

SMCS 2.7 2.2
SMCS-CNN 1.2 1.1

Process Time Acceleration 1.81 2.14

7.2 IEEE RTS 79 with original load curve (IEEE RTS 79)

7.2.1 Non-Sequential Simulation

In this section, results for the NSMCS and the NSMCS-CNN are presented with respect to the

IEEE RTS 79 case with the original load curve. Two values for variation coefficient, 5% and 1%

were considered.

The benchmark used to evaluate the performance of NSMCS-CNN on reliability indices esti-

mation is provided by the NSMCS since it was not possible to find specific results for this case in

literature.

Table 7.7 and 7.8 present the computed results for both methods (NSMCS and NSMCS-CNN)

considering a 5% and a 1% coefficient of variation, respectively. Table 7.9 presents the process

time analysis, including the metric that measures how many samples both methods evaluate per

7.2 IEEE RTS 79 with original load curve (IEEE RTS 79) 57

time interval and the process time relation between methods considering NSMCS process time as

a baseline.

In this case, according to table 7.9, NSMCS-CNN was 3 times faster than NSMCS to estimate

LOLP, and consequently, LOLE. There is no noticeable difference in speed when the required

precision increases and NSMCS-CNN maintains its position as the fastest.

As observed in the previous case, NSMCS-CNN evaluates more samples than NSMCS.

In both precision levels, NSMCS-CNN provided estimates for LOLP that are essentially equal

to the ones supplied by NSMCS. The same can be concluded for the estimated LOLE.

Confidence intervals obtained for LOLP and LOLE by NSMCS-CNN are fully included in the

intervals determined by NSMCS, which proves, even more, the agreement between both methods.

Table 7.7: Non-Sequential results for IEEE RTS 79 with β ≤ 5%

β ≤ 5% LOLE LOLE(h) Iterations (Samples) Process Time (min)
NSMCS 0.00127 11.12

β (%) 4.99 4.99
CI (95%) [0.00115, 0.00139] [10.03, 12.21]

315025 74

NSMC-CNN 0.00126 11.05
β (%) 4.99 4.99

CI (95%) [0.00114, 0.00138] [9.97, 12.14]
317036 25

Table 7.8: Non-Sequential results for IEEE RTS 79 with β ≤ 1%

β ≤ 1% LOLE LOLE(h) Iterations (Samples) Process Time (min)
NSMCS 0.00121 10.63
beta (%) 0.99 0.99
CI (95%) [0.00119, 0.00124] [10.43, 10.84]

8227033 1849

NSMC-CNN 0.00121 10.57
beta (%) 0.99 0.99
CI (95%) [0.00118, 0.00123] [10.36, 10.77]

8280955 614

Table 7.9: Process Time Analysis for Non-Sequential IEEE RTS 79

β ≤ 5%
(Samples/min)

β ≤ 1%
(Samples/min)

NSMCS 4257 4449
NSMCS-CNN 12681 13487

Process Time Acceleration 2.96 3.01

7.2.2 Sequential Simulation

In this section, results for the SMCS and the SMCS-CNN are presented with respect to the IEEE

RTS 79 case with the original load variation curve. Just one value for variation coefficient, 5% was

considered, however it is sufficient to evaluate the proposed method potential in this study case.

58 Results

Results on 7.11 present SMCS-CNN has a method 3.38 times faster for reliability index

calculation than SMCS. In average, SMCS-CNN can reduce the time needed to sample a whole a

year by three times when comparing to the time consumed by SMCS.

In precision matter, LOLE and EENS estimated values by SMCS-CNN are a little far from the

ones obtained with SMCS however the confidence intervals interception confirm that both expect

the same values for the studied reliability indices.

As in sequential simulation of the previous case, the number of sampled years by SMCS-

CNN is inferior to the number of sampled years in SMCS, which was not expected. However,

SMCS-CNN was capable of estimating LOLE and EENS with the same precision as SMCS but

quicker.

Table 7.10: Sequential results for IEEE RTS 79 with β ≤ 5%

β ≤ 5% LOLE (h/yr) EENS (MWh/yr) Sampled Years
(No. samples) Process Time (min)

SMCS 10.17 1284.85
β (%) 3.39 4.99

CI (95%) [9.49, 10.84] [1159.09, 1410.60]

1452
(12684672)

1924

SMCS-CNN 10.49 1331.74
β (%) 3.37 4.99

CI (95%) [9.79, 11.18] [1201.33, 1462.16]

1237
(10806432)

569

Table 7.11: Average Time (in minutes) spent to process a whole year for β ≤ 5% (IEEE RTS 79)
and Process time acceleration provided by SMCS-CNN in relation to SMCS

β ≤ 5%
(min/sampled yr)

SMCS 1.3 min
SMCS-CNN 0.5 min

Process Time Acceleration 3.38

7.3 Comments

For the cases considered (original load curve and constant load curve), MCS-CNN was accurate

and faster than MCS.

Additionally is possible to form a more detailed insight about the performance of MCS-CNN

in relation to the reliability of a system.

Case system with original load curve is more reliable than the one with a constant load curve

at its peak.

Considering the results obtained in non-sequential version for both case studies, MCS-CNN

was capable to estimate reliability indices 3 times faster for case with the original curve while for

case with the constant curve was capable to estimate indices 2 times quicker. The same can be

observed for sequential simulation.

7.3 Comments 59

This concludes that MCS-CNN, although performing well in both cases, is suited for more

reliable systems. This is expected since, CNN evaluates the high number of negative samples (not

loss of load) without the need to resort to the complex evaluation algorithm used by MCS, thus

saving a lot of time.

It was proven the ability of MCS-CNN in reducing simulation time. Nevertheless, process

times are still extensive and unacceptable for a solution implemented in an actual power system

study. If simulations were computed using more powerful hardware, processes time might be

shorter and enable more simulations to be carried out.

In sequential simulations, the number of sampled years by MCS-CNN was inferior to the

number of sampled years by MCS, which was not expected. This may be related to the way sample

variance is updated in each simulation type. In sequential simulation, samples are collected in year

batches and variance is updated at the end of every year. False classifications provided by the CNN

on yearly batch do not seem to affect so much the variance (thus the convergence of the method) as

the individual analysis of the samples, that occurs in non-sequential simulation. Although MCS-

CNN was able to estimate indices with equal precision as MCS with less samples, the objective of

the proposed method was not to reduce the number of samples evaluated, but speed up evaluation

process of this samples.

60 Results

Chapter 8

Conclusion and Future Work

This dissertation aimed to apply a Convolutional Neural Network, a deep learning methodology, to

Monte Carlo Simulation for composite generation and transmission system reliability assessment

to improve the computational effort required by the simulation.

Many challenges were faced during this elaboration of this work.

The chosen programming language to implement the developed algorithms was Python. How-

ever, despite being at ease with programming, the writer of this thesis did not have any prior

knowledge of it. Therefore the initial steps were focused on gaining awareness of this new lan-

guage.

As mentioned in the dedicated chapter, this network receives an image as input, and the data

available for this work does not take that form. So much effort was put into merging power systems

data with this powerful deep learning technique.

Fortunately, the implementation of this network was eased with already existing frameworks,

leaving more time for experimentation and "trial and error".

Monte Carlo simulation on reliability assessment was not a new concept for the writer of this

thesis. He had the chance to explore it in other courses along with the masters he is enrolled in.

Nonetheless, the composite system reliability assessment was approached in the context of this

work. Thus a complete study concerning the algorithms involved in this kind of reliability studies

was performed.

A study was carried out to explore the optimal input image structure to feed the CNN. The

study concluded that a 2D input structure is ideal for organising the non-image data inputs, thus

providing an optimal way to extract essential patterns to the classification problem.

Although used on MCS-CNN, the developed convolutional network should be considered a

solo product of this work, with applications in power systems besides Monte Carlo simulation and

reliability, for instance, as a tool for engineers on dispatch centres.

To study the proposed method, MCS-CNN, two types of simulation, non-sequential and se-

quential, were computed considering the IEEE RTS 79 case with the original load curve and a

load curve constant at his peak of 2850 MW. A crude MCS was also tested in the same conditions

for comparison.

61

62 Conclusion and Future Work

On IEEE RTS 79 case with the original load curve, MCS-CNN has proved to be two times

faster than crude MCS estimating reliability indices with the highest required precision (β ≤ 1) for

both simulations. Values estimated by MCS-CNN are accurate since confidence intervals obtained

are coincident with the ones obtained with MCS.

On IEEE RTS 79 case with the constant load curve, MCS-CNN has also proved to be faster

than MCS estimating reliability indexes with the highest required precision by three times, in

both simulations. Index accuracy is also confirmed by the superposition of confidence intervals

obtained.

Overall, MCS-CNN demonstrated that when applied to Monte Carlo simulation for compos-

ite system reliability assessment, deep learning techniques, like Convolutional Neural Networks,

can reduce the time and necessary computational effort, especially when power systems are very

reliable.

The main objective of this dissertation was achieved yet there is space for improvement,

namely:

• Include the methodology to obtain the "Loss of Load Classifier" as a preamble in the MCS-

CNN script.

• Parallelise the MCS-CNN with the methodology described in [35].

• Include transmission system reliability data on the developed CNN’s input structure.

References

[1] R. Billinton and R.N. Allan. Power-system reliability in perspective. Electronics and Power,
30(3):231–236, 1984. doi:10.1049/ep.1984.0118.

[2] Mauro Augusto da Rosa. Agent-based technology applied to power systems reliability. PhD
thesis, Universidade do Porto, 2009.

[3] S. A. McLeod. Introduction to the normal distribution (bell curve). URL: https://www.
simplypsychology.org/normal-distribution.html.

[4] Mauro A. da Rosa, Armando M. Leite da Silva, and Vladimiro Miranda. Multi-agent sys-
tems applied to reliability assessment of power systems. International Journal of Electrical
Power & Energy Systems, 42(1):367–374, November 2012. URL: https://doi.org/
10.1016/j.ijepes.2012.03.048, doi:10.1016/j.ijepes.2012.03.048.

[5] Michael Copeland. What’s the difference between artificial intelligence, machine learn-
ing and deep learning? URL: https://blogs.nvidia.com/blog/2016/07/29/
whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/.

[6] Karpathy Andrej. Cs231n convolutional neural networks for visual recognition. URL:
https://cs231n.github.io/convolutional-networks/#fc.

[7] IBM Cloud Education. Convolutional neural networks. URL: https:
//www.ibm.com/cloud/learn/convolutional-neural-networks#
toc-how-do-con--z4UwR2M.

[8] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.
Jackel. Backpropagation applied to handwritten zip code recognition. Neural Computation,
1(4):541–551, December 1989. URL: https://doi.org/10.1162/neco.1989.1.
4.541, doi:10.1162/neco.1989.1.4.541.

[9] Introduction to parallel computing tutorial. URL: https://hpc.llnl.gov/training/
tutorials/introduction-parallel-computing-tutorial.

[10] Probability Subcommittee. IEEE reliability test system. IEEE Transactions on Power Ap-
paratus and Systems, PAS-98(6):2047–2054, November 1979. URL: https://doi.org/
10.1109/tpas.1979.319398, doi:10.1109/tpas.1979.319398.

[11] Aref Hashemi Fath, Farshid Madanifar, and Masood Abbasi. Implementation of multilayer
perceptron (MLP) and radial basis function (RBF) neural networks to predict solution gas-
oil ratio of crude oil systems. Petroleum, 6(1):80–91, March 2020. URL: https://doi.
org/10.1016/j.petlm.2018.12.002, doi:10.1016/j.petlm.2018.12.002.

63

http://dx.doi.org/10.1049/ep.1984.0118
https://www.simplypsychology.org/normal-distribution.html
https://www.simplypsychology.org/normal-distribution.html
https://doi.org/10.1016/j.ijepes.2012.03.048
https://doi.org/10.1016/j.ijepes.2012.03.048
http://dx.doi.org/10.1016/j.ijepes.2012.03.048
https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/
https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/
https://cs231n.github.io/convolutional-networks/#fc
https://www.ibm.com/cloud/learn/convolutional-neural-networks#toc-how-do-con--z4UwR2M
https://www.ibm.com/cloud/learn/convolutional-neural-networks#toc-how-do-con--z4UwR2M
https://www.ibm.com/cloud/learn/convolutional-neural-networks#toc-how-do-con--z4UwR2M
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1162/neco.1989.1.4.541
https://hpc.llnl.gov/training/tutorials/introduction-parallel-computing-tutorial
https://hpc.llnl.gov/training/tutorials/introduction-parallel-computing-tutorial
https://doi.org/10.1109/tpas.1979.319398
https://doi.org/10.1109/tpas.1979.319398
http://dx.doi.org/10.1109/tpas.1979.319398
https://doi.org/10.1016/j.petlm.2018.12.002
https://doi.org/10.1016/j.petlm.2018.12.002
http://dx.doi.org/10.1016/j.petlm.2018.12.002

64 REFERENCES

[12] Logistic regression. URL: https://ml-cheatsheet.readthedocs.io/en/
latest/logistic_regression.html.

[13] Gradient descent and stochastic gradient descent. URL: http://rasbt.github.io/
mlxtend/user_guide/general_concepts/gradient-optimization/.

[14] What’s the difference between a cpu and a gpu? URL: https://blogs.nvidia.com/
blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/.

[15] X.Yu and C.Singh. Application of importance sampling in power system reliability studies.
National Power Systems Conference, 2004. URL: https://www.iitk.ac.in/npsc/
Papers/NPSC2004/305-Art-305.pdf.

[16] Armando M. Leite da Silva, Leonidas Chaves de Resende, Luiz AntÔnio da Fonseca Manso,
and Vladimiro Miranda. Composite reliability assessment based on monte carlo simula-
tion and artificial neural networks. IEEE Transactions on Power Systems, 22(3):1202–
1209, August 2007. URL: https://doi.org/10.1109/tpwrs.2007.901302, doi:
10.1109/tpwrs.2007.901302.

[17] Lou Sluis. Transients in power systems. Wiley, Chichester New York, 2001.

[18] R. Billinton and E. Khan. A security based approach to composite power system reliability
evaluation. IEEE Transactions on Power Systems, 7(1):65–72, 1992. doi:10.1109/59.
141688.

[19] Pei Zhang, Ke Meng, and Zhaoyang Dong. Probabilistic vs Deterministic Power System Sta-
bility and Reliability Assessment, pages 117–145. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2010. URL: https://doi.org/10.1007/978-3-642-04282-9_5, doi:
10.1007/978-3-642-04282-9_5.

[20] Roy Billinton and Ronald N. Allan. Reliability Evaluation of Power Systems. Springer US,
1996. URL: https://doi.org/10.1007/978-1-4899-1860-4, doi:10.1007/
978-1-4899-1860-4.

[21] Roy Billinton and Ronald N. Allan. Reliability Assessment of Large Electric Power Systems.
Springer US, 1988. URL: https://doi.org/10.1007/978-1-4613-1689-3, doi:
10.1007/978-1-4613-1689-3.

[22] Roy Billinton and Wenyuan Li. Reliability Assessment of Electric Power Systems Us-
ing Monte Carlo Methods. Springer US, 1994. URL: https://doi.org/10.1007/
978-1-4899-1346-3, doi:10.1007/978-1-4899-1346-3.

[23] Leonel de Magalhães Carvalho. Advances on the sequencial Monte Carlo reliability assess-
ment of generation-transmission system using cross-entropy and population-based Methods.
2013.

[24] Armando M. Leite da Silva, Reinaldo A. Gonzalez-Fernandez, Warlley S. Sales, and
Luiz A.F. Manso. Reliability assessment of time-dependent systems via quasi-sequential
monte carlo simulation. In 2010 IEEE 11th International Conference on Probabilistic Meth-
ods Applied to Power Systems. IEEE, June 2010. URL: https://doi.org/10.1109/
pmaps.2010.5528326, doi:10.1109/pmaps.2010.5528326.

https://ml-cheatsheet.readthedocs.io/en/latest/logistic_regression.html
https://ml-cheatsheet.readthedocs.io/en/latest/logistic_regression.html
http://rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-optimization/
http://rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-optimization/
https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
https://www.iitk.ac.in/npsc/Papers/NPSC2004/305-Art-305.pdf
https://www.iitk.ac.in/npsc/Papers/NPSC2004/305-Art-305.pdf
https://doi.org/10.1109/tpwrs.2007.901302
http://dx.doi.org/10.1109/tpwrs.2007.901302
http://dx.doi.org/10.1109/tpwrs.2007.901302
http://dx.doi.org/10.1109/59.141688
http://dx.doi.org/10.1109/59.141688
https://doi.org/10.1007/978-3-642-04282-9_5
http://dx.doi.org/10.1007/978-3-642-04282-9_5
http://dx.doi.org/10.1007/978-3-642-04282-9_5
https://doi.org/10.1007/978-1-4899-1860-4
http://dx.doi.org/10.1007/978-1-4899-1860-4
http://dx.doi.org/10.1007/978-1-4899-1860-4
https://doi.org/10.1007/978-1-4613-1689-3
http://dx.doi.org/10.1007/978-1-4613-1689-3
http://dx.doi.org/10.1007/978-1-4613-1689-3
https://doi.org/10.1007/978-1-4899-1346-3
https://doi.org/10.1007/978-1-4899-1346-3
http://dx.doi.org/10.1007/978-1-4899-1346-3
https://doi.org/10.1109/pmaps.2010.5528326
https://doi.org/10.1109/pmaps.2010.5528326
http://dx.doi.org/10.1109/pmaps.2010.5528326

REFERENCES 65

[25] J.C.O. Mello, M.V.F. Pereira, and A.M. Leite da Silva. Evaluation of reliability worth in
composite systems based on pseudo-sequential monte carlo simulation. IEEE Transac-
tions on Power Systems, 9(3):1318–1326, 1994. URL: https://doi.org/10.1109/
59.336134, doi:10.1109/59.336134.

[26] Inês Maria Afonso Trigo de Freitas Alves. Monte Carlo Parallel Implementation for Relia-
bility Assessent. 2019.

[27] Steven Thompson. Sampling. John Wiley & Sons, Hoboken, N.J, 2012.

[28] Introduction to power system reliability. In Electric Power Grid Reliability Evaluation,
pages 185–191. John Wiley & Sons, Inc., December 2018. URL: https://doi.org/
10.1002/9781119536772.ch7, doi:10.1002/9781119536772.ch7.

[29] G.C. Oliveira, M.V.F. Pereira, and S.H.F. Cunha. A technique for reducing computational
effort in monte-carlo based composite reliability evaluation. IEEE Transactions on Power
Systems, 4(4):1309–1315, 1989. URL: https://doi.org/10.1109/59.41680, doi:
10.1109/59.41680.

[30] C. Marnay and T. Strauss. Effectiveness of antithetic sampling and stratified sampling in
monte carlo chronological production cost modeling (power systems). IEEE Transactions
on Power Systems, 6(2):669–675, May 1991. URL: https://doi.org/10.1109/59.
76711, doi:10.1109/59.76711.

[31] Reuven Y. Rubinstein and Dirk P. Kroese. The Cross-Entropy Method. Springer New York,
2004. URL: https://doi.org/10.1007/978-1-4757-4321-0, doi:10.1007/
978-1-4757-4321-0.

[32] Zdravko I. Botev, Dirk P. Kroese, Reuven Y. Rubinstein, and Pierre L’Ecuyer. The cross-
entropy method for optimization. In Handbook of Statistics - Machine Learning: The-
ory and Applications, pages 35–59. Elsevier, 2013. URL: https://doi.org/10.
1016/b978-0-444-53859-8.00003-5, doi:10.1016/b978-0-444-53859-8.
00003-5.

[33] Leonel de Magalhaes Carvalho, Reinaldo Andres Gonzalez-Fernandez, Armando Mar-
tins Leite da Silva, Mauro Augusto da Rosa, and Vladimiro Miranda. Simplified cross-
entropy based approach for generating capacity reliability assessment. IEEE Transactions
on Power Systems, 28(2):1609–1616, May 2013. URL: https://doi.org/10.1109/
tpwrs.2012.2213618, doi:10.1109/tpwrs.2012.2213618.

[34] Armando M. Leite da Silva, Reinaldo A. G. Fernandez, and Chanan Singh. Gen-
erating capacity reliability evaluation based on monte carlo simulation and cross-
entropy methods. IEEE Transactions on Power Systems, 25(1):129–137, February
2010. URL: https://doi.org/10.1109/tpwrs.2009.2036710, doi:10.1109/
tpwrs.2009.2036710.

[35] Ines M. Alves, Vladimiro Miranda, and Leonel M. Carvalho. Parallel GPU implemen-
tation for fast generating system adequacy assessment via sequential monte carlo simula-
tion. In 2020 International Conference on Probabilistic Methods Applied to Power Systems
(PMAPS). IEEE, August 2020. URL: https://doi.org/10.1109/pmaps47429.
2020.9183554, doi:10.1109/pmaps47429.2020.9183554.

https://doi.org/10.1109/59.336134
https://doi.org/10.1109/59.336134
http://dx.doi.org/10.1109/59.336134
https://doi.org/10.1002/9781119536772.ch7
https://doi.org/10.1002/9781119536772.ch7
http://dx.doi.org/10.1002/9781119536772.ch7
https://doi.org/10.1109/59.41680
http://dx.doi.org/10.1109/59.41680
http://dx.doi.org/10.1109/59.41680
https://doi.org/10.1109/59.76711
https://doi.org/10.1109/59.76711
http://dx.doi.org/10.1109/59.76711
https://doi.org/10.1007/978-1-4757-4321-0
http://dx.doi.org/10.1007/978-1-4757-4321-0
http://dx.doi.org/10.1007/978-1-4757-4321-0
https://doi.org/10.1016/b978-0-444-53859-8.00003-5
https://doi.org/10.1016/b978-0-444-53859-8.00003-5
http://dx.doi.org/10.1016/b978-0-444-53859-8.00003-5
http://dx.doi.org/10.1016/b978-0-444-53859-8.00003-5
https://doi.org/10.1109/tpwrs.2012.2213618
https://doi.org/10.1109/tpwrs.2012.2213618
http://dx.doi.org/10.1109/tpwrs.2012.2213618
https://doi.org/10.1109/tpwrs.2009.2036710
http://dx.doi.org/10.1109/tpwrs.2009.2036710
http://dx.doi.org/10.1109/tpwrs.2009.2036710
https://doi.org/10.1109/pmaps47429.2020.9183554
https://doi.org/10.1109/pmaps47429.2020.9183554
http://dx.doi.org/10.1109/pmaps47429.2020.9183554

66 REFERENCES

[36] Dogan Urgun and Chanan Singh. Composite system reliability analysis using deep learning
enhanced by transfer learning. In 2020 International Conference on Probabilistic Methods
Applied to Power Systems (PMAPS). IEEE, August 2020. URL: https://doi.org/10.
1109/pmaps47429.2020.9183474, doi:10.1109/pmaps47429.2020.9183474.

[37] Artificial intelligence in healthcare. URL: https://www.
siemens-healthineers.com/pt/digital-health-solutions/
artificial-intelligence-in-healthcare.

[38] Bonnie G Buchanan. Artificial intelligence in finance. 2019. URL: https://zenodo.
org/record/2612537, doi:10.5281/ZENODO.2612537.

[39] Bernard Marr. How is artificial intelligence and machine learning used in engineer-
ing? URL: https://www.forbes.com/sites/bernardmarr/2020/02/07/
how-is-artificial-intelligence-and-machine-learning-used-in-engineering/
?sh=4a2531344a85.

[40] Thomas Wood. Softmax function definition | deepai. URL: https://deepai.org/
machine-learning-glossary-and-terms/softmax-layer.

[41] Alok Sharma, Edwin Vans, Daichi Shigemizu, Keith A. Boroevich, and Tatsuhiko Tsunoda.
DeepInsight: A methodology to transform a non-image data to an image for convolution
neural network architecture. Scientific Reports, 9(1), August 2019. URL: https://doi.
org/10.1038/s41598-019-47765-6, doi:10.1038/s41598-019-47765-6.

[42] Vladimiro Miranda, Pedro A. Cardoso, Ricardo J. Bessa, and Ildemar Decker. Through the
looking glass: Seeing events in power systems dynamics. International Journal of Electri-
cal Power & Energy Systems, 106:411–419, March 2019. URL: https://doi.org/10.
1016/j.ijepes.2018.10.024, doi:10.1016/j.ijepes.2018.10.024.

[43] Luís Miguel Brito Teixeira. Miss SAIGON - Missing Signal Appraising in Globally Opti-
mized Networks. 2019.

[44] An end-to-end open source machine learning platform. URL: https://www.
tensorflow.org/.

[45] Introduction to keras for engineers. URL: https://keras.io/getting_started/
intro_to_keras_for_engineers/.

[46] Google colab. URL: https://research.google.com/colaboratory/faq.html.

[47] Jason Brownlee. What is the difference between test and valida-
tion datasets? URL: https://machinelearningmastery.com/
difference-test-validation-datasets/.

[48] Ian T. Jolliffe and Jorge Cadima. Principal component analysis: a review and recent devel-
opments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 374(2065):20150202, April 2016. URL: https://doi.org/10.
1098/rsta.2015.0202, doi:10.1098/rsta.2015.0202.

[49] Dalwinder Singh and Birmohan Singh. Investigating the impact of data normaliza-
tion on classification performance. Applied Soft Computing, 97:105524, December
2020. URL: https://doi.org/10.1016/j.asoc.2019.105524, doi:10.1016/
j.asoc.2019.105524.

https://doi.org/10.1109/pmaps47429.2020.9183474
https://doi.org/10.1109/pmaps47429.2020.9183474
http://dx.doi.org/10.1109/pmaps47429.2020.9183474
https://www.siemens-healthineers.com/pt/digital-health-solutions/artificial-intelligence-in-healthcare
https://www.siemens-healthineers.com/pt/digital-health-solutions/artificial-intelligence-in-healthcare
https://www.siemens-healthineers.com/pt/digital-health-solutions/artificial-intelligence-in-healthcare
https://zenodo.org/record/2612537
https://zenodo.org/record/2612537
http://dx.doi.org/10.5281/ZENODO.2612537
https://www.forbes.com/sites/bernardmarr/2020/02/07/how-is-artificial-intelligence-and-machine-learning-used-in-engineering/?sh=4a2531344a85
https://www.forbes.com/sites/bernardmarr/2020/02/07/how-is-artificial-intelligence-and-machine-learning-used-in-engineering/?sh=4a2531344a85
https://www.forbes.com/sites/bernardmarr/2020/02/07/how-is-artificial-intelligence-and-machine-learning-used-in-engineering/?sh=4a2531344a85
https://deepai.org/machine-learning-glossary-and-terms/softmax-layer
https://deepai.org/machine-learning-glossary-and-terms/softmax-layer
https://doi.org/10.1038/s41598-019-47765-6
https://doi.org/10.1038/s41598-019-47765-6
http://dx.doi.org/10.1038/s41598-019-47765-6
https://doi.org/10.1016/j.ijepes.2018.10.024
https://doi.org/10.1016/j.ijepes.2018.10.024
http://dx.doi.org/10.1016/j.ijepes.2018.10.024
https://www.tensorflow.org/
https://www.tensorflow.org/
https://keras.io/getting_started/intro_to_keras_for_engineers/
https://keras.io/getting_started/intro_to_keras_for_engineers/
https://research.google.com/colaboratory/faq.html
https://machinelearningmastery.com/difference-test-validation-datasets/
https://machinelearningmastery.com/difference-test-validation-datasets/
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1098/rsta.2015.0202
http://dx.doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1016/j.asoc.2019.105524
http://dx.doi.org/10.1016/j.asoc.2019.105524
http://dx.doi.org/10.1016/j.asoc.2019.105524

REFERENCES 67

[50] Jason Brownlee. Difference between a batch and an epoch in a neu-
ral network. URL: https://machinelearningmastery.com/
difference-between-a-batch-and-an-epoch/.

[51] PRAMOD GUPTA and NARESH K. SINHA. Neural networks for identification of non-
linear systems: An overview. In Soft Computing and Intelligent Systems, pages 337–356.
Elsevier, 2000. URL: https://doi.org/10.1016/b978-012646490-0/50017-2,
doi:10.1016/b978-012646490-0/50017-2.

[52] Understanding binary cross-entropy / log loss: a visual ex-
planation. URL: https://towardsdatascience.com/
understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a.

[53] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.
arXiv:arXiv:1412.6980.

[54] Adam. URL: https://keras.io/api/optimizers/adam/.

[55] Antonio Simões Costa. Configurador de redes elétricas (in portuguese). https://
simoes.sites.ufsc.br/assp/configurador_de_redes.pdf.

[56] Manuel António Matos. Introdução ao trânsito de potências (in portuguese). https://
paginas.fe.up.pt/~mam/tp.pdf.

[57] Pypower. URL: https://pypi.org/project/PYPOWER/.

[58] M.Glavic F.Capitanescu and L.Wehenkel. An interior-point method based optimal power
flow. ACOMEN conference, 2005. URL: https://orbi.uliege.be/bitstream/
2268/28224/1/paper.pdf.

[59] Optimization and root finding (scipy.optimize). URL: https://docs.scipy.org/doc/
scipy/reference/optimize.html.

https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
https://doi.org/10.1016/b978-012646490-0/50017-2
http://dx.doi.org/10.1016/b978-012646490-0/50017-2
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
http://arxiv.org/abs/arXiv:1412.6980
https://keras.io/api/optimizers/adam/
https://simoes.sites.ufsc.br/assp/configurador_de_redes.pdf
https://simoes.sites.ufsc.br/assp/configurador_de_redes.pdf
https://paginas.fe.up.pt/~mam/tp.pdf
https://paginas.fe.up.pt/~mam/tp.pdf
https://pypi.org/project/PYPOWER/
https://orbi.uliege.be/bitstream/2268/28224/1/paper.pdf
https://orbi.uliege.be/bitstream/2268/28224/1/paper.pdf
https://docs.scipy.org/doc/scipy/reference/optimize.html
https://docs.scipy.org/doc/scipy/reference/optimize.html

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context and Motivation
	1.2 Objectives
	1.3 Dissertation Outline

	2 Power System Reliability
	2.1 Adequacy and Security
	2.2 Functional Zones and Hierarchical levels
	2.3 Reliability Assessment Methods
	2.3.1 Analytical Methods
	2.3.2 Simulation Methods
	2.3.3 Confidence Intervals

	2.4 Reliability Indices for HLII studies
	2.5 Non-Sequential Monte Carlo Simulation for Reliability Assessment
	2.5.1 Component State
	2.5.2 Load Model
	2.5.3 Indices Estimation

	2.6 Sequential Monte Carlo Simulation for Reliability Assessment
	2.6.1 Component State
	2.6.2 Load Model
	2.6.3 Indices estimation

	2.7 Evaluation Stage

	3 Acceleration of Monte Carlo Simulation for Reliability Assessment
	3.1 Mathematical approaches
	3.1.1 Importance Sampling
	3.1.2 Cross Entropy Method

	3.2 Parallel Implementation of Monte Carlo Simulation
	3.3 Pattern Recognition Techniques

	4 Convolutional Neural Networks
	4.1 Artificial Intelligence, Machine Learning and Deep Learning
	4.2 Convolutional Neural Networks
	4.2.1 CNN applications on non image data and Power Systems

	4.3 CNN's training on GPU
	4.4 TensorFlow, Keras and Google Colab

	5 Loss of Load Classifier based on CNN
	5.1 Data Harvesting
	5.1.1 Test System
	5.1.2 Data Set Considerations

	5.2 Data Preprocessing
	5.3 CNN's Training Process
	5.4 Classification Stage
	5.5 Pattern Extraction Stage
	5.6 Input Structure and CNN Architecture
	5.6.1 Models Performance Evaluation

	5.7 Final Remarks

	6 Methodology for Monte Carlo Simulation Composite System Reliability Assessment based on CNN
	6.1 Non-Sequential Monte Carlo Simulation
	6.2 Sequential Monte Carlo Simulation
	6.3 Evaluation Stage
	6.3.1 Transmission Grid Configuration
	6.3.2 Generation Dispatch
	6.3.3 DC Power Flow
	6.3.4 Optimal DC Power Flow

	6.4 The Monte Carlo-CNN Simulation for Composite System Reliability Assessment
	6.4.1 Sampling stage
	6.4.2 CNN application to the MCS process

	7 Results
	7.1 IEEE RTS 79 with an annual load curve constant at 2850 MW (Modified IEEE RTS 79)
	7.1.1 Non-Sequential Simulation
	7.1.2 Sequential Simulation

	7.2 IEEE RTS 79 with original load curve (IEEE RTS 79)
	7.2.1 Non-Sequential Simulation
	7.2.2 Sequential Simulation

	7.3 Comments

	8 Conclusion and Future Work
	References

