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Abstract

In recent years, deep learning has become state-of-the-art for predictive tasks such as image clas-
sification, achieving excellent results, sometimes even surpassing human ability. Deep learning
consists of the use of deep artificial neural networks, which were developed to mimic the human
brain, containing units representative of neurons and connections between units that propagate
signals.

Due to its complexity, the calculations made by a network to achieve a decision are not intu-
itive and are quite hard to understand or even compute from a human’s point of view. As such,
these models are considered “black-boxes”, severely lacking in interpretability. The difficulty in
understanding a deep learning algorithm’s reasoning makes it unfeasible to use it in a real-life sce-
nario where unacceptable results have significant consequences, such as in the medical field. As a
result, interpretability has become a trending topic in research regarding deep learning, intending
to improve the acceptance of deep learning models in society’s various contexts.

One way to add interpretability to a model is through case-based explanations, where the goal
is to find data samples or prototypes that are similar to the observation under analysis to use as
explanations. In a medical context, this would mean showing images of patients similar to the
image being analysed by the medical specialist. Even though this approach has great explanatory
value, it raises concerns regarding the violation of patients’ privacy.

This dissertation’s primary goal is to solve the privacy issue by generating synthetic images
based on the patients’ images, which preserve features relevant to the medical diagnosis but do
not disclose information about the patient’s identity. This goal can be achieved using deep gen-
erative models, which are state-of-the-art in image generation, aiming to maximise the images’
explanatory evidence while minimising the identity leak.

To conclude, the generation of case-based explanations with synthetic images that preserve
privacy will help increase the acceptance of deep learning models in the medical field, allowing us
to take full advantage of the scientific advances in deep learning to improve the quality of medical
diagnosis.

Keywords: Deep Learning, Interpretability, Privacy-preserving Machine Learning, Generative
Models
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Resumo

Deep learning tornou-se, recentemente, no estado da arte para tarefas preditivas como classificação
de imagens, tendo conseguido obter resultados excelentes, por vezes até capazes de ultrapassar
a capacidade humana. Deep learning consiste no uso de redes neuronais artificiais profundas,
que foram desenvolvidas para imitar o cérebro humano, contendo unidades, representativas de
neurónios, e ligações entre as mesmas que propagam sinais.

Os cálculos feitos por uma rede no processo de tomada de decisão não são intuitivos e são
difíceis de compreender, ou até computar, do ponto de vista de um humano. Como tal, estes mod-
elos são considerados “caixas negras”, caracterizados por uma severa falta de interpretabilidade.
A dificuldade em compreender o raciocínio de um algoritmo de deep learning inviabiliza o seu uso
num cenário real, especialmente quando resultados inaceitáveis possuem consequências significa-
tivas, como é o caso da área da medicina. Por estas razões, a interpretabilidade tornou-se num
tópico de tendência na investigação sobre deep learning, com o objetivo de melhorar a aceitação
destes modelos em vários contextos da sociedade.

Uma forma de adicionar interpretabilidade a um modelo é através de explicações baseadas
em casos, cujo objetivo é encontrar exemplos de dados, ou protótipos, semelhantes à observação
em análise para usar como explicações. Num contexto médico, isto significa mostrar imagens
de pacientes que são semelhantes à imagem a ser analisada por um especialista médico. Apesar
de esta abordagem ter grande valor explicativo, levanta preocupações no que toca à violação da
privacidade dos pacientes cujas imagens são mostradas.

O objetivo principal desta dissertação é resolver o problema de privacidade ao gerar imagens
sintéticas, baseadas nas imagens dos pacientes, que preservam características relevantes ao diag-
nóstico médico mas que não revelam informação sobre a identidade do paciente. Este objetivo
pode ser alcançado com o uso de modelos generativos profundos, que são o estado da arte em
geração de imagens, visando maximizar a capacidade explicativa das imagens e minimizar o re-
conhecimento do paciente.

Para concluir, a geração de explicações baseadas em casos através de imagens sintéticas que
preservam privacidade ajudará a aumentar a aceitação de modelos deep learning na área da medic-
ina, permitindo tirar vantagem dos avanços científicos em deep learning para melhorar a qualidade
de diagnósticos médicos.
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Chapter 1

Introduction

1.1 Context

In the medical field, image processing and analysis is often used to diagnose a patient’s condition.

For instance, breast cancer, which is the leading cause of death by cancer in women and the second

leading cause among both genders [13], can be detected through the analysis of mammographies

[67]. Another example is the detection of glaucoma, an eye disease caused by intraocular pres-

sure, responsible for the deterioration of optic nerves leading to vision loss and even blindness

[61], which can be done through the analysis of digital fundus images [21]. On top of the concern-

ing consequences seen in these diseases, their early diagnosis, which is critical for a successful

treatment, is complicated due to lack of symptoms [61]. Since conditions such as these have se-

vere consequences, the respective diagnosis must be timely and accurate, which prompts the need

for having tools to quickly and easily identify these pathologies.

When it comes to diagnosis through image analysis, deep learning has recently achieved state-

of-the-art results, sometimes even surpassing human capacity [43, 68]. Recently, McKinney et

al. [68] have developed a deep learning model for breast cancer screening whose predictions

exceed those of human experts. As such, deep learning has shown the potential to provide accurate

predictions that can aid medical experts in the decision-making process, especially when dealing

with ambiguous diagnostic cases.

The problem that blocks deep learning from being used in real-life scenarios is that many of

these models are "black-boxes" whose decisions are hard to understand. Deep learning uses deep

neural networks, which contain various units representative of neurons from the human brain.

The units are organised in many layers, with connections between them that propagate signals,

mimicking the behaviour of synapses from the human brain. Each unit performs an operation over

its inputs and propagates the results to the succeeding units. As such, the whole model performs

a massive amount of calculations, making it difficult for a human to replicate or even understand

the computations done. The lack of interpretability is a barrier that stops these models from being

1
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applied to real scenarios, especially where unacceptable results have significant consequences

[28]. Such is the medical field’s case, where a wrong diagnosis may lead to a serious disease

not being treated or to healthy patients receiving dangerous treatments for a disease they do not

possess.

To be able to use these models to improve medical diagnosis, helping doctors achieve a deci-

sion even in ambiguous cases that are difficult to diagnose, we need to provide them not only the

network’s predictions but also explanations that support the predictions. When it comes to image

classification, one method to provide intuitive explanations is presenting cases similar to the im-

age being analysed [102, 101]. There are various case-based interpretability methods that allow

retrieving images from databases as explanations. However, there are privacy concerns when it

comes to using images from patients as explanations.

Currently, the image retrieval process to obtain explanations by examples is characterised by

an explanation consumer who submits a medical image to the image retrieval system and receives

a similar case acting as an explanation (Figure 1.1). The problem in the current system is that

explanation consumers without authorised access to the system’s data cannot take advantage of the

retrieval system as it would violate the privacy of the patients present in the database. Consumers

without authorised access to the data may include patients, medical interns, and even medical

specialists who are not accompanying the patient in the retrieved images. To use explanations

by example in a medical scenario to support medical experts’ decisions and ensure transparency

in the decision-making process, there is a need to privatise the retrieved case-based explanations

before providing them to the explanation consumers.

Figure 1.1: Diagram that represents how case-based retrieval systems currently work. Red users
represent explanation consumers that do not possess authorised access to the retrieval system’s
database, such as patients or medical interns. Green users represent explanation consumers that
have authorised access to the system’s database, such as doctors.

1.2 Motivation

The use of deep learning algorithms, which have the potential to surpass human experts in medical

diagnosis [68], can facilitate doctors’ decision-making process, helping to achieve decisions even

in complicated and ambiguous situations. Although deep learning models make decisions, only
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doctors can introspect these decisions and put them into practice. Providing intuitive explanations

for the predictions of deep learning models ensures that doctors can trust the models’ predictions

and use them to obtain additional insights about diagnostic cases.

To take advantage of deep learning’s potential to improve medical diagnosis, a model must

provide explanations, which can take the form of examples of similar cases. To provide these

types of explanations, we need to attend to the privacy concerns associated with showing patients’

images. By providing privacy-preserving case-based explanations to justify deep learning models’

decisions, we can increase these models’ acceptance in real-world contexts.

Furthermore, the privatisation of case-based explanations would allow showing these explana-

tions to a broader audience. Doctors could even show the privatised explanations to the patients to

explain the reasons behind their diagnosis. Therefore, privacy-preserving case-based explanations

can help to increase the transparency of medical diagnosis.

Even though interpretability and privacy-preserving image generation are trending topics in the

research community, their fusion into privacy-preserving explanations has not yet been addressed

in the literature. Thus, this dissertation’s development can strongly contribute to the scientific

community through research on the integration of privacy into explainable artificial intelligence.

1.3 Objectives

This dissertation aims to enable case-based interpretability in the medical scene through the pri-

vatisation of visual explanations. For this purpose, we aim to investigate and discuss the current

literature in interpretability and privacy to outline the requirements that privacy-preserving case-

based explanations must fulfil, considering the characteristics of medical data. After outlining

these requirements, we aim to develop a deep generative model capable of generating synthetic

images that preserve a patient’s privacy while also preserving the explanatory evidence used to

understand the reasons behind a deep learning model’s decisions. Furthermore, we aim to use this

model to improve a classification model’s interpretability by generating counterfactual explana-

tions.

Finally, we aim to call the scientific community’s attention to the need to privatise case-based

explanations and promote discussion on the aforementioned topics. This dissertation will serve as

a first step towards the integration of case-based interpretability and privacy.

1.4 Main Contributions

This dissertation’s main contributions are:

• We explore the application of current privacy-preserving models to the domain of case-

based interpretability for medical image analysis, reflecting on the weaknesses of privacy-

preserving approaches. We elaborated a research paper [76] regarding this topic which was

published at a workshop on Interpretable Machine Learning in Healthcare, held as part of

the ICML conference (ICML 2021 IMLH).
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• We propose a novel privacy-preserving model to privatise case-based explanations in the

medical scene, which addresses some of the weaknesses of the existing privacy-preserving

methods. This novel model was built on top of one of the most promising privacy-preserving

architectures available in the literature, improving it from three perspectives: privacy, intelli-

gibility and explanatory value. Furthermore, we also propose an approach to use this model

to generate counterfactual explanations. We submitted a research paper [75] with this work

to the Winter Conference on Applications of Computer Vision (WACV 2022).

• We survey state-of-the-art case-based interpretability methodologies and privacy-preserving

methods, reflecting on the integration of these two research topics. We propose guidelines

to guide future work on the novel research topic of Privacy-preserving Case-based Inter-

pretability. We submitted a white paper with this survey’s proposal to the IEEE SPM Special

Issue on Explainability in Data Science: Interpretability, Reproducibility, and Replicability,

which was accepted. Currently, we are preparing the submission of the full paper [77].

1.5 Document Structure

This document contains various chapters that fall under two categories: literature review and ex-

perimental work. The literature review chapters present all the relevant information regarding the

topics of this dissertation. Chapter 2 introduces background concepts about Deep Learning, giv-

ing particular attention to Convolutional Neural Networks, which are widely used in computer

vision tasks. Furthermore, this chapter presents a literature review on Deep Generative Models,

which will be the focus of this dissertation, as we will develop a generative model to generate

privatised images. Chapter 3 reviews the literature on interpretability in machine learning, with a

special focus on case-based interpretability. Then, Chapter 4 reviews the literature about current

privacy-preserving methods for visual data. Regarding chapters that focus on the experimental

work, we start by formalising this dissertation’s problem and introducing our approach to fix this

problem in Chapter 5. This chapter includes an introduction to the datasets used and some pre-

liminary experiments that precede our privacy-preserving models’ development. Chapters 6 and

7 present the experiments that led to the development of two privacy-preserving models applied

to the privatisation of case-based explanations. Chapter 8 focus on using the privacy-preserving

models to generate counterfactual explanations. Finally, Chapter 9 concludes this document with

some final remarks and future work proposals. In Appendix A, we included some visual results to

complement the ones exposed in the experimental work.



Chapter 2

Background: Deep Learning

The exponential growth of the information available and accessible at a worldwide level following

the appearance of the web has led to the existence of massive amounts of information that can aid

decision-making in various real-life scenarios. However, exploring such a significant amount of

data requires great amounts of computational resources, which we lack. Facing such limitations,

the field of Data Mining has evolved to provide processes and methodologies to extract knowledge

from data and apply them to real-world contexts. One of the most significant Data Mining areas

in current research is Machine Learning, composed of a family of algorithms that have the ability

to learn to uncover patterns in data without being explicitly programmed. Machine learning algo-

rithms usually have two phases: a training phase and a testing phase. During training, the models

learn patterns in data, which allow them to perform specific tasks. For instance, in a classification

task, where the goal is to assign a label to an object, models are given a set of inputs and the classes

they belong to in order to learn how to map the classes to the inputs. The testing phase is used to

evaluate the performance of the models. During testing, the models are provided with only inputs

to which they guess the respective labels. By comparing them to the real labels, it is possible to

evaluate their accuracy and other metrics.

Deep learning is a subset of machine learning algorithms that can learn to extract features

according to a given task, unlike traditional machine learning methods where feature extraction

must be done separately. The automatic feature extraction process has facilitated tasks such as

image classification, where manual feature extraction is hard. As such, deep learning has recently

become state-of-the-art in various tasks, including image classification, having achieved excellent

results, sometimes even surpassing the human ability [43, 68]. To understand what deep learning

is, we first need to understand the concept of artificial neural networks.

An artificial neural network is a model of machine learning developed to mimic the human

brain. It is composed of units representing neurons and connections between units, which, sim-

ilarly to synapses, propagate signals. The most basic version of a neural network is the Percep-

tron [97], composed of a single unit, which is represented in Figure 2.1. As internal parameters,

5
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a unit contains a set of weights, applied to its inputs, and a bias b, which is a constant value. The

perceptron linearly combines its weighted inputs, adds the bias, and applies an activation function

h over the result. The resulting output can be seen in Equation 2.1.

Figure 2.1: Representation of perceptron with 3 input values.

y = h(
n

∑
i=0

xi×wi +b) (2.1)

The activation function defines the output of the unit. Some examples of commonly used

activation functions are [47]:

• Sigmoid: this function outputs a number between 0 and 1, which can be thought of as

a probability. The derivative of this function is always a value inferior to 1. This function

often leads to a problem during the network’s training, called the vanishing gradients, where

the gradients become so small that they are practically zero, which prevents the unit from

optimising the values of its weights during training.

f (x) =
1

1+ e−x (2.2)

• Hyperbolic Tangent (Tanh): this function is very similar to the sigmoid function. However,

it outputs a value between -1 and 1, and it is centred around zero, which provides stronger

gradients that vary in the interval [0, 1]. Similar to the sigmoid function, the Tahn function

also suffers from the vanishing gradient problem.

f (x) =
2

1+ e−2x −1 (2.3)
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• Rectified Linear Unit (ReLU): this function is very simple to compute. Its gradient is either

0, for negative input values, or 1 if the input is positive. This function leads to a problem

called the dead ReLU, characterised by the non-activation of units containing negative inputs

since the function outputs 0 in these cases.

f (x) =

x, if x > 0

0, if x≤ 0
(2.4)

• Leaky Rectified Linear Unit (Leaky ReLU): this function was defined to fix the dead

ReLU problem on the ReLU function. It uses a linear function with a small slope for neg-

ative inputs, which results in small gradients capable of adjusting the unit’s weights even

when the input is negative.

f (x) =

x, if x > 0

αx, if x≤ 0
(2.5)

Figure 2.2: Activation function graphs.
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A single perceptron can only be applied to a binary classification problem, where there are only

two classes to assign to the data instances. We can organise multiple perceptrons in one single layer

where all the units are connected to all the network’s inputs to solve linearly separable problems,

such as multiclass classification, where each unit is a binary classifier capable of identifying one

class. Once we add different layers of units with connections between each other, we obtain

a multi-layer network capable of solving more difficult, non-linearly separable problems. The

number of hidden layers of a multi-layer network defines its depth. Deep learning refers to the use

of deep artificial neural networks, characterised by a high number of hidden layers.

There are two types of artificial neural networks:

• Feed-forward neural networks: the information, in the form of signals, flows in one di-

rection only, from the input to the output layer, with each layer propagating signals to the

layer that follows.

• Recurrent neural networks (RNNs): units can be connected to other units of previous

layers. These networks are usually applied to tasks with sequential inputs, such as speech

or text [60].

A feed-forward neural network has the capacity to improve itself by tampering with its internal

parameters. One method that can be used to optimise a network’s weights during training is

backpropagation. The backpropagation algorithm is composed of two phases: the forward phase

where the network propagates signals from the input layer until the output layer, in a forward

manner, and the backward phase, which propagates gradients used to update the weights of the

units in a backward manner, as can be seen in Figure 2.3. During the training process, the network

goes over the training set multiple times, each corresponding to an epoch, and calculates a loss

function for each training sample. The loss function measures how the network is performing

regarding the predictive task that it aims to achieve. The loss is minimised through a gradient

descent algorithm and propagated to the previous units in the backward phase to compute the

units’ gradient, which is used to update the respective weights.

One challenge in defining a neural network model is the definition of an appropriate loss func-

tion since the model’s performance directly depends on this function’s quality. The loss function

is a manifestation of what we want the model to do, and it is a value that we want to minimise

during the training process. For example, if we want a model to classify an input, the simplest loss

function we can think is the number of misclassified samples, which is called the zero-one loss

function. However, this function’s optimisation is computationally complex [80]. A well-known

loss function used in classification is the cross-entropy, which is differentiable and decreases as the

training samples’ probability of being classified as the correct class increases. However, even this

function, which is so widely used and has achieved outstanding results, may be lacking in some

contexts, such as when there is label noise in the training data [29]. Therefore, it is continuously

being improved in the scientific community.

One other challenge in deep learning networks is overfitting, where the network becomes

incapable of generalising to new data, achieving low error rates on the training data but high error
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Figure 2.3: Backpropagation on perceptron.

rates on validation data, which is the part of the dataset used to assess the model’s capacity to

generalise. This issue happens because the number of parameters of the network, given by the

number of units, is often larger than the training data. Various regularisation techniques have been

introduced in the literature to solve this problem:

• Early stopping: consists of stopping the training process before the performance of the

network drops for the validation set.

• Dropout [44]: consists of randomly dropping units of the network during training, causing

perturbations in the network.

• Data augmentation: consists of creating new data samples for training using translations

and other types of transformations on the training data, increasing the size of the dataset.

• L1 and L2 Regularisation: consists of adding a regularisation term to a model’s loss func-

tion that penalises the models’ weights.

2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are state-of-the-art for tasks regarding multidimensional

data such as images, thanks to their capacity to extract features through convolution and pooling

operations. Image classification, which is a predictive task where the goal is to assign a class to an

image, is one example of the tasks that use CNNs.

Various CNNs have been developed and are widely used in the scientific community for image

classification, such as VGG [105], Inception [109] and ResNet [42]. Additionally, these models

have been trained on generic datasets, such as ImageNet [25]. As such, their weights can be
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reused in various domains through transfer learning, improving the network’s training and its

performance.

CNNs are composed of convolutional and pooling layers used alternately to detect and extract

features in multidimensional data like images. In each layer, they can extract different features

starting with simple ones such as lines in the first layer and evolving to more complex features that

combine the ones defined in the previous layer. Like other neural networks, convolutional neural

networks can also use backpropagation for training. The next sections explain the types of layers

used in these networks.

2.1.1 Convolutional Layer

A convolutional layer is composed of filters, or kernels, used on an input image through a con-

volution operation to generate a feature map, also called an activation map. The filter is typically

smaller than the input image and acts like a sliding window that slides over the image to build the

feature map, as shown in Figure 2.4. Each element of the feature map is calculated by the scalar

product between the filter and the part of the image overlapped by the filter. Figure 2.4 illustrates

the first iterations of the process of calculating the values of the feature map by applying a filter

with dimensions 3x3, which slides over an input image with dimensions 6x6.

Figure 2.4: Convolution operation done in convolutional layer.

The feature map is smaller than the original input image since the filter is not applied to the

image’s borders. On a convolutional layer, we can use multiple filters, each one representing one

feature. For each filter we use, we obtain a feature map representing the existence of the feature

represented in the respective filter in the input image.

Convolution operations can also be applied with the purpose of up-sampling the data through

Transposed Convolutional Layers. In this case, we add columns and rows full of zeros in the

input’s borders to make it bigger, and we apply the convolution operation, obtaining an output

bigger than the input.
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2.1.2 Pooling Layer

The pooling layer applies a commutative operation, such as the maximum operation or an average,

over an input, using a sliding window that slides over the whole input. Usually, the window’s

stride, which is the number of pixels that are skipped ahead when the window moves over the

image, is the same size as the window. Thus, each pixel of the input image only contributes to

the value of one activation map element. This layer allows obtaining smaller and more compact

representations of an input by down-sampling the input image. Figure 2.5 shows an example of

what happens in a Max Pooling layer, where the maximum operation is applied over the input

of size 4x4, in windows of size 2x2 with a stride of 2. In each element of the feature map, the

corresponding value is being calculated considering only the input pixels of the same colour.

Figure 2.5: Example of max pooling operation.

2.1.3 Fully Connected Layer

A fully connected layer contains its units connected to all the units of the previous layer. Usually,

this layer is used after the convolutional and pooling layers, taking the features extracted in these

layers as inputs to make decisions in tasks such as classification.

2.2 Generative Models

Generative models learn the data probability distribution, which can be used to generate new data

samples that look like they belong to the training data used to train the model. These models learn

patterns in the data that allow them to generate new data based on these patterns.

Before introducing the deep generative models, it is important to introduce the following con-

cepts:

• Kullback-Leibler (KL) Divergence [59]: asymmetric function that measures how a prob-

ability distribution p diverges from a second distribution q. DKL reaches zero when the

probability distributions are equal, and it tends to infinity when the probabilities are disjoint

[117].
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DKL(p||q) =
∫

x
p(x) log

p(x)
q(x)

dx (2.6)

• Jensen-Shannon (JS) Divergence [64]: symmetric function to measure the similarity be-

tween two probability distributions. When both probabilities overlap, this metric is not

differentiable [117].

DJS(p||q) = 1
2

DKL(p|| p+q
2

)+
1
2

DKL(q||
p+q

2
) (2.7)

• Wasserstein Distance: also called Earth Mover’s distance since it indicates how much

mass must be moved to transform the probability distribution p in q [9]. Compared to the

previous metrics, the Wasserstein distance is differentiable for all points and contains a value

representative of the distance between the distributions, even when these are disjoint [117].

In Equation 2.8, ∏(p,q) refers to the set of all the possible joint probability distributions

between p and q.

DW (p||q) = in fγ∈∏(p,q)E(x,y)∼γ [||x− y||] (2.8)

• Likelihood: probability that the model assigns to the training data assuming independence

of the samples. It is the product of the probabilities of the m training samples, as can be seen

in Equation 2.9.

Likelihood =
m

∏
i=1

pmodel(xi) (2.9)

• Maximum Likelihood Estimation: consists of choosing the parameters of a model that

maximise the likelihood of the training data. Maximising the likelihood is equivalent to

minimising the KL Divergence between the data distribution and the generative model’s

distribution.

Generative models differ in the way they learn the data distribution. In Figure 2.6 there is

a taxonomy proposed by Goodfellow [35]. Models that can draw samples from a probability

distribution without directly defining it are considered implicit density models, as is the case of

Generative Adversarial Networks. On the other hand, models that explicitly define the data dis-

tribution, and that can therefore maximise the likelihood directly, are considered explicit density

models and can be further divided into two groups: models where the probability distribution is
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intractable, which need to make approximations to maximise the likelihood, like Variational Au-

toencoders, and models that explicitly define the distribution to be computationally tractable, like

autoregressive models and flow-based models. The main problem in developing explicit models

is that it is difficult to obtain a model that successfully captures the data distribution’s complexity

while preserving computational efficiency [35].

Figure 2.6: Taxonomy for generative models introduced by Goodfellow.

The following subsections start by introducing traditional generative models, which do not use

deep learning models and are mostly applied to tasks other than data generation, followed by the

introduction of the four most popular deep generative models: Generative Adversarial Networks,

Variational Autoencoders, Autoregressive Models and Normalising Flows. Table 2.1 presents an

overview of how each of the introduced models captures the data’s probability distribution.

Table 2.1: Overview of Deep Generative Models

Model Taxonomy How it captures data probability distribution
GAN Implicit Minimax game between generator and discriminator makes the

probability distribution in the generated data converge to the
real data distribution.

VAE Explicit Maximises data likelihood using encoder-decoder architecture:
encoder approximates the true posterior p(z | x) and decoder
models the likelihood p(x | z).

Autoregressive
Model

Explicit Computes the joint distribution of the data by calculating the
product of the conditional distributions of each data dimension.

Normalising
Flow

Explicit Transforms a simple data distribution into a more complex dis-
tribution through a series of invertible transformations.
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2.2.1 Traditional Generative Models

Traditional Generative Models focus on estimating the probability density through two techniques:

parametric, which estimates the parameters of a known density that better approximate the training

data, and non-parametric, which does not assume the form of the data density.

The models introduced in this section are generative models that were not specifically de-

signed for data generation. They can be applied to the tasks of classification, clustering, anomaly

detection, among others.

2.2.1.1 Parametric Techniques

The simplest example of a generative model is the Naive Bayes model, used in classification,

which learns the joint probability p(x,y) between an input x and a class y. To calculate the like-

lihood of a class given an input, the algorithm calculates the posterior p(y | x) through the Bayes

theorem, expressed in Equation 2.10, assuming independence between attributes of an instance.

The label with the highest likelihood is then assigned to the input.

p(y | x) = p(x | y)× p(y)
p(x)

(2.10)

The Naive Bayes model belongs to a family of models called the Probabilistic Graphical Mod-

els (PGMs). These models are represented by graphs composed of nodes that represent vari-

ables and edges that express dependencies between variables [108]. There are two main types of

PGMs: Bayesian networks, characterised by directed graphs, and Markov networks, characterised

by undirected graphs.

Bayesian classifiers, such as the Naive Bayes classifier, apply the Bayes theorem to estimate

each class’s probability. In these models’ graphs, an edge’s target node’s probability is conditioned

by the edge’s source node. The graph of a Naive Bayes classifier has nodes representative of

classes with edges pointing towards attributes, as can be seen in Figure 2.7, where C represents a

class, and Ai represents data attributes.

Various models are based on Markov chains, which are stochastic models composed of states

and transitions between states. Each transition between state sA and sB is characterised by the

state’s probability of changing from sA to sB, which is the conditional probability p(sB | sA). These

models satisfy the Markov property since the probability of the state’s change depends only on

the current state, not on the states that preceded it. Markov chains repeatedly update the states

and respective probability distributions and generate samples by retrieving x given an input y from

the conditional probability p(x | y). The convergence towards the real data distribution is slow,

making these models inappropriate for high-dimensional data spaces [35].

Markov chains are the basis of the Hidden Markov Model (HMM), which is a particular case

of a Bayesian network [108]. HMM contains observable states, represented by data that we want

to classify, and hidden states, which are not observable and that commonly refer to labels when
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Figure 2.7: Example of Naive Bayes graph.

it comes to classification problems. The probability of an observable state, or observation, is

conditioned by the probability of the underlying hidden state. During training, the model learns

the probability of a data sample x conditioned by a state y: p(x | y), called the emission probability,

and the probability of a state y1 being followed by the state y2 in the sequence: p(y2 | y1), called

the transition probability. HMMs have found many applications, including speech recognition to

understand what word was uttered in a speech signal, where each label represents a phoneme [91].

Markov networks refer to Markov Random Fields (MRFs), where the states that make up the

graph can be organised in a chain or a grid. Each state’s probability is conditioned solely by the

respective neighbours, meaning that a state is conditionally independent of all others given its

neighbours [108].

Another type of parametric models is the Gaussian Mixture Models (GMMs) [69, 70]. GMMs

are a type of generative model which linearly combines different Gaussian densities, originat-

ing complex data distributions [10]. The density estimation for one observation is calculated

through Equation 2.11, where K is the number of components of the mixture model, equivalent to

the number of clusters when considering a clustering task, N (x | µk,Σk) is a Gaussian distribu-

tion with mean µ and covariance Σ, and πk is the weight assigned to the respective distribution.

GMMs are trained through maximum likelihood estimation, using optimisation techniques such

as Expectation-Maximisation [10].

p(x) =
K

∑
k=1

πkN (x | µk,Σk) (2.11)

2.2.1.2 Non-parametric Techniques

There are three non-parametric techniques that focus on calculating the data density through Equa-

tion 2.12, where K is the number of observations inside a region R, N is the total number of

observations and V is the volume of the region R.
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p̂(x) =
K

NV
(2.12)

The three methods differ in the definition of the region R and subsequent calculation of the

variables K and V :

• Histogram: This method divides each attribute into M bins, where each bin quantifies the

occurrence of samples. As such, in the calculation of p̂(x), K refers to the number of samples

inside the bin that contains the sample x and V refers to the respective bin’s volume.

• Parzen Windows: This method defines R as a region centred on the sample x with a set

volume V . It uses a kernel function to calculate the number of samples inside the region

K. If we interpret this region as a hypercube, a possibility of a kernel function is expressed

in Equation 2.13, which checks whether its input u is contained inside a unitary hypercube

centred on the origin. This kernel function results in the density estimation characterised

by Equation 2.14, where h represents the size of the hypercube’s edge and D represents its

dimensions [10].

k(u) =

1, if |ui| ≤ 1
2 , i = {1, ...,D}

0, otherwise
(2.13)

p̂(x) =
1

NhD ×
N

∑
n=1

k(
x− xn

h
) (2.14)

• K-Nearest Neighbours: Similarly to Parzen Windows, this method defines a region R

around x, but instead of having a fixed volume and calculating K, it does the opposite,

calculating the volume V of the region around x that contains its K nearest neighbours [10].

Compared with parametric techniques, non-parametric ones have the advantage that they do

not assume the form of the data distribution, enabling them to model complex target densities.

However, these algorithms are sensitive to some parameters, such as the number of used bins or

the regions’ size, and the data dimensions.

2.2.2 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [34] became the most well-known method in image

generation, thanks to their high capacity of generating realistic images. GANs are composed of

two adversarial networks, which compete with each other: the generator and the discriminator. The

generator generates realistic synthetic images starting with an input, often defined as random noise,

while the discriminator discriminates between real and synthetic images. The goal of the generator
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is to trick the discriminator into thinking that the generated image is real. The discriminator is a

binary classification network that classifies the images as either real or fake.

The loss function for a GAN is defined in Equation 2.15, where x represents the real samples

and z represents the random noise. G(z) represents the synthetic image originated by the generator.

The generator and the discriminator play a two-player minimax game where the generator wants to

minimise the loss function, minimising the number of correct classifications in the discriminator,

while the discriminator intends to maximise it.

V (D,G) = Ex[logD(x)]+Ez[log(1−D(G(z)))] (2.15)

The training process of a GAN involves training the generator and the discriminator simultane-

ously, using backpropagation to minimise the loss, as can be seen in Figure 2.8. The loss function

approximates the JS Divergence [35].

Figure 2.8: Training process of a GAN.

Regarding the probability distribution captured by this generative model, the generator implic-

itly defines a data distribution pg as the distribution of the samples it generates. As proven by

Goodfellow et al. [34], the minimax game between the discriminator and the generator possesses

a global optimum for pg = pdata, which leads the generator’s distribution to converge to the real

data distribution pdata if the generator and discriminator have enough capacity.

GANs possess various problems:

• Vanishing Gradient: occurs when the network’s gradients are very close to zero, which

prevents it from optimising its weights. In the context of GANs, this problem usually hap-

pens when the discriminator is too good and successfully classifies the samples that come

from the generator as fake since the gradient of the cross-entropy loss approaches zero [35].

• Mode Collapse: happens when the GAN learns to always output the same data point for

different inputs [35]. In practice, it is more common for partial mode collapse to occur,
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where instead of the same output point, the GAN generates points that always contain the

same set of features.

• Difficulty in achieving Nash Equilibrium: training a GAN requires finding a Nash Equi-

librium where both the discriminator and the generator do not change their strategies regard-

less of what the other network will do. This means that the opponent player’s action in the

minimax game does not change the game’s outcome. Once this state is achieved, the proba-

bility distribution of the model has converged to the real data’s probability distribution. The

problem is that this state is difficult to achieve [35].

Despite the disadvantages, GANs are known to generate high-quality synthetic images. Dif-

ferent research lines in GANs focus on tackling the problems frequently seen in GANs and im-

proving image quality. One research line investigates loss functions that can be applied to GANs

and improve their performance. For instance, Arjovsky et al. [9] proposed the Wasserstein GAN

(WGAN), which uses the Wasserstein distance in the loss function to fix mode collapse and sta-

bilise the network. More recently, Xiangli et al. [120] proposed the RealnessGAN, which pro-

duced very realistic results, as can be seen in Figure 2.9. This network represents realness as a

distribution rather than a scalar. In practical terms, this means that the discriminator outputs a dis-

tribution instead of a scalar, using a softmax activation in the decision layer. In the loss function,

this network uses the Kullback-Leibler Divergence between gaussian distributions for real and

fake images and the network’s output. Additionally, RealnessGAN takes advantage of spectral

normalisation, proposed in Spectral Normalisation GAN (SN-GAN) [73], which is applied to the

discriminator’s layers to stabilise its training.

Figure 2.9: Example of images obtained with RealnessGAN. Source: [120]

Other lines of research investigate GANs’ architecture. For instance, Deep Convolutional

Generative Adversarial Networks (DCGAN) [92] use a deconvolutional neural network, composed

of transposed convolutional layers, in the generator. Other architectures like SAGAN [115] and
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BigGAN [14] use self-attention mechanisms in the generator and discriminator’s architectures,

capable of capturing global dependencies in the data. Additionally, many variations of GANs have

been developed in the past few years to adapt them to different tasks. One variation of interest

for the context of privacy-preserving image generation is the conditional generative adversarial

network (cGAN) [72], which applies restrictions to GANs, such as the initial image used by the

generation process instead of random noise. The Pix2Pix GAN [46] is an example of a cGAN that

performs image-to-image translation. In addition to the discriminator’s loss, this network uses L2

Normalisation to approximate the generated image to a given ground truth.

2.2.3 Variational Autoencoders

Autoencoders (AEs) are networks composed of two neural networks: an encoder and a decoder,

as can be seen in Figure 2.10. The encoder performs an operation of dimensionality reduction

by creating a representation of the input image in a low dimensional latent space. The decoder,

given the data sample in the encoder’s latent space, tries to reconstruct the original input image.

The reconstruction error given by the distance between the original input image and the synthetic

image outputted by the AE is used as a loss function, updating the weights of the network through

the backpropagation process. As such, it forces the encoder to learn to codify as much information

as possible in the low dimensional space so that the decoder has enough information to rebuild

the original image. Autoencoders are generally used for data dimensionality reduction or data

denoising. To use AEs with images as input, we can define the encoder and decoder’s architectures

as convolutional neural networks.

Figure 2.10: Architecture of autoencoder.

Variational Autoencoders (VAEs) [56] are a variant of AEs that can be applied to new data

generation. Instead of mapping an input image to single points in the latent space, this network

maps the input into a simple distribution over the latent space, such as a normal distribution char-

acterised by a mean µ and a standard deviation σ . The encoder maps the input x into a latent

representation z, yielding an approximate distribution q(z | x) in the latent space. The decoder

reconstructs the original input data based on the latent representation z, resulting in a likelihood
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distribution p(x | z). Figure 2.11 displays an overview of this model’s architecture. New images

are obtained from decoding an observation sampled from the low dimensional space.

The loss function in VAEs, represented in Equation 2.16, contains two parts: a reconstruction

loss and a regularisation loss. The reconstruction loss is the negative likelihood, used to ensure

that the encoder codifies as much useful information as possible so that the decoder can use that

information to reconstruct the original input and to encourage the decoder to obtain a synthetic

image as similar to the original one as possible. The regularisation loss uses the KL divergence

to measure the distance between the encoder’s distribution qθ (z | x) and the original distribution

p(z | x) [83], quantifying the information that is lost in the latent representation of the original

data. As such, by minimising the loss, the VAE estimates the parameters of the latent space’s

distribution that better approximates the real data distribution through the process of maximum

likelihood estimation performed by the minimisation of the KL divergence.

L =−Ez∼qθ (z|x)[log p(x | z)]+DKL(qθ (z | x)||p(z | x)) (2.16)

Figure 2.11: Architecture of variational autoencoder with normal distribution.

VAEs have a great capacity to learn representations of data. Depending on the loss function

used, these models can preserve only certain features that are important for a particular task. For

example, suppose we connect a classification model to the VAE’s output and define the network’s

loss as the cross-entropy loss instead of the distance between the original image and the recon-

structed one. In this case, the VAE can learn to represent only the semantic features needed for the

classification task, discarding others.

Since VAEs are probabilistic models, they often result in blurry images when applied to image

generation. However, recently there have been some developments towards producing high-quality

images such as the ones seen in Figure 2.12. These images were obtained with the model VQ-

VAE-2 [93], which combines a Vector Quantized Variational Autoencoder (VQ-VAE), originally

proposed by Oord et al. [113], to produce a discrete latent space using vector quantisation tech-

niques, with an autoregressive model, to learn a prior from which we can sample variables from

the latent space to generate new images.
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Figure 2.12: Example of images obtained with VQ-VAE-2. Source: [93]

2.2.4 Autoregressive Models

Autoregressive models are generative models where the generation of a new sample of data de-

pends on the previously generated samples [35]. These models are instrumental in the generation

of sequential data, where an element in the sequence depends on the elements that precede it, as

can be seen in Equation 2.17.

pmodel(x) =
n

∏
i=1

pmodel(xi | x1, ...,xi−1) (2.17)

Images can be interpreted as a pixel sequence, where each pixel is conditioned by the pixels

previously generated. This is the basis of the PixelRNN model [112] developed for image gen-

eration. PixelRNN is a model based on recurrent neural networks, specifically Long Short-Term

Memory (LSTM) networks, which are known to excel at sequence problems, applied to model

natural images. It generates one pixel at a time, predicting its conditional distribution over the

different possibilities of values conditioned by the context already generated. This model applies

convolutions to compute all the image pixels along one spatial dimension of the data, such as a

row or a diagonal. The model possesses the following architectures:

• Row LSTM: this architecture uses one-dimensional convolutions to capture features in a

whole row, which are used to define the context used to compute the probability distribution

of a pixel. The context captured by this layer is a triangular set of pixels that are positioned

above the pixel under analysis.

• Diagonal BiLSTM: this architecture, unlike the one before, can capture the entire context

of the image by diagonally scanning the image, from the top left corner until the bottom
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right corner of the image.

• PixelCNN: this architecture, instead of an RNN, uses a CNN with multiple convolutional

layers which compute features for all pixel positions at once, using masks to avoid seeing

the future context. This CNN does not possess pooling layers in order to preserve the spatial

resolution of the data.

The main problem in these networks is that the generation of samples cannot be parallelised

since the elements in a sequence depend on previously generated elements, leading to a slow and

inefficient generation process.

2.2.5 Normalising Flows

Normalising flows [94] are generative models that transform a simple distribution of probabili-

ties into a more complex one through a sequence of invertible and differentiable transformations.

Starting with a simple distribution, like a Gaussian distribution, normalising flows apply a series

of invertible transformations to approximate the real data distribution as illustrated in Figure 2.13.

Figure 2.13: Transformation of a simple distribution into a more complex one. Source: [118]

More formally, given a variable z, whose probability distribution function pz is known, and an

invertible function g, whose inverse function is f , a new variable in a more complex data space

can be obtained using Equation 2.18. The probability distribution of the new variable is obtained

using Equation 2.19, where D f (x) refers to the Jacobian of the inverse function f [57].

x = g(z) (2.18)

px(x) = pz( f (x))×|detD f (x)| (2.19)

The invertible function g is called the generator since it generates a data sample from a complex

distribution based on a random sample from a simple data distribution. The inverse function f can
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be applied to normalise the data distribution, turning a complex distribution into a simpler one

[57].

An overview of the architecture of these models can be seen in Figure 2.14. In the normalising

direction, the normalising flow composed of multiple transformations is applied to the real data

to transform it into a latent space with a simpler probability distribution. Through the generative

direction, we sample a point from the latent space and apply the inverse flow to obtain the synthetic

image in the original data space.

Figure 2.14: Overview of Normalising Flows Architecture.

During training, a normalising flow minimises the negative log-likelihood over the training

dataset D, which is used as the loss function, represented in Equation 2.20.

L(D) =− 1
|D|∑x

log p(x) (2.20)

A normalising flow must be [57]:

• Invertible: since for sampling, we need the flow function, and to calculate the probability

distribution of the target complex distribution, we need its inverse.

• Expressive: to be able to represent the distribution of interest, despite its complexity.

• Computationally Efficient: when it comes to the computation of both the flow and its

inverse, as well as the respective Jacobians.

These networks possess various advantages, as they achieve the difficult task of explicitly

learning the data distribution. Unlike GANs and VAEs, these models can evaluate the probability

distribution of new points by reverting them into the simpler distribution [57]. They also have high
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expressive power since they can model any distribution even if the base distribution is very simple

[86]. However, these networks possess one drawback: they impose restrictions on the choice of

function g, which must be invertible, restricting the dimension of the latent variables that must

have the same dimensionality as the original input [35].

The different types of flows that can be used to model a normalising flow are [57]:

• Elementwise flows: apply non-linear transformations to each variable in the flow, assuming

independence between variables. The problem with these flows is that they do not express

possible correlations between variables in the data.

• Linear flows: apply linear transformations between variables in the flow. These flows lack

the expressiveness needed to model complex distributions.

• Planar and radial flows: apply non-linear transformations with the disadvantage that the

respective inverse functions are hard to compute. Planar flows contract and expand the

distribution along a plane, while radial flows distort the distribution around a point in the

data space. Both of these were proposed by Rezende and Mohamed [94].

• Coupling and Autoregressive Flows: use coupling functions to build invertible non-linear

transformation with high expressive power.

• Residual flows: use invertible residual networks as flexible transformations.

• Infinitesimal flows: are extensions of residual flows that apply to continuously dynamic

systems.

In the following subsections, we introduce a more detailed description of the most common

flow architectures: coupling flows and autoregressive flows.

2.2.5.1 Coupling Flows

Coupling Flows were introduced by Dinh et al. [26]. Given a bijection h(·,θ) and a disjoint

partition of the data x in two subsets (xA,xB), a coupling flow g is defined by Equation 2.21, where

Θ(xB) is called the conditioner and is an arbitrary function applied to xB [57]. The bijection is

often called affine coupling layer in the literature.

yA = h(xA;Θ(xB))

yB = xB
(2.21)

The coupling flow g is invertible if h is invertible, and its inverse is obtained by Equation 2.22.

xA = h−1(yA;Θ(yB))

xB = yB
(2.22)
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Both the coupling flow’s Jacobian and its determinant are easy to compute, as the Jacobian Dg

is a triangular matrix where the diagonal contains the Jacobian of h, Dh, and the identity matrix,

and the determinant of Dg is the determinant of Dh [57]. The advantage of using coupling flows

is that Θ(xB) can be arbitrarily complex since we don’t need to compute its inverse to obtain the

inverse of the coupling flow.

One model that uses coupling flows is the RealNVP model proposed by Dinh et al. [27], which

possesses a series of affine coupling layers where the conditioner function Θ consists in a scale

and shift transformation, as can be seen in the coupling flow’s equation in Equation 2.23, where

s() represents a scale operation and t() represents a translation. In this equation, we can see that

the first d elements remain unchanged. In order to avoid this and make sure that all input values

have a chance of being altered, the order of the inputs is inverted on each layer on the network

through an inverse permutation.

x1:d = y1:d

xd+1:D = yd+1:D� exp(s(x1:d))+ t(x1:d)
(2.23)

Kingma et al. [54] proposed the Glow model to simplify the architecture of the RealNVP by

replacing the reverse permutation done on every coupling layer by an invertible convolution 1x1.

This model generates realistic images, as can be seen in Figure 2.15, which presents an example

of face images generated with it.

Figure 2.15: Example of images generated with Glow Architecture. Source: [54]

2.2.5.2 Autoregressive Flows

Autoregressive flows are applied to sequential data, imposing the restriction that an output value

depends only on the values observed in the past. These flows use autoregressive models, such as
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the ones seen in Section 2.2.4, as invertible functions. Images can be interpreted as sequences of

pixels, where the probability distribution of a pixel being drawn depends on the pixels that have

already been drawn.

Putting autoregressive flows into more formal terms, given a bijection h(·,θ), an autoregres-

sive model is a function g whose output is conditioned by the previous inputs, defined by the

Equation 2.24, where the function Θt is called the conditioner [57].

yt = h(xt ;Θt(x1:t−1)) (2.24)

The inverse of the function g can be calculated recursively through Equation 2.25. The most

significant disadvantage in autoregressive flows is that the inverse function is a sequential operation

that cannot be parallelised, resulting in a slow and computationally expensive generative process.

x1 = h−1(y1;θ1)

xt = h−1(yt ;θt(x1:t−1), t = 2, ...,D
(2.25)

The use of autoregressive models in a network to create an autoregressive flow was first intro-

duced in the Masked Autoregressive Flow (MAF) by Papamakarios et al. [87].

In order to make the generative process faster, Kingma et al. [55] introduced the Inverse Au-

toregressive Flow (IAF), where instead of conditioning an input xt on the previous inputs x1:t−1, it

conditions xt based on the outputs of the previous entries y1:t−1, as can be seen in Equation 2.26.

This function is equivalent to the inverse function of a normal autoregressive flow, hence the name

“Inverse Autoregressive Flow”, making the computation of the flow sequential and, therefore,

slow. However, since the inverse function of the IAF is the direct autoregressive flow, its genera-

tive process can be computed efficiently.

yt = h(xt ;Θt(y1:t−1)) (2.26)

The choice between using autoregressive flows or inverse autoregressive flows needs to con-

sider whether to prioritise the efficiency of the generative process, encouraged in IAF, or of the

computation of the probability density estimation, encouraged in direct autoregressive flows.

2.3 Summary

Deep Learning has achieved state-of-the-art results for Computer Vision tasks. Deep Learning

models are based on artificial neural networks, which imitate the human brain through a structure

composed of units that propagate numerical signals. Computer vision tasks work with visual data,

where feature extraction is difficult to optimise. Convolutional neural networks were developed to
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facilitate feature extraction in multi-dimensional data through the alternation of convolution and

pooling operations.

One field of research in Deep Learning with particular interest for privacy-preserving case-

based interpretability concerns Deep Generative Models, capable of fulfilling the unsupervised

task of data generation. Generative Models learn the distribution of the data, which is used to

generate new data that follows the same distribution. These models are often used in deep learning

privacy-preserving approaches to generate privacy-preserving images. Generative Models differ

in how they model the data distribution. In traditional Machine Learning, generative models can

be parametric, approximating the data density by estimating the parameters of a known probability

distribution, or non-parametric, which can model more complex data distributions since they do

not assume the form of the data density.

Regarding Deep Generative Models, GANs model the data density implicitly through a mini-

max game between two networks: a generator responsible for generating data and a discriminator

which distinguishes between real and fake data samples. This adversarial training promotes the

generation of realistic images in the generator, tricking the discriminator into thinking the gener-

ated samples are real. VAEs model the data density explicitly by learning an approximation of the

real data distribution using a simple data distribution that enables sampling. These models possess

an encoder that learns to map samples in the original data space to images in a latent space that

follows the simple data distribution. Then, there is a decoder that learns to map observations in the

latent space to the original data space, allowing to visualise instances obtained through sampling

from the latent space. Autoregressive Models and Normalising Flows define a tractable data den-

sity. Autoregressive Models interpret images as pixel sequences and compute the joint distribution

of the data by calculating the product of the conditional distributions at the pixel level. Normal-

ising flows transform a simple data distribution into a more complex one through a sequence of

invertible and differentiable transformations. The Normalising Flows’ architecture possesses a

normalising flow that maps data in the original space to the latent space through the transforma-

tions and a generator which maps data in the latent space to the original data space through the

inverse operations of the normalising flow. Like in VAEs, we can sample from the simple data

distribution and visualise it through the generator.

The development in the area of Deep Generative Models has enabled the generation of realistic

images. Nevertheless, the achievement of this challenging unsupervised learning task requires a

significant amount of computational resources.
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Chapter 3

Literature Review: Interpretability in
Machine Learning

One of the biggest problems in developing machine learning algorithms that can learn without

being explicitly programmed is that many are not interpretable. For instance, deep learning algo-

rithms are often described as “black-boxes” since their large number of units makes it impossible

for a human to replicate or even interpret the network’s computations to achieve a decision. This

lack of interpretability is a barrier that does not allow these algorithms to be used in real-life sce-

narios, where unacceptable results have significant consequences [28], due to a lack of trust in the

algorithms and the respective results. This lack of acceptance led to a rise in research about inter-

pretability in machine learning in recent years, which will be reviewed in this section, focusing on

algorithms used for classification tasks that generate explanations by similar examples.

First, there is a need to define interpretability in the context of machine learning. Interpretabil-

ity has many definitions. Doshi-Velez and Kim define it as “the ability to explain or present in

understandable terms to a human” [28], while Miller defines interpretability as the “degree to

which an observer can understand the cause of a decision” [71]. All definitions circle around the

same question: why does a model make a specific decision? In this context, we can distinguish

two terms, both referring to the concept of interpretability: interpretation and explanation. We

may define interpretation as the capacity to understand a model’s behaviour, which aligns with

Kim’s statement that “a method is interpretable if a user can correctly and efficiently predict the

method’s results” [52]. An explanation is the means used to interpret a model or its decisions,

which will be provided to the users to make them understand the model or its decisions.

There are many taxonomies used to group interpretability strategies. The one used in this

work considers intrinsic methods, where we build inherently interpretable models, and post hoc

methods, where we generate explanations after the model has been built [18].

Intrinsic interpretability can be achieved through two means: the design of entirely inter-

pretable models or the addition of constraints or simplifications to the models that restrict their

29
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behaviour, making them more interpretable. An example of a family of models that are inter-

pretable by design is the rule-based models, which learn a set of rules that are used to make

predictions, like the famous decision trees. A decision tree model takes the form of a tree where

each node represents a specific feature in the data, and the respective edges are rules that apply to

the features. It is intrinsically interpretable since a user can replicate the model’s behaviour when

making a decision simply by following its rules. Regarding the addition of constraints to a model to

make it more interpretable, one possible approach often applied to neural networks is monotonic-

ity, which consists of adding constraints to features known to have monotonic relationships [40].

Models can also be simplified through regularisation techniques like L1 Regularisation [102, 101].

Regularisation and monotonicity do not generate tangible explanations. These techniques are con-

sidered intrinsic interpretability methods since the restrictions they impose on models make their

behaviour simpler and, therefore, more interpretable.

Post hoc strategies require the development of an explanatory model separate from the clas-

sification model used to classify the samples. For this reason, it is argued that these strategies do

not reflect the real reasoning behind the models’ decisions [63]. These methods can be applied

to three different contexts: model explanation, to explain the behaviour of the model, outcome

explanation, to explain the reasoning behind one decision, and model inspection, to inspect the

model and understand some of its properties [38].

A model explanation is achieved by developing a simpler interpretable model based on the

original one, aiming to mimic its behaviour [38]. The main problem in this approach is that it

might be difficult, or even impossible, to define a simpler model that behaves like the original one.

It is also hard to verify if the simpler model is a good representation of the original [101].

Outcome explanation intends to explain the reasoning behind a single decision, without the

need to understand the model’s general behaviour [38]. One possible approach is through gradient-

based methods [104, 106, 99, 122, 107], which identify the data features that contribute the most

to the final decision [102]. An example of such method is the Grad-CAM algorithm [99], which

assigns different degrees of importance to different units in the network based on the respective

gradients and feature maps, or saliency maps, which highlight the features that contributed the

most to the decision made by the model [38]. Another approach introduced in the literature is

deconvolution [121], which consists of developing a deconvolution network composed by decon-

volution and unpooling operations, representing the inverse of the original convolutional neural

network used for classification. By applying the deconvolution to the features obtained in the

original network, we can reconstruct and visualise the features that the network has learnt.

Model inspection intends to inspect the model to understand one of its properties or decisions

through a visual or textual representation [38]. This can be achieved through sensitivity analysis,

by perturbing a model’s input and analysing how the output changes [102, 101]. One example of

what could be done to perturb an input based on images could be the respective partial occlusion

[30, 121, 89]. The Grad-CAM algorithm mentioned above can also be considered a model inspec-

tion algorithm since it presents a visual representation of the features that contribute the most to a

decision.
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In this dissertation, we will explore case-based interpretabilty, which produces visual expla-

nations by example, that can be compared with the observation under analysis. The following

sections detail case-based interpretability methods.

3.1 Case-based Interpretability

Case-based interpretability models enable the retrieval of cases from the training data as explana-

tions for models decisions. These explanations are very intuitive and easy to understand, as they

approximate human reasoning by analogy. The types of explanations that case-based interpretabil-

ity methods can retrieve are:

• Similar / Factual examples: examples from the training data that are the most similar to

the current case and that share the same class as the current case.

• Typical examples: prototypes from the training data that best represent the case under

analysis. These examples are usually obtained in models that perform prototypical learning,

which define clusters represented by prototypes. The advantage of typical examples in com-

parison with similar examples is that typical examples for different predictions are typically

more distinct [48].

• Counterfactual examples: examples that are the most similar to the case under analysis but

that belong to a different class. Counterfactual explanations aim to explain what changes

should be made to a sample so that the machine learning algorithm outputs a different pre-

diction. These examples do not necessarily have to be a sample from the training data, as

they can be generated based on the sample under analysis. Together with factual explana-

tions, counterfactual explanations help to understand the boundaries between two different

classes in a classification task.

• Semi-factual examples: examples that belong to the same class as the original sample but

that are closer to the decision boundary. The goal of these explanations is to indicate changes

that, even if they were made to the original sample, they still wouldn’t change its prediction.

The generation of semi-factual explanations involves making the biggest possible alteration

to a sample without changing its prediction [51].

In the context of case-based interpretability, intrinsic approaches involve the design of inher-

ently interpretable models with case-based or prototypical reasoning. Post hoc methods use the

original decision model as a similarity metric to compare the new observation with the training

data and retrieve the training sample with the most explanatory value [17]. Counterfactual and

semi-factual explanations can also be generated from an example retrieved from the case-based

interpretability method, independently from the training data. We consider the generation of these

types of explanations to be a post hoc interpretability method, as this process uses the original

decision model after it has been built to guide the generation process.
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The most significant problem in case-based explanations in the medical scene is that the re-

trieved examples expose the patients’ identity, limiting their usability in a real scenario. For in-

stance, these explanations could not be shown to patients or other people who do not have autho-

rised access to the training data.

The following sections introduce state-of-the-art case-based interpretability methods in tradi-

tional machine learning and in deep learning.

3.1.1 Case-based Interpretability in Traditional Machine Learning

In traditional machine learning methods for case-based interpretability, the feature extraction pro-

cess is separated from the decision process. As such, these methods are difficult to use with images

as the extraction of features from multi-dimensional data is not trivial. Nevertheless, we can apply

these methods on features that were previously extracted using deep learning methods.

3.1.1.1 Intrinsic Interpretability Methods

In traditional machine learning, the most well-known model that allows using similar examples

as explanations for decisions is the K-Nearest Neighbours (KNN) model [31]. This classification

model classifies an observation according to the K training samples that are the closest to it. During

training, the model memorises the position of all the training samples in space. To classify a new

observation, the model calculates the distance from the observation to all training samples to obtain

the closest neighbours. Once these are identified, the observation is classified with the majority

of the neighbours’ labels. To provide explanations by similar examples using this model, we can

fetch the nearest neighbours used to classify an observation. In this case, neighbours of the same

class as the decision can be retrieved as similar examples, while neighbours from a different class

can be retrieved as counterexamples. Figure 3.1 exemplifies this retrieval process, where the red

sample in the centre is the observation that must be classified as either “x” or “o” according to its

nearest neighbours.

One other method is the Bayesian case model [53], an intrinsically interpretable model that

organises the data in clusters. The clusters are represented by a prototype, the training data sample

that is the best representation of the cluster’s data, and a subspace of the features needed to char-

acterise each cluster. For classification, a new observation is mapped into a cluster and classified

according to its prototype, which is then used to explain the model’s decision. The explanations

provided by this method are typical examples.

3.1.1.2 Post hoc Interpretability Methods

In terms of post hoc techniques to generate explanations by similar examples in traditional machine

learning, these can be applied to models such as decision trees, which are used as distance metrics

for the retrieval of training samples that are similar to an observation, as suggested by Caruana

et al. [17]. To use models like decision trees for case-based explanations, the models need to

memorise the training samples instead of discarding them once the model has been built so that
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Figure 3.1: Example of the process of extracting explanations from KNN with K=3.

the explanatory model can retrieve them. In a decision tree, similar data samples are samples

that conform to the same rules in the tree, which end up gathering in the same leaves. In this

case, as can be seen in Figure 3.2, we could retrieve two training samples in the same leaf of

the new observation in the tree to use as explanations. A sample with the same class as the new

observation can be provided as a similar example, and one with a different class can be provided

as a counterexample.

Figure 3.2: Example of the process of extracting explanations from decision tree model.

One framework that was proposed to obtain post hoc case-based explanations is Explanation

Oriented Retrieval (EOR) [82]. The authors, Nugent et al., argue that explanatory cases should
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be retrieved based on their utility as explanations. The EOR method tries to obtain convincing

explanations rather than the simple similar example. The approach starts by obtaining the nearest

neighbours of a sample, and performing classification according to the KNN algorithm. Then,

it selects an explanation utility measure based on the classification task, and uses it to reorder

samples of the same class. The explanations obtained with this method are semi-factuals, since

they are cases that are closer to the decision boundary and thus are more convincing than the most

similar case.

3.1.2 Case-based Interpretability in Deep Learning

Deep learning methods present the advantage of an automatic feature extraction process optimised

according to the target classification task. Furthermore, deep learning opens new possibilities

in the retrieval of case-based explanations with the generation of explanations using generative

models. As such, in this section, we will not only expose intrinsic and post hoc methods, but also

methods that can be used to generate counterfactual and semi-factual explanations.

3.1.2.1 Intrinsic Interpretability Methods

The Explainable Deep Neural Network (xDNN) network [8] is a feedforward neural network that

defines prototypes as local peaks in the data density and classifies the observation according to the

most similar prototype. During training, its network is organised in 5 layers, which accomplish

the following tasks: the feature layer is responsible for the extraction of features, which are then

represented in a latent space that is fed to the density layer, used to calculate the proximity be-

tween images, and to the “typicality” layer which calculates a probability distribution of the data

in the latent space. Then, the network uses a prototype layer to select the prototypes representa-

tive of each class, forming data clouds, which define each prototype’s area of influence. Finally,

the “MegaClouds” layer joins prototypes that are neighbours and belong to the same class. To

classify the new observation, the network calculates the similarity between the observation and

each prototype and calculates the most similar prototypes of each class, assigning the most similar

prototype’s class to the observation. This last prototype, used to classify the new observation, is

given as a typical example to explain the prediction.

More recently, the authors of the xDNN network introduced the network Deep Machine Rea-

soning (DMR) [7], which improves the xDNN for more complex multi-class problems where the

data is not balanced. This network synthesises data by creating linear interpolations between per-

turbed data samples around prototypes, in order to balance classes. This process of data synthesis

appears in the augmented prototypes layers, which succeeds the prototype layer in the original

xDNN network. Additionally, the network uses a decision tree which performs pairwise compar-

ison between the top two classes to determine the class label that is assigned to the sample under

analysis. During inference, the prototypes are compared in regards to minimum error in training.

Similarly to the previous network, the prototype of the winning pair whose class was chosen in
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the inference process can be used as a typical example, while the prototype whose class was not

chosen can be used as a counterexample.

The intrinsically interpretable method developed by Li et al. [63] generates prototypes that

best represent the training data. As can be seen in Figure 3.3, the model is composed by an au-

toencoder followed by the prototype classifier. The encoder extracts features into a latent space,

which can be used to calculate the distance between instances. The decoder learns to map latent

vectors into images in the original data space, by being trained to reconstruct the training data in-

stances in the latent space. The prototype classifier has an initial layer which learns the prototypes,

represented as the Prototype Layer in Figure 3.3. There may be a higher number of prototypes than

the number of classes in the classification task. The model is trained to approximate the prototypes

to training data instances. Finally, the prototype classifier performs the classification task. To ob-

tain explanations by typical examples, we can retrieve the prototypes that are the closest to the

instance under analysis in the model’s latent space. Since the prototypes are generated instances

learnt in the latent space, they can be visualised as images in the original data space through the

decoder.

Figure 3.3: Overview of Li et al. [63] model.

The Deep k-Nearest Neighbours network (DkNN) [88] is an intrinsically interpretable classifi-

cation model that aims to achieve high confidence in its predictions, interpretability, and robustness

against adversarial attacks. In each layer, this network calculates the new observation’s represen-

tation, searches for the k nearest neighbours in the training dataset whose output in the layer is the

most similar to the observation’s output, and collects the respective labels. In the end, all the labels

collected from the nearest neighbours throughout the layers of the network are used to compute

the final label assigned to the new observation, ensuring that the prediction conforms with the

intermediate computations performed in the hidden layers. Interpretability is achieved using the

training samples that support the prediction as explanations by similar examples for the network’s

decision.

The Prototypical Part Network (ProtoPNet) [19] is also a prototype-based network where pro-

totypes are parts of the training data images. When making a prediction for a new observation, the

network finds prototypes similar to parts of the new image, computing the respective similarity
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scores and combining them to make the decision. The network contains a CNN for feature extrac-

tion, connected to a prototype layer, to compare the new observation to each class’s prototypes,

and finally, a fully connected layer to classify it. In this work, multiple types of explanations are

provided, such as activation maps, which show the parts of the image that were used to achieve the

prediction, and similar examples, which correspond to images from the training data that contain

prototypes that contributed to the classification of the new observation.

The Hierarchical Prototype (HP) classifier [37] is a prototype-based classifier which defines

prototypes in a hierarchy where higher levels contain more abstract prototypes, and lower levels

contain detailed prototypes that are more similar to the training data samples. The prototypes

represent local peaks in multimodal distributions derived from the data. In this approach, a new

observation is classified by choosing a layer and calculating the most similar prototype to the

observation, assigning its class to it. This prototype, which is used to classify the observation, can

be used as an explanation of the decision process.

3.1.2.2 Post hoc Interpretability Methods

In terms of post hoc techniques, non-case-based learning models are used as distance metrics to

verify similarity between data samples and choose the samples that are the most similar to the new

observation, to provide as explanations, as mentioned by Caruana et al. [17].

Silva et al. [102, 101] created a classification model that applies the restriction of monotonicity

as an intrinsic method of interpretability and generates explanations through post hoc methods.

Regarding monotonicity, the model first applies a monotonic network to features that are known

to be monotonic and a non-monotonic network to the remaining features. Both these networks are

then concatenated into a monotonic network which creates a latent space where all the features

are monotonic. The latent space is then used to calculate the distance between a new observation

and the training data points and retrieve the closest data samples. The closest training sample of

the same class as the one predicted for the new observation is used as a similar case, while the

closest sample of the opposite class is used as a counterexample. In this approach, the prediction

is not made using the closest samples of the new observation, but these are retrieved to explain the

model’s decisions.

One method that has been recently introduced by Chen et al. [22] for intrinsic interpretability

is Concept Whitening. This method adds a concept whitening module to a classification network

to organise its latent space according to high-level concepts. These concepts can be the original

labels of the classification problem or any other concept introduced in an auxiliary dataset. For

instance, in medical data, these concepts can be symptoms that identify the potential existence of a

disease or even patients’ characteristics. Using this method, we can obtain case-based explanations

through a post hoc method where we use the latent space organised by the concept whitening

module to measure the distance between data points. To obtain similar examples, we can identify

the samples that are the closest to the observation under analysis. The proximity between samples

can be analysed regarding all the latent space’s dimensions or regarding only a specific set of

concepts usually correlated with the observation’s class.
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One post hoc interpretability approach that was originally developed for medical image re-

trieval is Interpretability-guided Content-Based Image Retrieval (IG-CBIR) [103]. The method

consists of using interpretability saliency maps to obtain the image regions that are the most rele-

vant for a classification task. These regions are used to measure the semantic similarity between

images, allowing to retrieve semantically similar examples as explanatory cases. This work con-

cluded that the use of saliency maps obtained with methods such as Deep Taylor [74] produces

improved similarity measures, increasing the quality of medical image retrieval.

Finally, there are also post hoc methods that develop interpretable surrogate models based on

the original “black-box” classification model. Liu and Arik [65] proposed the approach illustrated

in Figure 3.4, based on unsupervised clustering. The method uses layer activations from the base

classification model, which are encoded into a latent representation using an encoder, and clustered

based on euclidean distance. Each cluster is represented by a centroid. During inference, the model

calculates the probability of the sample belonging to each cluster for each layer, and assigns to the

sample the results of the weighted average of the predictions made at each layer. The explanations

provided are similar training samples that are the most similar to the test sample in the model’s

latent space.

Figure 3.4: Illustration of the post hoc interpretability method based on unsupervised clustering
proposed by Liu and Arik. Source: [65].
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The Twin Systems framework introduced by Kenny and Keane [50, 49], also uses a surro-

gate interpretable model to explain the original one, but instead of unsupervised clustering, it

uses KNN. The method extracts features from a base “black-box” model and applies the in-

terpretable model KNN over these features to obtain explanations for the base model’s deci-

sions. In their work, the authors listed various feature extraction methods, such as sensitivity

and perturbation-based methods, and introduced a new method: Contributions Oriented Local Ex-

planations (COLE). COLE uses methods that generate saliency maps, such as DeepLift [100], to

extract feature contributions to the decision-making process. This method obtains explanations

by similar examples, as the retrieved samples are the nearest neighbours according to the chosen

feature extraction approach.

3.1.2.3 Generation of Counterfactuals and Semi-factuals

PlausIble Exceptionality-based Contrastive Explanations (PIECE) [51] is a method for generat-

ing counterfactual and semi-factual explanations for a model’s decisions. The method focus on

generating plausible explanations, where the generated images are sufficiently different from the

original ones so that the explanation consumer can understand the explanation. In counterfactual

explanations, the method starts by identifying the target class (i.e. the class to which the counter-

factual will belong to). When the test case’s prediction is wrong, the target class is the test case’s

actual label. Otherwise, the target class is found by maximising the Equation 3.1, where S(G(z))

is the prediction of the classification network in regards to classifying the counterfactual and Yc

is the prediction of the test case. In the generative process, the method identifies features in the

original image whose probability of occurring in the target class is low and uses a GAN to modify

them into the expected values for the target class. For semi-factuals, the process is the same but the

feature modifications are stopped before the model’s prediction changes from the original class to

the counterfactual class.

||S(G(z))−Yc||22 (3.1)

3.2 How to choose a model for explanations by example?

To develop a classification model capable of generating explanations by example, a developer

must consider the type of model that should be implemented to achieve the data mining goals set

for the respective project. The best model depends on the type of data that is being used and its

domain, as well as the type of explanations to be generated. The domain on which the model

will be applied should be carefully studied to define priorities regarding the model’s confidence,

interpretability, robustness, and other characteristics. For instance, in a medical scenario, the

model’s confidence is critical since a wrong prediction could have serious consequences, such as

a patient who does not need treatment getting a treatment that could be detrimental to their health,

or a patient who needs treatment not getting it. Interpretability in a medical scenario is also very
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important since it increases the trust in the machine learning models used, which allows applying

them in real situations. Considering the characteristics of the problem that we want to solve, we

can choose between traditional machine learning models and deep learning models and between

intrinsic methods and post hoc methods for interpretability.

Traditional machine learning models have the disadvantage that feature extraction must be

done separately from the target task, making it hard to optimise the feature extraction process to

fit the task, especially for image data. On the other hand, deep learning performs feature extrac-

tion automatically, optimising this process by considering the prediction task at hand. For image

analysis, deep learning is the obvious choice.

An advantage of intrinsic methods for achieving interpretability is that the explanations gener-

ated by these are a direct consequence of the process used to make the decision. In contrast, in post

hoc methods, the explanation generated may not reflect the real reasons behind models’ decisions

[63]. One reason why post hoc might be preferable is that, in many cases, “black-box” models

achieve better performance (in terms of accuracy and other metrics of interest). When choosing

between intrinsic and post hoc methods, the developer must consider whether to prioritise inter-

pretability or the model’s performance. The ideal scenario would be to develop an intrinsically

interpretable model with high confidence in its predictions.

For medical data, the model’s performance is critical since its decisions have significant con-

sequences. Therefore, the development of a high confidence model with the posterior addition of

interpretability through post hoc methods is a valid approach. However, interpretability is also

critical to increase the medical community’s trust in deep learning models and the respective ap-

plication in real life. Since one of the major problems stopping deep learning models from being

used is the lack of trust derived from lack of interpretability, the explanations generated must be

trustworthy and a reflection of the model’s reasoning, leading us to intrinsic methods of inter-

pretability.
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Chapter 4

Literature Review: Visual Privacy

Although providing explanations by showing examples of similar cases is a reasonable method to

achieve interpretability in machine learning models, it raises several privacy concerns when the

data is sensitive, such as biometric or medical data. Images that showcase sensitive data such

as the patients’ identity need to lose identity features to be used as examples to explain a model’s

decisions. This chapter will focus on visual privacy, which applies the concept of privacy to images

and videos.

Given an image containing information about a person’s identity, such as an eye image, our

goal is to prevent this person from being recognised by the human eye or by identity recognition

algorithms while preserving utility features in the image. For example, in images of the eye iris

for glaucoma detection, a doctor should be able to identify the eyes’ characteristics that discern

glaucoma without identifying the patient to whom the image belongs. In this section, we discrim-

inate between two groups of methods to preserve privacy: traditional and deep learning methods.

In this work, we refer to traditional methods as methods that are applied over the whole input,

requiring a preprocessing step to identify the image parts that must be privatised. In contrast, deep

learning methods can learn to identify sensitive regions and privatise them in the same network.

4.1 Traditional privacy-preserving methods

Traditional methods contain two phases: identifying sensitive regions in images and modifying

these regions. The modification of image regions can be grouped in three groups: image filtering,

which applies filters to the sensitive parts in order to hide them; image de-identification, which

alters properties in the images to conceal a person’s identity while keeping the images’ intelligi-

bility; object removal or replacement, that removes objects from the image, filling the gap with

the background of the image or with predefined visual models [85]. One other type of methods

often used in visual privacy to protect biometric data templates is cryptography, which consists of

41
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encrypting the sensitive parts of images with a key so that only entities that possess the key can de-

crypt and obtain the original data. However, these methods are not appropriate for the preservation

of semantic features as the images become unintelligible.

The most common image filtering methods seen in the literature are blurring and pixelating.

Blurring consists of applying a mask, often with a gaussian distribution, over the sensitive parts

of an image, which alters each pixel according to the neighbouring pixels. Pixelating consists of

dividing an image into a grid, associating the image’s pixels to the grid’s cells, and computing

for each cell the average of the pixels it contains. Frome et al. [32] apply image filters to protect

sensitive information such as faces in Google Street View images. In specific, they detect faces in

images using a sliding window approach and apply gaussian blur to the detected faces to achieve

anonymisation. The biggest problem with these methods is that, while they may preserve privacy

with high degrees of blurring or pixelating, the image’s utility is also lost. This issue was demon-

strated by Neustaedter et al. [78] who studied the privacy-utility trade-off in blurring approaches

by blurring images at different degrees and studying whether a group of people could identify the

people in the images and the actions they were doing.

For image de-identification, one well-known method is the K-Same algorithm [79], originally

applied to face images. This algorithm is applied over a set of normalised pictures where the

different parts of the face, such as eyes, nose, and mouth, are roughly in the same locations.

After the preprocessing stage of recognising, cropping, and normalising the faces in the images,

the dataset is organised into k-sized clusters, where the respective samples are replaced by the

image resulting from the average of all the samples in the cluster. This algorithm guarantees k-

anonymity, as the probability of a person being recognised in the image is 1
k . The K-Same method

forms clusters by calculating the proximity between data samples using a distance measure such

as the Euclidean distance between pixels, disregarding whether images belong to the same class.

As such, this method does not guarantee the resulting images’ utility. To fix this problem, Gross et

al. [36] proposed the K-Same-Select algorithm. This algorithm divides the dataset into different

subsets using a utility function, creating subsets that are similar regarding the images’ utility.

Then, it applies the K-Same algorithm to each subset. One example of a face privatised using this

algorithm can be seen in Figure 4.1. This figure clearly shows a privacy-intelligibility trade-off,

with higher values of k resulting in blurred images. One problem with both these methods is that

when the dataset possesses more than one image of the same person, the respective images might

end up in the same cluster. As a result, this person contributes more to the cluster’s averaged image

than other people in the cluster, increasing the probability of this person being recognised.

Other types of face de-identification methods include face swapping, as proposed by Bitouk et

al. [11], that estimates the pose of the face in the image and replaces it with a face image from a

public library. This method could be extended to work with images of other body parts, as long as

a model of the body part is available, to estimate the respective pose. However, this method does

not preserve the semantic features needed to fulfil an artificial intelligence task, as the relevant

features may be located in close proximity or even entangled with the identity-related features

which are replaced by the model.
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Figure 4.1: Examples obtained from K-Same-Select algorithm. Source: [36]

Finally, object removal/replacement methods remove an object from an image, filling the gap

left with either the background of the image, through an inpainting strategy that reconstructs

the missing parts based on information around the missing area, or with a model contained in

a database. Like in face-swapping methods, object removal/replacement discards relevant task-

related features.

4.2 Deep learning privacy-preserving methods

In Deep Learning, there are two general approaches that use identity recognition networks to guide

the image privatisation process. The first approach consists of performing Disentangled Represen-

tation Learning to explicitly disentangle identity features from features that are independent of

identity, obtaining an identity feature vector that can be altered to privatise the image [23, 33].

The second approach consists of using the identity recognition network to train a generator model

to generate images that do not possess the same identity as the original one [20, 84, 119].

Most works in the current literature about privacy preservation are applied to face images since

the face is the most recognisable part of the human body.

In regards to the preservation of task-related features in the privatised images, we can divide

existing deep learning privacy-preserving methods into the following groups:

• Task-independent methods: focus on removing identity features while preserving every

other feature, independently of a classification task.

• Task-dependent methods: remove identity features while explicitly preserving the at-

tributes needed to fulfil a task, using the model developed to achieve the task to guide the

semantic feature preservation process.

The following sections introduce the existing deep learning privacy-preserving methods, re-

flecting on their strengths and weaknesses when considering their application to case-based expla-

nations.

4.2.1 Task-independent Methods

Task-independent methods remove identity features independently from a data mining task while

preserving identity-independent features that might be useful for any task. Since these methods
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do not consider a particular task in the preservation of an image’s utility, the resulting privatised

image may lose relevant task-related features that may be related to identity-related features.

CLEANIR [23], proposed by Cho et al., is a network that removes identity features indepen-

dently of any other feature existing in the image. Its architecture is based on a VAE, where the

encoder is trained to disentangle identity features from a face image. During training, to enable

the extraction of identity features, the network uses a pre-trained face embeddings extractor, based

on the FaceNet network [98], that extracts the embeddings in the face images. This network is

used to calculate an embedding loss, characterised by the distance between the identity vector

obtained by the encoder and the identity vector obtained using FaceNet. The embedding loss is

backpropagated to the encoder, allowing it to learn to represent identity vectors in its latent space.

During the testing phase, the identity features vector zi, extracted by the encoder, is converted into

a modified identity vector zm, whose identity is no longer recognisable. The Equation 4.1 is used

to calculate zm, where z90 corresponds to the 90-degree rotation of zi, obtained through the Gram

Schmidt process, and m corresponds to the degrees of identity modification. As such, the distor-

tion of identity features is both controllable and independent of other training samples existing in

the latent space. The architecture for the training and testing processes can be seen in Figure 4.2.

zm = zicos(m)+ z90sin(m) (4.1)

Figure 4.2: Architecture of CLEANIR network during training and testing.

In this model, the use of a variational autoencoder leads to blurry output images, as can be seen

in Figure 4.3. Nonetheless, the images are intelligible. One drawback of the CLEANIR network is
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that it does not guarantee that the vector za does not contain identity features. For instance, if the

facial embeddings capture most or all the information needed to reconstruct the original image,

then za could be correlated or even equal to the identity-related latent vector, leading to a potential

identity leak in the privatised image. The main advantage is that identity removal in an image is

independent of any other images from the training data. To apply this method in a medical context,

we need to develop a model to extract embeddings from the respective medical images, as FaceNet

does with face images.

Figure 4.3: Example of privatised images obtained with CLEANIR. (a) corresponds to the origi-
nal image and (b-e) are the privatised images obtained from applying transformations to identity
features with 0, 60, 120 and 180 degrees, respectively. Source: [23]

One other task-independent method for generating privacy-preserving images through dis-

entangled representation learning is called Replacing and Restoring Variational Autoencoders

(R2VAE) [33]. It is composed of three steps:

1. Disentangled Representation Learning: obtains the identity-related and identity-independent

features. The model contains a VAE with two encoders, where Encoder 1 extracts identity-

related features and Encoder 2 extracts the remaining image features, and a decoder that

maps the latent representations of the encoders into one image in the original data space.

During training, this generative model is organised in a chained architecture, R2VAE, where

the VAE is used twice in a row. First, the VAE produces an image P with identity fea-

tures from one input image I and utility features from a second input image U . Then, it

reconstructs the original image U using the utility features of the previously obtained image

P with the identity-related features from U , to promote the preservation of relevant utility

features. In the training process, there is also a discriminator to promote realism in the gen-

erated image P and an identity recognition network to ensure that P shares the same identity

as image I.
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2. Identity Obfuscation: consists of obtaining a vector of identity features that will be used

to replace the identity features of the original image. The authors tested two methodolo-

gies: k-Random-Based Obfuscation and Identity-Prototype-Clustering-Based Obfuscation.

K-Random-Based Obfuscation averages identity-related features obtained from applying

Encoder 1 to k random samples from the training data, resulting in privatised images such

as the ones in Figure 4.4. Identity-Prototype-Clustering-Based Obfuscation consists of cre-

ating clusters of the training samples organised by identity categories, obtained by passing

the sample’s identity features to a classifier. The identity features used to obfuscate the

image’s identity are then obtained by averaging the identity feature vectors of the samples

in the cluster of the same identity category as the original image. The resulting vector of

identity-related features is passed to a decoder, together with the identity-independent fea-

tures extracted from the original image using Encoder 2, in order to obtain the de-identified

image. As both methods depend on the training data, if a person is more represented in the

database than others, this person may be more represented in the resulting images, which

might threaten the person’s privacy.

3. Image Inpainting: consists of filling the sensitive region of the image with the de-identified

image obtained in the previous steps. The goal is to improve the quality of the resulting

image while preserving the identity-independent features, alleviating pixel blur or colour

discrepancy that might result from replacing the original sensitive part of the image with the

de-identified one.

Figure 4.4: Example of privatised images obtained with the R2VAE network. Source: [33]

One drawback in this approach is that the part of the image that contains identity features needs

to be extracted before being fed to the described network, needing an additional preprocessing step

focused on image recognition. Also, the identity obfuscation algorithm uses other samples from

the training data to produce the synthetic image, restricting the privacy capabilities of the network.
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Privacy-Protective GAN (PP-GAN) [119] is a privatisation method also applied to face images,

that preserves general features while removing identity. It is composed of a GAN whose generator

assumes a UNET architecture [96], following the idea of GANs used for image-to-image transla-

tion like the Pix2Pix GAN [46]. UNET possesses an architecture similar to an autoencoder, with

an encoder and a decoder, but with skip connections between the encoder and the decoder. The

discriminator is a Patch GAN that discriminates whether a patch of the image is real. Since there is

no ground truth to train the images, the L2 Normalisation loss, usually used in Pix2Pix GAN, was

replaced by two losses: the structural similarity index measure (SSIM) [116] and a contrastive

loss. The SSIM loss guarantees that the privatised image is similar in terms of structure as the

original image, to preserve the image’s utility. The contrastive loss is used to train a siamese iden-

tity recognition network, by increasing the euclidean distance between the latent representations

of two images with different identities, and decreasing this distance between images with the same

identity. The contrastive loss guarantees the privacy of the subject in the original image. Some

results from this work are illustrated in Figure 4.5.

Figure 4.5: Example of results obtained with the PP-GAN network. The top row represents the
original images while the bottom row illustrates the respective privatised images. Source: [119]

Unlike the previous works, which focus on de-identification methods applied to face im-

ages, Siamese Generative Adversarial Privatiser (SGAP) [84] was applied to preserving privacy

in biometric data. This task-independent model uses adversarial samples inspired by GANs to

anonymise biometric data while maintaining the information’s utility. The network is composed

by a generator, which contains an autoencoder that tries to hide a person’s identity, and a discrim-

inator with a Siamese architecture that predicts the person’s identity, as can be seen in Figure 4.6.

The SGAP model identifies the parts of an image that hold higher discriminative power and per-

turbs them to privatise them by adding noise to the latent space created by the encoder in the

generator. It also uses a distortion constraint, incorporated in its loss function, that ensures that the

distance between the privatised image and the original image is lower than a constant to ensure

that the synthesised image does not differ much from the original image. As the privatisation is

done through the addition of noise to the image, it is independent of other samples in the training

data, which is advantageous compared with algorithms that use the training data in the identity
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obfuscation process. This model has been tested in images of fingerprints.

Figure 4.6: Architecture of SGAP network.

Most datasets used by the networks in this section are publicly available datasets of face im-

ages from various identities and that vary in characteristics like pose, illumination, age, ethnicity,

among others. Some examples of datasets used were VGGFace2 [16], CelebA [66], and MORPH

[95]. Each exposed method used a different dataset.

The limitation of identity remover algorithms independent of a data mining task is that, while

these try to preserve the data utility, they might discard semantic features specific to the task.

These methods assume that a task’s semantic features and identity features are disjoint, which

may not always be the case. As such, they always prioritise privacy in the privacy-utility trade-off,

reducing the data utility.

4.2.2 Task-dependent Methods

Task-dependent methods tackle the de-identification problem directed towards specific classifica-

tion tasks, using a classification network to ensure that semantic features are preserved.

Chen et al. [20] developed a model for privacy protection applied to the task of facial expres-

sion recognition: Privacy-Preserving Representation Learning Variational Generative Adversarial

Network (PPRL-VGAN). The model replaces the identity in the original image with another iden-

tity from the training data. Its architecture, represented in Figure 4.7, consists of a GAN that

contains a VAE as the generator, capable of learning identity-invariant representations. The gen-

erator competes with a multi-task discriminator composed of three different classifiers: a real/fake

classifier to distinguish between real and synthetic images, an identity classifier to identify the

person in the image, and an expression classifier, the task-dependent model used to identify the

facial expression. The target identity c, which is used to replace the original identity, is given

to the decoder, allowing it to learn to build an image with the given identity. The problem with

identity replacement for privacy-preserving purposes is that it protects the person’s identity in the

original image by exposing the identity of the person who is used as a replacement. This method

could only be genuinely a privacy-preserving method if it used predefined synthetic models in the

database instead of images from real people to replace a person’s identity.
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Figure 4.7: Architecture of PPRL-VGAN.

The PPRL-VGAN was trained on datasets for facial expression recognition, containing various

different identities and different facial expressions. The datasets used were the FERG dataset [6],

composed of animated characters, and the MUG dataset [3], representing real people.

The DeepObfuscator [62], proposed by Li et al., is an adversarial training framework that ob-

fuscates the identity in an image while preserving the semantic features needed by a classification

task. This network, as can be seen in Figure 4.8, is composed of the following modules:

• Obfuscator: is an encoder composed of a CNN which is trained to hide identity-related

features while preserving useful information for the intended classification task.

• Classifier: is the network that performs the task for which we want to preserve semantic

features. By being trained jointly with the obfuscator, this network ensures that semantic

features are retained in the privatised image.

• Adversary Reconstructor: is trained to reconstruct the original image based on the priva-

tised image outputted by the obfuscator.

• Adversary Classifier: is trained to predict the private attributes based on the features out-

putted by the obfuscator to ensure that sensitive attributes are not leaked in the privatised

image.

The adversarial training intends to maximise the reconstruction error in the adversary recon-

structor and the classification error in the adversary classifier while minimising the classifier’s

classification error. Although this network preserves task-related features, it produces unrealistic

images which may be difficult for humans to understand. Nonetheless, we expose this method

as its architecture may be interesting for the generation of privacy-preserving explanations. For

instance, it may be possible to add a discriminator to promote the generation of realistic privatised

images in this model.

The biggest problem with task-dependent methods is that they solve problems for particular

tasks, having a low generalisation capacity since they cannot be directly applied to other contexts



50 Literature Review: Visual Privacy

Figure 4.8: Architecture of DeepObfuscator.

or domains. Using these methods for tasks other than those these models were intended to implies

replacing the task-specific model used in the network with another one and redo the whole training

process.

4.3 How to ensure that visual privacy is protected?

There are two means to assess privacy in images:

• Subjective means: through inquiries or experiments where we have people looking at the

privatised images and stating their opinions regarding if they can recognise the people con-

tained in the images or not.

• Objective means: define quantifiable and objective measures to ensure privacy.

The limitation of subjective means to analyse visual privacy is that the assessment depends on

the group of people used to analyse the synthetic images, which might not represent the group for

which the images are intended. Generally, it is hard to gather a group of random people that can

represent the population to which the privatised images are intended, and that can lead to a proper

evaluation of privacy. As such, in this section, we will focus on objective means to ensure privacy.

To ensure that visual privacy is protected, we need a classification network capable of iden-

tifying the person to whom the image belongs. Two main types of networks can be used for this

purpose: multiclass classification networks, where the labels refer to the identities of the people

that can be detected in the image, or Siamese classification networks, which, given two images,

identify whether these belong to the same person.
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The works in Section 4.2 use an identity recognition network to evaluate privacy preservation

and ensure privacy by backpropagating its loss. When using networks to measure the preservation

of privacy, we need to consider that this measure is limited by the performance of the models used.

4.3.1 Multiclass classification networks for identity recognition

A multiclass classification network can be used to recognise the identity in an image by setting the

labels as the person to whom the image belongs. Some works mentioned in Section 4.2 that use

this type of classification networks are the PPRL-VGAN [20], which contains a person identifier

in its discriminator, and the R2VAE [33], which contains an identity classifier in its disentangled

representation learning phase.

In this network, there can be two different approaches to check whether or not privacy is

protected, which can be used simultaneously:

• Wrong identity classification: By checking if the identity outputted by the classification

network differs from the true identity of the patient whose privatised image is being anal-

ysed.

• Threshold: By setting a threshold as the maximum value that the confidence of the priva-

tised image being classified as its true identity can achieve. To set this threshold, we could

average the prediction scores obtained for the not yet privatised image for all the identities

except the real identity.

One problem with multiclass classification models is that they need to be trained with many

samples belonging to each class, which means that each person needs to have multiple images in

the training dataset. For medical and biometric data in a real context, there is a limit of images

that can be obtained for each person, especially if these are obtained using x-rays, like in mammo-

graphies. Additionally, every time a new patient is introduced in the database, the network needs

to be trained in order to be able to identify the new patient.

4.3.2 Siamese classification network for identity recognition

Siamese Networks were first introduced by Bromley et al. [15], for signature verification. A

siamese classification network can be interpreted as a binary classification network that verifies

whether two images belong to the same identity. As input, instead of receiving a sole image, it

receives the pair of images that will be compared.

The architecture of a siamese network comprises two identical networks with shared weights,

each responsible for extracting features from the respective input. By ensuring that both networks’

weights are the same, similar images result in similar feature vectors [58]. Both networks’ outputs

are used to compute a score of similarity, that can be obtained by calculating the distance between

the two feature vectors. For image recognition, the sub-networks can be built as convolutional

neural networks [58]. The loss function for siamese networks must ensure that images of the same

class have a high similarity score, while images from different classes have a low similarity score.
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One function usually used in this context is the contrastive loss, initially proposed by Hadsel et

al. [41]. The contrastive loss function minimises the euclidean distance between feature vectors

from images of the same class while maximising this distance for images from different classes,

as can be seen in Equation 4.2. In this equation, D represents the distance between the two feature

vectors, Y is 0 if the images belong to the same class or 1 if the images belong to different classes,

and m > 0 is a margin.

L =
1
2
× (1−Y )×D2 +

1
2
×Y ×{max(0,m−D)}2 (4.2)

Using this siamese network, we can input the original image and the privatised image and

verify that these do not belong to the same identity to ensure that privacy is protected. This

network’s architecture is depicted in Figure 4.9. Two works from Section 4.2 that use a siamese

classification network to guide the training process to produce privatised images are the SGAP

[84] and the PP-GAN [119].

Figure 4.9: Architecture of Siamese Network for identity recognition.

One advantage of siamese networks in comparison with the multiclass classification networks

seen in Section 4.3.1 is that, since they learn to compute the similarity between two images to

verify if these belong to the same person, they do not need to be trained every time a new class,

in this case, a new patient, is added to the database. Furthermore, this network can be used in

data possessing a limited amount of images per subject, like medical data. On top of this, in large

databases with thousands of patients, the output of a siamese network would be a binary output,

unlike in multiclass classification networks where the output would be a vector with the number

of predictions equivalent to the number of patients existing in the database [84].

4.4 How to select a method to preserve visual privacy in images?

In the previous sections, we have seen traditional methods, where the process to identify sensitive

regions in images is distinct from the method to preserve privacy, and deep learning methods,
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where the identification of the identity features that need to be privatised is made in the same net-

work as the privatisation. Note that traditional methods can also be integrated with deep learning

techniques. For instance, after finding the parts in an image that must be altered, we can apply

traditional methods such as blurring. In this section, we will discuss how to choose a method for

preserving visual privacy based on the developer’s goals.

The first step towards defining a privacy-preserving method is defining the characteristics of

the domain in which the final images will be used. For instance, in this dissertation, we want to

use these images as explanations to justify the decisions made by a classification network in a

medical context, where the subjects that will access the images are specialists such as doctors. As

such, the privatised images must preserve the semantic features that the network uses to achieve

the decision. Since the images will be shown to humans, they must be intelligible to humans,

with some sense of realism. In medical images, the sensitive regions are often entangled with

the semantic features that allow the patient’s identification, making the process of preserving the

utility of the images while discarding identity difficult.

When developing a method to preserve visual privacy in images, we need to make decisions

regarding:

• Type of method to find sensitive regions in images.

• Type of method to make sensitive regions private.

• Method to assess privacy protection in the privatised images.

Regarding the method to find sensitive regions in images, deep learning privacy-preserving

methods can identify identity features through the use of an identity recognition network to guide

the feature disentanglement process. These methods are the most appropriate when semantic

features and identity features are entangled or represented roughly in the same regions of the

images. Generally speaking, deep learning methods achieve better results in privatising while

preserving semantic features. The alternative methods to find sensitive regions in images find

entire objects through object detection networks, which are more appropriate when the parts of

the images we want to preserve are not related to sensitive regions. One example of such methods

is the work done by Frome et al. [32], which hides faces from Google Street View images through

blurring.

Regarding the method applied to privatise the image, some topics that guide the decision pro-

cess are:

• The expected quality of the privatised image: if we want to have an intelligible privatised

image, we can discard methods such as blurring or removal of the sensitive parts of the

image. In general, deep learning methods, especially the ones that use GANs, have shown

better results in the generation of high-quality images.

• The use of samples from the training data in the method for privacy preservation:

using samples of the training data in the process of privatisation may put at risk the privacy
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of the people to whom the training samples belong. We have seen methods such as K-

Same-based methods, which average K different training samples to obtain K-anonymity,

and methods that use identity replacement to protect one person’s identity, sacrificing the

other person whose image was used as a replacement. In comparison, methods that do not

use training samples, which achieve privacy by applying transformations to the sensitive

features or adding noise, are safer, guaranteeing full anonymity rather than K-anonymity.

• The use of the final image on a specific task: while most methods try to preserve at-

tributes independent of the samples’ identity, some of the methods explicitly use the model

of the target task in the learning process to preserve semantic features. In contrast, others

aim to preserve attributes independently of a specific task. The disadvantage of the task-

independent methods is that they do not guarantee that the specific task’s semantic features

are preserved. The advantage is that these algorithms are more general and can be applied to

various tasks. When choosing between these methods, we need to consider how important

it is to ensure that semantic features are preserved.

In general, deep learning methods use an identity classification network to guide the process

of privatisation. The use of these networks ensures privacy as they can also be used to evaluate

the privacy-preserving capacities of the methods used. Identity classification networks can be of

two types: multiclass classification models, which, given an input, predict the person’s identity,

and siamese classification networks, which predict whether two images given as input belong to

the same person. Siamese networks possess the advantage of not having to be trained every time

a new identity is added to the system and of being applicable to data with a low number of images

per subject.

The preservation of visual privacy in medical images will allow us to use them as explanations

to "black-box" models, increasing the trust in these algorithms and their acceptance in the medical

community to improve medical diagnosis quality.

To conclude, we are currently preparing a paper [77] to submit to IEEE SPM Special Issue

on Explainability in Data Science: Interpretability, Reproducibility, and Replicability. Upon sub-

mission of a white paper with this survey’s proposal, we were invited to prepare the full paper for

potential publication in this issue. This paper comprises a survey on case-based interpretability

methods and privacy-preserving methods. We intend to reflect on the application of the privacy-

preserving methods to privatise case-based explanations, exposing the main conclusions drawn

from this chapter.



Chapter 5

Preliminary Experimental Work

As mentioned in Chapter 1, this dissertation aims to generate privacy-preserving images that keep

their explanatory evidence, enabling their use as explanations of a deep learning classification

algorithm. Given an input image in a medical setting, we want to obtain a synthetic version of it

where the person in the image cannot be recognised. However, the explanatory evidence that can

explain the model’s results to medical specialists or other entities should be preserved. As such, to

maximise the usability of the synthetic image and to make sure that it achieves its purposes, there

are some prerequisites that it must fulfil:

• Realism: The image must be as realistic as possible to maximise its intelligibility and conse-

quent understanding by the people who will be using the deep learning system. Furthermore,

it should not be disturbing to the point of upsetting the consumers of the explanation.

• Anonymity: The anonymisation of the image should be independent of other patients’ im-

ages to guarantee the privacy of all the patients available on the dataset used by the net-

work. As we are dealing with very sensitive information, the privacy limits imposed by

K-Anonymity may not be enough.

• Explanatory Evidence: As different patients with the same pathology might express differ-

ent symptoms, the network must ensure the synthetic image’s semantic features that serve

as explanatory evidence are explicitly preserved. As such, a simple average of the most

similar images of the same class for the sake of anonymisation is not enough. Besides, the

explanation provided by the synthetic image must be a good representation of the reasons

that led to the classification model’s decisions.

Taking into consideration these requirements, the methodology that we adopted in the ex-

perimental work consists of performing various alterations to one of the visual privacy methods

seen in Chapter 4, until we obtain a privacy-preserving model capable of satisfying these re-

quirements. We decided to use PPRL-VGAN [20] as the base model since its implementation is

publicly available [1] and it is the most promising privacy-preserving method. Unlike many other

55
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privacy-preserving methods, PPRL-VGAN considers the preservation of task-related features. In

the first phase, we tested this model with its original dataset and a medical dataset to empirically

find its shortcomings and define the improvements that must be made to apply this model to the

generation of privacy-preserving explanations.

In the following sections, we introduce the datasets used for the experiments and the respec-

tive preparation processes. We will also present a detailed overview of the PPRL-VGAN model’s

architecture and some preliminary results obtained from applying PPRL-VGAN to the datasets.

Finally, we will gather the main conclusions from the preliminary experiments in a list of limita-

tions of the PPRL-VGAN model that we intend to address in this dissertation.

5.1 Dataset Preparation

5.1.1 Original dataset: FERG-DB

The original dataset used by the authors of the PPRL-VGAN model is called FERG-DB [6]. As the

original goal of PPRL-VGAN was to privatise images preserving facial expressions, this dataset

is composed of 2D images belonging to 6 different characters and annotated for 7 different facial

expressions. There are 55,767 images in the dataset, with roughly 9,000 images per character. The

characteristics of this dataset significantly differ from the characteristics usually seen in medical

data, as it contains many images per identity, obtained through video or fabricated with software

to create 2D images, and a limited number of identities to guarantee computational efficiency. In

medical data, we expect to see a higher number of identities corresponding to various patients.

Furthermore, it is difficult to obtain multiple images in most medical cases, especially when im-

ages are obtained through x-rays, like mammographies. As such, medical datasets usually contain

a minimal number of images per patient, unlike this dataset.

Regarding data pre-processing, we resized the images to 64× 64× 3 and the data was split

into 85% for training and 15% for testing, as was done in the original paper.

5.1.2 Medical dataset: Warsaw-BioBase-Disease-Iris v2.1

The medical dataset chosen for these experiments is called Warsaw-BioBase-Disease-Iris v2.1

[110, 111]. This dataset is composed of 2,996 eye iris images from 115 different patients, con-

taining more than 20 different eye conditions. The Warsaw dataset is the ideal starting point of

the experimental work in this dissertation, as its biometric nature facilitates the identity recogni-

tion process, and its medical nature allows to validate the performance of the developed privacy-

preserving model in a medical context.

Since the images were taken from three different devices, we chose to work with images from

only one device: IrisGuard AD100, constituting 1,795 images. Furthermore, the most predominant

pathologies available in the dataset are cataract and glaucoma. For simplicity purposes, we focused

only on glaucoma, labelling the images according to the presence and absence of glaucoma. The

data is unbalanced since only 425 out of the 1,795 images contain glaucoma.
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To prepare the data, we cropped the images to remove text in their lower corners since this text

could be detected by identity or glaucoma recognition networks and be wrongly used to achieve

the respective task. In the data normalisation process, we horizontally flipped right eye images so

that every image looks like it is a left eye, and we centred the iris in the middle of the image. To

centre the iris, we first had to detect the iris’ central point in order to apply a translation that would

move this central point to the middle of the image. As there were no iris segmentation ground

truths available with the dataset, we chose to apply a traditional computer vision method for circle

detection in images: Hough Circle Transform [45]. We used the implementation provided by

OpenCV [12]. Before applying Hough Circle Transform, we pre-processed the images with steps

based on thresholding and blur to improve the contrast between the iris and the remaining eyeball,

as illustrated in Figure 5.1. Our approach to normalisation took the following steps:

1. Thresholding: we chose a threshold α for the image intensity over which the image be-

comes white and under which the image remains the same. We used α = 130.

2. Gaussian Blur: we used blur to reduce noise in the image and facilitate edge detection in

the Hough Transform algorithm (Figure 5.1(b)).

3. Intensity Normalisation: we normalised the intensities that were in the range [0, α] to be

in the range [0, 255], improving contrast (Figure 5.1(c)).

4. Thresholding: we chose a new threshold, under which the pixels become black and over

which the pixels becomes white. For this threshold, we used the same value as in the first

thresholding step: α = 130.

5. Gaussian Blur: blur was used once again to reduce noise (Figure 5.1(d)).

6. Hough Circle Transform: we applied the Hough Circle Transform algorithm to detect a

circle in the image and obtain its centre coordinates and radius (Figure 5.1(e-f)).

7. Translation: we applied a translation to move the detected iris’ centre to the middle of the

image (Figure 5.1(g-h)).

We set a limit of 100 pixels on the displacement translation to deal with cases where the iris

was not correctly detected and where this normalisation process would significantly change the

position of the eye. Thus, any image movement that surpassed 100 pixels horizontally or vertically

was ignored, and the image in question remained in its original position.

Finally, we set the images’ resolution to 64×64 and split the data into 65% for training, 15%

for validation, and 20% for testing.

5.2 PPRL-VGAN model

As mentioned in Section 4.2.2, PPRL-VGAN [20] was developed for privacy preservation in facial

expression recognition through identity replacement. Before being inputted into the model, the

data’s values, which are in the interval [0, 255], are normalised into the interval [-1, 1].
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Figure 5.1: Normalisation process for Warsaw dataset.

The model’s architecture contains a GAN with a conditional VAE as a generator and a multi-

task discriminator. The conditional variational autoencoder is conditioned into outputting an image

with the identity c, given to the decoder. As illustrated in Figure 5.2, the encoder of the VAE is

composed of four blocks of strided convolution layers with LeakyReLU activation, Batch Nor-

malisation and Dropout. Then, the model uses fully connected layers to calculate the mean µ and

the deviation σ of a Gaussian distribution. The model proceeds to sample a latent representation z

from the distribution, which is given to the decoder together with the identity c. The decoder starts

with a fully connected layer to alter the size of the latent representation so that it can be reshaped

into 3D data. Then, there are three blocks of transposed convolution layers with ReLU activation

and Batch Normalisation, followed by a last transposed convolution layer to obtain the privatised

image. Since the image pixels should contain values between -1 and 1, the last layer possesses a

Tanh activation.

Since the VAE cannot be trained to reconstruct the input, as the final image is expected to

be different from the original one, the model uses the discriminator to enable the generation of

realistic images. Like most classification networks, the discriminator is composed of a CNN that

extracts features, followed by a classifier responsible for performing the expected task. As shown

in Figure 5.3, the CNN is composed of 4 blocks of strided convolution layers with LeakyReLU

activation. The multi-task classifier is composed of one fully connected layer with LeakyReLU

activation and Dropout, and a final decision layer for each task. The final decision layer is a

fully-connected layer with sigmoid or softmax activation, depending on the number of classes in

each task. When there are only two classes, like in the real/fake classifier, the decision layer uses

sigmoid activation. When there are more than two classes, like in identity recognition, the network

uses softmax activation.

The loss in the discriminator has three terms relative to each task. The discriminator is trained
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Figure 5.2: Architecture of the generator in the PPRL-VGAN model.

to distinguish between real and fake images with the real/fake discriminator D1, to recognise iden-

tity with the identity recognition network D2 and to perform one more task, like facial expression

recognition, with the respective classification network D3. As such, the discriminator intends to

maximise the loss function defined in Equation 5.1. In this equation, λ D
x are parameters to con-

trol the importance given to the task x, regarding real/fake classification, identity recognition and

semantic classification. The variables yid and ye correspond to the target labels for identity recog-

nition and for the semantic task, respectively, and I is an image from the original data space with

probability distribution pd .

LD = λ
D
1 {EI∼pd(I)[logD1(I)]+EI∼pd(I),c∼p(c)[log(1−D1(G(I,c)))]}+

E(I,y)∼pd(I,y)[λ
D
2 logD2

yid (I)+λ
D
3 logD3

ye(I)]
(5.1)

In the original experiments, the discriminator was trained separately for real and fake images.

When training with the fake images, the weights assigned to the identity and glaucoma loss terms

were λ D
2 = 0 and λ D

3 = 0, respectively. These weights ensured that the identity and glaucoma

recognition modules were trained using only the real images.

The loss in the generator contains four terms: a regularisation term to regularise the VAE’s

latent space and a term for each task performed by the discriminator. The generator’s goal is to

trick the discriminator into believing that the generated image is real, represents the replacement

identity c and belongs to the same class as the original image regarding the semantic classification

task. As such, the generator intends to minimise the loss function defined in Equation 5.2. In this

equation, λ G
x are parameters to control the importance of each term x in the loss function. In the

regularization term, p( f (I)) corresponds to the prior distribution on the latent space, where f (I)

corresponds to the image I’s latent representation, and q( f (I) | I) is the conditional distribution

parameterised by the encoder.
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Figure 5.3: Architecture of the discriminator in the PPRL-VGAN model.

LG = E(I,y)∼pd(I,y),c∼p(c)[λ
G
1 log(1−D1(G(I,c)))+λ

G
2 log(1−D2

y′(c)(G(I,c)))+

λ
G
3 log(1−D3

ye(G(I,c)))]+λ
G
4 KL(q( f (I) | I)||p( f (I)))

(5.2)

To evaluate this network’s capacity regarding privacy and preservation of semantic features,

the authors included a classification network, which can be trained as an identity recognition model

or as the task-related classifier used in the generative model. The architecture of this model is

similar to the one used in the discriminator, with four blocks of convolutional layers followed

by two fully-connected layers, as can be seen in Figure 5.4. The loss function used is the cross-

entropy loss. Note that the privacy guarantees in this work are restricted by the quality of the

identity recognition network used to evaluate the privacy-preserving models.

5.3 Preliminary Experiments

The purpose of the preliminary experiments is to analyse the PPRL-VGAN model’s shortcom-

ings that hinder its use as a privacy-preserving tool for case-based explanations. We will start by

analysing the model’s capacity in the setting it was originally developed for: facial expression

recognition, using the FERG database. Then, we will apply the model to the medical Warsaw

database to find its shortcomings and advantages in a medical scenario. Finally, we will com-

pare the results of this model in a medical setting with results obtained from traditional privacy-

preserving methods.

We compiled the experimental work in this section in a research paper [76] published at
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Figure 5.4: Architecture of the CNN provided along with the PPRL-VGAN model for evaluation
purposes.

ICML’s workshop on Interpretable Machine Learning in Healthcare (ICML 2021 IMLH). In spe-

cific, the published paper exposes the weaknesses of current privacy-preserving methods when

applied to case-based interpretability in the medical scene. In this paper, we compare traditional

and deep learning privacy-preserving methods, providing the empirical results obtained in Chap-

ters 5.3.2 and 5.3.3 to support our claims.

5.3.1 Experiment with FERG Database

The experiment with the FERG database allows us to identify this network’s capabilities of privacy-

preserving image generation through an intuitive dataset that does not need a medical specialist to

analyse its qualitative results.

We trained the network for 200 epochs with the RMSprop optimiser and a learning rate of

3e−4. We used the parameters that the authors described in the original paper: λ 1
G = 0.108, λ 2

G =

0.6, λ 3
G = 0.29 and λ 4

G = 0.002. As can be seen in the results expressed in Figure 5.5, there is no

trace of the original character in the synthetic images, but the facial expression, representative of

anger, is preserved. Although the first character’s identity is not exposed, we can clearly see that

the remaining characters’ identity is exposed in the synthetic images, which does not solve the

privacy issue in the images.

We noticed that when we try to replace the original identity with itself, while the feeling

associated with the facial expression is preserved, its exact features are not, as can be seen in

Figure 5.6, where the synthetic image contains a slightly opened mouth, with teeth showing, and

with eyes more closed, unlike the original image where the mouth is closed. This is a limitation of

preserving the facial expression that results from using the direct loss of the classification network
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Figure 5.5: Results of training PPRL-VGAN network with FERG database for 200 epochs. (a)
represents the original image and (b-f) represent the privatised images by replacing the original
character with the other characters in the database.

for facial expression recognition to train the model. This loss does not guarantee that the original

image’s exact features are preserved. It only guarantees that the class to which the facial expression

belongs is preserved. This mechanism for the preservation of task-related semantic features is not

enough to ensure semantic similarity between the privatised image and the original one, which is

a requirement for the privatisation of visual explanations. Furthermore, in medical data, different

patients may have different symptoms of the same disease, which must be preserved as closely as

possible.

Figure 5.6: Results of replacing character’s identity with itself using PPRL-VGAN network. (a)
represents the original image and (b) represents the synthetic image where the original identity
was replaced with itself.

To assess this network objectively, we evaluated its capacity to preserve privacy and utility. To

do so, we used the CNN classification network provided by the authors, which was trained first

to recognise the images’ identity and then to recognise facial expressions. We trained both the

identity classification and the facial expression recognition networks with the original training set.

Then, we used the encoder and decoder obtained in the PPRL-VGAN network to create a dataset

of privatised images based on the test samples from the original dataset. For each test image, we

privatised it by replacing the respective identity with all other available identities, generating 5

privatised images per sample. As such, the resulting generated dataset contains 42,260 images.

With this generated dataset, we tested the identity recognition network’s capacity to recognise the

original identity and the original facial expression in the privatised images. Table 5.1 presents

the results in terms of accuracy obtained with both networks applied to the testing set, and the
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generated privatised set. In the identity recognition process with the privatised set, we assessed

the privacy preservation of the original subject’s privacy and the subjects used as a replacement,

using the respective identity as a label.

Table 5.1: Results of experiment with FERG database on PPRL-VGAN network.

Dataset Identity Recognition Expression Recognition
Original testing set 100% 100%
Privatised set with original identity labels 0.57% 97.99%
Privatised set with replacement identity
labels

97.35% 97.99%

From these results, we can conclude that facial expressions are preserved in the privatised

dataset, as can be seen by the respective high accuracy. The privacy of the original character

in the privatised image is preserved, making it very difficult for the identity recognition network

to identify the respective identity, as can be seen by the significantly low accuracy. However,

the identity of the character who was used as a replacement is sacrificed since the network can

recognise it with very high accuracy. These results support this network’s previously mentioned

limitation regarding the lack of privacy for the characters used as a replacement.

In an attempt to use this model and still guarantee the privacy of all the characters in the

dataset, we tried to average the synthetic images obtained by replacing the original identity with

each character. Since all the characters present the same expression, the averaged image should

also preserve this facial expression. This experiment’s results can be seen in Figure 5.7 (a), where

we can see that the resulting image is unintelligible. This happens because the eyes, nose, and

mouth of the characters are located in different places of each synthetic image, pointing to the

need to normalise the images by placing the different parts of the face roughly on the same spots.

To see if the images become more understandable using fewer identities, we also tried averaging

the faces of only three characters whose face parts are roughly on the same spots. In Figure 5.7

(b), we can see that this averaged image is slightly more intelligible and with a clearer facial

expression. However, the facial expression is not completely clear. Additionally, since such a low

number of identities was used, we can identify which characters were used to build this image if

we know the dataset’s characters. Therefore, this solution, as it is, is not appropriate to preserve

privacy in this network. We also cannot average the latent representations of the generated images

to produce a realistic privatised image mapped in the original data space through the decoder since

the decoder was trained to receive both a latent representation and the class of the identity that

should be used to replace the original identity. The only way we could use this network and still

preserve the subjects present in the training data is if we had synthetic models that could be used

to replace the original identity.

With this first experiment, we can conclude that this network possesses limitations in its

privacy-preserving capabilities, as it does not protect the privacy of the subjects used as a re-

placement. Furthermore, the model is also lacking in regards to the preservation of explanatory
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(a) (b)

Figure 5.7: Results of averaging privatised images with 6 different identities (a) and 3 different
identities (b) to preserve privacy in PPRL-VGAN network.

evidence, as the network does not preserve the exact semantic features from the original image, it

only ensures that the semantic features discriminate the same class as in the original image.

5.3.2 Experiment with Warsaw Database

The experiment with the Warsaw database allows us to identify the PPRL-VGAN network’s short-

comings when applied to medical data. Before applying the model to the data, we first made a

quick analysis of how entangled the glaucoma-related features and the identity features are in the

images. To do so, we used the CNN network that was introduced as an evaluation model in Sec-

tion 5.2. The network was trained on the training set for identity recognition and for glaucoma

recognition. Then, we applied a visual interpretability technique to visualise the parts of the im-

ages that are the most relevant to each of the recognition tasks, to see if they overlap. We used

an implementation of Deep Taylor Decomposition [74], provided by iNNvestigate [4]. One ex-

ample of results is available in Figure 5.8. In this figure, we can see that the identity features and

glaucoma features are entangled as there are highlighted zones that are common in both images.

To further evaluate how entangled the features are at the whole dataset’s level, we investigated the

intersection over union (IoU) score between the masks obtained from applying this interpretability

technique with both networks. Ignoring values under a threshold of 0.1 in the images, we arrived

at a IoU score of 37.43%. Additionally, the average percentage of pixels that appear in the inter-

section of identity and glaucoma-related features in the images is 12.37%. These results clearly

show that there are features that are needed for both the glaucoma and identity recognition pro-

cesses. However, as these values are not very high, there is also a component of the features that

is exclusively relevant to either glaucoma recognition or identity recognition. The most significant

challenge in the privatisation process with this data will be to manage how the entangled features

are altered so that we keep enough disease-related information while discarding identity.

Regarding the application of the PPRL-VGAN network to the medical data, we trained the

model for 730 epochs, where it obtained the best results regarding loss in identity recognition and

glaucoma recognition. Like in the previous experiment, we used the RMSprop optimiser with a

learning rate of 3e−4. Regarding the parameters used in the generator’s loss, we used: λ 1
G = 0.5,
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(a) (b)

Figure 5.8: Results of applying Deep Taylor Decomposition on the glaucoma recognition network
(a) and on the identity recognition network (b).

λ 2
G = 0.5, λ 3

G = 0.5 and λ 4
G = 0.002. For these experiments, we created several privatised sets

using PPRL-VGAN on the testing set, to fully evaluate the model’s performance:

• Privatised set with original identity: the images were privatised using the original identity

from the input image as the replacement identity. This set evaluates the network’s capacity

to reconstruct the original image.

• Privatised set with random identities: the images were privatised using randomly selected

replacement identities.

• Privatised set with identities sharing the same pathology as the original image: the images

were privatised with replacement identities randomly selected from the pool of images with

the pathology observed in the original image. An example of an image taken from this set

is represented in Figure 5.9 (b).

• Privatised set with identities that do not share the pathology from the original image: the

images were privatised with replacement identities taken from the pool of images that do

not possess the pathology observed in the original image.

• Averaged privatised set: the privatised images result from averaging 6 privatised images

that share the same pathology as the original one, including one image obtained from using

the original identity as a replacement in the PPRL-VGAN model. An example of an image

taken from this set is shown in Figure 5.9 (c).

To evaluate the network privatisation capabilities, we investigated the accuracy of an identity

recognition network trained on the Warsaw dataset and evaluated on the testing set. Using the

original testing set as the baseline, we evaluated the accuracy of the identity recognition network

on each privatised set, expecting to get low accuracy results. Furthermore, we tested the accuracy

of this network when applied to recognising the identity of the patients that were used in the

privatisation process as a replacement. Regarding the preservation of explanatory evidence, we

used a glaucoma recognition network trained on the Warsaw dataset and evaluated on the testing

set, expecting to obtain high accuracy on the privatised sets. Since the glaucoma recognition
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(a) (b) (c)

Figure 5.9: Example of results of the PPRL-VGAN method. (a) corresponds to the original image.
(b) is a privatised image obtained with an identity that shares the same pathology as the original
image. (c) corresponds to an averaged image obtained with 6 different privatised images.

network is a binary classifier, which classifies the images according to the presence or absence

of glaucoma, we also used F-score to evaluate the preservation of glaucoma-related features. The

results of the experiments are available on Table 5.2, with the two best results obtained for each

metric highlighted in bold.

Table 5.2: Results of experiment with Warsaw database on PPRL-VGAN network.

Dataset Original
Identity

Recognition

Replacement
Identity

Recognition

Glaucoma
Recognition

Glaucoma
F-Score

Original testing set 90.00% - 93.24% 87.83%
Privatised set with original
identity

81.76% - 89.12% 81.41%

Privatised set with random
identities

0.50% 74.68% 79.18% 62.22%

Privatised set with identities
with the same pathologies

1.76% 78.35% 86.56% 76.01%

Privatised set with identities
with different pathologies

0.71% 60.26% 65.06% 48.30%

Averaged privatised set 2.56% 14.35% 86.24% 78.80%

From the experiment with the set of images privatised with the original identity, we can con-

clude that there is a slight loss in the images’ reconstruction, since the accuracy in identity recogni-

tion is lower than the baseline. This loss is not as accentuated in the glaucoma recognition results

which were very high, proving the network’s capacity to preserve glaucoma-related features when

reconstructing an image. As such, the network may learn to prioritise preserving semantic features

rather than anonymising the image through identity replacement.

From the experiment with the set privatised with random identities, we can see that the network

can successfully hide the identity from the patient in the original image, due to the significantly

low identity recognition accuracy. However, the identity recognition network can identify the

patient used as a replacement to privatise the image with very high accuracy, revealing the threat

that PPRL-VGAN poses to this patient’s privacy. Regarding the preservation of disease-related
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semantic features, the low accuracy and F-score in glaucoma recognition points to a significant

loss in explanatory evidence, unlike in the previous experiment with the FERG dataset. In the

Warsaw dataset most patients are only associated to one pathology (either presence or absence

of glaucoma), unlike the FERG dataset where every identity possessed images for all the facial

expressions. As such, we inferred that the PPRL-VGAN model might have difficulties trying to

recreate a pathology in a patient that originally does not possess this pathology. To confirm this

theory, we used a set privatised with identities that share the same pathologies as the original

image and a set privatised with identities that do not share the same pathology as the original

image. From the experiments, we verified that the glaucoma recognition network achieves high

accuracy and F-score when the images are privatised with identities with the same pathologies.

On the other hand, the network achieves low accuracy and F-score when the identities used as

a replacement do not possess the same pathologies as the original image. These results confirm

the privatisation network’s difficulty in recreating a pathology in patients that originally do not

possess it. Furthermore, since the accuracy in the replacement identity recognition is lower for the

privatised set with identities with different pathologies, we can infer that the existence or absence

of glaucoma may be contributing to the identity recognition process.

Since the greatest weakness of the PPRL-VGAN model is the privacy violation of patients

available in the dataset, due to its nature as an identity replacement network, we used the av-

eraged privatised set to overcome this limitation. With the averaged privatised set, we obtained

lower accuracy in the replacement identity recognition. The results show that this method en-

sures K-Anonymity, since the probability of identifying someone in the averaged image is slightly

lower than 1
K (≈ 16.7%). With this set, we achieved high accuracy and F-score in the glaucoma

recognition network, proving this method’s high capacity of preserving semantic features.

Furthermore, to evaluate the preservation of glaucoma-related semantic features, we used a

visual interpretability method to check whether the image regions that contribute the most to the

diagnostic decision are similar in the privatised and in the original images. We used an imple-

mentation of Deep Taylor Decomposition [74], provided by iNNvestigate [4], on the glaucoma

recognition network. With this method, we obtained visual explanations where the highlighted

regions of the images are relevant to the identification of glaucoma. The results of this experiment

are shown in Figure 5.10. Similarly to the original image (a), the privatised image which was

classified as glaucoma with high confidence (b) contains the upper region of the iris highlighted.

Furthermore, this region is not highlighted in the privatised image which was classified as not hav-

ing glaucoma (c). As such, we can conclude that glaucoma-related semantic features are preserved

in the privatisation process.

With this second experiment, we confirmed that glaucoma-related features and identity fea-

tures are entangled in the medical images. We also confirmed that most of the limitations identi-

fied in the previous experiment, such as the patient privacy violation, also apply to medical data.

Furthermore, we identified one relevant drawback of this network when applied to medical data,

which was not visible in the experiment with the FERG database: the network has difficulty in

privatising an image using an identity that does not possess the pathology from the original image.
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(a) (b) (c)

Figure 5.10: Results of applying Deep Taylor Decomposition in glaucoma recognition network.
(a) represents the original image with glaucoma, (b) represents a privatised image with glaucoma,
and (c) represents a privatised image without glaucoma.

5.3.3 Experiments with Traditional Privacy-preserving Methods

To further evaluate PPRL-VGAN as a deep learning approach for privacy, we compare it to two

traditional privacy-preserving methods: blur and K-Same-Select [36]. The three methods are com-

pared in terms of image intellegibility, privacy preservation and explanatory evidence preservation.

For this comparison, we used the Warsaw database, to analyse each method in a medical context.

In the experiment with blur, we applied Gaussian kernels with different dimensions to the

original test images. Bigger dimensions in the Gaussian kernels represent higher blurring degrees.

The results of this method are represented in Figure 5.11. The highest level of privacy achieved in

this method, with the highest blurring degree, translates into a significant loss in intelligibility, as

can be seen in Figure 5.11 (d).

(a) (b) (c) (d)

Figure 5.11: Results of applying Gaussian blur on the images. (a) represents the original image and
(b-d) represent images privatised with Gaussian kernels of 3, 9 and 15 dimensions, respectively.

In the experiment with K-Same-Select, we privatised the original testing set using different

numbers of identities in the averaged images. We ensured that the images used in each privatised

image belong to different patients, guaranteeing K-Anonymity. The results of this approach are

represented in Figure 5.12. Since the images were normalised in the dataset’s preparation, the

images that result from this method have high intelligibility, especially when a small number of

identities is used in each privatised image.

We have compiled the results from these experiments in Table 5.3, with the best results ob-

tained in each metric highlighted in bold. From the deep learning method, we only included the

privatised sets that achieved the best results in the previous experiment.
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(a) (b) (c) (d)

Figure 5.12: Results of applying K-Same-Select on the images. (a) represents the original image
and (b-d) represent images privatised with 3, 6 and 9 identities, respectively.

In the experiment with blurring, we observed that, as the blurring degree increases, it becomes

more difficult for the identity recognition network to identify the patient. However, the high-

est level of privacy achieved is not enough to guarantee the patients’ privacy. Overall, blurring

achieved the worst results in identity recognition in comparison with the other methods. Further-

more, as the blurring degree increases, the glaucoma recognition accuracy decreases significantly.

For the highest degree of privacy achieved, with a gaussian kernel of size 15, there is a significant

loss in explanatory evidence and intelligibility which hinders this method’s use as a privatisation

tool for case-based explanations. The only advantage of this method is that an image’s privatisa-

tion is independent of all other images in the dataset.

Table 5.3: Results from the experiments with K-Same-Select and Blur.

Experiment Dataset Original
Identity

Recognition

Replacement
Identity

Recognition

Glaucoma
Recognition

Baseline Original test set 90.00% - 93.24%

PPRL-VGAN
Privatised set w/ identities w/
the same pathologies

1.76% 78.35% 86.56%

Averaged privatised set 2.56% 14.35% 86.24%

Blurring
Privatised set w/ kernel size 3 69.41% - 93.24%
Privatised set w/ kernel size 9 31.76% - 88.82%
Privatised set w/ kernel size 15 23.24% - 81.47%

K-Same-Select
Privatised set w/ 3 identities 7.06% 22.94% 82.35%
Privatised set w/ 6 identities 2.94% 14.41% 81.76%
Privatised set w/ 9 identities 1.47% 14.41% 78.53%

In the K-Same-Select method, the results from the column about replacement identity recog-

nition correspond to the accuracy in recognising any identity used in the privatised images. As

the number of identities used in the privatised images increases, the hardest it is for the identity

recognition network to identify either the original patient or any of the patient’s used to obtain

the privatised image. With a significantly high number of identities, such as 9 identities, K-Same-

Select achieves results that are comparable with the ones from the deep learning method in terms

of privacy. However, regarding explanatory evidence, this method achieved poor results in com-

parison with the deep learning method.
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Overall, the averaged privatised set using PPRL-VGAN achieved the most balanced results,

with higher privacy and explanatory evidence preservation. However, this set suffers from the

limits of K-Anonymity and the loss of the exact semantic features of one image that results from

averaging different privatised images.

From these results, we can conclude that the deep learning method, PPRL-VGAN, has the

highest capacity to preserve explanatory evidence from all the methods analysed. This method is

the most suited to use as a starting point for the development of a more robust privacy-preserving

approach that can be applied to medical data. The most significant weakness in this method in

comparison to the traditional methods is the violation of privacy of subjects from the database, as

concluded in the previous experiments.

5.4 Limitations of the PPRL-VGAN model

The development of the privacy-preserving framework for case-based interpretability in this dis-

sertation will use the Deep Learning model PPRL-VGAN [20] as a starting point. In this chapter,

we performed experiments to evaluate the work that must be done to adapt this model to obtain

visual explanations using medical data. Using the FERG dataset, we identified drawbacks in the

model when applied to fulfill its original goal of privatisation for facial expression recognition.

Using the Warsaw dataset, we identified the model’s limitations when applied to privatise medi-

cal data, where there are several subjects that do not possess all the pathologies identified in the

diagnostic network, and a limited amount of images per subject.

The limitations that we concluded from these experiments were:

• Anonymity: The PPRL-VGAN network achieves the goal of preserving a subject’s privacy

through identity replacement. However, identity replacement does not guarantee privacy

preservation for the subjects used as a replacement. Averaging several privatised images

obtained with PPRL-VGAN to hide the identity of both the original subject and the subjects

used as replacement negatively impacts the utility of the resulting image. Furthermore, this

average imposes the limits of K-Anonymity on the privatised images. The privatisation

process should be independent of the subjects present in the dataset to guarantee privacy

preservation for all subjects. Additionally, the identity recognition network used in this

model is a multi-class classification network which is difficult to train for medical data, as

there is typically a limited number of images per patient.

• Explanatory Evidence: The use of a standard classification network for the semantic task

only guarantees that the original image’s class is preserved. It does not guarantee that the

exact semantic features used by the classification network to classify the image are pre-

served. Although the averaged privatisation set preserves general semantic features, it loses

the exact semantic features of the original image by mixing them with features from other

images.
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• Realism: The images possess a bit of noise in both experiments, however, the resulting

images are intelligible. There is no current limitation regarding realism in the privatisation

network.

Considering these limitations, the next chapters will focus on improving the PPRL-VGAN

model to enable its use for the generation of privacy-preserving case-based explanations applied

to medical data. The greatest challenge we expect to overcome in the experimental work that

follows is to manage the trade-off between privacy, explanatory evidence and intelligibility. Since

disease-related features are usually entangled with identity features, it might be difficult to find an

equilibrium where we keep enough semantic features to preserve the images’ explanatory value

while also removing identity.
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Chapter 6

Privacy-Preserving Model with
Multi-class Identity Recognition

In this chapter, we propose privacy-preserving models for case-based explanations that use a multi-

class identity recognition network to guide the privatisation process. We guide the development

process through three main steps: improving privacy, improving realism and improving explana-

tory evidence in the privatised images, each represented in a section. The final section summarises

the main observations taken from the experiments and compares our newly developed privacy-

preserving model with the original PPRL-VGAN model [20].

The experiments in this chapter use the Warsaw dataset introduced in Chapter 5.1.2. We per-

formed the experiments in Keras [24], with Tensorflow backend [2]. In this chapter, we expose a

limited amount of visual results per experiment. More examples of visual results can be visualised

in Appendix A.1, for a better assessment of image quality.

In the experiments, we use the identity and glaucoma recognition networks introduced in

Chapter 5.2 as evaluation networks to measure privacy and preservation of explanatory evidence.

At first, we only evaluate these networks’ accuracy in the privatised images. As the network de-

velops and its loss function changes, other metrics are introduced in each section to evaluate the

privacy-preserving model’s performance using these evaluation networks. In each experiment, we

train the privacy-preserving network according to the experiment’s description and save the mod-

els that obtain the best results in terms of glaucoma and identity recognition on the validation set.

We always expose in the visual and tabular results the models saved at the epochs that provided

the best results regarding glaucoma and identity recognition.

In all experiments, the data is organized into 65% for training, 15% for validation, and 20%

for testing. During training, we mostly use Adam optimizer with learning rate of 2e−5, except in

the first section, regarding the improvement of privacy, where we use RMSprop optimiser with a

learning rate of 3e−4.

73
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6.1 Improving privacy in the privacy-preserving model

The main drawback that hinders using the PPRL-VGAN model to anonymise medical data is the

privacy violation inherent to using identity replacement as the privatisation process. To fix this

issue, we remove the identity, c, which was previously given to the model’s decoder. This first

section aims to obtain images that preserve the privacy of all the patients in the training set.

6.1.1 Removing identity replacement from the PPRL-VGAN model

In order to privatise images independently from the training data, we turned the conditional VAE

from the original network into a normal VAE, by removing the identity that was previously given

to the decoder. The resulting network’s architecture is shown in Figure 6.1.

Figure 6.1: Architecture of the model based on PPRL-VGAN without identity replacement.

Since we no longer have a replacement identity, we can no longer approximate the privatised

image’s identity to the replacement identity in the loss function. As such, we encourage the gen-

erative model to make the identity recognition network fail to recognise the original identity by

maximising the cross entropy between the original identity distribution and the privatised image’s

identity distribution. The discriminator is trained to maximise the loss function in Equation 6.1,

while the generator is trained to minimise the loss function in Equation 6.2.

LD = λ
D
1 {EI∼pd(I)[logD1(I)]+EI∼pd(I)[log(1−D1(G(I)))]}+

E(I,y)∼pd(I,y)[λ
D
2 logD2

yid (I)+λ
D
3 logD3

ye(I)]
(6.1)

LG = E(I,y)∼pd(I,y)[λ
G
1 log(1−D1(G(I)))+λ

G
2 log(D2

yid (G(I)))+

λ
G
3 log(1−D3

ye(G(I)))]+λ
G
4 KL(q( f (I) | I)||p( f (I)))

(6.2)

The network was trained for 450 epochs, using a RMSprop optimiser with a learning rate of

3e−4. The results from this method can be found in Table 6.1, and some visual examples are shown
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in Figure 6.2. The network obtained very high values in glaucoma recognition and low values in

identity recognition, as expected of a privatisation method. However, we can see in Figure 6.2 that

the privatised image (b) resembles an image (c) from the training data, even though the identity

from this image was not explicitly given to the network. We can conclude from these results that

the network still exposes someone’s identity and that the metrics used in the results’ table are not

enough to guarantee privacy.

Table 6.1: Results of experiment of removing identity replacement from PPRL-VGAN network.

Dataset Identity
Recognition

Glaucoma
Recognition

Original testing set 89.71% 92.94%
Privatised set 0.29% 89.12%

After further evaluating the results, we realised that 80.21% of the privatised images that

contained glaucoma were classified with the identity in Figure 6.2 (c) by the identity recognition

network. This suggests that this network is a victim to a well-known problem that often happens

when training GANs: mode collapse.

(a) (b) (c)

Figure 6.2: Example of results of the privatisation method without identity replacement. (a) cor-
respond to the original image. (b) is the privatised version of (a), and (c) is an image from the
identity recognised by the identity recognition network.

In this experiment, we conclude that we need to explicitly train the network to generate images

that do not resemble any of the training samples to preserve privacy in the whole dataset.

6.1.2 Approximating an uniform identity distribution in the privatised data

Since the previous network still exposed identities from subjects in the training dataset, we changed

the loss function so that the generative network generates images that the identity classifier cannot

recognise. As such, we approximate the identity distribution in the resulting images to a uniform

distribution. The discriminator tries to maximise Equation 6.3, and the generator tries to minimise

Equation 6.4, where U represents a uniform distribution. We trained the network with this loss

function for 843 epochs, where we obtained the best results in identity and glaucoma recognition

in the validation set.
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LD = λ
D
1 {EI∼pd(I)[logD1(I)]+EI∼pd(I)[log(1−D1(G(I)))]}+

E(I,y)∼pd(I,y)[λ
D
2 logD2

yid (I)+λ
D
3 logD3

ye(I)]
(6.3)

LG = E(I,y)∼pd(I,y)[λ
G
1 log(1−D1(G(I)))−λ

G
2 D2(G(I))log(U)+

λ
G
3 log(1−D3

ye(G(I)))]+λ
G
4 KL(q( f (I) | I)||p( f (I)))

(6.4)

We also tried to approximate the images’ resulting identity distribution to a uniform distri-

bution using KL Divergence, as shown in Equation 6.5, representative of the generator’s loss

function. We trained the network with this loss function for 920 epochs.

LG = E(I,y)∼pd(I,y)[λ
G
1 log(1−D1(G(I)))+λ

G
2 KL(U ||D2(G(I)))+

λ
G
3 log(1−D3

ye(G(I)))]+λ
G
4 KL(q( f (I) | I)||p( f (I)))

(6.5)

The results from training the network with these loss functions are illustrated in Figure 6.3.

The privatised images that resulted from this method severely lack in intelligibility.

(a) (b) (c)

Figure 6.3: Example of results of the privatisation method that approximates a uniform identity
distribution. (a) is the original image. (b) and (c) are its privatised versions trained with entropy
loss and KL divergence loss, respectively.

Since the previous experiment has an identity leak that was not recognisable with the evalua-

tion metrics previously used, we added two new metrics to evaluate privacy at the whole dataset’s

level. First, we use the average maximum identity score, which corresponds to the maximum

score that the identity recognition network assigns to an identity when making a prediction. Then,

we use KL divergence to evaluate the distance between the predicted identity distribution and a

uniform distribution. Note that images with identities that are not available in the dataset could

still get high values in terms of KL divergence and maximum identity score in a multi-class recog-

nition network. Nonetheless, these metrics serve to evaluate how good the generative network is

at generating images that are difficult for the identity recognition model to recognise with high

confidence, which is the goal of approximating the identity distribution to a uniform distribution.
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The results are expressed in Table 6.2. In order to evaluate this method’s results in terms of iden-

tity removal, we used as an additional baseline for KL divergence and maximum identity score the

results of the model trained without the privacy term in the loss function (with λ G
2 = 0). We chose

as the baseline the model that obtained the lowest maximum identity score and KL divergence.

Our goal is to obtain values for these two metrics that are below this baseline. Figure 6.4 shows

examples of results from this set that does not consider privacy. When we do not consider privacy,

the synthetic images become intelligible, showing the privacy-intelligibility trade-off.

Table 6.2: Results of experiment that approximates uniform identity distribution for privacy.

Dataset Identity
Recognition

Max Identity
Score

Average KL
Divergence

Glaucoma
Recognition

Original testing set (baseline) 89.71% 88.22% 4.24 92.94%
Generated set without con-
sidering identity (baseline)

2.35% 52.41% 3.26 92.65%

Privatised set w/ entropy loss 1.76% 45.91% 2.93 90.59%
Privatised set w/ KL loss 1.18% 57.31% 3.48 91.18%

The network that uses entropy loss to approximate a uniform identity distribution provided

better results in terms of privacy than the one that used KL divergence. However, neither of the

networks obtained satisfying results, as there is a high average maximum identity score and a high

KL divergence in both the privatised sets. These results show that it is difficult for the network

to generate realistic images that hide privacy. Regarding explanatory evidence preservation, both

networks were capable of preserving glaucoma-related features in the images, as can be seen by

the high accuracy obtained by the glaucoma recognition network on the privatised sets.

(a) (b) (c) (d)

Figure 6.4: Example of results of the PPRL-VGAN method without considering identity in the
loss function. (a) and (c) are the original images. (b) and (d) are the respective synthetic versions.

With this experiment, the generative network was still not capable of generating privacy-

preserving realistic images.

6.1.3 Using pre-trained identity and glaucoma recognition networks

The training of the previous network involves the complex task of optimising four components at

the same time: a VAE generator, a real/fake discriminator, an identity classifier and a glaucoma
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classifier. In order to simplify the training process, we pre-trained the models for identity and

glaucoma recognition. As such, the network only has to optimise the components responsible for

the generation of realistic images: the generator and the real/fake discriminator. The pre-trained

models possess the architectures of the networks introduced in Chapter 5.2, which were used

for evaluation purposes. The resulting network’s architecture is illustrated in Figure 6.5. This

network uses the entropy loss to approximate a uniform identity distribution, since, in the previous

experiments, we achieved better results in terms of privacy using this loss term.

Figure 6.5: Architecture of PPRL-VGAN without identity replacement and with pre-trained iden-
tity and glaucoma recognition models.

The network was trained for 974 epochs, at which it provided the best results in terms of loss

in identity and glaucoma recognition. Some examples of results are shown in Figure 6.6. From

these results, we noticed various problems regarding realism. The generated images do not look

real and may even upset doctors or patients that may have to look at them. Furthermore, we

noticed that the two presented privatised images often appear in the privatised set, suggesting a

mode collapse problem like in the previous experiment. The images that do not possess glaucoma

generally collapse to the image represented by Figure 6.6 (b) while images with glaucoma collapse

to Figure 6.6 (d).

(a) (b) (c) (d)

Figure 6.6: Results of the privatisation method without identity replacement and with pre-trained
models. (a) and (c) are the original images. (b) and (d) are the respective privatised versions.

We also collected results for the network trained after 971 epochs, where the network achieved
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the best loss in terms of glaucoma recognition in the validation set. In this set, the images have

higher quality than in the set collected at 974 epochs, as can be seen in Figure 6.7. Nonetheless,

the intelligibility still neets to be improved, especially in the images that portray glaucoma, where

the right side of the iris possesses a lot of noise.

(a) (b) (c) (d)

Figure 6.7: Example of results of the privatisation method without identity replacement and with
pre-trained models, with higher image quality and preservation of glaucoma. (a) and (c) corre-
spond to the original images. (b) and (d) are privatised versions of (a) and (c), respectively.

Table 6.3 expresses the results obtained with the privatised sets from the models trained at 971

and at 974 epochs. These results clearly show the trade-off between privacy and intelligibility.

The network obtained at 971 epochs possesses lower privacy capabilities when compared with the

one obtained at 974 epochs, since the results for maximum identity score and KL divergence are

significantly higher at 971 epochs. However, at the cost of privacy, this privatised set presents

higher-quality images and higher explanatory evidence preservation than the set obtained at 974

epochs. When we compare the newly developed network with the one from the previous exper-

iment, we can see the great improvement in privacy that the new network has achieved at both

epochs. Since the set saved at 971 epochs has considerably lower values in the privacy-related

metrics than the baselines, it is better than the set saved at 974 epochs, as it contains higher-quality

images and higher glaucoma recognition score.

Table 6.3: Results of experiment of removing identity replacement from PPRL-VGAN network
by approximating uniform distribution and using pre-trained identity and glaucoma classifiers.

Dataset Identity
Recognition

Max Identity
Score

Average KL
Divergence

Glaucoma
Recognition

Original testing set (baseline) 89.71% 88.22% 4.24 92.94%
Generated set without con-
sidering identity (baseline)

2.35% 52.41% 3.26 92.65%

Privatised set from previous
experiment

1.76% 45.91% 2.93 90.59%

Privatised set with identity
(971 epochs)

0.59% 23.12% 2.20 90.00%

Privatised set with identity
(974 epochs)

1.47% 6.36% 0.55 87.94%

In this experiment, we obtained a network with high privatisation power that can preserve
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the disease-related class of the original image. Pre-training the networks responsible for privacy

and explanatory evidence preservation improves the model’s results regarding privacy and image

quality. We clearly identified the trade-off between privacy and intelligibility, which hinders the

network’s capacity to produce useful privatised case-based explanations. The most significant

issues that need to be solved in this network are the lack of realism, as the network resulted in

potentially upsetting images, and the mode collapse.

Regarding the mode collapse issue, we would like to point out that the original architecture

suffered from an intentional mode collapse, where the mode collapsed to the identity given to the

decoder. In this network, the mode collapse is not intentional and affects the network’s capacity

to recreate the exact glaucoma-related features from the original image, since all images with the

same pathology look the same.

6.2 Improving realism in privacy-preserving model

To solve the mode collapse problem and improve the realism in the images, we tried various

models to replace the current generative model. There are two types of changes that can be done

to the current network: changes to the generator or changes to the discriminator. In the generator,

we can change its architecture to produce higher quality images, while in the discriminator, we

can change its loss function, in order to stabilise its training and fix the mode collapse problem.

In this section, we explore both types of changes. First, we change the discriminator to battle the

mode collapse problem and then we attempt to alter the generator’s architecture to improve image

quality. The experiments in this section are a continuation of the ones in the previous section.

As such, we use the last privacy-preserving model obtained in the previous experiments, with

pre-trained identity recognition and glaucoma recognition networks.

6.2.1 Fixing mode collapse with WGAN-GP

One model that we have successfully implemented to fix mode collapse is the WGAN-GP [39]

network. In practice, this model changes the loss function of the GAN to the Wasserstein loss and

penalises the gradients in order to enforce a Lipschitz constraint on the discriminator, rather than

clipping its weights as suggested in the original WGAN [9]. The model’s architecture remains

the same as in the previous experiment. The only change in the discriminator is that, instead of

a sigmoid activation, the decision layer possesses a linear activation. The goal of the Wasserstein

loss is to maximise the difference between the values outputted for real and fake images. As

such, the discriminator and generator are trained to minimise the loss functions in Equation 6.6

and Equation 6.7, respectively. In the discriminator, x̂ corresponds to random samples which, in

practice, are obtained by a weighted average between real and generated images.

LD = EI∼pd(I)[D(G(I))]−EI∼pd(I)[D(I)]+Ex̂∼px̂ [λ (||∇x̂D(x̂)||2−1)2] (6.6)
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LG = E(I,y)∼pd(I,y)[−λ1D1(G(I))−λ2D2(G(I)) log(U)+

λ3 log(1−D3
ye(G(I)))]+λ4KL(q( f (I) | I)||p( f (I)))

(6.7)

For the gradient penalty weight λ in the discriminator, we used the value 10, as suggested

in WGAN-GP’s original paper [39]. In this experiment, we tried different approaches to improve

image quality and preserve privacy. In all approaches, we used the Adam optimiser with a learning

rate of 2e−5. We generated the following privatised datasets as a result from the experiments:

• Privatised set: We used the previous model with pre-trained networks but with WGAN-GP,

assigning the same degree of importance to each term in the loss function (λ1 = 1,λ2 =

1,λ3 = 1). This network was trained for 952 epochs, at which it achieved the best results on

the validation set. An example of a result is shown in Figure 6.8 (b).

• Privatised set with noise: We added gaussian noise with the distribution N(0,σ2) to the

latent representations to improve image quality and robustness to small changes in the input

images. As parameters of the gaussian noise’s distribution, we used σ = 0.02. This network

was trained for 1,223 epochs. An example is shown in Figure 6.8 (c).

• Privatised set with higher privacy degree: We changed the parameters to assign more weight

to the privacy term in the loss function (λ1 = 0.4,λ2 = 1,λ3 = 0.6). This network was trained

for 1,166 epochs. An example from this set is illustrated in Figure 6.8 (d).

• Privatised set with random uniform identity distribution: We altered the identity term in the

loss function so that instead of approximating a uniform distribution, where every identity

would have the same probability of being recognised, we approximate a distribution ran-

domly sampled from a uniform distribution. To achieve this, we sampled N values from the

uniform distribution represented in Equation 6.8, where N is the total number of identities.

To ensure that the sum of the values of the distribution is 1, we adjusted the values by cal-

culating the difference between the total sum of the distribution and 1, and distributing this

value between each identity in the identity distribution. The final value for each individual in

the distribution is represented in Equation 6.9, where Pn is the base value for the individual n

sampled from the uniform distribution U . One weakness of this method is that it is possible

to obtain negative values using this equation if the average value of the probability distribu-

tion is higher than 3
2N . Nonetheless, considering that this average is likely to attain values

around the mean of the uniform distribution 5
4N , it is very unlikely to obtain negative values.

One alternative to normalize the values of this distribution is Equation 6.10, which was not

used in this work and should be considered in the future. This method of defining the tar-

get identity distribution is equivalent to adding noise to the uniform distribution previously

used. The parameters used to trained the network were λ1 = 0.4,λ2 = 1,λ3 = 0.6. In this

setting, the network achieved the best results in terms of identity and glaucoma recognition

at 1,731 epochs. Figure 6.8 (e) represents an image obtained with this network.
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• Privatised set with pre-trained generative network: We pre-trained the generative network

without taking privacy into consideration (λ1 = 0.4,λ2 = 0,λ3 = 0.6) in order to facilitate

the network’s task and generate higher quality images. After 500 epochs, we started incre-

menting the weight assigned to identity term loss λ2 with increments of 1
50 , until it reached

value 1. In this experiment, we also approximated the identity term loss to a distribution

sampled from a uniform distribution, like in the previous privatised set. The network was

trained for 1,397 epochs and obtained the results in Figure 6.8 (f).

• Privatised set with noise in latent representations and in uniform identity distribution: This

set mixes the changes that occurred in the "Privatised set with noise" and in the "Privatised

set with random uniform identity distribution". Since both these sets resulted in higher

quality images, we decided to use both the changes in a new network to see if the resulting

images had even better quality. As parameters, we used λ1 = 0.4,λ2 = 0,λ3 = 0.6. The

network was trained for 1,530 epochs, and obtained the image in Figure 6.8 (g).

U =
1

2
N −

1
2N

(6.8)

P f
n = Pn +

1−∑
N
K=1 Pk

N
(6.9)

P f
n =

Pn

∑
N
K=1 Pk

(6.10)

We include more visual results in the Appendix, in Figure A.2. From the visual results, we

can conclude that the network has difficulty in reproducing the eye parts that surround the iris.

We found that adding gaussian noise to the latent representations (c) improves image quality.

However, increasing the weight assigned to the privacy term in the loss function, which increases

the image privacy (d), leads to a loss in image quality, evidencing the privacy-intelligibility trade-

off. When we switch the privacy loss term from approximating an uniform identity distribution to

approximating a distribution sampled from an uniform distribution (e), we see a clear improvement

in image quality, with a clearer iris and eye structure even with higher weight in the privacy loss

term than in the remaining terms. Injecting noise in deep neural networks is a technique that has

been used in the literature to increase robustness and regularize models’ training [5, 81, 90, 123].

In this work, we also verify that adding noise to the network results in its improved performance,

since the privatised sets that present higher-quality images are the privatised set with noise (c) and

the privatised set with random uniform identity distribution (e). However, mixing together the

methods used to obtain these images (g) results in lower-quality images, as the high level of noise

hinders the network’s training. Further results from this experiment are available in Table 6.4.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 6.8: Example of results of the privatisation method using WGAN-GP model. The images
include the original image (a) and an example of each of the privatised sets presented: privatised
set (b), privatised set with noise (c), privatised set with higher privacy degree (d), privatised set
with random uniform identity distribution (e), privatised set with pre-trained generative network
(f), privatised set with noise in latent representations and in uniform identity distribution (g).

Table 6.4: Results of using WGAN-GP to solve mode collapse in privacy-preserving model.

Dataset Identity
Recognition

Max Identity
Score

Average KL
Divergence

Glaucoma
Recognition

Original testing set (baseline) 89.71% 88.22% 4.24 92.94%

Generated set without consid-

ering identity (baseline)

2.35% 52.41% 3.26 92.65%

Privatised set from previous

experiment

0.59% 23.12% 2.20 90.00%

Privatised set (b) 0.88% 29.08% 2.28 91.18%

Privatised set with noise (c) 0.59% 30.93% 2.24 89.18%

Privatised set with higher pri-

vacy degree (d)

1.18% 26.90% 2.21 89.41%

Privatised set with random

uniform distribution (e)

0.88% 34.49% 2.60 89.41%

Privatised set with pre-trained

generative network (f)

1.47% 29.03% 2.36 89.71%

Privatised set with noise (g) 1.18% 36.90% 2.68 88.82%

By increasing the privacy degree, through giving more weight to the identity loss term, the

average maximum identity score and the KL divergence decrease. However, the image quality
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decreases as well. In the privatised set with random uniform distribution, the maximum identity

score is slightly higher than in the other sets, which may be justified by the fact that its identity

loss term is not as strict as in the remaining sets. Overall, all the privatised sets produced good

results regarding glaucoma recognition. Although none of the networks achieved as low KL di-

vergence and average maximum identity score as achieved in the previous experiment, the values

for these metrics achieved in this experiment are significantly lower than the presented baselines.

Furthermore, it may be unrealistic to have an intelligible image where the identity recognition pre-

dictions follow a near uniform identity distribution. All the methods were capable of preserving

the glaucoma class of the original images with high accuracy. Assigning a higher privacy degree

in the parameters of the loss function results in higher privacy. In general, all the methods were

capable of achieving acceptable privacy and explanatory evidence degrees. We chose to continue

the experiments using the network (e), which approximates a noisy uniform identity distribution,

as it clearly provided the best results in terms of image quality.

Using the privatised set with identity distribution sampled from a uniform distribution (e),

we applied Deep Taylor Decomposition to further analyse the preservation of glaucoma-related

features. An example of results is illustrated in Figure 6.9. In the visual results, we can observe

that the privatised images’ saliency maps are not very similar to the original images’.

Figure 6.9: Results of applying Deep Taylor to images from WGAN-GP privacy-preserving
model. The first two columns are the original images and their privatised versions. The last
columns are the Deep Taylor saliency maps of the original and privatised images, respectively.

In this experiment, we achieved a privatisation network with intelligible images capable of
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privatising the original images. The most significant issue in this network is that it fails to preserve

the exact glaucoma-features of the original image, preserving only general features that allow to

correctly classify the privatised images according to the presence or absence of glaucoma. We

need to ensure that the original image’s glaucoma-related features are explicitly preserved.

6.2.2 Improving image quality by changing the VAE architecture

We tested different architectures for the VAE in an attempt to further improve the quality of the

images. In these experiments, we tried a ResNet VAE, whose convolutional layers have resid-

ual connections as proposed in the ResNet network, originally proposed for classification [42].

The architecture of the ResNet model is available in Figure 6.10. The VAE’s encoder and de-

coder are composed of multiple convolutional blocks. There are three types of ResNet blocks that

perform three different operations: downsampling, upsampling and an identity operation which

preserves the data’s dimensions. These blocks are represented in Figure 6.11. In the encoder, each

strided convolutional block (Figure 6.11(b)) is followed by an identity convolutional block (Fig-

ure 6.11(a)). The same logic applies to the decoder where each transposed convolutional block

(Figure 6.11(c)) is followed by an identity block (Figure 6.11(a)). The ResNet VAE is significantly

deeper than the original convolutional VAE, containing the quadruple of the convolutional layers.

Figure 6.10: VAE with ResNet architecture as generator for the privatisation model.

The network was trained for 1,801 epochs, where it provided the best results regarding glau-

coma recognition and privacy. The network was trained using the Adam optimiser with a learning

rate of 2e−5. As parameters, we used: λ1 = 0.4, λ2 = 1, λ3 = 0.6, λ4 = 0.002. We noticed that this

network’s training was unstable. Once the network starts obtaining somewhat intelligible images,

the results revert to unintelligible images after a few epochs. An illustration of results obtained

with the privatised model using the ResNet VAE as a generator is available in Figure 6.12. We
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(a) (b) (c)

Figure 6.11: ResNet convolutional blocks. The first convolutional layer can be a normal convolu-
tion (a), a strided convolution for downsampling (b) or a transposed convolution for upsampling
(c). All convolution operations are accompanied by LeakyReLU activation and Batch Normalisa-
tion.

can see that these results lack in quality when compared with the model that uses the original

convolutional VAE as generator.

(a) (b) (c)

Figure 6.12: Examples of privatised images generated with the privatisation model with ResNet
VAE as the generator.

We also tried a UNET architecture [96] in the generator. The UNET architecture was originally

proposed for segmentation tasks and is often used in the context of image generation for image-

to-image translation tasks. The UNET model possesses residual connections between the encoder

and the decoder, encouraging feature preservation. We add noise to the data through dropout

layers to instigate the loss of identity-related features. This network’s architecture can be seen in

Figure 6.13. Unlike the previous network, we do not use KL divergence to approximate the latent

representations obtained with the UNET to a Gaussian distribution.

We trained this network for 1,556 epochs, where it provided the best results regarding glau-

coma recognition and privacy. The network was trained using the Adam optimiser with a learning

rate of 2e−5. Like in the previous experiments, we used the parameters: λ1 = 0.4, λ2 = 1, λ3 = 0.6,

λ4 = 0.002. This method’s results are available in Figure 6.14. The results of this network lack

privacy, as the resulting images are very similar to the original ones.
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Figure 6.13: Architecture of UNET as generator for the privatisation model.

(a) (b) (c) (d)

Figure 6.14: Example of results of the privatisation method using UNET model as the generator.
(a) and (c) correspond to the original images. (b) and (d) are privatised versions of (a) and (c),
respectively.

We compiled the results from the privatised models with both architectures in Table 6.5. From

these results we can once again see the trade-off between privacy, intelligibility and explanatory

evidence. Using the ResNet architecture, the images attained very good results in terms of privacy,

with a very low maximum identity score. However, this high degree of privacy comes at the cost

of intelligibility, with low-quality images, and relatively low accuracy in glaucoma recognition.

In the experiment using the UNET architecture, the results in terms of identity recognition are

higher than what we usually see with this privacy-preserving framework. However, these values

are still low in comparison with the baseline corresponding to the original testing set. Through

these results, we can infer that the UNET network is trying to perform an adversarial attack on the

identity recognition network, where it tries to trick the network into wrongly classifying the image

instead of removing identity features that would lead the network to have difficulty classifying

it. The high data preservation capacity inherent to the UNET network hinders its privatisation

capacity, requiring higher levels of noise in the model to aid the loss of identity features.

Neither of the networks used was capable of achieving higher quality than the original VAE

while guaranteeing privacy. The ResNet VAE is very unstable to train, since it is significantly
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Table 6.5: Results of using ResNet and UNET in privacy-preserving model.

Dataset Identity
Recognition

Max Identity
Score

Average KL
Divergence

Glaucoma
Recognition

Original testing set (baseline) 89.71% 88.22% 4.24 92.94%
Generated set without con-
sidering identity (baseline)

2.35% 52.41% 3.26 92.65%

Privatised set using ResNet 0.59% 9.00% 0.74 84.41%
Privatised set using UNET 4.41% 26.86% 2.03 91.76%

deeper than the original VAE. The UNET generator was not capable of generating privacy-preserving

images. As such, the experiments will procede using the network achieved in the previous section,

with the original convolutional VAE.

6.3 Improving explanatory evidence preservation in privacy-preserving
model

One aspect that is critical to the use of this privacy-preserving framework for case-based expla-

nations is the preservation of disease-related features as they are in the original images. Only by

preserving these features, we can guarantee the explanatory value of the privatised explanations.

In the previous sections, we developed a privacy-preserving framework that preserves general

disease-related features using a glaucoma recognition network to guide the explanatory evidence

preservation process. However, this network only ensures the preservation of the class of the orig-

inal image and not its exact features, diminishing its explanatory use. In this section, we aim to

improve the quality of the privacy-preserving explanations produced by the privatisation model

by improving the preservation of the original image’s disease-related features. We evaluate the

preservation of explanatory evidence through the comparison between Deep Taylor saliency maps

obtained from the original images and their privatised versions.

6.3.1 Preserving explanatory evidence by explicitly preserving the iris of the eye

The first approach to the preservation of explanatory evidence is to explicitly preserve the parts

of the images that contain the disease-related features. In the Warsaw dataset, we expect the

glaucoma-related features to be in the iris of the eye. As such, we encourage the reconstruction of

the iris of the eye in the privatised images. To do so, first, we obtained segmentation masks that

identify where the iris is placed in the image.

To obtain iris segmentation masks, we used a process similar to the one used to normalise the

dataset in Chapter 5.1.2, as can be seen in Figure 6.15. The only difference is that, instead of a

translation to centre the iris, we create a mask where white represents the iris and black the absence

of the iris. Furthermore, we also added a mechanism for when the iris is wrongly detected. We

ensure that the mask is never too distant from the centre of the image, where the iris is usually
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located. To do so, if the iris is recognised with its horizontal centre coordinate x < 28 or x > 37,

we approximate the mask to the centre of the image horizontally, and we apply the same reasoning

vertically. These values were obtained by manually analysing the iris detection method, where we

verified that circles with x < 28 or x > 37 were too dislocated from the iris. We also limited the

radius of the iris to r < 17, since upon analysis of the iris detection technique used, we verified

that every image with r >= 17 defined a circle bigger than the iris.

Figure 6.15: Process used to obtain iris segmentation masks.

The loss function in the discriminator remains the same as in the previous experiment. In the

generator, we add a loss term for the iris reconstruction based on squared L2 normalisation loss,

as can be seen in Equation 6.11. In this equation, U represents a uniform distribution with noise,

which was obtained by sampling from a uniform distribution and adjusting the values so that the

sum of all values in the distribution is 1, and M refers to the iris segmentation mask.

LG = E(I,M,y)∼pd(I,M,y)[−λ1D1(G(I))−λ2D2(G(I)) log(U)+

λ3 log(1−D3
ye(G(I)))+λ4KL(q( f (I) | I)||p( f (I)))+

λ5(I×M−G(I)×M)2]

(6.11)

The network was trained for 1,492 epochs, where we obtained the best results in glaucoma

and identity recognition. As parameters, we used: λ1 = 0.4, λ2 = 1, λ3 = 0.6, λ4 = 0.002 and

λ5 = 0.0002. We achieved the results in Table 6.6. As baseline, we included the results from the



90 Privacy-Preserving Model with Multi-class Identity Recognition

previous experiment (privatised set with random uniform distribution).

Table 6.6: Results of experiment using iris segmentation masks to preserve glaucoma.

Dataset Identity
Recognition

Max Identity
Score

Average KL
Divergence

Glaucoma
Recognition

Original testing set (baseline) 89.71% 88.22% 4.24 92.94%
Generated set without consid-
ering identity (baseline)

2.35% 52.41% 3.26 92.65%

Privatised set from previous
experiment

0.88% 34.49% 2.60 89.41%

Privatised set using iris masks 2.35% 31.09% 2.38 90.59%

From these results, we can see that the identity recognition network can recognise the original

identity with slightly higher accuracy, but the average maximum identity score and the KL diver-

gence score is lower than in the privatised set from the previous experiment. The set using iris

segmentation masks also shows slight improvements in terms of glaucoma recognition accuracy,

although the glaucoma accuracy is still not as good as the baseline sets which expose identity. In

order to test whether the glaucoma-related features are preserved as they are, we use Deep Tay-

lor Decomposition to compare the features relevant to the glaucoma recognition network in the

images. The results are illustrated in Figure 6.16.

Figure 6.16: Results of using iris segmentation masks to preserve glaucoma features in the priva-
tised images. The first two columns are the original images and their privatised versions. The last
columns correspond to the Deep Taylor saliency maps of the original and privatised images.
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In these results, we can see that this network has difficulty in generating an intelligible eye

structure surrounding the iris. The iris is preserved as it is in the original image, with slight

changes. Since we only use the masks in the loss function and we do not use them directly as

input, the model learns to detect the eye iris in each image, in order to preserve it. Overall, the

privatised images are more similar to the original ones than in the previous experiments. Regarding

preservation of explanatory evidence, the privatised images’ saliency maps are very similar to the

original ones. As such, this network has a higher capacity to preserve the original images’ disease-

related features.

The problem with this approach is that, since our identity recognition network was trained

with images of the whole eye, it uses not only the iris but also the structure of the eye in the

recognition process, making it difficult to identify a patient using only the iris of the eye. As

such, it is difficult to determine whether the privatised eye’s iris still leaks identity using this

network. It is well-known that the iris can also be used in identity recognition problems by itself,

so preserving the whole iris may still leak identity. From the visual results, we can see the high

similarity between the privatised images and the original ones, derived from the iris. Furthermore,

although glaucoma-related features may be located in the iris, there may be segments in the iris

that are not related to glaucoma and that are being preserved in this approach even though they

may contribute to the identity leak.

6.3.2 Preserving explanatory evidence by explicitly preserving glaucoma-related
features

Since the previous method unnecessarily exposes parts of the eye iris that may be irrelevant to

the glaucoma recognition process, we develop in this experiment another approach to preserve the

image parts that contain glaucoma-related features. We use saliency maps obtained with inter-

pretability techniques to reconstruct the relevant explanatory features in the privatised images. In

this experiment, we use Deep Taylor to obtain these masks.

In this experiment, we used two types of masks: one with the deep taylor features as they

are, where the weight of each pixel’s reconstruction is correlated with the respective relevance

for the glaucoma recognition task, and a binary mask where all the glaucoma-related features are

reconstructed with the same weight. Furthermore, we performed an AND operation between the

generated masks and the iris segmentation masks, to ensure that only glaucoma-relevant features

located in the iris are preserved, and to prevent the network from reconstructing the same eye

structure as in the original image. Some examples of these masks are illustrated in Figure 6.17.

We trained the network using these masks with the Adam optimiser and a learning rate of 2e−5.

As parameters, we used λ1 = 0.4, λ2 = 1, λ3 = 0.6, λ4 = 0.002 and λ5 = 0.001. The network was

trained for 1,500 epochs, where it provided the best results using both masks. From the results

available on Table 6.7, we can conclude that the privatised sets using both types of masks have

a similar privatisation capacity. The privatised set using binary masks obtained slightly higher

accuracy in glaucoma recognition. Comparing the results of this experiment with the ones from
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(a) (b) (c) (d)

Figure 6.17: Examples of masks obtained through an AND operation between Deep Taylor maps
and iris segmentation masks. (a-b) are non-binary masks and (c-d) are binary masks.

the previous chapter, the identity recognition network has more difficulty in recognising identity

in the experiments using the glaucoma masks, as can be seen by the lower values in maximum

identity score and KL divergence. Furthermore, the glaucoma recognition accuracy has improved

with this newly developed network. Some examples of visual results are available in Figure 6.18.

Table 6.7: Results of experiment to explicitly preserve glaucoma in privacy-preserving model
using Deep Taylor masks.

Dataset Identity
Recognition

Max Identity
Score

Average KL
Divergence

Glaucoma
Recognition

Original testing set (baseline) 89.71% 88.22% 4.24 92.94%
Generated set without con-
sidering identity (baseline)

2.35% 52.41% 3.26 92.65%

Privatised set from previous
experiment (wgan-gp)

0.88% 34.49% 2.60 89.41%

Privatised set with non-
binary masks

1.47% 28.71% 2.37 90.59%

Privatised set with binary
masks

1.76% 29.62% 2.31 92.35%

From the visual results, we can see that the privatised set using the non-binary masks (second

and fifth columns) has a higher difficulty in reconstructing the glaucoma-relevant features in the

privatised images. Using the binary masks (third and sixth columns), the glaucoma-related features

are being reconstructed closer to the original images, promoting a higher explanatory value in the

privatised images. In practice, training the network with non-binary masks means that the network

has to learn not only to identify the image parts that must be preserved but also to recognise their

importance to the glaucoma recognition task, which is significantly harder than only locating and

reconstructing relevant features. Regarding image quality, both methods resulted in images with

lower quality than the results achieved in Chapter 6.2.1 with the privatised set using an identity

distribution sampled from a uniform one. The third eye is the only one whose reconstructed

versions have acceptable quality.

In this experiment, we can conclude that using binary Deep Taylor masks to reconstruct rel-

evant image parts allows the network to preserve glaucoma-related features as they are in the
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Figure 6.18: Results of using Deep Taylor masks to preserve glaucoma features in the privatised
images. The first three columns correspond to the original images and their privatised versions
using the non-binary masks and the binary masks, respectively. The three last columns are the
saliency maps obtained with Deep Taylor of the original and privatised images, respectively.

original images. The non-binary masks did not produce good results in terms of preservation of

explanatory evidence, as it becomes complicated for the network to learn to assign a degree of rel-

evance to the relevant features. The images have lower quality at the exchange of higher explana-

tory evidence. The lack of quality may be aggravated by the growing difficulty of the generative

task, since the generative network must learn to identify and reconstruct relevant glaucoma-related

features in the images.

6.3.3 Using glaucoma masks directly in the generative model to preserve glaucoma-
related features

In order to facilitate the generative model’s task and improve image quality and glaucoma feature

preservation, we performed experiments where we altered the network’s architecture to receive

not only the input image but also the Deep Taylor mask. We tried three different approaches to

use the masks as input in the generative model. The approaches differ in where the concatenation

between the input images and the masks happens in the generative network. This concatenation

can happen before the images and masks are given to the encoder, inside the encoder, after feature

extraction and before calculating the parameters of a Gaussian distribution, or in the latent space

created by the encoder. These methods are illustrated in Figure 6.19.

Like in the previous experiments, we trained the three models using the Adam optimiser with

a learning rate of 2e−5 and with the parameters: λ1 = 0.4, λ2 = 1, λ3 = 0.6, λ4 = 0.002 and

λ5 = 0.001. We perform this experiment using the binary masks, which achieved higher levels of

explanatory value in the previous experiment. In order to visually compare the results from the
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(a) (b) (c)

Figure 6.19: Architectures to input masks into the generator. (a) corresponds to the architecture
where concatenation happens before the encoder. (b) corresponds to the architecture where con-
catenation happens inside the encoder. (c) is the architecture where the concatenation happens in
the latent space created by the encoder.

three models, we included an example of a privatised image obtained with each of the mentioned

architectures in Figure 6.20. From these images, we can clearly distinguish the first image for its

lack of quality. As such, concatenating the input image with its Deep Taylor mask is not a good

solution to preserve explanatory features along with image intelligibility. The other two methods

resulted in similar-quality images.

(a) (b) (c)

Figure 6.20: Examples of results obtained with each architecture that contains input masks in the
generator. (a-c) are examples from the architectures displayed in Figure 6.19 (a-c), respectively.

After analysing the results obtained with each architecture, available and discussed below on

Table 6.8, we arrived at the conclusions that the architecture (c) produces better results in terms of

privatisation and that the architecture (b) possesses slighty better results in terms of explanatory

evidence preservation. We chose to continue the experiments with the architecture (b), where the

concatenation happens inside the encoder. For a more detailed overview of the generator in this

network, we illustrate its detailed architecture in Figure 6.21.

The results of this experiment are available on Table 6.8. Through the analysis of the results,

we concluded that inputting the masks resulted in lower accuracy in glaucoma recognition than in

the previous experiments. By analysing the glaucoma-related results, we verified that the masks

help preserve not the image’s real glaucoma classification, but the glaucoma score that is assigned

to the original images by the glaucoma recognition network, resulting in higher accuracy when this

score is used as the ground truth. As such, in addition to the previously used metrics, we added

one metric regarding glaucoma recognition using the scores assigned to the original images by the
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Figure 6.21: Architecture of the generator which receives a Deep Taylor mask as input and con-
catenates the mask with the original image inside the encoder.

glaucoma recognition model as ground truth, in the column entitled "Assigned Glaucoma Recog-

nition". Furthermore, as the results regarding explanatory evidence were slightly worse than in the

previous experiment, we also tried assigning higher weight to the parameter λ3, responsible for

ensuring the preservation of general glaucoma features by minimising the crossentropy between

the privatised image’s glaucoma score and the real ground truth. Finally, we changed the param-

eter λ5, responsible for the reconstruction of relevant glaucoma features in the privatised images,

to see if we can improve the image quality and privacy while preserving explanatory evidence.

Table 6.8: Results of experiment inputting Deep Taylor masks into the generative model.

Dataset Identity
Recog-
nition

Max
Identity

Score

Avg KL
Diver-
gence

Real
Glaucoma

Recognition

Assigned
Glaucoma

Recognition
Original testing set 89.71% 88.22% 4.24 92.94% 100.00%
Generated set without con-
sidering identity (baseline)

2.35% 52.41% 3.26 92.65% -

Privatised set from previous
experiment

1.76% 29.62% 2.31 92.35% 91.76%

Privatised set architecture (b) 2.35% 31.85% 2.49 86.47% 89.41%
Privatised set architecture (c) 2.06% 29.90% 2.33 83.24% 87.35%
Privatised set architecture (b)
with λ3 = 2

1.18% 32.63% 2.52 88.82% 91.18%

Privatised set architecture (b)
with λ5 = 0.0005

0.88% 30.94% 2.45 86.47% 88.82%

The privatised set obtained with architecture (c) resulted in slightly better results in terms of

privacy when compared to the one obtained with architecture (b), with lower identity recognition
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accuracy, maximum identity score and KL divergence. However, the results in terms of glaucoma

recognition are low, in comparison with the privatised set obtained with architecture (b). The

privatised set with λ3 = 2 was capable of increasing the accuracy in the glaucoma recognition

task using the real labels as ground truth and using the glaucoma score assigned by the glaucoma

recognition network as ground truth. However, this method worsens the quality of the images,

as can be seen in Figure 6.22 (b) where images from the sets obtained with architecture (c) are

compared. The privatised set with λ5 = 0.0005 improved the results in terms of privacy, with lower

identity recognition accuracy. However, the results in terms of glaucoma recognition are slightly

worse than in the other sets that use the same architecture. Regarding image quality, the results of

this set are similar to the results with λ5 = 0.001, as can be seen in Figure 6.22 (c).

(a) (b) (c)

Figure 6.22: Examples of results obtained with architecture (b) where input images and masks are
concatenated inside the generator’s encoder. (a) contains λ3 = 0.6 and λ5 = 0.001. (b) contains
λ3 = 2 and λ5 = 0.001. (c) contains λ3 = 0.6 and λ5 = 0.0005.

To show this network’s capacity to preserve explanatory evidence as is, we show some results

with the respective Deep Taylor saliency maps in Figure 6.23. These results correspond to the

privatised set with parameters λ3 = 0.6 and λ5 = 0.001, which had the highest-quality results in

terms of image quality. In terms of image quality, this network produced better results than the

previous network where the masks were only used in the loss function. Furthermore, this network

is also capable of preserving relevant features for glaucoma recognition as in the original images.

With the experiments in this section, we conclude that we can preserve glaucoma-related fea-

tures by using interpretability saliency maps to reconstruct relevant image regions in the privatised

images. To achieve this purpose, we can use these masks only on the loss function, in a glaucoma

reconstruction term, or by using the masks directly in the generative network. Using the masks

solely on the loss function makes the network learn to recognise relevant features that must be

preserved in the images. However, this process complicates the generative task, resulting in lower

quality images. By inputting the masks into the generative network, we can generate higher-quality

images that preserve explanatory evidence.

This method uses post hoc interpretability strategies for the preservation of relevant explana-

tory features. As such, it is highly appropriate to use when saliency maps are used for the retrieval

of explanations, like in some of the interpretability methods mentioned in Chapter 3, such as

IG-CBIR [103] and Twin Systems framework [50]. When applying this method to privatising

explanations that result from intrinsic case-based interpretability methods, the use of post hoc
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Figure 6.23: Results of using Deep Taylor masks as input in the generative network to preserve
glaucoma features in the privatised images. The first and second columns correspond to the origi-
nal images and their privatised versions using the binary masks, respectively. The two last columns
are the saliency maps obtained with Deep Taylor of the original and privatised images, respectively.

strategies might clash with the intrinsic methods’ goal of producing explanations that accurately

explain the models’ reasoning, since post hoc strategies are often criticised for not reflecting the

models’ real reasoning. As such, when intrinsic methods have a clearly defined similarity measure

that can be used to semantically compare two images, it should be possible to use this measure to

approximate features in the privatisation model, instead of using a method based on interpretability

saliency maps.

6.3.4 Approximating glaucoma score in the original image instead of ground truth

In the previous experiments, we approximated the glaucoma score in the privatised images to the

ground truth. However, in cases where a prediction is ambiguous, with a score close to 50%, using

the glaucoma recognition network to approximate the ground truth might accentuate glaucoma-

related features in the images, distorting them. Furthermore, in cases where the network makes

a mistake in its prediction, using the ground truth might change the glaucoma-related features

in the image to look more like what the network would classify as the opposite class. As such,

instead of approximating the glaucoma score in the privatised images to the ground truth, we

should approximate it to the glaucoma score obtained in the original image. Additionally, in the
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previous experiment, we arrived at the conclusion that inputting masks with glaucoma-relevant

features into the generative network made the privatised images have glaucoma scores that are

closer to the ones assigned to the original images by the glaucoma recognition network, rather

than the ground truth with the images’ actual glaucoma score. As the explanations should explain

a model’s decisions, even if the model fails to recognise the condition in the image, the privatised

model should be capable of preserving the glaucoma features that led to the score assigned by

the recognition network, without accentuating them by approximating the image’s real glaucoma

score.

In this experiment, we change the generator’s loss function, in order to approximate the glau-

coma score assigned to the original images by the glaucoma recognition network. The generator’s

new loss function is represented in Equation 6.12.

LG = E(I,M)∼pd(I,M)[−λ1D1(G(I))−λ2D2(G(I)) log(U)+λ3D3(I) log(D3(G(I)))+

λ4KL(q( f (I) | I)||p( f (I)))+λ5(I×M−G(I)×M)2]
(6.12)

In this experiment, we trained the model twice, changing the parameter relative to the glau-

coma score preservation, λ3. The model was trained with the Adam optimiser with learning rate

of 2e−5. The parameters used were λ1 = 0.4, λ2 = 1, λ4 = 0.002 and λ5 = 0.001. Table 6.9 con-

tains the results. The glaucoma score in the results refers to the glaucoma recognition network’s

accuracy in recognising the glaucoma score assigned to the original image. Since approximat-

ing the image’s glaucoma ground truth is no longer the network’s goal, we no longer include the

respective metric in the results.

Table 6.9: Results of experiment to approximate glaucoma score assigned by glaucoma recogni-
tion network to the original image.

Dataset Identity
Recognition

Max Identity
Score

Average KL
Divergence

Glaucoma
Recognition

Original testing set (baseline) 89.71% 88.22% 4.24 100.00%
Generated set without con-
sidering identity (baseline)

2.35% 52.41% 3.26 92.65%

Privatised set from previous
experiment

2.35% 31.85% 2.49 89.41%

Privatised set with λ3 = 0.6 2.06% 30.78% 2.39 85.88%
Privatised set with λ3 = 2 0.88% 33.15% 2.53 91.47%

From the results, we can see that the privatised set with λ3 = 2 achieved better results in terms

of privacy, with lower identity recognition accuracy, and in terms of preservation of explanatory

value, with higher glaucoma recognition accuracy, than the privatised set with λ3 = 0.6. Com-

paring these results with the previous experiment, we can see that the results are slightly better

in terms of identity recognition accuracy and similar regarding the other privacy-related metrics.

Regarding glaucoma recognition, the privatised set with λ3 = 2 achieved better results than the
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previous experiment. Figure 6.24 presents a visual representation of this experiment’s results. We

can see improvements in the glaucoma features preserved in these images, as there is a clearer

boundary between the highlighted parts and the remaining parts of the images, in comparison to

the previous experiments. In the privatised set where λ3 = 2, the relevant parts are highlighted

more strongly, with a stronger resemblance to the original image’s features. In terms of image

quality, the set with λ3 = 0.6 seems to present slightly better results with more clearly defined eye

structures, highlighting the trade-off between realism and explanatory evidence.

Figure 6.24: Results of approximating glaucoma score in the original image instead of ground
truth. The first three columns correspond to the original images and their privatised versions with
λ3 = 0.6 and λ3 = 2, respectively. The last columns are the saliency maps obtained with Deep
Taylor of the original and privatised images, respectively.

With this experiment, we achieved a model capable of privatising eye images while preserving

glaucoma-relevant features as they are in the original images. Using the glaucoma score identified

by the glaucoma recognition network allows to preserve the explanatory features closer to what

they are in the original images, since it does not accentuate features to force them into a class that

may not coincide with the class recognised by the recognition network.

6.4 Main Conclusions

In this chapter, we defined a framework for the privatisation of case-based explanations. The

framework is composed of three modules:

• Generative Module: The generative module is responsible for the generation of intelligible

images. This module is composed of a deep generative model capable of transforming an

image into its intelligible privatised version. In our privacy-preserving model, we used as

the generative model a WGAN-GP network whose generator is a convolutional VAE.
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• Privacy Module: The privacy module is responsible for removing the identity from an

image. This module is secured by an identity recognition network which guides the privati-

sation process and ensures that no identity is leaked in the privatised image. In our model,

we used a multi-class recognition network that preserves privacy at the level of the whole

database by promoting an uniform identity distribution as the classification score assigned

to the privatised images.

• Explanatory Module: The explanatory module is responsible for ensuring the privatised

image’s explanatory value, through the explicit preservation of relevant explanatory fea-

tures. To identify relevant features, one can use post hoc interpretability methods capable

of generating saliency maps to reconstruct the relevant features in the privatised image. In

our model, we used Deep Taylor to obtain relevant features that should be preserved. In

case the explanation retrieval model used to obtain the explanation before privatisation has

a well-defined similarity measure to compare explanation candidates, it should be possible

to directly use this measure to approximate features of interest.

To obtain a network that satisfies the requirements of privatised case-based explanations re-

garding realism, privacy and explanatory evidence, we performed several incremental changes

to the PPRL-VGAN model [20]. Figure 6.25 introduces the architecture of the novel privacy-

preserving model, highlighting the alterations that occurred to the PPRL-VGAN model in this

process.

Figure 6.25: Illustration of the model’s architecture, highlighting the differences between the ini-
tial PPRL-VGAN model and the accomplished privatisation model.

The loss functions used for the discriminator and generator are reflected in Equation 6.13 and

Equation 6.14, respectively.

LD = EI∼pd(I)[D(G(I))]−EI∼pd(I)[D(I)]+Ex̂∼px̂ [λ (||∇x̂D(x̂)||2−1)2] (6.13)
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LG = E(I,M)∼pd(I,M)[−λ1D1(G(I))−λ2D2(G(I)) log(U)+λ3D3(I) log(D3(G(I)))+

λ4KL(q( f (I) | I)||p( f (I)))+λ5(I×M−G(I)×M)2]
(6.14)

The main findings we came accross during the development of our privacy-preserving model

are:

• We are able to privatise images by approximating a uniform identity distribution when we

have a multi-class identity recognition network. Nonetheless, it is difficult to obtain a realis-

tic image where the identity distribution assigned by an identity recognition network is very

close to a uniform one. There is an evident privacy-intelligibility trade-off in this situation.

• Pre-training the recognition networks that guide the privatisation and the explanatory ev-

idence preservation processes facilitates the generative network’s training, improving the

respective results.

• Using a GAN as the generative network for privatisation may lead to a mode collapse prob-

lem, where various privatised images generated for different identities look identical.

• WGAN-GP is an efficient generative model to solve mode collapse and improve image

quality while also guaranteeing privacy.

• A ResNet VAE as the generator in the generative network is much harder to train than

a simple convolutional VAE, as it is a significantly deeper network, leading to unstable

training and lower-quality images. Using a ResNet VAE is not a good solution to improve

image quality.

• A UNET architecture as the generator in the generative framework encourages the preser-

vation of all features from the original image, leading the model to perform an adversarial

attack on the identity recognition network which does not actually privatise the images.

• We can preserve explanatory evidence by reconstructing the general parts in the privatised

images that contain a disease, such as the eye iris. However, this process unnecessarily

preserves parts of the images that are unrelated to the disease recognition task and that

needlessly contribute to an identity leak.

• We can preserve explanatory evidence by reconstructing disease-relevant features through

saliency maps obtained with interpretability techniques. In this case, the masks should be

binary, as these result in a higher preservation of explanatory features in the images.

• Providing glaucoma masks directly to the generative network promotes even further the

preservation of explanatory features as they are in the original images and facilitates the

generative network’s task, resulting in higher-quality images.
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• Using the original image’s real disease label to preserve the privatised image’s disease-

related class may accentuate or even alter disease-related features in the privatised images.

Instead, we should use as ground truth the disease scores assigned to the original images by

a disease recognition network.

The trade-off between privacy, realism and explanatory evidence was present throughout the

whole experimental process. We often came accross situations where to improve one of this mod-

ules, the others had to be sacrificed. In the final results, the dimension that was sacrificed the most

seems to be image quality. When we remove one of the other dimensions, the image quality gets

better. For instance, when we remove the privacy dimension, the images used can be the original

images, which possess the highest quality. When we remove the explanatory evidence dimension,

we have the results obtained in Chapter 6.2.1, which possess higher quality than the final results

in Chapter 6.3.4, as can be seen in Figure 6.26.

Figure 6.26: Comparison between images when we consider the preservation of explanatory evi-
dence (first row) and when we do not (second row).

In comparison with the original PPRL-VGAN model, our model preserves the privacy of all

subjects in the dataset, through the privacy loss term which approximates the privatised images’

distribution to a noisy uniform distribution. Furthermore, our model has a higher capacity to

preserve the original image’s explanatory evidence through the reconstruction of relevant features,

using interpretability saliency maps. Our model only lacks in terms of realism, as the PPRL-

VGAN model generated higher-quality images.

By applying changes in an incremental manner, we obtained several networks at each point

of the development process, where each one can be more appropriate than the others for certain

privatisation problems, depending on the context. For example, if preservation of explanatory

evidence as in the original image is not necessary, we could simply use the network obtained

in Chapter 6.2.1, which has achieved the best results in terms of balancing image quality and

privatisation.

Due to time constraints, hyperparameter selection was done manually, restricting the optimi-

sation of hyperparameters and limiting the quality of the model and its results.
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To conclude, we developed a privacy-preserving model capable of preserving privacy and

explanatory evidence. This method can be used to privatise case-based explanations, enabling the

use of these explanations in real-world contexts that deal with sensitive data, such as in the medical

scene, given that the degree of realism in the images is acceptable to medical experts. This model

is more adequate to use when the data contains many images per identity, as it uses a multi-class

identity recognition network which would be difficult to train when there is a lack of images

per subject. For cases when the data lacks images per patient, we should use a siamese identity

recognition network instead of a multi-class one. The application of this privacy-preserving model

to the use of a siamese identity recognition network is explored in the next chapter.
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Chapter 7

Privacy-Preserving Model with Siamese
Identity Recognition

In the previous chapter, we achieved a framework for the privatisation of case-based visual expla-

nations that uses a multi-class identity recognition network. In a medical scenario, image acquisi-

tion might be a complicated process, especially if the images intend to show internal factors in the

human body. As such, medical datasets often contain very few images per identity. In such cases,

training a multi-class recognition network becomes unfeasible. To combat this issue, instead of

a multi-class recognition network, we can use a siamese recognition network. This chapter de-

scribes the experimental work we developed to adapt the model achieved in the previous chapter

to contexts with lack of data per identity, using a siamese identity recognition network. We start

by introducing the developed siamese network and then we perform experiments by using it in the

privacy-preserving model.

Similarly to the previous chapter, the experiments in this chapter used the Warsaw dataset

and were performed in Keras [24], with Tensorflow backend [2]. As evaluation networks for the

privacy-preserving model we use the previously introduced identity and glaucoma recognition

networks, together with the siamese identity recognition model which will be introduced in the

following section. To train the privacy-preserving model, we use the Adam optimiser with a

learning rate of 2e−5.

7.1 Siamese Recognition Network

As explained in Chapter 4.3.2, a siamese network compares two images to check whether these

have the same identity. This network computes a score that semantically compares two images,

which can be used to reduce the similarity between two images in regards to identity. In our model,

the comparison between images uses Euclidean distance. Our siamese model’s architecture is

shown in Figure 7.1. The network calculates the Euclidean distance between the embeddings of
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the image pair, extracted using identical CNN networks. The Euclidean distance is then used in

the loss function to approximate embeddings from the same identity and to increase the distance

between embeddings from different identities.

Figure 7.1: Architecture of the developed Siamese Network.

We used the CNN architecture shown in Figure 7.2. The network is composed of four blocks

of strided convolutions which downsample the image, followed by global average pooling and a

fully connected layer to obtain image embeddings.

Figure 7.2: Architecture of the CNN model for the Siamese Network.

We trained the network with the contrastive loss, using a margin m of 1, as can be seen in

Equation 7.1, where D represents the euclidean distance between the embeddings of two images.

Y corresponds to the label assigned to the pairs, which is 1 when pairs share the same identity and

0 otherwise. This loss has two terms, one that is applied to image pairs from the same identity,

where the distance between the respective images’ embeddings is reduced. The second term only

applies to image pairs from different identities and ensures that the distance between the images’

embeddings increases. The margin m ensures that the distance between two images from different
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identities does not get much bigger than the margin, since independently of how big this distance

is, if it is larger than the margin then the loss is zero.

L =
1
2
×Y ×D2 +

1
2
× (1−Y )× [max(0,m−D)]2 (7.1)

As there is a much higher number of image pairs from different identities, when compared

to images sharing an identity, we balanced the paired data so that there is the same number of

real pairs (from the same identity) and fake pairs (from different identities). Since there is a low

number of images for each patient, we paired each image with all other images sharing the same

identity. In a second experiment, we added Gaussian noise to the images, to make the network

more robust. One example of a noisy image, used to train the network, can be seen in Figure 7.3.

Figure 7.3: Image with noise to train robust siamese network.

In the experiments, we used the Adam optimiser with a learning rate of 1e−3, which was the

optimiser with which we achieved the best results. The network was trained for 12 epochs with

the data without noise, and for 22 epochs with the data with noise.

Our goal with this network is to ensure that the distance between embeddings of images from

the same identity are close while embeddings of images from different identities are distant. This

network will then be used to maximise the distance between the original image and the privatised

image, to achieve privatisation. As such, to evaluate the results, we evaluate the average distance

between images from the same identity and from different identities. Furthermore, we can con-

sider the overall average distance between two images as the value used to classify two images as

belonging to the same or to different identities. As such, distance values that are lower than the

overall average distance can be considered real pairs (from the same identity), while distance val-

ues that are higher than the overall average can be considered fake pairs (from different identities).

Using this concept, we can calculate the accuracy of the network. The results of this experiment

are available on Table 7.1.

From these results, we arrived at the conclusion that the network trained with noisy images

achieved better results, with a higher accuracy and distance between the average distances of real

and fake pairs. Both networks seem to be worse at identifying pairs with images from different

subjects than identifying pairs from the same identity.
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Table 7.1: Results from experiment with siamese identity recognition network.

Dataset Average
Distance

Real Pairs Fake Pairs Distance
between
Averages

Accu-
racyAverage

Distance
% under
Average

Average
Distance

% over
Average

No noise 0.616 0.349 93.55% 0.884 81.16% 0.535 87.36%
With noise 0.777 0.389 93.97% 1.165 83.30% 0.776 88.64%

7.2 Privacy-preserving model with Siamese Recognition Network

In this section, we aim to develop a privacy-preserving model suitable for scenarios with a low

number of images per subject. To achieve this, we use the siamese recognition network developed

in the previous section to guide the privatisation process in the privacy-preserving model achieved

in Chapter 6. We limited the amount of images we show per experiment. More visual results can

be seen in Appendix A.2.

7.2.1 Replacing multi-class identity recognition model by siamese network

The architecture of the novel model which uses a siamese identity recognition network to privatise

images is shown in Figure 7.4.

Figure 7.4: Architecture of the privacy-preserving model that uses a siamese identity recognition
network.

The discriminator and generator’s loss functions are represented in Equation 7.2 and Equa-

tion 7.3, respectively. In the generator’s loss function, ED(x,y) represents the Euclidean distance

between x and y.

LD = EI∼pd(I)[D(G(I))]−EI∼pd(I)[D(I)]+Ex̂∼px̂ [λ (||∇x̂D(x̂)||2−1)2] (7.2)
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LG = E(I,M)∼pd(I,M)[−λ1D1(G(I))+λ2[max(0,m−ED(I,G(I)))]2+

λ3D3(I) log(D3(G(I)))+λ4KL(q( f (I) | I)||p( f (I)))+λ5(I×M−G(I)×M)2]
(7.3)

In the first experiment, we trained the model assigning different weight values to the identity

term in the generator’s loss function (λ2), in order to optimise this network’s privacy degree, since

the range of values obtained with the contrastive loss is different than the one obtained with the

cross entropy loss used in the previous chapter. As the remaining parameters, we used: λ1 = 0.4,

λ3 = 2, λ4 = 0.002, λ5 = 0.001.

To evaluate this model’s results, we kept the multi-class identity recognition as an evaluation

network to test whether it can recognise the original identity in this model’s privatised images.

To further evaluate the generative network’s privatisation capabilities, we include the average dis-

tance measured between the original images and their privatised versions, and the percentage of

pairs whose distance surpasses the average value 0.777 obtained in Section 7.1. This percentage

over average value can be interpreted as the siamese identity recognition network’s accuracy in

recognising that the images do not belong to the same subject. To evaluate the preservation of

glaucoma-related features, we use the model’s glaucoma recognition network, like in the previous

chapter. Table 7.2 contains the results obtained with this model, with the best results highlighted

in bold.

Table 7.2: Results of privacy-preserving model with siamese identity recognition.

Dataset Identity
Recognition

Average
Distance

% over
Average

Glaucoma
Recognition

Original testing set (baseline) 89.71% 1.165 83.80% 100.00%
Privatised set: λ2 = 1 4.12% 0.997 73.24% 87.94%
Privatised set: λ2 = 5 0.88% 1.165 89.41% 88.53%
Privatised set: λ2 = 10 1.18% 1.162 89.41% 90.00%

The set with the least privacy degree (λ2 = 1) is the one that shows the worst results in terms of

privacy, with relatively high identity recognition accuracy, and glaucoma recognition. The remain-

ing sets contain similar values in the privacy-related metrics, with both surpassing the baseline in

regards to the percentage of image pairs whose distance is larger than the average distance. The

privatised set which was assigned the highest privacy degree (λ2 = 10) provided the best results in

terms of glaucoma recognition accuracy. The three privatised sets seem to be similar in regards to

image quality and intelligibility, as can be seen in Figure 7.5, which shows an example of visual

results taken from each privatised set.

To evaluate the results in regards to preservation of explanatory evidence, we illustrate in

Figure 7.6 the result of applying Deep Taylor to the privatised images. We only included in these

results the two privatised sets with higher privacy degree, since the privatised set with λ2 = 1 does

not fulfill the privacy requirements we seek in a privacy-preserving model. The saliency maps
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(a) (b) (c) (d)

Figure 7.5: Examples of results obtained with generative model that contains a siamese recognition
network. (a) is the original image and (b-d) are the respective privatised versions with the differing
λ2 values of 1, 5 and 10, respectively.

obtained with the privatised set with λ2 = 5 seem to resemble the saliency maps of the original

image more closely than the ones where λ2 = 10.

Figure 7.6: Results of using siamese identity recognition network in the privacy-preserving model.
The first three columns correspond to the original images and their privatised versions with λ2 = 5
and λ2 = 10, respectively. The last columns are the saliency maps obtained with Deep Taylor of
the original and privatised images, respectively.

The most significant problem in this approach is that we do not guarantee that the privatised

images protect the privacy for all data subjects. In this model’s loss function, we only guarantee

that the privatised image looks sufficiently different from the original image so that they are not

recognised as belonging to the same subject. With this loss function, the generative model could

learn to generate images that are similar to other subjects in the training data. Figure 7.7 illustrates

an example of the identity leak that occurs in this model, where a privatised image looks like an

image from a subject from the dataset.

In this experiment, we obtained a privacy-preserving model that was capable of generating
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(a) (b) (c)

Figure 7.7: Example obtained with siamese generative model that shows an identity leak. (a) is
the original image, (b) is the privatised version of (a) and (c) is an image from the subject whose
identity was recognised by the multi-class identity recognition network.

privatised images that hide the original subject’s identity and that preserve explanatory evidence.

However, this method still has an identity leak issue, where the model sometimes generates images

that resemble a subject from the dataset.

7.2.2 Distancing privatised images from all subjects in the data

Since replacing the identity recognition model by a siamese network only guarantees the privacy

of the original subject, we altered the model in order to ensure a higher degree of privacy at the

whole dataset’s level. In the new model, we distance the privatised image from every subject in the

dataset through an additional term in the generator’s loss function, represented in Equation 7.4. In

this equation, ED(x,y) represents the euclidean distance between x and y, m represents the margin

used in the contrastive loss function, N is the number of subjects in the dataset and IN is a training

image from the subject N. The full generator’s loss function is represented in Equation 7.5. In

terms of the model’s architecture, the only change is that training images are also fed to the siamese

generative network, as illustrated in Figure 7.8. Since it would be impratical and time-consuming

to compare every training image with the privatised image, we randomly choose one image from

each subject at each epoch.

Lprivacy = E(I)∼pd(I)[λ2[max(0,m−ED(I,G(I)))]2+

λ6

N

∑
i=0

[max(0,m−ED(G(I), IN))]
2]

N
]

(7.4)

LG = E(I,M)∼pd(I,M)[−λ1D1(G(I))+λ2[max(0,m−ED(I,G(I)))]2+

λ3D3(I) log(D3(G(I)))+λ4KL(q( f (I) | I)||p( f (I)))+λ5(I×M−G(I)×M)2+

λ6

N

∑
i=0

[max(0,m−ED(G(I), IN))]
2]

N
]

(7.5)
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Figure 7.8: Architecture of the privacy-preserving model with a siamese identity recognition net-
work that ensures privacy for all subjects.

We trained this model using the Adam optimiser with a learning rate of 2e−5. As parameters,

we used: λ1 = 0.4, λ2 = 0.001, λ3 = 2, λ4 = 0.002 and λ5 = 0.001. We tested the network at

different levels of overall privacy, by training the network with different values in the parameter

λ6. This model was trained for 870 epochs when λ6 = 5 and for 900 epochs when λ6 = 10. The

results are expressed on Table 7.3. In these results, although the accuracy in the multi-class identity

recognition network has increased, the results using the siamese identity recognition network have

improved, with significantly higher distance between original images and their privatised versions

and higher percentage of pairs being recognised as fake (higher percentage over average). The

results have also improved in terms of glaucoma recognition accuracy using the new model.

Table 7.3: Results of experiment using siamese identity recognition network to achieve privacy in
the entire dataset.

Dataset Identity
Recognition

Average
Distance

% over
Average

Glaucoma
Recognition

Original testing set (baseline) 89.71% 1.165 83.80% 100.00%
Privatised set from previous
experiment

0.88% 1.165 89.41% 88.53%

Privatised set with overall
privacy: λ6 = 5

3.53% 1.255 90.59% 91.18%

Privatised set with overall
privacy: λ6 = 10

1.76% 1.299 92.65% 91.47%

The visual results obtained with this network are represented on Figure 7.9. In these results

we can see that the glaucoma-relevant features are being preserved, with the regions with stronger

highlights being around the same spots in the original and privatised images.

To evaluate privacy at the whole dataset’s level, we used the siamese network to obtain the

distance between embeddings from the privatised images and one image from each of the subjects
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Figure 7.9: Results of using siamese identity recognition network in the privacy-preserving model
to achieve overall privacy. The first three columns correspond to the original images and their
privatised versions with λ6 = 5 and λ6 = 10, respectively. The last columns are the saliency maps
obtained with Deep Taylor of the original and privatised images, respectively.

in the dataset. In the results, illustrated in Table 7.4, we included an additional metric other than

the ones previously used to evaluate privacy using the siamese identity recognition model: average

number of real pairs. This metric evaluates the average number of images from the dataset that the

siamese recognition network recognised as belonging to the same identity as the privatised image.

Table 7.4: Results regarding privacy at the whole dataset’s level in privacy-preserving model with
siamese identity recognition.

Dataset Average
Distance

% over
Average

Average Number
of Real Pairs

Privatised set from previous experiment 1.113 78.91% 22.99

Privatised set with overall privacy: λ6 = 5 1.320 89.81% 11.11

Privatised set with overall privacy: λ6 = 10 1.368 91.99% 8.74

In the privatised set from the previous experiment, each privatised image was recognised with

the same identity as 23 images. In this experiment, where we explicitly made the network generate

images that are distant from images belonging to each identity in the training set, the value for the

average number of real pairs significantly decreases. Furthermore, the values for average distance

between privatised images and images from the dataset, and for the accuracy in recognising that

the pairs did not belong to the same identity (% over Average) are significantly higher in this

experiment. If we provide a bigger overall privacy degree, by increasing the parameter λ6, the

results in terms of privacy improve even further. As such, this experiment succeeded in improving
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privacy at the whole dataset’s level.

In this experiment, we conclude that we can preserve privacy for the whole dataset by distanc-

ing the privatised images to each subject in the dataset. We obtained a privacy-preserving model

that uses a siamese recognition model to guide the privatisation process. This method, unlike the

one achieved in Chapter 6 using a multi-class identity recognition network, can be used in contexts

with low number of images per subject, which are very common in the medical scene.

7.3 Main Conclusions

In this chapter, we applied the framework defined in the previous chapter to the use of a siamese

identity recognition network to guide the privatisation process, enabling the application of the

developed privacy-preserving model to scenarios where there are few images per identity. This

experimental process started with the definition of the siamese recognition network.

The siamese network semantically compares two images and calculates a distance between

them in regards to identity. The bigger the distance, the smaller the likelihood of the images

sharing the same identity. During the development of the siamese network, we concluded that

augmenting the dataset by adding gaussian noise to the images improves the network’s results.

Regarding the privacy-preserving framework from the previous chapter, we made alterations

solely to the privacy module, responsible for the privatisation process. The explanatory module

and the generative module were kept as they were in the previous chapter. Previously, the privacy

module was composed of a multi-class identity recognition and a privacy loss term which approx-

imated the identity distribution in the privatised images to a uniform one, ensuring privacy at the

whole dataset’s level. In this chapter, we replaced the multi-class identity recognition network by

a siamese network. To ensure the privacy of the subject in the original image, we ensure in the

privacy term of the loss function that the privatised image must be distant from the original image

when it comes to privacy. We observed that solely comparing the privatised image with the origi-

nal one was not enough to guarantee privacy for all the subjects in the dataset. To ensure privacy

at the whole dataset’s level, we added an additional term to the loss function where we compare

the privatised image against images from all subjects in the training dataset, ensuring that these

are distant in regards to identity features.

In comparison to the privacy-preserving model with multi-class identity recognition, this new

model achieved higher-quality images, as can be seen in Figure 7.10, which shows examples of

images generated with each model. The model that uses a siamese identity recognition network is

capable of generating a more realistic eye structure surrounding the iris. When it comes to privacy,

it is difficult to compare both models, as they have been evaluated using different metrics that are

associated with the respective identity recognition models. Regarding preservation of explanatory

evidence, both methods succeeded in preserving glaucoma-relevant features. The advantage of the

model that uses a siamese recognition network is its applicability to a wider range of problems, as

it can be applied in scenarios where the number of images per subject is low.
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Figure 7.10: Example of images generated by the privacy-preserving models. The first row con-
tains images generated by the model that uses multi-class identity recognition. The second row
contains images generated by the model that uses a siamese identity recognition network.

To conclude, in this chapter we successfully developed a privacy-preserving model capable of

preserving privacy, realism and explanatory evidence. This model can be applied to the privati-

sation of case-based explanations in the medical scene, where there is usually a small number of

images per patient.
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Chapter 8

Counterfactual Generation

The difficulty in classifying an ambiguous diagnostic case derives from the difficulty in identifying

the decision boundary between the presence and absence of a disease. In such cases, factual

explanations help build trust in a decision as their comparison with the original case allows a

medical expert to understand the disease-related features that lead to the Deep Learning model’s

prediction. By introspecting these features, a medical expert can gain confidence and additional

insights regarding a decision. However, the factual explanation does not make it clear where the

decision boundary between the presence and absence of a disease is, as it only shows features that

are relevant for one particular class. To make this boundary more evident, it is relevant to provide

the changes to the medical image’s features that would lead to a different prediction. This goal is

easily achievable with counterfactual explanations, which highlight the alterations that an image

has to suffer to change the prediction made by a Deep Learning model.

In the previous chapters, we focused our work on the privatisation of visual explanations for

case-based interpretability. In this chapter, we will focus on applying the developed models to the

generation of counterfactual explanations. Our goal is to obtain a network capable of privatising

factual explanations and generating counterfactuals based on the privatised factuals. To do so, we

add a counterfactual generation module to the privacy-preserving models developed in the previous

chapters. The following sections present the experiments done to generate counterfactuals with

each of the privacy-preserving models previously developed.

Like in the previous chapters, the experiments in this chapter used the Warsaw dataset and

were performed in Keras [24], with Tensorflow backend [2].

8.1 Counterfactual Generation in Privacy-Preserving Model with Multi-
class Identity Recognition

We developed a network capable of simultaneously generating privatised factual and counterfac-

tual explanations, given an image that serves as a factual example. We used the network developed

117
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in Chapter 6, capable of privatising factual explanations, as a base and added a component for the

generation of counterfactuals. As can be seen in Figure 8.1, we added a decoder to the base

model’s generator, whose main purpose is to generate the counterfactuals. In this network, the

factuals decoder is trained as in Chapter 6.

Figure 8.1: Architecture of the model to generate privatised factual and counterfactual explana-
tions.

Our approach to the generation of counterfactuals consists of making the smallest number of

alterations to the factuals to change their predicted class. As such, the counterfactuals decoder

is trained to minimise the pixelwise distance between the factual and counterfactual explanations

while changing the original image’s glaucoma-related prediction. The pixelwise distance minimi-

sation is achieved using the squared L2 Normalisation loss between the factual and the counter-

factual images. The loss function used in the generator to update the counterfactuals decoder, C, is

represented in Equation 8.1. In this equation, F represents the factuals decoder, and D3 represents

the glaucoma recognition network.

LC = E(I)∼pd(I)[λ1(F(I)−C(I))2 +λ2D3(I) log(1−D3(C(I)))] (8.1)

Regarding the training approach, we first train the factuals decoder with the counterfactuals

decoder freezed, so that the squared L2 Normalisation used to approximate the counterfactual

explanations to the factuals does not impact the performance of the factuals decoder. After training

the factuals decoder up to a point that it does not improve after a predefined set of epochs, we freeze

both the encoder and the factuals decoder, and train the counterfactuals decoder. In this process,

we do transfer learning, where we reuse the weights of the factuals decoder on the counterfactuals

decoder in order to facilitate its generative task.

We trained the counterfactuals decoder for 333 epochs, where it achieved the best results. The

network was capable of inverting the glaucoma score assigned to the original images with 90.59%
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accuracy. The visual results are represented in Figure 8.2. Since the counterfactuals and the fac-

tuals are identical, we expose the differences between these explanations in a saliency map. To

calculate the differences between the two images, we used an implementation of Structural Simi-

larity Index Measure (SSIM) [116] provided by scikit-image [114]. SSIM is a metric that evaluates

the similarity between two images, taking into consideration structure, luminance and contrast. It

is represented in Equation 8.2. In this Equation, µ represents an image’s mean intensity, σ is the

standard deviation used to estimate contrast, and C1 and C2 are constants to avoid instability.

SSIM(x,y) =
(2µxµy +C1)+(2σxy +C2)

(µ2
x +µ2

y +C1)(σ2
x +σ2

y +C2)
(8.2)

Figure 8.2: Results from counterfactual generation in the generative model with multi-class iden-
tity recognition. The first row represents the factuals, the second row represents the counterfactuals
and the third row contains a saliency map that highlights the differences between the factuals and
counterfactuals.

In the visual results, the differences between factuals and counterfactuals show that the image

regions that are being altered are not located in the iris. Furthermore, there is a higher incidence

of altered zones outside the iris in images where the factuals contain glaucoma and the counter-

factuals do not, which is the case represented in the first column in Figure 8.2.

Since glaucoma-related features are expected to be located in the eye iris, the counterfactual

explanations generated in this experiment lack quality and may be confusing to an explanation

consumer. In order to obtain more plausible explanations, we used the Deep Taylor glaucoma
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masks to promote changes in the glaucoma-related features and to preserve the eye structure,

which should not contribute to the glaucoma recognition process. The resulting generator loss

function that is used to update the counterfactuals decoder is represented in Equation 8.3.

LC = E(I,M)∼pd(I,M)[λ1(F(I)× (1−M)−C(I)× (1−M))2+

λ2D3(I) log(1−D3(C(I)))]
(8.3)

Using the glaucoma masks in the loss function, the network was trained for 560 epochs. We

obtained 90.29% in glaucoma recognition accuracy when using the glaucoma recognition network

to detect the original images’ inverted glaucoma score in the counterfactuals. As can be seen in

Figure 8.3, the differences between the counterfactuals and factuals are located mostly in the iris.

However, there are still some parts outside the iris that are being changed.

Figure 8.3: Results from counterfactual generation in the generative model with multi-class iden-
tity recognition, using glaucoma masks to guide the alteration of glaucoma-related features. The
first row represents the factuals, the second row represents the counterfactuals and the third row
contains a saliency map that highlights the differences between the factuals and counterfactuals.

To force the network to make changes more located on the iris, we can increase the weight we

associate to the reconstruction of the eye structure in the loss function (λ1). However, we verified

that increasing this variable leads to a decrease in the model’s capacity to invert the glaucoma

classification in the counterfactuals. As can be seen in Figure 8.4, the higher the value in λ1, the

lower the accuracy of the glaucoma recognition network at identifying the original image’s inverse

glaucoma label in the counterfactuals. We can conclude from the analysis of this graph that solely
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altering the features inside the glaucoma masks might not be enough to change the class of the

factuals.

Figure 8.4: Graph that shows the results of changing the parameter λ1, which promotes the simi-
larity between the factual and the counterfactual explanations.

To conclude, in this experiment, we added a counterfactual generation module to the privacy-

preserving model with multi-class identity recognition. Using glaucoma masks to guide the preser-

vation of the eye structure allowed to obtain counterfactuals whose main differences from the

factuals are located mostly in the iris.

8.2 Counterfactual Generation in Privacy-Preserving Model with Siamese
Identity Recognition

In a second experiment, we applied the method for the generation of counterfactual explanations

to the privacy-preserving model that uses a siamese identity recognition network, developed in

Chapter 7. Similarly to the previous experiment, we add a decoder for the generation of counter-

factuals, which is trained with the loss function mentioned in Equation 8.3. The counterfactuals

decoder was capable of inverting the glaucoma classification assigned to the original image with

90.88% accuracy. Some examples of results can be seen in Figure 8.5. The differences between

the counterfactuals and factuals are located in the iris.

Compared with the results from the previous section, these results seem to have higher inci-

dence of changes inside the iris. Since there are no differences between the methods used in both

networks to generate counterfactuals, we can infer that the quality of the counterfactual expla-

nations may depend on the image quality, as the images from this model, which possess higher

quality, provide better counterfactuals.

To conclude, in this experiment, we added a counterfactual generation module to the privacy-

preserving module with siamese identity recognition. The counterfactual module was capable
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Figure 8.5: Results from counterfactual generation in the generative model with siamese identity
recognition. The first row represents the factuals, the second row represents the counterfactuals
and the third row contains a saliency map that highlights the differences between the factuals and
counterfactuals. The first two columns represent eyes where the factual image presents glaucoma
and the counterfactual does not. In the remaining columns, the counterfactuals have glaucoma and
the factuals do not.

of generating high-quality counterfactuals that invert the glaucoma classification of the original

image with high accuracy.

8.3 Main Conclusions

In this chapter, we added a module responsible for the generation of counterfactual explanations to

our privacy-preserving models. This module is composed of a decoder that is trained to perform

the least possible changes to the factual explanations that change their glaucoma-related class.

Since the goal of the counterfactual explanations is to understand the changes in an image that

would lead to a change in the glaucoma prediction, we provide saliency maps with the differences

between the factual and counterfactual explanations, so that these changes are clear and easy to

spot. We verified that we can obtain higher-quality counterfactuals by using Deep Taylor saliency

maps containing glaucoma-related features to guide the feature alteration process. Using these

saliency maps as masks, the changes to the images were mainly located in the eye iris.

In this experiment, we generated counterfactuals in the context of a binary classification prob-

lem. In this case, the counterfactual’s target class is evident, as it is the class that was not pre-

dicted by the classification network. In multi-class problems, there may be several potential target
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classes. As such, for multi-class classification tasks, we can either generate a counterfactual per

class or choose a target class. To solve this problem, we thought of three possible solutions:

• Multiple counterfactual decoders: To generate a counterfactual per class, we could have

multiple counterfactual decoders, one for each class. In this scenario and considering the

training strategy that we used in the experimental work, we could train the factuals decoder

as in the privacy-preserving models and then use the respective model’s weights in each

of the counterfactual decoders. On inference, the result from the counterfactual decoder

responsible for the target class of the original image should be either ignored or interpreted

as a factual explanation. This solution has various problems, as the resulting network could

be significantly deeper, depending on the number of classes in the classification task, and

take longer to train.

• Conditional counterfactual decoder: One other solution to generate a counterfactual per

class could be to use a conditional counterfactual decoder. This decoder would receive

as input the original image’s latent representation and the target disease-related class, and

generate an image similar to the factual explanation that the disease recognition network

would classify as the target class. On inference, this model could be used to generate a

counterfactual for every class or solely for one specific class, providing to the explanation

consumer the ability to control the image’s target class.

• Selective counterfactual decoder: We could also develop a network that automatically se-

lects the counterfactual’s target class as the class that would lead to the least differences

between the factual and counterfactual explanations. Nonetheless, this last network would

be limited in terms of controllability, as it would not allow the explanation consumer to

control the counterfactual’s target class. Compared with this decoder, the conditional coun-

terfactual decoder offers greater controllability. The advantage in this network would be

that the explanation consumer could obtain the class that would lead to the least changes in

the original image.

Finally, the generation of counterfactual explanations allows to make the boundary between

two classes clear in an image, allowing a medical expert to obtain more insights and gain more

confidence in a Deep Learning model’s predictions.
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Chapter 9

Conclusions

Deep Learning has achieved great results in computer vision tasks. However, these models’ us-

ability in real-world contexts is hindered by the respective lack of interpretability. Among various

interpretability techniques developed to garner trust in Deep Learning models’ decisions, case-

based interpretability stands out as it produces intuitive explanations by example. The problem

in case-based explanations is that these may violate the privacy of subjects when used in con-

texts where the data exposes someone’s identity, like in medical imaging. The main goal of this

dissertation was to extend the use of case-based explanations to contexts with sensitive data by

privatising case-based explanations, considering a medical scenario.

To achieve our goal, we reviewed the current literature in the topics of deep generative models,

interpretability and visual privacy. Through the analysis of case-based interpretability methods and

privacy-preserving methods, we arrived at three requirements that privacy-preserving case-based

explanations must fulfill: anonymity, realism and explanatory evidence. In terms of anonymity,

the images should not expose the identity in the original image nor any other identity present

in the database. In terms of realism, the images should be realistic enough to be accepted and

comprehended by the target explanation consumers, like medical experts in our case. Regarding

explanatory evidence, the explanatory features should be preserved exactly as they are in the orig-

inal images. Preserving the original image’s task-related class does not guarantee the preservation

of the original image’s exact semantic features.

Current privacy-preserving models are not sufficiently developed to be applied to the domain

of case-based explanations, as they do not ensure the preservation of explanatory evidence. Some

models try to preserve general features, independently from a task while others use classification

models to ensure that the generated image is classified as the original image. However, none

of the methods guarantee the preservation of explanatory evidence as it is in the original image,

which is a critical aspect of privacy-preserving explanations. Furthermore, some models present

weaknesses regarding image quality and privacy, which are the other two characteristics needed to

guarantee the usefulness of privacy-preserving explanations.
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To fill the gaps in the literature, we developed two privacy-preserving models, bearing in

mind the previously mentioned requirements. Our approach to the development of the privacy-

preserving models consisted of making incremental changes to an existing privacy-preserving

model: PPRL-VGAN [20]. We started by analysing the model’s limitations. Then, we tackled

these limitations from three perspectives: improving privacy, improving realism and improving

preservation of explanatory evidence. This incremental approach allowed us to obtain several

networks, at each step of the development process.

Since the PPRL-VGAN model uses a multi-class identity recognition network, we started

by developing a privacy-preserving model that uses the same multi-class network. However, this

privatisation model was not compatible with the characteristics of medical data, as the low number

of images per patient hinders the training of a multi-class recognition network. To apply our model

to a wider range of problems in the medical scene, we developed a second privacy-preserving

model using a siamese identity recognition network.

Table 9.1 compares the privacy-preserving methods with the ones we developed. In this table,

we consider that methods that directly use images from other patients in the privatisation process

do not guarantee privacy for all subjects, even if these guarantee K-Anonymity. With our models,

we were capable of preserving the explanatory evidence while also guaranteeing privacy. By

preserving the exact semantic features of the original images, we guarantee the explanatory value

of the resulting privatised explanations. The most significant limitation in our models is the lack of

image quality, especially in the model that uses a multi-class recognition network, whose images

contain a high degree of noise.

Table 9.1: Comparison between privacy-preserving methods.

Privacy-preserving
model

Preserves
original
image’s

class

Preserves
original

image’s exact
semantic
features

Guarantees
privacy for

all data
subjects

Generates
high-

quality
images

Applicable
to data

with few
images per

subject
CLEANIR [23] × ×
R2VAE [33] ×
PP-GAN [119] × × ×
SGAP [84] × ×
PPRL-VGAN [20] × ×
DeepObfuscator [62] × ×
Ours (multiclass) × × ×
Ours (siamese) × × × × ×

The most significant challenge we came across during the experimental work was to manage

the trade-off between realism, privacy and explanatory evidence. We verified that enhancing one

of these characteristics in the images usually meant that the other ones would be sacrificed. For

instance, improving privacy would usually damage the image’s intelligibility.
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In addition to the privatisation of case-based explanations, we enhanced our privacy-preserving

models with a counterfactual generation module, which provides counterfactual explanations sim-

ilar to the privatised factual explanations. These counterfactuals help explain a model’s decisions

by highlighting the changes that should occur in an image so that its prediction changes. With

this module, we were capable of not only privatising explanations, but also providing additional

explanations that help the explanation consumer interpret a model’s decisions.

As future work, the privacy-preserving models should be validated on more datasets, including

medical data that does not serve as biometric data, to validate the results in data where identity

recognition is more complex. Furthermore, the metrics used to evaluate the privacy-preserving

models should be improved. Specifically, the models’ evaluation should include metrics to ob-

jectively assess data quality and preservation of task-related features. In this work, these two

dimensions have only been measured subjectively by analysing the visual results. Regarding the

generation of counterfactual explanations, this module should be extended to multi-class classifi-

cation tasks by developing multiple counterfactual decoders to obtain a counterfactual explanation

for each class, a conditional counterfactual decoder, or a counterfactual decoder capable of select-

ing a target counterfactual class, as described in Chapter 8.3. Moreover, to optimise the quality

of the privatised case-based explanations, privacy should be considered in the image retrieval

process. In this work, privatisation is applied to case-based explanations after these have been re-

trieved. However, since the explanatory value of an image may differ from the explanatory value

of its privatised version, the resulting privatised image may not be the best possible explanation

for a case under analysis. By considering privacy in the image retrieval, we can optimise the

case selected as an explanation. Finally, regarding the field of application of our work, although

our main motivation for the development of a privacy-preserving model came from the medical

field, there are other domains where privacy-preserving case-based explanations are relevant, such

as presentation attack detection and forensics (e.g. sexual assault identification). As such, future

work can also focus on adapting this work to other domains.

By merging three trending research fields in deep learning, this dissertation offers novel con-

tributions to current research in the fields of deep generative models, interpretability, and privacy.

We wrote a paper [76] which was published at the Interpretable Machine Learning in Healthcare

workshop of ICML. In this paper, we highlight the need to privatise case-based explanations in the

medical scene and compare deep learning and traditional privacy-preserving models (Chapter 5.3).

Furthermore, we submitted a paper [75] presenting the novel privacy-preserving models developed

in this dissertation to the Winter Conference on Applications of Computer Vision (WACV 2022).

Finally, we are preparing a survey on case-based interpretability and visual privacy for a special

issue on IEEE’s Signal Processing Magazine [77], which covers the topics discussed in Chapters

3 and 4. These papers represent some of our contributions to the research community.

To conclude, this dissertation contributes towards improving the trust in deep learning al-

gorithms for disease detection by providing privacy-preserving explanations by examples. Fur-

thermore, the developed models enable the use of case-based explanations in the medical scene,
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providing insights to support medical experts’ decisions and enhance transparency in the decision-

making process.



Appendix A

Visual Results from Privacy-preserving
Models

In this appendix, we include more visual results obtained from the experimental work, to facilitate

the evaluation of image quality.

A.1 Results from privacy-preserving model with multiclass identity
recognition

The results in Figure A.1 correspond to the experiments in Chapter 6.1, which improves privacy

preservation in the privacy-preserving model.

The results in Figure A.2 correspond to the Chapter 6.2.1, where we applied a WGAN-GP

network to improve realism in the images and to solve the mode collapse problem. In Figure A.3,

we expose results from Chapter 6.2.2, where we change the architecture of the generator.

Regarding the chapters about preservation of explanatory evidence, Figure A.4 contains the

results from the experiments in Chapters 6.3.1 and 6.3.2, where we used iris segmentation masks

and Deep Taylor masks in the generative model’s loss function, to reconstruct relevant glaucoma-

related features in the privatised images. Figure A.5 contains results from the experiments in

Chapter 6.3.3, where Deep Taylor masks were given as input to the generative model to improve

image quality and preservation of glaucoma-related features. Figure A.6 contains results from the

experiments in Chapter 6.3.4 where we approximate the original image’s glaucoma score in the

privatised images.

A.2 Results from privacy-preserving model with siamese identity recog-
nition

The results in Figure A.7 correspond to the experiments in Chapter 7.2, where we develop a

privacy-preserving model that uses a siamese identity recognition network to privatise the images.
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Figure A.1: Visual results obtained from the experiments that try to improve privacy in the privacy-
preserving model. Each row exposes results from the privatised sets obtained in the experiment:
(a) original image, (b) privatised set where we try to maximise the cross entropy between the iden-
tity distributions from the original and privatised images, (c) privatised set where we approximate
a uniform identity distribution using cross entropy loss, (d) privatised set where we try to approx-
imate a uniform identity distribution using KL loss, (e) privatised set with pre-trained recognition
models obtained at 971 epochs, (f) privatised set with pre-trained recognition models obtained at
974 epochs, and (g) synthetic set that does not consider privacy (used as baseline).



A.2 Results from privacy-preserving model with siamese identity recognition 131

Figure A.2: Visual results obtained from the experiment using WGAN-GP. Each row exposes
results from the privatised sets obtained in the experiment: (a) original image, (b) privatised set,
(c) privatised set with noise, (d) privatised set with higher privacy degree, (e) privatised set with
random uniform identity distribution, (f) privatised set with pre-trained generative network, and
(g) privatised set with noise in latent representations and in uniform identity distribution.
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Figure A.3: Visual results obtained from the experiment using UNET and ResNet architectures
in the generator. (a) corresponds to the original images. (b) and (c) are privatised versions of (a)
using ResNet and UNET as generators, respectively.

Figure A.4: Visual results obtained from the experiments to preserve explanatory evidence by
reconstructing masks with glaucoma-related features, where the masks were only used in the loss
function. (a) corresponds to the original image, (b) corresponds to the results of the experiment
where we used iris segmentation masks, (c) are results from the experiment where we used non-
binary Deep Taylor masks, and (d) are results from the experiment where we used binary Deep
Taylor masks.
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Figure A.5: Visual results obtained from the experiments to preserve explanatory evidence by
reconstructing masks with glaucoma-related features, where the masks were introduced in the
generative model. (a) corresponds to the original image. (b) are results from the generative model
where concatenation between images and masks happened before these being introduced to the
encoder. (c) are results from the generative model where concatenation between images and masks
happened in the VAE’s latent space. (d) are results from the generative model where concatenation
between images and masks happened inside the encoder, after feature extraction. (e) and (f) are
variations of (d) using as parameters λ3 = 2 and λ5 = 0.0005, respectively.
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Figure A.6: Visual results obtained from the experiments to preserve explanatory evidence where
we approximate the original image’s glaucoma score. (a) corresponds to the original image. (b)
and (c) are privatised versions of (a) where we use as parameters λ3 = 0.6 and λ3 = 2, respectively.
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Figure A.7: Visual results obtained from the experiments with privacy-preserving model using
siamese identity recognition. (a) corresponds to the original image. (b-d) are privatised versions
of (a) where we do not guarantee the privacy of all subjects in the dataset, with λ2 = 1, λ2 = 5 and
λ2 = 10, respectively. (e) and (f) are privatised versions of (a) with the model where we guarantee
privacy for all data subjects, with λ6 = 5 and λ6 = 10, respectively.
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