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Abstract

Deep Gaussian Processes (DGPs) benefit both from the flexible probabilistic approach of Gaus-
sian Processes and the scalability of neural networks. They have already been successfully used
for unstructured prediction tasks, but their structured version has not yet been investigated. This
thesis proposes a new formulation of DGPs which can accommodate the structuredness of data and
make predictions accordingly. This model is based on Random Feature Expansions (RFE) and is
trained using Stochastic Variational Inference. It is then evaluated on standard Natural Language
Processing (NLP) tasks and shows performance improvements both in the Error Rates and in Un-
certainty Quantification compared to other state-of-the-art techniques like Gaussian Processes with
Elliptical Sliced Sampling (GP-ESS), Conditional Random Fields (CRFs) and Gaussian Processes
with inducing inputs and variational inference. This is also a scalable model, as evidenced by its
performance on a dataset with 211,000 words and 11,000 sentences.
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Chapter 1

Introduction

Machine Learning deals with making predictions based on data. This topic has interested re-

searchers and practitioners for a long time, but it was only with the increase in computational

power and boom in available data that Machine Learning methods saw their real potential. From

the early successes in the finance world by quant funds, to the more recent applications in image

recognition by Facebook, Google and the likes, Machine Learning has proven that it is one of the

most important tools of the current world. Not only are such algorithms important to passively

analyze the world, they have already been able to actively influence it, as evidenced by their role

in elections.

These techniques can be deconstructed in many ways. A typical one is "supervised" and "un-

supervised" learning, depending on whether the training dataset is labelled or not. Another one is

"probabilistic" and "non-probabilistic". Non-probabilistic methods do not provide any measure of

uncertainty, but probabilistic ones do. The most typical criteria to evaluate such techniques is how

often they are right or wrong (accuracy or error rate), but many other criteria can be found. Most

techniques can be decomposed into a set of inputs, an objective function, a predictive function and

some prediction loss measure. However, in the real world, the loss caused by a bad prediction

strongly depends on the specific problem. Modelling the failure rate of a spacecraft structure is

not the same as recognizing faces online, so the criteria used should depend on the problem being

solved, and tolerance for errors should vary accordingly. For situations when freedom of fit and a

quantification of uncertainty are desired, Gaussian Processes are a solution to look into.

Gaussian Processes (GPs) and variations have been used for centuries - some of its most fa-

mous variations are Wiener Processes, Kalman Filters and Langevin Processes. However, the ap-

plication of Gaussian Processes to prediction problems only started in the 1940s with time series.

Later, in the 1970s, they were applied to meteorology and geostatistics - in particular to mining

engineering. Their arrival to statistics itself only came a few years later, with multivariate input

regression problems, and although they are a standard tool of statisticians, temporal and spatial ap-

plications are still the largely dominant applications. Regarding Machine Learning, they were first

studied in the 1990s, at a time when neural networks were the main models used. Around the same

time, Neal (1996) showed that, as a matter of fact, under certain conditions, neural networks could

1



Introduction 2

tend to a GP, linking these 2 promising techniques (Snelson, 2007). In the early 2000s there was

extensive work on GPs, culminating with the book by Rasmussen and Williams (2006), but more

recently, the focus of the academic community has been on neural network related techniques.

Aside from being probabilistic methods that can be used in supervised and unsupervised learn-

ing, Gaussian Processes are also "non-parametric". This means that a GP does not have a fixed set

of parameters, but instead the parameters grow with the number of training points (Murphy, 2013).

These are generally more flexible than parametric methods, as they do not introduce assumptions

on the data distribution, like linear or non-linear regression do. However, this increase in flexibility

comes at the cost of increased computational costs. The time complexity to train and use a stan-

dard GP is O(N3), where N stands for the number of observations, as it requires the inversion of

an N×N covariance matrix, which is usually done via Cholesky decomposition. For that reason,

in order to make GPs scalable, several approximations have been introduced throughout the years.

This thesis takes advantage of some of these approximations, and combines work done within the

GPs field and the neural networks’ field. It bridges these two and brings the properties of both

in order to successfully solve problems where outputs have dependencies between each other -

Structured Prediction - evidencing GPs can rival and beat state-of-the-art techniques.

1.1 Problem statement

This work introduces a new formulation of Deep Gaussian Processes with the aim of solving

Structured Prediction problems - Structured Deep Gaussian Processes (SDGPs). To evaluate this

new formulation, a series of questions has been posed:

• How does an unstructured model’s architecture have to change to encompass the structured-

ness of data?

• What is the impact of using different hyperparameters when solving Structured Prediction

problems?

• How does this model compare with the current state-of-the-art in the standard metrics (cor-

rectness and uncertainty quantification)?

1.2 Overview

This first chapter briefly introduces the topic with the sole objective of familiarizing the reader with

GPs on a high level and their place in Machine Learning. Chapters 2 and 3 aim to review what has

been done related to the main topic of this thesis: Gaussian Processes and Structured Prediction.

Chapter 2 gives a better insight of how and why GPs are used, and introduces their intricate

particularities related to the SDGPs model. This includes topics like Deep Gaussian Processes and

key approximations to make them scalable like Random Feature Expansions. Chapter 3 outlines

the type of problem being solved, Structured Prediction, and solutions that have been proposed
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to address this. Chapter 4 explains the full SDGP model, how it is approximated to a tractable

model and how it is trained and used. Then, chapter 5 consists of the evaluation of this model on

a series of popular benchmark datasets. At last, chapter 6 includes the conclusion and ideas for

future work.



Chapter 2

Gaussian Processes

This section aims to explain the key concepts required to grasp how Gaussian Processes are used

in the field of Machine Learning, and why they are used.

2.1 Gaussian Processes in Machine Learning

Techniques based on Gaussian Processes (GPs) have the purpose of making predictions, just like

regression. For that reason, it is important to compare them to such techniques and highlight why

and when they are preferred - the motivation for using GPs. After knowing the advantages of GPs,

it is important to define what they are mathematically, their key parameters, and how they can

be interpreted. However, knowing the definition is not enough to understand how they are used

to make predictions, so the following section will deal with the procedure of using GPs to make

predictions. On the other hand, being a Machine Learning technique, it is clear that the predictions

should be done after putting the model through a learning scheme. This training/learning stage is

explained next. At last, the defining element of GPs, the kernel, will be introduced and some

examples of kernels briefly analyzed.

2.1.1 Motivation

The main advantages of GPs are: ability to quantify uncertainty in predictions and flexibility in the

functions it can fit. To convey these, an example from industrial engineering will be presented. The

context to consider can be an industrial setting with a certain flow rate (the Y s), which depends on

certain machine settings (the Xs). Suppose that in the past a variety of parameters has been tried

successfully, but now the manager wants to try completely new settings on the machine (a new

value of X). It is obviously important to know what will happen to the flow rate under the new

circumstances.

Many techniques can be used to answer this question, which revolves around building a predic-

tive function. The most basic one would be obtained by looking at the data distribution and fitting

a line through it - linear regression. It would also be possible to increase complexity and fit a non-

linear function (a polynomial, sinusoidal, exponential, etc.) - non-linear regression. One could go

4



2.1 Gaussian Processes in Machine Learning 5

Figure 2.1: GPs compared to regression techniques. The uncertainty measure of the GPs is illus-
trated by the shaded areas surrounding the mean function of the GP in blue.

even further and consider a network of such continuous functions combined with ON/OFF activa-

tion functions in a network - a neural network. However, this would still restrict the fit to a finite

set of functions. GPs, on the other hand, allow for more freedom, as it is not necessary to specify

the functions that should fit the data. The data is fitted to the best distribution of functions. The

impact this has in the ability to make predictions is shown in Figure 2.1. In green, an example of a

single parametric function (linear regression) can be seen, in black, a more complex function, and

in blue, the Gaussian Process.

The shortcomings of choosing a linear function are clear: the chosen function might not fit the

data particularly well and there is no measure of uncertainty. The first problem can be strongly

mitigated by using a more advanced method like non-linear regression. However, the lack of

an uncertainty measure remains. This means that if a prediction is made for a scenario which

is considerably different than previously observed ones, it is not possible to quantify how good

or bad that prediction is. This is where GPs prove to be particularly helpful. The advantage of

having a measure of uncertainty might not be obvious at first, but what it means is that different

predictions have different levels of quality. Predictions for a test point that is considerably far

away from the training points should intuitively have less quality than predictions for points that

are near the training data. This is what the GP captures and what the shaded areas represent:

quality of predictions. This is especially important when the cost of making a bad prediction

is particularly high or when there is a considerable amount of missing data. Firstly, regarding
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the former, consider the following example of modelling the failure of an airplane engine, aside

from a prediction of failure, it is important to know how good or bad such a prediction is. If the

model predicts that the engine will not fail but is highly uncertain, it might be better to re-evaluate,

run more tests, etc. If a standard non-probabilistic method is used, the analysis would stop at

"prediction of non-failure", which would be insufficient. As a matter of fact, GPs are heavily

applied in the Aerospace industry (Dodd and Rogers, 2000). Secondly, regarding problems with

a lot of missing data, the uncertainty quantification also gains higher relevance, which has been

studied by Lu and Tang (2014) and Snoek et al. (2012). This missing data problem occurs in

many fields. For example, in medicine, there are thousands of clinical tests available, but patients

will only have done a few, making the data available sparse (Clifton et al., 2013; Cheng et al.,

2017). Other fields that benefit from this mathematically principled uncertainty quantification are

soil mapping (Gonzalez et al., 2008), industrial and mechanical engineering (bearing degradation

assessment (Hong and Zhou, 2012)), natural language processing (Cohn et al., 2014) and computer

vision (Bratieres et al., 2014).

Knowing the motivations for using GPs, their inner workings will be presented in more detail.

First, their definition will be introduced. Then, their training and prediction schemes will be

explained.

2.1.2 Definitions

GPs can be interpreted in at least 3 different ways. The first one is as an infinite collection of

Gaussian variables, which is the standard definition. The second one is as an infinite-dimensional

multivariate Gaussian distribution and the third one is as a normal distribution generalized to

functions. Starting with the standard definition, a Gaussian Process is a stochastic process (infinite

collection of random variables) where any finite subset of random variables follows a multivariate

Gaussian distribution.

Thinking about an infinite collection of random variables might not be natural, so a more in-

tuitive interpretation is brought: GPs as a generalization of the normal distribution. The industrial

engineering example will be reintroduced to materialize this transition from the normal distribu-

tion to the GP. The nomenclature is the same, that is, Y representing a certain flow rate and X

representing the parameters of the machine that is outputting that flow rate. At the beginning of

this experiment, suppose only one point has been studied, x1. It is known that the flow rate Y1 with

parameters x1 follows a normal distribution with a certain mean and variance:

Y1(x1)∼ N(µ,σ) (2.1)

After some experiments, suppose another set of parameters x2 has also been studied. Now

suppose it is known that Y (x1) follows a normal, Y (x2) follows another normal, and they both

follow a 2-dimensional multivariate Gaussian distribution:

Y (x1),Y (x2)∼ N(m(x1,x2),Σ(x1,x2)) (2.2)
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Continuing this process, after studying N sets of parameters, the output will follow an N-

dimensional Gaussian. If N → ∞, then an infinite collection of random variables will arise, with

the restriction that every subset of them follows a multivariate Gaussian. Recalling the standard

definition, it becomes clear that this is a Gaussian Process. In section 2.2, a graphical represen-

tation of this process is shown. In each picture, it is possible to see a certain number of Random

Variables (represented by their mean and variance). The number of random variables increases

from picture to picture and the last one is the representation of the Gaussian Process, when N→∞.

The third way of thinking about GPs is as a generalization of the normal distribution to func-

tions. Under their "functional view" (Rasmussen and Williams, 2006), GPs are represented in the

following way:

f ∼ GP(m(x),k(x,x′)) (2.3)

They rely on a mean function m(x) and on a covariance function k(x,x′), but the mean func-

tion is frequently set to zero. These covariance functions can take many forms and their choice

is subject of thorough study (Shawe-Taylor and Cristianini, 2004). However, generally speaking,

the idea is that as similarity between x’s increases, similarity between y’s also increases (Murphy,

2013). This means that if a prediction is made for an x close to many known x’s, then the confi-

dence on that prediction is high, otherwise it is low. This covariance function is responsible for the

form of the distribution being modeled, but no specific function is chosen, as it encompasses all

the functions. All possible explanations of the data are considered, although a preference is given

to better ones. As a matter of fact, this fitting of ’infinite functions’ with different weightings has

been illustrated by Williams (1998), with the proof that a neural network tends to a GP when its

number of nodes tends to infinite. The diagram in Figure 2.3 illustrates the transition from the

most simple regression model to a GP. In a regression, there is only one function considered, and

it can be extremely simple (linear), or more complex (non-linear). If many functions of different

types are combined in a finite network with different weights given to different functions - a neural

network - then the ability to represent complex phenomena grows considerably. If the number of

functions in such a network grows to infinite, then such a network is equivalent to a Gaussian Pro-

cess. These transitions are illustrated in Figure 2.3. Their Bayesian nature makes GPs inherently

less prone to overfitting, even without any specific regularization schemes (Neal, 1996).

Lastly, an alternative approach to Gaussian Processes is as a type of Bayesian Regression.

Please refer to Rasmussen and Williams (2006) for a detailed explanation.

2.1.3 Using a GP for predictions

The end goal of a Gaussian Process is making a prediction for a certain Y∗ based on a certain X∗.

The function used for making such predictions is called the predictive posterior and is computed

using a conditional likelihood function, P(Y∗ | X∗, f ), where X∗ represents the new values of X

for which predictions are to be made. In the most basic case, this likelihood function follows a
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Figure 2.2: From a finite collection of Gaussian variables to a Gaussian Process
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Figure 2.3: Regression, finite neural networks and Gaussian Processes

GP, which works well for some regression problems. The prediction Y∗ is related to the observed

outputs Y in the following way (Rasmussen and Williams, 2006):

[
Y

Y∗
]∼ N

(
0,

[
K(X ,X) K(X ,X∗)

K(X∗,X) K(X∗,X∗)

])
(2.4)

To obtain the predictive posterior Y∗, it is only a matter of conditioning on the rest of the

information available (the data and Y ):

Y∗ | X ,X∗,Y ∼ N(µ,∑) (2.5)

µ = K(X∗,X)[K(X ,X)]−1Y (2.6)

∑ = K(X∗,X∗)−K(X∗,X)[K(X ,X)]−1K(X ,X∗) (2.7)

Where ∑ denotes the covariance matrix. A particularity of conditioning Y∗ is that Y∗ | X∗,X
follows a multivariate Gaussian distribution, bringing the Gaussian Process from the infinite vari-

ables’ realm to the finite one. In this Gaussian regression setting, it is possible to compute predic-

tions analytically. However, this is not always the case. For example, in classification, the likeli-

hood P(Y∗ | X∗) will not be Gaussian, rendering the above method invalid. The standard technique

to handle this is to consider a hidden function f which will follow a GP and then "squashing"

its output via, for example, a logistic regression. In that case, the likelihood function will be a

sigmoid and it will rely on the hidden function f instead of directly on the input X :

P(y =+1 | X , f ) = σ( f ) (2.8)

To make predictions, the hidden functions are integrated out:

P(y∗ =+1 | X ,Y,X∗) =
∫

f∗
P(y =+1 | X , f )P( f∗ | X ,Y,X∗)d f∗ (2.9)
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where:

P( f∗ | X ,Y,X∗) =
∫

f
P( f∗ | X ,Y, f )P( f | X ,Y )d f (2.10)

With this non-Gaussian likelihood, it is not possible to obtain the predictive posterior P(Y∗ | f∗)

analytically (unlike in regression with Gaussian likelihood). For that reason, an approximation has

to be introduced. The most typical approximations are either deterministic ones or sampling based

(Rasmussen and Williams, 2006). On the analytical side, there are many options available like the

Laplace approximation (Williams and Barber, 1998) and Expectation Propagation (Minka, 2001).

On the sampling side, a popular technique is Markov Chain Monte Carlo (which originated from

Physics as the ’Metropolis algorithm’ (Metropolis et al., 1953) and later found its application in

data analysis (Gelfand and Smith, 1990; Robert and Casella, 2011).

For the problem that this thesis addresses - Structured Prediction, the likelihood functions

used are even more complex than the one used in classification, causing these integrals to be also

intractable. The technique used to overcome this intractability was Variational Inference (Jordan

et al., 1999), and it will be explained in a separate section.

2.1.4 Training a GP - Bayesian Inference

Gaussian Processes are Bayesian models. Being Bayesian can be considered a way of thinking

about probabilities, and its competing school of thought is the frequentist view. The Bayesian

approach looks at the probability of an outcome as a quantification of belief, while the frequen-

tist approach considers it to be the limit of its relative frequency. This means that the Bayesian

approach puts a probabilistic distribution over what is not known, updates such a distribution as

more data is gathered and uses the updated distribution in order to make predictions. On the other

hand, the frequentist approach uses the best estimator for what he does not know.

A typical coin flip example can be used to illustrate these two views. The probability of getting

heads or tails is not known. The frequentist approach believes that such probabilities are fixed, so it

does not put a distribution over them. Instead, it chooses a metric (estimator) like "past frequency".

The Bayesian approach, on the other hand, believes that since the real probability is not known,

it should follow a certain distribution, and as the coin is flipped, that distribution is updated using

Bayes theorem.

To illustrate the Bayesian perspective in the context of Gaussian Processes, the industrial en-

gineering example can be brought again. Suppose a GP is used to make predictions about the flow

rate of a machine. Before taking any measurements, there is no data to incorporate, so a certain

Gaussian Process has to be chosen.

P( f )∼ GP(m(x),k(x,x′)) (2.11)

This prior can incorporate previous knowledge on the mean function m(x) and kernel k(x,x′), but

it does not account for any observations. At moment zero, since there is no data to use, the prior
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is used to make predictions. As time advances, observations are gathered and the posterior can be

computed using Bayes theorem like mentioned before.

P( f |Y,X) =
P(Y | f ,X)P( f | X)

P(Y | X)
(2.12)

To introduce the typical nomenclature:

• P( f |Y,X) is called "the posterior" and it represents f ’s distribution after "seeing" the data,

that is, a posteriori. This posterior feeds the "predictive posterior" introduced before in

subsection 2.1.3, P(Y∗ | f ∗), and they should not be confused.

• P(Y | f ,X) is the likelihood of observing Y given a certain f and X .

• P( f | X) is called the prior because it is chosen a priori to any observations Y .

• P(Y | X) is usually called evidence or marginal likelihood. This can be interpreted as: "the

data observed is the evidence of the model this data follows". It is also called "marginal

likelihood" because it is the result of a marginalization over the hidden functions f : P(Y |
X) =

∫
P(Y | f ,X)P( f | X)d f .

Using the posterior yields a better prediction as opposed to simply considering the prior, and an

illustration of these improvements is represented in Figure 2.4. The predictive functions using

the prior are clearly scattered and not particularly useful to model any phenomenon. On the other

hand, after collecting data, the predictive function is adjusted and a well defined trend is identified.

The margin of error, represented by the shaded areas, is clearly smaller in the posterior, meaning

predictions are of higher quality. In some areas, like the rightmost one, the "error bars" are not even

visible, which means highly accurate predictions are expected. In other areas, like the leftmost one,

since uncertainty is higher, the quality of the predictions is expected to be lower.
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Figure 2.4: Predictions using a Gaussian Prior compared with predictions using a Posterior (with
an RBF kernel).

Since the predictive power of the posterior is clearly superior to the prior’s, obtaining the

posterior can be considered part of training. However, there is still a large margin for improvement.

So far, it has been considered that the kernel was completely fixed, but that does not need to be

the case. Ideally, all the parameters defining the problem, S, namely the hyperparameters defining

the kernel, can be optimized. If it was possible, one would like to maximize P(S | Y,X), that is,

maximizing the probability of these parameters being the "correct" parameters for the observed

data. Since this is usually an intractable problem, the typical choice for objective function is what

was previously defined as ’evidence’, or ’marginal likelihood’: P(Y |X ,S), that is, the probability

of having observed what was observed, given a certain model with the observed data. Developing

the marginal likelihood results in:

logP(Y |X ,S)∝−
[
Y T (K +σ

2I
)−1

Y + log |
(
K +σ

2I
)
|
]

(2.13)

Equation 2.13 makes it evident that the marginal likelihood naturally balances model fit and model
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complexity (Rasmussen and Williams, 2006), thereby making it a good choice for objective func-

tion.

Having defined a "framework" for training, which is maximizing the marginal likelihood, it is

necessary to study how this is conducted. Consider once again how the marginal likelihood can

be computed as a marginalization over the latent variables, f :

P(Y | X) =
∫

f
P(Y | f ,X)P( f | X)d f (2.14)

Optimizing this for a regression model with Gaussian likelihood is an analytically tractable

problem. However, as mentioned before, structured prediction brings complex likelihoods which

make optimizing equation 2.14 intractable. This, once again, prompts the use of the Variational

Inference approximation.

Following typical notation and for simplicity, the conditioning on X will be omitted from now

on (i.e. P(Y | X) will be referred to as P(Y )).

2.1.5 Variational Inference

This approach consists of approximating the true posterior distribution P( f | Y ), the term that

brought intractability, with a simpler distribution q( f ). This q( f ) is called the "variational dis-

tribution", or the "variational posterior". Since the purpose of bringing q was to eliminate in-

tractability, q should come from a tractable family. Therefore, the first step is choosing a family

of distributions. Then, it is necessary to get more granular and actually compute its parameters,

which is done by making the "variational posterior" as close as possible to the "true posterior"

(Murphy, 2013). The origin of the name "variational distribution" will be explained first, followed

by the explanation of how to obtain q.

The name "variational" comes from "variational calculus", a field of calculus that studies how

variations can be used to find extreme points of functionals. A functional is a real-valued function

on a vector space V, usually of functions (Rowland, 2018). Knowing that the domain of q is a

space of functions, this definition was not unexpected. In plain English, a functional is essentially

a function of a function, that is, instead of having a certain value as input, it has a function (Bishop,

2006). Some examples of functionals are entropy: S[P] =
∫

P(X) lnP(X)dX , the energy functional

E[ f ] =
∫
‖ ∇ f ‖ ²dA (Rowland, 2018) and the cumulative distribution C[P] =

∫
P(X)dX . q is

related to "variational calculus" because it is obtained by minimizing a functional, which will

become evident in the next paragraph.

Having defined the mathematical object that q is, it is necessary to understand how it is ob-

tained. The end goal is to make q as close to the true posterior P( f | Y ) as possible. Therefore,

the first concept that needs to be defined is "closeness", or similarity. When dealing with vectors,

a classical measure of similarity is the n-norm (Manhattan distance for n=1, Euclidean distance

for n=2, etc.). However, when dealing with distributions, this concept of norm is not directly

applicable. Instead, what is usually used for similarity (or more particularly, dissimilarity) is the
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Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951), which is defined in equation

2.15:

KL(q( f )||P( f | Y )) =
∫

q( f ) log
q( f )

P( f | Y )
d f (2.15)

Then, it is necessary to define the family to which q will belong. Some possible choices are:

"q will follow a multivariate Gaussian distribution", or "q factorizes over its inputs". After having

defined q’s form, its parameters have to be estimated. Making q as close as possible to P( f | Y )
means, ideally, minimizing their KL divergence. However, it is not really possible to minimize that

KL divergence directly, as integrals involving the true posterior are the reason for the variational

approximation in the first place. For that reason, it is necessary to convert this KL divergence into

something else which is tractable to optimize (Blei, 2002).

Starting with the definition of KL divergence:

KL(q( f )||P( f | Y )) =
∫

q( f )∗ log
q( f )

P( f | Y )
d f (2.16)

Bayes Theorem can be applied to P( f | Y ):

=
∫

q( f )∗ log
q( f )∗P(Y )

P( f ,Y )
d f (2.17)

This is an expectation over a certain distribution q. Applying logarithm rules:

= Eq( f )[logq( f )− logP( f ,Y )+ logP(Y )] (2.18)

Since P(Y ) does not depend on f in any way:

= Eq( f )[logq( f )− logP( f ,Y )]+ logP(Y ) (2.19)

Equation 2.19 holds a relationship between the original KL and the evidence. This is key to

understanding how the original KL is related to the quantity that will actually be optimized, but

this will be made clearer some paragraphs below.

P(Y ), the last term in equation 2.19, can be written as an integral:

logP(Y ) = log
∫

P(Y, f )d f

= log
∫

P(Y, f )
q( f )
q( f )

d f

= logEq( f )

[
P(Y, f )

q( f )

]
(2.20)

Jensen’s inequality states that f (E[X ]) ≤ E[ f (x)] (more details in Appendix A.1). Applying

Jensen’s inequality to 2.20:
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logEq( f )

[
P(Y, f )

q( f )

]
≥ Eq( f ) [logP(Y, f )− logq( f )] (2.21)

And this term is called the ELBO, which stands for Evidence Lower Bound, since it is a lower

bound of the evidence, P(Y ). Knowing that P(Y, f ) = P(Y | f )P( f ):

ELBO = Eq( f ) [logP(Y | f )P( f )− logq( f )]

= Eq( f )

[
logP(Y | f )− log

q( f )
P( f )

]
Therefore,

ELBO = Eq( f ) [logP(Y | f )]−KL(q( f )||P( f ))] (2.22)

This ELBO might seem unrelated to what was being initially minimized, the KL between

the variational approximation and the true posterior. This relationship is evidenced below (Blei,

2002):

KL(q( f )||P( f | Y )) = Eq( f )

[
log

q( f )
P( f | Y )

]

= Eq( f ) [logq( f )]−Eq( f ) [logP( f | Y )]

= Eq( f ) [logq( f )]−Eq( f ) [logq( f ,Y )]+ logP(Y )

=−
(
Eq( f ) [logq( f )]+Eq( f ) [logP( f ,Y )]

)
+ logP(Y )

So,

KL(q( f )||P( f | Y )) =−ELBO+ logP(Y ) (2.23)

And now it is clear that minimizing the original KL can be done by maximizing the ELBO. The

original KL and this negative ELBO differ only by a constant, P(Y ), constant which is bounded

by the ELBO. An alternative strategy is starting directly by minimizing the model evidence, P(Y ),

which was defined as the training objective. This is presented in the Appendix.

The great advantage of considering this ELBO instead of the original objective function is that

its terms are computable. The first term is referred to as "Expected Log Likelihood" (Lell) and can

be computed using Monte Carlo Sampling and the second term (KL-divergence) is analytically

tractable. This ELBO maximization corresponds to the training stage.
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One problem that arises when maximizing this ELBO is scalability, for which the solution

Stochastic Variational Inference has been proposed (Hoffman et al., 2013). This technique essen-

tially uses stochastic optimization: finding extremes of the objective function by following noisy

gradient estimates. This is particularly powerful if the objective function is a sum of independent

terms, which makes this technique parallelizable.

2.1.6 Kernels

The kernel to consider is the key aspect of a GP, as it encodes the assumptions about the form

of the function being modeled. As a matter of fact, the kernel and its parameters are oftentimes

the only thing that the user chooses for a GP (as the mean function is set to zero). For that

reason, the choice of the kernel is a subject of high importance. While there are many kernels

available (Shawe-Taylor and Cristianini, 2004), the most relevant ones for this thesis are: the

squared exponential, the arc-cosine and the linear kernel. These can be considered a dot product

between a finite number of basis functions φ :

k(x,x′) = φ(x) �φ(x′) (2.24)

where x,x′ ∈ X ⊂ R.

If the kernel is translation invariant, then it is considered stationary (Genton, 2002):

k(x,x′) = Kstationary(x− x′) (2.25)

Such kernels have properties which will become evident when deriving approximations for

Gaussian Processes. A commonly used stationary kernel is the "squared exponential". In its

most basic form:

kSE(x,x′)≡ kSE(δ ) = σ
2 exp

(
−δ 2

2

)
(2.26)

where δ = x− x′

It is immediate to notice that this is an infinitely differentiable function and that function

smoothness is always guaranteed. This makes this kernel an interesting and useful one.

σ2 is called the signal variance and it is a scaling parameter. It determines the variation of

function values from their mean. Large values allow the function to incorporate outliers, and

small values characterize functions that do not deviate much from the mean. Other parameters

can also be considered if the complexity is higher. There can be a noise variance σnoise, which has

the purpose of modeling noise in the training data. Technically, this is not a part of the covariance

function in itself, but it is incorporated in the GP. If this parameter is considerably high, the training

data is expected to be noisy. Additionally, there can be a lengthscale parameter l incorporating

function smoothness. If this parameter is high, then the function is considered to be smooth,

that is, it changes slowly. If different dimensions are expected to have a different impact, then

each dimension can have a specific lengthscale parameter ld - this is called Automatic Relevance
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Determination (ARD) (Neal, 1996; MacKay, 1991), and means that different dimensions have

different relevances to the output. Including these additions, the squared exponential kernel can

be considered in its most complete form:

kSE(x,x′)≡ kSE(δ ) = ∑
d

σ
2 exp

(
−

δ 2
d

2ld

)
+σnoise (2.27)

where δd is the difference in x in dimension d.

Another stationary and important kernel is the arc cosine, introduced by Williams (1998). This

one is more complex and involves evaluating the integral of a product of Heaviside step functions,

which are denoted by Θ(z) = 1
2(1+ sgn(z)):

k(δ ) = 2
∫ exp

(
−w2

2

)
(2π)d/2 Θ(w � x)Θ(w � y)(w � x)(w � y)n (2.28)

These kernels are related to neural networks and they have been proven to be successful,

thereby evidencing that many advantages of neural networks can be brought to kernel-based meth-

ods (like GPs) (Weston et al., 2008). Depending on the mappings of the neural network that orig-

inated the arc cosine kernel, different arc cosine kernels can be created. However, the one with

Heaviside step function mappings is the one that will be considered here (Cho and Saul, 2011).

The last kernel to be explained here is the linear kernel. This is a simple kernel given by the

inner product summed to an optional constant.

klin(x,x′) = x � x′+ c (2.29)

It is clear that this is a non-stationary kernel, as it is not a function of the distance between x

and x′. This was the kernel used by Galliani et al. (2016) for Structured Prediction with GPs.

The impact of the choice of kernel in the priors and posteriors can be seen in Figures 2.5 and

2.6. A new kernel (exponential sine squared) has been brought for a better representation of how

diverse GPs can be depending on the kernel used. Essentially, although GP posteriors will always

provide a good fit for the data provided, the level of uncertainty and form of the function is heavily

influenced by the kernel. For example, in the linear case (Figure 2.5), the mean function is smooth

and the uncertainty representation is reduced, but on the exponential sine squared one the exact

opposite happens.
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Figure 2.5: GP Prior and Posterior: linear kernel

Figure 2.6: GP Prior and Posterior: exponential sine squared kernel
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2.2 Deep Gaussian Processes

So far, the architectures considered entailed only one GP (flat GP). However, Damianou and

Lawrence (2012) introduced the concept of a deep GP. This introduces complexity to the typi-

cal flat model, which naturally allows to represent more interesting phenomena. Not only can

the DGP build complex mean functions, but it can also model stochasticity better. While the flat

GP considers the uncertainty throughout x roughly the same, the deep one can capture the higher

tendency for outliers in some areas, and reduced variances of others.

Put simply, a deep GP is a neural network where the activation functions are Gaussian Pro-

cesses. This is most easily understood by making the parallel with a neural network in its math-

ematical form. If a deep neural network is mathematically represented as a composition of func-

tions:

g(X) = f NL( f NL−1...( f 2( f 1(X))) (2.30)

then, a deep Gaussian Process is represented as a composition of stochastic process:

P(Y | X) = P(Y | f NL)P( f NL−1 | f NL−2)...P( f 2 | f 1)P( f 1 | X) (2.31)

Instead of representing a complex function as a composition of simple functions, DGPs rep-

resent a complex stochastic process as a composition of simple Gaussian Processes. However,

applying a Gaussian Process to another Gaussian Process is certainly not a linear operation, so it

is not expected that P(Y | X) is still a Gaussian Process - and it is not (Damianou and Lawrence,

2012). Therefore, the training and use of such models is not analytically tractable, which calls for

another approximation. The original formulation considered the inducing points inputs approxi-

mation (Titsias, 2009).

The inducing points approximation consists of using a smaller set of M "inducing inputs"

instead of the full inputs’ set X . Such inducing inputs are chosen using Variational Inference.

In this approach, Cholesky decompositions are used in order to invert the kernel matrix. Due to

their cubic time complexity, these can hinder performance. A Cholesky decomposition assumes

that it is possible to find the inverse of a positive definite matrix Mat (symmetric matrix with all

positive eigen values (Weisstein, 2018a)) by finding a lower triangular matrix L whose inverse is

LT . Following this assumption, the computations are straightforward, unknown parameters are

created for L and then the resulting matrix equation is obtained, which will have ∑
M
i=1 i unknowns

and M² equations. Of these, ∑
M
i=1 i are linearly independent, which means that by solving for the

unknowns, the inverse of Mat is obtained. This results in ∑
M
i=1 i = M(M + 1)/2 = M2/2+M

equations. On the left-hand side (LHS) of these equations, no computations are required, it is

simply the value of Mat. However, on the right-hand side (RHS), for each equation a vector

product between rows/columns of L and LT has to be computed, so, it requires M operations. This

makes this algorithm O(M3) in time complexity, which puts an implicit ceiling on the inducing

inputs’ freedom and consequently limits its scalability.
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Other techniques like Expectation Propagation (Bui et al., 2016) and Random Feature Ex-

pansions (Cutajar et al., 2016) have also been introduced. The latter was the approach chosen,

as it does not employ any Cholesky decomposition. This approximation is explained in the next

section.

2.2.1 Random Feature Expansions

Cutajar et al. (2016) introduced Random Feature Expansions (RFE) to each GP of a deep GP

network, thereby increasing the scalability of DGPs. In this method, each GP is expanded into a

set of functions, which results in a Bayesian neural network which can be trained by stochastic

variational inference. This is particularly advantageous when compared to other approaches (like

inducing points) because it only requires the computation of matrix products instead of matrix

inversion/decomposition. These expansions rely on Bochner’s theorem, Fourier Transforms and

Monte Carlo sampling (Rahimi and Recht, 2008). The resulting network depends on the kernel of

the original GPs. The case of an Radial Basis Function (RBF)/squared exponential kernel will be

briefly presented here. If the DGP is a network of GPs, each using an RBF kernel, the parameters

to consider are:

• θ `: Set of parameters that characterizes the GP covariances of layer `. It comprises (σ ²)`

and Λ`

• (σ ²)`: Variances of layer `

• Λ`: Lengthscale parameters of layer ` that result from using automatic relevance determi-

nation in the kernel

According to Bochner’s theorem (Edwards, 1979), since the RBF kernel function is a continuous

shift-invariant normalized covariance function, if it is positive definite, then it can be written as a

Fourier transform of a non-negative measure P(ω) and vice versa. These ω are typically called

spectral frequencies (Cutajar et al., 2016).

Using Bochner’s theorem, the kernel is expressed as a Fourier transform and Euler’s formula

(eix = cos(x)+ isin(x)) is applied:

kRBF(X ,X ′) =
∫

P(ω)exp(i(X−X ′)T
ω)dω (2.32)

=
∫

P(ω)
[
cos((X−X ′)T

ω)+ isin((X−X ′)T
ω)
]

dω (2.33)

Where i stands for ’imaginary number’ and P(ω) is a non-negative measure. P(ω) can be

chosen to be P(ω) = N(0, I).

A quick examination of the LHS combined with the knowledge from the kernel function makes

it clear that the LHS has to be real-valued. Looking at the RHS, it also becomes clear that since

P(ω) is non-imaginary, the imaginary part can be dropped from the RHS, thereby resulting in:
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kRBF(X ,X ′) =
∫

P(ω)cos
[
(X−X ′)T

ω
]

dω (2.34)

The implication of equation 2.34 is that the kernel can be expressed as an expectation over

P(ω), which can be estimated via Monte Carlo sampling. With some algebraic manipulation,

equation 2.34 becomes:

kRBF(X ,X ′) =
∫

P(ω)
[
cos(XT

ω)cos(X ′T ω)+ sin(XT
ω)sin(X ′T ω)

]
dω (2.35)

Creating a new function to simplify the notation: z(x | ω) =
[
cos(XT ω),sin(XT ω)

]
and con-

sidering the Monte Carlo estimation:

kRBF(X ,X ′)≈ 1
NRF

∑z(X | ω .)T z(XT | ω .) (2.36)

If NRF tends to infinity, then this representation tends to the original kernel. However, if it

does not, this represents something else. Typically, in kernel methods, the ’kernel trick’ implicitly

projects the objects into a higher dimension and then returns an operation done in that higher

dimension whose output belongs to a lower dimension. This comes at the cost of having to evaluate

the kernel applied to all pairs of data points. What this approach brings is an explicit mapping

of the data to another dimension, which is done with the feature map z - thereby reducing the

computational cost (Rahimi and Recht, 2008).

After applying RFE to the DGP, each GP is replaced by a sequence of operations: multiplica-

tion by spectral frequencies Ω and multiplication by weights W . It is important to refer how these

are linked to the initial parameters (the hyperparameters of each GP).

The term resulting from the multiplication by the spectral frequencies is given by:

Φ
(`)
rb f =

√
(σ2)(`)

N(`)
RF

[
cos(F(`)

Ω
(`)),sin(F(`)

Ω
(`))
]

(2.37)

where σ is a parameter from the original network and:

• N(`)
RF : number of random features in layer `

• F(`+1) = Φ
(`)
rb fW

(`)

• P(Ω(`)
., j ) = N(0,(Λ(`))−1), evidencing how the spectral frequencies are related to the original

model/parameters

• P(W (`)
.,i ) = N(0, I)

This new network is graphically represented in Figure 2.7.

Once the network is built, it is just a matter of training it. Notice that the ELBO is the same

as in equation 2.22, but now f is the result of a neural network instead of a DGP. To train this

network, the chosen method was Stochastic Variational Inference (Hoffman et al., 2013), which

is essentially stochastic optimization (Robbins and Monro, 1951) applied to variational inference.
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Figure 2.7: Deep Gaussian Process with Random Feature Expansions. Figure reproduced from
Cutajar et al. (2016)

Since the objective function (and its gradients) can be decomposed as a sum of independent terms

(recall that the Lell decomposes over sequences), this technique is particularly powerful.

However, the gradients of Lell can have considerably high variances, and that hinders optimiza-

tion (Krauth et al., 2016). In order to reduce the variance of the gradients, the reparameterization

trick has been proposed (Kingma and Welling, 2013), and that will also be employed. This consists

of reparameterizing the random nodes in the following way:

(W layer
random)i j = σ

layer
i j ε

layer
random,i j,+µ

layer
i j (2.38)

ε
layer
random,i j ∼ N(0,1)

where µ
layer
i j and σ

layer
i j are variational parameters which are optimized during training. An

analogous process is employed for Ω.



Chapter 3

Structured Prediction

This section aims to explain the problem addressed in this thesis - Structured Prediction - and what

has been done to solve it. In particular, this thesis deals with discrete output Structured Prediction.

Firstly, the problem itself will be defined. Then, popular techniques to solve it will be introduced.

At last, work particularly related to this thesis will be presented. This consists of approaches that

use Gaussian Processes to solve Structured Prediction problems.

3.1 The problem of Structured Prediction

Structured Prediction occurs when the objects being predicted are structured. Being structured

means that observations are not independent between each other. Examples of such objects are

sequences, grids, trees, strings, etc. From a more practical perspective, consider word labelling in

a sentence, i.e. where each word is given a label ("noun", "verb", "adjective", or "food", "sport",

"music" etc., there is considerable freedom for what the labels might be). The label of the ’next

word’ usually depends not only on its features, but also on the word that comes before it. The

main complication with such objects is that likelihoods cannot be factorized over the observations,

which implies the elements of a structured object have to be handled simultaneously. For a better

grasp of the notation of the problem, consider word classification. For the sentence "Gaussian

Processes are the best.", the number of words N is 5. Xi, the input feature matrix, can have

features like "starts with capital letter", "number of letters", "is followed by a comma". The output

of the model that will allow for classification (yi) could contain the probability of word i being a

verb, a noun, an adjective, or "other". Choosing the features to use is itself a problem and can take

practitioners much time.

For a wider grasp of the Structured Prediction problem, it is worth mentioning that this is not

limited to sentence analysis and computer vision, although these are typical applications. Another

example of a Structured Prediction problem is the prediction of process failure for sequential

processes and/or machines, where process can have a broad meaning. If there is a sequence of

processes, the failure of one of them is dependent not only on the parameters that define it but also

on the adjacent processes.
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Regarding the type of structure, there are two, not mutually exclusive, interpretations. The first

type is structure between the Y elements. In word classification in a sentence, this materializes as:

the classification of word i depends on the classifications of word i−1 and/or word i+1. This is

intuitive - how likely is it that a sentence has many adjectives consecutively? The second type is

structure in the Y with respect to the inputs X , or "indexed on X". Using the same example, this

materializes as: the classification of word i depends on word i− 1 and/or word i+ 1 themselves.

Bringing another example, some particular verbs might be more likely followed by other verbs

than nouns, such as the verbs used in the passive voice, like "has" ("He has done", "She has

eaten", etc.).

3.2 Solutions for the Structured Prediction problem

Some of the main techniques for Structured Prediction are: structured perceptron (Collins, 2002),

maximum entropy Markov models (McCallum et al., 2000), maximum margin Markov networks

(Taskar et al., 2003), structured support vector machines (Tsochantaridis et al., 2005) and condi-

tional random fields (CRFs) (Lafferty et al., 2001). The latter is particularly relevant because it

provides likelihood functions that can be generalized for Structured Prediction with GPs (Bratières

et al., 2015). Since such likelihoods are used in this thesis, this technique will be explained in more

detail.

CRFs can be interpreted as a type of Markov Random Field (MRF) (Murphy, 2013), but they

serve a different purpose: Structured Prediction. The key concept with CRFs is that they do not

model the distribution over X , P(X ,Y ), only the one over Y ’s, P(Y | X). For simplicity, suppose

elements in both Y and X belong to {0,1} (Koller and Friedman, 2009):

P(Y | X) =
P(Y,X)

P(X)
(3.1)

Since there is no interest in modelling X , an alternative way of computing P(Y | X) has to be

found. The solution is the introduction of potentials P̂ instead of probabilities P, which are then

normalized by a factor Z instead of P(X).

P(Y | X) =
P̂(Y,X)

Z(X)
(3.2)

These potentials are formulas to evaluate the ’desirability’ of Y to X . Since they do not

necessarily sum to one, they do not satisfy the probability axioms (Weisstein, 2018b) and are

therefore called "potentials". These potentials are computed by the product of a set of factors in

Φ = {φ1(D1), ...,φk(Dk)}, each with a certain scope Di:

P̂(X ,Y ) =
k

∏
i=1

φi(Di) (3.3)

The normalization constant Z(X) is naturally:
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ZΦ(X) = ∑
Y

P̂(X ,Y ) (3.4)

Having defined a framework, the specific factors that will be used should be defined. The

simple case of binary classification will be used as a base case. A possibility for the factors is just

a log-linear combination of features that have an effect on the dependent variable:

φi(xi,y) = exp{wi1{xi = 1,y = 1}} (3.5)

where 1 is an indicator function (it is 1 if the condition in brackets is true, and 0 otherwise).

So, looking at P(y | xi), if y = 1, then φi(xi,y = 1) = exp(wixi), and if y = 0, φi(xi,y = 0) = 1,

which leads to P̂(X ,y = 1) = exp{∑i(wixi)} and P(X ,y = 0) = 1. Summing these two to get the

normalizing Z(X):

P(y = 1 | X) =
exp{∑i(wixi)}

1+ exp{∑i(wixi)}
=

P(y = 1,X)

P(y = 1,X)+P(y = 0,X)
(3.6)

Which means a certain classification (word label) depends on every X element (each word of

the sentence). This simple case can be generalized for higher dimensions, for example by doing

binary classification for every label.

Note that the argument of the numerator, wixi, was not an analytic implication, it was chosen.

Therefore, other functions or more complicated objects could have been chosen. This is precisely

what was done by Bratières et al. (2015) for the likelihood function where, instead of considering

a parametric, log-linear combination of weighted features, it considers a log-linear combination of

GPs with kernels evaluated between cliques, instead of inputs X . A clique is a subset of vertices of

an undirected graph such that every two vertices are adjacent. This allows to represent the relation

between observations, something that is explained in more detail in the next section.

P(Y |X , f ) =
exp(∑c f (c,xc,Yc))

∑Y ′∈Y exp(∑c f (c,xc,Y
,
c))

(3.7)

3.3 Gaussian Processes for Structured Prediction

Structured Prediction can deal with continuous or discrete outputs. For the problem of structured

continuous-output, Twin Gaussian Processes (Bo and Sminchisescu, 2010) propose considering

input kernels similar to output kernels. This problem is related to the well developed area of

multi-output regression (Bonilla et al., 2008; Álvarez et al., 2010; Álvarez and Lawrence, 2011).

However, the problem addressed in this thesis, structured discrete-output, deals with consider-

ably more complex likelihood functions which are considerably expensive to compute throughout

training (Galliani et al., 2016). For that reason, different techniques have to be used. CRF-based

techniques have a long history of success in these problems. They have been combined with kernel

methods (Lafferty et al., 2004), they have been given a Bayesian treatment (Qi et al., 2005), and,
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taking advantage of the latter two, more recently Bratières et al. (2015) proposed the GPstruct.

The GPstruct considers an MRF likelihood function represented in 3.8.

P(Y |X , f ) =
exp(∑c f (c,Xc,Yc))

∑y′εY exp(∑c f (c,Xc,y′c))
(3.8)

Where the hidden functions, f , are generically defined as f ∼ GP(0,k(c,c′)), that is, a GP

evaluated between cliques - a clique is a set of nodes such that every two are connected, follow-

ing undirected graphical models’ nomenclature. More practically, the f considered encompasses

unary and binary cliques, responsible for the unstructured and structured parts of classification,

respectively. The details of the elements that compose f , f un and f bin are presented below:

• f j
un is drawn from a GP and is the vector of unary functions of hidden function j, corre-

sponding to the jth label in the vocabulary:

f un ∼ GP(0,k(x,x′)) (3.9)

• f bin is a finite Gaussian (not indexed by X) and introduces the desirability of a certain label

being followed by another one. Kbin is of dimensions |v|× |v|. This follows the unindexed

interpretation of data structuredness defined in section 3.1

f bin ∼ N(0,Kbin) (3.10)

• These two hidden functions are considered simultaneously by:

p( f ) = p( f un)p( f bin) =
|v|

∏
j=1

N( f j
un;0,K j)N( f bin;0,Kbin) (3.11)

This is essentially a CRF with a more complex f , a GP and a multivariate Gaussian. In order

to compute this likelihood, a forwards-backwards belief propagation algorithm is employed. In

order to do inference, Bratières et al. (2015) uses Elliptical Slice Sampling (ESS), which is a

Markov Chain Monte Carlo (MCMC) procedure. Although the results are promising on text and

video processing tasks, this procedure is not scalable to large datasets and takes advantage of the

details of the likelihood considered (Galliani et al., 2016), limiting the model’s freedom. Bratieres

et al. (2014) also proposed a scalable version of the GPstruct based on ensemble learning, but

only presented results for 2-dimensional problems (grids) and not for the standard 1-dimensional

benchmarks used by Bratières et al. (2015) and Galliani et al. (2016), so these cannot be used in

this thesis for comparison purposes.

Galliani et al. (2016) showed that the GPstruct is actually a subset of a different model that is

amenable to Stochastic Variational Inference. This means that by using an alternative formulation

of the GPstruct, the likelihood dependence and scalability problems are overcome. This approach

is called "gray-box" because it does not require the details of the "structured likelihood" model (it

is not called "black-box" because it might require human intervention for some general Structured

Prediction problems). The proof of concept is done for linear-chain likelihoods (1 dimensional

structures like sentences), as in this thesis.
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These are successful applications of GPs to Structured Prediction, but there are at least two

roads that can be further explored: the complexity of the unary functions can be increased, via a

DGP for example, and the complexity of the binary functions can also be increased, by considering

them Gaussian Processes (or even DGPs) indexed on the inputs (X). This thesis looks into that

possibility: models for Structured Prediction with more complex priors.

3.4 Performance criteria

3.4.1 Test likelihood

Considering the models presented are probabilistic, they should predict correct classifications with

high probabilities. Therefore, the first metric to consider is the "test likelihood", which is broadly

defined as the probability of the model making good predictions, thereby representing the so called

"uncertainty quantification". There are (at least) two ways of considering this "test likelihood".

The simplest one, is referred to as "unstructured test likelihood":

Lunstruct =
N

∏
i=1

P(Y test
i ) (3.12)

where N is the number of test observations and P(Yi) is the probability of the model making a

correct prediction for the i-th word. This is called "unstructured" because it does not consider the

structuredness of data. What formula 3.12 implies is that the probability of the test data occurring

is the probability of each observation occurring, independently of each other.

Considering this thesis deals with structured datasets, and there are likelihood functions that

can accommodate this structure, it might make more sense to consider the "structured test likeli-

hood":

Lstruct =
Nseq

∏
i=1

P(Y test
i,1 ,Y test

i,2 , ...,Y test
i,Ti

) (3.13)

where Yi,n is the n-th word of the i-th sentence and Ti is the number of words of the i-th sentence.

P(Y test
n,1 ,Y test

n,2 , ...,Y test
n,Tn

) is computed using a specific structured likelihood function like the one

in equation 3.8. Edunov et al. (2017) proposed a variety of loss functions, one of which is essen-

tially the Lstruct , although it is named SeqNLL. Using the terminology in (Edunov et al., 2017), the

difference between Lunstruct and Lstruct is whether there is a token-level or a sequence-level focus.

This second metric definitely makes sense from a theoretical standpoint, but since the previously

reported results involve only Lunstruct , that will be the one used for model comparison purposes.

3.4.2 Error rate

The error rate is the standard metric for classification problems. What it represents is straightfor-

ward, and although probabilistic models do not technically optimize for this, its interpretability

makes it a strong metric to use. Additionally, this metric lends itself to any type of Machine
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Learning technique (like the non-probabilistic, non-Bayesian alternatives), therefore it provides

the benefit of comparability with other models.

In probabilistic models, in order to compute this error rate a zero-one loss scheme is usually

employed. Zero-one loss considers that the model’s final prediction for each observaation is the

class which is predicted with the highest probability, and then evaluates how many are correct

("one") and how many are wrong ("zero"). This is represented as:

L(yreal,ypred) = I(yreal 6= ypred)

Where I(a) is the indicator function (it equals 1 if a is True and 0 if a is False). The final Error

Rate will be the fraction of incorrect predictions from all of the test data.

In this thesis, the performance metrics have been implemented in 5 folds and the reported

values are an average across them.



Chapter 4

Models

Two models are proposed in this chapter, the SDGP1 and the SDGP2. These build upon the

work done by Galliani et al. (2016) which was explained in section 3.3, but there are three key

differences between them:

1. The original full GPs are approximated using Random Feature Expansions

2. The hidden functions can be deep - that is, compositions of GPs

3. Interactions between observations can be more complex (SDGP2 case)

The models presented in section 4.1 consider the original full GPs, that is, GPs without ap-

proximations, and the models in section 4.3 are approximated using Random Feature Expansions.

These are referred to as "full" and "approximate" models, respectively. While sections 4.1 and 4.3

illustrate how models are used to make predictions, sections 4.2 and 4.4 illustrate how the models

are trained. Section 4.5 includes details regarding the implementation of both the training and

predicting procedures.

4.1 Full Structured Deep Gaussian Processes

The objective of the model is to make predictions in Y for new observations using a deep network

of Gaussian Processes. However, the actual function used to make predictions is the likelihood

function: P(Y∗ | f ), which depends on the deep network. A high level view of the model is

represented in Figure 4.1 to clarify how these variables and functions interact.

29
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Figure 4.1: SDGP: a high level view

For a better understanding of the models proposed, the following considerations should be

regarded:

• Since sequences are considered independent, the likelihood should factorize over sequences:

P(Y∗ | f ) = ∏
Nseq
j=1 P(Yj | f j)

• For black-box likelihood models, the key element that differentiates models is f

• f has 2 components, f un and f bin, responsible for individual and pairwise components of

classification, respectively

• f has dimensions N× |v|, as it takes an input of N observations X , and outputs, for each

of them, the "desirability" of each label. |v| stands for the number of labels. These will be

converted into probabilities by the likelihood function.

• f un and f bin can be computed in a variety of ways. This thesis considers 2 possibilities,

resulting in 2 models: the SDGP1 and SDGP2. Both consider f un(xi) a vector with the

desirability of each possible label (output) to input xi: f un(xi) = (p̃1, p̃2, ..., p̃|v|), but they

handle f bin differently.

The next subsections explain how models SDGP1 and SDGP2 handle f un and f bin.

4.1.1 SDGP1

In the SDGP1, f un follows a DGP and f bin follows a multivariate Gaussian:

f un ∼ DGP(0,Kun)⇔ f un = ( f Nh
un ◦ f Nh−1

un ◦ . . .◦ f 1
un)(X) (4.1)

f bin ∼ N(0,Kbin) (4.2)

The relations between the inputs and outputs are represented in Figure 4.2. Each element yi

depends not only on xi (by means of f un) but also on the adjacent elements yi+1 and yi−1 (by means
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of f bin). For simplicity, it was considered that there was only one GP per unary layer. However,

the number of parallel GPs per layer can be another parameter to choose.

Figure 4.2: Undirected graph for Structured Prediction (SDGP1). Figure reproduced from
Bratières et al. (2015)

Figure 4.3 considers the same model (SDGP1) but makes the depth of the unary functions

explicit. This representation considers that the input variables are fed to every layer, an approach

called "feedforward".

Figure 4.3: Representation of the SDGP1 as a neural network

The implications of equations 4.1 and 4.2 on how the prior probability is computed are:

P( f ) = P( f un)P( f bin) =
|v|

∏
j=1

DGP(0,Kun, j)N(0,Kbin) (4.3)

Notice that while a GP becomes a multivariate Gaussian distribution after conditioning on X ,

this is not (necessarily) the case with a DGP. For that reason, the notation was kept with "DGP",

although this is after "seeing" the inputs. The kernels considered here are analogous to the ones
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considered by Bratières et al. (2015). Since the unary functions are independent of the binary

ones, the kernels are block diagonal matrices.

K =Cov( f ) =

[
Kun 0

0 Kbin

]
(4.4)

Additionally, each sequence is independent of each other, so Kun is also block diagonal.

Kun =


Kun,1 0 ... ... 0

0 Kun,2 ... ... 0

... ... ... ... ...

0 0 ... Kun,|v|−1 0

0 0 ... 0 Kun,|v|

 (4.5)

Kun, j is the N×N covariance matrix that is generated by the kernel function after evaluating

all the observations (X) with regards to label j.

Kun,i =


Kun,i,1,1 Ki,2,1 ... Kun,i,N−1,1 Kun,i,N,1

Kun,i,1,2 Kun,i,2,2 ... Kun,i,N−1,2 Kun,i,N,2

... ... ... ... ...

Kun,i,1,N−1 Kun,i,2,N−1 ... Kun,i,N−1,N−1 Kun,i,N,N−1

Kun,i,1,N Kun,i,2,N ... Kun,i,N−1,N Kun,i,N,N

 (4.6)

After choosing the desired kernel function (squared exponential, arccosine, linear, etc.), it is

possible to compute the kernel matrices. As a result, it is possible to compute f , which can feed

the likelihood function. This, in turn, will allow to produce predictions.

4.1.2 SDGP2: The unary and binary functions follow independent DGPs.

In this case, f bin is no longer a multivariate Gaussian which relies only on adjacent classifications,

it is an indexed function which relies on the inputs, X . The network architecture is represented in

Figure 4.4.
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Figure 4.4: Representation of the SDGP2 as a neural network

Both f un and f bin follow Deep Gaussian Process distributions:

f un ∼ DGP(0,Kun)⇔ f un = ( f Nh
un ◦ f Nh−1

un ◦ . . .◦ f 1
un)(X) (4.7)

f bin ∼ DGP(0,Kbin)⇔ f bin = ( f Nh
bin ◦ f Nh−1

bin ◦ . . .◦ f 1
bin)(X) (4.8)

In order to make predictions Y∗ for new observations, it is necessary to estimate the covariance

parameters of each layer θ
layer#
GP# , something that happens in both the SDGP1 and SDGP2. To do

that, the marginal likelihood is maximized with respect to the covariance parameters and network

weights. To compute the marginal likelihood, the integral in equation 4.9 has to be computed.

P(y | X ,θ) =
∫

P(Y | f Nh)P( f Nh | f Nh−1,θ Nh−1)∗ ...∗P( f 1 | X ,θ 0)d f Nh ...d f 1 (4.9)

Since the DGP is not necessarily a GP (or any other tractable stochastic process), the integral in

equation 4.9 is intractable. Therefore, in order to train and use this model, a variational distribution

will be introduced. Note that since this variational approximation is introduced in order to conduct

inference, the model itself is still considered "full".

A third possible architecture would be for f un and f bin to share a DGP, a concept analogous to

2 GPs "sharing a kernel", but this is left for future work.

4.2 Variational Inference and Learning

The main objective of training is estimating (inferring) the parameters of the DGP, that is, the

parameters characterizing every GP present. As mentioned before, the learning scheme for this

model will be Stochastic Variational Inference, which will approximate P( f | Y ) with q( f ). This
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method suits objective functions which can be decomposed as a sum of factors, which is the case

of the ELBO, as is evidenced in equation 4.10.

ELBO = Lell−KL[q( f )||P( f )] (4.10)

This objective function, the ELBO, has an expected likelihood term and a KL-divergence term,

just like the unstructured case presented in section 2.2. The only difference is that f now has of

two components, a structured and an unstructured one. The KL term can be computed analytically

if q and P follow Gaussian distributions (see Appendix A.3). The Lell term, however, has to

be estimated. Leveraging the work done by Galliani et al. (2016), an estimate of Lell and of its

gradients can be computed.

Lell =
Nseq

∑
n=1

Ln
ell =

Nseq

∑
n=1
〈logP(Y n| f n

un, f n
bin,Θ,Ω)〉qn( f n

un)qn( f n
bin)

(4.11)

∇λunLn
ell = 〈∇λun logqn( f n

un) logP(Y n| f n
un, f n

bin,Θ,Ω)〉qn( f n
un)qn( f n

bin)
(4.12)

∇λbinLn
ell = 〈∇λbin logqn( f bin,n) logP(Y n| f n

un, f n
bin,Θ,Ω)〉qn( f n

un)qn( f n
bin)

(4.13)

Where f n represents the hidden functions evaluated at sequence n and 〈�〉q represents an expec-

tation over q. The expectations in equations 4.12 and 4.13 are computed with respect to the

approximate marginal posterior q( f n) = qn( f n
un)q

n( f n
bin).

The Variational Inference strategy is straightforward for flat GPs, but when considering a

deep structure, key elements of the procedure break down, like considering q to be a Gaussian

distribution (q has to approximate a DGP structure, therefore it cannot simply be a Gaussian).

Therefore, this model and gradient estimates are not the ones used in this thesis. In order to

actually employ the model, another approximation will be introduced - Random Feature Expansion

(Rahimi and Recht, 2008), as well as the reparameterization trick, as mentioned in Chapter 2.

4.3 Approximate Model - Random Feature Expansions

After introducing Random Feature Expansions, the model becomes approximate - it is not a DGP

anymore. It is a Bayesian neural network, which is defined as a neural network with a prior

distribution on its weights (Neal, 1996). This is the model that this thesis actually implemented.

However, since the neural network is derived from the SDGP, there is a correspondence between

the network parameters and the original ones. For an RBF kernel, this correspondence is evidenced

in equations 4.14 and 4.15.

Φ
(l)
rb f =

√
(σ2)(l)

N(l)
RF

[cos( f (l)Ω(l)),sin( f (l)Ω(l))] (4.14)
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f (l+1) = Φ
(l)
rb fW

(l) (4.15)

The priors over the spectral frequencies and weights are respectively P(Ω(l)
. j ) = N(0,(Λ(l))−1)

and P(W (l)
.i ) = N(0, I). Each of the matrices Ω(l) has dimensions DF(l)×N(l)

RF and W (l) has dimen-

sions 2N(l)
RF ×DF(l+1) .

4.4 Approximate Model - Inference and Learning

The learning scheme is analogous to the full model, but now the hidden variables are Ω and W

instead of f . There is, however, one relevant nuance to consider. Since now there are two sets

of hidden variables, Ω and W , these will be handled one at a time, starting with W . This means

that at first Ω will be simply drawn from a prior, in an approach named "prior-fixed". However,

Ω could easily be variationally learnt alongside W . If Ω is resampled every time, the approach is

called "var-resampled", if it is sampled once and then the random parameter (see section 2.2.1) is

kept constant throughout training, the approach is called "var-fixed".

Considering, therefore, an analogous process to the full Gaussian case, the posterior over the

hidden variables W has to computed: P(W | Y,X ,Ω,θ). In order to do that, some characteristics

of the model should be highlighted.

• The layers are considered independent, that is, P(W un) = ∏
Nh,un−1
l=0 P(W un,l) and the same

for W bin

• W un,W bin behave just like f un, f bin, they are the new hidden function parameters.

• q(W ) is a variational approximation of the posterior and is defined by q(W )= q(Wun)q(Wbin)=

∏i, j,l N(mi, j,l
un ,(s2)i, j,l

un )∏i, j,l N(mi, j,l
bin ,(s

2)i, j,l
bin ) where m�,�,� and (s2)�,�,� are the variational pa-

rameters, and i represents the node from which W "departs" and j represents the node where

W "arrives".

Regarding the training scheme, the objective function to consider (ELBO) will be different de-

pending on the architecture considered. A derivation for the new ELBO will be done for the most

complex case, the deep model with indexed pairwise variables (SDGP2). This derivation will

follow the "prior-fixed" approach, that is, it will consider that the posterior only regards W and

not Ω. The ELBO for the other approaches (var-fixed and var-resampled) and for SDGP1 can be

easily derived based on this derivation, simply by considering whatever hidden functions are being

considering instead of W .

At first, the "spectral frequencies", Ω, will be considered fixed, in an approach called "prior

fixed". However, these can also be learnt variationally, just like W .

logP(Y | X ,Ω ,Θ) = log
∫

P(Y | X ,W,Ω ,Θ)P(W )dW
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= log
∫ P(Y | X ,W,Ω ,Θ)P(W )

q(W )
q(W )dW

= logEq(W )
P(Y | X ,W,Ω ,Θ)P(W )

q(W )

≥ Eq(W )

(
log

P(Y | X ,W,Ω ,Θ)P(W )

q(W )

)

= Eq(W )

(
logP(Y | X ,W,Ω ,Θ)])+Eq(W ) log

P(W )

q(W )

)

= Eq(W ) (logP(Y | X ,W,Ω ,Θ))−KL [q(W )||P(W )])

= Lell−KL[q(W )||P(W )] (4.16)

The variational distribution is now on the new hidden functions, or, using neural networks’ ter-

minology, "hidden layers". In equation 4.16, q(W ) = q(Wun)q(Wbin) and P(W ) = P(W un)P(W bin),

so the ELBO can be further decomposed:

Lell−KL[q(W un)||P(W un)]−KL[q(W bin)||P(W bin)] (4.17)

where Lell is computed using a conditional likelihood function (which can be specified by

the user, but the one used here is the one provided by Bratières et al. (2015)), and W is computed

using the reparameterization trick. Such an objective function lends itself to Stochastic Variational

Inference perfectly, as it is a sum of two independent terms, and one of them (Lell term) is a sum

of other independent terms itself, as the likelihood parallelizes over sequences.

4.5 Implementation details

The code was implemented in the high-level programming language Python. It makes extensive

use of the Tensorflow framework by Abadi et al. (2016), which is a symbolic math library devel-

oped by the Google Brain team. This framework allows to build neural networks as computational

graphs, which allows for significant computational improvements. Furthermore, this library in-

cludes an Automatic Differentiation tool which allows to do optimization simply by providing a

function and its parameters. For this thesis, the optimization process or neural network training

has been done by feeding the ELBO term to Tensorflow"s Automatic Differentiation scheme. This

means that the gradients of the ELBO that have been computed in section 4.4 were not actually

hard coded in the model.

The code for this thesis builds upon the code built by Cutajar et al. (2016) and Galliani et al.

(2016). The starting point was the former, which had been built considering only "unary" functions

and therefore for unstructured classification. A series of changes had to be introduced:
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• Processing sequences instead of observations: The first change is the processing of the data.

Instead of handling observations individually, they have to be considered as sequences. The

datasets cannot be broken apart arbitrarily anymore for mini-batch optimization, sequences

must be preserved. The Lell term will be built as a sum of sequential likelihoods (seqell),

and the sequence order is shuffled in every epoch. Galliani et al. (2016) had stored all the

matrices in Sparse Tensors (object type in Tensorflow), but this thesis worked with dense

tensors.

• Creating a new KL divergence: The KL divergence that the SDGP model considers is differ-

ent than the ones previously considered. This introduction will affect the objective function

(ELBO).

• Creating a new objective function: Although the objective function is the ELBO, since the

optimizer does minimization, the objective function will be the ELBO’s negative version:

NELBO=−ELBO=KL−Lell . To quickly evaluate if the optimization is working properly,

one should see if the NELBO is decreasing. To identify the root cause of any problem with

the ELBO, it is simple to evaluate which term, the KL or the NLL =−Lell is responsible.

• Measuring uncertainty quantification: Since the NLL is already being reported for the afore-

mentioned reasons, the uncertainty quantification measure (test likelihood) will be shown

in its NLL form, that is, instead of reporting the test likelihood itself, this implementation

reports the negative of its logarithm.

• Order of model implementation: The SDGP models introduce many changes upon the un-

structured DGP (Cutajar et al., 2016). For that reason, such changes will be introduced

one at a time, to evaluate their impact. Firstly, the f bin will be introduced and only one

layer will be considered. This will evaluate how good the Random Features approximation

is compared to the inducing inputs one (Galliani et al., 2016). Then, this network will be

made deep, in order to evaluate how the additional freedom of a deep network materializes

in performance. At last, the indexing on X will be introduced in order to compare how this

type of indexing improves the performance compared with the Y -based indexing.

4.5.1 Unindexed hidden functions (SDGP1)

In this case, f bin is introduced "between the Y "s". f bin is a |v|x|v| matrix with the desirabilities of

adjacent label combinations, and it is obtained from a multivariate Gaussian. The parameters of

this Gaussian are set to "trainable". This is expected to improve the quality of predictions, which

will be seen in the increase of the Lell term, and the penalization comes in the form of an additional

KL loss. This new KL loss between f bin and its variational posterior is computed using the source

function provided by Galliani et al. (2016).

Additionally, the memory problems caused by large datasets should be addressed. While the

flat SDGP1 ran smoothly, when the depth was increased and the feedforward introduced, each

node went from a few dimensions to thousands due to the large dimensionality of the inputs. For
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that reason, a good solution was to reduce the dimensionality of the data. The dimensionality was

reduced from 2× 106 to 100, by multiplying the input data by a weights matrix, and optimizing

the weights: Xreduced = XoriginalMreducer, where Xoriginal is the original input matrix of dimensions

N×D, Mreducer is a matrix of variational parameters of dimensions D× 100 and Xreduced is the

reduced inputs matrix, with, consequently, dimensions N×100. This reduction solves the memory

issues, but the freedom of fit is naturally affected, and this can introduce overfitting in the model.

4.5.2 Indexed hidden functions (SDGP2)

This presents a more complex case, as there is a considerable increase in the number of hidden

functions. The new hidden pairwise functions (W and Ω) have to be created in parallel to the

previous unary ones, and these will have different dimensions, as f bin and f un also have different

dimensions. Although f bin is the result of a neural network, in the end its dimensions will be

T n×|v|2, which are then reshaped to T n×|v|× |v|. The ELBO will then have to include all this.

Regarding the KL term, since f bin is of the same type as f un and they are parallel (and therefore

independent), the same function used to compute the KL loss of f un can be used for f bin. The

difference is in the input and output dimensions but this does not pose a problem.

Regarding the Lell term, there is now a problem, since there is no likelihood function available

that accommodates an f bin whose dimensions are T n×|v|× |v|. The original structured likelihood

provided by Bratières et al. (2015) had to be altered into a new "indexed structured likelihood",

which, for every element X conditions on that element and considers only the portion of f bin of

size |v|× |v| that corresponds to that X .

After introducing these changes in the network, the KL computation, the likelihood (which

affects predictions and the Lell term), the model is ready to be trained and used.

4.5.3 Hyperparameters

Most model hyperparameters to consider have already been shown in the model formulation: num-

ber of hidden layers, number of parallel GPs per layer, the kernel in the original GPs, learning

strategy for the Ω (prior-fixed, var-fixed, var-resampled), the number of random features in the

expansion, the use of Automatic Relevance Determination (or not), the number of Monte Carlo

samples in train and test, learning rate, the optimizer that Tensorflow should use and the duration

of the experiment (in time or epochs). However, there are 3 particular situations related to the

implementation itself that require an additional explanation.

In the original implementation (Cutajar et al., 2016), the network parameters (Θ) are not ini-

tialized as trainable variables, as that would be unstable in terms of optimization. Instead, they

are set to fixed for a number of initial epochs. Additionally, although the number of Monte Carlo

(MC) samples to use in training is an input for the user (and hyperparameter), only one MC sample

is considered during the first half of the experiment duration. Both strategies are kept in this thesis.
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Secondly, for large datasets it is not computationally feasible to compute the true likelihood

function (Bratières et al., 2015). For that reason, an approximation of the likelihood called Piece-

wise Pseudolikelihood (Sutton and McCallum, 2007) has been implemented, thereby making it

possible to run this model on large datasets.

A more detailed explanation of all the hyperparameters can be found in the Appendix A.4.



Chapter 5

Results and discussion

As mentioned in chapter 4, two models have been introduced, the SDGP1 and the SDGP2. As

mentioned in the same chapter, there are three key factors that these models bring, and the ob-

jective of this section is to evaluate the impact of them both individually and combined. For the

SDGP1, two different architectures were used (flat and deep) and for the SDGP2, only the flat case

was analyzed.

Regarding the term of comparison for the SDGPs models, the main goal is to beat the state-of-

the-art models. However, since there are many ways of looking at these models, there can be

many terms of comparison. For a better and holistic understanding of the functioning of SDGPs

models, these should be considered. SDGPs can be thought of as multi-label classification mod-

els that bring structure to deep models, or multi-label classification models that bring depth to

structured models, so all those perspectives should be analyzed. The baselines considered and the

corresponding expected performances are:

• Standard unstructured multi-label classification technique (Multinomial Logistic Regres-

sion): This is expected to have the worst performance from all the models, as it is the most

basic technique and does not account for structure. The SDGP is expected to beat this

benchmark.

• Unstructured DGPs (Cutajar et al., 2016): the SDGP brings structure to such models and is

therefore expected to beat this benchmark.

• State-of-the-art structured multi-label classification technique (CRF): the SDGP is, in a way,

a complex CRF, so it is expected to beat this benchmark.

• Structured flat GP (Bratières et al., 2015; Galliani et al., 2016): ceteris paribus, that is, if

the only change was introducing depth, then the SDGP would be expected to beat non-deep

structures, at least for appropriate amounts of data. However, there are many intricacies that

break the ceteris paribus assumption. In this field, these models, alongside CRFs, represent

the best that has been achieved in performance (in the datasets used for model evaluation).

40
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In order to compare these models, it is important that the performance metrics are always computed

in the same way. For every model, the datasets have been divided into 5 folds and an average over

the performance metrics in each one of them has been computed. These performance metrics are

computed after 4 hours of training for each fold, following the approach done by Galliani et al.

(2016).

The rest of the chapter contains 3 sections:

1. a description of the datasets considered

2. how the hyperparameter tuning was performed - a look into model training

3. an evaluation and comparison between the aforementioned models and the SDGPs - a look

into model testing

5.1 Datasets

The purpose of these experiments is to analyze whether SDGPs can compete with the state-of-

the-art techniques. For that reason, the benchmarks used were the same as used by Bratières et al.

(2015) and Galliani et al. (2016). These represent typical NLP problems and the source is the

CRF++ toolbox 1. In particular, the datasets are: Base NP, Chunking, Segmentation and Japanese

NE. A description is presented below (Srijith et al., 2014).

Base NP is a noun phrase identification problem. A noun phrase consists of a noun (or pro-

noun) and the modifiers that affect it. For example: "the beautiful person" or "that man over there"

are noun phrases. There are 3 labels for words, depending on whether they are the first word of a

noun phrase, a non-first word of a noun phrase, or if they do not belong to a noun phrase.

Chunking is a word labelling problem. Here, the task is to identify whether certain con-

stituents belong to a noun-phrase, a verb-phrase, and others.

Segmentation identifies segments in Chinese ideograms. The labels are "B" and "I", for

"beginning of word" and "inside a word", and each unit of the Chinese text has one label.

Japanese NE is a named entity recognition problem. It labels occurrences of named entities

in text. Examples of named entities are: "animal", "person", "building", "organization", etc. and

here, each Japanese word is assigned a label with the named entity it represents.

In addition to the small datasets shown above, an additional large dataset was considered.

ConLL is the large dataset used to evaluate the scalability of the model. This dataset will be han-

dled differently than the others. Due to its dimensions, no cross-fold validation will be employed,

only a train and test split is considered.

These are all sets of structured objects, where each structured object is composed of Tn obser-

vations, and N is the total number of observations, where N = ∑
Nseq
n=1 Tn and Nseq is the number of

structured objects.

1This was developed by Taku Kudo and can be found at https://taku910.github.io/crfpp/
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Table 5.1: Datasets’ information

BaseNP Chunk. Segm. Jap. ConLL

Labels 3 14 2 17 23

Features 6438 29764 1386 102,799 2,035,523

Sentences 300 100 36 100 8936/2012

Avg. training words 3740 1156 942 1315 211,727

5.2 Hyperparameter tuning

Although the model can accommodate 16 parameters from the user, at a first stage it would not be

sensible to optimize them all. Some parameters have already been studied for other problems, so

those will be taken from the literature (Cutajar et al., 2016; Galliani et al., 2016), and others are

more problem-specific, so they will be tuned. The hyperparameters of interest were identified as:

the learning strategy, the learning rate, the kernel of the original GPs and the number of random

features. The number of layers is not considered a hyperparameter, since models with different

layers are considered models with different architectures, so they will be analyzed separately. The

learning strategy is also not a hyperparameter per se, since it represents a structural change on the

way inference is conducted.

5.2.1 SDGP

The hyperparameter tuning was done considering the SDGP1 flat model and the Base NP dataset.

The hyperparameter tuning can be done for every dataset, but considering there are 5 degrees of

freedom and it takes 80 hours on one Graphical Processing Unit (GPU) to run the four benchmarks,

for research purposes, the hyperparameters were chosen based on the largest of them - Base NP.

It should be noted that since all the problems are similarly formulated NLP tasks, it is expected

that the optimal hyperparameters for each task do not differ drastically. Due to the time required

to run experiments, the set of possible values for the hyperparameters that can be tried is also

considerably reduced. For that reason, the experience of the research team was paramount to

sensibly choose good candidates for the parameters.

In order to verify if the optimization is working properly, the evolution of the ELBO was

considered. In order to select the best hyperparameters, the ones providing the lowest Error Rate

were chosen. The evolution of the Error Rate is presented alongside the objective function’s

evolution (in its negative form, the NELBO), and the evolution of Lunstruct can be found in the

Appendix. The starting parameters for the flat SDGP are based on the recommended parameters

for classification by Cutajar et al. (2016), but these quickly proved to be sub-optimal. Table 5.2

splits the parameters into the ones that are related to the original SDGP model itself, the ones that

are related to the implementation of the SDGP model, and the ones that are specific of the resulting
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neural network (and its optimization strategy). The parameters of interest were altered one by one,

and the ones that produced the best performance were kept. This process is illustrated below.

Table 5.2: Initial hyperparameters

Model Implementation Neural network

# layers 1 Ω fixed (epochs) 1000 Learn Rate 0.01

Learn strategy var-fixed Θ fixed (epochs) 4000 Optimizer adam

ARD True # train samples 100 Batch size 200

Random Features 1000 # test samples 100

GPs / layer 1 Duration (min) 60

Learning Strategy and Learning Rate Figure 5.1 illustrates the optimization process with

these parameters. In addition to the variable being optimized (NELBO), the evolution of the Error

Rate is also presented. Looking at the evolution of the NELBO, it is clear that there is an optimiza-

tion problem, given that this quantity is supposed to be minimized. Two paths can be followed at

this point. The simplest approach is to consider a more stable learning scheme: prior-fixed. The

more complicated approach is analyzing the hyperparameters characterizing the results in Figure

5.1 and tuning them until the optimization flows smoothly. Both approaches were applied. The

optimization process considering the prior-fixed learning strategy is illustrated in Figure 5.2. As

predicted, there were no optimization problems with this strategy. However, since var-fixed has

been reported to have better results than prior-fixed (Cutajar et al., 2016), an effort to optimize

var-fixed correctly should be conducted. The hyperparameter most related to the learning process

itself and that can affect how the algorithm gets stuck on local optima is the learning rate. For that

reason, this parameter was reduced from 0.01 to 0.001, and this is considered the beginning of

the hyperparameter tuning process, so only the dataset base NP will be considered from now on.

Additionally, differences between different folds will now also be evident, and the results for each

of the 5 folds will be illustrated. The resulting optimization process is represented in Figure 5.3.

This reduction in learning rate was enough to solve the optimization problem, and the var-fixed

learning strategy can be further used. The performance metrics are compared between var-fixed

and prior-fixed in Table 5.3, and var-fixed outperforms indeed prior-fixed, validating the results

presented by Cutajar et al. (2016).

Table 5.3: Performance comparison between learning strategies - prior-fixed and var-fixed

Error Rate NLLunstruct

Prior-fixed 6.60% 732

Var-fixed 5.18% 550

Kernels For the results to be perfectly comparable to the ones presented by Galliani et al. (2016),

a linear kernel should be used. Unfortunately, in order to apply Random Feature Expansions, the
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Figure 5.1: Structured experiments with original parameters

Figure 5.2: Structured experiments with prior-fixed as learning strategy

Figure 5.3: Experiments with var-fixed and LR=0.001
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Figure 5.4: Structured experiments with var-fixed, LR=001 and kernel=arc-cosine

kernel has to be strongly stationary (Rahimi and Recht, 2008), which implies linear kernels cannot

be used. Still, the RFE has been formulated for the arc-cosine kernel as well, aside from RBF,

so this kernel should also be tested. Figure 5.4 illustrates the results of introducing the arc-cosine

kernel - an improvement in Error Rate (to 4.75%) and NLLstruct (to 552).

Random Feature Expansions Then, it is still possible to increase the number of random fea-

tures to make the approximation closer to a GP. In the next experiments, an increase from 1000 to

2000 random features was considered. The results can be seen in Figure 5.5.

The "right" number of random features is one that makes the network "close enough" to a

GP. When an increase in random features does not lead to an increase in performance, it probably

means the "right" number of features has been found. For that reason, once such a value is found,

this thesis employs it in all the GP expansions, which will imply that all the layers will have the

same number of nodes. This does not have to be the case, though, as it would be possible to

employ lower values for certain GPs and higher values for others.

The results with 2000 Random Features are similar to the results with 1000, even slightly worse.

Figure 5.5: Structured experiments with var-fixed, LR=001, kernel=arc-cosine and 2000 random
features



Results and discussion 46

This means that 1000 random features are probably already high enough to fully characterize a

GP, and there is no necessity to further increase them. Since an increase in random features brings

complexity to the model, the final choice was 1000.

Table 5.4: SDGP1 Performance on baseNP after hyperparameter tuning

Error Rate NLLstruct

Learn Rate = 0.001 5.18% 550

Kernel = Arccos 4.75% 552

RFF = 2000 4.93% 572

After this analysis, the model parameters are set.

5.2.2 Multinomial Logistic Regression

Regarding the Logistic Regression (Multinomial Logistic Regression), an important parameter to

be chosen is the regularization constant. In this context, regularization consists of adding extra

information in order to prevent overfitting. This materializes in penalizing the objective function

by a "regularization term" which is amplified by a constant.

ob j = minΘ(PredictionLoss(Θ)+
1
C

RegularizationLoss(Θ))

Typically, in order to choose the hyperparameters, the original dataset is split into: training,

validation and testing. However, in this case, if this model is to be comparable to the others, then it

has to use 80% of the data for training and 20% for testing, which means an independent validation

set cannot be created. The strategy used to bypass this problem was using various values for C,

splitting the training data on "training-training" and "training-validation", choosing the C with the

best Error Rate on the validation set, and then evaluating the whole model by training on the whole

training data and testing on the test data. Initially, the standard parameter for C was 1, for which

the results are presented in table 5.5.

Table 5.5: Multinomial Logistic Regression performance on different datasets

BaseNP Chunk. Segm. Jap.

Error Rate 5.02% 8.53% 14.93% 5.50%

NLLunstruct 559 476 251 608

To study the effect of C and to try to improve the results, for each dataset, the training data

was split into train (80%) and validation (20%) and, for each value of C (C ∈ {0.01,0.1,1,1,10}),
this validation set was evaluated. The C responsible for the best performance was the chosen

one. Although the best parameters were not always 1, the results after this validation procedure

are considerably similar to the initial ones, and are shown in the next section in table 5.7, so it
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appears that using a regularization constant different than 1 does not have a significant impact on

the results.

5.3 Models comparison

The results will be reported first for each technique (and all datasets) and in the end a table with

the top results from every technique will also be presented.

5.3.1 Small datasets

State-of-the-art models

The initial benchmarks come from previously studied models and reported results. These models

are Conditional Random Fields (CRFs), GPs with Elliptical Slice Sampling (GP-ESS) (Bratières

et al., 2015) and GPs with unindexed pairwise functions with Variational Inference (GP-Var) (Gal-

liani et al., 2016). The best results for Error Rate and NLL are shown in table 5.6, as well as the

model that originated them.

Table 5.6: Current state-of-the-art performance on different datasets

Error Rate NLLunstruct

Base NP 5.10% (ESS) 603 (GP-Var)

Chunking 8.50% (ESS and CRF) 407 (GP-Var)

Segmentation 14.5% (GP-Var) 253 (CRF)

Japanese NE 5.20% (CRF) 339 (GP-Var)

There is not one single model that beats all, but it seems clear that the advantage of the GP-Var

lies within better quantification of certainty, as evidenced by the NLLunstruct .

Standard unstructured multi-label technique (Multinomial Logistic Regression)

This model produced surprisingly good results surprisingly quick. While all the other models were

set to run for 4 hours, this one was only trained for some seconds (it just followed sci-kit learn’s

procedure) and achieved results comparable to the state-of-the-art. This suggests that either the

data is not highly structured after all, or that the so called structured models are not really capturing

the structuredness well. The results that are presented in bold outperform the previously reported

results.
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Table 5.7: Multinomial Logistic Regression performance on different datasets after regularization
optimization

BaseNP Chunk. Segm. Jap.

Error Rate 5.08% 8.67% 14.99% 5.34%

NLLunstruct 624 454 254 645

Unstructured DGPs

These experiments consisted of considering the DGP model (Damianou and Lawrence, 2012) but

with only one layer - a flat GP. This is equivalent to having a single GP expanded via Random Fea-

ture Expansions. The expectation was that this would yield considerably worse results compared

to the state-of-the-art, since this does not incorporate the structuredness of the data in any way.

The resulting Error Rate and NLL test are presented in table 5.8. Although these results are worse

than the ones reported in the state-of-the-art, the difference is not substantial. The NLL on the

Segmentation dataset is even better than what was previously reported. This, once again, suggests

that either the datasets are not highly structured or the state-of-the-art models are not considering

this structure properly.

Table 5.8: Flat GP with RFE: Performance on different datasets

Error Rate NLLunstruct

Base NP 5.58% 646

Chunking 9.89% 431

Segmentation 16.28% 249
Japanese NE 5.98% 370

Unindexed SDGP (SDGP1)

In order to evaluate the impact of using Random Feature Expansions, the first architecture to be

analyzed is a flat one (1 hidden layer) - the results can be seen in Table 5.9. This model provides

a general improvement on the Unstructured DGP and also on the previously studied structured

models. In terms of NLL it is also clearly better than the Multinomial Logistic Regression, but in

terms of Error Rate the Multinomial Logistic Regression is similar, or even better. For 5 out of

the 8 reported quantities, this model represents an improvement over the state-of-the-art. This is

not a representation of the power of deep models yet, this only represents how powerful Random

Feature Expansions are (the first factor in chapter 4).
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Table 5.9: Unindexed flat SDGP performance on different datasets

Error Rate NLLunstruct NLLstruct

Base NP 4.96% 566 555

Chunking 9.30% 386 491

Segmentation 16.98% 331 399

Japanese NE 5.06% 318 388

However, the deep architecture is the one expected to achieve the best results. It should be

noted, however, that deep architectures with small amounts of data are prone to overfitting, due

to the high number of parameters that need to be optimized with only a few inputs. Therefore,

it is possible that the deep network underperforms compared to the flat one in the small datasets.

However, this should not be the case for large datasets. The next model is a 10 layered SDGP1, it

is analogous to the flat SDGP but instead of having a flat structure it has a deep one with 10 hidden

layers.

Table 5.10: Unindexed SDGP1 (10 layers) performance on different datasets

Error Rate NLLunstruct NLLstruct

Base NP 6.67% 804 918

Chunking 13.16% 560 759

Segmentation 17.72% 271 333

Japanese NE 6.78% 631 657

As hypothesized, the deep model does not outperform the flat model on small datasets, as there

is a high potential for overfitting considering the number of parameters to optimize and reduced

size of data available. A model with 5 layers was also tested and its results are presented in the

Appendix.

Indexed SDGP (SDGP2)

Under the hypothesis that the interactions between adjacent labels are more dependent on the

inputs (X) than on the labels themselves, this should be the most promising model. The objective

is to evaluate the indexing on the flat structure, and if it represents an improvement over the flat

SDGP1, following the analysis to deeper structures. However, the results, which are presented in

Table 5.11 are not extremely satisfying, and they are clearly worse than the Unindexed SDGP1.
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Table 5.11: Flat Indexed SGP performance on different datasets

Error Rate NLLunstruct NLLstruct

Base NP 7.17% 1865 2672

Chunking 9.88% 713 1045

Segmentation 22.08% 1923 3228

Japanese NE 5.89% 1314 940

There is a variety of plausible justifications for this. The first one is that the interactions depend

indeed more on the labels than on the inputs, which is the implicit hypothesis in the structured

likelihood function originally presented (Bratières et al., 2015). However, since this model has

a considerably higher number of variables, perhaps it would require different hyperparameters

(the ones used were the same as in the unindexed SGP), or it might also be due to overfitting.

Considering the poor performance of the Indexed SDGP with a flat structure the analysis of the

deep indexed SDGP was not followed.

Final comparison between models

The SDGP1 model is competitive with other techniques. For 6 out of the 8 metrics of interest,

models implemented in this thesis achieved better results than the ones reported in the state-of-

the-art, although the improvements were not significant. Since these datasets have been studied for

a long time, one possibility is that the performances achieved are close to the best that can possibly

be done. Since so many different approaches have been tried, from Bayesian Deep Networks (this

one) to full Gaussian Processes and CRFs, this explanation is plausible. On the other hand, it

was also seen that the performances on these datasets using different models is never completely

disparate, which can suggest insufficient structure within the data, or insufficient ability to capture

such structure by the structured models. The latter is not very likely due to the long term success

of some techniques like CRFs. A similar study between the models used in this thesis but with

different datasets would clear these doubts.

Table 5.12: Current state-of-the-art performance on different datasets

Error Rate NLLunstruct

Base NP 4.96% (SDGP1) 566 (SDGP1)
Chunking 8.50% (ESS and CRF) 386 (SDGP1)

Segmentation 14.5% (GP-Var) 249 (DGP)
Japanese NE 5.06% (SDGP1) 318 (SDGP1)

5.3.2 Large datasets

To evaluate the scalability of this model, a large dataset was studied. This dataset was evaluated

with the most promising models, based on the results reported in the previous subsection: flat
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SDGP1 and the Multinomial Logistic Regression, and also on the deep SDGP1 model. The results

are reported in table 5.13.

Table 5.13: Performance of different models on large datasets

Error Rate NLLunstruct NLLstruct

Multinomial Logistic Regression 4.22% 7897 -

Flat SDGP1 7.19% 13476 10717

Deep SDGP1 4.17% 7222 4942

The Error Rate and NLLunstruct for the SDGP1 seem to be the best reported so far, but the

difference to the Multinomial Logistic Regression is, once again, not substantial. It is definitely

puzzling that a basic unstructured classification model manages to almost outperform every Struc-

tured Prediction algorithm. Like before, there are 2 potential takeaways here, either the data is

not highly structured, or the data is indeed highly structured but the SDGP model (and the other

models reported) is not fully capturing this.
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Conclusion

This thesis introduced a new formulation of Deep Gaussian Processes for the problem of Struc-

tured Prediction. Structured Deep Gaussian Processes combine the non-parametric flexibility

and probabilistic approach of Gaussian Processes with the scalability of neural networks, thereby

bridging the gap between these two techniques.

Full Deep Gaussian Processes consider a sequence of Gaussian Processes to make predictions,

but this model is converted into a Bayesian neural network using Random Feature Expansions in

order to make it scalable. Different variations have been considered based on: i) type of dependen-

cies being modeled (whether the structuredness in Y depends on adjacent Y elements - SDGP1,

or on adjacent X elements - SDGP2), and ii) model characteristics (number of hidden layers, ran-

dom feature expansions, and others). The SDGP1 model was the central focus of this study and it

proved to be the highest performing model, with Error Rates and Uncertainty Quantification that

match and outperform other state-of-the-art methods like CRFs, Structured GPs with Elliptical

Sliced Sampling and GPs with Automated Variational Inference, both in small and large datasets.

It was identified that the best performing kernel is the arc-cosine one. One thousand random fea-

tures provides a good enough approximation, and learning rates of 0.01 can cause optimization

issues, so the recommended value is 0.001. Additionally, the general consensus that deep struc-

tures suit large datasets better was also verified, as the flat model outperformed the deep one on the

small datasets, but the deep one clearly outperformed the flat one on the large dataset considered.

The SDGP2 was also explored, but to a lesser extent - its flat version was applied to small ex-

periments. This occurred both due to the limited amount of time available for this project and due

to the low performance achieved in comparison with both the SDGP1 and the other benchmarks.

A surprising and relevant takeaway from this study was that considerably complex models like

SDGPs should be carefully analyzed before being employed in a problem, as there can be simpler

and better alternatives. While a deep Bayesian structure can, in principle, identify highly complex

relationships and provide a lot of insights regarding the uncertainty of the predictions, simpler

methods like the Multinomial Logistic Regression might be capable of achieving comparable re-

sults in considerably less time (a few seconds instead of hours to achieve the same performance

metrics).

52
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For future work, a number of directions, theoretical and practical, can be further explored. On

the theoretical side, the SDGP2 (and the SDGP1 as well, but to a clearly lesser extent) can be fur-

ther developed in terms of: 1) dimensionality reduction and 2) hyperparameter tuning. Although

dimensionality reduction is a requirement for this model to run, the particular scheme imple-

mented was not especially tailored to the problem and/or dataset, so using a more advanced one

like Principal Component Analysis (F.R.S., 1901) or Non-negative Matrix Factorization (Sra and

Dhillon, 2006) might improve both the scalability of this model and its performance. Due to time

constraints, the hyperparameters were chosen based on one of the small experiments with SDGP1.

However, SDGP2 introduces a considerable amount of variables by introducing a parallel network

and every experiment is different, especially when considering a large one compared to small

ones. Therefore, tailoring the hyperparameters to the specific dataset and model being analyzed

is expected to bring improvements over the reported performance. Additionally, considering the

bridging between GPs and neural networks, techniques from the latter can be further employed,

namely dynamic learning rates, different nodes (random features) for each GP/layer, perhaps even

considering dropout, although GPs usually do not need additional regularization schemes. Addi-

tionally, different architectures can be considered. For example, in the indexed model, SDGP2,

making the unary and binary networks share nodes ("shared kernels") would reduce the number

of variables considerably, which could result in a performance improvement. Lastly, a more ex-

tensive study and comparison between these and other state-of-the-art models using other datasets

is also recommended. Throughout this thesis it became clear that the increase in performance

brought by structured models was not as high as expected, and a potential reason for that is lack

of structuredness in the datasets, so different datasets should also be studied.

On the practical side, although the SDGP1 model has achieved competitive results in text pro-

cessing tasks, more innovative applications could be considered. Structured prediction can have

a considerably diverse span of applications, especially in the industrial world, where sequential

processes and their optimization are widespread. Throughout this thesis, a series of typical in-

dustrial examples have been introduced with the aim of motivating practitioners to employ these

methods in their fields. In this context, a study comparing the best structured prediction models

in the probabilistic field (like CRFs and GPs) with the best ones from the non-probabilistic field

(like Convolutional Neural Networks) could provide a better insight into the trade off between

uncertainty quantification and computational costs from the practical point of view.
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Appendix A

Appendix

A.1 Jensen’s Inequality

Jensen inequality is the generalization of the statement “the secant of a convex function lies above
its graph”. Mathematically, this is stated in equation A.1 and its 2-dimensional version can be
visualized in picture A.1.

f (E[X ])≤ E[ f (x)] (A.1)

Figure A.1: Illustration of Jensen’s Inequality in 2 dimensions. The red line, representing function
the convex function f , is below its secant, represented by a blue line.

A.2 Alternative derivation of the generic ELBO

At first, it might not be immediate how the introduction of this new functional q is related to the
evidence. Consider the evidence equation again, now with the X’s removed for notation simplicity:
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P(Y ) =
∫

P(Y | f )∗P( f )∗d f

A couple of things are to be noted: 1) if a KL-divergence is to appear, a logarithm will have
to be applied 2) if q( f ) is to be related to the objective function, then q( f ) will also have to be
introduced. Therefore, consider logP(Y ) instead of P(Y ) and multiply and divide by q( f ) inside
the integral:

logP(Y ) = log[
∫ P(Y | f )P( f )

q( f )
q( f )d f ]

Having done these operations, one ends up with the logarithm of an expectation over q( f ):

logP(Y ) = log[Eq( f )

∫ P(Y | f )P( f )
q( f )

]

So far, this does not seem to have helped much, as this expression is not really tractable as
well. As a result, this is where ’Jensen’s Inequality’ turns out to be helpful. This inequality allows
to bound the evidence by another computable term.

logP(Y ) = log[Eq( f )

∫ P(Y | f )P( f )
q( f )

]≥ Eq( f ) log
∫ P(Y | f )P( f )

q( f )

Now, simple logarithm rules and the integral operator’s linearity eliminate this complicated
term:

= Eq( f )(log[P(Y | f )])+Eq( f )(log[
P( f )
q( f )

])

Which is a sum between the expected log likelihood and the KL divergence between the vari-
ational posterior and the prior.

= Lell−KL[q(F)||p(F)]

A.3 Expression for KL divergence between Gaussians

Given P1(X) = N(µ1,σ
2
1 ) and P2(X) = N(µ2,σ

2
2 ):

KL(P1(X)||P2(X)) =
1
2
[log(

σ2
2

σ2
1
)−1+

σ2
1

σ2
2
+

(µ1−µ2)
2

σ2
2

]

A.4 Model hyperparameters

• NL: Number of hidden layers

• DF: Number of parallel GPs per layer

• Kernel to consider: The expansions have been defined for the RBF and arccosine.

• Iterations to fix Ω and Θ: These parameters are set until a certain number of iterations after
which they start being optimized. This was introduced to solve optimization problems.
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• Learning strategy for Ω: the spectral frequencies can be learnt variationally (with fixed
randomness or not - var_fixed or var_resampled) or simply drawn from a prior (prior_fixed).
Cutajar et al. (2016) has shown that var_resampled appears to be too unstable, so for that
reason only prior_fixed and var_fixed have been considered.

• RFF: Number of Random Features. The higher this value is, the closer the model is to a full
GP. However, as it increases, more computational power and memory are required.

• Learning Rate: The rate at which the model is updated. If this value is too high, optimization
problems can occur, as it might jump around local minima. If it is too low though, it might
take too long to optimize.

• Automatic Relevance Determination (Neal, 1996): ARD is related to the way the kernel
considers each dimension of the inputs. In essence, it allows to automatically determine
the relevance of each dimension. If a dimension does not affect the output, throughout the
optimization its weight will tend to 0. All the experiments were done with ARD.

• Number of Monte Carlo samples: The expected log likelihood was computed with Monte
Carlo sampling, both for training and testing. For that reason, the number of samples needs
to be specified. At the beginning, only 1 training MC sample is used, and this is then
increased to 100, following Cutajar et al. (2016)

• Optimizer to be used: The GP is converted to a neural network which is then optimized.
The optimization technique/optimizer is specified with this parameter, which is then fed to
TensorFlow which will conduct the optimization. The one considered in all the experiments
was Adam.

• Pseudo-Likelihood: Computing the true likelihood is a computational challenge in itself
(Bratières et al., 2015). For small datasets, this does not pose any significant barriers to
training, but in large datasets, these computations can make the training of the model un-
feasible. For that reason, an approximation of the likelihood (piecewise pseudo-likelihood
(Sutton and McCallum, 2007)) that runs significantly faster was also introduced for large
datasets. This is the parameter that defines that, and it was not present in the original DGP
(Cutajar et al., 2016).

• Display step: Number of iterations after which the model should stop training and evaluate
the test data.

• Duration: Number of minutes the experiments should last.
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A.5 Evolution of Lunstruct during hyperparameter tuning

Figure A.2: Experiments with var-fixed and LR=0.001, kernel=RBF and 1000 Random Features
Expansions



A.5 Evolution of Lunstruct during hyperparameter tuning 63

Figure A.3: Structured experiments with var-fixed, LR=001 and kernel=arc-cosine and 1000 Ran-
dom Features Expansions
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Figure A.4: Structured experiments with var-fixed, LR=001, kernel=arc-cosine and 2000 Random
Features Expansions

A.6 Unindexed SDGP1 with 5 layers

Table A.1: Unindexed SDGP1 (5 layers) performance on different datasets

Error Rate NLLunstruct NLLstruct

Base NP 7.14% 1693 1456
Chunking 12.02% 518 721

Segmentation 16.55% 263 314
Japanese NE 6.78% 530 560
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