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Abstract

JavaScript is widely used as a client-side language mainly due to its dynamic and flexible na-
ture. However, these characteristics, combined with its popularity, make it a common vector for
malicious attacks, which are often concealed by the use of obfuscation.

In this work, we propose a solution to detect obfuscated JavaScript and identify the obfus-
cator used in the code, based on machine learning algorithms and static code analysis. We start
by comparing two different approaches to understand if using contextual information benefits the
detection of obfuscated code. The first approach is a Multinomial Naive Bayes classifier with
features computed from paths extracted from the code’s Abstract Syntax Tree, which retain con-
textual information of specific nodes. The second approach is a Random Forest classifier with
features defined based on standard obfuscation practices, with no context associated with them.
To train and test our models, we use a collection of 100k regular (and minified) files and 170k
obfuscated files, transformed with various obfuscators.

Our results show that the model that uses features without contextual information misclassifies
significantly fewer files than the one that uses this type of information. By using features based on
standard obfuscation practices, we can successfully detect obfuscation and identify the obfuscator
used in the code, with an F1-score of 99.99% in both these tasks. We conduct additional ex-
periments to validate assumptions made while creating the dataset and evaluate the feature-based
model in various scenarios. The results obtained reinforce the importance of prioritizing the diver-
sity of the dataset over its size when implementing an obfuscation detector. We then take a look at
how our solution generalizes to code transformed with new obfuscators. We obtain mixed results,
concluding that it can generalize to code transformed with some tools but not with others. Finally,
we validate our solution in the context of partial obfuscation, obtaining positive results when as-
suming that the obfuscated code appears at the beginning of the program to mimic a malicious
attack.

Keywords: Obfuscated JavaScript, Malware Mitigation, Machine Learning, Classification Algo-
rithms
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Resumo

JavaScript é uma linguagem amplamente usada no desenvolvimento de código client-side princi-
palmente devido à sua natureza dinâmica e flexível. No entanto, estas características, combinadas
com a popularidade da linguagem, tornam-na um vetor comum para ataques maliciosos, que são
frequentemente ocultados pelo uso de ofuscação.

Neste trabalho, propomos uma solução para detectar JavaScript ofuscado e reconhecer o ofus-
cador utilizado para transformar o código, com base em algoritmos de machine learning e análise
estática de código. Começamos por comparar duas abordagens distintas de modo a perceber se
o uso de informação contextual beneficia a detecção de código ofuscado. A primeira abordagem
é um classificador Multinomial Naive Bayes baseado em features computadas através de camin-
hos extraídos da Árvore de Sintaxe Abstrata do código, que retêm informaçal contextual de nós
específicos da árvore. A segunda abordagem é um classificador Random Forest que recebe como
input um conjunto de features baseadas em práticas comuns de ofuscação, não retendo qualquer
tipo de informação contextual. Para treinar e testar os modelos, usamos uma coleção de cerca
de 100 mil ficheiros regulares (e minificados) e 173 mil ficheiros ofuscados, transformados com
várias ferramentas.

Os resultados obtidos mostram que o modelo que usa features sem informação contextual
classifica incorretamente significativamente menos ficheiros que o modelo que usa este tipo de in-
formação. Através do uso de features baseadas em práticas comuns de ofuscação, a nossa solução
é capaz de detectar com sucesso ofuscação e identificar o ofuscador usado, com uma F1-score
de 99,99% em ambas as tarefas. Adicionalmente, elaboramos um conjunto de experiências para
validar o dataset criado e avaliar o modelo baseado em features em diferentes cenários. Os re-
sultados obtidos reforçam a importância de priorizar a diversidade do dataset em relação ao seu
tamanho, ao implementar um detetor de ofuscação. De seguida validamos a nossa solução na
presença de código ofuscado por ferramentas desconhecidas, de modo a perceber se a solução
é capaz de generalizar neste tipo de situação. Com esta experiência obtemos resultados mistos,
concluindo que a solução é capaz de generalizar para alguns ofuscadores mas não para outros. Fi-
nalmente, validamos a solução na presença de código parcialmente ofuscado, obtendo resultados
positivos assumindo que o código ofuscado se encontra no início do programa, de modo a replicar
um ataque malicioso.

Keywords: JavaScript Ofuscado, Mitigação de Malware, Machine Learning, Algoritmos de Clas-
sificação
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Chapter 1

Introduction

JavaScript is widely used as a client-side programming language, being supported by most web

browsers due to its overall dynamism and flexibility. However, such characteristics potentiate new

vulnerabilities that can be explored with malicious intents. A practical method to obscure the pur-

pose of a JavaScript program is to apply transformations that maintain the code’s original behavior

but compromise its overall understandability. The deliberate act of modifying code to be hardly

readable by humans and resilient to reverse engineering tools is known as obfuscation. Although

it is used as a security measure for protecting intellectual property and preventing plagiarism, ob-

fuscation is commonly employed to conceal malicious scripts to circumvent detection by manual

inspections and pattern-based security systems.

While obfuscation relies on various established techniques, automatically recognizing if a

JavaScript program is obfuscated is not a simplistic task. This is mainly due to the similarity

between standard programming practices and common obfuscating techniques. Additionally, the

variety of obfuscators and obfuscation techniques available can compromise the development of

a generic solution. Successfully distinguishing between regular and obfuscated code requires a

thorough analysis of the JavaScript language, along with commonly used obfuscation techniques

and tools. In this work we consider as regular JavaScript, any code that is not obfuscated, as well

as minified code.

1.1 Context and Motivation

This dissertation was proposed by Jscrambler, a high growth Tech Company that creates novel

products for protecting the integrity of web and mobile applications [40]. It currently has the

leading JavaScript protection product, the tool Jscrambler (that gives name to the company), with

tens of thousands of clients worldwide.

The efficient and automatic classification of JavaScript code has a lot of interest and potential.

It can be used to identify possible threats, namely malicious scripts that are obfuscated. Once

1
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an obfuscated script is detected, taking into account that attackers use these techniques to conceal

their code’s behavior, security measures can be applied to verify the code’s intents and, if required,

mitigate the attack. Another use for this type of classification is related to the tools used. There are

available various obfuscators with different complexities. A detector that identifies which one was

used facilitates the deobfuscation process. This distinction can also be applied to further assess

the code’s intents since a small set of obfuscators is commonly used to hide malware. This means

that identifying code transformed by a particular obfuscator is a stronger indicator that the code

might be malware compared to code transformed with other obfuscators.

The detector can be applied in a variety of contexts, such as scenarios where JavaScript code is

being distributed for widespread use (galleries of browser extensions, software hosting platforms,

among others); to disable obfuscated scripts from running in a browser, in order to mitigate po-

tential threats; and to assist in the automatic collection of JavaScript malware (by incorporating it

into honeyclients or honeypots).

1.2 Objectives

The main objective of this dissertation is to develop a robust model that can effectively distinguish

between obfuscated and non-obfuscated JavaScript code. The model should receive a snippet of

JavaScript as input and automatically identify if it is obfuscated or not. It should also take into

consideration various obfuscation tools and recognize which tool was used in the code.

Other objectives can be acknowledged as well. The first is the creation of a large and diverse

dataset that incorporates JavaScript code from varied sources and code transformed with numerous

obfuscators and obfuscation techniques. This dataset should undergo preprocessing to ensure its

quality. Additionally, the dataset should be as balanced as possible, incorporating similar amounts

of regular and obfuscated code, conversely to other projects in the area. The diversity of the dataset

enables evaluating the solution in different conditions, validating or not its robustness in several

scenarios. The underlying goal is to implement a model that is not biased to a particular type of

code, obfuscator, or obfuscation technique. In addition, the created dataset can be adapted and

used in other projects that require the use of a large number of JavaScript files.

Finally, another important goal is to identify and implement an efficient and practical approach

to distinguish regular code from obfuscated code based on the static analysis of the program. To

accomplish this, different approaches should be compared, against the same data, to assess and

weigh their benefits and limitations. Based on previous works, we aim at understanding if the

use of information that retains some level of its surrounding context improves the detection of

obfuscation.
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1.3 Document Overview

The subsequent chapters are structured as follows:

• Chapter 2, JavaScript Obfuscation, presents a brief background on JavaScript obfusca-

tion, starting with an overview of the language followed by an introduction to code trans-

formations. This chapter provides the required background to understand the context of this

dissertation.

• Chapter 3, Obfuscated Code Detection, presents a preliminary literature review on the

main topics addressed by this dissertation, mainly work done on obfuscated and malicious

code detection, and concisely describes the challenges identified. It also introduces related

concepts, such as code analysis and machine learning.

• Chapter 4, Detector Implementation, briefly explains the problem at hand and the pro-

posed solution to address it. It describes in detail all the steps of the solution’s implementa-

tion, namely the dataset creation, the parser used, and the classifiers implementation.

• Chapter 5, Context Versus No Context, tries to answer the main question of this disser-

tation, regarding the use of contextual information in obfuscation detection. This chapter

describes a set of experiments, analysing their results.

• Chapter 6, Additional Questions, presents and tries to answer six additional questions,

through different experiments and analysis of their results.

• Chapter 7, Conclusions, provides an overview of the main conclusions reached, briefly

comparing them to the previous work on the area. In addition, it also presents a description

of the limitations of the solution and future work that can be done in the area.
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Chapter 2

JavaScript Obfuscation

In this chapter, we present additional background on JavaScript obfuscation, starting with an

overview of the language, followed by an introduction to code transformations. This chapter

includes a summary of the JavaScript language, its dynamic code generation abilities, vulnerabili-

ties, and a description of different transformations, techniques, and tools that can be applied to the

code.

2.1 JavaScript

JavaScript is widely used and has a very strong presence on the web, being supported by all

major browsers. The vast majority of all web applications use it as a client-side programming

language 1 due to its dynamic, event-driven, and asynchronous nature to enhance interactivity

and functionality. There are numerous frameworks and libraries to build JavaScript applications,

which have also contributed to the language’s popularity.

JavaScript is a highly expressive language and much of the code that is executed can be loaded

and generated at runtime since it does not need a browser to compile. Its code is also used to

modify the DOM at runtime. Due to its event-driven nature, JavaScript allows the registration of

various event listeners to the DOM, which can be triggered by the user, timing, or asynchronous

actions [29].

This language was developed in 1995 by the Netscape developer Brendan Eich. It was in-

tended to be simple to use by developers and non-developers, but sufficiently robust to implement

real web applications. It employs a prototype/instance-based inheritance system, instead of im-

plementing classes like other object-oriented languages do (such as Java). Almost all JavaScript

objects inherit properties from a chain of prototype objects, and these properties define each ob-

ject’s behavior [68]. Since fields, methods, and contents of any prototype can be altered at any

time, the behavior exhibited by an object can vary during the program’s execution. JavaScript is

1https://w3techs.com/technologies/overview/clientsidelanguage/
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also a dynamically typed language, meaning that at different moments of the program a variable

can be used with distinct types [57].

2.1.1 Dynamic Code Generation

JavaScript offers simple ways to convert text into executable code, allowing code to be generated

at runtime [56]. This is appealing to developers since it enables interactive development and gives

them the ability to easily extend and customize their applications’ behavior at any given time.

The eval function is used for this purpose. It receives a string as an argument and parses it as

source code, which is then instantly executed, returning the invocation result. This function is used

for various reasons, such as JSON parsing and asynchronous loading of libraries [56]. The code

executed via eval has access to local and global variables [56] since it is executed with the same

privileges as the caller function [72]. This represents a serious security risk, allowing attackers to

inject malicious code into the argument string, which is then executed.

Code can also be generated at runtime by using setInterval and setTimeout. These functions

receive a string or a function as an argument. When invoked with a string, eval is called to parse

it into invocable code. The safest approach to use them is with a named or anonymous function

to avoid the unnecessary call to eval. Other indirect means of dynamic generation such as the

document.write method and the innerHtml property can be used by directly adding script nodes to

the DOM [73].

Although these methods are not malicious and can be used with completely benign code, they

are considered insecure practices, therefore their use should be avoided if possible and replaced

by safer alternatives [73]. Figure 2.1 depicts a scenario of a Drive By Download 2 attack. The

document.write method is used, with resource to the iframe tag, to run the malicious script and

redirect the user. Additionally the code is obfuscated and the eval function is used to generate the

code at runtime, in an attempt to conceal it from detectors.

document.write( <iframe src="http

://sedpoo.com/?338375" width=1

height=1></iframe> );

(a) Original code.

eval(unescape( %64%6F%63%75%6D%65%6

E%74%2E%77%72%69%......(some

bytes skipped) .......3E%3C%2F

%69%66%72%61%6D%65%3E%27%29 ));

(b) Obfuscated code.

Figure 2.1: Example of a Drive by Download attack (source [49]).

2https://www.kaspersky.com/resource-center/definitions/drive-by-download

https://www.kaspersky.com/resource-center/definitions/drive-by-download
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2.1.2 Challenges and Vulnerabilities

JavaScript’s overall dynamism and flexibility, although very appealing for developers, do not come

without its software engineering challenges, such as program understanding, optimization, and se-

curity [68]. A JavaScript program can be extremely complex and difficult to understand using

static analysis techniques since its ability to alter and generate code at runtime can lead to unpre-

dictable behavior. This constitutes a problem for the overall comprehension and analysis of the

code, and consequently, for implementing code optimizations.

JavaScript’s main vulnerability is security, since its popularity makes it a very appealing target

for different types of attacks. Due to developers’ inexperience, lack of security knowledge, or

system complexity this component is often dismissed which leads to lower quality software and

causes security breaches [72]. A variety of attacks, such as Cross-site Scripting (XSS), exploit

the language’s ability to inject code via different techniques, and to modify and access shared

objects [57]. XSS is a malicious attack vector that occurs when malicious scripts are injected into

a web page. This gives attackers privileged control of the browser and allows the execution of

code into the unsuspecting user’s browser [1] which can lead to session hijacking, cookie theft, or

unwanted and malicious redirects [9].

2.2 Code Transformations

An effective way to conceal the purpose of a JavaScript program is to apply transformations that

maintain the code’s behavior but compromise its understandability. Two types of code transfor-

mations can be distinguished: minification and obfuscation. The first modifies the code to reduce

its size, and the latter applies more complex transformations to affect the code’s comprehensibility

and interfere with its analysis [63]. The major difference between the two techniques is that, while

minification also reduces the code readability, it does not make an attempt to hide the original

content, contrary to obfuscation transformations [48].

More compact versions of JavaScript code can be obtained through minification. Its main

purpose is to reduce load time and bandwidth usage when loading JavaScript.

Obfuscation is the intentional act of creating code that is hardly readable by humans and also

resilient to reverse engineering tools [47]. There are various purposes and intentions for applying

this technique. It can be used as a security measure, for protecting intellectual property, and pre-

venting plagiarism. Firstly, it mitigates malicious attacks, such as code injections and tampering,

since the attacker needs knowledge of the code in order to modify it. Secondly, it can be used by

developers to conceal vulnerabilities and flaws in the software, making it harder to be exploited.

Finally, it is an effective measure against intellectual property theft as it compromises the code’s

readability [60]. However, obfuscation can also be used to conceal malicious scripts in order to

evade detection by manual code inspection and pattern-based security systems. Therefore, obfus-

cated malware is often not detected which allows security breaches and attacks on unsuspecting

users.
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While neither of these techniques are malicious per se, they can be used with malevolent

intentions (mainly obfuscation techniques). One of the most common is to conceal malicious

code, making it hard to detect by both manual and automatic analysis.

2.2.1 Techniques

To achieve minification of the code, different techniques can be used, such as removing whites-

paces, comments, line breaks, and other redundant data. Other optimizations can be performed,

such as renaming variables and functions and using implicit conditionals. These transformations

do not impact the program flow since indentation characters and specific names are only used to

make the code more readable by humans [65, 55].

There are numerous obfuscation techniques with different complexity levels. These tech-

niques’ effectiveness can be evaluated based on three complex metrics: potency, resilience, and

cost. Potency measures the difficulty of a human to understand the obfuscated code compared to

the original non-obfuscated version. On the other hand, resilience evaluates how strong the code

is to automatic reverting tools. Finally, the cost is related to how many additional resources the

transformed code uses during execution time, and the impact on the originated file size [43, 60].

Ideally, a technique has high potency and resiliency, but low cost. However, this scenario

is not realistic. Techniques with high potency and resilience are more complex to implement,

as they tamper, for example, with the code’s structure and flow, increasing the cost associated.

The reverse is also valid. Low-cost techniques tend to be simpler, which leads to lower potency

and resilience. A code transformed to be more resistant to reverse engineering tools is also less

readable by humans. Notwithstanding, the inverse is not true. A high potency technique does

not directly imply high resilience. The dependencies between evaluation metrics are displayed in

Table 2.1.

Growth Potency Resilience Cost
Potency variously grows

Resilience grows grows

Cost grows variously
Table 2.1: Dependencies between obfuscation evaluation metrics (source [69]).

Four categories of obfuscation can be distinguished: Randomization, Data, Encoding, and

Logic Structure [70]. These are explained in more detail in sections 2.2.1.1, 2.2.1.2, 2.2.1.3,

and 2.2.1.4, respectively. In Table 2.2 each technique is assessed in regards to its potency, re-

silience and cost, distinguishing four levels for each: none, low, medium, and high. This evaluation

is based on different sources [44, 70, 62, 34] and analysis of each technique.
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Category Technique Potency Resilience Cost
Randomization Whitespace injection/removal low low/medium none

Comments injection/removal low low/medium none
Variable and function names randomization medium high none

Data Converting static data to procedures medium medium medium
Keyword substitution medium medium medium
Variables reordering low medium none

Encoding Standard encoding low low low
Customized encoding functions high medium medium
Standard encryption and decryption medium medium medium

Logic Structure Inserting irrelevant code medium medium low
Function inlining/outlining medium high high
Function cloning/fusion high high high
Function reordering low medium none
Loop transformations medium/high high high
Control flow flattening high high high

Table 2.2: Evaluation of obfuscation techniques.

2.2.1.1 Randomization Obfuscation

Randomization obfuscation consists of changing elements of the code without altering its seman-

tics. This is achieved with the resource to multiple methods, such as adding or removing inden-

tation characters, as line breaks and whitespaces, and comments. Another simple approach is to

rename variables and functions with randomly created names, resulting in names with non-obvious

meanings [70]. These types of transformations aim at confusing manual analysis, having little im-

pact in automated analysis systems. Figure 2.2 shows an example of this type of obfuscation,

where random comments and indentation characters are added and the identifiers are renamed.
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function myfunction(txt){

alert(txt);

}

var mystring = "Hello World!’"

myfunction(mystring);

(a) Original code.

function

_i23fdfcnj (_fdij230fdj)

//_32akfaj0ufa

{// _dafaljfamfdn

alert( _fdij230fdj) ; //

_dkfahajklaI3

}

var _dfeakia1f92 //_gcvdseaepk

= "Hello World!"; //_gpqkjk3424pkl

_i23fdfcnj(_dfeakia1f92);

(b) Obfuscated code.

Figure 2.2: Example of randomization obfuscation (source [70]).

2.2.1.2 Data Obfuscation

Data obfuscation aims at converting variables and constants into the computational result of sev-

eral operations [70]. Common techniques include converting static data to procedures, keyword

substitution, and reordering variables.

Static data can be replaced with statements, or function calls that calculate its value at run-

time [58]. This technique can be applied to different data types: booleans, numbers, strings, and

arrays. Boolean literals can be transformed into expressions that return the same value but are

more complex and harder to understand [45]. Similarly, numbers can be obfuscated by replac-

ing them with equivalent mathematical operations or converting them into strings, as shown in

Figure 2.3.

let i = 10;

(a) Original code.

let i = 4511 * (-1) - 8523 + 13044;

(b) Obfuscated code.

Figure 2.3: Example of data obfuscation applied to numbers.

Strings can be transformed by splitting them into multiple substrings and then concatenating

them, as shown in Figure 2.4. The substrings can be reordered to make the code harder to under-

stand. String splitting is usually used along with dynamic code generation functions (such as eval,

document.write) to execute the concatenated strings [70].
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let a = "Hello";

(a) Original code.

let a = "He";

a += "ll";

a += "o";

(b) Obfuscated code.

Figure 2.4: Example of data obfuscation applied to strings (source [41]).

Arrays can be obfuscated in regards to their structure or the data they store. One array can be

split into various subarrays, and multiple arrays can be merged into one. On the other side, folding

and flattening techniques, increasing and decreasing the number of dimensions, respectively, can

be used to obfuscate the data stored in an array [60].

Another approach is to substitute JavaScript keywords that are deemed as insecure practices

- eval, document.write -, with variables, as shown in Figure 2.5. This transformation’s main goal

is to conceal the recurrent use of unsafe keywords from automatic detection systems, although it

also reduces the code’s comprehension [70].

const s = "Hello World"

document.write(s);

(a) Original code.

const s = "Hello World"

const fo = document;

fo.write(s);

(b) Obfuscated code.

Figure 2.5: Example of data obfuscation by keyword substitution.

A final technique aims to reduce the code’s readability by changing the variables’ order. Al-

though a simple approach, combining it with other more complex techniques, can make the code

resistant to analysis.

2.2.1.3 Encoding Obfuscation

Encoding obfuscation consists of obfuscating code through encoding. Three strategies are nor-

mally applied to encode original code. The first is to use a standard encoding mechanism such

as ASCII, Unicode, or hexadecimal representations. Another more complex approach is to use

customized encoding/decoding functions, where the encoding function is used to create the obfus-

cated code, and the decoding function decodes it in runtime (see Figure 2.6). Finally, the code can

also be encrypted and then decrypted during execution time [27].
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function encode(mystring){

var c="";

var i =0;

for(var i=O;i<mystring.length;i

++){

c=c+

String.fromCharCode(mystring.

charCodeAt(i)+ I);

}

return c

}

var c = encode("document.write(’Hello

world!’)");

document.write(c);

(a) Encoding function.

function decode(c){

var mystring="";

var i =0;

for(var i=O;i <c.length;i++){

my string = mystring +

String.fromCharCode(c.

charCodeAt(i)-I );

}

return mystring;

}

var c ="epdvnfou/xsjuf)(lfmmp! xpsme

(*";

var mystring = decode(c);

eval(decode(c));

(b) Obfuscated code.

Figure 2.6: Example of encoding obfuscation with customized functions (source [70]).

2.2.1.4 Logic Structure Obfuscation

Logic structure obfuscation aims at manipulating the code’s execution paths by modifying its logic

structure without interfering with its original semantics [37]. This can be achieved by inserting

irrelevant code, function inlining and outlining, function cloning and fusion, function reordering,

loop transformations, and control flow flattening approaches.

Irrelevant code injection makes the program’s structure more complex without changing its

initial behavior [46]. Three types of irrelevant code can be distinguished: dead, void, and dupli-

cated. Dead code is code that is never executed. Void code is code whose execution has no impact

on the final output. Duplicated code is code that is duplicated from other code. A type of irrelevant

code injection is predicate extension - predicates can be extended by adding opaque predicates,

increasing the obfuscation potency without altering the condition’s result [62], as shown in Fig-

ure 2.7.

let i = 0;

while (i < 10) {

i++;

}

(a) Original code.

let i = 0;

while (i < 10 && 5II.m()[8][1] ==

h5II.X()[7][2]) {

i++;

}

(b) Obfuscated code.

Figure 2.7: Example of logic structure obfuscation applied to predicates (source [42]).
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Another common practice is the inlining and outlining of functions. Inlining consists of replac-

ing a call to a function with its code. Conversely, outlining creates new functions from sequential

groups of statements [62]. Functions can also be obfuscated by cloning and fusion. Cloning

consists of creating copies of the methods. Fusion joins two or more functions into a single one

(fuses the functions’ bodies) and creates an additional argument that chooses the one to execute

from the joined functions bodies [62]. Functions can also be reordered to compromise the code’s

understanding.

Loops can be obfuscated with three techniques: tilling, unrolling, and fissing. Loop tilling is

the division of the loop’s iteration space in smaller blocks (inner loops). Loop unrolling consists

of the replication of the loop’s body to reduce the number of iterations. Finally, loop fissing breaks

the loop into two or more loops with equal iteration spaces and splits the original loop’s body over

these extra loops [62, 58]. Figure 2.8 shows an example of loop fissing.

for(i=1;i<n;i++){

a[i] += c;

x[i+1] = d+x[i+1]*a[i];

}

(a) Original code.

for(i=1;i<n;i++){

a[i] += c;

}

for(i=1;i<n;i++){

x[i+1] = d+x[i+1]*a[i];

}

(b) Obfuscated code.

Figure 2.8: Example of logical structure obfuscation applied to loops, namely loop fissing
(source: [62]).

Finally, the code’s structure can be obfuscated with control flow flattening approaches, aiming

to conceal the program’s control flow graph by obscuring the relations between blocks. One

common method to accomplish this is to split all the code’s basic blocks and put them inside a

single infinite loop with a switch statement that controls the program’s flow [17].

2.2.2 Tools

A variety of minification tools are available on the web, such as Google Closure Compiler [8], and

UglifyJS [19]. Google Closure Compiler is a minification tool provided by Google. It parses and

analyses JavaScript, removing dead code, reducing white spaces, and shortening identifiers. It also

performs other optimizations such as inlining, and constant folding [8, 63]. Uglifyjs is a JavaScript

minifier/compressor, with better compression times, which is able to remove unnecessary brackets,

conditions always valued at true/false, unused variables, and arguments [53].

Different obfuscation tools apply distinct techniques or different signatures of the same tech-

nique. Several obfuscators are available, from where two can be distinguished due to the com-

plexity and number of techniques they apply: javascript-obfuscator [38] and Jscrambler [47].

The first is an open-source and customizable tool to obfuscate JavaScript. It implements a vast
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range of techniques, such as variable renaming, string extraction and encryption, dead code injec-

tion, control flow flattening, and other transformations [38]. The second tool, Jscrambler, is an

obfuscator provided by Jscrambler which offers a vast amount of transformations. It is deemed the

most complex obfuscation tool currently available on the market due to the advanced obfuscation

techniques it applies [47]. Additionally, in Table 2.3 are presented other 9 tools. This table illus-

trates a matrix relating the different tools to the obfuscation techniques detailed in Section 2.2.1.
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Whitespace injection/removal x x x x x x x x x
Comments injection/removal x x x x x x x x x
Variable and function names randomization x x x x x x x x x x
Converting static data to procedures x x x x x x x x x x
Variables reordering x x
Keyword substitution
Standard encoding x x x x
Customized encoding functions x
Standard encryption and decryption
Inserting irrelevant code x x x
Function inlining/outlining x x x x x x x x x
Function cloning/fusion x x
Function reordering x
Loop transformations
Control flow flattening x x x

Table 2.3: Obfuscation tools and obfuscation techniques matrix.

2.3 Summary

JavaScript has become a prevalent programming language due to its dynamic and expressive na-

ture. However, such characteristics potentiate new vulnerabilities that can be disguised through

code transformations, such as obfuscation. Although used for benign reasons, such as intellectual

property protection, obfuscation is often used for concealing stealthy malware.

Obfuscation relies on multiple techniques, and there are several tools available that apply them.

Although manual inspections easily identify obfuscated code, automatically making this detection

is not a simple task, requiring a thorough analysis of JavaScript code features and obfuscation

techniques that are usually used for this programming language.
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Obfuscated Code Detection

In this chapter, we present a preliminary literature review on the main topics addressed in this

dissertation. The chapter is divided into three sections. The first introduces different subjects,

such as code analysis and machine learning approaches to better comprehend the previous work

presented in the following section, which includes early solutions for detecting obfuscated code.

The third section details a set of challenges and possible solutions that arose from further analysis

of the previous work.

3.1 Background

3.1.1 Code Analysis

Static code analysis and dynamic code analysis are two contrasting methods for analyzing the

behavior of a program. The first analyzes the source code without executing it, inferring data

based solely on source code. This can be achieved, for example, by traversing the code’s AST or

analysing its bytecode representation. Static analysis is often restricted by the need to presume

runtime behavior. In contrast, dynamic code analysis executes the code and gathers data about the

runtime value of variables [36].

Due to JavaScript’s dynamic and reflective nature, statically analyzing the code is challenging

as many behaviors are only defined at runtime. Another constraint to this type of analysis is

the diversity of technologies available, which compromises a generic solution. These issues are

overcome by dynamic analysis. However, others arise. There is the risk of relevant parts of the

code being left unexplored, and, although the behavior of the code is observed, its reasons must be

inferred, leading to ambiguous conclusions [61]. Additionally, by executing the code, the machine

where the analysis is being performed can be compromised if the code contains malware. A way

to surpass some of the issues present in these two types of analysis is to combine them in a hybrid

approach benefiting from the advantages of both.

15
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As in most work in the area, we tackle the problem of detecting obfuscated JavaScript by first

statically analyzing the code’s AST.

3.1.2 Abstract Syntax Tree

An Abstract Syntax Tree, AST, is a representation of source code, in a tree form, that contains

its structural and content information, while omitting syntactic details such as punctuation and

grouping parenthesis [39]. The nodes in the tree are operations, such as concatenations, loops,

assignments, that occur in the source code. The leaves, or terminal nodes, of the tree represent

values, such as the value of a string or a number. The AST for a program C can be represented as

C = 〈N,T,X ,s,δ ,φ〉 (3.1)

where N is the set of nonterminal nodes, T is the set of terminal nodes, X is the set of values,

s is the root node (s ∈ N), δ is a function that maps each nonterminal node (in N) to a group

of children, and finally, φ is a function that maps each terminal node to its associated value (in

X) [30].

3.1.3 Contextual Information

In this work we consider as contextual information any information that retains some degree of

its surrounding context. For example, using the sequence of nodes from the AST that connect

to a certain keyword, instead of using the keyword by itself. Another way to incorporate some

level of context is by constructing features by tracing specific calls. In this work, we focus on

the first scenario, and use path-contexts to retain the contextual information of specific nodes. A

path-context is a triplet 〈 xs, p, xt 〉 where xs and xt are the values associated with the start and end

terminals of a path p. The path is a sequence of nonterminal nodes and the directions connecting

them (up or down in the tree) that connect two terminal nodes. Every snippet of code C can be

represented as:

C = {〈xs, p,xt〉|xs,xt ∈ X , p ∈ P} (3.2)

where X is the set of all values associated with terminal nodes and P the set of all paths [30, 54].

3.1.4 Machine Learning

Machine learning is the development of models that are capable of solving a given task based on

features present in a training dataset [35]. It addresses two main tasks: predictive and descriptive.

The first is learned in a supervised fashion and aims at inducing a model to assign a value to

an unlabeled object based on the given predictive attributes. Predictive tasks can be divided into

classification tasks when considering categorical domains or regression tasks regarding continuous

domains [26]. Conversely, descriptive tasks leverage unsupervised learning to group similar items

and retrieve useful insights (clustering algorithms) [51].
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In this dissertation, we tackle the problems of detecting obfuscated JavaScript and identifying

which obfuscator was applied to transform the code. The models are developed based on labeled

training data, and the outcome is if the code is obfuscated or not and what obfuscator was used.

The two problems addressed are classification tasks due to the qualitative nature of the target

attributes.

3.1.4.1 Classification

Classification tasks are predictive tasks, leveraging from supervised learning, resourcing to labeled

datasets. The main goal is to assign a qualitative label to a new object based on given predictive

attributes [26]. To accomplish this, the data used is often split into two partitions: the first, training

data, is used to induce the model, and the latter, testing data, is used to test the performance of

the induced model [26]. A third partition can be made, validation data, used to tune the hyper-

parameters of the model.

Two classification tasks can be distinguished based on the number of values the target attribute

can have. The most common task is binary classification, where the target attribute can have one

of two values. In this case, the class of particular interest is referred to as the positive class. When

there are more than two possible values for the target attribute, the task consists of a multiclass

problem [26].

3.1.4.2 Algorithms

A variety of algorithms can be applied to solve classification tasks. The algorithm’s choice must

be based on characteristics of the task being addressed, such as the type of predictive features

being used and the dataset composition, regarding class balance and size. Based on the categories

presented in Moreira et al. [26], five groups of algorithms can be roughly distinguished:

• Distance-based Learning Algorithms. Make predictions based on the new object’s level of

similarity to the other, previously labeled objects. The most known is the k-NN algorithm.

• Probabilistic Classification Algorithms. Use the information available to calculate the new

object’s probability of belonging to each possible class. Naive Bayes and Logistic Regres-

sion are examples of this type of algorithm.

• Search-based Algorithms. Perform local searches iteratively to induce the best predictive

model (DTIA) or search for the model based on a set of predictive rules that retain the best

predictive performance (RSIA).

• Optimization-based Algorithms. Aim at optimizing a specific function. The most popular

ones are Support Vector Machines and Artificial Neural Networks.

• Ensemble Learning Algorithms. Create an ensemble of classifiers to combine the predictions

of multiple classifiers. Random Forest and AdaBoost are examples of ensemble algorithms.
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3.1.4.3 Performance Measures

Various performance measures can be considered to evaluate how well a classifier solves a task.

The following measures [26] are applicable in binary classifications but can be adapted for classi-

fication tasks with multiple classes.

FPR =
FP

FP+T N
(3.3)

False positive rate, FPR, also known as false alarm rate, measure the proportion of false posi-

tives among negative cases.

FNR =
FN

T P+FN
(3.4)

False negative rate, FNR, also known as miss, is the fraction of incorrectly classified positive

cases.

Recall =
T P

T P+FN
(3.5)

Recall is the fraction of correctly classified positive cases.

Precision =
T P

T P+FP
(3.6)

Precision is the fraction of true positives among all positive predictions.

Accuracy =
T P+T N

T P+T N +FP+FN
(3.7)

Accuracy is the fraction of true predictions among all cases (positive and negative). It is suited

for well balanced problems.

F1− score =
2

1
Precision +

1
Recall

(3.8)

F1-score is the harmonic mean between precision and recall. It is best suited for problems

with imbalanced classes.

A machine learning model should be assessed according to different performance measures,

and the priority given to each depends on the specifications of the task being addressed. When

using a model to detect obfuscated code, it is more problematic to incorrectly classify a script as

regular instead of obfuscated than the other way around. Therefore, greater importance should be

given to recall, although F1-score is a good balance between precision and recall.
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3.2 Previous Work

Prior projects on the area can be categorized according to the type of code analysis they use,

the method they apply to make the classification, the detection techniques, if the impact of using

different obfuscators is being considered, and on the detection tasks they address.

This section is divided into three subsections that present an incremental and chronological

sequence of approaches. In Section 3.2.1 two projects are presented that aim at detecting malicious

obfuscated JavaScript, often conflicting the two concepts. The first approach presented uses string

pattern analysis and thresholds manually defined to make the detection. All the following projects

apply machine learning algorithms to classify the code. From there, the concept of obfuscated

JavaScript is detached from the one of malicious code, and projects aimed at detecting obfuscation

independently of the code’s intents are presented. The solutions presented in Section 3.2.2 obtain

satisfactory results but do not consider the presence of code obfuscated with unknown tools in the

testing set or code obfuscated with multiple tools. Two different solutions that address each one

of these problems are presented, respectively, in Section 3.2.3.

All the presented projects use static analysis of the code as a step for making the classifica-

tion. However, other works - Xu et al. [71], and Gorji et al. [37] - use hybrid approaches by

complementing static analysis with dynamic analysis or completely dynamic approaches to detect

obfuscated malicious code. Both approaches consider obfuscation in the scope of function invo-

cations. The first compares data from static and dynamic analysis to make the detection, and the

latter relies solely on dynamic analysis of the code. We consider that these approaches exceed the

scope of this dissertation. However, they present different solutions for a variation of the problem

at hand and valuable insights into obfuscation techniques and obfuscated code behavior.

3.2.1 Malicious Obfuscated Code

The first approaches that address obfuscated JavaScript detection aim to prevent malicious attacks

by focusing on detecting obfuscated malware. These works are based on the fact that many at-

tackers use obfuscation techniques to evade signature-based detectors and compromise the code’s

readability to surpass manual inspections. A problem with this type of detection is that it can raise

false positives in the presence of benign obfuscated scripts.

Choi et al. [32] and Likarish et al. [52] propose two different methods to detect obfuscated

malicious JavaScript code. While the first uses string pattern analysis with defined thresholds

and is mainly focused on the strings used in calls to dangerous functions; the latter uses machine

learning algorithms with features extracted based on specific keyword frequencies and common

obfuscation techniques. Although this last work does not focus on strings passed as arguments of

specific functions, it still considers similar string properties, such as their length and the presence

of specific characters.

These approaches aim at detecting malicious obfuscated code, often conflating obfuscation

with maliciousness. The work proposed in this dissertation makes a clear distinction between

the concepts of malicious and obfuscated code, acknowledging the detection of obfuscation as
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an independent task without disregarding that obfuscation is often used to conceal malware. Ad-

ditionally, we do not focus on calls to specific functions. However, we incorporate the metrics

presented by Choi et al. [32] to evaluate strings as features to one of our models. Some of our

features resemble the ones presented by Likarish et al. [52], as they follow a similar rationale.

3.2.1.1 String Patterns

Choi et al. [32] propose an approach to detect malicious JavaScript attacks concealed through

obfuscation, based on string pattern analysis. Figure 3.1 represents their methodology, a system

with three main modules: a String Extractor, a String Analyzer, and a String Deobfuscator. The

first is responsible for tracing and extracting strings used in calls to dangerous functions - eval

and document.write. The strings are extracted using static data-flow analysis, often constructed

by tracing different statements (such as string concatenations), which means that some contextual

information is taken into account by this approach. The second module is used to analyze the

previously selected strings and decide whether they are obfuscated or not. The final module is

responsible for deobfuscating the strings.

Regular and obfuscated JavaScript are distinguished using three string properties: n-gram,

entropy, and word size. The first measures the usage frequency of ASCII code using the distribu-

tions of byte values in strings. The second calculates the entropy to determine the distribution of

characters in strings. The last is related to the number of characters in the words in the strings.

They create words by dividing the strings by the space character. The three properties measured

are based on common patterns present in obfuscated strings, which can be encoded, displaying

special characters, and have large sizes.

To make the classification based on these properties, thresholds are defined, and if the script

analyzed exceeds these values, it is deemed malicious. This method classifies four out of six

malicious scripts correctly, but the dataset’s size is insufficient to attain reliable conclusions. This

approach would also misclassify incorrectly malicious code without string obfuscation. Neither

the origin of the files nor the obfuscators used are disclaimed.

Figure 3.1: Methodology for the automatic detection of obfuscated JavaScript strings in malicious
web pages (source: [32]).
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3.2.1.2 Keyword Frequency

Other projects use machine learning approaches to detect obfuscation more effectively and surpass

the issue of manually defining thresholds. Likarish et al. [52] approach the problem of detecting

obfuscated malicious JavaScript with classification techniques.

This work aims to detect malware. Although they acknowledge that not all malware is ob-

fuscated nor all obfuscated code is malicious, the classification of the code and features extracted

are based on obfuscation practices. They observed that specific JavaScript keywords’ frequency

varies between malicious obfuscated code and benign code. Therefore they extract a total of 65

features, mainly consisting of the normalized frequency of each keyword. They create a dataset

by crawling different websites. For the benign class, they collect a total of 50,000 scripts from

the Alexa [3] 500 most popular websites. They also collect 62 obfuscated malicious scripts from

various URLs blacklisted by anti-malware groups. The obfuscators and techniques used in these

malicious scripts are unknown as they are collected from the web.

Then they compare the performance of four different algorithms in making the classification.

Their models do not misclassify a significant number of malicious scripts as benign, nor benign

as malicious. Their SVM classifier obtains a precision and recall of 92% and 74.2%, respectively.

They conduct a second experiment with a different set of files, obtaining overall consistent results,

validating the robustness of their approach.

3.2.2 Obfuscated Code

In previous work, the concept of obfuscated code is primarily considered in the presence of mal-

ware. Consequently, approaches that aim at detecting malicious scripts often use obfuscation as

an indicator of maliciousness. This can lead to inaccurate classifications since neither all obfus-

cated scripts are malicious or all malicious scripts are obfuscated. In more recent works, these two

concepts seem to be distinguished more clearly, acknowledging the detection of obfuscated code

as an independent task.

Kaplan et al. [48], and Al-Taharwa et al. [28] propose two similar approaches for detecting

obfuscated JavaScript regardless of the code’s intents. Both approaches extract context-based

features by traversing the code’s AST and use Bayesian classifiers to make the classification.

The first experiments with different levels of context for features extracted from particular AST

nodes. The context levels are related to the AST depth. For example, a 1-level context represents

the node’s inner surrounding context, while an n-level represents all enclosing contexts. In the

end, they compromise effectiveness and efficiency by choosing a flat hierarchy without storing

any context. The second project is a semantically based approach, retaining relevant contextual

information from all types of AST nodes. A feature contains a chain of contexts representing the

scope where it appears. It also addresses a different type of obfuscation, which includes readable

patterns.

In this dissertation, we compare two different approaches for detecting obfuscation regardless

of the code’s intents. One is based on context-based features and another on defined features, with
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no context associated with them. However, the context-based features are different from the ones

presented in these two works. We do not address the detection of readable obfuscation as it would

require manual transformation of the code.

3.2.2.1 AST Node’s Context

To our knowledge, the first work that addresses the problem of detecting JavaScript obfuscation

independently of the code’s intent is conducted by Kaplan et al. [48].

They use automatic techniques to determine if a JavaScript script has been obfuscated or not,

providing a confidence score. This approach implements a Bayesian classifier with features ex-

tracted from specific nodes (expressions and variable declarations) of the AST. A feature com-

prises two parts: the context it appears in (sequence of nodes) and the value of the AST node,

considering different amounts of context, including flat, 1-level, and n-level. Figure 3.2 displays

examples of the features extracted (1-level).

Figure 3.2: Example of the features used in Kaplan et al. [48] (source: [33]).

To make the classification, they multiply the constituent probability of each feature extracted

from the AST and then multiply the result by the prior probability of the label. The dataset used to

train and test their solution comprises 563 obfuscated and 3,954 regular JavaScript samples. The

obfuscated files were acquired from a team’s previous project [33], and the regular samples were

obtained from a collection of Firefox browser extensions. The classifier’s effectiveness is evaluated

by varying the feature vector’s size and the levels of context considered and calculating the FNR

and the FPR. From the results obtained, they concluded that the FPR increases with the number

of features used, possibly due to greater ambiguity, which misleads the classifier. It is also hurt by

adding more context to the features, obtaining better rates when using a flat hierarchy. Conversely,

the FPR shows that the more features used, the lower its value, although this value is limited by

the amount of obfuscated files in the testing set. The classifier is used with a flat hierarchy with

100 features to compromise efficiency and effectiveness in the remaining experiments.

The classifier is then tested with existing and unlabeled JavaScript code collections to under-

stand the use of obfuscation in these collections and validate their solution’s effectiveness. Some

of the files identified as obfuscated were hand-checked to validate the classification. From this,

they found that their approach is susceptible to false positives in the presence of files targeted for

encryption. The resulting classifier has a low FPR (about 1%) and a low FNR (about 5%).
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3.2.2.2 Readable Obfuscated Patterns

A similar approach is presented by Al-Taharwa et al. [28], which also uses a Naive Bayes clas-

sifier, but in contrast, extracts features from all types of AST nodes, maintaining their contextual

information. They introduce the concept of readable obfuscated scripts, which was not taken into

account in previous works.

Readable obfuscated code mimics practices of plain scripts, making it harder to differentiate

from standard programming practices. This is accomplished by preserving the code’s formatting

and encoding, applying other obfuscation techniques, such as converting static data into proce-

dures. This type of obfuscation requires manual intervention, instead of using automatic obfusca-

tors.

The dataset used contains 1,680 files collected from various sources, mainly by crawling differ-

ent websites or pre-existing datasets. The proposed system, JSOD, is composed of three different

components: an AST generator, a Variable Context-Level Feature Extractor, and a Bayesian-based

detector. The first is responsible for generating the AST of a given script. The second traverses

the tree to extract context-based features. Each feature contains two elements: an abstract word,

which includes identifiers and corresponding values, and a context chain, representing the scope of

the abstract word in the raw code (see Figure 3.3). The final module, a Bayesian-based detector,

classifies the code as obfuscated or not. This classifier receives as input a feature vector computed

by first creating a vector space with all features extracted from the training and testing sets, and

then, for each script applying and embedding function to map its behavior to the vector space.

Figure 3.3: Example of JSOD’s features (source: [28]).

They recreate (and adapt) Kaplan et al. [48] solution to be able to make a more direct compar-

ison between the two, concluding that their approach by considering readable obfuscation patterns

(which are present in the training and testing sets) outperforms the first in terms of precision and

recall concerning the obfuscated class. When using a set of the ten most discriminative features,

the solution has a higher precision (around 96.7%).

3.2.3 Multiple Obfuscators

The works previously described are able to distinguish between regular and obfuscated JavaScript

code with satisfactory results. However, they do not consider that distinct obfuscators apply dif-

ferent techniques or the same techniques with different signatures. This aspect of the detection

task is valuable to more accurately mimic the real use of obfuscation and increase the probability

of detecting code obfuscated with unknown tools.

Both Tellenbach et al. [65], and Skolka et al. [63] address the importance of using multiple

obfuscators in detecting obfuscation. However, they use different approaches. The first solely
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aims at distinguishing between regular and obfuscated code but validates the developed model

with known and unknown tools. The second approach also aims at identifying which tool was

used to obfuscate the code but does not consider the possibility of the code being transformed

with a tool never seen by the model.

This dissertation acknowledges the use of multiple obfuscators and techniques in the dataset

used and the tasks addressed as we also aim to identify the obfuscator applied (from a set of

known obfuscators). Additionally, we validate our solution in the presence of code transformed

with unknown tools to understand possible limitations in its generalization.

3.2.3.1 Testing with Unknown Tools

Tellenbach et al. [65] acknowledge the importance of testing their solution with code obfuscated

with known and unknown tools when detecting obfuscation.

To build their dataset, they collect benign and malicious code from various sources. The benign

files were obtained from jsDelivr [14] and the Alexa [3] top 5,000 websites. The malicious samples

were collected from MELANI 1. While the malicious files already had some degree of obfuscation,

the benign files extracted were preprocessed to ensure no transformations had been applied and

remove duplicated files. Additionally, they enrich their dataset by minifying some files - with

UglifyJS [19] - and obfuscating others - with javascriptobfuscator.com [20] (2 configurations,

advanced and standard), javascript-obfuscator [38], jfogs [25], JSObfu [23], and Google Closure

Compiler [8] 2. The final dataset comprises 101,974 regular and obfuscated files in addition to

2,706 malicious (and obfuscated) files.

They extract a total of 45 features by traversing the code’s AST and compare the performance

of nine different classifiers. The features are computed based on standard obfuscation techniques,

such as whitespace removal, hexadecimal or Unicode characters’ encodings, and converting static

data into procedures. They also use features that reflect the frequency of common JavaScript

keywords.

The best of the tested classifiers, the Boosted Decision Tree, correctly classifies obfuscated

code with an F1-score of around 99% when using all 45 features and around 98% when using only

the 20 most descriptive features. This classifier is then used to assess how their model performs

with code obfuscated with a tool not present in the training set. To accomplish this, they create

two testing sets, one with the files obfuscated with a specific tool (testing set 1) and the other

with 30% of the remaining scripts (testing set 2). The rest is split into training and validation sets

(therefore these sets, do not contain code transformed by the specific tool). After training and

validating, the model is used to classify the scripts in both testing sets. Since in testing set 2, the

obfuscators used are also included in the training set, the model performs well, which is not the

case in testing set 1. The results obtained by classifying the files from testing set 1 have significant

variance depending on the assessed obfuscator. They conclude that some tools are more similar

1Swiss Reporting and Analysis Centre for Information Assurance.
2Although a minifier and not an obfuscator, they use it to transform smaller scripts that are usually left unchanged

by other tools.
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than others. Therefore, it is possible to generalize some obfuscators but not all, emphasizing the

importance of using various tools and diverse techniques while training the model.

3.2.3.2 Tool Identification

In more recent work, Skolka et al. [63] compare two different machine learning approaches in

solving three tasks. The first approach, via identifier frequencies, consists of creating a feature

vector that summarizes identifiers’ names occurrence and frequency in the code and then classi-

fies it using an SVM. This approach is limited to a single feature of the code. Therefore, a second

one, via AST convolution, is also tested. In this case, they enrich the AST with relevant infor-

mation for detecting obfuscation (such as information about whitespaces and identifiers length)

and adapt an existing machine learning architecture for classifying trees, a Tree-based Convolu-

tional Neural Network, to make the classification. This means that the entire AST is being used

to make the classification, maintaining its contextual details. In this case, no feature engineering

is required since the neural network extracts the most descriptive features from the entire AST. To

our knowledge, this work is the first to use this architecture for identifying transformed code. It

should be noted that this classifier can be very memory-consuming if used with large ASTs and

performs better with large amounts of data [66].

In regards to the classification tasks addressed, a simpler one aims at determining if a script

has been transformed, either by minification or obfuscation. Another task is to distinguish regular

JavaScript code, which includes minified code, from obfuscated code. A third task is to identify

the obfuscation tool applied to transform the code (from a set of available tools).

The dataset used to train and test the models depends on the task being addressed. They ran-

domly sample 10,000 files from a set of previously collected regular JavaScript files (regular files,

with no obfuscation and no duplicates, collected from open-source projects) and apply transforma-

tions to copies of those files accordingly to the task being addressed. These files are restricted to

sizes between 1 KB and 10 KB. They use five obfuscators - javascript-obfuscator [38], javascrip-

tobfuscator.com [20], DaftLogic Obfuscator [22], jfogs [25], and JSObfu [23] - with a total of 15

different configurations, and six minifiers - UglifyJS [19], babel-minify [6], Google Closure Com-

piler [8], javascript-minifier.com [31], Matthias Mullie Minify [18], and YUI Compressor [24] -

with a total of 31 configurations. This means that at most, each model is trained with 470,000

files, however this information is not disclosed.

Their results show that the Tree-based CNN outperforms the SVM model, obtaining accuracy

values of 95.06%, 99.96%, and 99.68%, respectively, in each task. They apply their detector to

existing collections of JavaScript and present an empirical study of code transformation techniques

in the wild, reaching several relevant conclusions. They conclude that around 38% of scripts are

transformed (mainly minified); that DaftLogic Obfuscator [22] is the most popular obfuscation

tool applied; and that to load code at runtime via eval is the most common obfuscation technique

practiced.
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3.3 Challenges

After further investigation of the problem and analysis of the previous work, we identify several

challenges to the successful detection of obfuscation in the wild.

3.3.1 Diversity of Techniques and Tools

There are numerous techniques and tools available for obfuscating JavaScript code. Different tools

apply varying techniques or the same technique in distinctive fashions. For this reason, while

detecting obfuscated code, it is essential to consider as many tools, and consequently, techniques

as possible. This heterogeneity allows the development of a robust solution, able to detect diverse

obfuscated code, which is what is expected to be found in the wild.

Previous projects address this challenge in the created datasets. For this purpose, two ap-

proaches are distinguished. The first is to create the entire dataset by collecting regular and obfus-

cated JavaScript from web pages. The second approach gathers regular JavaScript and then applies

one (or more) tools to create an obfuscated set. The dataset used in this dissertation comprises

code transformed by multiple obfuscators and configurations to incorporate different techniques

and have a broader representation of obfuscation practices and was created following the second

methodology described (see Section 4.2).

3.3.2 Unknown Obfuscators

When considering multiple obfuscators, the scenario where the testing set contains code trans-

formed by an unknown obfuscator must be addressed. Only one of the presented projects explic-

itly takes this situation into account - Skolka et al. [63]. In projects where the dataset is collected

from crawling different websites or using pre-existing collections, such as in Likarish et al. [52],

Kaplan et al. [48], and others, since the obfuscation tools are unknown in general, this situation is

possible, but the results are not analyzed under this perspective.

This dissertation addresses two tasks, the detection of obfuscated code and the identification

of the tool used, and this scenario can be an issue in both of them. Two situations can occur: the

training set is composed of code transformed by obfuscators similar to the unknown obfuscator;

or the tools used to obfuscate the code in the training set are very distinct from the unknown

obfuscator. In the first task, distinguishing obfuscated from non-obfuscated code, the model has

a higher probability of detecting the obfuscation in the first scenario than the second. In the task

of identifying the obfuscator, this situation is more critical since the classification will always be

incorrect, as there is no class representative of this new tool. We validate our binary solution in

the presence of unknown tools and analyze its results (see Section 6.5).

3.3.3 Minified Code

Previous work shows that minification is more common in the wild than obfuscation [63]. There-

fore, a dataset containing minified code is a more realistic representation of JavaScript code and
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programming practices. Some of the previous works presented consider the often use of minifica-

tion by incorporating this type of transformation in their dataset and classifying it either as regular

or minified - Tellenbach et al. [65], and Skolka et al. [63]. However, the majority of them do not

(although unclear in some cases). This can be a problem when the solutions compute features

based on identifiers’ length or frequency of indentation characters - which could indicate the pres-

ence of minification, but not necessarily obfuscation, leading to false positives. Even when this is

not the case, the solution should be tested in the presence of minification to understand the impact

of this type of code in the detection of obfuscation.

Since this dissertation’s main focus is to determine if a script is obfuscated, it is not of great

interest to train a classifier to detect minified code. We incorporate this type of code by labeling it

as regular JavaScript and then classifying it as such. This leads to more robust classifications that

can distinguish obfuscation from minification and give reliable results when used to classify code

with unknown origins. Additionally, we train the model with and without minified code and com-

pare the results of predicting minified code, to better understand the importance of incorporating

minification in the training set (see Section 6.6).

3.3.4 Partial Obfuscation

Code is partially obfuscated when obfuscated code appears embedded in regular code. This sit-

uation occurs when a part of a JavaScript file (e.g. a method definition) is obfuscated, and the

remaining is not. If the transformed portion is considerably smaller than the regular one, a detec-

tion system can be deceived to classify it as regular code instead of obfuscated.

Neither of the previous works addresses this situation. Therefore, the behavior of these solu-

tions in the presence of partial obfuscation is unclear. However, one can assume, since all of them

consider the program as an all, if the portion of obfuscated code is considerably smaller than the

regular code, they would not be able to detect the obfuscation.

This dissertation addresses this challenge by first validating the solution against partially ob-

fuscated code and then adopting a different methodology solely used to detect obfuscation in this

scenario (see Section 6.7).

3.4 Summary

Several approaches have been proposed to detect obfuscated JavaScript. The main aspects that

differentiate these works are the type of code analysis implemented, the type of features extracted,

and the classification techniques applied. Another relevant aspect is if the solutions are robust to

using different or unknown obfuscation tools to transform the target code.

It is also possible to distinguish two main approaches to retrieve insightful information from

the code. The most common is using a set of features defined based on standard obfuscation

practices. The second approach is to use features that retain some contextual information by using

paths of the AST or the entire tree. This dissertation presents a comparison between two variations

of these approaches, aiming to understand which one is more effective in detecting obfuscation.
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Table 3.1 presents a brief qualitative comparison of the previous work in regards to the top-

ics mentioned, namely the classification approaches and tasks each work addresses. Since the

approach proposed in this dissertation leverages static analysis of the code and machine learning

algorithms to make the detection, the works reviewed also use similar approaches. This table also

indicates if the solution retains any contextual information in the features used, and if it considers

the presence of minified or partially obfuscated code in the training or testing sets.

Work Year
Classification
Approach

Retains
Contextual
Information

Detects
Obfuscation

Considers
Code’s
Intents

Identifies
Obfuscator

Considers
Unknown
Tools

Considers
Minification

Considers
Partial
Obfuscation

Choi et al. [32] 2009 thresholds yes yes yes no no no no

Likarish et al. [52] 2009 machine learning no yes yes no no no no

Kaplan et al. [48] 2011 machine learning yes yes no no no unclear no

Al-Taharwa et al. [28] 2014 machine learning yes yes no no no unclear no

Tellenbach et al. [65] 2016 machine learning no yes no no yes yes no

Skolka et al. [63] 2019 machine learning no yes no yes no yes no

Table 3.1: Previous work qualitative comparison.

Additionally, Table 3.2 depicts a more quantitative comparison of the projects. Besides pre-

senting the classification tasks, it also shows the size of the datasets and the number of obfuscators

(and configurations) each uses. The results obtained by the various solutions are also presented

in this table. They are not directly comparable since different approaches, evaluation metrics, and

datasets (regarding size and content) are used. However, the ones obtained by the more recent

works are quite promising, being a good indicator that tasks of classifying obfuscated code and

identifying the obfuscator used can be successfully solved.

Work
Dataset Size
(number of files)

Number of
Obfuscators

Classification Task Evaluation

Choi et al. [32] 6 Unknown Detect obfuscated malicious JS Accuracy: 66.67%

Likarish et al. [52] 50,062 Unknown Detect obfuscated malicious JS
Average precision:87.52%

Average recall:73%

Kaplan et al. [48] 4,517 Unknown Detect obfuscated JS
FPR: 1%

FNR: 5%

Al-Taharwa et al. [28] 1,680 Unknown Detect obfuscated JS Precision: 96.7%

Tellenbach et al. [65] 104,680 5 (6 configurations) Detect obfuscated JS F1: 99%

Skolka et al. [63] >10,000 5 (15 configurations)
1) Detect transformed JS

2) Detect obfuscated JS

3) Identify obfuscator

1) Accuracy: 95.06%

2) Accuracy: 99.96%

3) Accuracy: 99.68%

Table 3.2: Previous work quantitative comparison.

A limitation of the first four solutions presented is the datasets used. They are either small,

unbalanced, use a small set of tools, or have no preprocessing to ensure the filtering of unwanted

code. This is not the case in the two last solutions, as the datasets are large, incorporate various

obfuscators, and were previously preprocessed to ensure their quality. Additionally, it is possible

to identify several challenges for detecting obfuscation in the wild: diversity of the data, unknown

tools, presence of minified code, and partial obfuscation. From the presented tables, we can con-

clude that no solution addresses all these challenges simultaneously. The columns Dataset Size
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and Number of Obfuscators from Table 3.2, show that Tellenbach et al. [65] and Skolka et al. [63]

use the most diverse datasets, considering a variety of tools and multiple configurations, incorpo-

rating several techniques. These two are also the only ones that intentionally consider minification,

as shown in column Considers Minification from Table 3.1. Tellenbach et al. [65] approach is the

only that validates the performance of their solution with unknown tools (column Considers Un-

known Tools, Table 3.1). However, none of the presented solutions acknowledges the presence

of partial obfuscation (column Considers Partial Obfuscation, Table 3.1). Although most of the

challenges are addressed to some degree by the presented solutions, further analysis is required

to develop a robust and reliable solution that can detect obfuscation in a vast range of scenarios,

which what we aim to achieve in this dissertation.
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Chapter 4

Detector Implementation

In this chapter, we describe in more detail the problem addressed by this dissertation, the context,

and implementation of the proposed solution, including all the steps to develop the detector.

4.1 Context

The main problem we address is the automatic detection of obfuscated JavaScript code. We im-

plement a detector whose main goal is to distinguish between regular code and obfuscated code.

Additionally, the detector also identifies the obfuscator used to transform the code, from a set of

known obfuscators. The detector receives as input a snippet of JavaScript code and outputs a label

that identifies it as regular or obfuscated, or if required, identifies the obfuscator used to transform

the code.

The detector should be able to classify JavaScript snippets with low false positive and false

negative rates. However, classifying incorrectly obfuscated samples may be considered more prob-

lematic than classifying incorrectly regular samples - namely when considering the specific case

of obfuscation being used to conceal malware and a next step of validating if the code is malicious

or not. If the detection of the obfuscated code fails, the attack goes unnoticed, possibly hindering

unsuspecting users. If a regular file is considered obfuscated, further manual investigation can

determine if the file is actually malware or not and release it if is not.

4.2 Dataset

An essential component for solving a classification task is the dataset used. Our goal is to have a

large and diverse dataset that incorporates different types of obfuscation - namely in the obfusca-

tion techniques used and obfuscators applied to transform the code - to have a broader represen-

tation of obfuscation practices. Additionally, since minification is commonly used in JavaScript

code and obfuscation often applies minification techniques, minified code should also be included

31
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in the dataset, to reduce the incorrect classification of minified files. We consider minified code as

regular code since it does not attempt to conceal the code’s behavior, conversely to obfuscation. To

the untrained eye, minification and obfuscation can be easily confused, adding to the importance

of training a detector to distinguish between them.

Since we apply supervised machine learning algorithms, a labeled dataset is required. Two

approaches can be used to build this dataset. The first is to gather regular JavaScript code and

obfuscated code from different sources. The other is to use a non-transformed JavaScript code

dataset as a basis and transform it with the desired obfuscators and transformation techniques.

The first approach would require rigorous preprocessing to ensure that the code labeled as regular

is regular code, and the code labeled as obfuscated is obfuscated. Additionally, it is not a viable

manner for obtaining a large corpus of files obfuscated by different tools for three main reasons:

obfuscation is not very common in the wild, which would require the collection and processing of

a large number of files; it would require further analysis of the code to identify the obfuscator used;

different obfuscators are applied more often than others which could compromise the balance of

the dataset. Conversely, the second approach is a safer alternative that grants more control of

the dataset. It is only required to ensure that the regular code is regular and not obfuscated or

minified. This is not a trivial task but is more straightforward than detecting obfuscated code, as

files with specific characteristics can be filtered from the dataset for potentially being transformed.

Additionally, by using a defined set of obfuscators and minifiers to transform the code, it is easier

to balance the dataset and control which tools and techniques are being used. We opt for the

second approach.

The dataset creation comprises three main phases: data collection, data preprocessing, and

data transformation. All the files generated are then stored and labeled appropriately:

• All regular and minified files are labeled as Regular.

• All obfuscated files receive two labels, the first indicating that they are obfuscated, Obfus-

cated, and the second label representing the obfuscator used to transform the code.

The workflow pipeline is presented in Figure 4.1.
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Figure 4.1: Dataset creation pipeline.
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4.2.1 Requirements

The basis dataset (from where the final dataset is created, by applying the transformations) needs

to verify a set of requirements:

• The code must be representative of different types of JavaScript. This is necessary to

eliminate any possible bias that could occur if only one type of JavaScript was used, such

as client-side code. Although obfuscation is primarily used on the client-side (since anyone

with a browser can have access to the code), the dataset should comprise different types of

JavaScript code to train a model able to detect obfuscation in different scenarios.

• The code must not be transformed (minified or obfuscated). The data collected will be

transformed, in a next step, by a pre-defined group of minifiers and obfuscators. Although

obfuscation often employs minification techniques, it is not always the case. Therefore,

obfuscating minified code can lead to inaccurate representations of code transformed by

specific tools, hindering the model’s classification. This is also true when obfuscating pre-

viously obfuscated code, as different tools transform the code in different fashions.

• There can not be duplicated and similar files. This could lead to unrealistic results, better

than expected, when similar files appear in the training and testing sets.

• The code must be parseable. Since the code will be parsed before being used in the

classifier, files that fail to be parsed must be discarded to avoid issues downstream in the

pipeline.

4.2.2 Sources of JavaScript Code

To create the dataset, three main sources of code were used: websites listed on Majestic Million 1,

repositories on GitHub 2, and NPM 3 libraries. In total, 148,349 JavaScript files were collected

from these sources.

Majestic Million. To have a more realistic representation of scripts found on the web, client-

side JavaScript can be obtained by crawling different websites. The code can be collected by

extracting inline scripts or by downloading code referenced by external files in the HTML of the

website (see Figure 4.2). The list of sites visited was obtained from the Majestic Million service.

This service offers a ranking of the top sites worldwide free of charge (contrarily to Alexa [3] that

contains a paywall). We start by scrapping Majectic Million using Python and BeautifulSoup 4

to retrieve the list of sites to visit. Then we implement a scrapper in Python, using Selenium 5

to visit each site. After allowing the loading of dynamically generated code for at most two

seconds, the scrapper parses the HTML code using BeautifulSoup to extract the script tags and

1https://de.majestic.com/reports/majestic-million
2https://www.github.com
3https://www.npmjs.com/
4https://pypi.org/project/beautifulsoup4/
5https://pypi.org/project/selenium/

https://de.majestic.com/reports/majestic-million
https://www.github.com
https://www.npmjs.com/
https://pypi.org/project/beautifulsoup4/
https://pypi.org/project/selenium/
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their content. Inline scripts are copied to files, and external references are downloaded. In total,

74,704 JavaScript files were extracted from around 3,500 websites. In the remaining of this work,

we refer to the files collected from this source as being collect from the web.

<script type="text/javascript">

// some code

</script>

(a) Inline script.

<script src="/someFile.js" type="text

/javascript"></script>

(b) Code referenced by an external file.

Figure 4.2: Example of scripts found in HTML code.

GitHub. Another source of code is the set of software hosting platforms, such as GitHub,

which contain a large variety of code for open-source websites, applications, and other programs.

We collect three types of repositories from GitHub: browser extensions, programs written in

vanilla JavaScript, and repositories containing server-side code. Browser extensions are small

software units used to customize the browsing experience. They run on the browser, and there-

fore, their code is solely client-side. The vanilla repositories are mostly small JavaScript programs

written without resourcing to external libraries. These repositories and the ones containing server-

side code were included in the dataset to increase its code diversity. To accomplish this, we start by

developing a JavaScript program based on the octokit/core 6 library that retrieves the list of repos-

itories using GitHub’s REST API [15]. To retrieve the different types of repositories we make

different requests, as shown in Figure A.1. Then, we implemented a Python script that clones the

repositories in the list. For each type of repository, the 300 most stared repositories were cloned,

obtaining a total of 25,354 JavaScript files. In the remaining of this work, we refer to the files

collected from this source as being collect from GitHub.

NPM. Various JavaScript libraries were included in the dataset. We downloaded the top 200

most dependent-upon libraries listed in a rank 7 on a GitHub repository, and their dependencies,

adding to the dataset a total of 48,291 JavaScript files from this source. To accomplish this, we

developed a small Python script that goes through the list of packages and installs them via NPM.

In the remaining of this work, we refer to the files collected from this source as being collect from

NPM.

4.2.3 Preprocessing

To ensure the dataset meets the requirements defined in Section 4.2.1, we preprocess all collected

files. To accomplish this, we developed a program written in JavaScript that receives as input a set

of files and filters the ones that do not fit our requirements. Figure 4.3 depicts the distribution of

files kept and filtered per data source. It is possible to verify that most of the collected files were

6https://www.npmjs.com/package/@octokit/core
7https://gist.github.com/anvaka/8e8fa57c7ee1350e3491

https://www.npmjs.com/package/@octokit/core
https://gist.github.com/anvaka/8e8fa57c7ee1350e3491
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filtered. The ratio between files kept and filtered is greater for files collected from the web. After

preprocessing, the dataset contains 35,687 files, around 24% of all the JavaScript files collected.

Web GitHub NPM
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Figure 4.3: Number of files kept and filtered per data source.

The preprocessing is divided into four main steps: filter minification; filter duplicated files;

filter unparseable code; and filter obfuscation. Additionally, files are also discarded if they are

empty or due to timeout in the preprocessing. Figure 4.4 shows the distribution of files filtered per

motive of being filtered, from where it is possible to conclude that most files are filtered because

they are minified or duplicated from other files.
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Figure 4.4: Number of files filtered per motive.
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4.2.3.1 Filter Minification

A file is marked as minified if it displays at least one of the following characteristics:

• A min.js extension (based on the fact that this extension is commonly used to identify mini-

fied code).

• Less than 1% of indentation characters (based on [65]).

• On average, more than 100 characters per line (based on the fact that it is standard to keep

the line length at 80 characters 8, and rounding it to 100 to be more tolerant to programming

preferences).

• More than 10% of all lines has more than 240 characters (adapted from [65]. Instead of 1000

characters, we use 240 to capture smaller minified lines. 240 is three times the standard line

size).

It should be noted that code comments are overlooked by these heuristics, as they are first

removed from the code. This is done to prevent files with extensive comments from being marked

as minified or minified code to be concealed by comments.

The majority of files (53,748 files) were filtered due to minification. This is also the main

reason for filtering files collected from the web, where around 66% of files were marked as mini-

fied. This can be explained by the frequent use of minification to reduce load time and bandwidth

usage.

4.2.3.2 Filter Duplicated Files

To filter duplicated and similar files, we compute the context-triggered piecewise hash (also known

as fuzzy hash) for the minified version of each file and compare it with the ones computed for

previously processed files. This type of hash is a combination of other hashing algorithms and

allows the identification of similar files [50].

We start by parsing the files with esprima [12] and minifying them with escodegen [11] to

remove any comments, indentation characters, and specific identifier names that could hinder the

comparison. These libraries do not add any randomness to the minification; therefore, two equal

files output the same minified code. Then we compute the fuzzy hash values using ctph.js [10].

This library allows to compute fuzzy hash values and compare their similarity scores (from 0%

to 100% similar). If two files have a similarity score greater or equal to 40%, one of them is

discarded. This value was obtained by trial and error and manual evaluation of multiple files. We

prioritize the uniqueness of the files instead of the number of files in the dataset, therefore using a

low threshold value decreases the probability of having duplicates. In this step, 49,816 files were

filtered.

8Based on IBM’s punched card, which had 80 columns [16].
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4.2.3.3 Filter Unparseable Code

In the previous step, to filter duplicated files (Section 4.2.3.2), the code is minified and therefore

parsed. The code is parsed with the same parser that we use in the parsing stage (see Section 4.3),

and then minified. If there are any parsing errors we discard the file. In this step, 5,997 files were

discarded.

4.2.3.4 Filter Obfuscation

Although obfuscation often applies minification techniques and therefore the first step of removing

minified code (see Section 4.2.3.1) would filter these files, this is not always the case. Therefore

an additional step to filter these files is required. In this step, 392 files were filtered. We consider

a file as obfuscated if it displays three or more of the following characteristics:

• On average a string entropy greater than 1.2 (based on [32]).

• On average a string 1-gram greater than 60 (adapted from [32]).

• On average the words 9 in the strings have more than 350 characters (base on [32]).

• On average an identifier 10 length equal to 1 character (based on the fact that obfuscation

often minimizes the identifiers).

• On average less than 70% of letters per identifier (based on [52]).

• On average more than 5% of encoded identifiers, strings or numbers (based on the fact that

identifier, string, and number encoding are a techniques often applied by obfuscators).

4.2.3.5 Filter Others

Files with one or fewer bytes were also discarded (935 files). Additionally, files that took more

than five minutes to be processed were also discarded, mainly due to performance reasons 11

(1,774 files were discarded due to timeouts).

4.2.4 Transformation

Different copies of the original files were transformed with various tools to represent all our trans-

formations and create the final dataset. Most of the tools used are open-source and available via

NPM packages, which means they are easily accessible and simple to use. Some of the tools can

be customized with various configurations, which we take advantage of to have different levels of

obfuscation. The configurations for the obfuscators were chosen based on three criteria:

9We consider a word any sequence of alphanumeric (and the underscore character) characters inside a string.
10We use the term identifier to represent three types of identifiers: variables, functions/methods, and parameters

declared in the program. This heuristic (and similar) is applied to these three types of identifiers independently.
11In general, the processing time for a file is less than ten seconds.
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• Templates provided in the tool’s documentation. If the tool provides templates with

configurations, some of them are used, following the rationale that they are more commonly

applied to transform the code.

• Variety of transformations. If the tool offers a variety of transformations, choose configu-

rations that reflect those transformations.

• Similarity to other tools. Choose configurations that use transformations similar to the

ones applied by other tools to represent common obfuscation techniques. For this purpose

we define a common obfuscation configuration, referenced as config1, that attempts to use a

similar set of techniques for all tools: whitespace removal, comments removal, variables and

function names randomization, converting static data to procedures, function inlining/out-

lining. However, depending on the tool, other techniques are also used since they may not

be disabled.

The tool choice was made based on the techniques applied by the tools and their accessibility

(for more details on the tools, see Section 2.3). To obfuscate the code in the dataset, nine tools

were applied:

• Jscrambler [47]: it is not an open-source tool; rather it is a commercial product from the

company with the same name. It uses various techniques to transform the code and is highly

customizable. Four different configurations were used for this tool: the first is the config1

configuration, and the three remaining are templates available on this tool’s documentation,

representing different levels of obfuscation.

• javascript-obfuscator [38]: it is an open-source tool available on NPM. It uses various tech-

niques to transform the code and is highly customizable. Four different configurations were

used for this tool: the first is the config1 configuration, and the three remaining are templates

available on this tool’s documentation, representing different levels of obfuscation.

• defendjs [4]: it is an open-source tool available on GitHub. It uses various techniques to

transform the code, some of which can be customized. Two configurations were used: the

first is the config1 configuration, and the latter applies stronger obfuscation techniques.

• js-obfuscator [7]: it is an open-source tool available on NPM. It uses various techniques to

transform the code, some of which can be customized. Three configurations were used for

this tool: the first is the config1 configuration, and the two remaining apply other obfuscation

techniques provided by the tool.

• JSObfu [23]: it is an open-source tool available on RubyGems 12. It uses various techniques

to transform the code. It is configurable by setting the number of iterations, representing the

number of times the code is obfuscated. We use one iteration to obfuscate the code. In some
12https://rubygems.org/

https://rubygems.org/
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cases, when the original code is not very complex, the output is very simple, i.e. we can

say that it has low potency and resiliency. For this reason, obfuscated files with less than

30 bytes were discarded. Figure 4.5 shows a snippet of code transformed by this tool that

is less than 30 bytes. As shown, the obfuscated code, although different from the original

code, is very simple, failing to conceal its intended behavior.

var $ng_adcode_user_is_supporter = 1;

(a) Original code.

var y=’k’.length;

(b) Obfuscated code.

Figure 4.5: Example of code transformed by JSObfu with a size smaller than 30 bytes.

• JavaScript2img [21]: it is an online tool, therefore, the obfuscation process required the im-

plementation of a crawler to visit the website and transform the code. It is not configurable.

The process of transforming the code with this tool is very time-consuming, often failing

for larger files. Therefore we only transform around 10,000 files, all smaller than 20 KB

(which took around a week to accomplish).

• DaftLogic [22]: it is an online tool, and like with JavaScript2img we encountered some

limitations while transforming the code. We use the same thresholds applied to transform

the code with JavaScript2img.

• jsfuck [2]: it is an open-source tool available on GitHub. It is not configurable.

• node-obf [67]: it is an open-source tool available on NPM. The identifiers are also randomly

generated based on a given symbol, we use $$. The remainder of transformations are not

configurable.

Other obfuscators such as jfogs [25] and gnirts [5] were also explored; however, due to the

simplicity of the transformations they apply, the code transformed with these tools was not incor-

porated in the final dataset. The first works by creating a single function that includes all the code.

Then all the terminal nodes are replaced by identifiers that are passed as arguments to the main

function. In some cases, the transformed code is very similar to the original. The second tool,

gnirts, only transforms strings, preserving the rest of the code.

The configurations we use for all configurable obfuscators are detailed in Section A.2. All

obfuscators have one common configuration, config1. When we refer to this configuration from

a specific obfuscator, we use the name of the obfuscator followed by a hyphen, and config1, e.g.

Jscrambler-config1. The remaining configurations are obfuscator-dependent and do not match

with configurations of other tools. These configurations are represented by the obfuscator’s name

followed by a hyphen and a number, e.g. Jscrambler-2. In Section A.2 we also present examples

of code obfuscated by each obfuscator.
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In order to minify the code, we used two tools: UglifyJS [19] and Google Closure Com-
piler [8]. Both tools are open-source and available on NPM and although they offer some con-

figurations, the default versions were used. Other minifiers, such as YUI Compressor [24] and

babel-minify [6], were taken into account. However, as in general they output similar code to

the ones used [63], differing mainly in the names used in the variables and small optimizations

applied, the two selected were considered enough.

After this process, each regular file in the dataset generates, at most, eleven additional files

- since we apply nine obfuscators and two minifiers to transform the original file - that are then

labeled and added to the dataset. Ideally, all files would be transformed successfully with all tools,

allowing a balanced number of samples in the different classes. However, due to time, size, and

transformation restrictions, this was not possible. In the following section we report how many

files in the final dataset were successfully obfuscated and parsed per tool.

The program to transform the files is mainly written in JavaScript since most tools are available

via NPM. To use JSObfu we develop a small Ruby script, as it is only available on RubyGems.

Finally, to access the online tools, we use Python with a Selenium web driver to be able to interact

and issue requests to the pages.

4.3 Parser

We leverage static code analysis to retrieve insightful information. We parse the code by com-

puting and traversing its AST. To accomplish this, we modify an in-house, previously developed,

parser that receives as input a set of JavaScript files and computes, for each file, a set of path-

contexts (as defined in Section 3.1.3).

The parser is written in Python and JavaScript, and it uses esprima [12] to parse the code into

an AST. esprima is a high performance and well-documented library. As JavaScript has many

available features and an extensive grammar, only a subset of commonly used nodes is considered

by the parser (around 60 different nodes). However, it is easily extensible to incorporate new nodes

if required.

To extract the necessary information from the code, two main alterations were made to the

parser. The first was to alter the paths to be more generic and representative of the code’s overall

structure, without storing irrelevant information, as explained in Section 4.3.1. The second was

to add the ability to compute a set of features, manually defined, from the code’s AST and raw

source, that differentiate regular code from obfuscation practices, as described in Section 4.3.2

Not all files in the dataset were parsed correctly due to a variety of issues. Some obfuscators,

such as JavaScript2img, originate invalid code, which is unparseable. Additionally, the transfor-

mations applied by node-obf and jsfuck, specially in larger files, originate very complex and nested

AST’s which the parser is incapable of handling. For this reason, we only parse files smaller than

2.7 KB for node-obf, and smaller than 20 KB for jsfuck. After parsing, the dataset has features and

paths for 273,121 JavaScript files, distributed as displayed in Table 4.1.
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Configuration Number of files
Regular - 34,981
UglifyJS - 35,029
Google Closure Compiler - 30,093
Jscrambler Jscrambler-config1 8,744

Jscrambler-2 8,643
Jscrambler-3 8,734
Jscrambler-4 8,710

javascript-obfuscator javascript-obfuscator-config1 8,592
javascript-obfuscator-2 8,621
javascript-obfuscator-3 8,884
javascript-obfuscator-4 8,842

defendjs defendjs-config1 14,369
defendjs-2 14,401

js-obfuscator js-obfuscator-config1 10,013
js-obfuscator-2 10,130
js-obfuscator-3 10,238

JSObfu JSObfu-config1 21,464
JavaScript2img JavaScript2img-config1 6,149
DaftLogic DaftLogic-config1 10,687
jsfuck jsfuck-config1 2,548
node-obf node-obf-config1 3,249

Table 4.1: Distribution of files per type of code - Regular and tool used - and configuration used,
after parsing the code. All obfuscators have a common configuration, config1, and some have other
configurations which are tool-dependent, and are represented by the tool’s name and a number.

4.3.1 Path-contexts

For each program, the path-contexts for the first 1,000 terminals are computed (or less if there are

less than 1,000 terminals in the program). This is accomplished by going through all terminals and

computing paths that connect them with other terminals. These paths do not store the directions

that connect the nodes (up or down the AST). The paths have a minimum and maximum AST

depth (represented by the path’s length) of five and 100, respectively 13, including the terminal

values. This means that paths that connect two terminals that have a depth larger than 100 are not

computed.

In the original version of the parser, the paths start and end with the value of two terminal

nodes, containing the sequence of nodes that connected them. For example, one of the paths

extracted from the expression x = 10; was:

x|Identi f ier|AssignmentExpression|Literal|10 (4.1)

13These values are configurable if desired.
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where x is the value of the start node and 10 is the value of the end node, that are connected by an

AssignmentExpression node (as the value ten is assigned to the identifier x). However, our focus is

on the code structure and not necessarily on the values of the terminals, as obfuscators often apply

some randomization while renaming variables or assigning values.

To compute more generic paths, we use a label representing the terminal nodes’ values for

numbers, strings, and identifiers, instead of using the actual value. This label preserves the relevant

information and discards unnecessary details. However, if the value of the terminal is a common

obfuscation keyword, it remains unaltered (see Section 4.3.2.3 for more details on these types of

keywords).

A number is represented by the label Number followed by Encoded if the number is encoded.

Similarly, a string is represented by String followed by Encoded if it contains any encoded char-

acters. Finally, identifiers are represented by the label Identifier followed by two names: the first

indicating if it is encoded, Encoded, human-readable, Readable, or unreadable, Unreadable; and

the second relative to its size, Small for identifiers with less than three characters, Medium for

identifiers with more than three characters and less than 15 characters, and Large for identifiers

with more than 15 characters. For more details on our definition of encoded strings, number and

identifiers, see Section 4.3.2.5. Additionally, our definition of unreadable is based on [52] and

considers an identifier as unreadable if its size is greater than three characters and has a percentage

of vowels lower than 5% or greater than 60%; or has a percentage of letters lower than 70%, or

has more than two consecutive equal characters.

For the expression in the previous example, the altered parser computes the path:

Identi f ierReadableSmall|Identi f ier|AssignmentExpression|Literal|Number (4.2)

This new nomenclature allows similar expressions, such as a = 1; to be represented by the same

paths. In the implementation, all the names in the paths are shortened to reduce the space required

to store them.

A possible limitation of the parser is that it only stores unique paths. This means that the

information of the number of times a particular path appears in the code is not taken into account.

However, this reduces the space in memory required to store the paths, which allows the overall

scaling of the dataset used. Additionally, as only a subset of these paths will be used in a next

step, storing only the unique paths implies that this subset will be diverse and representative of

different paths in the code, discarding the possibility of it containing duplicate (possibly irrelevant)

information.

4.3.2 Features

To compute a feature vector, we traverse the code’s AST, storing and engineering relevant data.

Some features are also computed from the raw source code.

We focus on features that can represent different and standard obfuscation practices. Our

features are based on previous work in the area [32, 52, 65] and manual inspection of obfuscated
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code. As the detector should also identify the obfuscator used in the code, some features are tool-

related. The features are mainly based on relative frequencies of specific values and statistical

metrics, such as means and standard deviations.

The extracted features can be roughly divided into six categories: string related, identifier

related, keyword related, node related, encoded related, and file related. We extract in total 101

different features, some of which do not fit in any of these categories. Table A.1 shows the set of

features that were extracted from the code, their description, and the corresponding category they

belong to.

4.3.2.1 String related

String related features are extracted from strings in the code. They aim at detecting patterns in

the strings related to their length, word size, entropy, and 1-gram (byte occurrence frequency).

These features are extracted from the raw version of the string, which does not decode encoded

characters. We compute these features based on [32]. The word size is the average of number

of characters in all words in the strings used in the code. We consider a word any sequence of

alphanumeric (or the underscore character) characters inside a string. The entropy is used as a

measure of the distribution of bytes in the string and the 1-gram to check the frequency of specific

characters.

The entropy, E, of a string is calculated as follows [32]:

E =−
N

∑
n=1

(
bn

T
log

bn

T
),T =

N

∑
n=1

bn (4.3)

where bn is the count of each character and T is the total number of characters in the string. The

1-gram of a string is computed from the frequency of special characters, such as %, in the string.

We consider special characters the ones with ASCII codes between 0x21-0x2F, 0x3A-0x40, 0x5B-

0x5F, or 0x7B-0x7E.

Figure 4.6 depicts the distributions of values for the average string length, word size, entropy,

and 1-gram, for strings in regular and obfuscated code. We remove the outliers from the plots

to have a proper visualization of the values, as some outliers exceed significantly the values por-

trayed. We consider an outlier a value that is located outside the wiskers of the box plot.

For all the mentioned features, the distribution of values differs in regular and obfuscated code.

In general, these values have greater diversity in obfuscated code, likely due the use of different

obfuscators. The average string length in regular code is slightly greater than the one in obfuscated

code. However, obfuscated code displays a larger range of values for the string length. On average,

obfuscated code has a greater word size than regular code. The entropy values in regular code tend

to by higher than in obfuscated code, however it should be noted that some files with an entropy

lower than 1.2 were filtered in Section 4.2.3. Regarding the 1-gram, in obfuscated code, this value

ranges from 0% to 100%. However, in regular code, this value generally does not exceed 62% -

meaning that there are no strings composed solely by special characters.
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Figure 4.6: String related features’ distribution in regular and obfuscated code.

4.3.2.2 Identifier related

Identifier related features are extracted from the identifiers used in the code. We use four categories

of identifiers: declared variables, declared functions, function parameters, and other identifiers

used in the code. The features are extracted independently for these categories and aim at detecting

unusual identifier names based on: the length; and the frequency of letters, uppercase letters,

vowels and numbers in the identifier’s name. These features attempt to capture differences between

the identifiers written by humans and the ones automatically generated by the tools.

Table 4.2 shows the average values for these metrics across all regular and obfuscated files.

For all the categories considered, the average frequencies of numbers and uppercase letters are

significantly higher in obfuscated code than in regular code. Conversely, identifiers in regular

code tend to have a higher frequency of vowels than the ones in obfuscated code. The frequency

of letters varies according to the type of identifier considered, however, it tends to be higher in

regular code comparing to obfuscated code. The majority of the obfuscators that we use renames

the variables in the code by replacing their names with ones with no obvious meaning, which may

explain these differences.
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Metric Regular Obfuscated
Declared Variables Length (number of characters) 5.481 3.762

Frequency of letters (%) 80.271 58.979
Frequency of uppercase letters (%) 5.348 18.847
Frequency of vowels (%) 28.692 12.713
Frequency of numbers (%) 0.441 23.892

Declared Functions Length (number of characters) 5.104 3.322
Frequency of letters (%) 45.208 52.454
Frequency of uppercase letters (%) 4.528 17.256
Frequency of vowels (%) 16.018 13.778
Frequency of numbers (%) 0.193 16.293

Parameters Length (number of characters) 1.751 4.513
Frequency of letters (%) 71.714 58.098
Frequency of uppercase letters (%) 0.765 16.446
Frequency of vowels (%) 34.567 17.909
Frequency of numbers (%) 0.047 25.932

Others Length (number of characters) 6.501 4.939
Frequency of letters (%) 95.628 67.329
Frequency of uppercase letters (%) 6.464 17.972
Frequency of vowels (%) 36.615 16.594
Frequency of numbers (%) 0.314 24.924

Table 4.2: Average value for the length, frequency of letters, frequency of uppercase letters, fre-
quency of words, and frequency of numbers, per type of identifier, across all regular and obfuscated
files.

4.3.2.3 Keyword related

Keyword related features are based on the frequency of specific keywords in the code. These key-

words appear often in obfuscated code, with different frequencies depending on the tool applied.

They were manually defined based on previous work and assessment of obfuscated files. For each

JavaScript file we compute the frequencies for each keyword by dividing the number of times the

keyword appears in the code by the total number of terminal nodes in the code’s AST.

Table 4.3 shows the top 10 keywords whose frequency is greater in obfuscated code than in

regular code (for the complete table, see Table A.2). The presented values are the average of

the frequencies for each keyword across all files. As shown, keywords such as +, String, and

fromCharCode are significantly more frequent in obfuscated code than in regular code. These

three (among others) are commonly used to convert static data into procedures, either by using

concatenation of values, such as strings and numbers, or converting strings into results of calls to

other methods.
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Keyword Average Frequency (%)
Regular Code Obfuscated Code

+ 0.951 3.612
String 0.036 0.570
fromCharCode 0.004 0.488
arguments 0.093 0.415
parseInt 0.025 0.157
apply 0.047 0.133
RegExp 0.023 0.102
eval 0.008 0.071
% 0.015 0.056
Array 0.074 0.113

Table 4.3: Average frequency of specific JavaScript keywords in regular and obfuscated code (top
10).

4.3.2.4 Node related

Node related features are based on the frequency of specific nodes of the code’s AST. These fea-

tures aim at representing patterns in the usage of certain expressions in the code. Table 4.4 depicts

the frequency of specific nodes in regular and obfuscated code. We group all nodes related with

control flow statements together, such as WhileStatement, SwitchStatement, among others, to cap-

ture obfuscation that applies control flow flattening techniques. These frequencies are computed

by dividing the number of times a certain node (or group of nodes) appears in the code by the total

number of nodes. As shown, some nodes (or groups of nodes) are more common in obfuscated

code than in regular code, for example MemberExpression nodes. The presence of these nodes

in high frequencies can be a strong indicator that the code is obfuscated. Other nodes, such as

FunctionExpression and FunctionDeclaration, are more common in regular code than obfuscated

code. These nodes represent the use of function expressions and function declarations in the code.

The fact that in obfuscated code the frequency of these nodes is lower than in regular code may be

explained by the use of function inlining techniques that replace a call to a function by its code.

Node Average Frequency (%)
Regular Code Obfuscated Code

Control Flow Nodes 1.495 3.389
MemberExpression 10.584 12.464
AssignmentExpression 2.749 3.886
FunctionExpression 1.595 1.445
FunctionDeclaration 0.419 0.230

Table 4.4: Average frequency of specific nodes (and groups of nodes) in regular and obfuscated
code.
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From the MemberExpression node, we compute the frequency of array and property accesses

in the code. Array accesses are more common in obfuscated code than regular code, constituting

around 75% of all MemberExpression nodes. Conversely, property accesses are more common in

regular code, constituting around 86% of all MemberExpression nodes.

Finally, we also compute the frequency of terminals that have string or numerical values. To

do so, we divide the number of terminal nodes with string or numerical values by the total number

of terminal nodes in the code. Regular code has, on average, a higher frequency of strings than

obfuscated code. Conversely, the frequency of numbers in obfuscated code is around five times

higher than in regular code.

4.3.2.5 Encoded related

Encoded related features are extracted from strings, numbers, and identifiers and aim at detect-

ing standard encoding obfuscation techniques. These features are computed by applying specific

regexes to the raw version of the value of these terminals.

A string is considered encoded if at least one of its characters is encoded - written in its ASCII,

octal or hexadecimal representation. For example “\u0061\u0062\u0063”. Similarly, a number is

encoded if it is not in base 10, for example 0x1b63. Finally, an identifier is considered encoded if

it begins with an “_” followed by an encoded number, for example _0xeb15. This nomenclature

is commonly applied by some obfuscators, such as javascript-obfuscator and js-obfuscator, to

rename identifiers.

Figure 4.7 depicts the distribution of encoded strings, numbers, and identifiers - declared vari-

ables, declared functions, function parameters, and other identifiers used - in regular and obfus-

cated code. As shown, for all types of terminals considered, the average frequency of encoding is

significantly higher in obfuscated code compared to regular code. As expected, in regular code,

there are no encoded identifiers. In general, these are named to be human-readable or, in case the

code is minified, short to occupy fewer memory.
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Figure 4.7: Average frequency of encoding per terminal type, for regular and obfuscated code.

4.3.2.6 File related

File related features are extracted directly from the source code, namely frequency of indentation

characters and average number of characters per line.

The frequency of indentation characters is computed by dividing the number of indentation

characters in the file by its total number of characters. In regular code, the average value for this

feature is 7.48%, which is not very different from the one in obfuscated code, which is 8.79%.

However, the obfuscated code presents fewer diversity of values, as the majority of files has less

than 10% of indentation characters. This is not the case for regular code, where this value ranges

from 0% to 38%, as shown in Figure 4.8.

0 10 20 30 40

Regular

Obfuscated

Figure 4.8: Distribution of the frequency of indentation characters in regular and obfuscated code.

The average number of characters per line in obfuscated files (25,895 characters) is around ten
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times the value in regular files (2,539 characters 14). This value is computed by dividing the total

number of characters by the total number of lines in the file.

4.4 Classifiers

The features and paths computed are used to solve two classification tasks. The first task is a bi-

nary problem, to distinguish between regular and obfuscated code. The second task is to identify

the obfuscator that was used to transform the code. This task is addressed as a multiclass prob-

lem, where there are as many classes as the number of obfuscators considered plus one, which

represents the regular code class.

Two different models were developed to solve these tasks: Code2BagOfPaths, and Code2FeatureVector.

The models are implemented in Python and with the scikit-learn 15 library, as it is well furnished

with efficient tools for solving data analysis and machine learning tasks.

The first model, Code2BagOfPaths, is a Bag Of Words 16 implementation. Each file is repre-

sented by a set of path-contexts, and each path is considered a word. We create a vocabulary based

on all paths in the training set. We ignore paths that appear in more than 50% of the files in the

training set, as they are considered common JavaScript paths, or common obfuscated paths, and

are not useful to distinguish obfuscated code from regular code, or to identify specific tools. Then

we transform each code sample into a vector with the same length as the vocabulary, where each

element is the term-frequency times inverse document-frequency, tf-idf 17, value of a specific path.

The computed vectors are then used as input for a Multinomial Naive Bayes classifier, which was

chosen due to its popularity in text classification [64]. In the remaining of this work, we also refer

to this classifier as context-based model.

The Code2FeatureVector model is a Random Forest classifier that receives as input the features

manually defined and computed from the code. In total it uses 101 features. We use the parameters

provided by the default implementation of the Random Forest classifier in scikit-learn 18. This

includes the use of 100 trees (estimators) to make the estimation, and an unlimited maximum

tree depth. We chose this classifier based on the results of preliminary experiments conducted

comparing standard classification algorithms. Additionally, Random Forest models have easy

interpretability, as they allow to compute the importance given to each feature, which is valuable

to understand the obtained results. In the remaining of this work, we also refer to this classifier as

feature-based model.

14We include both regular and minified code, therefore the number of characters per line in regular code is greater
than standard programming practices.

15https://scikit-learn.org/stable/
16https://machinelearningmastery.com/gentle-introduction-bag-words-model/
17Value obtained by multiplying the term frequency by the inverted document frequency of a path [59].
18http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

https://scikit-learn.org/stable/
https://machinelearningmastery.com/gentle-introduction-bag-words-model/
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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4.5 Summary

The implementation of the detector has three main steps: dataset creation, data parsing, and classi-

fication. In the first step we collect a set of JavaScript files from different websites, GitHub reposi-

tories and NPM packages. These files are preprocessed to filter minified, duplicated, unparseable,

and obfuscated files. Copies of the remaining files are then transformed with two minifiers and

nine obfuscators to create the final dataset. Due to time restrictions, the amount of samples trans-

formed by some tools, mainly those that visit websites, is limited.

In the second step, each file is parsed to compute a set of path-contexts and manually defined

features. A path-context is a path of the code’s AST that joins any two terminal nodes. Addi-

tionally, we extract six categories of manually defined features - string related, identifier related,

keyword related, node related, encoded related, and file related - that aim at distinguishing regular

and obfuscated code. After parsing, as some obfuscators generate code that is unparseable due to

its complexity or syntax errors, the dataset is slightly imbalanced and there are fewer samples for

some obfuscators. Additionally, as size restrictions were imposed to some tools, the range of file

sizes for those tools is not very broad.

Finally, we use the paths and features as input for two different classifiers. The first classifier

is an implementation of Bag Of Words where each file is represented by a set of path-contexts, and

each path is considered a word. A vocabulary of paths is then created from the training data. For

each code sample, we compute a vector of its term-frequency times inverse document-frequency,

tf-idf, in regards to the paths in the vocabulary. These vectors serve as input for a Multinomial

Naive Bayes classifier. The second classifier is a Random Forest that receives as input the features

defined based on standard obfuscation practices.



52 Detector Implementation



Chapter 5

Context Versus No Context

In this chapter we compare two approaches for detecting obfuscation and identifying obfusca-

tors. The first approach, Code2BagOfPaths, uses contextual information in the form of paths of

the AST, and the second, Code2FeatureVector, is based on defined features. We conduct a set

of experiments to understand which approach is more reliable and efficient in solving the tasks

addressed. In this chapter we try to answer two questions:

• How to select the paths? The use of randomly selected paths to represent a snippet of code

for the Code2BagOfPaths model, may or not improve the classification when compared with

the use of filtered paths.

• Is there any benefit in using context-based features? The use of context-based features

may or not be beneficial when detecting obfuscated code.

5.1 Experimental Setup

In these experiments we use the classifiers described in Section 4.4.

We divide the dataset into two different sets: training and testing. For this, we use 70% of

the files for training and 30% for testing. However, this separation is not a trivial task since there

is no guarantee that the transformed versions of each file are different from their original file and

between tools - minifiers often output the same minified code; some obfuscators fail to transform

portions of the code, such as dictionary declarations. This means that there is the possibility that

similar files appear in both the training and testing sets, which could lead to unrealistic results. To

divide the dataset, we impose that:

• Each set has both original and transformed files.

• There are similar percentages of original files in the training and testing sets.

• There are similar percentages of transformed, minified or obfuscated, files in the training

and testing sets.

53
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• A transformed file, minified or obfuscated, must be in the same set as its original file.

We assign the files into the training and testing sets with the following methodology:

1. Select the tool with fewer 1 transformed files in the dataset, whose files have not been added

to the training and testing sets.

2. If the sets are empty, assign the files transformed with the tool selected in step 1 according

to the desired percentage, and add them to the corresponding sets - 70% for training and

30% for testing. Go to step 5. Else go to step 3.

3. If there are files in the sets, add the versions of the files transformed by the tool selected in

step 1 that have the same original file as the ones in the sets (if they exist) to the correspond-

ing sets.

4. Assign the remaining files transformed with the tool selected in step 1 according to the

desired percentage and add them to the corresponding sets - 70% for training and 30% for

testing.

5. If there is at least one tool whose files have not been added to the sets in the dataset, go to

step 1. Else go to step 6.

6. Add the original version of the files to the corresponding sets.

This methodology guarantees that the testing set does not contain files that were obfuscated or

minified from any original file that is in the training set, also ensuring a stratified division, where

all classes are represented in the same proportion in both sets.

To assess the binary models, we compute their precision, recall, F1-score, and accuracy. Sim-

ilarly, to assess the multiclass models, we compute the weighted average of the first three of these

scores, and the accuracy for all classes. When further evaluation of the model is required - to

assess if the model is overfitting -, we apply cross-validation with ten k-folds using the training

data. According to the methodology above, the training data is first shuffled and then divided

into ten folds. This type of splitting does not guarantee that all folds will be different, but it is

unlikely that two folds are the same due to the large size of the dataset. To assess the results of the

cross-validation, we compute the average of the results obtained from all folds.

All experiments were performed on a workstation with a Ryzen 7 3700x processor (3.6 GHz)

with eight cores, 32 GB of RAM, and an NVIDIA GeForce GTX 1650 Super GPU.

1We select the tool that has the fewer files transformed in the dataset to ensure a stratified division of the code
between the training and testing sets - using a random tool could result in an unbalanced distribution of the files
transformed with a tool with fewer files, if their corresponding versions were not appropriately distributed between the
sets.
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5.2 How to select the paths?

The path choice is an essential factor while classifying the code using the Code2BagOfPaths

model, as it determines how the code samples are represented. For this choice, two different

components should be considered: the type of paths and the number of paths.

Regarding the first component, the goal is to understand if selecting the path-contexts ran-

domly improves the classification versus filtering the paths. This is only relevant when the num-

ber of paths used is limited instead of using all the paths. Although, at first sight, filtering the

paths based on the frequency of nodes commonly used in obfuscated code would seem a better

approach since it focuses on standard obfuscation practices, it is likely that some of these paths

are also present in regular code. Thus, by solely using these paths, the representation of the script

is limited and could lead to more false positives. Our hypothesis is that randomly selecting the

paths allows a more diverse representation of the entire code without focusing on specific nodes

and keywords, which leads to better results.

In this experiment we consider two types of paths: randomly selected paths and filtered paths,

where the paths are filtered regarding the nodes they traverse. To filter the paths, we first rank

them by computing a weighted average of the frequency of certain context types. Table 5.1 shows

the weights and nodes associated with each context type. The remaining nodes are given a weight

of zero.

Context Type AST nodes Weight

Control Flow Structures

WhileStatement, SwitchStatement, SwitchCase, BreakStatement,
ContinueStatement, ReturnStatement, DoWhileStatement, ForStatement,

ForInStatement, ForOfStatement, ThrowStatement, TryStatement, CatchClause 0.3

Access Operations MemberExpression, Property, ArrayExpression, ObjectExpression 0.2

Function Declarations and Invocations FunctionExpression, ArrowFunctionExpression, FunctionDeclaration, CallExpression 0.2

Special Keywords Terminal nodes with values associated with special keywords. 0.2

Logical Operations BinaryExpression, LogicalExpression, UnaryExpression 0.1

Table 5.1: Context types and their correspondent JavaScript AST nodes and assigned weights.

Regarding the second component for the path choice, namely the choice of the number of

paths that should be used to represent script, our goal is to understand how this choice impacts the

classification. We use 25, 50, 75, and 100 paths. As some files end up having hundreds (some

thousands) of paths, and as loading/transforming that amount of data would be very time and

memory consuming, we do not train the model with all the extracted paths

To make the choice of paths, regarding the type of paths selected - random or filtered - and

the number of paths to use, we train and test both the binary and multiclass classifiers with the

training and testing sets described in Section 5.1, and all possible combinations of types of paths

and number of paths mentioned - with a total of eight combinations per task. In the remaining of

this work, we refer to random-based models as the models that use randomly selected paths, and

filtered-based models as the models that use filtered paths.

The results for both the binary and multiclass tasks are presented in Table 5.2 and Table 5.3,

respectively. The results show that the model performs better when using 100 paths, in both tasks,
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when considering precision, recall and F1-score. For all configurations, regarding the types of

paths and numbers of paths used, all the metrics evaluated are above 99%, which indicates a

high coverage independently of the configuration used. With the increase in the number of paths,

more features are computed, and the model may have more information to make the classification.

Additionally, if fewer paths are used, the probability of a new, unseen path surfacing in the testing

set may be higher, which may explain the results obtained.

Type of Paths Number of Paths Precision (%) Recall (%) F1-score (%) Accuracy (%)
Random 25 99.90 99.91 99.91 99.88

50 99.91 99.94 99.93 99.91
75 99.90 99.96 99.93 99.92
100 99.91 99.96 99.93 99.92

Filtered 25 99.00 99.77 99.38 99.21
50 99.54 99.82 99.68 99.60
75 99.72 99.83 99.77 99.71
100 99.83 99.83 99.83 99.79

Table 5.2: Results obtained by the binary model, by using random or selected paths with a variety
of number of paths.

Type of Paths Number of Paths Weighted Average Precision (%) Weighted Average Recall (%) Weighted Average F1-score (%) Accuracy (%)

Random 25 99.80 99.80 99.80 99.80

50 99.90 99.90 99.90 99.90

75 99.90 99.90 99.90 99.90

100 99.92 99.92 99.92 99.92

Filtered 25 99.29 99.28 99.27 99.28

50 99.54 99.54 99.54 99.54

75 99.66 99.66 99.66 99.66

100 99.73 99.73 99.73 99.73

Table 5.3: Results obtained by the multiclass model, by using random or selected paths with a
variety of number of paths.

For all the sets of paths tested, the model that uses random paths outperforms the one that uses

filtered paths, resulting in higher precision and recall values, validating our hypothesis. To better

understand these results, we compare the models with higher F1-score for both approaches (with

100 paths) for the binary task in the following paragraphs.

The random-based model classifies 49 regular files as obfuscated. These files comprise both

regular code and minified code, some of which are the minified versions of the regular files mis-

classified. The majority of these files uses keywords commonly associated with obfuscation, such

as Array, has encoded strings, or long/unreadable identifiers’ names. Additionally, the majority of

them are also smaller files, which means that the model uses all the paths computed, including the

ones reminiscent of obfuscation, which may explain the detector’s behavior. The filtered-based

model misclassifies 89 regular files as obfuscated. The majority of these files uses keywords com-

monly associated with obfuscation, such as fromCharCode, RegExp, among others. Since the

filtering gives more weight to these types of expressions, the model is likely to be using these
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paths to make the classification, associating them with paths of obfuscated code, thus misclassi-

fying them as obfuscated. Additionally, some of the files have paths similar to obfuscated files,

for example using large switch statements inside while loops, which is a common practice in code

obfuscated by defendjs, or have long identifiers or encoded strings. Finally, and for both models

- filtered-based and random-based -, if they receive a set of paths never seen before, they classify

the code as obfuscated 2, which also may explain the false positive values.

Regarding the false negatives, the random-based model classifies 20 obfuscated files as regular,

and the filtered-based model classifies incorrectly 86 obfuscated files. The misclassification of

obfuscated files seems to occur when the paths used are associated with regular code instead of

obfuscated code. For example, if part of the code is not obfuscated (some tools do not obfuscate

dictionaries for example) or when the code is obfuscated differently from the obfuscated code in

the training set - even if the paths are similar, if they are not equal to those in the training set, the

detector does not associate them with obfuscation. When the paths are selected randomly, there

is a higher chance of avoiding this scenario, as the used paths are retrieved from random code

blocks, covering a variety of statements and transformations. However, if the paths are filtered,

and therefore focus on specific code blocks, the detection may be compromised when these blocks

are transformed differently or are not transformed at all.

These conclusions can be generalized to the multiclass models, as the files are misclassified

due to the same reasons. However, both models classify fewer regular files as obfuscated and

more obfuscated files as regular. The lower values of false positives may indicate that the models

are able to distinguish regular code from code transformed by individual obfuscators, even if the

regular code contains common obfuscation practices (keywords, paths, among others). In general,

the misclassified regular files are smaller, reducing the probability of using known paths, which

may mislead the detector. The higher false negatives values may indicate that even if the used paths

are common in obfuscated code, the models are not associating them to any specific obfuscator.

In the end, the results corroborate with our initial hypothesis that randomly selecting the paths

seems to allow a better representation of the script, resulting in both lower false positives and

lower false negatives. Filtering the paths seems to induce the model in error if the regular files

contain specific keywords or paths. Filtering the paths also hinders the obfuscation detection in

cases where the paths selected are common in regular code. The best results are obtained by using

100 random paths in both tasks addressed. Notwithstanding, the results obtained do not invalidate

the use filtered paths in general, they invalidate the use of the defined methodology to filter the

paths.

5.3 Is there any benefit in using context-based features?

When considering the task of obfuscation detection by statically analyzing the source code, two

main approaches can be followed: extracting context-based features; and computing features based

on standard obfuscation techniques, with no context associated with them.

2This was tested by inputting unknown paths to the classifier and predicting the outcome.
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Our goal is to determine if the use of the context-based features improves the distinction of ob-

fuscated and regular code compared to features extracted with no context associated. Our hypoth-

esis is that, by computing features that focus on differences between regular and obfuscated code,

the classifier receives all relevant information without additional noise. Although the context-

based features allow the identification of patterns in the paths generated by individual tools, it is

expected that the no-context features also capture these patterns.

To compare the two detectors - Code2BagOfPaths and Code2FeatureVector -, we first apply

cross-validation to the training data, as described in Section 5.1. Then we test them with the testing

set. For the Code2BagOfPaths detector, we use 100 randomly selected paths for both binary and

multiclass models, based on the results obtained in Section 5.2.

Table 5.4 displays the results obtained from cross-validating and testing the binary classifier for

the Code2BagOfPaths and Code2FeatureVector models. For both models, the results obtained in

testing are consistent with the ones obtained by applying cross-validation to the training data. This

is a strong indicator of the models’ robustness and shows that they are unlikely to be overfitted to

the testing data. Both models seem to be able to detect obfuscation with high precision and recall.

Model Precision (%) Recall (%) F1-score (%) Accuracy (%)

Train Code2BagOfPaths 99.887 ±0.024 99.958 ±0.011 99.923 ±0.015 99.903 ±0.017

Code2FeatureVector 99.995 ±0.005 99.979 ±0.012 99.986 ±0.005 99.982 ±0.008

Test Code2BagOfPaths 99.91 99.96 99.93 99.92

Code2FeatureVector 100.00 99.98 99.99 99.99

Table 5.4: Cross-validation and testing results for the binary version of the Code2FeatureVector
and Code2BagOfPaths models.

To better explore these results, we display the confusion matrices obtained for both models, in

Table 5.5 and Table 5.6. As both the regular and obfuscated classes have subclasses, such as the

tool and configuration used, we divide these matrices accordingly.

The Code2BagOfPaths model classifies 49 regular files as obfuscated and 20 obfuscated files

as regular. In general, the regular files are classified incorrectly due to the presence of certain key-

words and specific paths that are reminiscent of obfuscation practices. The obfuscated files clas-

sified incorrectly were transformed by one of two tools: javascript-obfuscator, and js-obfuscator.

The incorrect classification of obfuscated files seems to occur when the selected paths are associ-

ated with regular code instead of obfuscated code, due to different transformations being applied

in those files, or portions of code being untransformed (see Section 5.2).
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Predicted Label

Regular Obfuscated

Regular 10,488 19

UglifyJS 10,508 16

Google Closure Compiler 8,987 14

Total Regular 29,983 49

Jscrambler-config1 0 2,584

Jscrambler-2 0 2,623

Jscrambler-3 0 2,556

Jscrambler-4 0 2,695

javascript-obfuscator-config1 5 2,568

javascript-obfuscator-2 0 2,600

javascript-obfuscator-3 0 2,646

javascript-obfuscator-4 0 2,671

defendjs-config1 0 4,221

defendjs-2 0 4,432

js-obfuscator-config1 5 3,008

js-obfuscator-2 4 2,997

js-obfuscator-3 6 3,101

JSObfu-config1 0 6,470

JavaScript2img-config1 0 1,849

DaftLogic-config1 0 3,195

jsfuck-config1 0 765

node-obf-config1 0 976

Total Obfuscated 20 51,957

Table 5.5: Confusion matrix for the binary version of the Code2BagOfPaths model, extended by
tools and configurations. In bold are the total values per class.

Regarding the Code2FeatureVector model, it misclassifies 11 files, one as obfuscated and ten

as regular. The regular file misclassified was minified with UglifyJS. After manually inspecting

this file, we observed that the code on this file uses a set of keywords, such as slice and String, and

operations, such as concatenations, commonly used in obfuscated code, which combined with the

minification could explain the detector’s behavior. Regarding the misclassified obfuscated files,

they were all transformed by the same tool, JSObfu, and nine out of the ten are smaller than 488

bytes. As explained in Section 4.2.4, this obfuscator tends to generate simpler code when used

with smaller files, which is a possible explanation for the incorrect classification of these files.

The 10th file, that is significantly larger at around 147 KB, contains a significant portion of regular

code, as the tool did not obfuscate a dictionary declaration.
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Predicted Label

Regular Obfuscated

Regular 10,507 0

UglifyJS 10,523 1

Google Closure Compiler 9,001 0

Total Regular 30,031 1

Jscrambler-config1 0 2,584

Jscrambler-2 0 2,623

Jscrambler-3 0 2,556

Jscrambler-4 0 2,695

javascript-obfuscator-config1 0 2,573

javascript-obfuscator-2 0 2,600

javascript-obfuscator-3 0 2,646

javascript-obfuscator-4 0 2,671

defendjs-config1 0 4,221

defendjs-2 0 4,432

js-obfuscator-config1 0 3,013

js-obfuscator-2 0 3,001

js-obfuscator-3 0 3,107

JSObfu-config1 10 6,460

JavaScript2img-config1 0 1,849

DaftLogic-config1 0 3,195

jsfuck-config1 0 765

node-obf-config1 0 976

Total Obfuscated 10 51,967

Table 5.6: Confusion matrix for the binary version of the Code2FeatureVector model, extended
by tools and configurations. In bold are the total values per class.

Table 5.7 presents the results obtained by the models regarding the multiclass task of identify-

ing the tool that obfuscated the code. As in the binary task, the results obtained in the testing for

both models are consistent with those obtained by cross-validating the training data. As expected,

the Code2FeatureVector outperforms the Code2BagOfPaths model.

Model Weighted Average Precision (%) Weighted Average Recall (%) Weighted Average F1-score (%) Accuracy (%)

Train Code2BagOfPaths 99.917 ±0.011 99.917 ±0.011 99.917 ±0.011 99.917 ±0.011

Code2FeatureVector 99.984 ±0.005 99.984 ±0.005 99.984 ±0.005 99.984 ±0.005

Test Code2BagOfPaths 99.92 99.92 99.92 99.92

Code2FeatureVector 99.99 99.99 99.99 99.99

Table 5.7: Cross-validation and testing results for the multiclass version of the
Code2FeatureVector and Code2BagOfPaths models.

Table 5.8 represents the confusion matrix obtained by the Code2BagOfPaths, extended to rep-

resent information regarding the configurations of each tool. This model classifies incorrectly 11

regular files and 55 obfuscated files. The false positives are classified as obfuscated by one of

three tools (Jscrambler, defendjs or node-obf ), and either have keywords or operations associated

with obfuscation, or are too small, which may explain the detector’s behavior. The misclassified
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obfuscated files were transformed either by javascript-obfuscator, js-obfuscator or JSObfu. As in

the binary task, the obfuscated files may be classified as regular due to the use of paths associ-

ated with regular code instead of obfuscated code. However, there are two files transformed with

js-obfuscator that the model classifies as being transformed by javascript-obfuscator. These tools

apply similar techniques, which could result in the same paths. For example, both obfuscators

start by initialising a large array with the strings used in the code, which are then accessed when

required. The two misclassified files are also significantly larger than the norm for the code trans-

formed by js-obfuscator. This means that there are more paths to select, which may decrease the

probability of using the paths the model associates with this tool.

Predicted Label
Regular Jscrambler javascript-obfuscator defendjs js-obfuscator JSObfu JavaScript2img DaftLogic jsfuck node-obf

Regular 10,502 2 0 2 0 0 0 0 0 1
UglifyJS 10,520 2 0 2 0 0 0 0 0 0
Google Closure Compiler 8,999 2 0 0 0 0 0 0 0 0
Total Regular 30,021 6 0 4 0 0 0 0 0 1

Jscrambler-config1 0 2,584 0 0 0 0 0 0 0 0
Jscrambler-2 0 2,623 0 0 0 0 0 0 0 0
Jscrambler-3 0 2,556 0 0 0 0 0 0 0 0
Jscrambler-4 0 2,695 0 0 0 0 0 0 0 0

Total Jscrambler 0 10,458 0 0 0 0 0 0 0 0

javascript-obfuscator-config1 17 0 2,556 0 0 0 0 0 0 0
javascript-obfuscator-2 0 0 2,600 0 0 0 0 0 0 0
javascript-obfuscator-3 0 0 2,646 0 0 0 0 0 0 0
javascript-obfuscator-4 0 0 2,671 0 0 0 0 0 0 0

Total javascript-obfuscator 17 0 10,473 0 0 0 0 0 0 0

defendjs-config1 0 0 0 4,221 0 0 0 0 0 0
defendjs-2 0 0 0 4,432 0 0 0 0 0 0

Total defendjs 0 0 0 8,653 0 0 0 0 0 0

js-obfuscator-config1 14 0 2 0 2,997 0 0 0 0 0
js-obfuscator-2 6 0 0 0 2,995 0 0 0 0 0
js-obfuscator-3 11 0 0 0 3,096 0 0 0 0 0

Total js-obfuscator 31 0 2 0 9,088 0 0 0 0 0

JSObfu-config1 / Total JSObfu 5 0 0 0 0 6,465 0 0 0 0

JavaScript2img-config1 / Total JavaScript2img 0 0 0 0 0 0 1,849 0 0 0

DaftLogic-config1 / Total DaftLogic 0 0 0 0 0 0 0 3,195 0 0

jsfuck-config1 / Total jsfuck 0 0 0 0 0 0 0 0 765 0

node-obf-config1 / Total node-obf 0 0 0 0 0 0 0 0 0 976

Table 5.8: Confusion matrix for the multiclass version of the Code2BagOfPaths model, extended
by tools and configurations. In bold are the total values per class.

Considering the Code2FeatureVector model, it classifies correctly all regular files, regardless

if they are minified or not. However, it fails to detect 11 obfuscated files, all transformed with

JSObfu, the majority of which are also misclassified by the binary model due to their small size,

and overall simplicity of code obfuscation. Table 5.9 displays the confusion matrix, extended to

represent the different configurations of each obfuscator, for this model.
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Predicted Label
Regular Jscrambler javascript-obfuscator defendjs js-obfuscator JSObfu JavaScript2img DaftLogic jsfuck node-obf

Regular 10,507 0 0 0 0 0 0 0 0 0
UglifyJS 10,524 0 0 0 0 0 0 0 0 0
Google Closure Compiler 9,001 0 0 0 0 0 0 0 0 0

Total Regular 30,032 0 0 0 0 0 0 0 0 0

Jscrambler-config1 0 2,584 0 0 0 0 0 0 0 0
Jscrambler-2 0 2,623 0 0 0 0 0 0 0 0
Jscrambler-3 0 2,556 0 0 0 0 0 0 0 0
Jscrambler-4 0 2,695 0 0 0 0 0 0 0 0

Total Jscrambler 0 10,458 0 0 0 0 0 0 0 0

javascript-obfuscator-config1 0 0 2,573 0 0 0 0 0 0 0
javascript-obfuscator-2 0 0 2,600 0 0 0 0 0 0 0
javascript-obfuscator-3 0 0 2,646 0 0 0 0 0 0 0
javascript-obfuscator-4 0 0 2,671 0 0 0 0 0 0 0

Total javascript-obfuscator 0 0 10,490 0 0 0 0 0 0 0

defendjs-config1 0 0 0 4,221 0 0 0 0 0 0
defendjs-2 0 0 0 4,432 0 0 0 0 0 0

Total defendjs 0 0 0 8,653 0 0 0 0 0 0

js-obfuscator-config1 0 0 0 0 3,013 0 0 0 0 0
js-obfuscator-2 0 0 0 0 3,001 0 0 0 0 0
js-obfuscator-3 0 0 0 0 3,107 0 0 0 0 0

Total js-obfuscator 0 0 0 0 9,121 0 0 0 0 0

JSObfu-config1 / Total JSObfu 11 0 0 0 0 6,459 0 0 0 0

JavaScript2img-config1 / Total JavaScript2img 0 0 0 0 0 0 1,849 0 0 0

DaftLogic-config1 / Total DaftLogic 0 0 0 0 0 0 0 3,195 0 0

jsfuck-config1 / Total jsfuck 0 0 0 0 0 0 0 0 765 0

node-obf-config1 / Total node-obf 0 0 0 0 0 0 0 0 0 976

Table 5.9: Confusion matrix for the multiclass version of the Code2FeatureVector model, extended
by tools and configurations. In bold are the total values per class.

The two models are able to detect obfuscation and identify the tool used with high precision

and recall. However the Code2FeatureVector model outperforms the Code2BagOfPaths model in

both of these tasks. The results obtained validate our hypothesis that using contextual features

does not improve the detection of obfuscation compared to the use of features without context.

Another interesting conclusion is that the Code2FeatureVector model only seems to fail in de-

tecting obfuscation in code transformed by a particular tool when the files are too small, or the

obfuscation does not have high resilience or potency (simpler transformations). Interestingly, the

Code2BagOfPaths model is able to detect obfuscation in some of these files, even though they

apply simpler transformations. This indicates that retaining some contextual information can be

beneficial in classifying code from this particular tool. However, this model is not as reliable as

the first, since it fails to detect obfuscation in code from two tools, and it is unable to detect obfus-

cation if the transformations generate paths similar but not equal to the ones the model was trained

for. This also indicates that this second model would not be able to generalize to code transformed

by different tools or unseen transformations. The Code2BagOfPaths model also classifies as ob-

fuscated all files that are represented by a set of paths never seen, leading to a higher false positive

values. This suggests that:

• More data is required to train the Code2BagOfPaths model, since there is an immense vari-

ety of code combinations and paths.

• The paths representation is not generic enough, and could be altered by, instead of using

the paths to create the vocabulary, using the individual nodes - however, depending on the
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implementation, some or even all contextual information may be lost with this approach.

Finally, it is also important to note that the process of traversing through the code’s AST

and computing features is more straightforward and takes fewer time than the one of extracting

the path-contexts, which requires the computation of paths for the first terminals in the code (as

described in Section 4.3). The features extracted for Code2FeatureVector can be directly fed into

a classifier; however, the paths for Code2BagOfPaths must first be used as input for a vectorizer

to extract features based on the training data, and these features are then fed into a classifier. This

means additional time and memory spent in computing these context-based features.

5.4 Summary

Two different approaches were followed to implement an obfuscation detector based on the static

characteristics of the code. The first approach is to traverse the code’s AST, extract a set of paths

that represent the code, and use those paths to automatically create features that differentiate ob-

fuscated code from regular code. The second approach is to use a set of features, manually defined

based on common obfuscation practices, extracted directly from the code’s AST, with no context

associated with them.

We found that choosing the paths used to represent the code is essential for the success of the

first approach. We compare two selection approaches: selecting the paths randomly; and filtering

them by the frequency of certain nodes and keywords (related to obfuscation). Our hypothesis was

that randomly selecting the paths would allow a more diverse and realistic representation of the

entire code, leading to better results. This hypothesis was confirmed by the experiments conducted,

as using random paths results in higher F1-score values in both tasks addressed. Filtering the paths

seems to induce the model in error if the regular files contain specific keywords or paths, or the

paths selected for the obfuscated files are more common in regular code. However, these results

only invalidate our filtering methodology, as others could be more useful and obtain better results.

By comparing the models for the two approaches - context versus no context -, it is possible

to conclude that they are able to detect obfuscation and identify the obfuscator used to transform

the code with high precision and recall. However, there is no additional benefit of using contex-

tual features versus features manually defined, as the context-based model incorrectly classifies

more regular and obfuscated files. Additionally, extracting the paths is a more costly process than

computing the features, pointing to the overall efficiency and efficacy of the feature-based model.

In the end, the model that receives as input features with no context, Code2FeatureVector,

seems to be a more reliable and less costly approach for detecting obfuscation. It is also easier to

explain due to the nature of the features used.
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Chapter 6

Additional Questions

In this chapter we present a set of experiments to evaluate the Code2FeatureVector model in dif-

ferent scenarios, as well as validating initial assumptions made while creating the dataset. These

experiments also give additional insights on how the solution can be scaled to incorporate new

obfuscators and data sources, and on how future experiments can be conducted. In this chapter we

try to answer six questions:

• What is the impact of training the model with fewer files? Training the model with fewer

files may or not have an impact in detecting obfuscation.

• What is the impact of training the model with smaller files? Using smaller files may or

not be enough to detect obfuscation in files with various sizes.

• Is the model biased to the sources of code used in training? The model may or not be

able to generalize to code collected from unknown sources.

• Is the model able to detect obfuscated code transformed by unknown tools? The model

may or not be able to detect code obfuscated by unknown obfuscators.

• What is the impact of training the model without minified code? Training the model with

minified code may or not have an impact on the detector’s ability to distinguish obfuscated

code from minified code, as both types of transformations apply some common techniques.

• Is the model able to detect obfuscation in partially obfuscated code? The model may or

not be able to detect obfuscation in scenarios of partial obfuscation, where only a portion of

the file is obfuscated.

6.1 Experimental Setup

To run the experiments, we use the binary version of the Code2FeatureVector model. The training

set, testing set, the data splitting methodology, and workstation used are the ones described in

Section 5.1. In general, we compare the results with the ones obtained by the Code2FeatureVector

65
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model trained and tested with the original training and testing sets (see Section 5.3). In the re-

maining of this work, we refer to this model as baseline model.

Additionally, we create a new set of files to represent partial obfuscation. To accomplish this,

since these files are only used for testing, we create two code collections from the original testing

set: the first with every file with regular (including minified) code between 2 KB and 4,000 KB;

and a second with all the obfuscated files with more than 1 KB and less than 2 KB. For each regular

file in the first collection, we randomly select an obfuscated file, from the second collection, and

attach it to the beginning of the regular file. The size limits were used to create a set of partially

obfuscated code with at most 50% and at least 0.05% of obfuscation. This restriction was used to

avoid files with more obfuscated code than regular code and percentages of obfuscation too close

to zero. This is done to mimic a specific type of attack, where the obfuscated malware appears at

the top of the file. Figure B.1 shows an example of the partially obfuscated code generated. After

creating and parsing, this new set contains 10,727 partially obfuscated files, with obfuscation

percentages between 0.05% and 50% .

To further assess the results obtained in some of the experiments, we compute the impor-

tance given by the model to each of the used features. To accomplish this we use the fea-

ture_importances_ attribute of the Random Forest classifier implemented in scikit-learn 1, which

stores the values for the importance given to each feature. These values are computed as the mean

and standard deviation of accumulation of the impurity decrease within each tree [13].

6.2 What is the impact of training the model with fewer files?

An obfuscator, considering a specific configuration, applies the same techniques to all files. Even

if these techniques are used with some random factors, such as names randomization, most trans-

formations are captured by a set of N files. Our hypothesis is that after an N number of files, there

is no need to keep increasing the size of the training set, as no new information is added.

Understanding the number of files necessary to train the detector has a significant interest, not

only for performance and space-related motives, but in the scenario where code transformed with

new tools is added to the dataset. Some of the tools used are open-source and freely available,

which allows their use without significant restrictions. However, other tools such as DaftLogic

and JavaScript2img, are online tools and have limits to the size and number of files transformed.

Tools such as jsfuck and node-obf cannot be applied to some files since they create very deep

ASTs that break the parser. Additionally, other tools are not freely available, such as Jscrambler,

which can limit the number of samples available, due to associated costs - using more files leads

to higher costs. Suppose the detector can deliver high precision and recall with fewer files. In that

case, there is no need to use a large amount of obfuscated samples for each obfuscator, facilitating

the process of transforming the files.

1https://scikit-learn.org/stable/

https://scikit-learn.org/stable/
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To test our hypothesis, we train the classifier with 5%, 15%, 25%, and 50% of the training data

and test it with the original testing set. We then compare the results with the ones obtained by the

baseline model.

Table 6.1 shows the results obtained. The model obtains a higher F1-score when using all files.

However, the impact of reducing the number of files by 50% is not very significant. When using

only 5% of all training files, the model is still able to detect obfuscation with high precision and

recall. As the number of files in the training set increases, so does the model’s training time.

Percentage of Files (%) Precision (%) Recall (%) F1-score (%) Accuracy (%) Training Time (s)

5 99.98 99.92 99.95 99.94 1.40

15 99.99 99.95 99.97 99.96 4.68

25 99.99 99.95 99.97 99.96 8.50

50 99.99 99.97 99.98 99.98 19.56

100 (baseline) 100.0 99.98 99.99 99.99 47.88

Table 6.1: Results obtained for training with 5%, 15%, 25%, and 50% of training files.

Table 6.2 shows the number of files misclassified by type of code - regular or transformed by

a specific tool. We only represent the types where varying the size of the training data had impact

in the code’s classification. By assessing the results obtained by training the model with each

percentage of files individually, it is possible to conclude that:

• Reducing the number of samples for each obfuscator only impacts the detection of code

transformed by two tools: js-obfuscator, and JSObfu. The files transformed with the re-

maining tools are classified correctly independently of the percentage of files used.

• The majority of obfuscated files classified as regular were transformed by the same tool,

JSObfu.

• The majority of obfuscated files classified as regular have smaller sizes.

• The regular files misclassified are both regular (not transformed) and minified.
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Percentage of training data used (%)
5 15 25 50 100 (baseline)

Regular 3 2 1 1 0
UglifyJS 3 2 2 2 1
Google Closure Compiler 3 1 1 1 0
js-obfuscator 11 4 2 1 0
JSObfu 28 24 23 15 10

Table 6.2: Number of files misclassified per code type, for each percentage of the training data
used.

The results are a strong indicator that obfuscators tend to be repetitive in the transformations

they apply, aiming at transforming the code without attempting to avoid detection. This validates

our initial hypothesis that training the model with fewer files does not significantly hinder the

detection. Since the model trained with fewer files still performs with high detection, and train-

ing with a small dataset is considerably faster, this approach can be used in future experiments.

Additionally, we can use fewer files transformed by new obfuscators if we want to incorporate

code obfuscated with these new tools in the dataset, which gives us insight into how to scale our

solution.

6.3 What is the impact of training the model with smaller files?

Besides discarding empty files, we did not initially apply any size restrictions to the original code

while creating the dataset. Note that we do apply size restrictions to code transformed by some

tools, as explained in Section 4.2.4 and Section 4.3.

With this experiment we aim at understanding the impact of using a training set with smaller

files versus a training set with different sized files. Our hypothesis is that using a set of smaller

files to train the detector could improve performance (less time in parsing and training) without

significantly hindering the model’s effectiveness, as the obfuscated code would still maintain its

primarily frequency-based features.

We create three additional training sets - set1, set2, and set3 - with the following methodology:

1. Compute the 25th, 50th, and 75th percentiles of the file size for the regular (not transformed)

code and for the code transformed by each tool - minifiers and obfuscators - as displayed in

Table B.1.

2. Add to set1 all files with sizes lower than the value of the 25th percentile of its corresponding

type - regular or for the tool that transformed the code.

3. Add to set2 all files with sizes lower than the value of the 50th percentile of its corresponding

type. This set includes all files in set1.

4. Add to set3 all files with sizes lower than the value of the 75th percentile of its corresponding

type. This set includes all files in set2.
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The detector is trained with each training set and evaluated with the original testing set. The results

are then compared with the ones obtained by the baseline model.

Table 6.3 presents the number of files misclassified, for each training set, per code type -

regular or transformed by a specific tool. Since the obfuscated files classified incorrectly were

transformed either by JSObfu or defendjs, only these two obfuscators are represented in the table.

The remaining obfuscated code was classified correctly independently of the training set used.

As the size of the files decreases, the model’s performance decreases as well, as it is less able to

classify larger files. Therefore, the baseline model (which is trained with the original training set)

performs the best. However, by using smaller files, the model is still able to detect obfuscation

with high precision and recall, failing mostly in files transformed by defendjs. The results obtained

by training with the three new sets in terms of evaluation metrics are presented in Table B.2.

Training Set
set1 set2 set3 Original (baseline)

Regular 4 1 1 0
UglifyJS 263 11 2 1
Google Closure Compiler 197 1 0 0
defendjs 1,101 470 100 0
JSObfu 5 9 13 10

Table 6.3: Number of files misclassified per code type, for each training set.

The majority of files misclassified transformed by defendjs were transformed with the same

configuration - defendjs-2. Further analysis of the size distribution per configuration of this tool

shows that the files transformed with defendjs-config1 tend to be smaller than the ones transformed

with the defendjs-2 configuration, as the first one applies a set of simpler techniques. Therefore,

by removing the larger files, more files transformed with the second configuration are being re-

moved from the training sets, which may explain why more files transformed with the second

configuration are misclassified.

Conversely to the other obfuscated code, using smaller files in training allows for better detec-

tion of files transformed with JSObfu. By manually assessing the files transformed with JSObfu

that the model is a misclassifying when trained with each training set, we observe that:

• When training with set1 the model misclassifies five files. Four out of these five files are

smaller than 98 bytes. The 5th file contains code for a large dictionary declaration that was

not obfuscated.

• When training with set2 the model misclassifies nine files. Five out of these nine files are

also misclassified when training with set1. The remaining four files are smaller than 488

bytes.

• When training with set3 the model misclassifies 13 files. Nine out of these 13 files are also

misclassified when training with set2. The remaining four files are smaller than 348 bytes.
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• When training with the initial training set, the model misclassifies ten files. All these files

are also misclassified when training with set3.

Since the value for the 25th percentile of the sizes of files transformed by JSObfu is 880 bytes,

all the files misclassified when training with the different sets, except for one, belong to this

percentile. As described in Section 4.2.4, this obfuscator tends to output simpler obfuscated code

that resembles minified code when applied to smaller files - which is the case in most of the

misclassified files. A possible explanation for the increase in misclassified files transformed with

JSObfu when using larger files relates to the presence of more and larger minified files in the

training set. By training with more minified files, which in both set1 and set2 have sizes lower

or equal to 1.04 KB (slightly above the 880 bytes), the model may be associating more files

transformed with JSObfu with minification, misclassifying them.

The results also show that smaller files can generalize to larger files for the majority of

obfuscators. However the size difference between percentiles, for some obfuscators, namely

JavaScript2img, DaftLogic, jsfuck, and node-obf, is not very significant, which can also explain

why training with smaller files is enough to classify correctly all files from these tools.

6.4 Is the model biased to the sources of code used in training?

To build the dataset, JavaScript code was collected from three different sources: websites, GitHub

repositories, and NPM packages. This was done to prevent possible bias that could occur if only

one source of code was used. In this experiment, we aim at understanding the impact of training the

detector with code from fewer sources to validate, or not, our initial assumption. Our hypothesis

is that a diverse dataset allows a better generalization of the model to different scenarios and types

of code.

A strong motivation for this experiment is related to the process of collecting and processing

the code. Collecting code from the web can be a very time-consuming process and requires a

time-consuming preprocessing to discard minified and obfuscated files (that are more common in

code collected from the web). Therefore, it would be relevant to understand if training with code

from the web improves the classification as if not, this source could be dismissed in future works.

To accomplish this, we remove all the files collected from a specific source from the train-

ing set. The model is then trained with this new set and tested with the original testing set (which

contains code from all sources). This process is performed for each source independently, generat-

ing three additional models: Code2FV_wo_Web, Code2FV_wo_GitHub, and Code2FV_wo_NPM,

which are trained without files collected from the web, GitHub, and NPM, respectively.

To better understand the results obtained, we start by analyzing how the baseline model classi-

fies files from different sources. To accomplish this, we divide each class in the confusion matrix

(regular and obfuscated) by source (web, GitHub, NPM), as shown in Table 6.4. The model mis-

classifies more files from the web (seven files) than from any other source. However, other factors

must be taken into account. All obfuscated files classified incorrectly were transformed by the

same tool, JSObfu, which, as mentioned in Section 4.2.4, tends to originate simple obfuscated
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code if the input file is too small, which is the case for all the misclassified web files. This seems

to be a more probable cause for the detector’s behavior.

Predicted Label
Regular Obfuscated

Regular Web 9,981 0
Regular GitHub 8,567 0
Regular NPM 11,483 1
Total Regular 30,031 1

Obfuscated Web 7 18,893
Obfuscated GitHub 2 13,875
Obfuscated NPM 1 19,199
Total Obfuscated 10 51,967

Table 6.4: Baseline model’s confusion matrix extended by source. In bold are the total values per
class.

The results obtained with the Code2FV_wo_Web model, displayed in Table 6.5, show that the

model does not misclassify any regular files and it misclassifies 32 obfuscated files collected from

the web. There are two possible explanations for this behavior. The first is related to the size of the

files, as the ones retrieved from the web tend to be smaller. By removing them from the training

set, the detector is not trained to classify similar sized files as obfuscated, which can lead to their

incorrect classification. Another explanation is the overall structure and semantic of the web files.

As they are solely client-side code, their overall semantics and content differ from other types of

code. However, client-side code is also collected from other sources. To better understand why

the detector fails to classify these files, we manually assess them, concluding that they are smaller

than 512 bytes and were transformed by the same tool, JSObfu, seven of which the baseline model

also classifies incorrectly.
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Predicted Label
Regular Obfuscated

Regular Web 9,981 0
Regular GitHub 8,567 0
Regular NPM 11,484 0
Total Regular 30,032 0

Obfuscated Web 32 18,868
Obfuscated GitHub 0 13,877
Obfuscated NPM 0 19,200
Total Obfuscated 32 51,945

Table 6.5: Code2FV_wo_Web model’s confusion matrix extended by source. In bold are the total
values per class.

Considering the Code2FV_wo_GitHub model, all files misclassified are from the removed

source, in this case GitHub repositories, as shown in Table 6.6. The model is able to classify all

regular files correctly, but it classifies two obfuscated files as regular. These two files were trans-

formed with JSObfu, and the baseline model also fails to classify them as obfuscated. The fact that

all other files misclassified by the baseline model are classified correctly by this model suggests

that training with code from GitHub repositories is slightly hindering the detector’s efficacy. To

better understand these results, we compute the importance of the features used by this model, as

described in Section 6.1, and compare them with the importance given by the baseline model. By

assessing the top 20 most important features of each model, we conclude that:

• Both models give more importance to similar sets of features - considering their 20 most

important features.

• The models differ mainly in the order they prioritize these features.

• The baseline model’s top 20 most important features includes the Frequency of declared

variables’ names that are encoded, which is not included in the Code2FV_wo_GitHub

model’s top 20.

• The Code2FV_wo_GitHub model’s top 20 most important features includes the Average

frequency of vowels in declared variables’ names, which is not included in the baseline

model’s top 20.

The differences in importance given by the Code2FV_wo_GitHub model to certain features in

comparison to the baseline model, may explain the obtained results. This suggests that the code

collected from GitHub may differ slightly from the code collected from other sources.
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Predicted Label
Regular Obfuscated

Regular Web 9,981 0
Regular GitHub 8,567 0
Regular NPM 11,484 0
Total Regular 30,032 0

Obfuscated Web 0 18,900
Obfuscated GitHub 2 13,875
Obfuscated NPM 0 19,200
Total Obfuscated 2 51,975

Table 6.6: Code2FV_wo_GitHub model’s confusion matrix extended by source. In bold are the
total values per class.

Finally, when considering the Code2FV_wo_NPM model, the results show that the detector

classifies six regular files as obfuscated and one obfuscated file as regular, all collected from NPM

packages, as shown in Table 6.7. Two of these files are also misclassified by the baseline model

(one regular and one obfuscated). By manually assessing the remaining files, we observe that:

• All of them have large comments which imply a large average of number of characters per

line.

• A first file has high frequencies of specific keywords related to obfuscation, such as the %

symbol, in addition to encoded numbers, small identifiers and high frequency of decimal

characters in the identifiers used.

• A second file has extremely long identifiers and uses uncommon characters, such as the Θ

symbol, on the identifiers.

• A third file as a high frequency of variable assignments, in addition to a high frequency of

numbers, and unusual characters, such as $, in the used identifiers.

To understand if these characteristics are being reflected in the features used, we compute the im-

portance of the features used, as described in Section 6.1. We conclude that this new model gives

higher importance than the baseline model to features such as Average number of character per

line, frequency of certain keywords, Frequency of encoded numbers, Average frequency of letters

in other identifiers’ names, and Frequency of AssignmentExpression nodes (frequency of assign-

ments). The importance given to these features, and others that differ from the baseline model, can

also explain why the model classifies correctly files that the baseline model misclassifies. These

results seem to indicate that the code collected from NPM packages may differ, to some degree,

from the code collected from other sources.
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Predicted Label
Regular Obfuscated

Regular Web 9,981 0
Regular GitHub 8,567 0
Regular NPM 11,481 3
Total Regular 30,029 3

Obfuscated Web 0 18,900
Obfuscated GitHub 0 13,877
Obfuscated NPM 1 19,199
Total Obfuscated 1 51,976

Table 6.7: Code2FV_wo_NPM model’s confusion matrix extended by source. In bold are the total
values per class.

Although the use of code collected from GitHub slightly hinders the model’s detection, it is

unknown if it helps generalize to sources of code not present in the dataset. Therefore, removing

files obtained from this source is a possibility but does not necessarily imply better predictions

in unknown scenarios. Overall, the results obtained validate our assumption that the dataset used

must incorporate different code sources to better generalize the model. However, it raises the

question of how the detector will generalize to code from other sources. A possibility is that if the

semantics of the code are very different from the ones in the training set, the model will raise more

false positives. Table B.3 presents results obtained for each model regarding different metrics.

6.5 Is the model able to detect obfuscated code transformed by un-
known tools?

Different obfuscators apply different techniques or the same technique with different signatures,

which results in a variety of obfuscated code. Ideally, a detector should be able to detect obfusca-

tion independently of the tools used in its training, as other obfuscators are and will be available.

This experiment aims to evaluate the performance of the detector in the presence of code ob-

fuscated with unknown tools. Our hypothesis is that the detector is able to generalize to code

transformed by some obfuscators but not others, depending on how similar the obfuscated code is

to the code present in the training set.

As described in Section 4.2.4, all the obfuscators have one configuration in common (config1),

which applies simpler obfuscation techniques. Thus, the files transformed with these configura-

tions are obfuscated with the same set of techniques (in general, as some obfuscators are not

configurable). The goal is to understand if, by training the model with similar techniques, the

detector is able to recognize patterns in these techniques and identify them in code transformed

with unknown obfuscators that apply the same set of techniques.

To evaluate the model in the presence of code obfuscated with unknown obfuscators, all files

transformed with a specific obfuscator are removed from the training set. The detector is then
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trained with this new set and tested with the original testing set (which contains code transformed

with all the obfuscators). This procedure is applied independently to all obfuscators - nine times

in total.

Figure 6.1 displays the number of files that the model classifies correctly and incorrectly con-

sidering only the files transformed by the obfuscator removed from training, per obfuscator re-

moved. The obtained results show that:

• By removing the files transformed with Jscrambler from the training set, the model misclas-

sifies six out of the 10,458 files transformed with this tool. These six files were transformed

by the same configuration of the tool, Jscrambler-config1, and are six out of the 2,578 files

transformed with this configuration. The model classifies all other obfuscated code and

regular code correctly.

• By removing the files transformed by javascript-obfuscator, the detector is able to classify

correctly all obfuscated code transformed by other tools and all regular code. However, it

misclassifies 276 out of the 10,490 files transformed with this tool, which are all transformed

with the javascript-obfuscator-config1 configuration. These 276 files are 276 out of the

2,573 files transformed with this configuration of the tool.

• When considering the model trained without files transformed by js-obfuscator, the results

show that it classifies incorrectly more than 50% of the files transformed by the different

configurations of this tool (5,296 out of 9,121). The majority of the misclassified files are

the smaller files transformed by this tool. The model classifies all other obfuscated and

regular code correctly.

• By removing the code transformed by JSObfu, the model classifies 5,303 out of the 6,470

obfuscated files as regular and classifies the remaining obfuscated and regular code cor-

rectly.

• By removing the obfuscators defendjs, JavaScript2img, DaftLogic, and node-obf one by

one from the training set, the model is not able to generalize and it classifies incorrectly all

samples from the removed tool. However, in all cases, it classifies all remaining obfuscated

and regular code correctly.

• By removing all files transformed with jsfuck the detector classifies all the files correctly.

This means the detector has an accuracy, precision, and recall of 100%, and that by training

with code transformed by this tool, the detector’s efficacy is hindered.
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Figure 6.1: Percentage of files, transformed with the obfuscator removed from the training set,
correctly classified per obfuscator removed.

From the points mentioned above, it is possible to conclude that the code transformed with

some obfuscators can be generalized by the code transformed with others, but not all, validating

our hypothesis. Using the config1 configuration - common to all obfuscators - does not seem to

have a direct impact on the generalization of the model to code transformed with similar tech-

niques, which contradicts our initial assumption. This seems to allude to the relevance of training

the classifier with code transformed with various obfuscators and obfuscation techniques, reiterat-

ing the importance of a diverse dataset in developing a reliable detector. However, it also proves

that the model can not be generalized to all variations of obfuscation, as different obfuscators out-

put obfuscated code with different characteristics. Notwithstanding, the model generalizes to code

transformed by some obfuscators - Jscrambler, javascript-obfuscator, jsfuck - from the obfuscated

code transformed with the other tools present in the training set. This indicates that obfuscated

code transformed by some unknown tools can be detected based on the combination of character-

istics of the obfuscated code present in the training set. The fact that the model is not able to detect

code transformed with DaftLogic if not trained to do so is not very surprising since it resembles

minified code and is very different from the code transformed by the other obfuscators (e.g. uses

the eval function more frequently than the others). Both JavaScript2img and node-obf output ob-

fuscated code very different from the code obfuscated by the other tools used, which may explain

why the model can not detect obfuscation by these tools if not trained to do so. After manually

assessing the code transformed by defendjs and js-obfuscator, we note that, in general, the first
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resembles the code transformed by Jscrambler, and the second resembles the code transformed by

javascript-obfuscator. Although these similarities can be detected by human assessment, they are

not represented in the features used, which may explain why the model fails to detect obfuscation

in the code transformed by defendjs and part of the code transformed by js-obfuscator.

6.6 What is the impact of training the model without minified code?

We consider minified code as regular JavaScript since it does not conceal the program’s purpose.

Minification techniques are mainly based on identifier name shortening and whitespace removal.

This experiment aims at understanding the impact of training the detector with minified files

versus without. Our hypothesis is that, since obfuscation often includes minification of the code,

if the model is not trained to classify minified code as regular, it will classify incorrectly more

minified files.

We train the detector without minified code by removing minified files from the original train-

ing set. Then we use the original testing set (which includes minified files) to evaluate the model

and compare the results with the ones obtained by the baseline model.

Table 6.8 presents the results obtained. In the matrix, the regular class is subdivided into

three subclasses: Regular (not minified), UglifyJS (minified with UglifyJS), and Google Closure

Compiler (minified with Google Closure Compiler). As shown, no obfuscated files were classified

as regular. However, 409 regular files were labeled as obfuscated, from whom 285 were minified

with UglifyJS and the remaining with Google Closure Compiler. It should be noted that neither

the size of the files or their provenience seem to be related to the obtained results as they are varied

and overall balanced.

Predicted Label
Regular Obfuscated

Regular 10,507 0
UglifyJS 10,239 285
Google Closure Compiler 8,877 124
Total Regular 29,623 409

Total Obfuscated 0 51,977

Table 6.8: Confusion matrix extended to represent both regular and minified code and tools. In
bold are the total values per class.

By removing minified code from the training set, the model is able to classify all obfuscated

files correctly, obtaining a recall of 100%, which is not the case for the baseline model, which

classifies incorrectly ten obfuscated files. However, more regular files are classified as obfuscated,

reducing the precision from 100.0% to 99.22%, compared with the results obtained by the baseline

model - as shown in Table B.4 -, which only misclassifies one regular (minified) file.

To better understand these results, we compute the 20 features with higher importance, as

described in Section 6.1, and compare them for both the new model and the baseline model.
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Conversely to the baseline model, the one trained without minified code gives high importance

to features such as Frequency of indentation characters, Average number of characters per line,

and Average frequency of vowels in declared variables’ names. Considering that both obfuscation

and minification often remove indentation characters from the code, compressing it to a reduced

number of lines, and apply name shortening techniques, the importance given to the features above

may explain why the classifier misclassifies more minified code in this scenario.

Since our goal is to have a detector that can distinguish obfuscated code from regular code,

regardless of whether this code is minified or not, if we evaluate the models by considering both the

false positives and the false negatives, the baseline model outperforms the model tested. Therefore,

the obtained results validate our hypothesis and reiterate the importance of training the model with

minified code.

6.7 Is the model able to detect obfuscation in partially obfuscated
code?

Partial obfuscation occurs when only a portion of the code is obfuscated. This is often the case in

malicious attacks, where malware is obfuscated and then injected into regular code. In this case,

the obfuscation aims at compromising the detection of malware by security systems.

To understand how to detect partial obfuscation we conduct two different experiments, as

explained in Section 6.7.1 and Section 6.7.2. The obfuscated files in the training and testing sets

are completely obfuscated (excluding some exceptions were the tools fail to transform portions

of the code). To create a set of partially obfuscated files, we use the methodology described in

Section 6.1.

6.7.1 Classifying the whole file

The goal of this experiment is to understand how the detector performs in the presence of partial

obfuscation. Our hypothesis is that if a large portion of the file is obfuscated, there is a higher

possibility that the detector is able to classify the file as obfuscated. However, if the code is

mainly regular, the classification may be compromised, and the obfuscation may pass unnoticed.

In this experiment, we use the baseline model to classify the files in the partially obfuscated set.

In this scenario, the detector classifies around 82% of partially obfuscated files as regular,

and the remaining 18% as obfuscated, as shown in Table 6.9. It is worth noticing that none of the

original regular files nor the obfuscated files used to create this set were previously misclassified by

the baseline model. This a strong indicator that the results obtained are solely due to the presence

of partially obfuscated code.
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Regular Obfuscated

Regular 0 0

Obfuscated 8,832 1,895

Table 6.9: Confusion matrix for the partially obfuscated files, when classifying the whole file. No
regular files are classified in this experiment.

Figure 6.2 shows the percentage of files misclassifed per percentage of obfuscation in the

code. As expected, files with lower percentages of obfuscated code are harder to detect. As this

percentage increases, the detector’s ability to recognize obfuscated code improves.
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Figure 6.2: Percentage of misclassified partially obfuscated files, per percentage of obfuscation in
the code.

The results can be explained by the nature of the features used. As described in Section 4.3.2,

the features are computed based on the entire code and are mainly based on frequencies of spe-

cific values and statistical metrics, such as means and standard deviations. The frequency-based

features are computed by dividing X, the total number of times a specific value (node, keyword)

appears in the code, by N, the total number of possible outcomes of that value in the code, where X

∈N. Suppose N is significantly larger than X. In that case, the computed result loses its significance

as it will tend to zero.

The results confirm our hypothesis that there is a higher probability that the detector classifies

partially obfuscated code as obfuscated if there is a high percentage of obfuscation. If there is a

small portion of obfuscated code, the model has a higher probability of failing the detection.
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6.7.2 Classifying only a portion of the file

In our set of partially obfuscated files, the obfuscation appears only at the beginning of the code.

Our hypothesis is that, by using the N top statements of the program, instead of the entire code,

the detector will be able to detect partial obfuscation in that code. The goal of this experiment is

to understand if partial obfuscation (in the specific scenario we use it), can be efficiently detected

by classifying only a portion of the file. Considering the results obtained in Section 6.3, we expect

that the detector is able to classify correctly small portions of the code, regardless if they are

obfuscated or not.

We refer to the child-nodes of the root node (which is the program node) as statements. For

example, if a program as a root node with five child-nodes, we consider that this program as five

statements. A statement includes the node and all its descendent-nodes.

We select the first N statements of the program. We limit the number of statements to a

maximum of 200 2 nodes. For example, if a program has 3 statements, the first with 50 nodes, the

second with 25 nodes, and the third with 170 nodes, we only use the two first statements, as using

all would exceed our node limit. However, if a program has a first statement with more than 200

nodes, we use that statement, exceeding the limit. We parse these statements and then apply the

baseline model to classify them. This is done for both partially obfuscated files and regular files.

The regular files classified are the ones used to build the partially obfuscated code set described in

Section 6.1, with 10,943 files.

Table 6.10 shows the confusion matrix obtained. As shown, all regular files are classified

correctly. Around 12% of the partially obfuscated files are classified as regular, an improvement

over classifying the whole file.

Regular Obfuscated

Regular 10,943 0

Obfuscated 1,323 9,404

Table 6.10: Confusion matrix for the regular and partially obfuscated files, when classifying only
a portion of the file.

With this approach, the obfuscation percentage of the entire code is not directly related to its

classification, as only N statements are selected. However, the percentage of statements used can

explain, to a degree, the obtained results, as using more statements can result in selecting more

regular code, hindering the classification. Therefore, we divide the results by the percentage of

statements selected from the program, as displayed in Figure 6.3. From here, it is possible to

observe that, in general, in the files where the first 200 nodes correspond to a smaller percentage

of the code’s statements, the percentage of misclassification is minor.

2We choose 200 nodes by rounding the value of the 25th percentile of number of nodes of the obfuscated samples,
which is 189.
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Figure 6.3: Percentage of misclassified partially obfuscated files, per percentage of statements
selected.

The increase on the percentage of misclassified files when using almost all statements in the

code can be explained by the results obtained from the previous experiment. As described in

Section 6.7.1, the detector’s ability to identify obfuscated code is affected by the percentage of

obfuscation in the file. If a large percentage of a program’s statements is being used to make

the classification, then the results are similar to the ones obtained by classifying the entire file.

Additionally, there is a specific case where in the AST the obfuscated and regular code are grouped

in the same statement, so when we make the selection of the statements, we select the entire

program. This occurs when the obfuscated code is a CallExpression node and the regular code is an

immediately-invoked function expression, IIFE 3. In the described scenario, these expressions are

considered arguments of a CallExpression node. Figure 6.4 depicts an example of this situation.

3IIFEs are used to immediately execute a function as it is created.
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eval(/* obfuscated code */)

(function () {

/*regular code */

})

(a) Code.

{

"type": "Program",

"body": [

{

"type": "ExpressionStatement",

"expression": {

"type": "CallExpression",

"callee": {

"type": "CallExpression",

"callee": {

"type": "Identifier",

"name": "eval",

},

"arguments": [],

},

"arguments": [

{

"type": "

FunctionExpression",

"params": [],

"body": {

"type": "BlockStatement

",

"body": [],

},

}

],

},

}

],

}

(b) Abstract Syntax Tree.

Figure 6.4: Example of partially obfuscated code where the regular code is an IIFE and the ob-
fuscated code is a CallExpression, and its corresponding AST. The example only contains the
essential part of the program - the comments are placeholders for the rest of the code - and of the
AST.

The results validate our hypothesis that using only a set of the N first statements in the program

is an effective approach in detecting partial obfuscation. However, this approach is only valid in

the scenario described, where it is expected that the partial obfuscation appears in the beginning

of the code. We expect it is possible to consider locations other than the beginning of the code by

skipping a number of AST nodes before applying this technique but did not validate it.
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6.8 Summary

We conducted several experiments to test and validate our approach. We use the Code2FeatureVector

model in these experiments, namely its binary version. We expect that the overall results, can be

generalized to its multiclass version.

We start by conducting a set of experiments that validate initial assumptions made while cre-

ating the dataset, giving helpful insights on how to scale our solution. In the first experiment we

train the model with fewer data, concluding that the model can be trained with fewer files and still

achieve high precision and recall values. The second experiment consisted of training the model

with only the smallest files of each code type - regular and transformed with a specific tool. The

results show that in general, if possible, it is better to use a training set with files with various sizes.

The third and fourth experiments aim to understand how the detector generalizes to different

scenarios. In the third experiment we evaluate how the model generalizes to different sources of

code. To accomplish this, we independently remove the code collected from each source (web,

GitHub, NPM) from the training set. Then we test the model with files collected from all sources.

The results show that the model only classifies incorrectly a few files, all collected from the sources

removed (the number of files varies according to the source removed). The fourth experiment aims

to understand how the detector behaves in the presence of code obfuscated by unknown tools.

We apply a similar methodology as the one in the third experiment. The results show that the

detector can detect obfuscation in code transformed by some unknown obfuscators but not by all,

emphasizing the importance of using a diverse dataset that incorporates as many obfuscators and

obfuscation techniques as possible.

In the fifth experiment, our goal is to understand the impact of training the model with minified

files. To accomplish this we train the model without minified code. In this case, the detector does

not misclassify any obfuscated code, but misclassifies significantly more regular (minified) files

than the model trained with minified code. Therefore, we consider that using minified code in the

training set is essential to make the distinction between obfuscated and minified JavaScript.

In the final experiment, we evaluate the detector in the context of partial obfuscation. We start

by using the previously trained model to classify the set of partially obfuscated files, concluding

that most files are classified as regular. In this scenario, the classification is closely related to the

percentage of obfuscation in the file. In a second stage of the experiment, we select and classify

only the first N statements of the program - based on the fact that we know a priori that the

obfuscated code is at the beginning of the program. In this case, the model classifies as obfuscated

most partially obfuscated files, an improvement over classifying the whole file.
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Chapter 7

Conclusions

The main goal of this dissertation is to propose and develop a reliable solution for detecting obfus-

cated JavaScript and identifying the obfuscator used to transform the code. Our first task consisted

of studying JavaScript’s main features, vulnerabilities, and transformations. We study and detail

both obfuscation and minification, and their techniques and tools. Additionally, we explore and

review the state-of-the-art approaches that aim at resolving similar tasks, comparing and assessing

each one. This initial work is required to understand the characteristics of obfuscated code and the

different approaches that can be implemented to successfully detect it.

An essential component of our work, which differentiates it from most projects in this area,

is the dataset used. We create our dataset to incorporate code transformed with a diverse set of

obfuscators and obfuscation techniques, as well as code collected from different sources. Most

projects in this area have small unbalanced datasets, with code collected from one or two sources,

often with no control over the tools and obfuscation techniques applied. Another underlying goal

in the creation of the dataset was its code quality. To accomplish this, we implement a preprocess-

ing step to filter unwanted code, such as transformed and duplicated files. In the end, we obtain a

large and diverse dataset that is well suited for the tasks addressed.

After further analysis of the state-of-the-art, we identify two distinct approaches for detecting

obfuscation by statically analysing the code. The first is to extract paths from the code’s AST, that

retain the surrounding context of specific nodes or keywords. The second, and more common, is

the use of defined features based on standard obfuscation practices. Based on this, we compare

two different approaches to detect obfuscation: Code2BagOfPaths, which is a Multinomial Naive

Bayes that receives as input context-based features automatically generated from a vocabulary of

path-contexts; and Code2FeatureVector, which is a Random Forest that receives as input features

defined with no context associated with them. Our results show no additional benefit in using the

contextual information to make the classification. The context-based model classifies incorrectly

more regular and obfuscated files than the one that uses the defined features, in both tasks ad-

dressed. After further experimenting with the Code2FeatureVector, we validate some assumptions

85
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made while creating our dataset, namely the importance of the diversity of the code. Additionally,

we validate our solution against partially obfuscated code, concluding that if we use the entire

program to make the classification, the detector is not able to detect obfuscation in most files.

However, by using only a portion of the code, we obtain very positive results, as the detection rate

increases significantly.

The proposed solution has some limitations, leaving some space for improvement. The first

limitation is that we can not guarantee that the solution will be able to detect code obfuscated with

unknown tools, as the model is able to detect code transformed with some obfuscators even if not

trained to do so, but not with others. This makes sense considering that different obfuscator apply

different techniques or similar techniques in different manners. Our approach to minimize the

impact of this limitation is to incorporate code transformed with a variety of obfuscators and tech-

niques. Since the model can be trained with fewer samples and still be able to detect obfuscation

with high precision and recall, it is possible to scale our solution to incorporate code transformed

with more obfuscators, even if few samples are available. However, more research on how to

generalize the detector should be considered.

Another limitation is the detection of partially obfuscated code. Our first approach of clas-

sifying the entire program performs poorly. A second approach that uses only a set of the first

N statements obtains significantly better and promising results. However, this approach is only

valid in the case where the obfuscated code appears in the beginning of the program - to mimic a

malware attack -, limiting its use. Notwithstanding, this methodology can be extended to be viable

in other scenarios. For example, instead of using only the first N statements, we can partition the

file into chunks, by following the same splitting methodology. Then use the detector to classify

these chunks individually. If at least one chunk is classified as obfuscated, then the file would be

considered obfuscated (or partially obfuscated). Another possible approach, is to use the code’s

call graph to identify sections of the code that do not depend or are called by other sections, and

classify only these independent sections - based on the assumption that obfuscated malware is not

dependent of other expressions in the code, and vice-versa.

By analyzing the previous work on this area in the light of our results, it is possible to theorize

that some of the solutions would not be able to generalize to obfuscated code transformed with

tools and techniques different from the ones used in training (which are, in general very few), and,

in some cases, to the presence of minified code. None of the state-of-the-art solutions addresses

the problem of partially obfuscated code, and considering most classify the code as an all, it is not

expected they would perform as well in this scenario.

In the end, all goals set for this work were achieved successfully, obtaining a solution that

can successfully detect obfuscation and identify the obfuscator used to transform the code, with

an F1-score (/weighted average F1-score) of 99.99% in both these tasks. Although it has some

limitations, it is still a reliable solution for detecting obfuscated code transformed with a specific

set of obfuscators, and it can be easily scaled to incorporate code transformed with new obfuscation

tools and techniques.

The field of obfuscation in general and its detection have many different challenges that can
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be addressed. The first problem would be to research the automatic deobfuscation of code. Ide-

ally, a solution would be able to deobfuscate any obfuscated code. However, as we show in this

dissertation, obfuscation presents itself in varied forms. Therefore, a starting point could be first

to identify the obfuscator used by applying our detector to the code and then use that information

in the deobfuscator. If the deobfuscator is implemented to deobfuscate code transformed with a

specifc set of obfuscators, it can be used in this scenario. Further work should be done to reach a

more generic solution. The deobfuscation of the code is essential to understand the code’s intents,

namely if it is malicious or not, mitigating possible attacks.

Another research topic would be the automatic obfuscation of code to be undetected by obfus-

cator detectors and manual assessment. In this case, the code would be transformed to resemble

regular code while still concealing its intended behavior. This code would look untransformed to

human assessment, yet its behavior would be hard to understand after further evaluation while also

compromising its static analysis. This type of obfuscation could be used in scenarios of intellectual

property protection and to prevent benign files from being flagged by security systems.



88 Conclusions



Appendix A

Dataset Preparation

A.1 Data Collection

https://api.github.com/search/repositories?per_page=100&page=1&q="chrome extension

"+language:JavaScript%26sort=stars%26order=desc

(a) Top 100 browser (Chrome) extensions repositories.

https://api.github.com/search/repositories?per_page=100&page=1&q="vanilla

javascript"+language:JavaScript%26sort=stars%26order=desc

(b) Top 100 vanilla JavaScript repositories.

https://api.github.com/search/repositories?per_page=100&page=1&q="server-side"+

language:JavaScript%26sort=stars%26order=desc

(c) Top 100 repositories that contain server-side code.

Figure A.1: Examples of the requests’ endpoints issued to GitHub’s REST API. These requests
retrieve 100 repositories from the first results page, but can be altered to retrieve from other pages
as well.
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A.2 Data Transformation

function helloWorld() {

const hello = "Hello World!"

console.log(hello);

}

helloWorld();

Figure A.2: Regular JavaScript code.
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A.2.1 Jscrambler

{
"params" : [

{
"options" : {} ,
"name" : "whitespaceRemoval"

} ,
{

"name" : "booleanToAnything"

} ,
{

"name" : "stringSplitting" ,
"options" : {

"chunks" : [
2 ,
4

]
}

} ,
{

"name" : "numberToString" ,
"options" : {}

} ,
{

"name" : "identifiersRenaming" ,
"options" : {

"mode" : "SAFEST"

}
} ,
{

"name" : "variableMasking" ,
"options" : {

"options" : [ ]
}

} ,
{

"name" : "functionOutlining" ,
"options" : {

"features" : [ ]
}

}
] ,
"areSubscribersOrdered" : f a l s e ,
"useRecommendedOrder" : true ,
"jscramblerVersion" : "7.0" ,
"tolerateMinification" : true ,
"profilingDataMode" : "off" ,
"useAppClassification" : true ,
"browsers" : {}

}

Figure A.3: Jscrambler-config1. First configuration used for the obfuscator Jscrambler.
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{
"params" : [

{
"name" : "objectPropertiesSparsing"

} ,
{

"name" : "variableMasking"

} ,
{

"name" : "whitespaceRemoval"

} ,
{

"name" : "dotToBracketNotation"

} ,
{

"name" : "stringConcealing"

} ,
{

"name" : "functionReordering"

} ,
{

"name" : "propertyKeysObfuscation" ,
"options" : {

"encoding" : [
"hexadecimal"

]
}

} ,
{

"name" : "regexObfuscation"

} ,
{

"options" : {
"features" : [

"opaqueSteps"

]
} ,
"name" : "controlFlowFlattening"

} ,
{

"name" : "booleanToAnything"

} ,
{

"name" : "identifiersRenaming"

}
] ,
"areSubscribersOrdered" : f a l s e ,
"useRecommendedOrder" : true ,
"jscramblerVersion" : "7.0" ,
"tolerateMinification" : true ,
"profilingDataMode" : "off" ,
"useAppClassification" : true ,
"browsers" : {}

}

Figure A.4: Jscrambler-2. Second configuration used for the obfuscator Jscrambler.



A.2 Data Transformation 93

{
"params" : [

{
"name" : "deadObjects"

} ,
{

"name" : "objectPropertiesSparsing"

} ,
{

"name" : "variableMasking"

} ,
{

"name" : "whitespaceRemoval"

} ,
{

"name" : "identifiersRenaming" ,
"options" : {

"mode" : "SAFEST"

}
} ,
{

"name" : "dotToBracketNotation"

} ,
{

"name" : "stringConcealing"

} ,
{

"name" : "functionReordering"

} ,
{

"name" : "propertyKeysObfuscation" ,
"options" : {

"encoding" : [
"hexadecimal"

]
}

} ,
{

"name" : "regexObfuscation"

} ,
{

"name" : "booleanToAnything"

}
] ,
"areSubscribersOrdered" : f a l s e ,
"useRecommendedOrder" : true ,
"jscramblerVersion" : "7.0" ,
"tolerateMinification" : true ,
"profilingDataMode" : "off" ,
"useAppClassification" : true ,
"browsers" : {}

}

Figure A.5: Jscrambler-3. Third configuration used for the obfuscator Jscrambler.
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{
"params" : [

{
"name" : "objectPropertiesSparsing"

} ,
{

"name" : "variableMasking"

} ,
{

"name" : "whitespaceRemoval"

} ,
{

"name" : "identifiersRenaming" ,
"options" : {

"mode" : "SAFEST"

}
} ,
{

"name" : "dotToBracketNotation"

} ,
{

"name" : "stringConcealing"

} ,
{

"name" : "functionReordering"

} ,
{

"options" : {
"freq" : 1 ,
"features" : [

"opaqueFunctions"

]
} ,
"name" : "functionOutlining"

} ,
{

"name" : "propertyKeysObfuscation" ,
"options" : {

"encoding" : [
"hexadecimal"

]
}

} ,
{

"name" : "regexObfuscation"

} ,
{

"name" : "booleanToAnything"

}
] ,
"areSubscribersOrdered" : f a l s e ,
"useRecommendedOrder" : true ,
"jscramblerVersion" : "7.0" ,
"tolerateMinification" : true ,
"profilingDataMode" : "off" ,
"useAppClassification" : true ,
"browsers" : {}

}

Figure A.6: Jscrambler-4. Fourth configuration used for the obfuscator Jscrambler.
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L5UU . e9 =( f u n c t i o n ( ) { var C=2; f o r ( ; C !== 9 ; ) { sw i t ch (C) { case 5 : var L ; t r y { var y =2; f o r ( ; y !== 6 ; ) { sw i t ch ( y ) { case 2 : O b j e c t [’

\x64\u0065\x66\u0069\u006e\u0065\u0050\u0072\x6f\u0070\x65\x72\x74\x79’ ] ( O b j e c t [’\x70\x72\u006f\x74\u006f\x74\

u0079\x70\u0065’ ] , ’\u0076\x45\x39\u0037\x41’ , {’\x67\x65\x74’ : f u n c t i o n ( ) { var n =2; f o r ( ; n !== 1 ; ) { sw i t ch ( n ) { case 2 :

re turn t h i s ; break ; } } } ,’\x63\x6f\x6e\x66\x69\x67\x75\x72\x61\x62\x6c\x65’ : t rue } ) ; L=vE97A ; L [’\u0024\u0032\x4e\x34\

u007a’ ]=L ; y =4; break ; case 4 : y= t y p e o f $2N4z === ’\x75\u006e\u0064\x65\u0066\x69\u006e\u0065\u0064’ ? 3 : 9 ; break ; case
3 : throw "" ; y =9 ; break ; case 9 : d e l e t e L [’\u0024\u0032\u004e\u0034\x7a’ ] ; var m= O b j e c t [’\x70\x72\x6f\x74\u006f\u0074\

x79\x70\u0065’ ] ; d e l e t e m[’\x76\u0045\u0039\x37\x41’ ] ; y =6; break ; } } } ca tch (X) {L=window ; } re turn L ; break ; case 1 :

re turn g l o b a l T h i s ; break ; case 2 :C= t y p e o f g l o b a l T h i s === ’\u006f\u0062\u006a\u0065\u0063\u0074’ ? 1 : 5 ; break ; } } } ) ( ) ;

L5UU . m9=U788 (L5UU . e9 ) ; L5UU . q9= f u n c t i o n ( ) { re turn t y p e o f L5UU . Y9 . k === ’function’?L5UU . Y9 . k . a p p l y (L5UU . Y9 ,

a rgumen t s ) : L5UU . Y9 . k ; } ; L5UU . Y9=( f u n c t i o n ( ) { var A9=2; f o r ( ; A9 !== 9 ; ) { sw i t ch ( A9 ) { case 4 : w8 [ 7 ] . k= f u n c t i o n ( ) { var d9

=2; f o r ( ; d9 !== 9 0 ; ) { sw i t ch ( d9 ) { case 4 :m8 [ 5 ] = [ ] ; m8 [ 8 ] = { } ; m8 [ 8 ] . R=[’M’ ] ; d9 =8; break ; case 1 : d9=w8 [ 1 ] ? 5 : 4 ; break ; case
3 6 :m8[ 2 4 ] =m8 [ 9 7 ] ; m8 [ 5 ] . C788 (m8 [ 4 ] ) ; m8 [ 5 ] . C788 (m8 [ 1 0 ] ) ; m8 [ 5 ] . C788 (m8 [ 2 4 ] ) ; d9 =51; break ; case 4 4 :m8[ 3 0 ] =m8 [ 7 7 ] ; m8

[ 5 7 ] = { } ;m8 [ 5 7 ] . R=[’t’ ] ; d9 =41; break ; case 1 0 :m8 [ 1 ] . R=[’t’ ] ; m8 [ 1 ] . u= f u n c t i o n ( ) { var V7= f u n c t i o n ( ) { re turn (’x’ ) .

toUpperCase ( ) ; } ; var H7 = ( / \ u0058 / ) . G788 ( V7 + [ ] ) ; re turn H7 ; } ; d9 =19; break ; case 6 9 : d9 =( f u n c t i o n ( y8 ) { var a9 =2; f o r ( ;

a9 !== 2 2 ; ) { sw i t ch ( a9 ) { case 6 : L8 [ 5 ] = L8 [ 0 ] [ 0 ] [ L8 [ 1 ] ] ; a9 =14; break ; case 1 0 : a9=L8 [ 5 ] [ m8 [ 6 4 ] ] === m8 [ 9 5 ] ? 2 0 : 1 9 ; break ;

case 4 : L8 [ 2 ] = { } ; L8 [ 7 ] = [ ] ; L8 [ 1 ] = 0 ; a9 =8; break ; case 2 4 : L8 [ 1 ] + + ; a9 =16; break ; case 1 3 : L8 [ 2 ] [ L8 [ 5 ] [ m8 [ 2 9 ] ] ] = ( f u n c t i o n ( )

{ var I9 =2; f o r ( ; I9 !== 9 ; ) { sw i t ch ( I9 ) { case 2 : var z8 =[ a rgumen t s ] ; z8 [ 7 ] = { } ; z8 [ 7 ] . h =0; z8 [ 7 ] . t =0 ; I9 =3; break ; case 3 :

re turn z8 [ 7 ] ; break ; } } } ) . Z788 ( t h i s , a rgumen t s ) ; a9 =12; break ; case 1 : a9=L8 [ 0 ] [ 0 ] . l e n g t h === 0 ? 5 : 4 ; break ; case 2 0 : L8

[ 2 ] [ L8 [ 5 ] [ m8 [ 2 9 ] ] ] . h+= t rue ; a9 =19; break ; case 1 9 : L8 [ 1 ] + + ; a9 =7; break ; case 1 8 : L8 [ 6 ] = f a l s e ; a9 =17; break ; case 2 3 : re turn
L8 [ 6 ] ; break ; case 5 : re turn ; break ; case 1 1 : L8 [ 2 ] [ L8 [ 5 ] [ m8 [ 2 9 ] ] ] . t += t rue ; a9 =10; break ; case 7 : a9=L8 [ 1 ] < L8 [ 0 ] [ 0 ] .

l e n g t h ? 6 : 1 8 ; break ; case 1 7 : L8 [ 1 ] = 0 ; a9 =16; break ; case 1 2 : L8 [ 7 ] . C788 ( L8 [ 5 ] [ m8 [ 2 9 ] ] ) ; a9 =11; break ; case 1 4 : a9= t y p e o f L8

[ 2 ] [ L8 [ 5 ] [ m8 [ 2 9 ] ] ] === ’undefined’ ? 1 3 : 1 1 ; break ; case 2 : var L8 =[ a rgumen t s ] ; a9 =1; break ; case 8 : L8 [ 1 ] = 0 ; a9 =7; break ;

case 1 5 : L8 [ 9 ] = L8 [ 7 ] [ L8 [ 1 ] ] ; L8 [ 4 ] = L8 [ 2 ] [ L8 [ 9 ] ] . h / L8 [ 2 ] [ L8 [ 9 ] ] . t ; a9 =26; break ; case 2 5 : L8 [ 6 ] = t rue ; a9 =24; break ; case
1 6 : a9=L8 [ 1 ] < L8 [ 7 ] . l e n g t h ? 1 5 : 2 3 ; break ; case 2 6 : a9=L8 [ 4 ] >= 0 . 5 ? 2 5 : 2 4 ; break ; } } } ) (m8 [ 5 6 ] ) ? 6 8 : 6 7 ; break ; case 3 0 :m8

[ 7 7 ] = { } ; d9 =29; break ; case 2 : var m8=[ a rgumen t s ] ; d9 =1; break ; case 5 6 :m8[ 1 2 ] =m8 [ 5 ] [ m8 [ 4 ] ] ; t r y {m8[ 4 8 ] =m8 [ 1 2 ] [ m8 [ 8 9 ] ] ( )

?m8 [ 9 5 ] : m8 [ 3 7 ] ; } ca tch ( k7 ) {m8[ 4 8 ] =m8 [ 3 7 ] ; } d9 =77; break ; case 2 9 :m8 [ 7 7 ] . R=[’M’ ] ; m8 [ 7 7 ] . u= f u n c t i o n ( ) { var u7= t y p e o f
z788 === ’function’ ; re turn u7 ; } ; d9 =44; break ; case 5 8 :m8 [ 4 ] = 0 ; d9 =57; break ; case 2 2 :m8 [ 3 2 ] . R=[’t’ ] ; m8 [ 3 2 ] . u= f u n c t i o n
( ) { var L7= f u n c t i o n ( ) { re turn u n e s c a p e (’%3D’ ) ; } ; var K7 = ( / \ x3d / ) . G788 ( L7 + [ ] ) ; re turn K7 ; } ; m8[ 4 3 ] =m8 [ 3 2 ] ; m8[ 5 0 ] = { } ;

m8 [ 5 0 ] . R=[’M’ ] ; d9 =32; break ; case 8 :m8 [ 8 ] . u= f u n c t i o n ( ) { var S7= t y p e o f j 788 === ’function’ ; re turn S7 ; } ; m8[ 4 ] =m8 [ 8 ] ;

m8 [ 9 ] = { } ; m8 [ 9 ] . R=[’t’ ] ; m8 [ 9 ] . u= f u n c t i o n ( ) { var l 7 = f u n c t i o n ( ) { re turn (’aa’ ) . endsWith (’a’ ) ; } ; var h7 = ( / \ u0074 \ u0072 \

x75 \ x65 / ) . G788 ( l 7 + [ ] ) ; re turn h7 ; } ; m8[ 2 ] =m8 [ 9 ] ; m8 [ 1 ] = { } ; d9 =10; break ; case 4 8 :m8 [ 5 ] . C788 (m8 [ 6 2 ] ) ; m8 [ 5 ] . C788 (m8

[ 4 9 ] ) ; m8 [ 5 ] . C788 (m8 [ 6 ] ) ; m8 [ 5 ] . C788 (m8 [ 3 0 ] ) ; d9 =65; break ; case 5 7 : d9=m8 [ 4 ] < m8 [ 5 ] . l e n g t h ? 5 6 : 6 9 ; break ; case 6 7 :w8

[ 1 ] = 8 7 ; re turn 8 4 ; break ; case 7 1 :m8[ 3 8 ] + + ; d9 =76; break ; case 6 8 : d9 = 6 3 ? 6 8 : 6 7 ; break ; case 2 5 :m8 [ 8 1 ] . u= f u n c t i o n ( ) { var O7

= f u n c t i o n ( ) { re turn (’X’ ) . t oLoca leLowerCase ( ) ; } ; var p7 = ( / \ u0078 / ) . G788 ( O7 + [ ] ) ; re turn p7 ; } ; m8[ 4 9 ] =m8 [ 8 1 ] ; m8

[ 3 2 ] = { } ; d9 =22; break ; case 1 5 :m8[ 6 ] =m8 [ 7 ] ; m8[ 8 1 ] = { } ;m8 [ 8 1 ] . R=[’t’ ] ; d9 =25; break ; case 5 : re turn 7 8 ; break ; case 6 5 :m8

[ 5 6 ] = [ ] ; m8[ 9 5 ] =’X’ ; d9 =63; break ; case 7 6 : d9=m8[ 3 8 ] < m8 [ 1 2 ] [ m8 [ 5 3 ] ] . l e n g t h ? 7 5 : 7 0 ; break ; case 7 0 :m8[ 4 ] + + ; d9 =57; break
; case 1 9 :m8[ 3 ] =m8 [ 1 ] ; m8 [ 7 ] = { } ; m8 [ 7 ] . R=[’M’ ] ; m8 [ 7 ] . u= f u n c t i o n ( ) { var Q7= f a l s e ; var t 7 = [ ] ; t r y { f o r ( var B7 in c o n s o l e )

{ t 7 . C788 ( B7 ) ; } Q7= t 7 . l e n g t h === 0 ; } catch ( n7 ) {} var I7 =Q7 ; re turn I7 ; } ; d9 =15; break ; case 4 1 :m8 [ 5 7 ] . u= f u n c t i o n ( ) { var
g7= f u n c t i o n ( ) { re turn (’x y’ ) . s l i c e ( 0 , 1 ) ; } ; var A7 = ! ( / \ u0079 / ) . G788 ( g7 + [ ] ) ; re turn A7 ; } ; m8[ 1 0 ] =m8 [ 5 7 ] ; m8[ 9 7 ] = { } ;

m8 [ 9 7 ] . R=[’t’ ] ; m8 [ 9 7 ] . u= f u n c t i o n ( ) { var i 7 = f u n c t i o n ( ) { re turn (’aa’ ) . charCodeAt ( 1 ) ; } ; var P7 = ( / \ u0039 \ u0037 / ) . G788 (

i 7 + [ ] ) ; re turn P7 ; } ; d9 =36; break ; case 6 3 :m8[ 3 7 ] =’e’ ; m8[ 5 3 ] =’R’ ; m8[ 6 4 ] =’b’ ; m8[ 8 9 ] =’u’ ; m8[ 2 9 ] =’n’ ; d9 =58; break ; case
3 2 :m8 [ 5 0 ] . u= f u n c t i o n ( ) { var R7= t y p e o f M788 === ’function’ ; re turn R7 ; } ; m8[ 6 2 ] =m8 [ 5 0 ] ; d9 =30; break ; case 5 1 :m8 [ 5 ] .

C788 (m8 [ 4 3 ] ) ; m8 [ 5 ] . C788 (m8 [ 2 ] ) ; m8 [ 5 ] . C788 (m8 [ 3 ] ) ; d9 =48; break ; case 7 7 :m8[ 3 8 ] = 0 ; d9 =76; break ; case 7 5 :m8[ 4 0 ] = { } ;m8

[ 4 0 ] [ m8[ 2 9 ] ] =m8 [ 1 2 ] [ m8 [ 5 3 ] ] [ m8 [ 3 8 ] ] ; m8 [ 4 0 ] [ m8[ 6 4 ] ] =m8 [ 4 8 ] ; m8 [ 5 6 ] . C788 (m8 [ 4 0 ] ) ; d9 =71; break ; } } } ; re turn w8 [ 7 ] ; break
; case 2 : var w8=[ a rgumen t s ] ; w8 [ 1 ] = u n d e f i n e d ; w8 [ 7 ] = { } ; A9=4; break ; } } } ) ( ) ; f u n c t i o n L5UU ( ) {}L5UU . l 9 = f u n c t i o n ( ) { re turn

t y p e o f L5UU . Y9 . k === ’function’?L5UU . Y9 . k . a p p l y (L5UU . Y9 , a rgumen t s ) : L5UU . Y9 . k ; } ; f u n c t i o n U788 ( Q8 ) { f u n c t i o n G3 (W8

) { var J8 =2; f o r ( ; J8 !== 5 ; ) { sw i t ch ( J8 ) { case 2 : var V8=[ a rgumen t s ] ; J8 =1; break ; case 1 : re turn V8 [ 0 ] [ 0 ] . Array ; break
; } } } f u n c t i o n P3 ( p8 ) { var k8 =2; f o r ( ; k8 !== 5 ; ) { sw i t ch ( k8 ) { case 2 : var r8 =[ a rgumen t s ] ; re turn r8 [ 0 ] [ 0 ] . Funct ion ; break
; } } } f u n c t i o n U3 ( n8 ) { var E8 =2; f o r ( ; E8 !== 5 ; ) { sw i t ch ( E8 ) { case 2 : var v8 =[ a rgumen t s ] ; re turn v8 [ 0 ] [ 0 ] . RegExp ; break
; } } } var R8 =2; f o r ( ; R8 !== 7 0 ; ) { sw i t ch ( R8 ) { case 1 1 : P8 [ 4 ] ="" ; P8 [ 2 ] ="C" ; P8 [ 4 ] ="tract" ; P8 [ 9 ] ="" ; R8=18; break ; case 7 5 :

S3 ( U3 , "test" , P8 [ 3 2 ] , P8 [ 9 9 ] ) ; R8=74; break ; case 6 0 : P8 [ 6 6 ] = P8 [ 1 ] ; P8 [66]+= P8 [ 5 5 ] ; P8 [66]+= P8 [ 5 5 ] ; P8 [ 1 0 ] = P8 [ 2 5 ] ; P8

[10]+= P8 [ 7 ] ; R8=55; break ; case 2 : var P8 =[ a rgumen t s ] ; P8 [ 6 ] ="" ; P8 [ 6 ] ="ptimize" ; P8 [ 7 ] ="" ; R8 =3; break ; case 7 2 : S3 ( e3 , P8

[ 5 7 ] , P8 [ 5 9 ] , P8 [ 4 5 ] ) ; R8=71; break ; case 5 5 : P8 [10]+= P8 [ 6 ] ; R8=77; break ; case 4 3 : P8 [ 5 9 ] = 8 ; P8 [ 5 9 ] = 0 ; P8 [ 9 5 ] = P8 [ 6 1 ] ; P8

[95]+= P8 [ 9 7 ] ; P8 [95]+= P8 [ 5 5 ] ; R8=38; break ; case 4 5 : P8 [ 1 6 ] = P8 [ 2 ] ; P8 [16]+= P8 [ 3 ] ; P8 [16]+= P8 [ 8 ] ; P8 [ 9 9 ] = P8 [ 5 ] ; P8 [99]+= P8

[ 3 ] ; P8 [99]+= P8 [ 8 ] ; R8=60; break ; case 7 6 : S3 ( e3 , P8 [ 1 0 ] , P8 [ 5 9 ] , P8 [ 6 6 ] ) ; R8=75; break ; case 3 2 : P8 [ 9 7 ] ="78" ; P8 [ 6 1 ] ="" ; P8

[ 6 1 ] ="" ; P8 [ 6 1 ] ="Z" ; P8 [ 3 2 ] = 3 ; P8 [ 3 2 ] = 1 ; R8=43; break ; case 7 1 : S3 ( P3 , "apply" , P8 [ 3 2 ] , P8 [ 9 5 ] ) ; R8=70; break ; case 1 8 : P8 [ 9 ] =

"abs" ; P8 [ 2 5 ] ="__" ; P8 [ 1 1 ] ="" ; P8 [ 1 1 ] ="M" ; R8=27; break ; case 7 7 : var S3= f u n c t i o n ( K8 , o8 , B8 , i 8 ) { var h8 =2; f o r ( ; h8 !== 5 ; )

{ sw i t ch ( h8 ) { case 2 : var O8=[ a rgumen t s ] ; c3 ( P8 [ 0 ] [ 0 ] , O8 [ 0 ] [ 0 ] , O8 [ 0 ] [ 1 ] , O8 [ 0 ] [ 2 ] , O8 [ 0 ] [ 3 ] ) ; h8 =5; break ; } } } ; R8=76;

break ; case 4 9 : P8 [19]+= P8 [ 5 5 ] ; P8 [ 9 0 ] = P8 [ 2 5 ] ; P8 [90]+= P8 [ 9 ] ; P8 [90]+= P8 [ 4 ] ; R8=45; break ; case 2 7 : P8 [ 3 5 ] ="" ; P8 [ 3 5 ] ="l" ;

P8 [ 1 8 ] ="" ; P8 [ 1 8 ] ="esidua" ; P8 [ 7 6 ] ="" ; P8 [ 7 6 ] ="" ; R8=21; break ; case 7 3 : S3 ( e3 , P8 [ 9 0 ] , P8 [ 5 9 ] , P8 [ 1 9 ] ) ; R8=72; break ; case
6 : P8 [ 5 ] ="G" ; P8 [ 3 ] ="" ; P8 [ 8 ] ="88" ; P8 [ 3 ] ="7" ; R8=11; break ; case 3 8 : P8 [ 4 5 ] = P8 [ 6 7 ] ; P8 [45]+= P8 [ 9 7 ] ; P8 [45]+= P8 [ 5 5 ] ; P8

[ 5 7 ] = P8 [ 7 6 ] ; R8=53; break ; case 2 1 : P8 [ 7 6 ] ="__r" ; P8 [ 5 5 ] ="" ; P8 [ 6 7 ] ="z" ; P8 [ 5 5 ] ="8" ; R8=32; break ; case 3 : P8 [ 7 ] ="o" ; P8 [ 1 ] =

"" ; P8 [ 1 ] ="j7" ; P8 [ 5 ] ="" ; R8 =6; break ; case 7 4 : S3 ( G3 , "push" , P8 [ 3 2 ] , P8 [ 1 6 ] ) ; R8=73; break ; case 5 3 : P8 [57]+= P8 [ 1 8 ] ; P8

[57]+= P8 [ 3 5 ] ; P8 [ 1 9 ] = P8 [ 1 1 ] ; P8 [19]+= P8 [ 9 7 ] ; R8=49; break ; } } f u n c t i o n c3 ( t8 , F8 , D8 , T8 , x8 ) { var g8 =2; f o r ( ; g8 !== 8 ; ) {

sw i t ch ( g8 ) { case 3 : u8 [ 3 ] ="def" ; t r y { var s8 =2; f o r ( ; s8 !== 8 ; ) { sw i t ch ( s8 ) { case 2 : u8 [ 6 ] = { } ; u8 [ 1 ] = ( 1 , u8 [ 0 ] [ 1 ] ) ( u8

[ 0 ] [ 0 ] ) ; u8 [ 8 ] = [ u8 [ 1 ] , u8 [ 1 ] . p r o t o t y p e ] [ u8 [ 0 ] [ 3 ] ] ; u8 [ 6 ] . v a l u e =u8 [ 8 ] [ u8 [ 0 ] [ 2 ] ] ; s8 =3; break ; case 3 : t r y { var N8=2; f o r ( ;

N8 !== 3 ; ) { sw i t ch ( N8 ) { case 2 : u8 [ 7 ] = u8 [ 3 ] ; u8 [7]+= u8 [ 4 ] ; u8 [7]+= u8 [ 5 ] ; u8 [ 0 ] [ 0 ] . O b j e c t [ u8 [ 7 ] ] ( u8 [ 8 ] , u8 [ 0 ] [ 4 ] , u8 [ 6 ] ) ;

N8=3; break ; } } } catch ( F3 ) {} u8 [ 8 ] [ u8 [ 0 ] [ 4 ] ] = u8 [ 6 ] . v a l u e ; s8 =8; break ; } } } ca tch ( D3 ) {} g8 =8; break ; case 2 : var u8 =[

a rgumen t s ] ; u8 [ 5 ] ="Property" ; u8 [ 4 ] ="" ; u8 [ 4 ] ="ine" ; g8 =3; break ; } } } f u n c t i o n e3 ( Z8 ) { var b8 =2; f o r ( ; b8 !== 5 ; ) { sw i t ch (

b8 ) { case 2 : var X8=[ a rgumen t s ] ; re turn X8 [ 0 ] [ 0 ] ; break ; } } } }L5UU . q9 ( ) ; f u n c t i o n h e l l o W o r l d ( ) { var m=[ a rgumen t s ] ;m[ 8 ] ="

Hello" ; L5UU . l 9 ( ) ;m[8]+=" W" ;m[8]+="orld!" ; c o n s o l e . l o g (m[ 8 ] ) ; } h e l l o W o r l d ( ) ;

Figure A.7: Code in Figure A.2 obfuscated with Jscrambler-config1.
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A.2.2 javascript-obfuscator

{

"compact": true,

"controlFlowFlattening": false,

"controlFlowFlatteningThreshold": 1,

"deadCodeInjection": false,

"deadCodeInjectionThreshold": 1,

"debugProtection": true,

"debugProtectionInterval": true,

"disableConsoleOutput": false,

"identifierNamesGenerator": "mangled-shuffled",

"log": false,

"numbersToExpressions": false,

"renameGlobals": false,

"rotateStringArray": true,

"selfDefending": true,

"shuffleStringArray": true,

"simplify": false,

"splitStrings": true,

"splitStringsChunkLength": 5,

"stringArray": false,

"stringArrayEncoding": ["rc4"],

"stringArrayIndexShift": true,

"stringArrayWrappersCount": 5,

"stringArrayWrappersChainedCalls": true,

"stringArrayWrappersParametersMaxCount": 5,

"stringArrayWrappersType": "function",

"stringArrayThreshold": 1,

"transformObjectKeys": true,

"unicodeEscapeSequence": false

}

Figure A.8: javascript-obfuscator-config1. First configuration used for the obfuscator javascript-
obfuscator.
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{

"compact": true,

"controlFlowFlattening": true,

"controlFlowFlatteningThreshold": 1,

"deadCodeInjection": true,

"deadCodeInjectionThreshold": 1,

"debugProtection": true,

"debugProtectionInterval": true,

"disableConsoleOutput": true,

"identifierNamesGenerator": "hexadecimal",

"log": false,

"numbersToExpressions": true,

"renameGlobals": false,

"rotateStringArray": true,

"selfDefending": true,

"shuffleStringArray": true,

"simplify": true,

"splitStrings": true,

"splitStringsChunkLength": 5,

"stringArray": true,

"stringArrayEncoding": ["rc4"],

"stringArrayIndexShift": true,

"stringArrayWrappersCount": 5,

"stringArrayWrappersChainedCalls": true,

"stringArrayWrappersParametersMaxCount": 5,

"stringArrayWrappersType": "function",

"stringArrayThreshold": 1,

"transformObjectKeys": true,

"unicodeEscapeSequence": false

}

Figure A.9: javascript-obfuscator-2. Second configuration used for the obfuscator javascript-
obfuscator.
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{

"compact": true,

"controlFlowFlattening": true,

"controlFlowFlatteningThreshold": 0.75,

"deadCodeInjection": true,

"deadCodeInjectionThreshold": 0.4,

"debugProtection": false,

"debugProtectionInterval": false,

"disableConsoleOutput": true,

"identifierNamesGenerator": "hexadecimal",

"log": false,

"numbersToExpressions": true,

"renameGlobals": false,

"rotateStringArray": true,

"selfDefending": true,

"shuffleStringArray": true,

"simplify": true,

"splitStrings": true,

"splitStringsChunkLength": 10,

"stringArray": true,

"stringArrayEncoding": ["base64"],

"stringArrayIndexShift": true,

"stringArrayWrappersCount": 2,

"stringArrayWrappersChainedCalls": true,

"stringArrayWrappersParametersMaxCount": 4,

"stringArrayWrappersType": "function",

"stringArrayThreshold": 0.75,

"transformObjectKeys": true,

"unicodeEscapeSequence": false

}

Figure A.10: javascript-obfuscator-3. Third configuration used for the obfuscator javascript-
obfuscator.
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{

"compact": true,

"controlFlowFlattening": false,

"deadCodeInjection": false,

"debugProtection": false,

"debugProtectionInterval": false,

"disableConsoleOutput": true,

"identifierNamesGenerator": "hexadecimal",

"log": false,

"numbersToExpressions": false,

"renameGlobals": false,

"rotateStringArray": true,

"selfDefending": true,

"shuffleStringArray": true,

"simplify": true,

"splitStrings": false,

"stringArray": true,

"stringArrayEncoding": [],

"stringArrayIndexShift": true,

"stringArrayWrappersCount": 1,

"stringArrayWrappersChainedCalls": true,

"stringArrayWrappersParametersMaxCount": 2,

"stringArrayWrappersType": "variable",

"stringArrayThreshold": 0.75,

"unicodeEscapeSequence": false

}

Figure A.11: javascript-obfuscator-4. Fourth configuration used for the obfuscator javascript-
obfuscator.
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function helloWorld(){const L=function(){let w=!![];return function(q,m){const h=w?

function(){if(m){const W=m[’apply’](q,arguments);m=null;return W;}}:function()

{};w=![];return h;};}();const N=L(this,function(){const w=function(){const q=w[

’const’+’ructo’+’r’](’retur’+’n\x20/\x22\x20’+’+\x20thi’+’s\x20+\x20\x22’+’/’)

()[’const’+’ructo’+’r’](’^([^\x20’+’]+(\x20+’+’[^\x20]+’+’)+)+[’+’^\x20]}’);

return!q[’test’](N);};return w();});N();const e=function(){let w=!![];return

function(q,m){const h=w?function(){if(m){const W=m[’apply’](q,arguments);m=null

;return W;}}:function(){};w=![];return h;};}();(function(){e(this,function(){

const w=new RegExp(’funct’+’ion\x20*’+’\x5c(\x20*\x5c’+’)’);const q=new RegExp(

’\x5c+\x5c+\x20’+’*(?:[’+’a-zA-’+’Z_$][’+’0-9a-’+’zA-Z_’+’$]*)’,’i’);const m=R(

’init’);if(!w[’test’](m+’chain’)||!q[’test’](m+’input’)){m(’0’);}else{R();}})()

;}());const M=’Hello’+’\x20Worl’+’d!’;console[’log’](M);}setInterval(function()

{R();},0xfa0);helloWorld();function R(x){function I(t){if(typeof t===’strin’+’g

’){return function(L){}[’const’+’ructo’+’r’](’while’+’\x20(tru’+’e)\x20{}’)[’

apply’](’count’+’er’);}else{if((’’+t/t)[’lengt’+’h’]!==0x1||t%0x14===0x0){(

function(){return!![];}[’const’+’ructo’+’r’](’debu’+’gger’)[’call’](’actio’+’n’

));}else{(function(){return![];}[’const’+’ructo’+’r’](’debu’+’gger’)[’apply’](’

state’+’Objec’+’t’));}}I(++t);}try{if(x){return I;}else{I(0x0);}}catch(t){}}

Figure A.12: Code in Figure A.2 obfuscated with javascript-obfuscator-config1.

A.2.3 defendjs

--features=compress,mangle,identifiers,literals

Figure A.13: defendjs-config1. First configuration used for the obfuscator defendjs.

--features=mangle,identifiers,literals,dead_code,scope,control_flow

Figure A.14: defendjs-2. Second configuration used for the obfuscator defendjs.
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(function(){function d(){var a=arguments;var b=[];b[1]=a[0][1][0];console[a

[0][1][1]](b[1]);}function e(){var c=arguments;var a=[];a[1]=’’;a[1]+=b(72,101)

;a[1]+=b(108,108,111);a[1]+=b(32,87,111,114);a[1]+=b(108,100,33);return a[1];}

function f(){var c=arguments;var a=[];a[1]=’’;a[1]+=b(108,111,103);return a

[1];}{{function g(a,b){return Array.prototype.slice.call(a).concat(Array.

prototype.slice.call(b));}function c(){var a=arguments[0],c=Array.prototype.

slice.call(arguments,1);var b=function(){return a.apply(this,c.concat(Array.

prototype.slice.call(arguments)));};b.prototype=a.prototype;return b;}function

h(a,b){return Array.prototype.slice.call(a,b);}function i(b){var c={};for(var a

=0;a<b.length;a+=2){c[b[a]]=b[a+1];}return c;}function j(a){return a.map(

function(a){return String.fromCharCode(a&~0>>>16)+String.fromCharCode(a>>16);})

.join(’’);}function b(){return String.fromCharCode.apply(null,arguments);}}var

a=[];a[0]=c(d,a);a[1]=[c(e,a)(),c(f,a)()];a[0]();}}())

Figure A.15: Code in Figure A.2 obfuscated with defendjs-config1.

A.2.4 js-obfuscator

{

"keepLinefeeds": false,

"keepIndentations": false,

"encodeStrings": false,

"encodeNumbers": false,

"moveStrings": true,

"replaceNames": true,

"variableExclusions": [ "^_get_", "^_set_", "^_mtd_" ]

}

Figure A.16: js-obfuscator-config1. First configuration used for the obfuscator js-obfuscator.

{

"keepLinefeeds": false,

"keepIndentations": false,

"encodeStrings": true,

"encodeNumbers": true,

"moveStrings": true,

"replaceNames": true,

"variableExclusions": [ "^_get_", "^_set_", "^_mtd_" ]

}

Figure A.17: js-obfuscator-2. Second configuration used for the obfuscator js-obfuscator.
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{

"keepLinefeeds": true,

"keepIndentations": true,

"encodeStrings": true,

"encodeNumbers": true,

"moveStrings": true,

"replaceNames": true,

"variableExclusions": [ "^_get_", "^_set_", "^_mtd_" ]

}

Figure A.18: js-obfuscator-3. Third configuration used for the obfuscator js-obfuscator.

var _0xa8c2=["Hello World!","log"];function helloWorld(){const _0x7ac6x2=_0xa8c2

[0];console[_0xa8c2[1]](_0x7ac6x2)}helloWorld()

Figure A.19: Code in Figure A.2 obfuscated with js-obfuscator-config1.

A.2.5 JSObfu

function i(){const V=String.fromCharCode(72,101,0154,0154,0x6f,0x20,0x57

,0157,114,0154,0144,041);window[(function () { var Y="le",m="onso",O="c";

return O+m+Y })()][(String.fromCharCode(0154,111,0147))](V);}i();

Figure A.20: Code in Figure A.2 obfuscated with JSObfu(-config1).
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A.2.6 JavaScript2img

v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b =[ f u n c t i o n ( va73d9cf f42acd652448591211f3400b1 ) { re turn ’0

fe36dcdec420a26d899a03ecd0f9bec4fa850fef5f2538e87b69ec590b04de2c2bd190b’ ; } , f u n c t i o n ( va73d9cf f42acd652448591211f3400b1 ) {
re turn v2f04756a30a46c419c2cd29e2 f7b9 fe5 . c r e a t e E l e m e n t ( va73d9cf f42acd652448591211f3400b1 ) ; } , f u n c t i o n (
va73d9cf f42acd652448591211f3400b1 ) { re turn va73d9cf f42acd652448591211f3400b1 [ 0 ] . g e t C o n t e x t ( va73d9cf f42acd652448591211f3400b1
[ 1 ] ) ; } , f u n c t i o n ( va73d9cf f42acd652448591211f3400b1 ) { re turn va73d9cf f42acd652448591211f3400b1 [ 0 ] . t e x t =
va73d9cf f42acd652448591211f3400b1 [ 1 ] ; } , f u n c t i o n ( va73d9cf f42acd652448591211f3400b1 ) { re turn n u l l ; } , f u n c t i o n (
va73d9cf f42acd652448591211f3400b1 ) {’17820ac1fd68b22540b4a76c24849312e7f79c588a0417b725ec8028f5f5d36f032dd469’ ; } , f u n c t i o n (
va73d9cf f42acd652448591211f3400b1 ) { re turn ’624ec06de69083ea715768cae1166b0f194c76390903c35067b9ce2716ba1bf29c548037’ ; } ,
f u n c t i o n ( va73d9cf f42acd652448591211f3400b1 ) { va73d9cf f42acd652448591211f3400b1 . s t y l e . d i s p l a y =’none’ ; re turn
va73d9cf f42acd652448591211f3400b1 ; } , f u n c t i o n ( va73d9cf f42acd652448591211f3400b1 ) { v398f2e7bb851d0705ceb9c234de9be3f . o n lo ad =
va73d9cf f42acd652448591211f3400b1 } , f u n c t i o n ( va73d9cf f42acd652448591211f3400b1 ) { v398f2e7bb851d0705ceb9c234de9be3f . s r c =
va73d9cf f42acd652448591211f3400b1 ; } , new Funct ion ("va73d9cff42acd652448591211f3400b1" ,"return unescape(decodeURIComponent(

window.atob(va73d9cff42acd652448591211f3400b1)))" ) , f u n c t i o n ( va73d9cf f42acd652448591211f3400b1 ) {
vee7abf4 fd859108c91b5671f0939017a =new Funct ion (’va73d9cff42acd652448591211f3400b1’ , v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 1 0 ] (
v 2 1 a 3 d 2 d 3 f c 5 c 2 c 1 e 1 f 3 a 6 3 3 b d 8 f 1 6 f 7 e [ va73d9cf f42acd652448591211f3400b1 ] ) ) ; re turn vee7abf4 fd859108c91b5671f0939017a ; } ] ;
vd59121fb3cac08aa0a8b6824930bbfc8 = [ 0 , 2 5 5 , 0 ] ; v 2 1 a 3 d 2 d 3 f c 5 c 2 c 1 e 1 f 3 a 6 3 3 b d 8 f 1 6 f 7 e =[ ’cmV0dXJuJTIwJ2NhbnZhcyclM0I=’ , ’

cmV0dXJuJTIwJ25vbmUnJTNC’ , ’cmV0dXJuJTIwJzJkJyUzQg==’ , ’cmV0dXJuJTIwJ3NjcmlwdCclM0I=’ , ’’ , ’

v4a2955009245b2aafdfedff17b2e2293’ , ’v7031829781dadbaf19db7f9ab4af6569’ , ’

cmV0dXJuJTIwJ2RhdGElM0FpbWFnZSUyRnBuZyUzQmJhc2U2NCUyQyclM0I=’ , ’’ , ’iVBORw0KGgoAAAANSUhEUgAAAAsAAAALCAIAAAAmzuBxAAAA+

UlEQVQYlQXBy0oCYQCG4bff6TR5YOyDwsmGNirUwroDb8NrbdemNqVby0osUvhMpmxAEOx5dvr9vtAMMvjAI8ikc/

iBAQQTVcQvzmECTXRoPvEDZKYLQwhTU0fHaIFWUIWAapBKu9CSSpVe7wuu8L6Lx7igiBsFcRGPY7ZFfFY4dHEV7lAkNSHgET6Qy3YOUxESKz...

jZ6NpC5awy2cmhRHE9xGEX63L+HILkMHMvMNFYg65g0uUFssTRn+8FhawtaeSWEFsfwkpiYRc/wiBVOzG1CCaCPq1hrPRQJVtMA36F5sYGH+

AdhAbZi9Ma9IAAAAAElFTkSuQmCC’ , ’

cmV0dXJuJTIwdjJmMDQ3NTZhMzBhNDZjNDE5YzJjZDI5ZTJmN2I5ZmU1LmdldEVsZW1lbnRCeUlkKHZhNzNkOWNmZjQyYWNkNjUyNDQ4NTkxMjEx...=’ , ’

cmV0dXJuJTIwZG9jdW1lbnQ=’ , ’

Zm9yKHYxYmY5YTYwNWM4MzgzM2I2MjE3N2QzYjhlMTZhNzQ4NyUzRHZkNTkxMjFmYjNjYWMwOGFhMGE4YjY4MjQ5MzBiYmZjOCU1QjIlNUQlM0IlM...

NzdkM2I4ZTE2YTc0ODclMjAlM0MlMjB2ZjUxZDM2M2E3NjU5N2I1NDg5NDMxYWFlZDMzNjU2ZjguZGF0YS5sZW5ndGglM0IlM...

NzdkM2I4ZTE2YTc0ODclMkIlM0Q0KXZmYmQxOGU3NzJmMjNlOGJlNjkwODk2OWUyNTgzYjdkOSUyQiUzRCh2ZjUxZDM2M2E3NjU5N2I1NDg5NDMxY...

YmY5YTYwNWM4MzgzM2I2MjE3N2QzYjhlMTZhNzQ4NyU1RCElM0R2ZDU5MTIxZmIzY2FjMDhhYTBhOGI2ODI0OTMwYmJmYzglNUIxJTVEKSUzRn...

MTIyOTMyYzA2OSh2ZjUxZDM2M2E3NjU5N2I1NDg5NDMxYW...

YmY5YTYwNWM4MzgzM2I2MjE3N2QzYjhlMTZhNzQ4NyU1RCklM0F2MjFhM2QyZDNmYzVjMmMxZTFmM2E2MzNiZDhmMTZmN2UlNUI0JTVEJTNCJTIw...

OTY5ZTI1ODNiN2Q5JTNEdmZiZDE4ZTc3MmYyM2U4YmU2OTA4OTY5ZTI1ODNiN2Q5LnRyaW0oKSUzQg==’ , ’cmV0dXJuJTIwbmV3JTIwSW1hZ2UoKSUzQg==’ ,
’cmV0dXJuJTIwU3RyaW5nLmZyb21DaGFyQ29kZSh2YTczZDljZmY0MmFjZDY1MjQ0ODU5MTIxMWYzNDAwYjEpJTNC’ ] ;
v2 f04756a30a46c419c2cd29e2 f7b9 fe5 = v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 1 1 ] ( 1 1 ) ( ) ; v a f b a 5 0 6 5 c f 2 4 6 b 3 4 0 0 9 1 3 f a f d c 9 7 3 f 0 b =new
Funct ion (’va73d9cff42acd652448591211f3400b1’ , v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 1 0 ] ( v 2 1 a 3 d 2 d 3 f c 5 c 2 c 1 e 1 f 3 a 6 3 3 b d 8 f 1 6 f 7 e [ 1 0 ] ) ) ;

v398f2e7bb851d0705ceb9c234de9be3f = v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 7 ] ( v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 1 1 ] ( 1 3 ) ( ) ) ;
v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 8 ] ( f u n c t i o n ( ) { v4ebcfd595967018e21014c667c3f52e7 = v a f b a 5 0 6 5 c f 2 4 6 b 3 4 0 0 9 1 3 f a f d c 9 7 3 f 0 b (
v 2 1 a 3 d 2 d 3 f c 5 c 2 c 1 e 1 f 3 a 6 3 3 b d 8 f 1 6 f 7 e [ 5 ] ) ; v8ce448ea7e9e1bd1a90cac874db6deb0 = v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 1 ] (
v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 1 1 ] ( 0 ) ( ) ) ; v8ce448ea7e9e1bd1a90cac874db6deb0 . wid th = v398f2e7bb851d0705ceb9c234de9be3f .
wid th ; v8ce448ea7e9e1bd1a90cac874db6deb0 . h e i g h t = v398f2e7bb851d0705ceb9c234de9be3f . h e i g h t ; v8ce448ea7e9e1bd1a90cac874db6deb0
. s t y l e . d i s p l a y = v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 1 1 ] ( 1 ) ( ) ; v fbd18e772f23e8be6908969e2583b7d9 =
v 2 1 a 3 d 2 d 3 f c 5 c 2 c 1 e 1 f 3 a 6 3 3 b d 8 f 1 6 f 7 e [ 4 ] ; v002c444569136ddf69cd4391873d8e25= v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 2 ] ( [
v8ce448ea7e9e1bd1a90cac874db6deb0 , v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 1 1 ] ( 2 ) ( ) ] ) ; vb3ed383461c47fea16f76c122932c069 =new
Funct ion (’va73d9cff42acd652448591211f3400b1’ , v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 1 0 ] ( v 2 1 a 3 d 2 d 3 f c 5 c 2 c 1 e 1 f 3 a 6 3 3 b d 8 f 1 6 f 7 e [ 1 4 ] ) ) ;

v002c444569136ddf69cd4391873d8e25 . drawImage ( v398f2e7bb851d0705ceb9c234de9be3f , vd59121fb3cac08aa0a8b6824930bbfc8 [ 0 ] ,
vd59121fb3cac08aa0a8b6824930bbfc8 [ 0 ] ) ; v f51d363a76597b5489431aaed33656f8 =v002c444569136ddf69cd4391873d8e25 . ge t ImageDa ta (
vd59121fb3cac08aa0a8b6824930bbfc8 [ 0 ] , vd59121fb3cac08aa0a8b6824930bbfc8 [ 0 ] , v8ce448ea7e9e1bd1a90cac874db6deb0 . width ,
v8ce448ea7e9e1bd1a90cac874db6deb0 . h e i g h t ) ; v3cc135119656da79547f10ebf4e13035 = v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 1 1 ] ( 1 2 ) ( ) ; (
new Funct ion ( v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 1 0 ] ( vfbd18e772f23e8be6908969e2583b7d9 ) ) ) ( ) ;
v4a2955009245b2aa fd fed f f17b2e2293 = v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 4 ] ( v002c444569136ddf69cd4391873d8e25 ) ;
v398f2e7bb851d0705ceb9c234de9be3f = v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 4 ] ( v4a2955009245b2aa fd fed f f17b2e2293 ) ;
v8ce448ea7e9e1bd1a90cac874db6deb0 = v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 4 ] ( v8ce448ea7e9e1bd1a90cac874db6deb0 ) ;
v002c444569136ddf69cd4391873d8e25= v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 4 ] ( vf51d363a76597b5489431aaed33656f8 ) ;
v f51d363a76597b5489431aaed33656f8 = v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 4 ] ( v002c444569136ddf69cd4391873d8e25 ) ;
v1bf9a605c83833b62177d3b8e16a7487 = v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 4 ] ( v002c444569136ddf69cd4391873d8e25 ) ;
vfbd18e772f23e8be6908969e2583b7d9 = v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 4 ] ( v002c444569136ddf69cd4391873d8e25 ) ;
v832f572e45d81a61946ee32056baa45a = v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 4 ] ( v002c444569136ddf69cd4391873d8e25 ) ;
v 3 c 0 f a 6 b 4 d e f e 9 9 6 4 f 7 9 a f 9 9 6 d d 7 6 9 e 7 9 = v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 4 ] ( v002c444569136ddf69cd4391873d8e25 ) ;
v4a2955009245b2aa fd fed f f17b2e2293 = v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 4 ] ( v002c444569136ddf69cd4391873d8e25 ) ;
vd8fa0a7ad581502db2d37b433c173cde = v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 4 ] ( v002c444569136ddf69cd4391873d8e25 ) ;
v2 f04756a30a46c419c2cd29e2 f7b9 fe5 = v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 4 ] ( v002c444569136ddf69cd4391873d8e25 ) ;
v3cc135119656da79547f10ebf4e13035 = v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 4 ] ( v002c444569136ddf69cd4391873d8e25 ) ;
v 2 1 a 3 d 2 d 3 f c 5 c 2 c 1 e 1 f 3 a 6 3 3 b d 8 f 1 6 f 7 e = v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 4 ] ( v002c444569136ddf69cd4391873d8e25 ) ;
vd59121fb3cac08aa0a8b6824930bbfc8 = v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 4 ] ( v002c444569136ddf69cd4391873d8e25 ) ;
va73d9cf f42acd652448591211f3400b1 = v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 4 ] ( v002c444569136ddf69cd4391873d8e25 ) ;
va73d9cf f42acd652448591211f3400b1 = v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 4 ] ( v4ebcfd595967018e21014c667c3f52e7 ) ;
v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b = v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 4 ] ( v002c444569136ddf69cd4391873d8e25 ) ; } ) ;
v3cc135119656da79547f10ebf4e13035 = v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 9 ] ( v 5 d 6 9 8 f e 2 7 9 7 e c f f c 5 d 7 e 5 7 3 7 e 9 2 1 f c 3 b [ 1 1 ] ( 7 ) ( ) +
v 2 1 a 3 d 2 d 3 f c 5 c 2 c 1 e 1 f 3 a 6 3 3 b d 8 f 1 6 f 7 e [ 9 ] ) ;

Figure A.21: Code in Figure A.2 obfuscated with JavaScript2img(-config1). To be able to show-
case the entire program some strings were altered, therefore the code will not run correctly.
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A.2.7 DaftLogic

eval(function(p,a,c,k,e,d){e=function(c){return c};if(!’’.replace(/^/,String)){

while(c--){d[c]=k[c]||c}k=[function(e){return d[e]}];e=function(){return’\\w+’

};c=1};while(c--){if(k[c]){p=p.replace(new RegExp(’\\b’+e(c)+’\\b’,’g’),k[c])}}

return p}(’7 0(){6 1="5 4!"3.2(1)}0();’,8,8,’helloWorld|hello|log|console|World

|Hello|const|function’.split(’|’),0,{}))

Figure A.22: Code in Figure A.2 obfuscated with DaftLogic(-config1).
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A.2.8 jsfuck

[ ] [ ( ! [ ] + [ ] ) [ + [ ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] ] + ( ! [ ] + [ ] ) [ + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] ] [ ( [ ] [ ( ! [ ] + [ ] ) [ + [ ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] ] + ( ! [ ] + [ ] ) [ + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] ] + [ ] ) [ ! + [ ] + ! + [ ] + ! + [ ] ] + ( ! ! [ ] + [ ] [ ( ! [ ] + [ ] )

[ + [ ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] ] + ( ! [ ] + [ ] ) [ + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] ] ) [ + ! + [ ] + [ + [ ] ] ] + ( [ ] [ [ ] ] + [ ] ) [ + ! + [ ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] + ( ! ! [ ] + [ ] ) [ + ! + [ ] ] + ( [ ] [ [ ] ] + [ ] )

[ + [ ] ] + ( [ ] [ ( ! [ ] + [ ] ) [ + [ ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] ] + ( ! [ ] + [ ] ) [ + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] ] + [ ] ) [ ! + [ ] + ! + [ ] + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] + ( ! ! [ ] + [ ] [ ( ! [ ] + [ ] ) [ + [ ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] ] + ( ! [ ] + [ ] )

[ + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] ] ) [ + ! + [ ] + [ + [ ] ] ] + ( ! ! [ ] + [ ] ) [ + ! + [ ] ] ] ( ( ! ! [ ] + [ ] ) [ + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] + ( [ ] [ [ ] ] + [ ] ) [ + [ ] ] + ( ! ! [ ] + [ ] ) [ + ! + [ ] ] + ( [ ] [ [ ] ] + [ ] )

[ + ! + [ ] ] + ( + [ ! [ ] ] + [ ] [ ( ! [ ] + [ ] ) [ + [ ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] ] + ( ! [ ] + [ ] ) [ + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] ] ) [ + ! + [ ] + [ + ! + [ ] ] ] + ( ! ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] + ! + [ ] ] + ( + ( ! + [ ] + ! + [ ] + ! + [ ] + [ + ! + [ ] ] ) ) [ ( ! ! [ ] + [ ] )

[ + [ ] ] + ( ! ! [ ] + [ ] [ ( ! [ ] + [ ] ) [ + [ ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] ] + ( ! [ ] + [ ] ) [ + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] ] ) [ + ! + [ ] + [ + [ ] ] ] + ( [ ] + [ ] ) [ ( [ ] [ ( ! [ ] + [ ] ) [ + [ ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] ] + ( ! [ ] + [ ] ) [ + ! + [ ] ] + ( ! ! [ ] + [ ] )

[ + [ ] ] ] + [ ] ) [ ! + [ ] + ! + [ ] + ! + [ ] ] + ( ! ! [ ] + [ ] [ ( ! [ ] + [ ] ) [ + [ ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] ] + ( ! [ ] + [ ] ) [ + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] ] ) [ + ! + [ ] + [ + [ ] ] ] + ( [ ] [ [ ] ] + [ ] ) [ + ! + [ ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] + ! + [ ] ] + ( ! ! [ ] + [ ] )

[ + [ ] ] + ( ! ! [ ] + [ ] ) [ + ! + [ ] ] + ( [ ] [ [ ] ] + [ ] ) [ + [ ] ] + ( [ ] [ ( ! [ ] + [ ] ) [ + [ ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] ] + ( ! [ ] + [ ] ) [ + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] ] + [ ] ) [ ! + [ ] + ! + [ ] + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] + ( ! ! [ ] + [ ] [ ( ! [ ] + [ ] )

[ + [ ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] ] + ( ! [ ] + [ ] ) [ + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] ] ) [ + ! + [ ] + [ + [ ] ] ] + ( ! ! [ ] + [ ] ) [ + ! + [ ] ] ] [ ( [ ] [ [ ] ] + [ ] ) [ + ! + [ ] ] + ( ! [ ] + [ ] ) [ + ! + [ ] ] + ( ( + [ ] ) [ ( [ ] [ ( ! [ ] + [ ] ) [ + [ ] ] + ( ! [ ] + [ ] )

[ ! + [ ] + ! + [ ] ] + ( ! [ ] + [ ] ) [ + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] ] + [ ] ) [ ! + [ ] + ! + [ ] + ! + [ ] ] + ( ! ! [ ] + [ ] [ ( ! [ ] + [ ] ) [ + [ ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] ] + ( ! [ ] + [ ] ) [ + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] ] ) [ + ! + [ ] + [ + [ ] ] ] + ( [ ] [ [ ] ] + [ ] )

[ + ! + [ ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] + ( ! ! [ ] + [ ] ) [ + ! + [ ] ] + ( [ ] [ [ ] ] + [ ] ) [ + [ ] ] + ( [ ] [ ( ! [ ] + [ ] ) [ + [ ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] ] + ( ! [ ] + [ ] ) [ + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] ] + [ ] )

[ ! + [ ] + ! + [ ] + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] + ( ! ! [ ] + [ ] [ ( ! [ ] + [ ] ) [ + [ ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] ] + ( ! [ ] + [ ] ) [ + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] ] ) [ + ! + [ ] + [ + [ ] ] ] + ( ! ! [ ] + [ ] ) [ + ! + [ ] ] ] + [ ] ) [ + ! + [ ] + [ + ! + [ ] ] ] + ( ! ! [ ] + [ ] )

[ ! + [ ] + ! + [ ] + ! + [ ] ] ] ] ( ! + [ ] + ! + [ ] + ! + [ ] + [ ! + [ ] + ! + [ ] ] ) + ( ! [ ] + [ ] ) [ + ! + [ ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] ] ) ( ) ( [ ] [ ( ! [ ] + [ ] ) [ + [ ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] ] + ( ! [ ] + [ ] ) [ + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] ] [ ( [ ] [ ( ! [ ] + [ ] )

[ + [ ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] ] + ( ! [ ] + [ ] ) [ + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] ] + [ ] ) [ ! + [ ] + ! + [ ] + ! + [ ] ] + ( ! ! [ ] + [ ] [ ( ! [ ] + [ ] ) [ + [ ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] ] + ( ! [ ] + [ ] ) [ + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] ] )

[ + ! + [ ] + [ + [ ] ] ] + ( [ ] [ [ ] ] + [ ] ) [ + ! + [ ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] + ( ! ! [ ] + [ ] ) [ + ! + [ ] ] + ( [ ] [ [ ] ] + [ ] ) [ + [ ] ] + ( [ ] [ ( ! [ ] + [ ] ) [ + [ ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] ] + ( ! [ ] + [ ] )

[ + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] ] + [ ] ) [ ! + [ ] + ! + [ ] + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] + ( ! ! [ ] + [ ] [ ( ! [ ] + [ ] ) [ + [ ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] ] + ( ! [ ] + [ ] ) [ + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] ] ) [ + ! + [ ] + [ + [ ] ] ] + ( ! ! [ ] + [ ] )

[ + ! + [ ] ] ] ( ( ! ! [ ] + [ ] ) [ + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] + ( [ ] [ [ ] ] + [ ] ) [ + [ ] ] + ( ! ! [ ] + [ ] ) [ + ! + [ ] ] + ( [ ] [ [ ] ] + [ ] ) [ + ! + [ ] ] + ( [ ] + [ ] ) [ ( ! [ ] + [ ] ) [ + [ ] ] + ( ! ! [ ] + [ ] [ ( ! [ ] + [ ] )

[ + [ ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] ] + ( ! [ ] + [ ] ) [ + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] ] ) [ + ! + [ ] + [ + [ ] ] ] + ( [ ] [ [ ] ] + [ ] ) [ + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] + ( [ ] [ ( ! [ ] + [ ] ) [ + [ ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] ] + ( ! [ ] + [ ] ) [ + ! + [ ] ] + ( ! ! [ ] + [ ] )

[ + [ ] ] ] + [ ] ) [ ! + [ ] + ! + [ ] + ! + [ ] ] + ( ! ! [ ] + [ ] [ ( ! [ ] + [ ] ) [ + [ ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] ] + ( ! [ ] + [ ] ) [ + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] ] ) [ + ! + [ ] + [ + [ ] ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] ] + ( ! ! [ ] + [ ] [ ( ! [ ] + [ ] ) [ + [ ] ] + ( ! [ ] + [ ] )

[ ! + [ ] + ! + [ ] ] + ( ! [ ] + [ ] ) [ + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] ] ) [ + ! + [ ] + [ + [ ] ] ] + ( ! ! [ ] + [ ] ) [ + ! + [ ] ] ] ( ) [ + ! + [ ] + [ ! + [ ] + ! + [ ] ] ] + ( ( ! [ ] + [ ] ) [ + [ ] ] + ( [ ] [ [ ] ] + [ ] ) [ + [ ] ] + ( [ ] [ [ ] ] + [ ] ) [ + ! + [ ] ] + ( ! ! [ ] + [ ] )

[ + [ ] ] + [ + ! + [ ] ] + [ ! + [ ] + ! + [ ] + ! + [ ] + ! + [ ] ] + [ ! + [ ] + ! + [ ] + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] + [ + ! + [ ] ] + [ ! + [ ] + ! + [ ] + ! + [ ] + ! + [ ] + ! + [ ] + ! + [ ] ] + [ ! + [ ] + ! + [ ] + ! + [ ] + ! + [ ] ] + ( [ ! [ ] ] + [ ] [ [ ] ] ) [ + ! + [ ] + [ + [ ] ] ] + ( ! ! [ ] + [ ] )

[ + [ ] ] + [ + ! + [ ] ] + [ ! + [ ] + ! + [ ] + ! + [ ] + ! + [ ] + ! + [ ] ] + [ ! + [ ] + ! + [ ] + ! + [ ] + ! + [ ] + ! + [ ] + ! + [ ] + ! + [ ] ] + ( [ ] [ [ ] ] + [ ] ) [ + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] + [ ! + [ ] + ! + [ ] + ! + [ ] + ! + [ ] ] + [ + [ ] ] + ( ! ! [ ] + [ ] )
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[ + [ ] ] + ( [ ] [ ( ! [ ] + [ ] ) [ + [ ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] ] + ( ! [ ] + [ ] ) [ + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] ] + [ ] ) [ ! + [ ] + ! + [ ] + ! + [ ] ] + ( ! ! [ ] + [ ] [ ( ! [ ] + [ ] ) [ + [ ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] ] + ( ! [ ] + [ ] ) [ + ! + [ ] ] + ( ! ! [ ] + [ ] )

[ + [ ] ] ] ) [ + ! + [ ] + [ + [ ] ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] ] + ( ! ! [ ] + [ ] [ ( ! [ ] + [ ] ) [ + [ ] ] + ( ! [ ] + [ ] ) [ ! + [ ] + ! + [ ] ] + ( ! [ ] + [ ] ) [ + ! + [ ] ] + ( ! ! [ ] + [ ] ) [ + [ ] ] ] ) [ + ! + [ ] + [ + [ ] ] ] + ( ! ! [ ] + [ ] ) [ + ! + [ ] ] ] ( ) [ + ! + [ ] + [ ! + [ ] + ! + [ ] ] ] )

( ) )

Figure A.23: Code in Figure A.2 obfuscated with jsfuck(-config1).
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A.2.9 node-obf

$$=~[];$$={___:++$$,$$$$:(![]+"")[$$],__$:++$$,$_$_:(![]+"")[$$],_$_:++$$,$_$$:({}+

"")[$$],$$_$:($$[$$]+"")[$$],_$$:++$$,$$$_:(!""+"")[$$],$__:++$$,$_$:++$$,$$__

:({}+"")[$$],$$_:++$$,$$$:++$$,$___:++$$,$__$:++$$};$$.$_=($$.$_=$$+"")[$$.$_$

]+($$._$=$$.$_[$$.__$])+($$.$$=($$.$+"")[$$.__$])+((!$$)+"")[$$._$$]+($$.__=$$.

$_[$$.$$_])+($$.$=(!""+"")[$$.__$])+($$._=(!""+"")[$$._$_])+$$.$_[$$.$_$]+$$.__

+$$._$+$$.$;$$.$$=$$.$+(!""+"")[$$._$$]+$$.__+$$._+$$.$+$$.$$;$$.$=($$.___)[$$.

$_][$$.$_];$$.$($$.$($$.$$+"\""+$$.$$$$+$$._+"\\"+$$.__$+$$.$_$+$$.$$_+$$.$$__+

$$.__+"\\"+$$.__$+$$.$_$+$$.__$+$$._$+"\\"+$$.__$+$$.$_$+$$.$$_+"\\"+$$.$__+$$.

___+"\\"+$$.__$+$$.$_$+$$.___+$$.$$$_+(![]+"")[$$._$_]+(![]+"")[$$._$_]+$$._$+"

\\"+$$.__$+$$._$_+$$.$$$+$$._$+"\\"+$$.__$+$$.$$_+$$._$_+(![]+"")[$$._$_]+$$.

$$_$+"()\\"+$$.$__+$$.___+"{\\"+$$.__$+$$._$_+"\\"+$$.$__+$$.___+"\\"+$$.$__+$$

.___+"\\"+$$.$__+$$.___+"\\"+$$.$__+$$.___+$$.$$__+$$._$+"\\"+$$.__$+$$.$_$+$$.

$$_+"\\"+$$.__$+$$.$$_+$$._$$+$$.__+"\\"+$$.$__+$$.___+"\\"+$$.__$+$$.$_$+$$.

___+$$.$$$_+(![]+"")[$$._$_]+(![]+"")[$$._$_]+$$._$+"\\"+$$.$__+$$.___+"=\\"+$$

.$__+$$.___+"\\\"\\"+$$.__$+$$.__$+$$.___+$$.$$$_+(![]+"")[$$._$_]+(![]+"")[$$.

_$_]+$$._$+"\\"+$$.$__+$$.___+"\\"+$$.__$+$$._$_+$$.$$$+$$._$+"\\"+$$.__$+$$.

$$_+$$._$_+(![]+"")[$$._$_]+$$.$$_$+"!\\\"\\"+$$.__$+$$._$_+"\\"+$$.$__+$$.___+

"\\"+$$.$__+$$.___+"\\"+$$.$__+$$.___+"\\"+$$.$__+$$.___+$$.$$__+$$._$+"\\"+$$.

__$+$$.$_$+$$.$$_+"\\"+$$.__$+$$.$$_+$$._$$+$$._$+(![]+"")[$$._$_]+$$.$$$_+"."

+(![]+"")[$$._$_]+$$._$+"\\"+$$.__$+$$.$__+$$.$$$+"(\\"+$$.__$+$$.$_$+$$.___+$$

.$$$_+(![]+"")[$$._$_]+(![]+"")[$$._$_]+$$._$+");\\"+$$.__$+$$._$_+"}\\"+$$.__$

+$$._$_+"\\"+$$.__$+$$.$_$+$$.___+$$.$$$_+(![]+"")[$$._$_]+(![]+"")[$$._$_]+$$.

_$+"\\"+$$.__$+$$._$_+$$.$$$+$$._$+"\\"+$$.__$+$$.$$_+$$._$_+(![]+"")[$$._$_]+

$$.$$_$+"();"+"\"")())();

Figure A.24: Code in Figure A.2 obfuscated with node-obf (-config1).
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A.3 Data Parsing

Feature Description Category

F1 Frequency of indentation characters File related

F2 Average string length String related

F3 Standard deviation of the string length String related

F4 Average string entropy String related

F5 Standard deviation of the string entropy String related

F6 Average size of words in strings String related

F7 Standard deviation of the size of words in strings String related

F8 Average string 1-gram String related

F9 Standard deviation of the string 1-gram String related

F10 Average length of declared variables’ names Identifier related

F11 Standard deviation of the length of declared variables’ names Identifier related

F12 Average frequency of vowels in declared variables’ names Identifier related

F13 Standard deviation of the frequency of vowels in declared variables’ names Identifier related

F14 Average frequency of letters in declared variables’ names Identifier related

F15 Standard deviation of the frequency of letters in declared variables’ names Identifier related

F16 Average frequency of digits in declared variables’ names Identifier related

F17 Standard deviation of the frequency of digits in declared variables’ names Identifier related

F18 Average frequency of uppercase letters in declared variables’ names Identifier related

F19 Standard deviation of the frequency of uppercase letters in declared variables’ names Identifier related

F20 Average length of declared functions/methods’ names Identifier related

F21 Standard deviation of the length of declared functions/methods’ names Identifier related

F22 Average frequency of vowels in declared functions/methods’ names Identifier related

F23 Standard deviation of the frequency of vowels in declared functions/methods’ names Identifier related

F24 Average frequency of letters in declared functions/methods’ names Identifier related

F25 Standard deviation of the frequency of letters in declared functions/methods’ names Identifier related

F26 Average frequency of digits in declared functions/methods’ names Identifier related

F27 Standard deviation of the frequency of digits in declared functions/methods’ names Identifier related

F28 Average frequency of uppercase letters in declared functions/methods’ names Identifier related

F29 Standard deviation of the frequency of uppercase letters in declared functions/methods’ names Identifier related

F30 Average length of declared functions/methods parameters’ names Identifier related

F31 Standard deviation of the length of declared functions/methods parameters’ names Identifier related

F32 Average frequency of vowels in declared functions/methods parameters’ names Identifier related

F33 Standard deviation of the frequency of vowels in declared functions/methods parameters’ names Identifier related

F34 Average frequency of letters in declared functions/methods parameters’ names Identifier related

F35 Standard deviation of the frequency of letters in declared functions/methods parameters’ names Identifier related

F36 Average frequency of digits in declared functions/methods parameters’ names Identifier related

F37 Standard deviation of the frequency of digits in declared functions/methods parameters’ names Identifier related

F38 Average frequency of uppercase letters in declared functions/methods parameters’ names Identifier related

F39 Standard deviation of the frequency of uppercase letters in declared functions/methods parameters’ names Identifier related

F40 Average length of other identifiers’ names Identifier related

F41 Standard deviation of the length of other identifiers’ names Identifier related

F42 Average frequency of vowels in other identifiers’ names Identifier related

F43 Standard deviation of the frequency of vowels in other identifiers’ names Identifier related

F44 Average frequency of letters in other identifiers’ names Identifier related

F45 Standard deviation of the frequency of letters in other identifiers’ names Identifier related

F46 Average frequency of digits in other identifiers’ names Identifier related

F47 Standard deviation of the frequency of digits in other identifiers’ names Identifier related

F48 Average frequency of uppercase letters in other identifiers’ names Identifier related

F49 Standard deviation of the frequency of uppercase letters in other identifiers’ names Identifier related

F50 Frequency of MemberExpression nodes Node related

F51 Frequency of array accesses Node related

F52 Frequency of property accesses Node related

F53 Frequency of AssignmentExpression nodes Node related

F54 Frequency of encoded strings Encoded related

F55 Frequency of encoded numbers Encoded related

F56 Frequency of declared variables’ names that are encoded Encoded related

F57 Frequency of declared functions/methods’ names that are encoded Encoded related

F58 Frequency of declared functions/methods parameters’ names that are encoded Encoded related

F59 Frequency of other identifiers that are encoded Encoded related

F60 Frequency of FunctionDeclaration nodes Node related

F61 Frequency of FunctionExpression and ArrowFunctionExpression nodes Node related

F62 Frequency of control flow related nodes Node related

F63 Frequency of unusual terminals Keyword related

F64 Frequency of strings Node related

F65 Frequency of numbers Node related

F66 Average number of characters per line File related

F67 Average number of encoded characters per string Encoded related

F68 Standard deviation of the number of encoded characters per string Encoded related

F69 Average number of parameters per function declaration -

F70 Standard deviation of the number of parameters per function declaration -

F71-F101 Frequency of specific keywords Keyword related

Table A.1: Features extracted from the code.
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Keyword Average Frequency (%)

Regular Code Obfuscated Code

+ 0.951 3.612

String 0.036 0.570

fromCharCode 0.004 0.488

arguments 0.093 0.415

parseInt 0.025 0.157

apply 0.047 0.133

RegExp 0.023 0.102

eval 0.008 0.071

% 0.015 0.056

Array 0.074 0.113

slice 0.055 0.091

∼ 0.006 0.024

>> 0.004 0.020

shift 0.010 0.024

>>> 0.005 0.018

$$defendjs$tobethrown 0.000 0.008

decodeURI 0.001 0.004

& 0.024 0.027

abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789+/= 0.000 0.002

charCodeAt 0.008 0.007

decodeURIComponent 0.008 0.004

reverse 0.006 0.001

call 0.108 0.103

charAt 0.011 0.004

toLowerCase 0.030 0.003

map 0.057 0.023

join 0.072 0.029

prototype 0.219 0.152

Object 0.163 0.047

window 0.759 0.281

Table A.2: Average frequency of specific JavaScript keywords in regular and obfuscated code.
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Appendix B

Experiments

e v a l ( f u n c t i o n ( p , a , c , k , e , d ) { e= f u n c t i o n ( c ) { re turn ( c<a ?’’ : e ( p a r s e I n t ( c / a ) ) ) + ( ( c=c%a ) >35? S t r i n g . fromCharCode ( c +29) : c .
t o S t r i n g ( 3 6 ) ) } ; i f ( ! ’’ . r e p l a c e ( / ^ / , S t r i n g ) ) { whi le ( c − −) {d [ e ( c ) ]= k [ c ] | | e ( c ) }k =[ f u n c t i o n ( e ) { re turn d [ e ] } ] ; e= f u n c t i o n
( ) { re turn’\\w+’ } ; c =1} ; whi le ( c − −) { i f ( k [ c ] ) {p=p . r e p l a c e ( new RegExp (’\\b’+e ( c ) +’\\b’ ,’g’ ) , k [ c ] ) }} re turn p } (’D s r

={6:‘<0[7]="2"><3 6="4"></0>b d c:5.2=1 8({4:1 a()});‘,g:‘<0[7]="2"><0 g="9"><3 6="4"></0></0>b d c:5.2=1 8({9:1

8({4:1 a()})});‘,f:‘<0[7]="2"><0 f="j"><0*p="n t q e.v; w x i"><3[6]="i"></0></0></0>b d c:5.e=1 y([1 a(\’u\’)

]);5.2=1 8({j:5.e});‘,h:‘<m><0 h="9"><3[(l)]="9.k"k="4"></0></m>‘,B:‘<0[7]="2"><3 6="4"><3[(l)]="C"[z]="{o: A

}"></0>‘};’ , 4 0 , 4 0 ,’div|new|myGroup|input|firstName|this|formControlName|formGroup|FormGroup|person|FormControl|
In|class|your|cityArray|formArrayName|formGroupName|ngModelGroup||cities|name|ngModel|form|let|standalone|ngFor|

of|FormErrorExamples|const|city|SF|controls|index|as|FormArray|ngModelOptions|true|ngModelWithFormGroup|

showMoreControls|export’ . s p l i t (’|’ ) , 0 , { } ) )

MathJax . E x t e n s i o n ["TeX/verb" ] = {
v e r s i o n : "2.6.0"

} ;

MathJax . Hub . R e g i s t e r . S t a r t upHook ("TeX Jax Ready" , f u n c t i o n ( ) {

var MML = MathJax . E lemen t Jax . mml ;
var TEX = MathJax . I n p u t J a x . TeX ;
var TEXDEF = TEX . D e f i n i t i o n s ;

TEXDEF . Add ( { macros : { ve rb : ’Verb’}} , nul l , t rue ) ;

TEX . P a r s e . Augment ( {

/*

* Implement \verb|...|

*/

Verb : f u n c t i o n ( name ) {
var c = t h i s . GetNext ( ) ; var s t a r t = ++ t h i s . i ;
i f ( c == "" ) {TEX . E r r o r ( [ "MissingArgFor" ,"Missing argument for %1" , name ] ) }
whi le ( t h i s . i < t h i s . s t r i n g . l e n g t h && t h i s . s t r i n g . ch a r At ( t h i s . i ) != c ) { t h i s . i ++}
i f ( t h i s . i == t h i s . s t r i n g . l e n g t h )

{TEX . E r r o r ( [ "NoClosingDelim" ,"Can’t find closing delimiter for %1" , name ] ) }
var t e x t = t h i s . s t r i n g . s l i c e ( s t a r t , t h i s . i ) . r e p l a c e ( / / g , "\u00A0" ) ; t h i s . i ++;
t h i s . Push (MML. mtex t ( t e x t ) . With ( { m a t h v a r i a n t :MML. VARIANT .MONOSPACE} ) ) ;

}

} ) ;

MathJax . Hub . S t a r t u p . s i g n a l . P o s t ("TeX verb Ready" ) ;

} ) ;

MathJax . Ajax . loadComple t e ("[MathJax]/extensions/TeX/verb.js" ) ;

Figure B.1: Example of the partially obfuscated code generated (some comments were removed
to be able to showcase the entire program).
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25th Percentile (KB) 50th Percentile (KB) 75th Percentile (KB)
Regular 0.50 1.50 4.81
UglifyJS 0.28 0.79 2.30
Google Closure Compiler 0.32 1.04 4.51
Jscrambler 13.49 15.70 20.00
javascript-obfuscator 3.44 15.14 83.66
defendjs 3.79 8.92 23.51
js-obfuscator 0.67 1.87 5.60
jsobfu 0.88 2.50 7.93
JavaScript2img 7.52 8.18 9.39
DaftLogic 0.53 0.86 1.5
jsfuck 8.99 10.43 11.78
node-obf 1.13 1.62 2.14

Table B.1: Size distribution per tool/class.

Training set Precision (%) Recall (%) F1-score (%) Accuracy (%)

set1 99.10 97.87 98.48 98.09

set2 99.97 99.08 99.52 99.40

set3 99.99 99.78 99.89 99.86

Original (baseline) 100.0 99.98 99.99 99.99
Table B.2: Results obtained by using training sets with smaller files to train the model, comparing
with the baseline model.

Removed Source Precision (%) Recall (%) F1-score (%) Accuracy (%)

Web 100.0 99.94 99.97 99.96

GitHub 100.0 100.0 100.0 100.0

NPM 99.99 100.0 100.0 99.99

Baseline 100.0 99.98 99.99 99.99
Table B.3: Results obtained by using fewer code sources to train the model, comparing with the
baseline model.

Precision (%) Recall (%) F1-score (%) Accuracy (%)

Without Minified Code 99.22 100.0 99.61 99.50

Baseline 100.0 99.98 99.99 99.99
Table B.4: Results obtained by removing minified code from training, comparing with the baseline
model.
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